
z/OS
2.5

Validated Boot for z/OS

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
143.

This edition applies to Version 2 Release 5 of z/OS® (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2023-05-15
© Copyright International Business Machines Corporation 2023.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. v

Tables... vii

About Validated Boot for z/OS .. xi

How to send your comments to IBM...xiii
If you have a technical problem..xiii

Chapter 1. Introduction to this content solution..1

Chapter 2. What is Validated Boot for z/OS? .. 3

Chapter 3. Preparing your DASD...5
LDIRTS parameter: specify which user-supplied IPL program record number to sign when doing

List Directed IPL..5
LDIPL parameter: write List Directed IPL records and a signed user-supplied IPL program record

on the volume... 5

Chapter 4. Preparing your Software... 7
AUTOIPL parameter of DIAGxx... 7
CLPA parameter of IEASYSxx.. 8

Chapter 5. Utilities.. 9
IEWSIGN: Sign, unsign, and report load modules ... 9

Invoking the signing utility (IEWSIGN) from another program...20
IEW messages.. 22

IEAVBPRT: Validated Boot for z/OS print utility..28

Chapter 6. RACF.. 33
IPL data signing for Validated Boot for z/OS .. 33
Overview of enabling your system for signed IPL data...33
Certificate requirements for signing IPL data... 33
Defining the IRR.PROGRAM.V2.SIGNING profile... 34
Enabling IPL data signing for Validated Boot for z/OS..36
Steps for using a RACF-generated signing certificate stored in a key ring.. 37
Steps for using an external signing certificate stored in a key ring.. 39
Steps for using a RACF-generated signing certificate stored in an ICSF token....................................... 41
R_PgmSignVer (IRRSPS00): Program Sign and Verify.. 42
Function... 42
Requirements...43
Linkage conventions.. 44
RACF authorization.. 44
Format.. 44
Parameters...44
Return and reason codes...51
Usage notes..58
Usage notes for program signing...58

 iii

Usage notes for program verification.. 61
Related services...63

Chapter 7. Commands... 65
Displaying system configuration information (M)... 65
VERBEXIT IEAVBIPC subcommand — Format validated boot information... 72
RACDCERT ADDTOKEN (Add token)..72
RACDCERT GENCERT (Generate certificate)...74

Chapter 8. Auditing and monitoring..91
Subtype 42 — Validated Boot for z/OS configuration event... 91

Chapter 9. MVS system messages...95

Chapter 10. Wait state codes... 105
Wait state code to module table... 107

Chapter 11. MVS data areas... 113
IHAVBA: Validated boot area.. 113

Chapter 12. RACF data areas..121
COMP: Common SAF/RACF Parameter List for z/OS UNIX System Services...121

COMP programming interface information..121
COMP mapping...121

COMY: 64-bit enabled SAF callable services..122
COMY programming interface information..122
COMY heading information.. 122
COMY mapping...123

RCVT: RACF Communication Vector Table..124
RCVT programming interface information...124
RCVT heading information... 126
RCVT mapping..126

Chapter 13. Load module formats...129
Input conventions..129
Record formats.. 129
Mapping of the directory entry record.. 138
Mapping of the signature record... 139

Appendix A. Accessibility...141

Notices..143
Terms and conditions for product documentation... 144
IBM Online Privacy Statement.. 145
Policy for unsupported hardware..145
Minimum supported hardware..145
Trademarks.. 146

Index.. 147

iv

Figures

1. SYM record (load module).. 129

2. CESD record (load module)...130

3. Scatter/Translation record..131

4. Control record (load module)..132

5. Relocation dictionary record (load module)...133

6. Control and relocation dictionary record (load module)..134

7. Record format of load module IDRs–part 1... 135

8. Record format of load module IDRs–part 2... 136

9. Record format of load module IDRs–part 3... 137

 v

vi

Tables

1. Parameters of IEWSIGN..10

2. IEWSIGN data definitions... 11

3. Steps for IEWSIGN member processing.. 13

4. ErrorID explanations... 18

5. Return codes for the IEWSIGN utility... 19

6. Structure of alternate DD list.. 20

7. Return codes for the IEAVBPRT utility..31

8. Scenarios for signing IPL data.. 36

9. Function_parmlist for SIGINIT... 46

10. Function_parmlist for SIGUPDAT... 47

11. Function_parmlist for SIGFINAL.. 47

12. Function_parmlist for SIGCLEAN... 47

13. Function_parmlist for VERINIT.. 48

14. Function_parmlist for VERUPDAT...48

15. Function_parmlist for VERFINAL..49

16. Function_parmlist for VERCLEAN...50

17. Function_parmlist for VERINTER... 50

18. Return and reason codes.. 51

19. SIGINIT-specific return and reason codes.. 52

20. SIGUPDAT-specific return and reason codes...54

21. SIGFINAL-specific return and reason codes..54

22. SIGCLEAN-specific return and reason codes...55

23. VERINIT-specific return and reason codes..55

 vii

24. VERUPDAT-specific return and reason codes.. 56

25. VERFINAL-specific return and reason codes... 56

26. VERCLEAN-specific return and reason codes.. 58

27. VERINTER-specific return and reason codes...58

28. PGSN_SF_SIG_AREA@ signature area format...59

29. Logic for the subjectKeyIdentifier extension for GENCERT... 74

30. Logic for the authorityKeyIdentifier extension for GENCERT.. 74

31. Logic for the keyUsage extension for GENCERT...75

32. Logic for the basicConstraints extension for GENCERT... 75

33. Logic for the subjectAltName extension for GENCERT.. 75

34. Logic for the issuerAltName extension for GENCERT.. 76

35. Authority required for the RACDCERT GENCERT function under the FACILITY class............................ 77

36. Authority required for the RACDCERT GENCERT function under the RDATALIB class when
IRR.RACDCERT.GRANULAR is defined.. 78

37. Wait state codes to modules reference..107

38. Structure VBA..113

39. Structure VB_CERTEXTRACT.. 114

40. Structure VB_AUDITAREA.. 115

41. Structure VB_AA_DSNE..116

42. Structure VB_AA_DSNE_MODE... 116

43. Cross Reference for IHAVBA.. 118

44. Structure COMP...121

45. Structure COMY...123

46. Structure RCVT..126

47. Mapping of record header REC_HEADER...138

48. Mapping of the directory entry record..139

viii

49. Mapping of the signature record.. 139

 ix

x

About Validated Boot for z/OS

Purpose of this information This is a collection of the information needed to understand and use
Validated Boot for z/OS. Some of the information contained in this collection also exists elsewhere in the
z/OS library.

Who should read this information This information is intended for system programmers who are
responsible for installing, configuring, and maintaining the Validated Boot for z/OS.

Related information
To find the complete z/OS library, go to IBM Documentation (www.ibm.com/docs/en/zos).

© Copyright IBM Corp. 2023 xi

https://www.ibm.com/docs/en/zos

xii z/OS: Validated Boot for z/OS

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xiii.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM® Documentation function
If your comment or question is about the IBM Documentation functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Documentation Support
at ibmdocs@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The section title of the specific information to which your comment relates
• The comprehensive content collection title: Validated Boot for z/OS
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 2023 xiii

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmdocs@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xiv z/OS: Validated Boot for z/OS

Chapter 1. Introduction to this content solution

This comprehensive content collection describes Validated Boot for z/OS and includes information from
the following z/OS publications:

• z/OS Introduction and Release Guide
• Device Support Facilities (ICKDSF) User's Guide and Reference
• z/OS MVS Initialization and Tuning Reference
• z/OS MVS Program Management: Advanced Facilities
• z/OS MVS Diagnosis: Tools and Service Aids
• z/OS Security Server RACF Security Administrator's Guide
• z/OS Security Server RACF Command Language Reference
• z/OS Security Server RACF Callable Services
• z/OS MVS System Commands
• z/OS MVS IPCS Commands
• z/OS MVS System Management Facilities (SMF)
• z/OS MVS System Messages, Vol 4 (CBD-DMO)
• z/OS MVS System Messages, Vol 6 (GOS-IEA)
• z/OS MVS System Messages, Vol 7 (IEB-IEE)
• z/OS MVS System Messages, Vol 9 (IGF-IWM)
• z/OS MVS System Codes
• z/OS MVS Data Areas Volume 1 (ABE - IAR)
• z/OS Security Server RACF Data Areas

This document is part of the Validated Boot for z/OS (www.ibm.com/support/z-content-solutions/
validated-boot-for-zos/) content solution.

For additional information about setting up Validated Boot for z/OS, see the white paper, z/OS Validated
Boot (ibm.biz/zosValidatedBoot).

© Copyright IBM Corp. 2023 1

https://www.ibm.com/support/z-content-solutions/validated-boot-for-zos/
https://www.ibm.com/support/z-content-solutions/validated-boot-for-zos/
http://ibm.biz/zosValidatedBoot
http://ibm.biz/zosValidatedBoot

2 z/OS: Validated Boot for z/OS

Chapter 2. What is Validated Boot for z/OS?

Validated Boot for z/OS is a solution that uses digital signatures to provide an initial program load
(IPL)-time check that validates that IPL data is intact, not tampered with, and originated from a trusted
source. It also enables detection of unauthorized changes to software executables.

By using Validated Boot for z/OS, you have the ability to meet regulatory compliance standards, including
National Information Assurance Partnership (NIAP) certification, that are required for certain secure
software deployment scenarios. Additionally, you can detect both accidental and malicious IPL data
changes earlier, thus reducing the impact of outages and stopping certain kinds of attacks.

Validated Boot for z/OS is implemented with updates to several elements, including MVS™, IPCS, Program
Management (Binder), and RACF®.

Validated Boot for z/OS requires an IBM z16, with z/OS 2.5 or later for the target system.

© Copyright IBM Corp. 2023 3

4 z/OS: Validated Boot for z/OS

Chapter 3. Preparing your DASD

LDIRTS parameter: specify which user-supplied IPL program
record number to sign when doing List Directed IPL
Parameter/
Abbreviations

Description

LDIRTS(record number) Specifies the record number for the user-supplied IPL program that is to be signed and placed on the volume
when doing List Directed IPL.

For record number specify a value between 1 to 10 to identify which record passed in with the IPLDD
parameter is to be signed.

Default: 4

Restrictions: Valid only in the MVS version of ICKDSF.

Valid only when the LDIPL parameter and the IPLDD parameter with the ABSFORMAT sub parameter are
specified.

LDIPL parameter: write List Directed IPL records and a signed
user-supplied IPL program record on the volume
Parameter/
Abbreviations

Description

LDIPL(STANDARD|DUMP)

LDIPL Write List Directed IPL records and a signed user-supplied IPL program record on the volume..

STANDARD Indicates that the user-supplied IPL program is standard IPL text.

DUMP Indicates that the user-supplied IPL program is for stand-alone dump.

Default: None.

Restrictions:

Valid only in the MVS version of ICKDSF

Valid only when the IPLDD parameter is specified.

The SYSIN option for passing in the user-supplied IPL program in the IPLDD parameter is not
supported.

© Copyright IBM Corp. 2023 5

6 z/OS: Validated Boot for z/OS

Chapter 4. Preparing your Software

AUTOIPL parameter of DIAGxx
AUTOIPL SADMP(sadmp info) MVS(mvs info) [NUCLABEL {ENABLE|DISABLE}(BLWRSTO2)]

(sadmp info)
Either (device,loadparm) or (NONE).

• For SADMP(device,loadparm), if the system is about to enter a wait state, SADMP is loaded from
this volume with this load parameter.

• For SADMP(NONE), if the system is about to enter a wait state, SADMP is not loaded.

(mvs info)
Either (device,loadparm,loadtype) or (LAST,loadtype) or (NONE)
loadtype

Either CLEAR or NORMAL.

If ,loadtype is not specified, it defaults to ,CLEAR.

Notes:

1. SADMP specified with a device and load parameter and MVS specified with NONE causes the
AutoIPL function to IPL SADMP only.

2. SADMP specified with NONE and MVS specified with a device and load parameter or with LAST
causes the AutoIPL function to re-IPL MVS immediately, with no SADMP taken.

3. SADMP with a device and load parameter and MVS with a device and load parameter or with LAST
causes SADMP to be IPLed, followed by MVS.

4. Any valid specification of AUTOIPL causes any prior AutoIPL information to be replaced.
5. SADMP (NONE) and MVS (NONE) both specified effectively deactivates the AutoIPL function.
6. The SADMP loadparm value can be specified so that SADMP executes without prompts to the

operator. For information on coding the SADMP load parameter, see Procedure A: Initialize and
run stand-alone dump in z/OS MVS Diagnosis: Tools and Service Aids.

7. The MVS with LAST parameters do not support HyperSwaps in which the IPL, IODF, and
SADMP secondary volumes are not part of an alternate subchannel set (that is, the primary and
secondary device pairs do not have identical device numbers and all reside in a single subchannel
set). Therefore, if MVS with LAST was specified in that environment and a HyperSwap® swapped
different device numberHyperSwap within subchannel set zero and no intervening IPL occurred,
the MVS with LAST function will still attempt to use the original IPL, IODF, and SADMP volumes
before the swap.

8. device is a 4-digit device number that can be prefixed by *. The asterisk prefix denotes that the
device in the currently active subchannel set should be used. If an asterisk does not prefix the
device number, the device in subchannel set 0 is used.

This function is intended for HyperSwap environments that use alternate subchannel sets.
Environments without HyperSwap or HyperSwap environments that do not use an alternate
subchannel set will not benefit from using *.

9. Only in a HyperSwap environment that uses an alternate subchannel set will the MVS with LAST
parameters ensure that AUTOIPL uses the device number from the appropriate subchannel set in
the event of a HyperSwap.

10. AUTOIPL, when requested to IPL an MVS system, will, by default, specify the CLEAR option that
can lead to an elongated response time for the function. The request can be made to perform
better by specifying the CLEAR suboption for AUTOIPL. The result of requesting this option is that
the AUTOIPL initiated IPL will be done using the NORMAL option.

© Copyright IBM Corp. 2023 7

Note: This processing can result in the unavailability of reconfigurable storage when the IPL is
done so the specification of this option should only be used when necessary.

11. An IPL of MVS or SADMP that is initiated via AUTOIPL will be the same type of IPL (CCW or
List-Directed) as the last IPL that was initiated by an operator. If that IPL was List-Directed, the
Secure or not Secure setting for AUTOIPL will also be the same as the last IPL that was initiated
by an operator.

For more information about AutoIPL, see Using the automatic IPL function in z/OS MVS Planning:
Operations.

CLPA parameter of IEASYSxx
CLPA

(See also the MLPA parameter for temporary additions to the LPA, and the CVIO parameter for the
deletion of VIO data sets.) This parameter causes NIP to load the LPA with all modules contained in
the LPALST concatenation. Modules that are listed in the specified LPA pack list member (IEAPAKxx)
are packed together, preferably in one-page groups. (See description of IEAPAKxx.) Modules not in the
pack list are loaded in size order, large modules first, then smaller modules to fill unused space.

PLPA pages are written to auxiliary storage. Only one set of PLPA pages can exist in paging space.
Modules in the LPALST concatenation must be reenterable and refreshable because the system uses
the processor's page protection facility, which enforces read-only access to each PLPA page.

CLPA should be specified after the installation has modified a data set in the LPALST concatenation
and wants to reload the PLPA with new or changed modules.

Note: CLPA also implies CVIO, so that VIO data set pages on local page data sets are automatically
purged. (See the description of CVIO for further information.)

The CLPA parameter is not needed at the first IPL. NIP detects the cold start condition internally,
noting that the PLPA has not been loaded.

Note: CLPA is always enforced for Validated Boot for z/OS. No message is issued about this being
done.

If CLPA is not specified, NIP tries to find a usable PLPA in the existing page data sets. If NIP is
successful, a quick start or a warm start occurs, and the auxiliary storage manager (ASM) obtains
the records that specify where the PLPA pages reside on auxiliary storage. It then reestablishes the
previous set of PLPA pages. The old PLPA can be reused for any number of system initializations, if
CLPA is not specified. However, page data sets that contain the last used set of PLPA pages must be
mounted. If they are not, the operator is asked to mount them. If the operator bypasses mounting,
ASM initialization requests a different page data set and forces a cold start. NIP then reestablishes the
PLPA as it does when CLPA is specified. In this cold start, both the previously established PLPA and
existing VIO data set pages are logically deleted from paging space.

The fixed LPA and the modified LPA, however, are not automatically reused in a quick start or a warm
start. They must be respecified. Existing VIO data set pages on local page data sets are retained in a
warm start, unless the CVIO or CLPA parameter is forced. Such pages are not retained in a quick start
or a cold start. (See the description of the CVIO parameter.)

If CLPA is specified and a set of PLPA pages already exists on a paging data set, NIP frees the existing
PLPA and updates the appropriate records to reflect the new PLPA pages on auxiliary storage. NIP
loads the LPA from the LPALST concatenation, as previously described.

IBM suggests that you have an IEASYSxx member that does not specify CLPA. This permits you to
load the initial program without rebuilding the PLPA if it is not possible to access your LPA data sets.

Value range: Not applicable

Default: Not applicable

Associated parmlib member: None

8 z/OS: Validated Boot for z/OS

Chapter 5. Utilities

IEWSIGN: Sign, unsign, and report load modules
IEWSIGN, the signing utility on z/OS, provides the following functions:

• Sign a load module in a partitioned data set (PDS). The utility adds a signature to the load module and
marks it as signed.

• Unsign a load module in a PDS. The utility removes the signature from the load module and marks it as
un-signed.

• Report on a load module in a PDS. The utility reports signing-related information, such as the time the
load module was signed, the signing algorithm, and the certificate fingerprint.

IEWSIGN must be invoked by either JCL that uses EXEC PGM=xxx, call, or LINK.

It resides in SYS1.SIEAMIGE.

Usage notes
The following list contains usage notes for the signed load module:

• To copy a signed load module from one PDS to another PDS, IEBCOPY with the control statement COPY
should be used. Do not use IEBCOPY with the control statement COPYMOD, which causes the signature
in the destination load module to become invalid. Do not use the z/OS UNIX command cp, which causes
the destination load module to become unsigned.

• Copying a signed load module from a PDS to a PDSE causes the destination program to become
unsigned.

• Relinking a signed load module causes the resultant program to become unsigned.
• Reprocessing a signed load module with the binder API SAVEW causes the resultant program to

become unsigned.
• Renaming a signed load module causes its signature to become invalid.

Parameters of IEWSIGN
Parameters of IEWSIGN have the following rules:

• For JCL, parameters can be provided by PARM=’..’ or by PARMDD=xx with the data within the xx DD.
• For call or LINK, parameters consist of a halfword length followed by the parameter string, as the first

parameter pointed to by the parameter list located by the PARAM keyword (and thus located by register
1 on entry to the target routine).

• Parameters are of the form keyword=value, separated from one another by a single comma.
• Parameters can be in any order.
• Optional parameters need not be provided.

The following table lists the parameters of IEWSIGN along with their descriptions:

© Copyright IBM Corp. 2023 9

Table 1. Parameters of IEWSIGN

Parameter name Description

Action Specifies the action to be run. There is no default
value. It must be specified explicitly.

Its eligible values are as follows:

• Sign
• Unsign
• Report

State For Action=Sign and Action=Report, it determines
which name-matched members will be processed.
For Action=Unsign, this parameter is ignored, since
only signed load modules are processed.

Its eligible values are as follows:
Unsigned

Only unsigned name-matched members will be
processed.

Signed
Only signed name-matched members will be
processed.

All
All name-matched members will be processed.
This is the default value.

When Action=Sign and State is Signed or All,
existing signed modules will be re-signed.

RC4LIM/ RC8LIM This integer specifies the limits for return code 4 /
return code 8.

Valid range is from 1 to 2147483647.

If any limit is reached, this utility will terminate.

The default value of RC4LIM is 2147483647.

The default value of RC8LIM is 1 for ACTION=SIGN
and ACTION=UNSIGN, and 2147483647 for
ACTION=REPORT.

This utility will terminate immediately if a return
code 12 or higher occurs.

Verbose Specifies the content that is provided in SYSPRINT.
Yes

Specifying this option provides more detailed
content.

No
Specifying this option provides less detailed
content.

.

10 z/OS: Validated Boot for z/OS

Table 1. Parameters of IEWSIGN (continued)

Parameter name Description

ReportLevel Specifies the level of checking/printed information
when ACTION=REPORT.
1

Only check whether a load module is signed.
This is the default value.

2
Includes all reports for ReportLevel=1, and the
text size, link time, signing time, binder version,
hash algorithm, signing algorithm, certificate
fingerprint.

3
Includes all reports for ReportLevel=2, and
whether the hash in signature is valid.

The utility’s processing of all parameters is not case-sensitive.

Parameters in the PARM string are separated by commas.

Data definitions (DD) of IEWSIGN
The following table lists the IEWSIGN data definitions and their descriptions:

Table 2. IEWSIGN data definitions

DD name Description

SYSPRINT This is a required DD. It is valid for all Action values.

This data set contains the IEWSIGN processing messages or reports. The
specification for the data set is as follows:

//SYSPRINT DD SYSOUT=*

If DCB attributes are expected, the following recommendation is provided:

LRECL RECFM
121 FBA

INFILE This is a required DD. It is valid for all Action values.

This DD specifies the source PDS library where load modules are read
from.

Concatenation of multiple data sets is not allowed. IEWSIGN will fail if the
data set is not a PDS.

Chapter 5. Utilities 11

Table 2. IEWSIGN data definitions (continued)

DD name Description

OUTFILE When Action=Sign or Action=Unsign, this DD is required. When
Action=Report, this DD is not required.

This DD specifies the destination PDS library where load modules are
written to.

Concatenation of multiple data sets is not allowed. The signing utility will
fail if the data set is not a PDS.

In-place signing is supported by specifying the same DSN in the INFILE
and OUTFILE.

If the blocksize of OUTFILE is not 0, it must be equal to or larger than the
blocksize of INFILE. Additionally, it must be equal to or larger than 1024.
The maximum value can be 32760.

If the blocksize of OUTFILE is 0, the IEWSIGN utility will set it to the
blocksize of the INFILE data set.

INCLUDE This is an optional DD. It is valid for all Action values.

This DD specifies members to be included from INFILE. If this DD is
unspecified, all members in INFILE will be included.

The standard specification for this data set is as follows:

//INCLUDE DD *

If a regular data set is provided, it needs to be RECFM=FB and LRECL=80.

EXCLUDE This is an optional DD. It is valid for all Action values.

This DD specifies members to be excluded from INFILE. If this DD is
unspecified, no members in INFILE will be excluded.

The standard specification for this data set is as follows:

//EXCLUDE DD *

If a regular data set is provided, it needs to be RECFM=FB and LRECL=80.

Both INFILE and OUTFILE must be a PDS whose record format is U. In addition, the IEWSIGN utility will
not process a member in INFILE if any of the following are true:

• It is not a load module.
• It is a load module with an overlay attribute.
• It is a load module without TEXT.

Rules for INCLUDE and EXCLUDE
Both INCLUDE and EXCLUDE specify one or multiple names, which are used to match primary members
and aliases in INFILE. The following rules apply:

• A name must obey PDS member naming rules.
• Multiple names are not allowed on a single line.
• A name must not be continued to the next line.
• Blank characters are allowed before and after a name.
• Comments are supported with the following conditions:

12 z/OS: Validated Boot for z/OS

– A line will be treated as a comment if the first nonblank character is “#”.
– A blank line, where all characters are space (its hex value is 0x40), is acceptable.

• Wildcards are supported. Both “*” and “?” can be used in a name. . “*” matches “0 or more characters”
and “?” matches “exactly one character”. The following are some examples:

– *
– ABC*
– ABC??DEF
– X*YYY

• Only the first 72 characters in a line are parsed.

IEWSIGN uses the following steps to determine which members should be processed (for example,
signed, unsigned or reported).

Table 3. Steps for IEWSIGN member processing

Step number Step instructions

Step 1 Retrieve a list of names of all primary members of INFILE whose signing state is
the one required by parameter STATE.

Step 2 If INCLUDE is not specified, skip this step.

If INCLUDE is specified, remove a primary member from this list if both of the
following are true:

1. The name of the primary member does not match any name specified in
INCLUDE, and

2. None of its alias names matches any name specified in INCLUDE.

Step 3 If EXCLUDE is not specified, skip this step.

If EXCLUDE is specified, remove a primary member from this list if either of the
following are true:

1. The name of the primary member matches any name specified in EXCLUDE,
or

2. One of its alias names matches any name specified in EXCLUDE.

Step 4 All primary members remaining in the list are processed.

Note: For Action=Sign, when a primary member is being signed, in addition to adding load module signing
records, IEWSIGN will update the directory entries of the primary member and all its aliases. Therefore,
when a primary member becomes signed, all its aliases also become signed. For Action=Unsign,
analogous processing is performed.

A detailed example of INCLUDE/EXCLUDE is provided in next section as Example 1.

Examples
1. The following provides an example of INCLUDE/EXCLUDE processing. The conditions for this example

are as such:

• A PDS has 4 primary members: M1, M2, M3 and M4.

– M1 has one alias A11;
– M2 has two aliases A21 and A22;
– M3 and M4 have no alias.
– M1, M2 and M3 are unsigned.
– M4 is signed.

Chapter 5. Utilities 13

• IEWSIGN is called with parameter Action=Sign,State=Unsigned.
• INCLUDE has two lines

M1
A21

• EXCLUDE has one line:

A11

Results of the processing are as follows:
Step 1 results

IEWSIGN receives a name list of all unsigned primary members of INFILE. At the end of step 1,
M1, M2, M3 are in the list.

Step 2 results
M1 is kept, as its name matches a filter specified at the first line of INCLUDE. M2 is kept, as its
alias A21 matches a filter specified on the second line of INCLUDE. M3 is removed, as it and all its
aliases don’t match any filters in INCLUDE. At the end of step 2, M1,M2 are in the list.

Step 3 results
M1 is removed, as its alias A11 matches a filter specified at the first line of EXCLUDE. M2 is kept, as
it and all its aliases do not match any filters in EXCLUDE. At the end of step 3, M2 is in the list.

Step 4 results
IEWSIGN begins to sign M2. In this step, a signature is added to the load module records of M2.
In addition, the directory entries of M2, A21 and A22 are all updated together. Therefore, M2, A21
and A22 all become signed.

2. The following is a JCL example that signs all load modules in place. In this example, both INFILE and
OUTFILE use the same DSN. As a result, signed modules will be saved into its original PDS.

//SIGN EXEC PGM=IEWSIGN,PARM='Action=Sign'
//STEPLIB DD DISP=SHR,DSN=SYS1.SIEAMIGE
//SYSPRINT DD SYSOUT=*
//INFILE DD DSN=SYS1.LPALIB,DISP=SHR
//OUTFILE DD DSN=SYS1.LPALIB,DISP=SHR

Note: In-place signing requires the OUTFILE data set to have room for both the original modules and
for the updated versions of those modules, since the storage space of the original modules cannot be
reused during the processing.

3. The following is a JCL example that signs all unsigned load modules specified by INCLUDE/EXCLUDE:

//SIGN EXEC PGM=IEWSIGN,PARM='Action=Sign,State=Unsigned'
//STEPLIB DD DISP=SHR,DSN=SYS1.SIEAMIGE
//SYSPRINT DD SYSOUT=*
//INFILE DD DSN=SYS1.LINKLIB,DISP=SHR
//OUTFILE DD DSN=SYS1.SIGN.LIB,DISP=(NEW,PASS),DSNTYPE=PDS,
// SPACE=(CYL,(500,500,5)),UNIT=3390
//INCLUDE DD *
this is a comment line
AMBLIST
IEHMVE*
//EXCLUDE DD *
IEHMVE2

For example, if INFILE has the following six unsigned members: AMBLIST, AMBLIST2, IEHMVE1,
IEHMVE2, IEHMVE3, IEHMVE4, then the matched members are as follows: AMBLIST, IEHMVE1,
IEHMVE3, IEHMVE4.

4. The following is a JCL example that unsigns all signed load modules in-place:

//UNSIGN EXEC PGM=IEWSIGN,PARM='Action=Unsign'
//STEPLIB DD DISP=SHR,DSN=SYS1.SIEAMIGE
//SYSPRINT DD SYSOUT=*

14 z/OS: Validated Boot for z/OS

//INFILE DD DSN=SYS1.LINKLIB,DISP=SHR
//OUTFILE DD DSN=SYS1.LINKLIB,DISP=SHR

5. The following is a JCL example that reports all load modules:

//REPORT EXEC PGM=IEWSIGN,PARM='Action=Report’
//STEPLIB DD DISP=SHR,DSN=SYS1.SIEAMIGE
//SYSPRINT DD SYSOUT=*
//INFILE DD DSN=SYS1.LINKLIB,DISP=SHR

6. The following is a JCL example that reports load modules specified by INCLUDE or EXCLUDE:

//REPORT EXEC PGM=IEWSIGN,PARM='Action=Report,Verbose=YES'
//STEPLIB DD DISP=SHR,DSN=SYS1.SIEAMIGE
//SYSPRINT DD SYSOUT=*
//INFILE DD DSN=SYS1.LINKLIB,DISP=SHR
//INCLUDE DD *
AMBLIST
IEHMVE*
//EXCLUDE DD *
IEHMVE2

7. The following two examples show the use of SYSPRINT with Action=Sign. To better understand these
examples, know that the contents of SYSPRINT consists of two parts:

• A selection part, which indicates which members will be selected by INCLUDE or EXCLUDE from
INFILE. This part is the same for all ACTION values.

• A processing part, which displays the results of actions such as signing, unsigning, and reporting.
This part is different for each ACTION value.

a. The following is an example of the selection part for Action=Sign:

Note: In the selection part of the example, report lines in italic type are printed only when
Verbose=Yes. (in the example, the italicized section starts with the line "Member/Alias(es) in
INFILE with STATE=UNSIGNED" and goes to the end of the example)

Invocation parameters: ACTION=SIGN,STATE=UNSIGNED,VERBOSE=YES
Execution Parameters:
ACTION=SIGN,STATE=UNSIGNED,VERBOSE=YES,RC4LIM=2147483647,RC8LIM=1,REPORTLEVEL=1

DD Data Set Name Volume Block Size
INFILE SYS1.LPALIB BPX111 32760
OUTFILE SYS1.LPALIB BPX222 32760

INFILE
summary:

 Unsigned primary members
1
 Unsigned aliases
2
 Signed primary members
0
 Signed aliases
0
 Non-LM members
1
 Overlay LM
0
 Zero-TEXT LM 0

Member/Alias(es) in INFILE with STATE=UNSIGNED
Member Alias(es)
ASM AL1 AL2

Including members specified in INCLUDE ...
<NONE>

Member/Alias(es) selected after INCLUDing
Member Alias(es)
ASM AL1 AL2

Excluding members specified in EXCLUDE ...
<NONE>

Member/Alias(es) selected after EXCLUDing

Chapter 5. Utilities 15

Member Alias(es)
ASM AL1 AL2

Each line in SYSPRINT is one of the two types:
Report line

This line has no message ID. The text is provided for informational purposes.
Message line

This line has a message ID. These lines are only for warning and error messages. These
messages are documented in z/OS MVS System Messages, Vol 8 (IEF-IGD).

b. The following is an example of the processing part for Action=Sign:

Signing results:
ASM Successful

OUTFILE
summary:

 Unsigned primary members
0
 Unsigned aliases
0
 Signed primary members
1
 Signed aliases
2
 Non-LM members
0
 Overlay LM
0
 Zero-TEXT LM 0

Processing summary of selected primary members:
 Selected 1
 Processed 1
 Processed successfully 1
 Processed with error 0

IEW6007W SYSCATLG in INFILE is excluded. It is not a load module.

Task completed with RC=4.

8. The following example shows the result of SYSPRINT for Action=Report,Verbose=No,ReporLevel=1:

Note: The selection part is not provided here, as it is the same as in Example 7a.

Name Signed
BPXMIDMX No
M1 Yes
M2 Yes
M3 Yes
M41ST Yes
M4111 Yes
M4112 Yes
YM1 Yes
YM2 Yes
ZM1 Yes

Processing summary of selected primary members:
 Selected 10
 Processed 10
 Processed successfully 10
 Processed with error 0

IEW6007W SYSCATLG in INFILE is excluded. It is not a load module.

IEWSIGN exits with return code 4.

9. The following example shows the result of SYSPRINT for Action=Report,Verbose=No,ReporLevel=3:

16 z/OS: Validated Boot for z/OS

Note: The selection part is not provided here, as it is the same as in Example 7a. Also, since the
report formats for ReporLevel=2 and ReporLevel=3 are identical, only an example for ReporLevel=3 is
provided.

Name Size Link date/time Rel Signed ErrorID Sign date/time ALG Cert-
Index
BPXMIDMX 00002218 2021-08-02 14:03:50 0205 No
M1 00000008 2022-09-14 08:29:45 0205 Yes ERR01
M2 00000008 2022-09-14 08:29:45 0205 Yes ERR01
M3 00000008 2022-09-14 08:29:45 0205 Yes ERR01
M41ST 00000008 2022-09-14 08:29:45 0205 Yes ERR01
M4111 00000008 2022-09-14 08:29:45 0205 Yes ERR01
M4112 00000008 2022-09-14 08:29:45 0205 Yes ERR01
YM1 00000008 2022-09-30 22:19:28 0205 Yes ERR09
YM2 00000008 2022-10-02 21:19:09 0205 Yes ERR09
ZM1 00000008 2022-10-13 15:11:32 0205 Yes 2022-10-13 15:11:32 0202 INDEX001

ErrorID Number Error explanations
ERR01 6 Signing records lost or incomplete.
ERR09 2 Signature length is invalid.

Algorithm ID Hash algorithm Sign algorithm
0202 SHA2-512 ECDSA-P521

Certificate summary:
Cert-Index: INDEX001
Subject KeyID: 21CC95D0 8A12F9FE 5AA01598 430EF6A0 8D58DFDE
Cert Fingerprint: 0CED78C4 802B2B9A 3D190F75 8A79F005 87EF2294 69D680A0 C63B2FEE D3120D83

Processing summary of selected primary members:
 Selected 10
 Processed 10
 Processed successfully 2
 Processed with error 8

IEW6007W SYSCATLG in INFILE is excluded. It is not a load module.
IEW6027E 8 reported load modules have errors.

IEWSIGN exits with return code 8.

The following is an explanation of the contents in this example.

The terms in the first table of the example are described as follows:
Size

The size of the load module's code in bytes.
Link date/time

When the load module was built. It will be blank if the link time is unavailable.
Rel

The binder version that linked the load module.
Signed

Indicates whether the module is signed.
ErrorID

Indicates whether there is a signature error. Blank means no error. Use this error ID to find an error
description.

Sign date/time
Indicates when the load module was signed.

ALG
The algorithm of hash and sign. Use this ID to find an algorithm description.

Cert-Index
An index assigned by IEWSIGN. Use this index to find a certificate displayed in “Certificate
summary”, which signed this load module.

The table with heading “ErrorID Number Error explanations” provides the number of each error, along
with a brief explanation for the error.

The following table provides a brief explanation and a detailed explanation for each ErrorID:

Chapter 5. Utilities 17

Table 4. ErrorID explanations

ErrorID Brief explanation Detailed explanation

ERR01 Signing records lost or
incomplete.

The sign flag in the directory is
on, but the signing records are
lost or incomplete. This error is
usually caused by some tools
that are able to read and write
regular records in load modules,
but will discard the new signing
records. For example, IEBCOPY
with COPYMOD will cause this
error.

ERR02 Subtype of signing record is
invalid.

A field in the signing record
is invalid. The signing record
has been modified by unknown
tools.

ERR03 Version of signing record is
invalid.

A field in the signing record
is invalid. The signing record
has been modified by unknown
tools.

ERR04 Flags of the signing record are
invalid.

A field in the signing record
is invalid. The signing record
has been modified by unknown
tools.

ERR05 Length of signing record is
invalid.

A field in the signing record
is invalid. The signing record
has been modified by unknown
tools.

ERR06 Reserved field of signing record
is invalid.

A field in the signing record
is invalid. The signing record
has been modified by unknown
tools.

ERR07 Signature type is invalid. A field in the signing record
is invalid. The signing record
has been modified by unknown
tools.

ERR08 Signature version is invalid. A field in the signing record
is invalid. The signing record
has been modified by unknown
tools.

ERR09 Signature length is invalid. A field in the signing record
is invalid. The signing record
has been modified by unknown
tools.

ERR10 Signature reserved bytes are
invalid.

A field in the signing record
is invalid. The signing record
has been modified by unknown
tools.

18 z/OS: Validated Boot for z/OS

Table 4. ErrorID explanations (continued)

ErrorID Brief explanation Detailed explanation

ERR11 Signature algorithm is invalid. A field in the signing record
is invalid. The signing record
has been modified by unknown
tools.

ERR12 Signature hash is invalid. Load
module has been modified.

The hash calculated at the
reporting time does not match
the hash calculated at the
signing time. This error is
usually caused by tools that are
able to modify load modules.
For example, SPZAP will cause
this error.

ERR13 Directory entry error. Check the
error message.

The directory entry of this
module at the time of reporting
is different from the directory
entry of this module at
the time of signing. More
information is provided by
one or more of the following
error messages: IEW6022E,
IEW6023E or IEW6024E

The table with the heading "Algorithm ID Hash algorithm Sign algorithm" provides the names of the
algorithms used.

"Certificate summary" lists all certificates used to sign the reported load modules.

Return codes for the IEWSIGN utility
The following table lists the return codes, conditions of each return code, and the corresponding message
that is issued for each condition.

Table 5. Return codes for the IEWSIGN utility

Return code (decimal) Conditions of the return code

0 1. Successful completion. No error or warning messages are issued.

4 1. One or more non-load modules are found in INFILE. Message number: IEW6007W
2. One or more overlay load modules are found in INFILE. Message number:

IEW6008W
3. One or more zero-text load modules are found in INFILE. Message number:

IEW6009W
4. The primary member has been renamed. Message number: IEW6011W

8 1. One or more directory entry errors have been found in INFILE. Message number:
IEW6010E

2. When Action=Report, an invalid signing record has been found. Message number:
IEW6022E, IEW6023E, IEW6024E, IEW6025E, IEW6026E, IEW6027E

3. RC4LIM or RC8LIM reached. Message number: IEW6014E, IEW6015E
4. A load module has no CESD record or TEXT record, Message number: IEW6031E

Chapter 5. Utilities 19

Table 5. Return codes for the IEWSIGN utility (continued)

Return code (decimal) Conditions of the return code

12 1. Invalid parameters. Message number: IEW6001S, IEW6002S. IEW6003S,
IEW6028S

2. Necessary DD missed. Message number: IEW6004S
3. Incorrect data set attributes. Message number: IEW6005S, IEW6006S,

IEW6017S, IEW6018S, IEW6034S, IEW6035S
4. Syntax error in INCLUDE or EXCLUDE. Message number: IEW6012S
5. No load modules have been selected for processing. Message number:

IEW6013S
6. Output error of OUTFILE. Message number: IEW6019S, IEW6020S
7. RACF has not been configured correctly to sign a load module. Message number:

IEW6016S, IEW6033S
8. IEWSIGN cannot allocate enough memory. Message number: IEW6021S
9. Invalid blocksize of OUTFILE. Message number: IEW6029S, IEW6030S

10. Language Environment callable service fails. Message number: IEW6032S

Programming Interface Information

Invoking the signing utility (IEWSIGN) from another program
In most cases, IEWSIGN is invoked by JCL. However, it can be invovked by another program. Furthermore,
the program may specify alternative DDs to replace the default DDs (INFILE, OUTFILE, SYSPRINT,
INCLUDE, and EXCLUDE) used by IEWSIGN.

Restriction:

• IEWSIGN must be invoked in AMODE 31.
• IEWSIGN must be invoked in user key, problem state, and the job step key must also be the user key.
• The calling program cannot be a Language Environment program.

To invoke IEWSIGN, the program must set register 1 (R1) to point to a pointer array.

The following two cases are supported:
Case 1

The pointer array has only one pointer.

The highest bit of this pointer must be ON. This points to an area that consists of a 2-byte length field
followed by a parameter string of the length identified by the length field. The length of this string
cannot be more than 1024.

Case 2
The pointer array has two pointers.

The highest bit of the first pointer must be OFF. This points to an area that consists of a 2-byte length
field followed by a parameter string identified by the length field. The length of this string cannot be
more than 1024.

The highest bit of the second pointer must be ON. This pointer points to the following structure:

Table 6. Structure of alternate DD list

Offset Length (in bytes) Description

0 2 Length of the remainder of the
alternate DD list, excluding this
halfword. It must be one of the
following values: 0,8,16,24,32
or 40.

20 z/OS: Validated Boot for z/OS

Table 6. Structure of alternate DD list (continued)

Offset Length (in bytes) Description

2 8 Alternate DD for INFILE

10 8 Alternate DD for OUTFILE

18 8 Alternate DD for SYSPRINT

26 8 Alternate DD for INCLUDE

34 8 Alternate DD for EXCLUDE

Each DD name that is shorter than eight characters must be padded with blanks. Each entry that you
do not want to override must be binary zeroes, not blanks.

The following is an example assembler program. The program calls IEWSIGN with these parameters:
ACTION=REPORT,REPORTLEVEL=3 . It also specifies two alternate DDs: “SYS0001” for “INFILE”, and
“PRT0001” for “SYSPRINT”.

//* A program invokes IEWSIGN with alternate DDs
//ASM EXEC PGM=ASMA90,PARM='GOFF,LIST(133)'
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,2))
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=&&OBJ1,DISP=(NEW,PASS),SPACE=(TRK,(4,1)),UNIT=SYSDA
//SYSIN DD *
CSECT1 CSECT
CSECT1 AMODE 31
CSECT1 RMODE 31
 SYSSTATE ARCHLVL=3
 STM R14,R12,12(R13)
 BALR R12,0
 USING *,R12
 STORAGE OBTAIN,LENGTH=DYNSIZE,ADDR=(R11)
 USING DYNAREA,R11
 LA R2,SAVEAREA
 ST R2,8(,R13)
 ST R13,SAVEAREA+4
 LR R13,R2
********************** BEGIN LOGIC *********************************
 LINK EP=IEWSIGN,PARAM=(PARM1,PARM2+X'80000000')
 LR R10,R15 * save return code from IEWSIGN
********************** END LOGIC *********************************
RETURN EQU *
 L R13,SAVEAREA+4
 STORAGE RELEASE,LENGTH=DYNSIZE,ADDR=(R11)
 L R14,12(,R13)
 LR R15,R10 * restore return code from IEWSIGN
 LM R2,R12,28(R13)
 BR R14
********************** DATA AREAS *********************************
PARM1 DC H'27',C'ACTION=REPORT,REPORTLEVEL=3'
PARM2 DC H'40'
 DC CL8'SYS0001 ' INFILE changed to SYS0001
 DC XL8'0000000000000000' OUTFILE unchanged
 DC CL8'PRT0001 ' SYSPRINT changed to PRT0001
 DC XL8'0000000000000000' INCLUDE unchanged
 DC XL8'0000000000000000' EXCLUDE unchanged
DYNAREA DSECT
SAVEAREA DS 18F
DYNSIZE EQU *-DYNAREA
 YREGS ,
 END ,
//***
//LINK EXEC PGM=IEWBLINK,PARM='RMODE=31'
//OBJ DD DSN=&&OBJ1,DISP=(OLD,DELETE)
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSN=&&TOOLS,DISP=(NEW,PASS),DSNTYPE=LIBRARY,
// SPACE=(TRK,(5,5,5)),UNIT=3390
//SYSLIN DD *
 ENTRY CSECT1
 INCLUDE OBJ
 NAME CALLER(R)
//***
//* A program that invokes IEWSIGN

Chapter 5. Utilities 21

//RUN EXEC PGM=CALLER
//STEPLIB DD DSN=&&TOOLS,DISP=(OLD,PASS)
// DD DSN=SYS1.SIEAMIGE,DISP=SHR
//SYS0001 DD DSN=yourDSN,DISP=SHR
//PRT0001 DD SYSOUT=*

Note: Replace your DSN in the last JCL step with an actual data set name that you want to use for
ACTION=REPORT.

End Programming Interface Information

IEW messages
IEW2950I SIGNING RECORDS HAVE BEEN

DISCARDED.

Explanation
The input load module is a signed load module. It will
become unsigned after the binder processing.

System action
Processing continues.

User response:
None.

Source
Binder

Module
IEWBXCRW

IEW6001S The length of the parameter string
is dddd. It cannot be more than
1024.

Explanation
The length of the parameter string must be less than
or equal to 1024. For JCL the parameter string is what
is specified via PARM= or the PARMDD DD. For call and
LINK, the parameter string is what is specified via the
PARAM keyword.

User response
Correct the parameter string.

Source
Signing utility

IEW6002S Invalid parameter: 'xxxxxxxx'.

Explanation
The parameter string is split into multiple parts by a
delimiter comma. Each part must be in the form of
keyString=valueString. This message is issued
for a part if:

• “=” is not found, or
• keyString is unrecognized, or
• valueString is unrecognized

User response
Correct the parameters.

Source
Signing utility

IEW6003S Parameter ACTION not specified.

Explanation
Parameter ACTION must be specified.

User response
Add the parameter ACTION.

Source
Signing utility

IEW6004S Cannot open DD ddName.

Explanation
ddName (such as INFILE, OUTFILE) is not defined, or
the user does not have access to read or write.

User response
Provide a definition for ddName.

Source
Signing utility

22 z/OS: Validated Boot for z/OS

IEW6005S Cannot close DD ddName.

Explanation:
The DFSMS service CLOSE cannot close the DCB
opened for this ddName.

User response
Attempt again.

Source
Signing utility

IEW6006S DD ddName does not specify a
RECFM=U PDS.

Explanation
ddName (such as INFILE or OUTFILE) must be a PDS
with RECFM=U.

User response
Check the ddName.

Source
Signing utility

IEW6007W Member member in DD INFILE is
excluded. It is not a load module.

Explanation
This module is not a load module.

User response
Not applicable.

Source
Signing utility

IEW6008W Member member in DD INFILE
is excluded. It has the overlay
attribute.

Explanation
This module is an overlay load module, and cannot be
signed.

User response
Not applicable.

Source
Signing utility

IEW6009W Member member in DD INFILE is
excluded. It has no text.

Explanation
This module has no text and cannot be signed.

User response
Not applicable.

Source
Signing utility

IEW6010E Alias alias is an orphan in DD
INFILE.

Explanation
There are two possibilities for this error:

1. Its primary member has been deleted.
2. Its primary member has been linked again without

specifying this alias. In addition, ISPF will indicate
that the TTR of this alias is different from the TTR of
its primary member.

User response
Correct this directory error before signing. If this alias
is no longer useful, delete it. If you must sign this alias,
convert this alias to a primary member before you sign
it.

You may use the following commands in z/OS UNIX to
convert an alias to a primary member. Suppose your
data set name is USER1.PGM.PDS, and the alias name
is A1:

cp -X "//'USER1.PGM.PDS(A1)'" A1
cp -X A1 "//'USER1.PGM.PDS(A1)'"

The second command may issue a warning message
IEW2627I, which can be ignored. After these two
commands, alias A1 becomes a primary member.

Source
Signing utility

IEW6011W The primary member of alias alias
in DD INFILE has been renamed
from oldName to newName.

Chapter 5. Utilities 23

Explanation
The primary member has been renamed.

For example, a primary member M1 had an alias A1,
They had the same TTR attribute in their directory
entries, which were set by the binder at link time.
Later, M1 was renamed to M2.

Note: After the renaming, the following are true:

• The primary member name in the directory entry for
A1 is still M1.

• TTR of M2 is unchanged.

When the IEWSIGN utility is analyzing directory entries
of INFILE, it finds that A1 is an alias of M2 as they
have the same TTR. However, the primary member
name in the directory entry for A1 is M1. Therefore, the
IEWSIGN utility issues this message.

For ACTION=SIGN and ACTION=UNSIGN, in OUTFILE,
the alias will link to the new name rather than the old
name.

User response
Not applicable.

Source
Signing utility

IEW6012S Multiple names in a line of
DD ddname are not allowed.
Line='xxxx'.

Explanation
In INCLUDE or EXCLUDE, a line cannot have two
names.

For example, the following line is not allowed:

IEW* IEB*

The two names must be placed into two separate
lines.

User response
Place the names on separate lines to correct the
problem.

Source
Signing utility

IEW6013S No load modules to be processed.

Explanation
No load module has been selected for the specified
action. The IEWSIGN utility selects load modules in
the following three steps:

1. Select load modules from INFILE by parameter
STATE.

Note: For ACTION=UNSIGN, only unsigned load
modules are selected.

2. Selected load module in previous step is then
filtered by INCLUDE.

3. Selected load module in previous step is then
filtered by EXCLUDE.

Refer to IEWSIGN: Sign, unsign, and report load
modules in z/OS MVS Diagnosis: Tools and Service Aids
for more instructions on the IEWSIGN utility.

User response
Define INFILE to a PDS with load modules, and set
INCLUDE, EXCLUDE, or both, to select one or multiple
load modules.

Source
Signing utility

IEW6014E RC4LIM (number) reached.

Explanation
This number of warnings reached the RC4LIM.

User response
Resolve the warnings or set RC4LIM to a larger value.

Source
Signing utility

IEW6015E RC8LIM (number) reached.

Explanation
This number of errors reached the RC8LIM.

User response
Resolve the errors or set RC8LIM to a larger value.

Source
Signing utility

IEW6016S RACF R_PgmSignVer failed.
Function Code=funcName, SAF

24 z/OS: Validated Boot for z/OS

return code=xx, RACF return
code=yy, RACF reason code=zz.

Explanation
RACF R_PgmSignVer failed to sign a load module.

User response
Locate the return code and reason code in
R_PgmSignVer (IRRSPS00): Program Sign and Verify in
z/OS Security Server RACF Callable Services.

Source
Signing utility

IEW6017S Concatenation of data sets for DD
ddname is not allowed.

Explanation
Cannot define multiple data sets for INFILE or
OUTFILE.

User response
Resolve the errors.

Source
Signing utility

IEW6018S Member cannot be specified in
DSN of DD ddname.

Explanation
Cannot specify member in DSN of INFILE or OUTFILE.

User response
Resolve the errors.

Source
Signing utility

IEW6019S Error occurred during writing
records of member member.
Usually the reason is that DD
OUTFILE is out of space.

Explanation
Usually the reason is that OUTFILE is out of space.
Check for a preceding CEE3250C message issued by
Language Environment.

User response
Resolve the errors.

Source
Signing utility

IEW6020S Cannot create directory entry
member in DD OUTFILE due to
insufficient directory entry space.

Explanation
The directory entry space in OUTFILE is not enough.

User response
Resolve the errors.

Source
Signing utility

IEW6021S Cannot allocate mmmm bytes of
memory above/below the 16M line.

Explanation
Memory above or below the line is not sufficient.

User response
Check the JCL attributes related to the memory limit,
such as parameter REGION.

Source
Signing utility

IEW6022E Primary member name changed.
Old=name1, new=name2

Explanation
When ACTION=REPORT, IEWSIGN finds that a primary
member has been renamed after its signing.

User response
Sign the load module again.

Source
Signing utility

IEW6023E Member member has a directory
entry error. Alias alias is in the DE
record(s) but not in the directory.

Chapter 5. Utilities 25

Explanation
When ACTION=REPORT, IEWSIGN finds that an alias
of a signed load module has been deleted after its
signing. In this message and IEW6024E, DE records
refers to records in the load module that record the
directory entries associated with this module at the
time of signing.

User response
Sign the load module again.

Source
Signing utility

IEW6024E Member member has a directory
entry error. Alias alias is in
the directory but not in the DE
record(s).

Explanation
When ACTION=REPORT, IEWSIGN finds that an alias
of a signed load module was added after its signing.
Refer to IEW6023E for the explanation of DE record.

User response
Sign the load module again.

Source
Signing utility

IEW6025E Error in directory entry of
member member. Length differs,
INFILE=len1, Record=len2.

Explanation
The directory entries in INFILE and directory entry
records do not match.

User response
Sign the load module again.

Source
Signing utility

IEW6026E Error in directory entry of member
member. Byte offset differs,
INFILE=byte1, Record=byte2.

Explanation
The directory entries in INFILE and directory entry
records do not match. Offset is 0-origin.

Note: The bytes printed in this message have masked
out for bits to be ignored.

User response
Sign the load module again.

Source
Signing utility

IEW6027E number reported load modules
have errors.

Explanation
When ACTION=REPORT, IEWSIGN finds this number
of load modules have errors.

User response
Sign the load module again.

Source
Signing utility

IEW6028S The first character of alternate
DD ddname cannot be a blank
character.

Explanation
An alternate ddname cannot begin with a blank
character. If a calling program wants to use the default
value of this ddname, set all 8 bytes of the ddname to
zero.

User response
Correct the alternate ddname.

Source
Signing utility

IEW6029S Blocksize of DD OUTFILE(xx)
must be equal to or larger than
blocksize of DD INFILE (yy). The
maximum value can be 32760.

Explanation
The blocksize of OUTFILE must be equal to or larger
than blocksize of INFILE.

26 z/OS: Validated Boot for z/OS

User response
Set blocksize of OUTFILE with a valid value.

Source
Signing utility

IEW6030S Blocksize of DD OUTFILE(xx) must
be equal to or larger than 1024.
The maximum value can be 32760.

Explanation
The blocksize of OUTFILE must be equal to or larger
than 1024.

User response
Set blocksize of OUTFILE with a valid value.

Source
Signing utility

IEW6031E Member member cannot be signed
since it has no CESD or TEXT
record.

Explanation
The load module is corrupted and cannot be signed.

User response
Rebuild the load module.

Source
Signing utility

IEW6032S Language Environment callable
services func failed with message
number xxxx.

Explanation
The signing utility called this Language Environment
service and it failed. Refer in Language Environment
documentation for more details.

User response
Resolve the errors.

Source
Signing utility

IEW6033S The validated boot program
signing support is not available in
the security product.

Explanation
The RACF support for signing load modules has not
been installed.

User response
Resolve the errors.

Source
Signing utility

IEW6034S RDJFCB failed with return code
cccc for DD ddname.

Explanation
The IEWSIGN utility called the DFSMS service RDJFCB
to get DSNAME and volume serial of INFILE/OUTFILE,
and this service failed. Locate the return code in
section "Reading and Modifying a Job File Control
Block (RDJFCB Macro) "“ located in Using System
Macro Instructions in z/OS DFSMSdfp Advanced
Services.

User response
Resolve the errors.

Source
Signing utility

IEW6035S OBTAIN SEARCH failed with return
code cccc for dataset dsn on
volume vol.

Explanation
The IEWSIGN utility called the DFSMS service OBTAIN
SEARCH to get data set attributes of INFILE/OUTFILE,
and this service failed. Locate the return code in
Return Codes from OBTAIN (Reading by Data Set
Name) in z/OS DFSMSdfp Advanced Services .

User response
Resolve the errors.

Source
Signing utility

Chapter 5. Utilities 27

IEAVBPRT: Validated Boot for z/OS print utility
The IEAVBPRT utility reports the following information after a validated boot IPL:

• Audit records that were created
• Certificate extracts that are being used
• Certificate extracts that were found not to be valid

For an enforce-mode IPL, no more than 1 audit record would be produced because any relevant issue
would cause the system to enter a wait state right after building the audit record.

The IEAVBPRT utility provides options to generate a detailed report or a summary.

The same information is also provided by the IEAVBIPC utility within IPCS (VERBEXIT IEAVBIPC).

Invoking the IEAVBPRT utility
Invoke the IEAVBPRT utility as a job step program (such as, EXEC PGM=IEAVBPRT). The report output is
written according to the SYSPRINT DD statement. IEAVBPRT opens the SYSPRINT DD with the attributes
RECFM=FBA,LRECL=133.

The following example shows sample JCL for such a job step:

//VBPRT1 EXEC PGM=IEAVBPRT,TIME=1440,PARM=parm
//SYSPRINT DD SYSOUT=A

The value of the parm parameter can be:
SUMMARY

Generates a summary report. This is the default value.
DETAIL

Generates a detailed report.

IEAVBPRT messages
The IEAVBPRT utility (and the IEAVBIPC utility in IPCS) issues the following messages:

IEAVB001I Validated Boot Information
This is the report header message.

IEAVB003I Audit Information
This message is followed by all the audit entries.

Within the audit entry messages, the term DSNE refers to a data set name entry. (Audit information
is tracked by data set name.) Within those messages, the term DSNE ModE refers to a module name
entry for a particular data set name entry. (Audit records are typically for a specific module within a
specific data set.)

IEAVB004I There are no valid certificates
No valid certificates were found.

IEAVB005I Valid Certificates
This message is followed by information about each of the valid certificates.

IEAVB006I No certificates were discarded
There were no discarded certificates.

IEAVB007I Discarded Certificates
This message is followed by information about each of the discarded certificates.

IEAVB008I Validated Boot is not in effect
Validated boot is not in effect.

IEAVB009I Unable to access yyy at xxxxxxxx
This message is issued only by the IEAVBIPC utility.

28 z/OS: Validated Boot for z/OS

IEAVB010I Unissued validated boot messages
This message is issued only by the IEAVBIPC utility and is followed by information about each
unissued message.

(Audit mode) IEAVB011I PLPA page data set was specified. It would not be used if enforce mode.
(Enforce mode) IEAVB011I PLPA page data set was specified. It was not used.

A PLPA page data set was specified. PLPA page data sets are not used for an enforce-mode IPL.

The enforce-mode form of this message is issued only by the IEAVBIPC utility.

(Audit mode) IEAVB012I Not enough storage-class memory to hold LPA. A wait state would result if
enforce mode.
(Enforce mode) IEAVB012I Not enough storage-class memory to hold LPA.

There was insufficient storage-class memory to hold the LPA. This would cause an enforce-mode IPL
to enter a wait state.

The enforce-mode form of this message is issued only by the IEAVBIPC utility.

Contents of an IEAVBPRT report
The overall audit information displays one or more of the following lines:

There are no valid certificates
Could not retrieve certificate information
Total verification failures: n
Number of DSNEs: n
Number of DSNE ModEs: n

The last 2 lines are displayed only if the DETAIL option is in effect.

There might be no data set related audit entries, in which case the following line appears:

No dataset information is available

An audit entry begins with the following lines:

DSN(VOL): dataset_name(volume)
 Total DSN verification failures: n
 Number of DSNE ModEs: n
 [No module information is available]

• The "Number of DSNE ModEs" line appears only when DETAIL is in effect.
• The last line is displayed when there are no module name entries.

When DETAIL is not in effect and there is at least one module name entry, a table of module names and
reasons appears:

Modname Reason
m r

When DETAIL is in effect and there is at least one module name entry:

Modname: m
 Reason: r
 {Key ID: xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx | Key ID: not known}
 Fetch Type: ft
 Number of failures: n
 When first failed: yyyy/mm/dd hh:mm:ss
 Cert Name: cn
 When signed: yyyy/mm/dd hh:mm:ss
 Machine loader error info: xxxxxxxx xxxx

• The "Key ID" and "When signed" lines appear only when the module signature is found.
• The "Cert Name" line appears only when a certificate with a matching key ID is found.
• The "Machine loader error info" line appears when there are machine loader errors, for module name

IEAIPL00 only, for one of the following reasons:

Chapter 5. Utilities 29

– Module was not signed
– Signature verification failed
– Machine loader detected error(s)

Within the message text:
m

The name of the module. When the module name ends with a X’C0’ character, that character is
displayed as '*'.

r
One of the following reasons:
Module was not signed

The module is not signed.
Directory entry not found

The directory entry for the module could not be found.
Directory entry did not match

The directory for the module was found but does not match.
Signature not found

No signature record was found for this module.
Hash algorithm not valid

The signature record does not indicate a valid hash algorithm.
Signature algorithm not valid

The signature record does not indicate a valid signature algorithm.
Hash value not correct

The hash value in the signature record does not match the calculated hash value.
No certificate with matching key ID

The key ID in the signature record does not match any verification key available to this LPAR.
Signature verification failed

The signature verification operation did not complete successfully.
Overlay module

This is an overlay module. Signature support is not provided.
Signature record version not valid

The version of the signature record is not valid.
Machine loader detected error(s)

The machine loader detected one or more errors.
ft

One of the following fetch types:
IPL

Indicates that the fetch is during the early IPL phase.
Nucleus

Indicates that the fetch is for a module that is being used to build the nucleus.
NIP

Indicates that the fetch is for a module during the later IPL phase.
LPA

Indicates that the fetch is for a module that is being placed into PLPA, MLPA, or FLPA.

An entry for a valid certificate contains the following lines:

Name: cert_name
 Key ID: xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
 Successful uses: n
 Valid as of: yyyy/mm/dd hh:mm:ss
 Expiration: yyyy/mm/dd hh:mm:ss
 [Reason: Key is not valid]

30 z/OS: Validated Boot for z/OS

• The "Key ID", "Valid as of", and "Expiration" lines appear only when DETAIL is requested.
• The "Reason: Key is not valid" line is determined after the system has started using the certificate. If

this occurs, correct the certificate.

An entry for a discarded certificate contains the following lines:

Name: cert_name
 Reason: r
 KeyID: xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
 Valid as of: yyyy/mm/dd hh:mm:ss
 Expiration: yyyy/mm/dd hh:mm:ss

• The "Key ID", "Valid as of", and "Expiration" lines appear only when DETAIL is requested.

Within the message text:
r

One of the following reasons:
Not valid yet

The certificate is not yet valid.
Expired

The certificate has expired.
Key is not valid

The key is not valid.
Key type is not valid

The key type is not valid.
Key ID length is not valid

The length of the key ID is not valid.
Hash type is not valid

The hash type is not valid.
Hash length is not valid

The length of the hash is not valid.
If any of these reasons occur, correct the certificate.

IEAVBPRT return codes
Table 7. Return codes for the IEAVBPRT utility

Return code (decimal) Meaning

0 Successful completion. No audit information was found.

2 Successful completion. This was not a validated boot IPL.

4 Successful completion. Some audit information was found.

8 An invalid parameter was specified.

12 An invalid SYSPRINT data set was specified.

Examples
1. The following example shows a DETAIL entry for a module (within an entry for a data set):

Modname: IEAIPL00
 Reason: Module was not signed
 Fetch Type: IPL
 Number of failures: 1
 When first failed: 2022/10/19 13:15:07
 Machine loader error info: 12000000 3400

2. The following example shows a partial DETAIL entry for a data set and module:

Chapter 5. Utilities 31

IEAVB003I Audit Information
 Total verification failures: 1909
 Number of DSNEs: 7
 Number of DSNE ModEs: 1754

 DSN(VOL): SUPER.CSV.LOAD.PDS.HUGE.SIGNED(D16PK8)
 Total DSN verification failures: 1
 Number of DSNE ModEs: 1

 Modname: GM64
 Reason: No certificate with matching key ID
 Fetch Type: LPA
 Number of failures: 1
 When first failed: 2022/10/26 17:51:50
 Key ID: 21CC95D0_8A12F9FE_5AA01598_430EF6A0_8D58DFDE
 When signed: 2022/10/26 17:46:19

32 z/OS: Validated Boot for z/OS

Chapter 6. RACF

RACF support for Validated Boot for z/OS is provided in the PTFs for APARs OA61878 and OA61901.

In RACF, the callable service R_PgmSignVer (IRRSPS00 or IRRSPS64) is updated to support signing
IPL data. For Validated Boot for z/OS, this service can produce signing output with the formats that are
required for signing IPL data, such as Public Key Cryptographic Standards #7 (PKCS#7) Distinguished
Encoding Rules (DER) format.

The topics in this section provide instructions for enabling the RACF support for Validated Boot for z/OS.

IPL data signing for Validated Boot for z/OS
With Validated Boot for z/OS, your installation can ensure that its system IPL data is intact, untampered-
with, and originates from a trusted build-time source. To use Validated Boot for z/OS, you must configure
RACF to enable IPL data signing, as described in this topic.

This topic contains the following subtopics:

• “Overview of enabling your system for signed IPL data” on page 33
• “Certificate requirements for signing IPL data” on page 33
• “Defining the IRR.PROGRAM.V2.SIGNING profile” on page 34
• “Enabling IPL data signing for Validated Boot for z/OS” on page 36

Overview of enabling your system for signed IPL data
In RACF, the callable service R_PgmSignVer (IRRSPS00) is used for enabling users to digitally sign
programs. This service can also be used for signing IPL data, such as the system residence volume
(SYSRES) contents, for Validated Boot for z/OS operations. When used in this manner, R_PgmSignVer
produces signing output for IPL data in the required formats, such as Public Key Cryptographic Standards
#7 (PKCS#7) Distinguished Encoding Rules (DER) format, or a simplified structure suitable for signature
verification with the KDSA instruction.

In Validated Boot for z/OS, the following z/OS services use R_PgmSignVer to sign IPL data:

• Device Support Facility (ICKDSF), which requests the signature output in the PKCS#7 format.
• z/OS Binder, which requests the signature output in the simplified KDSA structure format.

For more information about the R_PgmSignVer service, see z/OS Security Server RACF Callable Services.

Certificate requirements for signing IPL data
To enable your system for signing IPL data, you must create the required certificates for RACF.

This topic contains the following subtopics:

• “Required certificates” on page 34
• “Supported signature algorithms” on page 34
• “Required certificate extensions” on page 34

For examples of using RACDCERT GENCERT command to create certificates that meet these
requirements, see “Steps for using a RACF-generated signing certificate stored in a key ring” on page
37. Otherwise, contact your external certificate authority (CA) and see “Steps for using an external
signing certificate stored in a key ring” on page 39.

For details about using the RACDCERT GENCERT command, see z/OS Security Server RACF Command
Language Reference.

© Copyright IBM Corp. 2023 33

Required certificates
Your installation must supply a RACF key ring or an ICSF token that contains the following certificates:

• The default certificate in the RACF key ring or ICSF Token must have a private key and a key type
of NISTECC with a 521-bit key size. This object is referred to as the code-signing certificate. The
code-signing certificate can be self-signed or signed by a CA certificate.

• If the code-signing certificate is not a self-signed certificate, add the chain of CA certificates that signed
the code-signing certificate up to the root CA. The R_PgmSignVer service supports a maximum of ten CA
certificates in the key ring or ICSF token.

Supported signature algorithms
The code-signing certificate and each CA certificate in the code-signing certificate chain must be signed
by using one of the following signature algorithms:

• sha256RSA
• sha224RSA
• sha384RSA
• sha512RSA
• sha256RSAPSS
• sha224RSAPSS
• sha384RSAPSS
• sha512RSAPSS
• sha256ECDSA
• sha224ECDSA
• sha384ECDSA
• sha512ECDSA

Required certificate extensions
The certificates require extensions, as follows:

• The code-signing certificate must have the KeyUsage extension with at least the digitalSignature
indicator enabled.

• Each CA certificate in the code-signing certificate chain must have the BasicConstraints extension with
the cA indicator enabled, or must not have a BasicConstraints extension.

Defining the IRR.PROGRAM.V2.SIGNING profile
This topic describes the IRR.PROGRAM.V2.SIGNING profile, which is used for specifying the RACF key
ring or ICSF token and the hash algorithm for Validated Boot for z/OS.

You must define APPLDATA information in one or more discrete profiles in the FACILITY class to specify
the following information:

• Name of the z/OS signing key ring or token.
• Hash algorithm (or message digestion algorithm) that is to be used for signing IPL data. If you omit this

value, SHA512 is used by default.

Format of the profile name
The format of the IRR.PROGRAM.V2.SIGNING profile name is based on how you choose to assign signing
key rings or tokens to users who are authorized to sign. The first four qualifiers of the profile name must
be IRR.PROGRAM.V2.SIGNING.

34 z/OS: Validated Boot for z/OS

The rest of the profile name reflects the available options for assigning key rings or tokens to signers. You
can optionally append one or two more qualifiers to the profile name, as shown in the following list. RACF
checks the profiles in the order that is listed and uses the first profile found that matches as follows.
IRR.PROGRAM.V2.SIGNING.groupid.userid

This profile assigns a key ring for the specified user when the user's current connect group is the
specified group ID.

IRR.PROGRAM.V2.SIGNING.userid
This profile assigns a key ring for the specified user ID.

IRR.PROGRAM.V2.SIGNING.groupid
This profile assigns a key ring for the user IDs whose current connect group matches the group ID
specified.

IRR.PROGRAM.V2.SIGNING
This profile assigns a key ring to be used by all users in the RACF database for Validated Boot for z/OS
signing.

Rule: No generic characters (*) are allowed in the name of a IRR.PROGRAM.V2.SIGNING[.groupid]
[.userid] profile.

Note: No access check is performed on the IRR.PROGRAM.V2.SIGNING[.groupid][.userid] profile.

Format of the APPLDATA value
The format of the APPLDATA value in the IRR.PROGRAM.V2.SIGNING profile is as follows:

[hash-algorithm] [owning-userid]/key-ring-name

or

[hash-algorithm] *TOKEN*/token-name

The variables of the APPLDATA value are defined as follows:
hash-algorithm

Specifies the message digestion algorithm to be used for Validated Boot for z/OS signing. The
supported value is SHA512; no other values are supported. If you omit this value, RACF uses SHA512
by default. The hash-algorithm value is overridden if it is also specified in the R_PgmSignVer function
call parameter list.

owning-userid
Specifies the user ID that owns the Validated Boot for z/OS signing key ring. If you omit this value,
RACF uses the user ID of the user who invokes the R_PgmSignVer signing service.

/key-ring-name
Specifies the fully qualified name of the Validated Boot for z/OS signing key ring. This value must be
preceded by the forward slash (/).

/token-name
Specifies the Validated Boot for z/OS token name to be used for signing. This value must be preceded
by *TOKEN* and the forward slash (/).

Rules:

• The only space character that is allowed in the APPLDATA value is the single space after the hash-
algorithm value. If hash-algorithm is omitted, no space is allowed in the APPLDATA value.

• No extraneous characters are allowed in the APPLDATA value.

Notes:

• RACF does not check the format of the APPLDATA value when you define a IRR.PROGRAM.V2.SIGNING
profile.

Chapter 6. RACF 35

• The RDEFINE command that is used to create this profile converts the key ring or token name that
is defined in the APPLDATA to all uppercase characters. Therefore, do not use mixed case characters
when you define the key ring name or token name.

Examples of profile names
The format of the IRR.PROGRAM.V2.SIGNING profile name is based on how you choose to assign the
signing key rings or tokens to users who are authorized to sign.

• The following profile defines that user ID ZSIGNER, when this user's current connect group ID is BUILD,
uses the VB_SIGNING_KEYRING key ring defined for user ID BUILDID for Validated Boot for z/OS
signing operations.

RDEFINE FACILITY IRR.PROGRAM.V2.SIGNING.BUILD.ZSIGNER
APPLDATA('SHA512 BUILDID/VB_SIGNING_KEYRING')

• The following profile defines that user ID ZSIGNER uses the VB_SIGNING_KEYRING key ring that is
defined to user ID ZSIGNER for Validated Boot for z/OS signing operations, unless a more specific
profile applies.

RDEFINE FACILITY IRR.PROGRAM.V2.SIGNING.ZSIGNER
APPLDATA('SHA512 ZSIGNER/VB_SIGNING_KEYRING')

• The following profile defines that users whose current connect group is PROD will use the
VB_SIGNING_KEYRING key ring that is defined to user ID PRODID for Validated Boot for z/OS signing
operations, unless a more specific profile applies.

RDEFINE FACILITY IRR.PROGRAM.V2.SIGNING.PROD
 APPLDATA('SHA512 PRODID/VB_SIGNING_KEYRING')

• The following profile defines that users will use the VB_SIGNING_KEYRING key ring that is defined to
user ID RACFADM for Validated Boot for z/OS signing operations, unless a more specific profile applies.

RDEFINE FACILITY IRR.PROGRAM.V2.SIGNING
 APPLDATA('SHA512 RACFADM/VB_SIGNING_KEYRING')

• The following profile defines that users will use the RACFADM.VBTOKEN ICSF token for Validated Boot
for z/OS signing operations, unless a more specific profile applies.

RDEFINE FACILITY IRR.PROGRAM.V2.SIGNING
 APPLDATA('SHA512 *TOKEN*/RACFADM.VBTOKEN')

Enabling IPL data signing for Validated Boot for z/OS
It is possible to perform IPL data signing by using RACF-generated or externally supplied certificates, and
storing the signing key in either a RACF key ring or ICSF token, as needed. This topic provides instructions
for each of these scenarios.

This topic describes the following scenarios for signing IPL data. Choose the one that best matches your
particular use case.

Table 8. Scenarios for signing IPL data

Scenario See the following topic...

You plan to use:

• RACF key ring
• Certificate generated by using RACF
• Signing key stored in the PKDS data set.

“Steps for using a RACF-generated signing
certificate stored in a key ring” on page 37

36 z/OS: Validated Boot for z/OS

Table 8. Scenarios for signing IPL data (continued)

Scenario See the following topic...

You plan to use:

• RACF key ring
• Certificate imported from an external source
• Signing key stored in RACF.

“Steps for using an external signing certificate
stored in a key ring” on page 39

You plan to use:

• ICSF token
• Certificate generated by using RACF
• Signing key stored in an ICSF token in the TKDS

data set.

“Steps for using a RACF-generated signing
certificate stored in an ICSF token” on page 41

Steps for using a RACF-generated signing certificate stored in a key
ring

Note: This procedure creates a CA certificate and then a code-signing certificate signed by that CA.
However, it is acceptable to create just a self-signed code-signing certificate with the required attributes.

To enable a group to digitally sign IPL data by using a signing certificate that you create with RACF,
perform the following steps.

1. If it does not already exist, create a certificate-authority (CA) certificate that you can use to issue a
signing certificate for users who will perform Validated Boot for z/OS signing.

Note: It is recommended, but not required, to create the public and private keys for the CA certificate
in the ICSF PKDS. Doing so provides the strongest level of security of the private key. The RSA(PKDS)
keyword causes public and private keys to be stored in the ICSF PKDS.

Example:

RACDCERT CERTAUTH GENCERT
SUBJECTSDN(OU('MyCompany Validated Boot Signing CA') O('MyCompany') C('US'))
SIZE(4096) RSA(PKDS) WITHLABEL('Validated Boot Signing CA')

__
2. Create a code-signing certificate for users who will perform Validated Boot for z/OS signing. In the

following example, the code signing certificate is owned by user ZSIGNER and signed by the CA
certificate.

Note: It is recommended, but not required, to create the public and private keys for the code-signing
certificate in the ICSF PKDS. Doing so provides the strongest level of security of the private key. The
NISTECC(PKDS(VBSIGNINGKEY)) keyword causes public and private keys to be stored in the ICSF
PKDS with the VBSIGNINGKEY label. This makes it easier to share the signing key with the members of
the group.

Example:

RACDCERT ID(ZSIGNER) GENCERT SUBJECTSDN(CN('Validated Boot Signing Cert')
O('MyCompany') C('US')) NISTECC(PKDS(VBSIGNINGKEY)) SIZE(521)
WITHLABEL('Validated Boot Signing Cert') SIGNWITH(CERTAUTH LABEL('Validated Boot Signing
CA'))
KEYUSAGE(HANDSHAKE DOCSIGN)

__
3. Create a RACF key ring to hold the certificates that you created in Steps “1” on page 37 and “2” on

page 37. In the following example, the key ring is owned by user ZSIGNER.

Chapter 6. RACF 37

Rule: Specify the key ring name in all uppercase characters so that it matches the key ring that
is specified in the IRR.PROGRAM.V2.SIGNING profile APPLDATA operand, which is converted to
uppercase when created with the RDEFINE command.

Example:

RACDCERT ID(ZSIGNER) ADDRING(VB_SIGNING_KEYRING)

__
4. Connect both certificates that you created in Steps “1” on page 37 and “2” on page 37 to the key ring

you created in Step “3” on page 37.

Rule: The signing certificate must be the default certificate in the ring.

Example:

RACDCERT ID(ZSIGNER) CONNECT(CERTAUTH LABEL('Validated Boot Signing CA')
RING(VB_SIGNING_KEYRING))
RACDCERT ID(ZSIGNER) CONNECT(ID(ZSIGNER) LABEL('Validated Boot Signing Cert') DEFAULT
RING(VB_SIGNING_KEYRING))

__
5. Define the RDATALIB class profile that covers the key ring that was created in the previous steps.

Permit the members of the BUILDGRP group to sign the code by using the key ring and private key of
the code-signing certificate.

Example:

RDEFINE RDATALIB ZSIGNER.VB_SIGNING_KEYRING.LST UACC(NONE)
PERMIT ZSIGNER.VB_SIGNING_KEYRING.LST CLASS(RDATALIB) ID(BUILDGRP) ACCESS(UPDATE)

In this example, the owner of the key ring is user ZSIGNER, and the key ring name
is VB_SIGNING_KEYRING. Thus, the RDATALIB profile name that covers that resource is:
ZSIGNER.VB_SIGNING_KEYRING.LST (<ring owner>.<ringname>.LST).

• If the RDATALIB class is not already active, activate and RACLIST it.

SETROPTS CLASSACT(RDATALIB) RACLIST(RDATALIB)

• If the RDATALIB class is already active and RACLISTed, refresh it.

SETROPTS RACLIST(RDATALIB) REFRESH

__
6. Define the signing profile. In the following example, a signing profile is defined for the group of

authorized signers called BUILDGRP.

Example:

RDEF FACILITY IRR.PROGRAM.V2.SIGNING.BUILDGRP APPLDATA('SHA512 ZSIGNER/VB_SIGNING_KEYRING')

For more information about the profile structure, see “Defining the IRR.PROGRAM.V2.SIGNING
profile” on page 34.

__
7. Permit the users who are connected to the BUILDGRP group to perform the signing, using the signing

key stored in the PKDS. In this example, assume that a CSFDSG profile is already defined in the
CSFSERV resource class.

CAUTION: IBM recommends that the CSFSERV and CSFKEYS classes be RACLISTed. However,
be aware that a number of ICSF services are available when the CSFSERV or CSFKEYS classes
are not active. Therefore, if you activate and RACLIST these classes, any product that currently
uses the services that are protected by these classes can fail due to lack of authorization.

38 z/OS: Validated Boot for z/OS

Example:

PERMIT CSFDSG CLASS(CSFSERV) ID(BUILDGRP) ACCESS(READ)
PERMIT VBSIGNINGKEY CLASS(CSFKEYS) ID(BUILDGRP) ACCESS(READ)

If the CSFSERV and CSFKEYS classes are not already active, activate and RACLIST them.

SETROPTS CLASSACT(CSFSERV CSFKEYS) RACLIST(CSFSERV CSFKEYS)

If the CSFSERV and CSFKEYS classes are already active and RACLISTed, refresh them.

SETROPTS RACLIST(CSFSERV CSFKEYS) REFRESH

__

You have now enabled a RACF group to digitally sign IPL data by using a signing certificate that you
created with RACF.

Steps for using an external signing certificate stored in a key ring
Note: This procedure creates a CA certificate and a code-signing certificate that is signed by that CA.
However, it is acceptable to create just a self-signed code-signing certificate with the required attributes.

Before you begin: Obtain or locate the root certificate-authority (CA) certificate of an external CA — and
the intermediate CAs, if needed — and store them in a cataloged, variable-blocked (VB) MVS data set.

To enable a group to digitally sign IPL data by using a signing certificate that you obtain from an external
certificate-authority (CA), perform the following steps.

1. Add the root CA certificate of the external CA to RACF, specifying the data set in which it is stored.

Example:

RACDCERT CERTAUTH ADD(<data set containing the root CA cert>) WITHLABEL(‘External VB root
CA’)

If you want to use an intermediate CA, enter this command to add it. To add multiple intermediate CAs,
repeat this command for each of them with the appropriate labels.

Example:

RACDCERT CERTAUTH ADD(<data set containing the intermediate CA cert>) WITHLABEL(‘External VB
intermediate CA’)

__
2. Add the signing certificate to RACF. In the following example, the signing certificate is owned by user

ZSIGNER and the signing certificate is contained in a PKCS #12 package that is stored in a data set.

Example:

RACDCERT ID(ZSIGNER) ADD(<data set containing the signing cert in pkcs12 package>)
WITHLABEL('Validated Boot Signing Cert') PASSWORD(‘<pw>’)

__
3. Create a RACF key ring to hold the certificates you added in Steps “1” on page 39 and “2” on page 39.

In the following example, the key ring is owned by user ZSIGNER.

Rule: Specify the key ring name in all uppercase characters so that it matches the key ring that is
specified in the IRR.PROGRAM.V2.SIGNING profile APPLDATA operand. This value is converted to
uppercase when the profile is created with the RDEFINE command.

Example:

Chapter 6. RACF 39

RACDCERT ID(ZSIGNER) ADDRING(VB_SIGNING_KEYRING)

__
4. Connect all of the certificates that you obtained in Steps “1” on page 39 and “2” on page 39 to the key

ring that you created in Step “3” on page 39.

Rule: The signing certificate must be the default certificate in the ring.

Example:

RACDCERT ID(ZSIGNER) CONNECT(CERTAUTH LABEL('External VB root CA')
RING(VB_SIGNING_KEYRING))

RACDCERT ID(ZSIGNER) CONNECT(CERTAUTH LABEL('External VB intermediate CA')
RING(VB_SIGNING_KEYRING))

RACDCERT ID(ZSIGNER) CONNECT(ID(ZSIGNER) LABEL('Validated Boot Signing Cert') DEFAULT
RING(VB_SIGNING_KEYRING))

__
5. Define the RDATALIB class profile that covers the key ring that was created in the previous steps.

Permit the members of the BUILDGRP group to sign the code by using the key ring and private key of
the code-signing certificate.

Example:

RDEFINE RDATALIB ZSIGNER.VB_SIGNING_KEYRING.LST UACC(NONE)
PERMIT ZSIGNER.VB_SIGNING_KEYRING.LST CLASS(RDATALIB) ID(BUILDGRP) ACCESS(UPDATE)

In this example, the owner of the key ring is user ZSIGNER, and the key ring name
is VB_SIGNING_KEYRING. Thus, the RDATALIB profile name that covers that resource is:
ZSIGNER.VB_SIGNING_KEYRING.LST (<ring owner>.<ringname>.LST).

• If the RDATALIB class is not already active, activate and RACLIST it.

SETROPTS CLASSACT(RDATALIB) RACLIST(RDATALIB)

• If the RDATALIB class is already active and RACLISTed, refresh it.

SETROPTS RACLIST(RDATALIB) REFRESH

__
6. Define the signing profile. In the following example, a signing profile is defined for a group of

authorized signers called BUILDGRP.

Example:

RDEF FACILITY IRR.PROGRAM.V2.SIGNING.BUILDGRP APPLDATA('SHA512 ZSIGNER/VB_SIGNING_KEYRING')

Refresh the FACILITY class.

SETR RACLIST(FACILITY) REFRESH

For more information about the profile structure, see “Defining the IRR.PROGRAM.V2.SIGNING
profile” on page 34.

__
7. Permit the users who are connected to the BUILDGRP group to perform the signing, using the signing

key stored in the RACF database. In this example, assume that the CSF1TRC, CSF1PKS and CSF1TRD
profiles are already defined in the CSFSERV resource class.

CAUTION: IBM recommends that the CSFSERV class be RACLISTed. However, be aware that a
number of ICSF services are available when the CSFSERV class is not active. Therefore, if you

40 z/OS: Validated Boot for z/OS

activate and RACLIST this class, any product that currently uses the services that are protected
by this class can fail due to lack of authorization.

Example:

PERMIT CSF1TRC CLASS(CSFSERV) ID(BUILDGRP) ACCESS(READ)
PERMIT CSF1PKS CLASS(CSFSERV) ID(BUILDID) ACCESS(READ)
PERMIT CSF1TRD CLASS(CSFSERV) ID(BUILDID) ACCESS(READ)

If the CSFSERV class is not already active, activate and RACLIST it.

SETROPTS CLASSACT(CSFSERV) RACLIST(CSFSERV)

If the CSFSERV class is already active and RACLISTed, refresh it.

SETROPTS RACLIST(CSFSERV) REFRESH

__

You have now enabled a RACF group to digitally sign IPL data by using a signing certificate that you
obtained from an external certificate-authority (CA).

Steps for using a RACF-generated signing certificate stored in an
ICSF token

Note: This example creates a CA certificate and then a code-signing certificate signed by that CA.
However, it is acceptable to create just a self-signed code-signing certificate with the required attributes.

To enable a group to digitally sign IPL data by using a certificate that you create with RACF and store in an
ICSF token, perform the following steps.

1. Create an ICSF token with the RACDCERT command. The token will contain the certificates and keys
that you create in Steps “2” on page 41 and “3” on page 41.

Rule: Specify the token name to match the token name that is specified in the
IRR.PROGRAM.V2.SIGNING profile APPLDATA operand.

Example:

RACDCERT ADDTOKEN(ZSIGNER.VBTOKEN)

__
2. If it does not already exist, create a certificate-authority (CA) certificate that you can use to issue a

signing certificate for users who will perform Validated Boot for z/OS signing.

Example:

RACDCERT CERTAUTH GENCERT
SUBJECTSDN(OU('MyCompany Validated Boot Signing CA') O('MyCompany') C('US'))
SIZE(4096) RSA WITHLABEL('Validated Boot Signing CA')

__
3. Create a code-signing certificate for users who will perform Validated Boot for z/OS signing. In the

following example, the code signing certificate is owned by user ZSIGNER and signed by the CA
certificate.

Example:

RACDCERT ID(ZSIGNER) GENCERT SUBJECTSDN(CN('Validated Boot Signing Cert')
O('MyCompany') C('US')) NISTECC(TOKEN(ZSIGNER.VBTOKEN)) SIZE(521) WITHLABEL('Validated Boot
Signing Cert')
SIGNWITH(CERTAUTH LABEL('Validated Boot Signing CA')) KEYUSAGE(HANDSHAKE DOCSIGN)

__

Chapter 6. RACF 41

4. Bind the code-signing certificate and its CA certificate to the ICSF token.

Example:

RACDCERT BIND(CERTAUTH LABEL('Validated Boot Signing CA') TOKEN(ZSIGNER.VBTOKEN))
RACDCERT BIND(ID(ZSIGNER) LABEL('Validated Boot Signing Cert') DEFAULT USAGE(PERSONAL)
TOKEN(ZSIGNER.VBTOKEN))

__
5. Define the signing profile. In the following example, a signing profile is defined for a group of

authorized signers called BUILDGRP.

Example:

RDEF FACILITY IRR.PROGRAM.V2.SIGNING.BUILDGRP APPLDATA('SHA512 *TOKEN*/ZSIGNER.VBTOKEN')

For more information about the profile structure, see “Defining the IRR.PROGRAM.V2.SIGNING
profile” on page 34.

__
6. Permit the users who are connected to the BUILDGRP group to access the signing key. The key is

stored in the ICSF token and is protected by the CSFSERV and CRYPTOZ classes. In this example,
assume that the profiles for CSFDSG, CSF1TRL, and CSF1GAV are already defined in the CSFSERV
resource class.

CAUTION: IBM recommends that the CSFSERV and CRYPTOZ classes be RACLISTed. However,
be aware that a number of ICSF services are available when the CSFSERV or CRYPTOZ class
is not active. Therefore, if you activate and RACLIST these classes, any product that currently
uses the services that are protected by these classes can fail due to lack of authorization.

Example:

PERMIT CSFDSG CLASS(CSFSERV) ID(BUILDGRP) ACCESS(READ)
PERMIT CSF1TRL CLASS(CSFSERV) ID(BUILDGRP) ACCESS(READ)
PERMIT CSF1GAV CLASS(CSFSERV) ID(BUILDGRP) ACCESS(READ)
PERMIT USER.ZSIGNER.VBTOKEN CLASS(CRYPTOZ) ID(BUILDGRP) ACCESS(READ)

• If the CSFSERV and CRYPTOZ classes are not already active, activate and RACLIST them.

SETROPTS CLASSACT(CSFSERV CRYPTOZ) RACLIST(CSFSERV CRYPTOZ)

• If the CSFSERV and CRYPTOZ classes are already active and RACLISTed, refresh them.

SETROPTS RACLIST(CSFSERV CRYPTOZ) REFRESH

__

You have now enabled a group to digitally sign IPL data by using a signing certificate that you created with
RACF and stored in an ICSF token.

R_PgmSignVer (IRRSPS00): Program Sign and Verify

Function
The R_PgmSignVer service provides the functions required to apply a digital signature to a z/OS program
object, and the functions required to verify such a signature. The signing services are intended for use by
the z/OS program binder. The verification services are intended for use by the z/OS loader.

The signing services consist of the following functions:

1. Initialize signing - Allocates and initializes a work area to perform message digestion (hash) against the
program’s data, and reads the digital certificates from the program signing key ring.

42 z/OS: Validated Boot for z/OS

2. Digest intermediate program data - Hashes a portion of the program’s data for signing.
3. Generate signature - Hashes the final portion of the program’s data, if provided, and generates the

digital signature by encrypting the calculated hash using the private key from the default certificate in
the key ring. Any resources obtained by the initialize signing function are freed before returning.

4. Cleanup - Frees resources obtained by the initialize signing function. To be called if the signature
generation is not completed by the generate signature function (for example, for recovery cleanup).

The verification services consist of the following functions:

1. Initialize signature-verification - Allocates and initializes a work area to perform message digestion
(hash) against the program’s data, and hashes any initial program data that is supplied.

2. Digest intermediate program data - Hashes a portion of the program’s data for verification.
3. Final verification - Hashes the final portion of the program’s data, if provided. The signature

provided with the program is then decrypted with the public key from the end-entity certificate
that accompanies the signature, and the two hash values are compared to verify the signature. Any
resources obtained by the initialize signature-verification function are freed before returning.

4. Cleanup - Frees resources obtained by the initialize signature-verification function. To be called if
that signature-verification is not completed by calling the final verification function (for example, for
recovery cleanup)

5. Interrogate directive - Generate appropriate return code and perform auditing according to security
settings when a program signature cannot be verified.

Requirements
Authorization:

Any PSW key in supervisor or problem state.

Note: In the following documentation, a caller that is in either supervisor state or a system key is
referred to as “authorized”. Otherwise, the caller is referred to as “unauthorized”.

Dispatchable unit mode:
Task of user

Cross memory mode:
PASN = HASN

AMODE:
31 or 64

RMODE:
Any

ASC mode:
Primary or AR mode

Recovery mode:
ESTAE. Caller cannot have a FRR active.

Serialization:
Enabled for interrupts

Locks:
No locks held

Control parameters:
The parameter list and the work area must be in the primary address space. The words containing
the ALETs must be in the primary address space. The Num_parms parameter must be in the primary
address space.

Chapter 6. RACF 43

Linkage conventions
Callers in 31-bit addressing mode should link-edit the IRRSPS00 stub module with their code, and use
the IRRPCOMP mapping macro. Callers in 64-bit addressing mode should link-edit the IRRSPS64 stub
module with their code, and use the IRRPCOMY mapping macro.

RACF authorization
For an unauthorized caller, the caller’s identity must have sufficient authority to use the key ring or the
token that is specified in the parameter list. Or, if not specified in the parameter list, then as defined in the
appropriate profile in the FACILITY class, as follows:

• IRR.PROGRAM.SIGNING[.groupid][.userid] profile, when Num_parms is 10.
• IRR.PROGRAM.V2.SIGNING[.groupid][.userid] profile, when Num_parms is 11 and the

Function_attributes is nonzero.

Also, the caller requires authority to the private key contained in the key ring as determined by the
R_datalib callable service and ICSF. .

If a token is used instead of a key ring, READ access to the ICSF resources CSF1TRL and CSF1GAV in the
CSFSERV class is required.

When Num_parms is 11 and the Function_attributes is nonzero, the ICSF subsystem must be operational
and configured for PKA operations with the appropriate crypto hardware, depending on where the
NISTECC signing key is stored. Further, the caller must be authorized to the appropriate ICSF resources.

The hardware and authorization that are required for the signing process are as follows:

• When the signing key is stored in the ICSF token data set (TKDS):

– Enterprise PKCS#11 cryptographic coprocessor is required.
– READ authority to the CSFDSG resource in the CSFSERV class
– READ authority to the USER.<pkcs11 token name> in the CRYPTOZ class

• When the signing key is stored in the ICSF PKA key data set (PKDS):

– A Crypto Express3 coprocessor (CEX3C), or later, is required.
– READ authority to the CSFDSG resource in the CSFSERV class
– READ authority to the resource that represents the key label in the CSFKEYS class.

• When the signing key is stored in the RACF database:

– READ authority to the CSF1TRC, CSF1PKS, and CSF1TRD resources in the CSFSERV class

For the signature-verification services, there are no authorization requirements, regardless of the caller's
state.

Format
 CALL IRRSPS00 (Work_area,
 ALET, SAF_return_code,
 ALET, RACF_return_code,
 ALET, RACF_reason_code,
 Num_parms,
 Function_code,
 Function_parmlist,
 Function_attributes
)

Parameters
Work_area

The name of a 1024-byte work area for SAF. The work area must be in the primary address space.

44 z/OS: Validated Boot for z/OS

ALET
The name of a word that contains the ALET for the following parameter. Each parameter must have an
ALET specified. Each ALET must be 0 for this service. The words that contain the ALETs must be in the
primary address space.

SAF_Return_Code
The name of a fullword in which the SAF router returns the SAF return code.

RACF_Return_Code
The name of a fullword in which the service routine stores the return code.

RACF_Reason_Code
The name of a fullword in which the service routine stores the reason code.

Num_parms
Specifies the name of a fullword that contains the total number of parameters in the parameter list.
The contents of this field must be set to decimal ten or eleven. If Function_attributes is specified, this
field must be set to 11.

Function_code
The name of a 2-byte area that contains the Function code. The function code has one of the following
values:
X’0001’

Initialize signing. (Function name SIGINIT.) This function must be called before calling any of the
other signing functions.

X’0002’
Digest intermediate program data for signature generation. (Function name SIGUPDAT.) This
function is optional. It should be called only if all the program’s data cannot be processed on
one call to generate signature. It can be called multiple times before calling generate signature.

X’0003’
Generate signature. (Function name SIGFINAL.) This function finalizes the signature generation
and returns the result. It also frees any work area storage that might have been allocated.

X’0004’
Terminates the signing operation and frees resources that are allocated by SIGINIT. (Function
name SIGCLEAN.) This function should be called only if signature generation is not to be finalized
with a call to SIGFINAL. All R_PgmSignVer functions perform this cleanup if they return an error to
the caller. The caller needs to call the cleanup function only if it is terminating for its own reason.

X’0005’
Initialize signature-verification and optionally digest initial program data. (Function name
VERINIT.) This function must be called before calling any of the other verification functions except
VERINTER (interrogate directive).

X’0006’
Digest intermediate program data for signature-verification. (Function name VERUPDAT.) This
function is optional. It should be called only if all the program’s data cannot be processed on the
VERINIT and VERFINAL calls. It can be called multiple times before performing final verification.

X’0007’
Perform final verification. (Function name VERFINAL.) This function finalizes the signature-
verification and returns the result. It also audits the event and frees any work area storage that
might have been allocated. If all the program data can be specified in a single call, then VERFINAL
can be called without first calling VERINIT. See Table 15 on page 49 for more information.

X’0008’
Terminates the signing operation and frees resources that are allocated by VERINIT. (Function
name VERCLEAN.) This function should be called only if signature generation is not to be finalized
with a call to VERFINAL. All R_PgmSignVer functions perform this cleanup if they return an error to
the caller. The caller must call the cleanup function only if it is terminating for its own reason.

X’0009’
Interrogate directive. (Function name VERINTER.) This function examines the directive (supplied
within the ICHSFENT in the function-specific parameter list) to determine the appropriate action.

Chapter 6. RACF 45

This would be used for cases in which VERFINAL is not called. For example, when digital signature
processing is required, but the module does not have a digital signature. This function is not
available to unauthorized callers.

Function_parmlist
Specifies the name of the function code-specific parameter list area for the Function_code specified.

All address fields are 8-byte addresses. When referring to 31-bit storage addresses, the caller must
make sure that the high-order word of the address field is set to binary zeros.

Table 9. Function_parmlist for SIGINIT

Field Attributes Usage Description

PGSN_SI_PLIST Structure In Function-specific parameter list for signing
initialization.

PGSN_SI_EYE 8 characters In Eye catcher, 8 characters. Actual value must be set
by invoker: 'SIGINIT '.

PGSN_SI_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be
set to binary zero.

PGSN_SI_PGM_NAME_LEN 4 byte numeric In Length of the name of the program being signed.
The length must not exceed 8 characters.

PGSN_SI_PGM_NAME@ Address of In Address of the name of the program being signed.

Note: This parameter is used to derive the name/
token that is used for subsequent calls. As such, it
does not necessarily need to be the program name,
but must be a unique value, which does not result in
a name collision with other signing operations.

PGSN_SI_KEYRING_NAME@ Address of In Address of the name of the SAF key ring or the
ICSF token that contains the certificates to be
used for signing. This address is meaningful only if
PGSN_SI_KEYRING_LEN is a nonzero value.

For a SAF key ring, the name has the following
syntax:

owning-userid/ring-name

The owning-userid (but not the slash) can be
omitted if the key ring is owned by the user ID
associated with the calling application.

For an ICSF token, the name has the following
syntax:

TOKEN/token-name

PGSN_SI_KEYRING_LEN 4 byte numeric In Length of the name of the SAF key ring or the
ICSF token that contains the certificates to be
used for signing. If this value is set to zero, the
PGSN_SI_KEYRING_NAME@ value is ignored.

PGSN_SI_SIGINFO_LEN 4 byte numeric Out Length of the ZOSSignatureInfo structure, which is
returned as part of the signature area structure in
the SIGFINAL call.

PGSN_SI_DIGEST_ALG 1 byte numeric In Numeric value indicating what message digest
algorithm to use for the signing. A value of 1
indicates that SHA256 is to be used if Num_parms =
10. A value of 2 indicates that SHA512 is to be used
if Num_parms = 11.

To have the security manager determine the
algorithm to use, set this field to zero.

46 z/OS: Validated Boot for z/OS

Table 10. Function_parmlist for SIGUPDAT

Field Attributes Usage Description

PGSN_SU_PLIST Structure In Function-specific parameter list for intermediate
signing.

PGSN_SU_EYE 8 characters In Eye catcher, 8 characters. Actual value must be set
by invoker: 'SIGUPDAT'.

PGSN_SU_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be
set to binary zero.

PGSN_SU_PGM_NAME_LEN 4 byte numeric In Length of the name of the program being signed.
The length must not exceed 8 characters.

PGSN_SU_PGM_NAME@ Address of In Address of the name of the program being signed.
Must be the same as the value supplied on the
SIGINIT call.

PGSN_SU_PGM_DATA@ Address of In Address of a structure specifying the intermediate
ranges of data to sign. The structure is mapped by
PGSN_DATA_RANGE. See usage note “7” on page
62 in “Usage notes for program verification” on
page 61 for the format of this structure.

Table 11. Function_parmlist for SIGFINAL

Field Attributes Usage Description

PGSN_SF_PLIST Structure In Function-specific parameter list for final signing.

PGSN_SF_EYE 8 characters In Eye catcher, 8 characters. Actual value must be set
by invoker: 'SIGFINAL'.

PGSN_SF_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be set
to binary zero.

PGSN_SF_PGM_NAME_LEN 4 byte numeric In Length of the name of the intermediate ranges
program being signed. The length must not exceed 8
characters.

PGSN_SF_PGM_NAME@ Address of In Address of the name of the program being signed.
Must be the same as the value supplied on the
SIGINIT call.

PGSN_SF_PGM_DATA@ Address of In Address of a structure specifying the final ranges
of data to sign. The structure is mapped by
PGSN_DATA_RANGE. See usage note “7” on page
62 in “Usage notes for program verification” on
page 61 for the format of this structure.

PGSN_SF_SIG_AREA@ Address of Out Address of the allocated signature area structure.
See usage note “6” on page 59 in “Usage notes for
program signing” on page 58 for the final ranges
format of the area.

PGSN_SF_SUBPOOL 1 byte numeric In Subpool to be used for allocation of the signature
data structure. For unauthorized callers, this must
be a value in the range 1 – 127.

Table 12. Function_parmlist for SIGCLEAN

Field Attributes Usage Description

PGSN_SC_PLIST Structure In Function-specific parameter list for signing cleanup.

PGSN_SC_EYE 8 characters In Eye catcher, 8 characters. Actual value must be set
by invoker: 'SIGCLEAN'.

PGSN_SC_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be set
to binary zero.

Chapter 6. RACF 47

Table 12. Function_parmlist for SIGCLEAN (continued)

Field Attributes Usage Description

PGSN_SC_PGM_NAME_LEN 4 byte numeric In Length of the name of the program being signed. The
length must not exceed 8 characters.

PGSN_SC_PGM_NAME@ Address of In Address of the name of the program being signed.
Must be the same as the value supplied on the
SIGINIT call.

Table 13. Function_parmlist for VERINIT

Field Attributes Usage Description

PGSN_VI_PLIST Structure In Function-specific parameter list for verification
initialization.

PGSN_VI_EYE 8 characters In Eye catcher, 8 characters. Actual value must be set
by invoker: 'VERINIT '.

PGSN_VI_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be set
to binary zero.

PGSN_VI_PGM_NAME_LEN 4 byte numeric In For unauthorized callers, length of the name of the
program being verified. The length must not exceed
8 characters. Ignored for authorized callers.

PGSN_VI_PGM_NAME@ Address of In For unauthorized callers, address of the name of
the program being verified. Ignored for authorized
callers.

PGSN_VI_CONTEXT@ Address of Out For authorized callers, address of the allocated verify
context that the caller should pass in to subsequent
verification calls. Ignored for unauthorized callers.

PGSN_VI_PGM_DATA@ Address of In Address of a structure specifying the initial ranges
of data to verify. The structure is mapped by
PGSN_DATA_RANGE. See usage note “7” on page
62 in “Usage notes for program verification” on
page 61 for the format of this structure.

PGSN_VI_SIGINFO@ Address of In Address of the ZOSSignatureInfo structure that is
extracted from the program object being verified.

PGSN_VI_SIGINFO_LEN 4 byte numeric In Length of the ZOSSignatureInfo structure that is
extracted from the program object being verified.

PGSN_VI_DIGEST_ALG 1 byte numeric In Numeric value indicating what message digest
algorithm to use for the verification. A value
of 0 means the value that is contained in the
ZOSSignatureInfo structure should be used. This is
the only supported value.

Table 14. Function_parmlist for VERUPDAT

Field Attributes Usage Description

PGSN_VU_PLIST Structure In Function-specific parameter list for intermediate
verification.

PGSN_VU_EYE 8 characters In Eye catcher, 8 characters. Actual value must be set
by invoker: 'VERUPDAT'.

PGSN_VU_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be set
to binary zero.

PGSN_VU_PGM_NAME_LEN 4 byte numeric In For unauthorized callers, length of the name of the
program being verified. The length must not exceed 8
characters. Ignored for authorized callers.

48 z/OS: Validated Boot for z/OS

Table 14. Function_parmlist for VERUPDAT (continued)

Field Attributes Usage Description

PGSN_VU_PGM_NAME@ Address of In For unauthorized callers, address of the name of
the program being verified. Must be the same as
the value supplied on the VERINIT call. Ignored for
authorized callers.

PGSN_VU_CONTEXT@ Address of In For authorized callers, address of the verify context
area that is allocated on the VERINIT call. Ignored
for unauthorized callers.

PGSN_VU_PGM_DATA@ Address of In Address of a structure specifying the intermediate
ranges of data to verify. The structure is mapped by
PGSN_DATA_RANGE. See usage note “7” on page
62 in “Usage notes for program verification” on
page 61 for the format of this structure.

Table 15. Function_parmlist for VERFINAL

Field Attributes Usage Description

PGSN_VF_PLIST Structure In Function-specific parameter list for final verification.

PGSN_VF_EYE 8 characters In Eye catcher, 8 characters. Actual value must be set
by invoker: 'VERFINAL'.

PGSN_VF_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be set
to binary zero.

PGSN_VF_PGM_NAME_LEN 4 byte numeric In For unauthorized callers, length of the name of the
program being verified. The length must not exceed 8
characters. Ignored for authorized callers.

If the length is zero, it is assumed that no VERINIT
call was made, and the signature is generated based
on the data that is supplied in this call, by using the
default digest algorithm.

PGSN_VF_PGM_NAME@ Address of In For unauthorized callers, address of the name of
the program being verified. Must be the same as
the value supplied on the VERINIT call. Ignored for
authorized callers.

PGSN_VF_CONTEXT@ Address of In For authorized callers, address of the verify context
area that is allocated on the VERINIT call. Ignored
for unauthorized callers. If the address is zero, it
is assumed that no VERINIT call was made, and
the signature is generated based on the data that
is supplied in this call, by using the default digest
algorithm.

PGSN_VF_PGM_DATA@ Address of In Address of a structure specifying the final ranges
of data to verify. The structure is mapped by
PGSN_DATA_RANGE. See usage note “7” on page
62 in “Usage notes for program verification” on
page 61 for the format of this structure.

PGSN_VF_LOGSTRING@ Address of In Address of an area that consists of a 1-byte length
field followed by character data (up to 255 bytes) to
be included in any audit records that are created. If
the address or the length byte is 0, this parameter is
ignored.

PGSN_VF_ICHSFENT@ Address of In For authorized callers, address of the FASTAUTH
entity parameter mapping containing the directive
(previously retrieved from RACF by Contents
Supervision). This parameter is optional. See usage
notes “6” on page 61 and “16” on page 62 in
“Usage notes for program verification” on page 61.
Ignored for unauthorized callers.

Chapter 6. RACF 49

Table 15. Function_parmlist for VERFINAL (continued)

Field Attributes Usage Description

PGSN_VF_SIGINFO@ Address of In Address of the ZOSSignatureInfo structure that is
extracted from the program object being verified.
This field is required if VERFINAL is the only call
being made. It is ignored if it was already passed to
VERINIT.

PGSN_VF_SIGINFO_LEN 4 byte numeric In Length of the ZOSSignatureInfo structure that is
extracted from the program object being verified.
This field is required if VERFINAL is the only call that
is being made. It is ignored if it was already passed to
VERINIT.

Table 16. Function_parmlist for VERCLEAN

Field Attributes Usage Description

PGSN_VC_PLIST Structure In Function-specific parameter list for verification
cleanup.

PGSN_VC_EYE 8 characters In Eye catcher, 8 characters. Actual value must be set by
invoker: 'VERCLEAN'.

PGSN_VC_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be set
to binary zero.

PGSN_VC_PGM_NAME_LEN 4 byte numeric In For unauthorized callers, length of the name of the
program being verified. The length must not exceed 8
characters. Ignored for authorized callers.

PGSN_VC_PGM_NAME@ Address of In For unauthorized callers, address of the name of
the program being verified. Must be the same as
the value supplied on the VERINIT call. Ignored for
authorized callers.

PGSN_VC_CONTEXT@ Address of In For authorized callers, address of the verify context
area that is allocated on the VERINIT call. Ignored for
unauthorized callers.

Table 17. Function_parmlist for VERINTER

Field Attributes Usage Description

PGSN_ID_PLIST Structure In Function-specific parameter list for interrogating the
directive.

PGSN_ID_EYE 8 characters In Eye catcher, 8 characters. Actual value must be set by
invoker: 'VERINTER'.

PGSN_ID_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be set
to binary zero.

* 4 characters In Reserved

PGSN_ID_ ICHSFENT@ Address of In For authorized callers, address of the FASTAUTH
entity parameter mapping (previously retrieved
from RACF by Contents Supervision). Ignored for
unauthorized callers.

PGSN_ID_LOGSTRING@ Address of In Address of an area that consists of a 1-byte length
field followed by character data (up to 255 bytes) to
be included in any audit records that are created. If
the address or the length byte is 0, this parameter is
ignored.

50 z/OS: Validated Boot for z/OS

Table 17. Function_parmlist for VERINTER (continued)

Field Attributes Usage Description

PGSN_ID_EVENT 1 byte numeric In Constant indicating what sigver event was detected:

• x’01’ – Digital signature processing is required but
the module does not have a digital signature.

• x’02’ – Digital signature processing is required. The
PDSE directory entry for the module indicates it’s
signed but the digital signature is missing.

Function_attributes
The name of a 4-byte area that contains bit settings that indicate the output format for signing. These
bit settings are applicable only when Num_parms = 11. It must set to X’00000000’, except for the
following sign functions.

The bit settings for functions SIGINIT, SIGUPDAT, and SIGFINAL are mapped as follows:
X’80000000’

Indicates that the signature is to be returned in PKCS#7 format. See usage note “7” on page 59.
X’40000000’

Indicates that the signature is to be returned in KDSA format. See usage note “7” on page 59 .

Otherwise, if a different value is specified in the bit settings, SAF return code 8, RACF return code 100,
RACF reason code xx is returned. Here, xx is the offset of the parameter in error, relative to the start of
COMP or COMY.

Notes:

1. The same attribute value must be specified for functions SIGINIT, SIGUPDAT, and SIGFINAL.
Otherwise, error 8 100 xx is returned.

2. The processing for the verify functions when Num_parms is 11 and Function_attributes is
X’00000000’ is the same as when Num_parms is 10.

Return and reason codes
R_PgmSignVer can return the following values in the return and reason code parameters:

Table 18. Return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

0 0 0 Successful completion

4 0 0 RACF not installed

8 8 4 An internal error occurred during RACF processing of
the requested function.

8 8 8 Unable to establish a recovery environment.

8 8 12 Function not available for unauthorized callers.

8 100 xx A parameter list error is detected. The RACF reason
code identifies the parameter in error. The reason
code is the offset of the parameter in error, relative
to the start of COMP or COMY.

Chapter 6. RACF 51

Table 18. Return and reason codes (continued)

SAF return code
RACF return
code

RACF reason
code Explanation

8 104 yy A function-specific parameter list (pointed to by
the Function_parmlist parameter) error has been
detected. The RACF reason code identifies the field
in error. The reason code is the offset of the field
in error, relative to the start of the function-specific
parameter list. When the field is an address, the error
might pertain to the address itself, or to something to
which it points.

In addition to the preceding, R_PgmSignVer can return function-specific return and reason codes:

Table 19. SIGINIT-specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

8 8 100 Signature operation is already in progress for the
specified program name.

8 8 104 Security Manager is unable to determine the key ring
or token to use.

8 8 108 Syntax error in the key ring name or token name
specified as an input parameter or within the
APPLDATA of the RACF FACILITY class profile.

8 8 112 Key ring or token does not exist or does not contain a
default certificate.

8 8 116 Caller not authorized to use R_datalib to access the
key ring or token.

8 8 120 Certificate chain in the key ring or token is incomplete.

8 8 124 Certificate chain contains more than 10 certificates, or
key ring or token contains more than 50 certificates.
Some of these might not constitute part of the
trust chain. However, you should not connect any
certificates that do not.

8 8 128 CA certificate in the key ring or token does not have
certificate signing capability. (KeyUsage extension
present but keyCertSign flag is off or BasicConstraints
extension is present but cA flag is off.)

8 8 132 Default certificate or token in key ring does not have a
private key.

52 z/OS: Validated Boot for z/OS

Table 19. SIGINIT-specific return and reason codes (continued)

SAF return code
RACF return
code

RACF reason
code Explanation

8 8 136 Default certificate in key ring or token does not have
code signing capability.

• When Num_parms = 10, the keyUsage extension
is optional. If the extension is present, both the
digitalSignature bit and the nonRepudiation bit must
be set.

• When Num_parms = 11, the keyUsage extension
must be present and the digitalSignature bit must
be set.

8 8 140 The certificate signature algorithm of one or more
certificates in the key ring or token is not supported.

8 8 144 The key type of one or more certificates in the key
ring or token is not supported. This reason code is also
issued for the following conditions:

• When Num_parms = 10, but the private key of the
signing certificate is stored in ICSF.

• When Num_parms = 11, the signing key can be
stored in ICSF, but it must be a 521-bits NIST Elliptic
Curve Cryptography(ECC) key. Also, the key size of
any other certificates in the key ring or token must
be at least 2048 bits for RSA keys, or 224 bits for
NIST ECC and Brainpool ECC keys.

8 8 148 The specified message digest algorithm is not
supported.

• When Num_parms = 10, the supported digest
algorithm is SHA256.

• When Num_parms = 11, the supported digest
algorithm is SHA512.

8 8 152 CA or signing certificate is expired or not yet active.

8 8 156 The signing certificate does not have the Subject Key
Identifier extension. This return and reason code is
applicable only when Num_parms = 11.

8 12 xx Unexpected error returned from R_datalib. RACF
reason code is the DataGetFirst/DataGetNext reason
code that is returned by R_datalib.

8 16 xx Unexpected error returned from IEANTCR. RACF
reason code is the return code that is returned by
IEANTCR.

Chapter 6. RACF 53

Table 19. SIGINIT-specific return and reason codes (continued)

SAF return code
RACF return
code

RACF reason
code Explanation

8 20 0x00xxyyyy An unexpected error is returned from ICSF. The
hexadecimal reason code value is formatted as
follows:
xx

ICSF return code.
yyyy

ICSF reason code.

Table 20. SIGUPDAT-specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

8 8 100 Signature operation has not been initialized for the
specified program name.

8 12 xx Unexpected error returned from IEANTRT. RACF
reason code is the return code that is returned by
IEANTRT.

8 2nn xx Unexpected error from the cryptographic module. The
return code is 200+nn where nn identifies the function
being performed. The reason code is the return
code from the cryptographic module. This information
should be reported to IBM service.

Table 21. SIGFINAL-specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

8 8 16 No input data to be signed. This return and reason
code is applicable only when Num_parms = 11.

8 8 24 The load of an ICSF service failed and the RACF reason
code is the return code of the LOAD macro. This
return code and reason code are applicable only when
Num_parms = 11.

8 8 100 Signature operation has not been initialized for the
specified program name.

8 12 xx Unexpected error returned from IEANTRT. RACF
reason code is the return code that is returned by
IEANTRT.

8 16 xx Unexpected error returned from IEANTDL. RACF
reason code is the return code that is returned by
IEANTDL.

54 z/OS: Validated Boot for z/OS

Table 21. SIGFINAL-specific return and reason codes (continued)

SAF return code
RACF return
code

RACF reason
code Explanation

8 20 0xffxxyyyy An unexpected error is returned from ICSF. This return
and reason code is applicable only when Num_parms
= 11.

The hexadecimal reason code value is formatted as
follows:
ff

ICSF function:

• 01: CSFPTRC
• 02: CSFPPKS
• 03: CSFPTRD
• 04: CSNDDSG

xx
ICSF return code

yyyy
ICSF reason code

8 2nn xx Unexpected error from the cryptographic module. The
return code is 200+nn where nn identifies the function
being performed. The reason code is the return
code from the cryptographic module. This information
should be reported to IBM service.

Table 22. SIGCLEAN-specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

8 8 100 Signature operation has not been initialized for the
specified program name.

8 12 xx Unexpected error returned from IEANTRT. RACF
reason code is the return code that is returned by
IEANTRT.

8 16 xx Unexpected error returned from IEANTDL. RACF
reason code is the return code that is returned by
IEANTDL.

Table 23. VERINIT-specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

8 8 100 Verification operation is already in progress for the
specified program name.

8 12 xx Unexpected error returned from IEANTCR. RACF
reason code is the return code that is returned by
IEANTCR.

Chapter 6. RACF 55

Table 23. VERINIT-specific return and reason codes (continued)

SAF return code
RACF return
code

RACF reason
code Explanation

8 16 116 The program verification module (IRRPVERS) is not
loaded. See z/OS Security Server RACF Security
Administrator's Guide and z/OS Security Server RACF
System Programmer's Guide for information about
configuring and loading the verification module with
the IRRVERLD program.

8 2nn xx Unexpected error from the cryptographic module. The
return code is 200+nn where nn identifies the function
being performed. The reason code is the return
code from the cryptographic module. This information
should be reported to IBM service.

Table 24. VERUPDAT-specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

8 8 100 Verification operation has not been initialized for the
specified program name.

8 12 xx Unexpected error returned from IEANTRT. RACF
reason code is the return code that is returned by
IEANTRT.

8 16 116 The program verification module (IRRPVERS) is not
loaded. See z/OS Security Server RACF Security
Administrator's Guide and z/OS Security Server RACF
System Programmer's Guide for information about
configuring and loading the verification module with
the IRRVERLD program.

8 2nn xx Unexpected error from the cryptographic module. The
return code is 200+nn where nn identifies the function
being performed. The reason code is the return
code from the cryptographic module. This information
should be reported to IBM service.

Table 25. VERFINAL-specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

0 0 See reason
codes for SAF
return code 8,
RACF return
code 16.

Signature failed verification. Continue the load.

8 8 100 Verification operation has not been initialized for the
specified program name.

8 12 xx Unexpected error returned from IEANTRT. RACF
reason code is the return code that is returned by
IEANTRT.

56 z/OS: Validated Boot for z/OS

Table 25. VERFINAL-specific return and reason codes (continued)

SAF return code
RACF return
code

RACF reason
code Explanation

8 16 See the
following

Signature failed verification. Fail the load.

The following group of reason codes are considered problems with the program signature (the
zOSSignatureInfo structure). These would cause the load to fail when FAILLOAD(BADSIGONLY) or
FAILLOAD(ANYBAD) is in effect.

4 The ZOSSignatureInfo structure is missing or not
correct.

8 Signature algorithm in ZOSSignatureInfo is not
supported.

12 Signer certificate is revoked. The certificate status is
NOTRUST.

16 Certificate chain is incomplete.

20 One or more CA certificates do not have certificate
signing capability. (KeyUsage extension present but
keyCertSign flag is off or BasicConstraints extension is
present but cA flag is off.)

24 End-entity certificate does not have code signing
capability. (KeyUsage extension present but
digitalSignature or nonRepudiation flag is off.)

28 The certificate signature algorithm of one or more
certificates is not supported.

32 The type or size of key found in one or more
certificates is not supported.

36 CA or signing certificate was expired or not yet active
at the time that the module was signed.

40 Digital signature not valid.

44 Unsupported certificate format.

The following group of reason codes are the additional conditions that would cause the load to fail due
to signature processing, but do not represent a bad signature. These would cause the load to fail when
FAILLOAD(ANYBAD) is in effect, but not FAILLOAD(BADSIGONLY).

100 The program appears to be correctly signed but one of
the following conditions exists:

• The root CA certificate in the zOSSignatureInfo
structure of the program object is not connected to
the signature-verification key ring.

• The root CA certificate is marked NOTRUST.

104 The FACILITY class profile,
IRR.PROGRAM.SIGNATURE.VERIFICATION, is
missing.

108 The APPLDATA information in the FACILITY class
profile, IRR.PROGRAM.SIGNATURE.VERIFICATION, is
missing or not correct.

Chapter 6. RACF 57

Table 25. VERFINAL-specific return and reason codes (continued)

SAF return code
RACF return
code

RACF reason
code Explanation

112 The signature-verification key ring is missing.

116 The program verification module (IRRPVERS) is not
loaded. See z/OS Security Server RACF Security
Administrator's Guide and z/OS Security Server RACF
System Programmer's Guide for information about
configuring and loading the verification module with
the IRRVERLD program.

120 An error occurred while performing a cryptographic
self-test on the IRRPVERS module during initialization.
Contact IBM support.

8 2nn xx Unexpected error from the cryptographic module. The
return code is 200+nn where nn identifies the function
being performed. The reason code is the return
code from the cryptographic module. This information
should be reported to IBM service.

Table 26. VERCLEAN-specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

8 8 100 Verification operation has not been initialized for the
specified program name.

8 12 xx Unexpected error returned from IEANTRT. RACF
reason code is the return code that is returned by
IEANTRT.

8 16 xx Unexpected error returned from IEANTDL. RACF
reason code is the return code that is returned by
IEANTDL.

Table 27. VERINTER-specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

0 0 0 Continue the load.

8 8 0 Fail the load.

Usage notes

Usage notes for program signing
1. This service tracks the resources that are used for signing by using a task-related name/token pair.

The 16–byte token name has the following format:

IRRPSIGNprogram-name

58 z/OS: Validated Boot for z/OS

Where program-name is one of the parameters that are provided by the caller. Therefore, for any
given series of SIGINIT, SIGUPDAT, SIGFINAL, and SIGCLEAN calls used to sign a single program
object, the program name value must be the same.

2. Calls to this service that use different program name values are considered independent operations.
3. For a given program name, SIGINIT must be called before calling any of SIGUPDAT, SIGFINAL, or

SIGCLEAN.
4. For a given program name, SIGINIT cannot be called a second time without terminating the first

SIGINIT with a call to SIGFINAL or SIGCLEAN.
5. For a given program name, it is the caller’s responsibility to call the SIGCLEAN function if signature

generation is not completed by calling SIGFINAL. All R_PgmSignVer functions perform this cleanup if
they return an error to the caller. The caller must call the cleanup function if it is terminating for its
own reason.

6. When Num_parms = 11 and Function_Attributes = X’40000000’, PGSN_SF_SIG_AREA@ must be
set to zeros on input. Otherwise, a function-specific parameter list error (8/104/yy) is returned. The
signature area that is allocated and returned to the caller in the PGSN_SF_SIG_AREA@ parameter by
SIGFINAL has the following format:

Table 28. PGSN_SF_SIG_AREA@ signature area format

Offset Length Description

0 4 Eye catcher, “PSSD”.

4 4 Length of entire area, including the eyecatcher.

8 1 Subpool used to obtain the area storage.

9 3 Reserved.

12 4 Length of z/OS signature information area.

16 * ZOSSignatureInfo structure to be included in the signed
program object. See the next usage note for the format.

7. The ZOSSignatureInfo structure, which is returned in the signature area, is the signature data that is
to be placed in the signed program object.

• When Num_parms = 10, it is DER encoded according to the following ASN.1 definition:

ZOSSignatureInfo ::= SEQUENCE {
 signDetails SignatureDetails
 certs SET OF Certificate -- In reverse hierarchy order, EE to root
 signature BIT STRING -- PKCS #1 format - Encrypted DigestInfo}

SignatureDetails ::= SEQUENCE { -- DER encoding included in data signed
 version INTEGER(0)
 signatureAlg AlgorithmIdentifier -- From PKCS #1
 signatureTime OCTET STRING(12) -- TIME DEC,ZONE=UTC,DATETYPE=YYYYMMDD -- format (EBCDIC)

}

• When Num_parms = 11 and Function_Attributes = X’80000000’, it is DER encoded according to the
following ASN.1 definition:

ZOSSignatureInfo ::= SEQUENCE { (contentInfo)

 OBJECT IDENTIFIER signedData (1 2 840 113549 1 7 2)
 [0] { (content)
 SEQUENCE { (SignedData)
 INTEGER 3 (CMSversion)
 SET { (DigestAlgorithmIdentifiers)
 SEQUENCE { (DigestAlgorithmIdentifier)
 OBJECT IDENTIFIER sha2-512 (2 16 840 1 101 3 4 2 3)
 }
 }
 SEQUENCE { (EncapsulatedContentInfo)
 OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)
 }

Chapter 6. RACF 59

 SET { (SignerInfos)
 SEQUENCE { (SignerInfo)
 INTEGER 3 (CMSversion)
 [0] { (SignerIdentifier)
 OCTET STRING (SubjectKeyIdentier)
 }

 SEQUENCE { (DigestAlgorithmIdentifier)
 OBJECT IDENTIFIER sha2-512 (2 16 840 1 101 3 4 2 3)
 }
 SEQUENCE { (SignatureAlgorithmIdentifier)
 OBJECT IDENTIFIER (1 2 840 10045 4 3 4)
 }
 OCTET STRING (SignatureValue)
 SEQUENCE {
 INTEGER R
 INTEGER S
 }
 } (end of SignerInfo SEQUENCE)
 } (end of SignerInfos SET)
 } (end of SignedData SEQUENCE)
 } (end of content)
} (end of contentInfo SEQUENCE)

• When Num_parms = 11 and Function_Attributes = X’40000000’, the structure is as follows:

ZOSSignatureInfo ::= SignatureValue,

 RValue CHAR(80),
 -- 80 bytes in hex: right justified R value of the signature padded with
zeros to the left
 SValue CHAR(80),
 -- 80 bytes in hex: right justified S value of the signature padded with
zeros to the left
 SigningHash CHAR(64),
 -- 64 bytes in hex, SHA512 hash of the to-be-signed object
 SigningKeyID CHAR(20),
 -- 20 bytes in hex, SHA1 hash of the signing key ID
 SigningCertID CHAR(32),
 -- 32 bytes in hex, SHA256 hash of the signing certificate fingerprint
 DigestAlg FIXED(8),
 -- integer represents the Digest Algorithm, 2 maps to SHA512
 SigningAlg FIXED(8)
 -- integer represents the Signing Algorithm, 2 maps to SHA512ECDSA

8. • When Num_parms = 10, the only supported algorithm for the signatureAlg field is
sha256WithRSAEncryption with NULL parameters.

• When Num_parms = 11, the only supported signing algorithm is SHA512ECDSA (OID
1.2.840.10045.4.3.4).

9. It is the caller's responsibility to free the signature area when it is no longer needed.
10. The supported message digest algorithm is :

• SHA256 when Num_parms = 10.
• SHA512 when Num_parms = 11.

11. The supported certificate key type is :

• RSA when Num_parms = 10. The maximum RSA key size is 4096 bits.
• NISTECC with a 521-bit key size when Num_parms = 11.

12. The supported certificate signature algorithms on the signing certificate chain are described as
follows:
When Num_parms = 10

• sha256RSA
• sha1RSA

When Num_parms = 11

• sha256RSA
• sha224RSA

60 z/OS: Validated Boot for z/OS

• sha384RSA
• sha512RSA
• sha256RSAPSS
• sha224RSAPSS
• sha384RSAPSS
• sha512RSAPSS
• sha256ECDSA
• sha224ECDSA
• sha384ECDSA
• sha512ECDSA

The supported certificate public key types and minimum key sizes on the signing certificate chain
are:

• RSA – 2048 bits
• NISTECC/BPECC – 224 bits

13. All numeric parameters are treated as unsigned.
14. All length parameters must be nonzero unless otherwise indicated.
15. On SIGINIT, if the key ring or token to use is not specified, the security manager determines the key

ring or token that is based on security settings. See the topics on program signing and verification
and Validated Boot for z/OS support in z/OS Security Server RACF Security Administrator's Guide for
information on these security settings and on how to populate the key ring or token. No more than
10 certificates can exist within the trust chain, starting with the code signer and ending with the
self-signed certificate authority certificate.

16. If no program data is ever passed in by the caller, a digital signature is generated solely for the
SignatureDetails structure documented. When Num_parms = 11, if no program data is passed in by
the caller, the SIGFINAL function fails with SAF return code 8, RACF return code 8, RACF reason code
16.

Usage notes for program verification
1. For unauthorized callers, this service tracks the resources used for verification in a ‘context’ using a

task related name/token pair. The 16–byte token name has the following format:

IRRPVERFprogram-name

Where program-name is one of the parameters provided by the caller. Consequently, for any given
series of VERINIT, VERUPDAT, VERFINAL, and VERCLEAN calls used to verify the signature of a single
program object, the program name must be the same.

2. Calls to this service using different program names are considered independent operations.
3. For a given program name, VERINIT must be called before calling any of VERUPDAT,

VERFINAL (with the exception documented in the descriptions of the PGSN_VF_CONTEXT@ and
PGSN_VF_PGM_NAME_LEN fields in the VERFINAL parameter list), or VERCLEAN.

4. For a given program name, VERINIT cannot be called a second time without terminating the first
VERINIT with a call to VERFINAL or VERCLEAN.

5. For a given program name, it is the caller’s responsibility to call the VERCLEAN function in the event
that signature generation will not be completed by calling VERFINAL. Note that all R_PgmSignVer
functions will perform this cleanup if they return an error to the caller. The caller only needs to call
the cleanup function if it is terminating for its own reason.

6. If auditing is required, it is performed in the VERFINAL (or VERINTER) call. Auditing is only performed
when the ICHSFENT is provided by an authorized caller, subject to the audit settings from the
directive within and the outcome of the VERFINAL service.

Chapter 6. RACF 61

7. Some signature generation and all verification functions allow, from a pointer in the function-specific
parameter list, the specification of an array of ranges of data to be hashed. This is optional. If
the address is 0, no data will be hashed. The ranges are defined using the structure mapped by
PGSN_DATA_RANGE in the IRRPCOMP mapping macro. This structure must exist in storage within
the primary address space. The structure consists of an ALET followed by a fullword specifying the
number of ranges which follow (if the number of ranges is 0, no data will be hashed). This is followed
by an array of pointer pairs. Each pointer is an 8-byte pointer. AMODE(31) callers must set the high
order fullword of the pointer fields to 0. The first pointer is the address of the first byte of the
range, and the second pointer is the address of the last byte of the range (they can be the same,
for a length of 1). The maximum number of ranges which can be specified per call is defined in the
PGSN_DATA_NUM_RANGES_MAX constant.

Field Attributes Description

PGSN_DATA_RANGE Structure Ranges of data to verify.

PGSN_DATA_ALET 4 byte numeric The ALET for the address space containing the
data.

PGSN_DATA_NUM_RANGES 4 byte numeric The number of data ranges in
the following array, not to exceed
PGSN_DATA_NUM_RANGES_MAX.

PGSN64_DATA_RANGE_LIST Array Repeating array of the following data items.

PGSN_DATA_START@ Address of Address of the first byte in the range.

PGSN_DATA_END@ Address of Address of the last byte in the range.

8. The default message digest algorithm is SHA256. This is the only supported message digest
algorithm.

9. The ZOSSignatureInfo structure is DER encoded. It has the following ASN.1 definition:

ZOSSignatureInfo ::= SEQUENCE {
 signDetails SignatureDetails
 certs SET OF Certificate -- In reverse hierarchy order, EE to root
 signature BIT STRING -- PKCS #1 format - Encrypted DigestInfo
}

SignatureDetails ::= SEQUENCE { -- DER encoding included in data signed
 version INTEGER(0)
 signatureAlg AlgorithmIdentifier -- From PKCS #1
 signatureTime OCTET STRING(12) -- TIME DEC,ZONE=UTC,DATETYPE=YYYYMMDD
 -- format (EBCDIC)
}

10. The only supported algorithm for the signatureAlg field is sha256WithRSAEncryption with NULL
parameters.

11. The only supported certificate key type is RSA. The maximum RSA key size is 4096 bits.
12. The supported certificate signature algorithms are:

• sha256WithRSAEncryption
• sha1WithRSAEncryption

13. All numeric parameters are treated as unsigned.
14. All length parameters must be non-zero unless otherwise indicated.
15. The program signature-verification key ring is specified using the APPLDATA field of FACILITY

class profile IRR.PROGRAM.SIGNATURE.VERIFICATION. See z/OS Security Server RACF Security
Administrator's Guide for more information about creating profiles.

16. If there is no ICHSFENT, and thus no directive, which is supplied by the caller, the verification occurs
on the signature, but there is no check for the root CA certificate being trusted, and no auditing
performed.

62 z/OS: Validated Boot for z/OS

Related services
None.

Chapter 6. RACF 63

64 z/OS: Validated Boot for z/OS

Chapter 7. Commands

Displaying system configuration information (M)
Use the DISPLAY M command to display the status of sides, processors, ICRFs, channel paths, devices,
storage-class memory (SCM) and central storage, or to compare the current hardware configuration to the
configuration in a CONFIGxx parmlib member.

The DISPLAY M command can accept the subchannel set number to qualify the input device number. The
output of message IEE097I includes the applicable subchannel set number.

When you specify a device number that might be mistaken for the device name, precede the device
number with a slash. The slash is optional with a 3-digit device number.

Syntax
D M

D M[=CHP[{(xx)|(xx-xx)|(list)}[,PATHINFO]]
 |=CONFIG[(xx)]
 |=CORE[(x)|(list)]
 |={CPUAD|CPU}[(x)|(list)]
 |=CU(xxxx)
 |={DEVICE|DEV}[([/]devnum)|([/]lowdevnum-[/]highdevnum)|(list)]
 [,{ZHYPERLINK|ZHL|READSEC}]
 |={DEVICE|DEV}([/]devnum,(chp))[,ROUTE={TODEV|FROMDEV|BOTH}[,HEALTH]]
 [,LINKINFO={FIRST|LAST|REFRESH|COMPARE}]
 |={DEVICE|DEV}(([/]devnum),chp)[,ROUTE={TODEV|FROMDEV|BOTH}[,HEALTH]]
 [,LINKINFO={FIRST|LAST|REFRESH|COMPARE}]
 |=HIGH
 |=HSA
 |=SCM(DETAIL)
 |=SIDE[(id)]
 |={STORAGE|STOR}[(ddddM-ddddM)|(list)|(E[=id])]
 |={STORAGE|STOR}[(ddddM-ddddM)|(list)]
 |=SWITCH(sssss [,pp[-pp] [,pp[-pp]]...])
 |=(parm[,parm]...)

 [,L={a|name|name-a}]

Parameters
M

The system is to display information about system configuration. When you enter DISPLAY M with no
operands, the system displays the starting address and length of each portion of the hardware system
area (HSA). The system also displays the status of all processors, ICRFs, central storage, channel
paths, storage-class memory (SCM) and devices, depending on the type of processor or processor
complex.

If the processor complex is partitioned, the system does not provide information about resources that
are not part of the configuration on which you issue the command. Message IEE174I gives you the
status of resources on the side from which you issue the command and tells you that information
about the other side is unavailable. If you are running your processor complex in single-image mode
with all resources in one side offline, message IEE174I identifies the other side as being offline
but gives you the information about those resources. For example, to partition a processor complex,
you configure offline the resources on one side. To verify that those resources are offline, issue the
DISPLAY M=SIDE command. The display lists the side as offline and gives the status of the resources.

© Copyright IBM Corp. 2023 65

CHP
The system is to display the online and offline status of channel paths. If you do not specify any
channel path, the system displays the status of all channel paths, as well as a status of either
“managed and online” or “managed and offline” as part of the support of dynamic channel path
management. For a description of the display format, see message IEE174I.
(xx)

A single channel path identified by xx. The channel path identifier can have a value from 0 to
FF.

(xx-xx)
A range of channel path identifiers. The starting and ending channel path identifiers can have a
value from 0 to FF.

(list)
One or more single channel path identifiers, or a combination of single channel path identifiers
and ranges of channel path identifiers, each separated by a comma.
[,PATHINFO]

Display information for the paths sharing the specified channel path identifiers. This
information includes, for example, the destination link address, link speed, and Fibre
Channel Endpoint Security status.

CONFIG[(xx)]
The system is to display the differences between the current configuration and the configuration
described in the CONFIGxx parmlib member. If you omit xx, the system assumes that you mean
CONFIG00.

For a description of the display format, see message IEE097I.

You can also start this function from the HCD dialog. For details refer to the "Process Display
M=CONFIG(xx) Command" in z/OS HCD User's Guide.

CORE
The system is to display the online or offline status of one or more cores as well as the
HiperDispatch setting and multithreading (MT) mode. If you do not specify any core identifiers,
the system displays the online or offline status of all cores.

For a description of the display format, see message IEE174I.

(x)
A single core identified by a core identifier in hexadecimal format.

(list)
One or more core identifiers, each separated by a comma.

Note: When you issue the DISPLAY M=CORE command while a zIIP boost is active, any zIIPs
added due to the boost processing are displayed as "B" instead of "I". The key at the end of the
IEE174I display contains B BOOST (TRANSIENT) zIIP.

Note: When you issue the DISPLAY M=CORE command from a PR/SM partition, the system
displays the status for the logical cores and ICRFs defined to the partition.

CPUAD or CPU
The system is to display the online or offline status of one or more processors and any ICRFs
attached to those processors. See message IEE174I.

If you do not specify any processor identifiers, the system displays the online or offline status of
all processors and any ICRFs attached to them. Whether you specify a processor identifier or not,
the system displays “N” when a processor is neither online or offline, but is recognized by the
machine.

Note: When you issue the DISPLAY M=CPU command while a zIIP boost is active, any zIIPs added
due to the boost processing are displayed as "B" instead of "I". The key at the end of the IEE174I
display contains B BOOST (TRANSIENT) zIIP.

66 z/OS: Validated Boot for z/OS

Note: When you issue the DISPLAY M=CPU command from a PR/SM partition, the system displays
the status for the logical processors, and ICRFs defined to the partition.

(x)
A single processor identified by processor identifier in hexadecimal format.

(list)
One or more processor identifiers, each separated by a comma.

Note: When you issue the DISPLAY M=CPU command from a PR/SM partition, the system displays
the status for the logical CPUs, and ICRFs defined to the partition.

Note: When you issue the DISPLAY M=CPU command from a system where PROCVIEW CORE is
in effect, the command is rejected. With LOADxx PROCVIEW CORE,CPU_OK, CPU is accepted and
treated as an alias for CORE.

CU
The system is to display the information for a specific control unit. For a description of the display
format, see message IEE174I.
(xxxx)

The control unit number.

Note: The D M=CU command does not support displaying information for CTC control units.

DEVICE or DEV
The system is to display the number of online channel paths to devices (including special devices)
or a single channel path to a single device.

For a description of the display format, see message IEE583I.

([/]devnum)
A single device number.

([/]lowdevnum-[/]highdevnum)
The lower device number lowdevnum and the upper device number highdevnum of a range of
devices.

([/]devnum,(chp))
A single device number and single channel path identifier.

(([/]devnum),chp)
A single device number and single channel path identifier.

ROUTE
The ROUTE parameter displays the route through the fabric between the channel and the
device.

Specify one of the following keywords on the ROUTE parameter:

TODEV
Displays the route through the fabric, starting with the channel and going to the device.

FROMDEV
Displays displays the route through the fabric, starting with the device and going to the
channel.

BOTH
Displays the route through the fabric in both directions.

Routing and health information will only be determined and displayed when the channel is
connected to a switch and the control unit definition for the channel path is defined in the I/O
configuration with a two-byte link address.

For a description of the display format, see message IEE583I in z/OS MVS System Messages,
Vol 7 (IEB-IEE).

Chapter 7. Commands 67

HEALTH
Displays the health information, which includes the utilization, average delay, and error
counts, for the fabric, switch, and port.

LINKINFO
The LINKINFO parameter displays link diagnostic information for a device and CHPID. Link
diagnostic information consists of the optical transceiver values, error counters, and buffer
credits for each port from the channel to the control unit, except inter-switch link (ISL) ports.

• For switched point-to-point configurations, information for the channel port, entry switch
port, exit switch port, and control unit port is displayed.

• For point-to-point configurations, information for the channel port and control unit port is
displayed.

The LINKINFO parameter may only be specified when a path is specified on the D M=DEV
command.

Specify one of the following keywords on the LINKINFO parameter:
FIRST

Displays the link diagnostic information that was obtained during IPL or when the path was
varied online for the first time after IPL.

LAST
Displays the link diagnostic information that was last retrieved by the system. The
system retrieves new information for a path every 24 hours or when you specify
LINKINFO=REFRESH.

REFRESH
Requests that the system obtain new link diagnostic information for the physical path
and then displays that information. This replaces the prior information; a subsequent
LINKINFO=LAST request will display this new information.

Notes:

1. A REFRESH request does not cause the entry switch port, exit switch port, and control
unit port to retrieve new optical transceiver information; it simply causes the last
retrieved values to be returned to the channel subsystem. The frequency at which
a port retrieves its own optical transceiver information is manufacturer- and model-
specific.

2. The system rejects a REFRESH request if the channel specified in the command is
already processing the maximum number of concurrent requests. These requests could
be from this system or from other systems running on the same CPC. The allowed
maximum number of concurrent requests for a channel is model-dependent.

The system issues the IEE584I message in response to the FIRST, LAST, and REFRESH
keywords.

COMPARE
Displays a comparison of the first and last set of link diagnostic information that was
retrieved by the system. The system issues the IEE586I message in response to the
COMPARE keyword.

ZHYPERLINK or ZHL
The ZHYPERLINK parameter is used to display the zHyperLink capabilities of the device. If
zHyperLink capability or zHyperLink reads or writes are disabled for the device, the list of
reasons why the function is disabled is displayed. The ZHYPERLINK keyword is ignored if it is
specified for a parallel access volume (PAV) alias device.

READSEC
The READSEC parameter is used to display the consistent read from secondary capability of
the device. If consistent read from secondary is disabled for the device, the list of reasons why
the function is disabled is displayed. The READSEC keyword is ignored if it is specified for a
parallel access volume (PAV) alias device.

68 z/OS: Validated Boot for z/OS

Device numbers and ranges can be specified in any combination.

A device number consists of 3, 4, or 5 hexadecimal digits, optionally preceded by a slash (/).
A channel path identifier can have a value from 0 to FF. In the 5-digit format, sdddd, s is the
subchannel set identifier and dddd is the device number.

If a range of device numbers is found and one of the two numbers is a 5-digit number, the other
number in the range must also be a 5-digit number.

HIGH
The system is to display the highest possible central storage addresses. Each address indicates
the amount of storage available at system initialization. For a description of the display format, see
message IEE174I.

HSA
The system is to display the starting address and length of each portion of the hardware system
area (HSA). For a description of the display format, see message IEE174I.

SCM[(DETAIL)]
Displays the online or offline status for all installed storage-class memory (SCM) increments, and
usage information. Information about reconfigurability of online SCM is also displayed. If DETAIL
is specified, details for each online increment are displayed; otherwise, summary information is
displayed for ranges of SCM.

For a complete description of the display format of DISPLAY M=SCM, refer to message IEE174I.

SIDE[(id)]
The system is to display the resources installed in side (physical partition) id, whether the
resources are online or offline, and whether the side is online, offline, or unavailable. If the
processor complex is partitioned and the specified side is part of another configuration, no
information is provided. If the processor complex is running in single-image mode and you do
not specify an id, the system displays both sides. If the command is issued from MVS running in a
partition, no information is provided.

For a complete description of the display format of DISPLAY M=SIDE, see message IEE174I.

STORAGE or STOR
The system is to display the status of central storage. The display includes storage offline, storage
waiting to go offline, and reconfigurable storage sections. For storage waiting to go offline, the
system displays:

• The address space identifier (ASID)
• The job name of the current user of the storage
• The amount of unassigned storage in offline storage elements
• The amount of storage that belongs to another configuration

STORAGE also indicates if a given range of central storage contains data that is shared through the
use of the IARVSERV macro.

In this display, storage offline does not include the hardware save area (HSA). To find the location
and length of the HSA, enter DISPLAY M=HSA.

If you do not specify (dddddX-dddddX), (list), or (E[=id]), the system displays the status of all
central storage. For a description of the display format, see message IEE174I.

(dddddX-dddddX)
The starting and ending addresses of a range in central storage for which you want the status
display. Specify up to five decimal digits followed by a multiplier (M-megabytes, G-gigabytes,
T-terabytes, P-petabytes) for each address. The starting and ending addresses (dddddX) must
each be on a valid storage boundary and cannot exceed 16383P. The starting and ending
addresses must not be the same.

Instead of specifying the range using decimal numbers, you can specify it in hexadecimal, with
or without a multiplier, in the format X'xxxxxx'-X'xxxxxx'. For example:

Chapter 7. Commands 69

• X'123456789A00000'-X'123456789B00000'
• X'123'M-X'124'M

You can use underscores in any hexadecimal specification for better clarity. Underscores in the
specification are ignored during processing.

(list)
One or more address ranges (in decimal), each separated by a comma.

(E[=id])
The system is to display the status of the requested storage element. The display includes
the amount of storage (in megabytes) the system owns in each online storage element, the
amount of storage available to be configured online, whether the storage element is online
or offline. If you omit the id, the system displays this information for all installed storage
elements.

Note: If the processor complex is partitioned and the specified storage element is part of
another configuration, no information is provided.

SWITCH(ssss [,pp[-pp] [,pp[-pp]]…])
The system is to display the status of a specific switch, switch port, or list of switch ports.

For a description of the display format, see message IEE174I.

ssss
The device number of the switch device.

[,pp[-pp] [,pp[-pp]]…]
The port address or port address list.

(parm[,parm]…)
The system is to display the status of each resource you specify as parm. The list of parms
you specify within the parentheses may contain any combination of CHP, CPU, DEV, HIGH, HSA,
STOR(E[=id]), and STOR. You must separate the resources in the list with commas and you must
enclose the list in parentheses. Do not use blanks within the parentheses and do not specify
CONFIG in the list.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to
appear.

If you omit this operand, the display is presented in the first available display area or the message
area of the console through which you enter the command.

Examples
Example 1:

To display the online or offline status of all devices on channel path 01, enter:

D M=CHP(01)

Example 2:

To display the following information:

• The online or offline status of all processors
• The number of online channel paths to each device
• The highest central storage address available
• The status of central storage

enter the following command:

D M=(CPU,DEV,HIGH,STOR)

70 z/OS: Validated Boot for z/OS

Example 3:

To display the number of megabytes of storage the system owns in storage element 0 and the status of
the storage element, enter:

D M=STOR(E=0)

Example 4:

To display the number of megabytes of storage the system owns in each storage element and the status
of each element, enter:

D M=STOR(E)

Example 5:

To display the status of all processors, the status for channel paths 1, 3, 4, 5, and the high storage
addresses for central storage, enter:

D M=CPU
D M=CHP(01,03-05)
D M=HIGH
 or
D M=(CPU,CHP(01,03-05),HIGH)

Example 6:

The following example displays the status of cores. In this example, the configuration supports MT
Mode=2 (MT=2) where standard CP cores 0 and 1 are exploiting MT Mode=1 (CP=1) and zIIP cores 2 and
3 are exploiting MT Mode=2 (zIIP=2).

D M=CORE
CORE STATUS: HD=Y MT=2 MODE: CP=1 zIIP=2
ID ST ID RANGE VP ISCM CPU THREAD STATUS
0000 + 0000-0001 H FC00 +N
0001 + 0002-0003 H FC00 +N
0002 +I 0004-0005 H 0200 ++
0003 +I 0006-0007 H 0200 ++

It is possible for a core status to be mixed (/). A core status of mixed means that a core's CPU thread
status is unexpected given the MT Mode for cores of that type. In the following example, the status of
core 3 is mixed, because CPU 6 is online, CPU 7 is offline, and zIIPs are exploiting MT Mode=2. With zIIPs
exploiting MT Mode=2, the system expects core 3 to have both threads (CPUs 6 and 7) online. If a core
appears with a mixed mode, it is generally due to an internal system error and should be configured to the
desired online or offline state.

D M=CORE
CORE STATUS: HD=Y MT=2 MODE: CP=1 zIIP=2
ID ST ID RANGE VP ISCM CPU THREAD STATUS
0000 + 0000-0001 H FC00 +N
0001 + 0002-0003 H FC00 +N
0002 +I 0004-0005 H 0200 ++
0003 /I 0006-0007 H 0200 +-

Example 7:

The following example displays the channel path information for the control units connected to channel
path identifier (CHPID) 5A.

D M=CHP(5A),PATHINFO
IEE588I 07.58.47 DISPLAY M 251
CHPID 5A: TYPE=1B, DESC=FICON SWITCHED, ONLINE
Path Information for Channel Path 5A
Connection Security Capability: Encryption
Dest Link-Speed Conn
Link Intf Node Descriptor Curr Cap Sec
1211 0131 002107.996.IBM.75.0000000KMP31 32G 32G Encr
1111 0030 002107.996.IBM.75.0000000KMP31 16G 16G Auth

Chapter 7. Commands 71

VERBEXIT IEAVBIPC subcommand — Format validated boot
information

Specify the IEAVBIPC verb name on the VERBEXIT subcommand to format the Validated Boot for z/OS
report. The report provides the following information after a validated boot IPL:

• Audit records that were created
• Certificate extracts that are being used
• Certificate extracts that were found not to be valid

For an enforce-mode IPL, no more than 1 audit record would be produced because any relevant issue
would cause the system to enter a wait state right after building the audit record.

The messages within the IEAVBIPC report are the same as those used in the IEAVBPRT report. For
details, see "IEAVBPRT: Validated boot print utility" in z/OS MVS Diagnosis: Tools and Service Aids.

Syntax

VERBEXIT IEAVBIPC ['parameter']

Parameters
The parameter can be one of the following values:

SUMMARY
Displays a summary report. This is the default.

DETAIL
Displays a detailed report.

Examples
See the examples of the IEAVBPRT output in "IEAVBPRT: Validated boot print utility" in z/OS MVS
Diagnosis: Tools and Service Aids.

RACDCERT ADDTOKEN (Add token)

Purpose
Use the RACDCERT ADDTOKEN command to create a new z/OS PKCS #11 token.

Issuing options
The following table identifies the eligible options for issuing the RACDCERT ADDTOKEN command:

As a RACF TSO
command?

As a
RACF operator
command?

With command
direction?

With automatic
command
direction?

From the RACF
parameter library?

Yes No No. (See rules.) No. (See rules.) No

Rules:

• The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
• The updates made to the RACF database by RACDCERT are eligible for propagation with

automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-
node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote
node to which the update is to be propagated.

72 z/OS: Validated Boot for z/OS

Authorization required

To issue the RACDCERT ADDTOKEN command, you must have sufficient authority to the appropriate
resource in the CRYPTOZ class. (No authority to resources in the FACILITY class is required.) If you do
not have authority to create the specified token as determined by ICSF, the command stops and an error
message is displayed.

For example, if you want userid JOHN to create a token with the name MYTOKEN and manage the objects
in this token, you can enter commands such as the following:

1. RDEFINE CRYPTOZ SO.MYTOKEN UACC(NONE)
2. PERMIT SO.MYTOKEN CLASS(CRYPTOZ) ID(JOHN) ACCESS(CONTROL)
3. RDEFINE CRYPTOZ USER.MYTOKEN UACC(NONE)
4. PERMIT USER.MYTOKEN CLASS(CRYPTOZ) ID(John) ACCESS(CONTROL)

When your installation controls access to ICSF services and the CSFSERV class is active, you must also
have READ access to the CSF1TRC resource in the CSFSERV class.

For authorization details about the CRYPTOZ and CSFSERV classes, see z/OS Cryptographic Services ICSF
Administrator's Guide.

Related commands
• To delete a token, see RACDCERT DELTOKEN.
• To list a token, see RACDCERT LISTTOKEN.

)X SYNTAX
RACDCERT ADDTOKEN

Syntax
The complete syntax of the RACDCERT ADDTOKEN command is:

RACDCERT ADDTOKEN(token-name)

Note: The ID(certificate-owner) | SITE | CERTAUTH parameter is ignored for this RACDCERT
function.

If you specify more than one RACDCERT function, only the last specified function is processed.
Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, see z/OS Security Server RACF
Command Language Reference.

)O OPERANDS

Parameters
))ADDTOKEN(token-name)

The token-name value is the name of the token being created. This token must not already exist. For
token name rules, see the Tokens subsection in the Overview of z/OS support for PKCS #11 in z/OS
Cryptographic Services ICSF Writing PKCS #11 Applications.

Examples

Chapter 7. Commands 73

Example Activity label Activity description

1 Operation User RACFADM wants to create tokens for two servers that have existing
RACF certificates.

Known User RACFADM has SPECIAL authority. The RACF certificate for each server
already exists.

Commands
RACDCERT ADDTOKEN(ftpsrv.ftp.server.pkcs11.token)
RACDCERT ADDTOKEN(websrv.web.server.pkcs11.token)

Output None.

RACDCERT GENCERT (Generate certificate)

Purpose
Use the RACDCERT GENCERT command to create a digital certificate and potentially a public/private key
pair.

Processing details
When you specify an optional request data set containing the PKCS #10 request data, and extensions
are present in the request data (not overridden by other keywords that are specified with the RACDCERT
command), they are copied to the certificate being created. These extensions and the logic involved with
using them are described in the following tables:

• For subjectKeyIdentifier, see Table 29 on page 74.
• For authorityKeyIdentifier, see Table 30 on page 74.
• For keyUsage, see Table 31 on page 75.
• For basicConstraints, see Table 32 on page 75.
• For subjectAltName, see Table 33 on page 75.
• For issuerAltName, see Table 34 on page 76.

Table 29. Logic for the subjectKeyIdentifier extension for GENCERT

When the request data set is specified When the request data set is not specified

The extension is encoded using the
subjectKeyIdentifier value from the request data
set if present, if not present the extension
is encoded by generating the keyIdentifier
according to the Public Key Infrastructure
Standards.

The extension is encoded by generating
the keyIdentifier according to Public Key
Infrastructure Standards.

Table 30. Logic for the authorityKeyIdentifier extension for GENCERT

When SIGNWITH is specified When SIGNWITH is not specified

The extension is encoded using the
subjectKeyIdentifier value of the signing certificate
if present, if not present the extension is not
created.

The authorityKeyIdentifier extension is not
created.

74 z/OS: Validated Boot for z/OS

Table 31. Logic for the keyUsage extension for GENCERT

Situation keyUsage is present in the request
data set

keyUsage is not present in the
request data set

When KEYUSAGE is
specified and the target
ID is CERTAUTH

If the certSign bit is turned off in the
request data set, the request fails.
Otherwise the extension is encoded
as requested by the RACDCERT
invoker. Additionally, the certSign and
cRLSign bits are turned on if not
already specified by the CERTSIGN
keyword.

The extension is encoded as
requested by the RACDCERT invoker.
Additionally, the certSign and cRLSign
bits are turned on.

When KEYUSAGE is
specified and the target
ID is SITE or ID(cert-
owner)

The extension is encoded as
requested by the RACDCERT invoker.

The extension is encoded as
requested by the RACDCERT invoker.

When KEYUSAGE is not
specified and the target
ID is CERTAUTH

If the certSign bit is turned off
this command fails, otherwise the
extension is encoded as specified in
the request data set.

The extension is encoded by turning
the certSign and cRLSign bits on.

When KEYUSAGE is not
specified and the target
ID is SITE or ID(cert-
owner)

The extension is encoded using the
request data set values.

The keyUsage extension is not
created.

Table 32. Logic for the basicConstraints extension for GENCERT

Situation basicConstraints is present in the
request data set

basicConstraints is not present in
the request data set

When the target ID is
CERTAUTH

If the cA boolean value is false,
the command fails. Otherwise the
extension is encoded turning the cA
bit on. The pathLength value is not
included.

The extension is encoded turning the
cA bit on. The pathLength value is not
included.

When the target ID is
SITE or ID(cert-owner)

The extension is encoded using the
request data set values, including the
pathLength value.

The basicConstraints extension is not
created.

Table 33. Logic for the subjectAltName extension for GENCERT

Situation subjectAltName is present in the
request data set

subjectAltName is not present in
the request data set

When ALTNAME is
specified

The extension is encoded as
requested by the RACDCERT invoker.

The extension is encoded as
requested by the RACDCERT invoker.

When ALTNAME is not
specified

The extension is encoded using the
request data set values.

The subjectAltName extension is not
created.

Chapter 7. Commands 75

Table 34. Logic for the issuerAltName extension for GENCERT

When SIGNWITH is specified When SIGNWITH is not specified

The extension is encoded using the
subjectAltName value of the signing certificate
if the extension is present. Otherwise, the
issuerAltName extension is not created.

The IssuerAltName extension is not created.

Issuing options
The following table identifies the eligible options for issuing the RACDCERT GENCERT command:

As a RACF TSO
command?

As a
RACF operator
command?

With command
direction?

With automatic
command
direction?

From the RACF
parameter library?

Yes No No. (See rules.) No. (See rules.) No

Rules: The following rules apply when issuing this command.

• The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
• The updates made to the RACF database by RACDCERT are eligible for propagation with

automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-
node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote
node to which the update is to be propagated.

Authorization required

To issue the RACDCERT GENCERT command, you must have the following authorizations:

• The SPECIAL attribute, or
• Sufficient authority to the IRR.DIGTCERT.ADD and IRR.DIGTCERT.GENCERT resource in the FACILITY

class, based on the certificate owner and the SIGNWITH value, as shown in Table 35 on page 77, or
• Sufficient authority to the appropriate resources in the RDATALIB class, as shown in Table 36 on

page 78, if Granular Authority Checking has been enabled by defining the IRR.RACDCERT.GRANULAR
resource in the RDATALIB class.

When you specify the name of the request data set that contains the PKCS #10 request data, you must
also have READ access to the specified data set.

When your installation controls access to ICSF services and the CSFSERV, CSFKEYS and CRYPTOZ classes
are active, additional access to CSFSERV, CSFKEYS, and CRYPTOZ resources might be required as follows:

• When you specify RSA(PKDS), you must have READ authority to the CSFDSG, CSFDSV, CSFIQF,
CSFOWH, CSFPKG, CSFPKRC, and CSFPKX resources.

• When you specify RSA(TOKEN(token-name)), you must have READ authority to the CSF1GAV, CSF1GKP,
CSF1PKV, CSF1TRC, CSF1TRD, CSFDSG, CSFOWH, and CSFIQF resources.

• When you specify RSA (or omit key type) and omit PKDS and TOKEN, you must have READ authority to
the CSFIQF resource.

• When you specify NISTECC or BPECC, you must have the following access authorities:

– When you specify PKDS, you must have:

- READ access to the CSFDSG, CSFDSV, CSFOWH, CSFPKG, CSFPKRC, and CSFPKX resources in the
CSFSERV class.

- READ access to key label resource in the CSFKEYS class. Note that if a system-generated key label
is used, it starts with IRR.DIGTCERT.<cert owner>).

76 z/OS: Validated Boot for z/OS

Example: If you want user ID JOHN to be able to create a certificate with a key stored in PKDS with a
system-generated key label, you can enter commands such as the following:

1. RDEFINE CSFSERV CSF* UACC(NONE)
2. PERMIT CSF* CLASS(CSFSERV) ID(John) ACCESS(READ)
3. RDEFINE CSFKEYS IRR.DIGTCERT.JOHN.* UACC(NONE)
4. PERMIT IRR.DIGTCERT.JOHN.* CLASS(CSFKEYS) ID(JOHN) ACCESS(READ)

– When you specify TOKEN, you must have:

- READ access to the CSF1GAV, CSF1GKP, CSF1PKV, CSF1TRC, CSF1TRD, CSFDSG, and CSFOWH
resources in the CSFSERV class.

- UPDATE or CONTROL access to the token resource with format USER.<token name> in the
CRYPTOZ class

Example: If you want user ID JOHN to be able to create a certificate with a key that is stored in
an existing token called MYTOKEN in TKDS, you can create profiles in CSFSERV and CRYPTOZ, as
follows:

1. RDEFINE CSFSERV CSF* UACC(NONE)
2. PERMIT CSF* CLASS(CSFSERV) ID(John) ACCESS(READ)
3. RDEFINE CRYPTOZ USER.MYTOKEN UACC(NONE)
4. PERMIT USER.MYTOKEN CLASS(CRYPTOZ) ID(John) ACCESS(CONTROL)

– When you omit PKDS and TOKEN, you must have READ access to the CSF1GAV, CSF1GKP, CSF1PKS,
CSF1PKV, CSF1TRC, CSF1TRD, and CSFOWH resources.

• When you specify ICSF, you must have READ authority to the CSFIQF, CSFPKI, and CSFPKRC resources.
• When you specify FROMICSF, you must have READ authority to the CSFIQF and CSFPKX resources.
• When you specify SIGNWITH, you must have the following access authorities:

– If the private key of the signing certificate is an ECC key that is stored in the RACF database, you must
have READ authority to the CSF1PKS, CSF1PKV, CSF1TRC, CSF1TRD, and CSFOWH resources.

– If the private key of the signing certificate is stored in the ICSF PKA key data set (PKDS) or in the ICSF
Token Data Set (TKDS), you require additional access based on the key type, as follows:

- When the key is an RSA type, you must have READ authority to the CSFDSG resource.
- When the key is an ECC type, you must have READ authority to the CSF1PKV, CSF1TRC, CSF1TRD,

CSFDSG, and CSFOWH resources.

For details about the CSFSERV resources, see z/OS Cryptographic Services ICSF Administrator's Guide.

Important: The GENCERT function allows a user to generate and sign a certificate. Carefully consider
which users are authorized to use GENCERT, which user ID is associated with the generated certificate,
and which certificate is used to sign the generated certificate.

Table 35. Authority required for the RACDCERT GENCERT function under the FACILITY class

SIGNWITH Your own certificate Another user's
certificate

SITE or CERTAUTH
certificate

SIGNWITH your own
certificate

READ authority to
IRR.DIGTCERT. ADD and
READ authority to
IRR.DIGTCERT. GENCERT

UPDATE authority to
IRR.DIGTCERT. ADD and
READ authority to
IRR.DIGTCERT. GENCERT

CONTROL authority to
IRR.DIGTCERT. ADD and
READ authority to
IRR.DIGTCERT. GENCERT

SIGNWITH a SITE or
CERTAUTH certificate

READ authority to
IRR.DIGTCERT. ADD and
CONTROL authority to
IRR.DIGTCERT. GENCERT

UPDATE authority to
IRR.DIGTCERT. ADD and
CONTROL authority to
IRR.DIGTCERT. GENCERT

CONTROL authority to
IRR.DIGTCERT. ADD and
CONTROL authority to
IRR.DIGTCERT. GENCERT

Chapter 7. Commands 77

Table 35. Authority required for the RACDCERT GENCERT function under the FACILITY class (continued)

SIGNWITH Your own certificate Another user's
certificate

SITE or CERTAUTH
certificate

SIGNWITH not specified READ authority to
IRR.DIGTCERT. ADD and
READ authority to
IRR.DIGTCERT. GENCERT

UPDATE authority to
IRR.DIGTCERT. ADD and
UPDATE authority to
IRR.DIGTCERT. GENCERT

CONTROL authority to
IRR.DIGTCERT. ADD and
CONTROL authority to
IRR.DIGTCERT. GENCERT

Table 36. Authority required for the RACDCERT GENCERT function under the RDATALIB class when
IRR.RACDCERT.GRANULAR is defined

READ access to the resource based on cert owner and cert label * Purpose

IRR.DIGTCERT.<cert owner>.<cert label>.UPD.GENCERT Create a certificate under <cert
owner> with specified <cert
label>

Create a
certificate
under
<cert owner>
with specified
<cert label>

IRR.DIGTCERT.<cert owner>.LABEL*.UPD.GENCERT Create a certificate under <cert
owner> with no label specified.

Create a
certificate
under
<cert owner>
with no label
specified.

IRR.DIGTCERT.<cert owner>.<cert label>.UPD.GENCERT
and
IRR.DIGTCERT.<signer ID>.<signer cert label> .UPD.GENCERT

Create a certificate under <cert
owner> with specified <cert
label> signed by <signer cert
label> owned by <signer ID>

Create a
certificate
under
<cert owner>
 with specified
<cert label>
 signed by
<signer cert label>
owned by
<signer ID>

* 'cert owner' is the RACF user ID, or CERTIFAUTH (for CERTAUTH), or SITECERTIF (for SITE); 'signer ID'
is CERTIFAUTH or SITECERTIF.

Authority processing details under the Facility class: RACF performs two checks that determine the
authority that is required for the GENCERT command:

1. How the certificate is being signed, specified with the SIGNWITH keyword.

78 z/OS: Validated Boot for z/OS

Users with SPECIAL authority can use the SIGNWITH keyword with any value. Users without SPECIAL
authority must have authority to the IRR.DIGTCERT.GENCERT resource in the FACILITY class. If
SIGNWITH is specified without the CERTAUTH or SITE keyword, the certificate is signed with the
certificate that is identified with the LABEL keyword for the user who is issuing the RACDCERT
command. This requires READ access to the resource IRR.DIGTCERT.GENCERT in the FACILITY class.
If either SIGNWITH(CERTAUTH...) or SIGNWITH(SITE) is specified, CONTROL authority is required to
the resource IRR.DIGTCERT.GENCERT in the FACILITY class.

Not specifying SIGNWITH indicates that the certificate is to be self-signed. The signing key is owned
by the certificate itself. Thus the authority that is needed for signing is determined by the owner of the
generated certificate.

2. What type of certificate is being generated, which is specified with the ID(), SITE or CERTAUTH
keywords.

Users with SPECIAL authority can generate a digital certificate for any RACF-defined user or for
any certificate-authority or site certificate. Users without SPECIAL authority can generate certificate
authority or site certificates if they have CONTROL authority to the resource IRR.DIGTCERT.ADD in
the FACILITY class. Users without SPECIAL authority can generate certificates for other users if they
have UPDATE authority to the resource IRR.DIGTCERT.ADD in the FACILITY class. Users without
SPECIAL authority can generate certificates for themselves if they have READ authority to the resource
IRR.DIGTCERT.ADD in the FACILITY class.

Activating your changes
If the DIGTCERT class is RACLISTed, refresh the class to activate your changes.

Example:

SETROPTS RACLIST(DIGTCERT) REFRESH

Syntax
The complete syntax of the RACDCERT GENCERT command is:

Chapter 7. Commands 79

 RACDCERT GENCERT [(request-data-set-name)]

 [ID(certificate-owner) | SITE | CERTAUTH]
 [SUBJECTSDN(
 [CN('common-name')]
 [T('title')]
 [OU('organizational-unit-name1' [, 'organizational-unit-name2', ...])]

 [O('organization-name')]
 [L('locality')]
 [SP('state-or-province')]
 [C('country')]
)]
 [SIZE(key-size)]
 [NOTBEFORE([DATE(yyyy-mm-dd)] [TIME(hh:mm:ss)])]
 [NOTAFTER([DATE(yyyy-mm-dd)] [TIME(hh:mm:ss)])]
 [WITHLABEL('label-name')]
 [SIGNWITH([CERTAUTH | SITE] LABEL('label-name'))]
 [{ RSA [(PKDS [(pkds-label | *)] | TOKEN(token-name))]
 | NISTECC [(PKDS [(pkds-label | *)] | TOKEN(token-name))]
 | BPECC [(PKDS [(pkds-label | *)] | TOKEN(token-name))]
 | DSA
 | FROMICSF(pkds-label) }
]
 [SIGATTR [(RSAPSS)]]
 [KEYUSAGE(
 [CERTSIGN]
 [DATAENCRYPT]
 [DOCSIGN]
 [HANDSHAKE]
 [KEYAGREE]
)]
 [ALTNAME(
 [IP(numeric-IP-address)]
 [DOMAIN('internet-domain-name')]
 [EMAIL('email-address')]
 [URI('universal-resource-identifier')]
)
]

If you specify more than one RACDCERT function, only the last specified function is processed.
Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

)O OPERANDS

Parameters
))GENCERT
GENCERT(request-data-set-name)

Request-data-set-name is the name of an optional data set that contains the PKCS #10 certificate
request data. The request data contains the user's generated public key and X.509 distinguished
name. The request data must be signed, DER-encoded, and then Base64 encoded according to the
PKCS #10 standard.

80 z/OS: Validated Boot for z/OS

The subkeywords of the GENCERT function specify the information that is to be contained within the
certificate that is being created.

Request-data-set-name has characteristics (for example, RECFM) identical to the data set that can be
specified with the ADD and CHECKCERT keywords. If request-data-set-name is specified, SIGNWITH
must also be specified because the request-data-set-name data set does not contain a private key. If
SIGNWITH is not specified, an informational message is issued. Note that the issuer of the RACDCERT
command must have READ access to the request-data-set-name data set to prevent an authorization
abend from occurring when the data set is read.

When GENCERT is issued with a request data set: The following conditions apply:

• No key-pair is generated. This is because the request data set contains the user's public key.
• The public key from the request data set is used in the generated certificate.
• If FROMICSF is specified, the GENCERT command fails.
• If the RSA, NISTECC, BPECC, or DSA keyword is specified, it is ignored.
• If the RSA(PKDS), NISTECC(PKDS), or BPECC(PKDS) keyword is specified, it is ignored unless one of

the following conditions is true:

– The certificate profile (containing the private key of the corresponding public key) in the request
data set exists and the private key is not yet stored in the PKDS. When this occurs, RACF stores
the private key in the ICSF PKDS.

– There is no corresponding private key profile and you specified a PKDS label value. When this
occurs, RACF stores the public key in the ICSF PKDS.

))ID(certificate-owner) | SITE | CERTAUTH
Specifies that the new certificate that is associated is either a user certificate with the specified user
ID, a site certificate, or a certificate-authority certificate. If you do not specify ID, SITE, or CERTAUTH,
the default is ID, and certificate-owner defaults to the user ID of the command issuer. If more than
one keyword is specified, the last specified keyword is processed, and the others are ignored by TSO
command parse processing.

))SUBJECTSDN
Specifies the subject's X.509 distinguished name, which consists of the following components:

• CommonName - specified with the CN subkeyword.
• Title—specified with the T subkeyword.
• Organizational Unit—specified with the OU subkeyword. Multiple values can be specified for the

organizational unit.
• Organization—specified with the O subkeyword.
• Locality—specified with the L subkeyword.
• State/Province—specified with the SP subkeyword.
• Country—specified with the C subkeyword.

SUBJECTSDN completely overrides the values that are contained in the certificate request in the data
set specified with the GENCERT function.

The length of the value you specify for each component of the SUBJECTSDN is limited to 64
characters. Each SUBJECTSDN subkeyword can be specified only once. The total length of the
subject's distinguished name is limited to 1024 characters, including the X.509 identifiers (such as C=
and CN=) and the dot qualifiers.

If the SUBJECTSDN name is too long, an informational message is issued, and the certificate is not
added.

Any printable character that can be mapped to an ASCII character can be specified. Characters that
cannot be mapped, such as X'4A' (¢) and X'00' are shown by RACDCERT LIST as blanks.

If SUBJECTSDN and request-data-set-name are not specified, the programmer name data from the
ID() user (either specified or defaulted), or the programmer name from the SITE or CERTAUTH

Chapter 7. Commands 81

anchor user IDs (irrsitec or irrcerta) is used as the common name (CN). If the programmer
name is all blanks (X'40'), nulls (X'00'), # characters (X'7B'), or X'FF' characters, the common name is
set to the user ID that is to be associated with this certificate.

))SIZE(key-size)
Specifies the size of the private key expressed in decimal bits. This keyword is ignored if GENCERT is
specified with request-data-set-name.

If SIZE is not specified, it defaults to 2048 for RSA and DSA keys, or 192 for NISTECC and BPECC
keys.

For NISTECC keys, valid key sizes are 192, 224, 256, 384, and 521 bits. For BPECC keys, valid key
sizes are 160, 192, 224, 256, 320, 384, and 512 bits.

For DSA keys, the minimum key size is 512.

For RSA keys, the minimum key size for clear keys and secure keys in the PKDS (PKA key data set) is
512; the minimum key size for secure keys in the TKDS (token key data set) is 1024 and the size must
be a multiple of 256.

• The maximum key size for RSA and DSA keys is determined by United States export regulations and
is controlled by RACF and non-RACF code in z/OS. Depending on the installation, non-RACF code
may enforce a lower maximum size.

• Rounding up to the next appropriate key size might occur. Therefore, the key size of the generated
key might be longer than the value you specify with SIZE but the generated key is never shorter than
requested.

Maximum key sizes: The maximum key size for a private key depends on key type, as follows:

Private key type Maximum key size

RSA key stored in the RACF database 4096 bits

RSA key stored in the ICSF TKDS as secure key 4096 bits

RSA key stored in the ICSF PKDS as a CRT key token 4096 bits

DSA key 2048 bits

RSA key stored in the ICSF PKDS as an ME key token 1024 bits

NISTECC key 521 bits

BPECC key 512 bits

Note: To generate an RSA key that is longer than 1024 bits and is to be stored in the RACF database,
the CP Assist for Cryptographic Function (CPACF) must be enabled.

Standard key sizes: Currently, standard sizes for RSA keys are as follows:

Key size Key strength

 512 bits Low-strength key

1024 bits Medium-strength key

2048 bits High-strength key

4096 bits Very high-strength key

Key strength considerations: Shorter keys of the ECC type, which are generated when you specify
NISTECC or BPECC, achieve comparable key strengths when compared with longer RSA keys.

RSA, NISTECC, and BPECC keys of the following sizes are comparable in strength:

82 z/OS: Validated Boot for z/OS

RSA key size NISTECC key size BPECC key size

 1024 bits 192 bits 160 or 192 bits

 2048 bits 224 bits 224 bits

 3072 bits 256 bits 256 or 320 bits

 7680 bits 384 bits 384 bits

15360 bits 521 bits 512 bits

Hashing algorithm used for signing: RACF signs certificates using a set of secure hash algorithms
based on the SHA-1 or SHA-2 hash functions. The size of the signing key determines the hashing
algorithm used for signing, as follows:

Hashing
algorithm
used for signing

Signing key size

RSA / DSA
RSAPSS for RSA
signing key NISTECC BPECC

SHA-1 Less than 2048
bits

— — —

SHA-256 2048 bits or
longer

2048 bits or
longer and less
than 3072 bits

192, 224,
or 256 bits

160, 192, 224,
256, or 320 bits

SHA-384 — 3072 bits or
longer and less
than 4096 bits

384 bits 384 bits

SHA-512 — 4096 bits 521 bits 512 bits

))NOTBEFORE(DATE(yyyy-mm-dd) TIME(hh:mm:ss))
Specifies the local date and time from which the certificate is valid. If DATE is not specified, it defaults
to the current local date. If TIME is not specified, it defaults to TIME(00:00:00).

If DATE is specified, the value of yyyy must be 1950 - 9997.

Note that the use of the date format yyyy-mm-dd is valid. However, to aid installations familiar with
the RACF date format, the value can be specified in the format yyyy/mm/dd.

The time and date values are stored in the certificate as a universal time coordinated (UTC) value. The
calculated UTC value might be incorrect if the date and time values for NOTBEFORE and NOTAFTER
represent a time that has a different local offset from UTC.

))NOTAFTER(DATE(yyyy-mm-dd) TIME(hh:mm:ss))
Specifies the local date and time after which the certificate is no longer valid. If DATE is not specified,
it defaults to one year from the NOTBEFORE date value. If TIME is not specified, it defaults to
TIME(23:59:59).

If DATE is specified, the value of yyyy must be 1950 - 9997. If DATE is defaulted, the value must be
1951 - 9998.

The NOTBEFORE value must be earlier than the NOTAFTER value or an informational message is
issued.

Note the use of the date format yyyy-mm-dd is valid. However, to aid installations familiar with the
RACF date format, the value can be specified as yyyy/mm/dd.

The time and date values are stored in the certificate as a universal time coordinated (UTC) value. The
calculated UTC value might be incorrect if the date and time values for NOTBEFORE and NOTAFTER
represent a time that has a different local offset from UTC.

Chapter 7. Commands 83

))WITHLABEL('label-name')
Specifies the label assigned to this certificate. If specified, this must be unique to the user ID with
which the certificate is associated. If not specified, it defaults in the same manner as the WITHLABEL
keyword on the RACDCERT ADD command.

The label-name is stripped of leading and trailing blanks. If a single quotation mark is intended to be
part of the label-name, use two single quotation marks together for each single quotation mark within
the string, and enclose the entire string within single quotation marks.

See the WITHLABEL keyword for RACDCERT ADD for information on label rules.

))SIGNWITH
SIGNWITH(CERTAUTH LABEL('label-name'))
SIGNWITH(SITE LABEL('label-name'))
SIGNWITH(LABEL('label-name'))

Specifies the certificate with a private key that is signing the certificate. If not specified, the default
is to sign the certificate with the private key of the certificate that is being generated. This creates
a self-signed certificate. The signing certificate must belong to the user ID running the command,
or SITE or CERTAUTH. If SITE and CERTAUTH keywords are omitted, the signing certificate owner
defaults to the user ID of the command issuer.

If SIGNWITH is specified, it must refer to a certificate that has a private key associated with it. If
no private key is associated with the certificate, an informational message is issued and processing
stops.

If you specify either request-data-set-name or FROMICSF, you must specify SIGNWITH.

Note that self-signed certificates are always trusted, while all other certificates are created with
the trust status of the certificate specified in the SIGNWITH keyword. If the certificate specified in
the SIGNWITH keyword is not trusted, an informational message is issued but the certificate is still
generated.

Note: Prior to z/OS V2R4, the RSA private key was stored in the PKDS under the RSA
master key. This key cannot be used to sign with the RSAPSS algorithm without converting it
to be an ECC master key protected key. You can use this tool to convert it: Translate and
replace an RSA key for RSA PSS (community.ibm.com/community/user/ibmz-and-linuxone/blogs/
bob-petti1/2021/03/10/translate-and-replace-an-rsa-key-for-rsa-pss?CommunityKey=6593e27b-
caf6-4f6c-a8a8-10b62a02509c&tab=recentcommunityblogsdashboard).

))RSA | PCICC | ICSF | DSA | NISTECC | BPECC | FROMICSF
Specifies if RACF should generate a new key pair, and if so, how to generate the key pair and where
to store the private key for future use. The default action for a new key is to store it as a software key.
If no keyword is specified, the key pair is generated using software with the RSA algorithm and the
private key is stored in the RACF database as an RSA key.

Guidelines:

The PCICC and ICSF keywords are deprecated. IBM discourages the use of these parameters.

The following guidelines apply when choosing key options:

• Choose RSA(PKDS), ICSF, PCICC or RSA(TOKEN) when the private key to be generated is an RSA
type and you need hardware protection for the key.

– The RSA(PKDS) keyword is equivalent to the PCICC keyword and stores the key as an RSA
Chinese Remainder Theorem (CRT) key token. RACDCERT LIST will display this key with key type
RSA along with a PKDS label.

– The ICSF keyword stores the key as an RSA Modulus-Exponent (ME) key token. RACDCERT LIST
will display this key with key type RSA Mod-Exp along with a PKDS label.

• Specify RSA when the key to be generated is an RSA type but no hardware protection is needed.
Such software keys can be up to 4096 bits in size.

• Choose NISTECC or BPECC when the key to be generated is an ECC type.

84 z/OS: Validated Boot for z/OS

https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/bob-petti1/2021/03/10/translate-and-replace-an-rsa-key-for-rsa-pss?CommunityKey=6593e27b-caf6-4f6c-a8a8-10b62a02509c&tab=recentcommunityblogsdashboard
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/bob-petti1/2021/03/10/translate-and-replace-an-rsa-key-for-rsa-pss?CommunityKey=6593e27b-caf6-4f6c-a8a8-10b62a02509c&tab=recentcommunityblogsdashboard
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/bob-petti1/2021/03/10/translate-and-replace-an-rsa-key-for-rsa-pss?CommunityKey=6593e27b-caf6-4f6c-a8a8-10b62a02509c&tab=recentcommunityblogsdashboard
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/bob-petti1/2021/03/10/translate-and-replace-an-rsa-key-for-rsa-pss?CommunityKey=6593e27b-caf6-4f6c-a8a8-10b62a02509c&tab=recentcommunityblogsdashboard

• Specify NISTECC(PKDS), BPECC(PKDS),NISTECC(TOKEN) or BPECC(TOKEN) when hardware
protection is needed.

• Choose DSA when the key to be generated is a DSA type. Note that no hardware protection is
available for DSA keys.

When you issue GENCERT with a request data set: If the certificate you are generating is associated
with a public or private key that is already stored in the PKDS, the following restriction applies:

• Restriction: Respecifying the PKDS label with the RSA(PKDS), ICSF, PCICC, NISTECC(PKDS), or
BPECC(PKDS) keyword does not change the existing PKDS label or key type. For example:

– If the private key already exists in the PKDS as an RSA Modulus-Exponent (ME) key token,
specifying RSA(PKDS) or PCICC does not convert the key to an RSA Chinese Remainder Theorem
(CRT) key token.

– If the private key already exists in the PKDS as an RSA Chinese Remainder Theorem (CRT) key
token, specifying ICSF does not convert the key to an RSA Modulus-Exponent (ME) key token.

"PKDS label considerations" in z/OS Security Server RACF Command Language Reference.

"PKDS hardware requirements" in z/OS Security Server RACF Command Language Reference.

RSA
Specifies that the key pair is to be generated using software with the RSA algorithm and the
private key is to be stored in the RACF database as an RSA key. RSA is the default key type.

When you specify RSA without the PKDS option or accept RSA as the default key type, the CP
Assist for Cryptographic Function (CPACF) must be enabled to generate a key that is longer than
1024 bits.

PKDS[(pkds-label | *)]
Specifies that the key pair is to be generated using a a CCA cryptographic coprocessor. The
resulting private key is stored in the ICSF PKA key data set (PKDS) as an RSA Chinese
Remainder Theorem (CRT) key token with either a system-generated label, a label specfied
by pkds-label, or a label copied from the certificate label.

TOKEN (token-name)
Specifies that the key pair is to be generated using an Enterprise PKCS#11 cryptographic
coprocessor. The resulting private key is stored in the specified existing token-name token in
the ICSF token key data set (TKDS) as an RSA Chinese Remainder Theorem (CRT) key token.

PCICC[(pkds-label | *)]

This parameter is deprecated. IBM recommends that you use RSA(PKDS[pkds-label | *)])
instead of PCICC[(pkds-label | *)].

It specifies the same function as the PKDS suboperand of the RSA operand. See the RSA operand
of GENCERT for details.

ICSF[(pkds-label | *)]

This parameter is deprecated. IBM discourages the use of this parameter, as it is only applicable
to RSA keys that are limited to 1024 bits.

It specifies that the key pair is to be generated using software. The resulting private key is
generated with the RSA algorithm and stored in the ICSF PKA key data set (PKDS) as an RSA
Modulus-Exponent (ME) key token.

DSA
Specifies that the key pair is to be generated using software with the DSA algorithm. The resulting
private key is stored in the RACF database as a DSA key. Note: DSA key generation can be very
slow, especially for keys longer than 1024 bits.

NISTECC
Specifies that the key pair is to be generated using software if clear key is not restricted in the
system, with the elliptic curve cryptography (ECC) algorithm in accordance with the standard

Chapter 7. Commands 85

proposed by the National Institute of Standards and Technology (NIST). The resulting private key
is stored in the RACF database as an ECC key.

When specifying NISTECC, the ICSF subsystem must be operational and configured for PKCS #11
operations.

PKDS[(pkds-label | *)]
Specifies that the key pair is to be generated using a CCA cryptographic coprocessor. The
resulting private key is stored in the ICSF PKA data set (PKDS) in the PKA token with either a
system-generated label, a label specified by pkds-label, or a label copied from the certificate
label.

TOKEN (token-name)
Specifies that the key pair is to be generated using an Enterprise PKCS#11 cryptographic
coprocessor. The resulting private key is stored in the specified existing token-name token in
the ICSF token key data set (TKDS) as an RSA Chinese Remainder Theorem (CRT) key token.

BPECC
Specifies that the key pair is to be generated using software, if clear key is not restricted in
the system, with the elliptic curve cryptography (ECC) algorithm in accordance with the standard
proposed by the ECC Brainpool working group of the Internet Engineering Task Force (IETF). The
resulting private key is stored in the RACF database as an ECC key.

When specifying BPECC, the ICSF subsystem must be operational and configured for PKCS #11
operations.

Restriction: When ICSF is operating in FIPS mode, you cannot generate a Brainpool ECC private
key.

PKDS[(pkds-label | *)]
Specifies that the key pair is to be generated using a CCA cryptographic coprocessor. The
resulting private key is stored in the ICSF PKA data set (PKDS) as an ECC key in the PKA token
with either a system-generated label, a label specified by pkds-label, or a label copied from
the certificate label.

TOKEN (token-name)
Specifies that the key pair is to be generated using an Enterprise PKCS#11 cryptographic
coprocessor. The resulting private key is stored in the specified existing token-name token in
the ICSF token key data set (TKDS) as an RSA Chinese Remainder Theorem (CRT) key token.

FROMICSF(pkds-label)
Specifies that no new key pair is to be generated for this new certificate. Instead, RACF uses an
existing public key specified by its PKDS label. The public key must reside in the ICSF PKA key
data set (PKDS).

When you specify FROMICSF, you must also specify SIGNWITH to sign the new certificate with
an existing certificate. The new certificate will contain no private key and therefore cannot be
self-signed.

You cannot specify both request-data-set-name and FROMICSF.

SIGATTR(attribute)
Specifies the signing attribute if the signing key is an RSA key. The only valid value for attribute is
RSAPSS. If attribute is not specified, the default value is RSAPSS.

))KEYUSAGE
Specifies the appropriate values for the keyUsage certificate extension, of which one or more of the
values might be coded. For certificate authority certificates, the default is CERTSIGN and is always
set. There is no default for certificates that are not certificate-authority certificates.
HANDSHAKE

Facilitates identification and key exchange during security handshakes, such as SSL, which set the
digitalSignature and keyEncipherment indicators if the key algorithm is RSA. If key type is DSA,
NISTECC, or BPECC, this usage sets only the digitalSignature indicator.

86 z/OS: Validated Boot for z/OS

DATAENCRYPT
Encrypts data, which sets the dataEncipherment indicator. This usage is not valid for DSA,
NISTECC, or BPECC keys.

DOCSIGN
Specifies a legally binding signature, which sets the nonRepudiation indicator.

CERTSIGN
Specifies a signature for other digital certificates and CRLs, which sets the keyCertSign and
cRLSign indicators.

KEYAGREE
Facilitates key exchange, which sets the keyAgreement indicator. This usage is valid only for
NISTECC and BPECC keys.

A certificate with no keyUsage value other than keyAgreement cannot be used for signing.

))ALTNAME
Specifies the appropriate values for the subjectAltName extension, of which one or more of the values
might be coded. If required for the extension, RACF converts the entered values to ASCII.

Note: RACF assumes the terminal code page is IBM-1047 and translates to ASCII accordingly.

IP(numeric-IP-address)
Specifies a fully qualified numeric IP address in IPv4 or IPv6 form.

IPv4 dotted decimal form consists of four decimal numbers (each number must be a value from
0 - 255) separated by periods:

Example: 9.117.2.45

IPv6 form consists of eight 16-bit blocks of hexadecimal characters separated by colons:

Example: ABCD:EF01:2345:6789:ABCD:EF01:2345:6789

In IPv6 form, leading zeros in each block are optional. Successive blocks of zeros can be
represented by a single occurrence of ::.

Example: 2001:DB8::8:800:200C:417A

An IPv6 address can contain an IPv4 address:

Example: 0:0:0:0:0:ABCD:1.2.3.4

DOMAIN('internet-domain-name')
Specifies a quoted string containing a fully qualified 'internet-domain-name' (such as
'www.widgits.com'). RACF does not check this value's validity.

EMAIL('email-address')
Specifies a quoted string containing a fully qualified 'email-address', such as 'jasper at
moes.bar.com'. RACF replaces the word at with the @ symbol (X'7C') to conform with RFC822.
If RACF cannot locate the word at it assumes the address is already in RFC822 form and makes
no attempt to alter it other than converting it to ASCII.

URI('universal-resource-identifier')
Specifies the 'universal-resource-identifier' (such as 'http://www.widgits.com'). RACF does
not check the validity of this value.

Examples

Chapter 7. Commands 87

Example Activity label Description

1 Operation User RACFADM requests the creation of a certificate-authority certificate,
with values for the subjectAltName extension and the keyUsage extension,
for the local certificate authority. The certificate will be self-signed and a
SIGNWITH value need not be specified.

Known User RACFADM has CONTROL access authority to the IRR.DIGTCERT.*
resource in the FACILITY class.

Command
RACDCERT GENCERT
 CERTAUTH
 SUBJECTSDN(CN('Local CA'))
 ALTNAME(IP(9.117.170.150) DOMAIN('www.widgits.com')
 EMAIL('localca@www.widgits.com')
 URI('http://www.widgits.com/welcome.html'))
 KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN CERTSIGN)
 WITHLABEL('Local PKIX CA')

Output None.

2 Operation User WENTING wants to create a new certificate with a 2048-bit public/
private key pair so she can share encrypted data with a business partner.
She wants to call her certificate Wen Ting's certificate.

Known IBM Encryption Facility requires a PKDS label. RACF generates a default
PKDS label when no value is specified with the PKDS keyword.

Command RACDCERT GENCERT
 SUBJECTSDN(CN('Wen Ting''s certificate'))
 WITHLABEL('Wen Ting''s certificate')
 SIZE(2048)
 RSA(PKDS)
 NOTAFTER(DATE(2030/10/10))

Output None.

3 Operation User RACFADM wants to create a CA certificate that can be used to issue
code-signing certificates for users who need to digitally sign programs.

Known User RACFADM has CONTROL access authority to the IRR.DIGTCERT.*
resource in the FACILITY class, and appropriate authority in the CSFSERV
and CSFKEYS classes to be able to use the PKDS option.

Command RACDCERT CERTAUTH GENCERT
 SUBJECTSDN(OU('MyCompany Code Signing CA') O('MyCompany')
C('US'))
 SIZE(2048) RSA(PKDS) WITHLABEL('MyCompany Code Signing CA')

Output None.

4 Operation User RACFADM wants to issue a code-signing certificate to user RAMOS
who needs to digitally sign programs. The new code-signing certificate will
be signed by the CA certificate created in Example 3.

Known User RACFADM has CONTROL access authority to the IRR.DIGTCERT.*
resource in the FACILITY class.

Command
RACDCERT ID(RAMOS) GENCERT
 SUBJECTSDN(CN('Ramos Code Signing Cert') O('MyCompany') C('US'))
 SIZE(1024) WITHLABEL('Ramos Code Signing Cert')
 SIGNWITH(CERTAUTH LABEL('MyCompany Code Signing CA'))
 KEYUSAGE(HANDSHAKE DOCSIGN)

Output None.

88 z/OS: Validated Boot for z/OS

Example Activity label Description

5 Operation User ANNA wants to create a new certificate with an ECC private key. The
new certificate will be called Anna's certificate. The key requires
hardware protection so she will store it in the ICSF PKDS.

Known User ANNA has sufficient authority to the appropriate resources in the
FACILITY and CSFSERV classes. The system contains an operational ICSF
subsystem and Crypto Express3 coprocessor (CEX3C).

Command
RACDCERT GENCERT
 SUBJECTSDN(CN('COMPANY A'))
 WITHLABEL('Anna''s certificate')
 BPECC(PKDS(ECCKEY4ANNASCERTIFICATE))

Output None.

6 Operation User CLAUSEN wants to create a new certificate with an RSA private key.
The new certificate will be called Christine Clausen's certificate.
The key requires secure hardware protection so she will create the key in
the ICSF TKDS.

Known User CLAUSEN has sufficient authority to the appropriate resources
in the FACILITY, CRYPTOZ and CSFSERV classes. The token labelled
COMPANYA.TOKEN has been defined. The system contains an operational
ICSF subsystem and Crypto Express4 coprocessor (CEX4X).

Command RACDCERT GENCERT
 SUBJECTSDN(CN('COMPANY A'))
 WITHLABEL('Christine Clausen''s certificate')
 RSA(TOKEN(COMPANYA.TOKEN))

Output None

Chapter 7. Commands 89

90 z/OS: Validated Boot for z/OS

Chapter 8. Auditing and monitoring

The system records information about Validated Boot for z/OS activity in SMF type 90 subtype 42 records.

Subtype 42 — Validated Boot for z/OS configuration event
An SMF type 90 subtype 42 record is generated at IPL time during Validated Boot for z/OS processing.
The record contains:

• Certificate extract information
• Audited validation failures
• An indication of whether this validated boot was in audit mode or enforce mode

Header/self-defining section
Offsets Name Length Format Description

0 0 SMF90T42_Data * * Start of the header/self-defining section.

0 0 SMF90T42_Cont 1 binary Continuation information. CX and Bad_CX entries will
not be in any record until all the Audit entries are in
record(s). Bad_CX entries will not be in any record
until all the Audit and CX entries are in record(s).

Bit (Name)
Meaning when set

X'80' (SMF90T42_NotFirst)
Not the first; this is a continuation record.

X'40' (SMF90T42_NotLast)
There is another record that continues this one.

1 1 SMF90T42_Flags 1 binary Flags.

Bits (Name)
Meaning when set

X'C0' (SMF90T42_F_VBMODE)
Validated boot mode. The options are mutually
exclusive.

X'80' (SMF90T42_F_Enforce)
Enforce mode.

X'40' (SMF90T42_F_Audit)
Audit mode.

2 2 SMF90T42_Part 2 binary 0 (part 0) for the first of a set of continued records; 1
(part 1) for the next, and so on.

4 4 * 4 binary Reserved.

8 8 SMF90T42_NumFailures 4 binary Total number of verification failures. Set only for the
record that is "part 0."

12 C SMF90T42_NumFailures_NoDSNE 4 binary Number of verification failures that are not
represented by the more detailed information mapped
by SMF90T42_Audit (see “Audit entry section” on
page 92). This could be because there was not
enough storage available to do the tracking. Set only
for the record that is "part 0."

16 10 SMF90T42_Audit_Off 4 binary Offset to first audit entry. Valid only when there is at
least one audit entry.

20 14 SMF90T42_Audit_Len 2 binary Length of an audit entry. Must use this length to
navigate from one entry to the next.

22 16 SMF90T42_Audit_Num 2 binary Number of contiguous audit entries.

© Copyright IBM Corp. 2023 91

Offsets Name Length Format Description

24 18 SMF90T42_CX_Off 4 binary Offset to first certificate extract (CX) entry. Valid only
when there is at least one CX entry.

28 1C SMF90T42_CX_Len 2 binary Length of a CX entry. Must use this length to navigate
from one entry to the next.

30 1E SMF90T42_CX_Num 2 binary Number of contiguous CX entries.

32 20 SMF90T42_Bad_CX_Off 4 binary Offset to first bad certificate extract (Bad_CX) entry.
Valid only when there is at least one Bad_CX entry.

36 24 SMF90T42_Bad_CX_Len 2 binary Length of a Bad_CX entry. Must use this length to
navigate from one entry to the next.

38 26 SMF90T42_Bad_CX_Num 2 binary Number of contiguous Bad_CX entries.

40 28 SMF90T42_TZO 8 binary Time zone offset, in hexadecimal.

48 30 SMF90T42_LeapSeconds 8 binary Leap seconds, in hexadecimal.

Audit entry section
Offsets Name Length Format Description

0 0 SMF90T42_Audit * * Start of an audit entry section.

0 0 SMF90T42_A_Modname 8 EBCDIC Module name. If this is "*unknown", the system
was unable to obtain enough storage to track the
name of the failing module and settled for an entry
describing the data set from which the module was
being fetched.

8 8 SMF90T42_A_Dsname 44 EBCDIC Data set name.

52 34 SMF90T42_A_VolID 6 EBCDIC Volume ID.

92 z/OS: Validated Boot for z/OS

Offsets Name Length Format Description

58 3A SMF90T42_A_Fail_Reason 2 binary Reason for validation failure.

Value (Name)
Description

1 (SMF90T42_VF_NotSigned)
Not signed.

2 (SMF90T42_VF_DENotFound)
Directory entry not found.

3 (SMF90T42_VF_DENotMatch)
Directory entry does not match.

4 (SMF90T42_VF_SigNotFound)
Signature not found.

5 (SMF90T42_VF_BadHashAlg)
Signature record does not indicate a valid hash
algorithm.

6 (SMF90T42_VF_BadSigAlg)
Signature record does not indicate a valid
signature algorithm.

7 (SMF90T42_VF_BadHashVal)
Hash value in the signature record does not
match the calculated hash value.

8 (SMF90T42_VF_NoMatchingKeyID)
The key ID in the signature record does not
match any verification key available to this LPAR.

9 (SMF90T42_VF_SigVerFailed)
The signature verification operation did not
complete successfully.

10 (SMF90T42_VF_OverlayModule)
This is an overlay module. Signature support is
not provided.

11 (SMF90T42_VF_BadSigRecVersion)
Signature record version is not valid.

12 (SMF90T42_VF_MachLoaderError)
Machine loader error.

60 3C SMF90T42_A_Flags 1 binary Flags.

Bit (Name)
Meaning when set

X'80' (SMF90T42_A_FoundSig)
Found the signature record for this module.

X'20' (SMF90T42_A_HaveMachLoaderErrors)
SMF90T42_A_MachLoaderErrors has
information.

61 3D * 3 binary Reserved.

64 40 SMF90T42_A_NumFailures 4 binary Number of validation failures.

68 44 SMF90T42_A_DSN_NumFailures 4 binary Total number of validation failures for the entire data
set. It is presented (duplicated) in every audit record
for the data set.

72 48 SMF90T42_A_SignTime 8 binary Signing time (first 8 bytes of ETOD). Valid only when
SMF90T42_A_FoundSig is on.

80 50 SMF90T42_A_CertFP 32 binary Signing certificate fingerprint, in hexadecimal. Valid
only when SMF90T42_A_FoundSig is on.

112 70 SMF90T42_A_Union 20 binary Mapping depends on SMF90T42_A_FoundSig and
SMF90T42_A_HaveMachLoaderErrors bits, as follows.

112 70 SMF90T42_A_KeyID 20 binary Signing key ID, in hexadecimal. Applies only when
SMF90T42_A_FoundSig is on.

112 70 SMF90T42_A_MachLoaderErrors 6 binary Machine loader errors, in hexadecimal. Applies only
when SMF90T42_A_HaveMachLoaderErrors is on.

Chapter 8. Auditing and monitoring 93

Offsets Name Length Format Description

112 70 SMF90T42_A_MLE_ED 4 binary Error details.

116 74 SMF90T42_A_MLE_IIEI 2 binary Error information.

132 84 SMF90T42_A_FailTime 8 binary Failure time (first 8 bytes of ETOD).

Certificate extract (CX) section
Offsets Name Length Format Description

0 0 SMF90T42_CX * * Start of a certificate extract section.

0 0 SMF90T42_CX_CertName 64 EBCDIC Certificate name.

64 40 SMF90T42_CX_CertFP 32 binary Certificate fingerprint, in hexadecimal.

96 60 SMF90T42_CX_KeyID 20 binary Key ID, in hexadecimal.

116 74 SMF90T42_CX_NumSuccessfulUses 4 binary Number of successful uses.

120 78 SMF90T42_CX_StartTime 8 binary Certificate start time (first 8 bytes of ETOD).

128 80 SMF90T42_CX_ExpirationTime 8 binary Certificate expiration time (first 8 bytes of ETOD).

136 88 SMF90T42_CX_ReasonBad 4 binary Failure reason. When non-0, the reason will be
SMF90T42_BCX_Reason_BadKey.

Bad certificate extract (Bad_CX) section
Offsets Name Length Format Description

0 0 SMF90T42_Bad_CX * * Start of a bad certificate extract section.

0 0 SMF90T42_BCX_CertName 64 EBCDIC Certificate name.

64 40 SMF90T42_BCX_CertFP 32 binary Certificate fingerprint, in hexadecimal. Zeros when not
known.

96 60 SMF90T42_BCX_KeyID 20 binary Key ID, in hexadecimal. Zeros when not known.

116 74 SMF90T42_BCX_StartTime 8 binary Certificate start time (first 8 bytes of ETOD). Zeros
when not known.

124 7C SMF90T42_BCX_ExpirationTime 8 binary Certificate expiration time (first 8 bytes of ETOD).
Zeros when not known.

132 84 SMF90T42_BCX_ReasonBad 4 binary Failure reason code.

Value (Name)
Description

1 (SMF90T42_BCX_Reason_NotStarted)
Certificate is not yet valid.

2 (SMF90T42_BCX_Reason_Expired)
Certificate has expired.

3 (SMF90T42_BCX_Reason_BadKey)
Key is not valid.

4 (SMF90T42_BCX_Reason_BadKeyType)
Key type is not valid.

5 (SMF90T42_BCX_Reason_BadKeyIDLen)
Key ID length is not valid.

6 (SMF90T42_BCX_Reason_BadHashType)
Hash type is not valid.

7 (SMF90T42_BCX_Reason_BadHashLen)
Hash length is not valid.

94 z/OS: Validated Boot for z/OS

Chapter 9. MVS system messages

AMD126I Error in List-Directed Dump-Save
Area

Explanation
An error occurred while saving or restoring storage
contents or storage keys from the Dump-Save Area
during a List-Directed Dump. Some storage or storage
keys in the dump may not be the original contents of
the storage or storage keys at the time that the dump
was initiated.

System action
The SADMP program continues.

Operator response
None.

System programmer response
This is most likely a result of a problem in the machine
(or the virtual machine control program, if running in
virtual machine). Contact the IBM support center.

Source
Stand-alone Dump (SADMP)

Module
AMDSAICN, AMDSARDX

Routing code
-

Descriptor code
-

AMD127I SADMP IPL device is write
inhibited

Explanation
For a List-Directed Dump, the device from which
SADMP was IPLed is write inhibited. This prevents
SADMP from saving the contents of some storage
pages before using them, so that those pages in the
dump may contain SADMP code or work areas instead
of the original contents of the storage at the time that
the dump was initiated.

System action
The SADMP program continues.

Operator response
None.

System programmer response
None.

Source
Stand-alone Dump (SADMP)

Module
AMDSAICN

Routing code
-

Descriptor code
-

AMD128I List-Directed Dump. Validated
Boot: type

Explanation
Indicates that a list-directed IPL of SADMP was done.
If this message is not present, a channel command
word (CCW) IPL of SADMP was done.

In the message text:
type

One of the following values:
Audit

Indicates that the "Secure Boot" option was
not identified when doing the IPL.

Enforce
Indicates that the "Secure Boot" option was
identified when doing the IPL.

System action
The SADMP program continues.

Operator response
None.

© Copyright IBM Corp. 2023 95

System programmer response
None.

Source
Stand-alone Dump (SADMP)

Module
AMDSAICN

Routing code
-

Descriptor code
-

AMD129I xxxxxxxx yyyy description

Explanation
During a List-directed IPL of SADMP when the “Secure
Boot” option was not identified, problems were
detected which would have cause the IPL to fail if the
“Secure Boot” option had been identified.

In the message text:
xxxxxxxx

Secure-IPL Code Loading Attributes Facility
(SCLAF) error details.

yyyy
IPL-information Error Indicators (IIEI).

description
One of the following reasons:

Machine loader detected error(s)
Signature verification failed
Module was not signed

System action
The SADMP program continues.

Operator response
Record any messages from the machine loader which
appear on the System Console (Operating System
Messages).

System programmer response
Regenerate the stand-alone dump program to correct
any problems.

Source
Stand-alone Dump (SADMP)

Module
AMDSAICN

Routing code
-

Descriptor code
-

CSV050I Signature verification failed for
module mmmmmmmm in dataset
d. {Not signed | Reason: r}

Explanation
Validated Boot for z/OS "enforce" mode is in effect.
A module to be verified did not pass verification.
This message is followed by a wait state EC9 with a
reason corresponding to the reason in the message. In
some cases, wait state EC9 can occur without being
preceded by this message.

In the message text:
mmmmmmmm

The name of the load module.
d

The name of the data set (with trailing blanks
removed).

r
One of the following decimal reason codes:
02

Directory entry not found.
03

Directory entry does not match.
04

Signature not found.
05

Signature record does not indicate a valid hash
algorithm.

06
Signature record does not indicate a valid
signature algorithm.

07
Hash value in the signature record does not
match the calculated hash value.

96 z/OS: Validated Boot for z/OS

08
The key ID in the signature record is not
matched by any verification key available to
this LPAR.

09
The signature verification operation (KDSA
instruction) did not complete successfully.

10
This is an overlay module. Signature support is
not provided.

11
The version of the signature record is not valid.

System action
The system enters wait state EC9.

System programmer response
Correct the issue.

Source
Contents supervision (CSV)

Routing code
Not applicable.

Descriptor code
12

IAR078I VALIDATED BOOT - STORAGE-
CLASS MEMORY IS NOT
AVAILABLE. WOULD WAIT STATE
IF ENFORCE MODE.

Explanation:
No SCM is available during IPL for an audit-mode
Validated Boot for z/OS.

System action
The system continues.

Operator response
Contact the system programmer.

System programmer response
Add more SCM.

Source
Real storage manager (RSM).

Module
IAXBI.

Routing code
2, 10.

Descriptor code
12.

IAR079W VALIDATED BOOT - STORAGE-
CLASS MEMORY IS REQUIRED

Explanation:
No SCM is available during IPL for an enforce-mode
Validated Boot for z/OS.

System action
The system enters wait state 'A2D'X.

Operator response
Contact the system programmer.

System programmer response
Add more SCM.

Source
Real storage manager (RSM)

Module
IAXBI.

Routing code
1.

Descriptor code
2.

IEA980I CERTIFICATE xxxx NOT USED:
reason

Explanation
A certificate was found that could not be used.
xxxx is the certificate name defined by the customer
when providing this certificate. The provided reason
describes the specific issue which is one of the
following:

• Not valid yet.
• Expired.

Chapter 9. MVS system messages 97

• Key is not valid.
• Key type is not valid.
• Key ID length is not valid.
• Hash type is not valid.
• Hash length is not valid.

System action:
The system continues, not using this certificate.

System programmer response:
Correct the issue.

Source
System initialization (IPL/NIP)

IEA981I VALIDATED BOOT FOR Z/OS
ERROR: reason

Explanation
An error was detected within the validated boot
processing. The provided reason describes the specific
issue which is one of the following:

• Certificate info not available 1.
• Certificate info not available 2.
• CPACF functions not available.
• Certificate format not supported.
• Certificate info not available 3.
• No valid certificates.

System action:
The system continues.

System programmer response
For all reasons but no valid certificates, contact IBM
Service. For no valid certificates, make sure that one or
more valid certificates have been associated with this
LPAR.

Source
System initialization (IPL/NIP)

IEE174I (form
33 of 37)

DISPLAY M
STORAGE-CLASS MEMORY
STATUS
status

Explanation
The DISPLAY M=SCM command requested the system
to display the status of storage-class memory (SCM). If
DISPLAY M=SCM(DETAIL) was specified, the message
also includes - INCREMENT DETAIL.

In the message text, status includes the following
information:

dddd{M|G|T} DEFINED
The amount of SCM defined to this partition.

ADDRESS IN USE STATUS
dddd{M|G|T} dd% ONLINE

The amount of SCM that is currently in use.
ONLINE-PERMANENTLY RESIDENT
 dddd{M|G|T}‐dddd{M|G|T}

The range of permanently resident SCM that is
currently online.

ONLINE-RECONFIGURABLE
 dddd{M|G|T}‐dddd{M|G|T}

The range of reconfigurable SCM that is currently
online.

dd{M|G|T} OFFLINE-AVAILABLE
The amount of SCM that is currently offline.

ddd% IN USE
The percentage of the total SCM that is in use.

SCM INCREMENT SIZE IS dd{M|G|T}
The SCM increment size.

SCM STATUS NOT OBTAINED: SCM NOT SUPPORTED
SCM status was not obtained because SCM is not
supported on this processor.

Source
Reconfiguration

Module
IEEDMSCM

Routing code
-

Descriptor code
5, 8, 9

IEE193I NO SCM RECONFIGURED – reason
OR
DISPLAY SCM INSUFFICIENT STO
RAGE FOR COMMAND

Explanation
The system did not reconfigure any storage-class
memory (SCM) in response to a CONFIG SCM
command.

In the message text, reason can be one of the
following:

98 z/OS: Validated Boot for z/OS

TIMEOUT OCCURRED
The system attempted to physically configure the
SCM online, but could not determine that the
reconfiguration was performed.

OPERATOR CANCELLED
The operator replied CANCEL to message IEE575A
to cancel a CONFIG SCM command.

SCM NOT DEFINED
There is no SCM defined to this partition.

SCM NOT SUPPORTED
SCM is not supported on this processor.

AMOUNT NOT VALID
The amount specified on the CONFIG SCM
command is not a valid value.

REQUEST EXCEEDS ddM|G|T DEFINED
The amount specified exceeds the amount of SCM
that is currently defined to the partition.

REQUEST IS NOT A MULTIPLE OF ddM|G|T
The amount specified is not a multiple of the SCM
increment size.

RANGE EXCEEDS MAX ADDRESS ddM|G|T
The values in the range exceed the highest
possible SCM address for this system.

NO OFFLINE SCM
There is no SCM eligible to be brought online to
this partition.

NO ONLINE SCM
There is no SCM online to this partition.

INSUFFICIENT RECONFIGURABLE ONLINE SCM
Some SCM storage may be online but it is not
reconfigurable.

INSUFFICIENT AUXILIARY STORAGE
Insufficient auxiliary storage would remain if the
CONFIG SCM OFFLINE request were completed.
This reason text is displayed when the amount of
auxiliary storage currently being used is more than
50% of the auxiliary storage that would remain
after the offline completed.

REAL FRAME SHORTAGE
The system is critically low on available real
frames, so the CONFIG SCM OFFLINE command
was canceled.

INTERNAL ERROR, DIAG1=xxxxxxxx
An internal error occurred or an abnormal
condition was detected while processing the
CONFIG command. The DIAG1 value is internal
diagnostic information to supply to IBM when
requesting service.

CF ONLINE BY RANGE NOT SUPPORTED
Bringing SCM online by specifying a range is not
supported.

System action
The system continues processing.

Operator response
Notify the system programmer.

System programmer response
If the command was rejected because of a problem
with the amount of SCM specified, examine the
amount of SCM that was requested to be brought
online or taken offline and verify that the amount is
correct and specified as a valid increment. You can use
the D M or D M=SCM command to obtain information
regarding the amount of SCM that is eligible to be
brought online or taken offline, and to obtain other
SCM-related attributes such as the SCM increment
size.

If the command was rejected because of a timeout
condition, retry the command. If the command
continues to be rejected with the timeout condition,
contact IBM service.

If the command was rejected because of the SCM NOT
DEFINED reason, verify your image profile.

If the command was rejected because of the SCM NOT
SUPPORTED reason, this indicates that the system on
which the command was issued does not support the
use or definition of SCM.

If the message was issued with the INTERNAL ERROR
reason text, contact IBM service and provide the
internal diagnostic information value.

Source
Reconfiguration

Module
IEEVSCM

Routing code
Note 2

Descriptor code
5

IEE194I CF SCM REQUEST NOT FULLY
SATISFIED – reason

Chapter 9. MVS system messages 99

Explanation
The system was not able to configure the full amount
of storage-class memory (SCM) that was requested
with the CONFIG SCM command.

In the message text, reason can be one of the
following:
INSUFFICIENT OFFLINE SCM

Less than the requested amount of SCM is eligible
to be brought online.

INSUFFICIENT ONLINE SCM
Less than the requested amount of SCM is eligible
to be brought offline.

INSUFFICIENT RECONFIGURABLE ONLINE SCM
SCM storage may be online but some of it is not
reconfigurable.

TIMEOUT OCCURRED
The system attempted to physically configure the
SCM online, but could not determine that the
reconfiguration was performed.

INTERNAL ERROR, DIAG1=xxxxxxxx
An internal error occurred or an abnormal
condition was detected while processing the
CONFIG command. The DIAG1 value is internal
diagnostic information to supply to IBM when
requesting service.

System action
The system configures a portion of the requested
amount of SCM and continues processing.

Operator response
Notify the system programmer.

System programmer response
Examine the amount of SCM that was requested to be
brought online and verify that the amount is correct.

If the command was rejected because of a timeout
condition, retry the command. If the command
continues to be rejected with the timeout condition,
contact IBM service.

If the message was issued with the INTERNAL ERROR
reason text, contact IBM service and provide the
internal diagnostic information value.

Source
Reconfiguration

Module
IEEVSCM

Routing code
Note 2

Descriptor code
5

IEE195I SCM LOCATIONS xxxG TO yyyG
NOT RECONFIGURED – reason

Explanation
The SCM ranges displayed in the message have
been configured online or offline to the system. For
OFFLINE, the range can include increments that are
already offline when the CONFIG command is issued.

In the message text, reason is:
PERMANENTLY RESIDENT

Indicates which SCM storage failed to be taken
offline because it is permanently resident.

System action
The system continues processing.

Source
Reconfiguration

Module
IEEVSCM

Routing code
Note 2

Descriptor code
5

IEE196I AMOUNT OF CENTRAL STORAGE
EXCEEDS nT MAXIMUM:
RECONFIGURATION FUNCTIONS
ARE NOT AVAILABLE.

Explanation
Storage reconfiguration is not supported when there is
more than n terabytes of central storage.

System action
Central storage reconfiguration is disabled. The system
continues its initialization process.

Operator response:

100 z/OS: Validated Boot for z/OS

Contact the system programmer if reconfiguration is
required.

System programmer response:
If reconfiguration is required, reduce the installed
storage to a maximum of n TB, then re-IPL the system
to enable storage reconfiguration.

Source
Reconfiguration

Module
IEERMAXW

Routing code
2, 10

Descriptor code
12

IEE254I hh.mm.ss IPLINFO DISPLAY
text

Explanation
Where text is:

SYSTEM IPLED AT hh.mm.ss ON mm/dd/yyyy
RELEASE fmid LICENSE = system
USED LOADxx IN loadxxdsname ON devx
ARCHLVL = n MTLSHARE = Y|N
VALIDATED BOOT: {NO | {ENFORCE|AUDIT},INACTIVE}
IEASYM LIST = s1|NONE
IEASYS LIST = s2{(OP)}
IODF DEVICE: ORIGINAL(iodfdev1)
CURRENT(iodfdev2)
IPL DEVICE: ORIGINAL(ipldev1) CURRENT(ipldev2)
VOLUME(iplvol)
[vminfo]

Displays IPL information when a DISPLAY IPLINFO
command is issued.

In the message text:
hh.mm.ss

The current time. The time format is in hours (00–
23), minutes (00–59) and seconds (00–59).

hh.mm.ss
The master scheduler initialization completed; the
IPL completed. The time format is in hours (00–
23), minutes (00–59) and seconds (00–59).

mm/dd/yyyy
The master scheduler initialization completed; the
IPL completed. That date format is in month (01–
12), day (01–31) and year (0000–9999).

rrrrrrrr
The release level of the system being IPLed.

xx
The LOADxx member used to IPL the system.

loadxxdsname
The data set where the LOADxx originated. The
data set name will be either:

• SYSn.IPLPARM (where n can be 0–9)
• SYS1.PARMLIB

devx
The device address where the LOADxx member
originated. When the device number is in the form
snnnn, the first digit indicates the subchannel set.

ARCHLVL = n
The value n is either 1 to indicate ESA/390 or 2
to indicate z/Architecture®. The value displayed is
the value specified (or defaulted) by the ARCHLVL
statement of the LOADxx parmlib member.

MTLSHARE = Y|N
MTL tape devices are treated as regular standalone
drives (Y), as compared to MTL resident drives (N).

VALIDATED BOOT: NO
VALIDATED BOOT: ENFORCE,INACTIVE
VALIDATED BOOT: AUDIT,INACTIVE

Indicates whether this is a validated boot, an
audited validated boot, or not a validated boot.
NO

Indicates that is not a validated boot.
ENFORCE

Indicates that this is a validated boot with the
"Secure Boot" option identified when doing the
IPL.

AUDIT
Indicates that this is a validated boot without
the "Secure Boot" option identified when doing
the IPL.

INACTIVE
Indicates that validation is no longer being
done. Validation ends when the LPA is built.
Building of LPA precedes when the DISPLAY
IPLINFO command can be issued.

IEASYM LIST = s1
The IEASYMxx member or members used by the
IPLed system. s1 can be either a single member
name, a list of members (specified in parentheses),
or NONE. The default value is NONE.

IEASYS LIST = s2
The IEASYSxx member or members used by
the IPLed system. s2 can be either a single
member name or a list of members (specified in
parentheses).

Chapter 9. MVS system messages 101

OP
The IEASYSxx values were specified in LOADxx
SYSPARM statements or from the reply to the
IEA101A system parameters prompt.

iodfdev1
The device number of the volume where the
I/O configuration resided when the system was
originally IPLed. When the device number is in the
form snnnn, the first digit indicates the subchannel
set.

iodfdev2
The device number of the volume where the I/O
configuration now resides. iodfdev1 and iodfdev2
can be the same or can be different if they
were primary and secondary of a PPRC pair being
monitored for HyperSwap and a HyperSwap has
occurred. When the device number is in the form
snnnn, the first digit indicates the subchannel set.

ipldev1
The SYSRES device number from which the system
was originally IPLed. When the device number is
in the form snnnn, the first digit indicates the
subchannel set.

ipldev2
The current SYSRES device number. ipldev1 and
ipldev2 can be the same or can be different if they
were primary and secondary of a PPRC pair being
monitored for HyperSwap and a HyperSwap has
occurred. When the device number is in the form
snnnn, the first digit indicates the subchannel set.

iplvol
The IPL volume serial.

system
The IPLed system, z/OS or zNALC (a z/OS system
that requested zNALC pricing).

vminfo
When z/OS is running in a virtual machine, vminfo
is displayed, as follows. The data is provided by
the hypervisor via the STSI instruction. See the
documentation provided by the hypervisor, if and
when available, for details about the data values.

VM CPID = vmcpid
VM UUID = vmuuid | VM UUID IS NOT PROVIDED
VM NAME = vmname
VM EXT NAME = vmextname | VM EXT NAME IS NOT
PROVIDED | VM EXT NAME IS NOT EBCDIC ENCODED

where:
vmcpid

The 16-character control program identifier.
For example:

VM CPID = zHYPaaS

vmuuid
The universally unique identifier (UUID) for the
virtual machine, in the 8-4-4-4-12 format. For
example:

VM UUID = 72DF625E-AD77-4A6C-865D-
B9718A67898F

If the value is not provided, the display line
shows:

VM UUID IS NOT PROVIDED

vmname
The 8-character virtual machine name. For
example:

VM NAME = k8s_4094

vmextname
The extended virtual machine name. When
available, the name can be from 1–256
characters long. If necessary, the characters
will flow to the next line of the display.

• Example 1:

VM EXT NAME =
k8s_4094bc65b1bb4196b016f4651f0788bc_02
u7

• Example 2:

VM EXT NAME =
k8s_4094bc65b1bb4196b016f4651f0788bc_02
u7_72df625e-ad77-4a6c-865d
 -b9718a67898f

If the value is not provided, the display line
shows:

VM EXT NAME IS NOT PROVIDED

If the extended virtual machine name is not
EBCDIC-encoded, the display line shows:

VM EXT NAME IS NOT EBCDIC ENCODED

System action
The system continues processing.

Source
Master scheduler

Module
IEECB985

102 z/OS: Validated Boot for z/OS

Routing code
*

Descriptor code
5

ILR041I VALIDATED BOOT - PLPA
PAGE DATA SET SPECIFICATION
IGNORED DUE TO ENFORCE MODE

Explanation
The specified PLPA paging data set is not used and the
IPL continues as if *NONE* was specified instead in an
enforce-mode Validated Boot for z/OS.

System action
The IPL continues as if *NONE* was specified.

Operator response
Contact the system programmer.

System programmer response
Avoid specifying a PLPA data set.

Source
Auxiliary Storage Management (ASM)

Module
ILRASRIM

Routing code
2, 10..

Descriptor code
12.

ILR042I VALIDATED BOOT - PLPA PAGE
DATA SET SPECIFICATION WOULD
BE IGNORED IF ENFORCE MODE

Explanation
A paging data set is specified which the system uses
if it overfills SCM in an audit-mode Validated Boot for
z/OS, but this specification would be ignored if enforce
mode.

System action
The system continues.

Operator response
Contact the system programmer.

System programmer response
Avoid specifying a PLPA data set.

Source
Auxiliary Storage Management (ASM)

Module
ILRASRIM

Routing code
2, 10.

Descriptor code
12.

ILR043I VALIDATED BOOT - STORAGE-
CLASS MEMORY IS FULL. WOULD
WAIT STATE IF ENFORCE MODE.

Explanation
SCM is filled up during IPL with LPA data, and that LPA
data is going to be stored onto the next paging data set
with available space in an audit-mode Validated Boot
for z/OS.

System action
The system continues, storing LPA data onto the next
paging data set with available space.

Operator response
Contact the system programmer.

System programmer response
Ensure the size of SCM memory is at least the size of
LPA storage.

Source
Auxiliary Storage Management (ASM)

Chapter 9. MVS system messages 103

Module
ILRIODRV

Routing code
2, 10.

Descriptor code
12.

104 z/OS: Validated Boot for z/OS

Chapter 10. Wait state codes

03C

Explanation
The auxiliary storage manager (ASM) found that not
enough auxiliary storage space is available for system
operation:
During IPL

• Either the required number of page data sets was
not specified, or ASM detected a problem with a
required page data set.

• ASM has run out of usable storage-class memory
(SCM) while paging out the pageable link
pack area (PLPA) data during an enforce-mode
Validated Boot for z/OS.

After IPL
ASM has run out of usable auxiliary storage for the
pageable link pack area (PLPA), common or local
page data sets, and any storage-class memory
(SCM).

A reason code identifies the error:
Code

Explanation
00

The cause of the error cannot be determined
because of an error in recovery processing.

01
Insufficient paging space. All local paging data sets
are full, and there is no available SCM.

02
The PLPA data set is full, SCM is full, and the
common data set is unavailable.

03
The common data set is full, SCM is full, and the
PLPA data set is unavailable.

04
SCM is full, and the PLPA and common data sets
are unavailable, or Validated Boot for z/OS is
preventing paging to other data sets.

System action
During IPL, the system issues message IEA935W, then
enters this wait state. After IPL, the system issues
message ILR008W, then enters this wait state, unless
all the local page data sets and storage-class memory
(SCM) blocks were unusable; in that case, the system
does not issue a message before entering this wait
state.

Operator response
Notify the system programmer. ReIPL the system,
specifying larger page data sets or additional page
data sets, or additional SCM blocks.

System programmer response
Do one of the following:

• Redefine spaces to conform with the description
provided in paging planning specifications. Ask the
operator to reIPL with the CLPA option.

• Provide additional paging spaces and make them
available through either the PAGE parameter or the
IEASYSxx parmlib member during reIPL.

• After additional paging spaces are added and the
system is re-IPLed, issue the D ASM command to
monitor the available paging space to help prevent a
reoccurrence of the wait state condition.

• Provide additional SCM blocks and make them
available to the system using the CONFIG SCM
ONLINE command.

Source
Auxiliary storage manager (ASM)

A2D

Explanation
The PAGE=*NONE* parameter was specified but an
error occurred for one of the following reasons:

• No storage-class memory (SCM) is available for
paging. When *NONE* is used on the PAGE=
parameter, SCM must be online and available, and
PAGESCM=*NONE* must not be specified.

• Validated Boot for z/OS ignored the input paging
dataset because of enforce-mode and used *NONE*
instead, causing the error.

System action
• If no storage-class memory (SCM) is available for

paging, message IAR036W is issued and the system
enters wait state X'A2D'.

• If Validated Boot for z/OS ignored the input
paging dataset because of enforce-mode, message
IAR079W is issued and the system enters wait state
X'A2D'.

© Copyright IBM Corp. 2023 105

Operator response
Notify the system programmer.

System programmer response
If PAGE=*NONE* is intended, determine why SCM is
not available for paging. Configure SCM online for
the system and ensure that PAGESCM=*NONE* is not
specified. Alternatively, change *NONE* to a valid page
data set on the PAGE= system parameter.

Source
Real storage manager (RSM)

EC9

Explanation
The IPL requested Validated Boot in Secure mode and
an error was found.

The right-most four bytes of the program status word
(PSW) have the following format:

80rrrwww

where:
rrr

A hexadecimal reason code indicating the reason
for the failure.

www
The wait state code (x’EC9’)

The reason code is one of the following:
Code

Explanation
1

The module is not signed. Modules being validated
must be signed. Use the IEWSIGN utility to sign
the module.

2
The module’s signing records do not include an
entry for the module name itself. The module
might be corrupted. Possibly you renamed the
module which will cause validation to fail.

3
The module’s signing records has a directory entry
for the module name but it does not match the
actual directory entry. The module (or its directory
entry) might be corrupted.

4
The module is indicated as being signed but does
not have a signature record. The module might be
corrupted.

5
The module is signed with a hash algorithm that is
not supported. The module might be corrupted.

6
The module is signed with a signature algorithm
that is not supported. The module might be
corrupted.

7
The hash value in the signing records does not
match the hash value of the module itself. The
module might be corrupted.

8
The signing record indicates a key ID that must
be used for validation, but no certificate with that
key ID has been made available to this LPAR. Make
sure that the appropriate certificate is available to
this LPAR.

9
The signature verification did not succeed. The
module might be corrupted, or the certificate is no
longer valid.

X’A’
A module to be validated has the overlay attribute.
This is not supported. Remove this from the data
set with members being validated.

X’B’
The signature record has a version value that is not
supported. The module might be corrupted.

X’C’
Machine loader detected a problem.

X’101’
Report this error to IBM service.

X’102’
Report this error to IBM service.

X’103’
Report this error to IBM service.

X’104’
Report this error to IBM service.

X’105’
Report this error to IBM service.

X’106’
No validation certificates have been associated
with this LPAR. Associate the appropriate
certificate(s) with this LPAR.

At the time of the wait state, 64-bit general register 2
will contain the module name found to be in error (if
the problem is associated with an individual module)

System action
The system enters a nonrestartable wait state.

106 z/OS: Validated Boot for z/OS

Operator response
Record the wait state PSW. Notify the system
programmer, and obtain a stand-alone dump, if
requested.

System programmer response
Determine the reason for the failure, either from time
of error registers or, from a stand-alone dump using

the IEAVBIPC VERBexit. Correct the problem and re-
IPL. You could alternately re-IPL requesting validated
boot not in Secure mode and then using the IEAVBPRT
program to format the audit records that describe any
problems found.

Source
Initial Program Load (IPL)

Wait state code to module table
This table correlates wait state codes with module names. For each code, the associated component and
detecting module are listed.

If the wait state code you require does not appear in the table, contact the IBM Support Center. Provide
the wait state code.

Table 37. Wait state codes to modules reference

Wait state code (Hex) Component Detecting module

002 IOS IEAIPL00

003 IPL, IOS IEAIPL00 IEAIPL03

004 IOS IEAIPL03

005 IPL IEAIPL00

006 IPL IEAIPL00

007 Console services IEAVNPCA IEEVDCIO

009 NIP IEAVNPC4

00A IPL IEAVNP03

00B Master scheduler IEEVIPL

00D Master scheduler IEEVIPL

00E IPL IEAIPL00

014 Supervisor control IEAVEPCO IEAV9PCO

017 IPL IEAIPL00

019 IPL IEAIPL00

01B RTM IEESTPRS

01C Supervisor control IEAVESPR

020 Reconfiguration IEAVNP27

021 IOS IEAVNPM2

022 IOS IECVDAVV

023 System trace IEAVNP51

024 MCH IGFPTREC

025 IPL IEAIPL41

028 IOS IEAIPL40

Chapter 10. Wait state codes 107

Table 37. Wait state codes to modules reference (continued)

Wait state code (Hex) Component Detecting module

02E ASM ILRMSG00

02F ASM ILRCMP ILRMSG00

030 NIP IEAVNIP0

031 IOS IEAIPL03

032 NIP IEAVNIPM IEAVNIP0

033 NIP IEAVNIPM IEAVNIP0

035 IOS IEAIPL03

037 System Environmental Recording IEAVNP76

038 ASM IPL IEAIPL00 IEAVNP05 ILRASRIM

039 IOS IEAVNPM3

03A CSV IEAVNP05

03B CSV IEAVNP05

03C ASM ILRASRIM ILRIODRV ILRMSG00

03D VSM IEAVNP08

03E ASM ILRTMI00

03F NIP IEAVNPM2

040 NIP IEAVNIPM

044 NIP IEAVNIP0

045 RTM IEAVNIPM

046 NIP IEAVNIP0

04A NIP IEAVNIP0

050 Loadwait IGFPTSIG

051 ACR IGFPTERM

052 ACR IGFPTERM

053 IOS IPL NIP IEAIPL03 IEAIPL99 IEAVNIP0 IOSIUCB

054 IPL IEAIPL02

055 IOS IPL IEAIPL31 IEAIPL41 IEAIPL02 IEAIPL40

059 NIP IEAVNIP0

05C DFSMSdfp IEAVNP11

05D DFSMSdfp IEAVNP11

05E DFSMSdfp IEAVNP11

05F DFSMSdfp IEAVNP11

060 ASM ILRASRIM

061 ASM ILRASRIM

108 z/OS: Validated Boot for z/OS

Table 37. Wait state codes to modules reference (continued)

Wait state code (Hex) Component Detecting module

062 IOS IOSRCHPR

063 ASM IEAVNP03 IEAVNP11 IEAVNP19
ILRASRIM

064 NIP IEAVNIPM IEAVNIP0

065 NIP IEAVNIPM

06F IOS IOSVMSLG

070 IPL IEAIPL00

071 IPL IEAIPL41

072 IPL, IOS IEAIPL00 IEAIPL02 IEAIPL30 IEAIPL41
IEAIPL40 IEAIPL43 IEAIPL46 IEAIPL70
IEAIPL71 IEAIPL99 IEAIDRIA IOSISTOR

073 IPL IEAIPL00

074 IPL,IOS IEAIPL35 IEAIPL00 IEAIPL02 IEAIPL03

075 IPL IEAIPL00

076 IPL IEAIPL00

077 IEAIPL07

07B NIP IEAVNIP0

07C NIP, service processor interface ISNIRIM IEAIPL99 IEAVNIP0

07D NIP IEAVNPCF

07E Supervisor Control IEAVESVC IEAV9SVC

081 IPL IEAIPL00

082 Console services IEAVG603 IEAVN703

083 Supervisor control IEAVESAR

084 RTM IGFPEMER

085 ASM ILRASRIM ILRASRIM

087 Console services IEAVG603 IEAVG604 IEAVG605
IEAVG610 IEAVG611 IEAVM605
IEAVM613 IEAVM616 CNZQ1CNQ
IEAVMFRR CNZQ1MT2 CNZI1DLI
CNZM1TIM CNZM1TSK CNZM1TST
CNZQ1DCQ CNZQ1SLG IEAVN701
IEAVN703 IEECVSMA IEEVWAIT

088 IPL IEAIPL50

08A Console services IEAVBLWT

08B IOS IEAIPL40

08C WLM IWML2LWT

08E SRM IEAVNP10 IRARMERR

Chapter 10. Wait state codes 109

Table 37. Wait state codes to modules reference (continued)

Wait state code (Hex) Component Detecting module

08F Supervisor Control IEAVEGR

09x Loadwait IEEVEXSN

0A1 Loadwait IEEVEXSN

0A2 XCF IXCI2IST IXCI2ETX IXCI2PH1

0A3 GRS ISGNLD

0A4 Timer supervision IEATESC2 IEATESCH

0B0 IOS IEAIPL43

0B1 IOS IOSIOFR IEAIPL43

0B2 IOS IEAIPL71

0B3 IPL IEAIPL49

0B4 IOS IOSIUCB

0E1 Loadwait/Restart IEEVSTOP

0E3 VSM IEAVNP08

0E8 MCH IEAVNP06

101 VSM IEAVGM00

102 VSM IEAVGM00

104 Supervisor control IEAVESVR

110 IOS IOSRHREC

111 IOS IOSRHREC

112 IOS IOSRHREC

113 IOS IOSRCHPR

114 IOS IOSRCHPR

115 IOS IECVPST IOSVDAVV IECVPST

116 IOS IOSVRSTS

140 IOS IECVPST

200 ALC IEFAB4I0 IEFEB400

201 Console services IEAVN700

202 Console services IEAVN701

204 Allocation IEAIPL08

206 Timer IEAVNP21

5C7 Loadwait/Restart BLWLDWT BLWPTERM BLWPTSIG
BLWRSTOP

A00 RTM RTM

A01 MCH IGFPMCIH

A02 MCH IGFPMAIN

110 z/OS: Validated Boot for z/OS

Table 37. Wait state codes to modules reference (continued)

Wait state code (Hex) Component Detecting module

A19 IOS IOSRMCH

A1E Timer supervision NIP IEATESC2 IEAVRTOD IEATVTOD
IEATTSCH IEATTFDH IEATESCH
IEAVNIP0

A1F Timer supervision IEATESC2

A20 RSM IARMN

A21 RSM IARMN

A22 Master scheduler IEEVDCSR

A23 MCH IGFPMAIN

A24 MCH IGFPMAIN

A26 MCH IGFPMAIN

A27 Loadwait/Restart IEEVSTOP

A28 MCH IGFPMCIH

A29 Loadwait IGFPTERM

A2A RSM IEAVNPD8

A2C RSM IARMN

A2D RSM IAXBI

A2E RSM IAXRR

A70 Console services IEAVBWTO

A7A Service processor interface ISNAINIT ISNATACH ISNDAMAG ISNIH
ISNIRIM ISNMSI ISNRIM

B23 IOCP IEAVSTAA

CCC Loadwait IEEMPS03

D0D SMF IEEMB829

FF0 Installation-provided N/A

FF1 Installation-provided N/A

FF2 Installation-provided N/A

FF3 Installation-provided N/A

FF4 Installation-provided N/A

FF5 Installation-provided N/A

FF6 Installation-provided N/A

FF7 Installation-provided N/A

FF8 Installation-provided N/A

FF9 Installation-provided N/A

FFA Installation-provided N/A

Chapter 10. Wait state codes 111

Table 37. Wait state codes to modules reference (continued)

Wait state code (Hex) Component Detecting module

FFB Installation-provided N/A

FFC Installation-provided N/A

FFD Installation-provided N/A

FFE Installation-provided N/A

112 z/OS: Validated Boot for z/OS

Chapter 11. MVS data areas

The following data areas are updated to support Validated Boot for z/OS. Some data areas might be
abbreviated for presentation here. For complete information, see z/OS MVS Data Areas or the data area
source files in your system's macro library.

IHAVBA: Validated boot area
This topic describes the IHAVBA data area, which is a new macro in support of Validated Boot for z/OS.

IHAVBA programming interface information
IHAVBA is a programming interface.

IHAVBA heading information
Common name: Validated Boot Area

Macro ID: IHAVBA

DSECT name: VBA VB_CertExtract VB_AuditArea VB_AA_DSNE VB_AA_ModE

Owning
component:

Supervisor Control (SC1C5)

Eye-catcher ID: NONE

Storage attributes: Subpool: 245
Key: 0
Residency: above 16M

Size: VBA -- X'0040' bytes
VB_CertExtract -- X'0140' bytes
VB_AuditArea -- X'0070' bytes
VB_AA_DSNE -- X'0070' bytes
VB_AA_DSNE_ModE -- X'0100' bytes

Created by: IEAIPL99 and various others

Pointed to by: SVTVBAA (when not 0, and high bit is 0)

Serialization: None required

Function: Maps the interface data relevant to validated boot

IHAVBA mapping
Table 38. Structure VBA

Offset
Dec

Offset
Hex

Type Len Name(Dim) Description

0 (0) STRUCTURE 0 VBA SVTVBAA

0 (0) CHARACTER 4 VBA_ID

4 (4) BITSTRING 1 VBA_FLAGS

 Bit definitions:

 1... VBA_ENFORCE "X'80'"

 .1.. VBA_AUDIT "X'40'"

5 (5) BITSTRING 1 VBA_PAGING_FLAGS

© Copyright IBM Corp. 2023 113

Table 38. Structure VBA (continued)

Offset
Dec

Offset
Hex

Type Len Name(Dim) Description

 Bit definitions:

 1... VBA_PLPAPAGEDSSPEC "X'80'" PLPA data set specified

 .1.. VBA_SCMCANNOTHOLDLPA "X'40'"

6 (6) CHARACTER 2 Use one of these bytes for "version"
if we ever expand VBA

8 (8) ADDRESS 4 VBA_AUDITAREA_ADDR

12 (C) ADDRESS 4 VBA_FIRST_GOOD_CX_ADDR

16 (10) SIGNED 4 VBA_NUM_GOOD_CX

20 (14) SIGNED 4 VBA_NUM_BAD_CX

24 (18) ADDRESS 4 VBA_FIRST_BAD_CX_ADDR

24 (18) X'C2C140' 0 VBA_ID_CHARS "C'VBA '"

64 (40) X'40' 0 VBA_LEN "*-VBA"

Table 39. Structure VB_CERTEXTRACT

Offset
Dec

Offset
Hex

Type Len Name(Dim) Description

0 (0) STRUCTURE 0 VB_CERTEXTRACT

0 (0) CHARACTER 4 VB_CX_ID

4 (4) ADDRESS 4 VB_CX_NEXTADDR

8 (8) CHARACTER 4 For IBM use only

12 (C) SIGNED 4 VB_CX_NUMSUCCESSFULUSES

16 (10) CHARACTER 64 VB_CX_CERTNAME

80 (50) CHARACTER 32 VB_CX_CERTFP

112 (70) CHARACTER 20 VB_CX_KEYID Zeroes if bad key ID length

132 (84) CHARACTER 2 For IBM use only

134 (86) SIGNED 2 VB_CX_REASON_BAD

136 (88) CHARACTER 8 VB_CX_STARTTIME First 8 bytes of ETOD

144 (90) CHARACTER 8 VB_CX_EXPIRATIONTIME First 8 bytes of ETOD

152 (98) CHARACTER 2 For IBM use only

154 (9A) CHARACTER 6

160 (A0) CHARACTER 80 VB_CX_X Zeroes if bad key

240 (F0) CHARACTER 80 VB_CX_Y Zeroes if bad key

240 (F0) X'C2C3E7' 0 VB_CX_ID_CHARS "C'VBCX'"

240 (F0) X'1' 0 VB_CX_REASON_NOTSTARTED "1"

240 (F0) X'2' 0 VB_CX_REASON_EXPIRED "2"

240 (F0) X'3' 0 VB_CX_REASON_BADKEY "3"

240 (F0) X'4' 0 VB_CX_REASON_BADKEYTYPE "4"

240 (F0) X'5' 0 VB_CX_REASON_BADKEYIDLEN "5"

240 (F0) X'6' 0 VB_CX_REASON_BADHASHTYPE "6"

240 (F0) X'7' 0 VB_CX_REASON_BADHASHLEN "7"

 Reasons for validation failure

240 (F0) X'1' 0 VB_VF_NOTSIGNED "1"

240 (F0) X'2' 0 VB_VF_DENOTFOUND "2"

240 (F0) X'3' 0 VB_VF_DENOTMATCH "3"

114 z/OS: Validated Boot for z/OS

Table 39. Structure VB_CERTEXTRACT (continued)

Offset
Dec

Offset
Hex

Type Len Name(Dim) Description

240 (F0) X'4' 0 VB_VF_SIGNOTFOUND "4"

240 (F0) X'5' 0 VB_VF_BADHASHALG "5"

240 (F0) X'6' 0 VB_VF_BADSIGALG "6"

240 (F0) X'7' 0 VB_VF_BADHASHVAL "7"

240 (F0) X'8' 0 VB_VF_NOMATCHINGKEYID "8"

240 (F0) X'9' 0 VB_VF_SIGVERFAILED "9"

240 (F0) X'A' 0 VB_VF_OVERLAYMODULE "10"

240 (F0) X'B' 0 VB_VF_BADSIGRECVERSION "11"

240 (F0) X'C' 0 VB_VF_MACHLOADERERROR "12"

240 (F0) X'140' 0 VB_CERTEXTRACT_LEN "*-VB_CertExtract"

Table 40. Structure VB_AUDITAREA

Offset
Dec

Offset
Hex

Type Len Name(Dim) Description

0 (0) STRUCTURE 0 VB_AUDITAREA

0 (0) CHARACTER 4 VB_AA_ID

4 (4) SIGNED 4 VB_AA_NUMFAILURES

8 (8) CHARACTER 4 For IBM use only

12 (C) SIGNED 4 VB_AA_NUMFAILURES_NODSNE Could not allocate a DSNE so just
counted the failure

16 (10) CHARACTER 4 For IBM use only

20 (14) BITSTRING 1 VB_AA_FLAGS0

 Bit definitions:

 1... VB_AA_NOVB "X'80'" No validated boot possible

 .1.. VB_AA_NOGOODCERTS "X'40'"

21 (15) BITSTRING 1 VB_AA_HASHTABLE_DSNE_DIM Dimension of the array at
VB_AA_HashTable_DSNE_Area

22 (16) CHARACTER 2 Use one of these bytes for "version"
if we ever expand AuditArea

24 (18) SIGNED 4 VB_AA_NUM_DSNES Number of DSNE's

28 (1C) SIGNED 4 VB_AA_NUM_DSNE_MODES Number of ModE's

32 (20) SIGNED 4 VB_AA_NUM_SUCCESS_IPL Number of successful validations for
fetch type IPL

36 (24) SIGNED 4 VB_AA_NUM_SUCCESS_NUC Number of successful validations for
fetch type NUC

40 (28) SIGNED 4 VB_AA_NUM_SUCCESS_NIP Number of successful validations for
fetch type NIP

44 (2C) SIGNED 4 VB_AA_NUM_SUCCESS_LPA Number of successful validations for
fetch type LPA

48 (30) CHARACTER 16 Reserved

64 (40) CHARACTER 48 Reserved

112 (70) CHARACTER 1 VB_AA_HASHTABLE_DSNE_AREA(0)

 Start of array of 4-byte pointers
with the dimension in the "_Dim"
field. Each pointer, when not 0,
points to a chain of areas each
mapped by VB_AA_DSNE

112 (70) X'C2C1C1' 0 VB_AA_ID_CHARS "C'VBAA'"

112 (70) X'70' 0 VB_AUDITAREA_LEN "*-VB_AuditArea"

Chapter 11. MVS data areas 115

Table 41. Structure VB_AA_DSNE

Offset
Dec

Offset
Hex

Type Len Name(Dim) Description

0 (0) STRUCTURE 0 VB_AA_DSNE

0 (0) CHARACTER 8 VB_AA_DSNE_ID

8 (8) ADDRESS 4 VB_AA_DSNE_NEXT_ADDR

12 (C) CHARACTER 4 For IBM use only

16 (10) CHARACTER 44 VB_AA_DSNE_DSNAME A value of "*" indicates that this
entry applies regardless of data
set name, such as "no certificate
entries". A value of zeroes applies
only for IEAIPL00 and indicates not
known

60 (3C) CHARACTER 6 VB_AA_DSNE_VOLID The volume ID, unless DSName is
zeroes or *, indicating not known.

66 (42) CHARACTER 2 Use one of these bytes for "version"
if we ever expand AA_DSNE

68 (44) SIGNED 4 VB_AA_DSNE_NUMFAILURES

72 (48) CHARACTER 4 For IBM use only

76 (4C) SIGNED 4 VB_AA_DSNE_NUMFAILURES_NOMODE

 Could not allocate a ModE so just
counted the failure

80 (50) CHARACTER 4 For IBM use only

84 (54) CHARACTER 3

87 (57) BITSTRING 1 VB_AA_DSNE_HASHTABLE_MODE_DIM

 Dimension of the array at
VB_AA_DSNE_HashTable_Mode_Area

88 (58) CHARACTER 16 VB_AA_DSNE_FAILTIME First fail time

104 (68) SIGNED 4 VB_AA_DSNE_NUM_DSNE_MODES Number of ModE's for this DSNE

108 (6C) CHARACTER 4

112 (70) CHARACTER 1 VB_AA_DSNE_HASHTABLE_MODE_AREA(0)

 Start of array of 4-byte pointers
with the dimension in the "_Dim"
field. Each pointer, when not 0,
points to a chain of areas each
mapped by VB_AA_DSNE_ModE

112 (70) X'C2C1C1' 0 VB_AA_DSNE_ID_CHARS_0TO3 "C'VBAA'" This is the first 4-byte
segment of an 8-byte constant.

112 (70) X'E2D5C5' 0 VB_AA_DSNE_ID_CHARS_4TO7 "C'DSNE'" This is the second 4-byte
segment of an 8-byte constant.

112 (70) X'70' 0 VB_AA_DSNE_LEN "*-VB_AA_DSNE"

Table 42. Structure VB_AA_DSNE_MODE

Offset
Dec

Offset
Hex

Type Len Name(Dim) Description

0 (0) STRUCTURE 0 VB_AA_DSNE_MODE

0 (0) CHARACTER 8 VB_AA_DSNE_MODE_ID

8 (8) ADDRESS 4 VB_AA_DSNE_MODE_NEXT_ADDR

12 (C) CHARACTER 4 For IBM use only

16 (10) CHARACTER 8 Use one of these bytes for "version"
if we ever expand AA_DSNE_ModE

24 (18) CHARACTER 8 VB_AA_DSNE_MODE_MODNAME

32 (20) BITSTRING 1 VB_AA_DSNE_MODE_FLAGS

 Bit definitions:

116 z/OS: Validated Boot for z/OS

Table 42. Structure VB_AA_DSNE_MODE (continued)

Offset
Dec

Offset
Hex

Type Len Name(Dim) Description

 1... VB_AA_DSNE_MODE_FOUNDSIG "X'80'" Found the signature record
for this module

 .1.. VB_AA_DSNE_MODE_FOUNDCERT "X'40'" Found a certificate with a
key ID matching the key ID in the
signature record. That certificate
will be used to attempt validation
(as will any other certificate with
an identical key ID)

 ..1. VB_AA_DSNE_MODE_HAVEMACHLOADERERRORS

 "X'20'" MachLoaderErrors has
information

33 (21) BITSTRING 1 VB_AA_DSNE_MODE_FETCHTYPE

34 (22) SIGNED 2 VB_AA_DSNE_MODE_FAILURE_REASON

36 (24) SIGNED 4 VB_AA_DSNE_MODE_NUMFAILURES

40 (28) CHARACTER 16 VB_AA_DSNE_MODE_FAILTIME First fail time

56 (38) CHARACTER 64 VB_AA_DSNE_MODE_CX_CERTNAME

 Valid only when FoundCert

120 (78) CHARACTER 32 VB_AA_DSNE_MODE_CERTFP Valid only when FoundSig

152 (98) CHARACTER 20 VB_AA_UNION

152 (98) CHARACTER 20 VB_AA_DSNE_MODE_KEYID Valid only when FoundSig

152 (98) CHARACTER 6 VB_AA_DSNE_MODE_MACHLOADERERRORS

 Errors found by machine loader. Valid
only when haveMachLoaderErrors

152 (98) BITSTRING 4 VB_AA_DSNE_MODE_MLE_SCLAFED

 Secure code loading attribute
facilities error details

156 (9C) BITSTRING 2 VB_AA_DSNE_MODE_MLE_IIEI IPL Information error indicators

172 (AC) CHARACTER 4 For IBM use only

176 (B0) CHARACTER 16 VB_AA_DSNE_MODE_SIGNTIME Valid only when FoundSig

192 (C0) CHARACTER 64 VB_AA_DSNE_MODE_DIGEST The expected hash value. Valid only
when FoundSig

192 (C0) X'C2C1C1' 0 VB_AA_DSNE_MODE_ID_CHARS_0TO3

 "C'VBAA'" This is the first 4-byte
segment of an 8-byte constant.

192 (C0) X'D6C4C5' 0 VB_AA_DSNE_MODE_ID_CHARS_4TO7

 "C'MODE'" This is the second 4-byte
segment of an 8-byte constant.

192 (C0) X'0' 0 VB_AA_DSNE_MODE_FETCHTYPE_MIN

 "0"

192 (C0) X'0' 0 VB_AA_DSNE_MODE_FETCHTYPE_IPL

 "0"

192 (C0) X'1' 0 VB_AA_DSNE_MODE_FETCHTYPE_NUC

 "1"

192 (C0) X'2' 0 VB_AA_DSNE_MODE_FETCHTYPE_NIP

 "2"

192 (C0) X'3' 0 VB_AA_DSNE_MODE_FETCHTYPE_LPA

 "3"

192 (C0) X'3' 0 VB_AA_DSNE_MODE_FETCHTYPE_MAX

 "3"

192 (C0) X'100' 0 VB_AA_DSNE_MODE_LEN "*-VB_AA_DSNE_ModE"

Chapter 11. MVS data areas 117

Table 43. Cross Reference for IHAVBA

Name Offset Hex Tag

VB_AA_DSNE 0

VB_AA_DSNE_DSNAME 10

VB_AA_DSNE_FAILTIME 58

VB_AA_DSNE_HASHTABLE_MODE_AREA 70

VB_AA_DSNE_HASHTABLE_MODE_DIM 57

VB_AA_DSNE_ID 0

VB_AA_DSNE_ID_CHARS_0TO3 70 C2C1C1

VB_AA_DSNE_ID_CHARS_4TO7 70 E2D5C5

VB_AA_DSNE_LEN 70 70

VB_AA_DSNE_MODE 0

VB_AA_DSNE_MODE_CERTFP 78

VB_AA_DSNE_MODE_CX_CERTNAME 38

VB_AA_DSNE_MODE_DIGEST C0

VB_AA_DSNE_MODE_FAILTIME 28

VB_AA_DSNE_MODE_FAILURE_REASON 22

VB_AA_DSNE_MODE_FETCHTYPE 21

VB_AA_DSNE_MODE_FETCHTYPE_IPL C0 0

VB_AA_DSNE_MODE_FETCHTYPE_LPA C0 3

VB_AA_DSNE_MODE_FETCHTYPE_MAX C0 3

VB_AA_DSNE_MODE_FETCHTYPE_MIN C0 0

VB_AA_DSNE_MODE_FETCHTYPE_NIP C0 2

VB_AA_DSNE_MODE_FETCHTYPE_NUC C0 1

VB_AA_DSNE_MODE_FLAGS 20

VB_AA_DSNE_MODE_FOUNDCERT 20 40

VB_AA_DSNE_MODE_FOUNDSIG 20 80

VB_AA_DSNE_MODE_HAVEMACHLOADERERRORS 20 20

VB_AA_DSNE_MODE_ID 0

VB_AA_DSNE_MODE_ID_CHARS_0TO3 C0 C2C1C1

VB_AA_DSNE_MODE_ID_CHARS_4TO7 C0 D6C4C5

VB_AA_DSNE_MODE_KEYID 98

VB_AA_DSNE_MODE_LEN C0 100

VB_AA_DSNE_MODE_MACHLOADERERRORS 98

VB_AA_DSNE_MODE_MLE_IIEI 9C

VB_AA_DSNE_MODE_MLE_SCLAFED 98

VB_AA_DSNE_MODE_MODNAME 18

VB_AA_DSNE_MODE_NEXT_ADDR 8

VB_AA_DSNE_MODE_NUMFAILURES 24

VB_AA_DSNE_MODE_SIGNTIME B0

VB_AA_DSNE_NEXT_ADDR 8

118 z/OS: Validated Boot for z/OS

Table 43. Cross Reference for IHAVBA (continued)

Name Offset Hex Tag

VB_AA_DSNE_NUM_DSNE_MODES 68

VB_AA_DSNE_NUMFAILURES 44

VB_AA_DSNE_NUMFAILURES_NOMODE 4C

VB_AA_DSNE_VOLID 3C

VB_AA_FLAGS0 14

VB_AA_HASHTABLE_DSNE_AREA 70

VB_AA_HASHTABLE_DSNE_DIM 15

VB_AA_ID 0

VB_AA_ID_CHARS 70 C2C1C1

VB_AA_NOGOODCERTS 14 40

VB_AA_NOVB 14 80

VB_AA_NUM_DSNE_MODES 1C

VB_AA_NUM_DSNES 18

VB_AA_NUM_SUCCESS_IPL 20

VB_AA_NUM_SUCCESS_LPA 2C

VB_AA_NUM_SUCCESS_NIP 28

VB_AA_NUM_SUCCESS_NUC 24

VB_AA_NUMFAILURES 4

VB_AA_NUMFAILURES_NODSNE C

VB_AA_UNION 98

VB_AUDITAREA 0

VB_AUDITAREA_LEN 70 70

VB_CERTEXTRACT 0

VB_CERTEXTRACT_LEN F0 140

VB_CX_CERTFP 50

VB_CX_CERTNAME 10

VB_CX_EXPIRATIONTIME 90

VB_CX_ID 0

VB_CX_ID_CHARS F0 C2C3E7

VB_CX_KEYID 70

VB_CX_NEXTADDR 4

VB_CX_NUMSUCCESSFULUSES C

VB_CX_REASON_BAD 86

VB_CX_REASON_BADHASHLEN F0 7

VB_CX_REASON_BADHASHTYPE F0 6

VB_CX_REASON_BADKEY F0 3

VB_CX_REASON_BADKEYIDLEN F0 5

VB_CX_REASON_BADKEYTYPE F0 4

VB_CX_REASON_EXPIRED F0 2

Chapter 11. MVS data areas 119

Table 43. Cross Reference for IHAVBA (continued)

Name Offset Hex Tag

VB_CX_REASON_NOTSTARTED F0 1

VB_CX_STARTTIME 88

VB_CX_X A0

VB_CX_Y F0

VB_VF_BADHASHALG F0 5

VB_VF_BADHASHVAL F0 7

VB_VF_BADSIGALG F0 6

VB_VF_BADSIGRECVERSION F0 B

VB_VF_DENOTFOUND F0 2

VB_VF_DENOTMATCH F0 3

VB_VF_MACHLOADERERROR F0 C

VB_VF_NOMATCHINGKEYID F0 8

VB_VF_NOTSIGNED F0 1

VB_VF_OVERLAYMODULE F0 A

VB_VF_SIGNOTFOUND F0 4

VB_VF_SIGVERFAILED F0 9

VBA 0

VBA_AUDIT 4 40

VBA_AUDITAREA_ADDR 8

VBA_ENFORCE 4 80

VBA_FIRST_BAD_CX_ADDR 18

VBA_FIRST_GOOD_CX_ADDR C

VBA_FLAGS 4

VBA_ID 0

VBA_ID_CHARS 18 C2C140

VBA_LEN 40 40

VBA_NUM_BAD_CX 14

VBA_NUM_GOOD_CX 10

VBA_PAGING_FLAGS 5

VBA_PLPAPAGEDSSPEC 5 80

VBA_SCMCANNOTHOLDLPA 5 40

120 z/OS: Validated Boot for z/OS

Chapter 12. RACF data areas

The following RACF data areas are updated to support Validated Boot for z/OS. Some data areas are
abbreviated for presentation here. For complete information, see z/OS Security Server RACF Data Areas.

COMP: Common SAF/RACF Parameter List for z/OS UNIX System
Services

This topic contains details for changes to the COMP data area for Validated Boot for z/OS. It contains only
the section that was changed. For the complete data area, see z/OS Security Server RACF Data Areas.

COMP programming interface information
COMP is a programming interface.

COMP mapping
Table 44. Structure COMP

Offset
Dec

Offset
Hex

Type Len Name(Dim) Description

PGSN

0 (0) STRUCTURE 16 PGSN Mapping for PGSN

0 (0) ADDRESS 4 PGSN_NUM_PARMS@ Address of a fullword containing
the total number of parameters
included in COMP and PGSN.

4 (4) ADDRESS 4 PGSN_FUNC@ Address of 2-byte function code.
Constants for the function codes
are supplied below.

8 (8) ADDRESS 4 PGSN_FUNC_PARML@ Address of the function-specific
parameter list corresponding to
the function code. See z/OS
Security Server RACF Callable
Services for function specific
parameter lists for callable service
R_PgmSignVer.

12 (C) ADDRESS 4 PGSN_FUNC_ATTRS@ Address of a 4-byte variable that
contains the attribute flags for the
service.

PKIS

0 (0) STRUCTURE 28 PKIS Mapping for PKIS

0 (0) ADDRESS 4 PKIS_NUM_PARMS@ Address of a 4-byte variable that
contains the number of parameters
that follow in the non-request
specific portion of the R_PKIServ
callable service Parameter List

© Copyright IBM Corp. 2023 121

Table 44. Structure COMP (continued)

Offset
Dec

Offset
Hex

Type Len Name(Dim) Description

4 (4) ADDRESS 4 PKIS_FUNC@ Address of a 2-Byte variable
that contains the code of the
requested function. Constants for
the function codes codes are
declared below

8 (8) ADDRESS 4 PKIS_ATTRIBUTES@ Address of a 4-Byte variable that
contains attribute flags for the
service

12 (C) ADDRESS 4 PKIS_LOG_STRING@ Address of a Variable-Length area
that contains the LOG string to be
passed to RACROUTE (1 byte for
the length followed by up to 255
bytes for the LOG string itself)

16 (10) ADDRESS 4 PKIS_PARM_VER@ Address of a 4-Byte variable that
contains the version number of the
Function Specific Parameter List
(PKIS_FUNC_PARML@)

20 (14) ADDRESS 4 PKIS_FUNC_PARML@ Address of the FSPL - Function
Specific Parameter List (FSPL = the
Parameter List that corresponds to
the Function Code)

 PKIS_LAST_PARM Variable length parameter list. This
is the last parameter

24 (18) ADDRESS 4 PKIS_CA_DOMAIN@ Address of the name of the
PKI Services certificate authority
instance to be invoked.

COMY: 64-bit enabled SAF callable services
This topic contains details for changes to the COMY data area for Validated Boot for z/OS. It contains only
the section that was changed. For the complete data area, see z/OS Security Server RACF Data Areas.

COMY programming interface information
COMY is a programming interface.

COMY heading information
Common name: SAF Common Security Parameter List (64 bit)

Macro ID: IRRPCOMY

DSECT name: COMY, PGSN64, RAUX64, PKIS64

Owning
component:

Resource Access Control Facility (SC1BN)

Eye-catcher ID: None

122 z/OS: Validated Boot for z/OS

Storage
attributes:

Subpool
N/A

Key
Any

Residency
Invoker's primary address space

Size: Section
Size

COMY
56 bytes

PGSN64
32 bytes

PKIS64
60 bytes

RAUX64
80 bytes

Created by: Invoker of 64-bit enabled callable services

Pointed to by: Address of COMY is passed in register 1 when invoking 64-bit enabled callable services

Serialization: None

Function: Maps the common input parameter list for the 64-bit RACF and SAF callable services
routers

COMY mapping
Table 45. Structure COMY

Offset
Dec

Offset
Hex

Type Len Name(Dim) Description

0 (0) STRUCTURE 0 COMY SAF enabled callable services.

0 (0) ADDRESS 8 COMY_WORKA_STOR@ Address of 1024 byte work area

8 (8) ADDRESS 8 COMY_SAFRC_ALET@ Address of ALET for SAF return
code

16 (10) ADDRESS 8 COMY_SAFRC_STOR@ Address of SAF return code

24 (18) ADDRESS 8 COMY_RACRC_ALET@ Address of ALET for RACF return
code

32 (20) ADDRESS 8 COMY_RACRC_STOR@ Address of RACF return code

40 (28) ADDRESS 8 COMY_RACSC_ALET@ Address of ALET for RACF
reason code

48 (30) ADDRESS 8 COMY_RACSC_STOR@ Address of RACF reason code

PGSN64

0 (0) STRUCTURE 24 PGSN64 Mapping for PGSN64

0 (0) ADDRESS 8 PGSN64_NUM_PARMS@ Address of a fullword containing
the total number of parameters
included in COMY and PGSN64.

Chapter 12. RACF data areas 123

Table 45. Structure COMY (continued)

Offset
Dec

Offset
Hex

Type Len Name(Dim) Description

8 (8) ADDRESS 8 PGSN64_FUNC@ Address of a 2-byte function
code. See data area COMP for
the function code constants.

16 (10) ADDRESS 8 PGSN64_FUNC_PARML@ Address of the function specific
parameter list corresponding to
the function code. See z/OS
Security Server RACF Callable
Services for function specific
parameter lists for callable
service R_PgmSignVer.

24 (18) ADDRESS 8 PGSN64_FUNC_ATTR@ Address of a 4-byte variable
that contains the attribute flags
for the service.

RAUX64

0 (0) STRUCTURE 152 RAUX64

0 (0) ADDRESS 8 RAUX64_NUM_PARMS@ Address of a fullword containing
the total number of parameters
included in COMY and RAUX64.

… … … … …

RCVT: RACF Communication Vector Table
This topic contains details for changes to the RCVT data area for Validated Boot for z/OS. It contains only
the section that was changed. For the complete data area, see z/OS Security Server RACF Data Areas.

RCVT programming interface information
RCVT is NOT a programming interface. The following fields are the only intended Programming
Interfaces in RCVT:

• RCVT
• RCVTAPTR
• RCVTCDTL
• RCVTDATP
• RCVTDNL
• RCVTENVP
• RCVTFLGS
• RCVTFLG1
• RCVTFLG3
• RCVTFRCP
• RCVTGENT
• RCVTGLBL
• RCVTID
• RCVTIDPV
• RCVTINAC

124 z/OS: Validated Boot for z/OS

• RCVTISTL
• RCVTJALL
• RCVTJCHK
• RCVTJSYS
• RCVTJUND
• RCVTJXAL
• RCVTLNOD
• RCVTMFLG
• RCVTMFL1
• RCVTML2F
• RCVTPALG
• RCVTPINV
• RCVTPNL0
• RCVTPTGN
• RCVTRCVI
• RCVTRELS
• RCVTREXP
• RCVTRL
• RCVTRNA
• RCVTROFF
• RCVTRVOK
• RCVTSTAT
• RCVTSTA1
• RCVTTAPE
• RCVTTDSN
• RCVTVERS
• RCVTVRN
• RCVTVRMN
• RCVTWARN
• RCVTWUID

Application Programmers:

The RCVT fields listed above are Programming Interfaces for input only, with the following exceptions:

• RCVTISTL and RCVTAPTR can be both input and output
• RCVTREXP and RCVTFRCP are not part of the application programming interface.

Notes:

1. The 118th bit of the RCVTVCPR field is a programming interface for input only. It can be used to
quickly check if the SECLABEL class is active. If the bit is on, the class is active.

2. For external security managers (ESMs) such as RACF or ESMs that are functionally compatible with
RACF: The RCVT fields listed above are Programming Interfaces for both input and output. The ESM
is responsible for creating the RCVT, attaching it to the communication vector table (CVT), and putting
appropriate data into these fields in order to be compatible with RACF and the way that IBM products
use the RCVT.

Chapter 12. RACF data areas 125

RCVT heading information
Common name: RACF communication vector table

Macro ID: ICHPRCVT

DSECT name: RCVT

Owning
component:

Resource Access Control Facility (SC1BN)

Eye-catcher ID: RCVT (Offset: 0, Length: 4)

Storage
attributes:

Subpool
SQA

Key
0

Size: 2308 bytes

Created by: RACF initialization or equivalent

Pointed to by: CVTRAC

Serialization: None

Function: Communication area for information global to RACF functions (or equivalent product
functions)

RCVT mapping
Table 46. Structure RCVT

Offset
Dec

Offset
Hex

Type Len Name(Dim) Description

0 (0) STRUCTURE 2038 RCVT LOCATED THROUGH CVT

0 (0) CHARACTER 4 RCVTID EBCDIC ID

4 (4) ADDRESS 4 RCVTDCB PTR DCB OF RACF DATA SET

8 (8) ADDRESS 4 RCVTDEB PTR DEB OF RACF DATA SET

12 (C) ADDRESS 4 RCVTINDX PTR RACF RESIDENT INDEX
TABLE OR ZERO IF NO INDEX
BLOCKS RESIDENT

… … … … … …

633 (279) BITSTRING 1 RCVTFLG3 Miscellaneous flags

 1... RCVTDCDT Dynamic CDT is active

 .1.. RCVTPLC Allow lower case passwords

 ..1. RCVTCFLD Custom Fields are in effect

 ...1 RCVTAUTU Authority used is available to
authorization exits

 1... RCVTPSC Special characters are allowed in
passwords

 1.. RCVTXPWD Extended password support is
available

 1. RCVTMFA MFA functions are available

126 z/OS: Validated Boot for z/OS

Table 46. Structure RCVT (continued)

Offset
Dec

Offset
Hex

Type Len Name(Dim) Description

 1 RCVTMAIL E-mail support available

634 (27A) SIGNED 1 RCVTPMIN Minimum days between password
changes

635 (27B) UNSIGNED 1 RCVTPALG Password algorithm in effect: 0
= Existing algorithm as indicated
by ICHDEX01 (masking, DES, or
installation-defined) 1 = KDFAES

636 (27C) UNSIGNED 2 RCVTPMEM Password algorithm memory
factor.

638 (27E) UNSIGNED 2 RCVTPREP Password algorithm iteration
factor.

640 (280) BITSTRING 1 RCVTFLG4 Function availability bits

1... RCVTRPFF Indicates that the R_Password
fast-fail option is available

.1.. RCVTMFA3 MFA3 Functions (OA20930) are
available.

..1. RCVTIDT IDT Functions (OA55926) are
available.

...1 RCVTEPT Enhanced PassTicket Functions
(OA59196) are available.

.... 1... RCVTPHIA Phrase interval functions
(OA61951) are available.

.... .1.. * Reserved.

.... ..1. RCVTVABT Validated Boot for z/OS functions
(OA63507) are available.

.... ...1 * Reserved

696 (2B8) CHARACTER 8 RCVTJSYS USER-ID from the SETROPTS
command JES(NJEUSERID(user-
id))

704 (2C0) CHARACTER 8 RCVTJUND USER-ID from the
SETROPTS command
JES(UNDEFINEDUSER(user-id))

712 (2C8) ADDRESS 4 RCVTTMP2 ADDRESS OF RDS TEMPLATES

716 (2CC) ADDRESS 4 RCVTRCK4 ADDRESS OF IRRRCK04

720 (2D0) ADDRESS 4 RCVTSVC0 ADDRESS OF ICHSVC00

724 (2D4) ADDRESS 4 RCVTPTGN ADDRESS OF THE PASSTICKET
ROUTINE

728 (2D8) ADDRESS 4 RCVTFRX4 ADDRESS OF FASTAUTH POST-
PROCESSING INSTALLATION EXIT
FOR DATASPACE (ICHRFX04)

732 (2DC) ADDRESS 4 RCVTDX11 ADDRESS OF ICHDEX11

736 (2E0) ADDRESS 4 RCVTXLT0 ADDRESS OF IRRRXT02

Chapter 12. RACF data areas 127

Table 46. Structure RCVT (continued)

Offset
Dec

Offset
Hex

Type Len Name(Dim) Description

740 (2E4) ADDRESS 4 RCVTGLS6 ADDRESS OF ICHGLS06

744 (2E8) ADDRESS 4 RCVTDPTB ADDRESS OF DYNAMIC PARSE
TABLE

748 (2EC) ADDRESS 4 RCVTRCK2 ADDRESS OF IRRRCK02

752 (2F0) ADDRESS 4 RCVTRX10 Address of IRRRXT10

756 (2F4) ADDRESS 4 RCVTRX11 Address of IRRRXT11

760 (2F8) ADDRESS 4 RCVTDSPC Address of IRRDSP00

764 (2FC) BITSTRING 1 RCVTFL2X RACF SETROPTS options

 1... RCVTCMPM SETROPTS COMPATMODE IS
ACTIVE

 .1.. RCVTMLSF 1 - SETROPTS MLS (FAILURES) IS
IN EFFECT
0 - SETROPTS MLS (WARNING) IS
IN EFFECT

 ..1. RCVTMLAF 1 - SETROPTS MLACTIVE
(FAILURES) IS IN EFFECT
0 - SETROPTS MLACTIVE
(WARNING) IS IN EFFECT

 ...1 RCVTCATF 1 - SETROPTS CATDSNS
(FAILURES) IS IN EFFECT
0 - SETROPTS CATDSNS
(WARNING) IS IN EFFECT

 1... RCVTAAPL SETROPTS APPLAUDIT IS ACTIVE

 1.. RCVTNADC SETROPTS NOADDCREATOR IS IN
EFFECT

 1. RCVTGNOE SETROPTS
ENHANCEDGENERICOWNER -ON
if active. RCVTGNOW also ON if
RCVTGNOE is ON.

 1 * Reserved

765 (2FD) BITSTRING 1 RCVTNJEF NJE Flags

 1... RCVTJWTO Flag indicating WTO has been
issued for NJE, if "ON" - (1)

 .111 1111 * Reserved

… … … … …

2308 (904) CHARACTER * END OF RCVT

128 z/OS: Validated Boot for z/OS

Chapter 13. Load module formats

This topic contains general-use programming interface and associated guidance information.

This topic contains load record formats (see "SYM record (load module)" through "Record format of load
module IDRs-part 3").

Input conventions
Load modules to be processed in a single execution of the binder must conform with a number of input
conventions. Violations of the following are treated as errors by the binder:

• All the ESD records must precede the text records.
• The end of every load module must be marked by an EOM flag.
• RLD items must appear after the text record containing the adcons which they describe.
• All SYM records must be placed at the beginning of the load module.
• During a single execution of the binder, if two or more control sections having the same name are read

in, only the first control section is accepted; the subsequent control sections are deleted
• The binder interprets common (CM) entries in the ESD (blank or with the same name) as references to

a single control section whose length is the maximum length specified in the CM items of that name (or
blank). No text can be contained in a common control section

Record formats
Figure 1 on page 129 through Figure 7 on page 135 are the load module record formats for the linkage
editor.

0 2,3 4-243

Identification-specifies this is a SYM record -- 0100 0000 (1 byte)

Subtype-specidies information for TESTRAN-(1byte)
1000 0000 - this SYM record contains ESD items (SD, PC, or CM) from a load
module that was not "under test"
The TEST attribute was not specified when it was link edited.
0000 0000 - this SYM record is not the above type.

Count-in bytes, of SYM and ESD data (2 bytes)

SYM data and ESD data
(ESD type SD, CM, and PC items)-(maximum of 240 bytes)

SYM Record - (Load Module)

1

Figure 1. SYM record (load module)

© Copyright IBM Corp. 2023 129

Figure 2. CESD record (load module)

130 z/OS: Validated Boot for z/OS

0

Identification -- identifies this as a scatter/translation record-0001 0000 (1 byte)

Zero - binary zeros (1 byte)

Count - in bytes, of data field (2 bytes)

Scatter/Translation Record

1 2,3

?-Data - can contain translation table or scatter table; or both,
if both will fir in 1020 bytes.

4-1023 up to and including 1020 bytes

Zero-binary zeros (2 bytes)

Translation Table Entry-pointer to the scatter table entry that contains the address of the control
section containing this CESD entry. Number of translation table
entries=number of CESD
entries + 1=n. Pointer will be zero if its corresponding CESD entry is not SD,
PC,
CM, or LR. (2 bytes)

Translation Table

T
1

Padding-if necessary, to force fullword
boundary alignment of scatter table (2 bytes)

T
2

T
n

T T T T T

Zero - binary zeros (1 byte)

Flags (1 byte)
xxxx ..x. not used
.... R... RSECT information

0=not read-only
1=read-only

.... .R.. MODE data
0=not read-only
1=read-only

Scatter Table

Assigned Address-of a control section (SD, PC, or CM)(3 bytes)

.... ...H Hieracrchy (OS/MVT)
0=processor storage
1=2361 storage

Translation data (2 bytes)

Translation Table and Scatter Table

T
1

T
2

T
n

T P

T
3

T
3

T T S
1

S
2

SS
3

S
1

S
n

Binary Zeros (4 bytes)Binary Zero (2 bytes)

Scatter Table Entry

Padding-if necessary to align scatter table to a fullword
boundary (2 bytes)

Figure 3. Scatter/Translation record

Chapter 13. Load module formats 131

0 4,5 16-255

Identification (1 BYTE) -specifies that this is:

Count-in bytes, of the control data (CESDID, length of control section) following the
CCW field (2 bytes)

Control data - see data

Control Record-(Load Module)

1,2 Record Length 20 to 256 bytes for level F8-156,7

Channel Command Word (CCW)-that could be used to read the text record
that follows. The data address field contains the linkage editor assigned
address of the first byte of text in the text record that follows. The count
field contains the length of the succeeding text record. (8 bytes)

Count-binary zeros (2 bytes)

3

Count (1 byte) of RLD and/or CTL/RLD records following next text record

Spare-binary zeros (2 bytes)

-- a control record-0000 0001
-- the control record that precedes the last text record of this overlay

segment-0000 0101 (EOS)
-- the control record that precedes the last text record of the

module-0000 1101 (EOM)

Control Data

C L C L C L

Length of text record and/or length of control section-specifies
the length of the control section (in bytes) to which the text in the
following record belongs, or the number of bytes of a control
section contained in the following text record (2 bytes)

CESD entry number-specifies the composite external symbol
dictionary entry that contains the control section name of the control
section of which this text is a part (2 bytes)

Figure 4. Control record (load module)

132 z/OS: Validated Boot for z/OS

0 3

Identification (1 byte) - specifies that this record is:
- a relocation dictionary record -0000 0010
- the last record of the segment -0000 0110
- the last record of the module -0000 1110

Spare-binary zeros (2 bytes)

Count (1 byte) of RLD and/or CTL/RLD records following text record

Spare- binary zeros (8 bytes)

Relocation Dictionary Record-(Load Module)

1,2 4,5 6,7

Count-in bytes of the relocation dictionary information following the spare 8-byte
field (2 bytes)

Count-binary zeros (2 bytes)

RLD data - see below

8-15 16-255 Record length can be between 24 and 256

R F

Relocation pointer (R)-contains the entry number of the CESD entry (or translation table entry) that indicates
which symbol value is to be used in the computation of the address constant's value
(2 bytes)

Position pointer (P)-contains the entry number of the CESD entry (or translation table entry) that
indicates which control section hold the address constant (2 bytes)

Flag-(1 byte) When byte format is xxxxLLST
specifies miscellaneous inforamtion as follows:

RLD Data

P A F

Address-linkage editor
assigned address of the
address constant (3 bytes)

A F RA P F A R P F A

x1xx add 4 to the length (LL) field to obtain actual length
xxxx specifies the type of this RLD item (address constant)
xx00--nonbranch-type in assembler language, DC A (name)
xx01--branch-type in assembler language, DC V (name)
xx10--pseudoregister displacement value
xx11--pseudoregister cumulative displacement value
1000 and 1001--this address constant is not to be relocated because it refers to an
unresolved symbol
LL specifies the length of the address constant.
01--two byte
10--three byte
11--four byte
S specifies the direction of relocation.
0--positive
1--negative
T specifies the type of the next RLD item.
0--the following RLD item has a different relocation and/or position pointer
1--the following RLD item has the same relocation and position pointers as this and
therefore is omitted
However, if the byte contents match the following templates, then these are
relative immediate RLDs
x11100xx - this is a two byte relative immediate RLD item
x11110xx - this is a four byte relative immediate RLD item

Figure 5. Relocation dictionary record (load module)

Chapter 13. Load module formats 133

0 4,5

Identification (1 byte) - specifies that this record is:
-- a control and RLD record-0000 0011-(it is followed by a text record)
-- a control and RLD record that is followed by the last text record of a

segment-0000 0111
-- a control and RLD record that is followed by the last text record of a

module-0000 1111

Spare-binary zeros (2 bytes)

Count (1 byte) of RLD and/or CTL/RLD records following the next text record

Relocation pointer (2 bytes)

Control and Relocation Dictionary Record - (Load Module)

1-2 6,7 8-15

Channel Command Word (8 bytes)

Count, in bytes, of RLD information (2 bytes)

Position pointer (2 bytes)

Flag (1 byte)

Address (3 bytes)

Flag

Address

CESD entry number
(2 bytes)

Length of
control section
or text record
(2 bytes)

Notes: For detailed descriptions of the data fields see Relocation Dictionary Record and Control Record.
The record length varies from 20 to 256 bytes.

3

Count, in bytes, of control information following the last RLD address field.
The control information contains the ID and length of control sections in the following
text record. (2 bytes)

Figure 6. Control and relocation dictionary record (load module)

134 z/OS: Validated Boot for z/OS

0 2 3-255

Identification-indicates that this is:
1000 0000 - CSECT Identification record.

Byte Count-of IDR data in this record, including this field (value range 6 to 255).

Sub-Type Indicator-specified type of IDR data contained on this record (bits 1-3 reserved)
---- 0001 data supplied by HMASPZAP
---- 0010 Linkage Editor data
---- 0100 Translator-supplied data
---- 1000 User (System)-supplied data (from IDENTIFY function)
1 ---- ---- Indicates the last IDR of this load module

CSECT IDR data -- Dependent on the
sub-type field (see part 2 and part 3
for corresponding sub-types)

CSECT Identification Record

1 record length 7 to 256 bytes

Figure 7. Record format of load module IDRs–part 1

Chapter 13. Load module formats 135

0 3-5 6-13

Flags and count
Bit 0-reserved
Bit 1-chain bit - a 1 indicates that the next record is also available for MHASPZAP data.
Bits 2-7 number of HMASPZAP entries used on this record (value range 0 to 19)

ESDID of CSECT processed by HMASPZAP.

Data of HMASPZAP processing (packed decimal) YYDDD

Data specified during HMASPZAP processing *

HMASPZAP Data (sub-type 0001)

1, 2 14-247

Up to 18 repetitions of bytes 1 through 13

* May be a PTF number or up to eight bytes of variable user data specified on an
HMASPZAP IDRDATA control statement.

0-9 12-14

Program Name of the linkage editor that produced this module

Time of last binder processing of this module (packed decimal) HHMMSS.
Note: Not present in older modules or modules processed by the linkage
editor.

Version and Modification level of the linkage editor that produced this module
(unsigned packed decimal) VVMM

Date of last linkage editor processing of this module (packed decimal) YYDDD

Linkage Editor or Binder Data (sub-type 0010)

10, 11 15-18

Note: Date and time fields contents of "65001F0000000F" are generated by the binder when copying a
module lacking a binder IDR record.

Figure 8. Record format of load module IDRs–part 2

136 z/OS: Validated Boot for z/OS

n+1

Translator description (see below)

Translator Data (sub-type 0100)

n+17 - n+31

0000 0000 - one translator description follows
0000 0001 - two translator descriptions follow
Two translator cases could include a language
preprocessor or a compiler that generates
assembler source

List of one or more two-byte ESDID(s) of CSECT(s)
whose object code was produced by the translator
or translators described in this data item. The high
order bit of the last ESDID in the list is set to one.

ESDID of the CSECT to which the user data applies.

0,1 2 - 4 1 to 40 bytesvariable5

Date on which this data was supplied to the module via the linkage editor IDENTIFY
control statement (packed decimal) YYDDD.

From 1 to 40 bytes of variable user (or system) supplied
data as specified on the Linkage Editor IDENTIFY control
statement. Assumed to be printable EBCDIC characters.

Count - number of characters in the user data field

User Data
(Linkage Editor IDENTIFY Function)

(sub-type 1000)

0 - 9 12 - 1410 - 11

Program name of translator, left justified
and padded to the right with blanks

Date of compilation/assembly
(signed packed decimal) YYDDD

Version and release level of translator
(unsigned packed decimal) VVMM

Translator Description

n+2 - n+6

Optional: depending on byte n+1
additional translator description (see below)

0 - n

Figure 9. Record format of load module IDRs–part 3

Signing records after the nominal last record
For a signed load module, there are multiple extended records after the nominal last record. They are
called signing records.

There are two kinds of signing records:

• Directory entry record, which saves a directory entry for a signed primary member and its aliases.
• Signature record, which saves signatures.

Chapter 13. Load module formats 137

Signing records have a common 8-byte extended header described in the following table.

Table 47. Mapping of record header REC_HEADER

Field name Length Description

REC_PREFIX 1 This field must be 0x88.

REC_SUBTYPE 1 This field can be one of the
following: 0x00: directory entry
record, or 0x01: signature record.

REC_VERSION 1 This field must be 0x01.

REC_FLAGS 1 Bits 6-7 can be one of the
following:
00

This record is the initial
record of the designated
type (it is not a continuation
record). It is not continued on
the succeeding record.

01
This record is the initial
record of the designated
type (it is not a continuation
record). It is continued on the
succeeding record.

10
This record is a continuation
of the previous record of this
type, and it is not continued
on the following record.

11
This record is a continuation
of the previous record of this
type, and it is continued on
the following record.

Other bits are reserved.

REC_LENGTH 2 Length of the current record,
including this header. The record
length is 1024 at most.

* 2 RESERVED

For the mapping of the directory entry record, refer to “Mapping of the directory entry record” on page
138. For the mapping of the signing record, refer to “Mapping of the signature record” on page 139

Mapping of the directory entry record
This record contains directory entries for a load module, including one for a primary member and others
for its aliases.

138 z/OS: Validated Boot for z/OS

Table 48. Mapping of the directory entry record

Field name Length Description

Header 8 For the header description, refer
to Table 47 on page 138.

ENTRY_NUM 2 The number of directory entries
in this record.

ENTRY_DATA variable A listing of all directory entries
in this record. The length of each
entry is determined by its self-
defined length in the entry. One
entry is followed by the next
without gaps.

Mapping of the signature record
The following table contains the mapping for the signature record.

Table 49. Mapping of the signature record

Field name Length Description

Header 8 For the header description, refer
to Table 47 on page 138.

Timestamp 16 16-byte STCKE data converted to
GMT

SIGN_TYPE 1 0
Signature for the module
fetch

1
Signature for the scatter load

2
Signature for the binder

SIGN_VERSION 1 1
The hash algorithm is
SHA2-512 and the signing
algorithm is Elliptic Curve
ECDSA P521.

SIGN_LEN 2 Length of signature data saved in
SIGN_DATA.

* 32 Reserved

SIGN_DATA SIGN_LEN Signature data returned by the
RACF signing service.

Chapter 13. Load module formats 139

140 z/OS: Validated Boot for z/OS

Appendix A. Accessibility

Accessible publications for this product are offered through IBM Documentation (www.ibm.com/docs/en/
zos).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to
the Contact the z/OS team web page (www.ibm.com/systems/campaignmail/z/zos/contact_z) or use the
following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

© Copyright IBM Corp. 2023 141

https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/zos
http://www.ibm.com/systems/campaignmail/z/zos/contact_z

142 z/OS: Validated Boot for z/OS

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in
only the HTML plug-in output for IBM Documentation. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 2023 143

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or

144 z/OS: Validated Boot for z/OS

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com®/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details
in the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease
if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those

Notices 145

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle, its
affiliates, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

146 z/OS: Validated Boot for z/OS

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml

Index

A
accessibility

contact IBM 141
ADDTOKEN function

RACDCERT command 73
ALTNAME operand

RACDCERT GENCERT command 87
assistive technologies 141

B
BPECC operand

RACDCERT GENCERT command 84

C
CERTSIGN operand

RACDCERT GENCERT command 87
CESD record format 131
COMP: Common SAF/RACF Parameter List for z/OS UNIX
System Services 121
COMY: 64-bit enabled SAF callable services 122
contact

z/OS 141
control record 132
control/RLD dictionary record format 134
CSECT

identification record (IDR) format 134
CSV050I 96

D
DATAENCRYPT operand

RACDCERT GENCERT command 87
directory entry record mapping 138
DOCSIGN operand

RACDCERT GENCERT command 87
DOMAIN operand

RACDCERT GENCERT command 87
DSA operand

RACDCERT GENCERT command 84

E
EMAIL operand

RACDCERT GENCERT command 87
extension logic

authorityKeyIdentifier extension 74
basicConstraints extension 74
issuerAltName extension 74
keyUsage extension 74
subjectAltName extension 74
subjectKeyIdentifier extension 74

F
feedback xiii
FROMICSF operand

RACDCERT GENCERT command 84

G
GENCERT function

RACDCERT command 80

H
HANDSHAKE operand

RACDCERT GENCERT command 86

I
ICSF operand

RACDCERT GENCERT command 84
IEAVBPRT utility 28
IEWSIGN utility 9
input conventions 129
input record types

formats 129, 138, 139
invoking the signing utility

from a program 20
IP operand

RACDCERT GENCERT command 87
IRRSPS00 42

K
KEYAGREE operand

RACDCERT GENCERT command 87
keyboard

navigation 141
PF keys 141
shortcut keys 141

keyUsage operand
RACDCERT GENCERT command 86

L
LDIPL parameter 5
LDIRTS parameter 5
linkage editor 129, 138, 139
load module record formats 129, 138, 139

N
navigation

keyboard 141
NISTECC operand

RACDCERT GENCERT command 84
NOTAFTER operand

Index 147

NOTAFTER operand (continued)
RACDCERT GENCERT command 83

NOTBEFORE operand
RACDCERT GENCERT command 83

P
PCICC operand

RACDCERT GENCERT command 84
program sign and verify 42

R
R_PgmSignVer 42
RACDCERT ADDTOKEN command

authorization required 73
description 72
examples 73

RACDCERT GENCERT command
authorization required 76
description 74
examples 87

RCVT: RACF Communication Vector Table 124
record

load module format 129, 138, 139
record format load module IDR 135
relocation record format 133
report load modules 9
RLD record format 133
RSA operand

RACDCERT GENCERT command 84

S
scatter table format 131
scatter/translation record format 131
sending to IBM

reader comments xiii
shortcut keys 141
sign load modules 9
signature record mapping 139
signing utility (IEWSIGN)

invoking
from a program 20

SIGNWITH operand
RACDCERT GENCERT command 84

SIZE operand
RACDCERT GENCERT command 82

SUBJECTSDN operand
RACDCERT GENCERT command 81

SYM record format 129
symbol (SYM) record format 129

T
trademarks 146
translation table format 131

U
unsign load modules 9
URI operand

RACDCERT GENCERT command 87

user interface
ISPF 141
TSO/E 141

V
Validated Boot for z/OS

what is 3
validated boot print utility 28
VERBEXIT IEAVBIPC subcommand

description 72

W
WITHLABEL operand

RACDCERT GENCERT command 84

148 z/OS: Validated Boot for z/OS

IBM®

Product Number: 5650-ZOS

	Contents
	Figures
	Tables
	About Validated Boot for z/OS
	How to send your comments to IBM
	If you have a technical problem

	Chapter 1. Introduction to this content solution
	Chapter 2. What is Validated Boot for z/OS?
	Chapter 3. Preparing your DASD
	LDIRTS parameter: specify which user-supplied IPL program record number to sign when doing List Directed IPL
	LDIPL parameter: write List Directed IPL records and a signed user-supplied IPL program record on the volume

	Chapter 4. Preparing your Software
	AUTOIPL parameter of DIAGxx
	CLPA parameter of IEASYSxx

	Chapter 5. Utilities
	IEWSIGN: Sign, unsign, and report load modules
	Invoking the signing utility (IEWSIGN) from another program
	IEW messages

	IEAVBPRT: Validated Boot for z/OS print utility

	Chapter 6. RACF
	IPL data signing for Validated Boot for z/OS
	Overview of enabling your system for signed IPL data
	Certificate requirements for signing IPL data
	Defining the IRR.PROGRAM.V2.SIGNING profile
	Enabling IPL data signing for Validated Boot for z/OS
	Steps for using a RACF-generated signing certificate stored in a key ring
	Steps for using an external signing certificate stored in a key ring
	Steps for using a RACF-generated signing certificate stored in an ICSF token
	R_PgmSignVer (IRRSPS00): Program Sign and Verify
	Function
	Requirements
	Linkage conventions
	RACF authorization
	Format
	Parameters
	Return and reason codes
	Usage notes
	Usage notes for program signing
	Usage notes for program verification
	Related services

	Chapter 7. Commands
	Displaying system configuration information (M)
	VERBEXIT IEAVBIPC subcommand — Format validated boot information
	RACDCERT ADDTOKEN (Add token)
	RACDCERT GENCERT (Generate certificate)

	Chapter 8. Auditing and monitoring
	Subtype 42 — Validated Boot for z/OS configuration event

	Chapter 9. MVS system messages
	Chapter 10. Wait state codes
	Wait state code to module table

	Chapter 11. MVS data areas
	IHAVBA: Validated boot area

	Chapter 12. RACF data areas
	COMP: Common SAF/RACF Parameter List for z/OS UNIX System Services
	COMP programming interface information
	COMP mapping

	COMY: 64-bit enabled SAF callable services
	COMY programming interface information
	COMY heading information
	COMY mapping

	RCVT: RACF Communication Vector Table
	RCVT programming interface information
	RCVT heading information
	RCVT mapping

	Chapter 13. Load module formats
	Input conventions
	Record formats
	Mapping of the directory entry record
	Mapping of the signature record

	Appendix A. Accessibility
	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	N
	P
	R
	S
	T
	U
	V
	W

