
z/OS

Language Environment
Programming Reference
Version 2 Release 2

SA38-0683-02

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 497.

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1991, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this document xi
Using your documentation xii
How to read syntax diagrams xiii
z/OS information xv

How to send your comments to IBM xvii
If you have a technical problem xvii

Summary of changes xix
Summary of changes for z/OS Version 2 Release 2
(V2R2) as updated December, 2015 xix
Summary of changes for z/OS Version 2 Release 2
(V2R2) xix
z/OS Version 2 Release 1 summary of changes .. xix

Part 1. Language Environment
runtime options. 1

Chapter 1. Summary of Language
Environment runtime options 3
Quick reference table for AMODE 31 runtime options 3
Quick reference table for AMODE 64 runtime options 6
How to specify runtime options 7
Propagating runtime options with spawn and exec . 7

Chapter 2. Using the Language
Environment runtime options 9
ABPERC. 9
ABTERMENC 10
AIXBLD (COBOL only) 11
ALL31 12
ANYHEAP 14
ARGPARSE | NOARGPARSE (C only) 15
AUTOTASK | NOAUTOTASK (Fortran only) . .. 16
BELOWHEAP 17
CBLOPTS (COBOL only) 18
CBLPSHPOP (COBOL only) 18
CBLQDA (COBOL only) 19
CEEDUMP 19
CEERCDM—Record information for an active
condition 22
CHECK (COBOL only) 24
COUNTRY 24
DEBUG (COBOL only) 26
DEPTHCONDLMT 26
DYNDUMP 28
ENV (C only). 30
ENVAR. 31
ERRCOUNT 32

ERRUNIT (Fortran only) 33
EXECOPS | NOEXECOPS (C only) 34
FILEHIST (Fortran only) 35
FILETAG (C/C++ only) 35
FLOW (COBOL only) 37
HEAP 38
HEAP64 (AMODE 64 only) 40
HEAPCHK 41
HEAPPOOLS (C/C++ and Enterprise PL/I only) .. 44
HEAPPOOLS64 (C/C++ and AMODE 64 only) .. 46
HEAPZONES. 48
INFOMSGFILTER 49
INQPCOPN (Fortran only) 50
INTERRUPT 50
IOHEAP64 (AMODE 64 only) 51
LIBHEAP64 (AMODE 64 only) 52
LIBSTACK. 54
MSGFILE 55
MSGQ 58
NATLANG 59
OCSTATUS (Fortran only) 60
PAGEFRAMESIZE 61
PAGEFRAMESIZE64 62
PC (Fortran only) 65
PLIST (C only) 65
PLITASKCOUNT (PL/I only) 67
POSIX 67
PROFILE 68
PRTUNIT (Fortran only) 69
PUNUNIT (Fortran only) 69
RDRUNIT (Fortran only) 70
RECPAD (Fortran only) 70
REDIR | NOREDIR (C only) 71
RPTOPTS 71
RPTSTG 73
RTEREUS (COBOL only) 74
SIMVRD (COBOL only) 76
STACK 76
STACK64 (AMODE 64 only) 79
STORAGE 81
TERMTHDACT 83
TEST | NOTEST 89
THREADHEAP 91
THREADSTACK. 93
THREADSTACK64 (AMODE 64 only) 95
TRACE 96
TRAP 98
UPSI (COBOL only) 100
USRHDLR | NOUSRHDLR 101
VCTRSAVE 102
XPLINK 103
XUFLOW. 105
Language runtime option mapping 106

© Copyright IBM Corp. 1991, 2015 iii

|
||

Part 2. Language Environment
callable services 107

Chapter 3. Quick reference tables for
Language Environment services . .. 109
Bit manipulation routines 109
Condition-handling callable services. 109
Date and time callable services 110
Dynamic storage callable services. 111
General callable services 111
Initialization and termination services 112
Locale callable services 112
Math services 112
Message handling callable services 113
National Language Support callable services . .. 114

Chapter 4. Using Language
Environment callable services 115
Locating callable service information 115
General usage notes for callable services 116
Invoking callable services 116

Header, copy, or include files 117
Sample programs 118
C/C++ syntax 118
COBOL syntax 119
PL/I syntax 120
Parameter list for invoking callable services .. 121

Data type definitions 121
C/C++ data type definitions 121
COBOL data type definitions 123
PL/I data type definitions 124

Chapter 5. Callable services 125
CEE3ABD—Terminate enclave with an abend .. 125
CEE3AB2—Terminate enclave with an abend and
reason code 128
CEE3CIB—Return pointer to condition information
block 132
CEE3CTY—Set default country 135
CEE3DLY—Suspend processing of the active
enclave in seconds. 140
CEE3DMP—Generate dump 144
CEE3GRC—Get the enclave return code 152
CEE3GRN—Get name of routine that incurred
condition 160
CEE3GRO—Get offset of condition 165
CEE3INF—Query enclave information 170
CEE3LNG—Set national language 174
CEE3MCS—Get default currency symbol 181
CEE3MC2—Get default and international currency
symbols 184
CEE3MDS—Get default decimal separator. . .. 187
CEE3MTS—Get default thousands separator . .. 190
CEE3PRM—Query parameter string 193
CEE3PR2—Query parameter string long 196
CEE3RPH—Set report heading 199
CEE3SPM—Query and modify Language
Environment hardware condition enablement .. 202
CEE3SRC—Set the enclave return code 208

CEE3SRP—Set resume point 209
CEE3USR—Set or query user area fields 210
CEECBLDY—Convert date to COBOL Integer
format. 214
CEECMI—Store and load message insert data .. 218
CEECRHP—Create new additional heap 223
CEECZST—Reallocate (change size of) storage .. 227
CEEDATE—Convert Lilian date to character format 232
CEEDATM—Convert seconds to character
timestamp 238
CEEDAYS—Convert date to Lilian format 243
CEEDCOD—Decompose a condition token . .. 249
CEEDLYM—Suspend processing of the active
enclave in milliseconds 254
CEEDSHP—Discard heap 258
CEEDYWK—Calculate day of week from Lilian
date 262
CEEENV—Process environmental variables . .. 265
CEEFMDA—Get default date format 270
CEEFMDT—Get default date and time format .. 273
CEEFMON—Format monetary string 276
CEEFMTM—Get default time format 281
CEEFRST—Free heap storage 284
CEEFTDS—Format time and date into character
string 288
CEEGMT—Get current Greenwich Mean Time .. 294
CEEGMTO—Get offset from Greenwich Mean
Time to local time 297
CEEGPID—Retrieve the Language Environment
version and platform ID 300
CEEGQDT—Retrieve q_data_token 305
CEEGTJS—Retrieves the value of an exported JCL
symbol 313
CEEGTST—Get heap storage 315
CEEHDLR—Register user-written condition
handler 319
CEEHDLU—Unregister user-written condition
handler 328
CEEISEC—Convert integers to seconds 332
CEEITOK—Return initial condition token 336
CEELCNV—Query locale numeric conventions .. 342
CEELOCT—Get current local date or time. . .. 348
CEEMGET—Get a message. 352
CEEMOUT—Dispatch a message 357
CEEMRCE—Move resume cursor explicit 360
CEEMRCR—Move resume cursor 365
CEEMSG—Get, format, and dispatch a message 375
CEENCOD—Construct a condition token 379
CEEQCEN—Query the century window 384
CEEQDTC—Query locale date and time
conventions 387
CEEQRYL—Query active locale environment . .. 391
CEERAN0—Calculate uniform random numbers 393
CEESCEN—Set the century window. 396
CEESCOL—Compare collation weight of two
strings. 399
CEESECI—Convert seconds to integers 402
CEESECS—Convert timestamp to seconds. . .. 407
CEESETL—Set locale operating environment . .. 413
CEESGL—Signal a condition 417

iv z/OS Language Environment Programming Reference

CEESTXF—Transform string characters into
collation weights 422
CEETDLI—Invoke IMS 425
CEETEST—Invoke Debug Tool 428
CEEUTC—Get coordinated universal time. . .. 431

Chapter 6. Bit manipulation routines 433
CEESICLR—Bit clear 433
CEESISET—Bit set. 433
CEESISHF—Bit shift 434
CEESITST—Bit test 435

Chapter 7. Language Environment
math services 437
Call interface to math services 437

Parameter types: parm1 and parm2 437
Feedback code parameter (fc) 438
Language-specific built-in math services . .. 438

Calls to math services from different languages .. 439
Math services 439

CEESxABS—Absolute value 439
CEESxACS—Arccosine 441
CEESxASN—Arcsine 442
CEESxATH—Hyperbolic arctangent 443
CEESxATN—Arctangent. 444
CEESxAT2—Arctangent2 445
CEESxCJG—Conjugate of complex 446
CEESxCOS—Cosine 447
CEESxCSH—Hyperbolic cosine 448
CEESxCTN—Cotangent 450
CEESxDIM—Positive difference 451
CEESxDVD—Floating-point complex divide .. 452
CEESxERC—Error function complement . .. 453
CEESxERF—Error function 454
CEESxEXP—Exponential base e 455
CEESxGMA—Gamma function 456
CEESxIMG—Imaginary part of complex . .. 457
CEESxINT—Truncation 458
CEESxLGM—Log gamma 459
CEESxLG1—Logarithm base 10 460
CEESxLG2—Logarithm base 2. 461
CEESxLOG—Logarithm base e 462

CEESxMLT—Floating-point complex multiply 463
CEESxMOD—Modular arithmetic 464
CEESxNIN—Nearest integer 465
CEESxNWN—Nearest whole number 466
CEESxSGN—Transfer of sign 467
CEESxSIN—Sine 468
CEESxSNH—Hyperbolic sine 470
CEESxSQT—Square root. 471
CEESxTAN—Tangent. 472
CEESxTNH—Hyperbolic tangent 474
CEESxXPx—Exponentiation 475
Examples of math services 477

Part 3. Appendixes 481

Appendix A. IBM-supplied country
code defaults 483

Appendix B. Date and time services
tables. 489

Appendix C. Controlling storage
allocation 491
Storage statistics 491
Storage statistics for AMODE 64 applications . .. 491

Appendix D. Accessibility 493
Accessibility features 493
Consult assistive technologies 493
Keyboard navigation of the user interface 493
Dotted decimal syntax diagrams 493

Notices 497
Policy for unsupported hardware. 498
Minimum supported hardware 499
Programming Interface information 499
Trademarks 499

Index 501

Contents v

vi z/OS Language Environment Programming Reference

Figures

1. Effect of DEPTHCONDLMT(3) on condition
handling 27

2. An invalid COBOL CALL that omits the fc
parameter 116

3. An invalid PL/I CALL that omits the fc
parameter 116

4. Valid COBOL CALLs that use the optional fc
parameter 116

5. Valid PL/I CALLs that use the optional fc
parameter 116

6. Sample callable services invocation syntax for
C/C++ 119

7. Sample callable services invocation syntax for
COBOL 120

8. Sample callable services invocation syntax for
PL/I 121

9. First example moving resume cursor using
CEEMRCR 367

10. Second example moving resume cursor using
CEEMRCR 368

11. Third example moving resume cursor using
CEEMRCR 369

12. type_FEEDBACK data type as defined in the
leawi.h header file 381

© Copyright IBM Corp. 1991, 2015 vii

viii z/OS Language Environment Programming Reference

Tables

1. How to use z/OS Language Environment
publications xii

2. Syntax examples xiv
3. Quick reference table for runtime options -

AMODE 31 3
4. Quick reference table for runtime options -

AMODE 64 6
5. Condition handling of 0Cx ABENDS 86
6. Handling of software-raised conditions 86
7. TRAP runtime option settings 98
8. Bit manipulation routines 109
9. Condition-handling callable services 109

10. Date and time callable services. 110
11. Dynamic storage callable services 111
12. General callable services 111
13. Initialization and termination services 112
14. Locale callable services 112
15. Math services 112
16. Message handling callable services 113
17. National Language Support and National

Language Architecture callable services . .. 114
18. Files used in C/C++, COBOL, and PL/I

examples 117

19. Imbedding files in your routines 118
20. Data type definitions for C/C++ 122
21. Data type definitions for COBOL 123
22. Data type definitions for PL/I 124
23. National language codes 179
24. S/370 interrupt code descriptions 205
25. HEAP attributes based on the setting of the

options parameter 223
26. Sample output of CEEDATE 237
27. Sample output of CEEDATM 243
28. Examples of calls to CEESLOG. 439
29. C/C++ examples 478
30. COBOL examples 478
31. PL/I examples 479
32. Defaults currency and picture strings based

on COUNTRY setting 483
33. Picture character terms used in picture strings

for date and time services 489
34. Examples of picture strings recognized by

date and time services 490
35. Japanese Eras used by date/time services

when <JJJJ> is specified 490

© Copyright IBM Corp. 1991, 2015 ix

x z/OS Language Environment Programming Reference

About this document

This document supports z/OS (5650-ZOS).

IBM® z/OS Language Environment (also called Language Environment) provides
common services and language-specific routines in a single runtime environment
for C, C++, COBOL, Fortran (z/OS only; no support for z/OS UNIX System
Services or CICS®), PL/I, and assembler applications. It offers consistent and
predictable results for language applications, independent of the language in which
they are written.

Language Environment is the prerequisite runtime environment for applications
generated with the following IBM compiler products:
v z/OS XL C/C++ (feature of z/OS)
v z/OS® C/C++
v OS/390® C/C++
v C/C++ for MVS/ESA
v C/C++ for z/VM®

v XL C/C++ for z/VM
v AD/Cycle C/370™

v VisualAge for Java, Enterprise Edition for OS/390
v Enterprise COBOL for z/OS
v Enterprise COBOL for z/OS and OS/390
v COBOL for OS/390 & VM
v COBOL for MVS & VM (formerly COBOL/370)
v Enterprise PL/I for z/OS
v Enterprise PL/I for z/OS and OS/390
v VisualAge® PL/I
v PL/I for MVS & VM (formerly PL/I MVS™ & VM)
v VS FORTRAN and FORTRAN IV (in compatibility mode)

Although not all compilers listed are currently supported, Language Environment®

supports the compiled objects that they created.

Language Environment supports, but is not required for, an interactive debug tool
for debugging applications in your native z/OS environment.

Debug Tool is also available as a standalone product as well as Debug Tool
Utilities and Advanced Functions. For more information, see the Debug Tool for
z/OS home page (http://ibm.co/1GOKBov).

Language Environment supports, but is not required for, VS FORTRAN Version 2
compiled code (z/OS only).

Language Environment consists of the common execution library (CEL) and the
runtime libraries for C/C++, COBOL, Fortran, and PL/I.

For more information about VisualAge for Java, Enterprise Edition for OS/390,
program number 5655-JAV, see the product documentation.

This publication provides application programmers with a detailed description of
each Language Environment runtime option and callable service, as well as
information about how to use them. It also provides programming examples that

© Copyright IBM Corp. 1991, 2015 xi

http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/debugtool/

illustrate how each callable service can be used in routines written in Language
Environment-conforming high-level languages (HLLs) and assembler language.
Before using Language Environment, you should be familiar with the HLLs in
which your applications are written. You should also understand the operating
systems and any subsystems in which you plan to run Language Environment
applications.

Using your documentation
The publications provided with Language Environment are designed to help you:
v Manage the runtime environment for applications generated with a Language

Environment-conforming compiler.
v Write applications that use the Language Environment callable services.
v Develop interlanguage communication applications.
v Customize Language Environment.
v Debug problems in applications that run with Language Environment.
v Migrate your high-level language applications to Language Environment.

Language programming information is provided in the supported high-level
language programming manuals, which provide language definition, library
function syntax and semantics, and programming guidance information.

Each publication helps you perform different tasks, some of which are listed in
Table 1.

Table 1. How to use z/OS Language Environment publications

To ... Use ...

Evaluate Language Environment z/OS V2R1.0 Language Environment Concepts Guide

Plan for Language Environment
z/OS V2R1.0 Language Environment Concepts Guide

z/OS V2R1.0 Language Environment Runtime
Application Migration Guide

Install Language Environment z/OS Program Directory

Customize Language Environment z/OS Language Environment Customization

Understand Language Environment
program models and concepts z/OS V2R1.0 Language Environment Concepts Guide

z/OS Language Environment Programming Guide

z/OS V2R1.0 Language Environment Programming
Guide for 64-bit Virtual Addressing Mode

Find syntax for Language Environment
runtime options and callable services

z/OS Language Environment Programming Reference

Develop applications that run with
Language Environment

z/OS Language Environment Programming Guide
and your language programming guide

Debug applications that run with
Language Environment, diagnose
problems with Language Environment

z/OS Language Environment Debugging Guide

Get details on runtime messages z/OS Language Environment Runtime Messages

Develop interlanguage communication
(ILC) applications

z/OS V2R1.0 Language Environment Writing
Interlanguage Communication Applications and your
language programming guide

xii z/OS Language Environment Programming Reference

Table 1. How to use z/OS Language Environment publications (continued)

To ... Use ...

Migrate applications to Language
Environment

z/OS V2R1.0 Language Environment Runtime
Application Migration Guide and the migration
guide for each Language Environment-enabled
language

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments)
that comprise a command statement. They are read from left to right and from top
to bottom, following the main path of the horizontal line.

For users accessing the Information Center using a screen reader, syntax diagrams
are provided in dotted decimal format.

Symbols
The following symbols may be displayed in syntax diagrams:

Symbol
Definition

►►─── Indicates the beginning of the syntax diagram.

───► Indicates that the syntax diagram is continued to the next line.

►─── Indicates that the syntax is continued from the previous line.

───►◄ Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:
v Keywords - a command name or any other literal information.
v Variables - variables are italicized, appear in lowercase, and represent the name

of values you can supply.
v Delimiters - delimiters indicate the start or end of keywords, variables, or

operators. For example, a left parenthesis is a delimiter.
v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal

(=), and other mathematical operations that may need to be performed.
v Fragment references - a part of a syntax diagram, separated from the diagram to

show greater detail.
v Separators - a separator separates keywords, variables or operators. For example,

a comma (,) is a separator.

Note: If a syntax diagram shows a character that is not alphanumeric (for
example, parentheses, periods, commas, equal signs, a blank space), enter the
character as part of the syntax.

About this document xiii

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or
optional.

Item type
Definition

Required
Required items are displayed on the main path of the horizontal line.

Optional
Optional items are displayed below the main path of the horizontal line.

Default
Default items are displayed above the main path of the horizontal line.

Syntax examples
The following table provides syntax examples.

Table 2. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the
horizontal line. You must specify these items.

►► KEYWORD required_item ►◄

Required choice.

A required choice (two or more items) appears
in a vertical stack on the main path of the
horizontal line. You must choose one of the
items in the stack.

►► KEYWORD required_choice1
required_choice2

►◄

Optional item.

Optional items appear below the main path of
the horizontal line.

►► KEYWORD
optional_item

►◄

Optional choice.

An optional choice (two or more items)
appears in a vertical stack below the main path
of the horizontal line. You may choose one of
the items in the stack.

►► KEYWORD
optional_choice1
optional_choice2

►◄

Default.

Default items appear above the main path of
the horizontal line. The remaining items
(required or optional) appear on (required) or
below (optional) the main path of the
horizontal line. The following example displays
a default with optional items.

►►
default_choice1

KEYWORD
optional_choice2
optional_choice3

►◄

Variable.

Variables appear in lowercase italics. They
represent names or values.

►► KEYWORD variable ►◄

xiv z/OS Language Environment Programming Reference

Table 2. Syntax examples (continued)

Item Syntax example

Repeatable item.

An arrow returning to the left above the main
path of the horizontal line indicates an item
that can be repeated.

A character within the arrow means you must
separate repeated items with that character.

An arrow returning to the left above a group
of repeatable items indicates that one of the
items can be selected,or a single item can be
repeated.

►► ▼KEYWORD repeatable_item ►◄

►► ▼

,

KEYWORD repeatable_item ►◄

Fragment.

The fragment symbol indicates that a labelled
group is described below the main syntax
diagram. Syntax is occasionally broken into
fragments if the inclusion of the fragment
would overly complicate the main syntax
diagram.

►► KEYWORD fragment ►◄

fragment:

,required_choice1
,default_choice

,required_choice2
,optional_choice

z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS V2R2 Information Roadmap.

To find the complete z/OS library, go to IBM Knowledge Center
(http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

About this document xv

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

xvi z/OS Language Environment Programming Reference

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R2 Language Environment Programming Reference
SA38-0683-02

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS Support Portal (http://www-947.ibm.com/

systems/support/z/zos/).

© Copyright IBM Corp. 1991, 2015 xvii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www-947.ibm.com/systems/support/z/zos/
http://www-947.ibm.com/systems/support/z/zos/

xviii z/OS Language Environment Programming Reference

Summary of changes

This information includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations for the current edition
are indicated by a vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 2 (V2R2) as updated
December, 2015

New
v A new callable service, CEERCDM, was added. See “CEERCDM—Record

information for an active condition” on page 22.

Changed
v Table 9 on page 109 was updated to include the new CEERCDM callable service.

Deleted

No content was removed from this information.

Summary of changes for z/OS Version 2 Release 2 (V2R2)
The following changes are made to z/OS Version 2 Release 2 (V2R2).

New
v The CEE_Version_ID parameter for CEEGPID was updated for V2R2. See

“CEEGPID—Retrieve the Language Environment version and platform ID” on
page 300.

Changed
v An usage note was updated in “PAGEFRAMESIZE64” on page 62.
v An usage note was updated in “PLIST (C only)” on page 65.

Deleted

No content was removed from this information.

z/OS Version 2 Release 1 summary of changes
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS V2R2 Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS V2R2 Introduction and Release Guide

© Copyright IBM Corp. 1991, 2015 xix

xx z/OS Language Environment Programming Reference

Part 1. Language Environment runtime options

The following sections contain detailed information about how to use the
Language Environment runtime options.

© Copyright IBM Corp. 1991, 2015 1

2 z/OS Language Environment Programming Reference

Chapter 1. Summary of Language Environment runtime
options

The quick reference tables for each of the Language Environment runtime options
and information help you read syntax diagrams and specify the runtime options.
The tables list the location of the options and briefly state their function.

Quick reference table for AMODE 31 runtime options
Table 3 provides a quick reference of the Language Environment runtime options
for AMODE 31 applications.

Table 3. Quick reference table for runtime options - AMODE 31

Runtime options Function

ABPERC Percolates a specified abend. See “ABPERC” on page 9.

ABTERMENC Sets the enclave termination behavior for an enclave ending with an unhandled
condition of severity 2 or greater. See “ABTERMENC” on page 10.

AIXBLD | NOAIXBLD Invokes the access method services (AMS) for VSAM indexed and relative data sets
to complete the file and index definition procedures for COBOL routines. See
“AIXBLD (COBOL only)” on page 11.

ALL31 Indicates whether an application does or does not run entirely in AMODE(31). See
“ALL31” on page 12.

ANYHEAP Controls allocation of library heap storage not restricted to below the 16M line. See
“ANYHEAP” on page 14.

ARGPARSE Specifies if arguments on the command line are to be parsed in the usual C format.
See “ARGPARSE | NOARGPARSE (C only)” on page 15.

AUTOTASK Specifies if Fortran Multitasking Facility is to be used by your program and the
number of tasks that are allowed to be active. See “AUTOTASK | NOAUTOTASK
(Fortran only)” on page 16.

BELOWHEAP Controls allocation of library heap storage below the 16M line. See
“BELOWHEAP” on page 17.

CBLOPTS Specifies the format of the argument string on application invocation when the
main program is COBOL. See “CBLOPTS (COBOL only)” on page 18.

CBLPSHPOP Controls if CICS PUSH HANDLE and CICS POP HANDLE commands are issued
when a COBOL subprogram is called. See “CBLPSHPOP (COBOL only)” on page
18.

CBLQDA Controls COBOL QSAM dynamic allocation. See “CBLQDA (COBOL only)” on
page 19.

CEEDUMP Specifies options to control the processing of the Language Environment dump
report. See “CEEDUMP” on page 19.

CHECK Indicates if checking errors within an application should be detected. See “CHECK
(COBOL only)” on page 24.

COUNTRY Specifies the default formats for date, time, currency symbol, decimal separator,
and the thousands separator based on a country. See “COUNTRY” on page 24.

DEBUG | NODEBUG Activates the COBOL batch debugging features specified by the “debugging lines”
or the USE FOR DEBUGGING declarative. See “DEBUG (COBOL only)” on page
26.

© Copyright IBM Corp. 1991, 2015 3

Table 3. Quick reference table for runtime options - AMODE 31 (continued)

Runtime options Function

DEPTHCONDLMT Limits the extent to which conditions can be nested. See “DEPTHCONDLMT” on
page 26.

DYNDUMP Provides a way to obtain IPCS readable dumps of user applications that would
ordinarily be lost due to the absence of a SYSMDUMP, SYSUDUMP, or SYSABEND
DD statement. See “DYNDUMP” on page 28.

ENV Specifies the operating system that your C application runs under. See “ENV (C
only)” on page 30.

ENVAR Sets the initial values for the environment variables. See “ENVAR” on page 31.

ERRCOUNT Specifies how many conditions of severity 2, 3, and 4 can occur per thread before
an enclave terminates abnormally. See “ERRCOUNT” on page 32.

ERRUNIT Identifies the unit number to which runtime error information is to be directed. See
“ERRUNIT (Fortran only)” on page 33.

EXECOPS Specifies if runtime options can be specified on the command line. See “EXECOPS
| NOEXECOPS (C only)” on page 34.

FILEHIST FILEHIST specifies whether to allow the file definition of a file referred to by a
ddname to be changed during run time. See “FILEHIST (Fortran only)” on page 35.

FILETAG FILETAG ensures control of untagged z/OS UNIX files and standard streams
terminal files when set up for conversion, and for control of certain open functions
which tag new or empty z/OS UNIX files. See “FILETAG (C/C++ only)” on page
35.

FLOW | NOFLOW Controls the FLOW output produced by OS/VS COBOL programs. See “FLOW
(COBOL only)” on page 37.

HEAP Controls allocation of the user heap. See “HEAP” on page 38.

HEAPCHK Specifies that user heap storage can be inspected for damage and request a heap
storage diagnostics report. See “HEAPCHK” on page 41.

HEAPPOOLS Specifies that (Quick) heap storage manager can be used. See “HEAPPOOLS
(C/C++ and Enterprise PL/I only)” on page 44.

HEAPZONES Turns on overlay toleration and checking for user heaps. See “HEAPZONES” on
page 48.

INFOMSGFILTER Allows the user to eliminate unwanted informational messages. See
“INFOMSGFILTER” on page 49.

INQPCOPN | NOINQPCOPN INQPCOPN controls if the OPENED specifier on an INQUIRE by unit statement
can be used to determine whether a preconnected unit has had any I/O statements
directed to it. See “INQPCOPN (Fortran only)” on page 50.

INTERRUPT Causes attentions recognized by the host operating system to be recognized by
Language Environment. See “INTERRUPT” on page 50.

LIBSTACK Controls the allocation of the thread's library stack storage. See “LIBSTACK” on
page 54.

MSGFILE Specifies the ddname of the runtime diagnostics file. See “MSGFILE” on page 55.

MSGQ Specifies the number of ISI blocks allocated on a per-thread basis during execution.
See “MSGQ” on page 58.

NATLANG Specifies the national language to use for the runtime environment. See
“NATLANG” on page 59.

OCSTATUS | NOOCSTATUS Controls if the OPEN and CLOSE status specifiers are verified. See “OCSTATUS
(Fortran only)” on page 60.

PAGEFRAMESIZE Indicates the preferred page frame size for certain types of storage requests. Note
the statement of direction associated with this runtime option. See
“PAGEFRAMESIZE” on page 61.

4 z/OS Language Environment Programming Reference

Table 3. Quick reference table for runtime options - AMODE 31 (continued)

Runtime options Function

PC Specifies that Fortran static common blocks are not shared among load modules.
See “PC (Fortran only)” on page 65.

PLIST Specifies the format of the invocation arguments received by your C application
when it is invoked. See “PLIST (C only)” on page 65.

PLITASKCOUNT Controls the maximum number of tasks active at one time while you are running
PL/I MTF applications. See “PLITASKCOUNT (PL/I only)” on page 67.

POSIX Specifies if the enclave can run with the POSIX semantics. See “POSIX” on page 67.

PROFILE Controls the use of an optional profiler which collects performance data for the
running application. See “PROFILE” on page 68

PRTUNIT Identifies the unit number used for PRINT and WRITE statements that do not
specify a unit number. See “PRTUNIT (Fortran only)” on page 69.

PUNUNIT Identifies the unit number used for PUNCH statements that do not specify a unit
number. See “PUNUNIT (Fortran only)” on page 69.

RDRUNIT Identifies the unit number used for READ statements that do not specify a unit
number. See “RDRUNIT (Fortran only)” on page 70.

REDIR Specifies if redirections for stdin, stderr, and stdout are allowed from the
command line. See “REDIR | NOREDIR (C only)” on page 71.

RECPAD Specifies if a formatted input record is padded with blanks. See “RECPAD (Fortran
only)” on page 70.

RPTOPTS Specifies that a report of the runtime options in use by the application be
generated. See “RPTOPTS” on page 71

RPTSTG Specifies that a report of the storage used by the application be generated at the
end of execution. See “RPTSTG” on page 73

RTEREUS | NORTEREUS Initializes the runtime environment to be reusable when the first COBOL program
is invoked. See “RTEREUS (COBOL only)” on page 74.

SIMVRD | NOSIMVRD Specifies if your COBOL programs use a VSAM KSDS to simulate variable length
relative organization data sets. See “SIMVRD (COBOL only)” on page 76.

STACK Controls the allocation and management of stack storage. See “STACK” on page 76.

STORAGE Controls the contents of storage that is allocated and freed. See “STORAGE” on
page 81.

TERMTHDACT Sets the level of information produced due to an unhandled error of severity 2 or
greater. See “TERMTHDACT” on page 83.

TEST | NOTEST Specifies that a debug tool is to be given control according to the suboptions
specified. See See “TEST | NOTEST” on page 89.

THREADHEAP Controls the allocation and management of thread-level heap storage. See
“THREADHEAP” on page 91.

THREADSTACK Controls the allocation of thread-level stack storage for both the upward and
downward-growing stack. See “THREADSTACK” on page 93.

TRACE Determines if Language Environment runtime library tracing is active. See
“TRACE” on page 96.

TRAP Specifies how Language Environment routines handle abends and program
interrupts. See “TRAP” on page 98.

UPSI Sets the eight UPSI switches on or off. See “UPSI (COBOL only)” on page 100.

USRHDLR Registers user condition handlers. See “USRHDLR | NOUSRHDLR” on page 101.

VCTRSAVE Specifies if any language in an application uses the vector facility when
user-written condition handlers are called. See “VCTRSAVE” on page 102.

Chapter 1. Summary of Language Environment runtime options 5

Table 3. Quick reference table for runtime options - AMODE 31 (continued)

Runtime options Function

XPLINK Controls the initialization of the XPLINK environment. See “XPLINK” on page 103.

XUFLOW Specifies if an exponent underflow causes a program interrupt. See “XUFLOW” on
page 105.

Quick reference table for AMODE 64 runtime options
Table 4 provides a quick reference of the Language Environment runtime options
for AMODE 64 applications.

Table 4. Quick reference table for runtime options - AMODE 64

Runtime options Function

ARGPARSE Specifies if arguments on the command line are to be parsed in the usual C format.
See “ARGPARSE | NOARGPARSE (C only)” on page 15.

CEEDUMP Specifies options to control the processing of the Language Environment dump report.
See “CEEDUMP” on page 19.

DYNDUMP Provides a way to obtain IPCS readable dumps of user applications that would
ordinarily be lost due to the absence of a SYSMDUMP, SYSUDUMP, or SYSABEND
DD statement. See “DYNDUMP” on page 28.

ENVAR Sets the initial values for the environment variables. See “ENVAR” on page 31.

EXECOPS Specifies whether runtime options can be specified on the command line. See
“EXECOPS | NOEXECOPS (C only)” on page 34.

FILETAG FILETAG ensures control of untagged z/OS UNIX files and standard streams terminal
files when set up for conversion, and for control of certain open functions which tag
new or empty z/OS UNIX files. See “FILETAG (C/C++ only)” on page 35.

HEAP64 Controls allocation of the user heap. See “FILETAG (C/C++ only)” on page 35. See
“FILETAG (C/C++ only)” on page 35.

HEAPCHK Specifies that user heap storage can be inspected for damage and request a heap
storage diagnostics report. See “HEAPCHK” on page 41.

HEAPPOOLS Specifies that the (Quick) heap storage manager can be used to manage user heap
storage above the 16M line and below the 2G bar. See “HEAPPOOLS (C/C++ and
Enterprise PL/I only)” on page 44.

HEAPPOOLS64 Specifies that the (Quick) heap storage manager can be used to manage user heap
storage above the 2G bar. See “HEAPPOOLS64 (C/C++ and AMODE 64 only)” on
page 46.

HEAPZONES Turns on overlay toleration and checking for user heaps. See “HEAPZONES” on page
48.

INFOMSGFILTER Allows the user to eliminate unwanted informational messages. See
“INFOMSGFILTER” on page 49.

IOHEAP64 Controls allocation of I/O heap storage. See “IOHEAP64 (AMODE 64 only)” on page
51.

LIBHEAP64 Controls allocation of library heap storage. See “LIBHEAP64 (AMODE 64 only)” on
page 52.

NATLANG Specifies the national language to use for the runtime environment. See “NATLANG”
on page 59.

PAGEFRAMESIZE64 Indicates the preferred frame size for certain types of storage requests. See
“PAGEFRAMESIZE64” on page 62.

POSIX Specifies if the enclave can run with the POSIX semantics. See “POSIX” on page 67.

6 z/OS Language Environment Programming Reference

Table 4. Quick reference table for runtime options - AMODE 64 (continued)

Runtime options Function

PROFILE Controls the use of an optional profiler which collects performance data for the
running application. See “PROFILE” on page 68.

REDIR Specifies if redirections for stdin, stderr, and stdout are allowed from the command
line. See “REDIR | NOREDIR (C only)” on page 71.

RPTOPTS Specifies that a report of the runtime options in use by the application be generated.
See “RPTOPTS” on page 71.

RPTSTG Specifies that a report of the storage used by the application be generated at the end
of execution. See “RPTSTG” on page 73.

STACK64 Controls the allocation and management of stack storage. See “STACK64 (AMODE 64
only)” on page 79.

STORAGE Controls the contents of storage that is allocated and freed. See “STORAGE” on page
81.

TERMTHDACT Sets the level of information produced due to an unhandled error of severity 2 or
greater. See “TERMTHDACT” on page 83.

TEST | NOTEST Specifies that a debug tool is to be given control according to the suboptions
specified. See “TEST | NOTEST” on page 89.

THREADSTACK64 Controls the allocation of thread-level stack storage for both the upward and
downward-growing stack. See “THREADSTACK64 (AMODE 64 only)” on page 95.

TRACE Determines if Language Environment runtime library tracing is active. See “TRACE”
on page 96.

TRAP Specifies how Language Environment routines handle abends and program interrupts.
See “TRAP” on page 98.

How to specify runtime options
When specifying runtime options, use commas to separate any suboptions of those
options. If you do not specify a suboption, you must still include the comma to
indicate the omission of the suboption. For example: STACK(,,ANYWHERE,FREE,,).
Trailing commas, however, are not required. STACK(,,ANYWHERE,FREE) is valid. If
you do not specify any suboptions, they are ignored. Either of the following is
valid: STACK or STACK().

If you run applications that are invoked by one of the exec family of functions,
such as a program executed under the z/OS UNIX System Services shell, you can
also use the _CEE_RUNOPTS environment variable to specify runtime options.

Refer to z/OS Language Environment Programming Guide for a detailed description of
the various ways in which you can specify Language Environment runtime options
and program arguments, and use _CEE_RUNOPTS.

Restriction: The double quotes character (") may not be part of the runtime options
string for applications running under Turkish code page 1026. Use the single quote
character (') instead.

Propagating runtime options with spawn and exec
When going from AMODE 31 to AMODE 64 and back through the spawn or exec
functions, Language Environment rebuilds the _CEE_RUNOPTS environment
variable as a way to propagate runtime options to the new program. In the
situations where AMODE 31 specific options or AMODE 64 specific options would

Chapter 1. Summary of Language Environment runtime options 7

be passed across to the other mode, Language Environment ignores these options.
No messages are issued. For example, when the STACK option is sent across from
AMODE 31 to AMODE 64, it is ignored. This is because the AMODE 64
application uses the STACK64 option. No attempt to convert the AMODE 31
option to the new AMODE 64 option is performed.

8 z/OS Language Environment Programming Reference

Chapter 2. Using the Language Environment runtime options

The Language Environment runtime options, their syntax, and their usage are
described. IBM-supplied default keywords appear above the main path or options
path in the syntax diagrams. In the parameter list, IBM-supplied default choices
are underlined. The minimum unambiguous abbreviation of each Language
Environment option is also indicated in its syntax diagram with capital letters (for
example, ABPerc indicates that ABP is the minimum abbreviation).

ABPERC

Derivation: ABnormal PERColation

ABPERC percolates an abend whose code you specify. This provides Language
Environment condition handling semantics for all abends, except for the one
specified. TRAP(ON) must be in effect. When you run with ABPERC and
encounter the specified abend:
v User condition handlers are not enabled.
v Under z/OS UNIX, POSIX signal handling semantics are not enabled for the

abend.
v No storage report or the report for runtime option is generated.
v No Language Environment messages or Language Environment formatted dump

output is generated.
v The assembler user exit is not driven for enclave termination.
v The abnormal termination exit, if there is one, is not driven.
v Files that are opened by HLLs are not closed by Language Environment, so

records might be lost.
v Resources that are acquired by Language Environment are not freed.
v A debugging tool, if one is active, is not notified of the error.

Tip: You can also use the CEEBXITA assembler user exit to specify a list of abend
codes for Language Environment to percolate. For more information about
CEEBXITA, see z/OS Language Environment Programming Guide.

The default value for non-CICS applications is ABPERC(NONE).

ABPERC is ignored under CICS.

Syntax

►► ABPerc (
NONE

abcode
) ►◄

NONE
Specifies that all abends are handled according to Language Environment
condition handling semantics.

© Copyright IBM Corp. 1991, 2015 9

abcode
Specifies the abend code to percolate. The abcode can be specified as:

Shhh A system abend code, where hhh is the hex system abend code

Udddd A user abend code, where dddd is a decimal user abend code. Any
4-character string can also be used as dddd.

z/OS UNIX consideration

ABPERC percolates an abend regardless of the thread in which it occurs.

Usage notes
v Language Environment ignores ABPERC(S0Cx). In this instance, no abend is

percolated, and Language Environment condition handling semantics are in
effect.

v You can identify only one abend code with this option. However, an abend
U0000 is interpreted in the same way as S000.

ABTERMENC

Derivation: ABnormal TERMination of the ENClave

ABTERMENC sets the enclave termination behavior for an enclave ending with an
unhandled condition of severity 2 or greater. TRAP(ON) must be in effect.

The default value for non-CICS applications is ABTERMENC(ABEND).

The default value for CICS applications is ABTERMENC(ABEND).

Syntax

►► ABTermenc (
ABEND
RETCODE) ►◄

ABEND
When an unhandled condition of severity 2 or greater is encountered,
Language Environment issues an abend to end the enclave. Default abend
processing occurs as follows:
v Language Environment sets an abend code value that depends on the type

of unhandled condition.
v Language Environment sets a reason code value that depends on the type of

unhandled condition.
v Language Environment does not request a system dump.
v Language Environment issues an abend to terminate the task.

RETCODE
When an unhandled condition of severity 2 or greater is encountered,
Language Environment issues a return code and reason code to end the
enclave.

ABPERC

10 z/OS Language Environment Programming Reference

z/OS UNIX consideration

In a multithreaded application with ABTERMENC(ABEND), Language
Environment issues an abend on the task associated with the initial processing
thread (IPT), regardless of which thread experienced the unhandled condition. All
non-IPT threads are terminated normally. This means that the thread that
encountered the unhandled condition is terminated normally if it is a non-IPT
thread.

Usage notes
v You can use the assembler user exit, CEEAUE_ABND, to modify the behavior of

this runtime option by setting the CEEAUE_ABND flag. See z/OS Language
Environment Programming Guide for more information.

v To gather information about the unhandled condition, see “TERMTHDACT” on
page 83.

For more information

For information about return code calculation and abend codes, see z/OS Language
Environment Programming Guide.

AIXBLD (COBOL only)

Derivation: Alternate IndeX BuiLD

AIXBLD invokes the access method services (AMS) for VSAM indexed and relative
data sets (KSDS and RRDS) to complete the file and index definition procedures
for COBOL programs. AIXBLD conforms to the ANSI 1985 COBOL standard.

The default value for non-CICS applications is NOAIXBLD.

AIXBLD is ignored under CICS.

Syntax

►►
NOAIXBLD
NOAIX
AIXBLD
AIX

►◄

NOAIXBLD|NOAIX
Does not invoke the access method services for VSAM indexed and relative
data sets. NOAIXBLD can be abbreviated NOAIX.

AIXBLD|AIX
Invokes the access method services for VSAM indexed and relative data sets.
AIXBLD can be abbreviated AIX®.

z/OS UNIX consideration

If you also specify the MSGFILE runtime option, the access method services
messages are directed to the MSGFILE ddname or to the default SYSOUT.

ABTERMENC

Chapter 2. Using the Language Environment runtime options 11

Performance consideration

Running your program under AIXBLD requires more storage, which can degrade
performance. Therefore, use AIXBLD only during application development to build
alternate indexes. Use NOAIXBLD when you have already defined your VSAM
data sets.

For more information
v See the appropriate version of the COBOL programming guide in the COBOL

library at Enterprise COBOL for z/OS library (http://www.ibm.com/support/
docview.wss?uid=swg27036733).

v See “MSGFILE” on page 55 for information about the MSGFILE runtime option.

ALL31

Derivation: ALL AMODE 31

ALL31 specifies if an application can run entirely in AMODE 31 or if the
application has one or more AMODE 24 routines.

Guideline: ALL31 should have the same setting for all enclaves in a process.
Language Environment does not support the invocation of a nested enclave
requiring ALL31(OFF) from an enclave running with ALL31(ON) in non-CICS
environments.

The default value for non-CICS applications is ALL31(ON).

The default value for CICS applications is ALL31(ON).

Syntax

►► ALl31 (
ON

OFF
) ►◄

ON If the initial routine of the Language Environment application is AMODE 31,
this setting indicates that no other routines in the application will be AMODE
24.

If the initial routine of the Language Environment application is AMODE 24,
ALL31 is dynamically switched to OFF. No message will be issued to indicate
this action. However, if you generate a Language Environment runtime options
report using the RPTOPTS runtime option, the ALL31 option will be reported
as "Override" under the LAST WHERE SET column.

When ALL31(ON) remains in effect:
v AMODE switching across calls to Language Environment common runtime

routines is minimized. For example, no AMODE switching is performed on
calls to Language Environment callable services.

v Language Environment allocates storage for the common anchor area (CAA)
and other control blocks in unrestricted storage.

v COBOL EXTERNAL data is allocated in unrestricted storage.

AIXBLD

12 z/OS Language Environment Programming Reference

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

OFF
Indicates that one or more routines of a Language Environment application are
AMODE 24. When ALL31(OFF) is in effect:
v Language Environment uses more storage below the 16M line.
v AMODE switching across calls to Language Environment common runtime

routines is performed. For example, AMODE switching is performed on calls
to Language Environment callable services.

v Language Environment allocates storage for the common anchor area (CAA)
and other control blocks in storage below the 16M line.

v COBOL EXTERNAL data is allocated in storage below the 16M line.

Restriction: If you use the setting ALL31(OFF), you must also use the setting
STACK(,,BELOW,,,). AMODE 24 routines require stack storage below the 16M
line.

z/OS UNIX considerations
v In a multithreaded environment, the ALL31 option applies to all threads in a

process.
v In a multithreaded environment, the thread start routine specified in the C

pthread_create() function call is invoked in AMODE 31.

Usage notes
v Restrictions: You must specify ALL31(OFF) if your COBOL applications contain

one of the following programs:
– VS COBOL II NORES
– OS/VS COBOL (non-CICS)
– If the Language Environment environment was initialized using ILBOSTP0

v PL/I considerations: For PL/I MTF applications, Language Environment
provides AMODE switching. Therefore, the first routine of a task can be in
AMODE 24.

v Fortran considerations: Use ALL31(ON) if all of the compile units in the enclave
have been compiled with VS FORTRAN Version 1 or Version 2 and there are no
requirements for 24-bit addressing mode. Otherwise, use ALL31(OFF).

v XPLINK considerations: When an application is running in an XPLINK
environment (that is, either the XPLINK(ON) runtime option was specified, or
the initial program contained at least one XPLINK compiled part), the ALL31
runtime option is forced to ON. No AMODE 24 routines are allowed in an
enclave that uses XPLINK. No message is issued to indicate this action. If a
Language Environment runtime options report is generated using the RPTOPTS
runtime option, the ALL31 option is reported as "Override" under the LAST
WHERE SET column.

v Guideline: ALL31 should have the same setting for all enclaves in a process.
Language Environment does not support the invocation of a nested enclave
requiring ALL31(OFF) from an enclave running with ALL31(ON) in non-CICS
environments.

Performance consideration

If your application consists entirely of AMODE 31 routines, it will run faster and
use less below-the-line storage with ALL31(ON) than with ALL31(OFF).

ALL31

Chapter 2. Using the Language Environment runtime options 13

For more information
v See “STACK” on page 76 for information about the STACK runtime option.
v See “XPLINK” on page 103 for information about the XPLINK runtime option.

ANYHEAP

The ANYHEAP runtime option controls the allocation of unrestricted library heap
storage (anywhere heap). Storage that is unrestricted can be located anywhere in
31-bit addressable storage.

The default value for non-CICS applications is
ANYHEAP(16K,8K,ANYWHERE,FREE).

The default value for CICS applications is ANYHEAP(4K,4080,ANYWHERE,FREE).

Syntax

►► ANyheap (
init_size

,
incr_size

,
ANYWHERE

ANY
BELOW

, ►

►
FREE

KEEP
) ►◄

init_size
Determines the initial size of the anywhere heap. This value can be specified as
n, nK, or nM bytes of storage. The actual amount of allocated storage is
rounded up to the nearest multiple of 8 bytes.

incr_size
Determines the minimum size of any subsequent increment to the anywhere
heap. This value can be specified as n, nK, or nM bytes of storage. The actual
amount of allocated storage is rounded up to the nearest multiple of 8 bytes.

ANYWHERE|ANY
Specifies that anywhere heap can be allocated anywhere in 31–bit addressable
storage. If there is no storage available above the 16M line, storage is acquired
below the 16-MB line.

BELOW
Specifies that anywhere heap is allocated below the 16M line.

FREE
Specifies that an anywhere heap increment is released when the last of the
storage within that increment is freed.

KEEP
Specifies that an anywhere heap increment is not released when the last of the
storage within that increment is freed.

ALL31

14 z/OS Language Environment Programming Reference

CICS consideration
v If ANYHEAP(0) is specified, the initial anywhere heap segment is obtained on

the first use and will be based on the increment size.
v The maximum initial and increment size for the anywhere heap is 1 gigabyte

(1024M).
v The default increment size is 4080 bytes, rather than 4096 bytes, to accommodate

the 16 byte CICS storage check zone. Without this accommodation, an extra page
of storage is allocated (only when the storage allocation is below the 16 MB
line). If you choose to change the increment size, it is recommended that you
adjust for the 16 byte CICS storage check zone.

z/OS UNIX considerations
v In a multithreaded environment, the anywhere heap is shared by all threads in

the process.
v When ALL31(ON) is in effect, Language Environment allocates thread-specific

control blocks from the anywhere heap.

Performance consideration

You can improve performance with the ANYHEAP runtime option by specifying
values that minimize the number of times the operating system allocates storage.
See “RPTSTG” on page 73 for information about how to generate a report you can
use to determine the optimum values for the ANYHEAP runtime option.

For more information

For more information about heap storage and heap storage tuning with storage
report numbers, see z/OS Language Environment Programming Guide.

ARGPARSE | NOARGPARSE (C only)

Derivation: ARGument PARSE

ARGPARSE specifies if command-line arguments to a C/C++ program are to be
parsed. This option does not apply to non-C/C++ languages and can be specified
with the #pragma runopts directive or the ARGPARSE or NOARGPARSE compiler
option.

Restriction: You cannot set this option at the system level, region level, or in the
CEEBXITA assembler user exit interface

The default value for non-CICS applications is ARGPARSE.

ARGPARSE is ignored under CICS.

The default value for AMODE 64 applications is ARGPARSE.

ANYHEAP

Chapter 2. Using the Language Environment runtime options 15

Syntax

►►
ARGPARSE
NOARGPARSE ►◄

ARGPARSE
Specifies that arguments given on the command line are to be parsed and
given to the main() function in the usual C argument format (argv, and argc).

NOARGPARSE
Specifies that arguments given on the command line are not parsed but are
passed to the main() function as one string. Therefore, argc has a value of 2,
and argv[1] contains a pointer to the command-line string.

Note: NOARGPARSE is ignored for programs that utilize spawn() or exec() or for
any program that is started by the z/OS UNIX System Services shell or by the
BPXBATCH utility.

Usage notes

You must specify ARGPARSE for the REDIR runtime option to have an effect.

For more information

See “REDIR | NOREDIR (C only)” on page 71 for a description of REDIR.

AUTOTASK | NOAUTOTASK (Fortran only)
AUTOTASK specifies if Fortran multitasking facility (MTF) is to be used by your
program and the number of tasks that are allowed to be active.

The default value for non-CICS applications is NOAUTOTASK.

AUTOTASK is ignored under CICS.

Syntax

►►
NOAUTOtask
AUTOtask

(loadmod , numtasks)
►◄

NOAUTOTASK
Disables the MTF and nullifies the effects of previous specifications of
AUTOTASK parameters.

loadmod
The name of the load module that contains the concurrent subroutines that run
in the subtasks created by MTF.

numtasks
The number of subtasks created by MTF. This value can range from 1 through
99.

ARGPARSE | NOARGPARSE

16 z/OS Language Environment Programming Reference

BELOWHEAP

The BELOWHEAP runtime option controls the allocation of restricted library heap
storage (below heap). Storage that is restricted must be located below the 16M line
(24-bit addressable storage).

The default value for non-CICS applications is BELOWHEAP(8K,4K,FREE).

The default value for CICS applications is BELOWHEAP(4K,4080,FREE).

Syntax

►► BElowheap (
init_size

,
incr_size

,
FREE

KEEP
) ►◄

init_size
Determines the minimum initial size of the below heap storage. This value can
be specified as n, nK, or nM bytes of storage. The actual amount of allocated
storage is rounded up to the nearest multiple of 8 bytes.

incr_size
Determines the minimum size of any subsequent increment to the area below
the 16M line, and is specified in n, nK, or nM bytes of storage. This value is
rounded up to the nearest multiple of 8 bytes.

FREE
Specifies that storage allocated to BELOWHEAP increments is released when
the last of the storage is freed.

KEEP
Specifies that storage allocated to BELOWHEAP increments is not released
when the last of the storage within that increment is freed.

CICS consideration

The default increment size is 4080 bytes, rather than 4096 bytes, to accommodate
the 16-byte CICS storage check zone. Without this accommodation, an extra page
of storage is allocated (only when the storage allocation is below the 16-MB line). If
you choose to change the increment size, it is recommended that you adjust for the
16-byte CICS storage check zone.

z/OS UNIX considerations
v In a multithreaded environment, the below heap is shared by all threads in the

process.
v When ALL31(OFF) is in effect, Language Environment allocates thread-specific

control blocks from the below heap.

Usage notes

If BELOWHEAP(0) is specified, the initial below heap segment is obtained on the
first use and is based on the increment size.

BELOWHEAP

Chapter 2. Using the Language Environment runtime options 17

Performance consideration

You can improve performance with the BELOWHEAP runtime option by
specifying values that minimize the number of times the operating system allocates
storage. See “RPTSTG” on page 73 for information about how to generate a report
you can use to determine the optimum values for the BELOWHEAP runtime
option.

For more information

For more information about heap storage and heap storage tuning with storage
report numbers, see z/OS Language Environment Programming Guide.

CBLOPTS (COBOL only)
Derivation: COBOL OPTionS

CBLOPTS specifies the format of the parameter string on application invocation
when the main program is COBOL. CBLOPTS determines if runtime options or
program arguments appear first in the parameter string. You can only specify this
option at the system level, region level, or in a CEEUOPT.

CBLPSHPOP (COBOL only)

Derivation: COBOL PUSH POP

CBLPSHPOP controls if CICS PUSH HANDLE and CICS POP HANDLE
commands are issued when a COBOL subroutine is called. CBLPSHPOP is ignored
in non-CICS environments.

Tip: Specify CBLPSHPOP(ON) to avoid compatibility problems when calling
COBOL subroutines that contain CICS CONDITION, AID, or ABEND condition
handling commands.

You can set the CBLPSHPOP runtime option on an enclave basis using CEEUOPT.

There is no default value for non-CICS applications because CBLPSHPOP is
ignored.

The default value for CICS applications is CBLPSHPOP(ON).

Syntax

►► CBLPshpop (
ON

OFF
) ►◄

ON Automatically issues the following when a COBOL subroutine is called:
v An EXEC CICS PUSH HANDLE command as part of the routine

initialization.
v An EXEC CICS POP HANDLE command as part of the routine termination.

BELOWHEAP

18 z/OS Language Environment Programming Reference

OFF
Does not issue CICS PUSH HANDLE and CICS POP HANDLE commands on
a call to a COBOL subroutine.

Performance consideration

If your application calls COBOL subroutines under CICS, performance is better
with CBLPSHPOP(OFF) than with CBLPSHPOP(ON).

For more information
v For more information about CEEUOPT, see z/OS Language Environment

Programming Guide.
v To determine where to locate information about CICS commands, see CICS

Master Index.

CBLQDA (COBOL only)

Derivation: COBOL QSAM Dynamic Allocation

CBLQDA controls COBOL QSAM dynamic allocation on an OPEN statement.

The default value for non-CICS applications is CBLQDA(OFF).

CBLQDA is ignored under CICS.

Syntax

►► CBLQda (
OFF

ON
) ►◄

OFF
Specifies that COBOL QSAM dynamic allocation is not permitted.

ON Specifies that COBOL QSAM dynamic allocation is permitted. ON conforms to
the 1985 COBOL standard.

Usage notes
v CBLQDA(OFF) is the recommended default because it prevents a temporary

data set from being created in case there is a misspelling in your JCL. If you
specify CBLQDA(ON) and have a misspelling in your JCL, Language
Environment creates a temporary file, writes to it, and then z/OS deletes it. You
receive a return code of 0, but no output.

v CBLQDA does not affect dynamic allocation for the message file specified in
MSGFILE or the Language Environment formatted dump file (CEEDUMP) .

CEEDUMP

Derivation: Common Execution Environment DUMP

CBLPSHPOP

Chapter 2. Using the Language Environment runtime options 19

The CEEDUMP runtime option is used to specify options to control the processing
of the Language Environment dump report.

The default value for non-CICS applications is
CEEDUMP(60,SYSOUT=*,FREE=END,SPIN=UNALLOC).

The default value for CICS applications is
CEEDUMP(60,SYSOUT=*,FREE=END,SPIN=UNALLOC).

The default value for AMODE 64 is
CEEDUMP(60,SYSOUT=*,FREE=END,SPIN=UNALLOC).

Syntax

►► CEEDump (
page_len

, ►

►
SYSOUT= *

class
(class)
(, ,)

class form-name

,
FREE=END

FREE=CLOSE
►

► ,
SPIN=UNALLOC

SPIN=NO
) ►◄

page_len
Specifies the number of lines that a CEEDUMP report contains on each page.
The number specified by page_len must be 0 or a whole number greater than 9.
A value of 0 indicates that the dump report should contain no page breaks.
The default is 60. The maximum length of page_len is limited to 9 digits.

SYSOUT=
Specifies SYSOUT attributes for a dynamically allocated CEEDUMP DD.
SYSOUT has three possible parameters, but the second parameter should
always be omitted:.

class
Specifies a value that is one character in length. Valid values are A through
Z, 0 through 9, and *. A SYSOUT class must not be specified inside
quotation marks.
v If class is not specified, it defaults to * for the dynamically allocated

CEEDUMP.
v If dynamic allocation for the specified SYSOUT class specified fails,

SYSOUT=* is set and message CEE3785I is issued.

form-name
Provides a name assigned to an output form for dynamically allocated
CEEDUMP DD. form-name is made up of 1-4 alphanumeric or national
($,#,@) characters according to JCL rules. If you want to allow separation of

CEEDUMP

20 z/OS Language Environment Programming Reference

CEEDUMP output from other SYSOUT output for the same class in the JES
spool, specify a form in addition to a class for a dynamically allocated
CEEDUMP.

FREE=
Specifies that dynamically allocated CEEDUMPs will have one of the following
JCL DD attributes:

END
The FREE=END DD attribute requests that the system unallocates the data
set at the end of the last step that references the data set. This is the
default value for this suboption.

CLOSE
The FREE=CLOSE DD attribute requests that the system unallocates the
data set when it is closed. Code the FREE=CLOSE suboption along with
SYSOUT=class to make CEEDUMP a spinning data set.

SPIN=
Specifies that dynamically allocated CEEDUMPs will have one of the following
attributes:

UNALLOC
The SPIN=UNALLOC attribute indicates the system should make the
SYSOUT data set available for processing immediately when it is
unallocated. This is the default value for this suboption.

NO The SPIN=NO attribute indicates the system should make the SYSOUT
data set available for processing as a part of the output at the end of the
job, regardless of when the data set is unallocated.

z/OS UNIX considerations

The SYSOUT=, FREE= and SPIN= suboptions do not have any effect on a
CEEDUMP report taken in a z/OS UNIX file system.

CICS consideration

The SYSOUT=, FREE= and SPIN= suboptions do not have any effect on a
CEEDUMP report taken under CICS.

Usage notes
v If a CEEDUMP DD card is explicitly coded in a job step, Language Environment

ignores any SYSOUT class, FREE, SPIN or form-name specified in the CEEDUMP
runtime.

v The SYSOUT=class suboption is overridden by _CEE_DMPTARG when this
environment variable is used at the same time to indicate the SYSOUT class.

v The page_len suboption is overridden by the CEE3DMP PAGESIZE option. For
more information about CEE3DMP, see z/OS Language Environment Customization.

v Language Environment supports the use of a CEEDUMP DDNAME dynamically
allocated with the XTIOT, UCB nocapture, or DSAB-above-the-line options
specified in the SVC99 parameters (S99TIOEX, S99ACUCB, S99DSABA flags).

CICS considerations
v CEED(,SYSOUT=X,FREE=CLOSE)

CEEDUMP

Chapter 2. Using the Language Environment runtime options 21

This dynamically allocates a CEEDUMP with SYSOUT class X and the
FREE=CLOSE DD attribute. The other implicit suboptions are page_len and SPIN,
which default to whatever values are currently set in the CEEDUMP runtime
option.

v CEEDUMP(40)
The CEEDUMP report contains a page length of 40 lines. The other implicit
suboptions are SYSOUT=, FREE=, and SPIN=, which default to whatever values
are currently set in the CEEDUMP runtime option.

CEERCDM—Record information for an active condition

CEERCDM records information for an active condition so that the information can
be retrieved later from the condition information block (CIB). Use this service only
during condition handling.

Syntax

►► CEERCDM (function code , information , fc) ►◄

function_code (input)
A fullword integer that contains the function code of the following value:

1 Record the data set name of a dump for an active condition.

information (input)
The information to be recorded. When the function_code is 1, the information
is a halfword length-prefixed EBCDIC character string that is expected to be
the data set name of a dump for an active condition. Language Environment
validates that the length is positive and that it does not exceed 44.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions are possible:

Code Severity Message number Message text
CEE000 0 — The service was successfully completed.
CEE3LA 3 3754 Incorrect parameters were detected.
CEE35S 3 3260 No condition was active when a call was

made to condition management.

Usage notes
v After the condition handling functions return control to the application, the CIB

that represents the conditions is no longer valid and the recorded information is
no longer accessible.

v If CEERCDM is called more than once for the same condition, the information of
the last call is recorded.

CEEDUMP

22 z/OS Language Environment Programming Reference

|

|
|
|
|

|

|||||||||||||||||||||
|
||

|
|

||

|
|
|
|
|

|
|
|
|
|

|

|

|
|
|

|
|

Examples
1. Following is an example of CEERCDM called by C/C++.

/*Module/File Name: EDCRCDM */

#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <string.h>
#include <ceeedcct.h>

#ifdef __cplusplus
extern "C" {

#endif
void handler(_FEEDBACK *,_INT4 *,_INT4 *,_FEEDBACK *);

#ifdef __cplusplus
}

#endif

int main() {

_FEEDBACK fc;
_ENTRY routine;
_INT4 token;
int x,y,z;

/* set the routine structure to point to the handler */
/* and use CEEHDLR to register the user handler */

token = 99;
routine.address = (_POINTER)&handler; routine.nesting = NULL;

CEEHDLR(&routine,&token,&fc);
/* verify that CEEHDLR was successful */
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEHDLR failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}
x = 5;
y = 0;
z = x / y;

}
/***/
/* handler is a user condition handler */
/***/
void handler(_FEEDBACK *fc, _INT4 *token, _INT4 *result,

_FEEDBACK *newfc) {

_FEEDBACK lfc;
_INT4 funcode;
_VSTRING info;
char *ds_name = "XXXX.YYYY";

/* suppose we have taken a dump of this condition */
/* into a dataset XXXX.YYYY. */

info.length = strlen(ds_name);
memcpy(info.string, ds_name, info.length);
funcode = 1;
CEERCDM(&funcode, &info, &lfc);
if (_FBCHECK (lfc , CEE000) != 0) {

printf("CEERCDM failed with message number %d\n",
lfc.tok_msgno);

CEERCDM

Chapter 2. Using the Language Environment runtime options 23

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

exit(2999);
}
*result = 10;

}

CHECK (COBOL only)

If your COBOL application was compiled with the SSRANGE compile option,
specifying the CHECK(ON) runtime option enables range checking of each index,
subscript, and reference modification.

The default value for non-CICS applications is CHECK(ON).

The default value for CICS applications is CHECK(ON).

Syntax

►► CHeck (
ON

OFF
) ►◄

ON Specifies that runtime range checking is performed.

OFF
Specifies that runtime range checking is not performed.

Usage notes

CHECK(ON) has no effect if the NOSSRANGE COBOL compile option was
specified.

Performance consideration

If your COBOL program was compiled with the SSRANGE compile option, and
you are not testing or debugging an application, performance improves when you
specify CHECK(OFF). For COBOL 4.2 and earlier you can disable the SSRANGE
code with CHECK(OFF). For COBOL 5.1 and later, you cannot disable it.

COUNTRY

Specifying a country_code with the COUNTRY runtime option determines:
v Date and time formats
v The currency symbol
v The decimal separator
v The thousands separator

COUNTRY affects only the Language Environment NLS services, not the Language
Environment locale callable services.

Tip: You can set the country value using the COUNTRY runtime option or the
CEE3CTY callable service.

The default value for non-CICS applications is COUNTRY(US) .

CEERCDM

24 z/OS Language Environment Programming Reference

|
|
|
|

|

The default value for CICS applications is COUNTRY(US) .

Syntax

►► COUNTRy (
country_code

) ►◄

country_code
A 2-character code that indicates to Language Environment the country on
which to base the default settings. Table 32 on page 483 contains a list of valid
country codes.

Usage notes
v If you specify an unsupported country_code , Language Environment accepts the

value and issues an informational message.
If an unsupported country_code is specified on the COUNTRY runtime option
and one of the services listed in “National Language Support callable services”
on page 114 is called with the optional country_code parameter omitted, the
called service returns its specified default value.

v Language Environment provides locales used in C and C++ to establish default
formats for the locale-sensitive functions and locale callable services, such as
date and time formatting, sorting, and currency symbols. The COUNTRY setting
does not affect these locale-sensitive functions and locale callable services.
To change the locale, you can use the setlocale() library function or the
CEESETL callable service. These affect only C/C++ locale-sensitive functions and
Language Environment locale callable services, not the COUNTRY runtime
option.
To ensure that all settings are correct for your country, use COUNTRY and either
CEESETL or setlocale().
The settings of CEESETL or setlocale() do not affect the setting of the
COUNTRY runtime option. COUNTRY affects only Language Environment NLS
and date and time services. setlocale() and CEESETL affect only C/C++
locale-sensitive functions and Language Environment locale callable services.

v The COUNTRY setting affects the format of the date and time in the reports
generated by the RPTOPTS and RPTSTG runtime options

For more information
v For more information about the CEE3CTY callable service, see “CEE3CTY—Set

default country” on page 135.
v For more information about the RPTOPTS runtime option, see “RPTOPTS” on

page 71.
v For more information about the RPTSTG runtime option, see “RPTSTG” on page

73.
v For a list of countries and their codes, see Appendix A, “IBM-supplied country

code defaults,” on page 483.
v For more information about the CEESETL callable service, see “CEESETL—Set

locale operating environment” on page 413.
v For more information about setlocale(), see z/OS XL C/C++ Programming Guide.

COUNTRY

Chapter 2. Using the Language Environment runtime options 25

DEBUG (COBOL only)

DEBUG activates the COBOL batch debugging features specified by the USE FOR
DEBUGGING declarative.

The default value for non-CICS applications is NODEBUG.

The default value for CICS applications is NODEBUG.

Syntax

►►
NODEBUG
DEBUG ►◄

NODEBUG
Suppresses the COBOL batch debugging features.

DEBUG
Activates the COBOL batch debugging features. You must have the WITH
DEBUGGING MODE clause in the environment division of your application in
order to compile the debugging sections.

Usage notes
v For information about specifying this option at the system or region level, see

z/OS Language Environment Customization.
v For information about specifying this option in CEEUOPT, see z/OS Language

Environment Programming Guide.
v Use DEBUG and NODEBUG only on the command line.

Performance consideration

Because DEBUG gives worse runtime performance than NODEBUG, you should
use it only during application development or debugging.

For more information

See the appropriate version of the COBOL programming guide in the COBOL
library at Enterprise COBOL for z/OS library (http://www.ibm.com/support/
docview.wss?uid=swg27036733) for more information about the USE FOR
DEBUGGING declarative.

DEPTHCONDLMT

Derivation: DEPTH of nested CONDition LiMiT

DEPTHCONDLMT specifies the extent to which conditions can be nested. Figure 1
on page 27 illustrates the effect of DEPTHCONDLMT(3) on condition handling.
The initial condition and two nested conditions are handled in this example. The
third nested condition is not handled.

DEBUG

26 z/OS Language Environment Programming Reference

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

The default value for non-CICS applications is DEPTHCONDLMT(10).

The default value for CICS applications is DEPTHCONDLMT(10).

Syntax

►► DEPthcondlmt (
limit

) ►◄

limit
An integer of 0 or greater value. It is the depth of condition handling allowed.
An unlimited depth of condition handling is allowed if you specify 0.

A limit value of 1 specifies handling of the initial condition, but does not allow
handling of nested conditions that occur while handling a condition. With a
limit value of 5, for example, the initial condition and four nested conditions
are processed. In this case, there can be no further nesting of conditions.

If the number of nested conditions exceeds the limit, the application ends with
abend 4087.

z/OS UNIX considerations

The DEPTHCONDLMT option sets the limit for how many nested synchronous
conditions are allowed for a thread. Asynchronous signals do not affect
DEPTHCONDLMT.

Usage notes
v PL/I consideration: DEPTHCONDLMT(0) provides PL/I compatibility.
v PL/I MTF consideration: In a PL/I MTF application, DEPTHCONDLMT sets the

limit for how many nested synchronous conditions are allowed for a PL/I task.
If the number of nested conditions exceeds the limit, the application ends
abnormally.

For more information

For more information about nested conditions, see z/OS Language Environment
Programming Guide.

Error

(level 1)

User-written

condition handler

Another error

(level 2)

User-written

condition handler

User-written

condition handler

Not handled

Another error

(level 3)

Another error

(level 4)

Figure 1. Effect of DEPTHCONDLMT(3) on condition handling

DEPTHCONDLMT

Chapter 2. Using the Language Environment runtime options 27

DYNDUMP

Derivation: DYNamic DUMP

The DYNDUMP runtime option provides a way to obtain dynamic dumps of user
applications that would ordinarily be lost due to the absence of a SYSMDUMP,
SYSUDUMP, or SYSABEND DD statement. The dynamic dump is written when:
v Certain types of ABENDs occur. You can select if a U4039 ABEND or other

U40xx ABEND types can cause a dump to be collected.
v The first suboption defines the high level qualifier of the dynamic dump data set

name.
v The second suboption controls when dynamic dumps are taken for U4039

ABENDS.
v The third suboption controls when dynamic dumps are taken for other U40xx

ABENDS.

Restriction: The dump is written to a z/OS data set. It cannot be part of a z/OS
UNIX file system.

The non-CICS default value is DYNDUMP(*userid,NODYNAMIC,TDUMP).

DYNDUMP is ignored under CICS.

The AMODE 64 default value is DYNDUMP(*userid,NODYNAMIC,TDUMP).

Syntax

►► DYNdump (
*USERID
hlq
*TSOPREFIX

,
NODYNAMIC
DYNAMIC
FORCE
BOTH

,
TDUMP
NOTDUMP) ►◄

hlq
is a high level qualifier for the dynamic dump data set to be created. This is
concatenated with a time stamp consisting of the Julian day and the time of
the dump. The job name or PID can also be part of the name if the combined
length of hlq and the time stamp is 35 characters or less. The hlq value is
limited to 26 characters including dot (.) separators. hlq allows three
keywords:

*USERID
tells Language Environment to use the user ID associated with the job step
task as the high level qualifier for the dynamic dump data set.

*TSOPREFIX or TSOPRE
tells Language Environment to use the TSO/E prefix. Restriction: The
prefix is only valid in a TSO/E environment. If the prefix is not available,
the user ID is used.

Each keyword may be followed by additional characters to be used to create
the dataset name. When appended to the USERID or the TSO prefix, they form
the hlq used when creating the dump data set.

DYNDUMP

28 z/OS Language Environment Programming Reference

The data set name is limited to 44 characters. If the combined length of hlq and
the time stamp is 35 characters or less, the job name or PID is added to the
data set name. If the system is using multilevel security, the SECLABEL is used
as the second qualifier. If hlq contains multiple qualifiers, only the first is used,
followed by the SECLABEL. The format of the data set name is:
v When the application is not exec()ed and not multilevel security:

hlq.Djjj.Thhmmsst.jobname

v When the application is exec()ed and not multilevel security:
hlq.Djjj.Thhmmsst.Pppppppp

v When the application is multilevel security and not exec()ed:
hlq.MLS-level.Djjj.Thhmmsst.jobname

v When the application is both multilevel security and exec()ed:
hlq.MLS-level.Djjj.Thhmmsst.Pppppppp

For U4039 ABENDS
The following suboptions are used for U4039 ABENDS only:

DYNAMIC
Language Environment creates a dynamic dump automatically when the
application has not already specified one of the dump ddnames, (for
example, SYSUDUMP).

NODYNAMIC
Language Environment does not create a dynamic dump if no dump DD
names are specified.

FORCE
Language Environment always creates a dynamic dump even if other
dump DD names have been specified. The SYSnnnnn DD card is ignored if
it exists. FORCE should not be used as the default.

BOTH
Language Environment creates a dynamic dump and, if a SYSnnnnn DD
name exists, a dump is also written to the DD. BOTH should not be used
as the default.

For U40xx ABENDS
The following suboptions are used for other U40xx ABENDS only. Existing
SYSnnnnn DD statements are also honored.

TDUMP
Language Environment creates a dynamic dump automatically.

NOTDUMP
Language Environment does not create a dynamic dump.

Usage notes
v Recommendations:

– Set up an hlq to which everyone can write.
– Do not use FORCE or BOTH as the default for the U4039 ABENDS.

v The DYNDUMP runtime option is ignored under CICS.
v When an ABEND occurs during Language Environment initialization, the

dynamic dump is not created if runtime options have not been processed yet.
v When the dynamic dump fails, messages are written to the operator's console or

the job log (for batch). These are written by the IEATDUMP system service, by
Language Environment, or by RACF®.

v When an ABEND is issued without the DUMP option, no dump is generated.

DYNDUMP

Chapter 2. Using the Language Environment runtime options 29

v When Language Environment terminates with a U4038 abend, the U4038 abend
is issued without the DUMP option. Therefore, no system dump is generated,
and DYNDUMP does not collect a dump for this ABEND.

v The job name is taken from the JOBNAME system symbol.
– A dump for a TSO application uses the user ID of the JOBNAME.
– For a batch job, JOBNAME is taken from the JOB card in the JCL.
– In the shell, JOBNAME is the user ID with a suffix.

CICS considerations
v DYNDUMP(smith, force, notdump)

A dynamic dump is generated only for ABEND code U4039. Other SYSnnnnn
DD cards are ignored. Other ABENDs might cause a dump to be created if a
SYSnnnnn DD card exists. The dynamic dump data set name will be similar to
SMITH.D012.T112245.JOB11.

v DYNDUMP(smith,DYNAMIC,TDUMP)
A dynamic dump is created if no SYSnnnnn is specified and the ABEND code is
U4039. The data set name will be similar to SMITH.D117.T235900.JOBZ2.

v DYNDUMP(*TSOPREFIX,NODYNAMIC,TDUMP)
A dynamic dump is generated only for ABEND code U40xx. The data set name
will be similar to SMITH.D287.T234560.JOBZ2.

v DYNDUMP(*USERID,NODYNAMIC,TDUMP)
A dynamic dump for a U4039 ABEND is taken to SMITH.D109.T234512.JOBZ3.

v DYNDUMP(*USERID.HOT.DUMPS,NODYNAMIC,TDUMP)
v DYNDUMP(*TSOPRE.A1234567.B1234567,NODYNAMIC,TDUMP)

ENV (C only)

Derivation: ENVironment

ENV specifies the operating system for your C application. z/OS XL C++ users can
get the same behavior by using the z/OS XL C++ compiler option TARGET(IMS™)
to specify ENV(IMS).

Restriction: This option does not apply to non-C languages and can be specified
only with the C #pragma runopts directive. You cannot set this option at the system
level, region level, or in the CEEBXITA assembler user exit interface.

For non-CICS applications, the ENV option differs from other runtime options that
it does not have a standard default. The default depends on the system (CMS, IMS,
or MVS) in which compilation occurs.

ENV is ignored under CICS.

Syntax

►► ENV (CMS
IMS
MVS

) ►◄

DYNDUMP

30 z/OS Language Environment Programming Reference

CMS
Specifies that the C application runs in a CMS environment.

IMS
Specifies that the C application runs in an IMS environment. You do not need
to specify the ENV option if your application is invoked under IMS but does
not actually use IMS facilities.

MVS
Specifies that the C application runs in an MVS environment.

z/OS UNIX considerations
v In a multithreaded environment, the ENV option is shared by all threads in the

process.

ENVAR

Derivation: ENvironmental VARiables

ENVAR sets the initial values for the environment variables that can later be
accessed or changed using the C functions getenv(), putenv, setenv, and clearenv.

The set of environment variables established by the end of runtime option
processing reflects all the various sources where environment variables are
specified, rather than just the one source with the highest precedence. However, if
a setting for the same environment variable is specified in more than one source,
the setting with the highest precedence is used.

The system() function can be used to create a new environment. Environment
variables in effect at the time of the POSIX system() call are copied to the new
environment. The copied environment variables are treated the same as those
found in the ENVAR runtime option on the command level.

When you specify the RPTOPTS runtime option, the output for the ENVAR
runtime option contains a separate entry for each source where ENVAR was
specified with the environment variables from that source.

The default value for non-CICS applications is ENVAR('').

The default value for CICS applications is ENVAR('').

The default value for AMODE 64 applications is ENVAR('').

Syntax

►► ENVAR (▼

,

string
) ►◄

string
Is specified as name=value, where name and value are sequences of characters

ENV

Chapter 2. Using the Language Environment runtime options 31

that do not contain null bytes or equal signs. The string name is an
environment variable, and value is its value.

Blanks are significant in both the name= and the value characters. You can
enclose string in either single or double quotation marks to distinguish it from
other strings. You can specify multiple environment variables, separating the
name=value pairs with commas. Quotation marks are required when specifying
multiple variables.

z/OS UNIX considerations

In a multithreaded environment, the environment variables are shared by all
threads in the process.

Usage notes
v The entire value of the ENVAR operand, whether a single string or multiple

strings, cannot exceed 250 characters.
v string cannot contain DBCS characters.
v If ENVAR is specified as part of the _CEE_RUNOPTS environment variable, it is

ignored.
v The ENVAR option functions independently of the POSIX runtime option

setting.
v C/C++ consideration—An application can access the environment variables

using C function getenv() or the POSIX variable environ, which is defined as:
extern char **environ;

Guideline: You should access environment variables through the getenv()
function, especially in a multithread environment. getenv() serializes access to
the environment variables.
Environment variables that are passed to the exec or spawn family of functions
replace those established by the ENVAR option in the new environment.

For more information
v For more information about the RPTOPTS runtime option, see “RPTOPTS” on

page 71.
v For more information about getenv(), putenv(), setenv(), clearenv(), system(),

and the exec and spawn family of functions, see z/OS XL C/C++ Runtime Library
Reference .

v For more information about the order of precedence of runtime option sources,
see z/OS Language Environment Programming Guide.

ERRCOUNT

Derivation: ERRor COUNTer

ERRCOUNT specifies how many conditions of severity 2, 3, or 4 can occur per
thread before the enclave terminates abnormally. When the number specified in
ERRCOUNT is exceeded, Language Environment ends with ABEND U4091 RC=B.

The default value for non-CICS applications is ERRCOUNT(0).

The default value for CICS applications is ERRCOUNT(0).

ENVAR

32 z/OS Language Environment Programming Reference

Syntax

►► ERrcount (
number

) ►◄

number
An integer of 0 or greater value that specifies the number of severity 2, 3, and
4 conditions allowed for each thread. An unlimited number of conditions is
allowed if you specify 0. If the number of conditions exceeds the limit, the
application ends with abend 4091 RC=B.

z/OS UNIX considerations

Synchronous signals that are associated with a condition of severity 2, 3, or 4 affect
ERRCOUNT. Asynchronous signals do not affect ERRCOUNT.

Usage notes
v Language Environment does not count severity 0 or 1 conditions toward

ERRCOUNT.
v ERRCOUNT only applies when conditions are handled by a user condition

handler, signal catcher, PL/I on-unit, or a language-specific condition handler.
Any unhandled condition of severity 2, 3, or 4 causes the enclave to terminate.

v COBOL consideration: The COBOL runtime library separately counts its severity
1 (warning) messages. When the limit of 256 IGZnnnnW messages is reached,
the COBOL runtime library will issue message IGZ0041W, which indicates that
the limit of warning messages has been reached. Any further COBOL warning
messages are suppressed and processing continues.

v PL/I consideration: You should use ERRCOUNT(0) in a PL/I environment to
avoid unexpected termination of your application. Some conditions, such as
ENDPAGE, can occur many times in an application.

v PL/I MTF consideration: In a PL/I MTF application, ERRCOUNT sets the
threshold for the total number severity 2, 3, and 4 synchronous conditions that
can occur for each task.

v C++ consideration: C++ throw does not affect ERRCOUNT.

For more information

For more information about condition handling, see z/OS Language Environment
Programming Guide.

ERRUNIT (Fortran only)

Derivation: ERRor UNIT

ERRUNIT identifies the unit number to which runtime error information is to be
directed. This option is provided for compatibility with the VS Fortran version 2
runtime.

The default value for non-CICS applications is ERRUNIT(6).

ERRCOUNT

Chapter 2. Using the Language Environment runtime options 33

ERRUNIT is ignored under CICS.

Syntax

►► ERRUnit (
number

) ►◄

number
A number in the range 0-99.

Usage notes

The Language Environment message file and the file connected to the Fortran error
message unit are the same.

EXECOPS | NOEXECOPS (C only)

EXECOPS specifies if you can enter runtime options on the command line.

Restriction: This option does not apply to non-C languages and can be specified
only with the C #pragma runopts directive. You cannot set this option at the system
level, region level, or in the CEEBXITA assembler user exit interface.

The default value for non-CICS applications is EXECOPS.

This option is ignored under CICS.

The default value for AMODE 64 applications is EXECOPS.

Syntax

►►
EXECOPS
NOEXECOPS ►◄

EXECOPS
Specifies that you can enter runtime options on the command line. Language
Environment parses the argument string to separate runtime options from
application arguments. The runtime options are interpreted by Language
Environment and the application arguments are passed to the application.

NOEXECOPS
Specifies that you cannot enter runtime options on the command line.
Language Environment passes the entire argument string to the application.

For more information

For more information about the format of the argument string and how it is
parsed, see z/OS Language Environment Programming Guide.

ERRUNIT

34 z/OS Language Environment Programming Reference

FILEHIST (Fortran only)
Derivation: FILE HISTory

FILEHIST specifies whether to allow the file definition of a file referred to by a
ddname to be changed during run time. This option is intended for use with
applications called by Fortran that reallocate Fortran's supplied DD names.

The default value for non-CICS applications is FILEHIST.

FILEHIST is ignored under CICS

Syntax

►►
FIlehist
NOFIlehist ►◄

FILEHIST
Causes the history of a file to be used in determining its existence. It checks to
see if:
v The file was ever internally opened (in which case, it exists)
v The file was deleted by a CLOSE statement (in which case, it does not exist).

NOFILEHIST
Causes the history of a file to be disregarded in determining its existence. If
you specify NOFILEHIST, you should consider:
v If you change file definitions during runtime, the file is treated as if it were

being opened for the first time.
v Before the file definition can be changed, the existing file must be closed.
v If you do not change file definitions during runtime, you must use

STATUS='NEW' to reopen an empty file that has been closed with
STATUS='KEEP', because the file does not appear to exist to Fortran.

FILETAG (C/C++ only)

Derivation: FILE TAGging

FILETAG controls automatic text conversion and automatic file tagging for z/OS
UNIX files. It activates the automatic file tagging, on the first write, of new or
empty z/OS UNIX file system files open with fopen() or freopen(), or upon the
first I/O to a pipe created with popen(). You should be familiar with the concept
of file tagging, automatic conversion, and the program and file CCSIDs to use the
runtime option properly. See z/OS XL C/C++ Programming Guide for more
information.

The default value for non-CICS applications is
FILETAG(NOAUTOCVT,NOAUTOTAG).

FILETAG is ignored under CICS.

The default value for AMODE 64 applications is
FILETAG(NOAUTOCVT,NOAUTOTAG).

FILEHIST

Chapter 2. Using the Language Environment runtime options 35

Syntax

►► FILETAG (
NOAUTOCVT

AUTOCVT
,

NOAUTOTAG

AUTOTAG
) ►◄

NOAUTOCVT
Disables automatic text conversion.

AUTOCVT
Enables automatic text conversion for untagged UNIX file system files opened
using fopen() or freopen(). The conversion for an untagged file is from the
program CCSID to the EBCDIC CCSID as specified by the _BPXK_CCSIDS
environment variable. If the environment variable is unset, a default CCSID
pair is used. See z/OS XL C/C++ Programming Guide for more information about
the _BPXK_CCSIDS environment variable.

Restriction: Automatic conversion for untagged UNIX files can only take
place between IBM-1047 and ISO8859-1 code sets. Other CCSID pairs are not
supported. By default, automatic conversion for untagged UNIX file system
files applies only to files opened in text mode. An untagged file opened in
binary mode is not converted automatically. You can control the tagging by
using the _EDC_AUTOCVT_BINARY environment variable. For more
information about the _EDC_AUTOCVT_BINARY environment variable, see
z/OS XL C/C++ Programming Guide.

This suboption also indicates that the standard streams should be enabled for
automatic text conversion to the EBCDIC IBM-1047 code page when they refer
to an untagged terminal file (tty).

This suboption does not affect untagged UNIX file system files that are
automatically tagged by the AUTOTAG suboption. A UNIX file system file that
is automatically tagged is already enabled for automatic text conversion.

The automatic text conversion is performed only if one of the following
situations is also true:
v The _BPXK_AUTOCVT environment variable value is set to ON.
v The _BPXK_AUTOCVT environment variable is unset and AUTOCVT(ON)

was specified in the active BPXPRMxx member on your system.

For more information about the _BPXK_AUTOCVT environment variable, see
z/OS XL C/C++ Programming Guide.

NOAUTOTAG
Disables the automatic tagging of new or empty z/OS UNIX files.

AUTOTAG
Enables automatic file tagging, on the first write, of new or empty z/OS UNIX
files opened with fopen(), freopen(), or popen().

Usage notes
v Avoid the following situations:

– Setting this runtime option at the system or region levels.
– Setting this runtime option using _CEE_RUNOPTS in a default profile for the

UNIX shell users.
– Exporting _CEE_RUNOPTS that specifies this runtime option. It can cause

unexpected behaviors for the unknowing user or application.

FILETAG

36 z/OS Language Environment Programming Reference

v The application programmer should define this runtime option with the
assumption that the application is coded to behave based on the option's setting.

v The application programmer should specify this runtime option at compile time
using #pragma runopts or at bind using a CEEUOPT CSECT that has been
previously created.

v The application user should not override this runtime option because it can
change the expected behavior of the application.

v The default CCSID pair is (1047,819), where 1047 indicates the EBCDIC
IBM-1047 codepage and 819 indicates the ASCII ISO8859-1 codepage.

v Automatic text conversion is enabled for the standard streams only when the
application has been exec()ed, for example, when the UNIX shell gives control
to a program entered on the command line, and the standard stream file
descriptors are already open, untagged, and associated with a tty.

v For the UNIX shell-owned standard streams that are redirected at program
execution time, the shell includes added environment variables that control if the
redirected streams are tagged. See z/OS UNIX System Services Command Reference
for more information.

v Automatic tagging for a z/OS UNIX file is done by the system at first write. The
CCSID used for the tag is the program CCSID of the current thread. Both text
and binary files are tagged.

v When FILETAG(,AUTOTAG) is in effect, fopoen() or freopen() of a z/OS UNIX
file fails if it cannot determine if the file exists or if it cannot determine the size.

FLOW (COBOL only)
FLOW controls the FLOW output produced by OS/VS COBOL programs. You
cannot set this option at the system or region levels.

The default value for non-CICS applications is NOFLOW.

The default value for CICS applications is NOFLOW.

Syntax

►►
NOFLOW
FLOW
FLOW(n)
FLOW=n
FLOWn

►◄

NOFLOW
Suppresses the OS/VS COBOL FLOW output.

FLOW
Allows the OS/VS COBOL FLOW output.

n Specifies the number of procedures traced. The number can be any integer
from 1 to 99, inclusive.

FILETAG

Chapter 2. Using the Language Environment runtime options 37

HEAP

HEAP controls the allocation of user heap storage and specifies how that storage is
managed. Heaps are storage areas containing user-controlled dynamically allocated
variables or data. Examples of these are:
v C data allocated as a result of the malloc(), calloc(), and realloc() functions
v COBOL WORKING-STORAGE data items
v PL/I variables with the storage class CONTROLLED, or the storage class

BASED
v Data allocated as a result of a call to the CEEGTST Language Environment

callable service

The default value for non-CICS applications is
HEAP(32K,32K,ANYWHERE,KEEP,8K,4K).

The default value for CICS applications is
HEAP(4K,4080,ANYWHERE,KEEP,4K,4080).

Syntax

►► Heap (
init_size

,
incr_size

,
ANYWHERE

ANY
BELOW

,
KEEP

FREE
►

► ,
initsz24

,
incrsz24

) ►◄

init_size
Determines the initial allocation of heap storage. This value can be specified as
n, nK, or nM bytes of storage. If 0 is specified, the initial storage is obtained on
the first use and is based on the increment size. The actual amount of allocated
storage is rounded up to the nearest multiple of 8 bytes.

incr_size
Determines the minimum size of any subsequent increment to the user heap
storage. This value can be specified as n, nK, or nM bytes of storage. The
actual amount of allocated storage is rounded up to the nearest multiple of 8
bytes.

ANYWHERE|ANY
Specifies that user heap storage can be allocated anywhere in storage. If there
is no available storage above the line, storage is acquired below the 16 MB line.

BELOW
Specifies that user heap storage is allocated below the 16M line in storage.
Restriction: The HEAPPOOLS option is ignored when the BELOW suboption
is specified.

KEEP
Specifies that an increment to user heap storage is not released when the last
of the storage within that increment is freed.

HEAP

38 z/OS Language Environment Programming Reference

FREE
Specifies that an increment to user heap storage is released when the last of the
storage within that increment is freed.

initsz24
Determines the minimum initial size of user heap storage that is obtained
below the 16M line for AMODE 24 applications that specify ANYWHERE in
the HEAP runtime option. This value can be specified as n, nK, or nM number
of bytes. If 0 is specified, the initial storage is obtained on the first use and is
based on the increment size. The amount of allocated storage is rounded up to
the nearest multiple of 8 bytes.

incrsz24
Determines the minimum size of any subsequent increment to user heap
storage that is obtained below the 16M line for AMODE 24 applications that
specify ANYWHERE in the HEAP runtime option. This value can be specified
as n, nK, or nM number of bytes. The amount of allocated storage is rounded
up to the nearest multiple of 8 bytes.

CICS consideration
v If HEAP(,,ANYWHERE,,,) is in effect, the maximum size of a heap segment is 1

gigabyte (1024 MB).
v The default increment size under CICS is 4080 bytes, rather than 4096 bytes, to

accommodate the 16 bytes CICS storage check zone. Without this
accommodation, an extra page of storage is allocated when the storage allocation
is below the 16 MB line.
Guideline: If you choose to change the increment size, you should adjust for the
16 byte CICS storage check zone.

z/OS UNIX considerations

In a multithreaded environment, user heap storage is shared by all threads in the
process.

Usage notes
v Applications running in AMODE 24 that request heap storage get the storage

below the 16M line regardless of the setting of ANYWHERE | BELOW.
v COBOL consideration—You can use the HEAP option to provide function

similar to the VS COBOL II space management tuning table.
v PL/I consideration—For PL/I, the only case in which storage is allocated above

the line is when all of the following conditions exist:
– The user routine requesting the storage is running in 31-bit addressing mode.
– HEAP(,,ANY,,,) is in effect.
– The main routine runs in AMODE 31.

v PL/I MTF consideration—In a PL/I MTF application, HEAP specifies the heap
storage allocation and management for a PL/I main task.

Performance consideration

You can improve performance with the HEAP runtime option by specifying values
that minimize the number of times the operating system allocates storage. See
“RPTSTG” on page 73 for information about how to generate a report you can use
to determine the optimum values for the HEAP runtime option.

HEAP

Chapter 2. Using the Language Environment runtime options 39

For more information
v For more information about Language Environment heap storage, see z/OS

Language Environment Programming Guide.
v For more information about the CEECRHP callable service, see

“CEECRHP—Create new additional heap” on page 223.
v For more information about the CEEGTST callable service, see “CEEGTST—Get

heap storage” on page 315.
v For more information about the RPTSTG runtime option, see “RPTSTG” on page

73.

HEAP64 (AMODE 64 only)

HEAP64 controls the allocation of user heap storage for AMODE 64 applications
and specifies how that storage is managed. Heaps are storage areas containing
user-controlled dynamically allocated variables or data. An example is C data
allocated as a result of the malloc(), calloc(), and realloc() functions.

The default value for AMODE 64 applications is
HEAP64(1M,1M,KEEP,32K,32K,KEEP,4K,4K,FREE).

Syntax

►► HEAP64
H64

(
init64

,
incr64

,
KEEP

FREE
FILL

,
init31

, ►

►
incr31

KEEP

FREE
,

init24
,

incr24

KEEP

FREE
) ►◄

init64
Determines the initial allocation of heap storage that is obtained above the 2G
bar. Specify this value as nM bytes of storage. If a value of 0 or less is
specified, the default is used.

incr64
Determines the minimum size of any subsequent increment to the user heap
storage obtained above the 2G bar. Specify this value as nM bytes of storage. If
a value less than 0 is specified, the default is used.

KEEP
Specifies that an increment to user heap storage is not released when the last
of the storage within that increment is freed.

FREE
Specifies that an increment to user heap storage is released when the last of the
storage within that increment is freed.

FILL
Specifies that an increment to user heap storage is released when the last of the
storage within that increment is freed. In addition, when a storage request
results in a new increment segment being created which is greater than the

HEAP

40 z/OS Language Environment Programming Reference

incr64 size, the entire segment is filled by the single storage request. This
option is available only for user heap storage above the bar.

init31
Determines the minimum initial size of user heap storage that is obtained
above the 16M line and below the 2G bar. This value can be specified as n, nK,
or nM number of bytes. If 0 is specified, the initial storage is obtained on the
first use and is based on the increment size. The amount of allocated storage is
rounded up to the nearest multiple of 8 bytes.

incr31
Determines the minimum size of any subsequent increment to user heap
storage that is obtained above the 16M line and below the 2G bar. This value
can be specified as n, nK, or nM number of bytes. The amount of allocated
storage is rounded up to the nearest multiple of 8 bytes.

init24
Determines the minimum initial size of user heap storage that is obtained
below the 16M line. This value can be specified as n, nK, or nM number of
bytes. If 0 is specified, the initial storage is obtained on the first use and is
based on the increment size. The amount of allocated storage is rounded up to
the nearest multiple of 8 bytes.

incr24
Determines the minimum size of any subsequent increment to user heap
storage that is obtained below the 16M line. This value can be specified as n,
nK, or nM number of bytes. The amount of allocated storage is rounded up to
the nearest multiple of 8 bytes.

z/OS UNIX considerations

In a multithreaded environment, user heap storage is shared by all threads the
process.

Performance consideration

You can improve performance with the HEAP64 runtime option by specifying
values that minimize the number of times the operating system allocates storage.
See “RPTSTG” on page 73 for information about how to generate a report you can
use to determine the optimum values for the HEAP64 runtime option.

For more information
v For more information about heap storage and heap storage tuning with storage

report numbers, see z/OS Language Environment Programming Guide.
v For more information about the RPTSTG runtime option, see “RPTSTG” on page

73.

HEAPCHK

Derivation: HEAP storage CHecKing

HEAPCHK performs diagnostic tests against the user heap.

The default value for non-CICS applications is
HEAPCHK(OFF,1,0,0,0,1024,0,1024,0).

The default value for CICS applications is HEAPCHK(OFF,1,0,0,0,1024,0,1024,0).

HEAP64

Chapter 2. Using the Language Environment runtime options 41

The default value for AMODE 64 applications is
HEAPCHK(OFF,1,0,0,0,1024,0,1024,0).

Syntax

►► HEAPChk (
OFF

ON
, ►

► , , ,
frequency delay call depth pool call depth

►

► , ,
num of entries pool number

►

► ,
num of entries 31 pool number 31

) ►◄

OFF
Indicates that no heap checking or tracing is done regardless of the values of
the remaining suboptions.

ON Indicates that heap checking or tracing is activated based on the values of the
remaining suboptions.

frequency
The frequency at which the user heap is checked for damage to the heap
control information. It is specified as n, nK or nM. A value of one (1) is the
default and causes the heap to be checked at each call to a Language
Environment heap storage management service. A value of n causes the user
heap to be checked at every nth call to a Language Environment heap storage
management service. A value of zero results in no check for damage to the
user heap.

delay
A value that causes a delay before user heap is checked for damage, and is
specified in n, nK or nM. A value of zero (0) is the default and causes the heap
checking to begin with the first call to a Language Environment heap storage
management service. A value of n causes the heap checking to begin following
the nth call to a Language Environment heap storage management service.

call depth
Specifies the depth of calls displayed in the traceback for the heap storage
diagnostics report. A value of zero is the default that turns heap storage
diagnostics reporting off. The heap storage diagnostics report consists of a set
of tracebacks. Each traceback is a snapshot of the stack (to a specified call
depth) for each request to obtain user heap storage that has not had a
corresponding free request. Use a value of 10 to ensure an adequate call depth
is displayed so that you can identify the storage leak.

pool call depth
Specifies the depth of calls in the traceback for each trace entry of a heap pools
trace. A value of zero is the default that turns heap pools tracing off. The heap
pools trace is an in-core wrapping trace. Each heap pool has a separate trace

HEAPCHK

42 z/OS Language Environment Programming Reference

table. The heap pools trace is only formatted from a system dump using the
IPCS verbexit LEDATA. Use a value of 10 to ensure an adequate call depth is
displayed so that you can identify the storage leak.

number of entries
Specifies the number of entries to be recorded in one heap pool trace table for
the main user heap in the application. Each pool has its own trace table. If the
number of entries is 0, the heap pool trace table is not generated.

pool number
Specifies which pools are traced for the main user heap in the application. You
can either trace one pool or all pools. The value should be a valid pool number
from 1 to 12. If the pool number is 0, all pools will be traced.

number of entries 31
Specifies the number of entries to be recorded in one heap pool trace table
when an AMODE 64 application is using heap storage from 31–bit addressable
storage (__malloc31()). Each pool has its own trace table. If the number of
entries is 0, the heap pool trace table is not generated. This value is only
supported in an AMODE64 environment.

pool number 31
Specifies which pools are traced when an AMODE 64 application is using heap
storage from 31–bit addressable storage (__malloc31()). You can trace either one
pool or all pools. The value should be a valid pool number from 1 to 12. If the
pool number is 0, all pools will be traced. This value is only supported in an
AMODE64 environment.

Usage notes
v When user heap damage is detected, Language Environment immediately issues

an ABEND U4042 RC=0. To obtain a system dump of this abend, either specify
TDUMP for the third suboption of the DYNDUMP runtime option or ensure that
a SYSMDUMP DD is available.

v If HEAPCHK(ON) is used with STORAGE(,heap_free_value), all free areas of the
heap are also checked.

v To request only a heap storage diagnostics report, you must specify a zero for
frequency, a zero for pool call depth and a number n greater than zero for call
depth. For example (HEAPCHK(ON,0,0,10,0)).

v Under normal termination conditions, if the call depth is greater than zero, the
heap storage diagnostics report is written to the CEEDUMP report, independent
of the TERMTHDACT setting.

v You can also generate a heap storage diagnostics report by calling CEE3DMP
with the BLOCKS option.

v Guideline: Since HEAPCHK does not validate individual cells within a cell
pool, you should specify HEAPPOOLS(OFF) when running HEAPCHK to
diagnose storage overlays in the heap.

v To request heap pools tracing, set pool call depth to a nonzero value and number of
entries (for AMODE 64 applications, number of entries, number of entries 31, or
both) to a value. To request only heap pools tracing, in addition, set frequency to
zero and call depth to zero. The heap pools trace is only formatted from a system
dump using the IPCS verbexit LEDATA.

v For AMODE 64 applications, number of entries and pool number control tracing for
the set of heap pools located in storage above the 2-GB bar. Number of entries 31
and pool number 31 control tracing for the set of heap pools located in storage
above the 16-MB line and below the 2-GB bar. Pool call depth applies to both sets
of heap pools.

HEAPCHK

Chapter 2. Using the Language Environment runtime options 43

v There is no interaction between specifying the HEAPZONES and HEAPCHK
runtime options, but setting both at the same time is not recommended by IBM.

Performance consideration

Specifying HEAPCHK(ON) can result in a performance degradation due to the
user heap diagnostic testing that is performed.

For more information

For more information about creating and using the heap storage diagnostics report,
see z/OS Language Environment Debugging Guide.

HEAPPOOLS (C/C++ and Enterprise PL/I only)

Derivation: HEAP storage POOLS

The HEAPPOOLS runtime option is used to control an optional user heap storage
management algorithm, which is known as heap pools. This algorithm is designed
to improve the performance of multithreaded applications with a high frequency of
calls to malloc(), __malloc31(), calloc(), realloc(), free(), and operators new and
delete. When active, heap pools virtually eliminate contention for user heap
storage.

HEAPPOOLS runtime option can be used by AMODE 64 applications to manage
user heap storage above the 16 M line and below the 2 G bar.

The default value for non-CICS applications is
HEAPPOOLS(OFF,8,10,32,10,128,10,256,10,1024,10,2048,10,0,10,0,
10,0,10,0,10,0,10,0,10).

The default value for CICS applications is
HEAPPOOLS(OFF,8,10,32,10,128,10,256,10,1024,10,2048,10,0,10,0,
10,0,10,0,10,0,10,0,10).

The default value for AMODE 64 applications is
HEAPPOOLS(OFF,8,10,32,10,128,10,256,10,1024,10,2048,10,0,10,0,
10,0,10,0,10,0,10,0,10).

Syntax

►► ▼

* repeats 11 times

HEAPPools (OFF , cell-size , percentage)
ON (cell-size, pool-count)
ALIGN

►◄

OFF
Specifies that the heap pools algorithm is not used.

ON Specifies that the heap pools algorithm is used.

HEAPCHK

44 z/OS Language Environment Programming Reference

ALIGN
Specifies that Language Environment will structure the storage for cells in a
heap pool so that a cell less than or equal to 248 bytes does not cross a cache
line. For cells larger than 248 bytes, two cells never share a cache line.

cell size
Specifies the size of the cells in a heap pool, which is specified as n or nK. The
cell size must be a multiple of 8, with a maximum of 65536 (64K).

pool-count
The number of pools to create for the cell size. The pool-count must be in a
range from 1 to 255.

percentage
The size of this heap pool and any of its extents is determined by multiplying
this percentage by the init_size value that was specified in the HEAP runtime
option. The percentage must be in a range from 1 to 90.

Usage notes
v Cell pool sizes should be specified in ascending order.
v To use less than twelve heap pools, specify 0 for the cell size after the last heap

pool to be used. For example, if four heap pools are desired, use 0 for the fifth
cell size when setting the HEAPPOOLS runtime option.

v If the percentage of the HEAP runtime option init size values does not allow for
at least one cell, the system automatically adjusts the percentage to enable four
cells to be allocated.

v The sum of the percentages may be more or less than 100 percent.
v Each heap pool is allocated as needed. The allocation of a heap pool can result

in the allocation of a heap increment to satisfy the request.
v The FREE suboption on the HEAP runtime option has no effect on any heap

segment in which a heap pool resides. Each cell in a heap pool can be freed, but
the heap pool itself is only released back to the system at enclave termination.
To avoid wasting storage, see the heap pool tuning tips specified in z/OS
Language Environment Programming Guide.

v The HEAPPOOLS runtime option has no effect when BELOW is specified as the
location on the HEAP runtime option.

v Mixing of the storage management AWIs (CEEGTST(), CEEFRST() and
CEECZST()) and the C/C++ intrinsic functions (malloc(), calloc(), realloc() and
free()) are not supported when operating on the same storage address. For
example, if you request storage using CEEGTST(), then you may not use free()
to release the storage.

v Using the ALIGN suboption might cause an increase in the amount of heap
storage that is used by an application.

v You should examine the storage report and adjust storage tuning when first
using the ALIGN suboption.

v The HEAPCHK runtime option does not validate individual heap pool cells.
v Use of a vendor heap manager (VHM) overrides the use of the HEAPPOOLS

runtime option.
v If the RPTSTG runtime option is specified while using HEAPPOOLS, extra

storage is obtained from the ANYHEAP and is used to complete the storage
report on heappools. This extra storage is only allocated when both
HEAPPOOLS and RPTSTG are used.

v The HEAPPOOLS runtime option can be used by AMODE 64 applications to
manage user heap storage above the 16M line and below the 2G bar.

HEAPPOOLS

Chapter 2. Using the Language Environment runtime options 45

v When cell-size is specified without parenthesis, pool-count defaults to 1 rather
than being picked up from an earlier setting of pool-count. For example,
specifying 128 is treated like specifying (128,1).

v When cell-size is specified with parenthesis, pool-count must also be specified.
v When pool-count is greater than 1, the size of each heap pool extent is

determined by dividing the heap allocation for the cell-size by the pool-count.

Performance considerations
v To improve the effectiveness of the heap pools algorithm, use the storage report

numbers generated by the RPTSTG runtime option as an aid in determining
optimum cell sizes, percentages, and the initial heap size.

v Use caution when using cells larger than 2K. Large gaps between cell sizes can
lead to a considerable amount of storage waste. Properly tuning cell sizes with
the help of RPTSTG is necessary to control the amount of virtual storage needed
by the application.

v When there are many successful get requests for the same size cell and the
maximum elements used in the cell pool is high, this could be an indication that
there is excessive contention allocating elements in the cell pool. Specifying
pool-count greater than 1 might help relieve some of this contention. Multiple
pools are allocated with the same cell size and a portion of the threads are
assigned to allocate cells out of each of the pools.

HEAPPOOLS64 (C/C++ and AMODE 64 only)

Derivation: HEAP storage POOLS for AMODE 64

The HEAPPOOLS64 runtime option is used to control an optional user heap
storage management algorithm, known as heap pools, for AMODE 64 applications.
This algorithm is designed to improve the performance of multithreaded C/C++
applications with a high frequency of calls to malloc(), calloc(), realloc(), free(), and
operators new and delete. When active, heap pools virtually eliminates contention
for user heap storage.

The default value for AMODE64 applications is
HEAPPOOLS64(OFF,8,4000,32,2000,128,700,256,350,
1024,100,2048,50,3072,50,4096,50,8192,25,16384,10,32768,5,65536,5).

Syntax

►► ▼

* repeats 11 times

HEAPPOOLS64 (OFF , cell-size , count)
HP64 ON (cell-size, pool-count)

ALIGN

►◄

OFF
Specifies that the heappools algorithm is not being used.

ON Specifies that the heappools algorithm is being used.

ALIGN
Specifies that Language Environment will structure the storage for cells in a

HEAPPOOLS

46 z/OS Language Environment Programming Reference

heap pool so that a cell less than or equal to 240 bytes does not cross a cache
line. For cells larger than 240 bytes, two cells never share a cache line.

cell-size
Specifies the size of the cells in a heap pool, specified as n or nK. The cell size
must be a multiple of 8, with a maximum of 65536 (64K).

pool-count
The number of pools to create for the cell size. The pool-count must be in a
range from 1 to 255.

count
Specifies the number of cells of the corresponding size to be allocated initially.
The minimum cell count is 4.

Usage notes
v Cell pool sizes should be specified in ascending order.
v To use less than twelve heap pools, specify 0 for the cell size after the last heap

pool to be used. For example if four heap pools are desired, use 0 for the fifth
cell size when setting the HEAPPOOLS64 runtime option.

v Each heap pool is allocated as needed. The allocation of a heap pool can result
in the allocation of a heap increment to satisfy the request.

v Using the ALIGN suboption might cause an increase in the amount of heap
storage used by an application.

v Examine the storage report and adjust storage tuning when first using the
ALIGN suboption.

v The HEAPCHK runtime option does not validate individual heap pool cells.
v If you specify the RPTSTG runtime option while using HEAPPOOLS64, extra

storage is obtained from the LIBHEAP64 and is used to complete the storage
report on heappools. This extra storage is only allocated when both
HEAPPOOLS64 and RPTSTG are used.

v HEAPPOOLS runtime option can be used by AMODE 64 applications to manage
user heap storage above the 16M line and below the 2G bar.

v When cell-size is specified without parenthesis, pool-count defaults to 1 rather
than being picked up from an earlier setting of pool-count. For example,
specifying 128 is treated like specifying (128,1).

v When cell-size is specified with parenthesis, pool-count must also be specified.
v When pool-count is greater than 1, the size of each heap pool extent is

determined by dividing the heap allocation for the cell-size by the pool-count.

Performance considerations
v To improve the effectiveness of the heap pools algorithm, use the storage report

numbers generated by the RPTSTG runtime option as an aid in determining
optimum cell sizes and count.

v Use caution when using cells larger than 2K. Large gaps between cell sizes can
lead to a considerable amount of storage waste. Properly tuning cell sizes with
the help of RPTSTG is necessary to control the amount of virtual storage needed
by the application.

For more information

For more information about heap storage and heap storage tuning with storage
report numbers, see z/OS Language Environment Programming Guide.

HEAPPOOLS64

Chapter 2. Using the Language Environment runtime options 47

HEAPZONES

Derivation: HEAP check ZONES

The HEAPZONES runtime option is used to turn on overlay toleration and
checking for user heaps. When activated, the runtime option affects any obtained
storage that can be controlled by the HEAP or HEAP64 runtime options.
HEAPZONES also affects storage obtained from a heap pool.

A heap check zone is an additional piece of storage that is appended to an allocated
element during a storage request. The size of the check zone depends on the size31
and size64 suboptions of HEAPZONES. The check zone can be examined for
overlays when the heap element is freed.

The default value for non-CICS applications is HEAPZONES(0,ABEND,0,ABEND).

The default value for CICS applications is HEAPZONES(0,ABEND,0,ABEND).

The default value for AMODE 64 applications is
HEAPZONES(0,ABEND,0,ABEND).

Syntax

►►
ABEND ABEND

HEAPZones (, , ,)
size31 QUIET size-64 QUIET

MSG MSG
TRACE TRACE

►◄

size31
Controls the size of the check zone for all user heap storage which is below the
2 G bar. The check zone size is rounded up to the nearest multiple of 8 bytes.
The maximum size allowed for a check zone is 1024 bytes. Specifying a value
of 0 indicates that no check zone is active.

size64
Controls the size of the check zone for all user heap storage which is above the
2 G bar. The check zone size is rounded up to the nearest multiple of 8 bytes
with a minimum size of 16 bytes. The maximum size allowed for a check zone
is 1024 bytes. Specifying a value of 0 indicates that the check zone is not active.

ABEND
Specifies that check zones are validated and if an overlay is detected, a U4042
ABEND reason code 3 is issued.

QUIET
Specifies that a heap check zone is appended to every allocated element, but
the check zone is not validated.

MSG
Specifies that check zones are validated and if an overlay is detected,
informational messages are issued. For more information about the output for
the HEAPZONES runtime option, see z/OS Language Environment Debugging
Guide .

HEAPZONES

48 z/OS Language Environment Programming Reference

TRACE
Specifies that in addition to informational messages, a CEEDUMP containing
only a traceback is produced.

Usage notes
v You cannot set HEAPZONES at the system level, region level, or in the

CEEBXITA assembler user exit interface.
v You cannot specify an active HEAPZONES setting and RPTSTG(ON)

simultaneously. An active HEAPZONES setting causes Language Environment to
override RPTSTG to the value OFF and no storage report is produced.

v There is no interaction between specifying the HEAPZONES and HEAPCHK
runtime options, but setting both at the same time is not recommended by IBM.

Performance considerations

Using heap check zones can result in a performance degradation and significant
additional storage usage. IBM recommends setting the size of a heap check zone to
the smallest amount feasible by the application.

INFOMSGFILTER
Derivation: INFOrmational MeSsaGe FILTER

INFOMSGFILTER allows you to activate a filter that eliminates unwanted
informational messages. During normal operations, informational messages are
sometimes written to the Language Environment message file. If these messages
are routed to your terminal, you need to clear them often. If the messages are
saved to a data set, they take up disk space and could make it difficult to browse
the output for a specific message.

Informational messages are not limited to Language Environment (CEE) messages.
They can also be written, using the CEEMSG interface, by other IBM program
products or user-written applications.

The default value for non-CICS applications is INFOMSGFILTER(OFF,,,,).

The default value for CICS applications is INFOMSGFILTER(OFF,,,,).

The default value for AMODE 64 applications is INFOMSGFILTER(OFF,,,,).

Syntax

►► INFOMsgfilter (
OFF

ON
, ,

Foreground
,

Background
►

►
CICS

) ►◄

OFF
Turns off message filtering for all environments.

HEAPZONES

Chapter 2. Using the Language Environment runtime options 49

ON Turns on the message filtering for the specified environments.

Foreground
Selecting this keyword causes message filtering to be turned on for the TSO
and z/OS UNIX environments.

Background
Selecting this keyword causes message filtering to be turned on for the MVS
Batch environment.

CICS
Selecting this keyword causes message filtering to be turned on in the CICS
environment. This option is ignored for AMODE 64 applications.

INQPCOPN (Fortran only)
Derivation: INQuire the Pre-Connected units that are OPeNed

INQPCOPN controls if the OPENed specifier on an INQUIRE by unit statement
can be used to determine if a preconnected unit has had any I/O statements
directed to it.

The default for non-CICS applications is INQPCOPN.

INQPCOPN is ignored under CICS.

Syntax

►►
INQpcopn
NOINQpcopn ►◄

INQPCOPN
Causes the running of an INQUIRE by unit statement to provide the value true
in the variable or array element given in the OPENED specifier if the unit is
connected to a file. This includes the case of a preconnected unit, which can be
used in an I/O statement without running an OPEN statement, even if no I/O
statements have been run for that unit.

NOINQPCOPN
Causes the running of an INQUIRE by unit statement to provide the value false
for the case of a preconnected unit for which no I/O statements other than
INQUIRE have been run.

INTERRUPT

INTERRUPT causes attention interrupts to be recognized by Language
Environment. When you cause an interrupt, Language Environment can give
control to your application or to a debug tool.

The default value for non-CICS applications is INTERRUPT(OFF).

INTERRUPT is ignored under CICS.

INFOMSGFILTER

50 z/OS Language Environment Programming Reference

Syntax

►► INTerrupt (
OFF

ON
) ►◄

OFF
Specifies that Language Environment does not recognize attention interrupts.

ON Specifies that Language Environment recognizes attention interrupts.

z/OS UNIX considerations
v In a multithreaded application, only one thread in the enclave is affected for a

particular attention interrupt.

Usage notes
v PL/I consideration: Language Environment supports the PL/I method of polling

code. The PL/I routine must be compiled with the INTERRUPT compiler option
in order for the INTERRUPT runtime option to have an effect.

v PL/I MTF consideration: To receive the attention interrupt, the PL/I program
must be compiled with the INTERRUPT compiler option, and the INTERRUPT
runtime option must be in effect.

v PL/I MTF consideration: The INTERRUPT option applies to the enclave.
However, only one thread in the enclave is affected for a particular attention
interrupt.

v If you have specified the TEST(ERROR) or TEST(ALL) runtime option, the
interrupt causes the debug tool to gain control. See “TEST | NOTEST” on page
89 for more information about the TEST runtime option.

IOHEAP64 (AMODE 64 only)

IOHEAP64 controls the allocation of I/O heap storage for AMODE 64 applications
and specifies how that storage is managed. Language Environment uses this
storage when performing I/O for AMODE 64 applications.

The default value for AMODE 64 applications is
IOHEAP64(1M,1M,FREE,12K,8K,FREE,4K,4K,FREE).

Syntax

►►
KEEP KEEP

IOHEAP64 (, , , ,
IH64 init64 incr64 FREE init31 incr31 FREE

, ►

►
init24

,
incr24

KEEP

FREE
) ►◄

init64
Determines the initial allocation of I/O heap storage obtained above the 2G
bar. Specify this value as nM bytes of storage. If a value of 0 or less is
specified, the default is used.

INTERRUPT

Chapter 2. Using the Language Environment runtime options 51

incr64
Determines the minimum size of any subsequent increment to the I/O heap
storage obtained above the 2G bar. Specify this value as nM bytes of storage. If
a value less than 0 is specified, the default is used.

KEEP
Specifies that an increment to I/O heap storage is not released when the last of
the storage within that increment is freed.

FREE
Specifies that an increment to I/O heap storage is released when the last of the
storage within that increment is freed.

init31
Determines the minimum initial size of I/O heap storage that is obtained
above the 16M line and below the 2G bar. This value can be specified as n, nK,
or nM number of bytes. If 0 is specified, the initial storage is obtained on the
first use and is based on the increment size. The amount of allocated storage is
rounded up to the nearest multiple of 8 bytes.

incr31
Determines the minimum size of any subsequent increment to I/O heap
storage that is obtained above the 16M line and below the 2G bar. This value
can be specified as n, nK, or nM number of bytes. The amount of allocated
storage is rounded up to the nearest multiple of 8 bytes.

init24
Determines the minimum initial size of I/O heap storage that is obtained
below the 16M line. This value can be specified as n, nK, or nM number of
bytes. If 0 is specified, the initial storage is obtained on the first use and is
based on the increment size. The amount of allocated storage is rounded up to
the nearest multiple of 8 bytes.

incr24
Determines the minimum size of any subsequent increment to I/O heap
storage that is obtained below the 16M line. This value can be specified as n,
nK, or nM number of bytes. The amount of allocated storage is rounded up to
the nearest multiple of 8 bytes.

Performance consideration

You can improve performance with the IOHEAP64 runtime option by specifying
values that minimize the number of times the operating system allocates storage.
See “RPTSTG” on page 73 for information about how to generate a report you can
use to determine the optimum values for the IOHEAP64 runtime option.

For more information
v For more information about heap storage and heap storage tuning with storage

report numbers, see z/OS Language Environment Programming Guide.
v For more information about the RPTSTG runtime option, see “RPTSTG” on page

73.

LIBHEAP64 (AMODE 64 only)

The LIBHEAP64 runtime option controls the allocation of heap storage that is used
by Language Environment for AMODE 64 applications. Storage that is unrestricted
can be located anywhere in 64-bit addressable storage.

IOHEAP64

52 z/OS Language Environment Programming Reference

The default value for AMODE 64 applications is
LIBHEAP64(1M,1M,FREE,16K,8K,FREE,8K,4K,FREE).

Syntax

►► LIBHEAP64
LH64

(
init64

,
incr64

,
KEEP

FREE
,

init31
►

► ,
incr31

KEEP

FREE
,

init24
,

incr24

KEEP

FREE
) ►◄

init64
Determines the initial allocation of library heap storage that is obtained above
the 2G bar. Specify this value as nM bytes of storage. If a value of 0 or less is
specified, the default is used.

incr64
Determines the minimum size of any subsequent increment to the library heap
storage obtained above the 2G bar. Specify this value as nM bytes of storage. If
a value less than 0 is specified, the default is used.

KEEP
Specifies that an increment to library heap storage is not released when the last
of the storage within that increment is freed.

FREE
Specifies that an increment to library heap storage is released when the last of
the storage within that increment is freed.

init31
Determines the minimum initial size of library heap storage that is obtained
above the 16M line and below the 2G bar. This value can be specified as n, nK,
or nM number of bytes. If 0 is specified, the initial storage is obtained on the
first use and is based on the increment size. The amount of allocated storage is
rounded up to the nearest multiple of 8 bytes.

incr31
Determines the minimum size of any subsequent increment to library heap
storage that is obtained above the 16M line and below the 2G bar. This value
can be specified as n, nK, or nM number of bytes. The amount of allocated
storage is rounded up to the nearest multiple of 8 bytes.

init24
Determines the minimum initial size of library heap storage that is obtained
below the 16M line. This value can be specified as n, nK, or nM number of
bytes. If 0 is specified, the initial storage is obtained on the first use and is
based on the increment size. The amount of allocated storage is rounded up to
the nearest multiple of 8 bytes.

incr24
Determines the minimum size of any subsequent increment to library heap
storage that is obtained below the 16M line. This value can be specified as n,
nK, or nM number of bytes. The amount of allocated storage is rounded up to
the nearest multiple of 8 bytes.

LIBHEAP64

Chapter 2. Using the Language Environment runtime options 53

Performance consideration

You can improve performance with the LIBHEAP64 runtime option by specifying
values that minimize the number of times the operating system allocates storage.
See “RPTSTG” on page 73 for information about how to generate a report you can
use to determine the optimum values for the LIBHEAP64 runtime option.

For more information
v For more information about heap storage and heap storage tuning with storage

report numbers, see z/OS Language Environment Programming Guide.

LIBSTACK

Derivation: LIBrary STACK storage

LIBSTACK controls the allocation of the thread's library stack storage. This stack is
used by Language Environment routines that require save areas below the 16 M
line.

The default value for non-CICS applications is LIBSTACK(4K,4K,FREE).

The default value for CICS applications is LIBSTACK(32,4080,FREE).

Syntax

►► LIBStack (
init_size

,
incr_size

,
FREE

KEEP
►◄

init_size
Determines the minimum size of the initial library stack storage. This value
can be specified as n, nK, or nM bytes of storage. Language Environment
allocates the storage rounded up to the nearest multiple of 8 bytes.

incr_size
Determines the minimum size of any subsequent increment to the library stack.
This value can be specified as n, nK, or nM bytes of storage. The actual
amount of allocated storage is the larger of 2 values— incr_size or the
requested size—rounded up to the nearest multiple of 8 bytes. If you specify 0
as incr_size, Language Environment gets only the amount of storage that is
needed at the time of the request, rounded up to the nearest multiple of 8
bytes.

FREE
Specifies that Language Environment releases storage allocated to LIBSTACK
increments when the last of the storage in the library stack is freed. The initial
library stack segment is not released until the thread ends.

KEEP
Specifies that Language Environment does not release storage allocated to
LIBSTACK increments when the last of the storage is freed.

LIBHEAP64

54 z/OS Language Environment Programming Reference

CICS considerations

The default increment size under CICS is 4080 bytes, rather than 4096 bytes, to
accommodate the 16-byte CICS storage check zone. Without this accommodation,
an extra page of storage is allocated.

z/OS UNIX considerations

The LIBSTACK option sets the library stack characteristics on each thread.

Usage notes

Language Environment does not acquire the initial library stack segment until the
first program that requires LIBSTACK runs.

Performance considerations

You can improve performance with the LIBSTACK runtime option by specifying
values that minimize the number of times the operating system allocates storage.
See “RPTSTG” on page 73 for information about how to generate a report you can
use to determine the optimum values for the LIBSTACK runtime option.

For more information
v See “RPTSTG” on page 73 for more information about the RPTSTG runtime

option.
v For more information about using the storage reports generated by the RPTSTG

runtime option to tune the stacks, see z/OS Language Environment Programming
Guide.

MSGFILE

Derivation: MeSsaGe FILE

MSGFILE specifies the ddname and attributes of the data set (message file) where
Language Environment directs the following output:
v All Language Environment messages
v Reports generated by the RPTOPTS and RPTSTG runtime options
v Output produced by the CEEMSG and CEEMOUT callable services

The default value for non-CICS applications is
MSGFILE(SYSOUT,FBA,121,0,NOENQ).

MSGFILE is ignored under CICS.

LIBSTACK

Chapter 2. Using the Language Environment runtime options 55

Syntax

►► MSGFile (
ddname

,
recfm

,
lrecl

,
blksize

, ►

►
NOENQ

ENQ
) ►◄

ddname
The ddname of the message file where Language Environment directs the
information listed above.

recfm
The record format (RECFM) for the message file. recfm is used when this
information is not available either in a data set definition or in the label of an
existing data set. The following record formats are acceptable: F, FA, FB, FBA,
FBS, FBSA, U, UA, V, VA, VB, and VBA.

lrecl
The record length (LRECL) for the message file. lrecl is used when this
information is not available either in a data set definition or in the label of an
existing data set. lrecl is expressed as bytes of storage. The lrecl cannot exceed
blksize. For variable-length record formats, the lrecl is limited to blksize minus 4.

blksize
The block size (BLKSIZE) for the message file. blksize is used when this
information is not available either in a data set definition or in the label of an
existing data set. blksize is expressed as bytes of storage and cannot exceed
32760.

NOENQ
Specifies that no serialization is performed on ddname.

ENQ
Specifies that serialization is performed on the ddname specified in case
multiple Language Environment environments are running in the same address
space and sharing the same message file.

CICS consideration
v MSGFILE output under CICS is directed to a transient data queue named CESE.

z/OS UNIX considerations
v When multiple threads write to the message file, the output is interwoven by

line. To group lines of output, the application must serialize its own output.
v If the message file is allocated (whether POSIX or z/OS), Language Environment

directs the output to this file. If the current message file is not allocated, and the
application calls fork()/exec(), spawn(), or spawnp(), Language Environment
checks if file descriptor 2 (fd2) exists.
– If fd2 exists, Language Environment uses it.
– If fd2 does not exist, Language Environment dynamically allocates the

message file to the POSIX file system and attempts to open the file SYSOUT
in the current working directory. If there is no current directory, SYSOUT is
opened in the directory /tmp.

MSGFILE

56 z/OS Language Environment Programming Reference

Usage notes
v Under most circumstances, the NOENQ suboption is sufficient and provides

better performance. The ENQ suboption is only needed when multiple Language
Environment environments are running in the same address space and share the
same message file.
An instance when ENQ might be needed is a batch job that uses ATTACH to
create sub-tasks. Each of the sub-tasks is potentially a distinct Language
Environment environment, all running with the same default MSGFILE
parameters. In this example, each of these environments shares the same
message file.
To avoid conflicts while writing to the shared message file, use the ENQ
suboption. Using a different ddname for each environment can remove the need
to use the ENQ suboption.

v Compiler options, such as the COBOL OUTDD compiler option, can affect if
your runtime output goes to MSGFILE ddname.

v If there is no blksize in the MSGFILE runtime option, in a data set definition, or
in the label of an existing data set, the block size is determined as follows:
– If recfm specifies unblocked fixed-length format records (F or FA) or

undefined-format records (U or UA), blksize is the same as lrecl.
– If recfm specifies unblocked variable-length format records (V or VA), blksize is

lrecl plus 4.
– If recfm specifies blocked records (FB, FBA, FBS, FBSA, VB, or VBA) for a

DASD device on z/OS, Language Environment uses a blksize of 0 so the
system can determine the optimum blksize.

– If recfm specifies blocked fixed-length format records (FB, FBA, FBS, or FBSA)
for a terminal , blksize is the same as lrecl.

– If recfm specifies blocked variable-length format records (VB or VBA) for a
terminal, blksize is lrecl plus 4.

– For all other cases, blksize is calculated to provide the largest number of
records per block, up to 100 records per block, that does not exceed the
maximum blksize of 32760.

v Language Environment does not diagnose combinations of recfm, lrecl, and blksize
that are not valid but the system can detect an error condition on the first
attempt to write to the message file.

v Language Environment does not check the validity of the MSGFILE ddname. A
ddname that is not valid generates an error condition on the first attempt to write
to the message file.

v C/C++ consideration—C output directed to stderr and perror() messages go to
the MSGFILE destination.

v PL/I consideration—runtime messages in PL/I programs are directed to the
message file instead of to the PL/I SYSPRINT STREAM PRINT file.
User-specified output is directed to the PL/I SYSPRINT STREAM PRINT file. To
direct this output to the message file, specify MSGFILE(SYSPRINT).
Use of MSGFILE(SYSPRINT) restricts the LINESIZE for PL/I programs to a
maximum of 255.

v Fortran consideration—To get the same message file function as with VS Fortran,
specify MSGFILE(FTnnF001,UA,133) where nn is the unit number of the error
unit. For more information, see Fortran runtime Migration Guide.

v Language Environment supports the use of a MSGFILE DDNAME dynamically
allocated with the XTIOT, UCB nocapture, or DSAB-above-the-line options
specified in the SVC99 parameters (S99TIOEX, S99ACUCB, S99DSABA flags).

MSGFILE

Chapter 2. Using the Language Environment runtime options 57

For more information
v For more information about the RPTOPTS and RPTSTG runtime options, see

“RPTOPTS” on page 71 and “RPTSTG” on page 73.
v For more information about the CEEMSG and CEEMOUT callable services, see

“CEEMSG—Get, format, and dispatch a message” on page 375 and
“CEEMOUT—Dispatch a message” on page 357.

v For details on how HLL compiler options affect messages, see information about
HLL I/O statements and message handling in z/OS Language Environment
Programming Guide.

v For examples of getting and formatting messages, including HLL runtime
output, see “CEEMSG—Get, format, and dispatch a message” on page 375.

v For more information about perror() and stderr see the C message output
information in z/OS Language Environment Programming Guide.

v For more information about the CESE transient data queue, see z/OS Language
Environment Programming Guide.

MSGQ

Derivation: MeSsaGe Queue

MSGQ specifies the number of instance specific information (ISI) blocks that
Language Environment allocates on a per thread basis for use by the application.
The ISI block contains information for Language Environment to use when
identifying and reacting to conditions, providing access to q_data tokens, and
assigning space for message inserts used with user-created messages. When an
insufficient number of ISI blocks are available, Language Environment uses the
least recently used ISI block.

The default value for non-CICS applications is MSGQ(15).

MSGQ is ignored under CICS.

Syntax

►► MSGQ (
number

) ►◄

number
An integer that specifies the number of ISI blocks to maintain on a per thread
basis.

Usage notes
v PL/I MTF consideration—In a PL/I MTF application, MSGQ sets the number of

message queues allowed for each task.
v The CEECMI callable service allocates storage for ISI blocks if necessary. For

information about using the CEECMI callable service, see “CEECMI—Store and
load message insert data” on page 218.

MSGFILE

58 z/OS Language Environment Programming Reference

For more information
v For more information about the ISI blocks, see z/OS Language Environment

Programming Guide.

NATLANG

Derivation: NATional LANGuage

NATLANG specifies the initial national language Language Environment uses for
the runtime environment, including error messages, month names, and day of the
week names. Message translations are provided for Japanese and for uppercase
and mixed-case U.S. English. NATLANG also determines how the message facility
formats messages.

The default value for non-CICS applications is NATLANG(ENU).

The default value for CICS applications is NATLANG(ENU).

The default value for AMODE 64 applications is applications is NATLANG(ENU).

Syntax

►► NATlang (
ENU

UEN
JPN

) ►◄

ENU
A 3-character ID specifying mixed-case U.S. English. Message text consists of
SBCS characters and includes both uppercase and lowercase letters.

UEN
A 3-character ID specifying uppercase U.S. English. Message text consists of
SBCS characters and includes only uppercase letters.

JPN
A 3-character ID specifying Japanese. Message text can contain a mixture of
SBCS and DBCS characters.

Usage notes
v Restriction: CEE3LNG and CEESETL are not available to AMODE 64

applications.
v You can use the CEE3LNG callable service to set the national language.
v If you specify a national language that is not available on your system,

Language Environment uses the IBM-supplied default ENU (mixed-case U.S.
English).

v Language Environment is sensitive to the national language when it writes
storage reports, option reports, and dump output.
When the national language is uppercase U.S. English or Japanese, the
environment variable _CEE_UPPERCASE_DATA can be used to determine if
variable data in storage reports, options reports and dump output is in
uppercase.

MSGQ

Chapter 2. Using the Language Environment runtime options 59

When this environment variable is set to YES, variable data (entry point names,
program unit names, variable names, Trace Entry in EBCDIC data,
hexadecimal/EBCDIC displays of storage) will be in uppercase.
When this environment variable is not set or set to a value other than YES,
variable data will not be in uppercase. Variable data is never in uppercase when
the national language is mixed-case U.S. English.

v Language Environment provides locales used in C/C++ to establish default
formats for the locale-sensitive functions and locale callable services, such as
date and time formatting, sorting, and currency symbols. To change the locale,
you can use the setlocale() library function or the CEESETL callable service.
The settings of CEESETL or setlocale() do not affect the setting of the
NATLANG runtime option. NATLANG affects the Language Environment NLS
and date and time services. setlocale() and CEESETL affect only C/C++
locale-sensitive functions and Language Environment locale callable services.
To ensure that all settings are correct for your country, use NATLANG and
either CEESETL or setlocale().

v PL/I MTF consideration—NATLANG affects every task in the application. The
SET function of CEE3LNG is supported for the relinked OS PL/I or PL/I for
MVS & VM MTF applications only.

For more information
v For more information about the CEE3LNG callable service, see “CEE3LNG—Set

national language” on page 174.
v For more information about the CEESETL callable service, see “CEESETL—Set

locale operating environment” on page 413.
v For more information about setlocale(), see z/OS XL C/C++ Programming Guide.

OCSTATUS (Fortran only)
Derivation: Open Close STATUS

OCSTATUS controls the verification of file existence and if a file is actually deleted
based on the STATUS specifier on the OPEN and CLOSE statement, respectively.

The default value for non-CICS applications is OCSTATUS.

OCSTATUS is ignored under CICS.

Syntax

►►
OCstatus
NOOCstatus ►◄

OCSTATUS
Specifies that file existence is checked with each OPEN statement to verify that
the status of the file is consistent with STATUS='OLD' and STATUS='NEW'. It
also specifies that file deletion occurs with each CLOSE statement with
STATUS='DELETE' for those devices which support file deletion. Preconnected
files are included in these verifications. OCSTATUS consistency checking
applies to DASD files, PDS members, VSAM files, MVS labeled tape files, and

NATLANG

60 z/OS Language Environment Programming Reference

dummy files only. For dummy files, the consistency checking occurs only if the
file was previously opened successfully in the current program.

In addition, when a preconnected file is disconnected by a CLOSE statement,
an OPEN statement is required to reconnect the file under OCSTATUS.
Following the CLOSE statement, the INQUIRE statement parameter OPENED
indicates that the unit is disconnected.

NOOCSTATUS
Bypasses file existence checking with each OPEN statement and bypasses file
deletion with each CLOSE statement.

If STATUS='NEW', a new file is created; if STATUS='OLD', the existing file is
connected. If STATUS='UNKNOWN' or 'SCRATCH', and the file exists, it is
connected; if the file does not exist, a new file is created.

In addition, when a preconnected file is disconnected by a CLOSE statement,
an OPEN statement is not required to reestablish the connection under
NOOCSTATUS. A sequential READ, WRITE, BACKSPACE, REWIND, or
ENDFILE will reconnect the file to a unit. Before the file is reconnected, the
INQUIRE statement parameter OPENED will indicate that the unit is
disconnected; after the connection is reestablished, the INQUIRE statement
parameter OPENED will indicate that the unit is connected.

PAGEFRAMESIZE

Derivation: PAGE FRAME SIZE

PAGEFRAMESIZE specifies the preferred page frame size in virtual storage for
HEAP, ANYHEAP, and STACK storage that is obtained during application
initialization and runtime.

The default value for non-CICS applications is PAGEFRAMESIZE(4K,4K,4K).

PAGEFRAMESIZE is ignored under CICS.

Syntax

►► PAGeframesize (
4K

heap_frame_size
,

4K

anyheap_frame_size
, ►

►
4K

stack_frame_size
) ►◄

heap_frame_size
Specifies the preferred page frame size in virtual storage for initial heap
storage allocation and any subsequent heap increments. The page frame size
can be specified as one of the following values:

4K Requests the default value of 4-KB pages.

1M Requests that 1-MB large pages be used, if available.

OCSTATUS

Chapter 2. Using the Language Environment runtime options 61

anyheap_frame_size
Specifies the preferred page frame size in virtual storage for initial anywhere
heap storage allocation and any subsequent anywhere heap increments. The
page frame size can be specified as one of the following values:

4K Requests the default value of 4-KB pages.

1M Requests that 1-MB large pages be used, if available.

stack_frame_size
Specifies the preferred page frame size in virtual storage for initial stack
storage allocation and any subsequent stack increments. The page frame size
can be specified as one of the following values:

4K Requests the default value of 4-KB pages.

1M Requests that 1-MB large pages be used, if available.

Usage notes
v You cannot set PAGEFRAMESIZE at the system level or region level.
v You cannot specify PAGEFRAMESIZE with the CEEBXITA assembler user exit

interface.
v In an XPLINK environment, the stack_frame_size suboption only applies to the

upward-growing stack.
v If 1-MB page frames are not available, the default 4-KB page frame size will be

used. No message is issued to indicate this behavior.
v Page frame sizes larger than 4 KB are not allowed below the 16-MB line. If a

PAGEFRAMESIZE parameter specifies 1 MB but that storage type is allocated
below the 16-MB line, then the default 4-KB page frames is used. No message is
issued to indicate this behavior; however, the runtime options report will show
the value that was specified.

v If any PAGEFRAMESIZE parameter specifies 1M, then all of the storage
preallocated to the enclave will request 1-MB page frames. The previous two
usage notes apply as well.

v By default, THREADSTACK storage comes from the library heap storage that is
allocated with the ANYHEAP runtime option. To use 1-MB page frames for the
THREADSTACK, ensure the anyheap_frame_size suboption specifies 1M.

v When running in a preinitialized environment with an @GETSTORE service
routine, a flag is passed to indicate that storage was requested to be backed by
1-MB page frames. For more information about using 1-MB page frames with an
@GETSTORE service routine, see z/OS Language Environment Programming Guide .

Performance considerations

Large pages are a special-purpose feature to improve performance; therefore, using
large pages is not recommended for all types of workloads. For more information
about large pages, see the following publications:
v z/OS MVS Programming: Assembler Services Reference IAR-XCT

v z/OS MVS Programming: Authorized Assembler Services Guide

v z/OS MVS Programming: Assembler Services Guide

PAGEFRAMESIZE64

Derivation: PAGE FRAME SIZE for AMODE64

PAGEFRAMESIZE

62 z/OS Language Environment Programming Reference

PAGEFRAMESIZE64 specifies the preferred page frame size in virtual storage for
HEAP64, LIBHEAP64, IOHEAP64, and STACK64 storage that is obtained during
application initialization and runtime.

The default value for AMODE 64 applications is
PAGEFRAMESIZE64=(4K,4K,4K,4K,4K,4K,4K)

Syntax

►► PAGEFRAMESIZE64
PAG64

(
4K

heap64_frame_size64
, ►

►
4K

heap64_frame_size31
,

4K

libheap64_frame_size64
, ►

►
4K

libheap64_frame_size31
,

4K

ioheap64_frame_size64
, ►

►
4K

ioheap64_frame_size31
,

4K

stack64_frame_size
) ►◄

heap64_frame_size64
Specifies the preferred page frame size in virtual storage for initial heap
storage allocation and any subsequent heap increments above the 2 GB bar.
The page frame size can be specified as one of the following values:

4K Requests the default 4 KB pages.

1M Requests that 1 MB large pages be used, if available.

heap64_frame_size31
Specifies the preferred page frame size in virtual storage for initial heap
storage allocation and any subsequent heap increments above the 16 MB line
and below the 2 GB bar. The page frame size can be specified as one of the
following values:

4K Requests the default 4 KB pages.

1M Requests that 1 MB large pages be used, if available.

libheap64_frame_size64
Specifies the preferred page frame size in virtual storage for initial library heap
storage allocation and any subsequent library heap increments above the 2 GB
bar. The page frame size can be specified as one of the following values:

4K Requests the default 4 KB pages.

1M Requests that 1 MB large pages be used, if available.

libheap64_frame_size31
Specifies the preferred page frame size in virtual storage for initial library heap
storage allocation and any subsequent library heap increments above the 16
MB line and below the 2 GB bar. The page frame size can be specified as one
of the following values:

PAGEFRAMESIZE64

Chapter 2. Using the Language Environment runtime options 63

4K Requests the default 4 KB pages.

1M Requests that 1 MB large pages be used, if available.

ioheap64_frame_size64
Specifies the preferred page frame size in virtual storage for initial I/O heap
storage allocation and any subsequent I/O heap increments above the 2 GB
bar. The page frame size can be specified as one of the following values:

4K Requests the default of 4 KB pages.

1M Requests that 1 MB large pages be used, if available.

ioheap64_frame_size31
Specifies the preferred page frame size in virtual storage for initial I/O heap
storage allocation and any subsequent I/O heap increments above the 16 MB
line and below the 2 GB bar. The page frame size can be specified as one of the
following values:

4K Requests the default 4 KB pages.

1M Requests that 1 MB large pages be used, if available.

stack64_frame_size
Specifies the preferred page frame size in virtual storage for initial stack
storage allocation above the 2 GB bar. The page frame size can be specified as
one of the following values:

4K Requests the default KB pages.

1M Requests that 1 MB large pages be used, if available.

Usage notes
v You cannot set PAGEFRAMESIZE64 at the system level or region level.
v You cannot specify PAGEFRAMESIZE64 with the CEEBXITA assembler user exit

interface.
v If 1 MB page frames are not available, the default 4 KB page frame size is used.

No message is issued to indicate this behavior.
v Page frame sizes larger than 4 KB are not allowed below the 16 MB line. If a

PAGEFRAMESIZE parameter specifies 1 MB but that storage type is allocated
below the 16 MB line, then the default 4 KB page frames is used. No message is
issued to indicate this behavior, and the runtime options report shows the value
that was specified.

v If the heap64_frame_size64 or hlibheap64_frame_size64 option is specified as 1M,
then the initial storage allocation for both requests 1 MB page frames. The
previous two usage notes apply as well.

v For THREADSTACK64 storage, the default 4 KB page frame size is used.
v When running in a preinitialized AMODE 64 (CELQPIPI) environment with an

@GETSTORE service routine, a flag is passed to indicate that storage was
requested to be backed by 1 MB page frames. For more information about using
1 MB page frames with an @GETSTORE service routine, see z/OS V2R1.0
Language Environment Programming Guide for 64-bit Virtual Addressing Mode.

Performance considerations

Large pages are a special-purpose feature to improve performance; therefore, using
large pages is not recommended for all types of workloads. For more information
about large pages, see the following publications:
v z/OS MVS Programming: Assembler Services Reference IAR-XCT

PAGEFRAMESIZE64

64 z/OS Language Environment Programming Reference

|
|
|
|
|

v z/OS MVS Programming: Authorized Assembler Services Guide

v z/OS MVS Programming: Assembler Services Guide

PC (Fortran only)
Derivation: Private Common blocks

PC controls if Fortran status common blocks are shared among load modules.

The default value for non-CICS applications is NOPC.

PC is ignored under CICS.

Syntax

►►
NOPC
PC ►◄

NOPC
Specifies that Fortran static common blocks with the same name but in
different load modules all refer to the same storage. NOPC applies only to
static common blocks referenced by compiled code produced by any of the
following compilers and that were not compiled with the PC compiler option:
v VS FORTRAN Version 2 Release 5
v VS FORTRAN Version 2 Release 6

PC Specifies that Fortran static common blocks with the same name but in
different load modules do not refer to the same storage.

PLIST (C only)

Derivation: Parameter LIST

PLIST specifies the format of the invocation parameters your C application receives
when you invoke it. Although the CICS, CMS, IMS, MVS, and TSO suboptions of
PLIST are supported for compatibility, you should use the HOST or OS suboptions
of PLIST. Before using this runtime option, you should review the following
restrictions:
v This option does not apply to non-C languages and can be specified only with

the C #pragma runopts directive.
v You cannot set this option at the system level, region level, or in the CEEBXITA

assembler user exit interface.

The default value for non-CICS applications is PLIST(HOST).

PLIST is ignored under CICS.

PAGEFRAMESIZE64

Chapter 2. Using the Language Environment runtime options 65

Syntax

►► PLIST (
HOST
CICS
CMS
IMS
MVS
OS
TSO

) ►◄

HOST
The parameter list is a character string. The string is located differently under
various systems, as follows:

CMS If invoked by OSRUN, use the string presented in an MVS-like format
located by the pointer held in R1. If not invoked by OSRUN, use the
CMS extended parameter list.

TSO If a command processor parameter list (CPPL) is detected, get the
string from the command buffer. If a CPPL is not detected, assume a
halfword-prefixed string in the MVS format.

MVS Use the halfword-prefixed string.

CICS
The parameter list received by your C application is assumed to be in a CICS
format.

CMS
The parameter list received by your C application is assumed to be in a CMS
extended parameter list format.

IMS
The parameter list received by your C application is assumed to be in an IMS
format.

MVS
The parameter list received by your C application is assumed to be in an MVS
format.

OS The parameter list received by your C application is assumed to be in an OS
style.

TSO
The parameter list received by your C application is assumed to be in a CPPL
format.

Usage notes
v The behavior of C applications with PLIST(HOST) in effect is the same for C++.
v When using the pre-Language Environment-conforming C interface for

preinitialization, it is necessary to specify PLIST(MVS) in order to flag
preinitialized routines.

v IMS considerations—If your C application runs under IMS, the suboption of
PLIST that you specify depends on the version of the C compiler you used.Note
that PLIST(IMS) is obsolete and should only be used with ADCycle C compiler
Version 2.1 or earlier. For z/OS XL C/C++ compilers, you should specify the
compiler options PLIST(OS) and TARGET(IMS) instead of runtime option
PLIST(IMS).

PLIST

66 z/OS Language Environment Programming Reference

|
|
|
|
|

v z/OS UNIX consideration—The PLIST option applies only to the main routine of
the initial thread.

PLITASKCOUNT (PL/I only)

Derivation: PL/I TASK COUNTer

PLITASKCOUNT controls the maximum number of tasks that can be active at one
time while you are running PL/I MTF applications. PLITASKCOUNT(20) provides
behavior compatible with the PL/I ISASIZE(,,20) option.

The default value for non-CICS applications is PLITASKCOUNT(20).

PLITASKCOUNT is ignored under CICS.

Syntax

►► PLITaskcount (
tasks

) ►◄

tasks
A decimal integer that is the maximum number of tasks allowed in a PL/I
MTF application at any one time during execution. The total tasks include the
main task and subtasks created directly or indirectly from the main task.

Usage notes
v A value of zero (0) assumes the IBM-supplied default of 20.
v If tasks or the IBM-supplied default of 20 exceeds the z/OS UNIX installation

default of the maximum number of threads, Language Environment assumes the
z/OS UNIX installation default.

v If a request to create a task would put the number of currently active tasks over
the allowable limit, condition IBM0566S is signalled and the task is not created.

POSIX

Derivation: Portable Operating System Interface - X

POSIX specifies if the enclave can run with the POSIX semantics. POSIX is an
application characteristic that is maintained at the enclave level. After you have
established the characteristic during enclave initialization, you cannot change it.

The default value for non-CICS applications is POSIX(OFF).

POSIX is ignored under CICS.

The default value for AMODE 64 is POSIX(ON).

PLIST

Chapter 2. Using the Language Environment runtime options 67

Syntax

►► POSix (
OFF

ON
) ►◄

OFF
Indicates that the application is not POSIX-enabled.

ON Indicates that the application is POSIX-enabled.

Usage notes
v When you set POSIX to ON, you can use functions that are unique to POSIX,

such as pthread_create().
v POSIX(ON) applies to z/OS but explicitly excludes CICS. If you set POSIX to

ON while an application is running under CICS, you receive a warning message,
POSIX is set OFF, and the application continues to run. You can specify
POSIX(ON) for both DB2® and IMS applications.

v When you set POSIX to ON while an application is running under CICS, you
receive a warning message, POSIX is set OFF, and the application continues to
run.

v One of the effects of POSIX(ON) is the enablement of POSIX signal handling
semantics, which interact closely with the Language Environment condition
handling semantics.

v ANSI C programs can access the z/OS UNIX file system on MVS independent
of the POSIX setting. Where ambiguities exist between ANSI and POSIX
semantics, the POSIX runtime option setting indicates the POSIX semantics to
follow.

v Within nested enclaves, only one enclave can have the POSIX option set to ON.
All other nested enclaves must have the POSIX option set to OFF. When a
second nested enclave tries to specify the runtime option POSIX(ON) within one
Language Environment process, Language Environment ends with abend U4093,
reason code 172.

For more information

For more information about POSIX functions that have a kernel dependency or a
POSIX ON dependency, see z/OS XL C/C++ Runtime Library Reference.

PROFILE

PROFILE controls the use of an optional PROFILER to collect performance data for
the running application.

Restriction: An application cannot run with both the TEST and PROFILE options
in effect. If both are specified, an informational message is generated and
Language Environment forces the PROFILE option OFF.

The default value for non-CICS applications is PROFILE(OFF,'').

The default value for CICS applications is PROFILE(OFF,'').

POSIX

68 z/OS Language Environment Programming Reference

The default value for AMODE 64 applications is PROFILE(OFF,'').

Syntax

►► PROFile (
OFF

ON
,

string
) ►◄

OFF Indicates that the profile facility is inactive.

ON Indicates that the profile facility is active.

string Profile options that Language Environment passes to the profiler installed.
You can enclose the string in either single or double quotation marks. The
maximum length of the string is 250 bytes when specified on program
invocation or from a compiler directive.

For more information

For details on the Performance Analyzer, see Getting Started with C/C++ Productivity
Tools for OS/390, GC09-2918-00.

PRTUNIT (Fortran only)
Derivation: PRinT UNIT

PRTUNIT identifies the unit number used for PRINT and WRITE statements that
do not specify a unit number.

The default value for non-CICS applications is PRTUNIT(6).

PRTUNIT is ignored under CICS.

Syntax

►► PRTunit (
number

) ►◄

number
A valid unit number in the range 0-99.

PUNUNIT (Fortran only)
Derivation: PUNch UNIT

PUNUNIT identifies the unit number used for PUNCH statements that do not
specify a unit number.

The default value for non-CICS applications is PUNUNIT(7).

PROFILE

Chapter 2. Using the Language Environment runtime options 69

PUNUNIT is ignored under CICS.

Syntax

►► PUNunit (
number

) ►◄

number
A valid unit number in the range 0-99.

RDRUNIT (Fortran only)
Derivation: ReaDeR UNIT

RDRUNIT identifies the unit number used for READ statements that do not
specify a unit number.

The default value for non-CICS applications is RDRUNIT(5).

RDRUNIT is ignored under CICS.

Syntax

►► RDRunit (
number

) ►◄

number
A valid unit number in the range 0-99.

RECPAD (Fortran only)

Derivation: RECord PADding

RECPAD specifies if a formatted input record is padded with blanks.

The default value for non-CICS applications is NORECpad.

RECPAD is ignored under CICS.

Syntax

►►
NORECpad
RECpad ►◄

PUNUNIT

70 z/OS Language Environment Programming Reference

Usage notes
v The PAD specifier of the OPEN statement can be used to indicate padding for

individual files.

REDIR | NOREDIR (C only)

Derivation: REDIRection

REDIR specifies if you can redirect stdin, stdout, and stderr from the command
line.

Restriction: This option can only be specified with the #pragma runopts directive
or the REDIR and NOREDIR compiler options.

The default value for non-CICS applications is REDIR.

REDIR is ignored under CICS.

The default value for AMODE 64 applications is REDIR.

Syntax

►►
REDIR
NOREDIR ►◄

REDIR
Specifies that you can redirect stdin, stdout, and stderr from the command
line. REDIR applies only if ARGPARSE is also specified or defaulted.

NOREDIR
Specifies that you cannot redirect stdin, stdout, and stderr from the command
line.

For more information

See “ARGPARSE | NOARGPARSE (C only)” on page 15 for a description of
ARGPARSE.

RPTOPTS

Derivation: RePorT OPTionS

RPTOPTS generates, after an application has run, a report of the runtime options
in effect while the application was running. RPTOPTS(ON) lists the declared
runtime options s in alphabetical order. The report lists the option names and
shows where each option obtained its current setting. Language Environment
writes options reports only in mixed-case U.S. English.

For an example and complete description of the options report, see z/OS Language
Environment Debugging Guide.

The default value for non-CICS applications is RPTOPTS(OFF).

RECPAD

Chapter 2. Using the Language Environment runtime options 71

The default value for CICS applications is RPTOPTS(OFF).

The default value for AMODE 64 applications is RPTOPTS(OFF).

Default
Value

Non-CICS
RPTOPTS(OFF)

AMODE 64
RPTOPTS(OFF)

Syntax

►► RPTOpts (
OFF

ON
) ►◄

OFF
Does not generate a report of the runtime options in effect while the
application was running.

ON Generates a report of the runtime options in effect while the application was
running.

Usage notes
v For AMODE 64 applications, Language Environment writes the options report to

stderr.
v In some cases, RPTOPTS will not generate the options report if your application

ends abnormally.
v In a non-CICS environment, Language Environment directs the report to the

ddname specified in the MSGFILE runtime option. Under CICS, with
RPTOPTS(ON), Language Environment writes the options report to the CESE
queue when the transaction ends successfully.

v If the RPTSTG runtime option is specified while using HEAPPOOLS, extra
storage is obtained from the ANYHEAP and is used to complete the storage
report on heappools. This extra storage is only allocated when both
HEAPPOOLS and RPTSTG are used.

Performance consideration

This option increases the time it takes for the application to run. Therefore, use it
only as an aid to application development.

For more information
v See “MSGFILE” on page 55 for more information about the MSGFILE runtime

option.
v For an example and complete description of the options report, see z/OS

Language Environment Debugging Guide.

RPTOPTS

72 z/OS Language Environment Programming Reference

RPTSTG

Derivation: RePorT SToraGe

RPTSTG generates, after an application has run, a report of the storage the
application used. Language Environment writes storage reports only in mixed-case
U.S. English.

You can use the storage report information to help you set the ANYHEAP,
BELOWHEAP, HEAP, HEAP64, HEAPPOOLS, HEAPPOOLS64, IOHEAP64,
LIBHEAP64, LIBSTACK, STACK, STACK64, THREADHEAP, THREADSTACK, and
THREADSTACK64 runtime options for the best storage tuning. For an example
and complete description of the storage report, see z/OS Language Environment
Debugging Guide.

The default value for non-CICS applications is RPTSTG(OFF).

The default value for CICS applications is RPTSTG(OFF).

The default value for AMODE 64 applications is RPTSTG(OFF).

Syntax

►► RPTStg (
OFF

ON
) ►◄

OFF
Does not generate a report of the storage used while the application was
running.

ON Generates a report of the storage used while the application was running.

CICS consideration
v The phrases “Number of segments allocated” and “Number of segments freed”

represent, on CICS, the number of EXEC CICS GETMAIN and EXEC CICS
FREEMAIN requests, respectively.

z/OS UNIX considerations
v The RPTSTG option applies to storage utilization for the enclave, including

thread-level information about stack utilization, and heap storage used by
multiple threads.

Usage notes
v For AMODE 64 applications, Language Environment writes the storage report to

stderr.
v When a vendor heap manager (VHM) is active, the Language Environment

Storage Report will have a text line indicating that the user heap for C/C++ part
of the enclave is managed separately. The VHM is expected to write its own
storage report to the stderr stream.

v In some cases, RPTSTG will not generate the storage report if your application
ends abnormally.

RPTSTG

Chapter 2. Using the Language Environment runtime options 73

v RPTSTG includes PL/I task-level information about stack and heap usage.
v The phrases “Number of segments allocated” and “Number of segments freed”

represent the number of GETMAIN and FREEMAIN requests, respectively.

Performance consideration
v This option increases the time it takes for an application to run. Therefore, use it

only as an aid to application development.
v The storage report generated by RPTSTG(ON) shows the number of system-level

calls to obtain storage that were required while the application was running. To
improve performance, use the storage report numbers generated by the RPTSTG
option as an aid in setting the initial and increment size for stack and heap. This
reduces the number of times that the Language Environment storage manager
makes requests to acquire storage. For example, you can use the storage report
numbers to set appropriate values in the HEAP init_size and incr_size fields for
allocating storage.

For more information
v For more information about tuning your application with storage numbers, see

z/OS Language Environment Programming Guide.
v For more information about the MSGFILE runtime option, see “MSGFILE” on

page 55.
v For an example and complete description of the storage report, see z/OS

Language Environment Debugging Guide.

RTEREUS (COBOL only)

Derivation: Run Time Environment REUSe

RTEREUS implicitly initializes the runtime environment to be reusable when the
main program for the thread is a COBOL program. This option is valid only when
specified at the system level, region level, in a CEEUOPT, or in the CEEBXITA
assembler user exit.

The default value for non-CICS applications is NORTEREUS.

RTEREUS is ignored under CICS.

Syntax

►►
NORTEREUS
RTEREUS ►◄

NORTEREUS
Does not initialize the runtime environment to be reusable when the first
COBOL program is invoked.

RTEREUS
Initializes the runtime environment to be reusable when the first COBOL
program is invoked.

RPTSTG

74 z/OS Language Environment Programming Reference

Usage notes
v Restriction: Enterprise COBOL programs compiled with the THREAD compiler

option do not run with RTEREUS(ON).
v Guideline: Avoid using RTEREUS(ON) as a system-level or region-level default.

If you do use RTEREUS, use it for specific applications only.
v Under Language Environment, RTEREUS(ON) is only supported in a single

enclave environment unless you modify the behavior using the IGZERREO
CSECT. With the IBM supplied default setting for COBOL's reusable
environment, applications that create multiple enclaves will terminate with error
message IGZ0168S. Multiple enclaves can be created by applications that use
SVC LINK or CMSCALL to invoke application programs. One example is when
an SVC LINK is used to invoke an application program under ISPF that is using
ISPF services (such as CALL 'ISPLINK' and ISPF SELECT).

v If a Language Environment reusable environment is established (using
RTEREUS), any attempts to run a C or PL/I main program under Language
Environmentt will fail. For example, when running on ISPF with RTEREUS(ON):
– The first program invoked by ISPF is a COBOL program. A Language

Environment reusable environment is established.
– At some other point, ISPF invokes a PL/I or C program. The initialization of

the PL/I or C program fails.
v If a large number of COBOL programs run (using RTEREUS) under the same

MVS task, you can encounter out-of-region abends. This is because all storage
acquired by Language Environment to run COBOL programs is kept in storage
until the MVS task ends or the Language Environment environment is
terminated.

v Language Environment storage and runtime options reports are not produced by
Language Environment (using RTEREUS) unless a STOP RUN is issued to end
the enclave.

v IMS consideration—RTEREUS is not recommended for use under IMS.
v The IGZERREO CSECT affects the handling of program checks in the

non-Language Environment-enabled driver that repeatedly invokes COBOL
programs. It also affects the behavior of running COBOL programs in a nested
enclave when a reusable environment is active.

Performance consideration
v You must change STOP RUN statements to GOBACK statements to gain the

benefits of RTEREUS. STOP RUN terminates the reusable environment. If you
specify RTEREUS and use STOP RUN, Language Environment recreates the
reusable environment on the next invocation of COBOL. Doing this repeatedly
degrades performance, because a reusable environment takes longer to create
than does a normal environment.

v The IGZERREO CSECT affects the performance of running with RTEREUS.
v Language Environment also offers preinitialization support in addition to

RTEREUS.

For more information
v For information about specifying this option at the system or region level, z/OS

Language Environment Customization.
v For information about specifying this option in a CEEUOPT, see z/OS Language

Environment Programming Guide.
v For more information about IGZERREO, see z/OS Language Environment

Customization.

RTEREUS

Chapter 2. Using the Language Environment runtime options 75

v See z/OS Language Environment Programming Guide for more information about
preinitialization.

SIMVRD (COBOL only)

Derivation: SIMulate Variable length Relative organization Data sets

SIMVRD specifies if your COBOL programs use a VSAM KSDS to simulate
variable-length relative organization data sets.

The default value for non-CICS applications is NOSIMVRD.

SIMVRD is ignored under CICS.

Syntax

►►
NOSIMVRD
SIMVRD ►◄

NOSIMVRD
Do not use a VSAM KSDS to simulate variable-length relative organization.

SIMVRD
Use a VSAM KSDS to simulate variable-length relative organization.

For more information

See the appropriate version of the COBOL programming guide in the COBOL
library at Enterprise COBOL for z/OS library (http://www.ibm.com/support/
docview.wss?uid=swg27036733)

STACK

STACK controls the allocation of the thread's stack storage for both the upward
and downward- growing stacks. Typical items residing in the upward-growing
stack are C or PL/I automatic variables, COBOL LOCAL-STORAGE data items,
and work areas for runtime library routines. The downward-growing stack is
allocated only in an XPLINK environment.

The default value for non-CICS applications is
STACK(128K,128K,ANYWHERE,KEEP,512K,128K).

The default value for CICS applications is
STACK(4K,4080,ANYWHERE,KEEP,4K,4080).

RTEREUS

76 z/OS Language Environment Programming Reference

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

Syntax

►► STAck (
usinit_size

,
usincr_size

,
ANYWHERE

ANY
BELOW

, ►

►
KEEP

FREE
,

dsinit_size
,

dsincr_size
) ►◄

usinit_size
Determines the initial allocation of the upward-growing stack storage. This
value can be specified as n, nK, or nM bytes of storage. The actual amount of
allocated storage is rounded up to the nearest multiple of 8 bytes.

usinit_size can be preceded by a minus sign. In environments other than CICS,
if you specify a negative number Language Environment uses all available
storage minus the amount specified for the initial stack storage.

A size of "0" or "-0" requests half of the largest block of contiguous storage in
the region below the 16-MB line.

usincr_size
Determines the minimum size of any subsequent increment to the
upward-growing stack storage. This value can be specified as n, nK, or nM
bytes of storage. The actual amount of allocated storage is the larger of two
values— usincr_size or the requested size—rounded up to the nearest multiple
of 8 bytes.

If you specify usincr_size as 0, only the amount of the storage needed at the
time of the request, rounded up to the nearest multiple of 8 bytes, is obtained.

The requested size is the amount of storage a routine needs for a stack frame.

In the following example:
v usincr_size is specified as 8K
v The requested size is 9000 bytes
v The currently allocated stack storage has less than 9000 bytes available

As a result, Language Environment allocates enough storage to hold the 9000
byte request.

If the requested size is smaller than 8K, Language Environment allocates 8K of
stack storage.

ANYWHERE|ANY
Specifies that stack storage can be allocated anywhere in storage. If there is no
available storage above the line, storage is acquired below the 16 MB line.

BELOW
Specifies that stack storage is allocated below the 16M line in storage.

KEEP
Specifies that an increment to stack storage is not released when the last of the
storage within that increment is freed.

STACK

Chapter 2. Using the Language Environment runtime options 77

FREE
Specifies that an increment to stack storage is released when the last of the
storage within that increment is freed.

dsinit_size
Determines the initial allocation of the downward-growing stack storage. This
value can be specified as n, nK, or nM bytes of storage. The actual amount of
allocated storage is rounded up to the nearest multiple of 16 bytes.

dsincr_size
Determines the minimum size of any subsequent increment to the
downward-growing stack storage. This value can be specified as n, nK, or nM
bytes of storage. The actual amount of allocated storage is the larger of two
values— dsincr_size or the requested size—rounded up to the nearest multiple
of 16 bytes.

CICS consideration
v dsinit_size and dsincr_size suboptions are ignored under CICS.
v The maximum initial and increment size for CICS above 16 MB is 1 gigabyte

(1024 MB).
v The minimum for the initial size is 4K.
v STACK(0), STACK (-0), and STACK (-n) are all interpreted as STACK(4K) under

CICS.
v The default increment size under CICS is 4080 bytes, rather than 4096 bytes, to

accommodate the 16-bytes CICS storage check zone. Without this
accommodation, an extra page of storage is allocated when the storage allocation
is below the 16-MB line.

z/OS UNIX considerations
v The STACK option specifies the characteristics of the user stack for the initial

thread. In particular, it gets the initial size of the user stack for the initial thread.
The characteristics that indicate incr_size, ANYWHERE, and KEEP | FREE apply
to any thread created using pthread_create. Language Environment gets the
initial stack size from the threads attribute object specified in the pthread_create
function. The default size to be set in the thread's attribute object is obtained
from the initial size of the STACK runtime option.

v The default setting for STACK under z/OS UNIX is
STACK=(12K,12K,ANYWHERE,KEEP,512K,128K).

Usage notes
v Applications running with ALL31(OFF) must specify STACK(,,BELOW,,,) to

ensure that stack storage is addressable by the application.
v When an application is running in an XPLINK environment, the STACK runtime

option is forced to STACK(,,ANY,,,). Only the third suboption of the STACK
runtime option is changed by this action, to indicate that stack storage can be
allocated anywhere in storage. No message is issued to indicate this action. In
this case, if a Language Environment runtime options report is generated using
the RPTOPTS runtime option, the STACK option will be reported as "Override"
under the LAST WHERE SET column.

v If the initial routine of the Language Environment application is AMODE 24, the
STACK runtime option is forced to STACK(,,BELOW). Only the third suboption
of the STACK runtime option is changed by this action. No message is issued to
indicate this action. However, if a Language Environment runtime options report

STACK

78 z/OS Language Environment Programming Reference

is generated using the RPTOPTS runtime option, the STACK option is reported
as "Override" under the LAST WHERE SET column.

v The dsinit_size and dsincr_size values are not the actual amounts of storage
obtained. The actual size of the storage obtained is 4K larger (8K if a 4K page
alignment cannot be guaranteed) to accommodate the guard page.

v PL/I consideration—PL/I automatic storage above the 16-MB line is supported
under control of the Language Environment STACK option. When the Language
Environment stack is above, PL/I temporaries (dummy arguments) and
parameter lists (for reentrant/recursive blocks) also reside above.
The stack frame size for an individual block is constrained to 16 MB. Stack
frame extensions are also constrained to 16 MB. Therefore, the size of an
automatic aggregate, temporary variable, or dummy argument cannot exceed 16
MB. Violation of this constraint might have unpredictable results.
If an OS PL/I application does not contain any edited stream I/O and if it is
running with AMODE 31, you can relink it with Language Environment to use
STACK(,,ANY,,,). Doing so is particularly useful under CICS to help relieve
below-the-line storage constraints.

v PL/I MTF consideration—The STACK option allocates and manages stack
storage for the PL/I main task only.

Performance consideration

You can improve performance with the STACK runtime option by specifying
values that minimize the number of times the operating system allocates storage.
See “RPTSTG” on page 73 for information about how to generate a report you can
use to determine the optimum values for the STACK runtime option.

For more information
v See “ALL31” on page 12 for more information about the ALL31 runtime option.
v See “RPTSTG” on page 73 for more information about the RPTSTG runtime

option.
v For more information about using the storage reports generated by the RPTSTG

runtime option to tune the stacks, see z/OS Language Environment Debugging
Guide.

v See “XPLINK” on page 103 for more information about the XPLINK runtime
option.

STACK64 (AMODE 64 only)

STACK64 controls the allocation of the thread's stack storage for AMODE 64
applications. Storage required for the common anchor area (CAA) and other
control blocks is allocated separately from, and prior to, the allocation of the initial
stack segment and the initial heap.

The default value for AMODE 64 applications is STACK64(1M,1M,128M).

STACK

Chapter 2. Using the Language Environment runtime options 79

Syntax

►► STACK64
S64

(
initial

,
increment

,
maximum

) ►◄

initial
Determines the size of the initial stack segment. The storage is contiguous. This
value is specified as nM bytes of storage.

increment
Determines the minimum size of any subsequent increment to the
downward-growing stack area. This value is specified as nM bytes of storage.
The actual amount of allocated storage is the larger of two values— increment
or the requested size—rounded up to the nearest 1MB. If you specify increment
as 0, only the amount of the storage needed at the time of the request, rounded
up to the nearest multiple of 1MB, is obtained. The requested size is the
amount of storage a routine needs for a stack frame.

maximum
Specifies the maximum stack size. This value is specified as nM bytes of
storage. When the maximum size is less than the initial size, initial is used as
the maximum stack size.

Usage notes
v The 1MB guard page is not included in any of the sizes.
v The maximum stack segment is the maximum of STACK64 initial and maximum

sizes.
v The default value of 128MB for the maximum stack size of the STACK64 and

THREADSTACK64 runtime options can cause excessive use of system resources
(such as real storage) when running a multithreaded application that creates
many pthreads. For such applications, it is recommended to use the Language
Environment Storage Report (RPTSTG runtime option) to determine your
application's actual pthread stack storage usage, and then use the
THREADSTACK64 runtime option to set the maximum stack size to a value
closer to the actual usage.

Performance consideration

You can improve performance with the STACK64 runtime option by specifying
values that minimize the number of times the operating system allocates storage.
See “RPTSTG” on page 73 for information about how to generate a report you can
use to determine the optimum values for the STACK64 runtime option.

For more information
v See “RPTSTG” on page 73 for more information about the RPTSTG runtime

option.
v For more information about heap storage and heap storage tuning with storage

report numbers, see z/OS Language Environment Programming Guide.
v For more information about using the storage reports generated by the RPTSTG

runtime option to tune the stacks, see z/OS Language Environment Debugging
Guide.

STACK64

80 z/OS Language Environment Programming Reference

STORAGE

STORAGE controls the initial content of storage when allocated and freed. It also
controls the amount of storage that is reserved for the out-of-storage condition. If
you specify one of the parameters in the STORAGE runtime option, all allocated
storage processed by that parameter is initialized to the specified value. Otherwise,
it is left uninitialized. You can use the STORAGE option to identify uninitialized
application variables, or prevent the accidental use of previously freed storage.
STORAGE is also useful in data security. For example, storage containing sensitive
data can be cleared when it is freed.

The default value for non-CICS applications is
STORAGE(NONE,NONE,NONE,0K).

The default value for CICS applications is STORAGE(NONE,NONE,NONE,0K).

The default value for AMODE 64 applications is STORAGE(NONE,NONE,NONE).

Syntax

►► STOrage (
heap_alloc_value

,
heap_free_value

, ►

►
dsa_alloc_value

,
reserve_size

) ►◄

heap_alloc_value
The initialized value of any heap storage allocated by the storage manager. You
can specify heap_alloc_value as:
v A single character enclosed in quotation marks. If you specify a single

character, every byte of heap storage allocated by the storage manager is
initialized to that character's EBCDIC equivalent. For example, if you specify
a as the heap_alloc_value, heap storage is initialized to X'818181...81' or
aaa...a.

v Two hex digits without quotation marks. If you specify two hex digits, every
byte of the allocated heap storage is initialized to that value. For example, if
you specify FE as the heap_alloc_value, heap storage is initialized to
X'FEFEFE...FE'. A heap_alloc_value of 00 initializes heap storage to X'0000...00'.

v NONE If you specify NONE, the allocated heap storage is not initialized.

heap_free_value
The value of any heap storage freed by the storage manager is overwritten.
You can specify heap_free_value as:
v A single character enclosed in quotation marks. For example, a

heap_free_value of 'f' overwrites freed heap storage to X'868686...86'; 'B'
overwrites freed heap storage to X'C2C2C2...C2'.

v Two hex digits without quotation marks. A heap_free_value of FE overwrites
freed heap storage with X'FEFEFE...FE'.

v NONE If you specify NONE, the freed heap storage is not initialized.

dsa_alloc_value
The initialized value of stack frames from the Language Environment stack. A

STORAGE

Chapter 2. Using the Language Environment runtime options 81

stack frame is storage that was acquired dynamically and is composed of a
standard register save area and the area available for automatic storage. The
dsa_alloc_value has no effect on the XPLINK or AMODE 64 downwards
growing stack.

If specified, all Language Environment stack storage, including automatic
variable storage, is initialized to dsa_alloc_value. Stack frames allocated outside
the Language Environment stack are never initialized.

You can specify dsa_alloc_value as:
v A single character enclosed in quotation marks. If you specify a single

character, any dynamically acquired stack storage allocated by the storage
manager is initialized to that character's EBCDIC equivalent. For example, if
you specify 'A' as the dsa_alloc_value, stack storage is initialized to
X'C1C1C1...C1'. A dsa_alloc_value of 'F' initializes stack storage to
X'C6C6C6...C6', 'd' to X'848484...84'.

v Two hex digits without quotations. If you specify two hex digits, any
dynamically-acquired stack storage is initialized to that value. For example,
if you specify FE as the dsa_alloc_value, stack storage is initialized to
X'FEFEFE...FE'. A dsa_alloc_value of 00 initializes stack storage to X'00', FF to
X'FFFFFF...FF'.

v CLEAR If you specify CLEAR, any unused portion of the initial upward
growing stack segment is initialized to binary zeros, just before the main
procedure gains control. This value has no effect on any stack increments or
on the XPLINK or AMODE 64 downward growing stack.

v NONE If you specify NONE, the stack storage is not initialized.

reserve_size
The amount of storage for the Language Environment storage manager to
reserve in the event of an out-of-storage condition. You can specify the
reserve_size value as n, nK, or nM bytes of storage. The amount of storage is
rounded to the nearest multiple of 8 bytes.

Restriction: This option is ignored in a 64–bit environment.

If you specify reserve_size as 0, no reserve segment is allocated. The default
reserve_size is 0, so no reserve segment is allocated. If you do not specify a
reserve segment and your application exhausts storage, the application
terminates with abend 4088 and a reason code of 1024.

If you specify a reserve_size that is greater than 0 on a non-CICS system,
Language Environment does not immediately abend when your application
runs out of storage. Instead, when the stack overflows, Language Environment
uses the reserve stack as the new segment and signals a CEE0PD out of
storage condition. This allows a user-written condition handler to gain control
for this signal and release storage. If the reserve stack segment overflows while
this is happening, Language Environment terminates with abend 4088 and
reason code of 1004. The reserve stack segment is not freed until thread
termination. It is acquired from 31-bit storage if the STACK(,,ANY,,,) runtime
option is set or 24-bit storage when STACK(,,BELOW,,,) is requested. If a
determination is made to activate the reserve stack, the reserve size should be
set to a minimum of 32K to support Language Environment condition
handling and messaging internal routines as well as the user condition handler.
When using the reserve stack in a multithreaded environment, it is
recommended that the ALL31(ON) and STACK(,,ANY,,,) options also be in
effect.

STORAGE

82 z/OS Language Environment Programming Reference

To avoid such an overflow, increase the size of the reserve stack segment with
the STORAGE(,,,reserve_size) runtime option. The reserve stack segment is not
freed until thread termination.

CICS consideration

The out-of-storage condition is not raised under CICS.

z/OS UNIX considerations

A reserve stack of the size specified by the reserve_size suboption of STORAGE is
allocated for each thread.

Usage notes
v The heap_alloc_value, heap_free_value, and dsa_alloc_value can all be enclosed in

quotation marks. To initialize heap storage to the EBCDIC equivalent of a single
quote, double it within the string delimited by single quotes or surround it with
a pair of double quotation marks. Both of the following are correct ways to
specify a single quote:

Similarly, double quotation marks must be doubled within a string delimited by
double quotation marks, or surrounded by a pair of single quotes. The following
are correct ways to specify a double quotation mark:

v CLEAR is not a valid option for AMODE 64 applications.
v COBOL consideration—If using WSCLEAR in VS COBOL II,

STORAGE(00,NONE,NONE,8K) is recommended.

Performance considerations
v Use STORAGE(NONE,NONE,NONE) when you are not debugging.
v Using STORAGE to control initial values can increase program runtime. If you

specify a dsa_alloc_value, performance is likely to be poor. Therefore, use the
dsa_alloc_value option only for debugging, not to initialize automatic variables or
data structures.

v You should not use STORAGE(,,00) in any performance-critical application.

TERMTHDACT

Derivation: TERMinating THreaD ACTions

TERMTHDACT sets the level of information that is produced when Language
Environment percolates a condition of severity 2 or greater beyond the first
routine's stack frame. The Language Environment service CEE3DMP is called for
the TRACE, UATRACE, DUMP, and UADUMP suboptions of TERMTHDACT.

STORAGE(’’’’)
STORAGE("’")

STORAGE("""")
STORAGE(’"’)

STORAGE

Chapter 2. Using the Language Environment runtime options 83

The TRACE and UATRACE suboptions suppress the dumping of user storage and
Language Environment control blocks.

The DUMP and UADUMP suboptions include the dumping of user storage and
Language Environment control blocks.

If a message is printed, based upon the TERMTHDACT(MSG) runtime option, the
message is for the active condition immediately prior to the termination imminent
step. In addition, if that active condition is a promoted condition (was not the
original condition), the original condition's message is printed.

If the TRACE runtime option is specified with the DUMP suboption, a dump
containing the trace table, at a minimum, is produced. The contents of the dump
depend on the values set in the TERMTHDACT runtime option.

The default value for non-CICS applications is TERMTHDACT(TRACE,CESE,96).

The default value for CICS applications is TERMTHDACT(TRACE,CESE,96).

The default value for AMODE 64 applications is TERMTHDACT(TRACE,,96).

Syntax

►► TERmthdact (
TRACE

QUIET
MSG
DUMP
UATRACE
UADUMP
UAONLY
UAIMM

,
CESE

CICSDDS
,

reg_stor_amount
) ►◄

TRACE
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a message indicating
the cause of the termination and a trace of the active routines on the activation
stack.

QUIET
Specifies that Language Environment does not generate a message when a
thread terminates due to an unhandled condition of severity 2 or greater.

MSG
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a message indicating
the cause of the termination.

DUMP
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a message indicating
the cause of the termination, a trace of the active routines on the activation
stack, and a Language Environment dump.

TERMTHDACT

84 z/OS Language Environment Programming Reference

UATRACE
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a message indicating
the cause of the termination, a trace of the active routines on the activation
stack, and a U4039 system dump of the user address space. Under CICS, you
will get a CICS transaction dump. Under non-CICS, if the appropriate DD
statement is used, you will get a system dump of your user address space.

UADUMP
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a message indicating
the cause of the termination, a trace of the active routines on the activation
stack, a Language Environment dump, and a U4039 system dump of the user
address space. Under non-CICS, if the appropriate DD statement is used, you
will get a system dump of your user address space. Under CICS, you will get a
CICS transaction dump.

UAONLY
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a U4039 system dump
of the user address space. Under non-CICS, if the appropriate DD statement is
used, you will get a system dump of your user address space. Under CICS,
you will get a CICS transaction dump.

UAIMM
Specifies to Language Environment that prior to condition management
processing, for abends and program interrupts that are conditions of severity 2
or higher, Language Environment will immediately request the operating
system to generate a system dump of the original abend/program interrupt of
the user address space. Due to an unhandled condition of severity 2 or greater,
Language Environment generates a U4039 system dump of the user address
space. Under non-CICS, if the appropriate DD statement is used, you will get a
system dump of your user address space. After the dump is taken by the
operating system, Language Environment condition manager can continue
processing. If the thread terminates due to an unhandled condition of Severity
2 or higher, then Language Environment will terminate as if
TERMTHDACT(QUIET) was specified.

Note: For software-raised conditions or signals, UAIMM behaves the same as
UAONLY.

CESE
Specifies that Language Environment dump output are written to the CESE
QUEUE as it has always been. This option is ignored in a 64–bit environment.

CICSDDS
Specifies that Language Environment dump output are written to the new
CICS transaction dump that contains both CICS and CEEDUMP data. This
option is ignored in a 64–bit environment.

reg_stor_amount
Controls the amount of storage to be dumped around registers. This amount
can be in the range from 0 to 256 bytes. The amount specified will be rounded
up to the nearest multiple of 32. The default amount is 96 bytes.

TERMTHDACT

Chapter 2. Using the Language Environment runtime options 85

CICS consideration

All TERMTHDACT output is written to the data queue based on the setting of
CESE or CICSDDS. See Table 5 for a summary of the results of the different
options that are available.

Table 5. Condition handling of 0Cx ABENDS

Options TERMTHDACT(option,CESE,) TERMTHDACT(option,CICSDDS,)

QUIET v No output.

v ASRA or user ABEND issued.

v No output.

v ASRA or user ABEND issued.

MSG v Message written to CESE queue or MSGFILE.

v ASRA or user ABEND issued.

v Message written to CESE queue or MSGFILE.

v ASRA or user ABEND issued.

TRACE v Message written to CESE queue.

v Traceback written to CESE queue.

v ASRA or user ABEND issued.

v Message written to CESE or MSGFILE.

v Traceback included in CICS transaction dump
for this ABEND.

v ASRA or user ABEND issued.

DUMP v Message written to CESE queue.

v Traceback written to CESE queue.

v CEEDUMP to CESE queue.

v ASRA or user ABEND issued.

v Invalid suboption combination. Not supported.

UATRACE v Message written to CESE queue.

v Traceback written to CESE queue.

v U4039 transaction dump in CICS dump data
set.

v ASRA or user ABEND issued.

v Message written to CESE queue.

v Traceback included in CICS transaction dump
for this ABEND.

v U4039 transaction dump in CICS dump data
set.

v ASRA or user ABEND issued.

UADUMP v Message written to CESE queue.

v Traceback written to CESE queue.

v CEEDUMP written to CESE queue.

v U4039 transaction dump in CICS dump data
set.

v ASRA or user ABEND issued.

v Invalid suboption combination. Not supported.

UAONLY v U4039 transaction dump in CICS dump data
set.

v No changes in behavior for CICSDDS.

UAIMM v U4039 transaction dump in CICS dump data
set.

v No changes in behavior for CICSDDS.

Note: Program checks end in ASRx (most commonly ASRA) CICS abend with a
CICS dump in the dump data set. Abends end with the abend code provided on
the EXEC CICS ABEND command with a CICS dump in the dump data set if the
NODUMP option was NOT specified.

Table 6. Handling of software-raised conditions

Options TERMTHDACT(option,CESE,) TERMTHDACT(option,CICSDDS,)

QUIET v No output.

v U4038 abend issued with CANCEL and
NODUMP options.

v No output.

v U4038 abend issued with CANCEL and
NODUMP options.

TERMTHDACT

86 z/OS Language Environment Programming Reference

Table 6. Handling of software-raised conditions (continued)

Options TERMTHDACT(option,CESE,) TERMTHDACT(option,CICSDDS,)

MSG v Message written to CESE queue or MSGFILE.

v U4038 abend issued.

v Message written to CESE queue or MSGFILE.

v U4038 abend issued.

TRACE v Message written to CESE queue or MSGFILE.

v Traceback written to CESE queue.

v U4038 abend issued.

v Message written to CESE queue or MSGFILE.

v Traceback written to CESE queue.

v U4038 abend issued.

DUMP v Message written to CESE queue or MSGFILE.

v Traceback written to CESE queue.

v CEEDUMP written to CESE queue.

v U4038 abend issued.

v Invalid suboption combination. Not supported.

UATRACE v Message written to CESE queue or MSGFILE.

v Traceback written to CESE queue.

v U4039 transaction dump in CICS dump data
set.

v U4038 abend issued.

v Message written to CESE queue or MSGFILE.

v Traceback written to CESE queue.

v U4039 transaction dump in CICS dump data
set.

v U4038 abend issued.

UADUMP v Message written to CESE queue or MSGFILE.

v Traceback written to CESE queue.

v CEEDUMP written to CESE queue.

v U4039 transaction dump in CICS dump data
set.

v U4038 abend issued.

v Invalid suboption combination. Not supported.

UAONLY v U4039 transaction dump in CICS dump data
set.

v U4038 abend issued.

v No changes in behavior for CICSDDS.

UAIMM v U4039 transaction dump in CICS dump data
set.

v U4038 abend issued.

v Incorrect suboption combination. Not
supported.

Note:

1. CICS is told about software-raised error conditions for DUMP and TRACE.
2. When assembling a CEEROPT or CEEUOPT, the CICSDDS option cannot be

issued with DUMP or UADUMP. This results in a RC=8, CEEXOPT issues an
MNOTE, and the setting is forced to TRACE:

3. Language Environment requests a CICS transaction dump via the U4039 abend.
4. See z/OS Language Environment Runtime Messages for more complete details

regarding the U4039 abend.

z/OS UNIX considerations

The TERMTHDACT option applies when a thread terminates abnormally.
Abnormal termination of a single thread causes termination of the entire enclave. If
an unhandled condition of severity 2 or higher percolates beyond the first routine's
stack frame, the enclave terminates abnormally

If an enclave terminates due to a POSIX default signal action, TERMTHDACT
applies only to conditions that result from program checks or abends.

TERMTHDACT

Chapter 2. Using the Language Environment runtime options 87

If running under a z/OS UNIX shell and Language Environment generates a
system dump, a core dump is generated to a file based on the kernel environment
variable, _BPXKDUMP.

Usage notes
v A runtime options report is generated and placed at the end of the enclave

information whenever the TRACE, UATRACE, DUMP and UADUMP options
are invoked.

v PL/I considerations—After a normal return from a PL/I ERROR ON-unit or
from a PL/I FINISH ON-unit, Language Environment considers the condition
unhandled. If a GOTO is not performed and the resume cursor is not moved,
the thread terminates. The TERMTHDACT setting guides the amount of
information that is produced. The message is not presented twice.

v PL/I MTF considerations—
– TERMTHDACT applies to a task when the task terminates abnormally due to

an unhandled condition of severity 2 or higher that is percolated beyond the
initial routine's stack frame.

– When a task ends with a normal return from an ERROR ON-unit and other
tasks are still active, a dump is not produced even when the TERMTHDACT
option DUMP, UADUMP, UAONLY, or UAIMM is specified.

– All active subtasks created from the incurring task also terminate abnormally,
but the enclave can continue to run.

v The environment variable _CEE_DMPTARG allows a sysout class for a
dynamically allocated CEEDUMP. You can set the _CEE_DMPTARG value string
from a z/OS UNIX shell by:
– Using the export command
– Using the C functions setenv() or putenv()
– Using the ENVAR runtime option
_CEE_DMPTARG has the following format, _CEE_DMPTARG=value. The value is a
null-terminated character string, SYSOUT(x), that defines a sysout class that
Language Environment will set dynamically allocating the CEEDUMP. For
example, you can specify: _CEE_DMPTARG=SYSOUT(A)
To set the _CEE_DMPTARG value from a z/OS UNIX shell, you could issue the
export command and specify the following run-options, for example:
export _CEE_DMPTARG=SYSOUT(A).

WHEN _CEE_DMPTARG is not set, then the sysout class will default to
SYSOUT(*) for the dynamically allocated CEEDUMP. If the dynamic allocation
for the specified SYSOUT class specified by _CEE_DMPTARG should fail, the
default, SYSOUT(*) will be used.

For more information
v See “TRACE” on page 96, for more information about the TRACE runtime

option.
v For more information about the CEE3DMP service and its parameters, see

“CEE3DMP—Generate dump” on page 144.
v See z/OS Language Environment Programming Guide for more information about

the TERMTHDACT runtime option and condition message.
v For more information about CESE, see z/OS Language Environment Programming

Guide.

TERMTHDACT

88 z/OS Language Environment Programming Reference

TEST | NOTEST

TEST specifies the conditions under which a debug tool (such as the Debug Tool
supplied with z/OS) assumes control when the user application is being
initialized. Parameters of the TEST and NOTEST runtime options are merged as
one set of parameters.

The default value for non-CICS applications is
NOTEST(ALL,*,PROMPT,INSPPREF).

The default value for CICS applications is NOTEST(ALL,*,PROMPT,INSPPREF).

The default value for AMODE 64 applications is
NOTEST(ALL,*,PROMPT,INSPPREF).

Syntax

►►
NOTest
TESt (

ALL

ERROR
NONE

,
commands_file
*

,
PROMPT

NOPROMPT
*
;
command

, ►

►
INSPPREF

preference_file
*

) ►◄

ALL
Specifies that any of the following causes the debug tool to gain control even
without a defined AT OCCURRENCE for a particular condition or AT
TERMINATION:
v The ATTENTION function
v Any Language Environment condition of severity 1 or above
v Application termination

ERROR
Specifies that only one of the following causes the debug tool to gain control
without a defined AT OCCURRENCE for a particular condition or AT
TERMINATION:
v The ATTENTION function
v Any Language Environment-defined error condition of severity 2 or higher
v Application termination

NONE
Specifies that no condition causes the debug tool to gain control without a
defined AT OCCURRENCE for a particular condition or AT TERMINATION.

commands_file
A valid ddname, data set name (MVS), or file name (CMS), specifying the
primary commands file for this run. If you do not specify this parameter all
requests for commands go to the user terminal.

TEST | NOTEST

Chapter 2. Using the Language Environment runtime options 89

You can enclose commands_file in single or double quotation marks to
distinguish it from the rest of the TEST | NOTEST suboption list. It can have a
maximum length of 80 characters. If the data set name provided can be
interpreted as a ddname, it must be preceded by a slash (/). The slash and
data set name must be enclosed in quotation marks.

A primary commands file is required when running in a batch environment.

* (asterisk—in place of commands_file)
Specifies that no commands_file is supplied. The terminal, if available, is used as
the source of the debug tool commands.

PROMPT
Specifies that the debug tool is invoked at Language Environment
initialization.

NOPROMPT
Specifies that the debug tool is not invoked at Language Environment
initialization.

* (asterisk—in place of PROMPT/NOPROMPT)
Specifies that the debug tool is not invoked at Language Environment
initialization; equivalent to NOPROMPT.

; (semicolon—in place of PROMPT/NOPROMPT)
Specifies that the debug tool is invoked at Language Environment
initialization; equivalent to PROMPT.

command
A character string that specifies a valid debug tool command. The command
list can be enclosed in single or double quotation marks to distinguish it from
the rest of the TEST parameter list; it cannot contain DBCS characters.
Quotation marks are needed whenever the command list contains embedded
blanks, commas, semicolons, or parentheses. The list can have a maximum of
250 characters.

INSPPREF
Specifies the default setting for preference_file.

preference_file
A valid ddname, data set name (MVS), or file name (CMS), specifying the
preference file to be used. A preference file is a type of commands file that you
can use to specify settings for your debugging environment. It is analogous to
creating a profile for a text editor, or initializing a terminal session.

You can enclose preference_file in single or double quotation marks to
distinguish it from the rest of the TEST parameter list. It can have a maximum
of 80 characters.

If a specified data set name could be interpreted as a ddname, it must be
preceded by a slash (/). The slash and data set name must be enclosed in
quotation marks.

* (asterisk—in place of preference_file)
Specifies that no preference_file is supplied.

z/OS UNIX considerations

Language Environment honors the initial command string before the main routine
runs on the initial thread.

The test level (ALL, ERROR, NONE) applies to the enclave.

TEST | NOTEST

90 z/OS Language Environment Programming Reference

Language Environment honors the preference file when the debug tool is
initialized, regardless of which thread first requests the debug tool services.

Usage notes
v You can specify parameters on the NOTEST option. If NOTEST is in effect when

the application gains control, it is interpreted as TEST(NONE,,*,). If Debug Tool
is initialized using a CALL CEETEST or equivalent, the initial test level, the
initial commands_file, and the initial preference_file are taken from the NOTEST
runtime option setting.

Performance consideration

To improve performance, use this option only while debugging.

For more information

See Debug Tool publications for details and examples of the TEST runtime option
as it relates to Debug Tool.

THREADHEAP

Derivation: THREAD level HEAP storage

THREADHEAP controls the allocation and management of thread-level heap
storage. Separate heap segments are allocated and freed for each thread based on
the THREADHEAP specification.

For PL/I MTF applications, controlled and based variables declared in a subtask
are allocated from heap storage specified by THREADHEAP. Variables in the main
task are allocated from heap storage specified by HEAP.

Library use of heap storage in a substack is allocated from the enclave-level heap
storage specified by the ANYHEAP and BELOWHEAP options.

The default value for non-CICS applications is THREADHEAP(4K,4K,ANY,KEEP).

THREADHEAP is ignored under CICS.

Syntax

►► THREADHeap (
init_size

,
incr_size

,
ANYWHERE

ANY
BELOW

, ►

►
KEEP

FREE
) ►◄

TEST | NOTEST

Chapter 2. Using the Language Environment runtime options 91

init_size
The minimum initial size of thread heap storage, and is specified in n, nK, or
nM. Storage is acquired in multiples of 8 bytes. A value of zero (0) causes an
allocation of 4K.

incr_size
The minimum size of any subsequent increment to the noninitial heap storage
is specified in n, nK, or nM. The actual amount of allocated storage is the
larger of two values, incr_size or the requested size, rounded up to the nearest
multiple of 8 bytes. If you specify incr_size as 0, only the amount of the storage
needed at the time of the request (rounded up to the nearest 8 bytes) is
obtained.

ANYWHERE|ANY
Specifies that the heap storage can be allocated anywhere in storage. If there is
no available storage above the line, storage is acquired below the 16-MB line.
The only valid abbreviation of ANYWHERE is ANY.

BELOW
Specifies that the heap storage must be allocated below the 16M line.

KEEP
Specifies that storage allocated to THREADHEAP increments is not released
when the last of the storage in the thread heap increment is freed.

FREE
Specifies that storage allocated to THREADHEAP increments is released when
the last of the storage in the thread heap increment is freed.

CICS consideration

Even though this option is ignored under CICS, the default increment size under
CICS has changed from 4K (4096 bytes) to 4080 bytes, to accommodate the 16 bytes
CICS storage check zone.

Usage notes
v If the requesting routine is running in 24-bit addressing mode and

THREADHEAP(,,ANY,) is in effect, THREADHEAP storage is allocated below
the 16M line based upon the HEAP(,,,,initsz24,incrsz24) settings.

v PL/I MTF considerations—The thread-level heap is allocated only in
applications that use the PL/I MTF. For PL/I MTF applications, controlled and
based variables specified in subtasks are located in the thread-level heap.
If the main program is running in 24-bit addressing mode and
THREADHEAP(,,ANY,) is in effect, heap storage is allocated below the 16M line.
The only case in which storage is allocated above the line is when all of the
following conditions exist:
– The user routine requesting the storage is running in 31-bit addressing mode.
– HEAP(,,ANY,,,) is in effect.
– The main routine is running in 31-bit addressing mode.

v When running PL/I with POSIX(ON) in effect, THREADHEAP is used for
allocating heap storage for PL/I base variables declared in non-IPTs. Storage
allocated to all THREADHEAP segments is freed when the thread terminates.

v THREADHEAP(4K,4K,ANYWHERE,KEEP) provides behavior compatible with
the PL/I TASKHEAP option.

v The initial thread heap segment is never released until the thread terminates.
v THREADHEAP has no effect on C/C++ or Fortran for z/OS MTF applications.

THREADHEAP

92 z/OS Language Environment Programming Reference

THREADSTACK

Derivation: THREAD level STACK storage

THREADSTACK controls the allocation of the thread's stack storage for both the
upward and downward-growing stacks, except the initial thread in a
multithreaded application. If the thread attribute object does not provide an
explicit stack size, then the allocation values can be inherited from the STACK
option or specified explicitly on the THREADSTACK option.

The default values for non-CICS applications is
THREADSTACK(OFF,4K,4K,ANYWHERE,KEEP,128K,128K).

THREADSTACK is ignored under CICS.

Syntax

►► THREADSTack (
OFF

ON
,

usinit_size
,

usincr_size
, ►

►
ANYWHERE

ANY
BELOW

,
KEEP

FREE
,

dsinit_size
,

dsincr_size
) ►◄

OFF
Indicates that the allocation suboptions of the STACK runtime option are used
for thread stack allocation. Any other suboption specified with
THREADSTACK is ignored.

ON Controls the stack allocation for each thread, except the initial thread, in a
multithreaded environment.

usinit_size
Determines the size of the initial upward-growing stack segment. The storage
is contiguous. You specify the usinit_size value as n, nK, or nM bytes of storage.
The actual amount of allocated storage is rounded up to the nearest multiple of
8 bytes.

The usinit_size value can be preceded by a minus sign. In environments other
than CICS, if you specify a negative number Language Environment uses all
available storage minus the amount specified for the initial stack segment.

A size of "0" or "-0" requests half of the largest block of contiguous storage in
the region below the 16-MB line.

usincr_size
Determines the minimum size of any subsequent increment to the
upward-growing stack area. You can specify this value as n, nK, or nM bytes of
storage. The actual amount of allocated storage is the larger of two values—
usincr_size or the requested size—rounded up to the nearest multiple of 8 bytes

If you specify usincr_size as 0, only the amount of the storage needed at the
time of the request, rounded up to the nearest multiple of 8 bytes, is obtained.

THREADSTACK

Chapter 2. Using the Language Environment runtime options 93

The requested size is the amount of storage a routine needs for a stack frame.
For example, if the requested size is 9000 bytes, usincr_size is specified as 8K,
and the initial stack segment is full, Language Environment gets a 9000 byte
stack increment from the operating system to satisfy the request. If the
requested size is smaller than 8K, Language Environment gets an 8K stack
increment from the operating system.

ANYWHERE | ANY
Specifies that stack storage can be allocated anywhere in storage. On systems
that support bimodal addressing, storage can be allocated either above or
below the 16M line. If there is no storage available above the line, Language
Environment acquires storage below the line. On systems that do not support
bimodal addressing (for example, when VM/ESA is initial program loaded in
370 mode) Language Environment ignores this option and places the stack
storage below 16M.

BELOW
Specifies that the stack storage must be allocated below the 16M line in storage
that is accessible to 24–bit addressing.

KEEP
Specifies that storage allocated to stack increments is not released when the
last of the storage in the stack increment is freed.

FREE
Specifies that storage allocated to stack increments is released when the last of
the storage in the stack is freed. The initial stack segment is never released
until the enclave terminates.

dsinit_size
Determines the size of the initial downward-growing stack segment. The
storage is contiguous. You specify the init_size value as n, nK, or nM bytes of
storage. The actual amount of allocated storage is rounded up to the nearest
multiple of 16 bytes.

dsincr_size
Determines the minimum size of any subsequent increment to the
downward-growing stack area. You can specify this value as n, nK, or nM
bytes of storage. The actual amount of allocated storage is the larger of two
values-- incr_size or the requested size--rounded up to the nearest multiple of
16 bytes.

Usage notes
v The dsinit_size and dsincr_size values are the amounts of storage that can be used

for downward-growing stack frames (plus the stack header, approximately 20
bytes). The actual size of the storage getmained will be 4K (8K if a 4K page
alignment cannot be guaranteed) larger to accommodate the guard page.

v The downward-growing stack is only initialized in a XPLINK supported
environment, that is, batch, TSO, z/OS UNIX, and only when a XPLINK
application is active in the enclave. Otherwise the suboptions for the
downward-growing stack are ignored.

v All storage allocated to THREADSTACK segments are freed when the thread
terminates.

v The initial stack segment of the thread is never released until the thread
terminates, regardless of the KEEP/FREE state.

v You can specify suboptions with THREADSTACK(OFF,...), but they are ignored.
If you override the THREADSTACK(OFF,...) suboption with
THREADSTACK(ON) and you omit suboptions, then the suboptions you

THREADSTACK

94 z/OS Language Environment Programming Reference

specified with THREADSTACK(OFF,...) remain in effect. If you respecify
THREADSTACK(OFF,...) with different suboptions, they override the defaults.

v PL/I MTF consideration—THREADSTACK(ON,4K, 4K, BELOW, KEEP,,)
provides PL/I compatibility for stack storage allocation and management for
each subtask in the application.

v PL/I considerations—For multitasking or multithreaded environments, the stack
size for a subtask or non-Initial Process Thread (non-IPT) is taken from the
THREADSTACK option unless THREADSTACK(OFF) is specified.
THREADSTACK(OFF) specifies that the values in the STACK option be used.

v In the multithreaded environment, you can explicitly specify the stack size in the
thread attribute object; it will be used instead of the value specified with
THREADSTACK or STACK.

v The THREADSTACK option replaces the NONIPTSTACK and
NONONIPTSTACK options.

THREADSTACK64 (AMODE 64 only)

Derivation: THREAD level STACK storage for AMODE 64

THREADSTACK64 controls the allocation of the thread's stack storage for AMODE
64 applications, except for the initial thread in a multithreaded environment.

The default value for AMODE 64 applications is
THREADSTACK64(OFF,1M,1M,128M).

Syntax

►► THREADSTACK64
TS64

(
OFF

ON
, initial , increment , maximum) ►◄

OFF
Indicates that the allocation suboptions of the STACK64 runtime option are
used for thread stack allocation. Any other suboption specified with
THREADSTACK64 is ignored.

ON Controls the stack allocation for each thread, except the initial thread, in a
multithreaded environment.

initial
Determines the size of the initial stack segment. The storage is contiguous. This
value is specified as nM bytes of storage.

increment
Determines the minimum size of any subsequent increment to the stack area.
This value is specified as nM bytes of storage. The actual amount of allocated
storage is the larger of two values— increment or the requested size—rounded
up to the nearest multiple of 1MB.

If you specify increment as 0, only the amount of the storage needed at the time
of the request, rounded up to the nearest multiple of 1MB, is obtained.

The requested size is the amount of storage a routine needs for a stack frame.

THREADSTACK

Chapter 2. Using the Language Environment runtime options 95

maximum
Specifies the maximum stack size. This value is specified as nM bytes of
storage. When the maximum size is less than the initial size, initial is used as
the maximum stack size.

Usage notes
v The 1 MB guard page is not included in any of the sizes.
v The maximum thread stack segment is the maximum of THREADSTACK64

initial and maximum sizes.
v The default value of 128 MB for the maximum stack size of the STACK64 and

THREADSTACK64 runtime options can cause excessive use of system resources
(such as real storage) when running a multithreaded application that creates
many pthreads. For such applications, it is recommended to use the Language
Environment Storage Report (RPTSTG runtime option) to determine your
application's actual pthread stack storage usage, and then use the
THREADSTACK64 runtime option to set the maximum stack size to a value
closer to the actual usage.

For more information

For more information about heap storage and heap storage tuning with storage
report numbers, see z/OS Language Environment Programming Guide.

TRACE

TRACE controls runtime library tracing activity, the size of the in-storage trace
table, the type of trace events to record, and it determines whether a dump
containing, at a minimum, the trace table should be unconditionally taken when
the application terminates. When you specify TRACE(ON), user-requested trace
entries are intermixed with Language Environment trace entries in the trace table.

Under normal termination conditions, if TRACE is active and you specify DUMP,
only the trace table is written to the dump report, independent of the
TERMTHDACT setting. Only one dump is taken for each termination. Under
abnormal termination conditions, the type of dump taken (if one is taken) depends
on the value of the TERMTHDACT runtime option and if TRACE is active and the
DUMP suboption is specified.

The default value for non-CICS applications is TRACE(OFF,4K,DUMP,LE=0).

The default value for CICS applications is TRACE(OFF,4K,DUMP,LE=0).

The default value for AMODE 64 applications is TRACE(OFF,4K,DUMP,LE=0).

Syntax

►► TRACe (
OFF

ON
,

table_size
,

DUMP

NODUMP
,

LE=0
LE=1
LE=2
LE=3
LE=20

) ►◄

THREADSTACK64

96 z/OS Language Environment Programming Reference

OFF
Indicates that the tracing facility is inactive.

ON Indicates that the tracing facility is active.

table_size
Determines the size of the tracing table as specified in bytes (nK or nM). The
upper limit is 16M - 1 (1666777215 bytes). Restriction: This option is ignored in
a 64–bit environment and the size is set to 1M.

DUMP
Requests that a Language Environment-formatted dump (containing the trace
table) be taken at program termination regardless of the setting of the
TERMTHDACT runtime option.

NODUMP
Requests that a Language Environment-formatted dump not be taken at
program termination.

LE=0
Specifies that no trace events be recorded.

LE=1
Specifies that entry to and exit from Language Environment member libraries
be recorded (such as, in the case of C, entry and exit of the printf() library
function).

LE=2
Specifies that mutex init/destroy and locks/unlocks from Language
Environment member libraries be recorded.

LE=3
Activates both the entry/exit trace and the mutex trace.

LE=20
Specifies that XPLINK/non-XPLINK transition should be recorded.

Usage notes
v PL/I MTF consideration—The TRACE(ON,,,LE=2) setting provides the following

trace table entries for PL/I MTF support:
– Trace entry 100 occurs when a task is created.
– Trace entry 101 occurs when a task that contains the tasking CALL statements

is terminated.
– Trace entry 102 occurs when a task that does not contain the tasking CALL

statements is terminated.
v When running PL/I with POSIX(ON) in effect, no PL/I-specific trace

information is provided.
v When you specify LE=20:

– AMODE 64 applications have no transitions.
– Transitions across OS_UPSTACK linkage are not recorded.

v When TRACE(OFF) is specified, Language Environment activates tracing when a
pthread_create() is done and a debugger is being used.

v COBOL does not provide any Trace Table Entries.

For more information
v For more information about the dump contents, see “TERMTHDACT” on page

83.

TRACE

Chapter 2. Using the Language Environment runtime options 97

v For more information about using the tracing facility, see z/OS Language
Environment Debugging Guide.

TRAP

TRAP specifies how Language Environment programs handle abends and program
interrupts (see Table 7). CEESGL is unaffected by this option.

TRAP(ON) must be in effect for the ABTERMENC runtime option to have effect.
This option is similar to options that were offered by earlier versions of COBOL, C,
and PL/I runtime libraries:
v STAE | NOSTAE runtime option of earlier COBOL, C, and PL/I
v SPIE | NOSPIE option offered by earlier C and PL/I

Table 7. TRAP runtime option settings

If ... Then ...

One option is specified in input TRAP is set according to that option,
TRAP(OFF) for NOSTAE or NOSPIE,
TRAP(ON) for STAE or SPIE.

Both options are specified in input TRAP is set ON unless both options are
negative. TRAP is set OFF if both options are
negative.

STAE is specified in one #pragma runopts
statement, and NOSPIE in another

The option in the last #pragma runopts
determines the setting of TRAP.

Multiple instances of STAE | NOSTAE are
specified

TRAP is set according to the last instance only.
All others are ignored.

Multiple instances of SPIE | NOSPIE are
specified

TRAP is set according to the last instance only.
All others are ignored.

An options string has TRAP(ON) or
TRAP(OFF) together with SPIE | NOSPIE,
or STAE | NOSTAE

TRAP setting takes preference over all others.

The default value for non-CICS applications is TRAP(ON,SPIE).

The default value for CICS applications is TRAP(ON,SPIE).

The default value for AMODE 64 applications is TRAP(ON,SPIE).

Syntax

►► TRAP (
ON

OFF
,

SPIE

NOSPIE
) ►◄

ON Fully enables the Language Environment condition handler.

OFF
Prevents language condition handlers or handlers registered by CEEHDLR
from being notified of abends or program checks; prevents application of
POSIX signal handling semantics for abends and program checks.

TRACE

98 z/OS Language Environment Programming Reference

SPIE
SPIE specifies that Language Environment issue an ESPIE macro to handle
program interrupts. The SPIE suboption is ignored when specified with the
OFF suboption.

NOSPIE
NOSPIE specifies that Language Environment will not issue the ESPIE macro.
When you specify the ON, NOSPIE suboption, Language Environment will
handle program interrupts and abends via an ESTAE. The NOSPIE suboption
is ignored when specified with the OFF suboption.

Due to the restrictions and side-effects when running TRAP(OFF) stated in the
Usage notes, IBM highly recommends running TRAP(ON,SPIE) in all
environments.

CICS consideration

Since Language Environment never sets a SPIE or STAE, the SPIE|NOSPIE
suboption is ignored on CICS.

z/OS UNIX considerations

The TRAP option applies to the entire enclave and all threads within.

Usage notes
v Use TRAP(OFF) only when you need to analyze a program exception before

Language Environment handles it.
v When you specify TRAP(OFF) in a non-CICS environment, an ESPIE is not

issued, but an ESTAE is issued. Language Environment does not handle
conditions raised by program interrupts or abends initiated by SVC 13 as
Language Environment conditions, and does not print messages for such
conditions.

v Language Environment requires TRAP(ON) because it uses condition handling
internally. As a result, running with TRAP(OFF) for exception diagnosis
purposes can cause many side effects. If you run with TRAP(OFF), you can get
side effects even if you do not encounter a software-raised condition, program
check, or abend. If you do encounter a program check or an abend with
TRAP(OFF) in effect, the following side effects can occur:
– The ABTERMENC runtime option has no effect.
– The ABPERC runtime option has no effect.
– Resources acquired by Language Environment are not freed.
– Files opened by HLLs are not closed by Language Environment, so records

might be lost.
– The abnormal termination exit is not driven for enclave termination.
– The assembler user exit is not driven for enclave termination.
– User condition handlers are not enabled.
– The debugger is not notified of the error.
– No storage report or runtime options report is generated.
– No Language Environment messages or Language Environment dump output

is generated.
– In z/OS UNIX, POSIX signal handling semantics are not enabled for the

abend.
– The enclave terminates abnormally if such conditions are raised.

TRAP

Chapter 2. Using the Language Environment runtime options 99

– The COBOL ON SIZE ERROR clause may be disabled for arithmetic
statements.

v TRAP(ON) must be in effect when you use the CEEBXITA assembler user exit
for enclave initialization to specify a list of abend codes that Language
Environment percolates.

v C++ consideration—TRAP(ON) must be in effect in order for the z/OS XL C++
try, throw, and catch condition handling mechanisms to work.

v When TRAP(ON) is in effect, and the abend code is in the
CEEAUE_A_AB_CODES list in CEEBXITA, Language Environment percolates
the abend. Normal Language Environment condition handling is never invoked
to handle these abends. This feature is useful when you do not want Language
Environment condition handling to intervene for certain abends or when you
want to prevent invocation of the abnormal termination exit for certain abends,
such as when IMS issues a user abend code 777.

v When TRAP(ON,NOSPIE) is specified in a non-CICS environment, Language
Environment will handle program interrupts and abends via an ESTAE. This
feature is useful when you do not want Language Environment to issue an
ESPIE macro.
When TRAP(OFF), (TRAP(OFF,SPIE) or TRAP(OFF,NOSPIE) is specified and
there is a program interrupt, the user exit for termination is not driven.

For more information
v See “ABTERMENC” on page 10 for more information about the ABTERMENC

runtime option.
v See “CEESGL—Signal a condition” on page 417 for more information about the

CEESGL callable service.
v For more information about the CEEHDLR callable service, see

“CEEHDLR—Register user-written condition handler” on page 319.
v See z/OS Language Environment Programming Guide, for more information about

the CEEBXITA assembler user exit.

UPSI (COBOL only)

Derivation: User Programmable Status Indicator

UPSI sets the eight UPSI switches on or off for applications that use COBOL
programs.

The default for non-CICS applications is UPSI(00000000).

The default for CICS applications is UPSI(00000000).

Syntax

►► UPSI (
nnnnnnnn

) ►◄

nnnnnnnn
n represents one UPSI switch between 0 and 7, the leftmost n representing the
first switch. Each n can either be 0 (off) or 1 (on).

TRAP

100 z/OS Language Environment Programming Reference

For more information
v For more information about how COBOL programs access the UPSI switches,

see the appropriate version of the COBOL programming guide in the COBOL
library at Enterprise COBOL for z/OS library (http://www.ibm.com/support/
docview.wss?uid=swg27036733).

USRHDLR | NOUSRHDLR

Derivation: USeR condition HanDLeR

USRHDLR registers a user condition handler at stack frame 0, allowing you to
register a user condition handler without having to include a call to CEEHDLR in
your application and then recompile the application.

The default value for non-CICS applications is NOUSRHDLR.

The default value for CICS applications is NOUSRHDLR().

Syntax

►►
NOUsrhdlr
USrhdlr (

lmname
,

lmname2
) ►◄

NOUSRHDLR
Does not register a user condition handler without recompiling an application
to include a call to CEEHDLR.

USRHDLR
Registers a user condition handler without recompiling an application to
include a call to CEEHDLR.

lmname
The name of a load module (or an alias name of a load module) that contains
the user condition handler that is to be registered at stack frame 0. This
parameter is optional.

lmname2
The name of a load module (or an alias name of a load module) that contains
the user condition handler that is to be registered to get control after the
enablement phase and before any other user condition handler. This parameter
is optional.

CICS consideration

When specifying USRHDLR under CICS, lmname and lmname2 must be defined in
the CICS system definition data set (CSD) for your CICS region, rather than using
program autoinstall. This includes the sample user-written condition handler
CEEWUCHA.

UPSI

Chapter 2. Using the Language Environment runtime options 101

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

Usage notes
v The user condition handler specified by the USRHDLR runtime option must be

in a separate load module rather than be link-edited with the rest of the
application.

v The user condition handler lmname is invoked for conditions that are still
unhandled after being presented to condition handlers for the main program.

v The user condition handler lmname2 is invoked for each condition after the
condition completes the enablement phase but before any other registered user
condition handlers are given control.

v You can use a user condition handler registered with the USRHDLR runtime
option to return any of the result codes allowed for a user condition handler
registered with the CEEHDLR callable service.

v A condition that is percolated or promoted by a user condition handler
registered to handle conditions at stack frame 0 using the USRHDLR run time
option is not presented to any other user condition handler.

v The loading of the user condition handlers lmname and lmname2 occurs only
when that user condition handler needs to be invoked the first time.

v If the load of either lmname or lmname2 fails, an error message is issued.
v To turn off one of the suboptions previously specified by USRHDLR (lmname or

lmname2), specify the option with either empty single quotes or empty double
quotation marks. For example, to turn off the lmname2 suboption after it had
been previously specified, use either USRHDLR(lmname,’’) or USRHDLR(lmname,"").

v In SCEESAMP, IBM supplies a sample user-written condition handler, called
CEEWUCHA. Under CICS, this handler will give you similar abend codes that
existed in certain pre-Language Environment environments. The CEEWUCHA
load module needs to be built using CEEWWCHA, which is also provided in
SCEESAMP. This handler has support for both COBOL and PL/I; however, it is
shipped with the PL/I-specific behavior commented out. If you want this PL/I
behavior, modify the source before using CEEWWCHA.

For more information

For information about registering a user condition handler and its interfaces, see
“CEEHDLR—Register user-written condition handler” on page 319.

VCTRSAVE

Derivation: VeCToR environment to be SAVEd

VCTRSAVE specifies if any language in the application uses the vector facility
when user-written condition handlers are called.

The default values for non-CICS applications is VCTRSAVE(OFF).

VCTRSAVE is ignored under CICS.

USRHDLR | NOUSRHDLR

102 z/OS Language Environment Programming Reference

Syntax

►► Vctrsave (
OFF

ON
) ►◄

OFF
No language in the application uses the vector facility when user-provided
condition handlers are called.

ON A language in the application uses the vector facility when user-provided
condition handlers are called.

CICS consideration

VCTRSAVE is ignored under CICS.

z/OS UNIX considerations

The VCTRSAVE option applies to the entire enclave and all threads within the
enclave.

Performance consideration

When a condition handler plans to use the vector facility (that is, run any vector
instructions), the entire vector environment must be saved on every condition and
restored on return to the application code. You can avoid this extra work by
specifying VCTRSAVE(OFF) when you are not running an application under vector
hardware.

XPLINK

Derivation: eXtra Performance LINKage

The XPLINK runtime option controls the initialization of the XPLINK environment.
XPLINK resources such as the downward-growing stack and the C/C++ run time
library are committed only when it is known that an XPLINK program will receive
control. If the initial program in the enclave contains at least one function that was
compiled using XPLINK conventions, then XPLINK resources will be committed
during Language Environment initialization as if XPLINK(ON) had been specified.
If the initial program is purely non-XPLINK, then no XPLINK resources will be
committed. If it is known that an XPLINK function will be called at some point
during the execution of the application, (for example, by calling a DLL function
that has been compiled XPLINK), then XPLINK(ON) must be specified so the
necessary XPLINK resources are available.

You cannot set this option at the system level, region level, or in the CEEBXITA
assembler user exit interface. You can only specify XPLINK on application
invocation (command-line interface or _CEE_RUNOPTS environment variable), or
as an application default (CEEUOPT, C/C++ #pragma runopts, or PLIXOPT).

The default value for non-CICS applications is XPLINK(OFF).

VCTRSAVE

Chapter 2. Using the Language Environment runtime options 103

XPLINK is ignored under CICS.

Syntax

►► XPLink (
OFF

ON
) ►◄

OFF
Specifies that no programs containing XPLINK-compiled functions will be run.
XPLINK resources will not be committed.

ON Specifies that at some time during the execution of an application, an
XPLINK-compiled function may be called. XPLINK resources will be
committed so that when this occurs, the XPLINK function can properly
execute.

Usage notes

The XPLINK(ON) runtime option is provided for application compatibility. It
should be specified only for applications that:
v Have a non-XPLINK main(),
v Use XPLINK resources during their execution (for example, calls to an XPLINK

function in a DLL), and have been tested to run in an XPLINK environment
(that is, they do not use any resources or subsystems that are restricted in an
XPLINK environment) Blindly running a non-XPLINK application in an XPLINK
environment by specifying the XPLINK(ON) runtime option could result in
performance degradation or application abends.

For these reasons, the XPLINK(ON) application should only be specified for
individual applications that require it. That is why you cannot set XPLINK(ON) as
a system-level or region-level default.
v If the XPLINK runtime option is not specified and the initial program contains

at least one XPLINK-compiled part, then the XPLINK runtime option will be
forced to (ON). No message will be issued to indicate this action.

v When an application is running in an XPLINK environment (that is, either the
XPLINK(ON) runtime option was specified, or the initial program contained at
least one XPLINK compiled part), the ALL31 runtime option will be forced to
ON. No AMODE 24 routines are allowed in an enclave that uses XPLINK. No
message will be issued to indicate this action. If a Language Environment
runtime options report is generated using the RPTOPTS runtime option, the
ALL31 option will be reported as "Override" under the LAST WHERE SET
column.

v When an application is running in an XPLINK environment (that is, either the
XPLINK(ON) runtime option was specified, or the initial program contained at
least one XPLINK compiled part), the STACK runtime option will be forced to
STACK(,,ANY). Only the third suboption is changed by this action to indicate
that STACK storage can be allocated anywhere in storage. No message will be
issued to indicate this action. If a Language Environment runtime options report
is generated using the RPTOPTS runtime option, the STACK option will be
reported as "Override" under the LAST WHERE SET column.

XPLINK

104 z/OS Language Environment Programming Reference

Performance considerations
v When XPLINK(ON) is in effect, resources required for the execution of an

XPLINK-compiled function are committed. This includes, for example, allocation
of a downward-growing stack segment. If no XPLINK functions are invoked,
then these are resources that are not available to an XPLINK function.

v If the application contains C or C ++ and XPLINK(ON) is specified, then the
XPLINK-compiled version of the C Runtime Library is loaded, which will run
on the downward-growing stack. When non-XPLINK functions call C RTL
functions in this environment, a swap from the upward-growing stack to the
downward-growing stack will occur. This results in additional overhead that
could cause performance degradation. Applications that make heavy use of the
C RTL from non-XPLINK callers should be aware of this, and if necessary for
performance reasons, either run in a pure non-XPLINK environment with
XPLINK(OFF), or convert as much of the application to XPLINK as possible and
run with XPLINK(ON).

v Applications that consist only of non-XPLINK functions (for example, COBOL or
PL/I) should not specify the XPLINK(ON) runtime option, as just turning this
on in these applications will result in a performance degradation.

XUFLOW

Derivation: eXponent Under FLOW

XUFLOW specifies if an exponent underflow causes a program interrupt. An
exponent underflow occurs when a floating point number becomes too small to be
represented. The underflow setting is determined at enclave initialization and is
updated when new languages are introduced into the application (via fetch or
dynamic call, for example). Otherwise, it does not vary while the application is
running.

Language Environment preserves the language semantics for C/C++ and COBOL
regardless of the XUFLOW setting. Language Environment preserves the language
semantics for PL/I only when XUFLOW is set to AUTO or ON. Language
Environment does not preserve the language semantics for PL/I when XUFLOW is
set to OFF.

An exponent underflow caused by a C/C++ or COBOL program does not cause a
condition to be raised.

The default value for non-CICS applications is XUFLOW(AUTO).

The default value for CICS applications is XUFLOW(AUTO).

Syntax

►► Xuflow (
AUTO

ON
OFF

) ►◄

AUTO
An exponent underflow causes or does not cause a program interrupt

XPLINK

Chapter 2. Using the Language Environment runtime options 105

dynamically, based on the HLLs that make up the application. Enablement is
determined without user intervention. XUFLOW(AUTO) causes condition
management to process underflows only in those applications where the
semantics of the application languages require it. Normally, XUFLOW(AUTO)
provides the best efficiency while meeting language semantics.

ON An exponent underflow causes a program interrupt. XUFLOW(ON) causes
condition management to process underflows regardless of the mix of
languages; therefore, this setting might be less efficient in applications that
consist of languages not requiring underflows to be processed by condition
management.

OFF
An exponent underflow does not cause a program interrupt; the hardware
takes care of the underflow. When you set XUFLOW to OFF, the hardware
processes exponent underflows. This is more efficient than condition handling
to process the underflow.

Usage notes
v PL/I consideration—When setting XUFLOW to OFF, be aware that the semantics

of PL/I require the underflow to be signaled.
v z/OS UNIX consideration—The XUFLOW option applies to the entire enclave

and all threads within.

Language runtime option mapping
Language Environment provides one set of runtime options for applications. These
options are processed at the enclave level and allow you to control many aspects
of the Language Environment environment.

Most options are applicable to all Language Environment-conforming languages. In
addition, although Language Environment assists migration by mapping current
HLL options to Language Environment's options, the runtime options of a
particular HLL product might change in the Language Environment-enabled
version. However, Language Environment has attempted to maintain runtime
options consistently across language products while minimizing required changes
within each product.

Tables of pre-Language Environment, HLL-specific options and their Language
Environment equivalents are provided in the z/OS V2R1.0 Language Environment
Runtime Application Migration Guide. The mapping is performed automatically by
Language Environment, except where noted.

XUFLOW

106 z/OS Language Environment Programming Reference

Part 2. Language Environment callable services

The following sections contain detailed information about how to use the
Language Environment callable services.

© Copyright IBM Corp. 1991, 2015 107

108 z/OS Language Environment Programming Reference

Chapter 3. Quick reference tables for Language Environment
services

The following tables are a quick reference of the Language Environment callable
services and math services.

Note: Language Environment callable services are not supported for AMODE 64
applications.

Bit manipulation routines
Table 8. Bit manipulation routines

Callable service Function

CEESICLR Bit clear. See “CEESICLR—Bit clear” on page 433.

CEESISET Bit set. See “CEESISET—Bit set” on page 433.

CEESISHF Bit shift. See “CEESISHF—Bit shift” on page 434.

CEESITST Bit test. See “CEESITST—Bit test” on page 435.

Condition-handling callable services
Table 9. Condition-handling callable services

Callable service Function

CEE3CIB Returns a pointer to a condition information block (CIB) associated with a given condition
token. See “CEE3CIB—Return pointer to condition information block” on page 132.

CEE3GRN Gets the name of the most current Language Environment-conforming routine in which a
condition occurred. See “CEE3GRN—Get name of routine that incurred condition” on
page 160.

CEE3GRO Returns the offset within a failing routine of the most recent condition. See
“CEE3GRO—Get offset of condition” on page 165.

CEE3SPM Queries and modifies the enablement of Language Environment hardware conditions. See
“CEE3SPM—Query and modify Language Environment hardware condition enablement”
on page 202.

CEE3SRP Sets the resume point at the next instruction in the calling routine to be used by
CEEMRCE. See “CEE3SRP—Set resume point” on page 209.

CEEDCOD Decodes an existing condition token. See “CEEDCOD—Decompose a condition token” on
page 249.

CEEENV Processes environment variables based on the function codes that were passed as input.
See “CEEENV—Process environmental variables” on page 265.

CEEGQDT Provides a mechanism by which application code can retrieve the q_data_token from the
instance-specific information (ISI). See “CEEGQDT—Retrieve q_data_token” on page 305.

CEEHDLR Registers a user condition handler for the current stack frame. See “CEEHDLR—Register
user-written condition handler” on page 319.

CEEHDLU Unregisters a user-written condition handler for the current stack frame. See
“CEEHDLU—Unregister user-written condition handler” on page 328.

CEEITOK Computes the initial condition token for the current condition information block. See
“CEEITOK—Return initial condition token” on page 336.

© Copyright IBM Corp. 1991, 2015 109

Table 9. Condition-handling callable services (continued)

Callable service Function

CEEMRCE Resumes execution of a user routine at the location that was established by CEE3SRP. See
“CEEMRCE—Move resume cursor explicit” on page 360.

CEEMRCR Moves the resume cursor to a position relative to the current position of the handle cursor.
See “CEEMRCR—Move resume cursor” on page 365.

CEENCOD Dynamically constructs a condition token. See “CEENCOD—Construct a condition token”
on page 379.

CEERCDM Records information for the active condition so that the information can be retrieved from
the CIB later. See “CEERCDM—Record information for an active condition” on page 22.

CEESGL Raises, or signals, a condition to the condition manager. See “CEESGL—Signal a
condition” on page 417.

Date and time callable services
Table 10. Date and time callable services

Callable service Function

CEECBLDY Converts a string representing a date to a COBOL integer format. See
“CEECBLDY—Convert date to COBOL Integer format” on page 214.

CEEDATE Converts a number representing a Lilian date to a date written in character format. See
“CEEDATE—Convert Lilian date to character format” on page 232.

CEEDATM Converts a number representing the number of seconds since 00:00:00 14 October 1582 to
character format. See “CEEDATM—Convert seconds to character timestamp” on page 238.

CEEDAYS Converts a string representing a date to a Lilian format. See “CEEDAYS—Convert date to
Lilian format” on page 243.

CEEDYWK Calculates the day of the week on which a Lilian date falls. See “CEEDYWK—Calculate
day of week from Lilian date” on page 262.

CEEGMT Computes the current Greenwich Mean Time (GMT) as both a Lilian date and as the
number of seconds since 00:00:00 14 October 1582. See “CEEGMT—Get current Greenwich
Mean Time” on page 294.

CEEGMTO Computes values to the calling routine that represent the difference between the local
system time and Greenwich Mean Time. See “CEEGMTO—Get offset from Greenwich
Mean Time to local time” on page 297.

CEEISEC Converts separate binary integers representing year, month, day, hour, minute, second,
and millisecond to a number representing the number of seconds since 00:00:00 14 October
1582. See “CEEISEC—Convert integers to seconds” on page 332.

CEELOCT Gets the current local time in three formats. See “CEELOCT—Get current local date or
time” on page 348.

CEEQCEN Queries the century within which Language Environment assumes two-digit year values
lie. See “CEEQCEN—Query the century window” on page 384.

CEESCEN Sets the century in which Language Environment assumes two-digit year values lie. See
“CEESCEN—Set the century window” on page 396.

CEESECI Converts a number representing the number of seconds since 00:00:00 14 October 1582 to
seven separate binary integers representing year, month, day, hour, minute, second, and
millisecond. See “CEESECI—Convert seconds to integers” on page 402.

CEESECS Converts a string representing a timestamp into a number representing the number of
seconds since 00:00:00 14 October 1582. See “CEESECS—Convert timestamp to seconds”
on page 407.

110 z/OS Language Environment Programming Reference

||
|

Dynamic storage callable services
Table 11. Dynamic storage callable services

Callable service Function

CEE3RPH Sets the heading displayed at the top of the storage or options reports that are generated
when you specify the RPTSTG(ON) or RPTOPTS(ON) runtime options. See
“CEE3RPH—Set report heading” on page 199.

CEECRHP Creates additional heaps. See “CEECRHP—Create new additional heap” on page 223.

CEECZST Changes the size of a previously allocated storage element, while preserving its contents.
See “CEECZST—Reallocate (change size of) storage” on page 227.

CEEDSHP Discards an entire heap that you created previously with a call to CEECRHP. See
“CEEDSHP—Discard heap” on page 258.

CEEFRST Frees storage previously allocated by CEEGTST. See “CEEFRST—Free heap storage” on
page 284.

CEEGTST Allocates storage from a heap whose ID you specify. See “CEEGTST—Get heap storage”
on page 315.

General callable services
Table 12. General callable services

Callable service Function

CEE3DLY Suspends processing of an active enclave for a specified number of seconds. See
“CEE3DLY—Suspend processing of the active enclave in seconds” on page 140.

CEE3DMP Generates a Language Environment formatted dump of the runtime environment and
member language libraries. See “CEE3DMP—Generate dump” on page 144.

CEE3INF Returns to the calling routine information about the system, subsystem, environment,
member languages, and version of Language Environment associated with the enclave.
See “CEE3INF—Query enclave information” on page 170.

CEE3PRM Returns to the calling routine the argument string that was specified at program
invocation. See “CEE3PRM—Query parameter string” on page 193.

CEE3PR2 Returns to the calling routine the argument string and its associated length that was
specified at program invocation. See “CEE3PRM—Query parameter string” on page 193.

CEE3USR Sets or queries one of two 4-byte fields known as the user area fields. See “CEE3USR—Set
or query user area fields” on page 210.

CEEDLYM Suspends processing of an active enclave for a specified number of milliseconds. See
“CEEDLYM—Suspend processing of the active enclave in milliseconds” on page 254.

CEEGPID Retrieves the version of Language Environment that is currently in use. See
“CEEGPID—Retrieve the Language Environment version and platform ID” on page 300.

CEEGTJS Retrieves the value of an exported JCL symbol. See “CEEGTJS—Retrieves the value of an
exported JCL symbol” on page 313.

CEERAN0 Generates a sequence of uniform pseudorandom numbers between 0.0 and 1.0 using the
multiplicative congruential method with a user-specified seed. See “CEERAN0—Calculate
uniform random numbers” on page 393.

CEETEST Invokes a tool for debugging. See “CEETEST—Invoke Debug Tool” on page 428.

Chapter 3. Quick reference tables for Language Environment services 111

Initialization and termination services
Table 13. Initialization and termination services

Callable service Function

CEE3ABD Stops the enclave with an abend. The abend can be issued either with or without cleanup.
See “CEE3ABD—Terminate enclave with an abend” on page 125.

CEE3AB2 Stops the enclave with an abend and a reason code. The abend can be issued either with
or without cleanup. See “CEE3AB2—Terminate enclave with an abend and reason code”
on page 128.

CEE3GRC Gets the enclave return code. See “CEE3GRC—Get the enclave return code” on page 152.

CEE3SRC Sets the enclave return code. See “CEE3SRC—Set the enclave return code” on page 208.

Locale callable services
Table 14. Locale callable services

Callable service Function

CEEFMON Formats monetary strings. See “CEEFMON—Format monetary string” on page 276.

CEEFTDS Formats time and date into a character string. See “CEEFTDS—Format time and date into
character string” on page 288.

CEELCNV Queries locale numeric conventions. See “CEELCNV—Query locale numeric conventions”
on page 342.

CEEQDTC Queries locale date and time conventions and returns the specified format information.
See “CEEQDTC—Query locale date and time conventions” on page 387.

CEEQRYL Queries the active locale environment. See “CEEQRYL—Query active locale environment”
on page 391.

CEESCOL Compares the collation weights of two strings. See “CEESCOL—Compare collation weight
of two strings” on page 399.

CEESETL Sets the locale operating environment. “CEESETL—Set locale operating environment” on
page 413.

CEESTXF Transforms string characters into collation weights. See “CEESTXF—Transform string
characters into collation weights” on page 422.

Math services
Table 15. Math services

Math service Function

CEESxABS Absolute value. See “CEESxABS—Absolute value” on page 439.

CEESxACS Arccosine. See “CEESxACS—Arccosine” on page 441.

CEESxASN Arcsine. See “CEESxASN—Arcsine” on page 442.

CEESxATH Hyperbolic arctangent. See “CEESxATH—Hyperbolic arctangent” on page 443.

CEESxATN Arctangent. See “CEESxATN—Arctangent” on page 444.

CEESxAT2 Arctangent of two arguments. See “CEESxAT2—Arctangent2” on page 445.

CEESxCJG Conjugate complex. See “CEESxCJG—Conjugate of complex” on page 446.

CEESxCOS Cosine. See “CEESxCOS—Cosine” on page 447.

CEESxCSH Hyperbolic cosine. See “CEESxCSH—Hyperbolic cosine” on page 448.

CEESxCTN Cotangent. See “CEESxCTN—Cotangent” on page 450.

112 z/OS Language Environment Programming Reference

Table 15. Math services (continued)

Math service Function

CEESxDIM Positive difference. See “CEESxDIM—Positive difference” on page 451.

CEESxDVD Division. See “CEESxDVD—Floating-point complex divide” on page 452.

CEESxERC Error function complement. See “CEESxERC—Error function complement” on page 453.

CEESxERF Error function. See “CEESxERF—Error function” on page 454.

CEESxEXP Exponential (base e). See “CEESxEXP—Exponential base e” on page 455.

CEESxGMA Gamma function. See “CEESxGMA—Gamma function” on page 456.

CEESxIMG Imaginary part of complex. See “CEESxIMG—Imaginary part of complex” on page 457.

CEESxINT Truncation. See “CEESxINT—Truncation” on page 458.

CEESxLGM Log gamma function. See “CEESxLGM—Log gamma” on page 459.

CEESxLG1 Logarithm base 10. See “CEESxLG1—Logarithm base 10” on page 460.

CEESxLG2 Logarithm base 2. See “CEESxLG2—Logarithm base 2” on page 461.

CEESxLOG Logarithm base e. See “CEESxLOG—Logarithm base e” on page 462.

CEESxMLT Floating-point complex multiplication. See “CEESxMLT—Floating-point complex multiply”
on page 463.

CEESxMOD Modular arithmetic. See “CEESxMOD—Modular arithmetic” on page 464.

CEESxNIN Nearest integer. See “CEESxNIN—Nearest integer” on page 465.

CEESxNWN Nearest whole number. See “CEESxNWN—Nearest whole number” on page 466.

CEESxSGN Transfer of sign. See “CEESxSGN—Transfer of sign” on page 467.

CEESxSIN Sine. See “CEESxSIN—Sine” on page 468.

CEESxSNH Hyperbolic sine. See “CEESxSNH—Hyperbolic sine” on page 470.

CEESxSQT Square root. See “CEESxSQT—Square root” on page 471.

CEESxTAN Tangent. See “CEESxTAN—Tangent” on page 472.

CEESxTNH Hyperbolic tangent. See “CEESxTNH—Hyperbolic tangent” on page 474.

CEESxXPx Exponential (**). See “CEESxXPx—Exponentiation” on page 475.

Message handling callable services
Table 16. Message handling callable services

Callable service Function

CEECMI Stores message insert data. See “CEECMI—Store and load message insert data” on page
218.

CEEMGET Retrieves a message corresponding to a condition token returned from a callable service.
See “CEEMGET—Get a message” on page 352.

CEEMOUT Writes a specified message to the message string file. See “CEEMOUT—Dispatch a
message” on page 357.

CEEMSG Retrieves a message corresponding to a condition token received and writes it to the
message file. See “CEEMSG—Get, format, and dispatch a message” on page 375.

Chapter 3. Quick reference tables for Language Environment services 113

National Language Support callable services
Table 17. National Language Support and National Language Architecture callable services

Callable service Function

CEE3CTY Changes or queries the current national country setting. See “CEE3CTY—Set default
country” on page 135.

CEE3LNG Changes or queries the current national language. See “CEE3LNG—Set national
language” on page 174.

CEE3MCS Gets the default currency symbol for a country specified in country_code. See
“CEE3MCS—Get default currency symbol” on page 181.

CEE3MC2 Gets the default currency symbol and the international currency symbol for a country
specified in country_code. See “CEE3MC2—Get default and international currency
symbols” on page 184.

CEE3MDS Gets the default decimal separator for the country specified in country_code. See
“CEE3MDS—Get default decimal separator” on page 187.

CEE3MTS Gets the default thousands separator for the country that you specify in country_code. See
“CEE3MTS—Get default thousands separator” on page 190.

CEEFMDA Gets the default date picture string for a country specified in country_code. See
“CEEFMDA—Get default date format” on page 270.

CEEFMDT Gets the default date and time picture strings for the country specified in country_code.
See “CEEFMDT—Get default date and time format” on page 273.

CEEFMTM Gets the default time picture string for the country specified in country_code. See
“CEEFMTM—Get default time format” on page 281.

114 z/OS Language Environment Programming Reference

Chapter 4. Using Language Environment callable services

Restriction: Language Environment services are not supported for AMODE 64
applications.

This topic provides syntax and examples of Language Environment callable
services, which you can invoke from applications generated with the following
IBM compiler products:
v IBM z/OS XL C/C++
v C/C++ for MVS/ESA
v IBM SAA AD/Cycle C/370
v Enterprise COBOL for z/OS
v Enterprise PL/I for z/OS
v IBM COBOL for OS/390 & VM
v IBM COBOL for MVS & VM
v IBM PL/I for MVS & VM

You can invoke Language Environment callable services from assembler programs
using the CEEENTRY and associated macros. While you cannot call these services
directly from Fortran programs, you can use the Fortran routines AFHCEEN and
AFHCEEF to invoke most of these services. (See Fortran Run-time Migration Guide.)
You can use the other languages to perform these services on behalf of a Fortran
program.

Note:

1. Customers using this information may not have pre-Language Environment
runtime libraries.

2. You can use DYNAMIC calls from VS COBOL II programs to Language
Environment Date/Time callable services. You can not use DYNAMIC calls
from VS COBOL II programs to other Language Environment callable services.
You can not use STATIC calls from VS COBOL II programs to any Language
Environment callable services.

3. A Language Environment callable service used by application programmers can
also be called an application writer interface (AWI).

Language Environment callable services provide functions that pre-Language
Environment runtime libraries might not provide. You can use these services alone
or with Language Environment runtime options, which customize your runtime
environment. For guidelines about writing your own callable services, see z/OS
Language Environment Programming Guide.

Locating callable service information
The following sections help you use the Language Environment callable services.
For a summary of Language Environment callable services, see Chapter 1,
“Summary of Language Environment runtime options,” on page 3.
v “General usage notes for callable services” on page 116
v “Invoking callable services” on page 116
v “Data type definitions” on page 121
v Chapter 5, “Callable services,” on page 125

© Copyright IBM Corp. 1991, 2015 115

General usage notes for callable services
v You can invoke callable services from any Language Environment-conforming

HLL except where otherwise noted.
v You might receive feedback codes from services other than the one you are

invoking. This is because the callable services invoke other callable services that
might return a feedback code.

v Callable services that are intended to be available on any platform that
Language Environment supports are prefixed with CEE. Callable services
defined only for S/370 are prefixed with CEE3.

v Routines that invoke callable services do not need to be in 31-bit addressing
mode. 31-bit addressing mode switching is performed implicitly without any
action required by the calling routine, if you specify the ALL31(OFF) runtime
option (see “ALL31” on page 12).
However, if AMODE switching occurs and your program makes many calls to
Language Environment callable services, the switching time can slow down your
application. Run with AMODE(31), if possible, to avoid unnecessary mode
switching.

v Under Language Environment, all parms are passed by reference, indirectly. The
code in Figure 2 and Figure 3 might cause unpredictable results:

Figure 4 and Figure 5 illustrate valid calls. The COBOL examples are valid only
for COBOL for MVS & VM Release 2 or later.

Invoking callable services
You can invoke Language Environment callable services from assembler routines,
HLL-generated object code, HLL library routines, other Language Environment
library routines, and user-written HLL calls. When you want to access Language
Environment library routines, you can use the same type of user-written HLL calls
and functions you currently use for your HLL applications.

CALL CEEDATE USING X,Y,Z. **Invalid**

Figure 2. An invalid COBOL CALL that omits the fc parameter

DCL CEEDATE ENTRY OPTIONS(ASM);
CALL CEEDATE(x,y,z); /* invalid */

Figure 3. An invalid PL/I CALL that omits the fc parameter

CALL CEEDATE USING X,Y,Z,OMITTED.
CALL CEEDATE USING X,Y,Z,FC.

Figure 4. Valid COBOL CALLs that use the optional fc parameter

DCL CEEDATE ENTRY(*,*,*,* OPTIONAL) OPTIONS(ASM);
CALL CEEDATE(x,y,z,*); /* valid */
CALL CEEDATE(x,y,z,fc); /* valid */

Figure 5. Valid PL/I CALLs that use the optional fc parameter

116 z/OS Language Environment Programming Reference

This topic provides syntax and examples to help you request callable services from
C/C++, COBOL, and PL/I.

Header, copy, or include files
Many of the programming examples in this section imbed header, copy, or include
files. (Whether you call the files header files, copy files, or include files depends on
the language you are using.) These files can save you time by providing
declarations for symbolic feedback codes and Language Environment callable
services that you would otherwise need to code in your program. They can also
help you reduce errors by verifying correct usage of Language Environment
callable services at compile time.

Table 18 summarizes the names and descriptions of the files imbedded in the
callable service examples in this section.

Table 18. Files used in C/C++, COBOL, and PL/I examples

File name Description

ceeedcct.h C declarations for Language Environment symbolic feedback codes

leawi.h Declarations of Language Environment callable services and OMIT_FC,
which is used to explicitly omit the fc parm, for routines written in
C/C++

CEEIGZCI Declarations for condition information block

CEEIGZCT Declarations for Language Environment symbolic feedback codes

CEEIGZLC Locale category constants LC-ALL, LC-COLLATE, LC-CTYPE,
LC-MESSAGES, LC-MONETARY, LC-NUMERIC, LC-TIME, and
version_info structure.

CEEIGZTD TD-STRUCT structure needed for CEEFTDS calls

CEEIGZNM NM-STRUCT structure needed for CEELCNV calls

CEEIGZN2 NM-STRUCT structure needed for ISO/IEC 9899:1999 (C99) support of
CEELCNV calls

CEEIGZDT DTCONV structure needed for CEEQDTC calls

CEEIGZD2 DTCONV structure needed for C99 support of CEEQDTC calls

CEEIBMAW Language Environment callable service declarations for routines written
in PL/I

CEEIBMCI Declarations for condition information block

CEEIBMCT Declarations for Language Environment symbolic feedback codes

CEEIBMLC Locale category constants LC-ALL, LC-COLLATE, LC-CTYPE,
LC-MESSAGES, LC-MONETARY, LC-NUMERIC, LC-TIME, and
version_info structure.

CEEIBMTD TD-STRUCT structure needed for CEEFTDS calls

CEEIBMNM NM-STRUCT structure needed for CEELCNV calls

CEEIBMN2 NM-STRUCT structure needed for C99 support of CEELCNV calls

CEEIBMDT DTCONV structure needed for CEEQDTC calls

CEEIBMD2 DTCONV structure needed for C99 support of CEEQDTC calls

CEEFORCT Fortran declarations for Language Environment symbolic feedback codes

Note:

1. A symbolic feedback code is a symbolic representation of a condition token.

Chapter 4. Using Language Environment callable services 117

2. PL/I routines that imbed CEEIBMAW require the MACRO compiler option.
3. COBOL does not require declarations of external programs; therefore, you do

not need declarations of Language Environment callable services for programs
written in COBOL.

4. CEEIBMxx parts support PL/I applications.
5. CEEIGZxx parts support COBOL applications.

On z/OS, these files are contained in the Language Environment SCEESAMP
partitioned data set, except for leawi.h, which is contained in the SCEEH.H
partitioned data set. You can imbed these files using the statement appropriate for
the language your routine is written in, as shown in Table 19. Examples of these
statements are shown in the following topics on syntax.

Table 19. Imbedding files in your routines

To imbed a file in a... Use statement...

C/C++ routine #include

COBOL program COPY

PL/I routine %include

Sample programs
Sample C/C++, COBOL, and PL/I programs are provided for most of the callable
services. Sample Fortran programs are not provided because you cannot invoke
Language Environment callable services from Fortran programs. However, you can
use other languages to perform these services on behalf of a Fortran program.
These sample programs are also provided online with the Language Environment
product for your convenience. On MVS, the sample routines are located in the
SCEESAMP partitioned data set.

C/C++ syntax
In C or C++, use the following syntax to invoke a Language Environment callable
service with a feedback code in effect:

Syntax

►► ceexxxx (parm1, parm2, ...parmn, fc); ►◄

Note: "..." is "and so on," not the C ellipsis operator.

Use the following syntax to invoke callable services with an omitted feedback code
parameter:

Syntax

►► CEExxxx (parm1, parm2, ...parmn, NULL); ►◄

118 z/OS Language Environment Programming Reference

See “Parameter list for invoking callable services” on page 121 for a description of
this syntax.

Language Environment callable services always have a return type of void and
should be prototyped as such.

Input strings for callable services are not NULL terminated in C/C++.

You can use the SCEEH.H file leawi.h to declare Language Environment callable
services, in conjunction with a C/C++ call to a Language Environment callable
service, as shown in Figure 6.

To help in checking the success of your applications, Language Environment
provides FBCHECK in the ceeedcct.h file. FBCHECK compares a feedback code
against a condition token you supply to determine whether you receive the
feedback code you should.

COBOL syntax
In COBOL, use the following syntax to invoke Language Environment callable
services:

Syntax

►► CALL "CEExxxx" USING parm1, parm2, ...parmn, fc ►◄

You can call Language Environment services either statically or dynamically from
COBOL applications.

The Language Environment callable services are architected as low maintenance
stubs that branch to the actual runtime routine that performs the service. Static
CALL to these stubs is the preferred choice for best performance. This avoids the
overhead of a COBOL dynamic call without the usual maintainability disadvantage
of a more robust statically link-edited routine.

See “Parameter list for invoking callable services” on page 121 for a description of
this syntax.

You can use the SCEESAMP file CEEIGZCT to declare symbolic Language
Environment feedback codes, in conjunction with a COBOL call to a Language
Environment callable service to return a feedback code, as shown in Figure 7 on
page 120.

#include <leawi.h>
int main(void)
{
CEExxxx(parm1, parm2, ... parmn, fc);
}

Figure 6. Sample callable services invocation syntax for C/C++

Chapter 4. Using Language Environment callable services 119

COBOL for MVS & VM Release 2 or later also allows you to omit arguments. In
place of the argument, use the OMITTED parameter, as shown below. See Figure 2
on page 116 and Figure 4 on page 116 for an example of omitting parameters in
COBOL.

Syntax

►► CALL "CEExxxx" USING parm1, parm2, ...parmn, OMITTED ►◄

PL/I syntax
In PL/I, use the following syntax to invoke a Language Environment callable
service with a feedback code in effect:

Syntax

►► CALL CEExxxx (parm1, parm2, ...parmn, *); ►◄

PL/I also allows you to omit arguments. In place of the argument, code an asterisk
(*), as shown below:

Syntax

►► CALL CEExxxx (*, *, ...*,); ►◄

Note that you cannot invoke callable services as function references.

See “Parameter list for invoking callable services” on page 121 for a description of
this syntax.

The value of register 15 upon return from any Language Environment callable
service is undefined. Use of OPTIONS(RETCODE) is not recommended, because a
subsequent use of the PLIRETV built-in function returns an undefined value.

If you code your own declarations for the Language Environment callable services,
be sure to specify all required arguments in the CALL statement. Figure 3 on page
116 illustrates a call in which the feedback code to CEEDATE was incorrectly
omitted.

COPY CEEIGZCT.
CALL "CEExxxx" USING parm1, parm2, ... parmn, fc

Figure 7. Sample callable services invocation syntax for COBOL

120 z/OS Language Environment Programming Reference

You can use the SCEESAMP file CEEIBMAW to declare Language Environment
callable services with a PL/I call to a Language Environment callable service, as
Figure 8 shows.

Parameter list for invoking callable services
This section describes the syntax and parameters you need to invoke Language
Environment callable services.

CEExxxx
The name of the callable service. By including a reference to a header file in
your code, you can avoid declaring each callable service as an external entry.
See “Header, copy, or include files” on page 117 for these file names.

parm1 parm2 ... parmn
Optional or required parameters passed to or returned from the called service.
Some callable service parameters are optional in C/C++ and PL/I only. If you
do not want to pass the parm or you do not want the return value, you can
omit the parm, using the appropriate syntax to indicate that the parm is
omitted.

fc A feedback code that indicates the result of the service. fc can be omitted when
you use C/C++, PL/I, and COBOL (COBOL for MVS & VM Release 2 or later).

If you specify fc as an argument, feedback information in the form of a
condition token is returned to the calling routine. The condition token indicates
whether the service completed successfully or whether a condition was
encountered while the service was running. In Language Environment you can
decode the condition token so that it can be acted on.

If you omit fc as an argument, using the appropriate syntax to indicate fc is
omitted, the condition is signaled if the service was not successful.

Because callable services call other services, these other services might generate
feedback codes.

Data type definitions
Parameters in Language Environment are defined as specific data types, such as:
v Fullword binary integer
v Short floating-point hexadecimal
v Long floating-point hexadecimal
v Fixed-length character string with a predefined length
v Entry variable
v Character string with a halfword prefix indicating its current length

Table 20 on page 122, Table 21 on page 123, and Table 22 on page 124 contain data
type definitions and their descriptions for C/C++, COBOL, and PL/I, respectively.

C/C++ data type definitions
Table 20 on page 122 includes data type definitions and their descriptions for
C/C++.

%INCLUDE CEEIBMAW;
CALL CEExxxx(parm1, parm2, ... parmn, fc);

Figure 8. Sample callable services invocation syntax for PL/I

Chapter 4. Using Language Environment callable services 121

Table 20. Data type definitions for C/C++

Data type Description C/C++

INT2 A 2-byte signed integer signed short

INT4 A 4-byte signed integer signed int

FLOAT4 A 4-byte single-precision floating-point
number

float

FLOAT8 An 8-byte double-precision
floating-point number

double

FLOAT16 A 16-byte extended-precision
floating-point number

long double

COMPLEX8 Short floating-point complex hex
number: an 8-byte complex number,
whose real and imaginary parts are
each 4-byte single-precision
floating-point numbers

Not available

COMPLEX16 Long floating-point complex hex
number: a 16-byte complex number,
whose real and imaginary parts are
each 8-byte double-precision
floating-point numbers

Not available

COMPLEX32 Extended floating-point hex number: a
32-byte complex number, whose real
and imaginary parts are each 16-byte
extended-precision floating-point
numbers

Not available

POINTER A platform-dependent address pointer void *

CHARn A string (character array) of length n char[n]

VSTRING A halfword length-prefixed character
string (for input); fixed-length
80-character string (for output)

struct _VSTRING(
_INT2 short length;
char string[1];
}string-in;

char string_out[80];

FEED_BACK A mapping of the condition token (fc) Case 1:
typedef struct {

short tok_sev ;
short tok_msgno ;
int tok_case :2,

tok_sever:3,
tok_ctrl :3 ;

char tok_facid[3];
int tok_isi ;

} _FEEDBACK ;

Case 2:
typedef struct {

short tok_sev ;
short tok_msgno ;
int tok_class_code :2,

tok_cause_code:3,
tok_ctrl :3 ;

char tok_facid[3];
int tok_isi ;

} _FEEDBACK ;

CEE_ENTRY An HLL-dependent entry constant FUNCTION POINTER

122 z/OS Language Environment Programming Reference

COBOL data type definitions
Table 21 includes data type definitions and their descriptions for COBOL.

Table 21. Data type definitions for COBOL

Data type Description COBOL

INT2 A 2-byte signed integer PIC S9(4) USAGE IS BINARY

INT4 A 4-byte signed integer PIC S9(9) USAGE IS BINARY

FLOAT4 A 4-byte single-precision floating-point
number

COMP-1

FLOAT8 An 8-byte double-precision
floating-point number

COMP-2

FLOAT16 A 16-byte extended-precision
floating-point number

Not available

COMPLEX8 Short floating-point complex hex
number: an 8-byte complex number,
whose real and imaginary parts are
each 4-byte single-precision
floating-point numbers

Not available

COMPLEX16 Long floating-point complex hex
number: a 16-byte complex number,
whose real and imaginary parts are
each 8-byte double-precision
floating-point numbers

Not available

COMPLEX32 Extended floating-point hex number: a
32-byte complex number, whose real
and imaginary parts are each 16-byte
extended-precision floating-point
numbers

Not available

POINTER A platform-dependent address pointer USAGE IS POINTER

CHARn A string (character array) of length n PIC X(n)

VSTRING A halfword length-prefixed character
string (for input); fixed-length
80-character string (for output)

01 STRING-IN.
02 LEN PIC S9(4) USAGE IS BINARY.
02 TXT PIC X(N).

01 STRING-OUT PIC X(80).

FEED_BACK A mapping of the condition token (fc) Case 1:
01 FC

02 SEV PIC S9(4) USAGE IS BINARY.
02 MSGNO PIC S9(4) USAGE IS BINARY.
02 FLGS PIC X(1).
02 FACID PIC X(3).
02 ISI PIC X(4).

Case 2:
01 FC

02 CLASS-CODE PIC 9(4) USAGE IS BINARY.
02 CAUSE-CODE PIC 9(4) USAGE IS BINARY.
02 FLGS PIC X(1).
02 FACID PIC X(3).
02 ISI PIC X(4).

CEE_ENTRY An HLL-dependent entry constant USAGE IS PROCEDURE-POINTER

Chapter 4. Using Language Environment callable services 123

PL/I data type definitions
Table 22 includes data type definitions and their descriptions for PL/I.

Table 22. Data type definitions for PL/I

Data type Description PL/I

INT2 A 2-byte signed integer REAL FIXED BINARY (15,0)

INT4 A 4-byte signed integer REAL FIXED BINARY (31,0)

FLOAT4 A 4-byte single-precision floating-point
number

REAL FLOAT BINARY (21) or REAL FLOAT
DECIMAL (6)

FLOAT8 An 8-byte double-precision
floating-point number

REAL FLOAT BINARY (53) or REAL FLOAT
DECIMAL (16)

FLOAT16 A 16-byte extended-precision
floating-point number

REAL FLOAT DECIMAL (33) or REAL FLOAT
BINARY (109)

COMPLEX8 Short floating-point complex hex
number: an 8-byte complex number,
whose real and imaginary parts are
each 4-byte single-precision
floating-point numbers

COMPLEX FLOAT DECIMAL (6)

COMPLEX16 Long floating-point complex hex
number: a 16-byte complex number,
whose real and imaginary parts are
each 8-byte double-precision
floating-point numbers

COMPLEX FLOAT DECIMAL (16)

COMPLEX32 Extended floating-point hex number: a
32-byte complex number, whose real
and imaginary parts are each 16-byte
extended-precision floating-point
numbers

COMPLEX FLOAT DECIMAL (33)

POINTER A platform-dependent address pointer POINTER

CHARn A string (character array) of length n CHAR(n)

VSTRING A halfword length-prefixed character
string (for input); fixed-length
80-character string (for output)

DCL string_in CHAR(n) VARYING;
DCL string_out CHAR(80);

FEED_BACK A mapping of the condition token (fc) Case 1:
DCL 1 FEEDBACK BASED,

3 SEVERITY FIXED BINARY (15),
3 MSGNO FIXED BINARY (15),
3 FLAGS,
5 CASE BIT (2),
5 SEVERITY BIT (3),
5 CONTROL BIT (3),
3 FACID CHAR (3),
3 ISI FIXED BINARY (31);

Case 2:
DCL 1 FEEDBACK BASED,

3 CLASS_CODE FIXED BINARY (15),
3 CAUSE_CODE FIXED BINARY (15),
3 FLAGS,
5 CASE BIT (2),
5 SEVERITY BIT (3),
5 CONTROL BIT (3),
3 FACID CHAR (3),
3 ISI FIXED BINARY (31);

CEE_ENTRY An HLL-dependent entry constant ENTRY

124 z/OS Language Environment Programming Reference

Chapter 5. Callable services

This section lists the Language Environment callable services and shows examples
of how to use them in C/C++, COBOL, and PL/I.

CEE3ABD—Terminate enclave with an abend

CEE3ABD requests that Language Environment terminate the enclave with an
abend. The issuing of the abend can be either with or without clean-up. There is
no return from this service, nor is there any condition associated with it.

Syntax

►► CEE3ABD (abcode , clean-up) ►◄

abcode (input)
A fullword integer, no greater than 4095, specifying the abend code that is
issued. Under CICS, this fullword integer is converted to EBCDIC.

clean-up (input)
Indicates if the abend should result in clean-up of the enclave's resources. The
acceptable values for clean-up are as follows:

0 Issue the abend without clean-up

1 Issue the abend with normal enclave termination processing

2 Issue the abend with enclave termination processing honoring the
TERMTHDACT runtime option for taking a system dump of the user
address space but suppressing the CEEDUMP

3 Issue the abend with enclave termination processing suppressing both
the CEEDUMP and system dump if requested by the TERMTHDACT
runtime option

4 Issue the abend with enclave termination processing honoring the
TERMTHDACT runtime option for taking a CEEDUMP but
suppressing the system dump

5 Issue the abend with enclave termination processing forcing a system
dump of the user address space and suppressing the CEEDUMP

If an illegal value for clean-up is passed, the abend is issued without clean-up.

If clean-up is 0, no Language Environment dump is generated. A system dump,
however, is requested when issuing the abend. Under CICS, a transaction
dump is taken. To get a dump under CMS, specify FILEDEF SYSABEND
PRINTER or FILEDEF SYSUDUMP PRINTER.

If clean-up is 0, Language Environment condition handling is disabled for the
current enclave and termination activities are not performed. Event handlers
are not driven; Debug Tool is not invoked; user exits are not invoked; and
user-written condition handlers are not invoked.

© Copyright IBM Corp. 1991, 2015 125

When clean-up is 1, the abend is processed in the same manner as if it were a
non-Language Environment abend. Its processing is affected by the ABPERC
and TRAP options, the filedef abends percolated in the assembler user exit,
and other elements of the environment related to abend processing. In
particular, the condition handler can intercept the abend and give the
application a chance to handle the abend. If the condition remains unhandled,
normal termination activities are performed: information such as a Language
Environment dump is produced, depending on the setting of the
TERMTHDACT option; event handlers are driven; Debug Tool is invoked; and
user exits are invoked. Assembler user exit settings control if the application
actually terminates with an abend.

When clean-up is 2, it follows the abend processing as when clean-up is 1 except
the CEEDUMP is suppressed.

When clean-up is 3, it follows the abend processing as when clean-up is 1,
however CEEDUMP and system dumps are both suppressed

When clean-up is 4, it follows the abend processing as when clean-up is 1,
however only the system dumps are suppressed.

When clean-up is 5, it follows the abend processing as when clean-up is 1,
however forcing a system dump to be taken and suppressing the CEEDUMP.

z/OS UNIX considerations
v In a multithreaded environment, CEE3ABD applies to the enclave.
v When ALL31(ON) is in effect, Language Environment allocates thread-specific

control blocks from the anywhere heap.

Usage notes
1. Recommendation: Language Environment abend codes are usually in the range

of 4000 (X'FA0') to 4095 (X'FFF'). You should use the range of 0 to 3999 to avoid
confusion with Language Environment abend codes. The value specified for the
abend code is passed directly to the ABEND macro without further verification.

2. When TRAP(OFF) is specified, CEE3ABD behaves in a similar manner to
clean-up 0.

3. In a non-CICS environment, a system dump of the user address space is taken
only if a SYSMDUMP, SYSUDUMP, or SYSABEND DD card is present.

4. Users can look at CEE3AB2 to include user reason codes separately from abend
codes.

For more information
v For more information about the ABPERC runtime option, see “ABPERC” on

page 9.
v For more information about the TRAP runtime option, see “TRAP” on page 98.
v For more information about the TERMTHDACT runtime option, see

“TERMTHDACT” on page 83.
v For more information about the CEE3AB2 callable service, see

“CEE3AB2—Terminate enclave with an abend and reason code” on page 128.

Examples
1. An example of CEE3ABD called by C/C++.

/*Module/File Name: EDC3ABD */
/**/
/* */
/* Licensed Materials - Property of IBM */

CEE3ABD

126 z/OS Language Environment Programming Reference

/* */
/* 5688-198 (C) Copyright IBM Corp. 1991, 1995 */
/* All rights reserved */
/* */
/* US Government Users Restricted Rights - Use, */
/* duplication or disclosure restricted by GSA */
/* ADP Schedule Contract with IBM Corp. */
/* */
/**/

#include <leawi.h>

int main(void) {

_INT4 code, timing;

code = 1234; /* Abend code to issue */
timing = 0;

CEE3ABD(&code,&timing);
}

2. An example of CEE3ABD called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZT3ABD

**
** CBL3ABD - Call CEE3ABD to terminate the **
** enclave with an abend **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3ABD.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ABDCODE PIC S9(9) BINARY.
01 TIMING PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLMGET.

**
** 3415 is the abend code to be issued, **
** a timing of zero requests an abend **
** without clean-up **
**

MOVE 3415 TO ABDCODE.
MOVE 0 TO TIMING.
CALL "CEE3ABD" USING ABDCODE , TIMING.

GOBACK.

CBL LIB,QUOTE

*Module/File Name: IGZT3ABD
**
** CBL3ABD - Call CEE3ABD to terminate the **
** enclave with an abend **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3ABD.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ABDCODE PIC S9(9) BINARY.
01 TIMING PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLMGET.

CEE3ABD

Chapter 5. Callable services 127

**
** 3415 is the abend code to be issued, **
** a timing of zero requests an abend **
** without clean-up **
**

MOVE 3415 TO ABDCODE.
MOVE 0 TO TIMING.
CALL "CEE3ABD" USING ABDCODE , TIMING.

GOBACK.

3. An example of CEE3ABD called by PL/I.
*PROCESS MACRO;

/***/
/* */
/* Licensed Materials - Property of IBM */
/* */
/* 5688-198 (C) Copyright IBM Corp. 1993, 1995 */
/* All rights reserved */
/* */
/* US Government Users Restricted Rights - Use, */
/* duplication or disclosure restricted by GSA */
/* ADP Schedule Contract with IBM Corp. */
/* */
/***/

/*Module/File Name: IBM3ABD
/**/
/** */
/** Function: CEE3ABD - terminate enclave with an */
/** abend */
/** */
/** In this example, CEE3ABD is called with a */
/** timing value of 1. This requests an abend that */
/** is deferred until clean-up takes place. */
/** */
/**/
PLI3ABD: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL ABDCODE REAL FIXED BINARY(31,0);
DCL TIMING REAL FIXED BINARY(31,0);

ABDCODE = 3333; /* Choose code to abend with */
TIMING = 1; /* Specify 1, for an abend with */

/* clean-up */

/* Call CEE3ABD to request an abend 3333 with */
/* clean-up */
CALL CEE3ABD (ABDCODE, TIMING);

END PLI3ABD;

CEE3AB2—Terminate enclave with an abend and reason code

CEE3AB2 requests that Language Environment terminate the enclave with an
abend and user-defined reason code. The issuing of the abend can be either with
or without clean-up, with the type of dumps the user requires. There is no return
from this service, nor is there any condition that is associated with it.

CEE3ABD

128 z/OS Language Environment Programming Reference

Syntax

►► CEE3AB2 (abcode , reasoncode , clean-up) ►◄

abcode (input)
A fullword integer, no greater than 4095, specifying the abend code that is
issued. Under CICS, this fullword integer is converted to EBCDIC.

reasoncode (input)
A fullword integer, specifying the reason code that is issued by the user. If no
reason code is specified, the reason code is 0.

clean-up (input)
Indicates if the abend should result in clean-up of the enclave’s resources. The
acceptable values for clean-up are as follows:

0 Issue the abend without clean-up

1 Issue the abend with normal enclave termination processing

2 Issue the abend with enclave termination processing honoring the
TERMTHDACT runtime option for taking a system dump of the user
address space but suppressing the CEEDUMP

3 Issue the abend with enclave termination processing suppressing both
the CEEDUMP and system dump if requested by the TERMTHDACT
runtime option

4 Issue the abend with enclave termination processing honoring the
TERMTHDACT runtime option for taking a CEEDUMP but
suppressing the system dump

5 Issue the abend with enclave termination processing forcing a system
dump of the user address space and suppressing the CEEDUMP

If an illegal value for clean-up is passed, the abend is issued without clean-up.

If clean-up is 0, no Language Environment dump is generated. A system dump,
however, is requested when issuing the abend. Under CICS, a transaction
dump is taken. To get a dump under CMS, specify FILEDEF SYSABEND
PRINTER or FILEDEF SYSUDUMP PRINTER.

If clean-up is 0, Language Environment condition handling is disabled for the
current enclave and termination activities are not performed. Event handlers
are not driven; Debug Tool is not invoked; user exits are not invoked; and
user-written condition handlers are not invoked.

When clean-up is 1, the abend is processed in the same manner as if it were a
non-Language Environment abend. Its processing is affected by the ABPERC
and TRAP options, the filedef abends percolated in the assembler user exit,
and other elements of the environment related to abend processing. In
particular, the condition handler can intercept the abend and give the
application a chance to handle the abend. If the condition remains unhandled,
normal termination activities are performed: information such as a Language
Environment dump is produced, depending on the setting of the
TERMTHDACT option; event handlers are driven; Debug Tool is invoked; and
user exits are invoked. Assembler user exit settings control if the application
actually terminates with an abend.

CEE3AB2

Chapter 5. Callable services 129

When clean-up is 2, it follows the abend processing as when clean-up is 1 except
the CEEDUMP is suppressed.

When clean-up is 3, it follows the abend processing as when clean-up is 1,
however CEEDUMP and system dumps are both suppressed

When clean-up is 4, it follows the abend processing as when clean-up is 1,
however only the system dumps are suppressed.

When clean-up is 5, it follows the abend processing as when clean-up is 1,
however forcing a system dump to be taken and suppressing the CEEDUMP.

z/OS UNIX consideration
v In a multithreaded environment, CEE3AB2 applies to the enclave.

Usage notes
1. Language Environment abend codes are usually in the range of 4000 (X’FA0’)

to 4095 (X’FFF’). Use the range of 0 to 3999 to avoid confusion with Language
Environment abend codes. The value that is specified for the abend code is
passed directly to the ABEND macro without further verification.

2. When TRAP(OFF) is specified, CEE3AB2 behaves in a similar manner to
clean-up 0.

3. In a non-CICS environment, a system dump of the user address space is taken
only if a SYSMDUMP, SYSUDUMP, or SYSABEND DD card is present.

For more information
v For more information about the ABPERC runtime option, see “ABPERC” on

page 9.
v For more information about the TRAP runtime option, see “TRAP” on page 98.
v For more information about the TERMTHDACT runtime option, see

“TERMTHDACT” on page 83.
v For more information about the ABEND macro, see z/OS MVS Programming:

Authorized Assembler Services Reference SET-WTO.
v For more information about the CEE3ABD callable service, see

“CEE3ABD—Terminate enclave with an abend” on page 125.

Examples
1. Following is an example of CEE3AB2 called by C/C++.

/*Module/File Name: EDC3AB2 */
/***/
/* */
/* THIS EXAMPLE CALLS CEE3AB2 TO TERMINATE THE ENCLAVE WITH AN ABEND */
/* AFTER CLEAN-UP TAKES PLACE. USER COULD ALSO SPECIFY THEIR OWN */
/* REASON CODE. */
/* */
/***/

#include <leawi.h>

int main(void) {

_INT4 code,reason,cleanup;
code = 1234; /* Abend code to issue */
reason = 9; /* User defined reason code*/
cleanup = 3; /* Specify 3, for an ABEND with cleanup & with no dumps*/
CEE3AB2(&code,&reason,&cleanup);

}

2. Following is an example of CEE3AB2 called by COBOL.

CEE3AB2

130 z/OS Language Environment Programming Reference

CBL LIB,QUOTE
**
*Module/File Name: IGZTAB2
**
** Function: CEE3AB2 - Terminate enclave **
** with an abend and user defined **
** reason code **
** **
** In this example, CEE3AB2 is called to **
** terminate the enclave with an abend and **
** a user defined reason code along with **
** Language Environment cleanup **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3AB2.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ABDCODE PIC S9(9) BINARY.
01 RESCODE PIC S9(9) BINARY.
01 TIMING PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLMGET.

**
** 1234 is the abend code to be issued, **
** 9 is the reason code for the abend. **
** A timing of four requests an abend **
** with clean-up. **
**

MOVE 1234 TO ABDCODE.
MOVE 9 TO RESCODE.
MOVE 4 TO TIMING.
CALL "CEE3AB2" USING ABDCODE, RESCODE, TIMING.

GOBACK.

3. Following is an example of CEE3AB2 called by PL/I.
*PROCESS MACRO;

/***/
/*Module/File Name: IBM3AB2 */
/***/
/** **/
/** Function: CEE3AB2 - Terminate enclave with abend and user **/
/** defined reason code **/
/** **/
/** In this example, CEE3AB2 is called to terminate the enclave **/
/** with an abend and user defined reason code along with **/
/** Language Environment cleanup **/
/** **/
/***/
PLI3AB2: PROCEDURE OPTIONS (MAIN) REORDER;

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL ABDCODE REAL FIXED BINARY(31,0);
DCL RESCODE REAL FIXED BINARY(31,0);
DCL TIMING REAL FIXED BINARY(31,0);

ABDCODE = 3333; /* Choose code to abend with */
RESCODE = 9; /* User defined reason code */
TIMING = 4; /* Specify 4, for an abend with */

/* cleanup and no dumps */

/***/
/* Call CEE3AB2 to request an abend 3333 */

CEE3AB2

Chapter 5. Callable services 131

/* reason code 9 with cleanup */
/***/
CALL CEE3AB2 (ABDCODE, RESCODE, TIMING);

END PLI3AB2;

CEE3CIB—Return pointer to condition information block

CEE3CIB returns a pointer to a condition information block (CIB) associated with a
given condition token. Use this service only during condition handling.

For PL/I and COBOL applications, Language Environment provides called header,
COPY, or include files (in SCEESAMP) that map the CIB. For C/C++ applications,
the macros are in the header file leawi.h (in SCEEH.H).

The CIB contains detailed information about the condition and provides input to
your application's condition handlers, which can then respond more effectively to a
given condition.

Syntax

►► CEE3CIB (
cond_token

, cib_ptr , fc) ►◄

cond_token
The condition token passed to a user-written condition handler. If you do not
specify this parameter, Language Environment returns the address of the most
recently-raised condition.

cib_ptr
The address of the CIB associated with the condition token.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message
number

Message text

CEE000 0 — The service completed successfully.
CEE35S 1 3260 No condition was active when a call to a condition

management routine was made.
CEE35U 1 3262 An invalid condition token was passed. The condition

token did not represent an active condition.

Usage notes
v Because the CIB is used only for synchronous signals, you should not use

CEE3CIB in signal catchers that are driven for asynchronous signals.
v After the condition handling functions return control to your application, cib_ptr

is no longer valid.

CEE3AB2

132 z/OS Language Environment Programming Reference

v z/OS UNIX consideration—In multithread applications, CEE3CIB returns the
CIB associated with the current token on only the current thread.

For more information
v For more information about the CEE3CIB callable service, see z/OS Language

Environment Programming Guide.

Examples
1. Following is example of CEE3CIB called by C/C++.

/*Module/File Name: EDC3CIB */

#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <string.h>
#include <ceeedcct.h>

#ifdef __cplusplus
extern "C" {

#endif
void handler(_FEEDBACK *,_INT4 *,_INT4 *,_FEEDBACK *);

#ifdef __cplusplus
}

#endif

int main(void) {

_FEEDBACK fc;
_ENTRY routine;
_INT4 token;
int x,y,z;

/* set the routine structure to point to the handler */
/* and use CEEHDLR to register the user handler */

token = 99;
routine.address = (_POINTER)&handler;;
routine.nesting = NULL;

CEEHDLR(&routine,&token,&fc);
/* verify that CEEHDLR was successful */
if (_FBCHECK (fc , CEE000) != 0) {
printf("CEEHDLR failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}
x = 5;
y = 0;
z = x / y;

}

/***/
/* handler is a user condition handler */
/***/
void handler(_FEEDBACK *fc, _INT4 *token, _INT4 *result,

_FEEDBACK *newfc) {

_CEECIB *cib_ptr;
_FEEDBACK cibfc;

CEE3CIB(fc, &cib_ptr, &cibfc);

/* verify that CEE3CIB was successful */
if (_FBCHECK (cibfc , CEE000) != 0) {

CEE3CIB

Chapter 5. Callable services 133

printf("CEE3CIB failed with message number %d\n",
cibfc.tok_msgno);

exit(2999);
}

printf("%s \n",(*cib_ptr).cib_eye);
printf("%d \n",cib_ptr->cib_cond.tok_msgno);
printf("%s \n",cib_ptr->cib_cond.tok_facid);
*result = 10;

}

2. Following is an example of CEE3CIB called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZT3CIB
**
** **
** CBL3CIB - Register a condition handler **
** that will call CEE3CIB to get **
** a Condition Information Block **
** (CIB) for the condition. **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3CIB.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ROUTINE PROCEDURE-POINTER.
01 TOKEN PIC S9(9) BINARY.
01 FC PIC X(12).
PROCEDURE DIVISION.
PARA-CBL3CIB.

SET ROUTINE TO ENTRY "HANDLER".
CALL "CEEHDLR" USING ROUTINE, TOKEN, FC.

GOBACK.
END PROGRAM CBL3CIB.

CBL LIB,QUOTE
IDENTIFICATION DIVISION.
PROGRAM-ID. HANDLER.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CIB-PTR POINTER.
01 FC PIC S9(9) BINARY.
LINKAGE SECTION.

** Include the mapping of the CIB **

COPY CEEIGZCI.
01 CURCOND PIC X(12).
01 TOKEN PIC S9(9) BINARY.
01 RESULT PIC S9(9) BINARY.
01 NEWCOND PIC X(12).
PROCEDURE DIVISION USING CURCOND, TOKEN,

RESULT, NEWCOND.
PARA-HANDLER.

CALL "CEE3CIB" USING CURCOND, CIB-PTR, FC.
SET ADDRESS OF CEECIB TO CIB-PTR.
DISPLAY "In Handler".
DISPLAY CIB-EYE.
DISPLAY CIB-TOK-MSGNO.
DISPLAY CIB-TOK-FACID.

GOBACK.
END PROGRAM HANDLER.

3. Following is an example of CEE3CIB called by PL/I.

CEE3CIB

134 z/OS Language Environment Programming Reference

*PROCESS OPT(0), MACRO;
/* Module/File Name: IBM3CIB */
/**/
/** **/
/** Function: CEE3CIB - example of CEE3CIB **/
/** invoked from PL/I ON-unit **/
/** **/
/**/

IBM3CIB: PROCEDURE OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;
%INCLUDE CEEIBMCI;

DECLARE
CIB_PTR POINTER,
01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0),
divisor FIXED BINARY(31) INITIAL(0);

ON ZERODIVIDE BEGIN;

CALL CEE3CIB(*, CIB_PTR, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’Found ’ || CIB_PTR->CIB_EYE ||
’ for message #’ || CIB_PTR->CIB_TOK_MSGNO
|| ’ from ’ || CIB_PTR->CIB_TOK_FACID);

END;
ELSE DO;

DISPLAY(’CEE3CIB failed with msg ’
|| FC.MsgNo);

END;

END /* ON ZeroDivide */;

divisor = 15 / divisor /* signals ZERODIVIDE */;

END IBM3CIB;

CEE3CTY—Set default country

CEE3CTY sets the default country. A calling routine can change or query the
current national country setting. The country setting affects the date format, the
time format, the currency symbol, the decimal separator, and the thousands
separator.

The current national country setting also affects the format of the date and time in
the reports generated by the RPTOPTS and RPTSTG runtime options.

CEE3CTY also affects the default symbols for the NLS and date and time callable
services.

CEE3CIB

Chapter 5. Callable services 135

CEE3CTY affects only the Language Environment NLS and date and time services,
not the Language Environment locale callable services or C locale-sensitive
functions.

The current default country setting, as well as previous default settings that have
not been discarded, are stored on the stack on a LIFO (last in, first out) basis. The
current default country setting is always on the top of the stack.

There are two methods of changing the default country setting with CEE3CTY:
v Specify the new default country setting and place it on top of the stack using a

function value of 1 (SET). This discards the previous default setting.
v Specify the new default country setting and place it on top of the stack using a

function value of 3 (PUSH). This pushes the previous default setting down on the
stack so that you can later retrieve it by discarding the current setting.

To illustrate the second method, suppose you live in the United States and the
code for the United States is specified as the default at installation. If you want to
use the French defaults for a certain application, you can use CEE3CTY to PUSH
France as the default country setting; then when you want the defaults for the
United States, you can POP France from the top of the stack, making the United
States the default setting.

Syntax

►► CEE3CTY (function , country_code , fc) ►◄

function (input)
A fullword binary integer specifying the service to be performed. The possible
values for function are:

1—SET
Establishes the country_code parameter as the current country. The top
of the stack is, in effect, replaced with country_code.

2—QUERY
Returns the current country code on the top of the stack to the calling
routine. The current code is returned in the country_code parameter.

3—PUSH
Pushes the country_code parameter onto the top of the country code
stack, making it the current country code. Previous country codes on
the stack are retained on a LIFO basis, which makes it possible to
return to a prior country code at a later time.

4—POP
Pops the current country code. The last country code that was affected
by a PUSH now becomes the current country_code. On return to the
calling routine, the country_code parameter contains the discarded
country code. If the stack contains only one country code, the code
cannot be popped because the stack would be empty after the call.
Therefore, no action is taken and a feedback code indicating such is
returned to the calling routine.

CEE3CTY

136 z/OS Language Environment Programming Reference

country_code (input/output)
A 2-character fixed-length string. country_code is not case-sensitive. Table 32 on
page 483 contains a list of valid country codes. It is used in the following ways
for the different functions:

If function is: then country_code:

1 or 3 Contains the desired 2-character country code. In this case, it is an input
parameter. Table 32 on page 483 contains a list of valid country codes.

2 Returns the current 2-character country code on top of the stack. In this
case, it is an output parameter.

4 Returns the discarded 2-character country code. In this case, it is an
output parameter.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message
number

Message text

CEE000 0 — The service completed successfully.
CEE3BV 2 3455 Only one country code was on the stack when a

POP request was made to CEE3CTY. The current
country code was returned in the

CEE3C0 3 3456 The country code country-code for the PUSH or SET
function for CEE3CTY was invalid. No operation
was performed.

CEE3C1 3 3457 The function function specified for CEE3CTY was not
recognized. No operation was performed.

Usage notes
v The default setting for country_code is already on the stack when you start a

program. You do not have to PUSH it there.
v The bytes X'0E' and X'0F' representing shift-out and shift-in codes are not

affected by any country_code setting.
v C/C++ consideration—Language Environment provides locales used in C and

C++ to establish default formats for the locale-sensitive functions and locale
callable services, such as date and time formatting, sorting, and currency
symbols. To change the locale, you can use the setlocale() library function or
the CEESETL callable service.
The settings of CEESETL or setlocale() do not affect the setting of the
CEE3CTY callable service. CEE3CTY affects only Language Environment NLS
and date and time services. setlocale() and CEESETL affect only C/C++
locale-sensitive functions and Language Environment locale callable services.
To ensure that all settings are correct for your country, use CEE3CTY and either
CEESETL or setlocale().

v z/OS UNIX consideration—CEE3CTY applies to the enclave. Every thread in the
enclave has the same country setting.

CEE3CTY

Chapter 5. Callable services 137

For more information
v For more information about the RPTOPTS and RPTSTG runtime options, see

“RPTOPTS” on page 71 and “RPTSTG” on page 73.
v For a list of the default settings for a specified country, see Table 32 on page 483.
v For more information about the COUNTRY runtime option, see “COUNTRY” on

page 24.
v For more information about setlocale(), see z/OS XL C/C++ Programming Guide.

Examples
1. Following is an example of CEE3CTY called by C/C++.

/*Module/File Name: EDC3CTY */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_INT4 function;
_CHAR2 country;

/* query the current country setting */
function = 2; /* function 2 is query */
CEE3CTY(&function,country,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEE3CTY failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

/* if the current country is not Canada then set */
/* it to Canada */
if (memcmp(country,"CA",2) != 0) {

memcpy(country,"CA",2);
function = 1; /* function 1 is set */
CEE3CTY(&function,country,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEE3CTY failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}
}

}

2. Following is is an example of CEE3CTY called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZT3CTY
**
** **
** Function: CEE3CTY - set default country **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3CTY.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 FUNCTN PIC S9(9) BINARY.
01 COUNTRY PIC X(2).

CEE3CTY

138 z/OS Language Environment Programming Reference

01 FC.
02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.
PARA-3CTYQRY.

**
** Call CEE3CTY with the QUERY function,
** and display current country code.
**

MOVE 2 TO FUNCTN.
CALL "CEE3CTY" USING FUNCTN, COUNTRY, FC.
IF CEE000 of FC THEN

DISPLAY "THE CURRENT COUNTRY CODE IS "
COUNTRY

ELSE
DISPLAY "CEE3CTY(query) failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

PARA-3CTYSET.
**
** If the current country code is not the US,
** call CEE3CTY with the SET function to make
** it the US. Display result.
**

IF (COUNTRY IS NOT = "US") THEN
MOVE 1 TO FUNCTN
MOVE "US" TO COUNTRY
CALL "CEE3CTY" USING FUNCTN,

COUNTRY, FC
IF CEE000 of FC THEN

DISPLAY "THE NEW COUNTRY CODE IS ",
COUNTRY

ELSE
DISPLAY "CEE3CTY(set) failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF
END-IF.

GOBACK.

3. Following is an example of CEE3CTY called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBM3CTY */
/**/
/** **/
/** Function: CEE3CTY - set current country **/
/** **/
/** In this example, a call is made to the query **/
/** function of CEE3CTY to return the current **/
/** default country setting. This is then **/
/** printed out. If the current country code is **/
/** not ’US’, then it is set to ’US’ and printed. **/
/** **/

CEE3CTY

Chapter 5. Callable services 139

/**/
PLI3CTY: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL FUNCTN REAL FIXED BINARY(31,0);
DCL COUNTRY CHARACTER (2);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

FUNCTN = 2; /* Specify 2 for the query function */

/* Call CEE3CTY with the query function to */
/* return the current country setting */
CALL CEE3CTY (FUNCTN, COUNTRY, FC);

/* If CEE3CTY ran successfully, print the */
/* current country */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’The current country code is "’
|| COUNTRY || ’".’);

END;
ELSE DO;

DISPLAY(’CEE3CTY failed with msg ’
|| FC.MsgNo);

STOP;
END;/* If the current default country is not the US, */

/* set it to the US */
IF COUNTRY ¬= ’US’ THEN DO;

FUNCTN = 1; /* Specify 1 for the set function */
COUNTRY = ’US’; /* Specify country code for US*/
CALL CEE3CTY (FUNCTN, COUNTRY, FC);

/* If CEE3CTY ran successfully print the */
/* current country */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’The new country code is "’
|| COUNTRY || ’".’);

END;
ELSE DO;

DISPLAY(’CEE3CTY failed with msg ’
|| FC.MsgNo);

STOP;
END;

END;

END PLI3CTY;

CEE3DLY—Suspend processing of the active enclave in seconds

CEE3DLY provides a service for Language Environment-conforming applications
that suspends the processing of the active enclave for a specified number of
seconds. The maximum is 1 hour.

CEE3CTY

140 z/OS Language Environment Programming Reference

Syntax

►► CEE3DLY (input_seconds , fc) ►◄

input_seconds
A fullword binary value in the range of 0 to 3600 that specifies the total
number of seconds during which the enclave should be suspended.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message
number

Message text

CEE3QQ 1 CEE3930W The input value input_value in a call to the callable
service callable_service_name was not within the valid
range.

CEE3QS 1 CEE3932W The system service system_service failed with return
code return_code and reason code reason_code.

Usage notes
v CICS consideration—CEE3DLY is available under CICS.
v z/OS UNIX consideration—CEE3DLY is handled by the z/OS UNIX System

Services when POSIX is set to ON.
v This service is not intended for timing requests. Delays up to the nearest second

might occur in some circumstances.
v In a multi-threaded application, only the calling thread is suspended.

Examples
1. An example of CEE3DLY called by C/C++:

/*Module/File Name: EDC3DLY */
/***/
/* */
/* THIS EXAMPLE CALLS CEE3DLY TO SUSPEND PROCESSING OF THE ACTIVE */
/* ENCLAVE FOR SPECIFIED NUMBER OF SECONDS. */
/* */
/***/
#include <time.h>
#include <stdio.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void)
{

_INT4 seconds;
_FEEDBACK fc;
time_t ltime;

/* Get the time in seconds */
time(<ime);
printf("CEE3DLY Start time : %s", ctime(<ime));

seconds = 10;

CEE3DLY

Chapter 5. Callable services 141

CEE3DLY(&seconds,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEE3DLY failed with message number %d\n",fc.tok_msgno);
exit(999);

}

time(<ime);
printf("CEE3DLY Finish time : %s", ctime(<ime));

}

2. A example of CEE3DLY called by COBOL:
CBL LIB,QUOTE

*MODULE/FILE NAME: IGZT3DLY

** **
** FUNCTION: CEE3DLY - SUSPEND ENCLAVE EXECUTION IN SECONDS **
** **
** THIS EXAMPLE CALLS CEE3DLY TO SUSPEND PROCESSING OF THE **
** ACTIVE ENCLAVE FOR SPECIFIED NUMBER OF SECONDS. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3DLY.
DATA DIVISION. WORKING-STORAGE SECTION.
01 DATE-TIME PIC X(21).
01 CUR-DATE-FIELDS.

03 CURRENT-DATE PIC X(8).
03 FILLER REDEFINES CURRENT-DATE.

05 CUR-MM PIC XX.
05 PIC X.
05 CUR-DD PIC XX.
05 PIC X.
05 CUR-YY PIC XX.

03 TIME-OF-DAY PIC X(8).
01 SECONDS PIC S9(9) BINARY.
01 FC.

02 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.

03 CASE-1-CONDITION-ID.
04 SEVERITY PIC S9(4) BINARY.
04 MSG-NO PIC S9(4) BINARY.

03 CASE-2-CONDITION-ID
REDEFINES CASE-1-CONDITION-ID.

04 CLASS-CODE PIC S9(4) BINARY.
04 CAUSE-CODE PIC S9(4) BINARY.

03 CASE-SEV-CTL PIC X.
03 FACILITY-ID PIC XXX.

02 I-S-INFO PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBL3DLY.

MOVE FUNCTION CURRENT-DATE TO DATE-TIME.
STRING DATE-TIME (5:2) "/"

DATE-TIME (7:2) "/"
DATE-TIME (3:2)

DELIMITED BY SIZE
INTO CURRENT-DATE.

STRING DATE-TIME (9:2) ":"
DATE-TIME (11:2) ":"
DATE-TIME (13:2)

DELIMITED BY SIZE
INTO TIME-OF-DAY.

DISPLAY "CEE3DLY - BEGINS"
DISPLAY "DATE : " CURRENT-DATE
DISPLAY "TIME : " TIME-OF-DAY
MOVE 10 TO SECONDS.

CEE3DLY

142 z/OS Language Environment Programming Reference

CALL "CEE3DLY" USING SECONDS, FC.
IF NOT CEE000 OF FC THEN

DISPLAY "CEE3DLY FAILED WITH MSG "
MSG-NO OF FC

STOP RUN
END-IF.
MOVE FUNCTION CURRENT-DATE TO DATE-TIME.
STRING DATE-TIME (5:2) "/"

DATE-TIME (7:2) "/"
DATE-TIME (3:2)

DELIMITED BY SIZE
INTO CURRENT-DATE.

STRING DATE-TIME (9:2) ":"
DATE-TIME (11:2) ":"
DATE-TIME (13:2)

DELIMITED BY SIZE
INTO TIME-OF-DAY.

DISPLAY "CEE3DLY - COMPLETED"
DISPLAY "DATE : " CURRENT-DATE
DISPLAY "TIME : " TIME-OF-DAY
GOBACK.

3. An example of CEE3DLY called by PL/I:
*PROCESS MACRO; 00001000

/***/ 00013000
/*MODULE/FILE NAME: IBM3DLY */ 00014000
/***/ 00015000
/** **/ 00016000
/** FUNCTION: CEE3DLY - SUSPENDS ENCLAVE EXECUTION IN SECONDS **/ 00017000
/** **/ 00018000
/** THIS EXAMPLE CALLS CEE3DLY TO SUSPEND PROCESSING OF THE **/ 00019000
/** ACTIVE ENCLAVE FOR SPECIFIED NUMBER OF SECONDS. **/ 00020000
/** **/ 00021000
/***/ 00022000
PLI3DLY: PROCEDURE OPTIONS (MAIN) REORDER; 00023000

00024000
%INCLUDE CEEIBMAW; 00025000
%INCLUDE CEEIBMCT; 00026000

00027000
DECLARE DLYSECS REAL FIXED BINARY(31,0); 00028000
DECLARE LILIAN REAL FIXED BINARY(31,0); 00029000
DECLARE SECONDS REAL FLOAT DECIMAL(16); 00030000
DECLARE GREGORN CHARACTER (17); 00031000

00032000
DECLARE 01 FC1, /* FEEDBACK TOKEN FOR CEELOCT */ 00033000

03 MSGSEV REAL FIXED BINARY(15,0), 00034000
03 MSGNO REAL FIXED BINARY(15,0), 00035000
03 FLAGS, 00036000

05 CASE BIT(2), 00037000
05 SEVERITY BIT(3), 00038000
05 CONTROL BIT(3), 00039000

03 FACID CHAR(3), 00040000
03 ISI REAL FIXED BINARY(31,0); 00041000

00042000
DECLARE 01 FC2, /* FEEDBACK TOKEN FOR CEE3DLY */ 00043000

03 MSGSEV REAL FIXED BINARY(15,0), 00044000
03 MSGNO REAL FIXED BINARY(15,0), 00045000
03 FLAGS, 00046000

05 CASE BIT(2), 00047000
05 SEVERITY BIT(3), 00048000
05 CONTROL BIT(3), 00049000

03 FACID CHAR(3), 00050000
03 ISI REAL FIXED BINARY(31,0); 00051000

00052000
CALL CEELOCT (LILIAN, SECONDS, GREGORN, FC1); 00053000
IF FBCHECK(FC1, CEE000) THEN DO; 00054000

PUT SKIP LIST (’CEE3DLY START DATE AND TIME: ’ || GREGORN); 00055000

CEE3DLY

Chapter 5. Callable services 143

END; 00056000
ELSE DO; 00057000

PUT (’CEELOCT FAILED WITH MSG ’ || FC1.MSGNO); 00058000
STOP; 00059000

END; 00060000
DLYSECS = 30; 00062000
CALL CEE3DLY(DLYSECS, FC2); 00063000
IF FBCHECK(FC2, CEE000) THEN DO; 00064000

CALL CEELOCT (LILIAN, SECONDS, GREGORN, FC1); 00065000
IF FBCHECK(FC1, CEE000) THEN DO; 00066000
PUT SKIP LIST (’CEE3DLY FINISH DATE AND TIME: ’ || GREGORN); 00067000

END; 00068000
ELSE DO; 00069000
PUT (’CEELOCT FAILED WITH MSG ’ || FC1.MSGNO); 00070000
STOP; 00071000

END; 00072000
PUT SKIP LIST (’CEE3DLY IS SUCCESSFUL!’); 00073000

END; 00074000
ELSE DO; 00075000

PUT SKIP LIST (’CEE3DLY FAILED WITH MSG ’ || FC2.MSGNO); 00076000
STOP; 00077000

END; 00078000
00079000

END PLI3DLY; 00061000

CEE3DMP—Generate dump

CEE3DMP generates a dump of Language Environment and the member language
libraries. Sections of the dump are selectively included, depending on options
specified with the options parameter. When an error occurs that would cause a
CEEDUMP to be taken, and this is a POSIX application, Language Environment
writes this dump to the current directory. Output from CEE3DMP is written to one
of the following (in top-down order):
v The directory found in _CEE_DMPTARG, if found.
v The current working directory, if this is not the root (/), and if the directory is

writable, and if the dump pathname (made up of the cwd pathname plus the
dump file name) does not exceed 1024 characters.

v The directory found in environment variable TMPDIR (if the temporary
directory is not /TMP.

v /TMP

(See the Fname suboption of CEE3DMP in “Fname” on page 149 for more
information about the dump output filename.)

If longer than 60 characters, the dump title is truncated to 60 characters in order to
match the record size of the dump file. Only nested enclaves within a single
process are supported.

CEE3DMP establishes a condition handler that captures all conditions that occur
during dump processing. It terminates the section of the dump in progress when a
condition occurs and inserts the following line into the dump (nnnnnnnn is the
instruction address at the time of the exception). After this line is inserted in the
report, dump processing continues for other member languages until CEE3DMP is
complete.

Exception occurred during dump processing at nnnnnnnn

CEE3DLY

144 z/OS Language Environment Programming Reference

If an abend occurs, or if any other condition occurs or is raised, the condition
manager attempts to handle it. If the condition remains unhandled, and it is of
sufficient severity, the condition manager might, based on if the TERMTHDACT
TRACE or DUMP suboption is specified, invoke dump services and then terminate
the program. You do not have to call CEE3DMP to use the dump services. Any
routine can use them. To support this case, dump services are invoked as follows:
v The title is Condition processing resulted in the unhandled condition to

indicate why the dump was produced.
v The dump options are 'TRACE COND THR(ALL) BLOCKS STOR NOENTRY'

for dump output and 'TRACE COND THR(ALL) NOBLOCK NOSTOR
NOENTRY' for trace output.

Reprinting of section title and control block name at the top of each page is
suppressed. Only the main title CEE3DMP: ... is reprinted.

Syntax

►► CEE3DMP (title , options , fc) ►◄

title (input)
An 80-byte fixed-length character string containing a title printed at the top of
each page of the dump.

options
A 255-byte fixed-length character string enclosed in single quotes containing
options describing the type, format, and destination of dump information.
Options are declared as a string of keywords separated by blanks or commas.
Some options have suboptions that follow the option keyword and are
contained in parentheses. The options can be specified in any order, but the
last option declaration is honored if there is a conflict between it and any
preceding options. The following options are recognized by Language
Environment:

ENCLave(ALL | CURrent | n)
Dumps the current enclave, a fixed number of enclaves, or all enclaves
associated with the current process; n is an integer ranging from 1 to
2**31-1, inclusive, that indicates the maximum number of enclaves that
should be dumped. ENCLAVE(CURRENT) and ENCLAVE(1) are
equivalent.

THRead(ALL|CURrent)
Dumps the current thread (the thread that invoked this service) or all
threads associated with the current enclave. When you specify
THREAD(ALL) and more than one thread is running, the library quiesces
all threads before writing the dump. Therefore, the state of the library
changes from the time the dump is requested to the time the dump is
written.

TRACEback
Includes a traceback of all routines on the call chain. The traceback shows
transfers of control from either calls or exceptions. The traceback extends
backwards to the main program of the current thread. PL/I transfers of
control into BEGIN-END blocks or ON-units are considered calls.

CEE3DMP

Chapter 5. Callable services 145

NOTRACEback
Does not include a traceback.

FILEs
Includes attributes of all open files and the buffer contents used by the
files. The particular attributes displayed are defined by the member
languages. File buffers are dumped when FILE and STORAGE are
specified. File control blocks are dumped when FILE and BLOCKS are
specified.

NOFILEs
Does not include file attributes of open files.

VARiables
Includes a symbolic dump of all variables, arguments, and registers.
Variables include arrays and structures. Register values are those saved in
the stack frame at the time of call. There is no way to print a subset of this
information. Variables and arguments are printed only if the symbol tables
are available. A symbol table is generated when a program is compiled
with the options shown below for each HLL, except for PL/I, which does
not support the VARIABLE option.

Language
Compile-Time Option

C TEST(SYM)
C++ TEST
COBOL

TEST or TEST(h,SYM)

The variables, arguments, and registers are dumped, beginning with the
routine that called CEE3DMP. The dump proceeds up the chain for the
number of routines specified by the STACKFRAME option. See below for a
description of the STACKFRAME option.

NOVARiables
Does not include a dump of variables, arguments, and registers.

BLOCKs
Dumps the control blocks used in Language Environment and member
language libraries. Global control blocks, as well as control blocks
associated with routines on the call chain, are printed. Control blocks are
printed for the routine that called CEE3DMP. The dump proceeds up the
call chain for the number of routines specified by the STACKFRAME
option (see below). Control blocks for files are also dumped if the FILES
option was specified. See the FILES option above for more information. If
the TRACE runtime option is set to ON, the trace table is dumped when
BLOCKS is specified. If the heap storage diagnostics report is requested
through the HEAPCHK runtime option, the report is displayed when
BLOCKS is specified.

NOBLOCKs
Suppresses the dump of control blocks.

STORage
Dumps the storage used by the program. The storage is displayed in
hexadecimal and character format. Global storage, as well as storage
associated with each routine on the call chain, is printed. Storage is
dumped for the routine that called CEE3DMP, which proceeds up the call

CEE3DMP

146 z/OS Language Environment Programming Reference

chain for the number of routines specified by the STACKFRAME option.
Storage for all file buffers is also dumped if the FILES option was specified
(see above).

NOSTORage
Suppresses storage dumps.

REGSTor
Controls the amount of storage (reg_stor_amount) that is dumped around
registers. reg_stor_amount indicates storage in bytes to be dumped around
each register and must be in the range of 0 to 256. The number is rounded
up to the nearest multiple of 32. The default is REGSTOR(96).

Restriction: You must specify REGSTor(0) as a CEE3DMP option if a dump
storage around registers is not required.

StackFrame(n|ALL)
Specifies the number of stack frames dumped from the call chain. If
STACKFRAME(ALL) is specified, all stack frames are dumped. No stack
frame storage is dumped if STACKFRAME(0) is specified. The particular
information dumped for each stack frame depends on the VARIABLE,
BLOCK, and STORAGE option declarations specified for CEE3DMP. The
first stack frame dumped is the one associated with the routine that called
CEE3DMP, followed by its caller, and proceeding backwards up the call
chain.

PAGEsize(n)
Specifies the number of lines on each page of the dump. This value must
be greater than 9. A value of 0 indicates that there should be no page
breaks in the dump. The default setting is PAGESIZE(60). Refer to the
CEEDUMP runtime option for an optional method of setting the number
of lines on each page of the dump.

FNAME(ddname)
Specifies the ddname of the file to which the dump report is written. The
ddname supplied in this option must be a valid ddname for the system on
which the application is running. CEE3DMP does not check the ddname
for validity, nor does CEE3DMP translate or modify the ddname.
Supplying an invalid ddname can result in unpredictable behavior. The
default ddname CEEDUMP is used if this option is not specified.

CONDition
Specifies that for each active condition on the call chain, the following
information is dumped from the CIB:
v The address of the CIB.
v The message associated with the current condition token.
v The message associated with the original condition token, if different

from the current one.
v The location of the error.
v The machine state at the time the condition manager was invoked, if an

abend or hardware condition occurred.
v The abend code and reason code, if the condition occurred as a result of

an abend.
v Language-specific error information.

The information supplied by Language Environment-conforming
languages differs. PL/I supplies DATAFIELD, ONCHAR, ONCOUNT,

CEE3DMP

Chapter 5. Callable services 147

ONFILE, ONKEY, and ONSOURCE built-in function (BIF) values, which
are shown in the context of the condition raised.

This option does not apply to asynchronous signals.

NOCONDition
Does not dump condition information for active conditions on the call
chain.

ENTRY
Includes in the dump a description of the routine that called CEE3DMP
and the contents of the registers on entry to CEE3DMP.

NOENTRY
Does not include in the dump a description of the routine that called
CEE3DMP and the contents of the registers on entry to CEE3DMP.

GENOpts
Includes in the dump a runtime options report like that generated by the
use of the RPTOPTS runtime option.

NOGENOpts
Does not include in the dump a runtime options report like that generated
by the use of the RPTOPTS runtime option.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted. If specified as an argument, feedback information, in the
form of a condition token, is returned to the calling routine. If not specified,
and the requested operation was not successfully completed, the condition is
signaled to the condition manager.

The following feedback codes can result from this service:

Code Severity Message
number

Message text

CEE000 0 — The service completed successfully.
CEE317 1 3111 CEEDUMP was defined as a dummy data set. No

Language Environment dump processing was
performed.

CEE30U 2 3102 Invalid CEE3DMP options or suboptions were found
and ignored.

CEE30V 3 3103 An error occurred in writing messages to the dump file.

Usage notes
v Language Environment is sensitive to the national language when it writes

dump output.
– When the national language is upper case U.S. English or Japanese, the

environment variable _CEE_UPPERCASE_DATA can be used to determine if
variable data in the dump output is in uppercase.

– When this environment variable is set to YES, variable data (entry point
names, program unit names, variable names, Trace Entry in EBCDIC data,
hexadecimal/EBCDIC displays of storage) will be in uppercase.

– When this environment variable is not set or set to a value other than YES,
variable data will not be in uppercase. Variable data is never in uppercase
when the national language is mixed-case U.S. English.

CEE3DMP

148 z/OS Language Environment Programming Reference

v CICS consideration—Only ENCLAVE(CURRENT) and ENCLAVE(1) are
supported on CICS.

v MVS consideration—On MVS, all values for the ENCLAVE option are
supported.

v z/OS UNIX consideration—CEE3DMP applies to the enclave.
When you call CEE3DMP in a multithread environment, the current thread or all
threads might be dumped. Enclave- and process-related storage (along with
storage related to threads other than the current thread) might have changed in
value from the time the dump request was issued.
If the CEEDUMP DD has a PATH= parameter, the dump is directed to the
specified file system.
If your application is running under z/OS UNIX System Services and is either
running in an address space created by using the fork() function or is invoked
by one of the exec family of functions, the dump is written to the file system.
Language Environment writes the dump to a file in your current working
directory, unless that directory is the root directory, in which case the dump is
written to a file in the directory /tmp..
The name of this file changes with each dump and uses the following format:

path The current working directory

Fname The name specified in the FNAME parameter on the call to CEE3DMP
(default is CEEDUMP)

Date The date the dump is taken, appearing in the format YYYYMMDD (such as
19940325 for March 25, 1994)

Time The time the dump is taken, appearing in the format HHMMSS (such as
175501 for 05:55:01 PM)

Pid The process ID the application is running in when the dump is taken
v When nested CEEPIPI main-DP environments are present, the traceback section

includes all nested environments. The first environment contains all the usual
sections as determined by the CEE3DMP options. For the chained parent
main-DP environments, the dump output omits all sections other than the
traceback.
The ENCLAVE option controls how many enclaves appear in the output for
each CEEPIPI main-DP environment. The STACKFRAME option controls how
many stack frames are dumped for each CEEPIPI main-DP environment.

v When multiple CEEPIPI main-DP environments are present, and the chained
parent Main-DP environments contain Language Environment member
languages that are not present in the current active Main-DP environment (the
one that caused the dump), the information dumped out might be incomplete.

v If the assembler CEEPIPI driver program does not follow standard z/OS linkage
conventions, the dumped traceback information might be incomplete or
incorrect.

For more information
v See “TERMTHDACT” on page 83 for more information about the

TERMTHDACT runtime option.
v For more information about generating dumps, see z/OS Language Environment

Debugging Guide.

/path/Fname.Date.Time.Pid

CEE3DMP

Chapter 5. Callable services 149

Examples
1. Following is an example of CEE3DMP called by C/C++.

/*Module/File Name: EDC3DMP */

#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <string.h>
#include <ceeedcct.h>

#define OPT_STR "THREAD(CURRENT) TRACEBACK FILES"

int main(void) {

_CHAR80 title =
"This is the title of the dump report";

_CHAR255 options;
FILE *f;
_FEEDBACK fc;

memset(options,’ ’,sizeof(options));
memcpy(options,OPT_STR,sizeof(OPT_STR)-1);

f = fopen("my.file","wb");
fprintf(f,"my file record 1\n");

CEE3DMP(title,options,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEE3DMP failed with msgno %d\n",
fc.tok_msgno);

exit(2999);
}

}

2. Following is an example of CEE3DMP called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZT3DMP

** **
** CBL3DMP - Call CEE3DMP to generate a dump **
** **
** In this example, a call to CEE3DMP is made **
** to request a dump of the runtime **
** environment. Several options are specified **
** to customize the dump. **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3DMP.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DMPTITL PIC X(80).
01 OPTIONS PIC X(255).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.

CEE3DMP

150 z/OS Language Environment Programming Reference

** Specify title to appear on each page of the
** dump report.
** Specify options that will request that a
** traceback be provided, but no variables,
** stack frames, condition information, or
** registers be dumped.

PARA-CBL3DMP.

MOVE "This is the dump report title."
TO DMPTITL.

MOVE "TRACE NOVAR SF(0) NOCOND NOENTRY"
TO OPTIONS.

CALL "CEE3DMP" USING DMPTITL, OPTIONS, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEE3DMP failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

GOBACK.

3. Following is an example of CEE3DMP called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBM3DMP */
/**/
/** **/
/** Function: CEE3DMP - generate dump **/
/** **/
/** In this example, a call to CEE3DMP is made to **/
/** request a dump of the runtime environment. **/
/** Several options are specified, to customize **/
/** the dump. **/
/**/
PLI3DMP: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL DMPTITL CHAR(80);
DCL OPTIONS CHARACTER (255);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

/* Specify a string to be printed at the top of */
/* each page of dump */

DMPTITL = ’This is the title for the dump report.’;

/* Request that a traceback be provided, but */
/* no variables, stack frames, condition */
/* information, or registers be dumped */

OPTIONS = ’TRACE NOVAR SF(0) NOCOND NOENTRY’;

/* Call CEE3DMP with options to customize dump */
CALL CEE3DMP (DMPTITL, OPTIONS, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’Successfully produced dump with’
|| ’ title "’ || DMPTITL || ’"’);

CEE3DMP

Chapter 5. Callable services 151

PUT SKIP LIST(’ and options: ’ || OPTIONS);
END;

ELSE DO;
DISPLAY(’CEE3DMP failed with msg ’

|| FC.MsgNo);
STOP;
END;

END PLI3DMP;

CEE3GRC—Get the enclave return code

CEE3GRC retrieves the current value of the user enclave return code. Use
CEE3GRC in conjunction with CEE3SRC to get and then set user enclave return
codes.

Syntax

►► CEE3GRC (return_code , fc) ►◄

return_code (output)
The enclave return code.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message
number

Message text

CEE000 0 — The service completed successfully.

Usage notes
v z/OS UNIX consideration—CEE3GRC is not supported in multithread

applications.
v PL/I MTF consideration—CEE3GRC is not supported in PL/I MTF applications.
v PL/I consideration—When running PL/I with POSIX(ON), CEE3GRC is not

supported.

For more information
v See “CEE3SRC—Set the enclave return code” on page 208 for more information

about the CEE3SRC callable service.
v See z/OS Language Environment Programming Guide for more information about

the CEE3GRC and CEE3SRC callable services.

Examples
1. Following is an example of a C/C++ main() routine that ralls CEEHDLR and

CEE3GRC.

CEE3DMP

152 z/OS Language Environment Programming Reference

/*Module/File Name: EDC3GRC */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

/***/
/** */
/** Function: CEEHDLR - Register user condition */
/** handler */
/** : CEE3GRC - Get enclave return code */
/* */
/* 1. Register the user-written condition handler */
/* CESETRC. */
/* 2. Call CERCDIV, which performs a divide-by-zero. */
/* 3. CESETRC is entered, sets the enclave return */
/* code to 999998 and resumes. */
/* 4. The main routine regains control and */
/* retrieves the enclave return code */
/***/

void CERCDIV(int);
/***
Declaration of user-written condition handler
***/

#ifdef __cplusplus
extern "C" {

#endif
void CESETRC(_FEEDBACK *, _INT4*, _INT4 *, _FEEDBACK *);

#ifdef __cplusplus
}

#endif

main()
{
_INT4 idivisor = 0;
_INT4 enclave_RC;
_FEEDBACK feedback, new_feedback;
_ENTRY pgmptr;
_INT4 token;

/***
The condition handler CESETRC is registered
***/

pgmptr.address = (_POINTER)&CESETRC;;
pgmptr.nesting = NULL;
token = 97;
CEEHDLR(&pgmptr, &token, &feedback);

/***
A divide-by-zero is accomplished by calling CERCDIV.
***/

CERCDIV(idivisor); /* this causes a zero divide */

/***
Call CEE3GRC and check that enclave return code was set.
***/

CEE3GRC(&enclave_RC, &feedback);
if (_FBCHECK (feedback , CEE000) != 0) {

printf("CEE3GRC failed with message number %d\n",
feedback.tok_msgno);

exit(2999);
}

CEE3GRC

Chapter 5. Callable services 153

if (enclave_RC != 999998)
printf ("Error setting enclave return code");

}

2. Following is an example of a C/C++ user-written condition handler that sets a
user enclave return code.
/*Module/File Name: EDC3SRC */
/***/
/** */
/** Function: CEE3SRC - Set the enclave return code. */
/* */
/* This is the user-written condition handler */
/* registered by CEGETRC. It invokes CEE3SRC to set */
/* the enclave return code to 999998 */
/* when a divide-by-zero condition is encountered. */
/** */
/***/

#include <stdio.h>
#include <string.h>
#include <leawi.h>
#include <ceeedcct.h>
#define RESUME 10
#define PERCOLATE 20
/***/

#ifdef __cplusplus
extern "C" void CESETRC (_FEEDBACK *, _INT4 *,
_INT4 *, _FEEDBACK *);

#endif

void CESETRC (_FEEDBACK *cond, _INT4 *input_token,
_INT4 *result, _FEEDBACK *new_cond)

{
_INT4 enclave_RC;
_FEEDBACK feedback;

if (_FBCHECK (*cond , CEE349) == 0)
{
enclave_RC = 999998;
CEE3SRC(&enclave_RC, &feedback);
*result = RESUME;

}
else
{
*result = PERCOLATE;

}
}

3. Following is an example of a C/C++ subroutine that generates the
divide-by-zero condition.
/*Module/File Name: EDCDIV */
#include <stdio.h>
#include <string.h>
/**/
/** */
/* This is a divide-by-zero routine. It divides */
/* an input integer by a constant. */
/** */
/**/

void CERCDIV (int Integer)

{
int num;
num = 1/Integer;

}

CEE3GRC

154 z/OS Language Environment Programming Reference

4. Following is an example of a COBOL main routine that calls CEEHDLR and
CEE3GRC.
CBL LIB,QUOTE,C,RENT,OPTIMIZE,NODYNAM

*Module/File Name: IGZT3GRC
**
** **
** CBL2GRC - Call the following Lang. Env. svcs: **
** **
** : CEEHDLR - register user condition **
** handler **
** : CEE3GRC - get enclave return code **
** **
** 1. Registers user condition handler CESETRC. **
** 2. Program then calls CERCDIV which performs **
** a divide by zero operation. **
** 3. CESETRC gets control and set the enclave **
** return code to 999998 and resumes. **
** 4. Regains control and retrieves the enclave **
** return code. **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3GRC.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 TOKEN PIC X(4).
01 IDIVISOR PIC S9(9)

BINARY VALUE ZERO.
01 ENCLAVE-RC PIC S9(9) BINARY.

**
** Declares for condition handling
**
01 PGMPTR USAGE IS PROCEDURE-POINTER.
01 FBCODE.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.

0001-BEGIN-PROCESSING.

** Register user condition handler CESETRC using
** CEEHDLR

SET PGMPTR TO ENTRY "CESETRC".
MOVE 97 TO TOKEN
CALL "CEEHDLR" USING PGMPTR, TOKEN, FBCODE.
IF NOT CEE000 of FBCODE THEN

DISPLAY "CEEHDLR failed with msg "
Msg-No of FBCODE UPON CONSOLE

STOP RUN
END-IF.

** Call CERCDIV to cause a divide by zero
** condition

CEE3GRC

Chapter 5. Callable services 155

CALL "CERCDIV" USING IDIVISOR.

** Call CEE3GRC to get the enclave return code

CALL "CEE3GRC" USING ENCLAVE-RC, FBCODE.
IF NOT CEE000 of FBCODE THEN

DISPLAY "CEEHDLR failed with msg "
Msg-No of FBCODE UPON CONSOLE

STOP RUN
END-IF.

IF (ENCLAVE-RC = 999998) THEN
DISPLAY "Enclave return code "

"set and retrieved."
ELSE

DISPLAY "*** Unexpected enclave return "
"code of " ENCLAVE-RC " encountered"

END-IF.

GOBACK.
End program CBL3GRC.

5. Following is an example of a COBOL condition handler that sets a user enclave
return code and resumes when a divide-by-zero condition occurs.

CBL C,RENT,OPTIMIZE,NODYNAM,LIB,QUOTE
*Module/File Name: IGZT3SRC

** **
** DRV3SRC - Drive sample program for CEE3SRC. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. DRV3SRC.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ROUTINE PROCEDURE-POINTER.
01 DENOMINATOR PIC S9(9) BINARY.
01 NUMERATOR PIC S9(9) BINARY.
01 RATIO PIC S9(9) BINARY.
01 TOKEN PIC S9(9) BINARY VALUE 0.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.

REGISTER-HANDLER.

** Register handler

SET ROUTINE TO ENTRY "CBL3SRC".
CALL "CEEHDLR" USING ROUTINE, TOKEN, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLR failed with msg "
Msg-No of FC UPON CONSOLE

CEE3GRC

156 z/OS Language Environment Programming Reference

STOP RUN
END-IF. RAISE-CONDITION.

** Cause a zero-divide condition.

MOVE 0 TO DENOMINATOR.
MOVE 1 TO NUMERATOR.
DIVIDE NUMERATOR BY DENOMINATOR

GIVING RATIO.

UNREGISTER-HANDLER.

** UNregister handler

CALL "CEEHDLU" USING ROUTINE, TOKEN, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLU failed with msg "
Msg-No of FC UPON CONSOLE

END-IF.

STOP RUN.
END PROGRAM DRV3SRC.

**
** **
** CBL3SRC - Call CEE3SRC to set the enclave **
** return code **
** **
** This is an example of a user-written **
** condition handler that sets a user **
** enclave return code and resumes when **
** a divide-by-zero condition occurs. **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3SRC.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 ENCLAVE-RC PIC S9(9) BINARY.
01 FEEDBACK.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
LINKAGE SECTION.
01 TOKEN PIC X(4).
01 RESULT-CODE PIC S9(9) BINARY.

88 RESUME VALUE +10.
88 PERCOLATE VALUE +20.

01 CURRENT-CONDITION.
02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.

CEE3GRC

Chapter 5. Callable services 157

04 Cause-Code PIC S9(4) BINARY.
03 Case-Sev-Ctl PIC X.

03 Facility-ID PIC XXX.
02 I-S-Info PIC S9(9) BINARY.

01 NEW-CONDITION.
02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION USING CURRENT-CONDITION,
TOKEN, RESULT-CODE,
NEW-CONDITION.

HANDLE-CONDITION.

** Check for divide-by-zero condition (CEE349)

IF CEE349 of CURRENT-CONDITION THEN
MOVE 761 TO ENCLAVE-RC
CALL "CEE3SRC" USING ENCLAVE-RC,

FEEDBACK
IF NOT CEE000 of FEEDBACK THEN

DISPLAY "CEE3SRC failed with msg "
Msg-No of FEEDBACK UPON CONSOLE

END-IF
END-IF.
SET PERCOLATE TO TRUE

GOBACK.

END PROGRAM CBL3SRC.

6. Following is an example of a COBOL subroutine that generates a
divide-by-zero condition.
CBL LIB,QUOTE,C,RENT,OPTIMIZE,NODYNAM

*Module/File Name: IGZTDIV
**
** **
**Function : **
** **
** A divide by zero is attempted. This **
** induces the invocation of user condition **
** handler CESETRC registered in program **
** CEGETRC. **
** : **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CERCDIV.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 TO-DIVIDE PIC S9(9) BINARY VALUE 1.
LINKAGE SECTION.
01 IDIVISOR PIC S9(9) BINARY.

PROCEDURE DIVISION USING IDIVISOR.

**

CEE3GRC

158 z/OS Language Environment Programming Reference

** divide a constant by IDIVISOR. **
**

DIVIDE IDIVISOR INTO TO-DIVIDE.

GOBACK.
End program CERCDIV.

7. Following is an example in PL/I that sets and retrieves the user enclave return
code when a divide-by-zero is generated.
*Process lc(101),opt(0),s,map,list,stmt,a(f),ag,macro ;
/*Module/File Name: IBMDIV */
/**/
/** */
/** Function: CEE3SRC - Set the enclave return code */
/** : CEE3GRC - Get the enclave return code */
/* */
/* 1. A user ZERODIVIDE ON-unit is established by */
/* CESETRC. */
/* 2. A sub-program, sdivide, is called and causes */
/* a ZERODIVIDE condition to occur. */
/* 3. The ON-unit for ZERODIVIDE is entered. */
/* The ON-unit calls CEE3GRC to get the current */
/* enclave return code. It increments the return */
/* code by 4444, and sets the enclave return */
/* code to this new value. */
/* 4. On completion, the program prints the enclave */
/* return code. */
/**/
CESETRC: Proc Options(Main) ;

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

REAL FIXED BINARY(31,0);
DCL Enclave_RC REAL FIXED BINARY(31,0);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

/**/
/* A ZERODIVIDE ON-unit is established */
/**/

on zerodivide begin;
call CEE3GRC (Enclave_RC, fc);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’Original Enclave RC was ’
|| Enclave_RC);

END;
ELSE DO;

DISPLAY(’CEE3GRC failed with msg ’
|| FC.MsgNo);

STOP;
END;

Enclave_RC = Enclave_RC + 4444;
call CEE3SRC (Enclave_RC, fc);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’New Enclave RC is ’
|| Enclave_RC);

END;
ELSE DO;

DISPLAY(’CEE3SRC failed with msg ’
|| FC.MsgNo);

CEE3GRC

Chapter 5. Callable services 159

STOP;
END;

goto resume;
end;

/**/
/* Call sdivide to cause a ZERODIVIDE condition. */
/**/

call sdivide;
resume:

put skip edit(’Enclave return code is ’,
Enclave_RC) (A, F(10));

/**/
/* The sdivide routine causes a ZERODIVIDE condition*/
/**/
sdivide: proc;

dcl int fixed bin (15,0);
dcl int_2 fixed bin (15,0) init(5);
dcl int_3 fixed bin (15,0) init(0);
int = int_2 / int_3;

end sdivide;

End cesetrc;

CEE3GRN—Get name of routine that incurred condition

CEE3GRN gets the name of the most current Language Environment-conforming
routine where a condition occurred. If there are nested conditions, the most
recently signaled condition is used.

Syntax

►► CEE3GRN (name , fc) ►◄

name (output)
A fixed-length 80-character string (VSTRING), that contains the name of the
routine that was executing when the condition was raised. name is left-justified
within the field and right-padded with blanks. If there are nested conditions,
the most recently activated condition is used to determine name.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message
number

Message text

CEE000 0 — The service completed successfully.
CEE35S 1 3260 No condition was active when a call to a condition

management routine was made.

CEE3GRC

160 z/OS Language Environment Programming Reference

Usage notes
v z/OS UNIX consideration—In multithread applications, CEE3GRN gets the

name of the routine that incurred the condition on the current thread.

Examples
1. Following is an example of CEE3GRN called by C/C++.

/*Module/File Name: EDC3GRN */

#include <stdio.h>
#include <string.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

#ifdef __cplusplus
extern "C" {

#endif
void handler(_FEEDBACK *,_INT4 *,_INT4 *,_FEEDBACK *);

#ifdef __cplusplus
}

#endif

int main(void) {

_FEEDBACK fc,condtok;
_ENTRY routine;
_INT4 token,qdata;
_INT2 c_1,c_2,cond_case,sev,control;
_CHAR3 facid;
_INT4 isi;

/* .
.
. */

/* register condition handler */
token = 99;
routine.address = (_POINTER)&handler;;
routine.nesting = NULL;
CEEHDLR(&routine,&token,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEHDLR failed with message number %d\n",
fc.tok_msgno);

exit (2999);
}

/*...
// set up any condition sev 2 or higher */
c_1 = 3;
c_2 = 99;
cond_case = 1;
sev = 3;
control = 0;
memcpy(facid,"ZZZ",3);
isi = 0;
CEENCOD(&c_1,&c_2,&cond_case,&sev,&control,;

facid,&isi,&condtok,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEENCOD failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

/* signal condition */
CEESGL(&condtok,&qdata,&fc);

CEE3GRN

Chapter 5. Callable services 161

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEESGL failed with message number %d\n",

fc.tok_msgno);
exit (2999);

}
}

void handler(_FEEDBACK *fc, _INT4 *token, _INT4 *result,
_FEEDBACK *newfc) {

_CHAR80 name;
_FEEDBACK grnfc;

/* get name of the routine that signal the */
/* condition */
CEE3GRN(name,&grnfc);

if (_FBCHECK (grnfc , CEE000) != 0) {
printf("CEESGL failed with message number %d\n",

grnfc.tok_msgno);
exit (2999);

}

printf("the routine that called this condition");
printf(" handler is:\n %.80s\n",name);
*result = 10;
return;

}

2. Following is an example of CEE3GRN called by COBOL.
CBL LIB,QUOTE,NOOPT

*Module/File Name: IGZT3GRN

** **
** DRV3GRN - Drive sample program for CEE3GRN. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. DRV3GRN.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ROUTINE PROCEDURE-POINTER.
01 DENOMINATOR PIC S9(9) BINARY.
01 NUMERATOR PIC S9(9) BINARY.
01 RATIO PIC S9(9) BINARY.
01 TOKEN PIC S9(9) BINARY VALUE 0.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.

REGISTER-HANDLER.

** Register handler

SET ROUTINE TO ENTRY "CBL3GRN".

CEE3GRN

162 z/OS Language Environment Programming Reference

CALL "CEEHDLR" USING ROUTINE, TOKEN, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLR failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

RAISE-CONDITION.

** Cause a zero-divide condition.

MOVE 0 TO DENOMINATOR.
MOVE 1 TO NUMERATOR.
DIVIDE NUMERATOR BY DENOMINATOR

GIVING RATIO.

UNREGISTER-HANDLER.

** UNregister handler

CALL "CEEHDLU" USING ROUTINE, TOKEN, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLU failed with msg "
Msg-No of FC UPON CONSOLE

END-IF.

STOP RUN.
END PROGRAM DRV3GRN. ***

** **
** CBL3GRN - Call CEE3GRN to get the name of **
** the routine that incurred **
** the condition. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3GRN.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RNAME PIC X(80).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
LINKAGE SECTION.
01 TOKEN PIC S9(9) BINARY.
01 RESULT PIC S9(9) BINARY.

88 RESUME VALUE 10.
01 CURCOND.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

CEE3GRN

Chapter 5. Callable services 163

02 I-S-Info PIC S9(9) BINARY.

01 NEWCOND.
02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION USING CURCOND, TOKEN,

RESULT, NEWCOND.
PARA-CBL3GRN.

CALL "CEE3GRN" USING RNAME, FC.
IF CEE000 of FC THEN

DISPLAY "Name of routine which "
"incurred the condition is: " RNAME

ELSE
DISPLAY "CEE3GRN failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

PARA-HANDLER.

** In user handler - resume execution

SET RESUME TO TRUE.

GOBACK.

END PROGRAM CBL3GRN.

3. Following is an example of CEE3GRN called by PL/I.
*PROCESS OPT(0), MACRO;
/* Module/File Name: IBM3GRN */
/**/
/** **/
/** Function: CEE3GRN - example of CEE3GRN **/
/** invoked from PL/I ON-unit **/
/** **/
/**/

IBM3GRN: PROCEDURE OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DECLARE
RNAME CHAR(80),
01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0),
divisor FIXED BINARY(31) INITIAL(0);

CEE3GRN

164 z/OS Language Environment Programming Reference

ON ZERODIVIDE BEGIN;

/* Call CEE3GRN to get the name of the routine */
/* that incurred the most recently signalled */
/* condition */

CALL CEE3GRN (RNAME, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’The most recently signalled ’
|| ’condition was incurred by ’ || RNAME);

END;
ELSE DO;

DISPLAY(’CEE3GRN failed with msg ’
|| FC.MsgNo);

END;

END /* ON ZeroDivide */;

divisor = 15 / divisor /* signals ZERODIVIDE */;

END IBM3GRN;

CEE3GRO—Get offset of condition

The CEE3GRO service returns the offset within a failing routine of the most recent
condition. If there are nested conditions, the most recently signaled condition is
returned.

Syntax

►► CEE3GRO (cond_offset , fc) ►◄

cond_offset (output)
An INT4 data type that, upon completion of this service, contains the offset
within a failing routine of the most recent condition.

fc (output, optional)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message
number

Message text

CEE000 0 — The service completed successfully.
CEE35S 1 3260 No condition was active when a call to a condition

management routine was made.

Examples
1. Following is an example of CEE3GRO called by COBOL.

CBL LIB,QUOTE,NOOPT
*Module/File Name: IGZT3GRO
**

CEE3GRN

Chapter 5. Callable services 165

** **
** DRV3GRO - Register a condition handler **
** that calls CEE3GRO to determine **
** the offset in the program that **
** incurred the condition. **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. DRV3GRO.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ROUTINE PROCEDURE-POINTER.
01 DENOMINATOR PIC S9(9) BINARY.
01 NUMERATOR PIC S9(9) BINARY.
01 RATIO PIC S9(9) BINARY.
01 TOKEN PIC S9(9) BINARY VALUE 0.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION. REGISTER-HANDLER.

** Register handler

SET ROUTINE TO ENTRY "CBL3GRO".
CALL "CEEHDLR" USING ROUTINE, TOKEN, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLR failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF. RAISE-CONDITION.

** Cause a zero-divide condition

MOVE 0 TO DENOMINATOR.
MOVE 1 TO NUMERATOR.
DIVIDE NUMERATOR BY DENOMINATOR

GIVING RATIO.

UNREGISTER-HANDLER.

** Unregister handler

CALL "CEEHDLU" USING ROUTINE, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLU failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

STOP RUN.
END PROGRAM DRV3GRO.

**
** **

CEE3GRO

166 z/OS Language Environment Programming Reference

** CBL3GRO - Call CEE3GRO to get the offset **
** in the routine that incurred **
** the condition. **
** **
**

IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3GRO.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ROFFSET PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
LINKAGE SECTION.

01 TOKEN PIC S9(9) BINARY.
01 RESULT PIC S9(9) BINARY.

88 RESUME VALUE 10.
01 CURCOND.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 NEWCOND.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION USING CURCOND, TOKEN,
RESULT, NEWCOND.

PARA-CBL3GRO.
CALL "CEE3GRO" USING ROFFSET, FC.
IF CEE000 of FC THEN

DISPLAY "Offset in routine which "
"incurred the condition is: "
ROFFSET

ELSE
DISPLAY "CEE3GRO failed with msg "

Msg-No of FC UPON CONSOLE

CEE3GRO

Chapter 5. Callable services 167

END-IF.

PARA-HANDLER.

** In user handler - resume execution

SET RESUME TO TRUE.

GOBACK.
END PROGRAM CBL3GRO.

2. Following is an example of CEE3GRO called by PL/I.
*Process lc(101),opt(0),s,map,list,stmt,a(f),ag;
*Process macro;
DRV3GRO: Proc Options(Main);

/*Module/File Name: IBM3GRO */
/***
** *
** DRV3GRO - Register a condition handler that *
** calls CEE3GRO to determine *
** the offset in the routine that *
** incurred the condition. *
** *
**/

%include CEEIBMCT;
%include CEEIBMAW;
declare 01 FBCODE feedback;
declare DENOMINATOR real fixed binary(31,0);
declare NUMERATOR real fixed binary(31,0);
declare RATIO real fixed binary(31,0);
declare PLI3GRO external entry;
declare U_PTR pointer;
declare 01 U_DATA,

03 U_CNTL fixed binary(31,0),
03 U_TOK pointer;

U_PTR = addr(U_DATA);
U_CNTL = 0;

/* Set Resume Point */

Display(’Setting resume point via CEE3SRP’);
Call CEE3SRP(U_TOK,FBCODE);
Display(’After call to CEE3SRP ... Resume point’);
If U_CNTL = 0

Do;
Display(’First time through...’);

/* Register User Handler */

Display(’Registering user handler’);
Call CEEHDLR(PLI3GRO, U_PTR, FBCODE);
If FBCHECK(FBCODE, CEE000) then
Do;

/* Cause a zero-divide condition */
DENOMINATOR = 0;
NUMERATOR = 1;
RATIO = NUMERATOR/DENOMINATOR;

End;
Else
Do;

Display(’CEEHDLR failec with msg’);
Display(MsgNo);

End;
End;

CEE3GRO

168 z/OS Language Environment Programming Reference

Else
Display(’2nd time...User can do whatever’);

/* Unregister handler */

Call CEEHDLU(PLI3GRO, FBCODE);
If FBCHECK (FBCODE, CEE000) Then

Display(’Main: unregistered PLI3GRO);
Else

Do;
Display(’CEEHDLU failed with msg ’);
Display(MsgNo);

End;
End DRV3GRO;*Process lc(101),opt(0),s,map,list,stmt,a(f),ag;

*Process macro;
PLI3GRO: Proc (PTR1,PTR2,PTR3,PTR4);
/***
** *
** PLI3GRO - Call CEE3GRO to get the offset in *
** the routine that incurred the *
** condition. *
** *
**/

%include CEEIBMCT;
%include CEEIBMAW;
declare (PTR1,PTR2,PTR3,PTR4) pointer;
declare 01 CURCOND based(PTR1) feedback;
declare TOKEN pointer based(PTR2);
declare RESULT fixed binary(31,0) based(PTR3);
declare 01 NEWCOND based(PTR4) feedback;
declare ROFFSET real fixed binary(31,0);
declare 01 FBCODE feedback;
declare 01 U_DATA based(TOKEN),

03 U_CNTL fixed binary(31,0),
03 U_TOK pointer;

Call CEE3GRO(ROFFSET,FBCODE);
If fbcheck (fbcode, cee000) Then

Do;
Display(’Routine offset which incurred’);
Display(’the condition is: ’);
Display(ROFFSET);

End;
Else

Do;
Display(’CEE3GRO failed with msg ’);
Display(FBCODE.MsgNo);

End;

/***
** In user handler - resume execution *
**/

RESULT = 10;
Call CEEMRCE(U_TOK,FBCODE);
U_CNTL = 1;
Return;

End PLI3GRO;

CEE3GRO

Chapter 5. Callable services 169

CEE3INF—Query enclave information

CEE3INF queries and returns to the calling routine the information about the
system/subsystem, the environment information, the member languages, and the
version of Language Environment associated with this enclave.

Syntax

►► CEE3INF (sys/subsys , env-info , member-id , gpid , fc) ►◄

sys/subsys (input/output)
As input, sys/subsys is considered to be an address to a fullword. As output,
the fullword is a 32-bit map that represents the operating system or subsystem
on which the enclave is currently running.
0 Currently executing in the CICS environment
1 Currently executing in a CICS_PIPI environment
2-3 Reserved for other specific CICS environments
4 Currently executing in a TSO environment
5 Currently executing in a Batch environment
6 Currently executing in a z/OS UNIX environment
7-28 Reserved for future use
29 Currently executing on z/VSE®

30 Currently executing on z/OS
31 Reserved.

env-info (input/output)
As input, env-info is considered to be an address to a fullword. As output, the
fullword is a 32-bit map representing the environments that are active in that
enclave.
0 Currently executing in a PIPI environment
1 Currently executing in a PIPI-Main environment
2 Currently executing in a PIPI-Sub environment
3 Currently executing in a PIPI-Subdp environment
4 Currently executing in a PICI (Pre-init compatibility interface)

environment. For more information, see z/OS XL C/C++ Programming
Guide.

5 Currently executing in a nested enclave
6 LRR is active in the current enclave
7 Runtime reuse is active in the current environment
8 XPLINK(ON) is in effect in the current enclave
9 POSIX(ON) RTO in effect in the current enclave
10 At least one pthread has been created in this enclave
11 Currently executing on the IPT
12 Multithreaded fork is in effect in the current enclave
13-14 AMODE Init

B'00' AMODE 24
B'10' AMODE 31

15 Currently executing in a PIPI-Maindp environment
16-31 Reserved for future use

CEE3INF

170 z/OS Language Environment Programming Reference

member-id (input/output)
As input, member-id is considered to be an address to a fullword. As output,
the fullword is a 32-bit map representing the member languages that are
initialized in that enclave.
0 Reserved
1 Reserved
2 Reserved
3 C/C++
4 Reserved
5 COBOL
6 Reserved
7 Fortran
8-9 Reserved
10 PL/I
11 Enterprise PL/I
12-14 Reserved
15 Reserved
16 Reserved
17-23 Reserved for future use
24-31 The current version number of CEE3INF. It is currently set to 0.

gpid (input/output)
A fullword integer representing the version of Language Environment that
created this thread. This fullword can be interpreted as a four-byte hex number
as follows:
|PP|VV|RR|MM|
PP product number
VV version
RR release
MM modification

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.

Usage notes
v z/OS UNIX considerations — CEE3INF is allowed only in the thread.
v If you are not interested in any one of the parameters being passed, a 0 must be

placed in the slot of those parameters. This indicates that no information is
needed regarding that parameter.

v When the PIPI or nested enclave environment bit is on, a subsystem bit may not
be set.

Examples
1. An example of CEE3INF called by C/C++:

/*Module/File Name: EDC3INF */
/***/
/* */
/* THIS EXAMPLE CALLS CEE3INF TO GET INFORMATION OF THE CURRENT */

CEE3INF

Chapter 5. Callable services 171

/* ENCLAVE, LIKE THE SYSTEM/SUBSYSTEM, THE ENVIRONMENT INFORMATION, */
/* THE MEMBER LANGUAGES USED AND THE VERSION OF LANGUAGE ENVIRONMENT.*/
/* */
/***/

#include <leawi.h>
#include <string.h>
#include <ceeedcct.h>

int main(void) {

_INT4 sys_subsys,env_info,member_id,gpid;
_FEEDBACK fc;

/* Calling CEE3INF to get the information */
CEE3INF(&sys_subsys,&env_info,&member_id,&gpid,fc);

if (_FBCHECK(fc,CEE000) != 0) {
printf("CEE3INF failed with message number %d\n", fc.tok_msgno);

}
printf("System/Subsystem in hex %08x \n",sys_subsys);
printf("Enviornment info in hex %08x \n",env_info);
printf("Member languages in hex %08x \n",member_id);
printf("GPID information in hex %08x \n",gpid);
printf("\n");

}

2. An example of CEE3INF called by COBOL:
CBL LIB,QUOTE

*Module/File Name: IGZTINF

** **
** Function: CEE3INF - Query enclave information **
** **
** This example calls CEE3INF to gather data about the current **
** enclave like the system/subsystem, environment information, **
** member languages, and Language Environment version number. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3INF.

DATA DIVISION.
WORKING-STORAGE SECTION.

**
** Define space for a Language Environment feedback **
** code (12 total bytes). **
** Include a copy of CEEIGZCT to get pre-defined **
** Language Environment condition tokens. **
**

01 FC.
02 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.

03 CASE-1-CONDITION-ID.
04 SEVERITY PIC S9(4) BINARY.
04 MSG-NO PIC S9(4) BINARY.

03 CASE-SEV-CTL PIC X.
03 FACILITY-ID PIC XXX.

02 I-S-INFO PIC S9(9) BINARY.
**
** Define some storage to be used by the Language **
** Environment callable service. **
**
01 SYS-SUBSYS PIC S9(9) BINARY.
01 ENV-INFO PIC S9(9) BINARY.
01 MEM-ID PIC S9(9) BINARY.

CEE3INF

172 z/OS Language Environment Programming Reference

01 GPID PIC S9(9) BINARY.

PROCEDURE DIVISION.
MAIN-PROG.

* ***
* ** Now call CEE3INF. It returns the results **
* ** of the query on the environment and the **
* ** feedback code. **
* ** Report error and stop if CEE3INF fails. **
* ***

CALL "CEE3INF" USING SYS-SUBSYS, ENV-INFO, MEM-ID, GPID, FC.
IF CEE000 OF FC THEN

DISPLAY "SYS-SUBSYS: " SYS-SUBSYS
DISPLAY "ENV-INFO : " ENV-INFO
DISPLAY "MEM-ID : " MEM-ID
DISPLAY "GPID : " GPID

ELSE
DISPLAY "CEE3INF FAILED WITH MSG "
MSG-NO OF FC UPON CONSOLE

STOP RUN
END-IF.
GOBACK.

3. An example of CEE3INF called by PL/I:
*PROCESS MACRO;

/***/
/*Module/File Name: IBM3INF */
/***/
/** **/
/** Function: CEE3INF - query enclave information **/
/** **/
/** This example calls CEE3INF to gather data about the current **/
/** enclave like the system/subsystem, environment information, **/
/** member languages, and Language Environment version number. **/
/** **/
/***/

PLI3INF: PROCEDURE OPTIONS (MAIN) REORDER;

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL SYSPRINT File Output Stream;

DCL SYS_SUB REAL FIXED BINARY(31,0),
ENV_INF REAL FIXED BINARY(31,0),
MEM_ID REAL FIXED BINARY(31,0),
GPID REAL FIXED BINARY(31,0);

/**/
/* Declare a Language Environment Feedback token. */
/* 12 Total bytes of storage. */
/**/
Declare 01 LE_Feedback_Code,

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3),
03 ISI REAL FIXED BINARY(31,0);

/**/
/* Local declares needed for Messaging Callable Services*/
/**/
Declare Msg_dest REAL FIXED BINARY(31,0);
Declare Msg_String CHAR(255) VARYING;

CEE3INF

Chapter 5. Callable services 173

Msg_dest = 2;

/**/
/* Call CEE3INF to request info about the */
/* current enclave */
/**/

CALL CEE3INF(SYS_SUB,ENV_INF,MEM_ID,GPID,LE_Feedback_Code);

/**/
/* Output the result. */
/**/
Msg_String = 'System-Subsystem : ' || BIT(SYS_SUB);
Call CEEMOUT(Msg_String,Msg_Dest,LE_Feedback_Code);

Msg_String = 'Environment Information: ' || BIT(ENV_INF);
Call CEEMOUT(Msg_String,Msg_Dest,LE_Feedback_Code);

Msg_String = 'Member Languages : ' || BIT(MEM_ID);
Call CEEMOUT(Msg_String,Msg_Dest,LE_Feedback_Code);

CEE3LNG—Set national language

CEE3LNG sets the current national language. You can also use CEE3LNG to query
the current national language. Changing the national language changes the
languages in which error messages are displayed and printed, the names of the
days of the week, and the names of the months. The current national language
setting, as well as previous national language settings that have not been
discarded, are recorded on the stack on a LIFO (last in, first out) basis. The current
national language setting is always on the top of the stack.

There are two methods of changing the default national language setting with
CEE3LNG:
v Specify the new national language setting and place it on top of the stack using

a function value of 1 (SET). This discards the previous default setting.
v Specify the new national language setting and place it on top of the stack using

a function value of 3 (PUSH). This pushes the previous national language setting
down on the stack so that you can later retrieve it by discarding the current
setting.

To illustrate the second method, suppose you live in the United States and the
code for the United States is specified as a system-level default. If you want to use
the French defaults for a certain application, you can use CEE3LNG to PUSH
France as the national language setting; then when you want the defaults for the
United States, you can POP France from the top of the stack, making the United
States the national language setting.

If you specify a desired_language that is not available on your system, Language
Environment uses the IBM-supplied default ENU (mixed-case U.S. English). If an
unknown national language code is specified as a system-level, region-level or
CEEUOPT default, a return code of 4 and a warning message is issued.

You can also use the NATLANG runtime option to set the national language.

CEE3INF

174 z/OS Language Environment Programming Reference

CEE3LNG affects only the Language Environment NLS and date and time services,
not the Language Environment locale callable services or C locale-sensitive
functions.

Syntax

►► CEE3LNG (function , desired_language , fc) ►◄

function (input)
A fullword binary integer that specifies the service to perform. The possible
values for function are:

1—SET
Establishes the desired_language specified in the call to CEE3LNG as the
current language. In effect, it replaces the current language on the top
of the stack with the desired_language that you specify. When setting the
national language, the desired_language is folded to uppercase. "enu"
and "ENU", for example, are considered to be the same national
language.

2—QUERY
Identifies the current language on the top of the stack to the calling
routine by returning it in the desired_language parameter of CEE3LNG.
The desired_language retained as the result of the QUERY function is in
uppercase.

3—PUSH
Pushes the desired_language specified in the call to CEE3LNG on to the
top of the language stack, making it the current language. Previous
languages are retained on the stack on a LIFO basis, making it possible
to return to a prior language at a later time.

4—POP
Pops the current language off the stack. The previous language that
was pushed on to the stack now becomes the new current language.
Upon return to the caller, the desired_language parameter contains the
discarded language. If the stack contains only one language and would
be empty after the call, no action is taken and a feedback code
indicating such is returned.

desired_language (input/output)
A 3-character fixed-length string. The string is not case-sensitive and is used in
the following ways for different functions:

If function is: Then desired_language:

1 or 3 Contains the desired national language identification. In this case, it is an
input parameter. Table 23 on page 179 contains a list of national language
identifiers.
Note: Language Environment supports only these national languages:
ENU Mixed-case U.S. English
UEN Uppercase U.S. English
JPN Japanese.

2 Returns the current language on top of the stack. In this case, it is an output
parameter.

CEE3LNG

Chapter 5. Callable services 175

If function is: Then desired_language:

4 Returns the discarded national language. In this case, it is an output
parameter.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message
number

Message text

CEE000 0 — The service completed successfully.
CEE3BQ 2 3450 Only one language was on the stack when a POP

request was made to CEE3LNG. The current language
was returned.

CEE3BR 3 3451 The desired language desired-language for the PUSH or
SET function for CEE3LNG was invalid. No operation
was performed.

CEE3BS 3 3452 The function function specified for CEE3LNG was not
recognized. No operation was performed.

Usage notes
v PL/I MTF consideration—The CEE3LNG callable service is not supported in

PL/I multitasking applications.
v PL/I consideration—When running PL/I with POSIX(ON), CEE3LNG is not

supported.
v z/OS UNIX consideration

– CEE3LNG applies to the enclave. Each enclave has a single current national
language setting.

– Language Environment provides z/OS UNIX-compliant locales as part of the
C/C++ runtime library. The locales establish the cultural conventions for
locale-sensitive functions in this runtime. The CEESETL callable service and
other locale callable services depend on the loaded locale. To change the
locale, you can use the setlocale() C/C++ library function or the CEESETL
callable service. Locale values do not affect the settings used by the CEE3LNG
callable service. For a complete list of locales, see z/OS Language Environment
Programming Guide.

– The CEE3LNG callable services, such as date and time formatting, sorting,
and currency symbols are independent of the locale. CEE3LNG affects only
Language Environment NLS and date and time services. Mixing CEE3LNG
services and locale callable services might produce inconsistent results.

For more information
v See “NATLANG” on page 59 for more information about the NATLANG

runtime option.
v For more information about the CEESETL callable service, see “CEESETL—Set

locale operating environment” on page 413.
v For more information about setlocale(), see z/OS XL C/C++ Programming Guide.

CEE3LNG

176 z/OS Language Environment Programming Reference

Examples
1. Following is an example of CEE3LNG called by C/C++.

/*Module/File Name: EDC3LNG */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_INT4 function;
_CHAR3 lang;

/* Query the current language setting */
function = 2; /* function 2 is query */
CEE3LNG(&function,lang,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEE3LNG failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}

/* if the current language is not mixed-case */
/* American English set the current language to */
/* mixed-case American English */
if (memcmp(lang,"ENU",3) != 0) {

memcpy(lang,"ENU",3);
function = 1; /* function 1 is set */
CEE3LNG(&function,lang,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEE3LNG failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

}
}

2. Following is an example of CEE3LNG called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZT3LNG

** **
** CBL3LNG - Set national language **
** **
** In this example, CEE3LNG is called to query **
** the current national language setting. If **
** the setting is not mixed-case U.S. English, **
** CEE3LNG is called to change the setting. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3LNG.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 FUNCTN PIC S9(9) BINARY.
01 LANG PIC X(3).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.

CEE3LNG

Chapter 5. Callable services 177

04 Msg-No PIC S9(4) BINARY. 03
Case-2-Condition-ID

REDEFINES Case-1-Condition-ID.
04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.
PARA-3LNGQRY.

** Specify 2 for QUERY function.
** Call CEE3LNG to query the current
** national language setting

MOVE 2 TO FUNCTN.
CALL "CEE3LNG" USING FUNCTN, LANG, FC.
IF CEE000 of FC THEN

DISPLAY "Current National Language is: "
LANG

ELSE
DISPLAY "CEE3LNG(query) failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

PARA-3LNGSET.

** If the current national language is not
** mixed-case U.S. English, then call
** CEE3LNG with the SET function (1) to
** change the national language to mixed-case
** U.S. English

IF (LANG IS NOT = "ENU") THEN
MOVE 1 TO FUNCTN
CALL "CEE3LNG" USING FUNCTN, LANG, FC
IF NOT CEE000 of FC THEN

DISPLAY "CEE3LNG(set) failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF
DISPLAY "The national language has ",

"been changed to mixed-case "
"U.S. English (ENU)."

END-IF.
GOBACK.

3. Following is an example of CEE3LNG called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBM3LNG */
/**/
/** */
/** Function: CEE3LNG - set national language */
/** */
/** In this example, CEE3LNG is called to query the */
/** current national language setting. If the */
/** setting is not mixed case American English, */
/** CEE3LNMG is called to change the setting to that*/
/** */
/**/
PLI3LNG: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

CEE3LNG

178 z/OS Language Environment Programming Reference

DCL FUNCTN REAL FIXED BINARY(31,0);
DCL LANG CHARACTER (3);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

FUNCTN = 2; /* Specify code to query current */
/* national language */

/* Call CEE3LNG with function code 2 to query */
/* national language */

CALL CEE3LNG (FUNCTN, LANG, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’The current national language ’
|| ’is ’ || LANG);

END;
ELSE DO;

DISPLAY(’CEE3LNG failed with msg ’ || FC.MsgNo);
STOP;
END;

/* If the current language is not mixed-case */
/* American English, set it to mixed-case */
/* American English */

IF LANG ¬= ’ENU’ THEN DO;
FUNCTN = 1;
CALL CEE3LNG (FUNCTN, ’ENU’, FC);
IF ¬ FBCHECK(FC, CEE000) THEN DO;

DISPLAY(’CEE3LNG failed with msg ’
|| FC.MsgNo);

STOP;
END; CALL CEE3LNG (2, LANG, FC);

IF FBCHECK(FC, CEE000) THEN DO;
PUT SKIP LIST(’The national language is now ’

|| LANG);
END;

ELSE DO;
DISPLAY(’CEE3LNG failed with msg ’

|| FC.MsgNo);
STOP;
END;

END /* Language is not ENU */;

END PLI3LNG;

4. Table 23 lists the supported national language codes.

Table 23. National language codes

ID National Language

AFR Afrikaans

ARA Arab countries

BGR Bulgarian

CAT Catalan

CHT Traditional Chinese

CEE3LNG

Chapter 5. Callable services 179

Table 23. National language codes (continued)

ID National Language

CHS Simplified Chinese

CSY Czech

DAN Danish

DEU German

DES Swiss German

ELL Greek

ENG U.K. English

ENU U.S. English

ESP Spanish

FIN Finnish

FRA French

FRB Belgian French

FRC Canadian French

FRS Swiss French

HEB Hebrew

HUN Hungarian

ISL Icelandic

ITA Italian

ITS Swiss Italian

JPN Japanese

KOR Korean

NLD Dutch

NLB Belgian Dutch

NOR Norwegian - Bokmal

NON Norwegian - Nynorsk

PLK Polish

PTG Portuguese

PTB Brazilian Portuguese

RMS Rhaeto-Romanic

ROM Romanian

RUS Russian

SHC Serbo-Croatian (Cyrillic)

SHL Serbo-Croatian (Latin)

SKY Slovakian

SQI Albanian

SVE Swedish

THA Thai

TRK Turkish

UEN U.S. uppercase English

URD Urdu

CEE3LNG

180 z/OS Language Environment Programming Reference

CEE3MCS—Get default currency symbol

CEE3MCS returns the default currency symbol for the country you specify with
country_code. For a list of the default settings for a specified country, see Table 32
on page 483.

Syntax

►► CEE3MCS (country_code , currency_symbol , fc) ►◄

country_code (input)
A 2-character fixed-length string representing one of the country codes found
in Table 32 on page 483. country_code is not case-sensitive. If no value is
specified, the default country code, as set by the COUNTRY runtime option or
the CEE3CTY callable service, is used.

currency_symbol (output)
A 4-character fixed-length string returned to the calling routine. It contains the
default currency symbol for the country specified. The currency symbol is
left-justified and padded on the right with blanks, if necessary.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity
Message
number Message text

CEE000 0 — The service completed successfully.
CEE3C7 2 3463 The country code country_code was not valid for

CEE3MCS. The default currency symbol
currency_symbol was returned.

Usage notes
v If you specify a country_code that is not valid, the default currency symbol is

X'9F404040'. In the United States, it is shown as a '$'followed by three blanks.
v z/OS UNIX considerations—CEE3MCS applies to the enclave. Every enclave has

a single current country setting that has a single currency symbol. Every thread
in every enclave has the same default.

v Euro considerations—For countries in the European Union that have adopted
the Euro as the legal tender, the currency symbol is represented as a
hexadecimal string in the default country settings. The value is the code point
for the Euro sign, taken from a typical code page for the given country. Of
course, the actual graphical representation depends on the code page in use. See
Table 32 on page 483 for a list of country settings.
Language Environment supports the Euro as the default currency symbol in the
following countries: Austria, Belgium, Finland, France, Germany, Greece, Ireland,

CEE3LNG

Chapter 5. Callable services 181

Italy, Luxembourg, the Netherlands, Portugal, and Spain. As more countries pass
the economic and monetary union convergence criteria and adopt the Euro as
the legal currency, the default currency symbol will replace the national currency
symbol with the Euro sign.

For more information
v See “COUNTRY” on page 24 for an explanation of the COUNTRY runtime

option.
v See “CEE3CTY—Set default country” on page 135 for an explanation of the

CEE3CTY callable service.
v See “CEE3MC2—Get default and international currency symbols” on page 184

for an explanation of the CEE3MC2 callable service.

Examples
1. Following is an example of CEE3MCS called by C/C++.

/*Module/File Name: EDC3MCS */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_CHAR2 country;
_CHAR4 currency;

/* get the default currency symbol for Canada */
memcpy(country,"CA",2);
CEE3MCS(country,currency,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEE3MCS failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}
printf("The default currency symbol for Canada is:"

" %.2s\n",currency);
}

2. Following is an example of CEE3MCS called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZT3MCS
**
** **
** CBL3MCS - Call CEE3MCS to obtain the **
** default currency symbol **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3MCS.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 COUNTRY PIC X(2).
01 CURSYM PIC X(4).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

CEE3MCS

182 z/OS Language Environment Programming Reference

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.

PARA-CBL3MCS.
**
** Specify country code for the US in the call
** to CEE3MCS
**

MOVE "US" TO COUNTRY.
CALL "CEE3MCS" USING COUNTRY, CURSYM, FC.

**
** If CEE3MCS runs successfully, display result.
**

IF CEE000 of FC THEN
DISPLAY "The default currency symbol "

"for the " COUNTRY " is: " CURSYM
ELSE

DISPLAY "CEE3MCS failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

GOBACK.

3. Following is an example of CEE3MCS called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBM3MCS */
/**/
/** **/
/** Function: CEE3MCS - Obtain default currency **/
/** symbol **/
/** **/
/**/
PLI3MCS: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;
DCL COUNTRY CHARACTER (2);
DCL CURSYM CHARACTER (4);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

COUNTRY = ’US’; /* Specify country code for the */
/* United States */

/* Call CEE3MCS to return currency symbol for */
/* the United States */
CALL CEE3MCS (COUNTRY, CURSYM, FC);

/* Print the default currency symbol for the US */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(
’The default currency symbol for the ’

CEE3MCS

Chapter 5. Callable services 183

|| COUNTRY || ’ is "’ || CURSYM || ’"’);
END;

ELSE DO;
DISPLAY(’CEE3MCS failed with msg ’

|| FC.MsgNo);
STOP;
END;

END PLI3MCS;

CEE3MC2—Get default and international currency symbols

CEE3MC2 returns the default currency symbol and international currency symbol
for the country you specify with country_code. For a list of the default settings for a
specified country, see Table 32 on page 483.

Syntax

►► CEE3MC2 (country_code , currency_symbol , ►

► international_currency_symbol , fc) ►◄

country_code (input)
A 2-character fixed-length string representing one of the country codes found
in Table 32 on page 483. country_code is not case-sensitive. If no value is
specified, the default country code, as set by the COUNTRY runtime option or
the CEE3CTY callable service, is used.

currency_symbol (output)
A 4-character fixed-length string returned to the calling routine. It contains the
default currency symbol for the country specified. The currency symbol is
left-justified and padded on the right with blanks, if necessary.

international_currency_symbol (output)
A 3-character alphabetic fixed-length string returned to the calling routine. It
contains the international currency symbol for the country specified.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity
Message
number Message text

CEE000 0 — The service completed successfully.
CEE3C2 2 3458 The country code country_code was not valid for

CEE3MC2. The default currency symbol
currency_symbol was returned. no international
currency symbol was returned.

CEE3MCS

184 z/OS Language Environment Programming Reference

Usage notes
v If you specify a country_code that is not valid, the default currency symbol is

X'9F404040'. In the United States, it is shown as a '$' followed by three blanks.
v z/OS UNIX considerations—CEE3MC2 applies to the enclave. Every enclave has

a single current country setting that has a single currency symbol. Every thread
in every enclave has the same default.

v Euro considerations—For countries in the European Union that have adopted
the Euro as the legal tender, the currency symbol is represented as a
hexadecimal string in the default country settings. The value is the code point
for the Euro sign, taken from a typical code page for the given country. Of
course, the actual graphical representation depends on the code page in use. See
Table 32 on page 483 for a list of country settings.
Language Environment supports the Euro as the default currency symbol in the
following countries: Austria, Belgium, Finland, France, Germany, Greece, Ireland,
Italy, Luxembourg, the Netherlands, Portugal, and Spain. As more countries pass
the economic and monetary union convergence criteria and adopt the Euro as
the legal currency, the default currency symbol will replace the national currency
symbol with the Euro sign.

For more information
v See “COUNTRY” on page 24 for an explanation of the COUNTRY runtime

option.
v See “CEE3CTY—Set default country” on page 135 for an explanation of the

CEE3CTY callable service.
v See “CEE3MCS—Get default currency symbol” on page 181 for an explanation

of the CEE3MCS callable service.

Examples
1. Following is an example of CEE3MC2 called by C/C++.

/*Module/File Name: EDC3MC2 */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_CHAR2 country;
_CHAR4 currency;
_CHAR3 international_currency;

/* get the default currency symbol for Canada */
memcpy(country,"CA",2);
CEE3MC2(country,currency,international_currency,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEE3MC2 failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}
printf("The default currency symbol for Canada is:"

" %.2s\n",currency);
printf("The international symbol for Canada is:"

" %.3s\n",international_currency);
}

2. Following is an example of CEE3MC2 called by COBOL.

CEE3MC2

Chapter 5. Callable services 185

CBL LIB,QUOTE
*Module/File Name: IGZT3MC2
**
** **
** CBL3MC2 - Call CEE3MC2 to obtain the **
** currency symbols **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3MC2.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 COUNTRY PIC X(2).
01 CURSYM PIC X(2).
01 INTCURSYM PIC X(3).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.

PARA-CBL3MC2.
**
** Specify country code for the US in the call
** to CEE3MC2
**

MOVE "US" TO COUNTRY.
CALL "CEE3MC2" USING COUNTRY, CURSYM, INTCURSYM, FC.

**
** If CEE3MC2 runs successfully, display result.
**

IF CEE000 of FC THEN
DISPLAY "The default currency symbol "

"for the " COUNTRY " is: " CURSYM
DISPLAY "The international currency symbol "

"for the " COUNTRY " is: " INTCURSYM
ELSE

DISPLAY "CEE3MC2 failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

GOBACK.

3. Following is an example of CEE3MC2 called by PL/I.
*PROCESS MACRO;
/*Module/File Name: IBM3MC2 */
/**/
/** */
/** Function: CEE3MC2 - Obtain currency symbols */
/** */
/**/
PLI3MC2: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

CEE3MC2

186 z/OS Language Environment Programming Reference

DCL COUNTRY CHARACTER (2);
DCL CURSYM CHARACTER (4);
DCL INTCURSYM CHARACTER (3);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

COUNTRY = ’US’; /* Specify country code for the */
/* United States */

/* Call CEE3MC2 to return currency symbol for */
/* the United States */
CALL CEE3MC2 (COUNTRY, CURSYM, INTCURSYM, FC);

/* Print the default currency symbol for the US */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(
’The default currency symbol for the ’
|| COUNTRY || ’ is "’ || CURSYM || ’"’);

PUT SKIP LIST(
’The international currency symbol for the ’
|| COUNTRY || ’ is "’ || INTCURSYM || ’"’);

END;
ELSE DO;

DISPLAY(’CEE3MC2 failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLI3MC2;

CEE3MDS—Get default decimal separator

CEE3MDS returns the default decimal separator for the country specified by
country_code. For a list of the default settings for a specified country, see Table 32
on page 483.

Syntax

►► CEE3MDS (country_code , decimal_separator , fc) ►◄

country_code (input)
A 2-character fixed-length string representing one of the country codes found
in Table 32 on page 483. country_code is not case-sensitive. If no value is
specified, the default country code, as set by the COUNTRY runtime option or
the CEE3CTY callable service, is used.

decimal_separator (output)
A 2-character fixed-length string containing the default decimal separator for
the country specified. The decimal separator is left-justified and padded on the
right with a blank.

CEE3MC2

Chapter 5. Callable services 187

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity
Message
number Message text

CEE000 0 — The service completed successfully.
CEE3C4 2 3460 The decimal separator 'decimal-separator' was

truncated and was not defined in CEE3MDS.
CEE3C5 2 3461 The country code country-code was invalid for

CEE3MDS. The default decimal separator
'decimal-separator' was returned.

Usage notes
v If you specify a country_code that is not valid, the default decimal separator is a

period (.).
v z/OS UNIX considerations—CEE3MDS applies to the enclave. Every enclave has

a single current country setting that has a single decimal separator. Every thread
in every enclave has the same default.

For more information
v See “COUNTRY” on page 24 for an explanation of the COUNTRY runtime

option.
v See “CEE3CTY—Set default country” on page 135 for an explanation of the

CEE3CTY callable service.

Examples
1. Following is an example of CEE3MDS called by C/C++.

/*Module/File Name: EDC3MDS */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_CHAR2 country,decimal;

/* get the default decimal separator for Canada */
memcpy(country,"CA",2);
CEE3MDS(country,decimal,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEE3MDS failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}
/* print out the default decimal separator */
printf("The default decimal separator for");
printf(" Canada is: %.2s\n",decimal);

}

2. Following is an example of CEE3MDS called by COBOL.

CEE3MDS

188 z/OS Language Environment Programming Reference

CBL LIB,QUOTE
*Module/File Name: IGZT3MDS
**
** **
** CBL3MDS - Call CEE3MDS to get the **
** default decimal separator **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3MDS.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 COUNTRY PIC X(2).
01 DECSEP PIC X(2).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.

**
** Specify the country code for the US in the
** call to CEE3MDS.
** If call was successful, print result.
**
PARA-CBL3MDS.

MOVE "US" TO COUNTRY.
CALL "CEE3MDS" USING COUNTRY, DECSEP, FC.
IF CEE000 of FC THEN

DISPLAY "The default Decimal Separator "
"for " COUNTRY " is "" DECSEP """

ELSE
DISPLAY "CEE3MDS failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.
GOBACK.

3. Following is an example of CEE3MDS called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBM3MDS */
/**/
/** **/
/** Function: CEE3MDS - get default decimal **/
/** separator **/
/**/
PLI3MDS: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL COUNTRY CHARACTER (2);
DCL DECSEP CHARACTER (2);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),

CEE3MDS

Chapter 5. Callable services 189

03 Flags,
05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

COUNTRY = ’US’; /* Specify country code for */
/* the United States */

/* Call CEE3MDS to get default decimal */
/* separator for the US */
CALL CEE3MDS (COUNTRY, DECSEP, FC);

/* Print the default decimal separator for */
/* the US */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(
’The default decimal separator for the ’
|| COUNTRY || ’ is "’ || DECSEP || ’"’);

END;
ELSE DO;

DISPLAY(’CEE3MDS failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLI3MDS;

CEE3MTS—Get default thousands separator

CEE3MTS returns the default thousands separator for the specified country with
country_code.

Syntax

►► CEE3MTS (country_code , thousands_separator , fc) ►◄

country_code (input)
A 2-character fixed-length string representing one of the country codes found
in Table 32 on page 483. country_code is not case-sensitive. If no value is
specified, the default country code, as set by the COUNTRY runtime option or
the CEE3CTY callable service, is used.

thousands_separator (output)
A 2-character fixed-length string representing the default thousands separator
for the country specified. The thousands separator is left-justified and padded
on the right with a blank.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

CEE3MDS

190 z/OS Language Environment Programming Reference

Code Severity
Message
number Message text

CEE000 0 — The service completed successfully.
CEE3C8 2 3464 The thousands separator 'thousands-separator' was

truncated and was not defined in CEE3MTS.
CEE3C9 2 3465 The country code country-code was invalid for

CEE3MTS. The default thousands separator
'thousands-separator' was returned.

Usage notes
v If you specify a country_code that is not valid, the default thousands separator is

a comma (,).
v z/OS UNIX considerations—CEE3MTS applies to the enclave. Every enclave has

a single current country setting that has a single thousands separator. Every
thread in every enclave has the same default.

For more information
v For a list of the default settings for a specified country, see Table 32 on page 483.
v See “COUNTRY” on page 24 for an explanation of the COUNTRY runtime

option.
v See “CEE3CTY—Set default country” on page 135 for an explanation of the

CEE3CTY callable service.

Examples
1. Following is an example of CEE3MTS called by C/C++.

/*Module/File Name: EDC3MTS */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_CHAR2 country,thousand;

/* get the default thousands separator for Canada */
memcpy(country,"CA",2);
CEE3MTS(country,thousand,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEE3MTS failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}
/* print out the default thousands separator */
printf("The default thousands separator for Canada");
printf(" is: %.2s\n",thousand);

}

2. Following is an example of CEE3MTS called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZT3MTS

** **
** CBL3MTS - Call CEE3MTS to obtain the **
** default thousands separator **
** **

CEE3MTS

Chapter 5. Callable services 191

IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3MTS.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 COUNTRY PIC X(2).
01 THOUSEP PIC X(2).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.

PARA-CBL3MTS.

** Specify the country code for the US in the
** call to CEE3MTS.

MOVE "US" TO COUNTRY.
CALL "CEE3MTS" USING COUNTRY, THOUSEP, FC.

** If CEE3MTS runs successfully, display result

IF CEE000 of FC THEN
DISPLAY "The default Thousands Separator"

" for " COUNTRY " is "" THOUSEP """
ELSE

DISPLAY "CEE3MDS failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

GOBACK.

3. Following is an example of CEE3MTS called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBM3MTS */
/**/
/** **/
/** Function: CEE3MTS - obtain default thousands **/
/** separator **/
/** **/
/**/
PLI3MTS: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL COUNTRY CHARACTER (2);
DCL THOUSEP CHARACTER (2);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),

CEE3MTS

192 z/OS Language Environment Programming Reference

05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

COUNTRY = ’US’; /* Specify US as the country */
/* code for the United States */

/* Call CEE3MTS to return default thousands */
/* separator for the US */
CALL CEE3MTS (COUNTRY, THOUSEP, FC);

/* If CEE3MTS ran successfully print out result */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(
’The default thousands separator for the ’
|| COUNTRY || ’ is "’ || THOUSEP || ’"’);

END;
ELSE DO;

DISPLAY(’CEE3MTS failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLI3MTS;

CEE3PRM—Query parameter string

CEE3PRM queries and returns to the calling routine the parameter string specified
at invocation of the program. The returned parameter string contains only program
arguments. If no program arguments are available, a blank string is returned.

Syntax

►► CEE3PRM (char_parm_string , fc) ►◄

char_parm_string (output)
An 80-byte fixed-length string passed by CEE3PRM. On return from this
service, the char_parm_string contains the parameter string specified at
invocation of the program. If this parameter string is longer than 80 characters,
it is truncated. If the parameter string is shorter than 80 characters, the
returned string is padded with blanks. If the program argument passed to the
service is absent, or is not a character string, char_parm_string is blank.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message
number

Message text

CEE000 0 — The service completed successfully.

CEE3MTS

Chapter 5. Callable services 193

Code Severity Message
number

Message text

CEE3I1 1 3649 The parameter string returned from CEE3PRM
exceeded the maximum length of 80 bytes and was
truncated.

Usage notes
v C/C++ consideration—C/C++ users can use the __osplist to return a program

argument longer than 80 characters.
v z/OS UNIX considerations—CEE3PRM is allowed only in the initial thread.
v You can use the CEE3PR2 callable service to return a program string that is

longer than 80 characters.

For more information
v For more information about the CEE3PR2 callable service, see

“CEE3PR2—Query parameter string long” on page 196

Examples
1. Following is an example of CEE3PRM called by C/C++.

/*Module/File Name: EDC3PRM */

#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <string.h>
#include <ceeedcct.h>

int main() {

_CHAR80 parm;
_FEEDBACK fc;

CEE3PRM(parm,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEE3PRM failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}
printf("%.80s\n",parm);

}

2. Following is an example of CEE3PRM called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZT3PRM
**
** **
** CBL3PRM - Call CEE3PRM to query the **
** parameter string **
** **
** In this example, a call is made to **
** CEE3PRM to return the parameter string **
** that was specified at invocation of the **
** program. The string is then displayed. **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3PRM.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 PARMSTR PIC X(80).

CEE3PRM

194 z/OS Language Environment Programming Reference

01 FC.
02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.

PARA-CBL3PRM.
CALL "CEE3PRM" USING PARMSTR, FC.
IF CEE000 THEN

DISPLAY "Program arguments specified: "
"’" PARMSTR "’"

ELSE
DISPLAY "CEE3PRM failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

GOBACK.

3. Following is an example of CEE3PRM called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBM3PRM */
/**/
/** **/
/** Function: CEE3PRM - Query Parameter String **/
/** **/
/**/
PLI3PRM: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL PARMSTR CHAR(80);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

/* Call CEE3PRM to return the program arguments */
/* specified at invocation of the program */
CALL CEE3PRM (PARMSTR, FC);

/* There are no non-zero feedback codes to */
/* check, so print result */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(
’These program arguments were specified: "’
|| PARMSTR || ’"’);

END;
ELSE DO;

DISPLAY(’CEE3PRM failed with msg ’

CEE3PRM

Chapter 5. Callable services 195

|| FC.MsgNo);
STOP;
END;

END PLI3PRM;

CEE3PR2—Query parameter string long

CEE3PR2 queries and returns to the calling routine the parameter string and its
associated length specified at invocation of the program. The returned parameter
string contains only program arguments. If no program arguments are available, a
blank string is returned.

Syntax

►► CEE3PR2 (int_parm_length , char_parm_string , fc) ►◄

int_parm_length (input/output)
A fullword integer that indicates the length of the parameter string.
v For input: If the value is less than or equal to 0, int_parm_length is a request

for the length of the parameter string passed during program invocation. If
the value is greater than 0, it is the actual size of the char_parm_string buffer
passed by the caller.

v For output: CEE3PR2 returns the actual length of the parameter string
passed during program invocation for any case, regardless of the input value
in the int_parm_length field.

char_parm_string (input/output)

v For input: char_parm_string contains the address of a piece of storage that is
obtained by the caller.

Note: This storage is used as a varying string. It must be 2 bytes longer than
the length of the parameter string passed during program invocation.

v For output: The storage pointed to by this address contains a varying string
that contains the parameter string passed during program invocation. The
parameter string is truncated when the actual length of the parameter string
passed during invocation exceeds int_parm_length minus 2.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE3K3 1 3715 The parameter string returned from CEE3PR2

was truncated due to insufficient storage space
for the string provided by the caller.

CEE3PRM

196 z/OS Language Environment Programming Reference

Usage notes
v C/C++ consideration—C/C++ users can use the __osplist return a program

argument longer than 80 characters.
v z/OS UNIX consideration—CEE3PR2 is allowed only in the initial thread.
v CICS consideration—CEE3PR2 always returns a blank string.

For more information
v For more information about the CEE3PRM callable service, see

“CEE3PRM—Query parameter string” on page 193.

Examples
1. Following an example of CEE3PR2 called by C/C++.

/*Module/File Name: EDC3PR2 */
/***/
/* */
/* THIS EXAMPLE CALLS CEE3PR2 TO RETRIEVE THE PARAMETER STRING THAT */
/* WAS SPECIFIED AT THE INVOCATION OF THE PROGRAM AND ITS ASSOCIATED */
/* LENGTH. BOTH THESE VALUES ARE THEN PRINTED. */
/* */
/***/

#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <string.h>
#include <ceeedcct.h>

struct mystring{
unsigned short int length;
char string[298];

};
typedef struct mystring mystring;

int main() {

int len;

mystring parm;
_FEEDBACK fc;

/*Setting up the user defined space to store the retrieved string*/
memset(&parm,0x00,sizeof(parm));
len = sizeof(parm);

/*Calling CEE3PR2 to retrieve the parameter string*/
CEE3PR2(&len,&parm,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEE3PR2 failed with message number %d\n", fc.tok_msgno);

}

printf("Length field of the string : %d \n",len);
printf("Parameter String is: %s\n",parm.string);

return 0;
}

2. Following is an example of CEE3PR2 called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTPR2
**
** **

CEE3PR2

Chapter 5. Callable services 197

** CBL3PR2 - Call CEE3PR2 to query the **
** parameter string **
** **
** In this example, a call is made to **
** CEE3PR2 to return the parameter string **
** that was specified at invocation of the **
** program. The string is then displayed. **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3PR2.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 PARMLEN PIC S9(9) BINARY.
01 PARMSTR.

02 STR1-LENGTH PIC S9(4) BINARY.
02 STR1-STRING.

03 STR1-CHAR PIC X
OCCURS 0 TO 256 TIMES
DEPENDING ON STR1-LENGTH.

01 FC.
02 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.

03 CASE-1-CONDITION-ID.
04 SEVERITY PIC S9(4) BINARY.
04 MSG-NO PIC S9(4) BINARY.

03 CASE-SEV-CTL PIC X.
03 FACILITY-ID PIC XXX.

02 I-S-INFO PIC S9(9) BINARY.

PROCEDURE DIVISION.

PARA-CBL3PR2.
MOVE 258 TO PARMLEN
CALL "CEE3PR2" USING PARMLEN, PARMSTR, FC.
IF CEE000 THEN

DISPLAY "Program arguments specified: '"
STR1-STRING "'"

ELSE
DISPLAY "CEE3PR2 FAILED WITH MSG "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.
GOBACK.

3. Following is an example of CEE3PR2 called by PL/I.
*PROCESS MACRO;

/***/
/*Module/File Name: IBM3PR2 */
/***/
/** **/
/** Function: CEE3PR2 - Query Parameter String **/
/** **/
/** This example calls CEE3PR2 to retrieve the arguments passed **/
/** during the invocation of the program. **/
/** **/
/***/

PLI3PR2: PROCEDURE OPTIONS (MAIN) REORDER;

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL SYSPRINT File Output Stream;

DCL Parm_Len FIXED BINARY(31,0),

CEE3PR2

198 z/OS Language Environment Programming Reference

Parm_Str CHAR(255) VARYING;

/**/
/* Declare a Language Environment Feedback token. */
/* 12 Total bytes of storage. */
/**/
Declare 01 LE_Feedback_Code,

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3),
03 ISI REAL FIXED BINARY(31,0);

/**/
/* Local declares needed for Messaging Callable Services*/
/**/
Declare Msg_String CHAR(255) VARYING;
Declare Output PICTURE '99999';

Msg_dest = 2;

Parm_Len = 255; /**/
/* Call CEE3PR2 to get the parameter string */
/**/

CALL CEE3PR2(Parm_Len,Parm_Str,LE_Feedback_Code);

If ^ FBCHECK(LE_Feedback_Code, CEE000) Then Do;
Msg_String = 'Truncation occured';
Call CEEMOUT(Msg_String,Msg_Dest,LE_Feedback_Code);

End;
Else Do;

/**/
/* Output the result. */
/**/
MsgString = 'The returned parameter string is: ';

CEE3RPH—Set report heading

CEE3RPH sets the heading displayed at the top of the storage or options report
generated when you specify the RPTSTG(ON) or RPTOPTS(ON) runtime options.
For examples of these reports, see z/OS Language Environment Debugging Guide.

Syntax

►► CEE3RPH (report_heading , fc) ►◄

report_heading (input)
An 80-character fixed-length string. report_heading sets the identifying character
string displayed at the top of the storage or options report. Language
Environment uses only the first 79 bytes of report_heading; the last byte is
ignored. report_heading can contain DBCS characters surrounded by X'0E'
(shift-out) and X'0F' (shift-in).

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result

CEE3PR2

Chapter 5. Callable services 199

of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message
number

Message text

CEE000 0 — The service completed successfully.
CEE3JK 0 3700 The storage and options report heading replaced a

previous heading.

Usage notes
v PL/I considerations—CEE3RPH is designed to provide an equivalent function to

the special PL/I variable PLIXHD.
v z/OS UNIX considerations—CEE3RPH applies to the enclave.

For more information
v See “RPTSTG” on page 73 for more information about the RPTSTG runtime

option.
v See “RPTOPTS” on page 71 for more information about the RPTOPTS runtime

option.
v See PL/I for MVS & VM Programming Guide for further information about

PLIXHD.

Examples
1. Following is an example of CEE3RPH called by C/C++.

/*Module/File Name: EDC3RPH */

#pragma runopts(RPTOPTS(ON))
#include <string.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_CHAR80 heading;

/* initialize heading to blanks and then set the */
/* heading */
memset(heading,’ ’,80);
memcpy(heading,"User Defined Report Heading",27);

/* set the report heading...do not need to check */
/* feedback token because all return codes are */
/* successful */
CEE3RPH(heading,NULL);

/* .
.
. */

}

2. Following is an example of CEE3RPH called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZT3RPH

** **
** CBL3RPH - Call CEE3RPH to set report heading**
** **
** In this example, a call is made to CEE3RPH **

CEE3RPH

200 z/OS Language Environment Programming Reference

** to set the report heading that appears at **
** the top of each page of the options report **
** (generated by RPTOPTS) and storage report **
** (generated by RPTSTG). **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3RPH.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 RPTHEAD PIC X(80).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.

** Specify user-defined report heading via CEE3RPH

PARA-CBL3RPH.

MOVE "My options and storage reports heading"
TO RPTHEAD.

CALL "CEE3RPH" USING RPTHEAD, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEE3RPH failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

GOBACK.

3. Following is an example of CEE3RPH called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBM3RPH */
/**/
/** **/
/** Function: CEE3RPH - set report heading **/
/** **/
/**/
PLI3RPH: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL RPTHEAD CHAR(80);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

CEE3RPH

Chapter 5. Callable services 201

/* Define report heading */
RPTHEAD = ’My storage report heading’;

/* Set report heading in call to CEE3RPH */
CALL CEE3RPH (RPTHEAD, FC);

IF FBCHECK(FC, CEE000) THEN DO;
PUT SKIP LIST(’Report heading now set to "’

|| RPTHEAD || ’"’);
END;

ELSE DO;
DISPLAY(’CEE3RPH failed with msg ’

|| FC.MsgNo);
STOP;
END;

END PLI3RPH;

CEE3SPM—Query and modify Language Environment hardware
condition enablement

CEE3SPM queries and modifies the enablement of Language Environment
hardware conditions. You can use the CEE3SPM service to:
v Alter the settings of the Language Environment conditions, using an action value

of 1 (SET), to those specified by the caller.
v Query the current settings of the Language Environment conditions and return

the settings to the caller.
v Push the current settings of the Language Environment conditions on to the

condition stack using an action value of 3 (PUSH). This pushes the current
setting down on the stack for later retrieval, and, in effect, places a copy of the
current setting on top of the stack. It does not alter the current condition
settings.

v Pop the pushed settings of the Language Environment conditions from the
condition stack using an action value of 4 (POP). This reinstates the previous
condition settings as the current condition settings.

v Push the current settings of the Language Environment conditions on to the
Language Environment-managed condition stack and alter the settings of the
Language Environment conditions to those supplied by the caller.

The enabled or disabled Language Environment conditions are:

fixed-overflow
When enabled, raises the fixed-overflow condition when an overflow
occurs during signed binary arithmetic or signed left-shift operations.

decimal-overflow
When enabled, raises the decimal-overflow condition when one or more
nonzero digits are lost because the destination field in a decimal operation
is too short to contain the results.

underflow
When enabled, raises the underflow condition when the result
characteristic of a floating-point operation is less than zero and the result
fraction is not zero. For an extended-format floating-point result, the
condition is raised only when the high-order characteristic underflows.

CEE3RPH

202 z/OS Language Environment Programming Reference

significance
When enabled, raises the significance condition when the resulting fraction
in floating-point addition or subtraction is zero.

When you use the CEE3SPM callable service, maintenance of the condition stack is
required. For example, one user-written condition handler can disable a hardware
condition while another enables it. Therefore, do not assume that the program
mask is at a given setting. The program mask is set differently based on different
HLL requirements. You can find out what the current setting is by using the
QUERY function of CEE3SPM.

Language Environment initialization sets conditions based on the languages in the
initial load module. Each language present adds to the conditions that are enabled.

Some S/370 hardware interrupt codes and their matching Language Environment
feedback codes appear in Table 24 on page 205.

Syntax

►► CEE3SPM (action , cond_string , fc) ►◄

action (input)
The action to be performed. action is specified as a fullword binary signed
integer corresponding to one of the numbers in the following list:

1—SET
Alters the settings of the Language Environment conditions to those
specified in the cond_string parameter.

2—QUERY
Queries the current settings of the Language Environment conditions
and return the settings in the cond_string parameter.

3—PUSH
Pushes the current settings of the Language Environment conditions on
to the Language Environment-managed condition stack.

4—POP
Pops the pushed settings of the Language Environment conditions
from the condition stack, discarding the current settings, and
reinstating the previous condition settings as the current condition
settings.

5—PUSH, SET
Pushes the current settings of the Language Environment conditions on
to the Language Environment-managed condition stack and alters the
settings of the Language Environment conditions to those supplied by
the caller in the cond_string parameter.

cond_string (input/output)
A fixed-length string of 80 bytes containing a sequence of identifiers
representing the requested settings for the Language Environment conditions
that can be enabled and disabled. A list of conditions enabled and disabled and
their associated identifiers is given below:

CEE3SPM

Chapter 5. Callable services 203

Condition
Identifier

fixed-overflow
F (NOF for disablement)

decimal-overflow
D (NOD for disablement)

underflow
U (NOU for disablement)

significance
S (NOS for disablement)

An identifier with the 'NO' prefix is used to disable the condition it represents.
An identifier without the 'NO' prefix is used to enable the condition that it
represents. For example, the token 'F' is used to enable the fixed-overflow
condition. The identifier 'NOF' is used to disable the fixed-overflow condition.
The rightmost option takes effect in the event of a conflict. Identifiers are
separated by blanks or commas.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message
number

Message text

CEE000 0 — The service completed successfully.
CEE36V 4 3295 The condition string from CEE3SPM did not

contain all of the settings, because the returned
string was truncated.

CEE370 4 3296 Some of the data in the condition string from
CEE3SPM could not be recognized.

CEE371 4 3297 The service completed successfully for recognized
conditions, unsuccessfully for unrecognized
(unsupported) conditions.

CEE372 4 3298 A call to CEE3SPM attempted to PUSH settings
onto a full stack.

CEE373 4 3299 A call to CEE3SPM attempted to POP settings off
an empty stack.

CEE374 4 3300 The action parameter in CEE3SPM was not one of
the digits 1 to 5.

Usage notes
v PL/I MTF consideration—In PL/I MTF applications, CEE3SPM affects only the

calling task.
v C/C++ consideration—C/C++ ignores the fixed-overflow, decimal-overflow,

underflow, and significance interrupts, no matter what you specify in CEE3SPM.
v COBOL consideration—COBOL ignores the fixed-overflow and decimal-overflow

interrupts, no matter what you specify in CEE3SPM.
v z/OS UNIX consideration—In multithread applications, CEE3SPM affects only

the calling thread.
v You cannot use CEE3SPM to enable the fixed-overflow, decimal-overflow,

underflow or significance interrupts. You can, however, query the settings of
CEE3SPM.

CEE3SPM

204 z/OS Language Environment Programming Reference

Table 24. S/370 interrupt code descriptions

S/370 interrupt
code

Description Maskable Symbolic
feedback code

Message
number

Severity

0001 Operation exception No CEE341 3201 3

0002 Privileged operation exception No CEE342 3202 3

0003 Execute exception No CEE343 3203 3

0004 Protection exception No CEE344 3204 3

0005 Addressing exception No CEE345 3205 3

0006 Specification exception No CEE346 3206 3

0007 Data exception No CEE347 3207 3

0008 Fixed-point overflow exception Yes CEE348 3208 3

0009 Fixed-point divide exception No CEE349 3209 3

000A Decimal-overflow exception Yes CEE34A 3210 3

000B Decimal divide exception No CEE34B 3211 3

000C Exponent-overflow exception No CEE34C 3212 3

000D Exponent-underflow exception Yes CEE34D 3213 3

000E Significance exception Yes CEE34E 3214 3

nn0F Floating-point divide exception No CEE34F 3215 3

Examples
1. Following is an example of CEE3SPM called by C/C++.

/*Module/File Name: EDC3SPM */

/***/
/* This example queries the enablement of LE/370 */
/* hardware conditions. */
/***/
#include <stdio.h>
#include <string.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_INT4 action;
_CHAR80 cond_string;
char *cond;

/* query the current settings */
action = 2;
CEE3SPM(&action,cond_string,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEE3SPM query failed with message %\n",

fc.tok_msgno);
exit(2999);

}
}

2. Following is an example of CEE3SPM called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZT3SPM

CEE3SPM

Chapter 5. Callable services 205

** **
** CBL3SPM - Call CEE3SPM to query and modify **
** Lang. Environ. hardware condition **
** enablement **
** In this example, a call is made to CEE3SPM **
** to check the setting of the program mask. **
** See the parameter list of CEE3SPM to **
** interpret what is returned as CONDSTR in **
** this example. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3SPM.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ACTION PIC S9(9) BINARY.
01 CONDSTR PIC X(80).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.

** Specify 2 for the QUERY function.
** Pass ACTION in the call to CEE3SPM to return
** the condition string DISPLAY results.

PARA-CBL3SPM.

MOVE 2 TO ACTION.
CALL "CEE3SPM" USING ACTION, CONDSTR, FC.
IF CEE000 of FC THEN

DISPLAY "The current setting of the ",
"program mask is: " CONDSTR

ELSE
DISPLAY "CEE3SPM failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

GOBACK.

3. Following is an example of CEE3SPM called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBM3SPM */
/**/
/** */
/** Function: CEE3SPM - Query and Modify LE/370 */
/** Hardware Condition Enablement */
/** */
/** This example calls CEE3SPM to query the current */
/** setting of the program mask. See the parameter */
/** list of CEE3SPM to interpret what is returned */
/** as CONDSTR in this example. */
/** */
/**/

CEE3SPM

206 z/OS Language Environment Programming Reference

PLI3SPM: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL ACTION REAL FIXED BINARY(31,0);
DCL CONDSTR CHAR(80);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

/* Call CEE3SPM to query the current setting of */
/* the program mask */

ACTION = 2; /* Specify action code 2 to query */
/* the program mask */

CALL CEE3SPM (ACTION, CONDSTR, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(
’The initial setting of the program mask is: ’
|| CONDSTR);

END;
ELSE DO;

DISPLAY(’CEE3SPM failed with msg ’ || FC.MsgNo);
STOP;
END;

/* Call CEE3SPM to enable specification exceptions. */

/* Specify action code 1 to SET the program mask. */
ACTION = 1;

/* Specify a program mask that allows specification */
/* exceptions (all others are unchanged) */

CONDSTR = ’S’; CALL CEE3SPM (ACTION, CONDSTR, FC);
IF ¬ FBCHECK(FC, CEE000) THEN DO;

DISPLAY(’CEE3SPM failed with msg ’ || FC.MsgNo);
STOP;
END;

CALL CEE3SPM (2, CONDSTR, FC); /* Query settings */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(
’The new setting of the program mask is: ’
|| CONDSTR);

END;
ELSE DO;

DISPLAY(’CEE3SPM failed with msg ’ || FC.MsgNo);
STOP;
END;

END PLI3SPM; CALL CEE3SPM (ACTION, CONDSTR, FC);
IF ¬ FBCHECK(FC, CEE000) THEN DO;

DISPLAY(’CEE3SPM failed with msg ’ || FC.MsgNo);
STOP;
END;

CALL CEE3SPM (2, CONDSTR, FC); /* Query settings */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(

CEE3SPM

Chapter 5. Callable services 207

’The new setting of the program mask is: ’
|| CONDSTR);

END;
ELSE DO;

DISPLAY(’CEE3SPM failed with msg ’ || FC.MsgNo);
STOP;
END;

END PLI3SPM;

CEE3SRC—Set the enclave return code

CEE3SRC sets the user enclave return code. The value set is used in the calculation
of the final enclave return code at enclave termination.

Syntax

►► CEE3SRC (return_code , fc) ►◄

return_code (input)
An INT4 data type. The enclave return code to be set should be <= 999,999
and >= 0 to be in the Language Environment-preferred range. (The initial
value is 0.)

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message
number

Message text

CEE000 0 — The service completed successfully.
CEE0HA 1 0554 A value outside the preferred range of 0 through

999,999 was supplied. However, the value was still
used as the enclave return code.

Usage notes
v z/OS UNIX consideration—CEE3SRC is not supported in multithread

applications.
v PL/I MTF consideration—For PL/I multitasking applications, the user return

code value set during invocation of CEE3SRC affects the current task only. If a
PL/I program causes an enclave to terminate, the value set by CEE3SRC at the
associated task level is reflected in the final return code at enclave termination.

v PL/I consideration—When running PL/I with POSIX(ON), CEE3SRC is not
supported.

For more information
v See z/OS Language Environment Programming Guide, for more information about

the CEE3SRC callable service.

CEE3SPM

208 z/OS Language Environment Programming Reference

Examples

CEE3SRC is used with CEE3GRC; see the examples for CEE3GRC show in
“Examples” on page 152.

CEE3SRP—Set resume point

The CEE3SRP service sets the resume point at the next instruction in the calling
routine. CEE3SRP works only in conjunction with the CEEMRCE service.

Syntax

►► CEE3SRP (resume_token , fc) ►◄

resume_token (output)
An INT4 data type that, upon completion of this service, contains a token that
represents a machine state block, which Language Environment allocates from
heap storage. Language Environment automatically frees the heap storage for
the machine state block when the routine associated with the stack frame to
which it points returns to its caller.

fc (output / optional)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message
number

Message text

CEE000 0 — The service completed successfully.
CEE390 3 3360 The stack frame was not found on the call chain.

Usage notes
v An example for Service Label under COBOL follows:

v Use the CEE3SRP service only with the CEEMRCE service from within a user
condition handler. The token returned by this service is used as input to the
CEEMRCE service.

v Language Environment automatically frees the heap storage for the machine
state block when the routine associated with the stack frame to which it points
returns to its caller. Attempts to use the machine state block after it is freed
result in unpredictable behavior.

v COBOL considerations

SET-RECOVERY-POINT-PARAGRAPH.
CALL ’CEE3SRP’ USING RECOVERY-POINT FC.
SERVICE LABEL.

ERROR-PARAGRAPH.
* code to do post-error processing

CEE3SRC

Chapter 5. Callable services 209

– A Service Label compiler directive must be specified immediately after the
call to CEE3SRP.

– When a resume occurs and control resumes to the next instruction following
the call to CEE3SRP, the COBOL RETURN-CODE special register contains an
unpredictable value.

Examples

For examples of how to use CEE3SRP in combination with CEEMRCE and
CEEHDLR, see “CEEMRCE—Move resume cursor explicit” on page 360.

CEE3USR—Set or query user area fields

CEE3USR sets or queries one of two 4-byte fields known as the user area fields.
The user area fields are associated with an enclave and are maintained on an
enclave basis. A user area field can be used by vendor or application programs to
store a pointer to a global data area or to keep a recursion counter.

Be careful not to confuse the Language Environment user area fields with the PL/I
user area. The PL/I user area is a 4-byte field in the PL/I TCA and can be accessed
only through assembler language. The PL/I user area continues to be supported
for compatibility.

Language Environment initializes both user area fields to X'00000000' during
enclave initialization.

Syntax

►► CEE3USR (function_code , field_number , field_value , fc) ►◄

function_code (input)
A fullword binary integer representing the function performed:

1—SET
User area field according to the value specified in field_value.

2—QUERY
User area field; return current value in field_value.

field_number (input)
A fullword binary integer indicating the field to set or query. field_number must
be specified as either 1 or 2.

field_value (input/output)
A fullword binary integer.

If function_code is specified as 1 (meaning SET user area field), field_value
contains the value to be copied to the user area field.

If function_code is specified as 2 (meaning QUERY user area field), the value in
the user area field is copied to field_value.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result

CEE3SRP

210 z/OS Language Environment Programming Reference

of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message
number

Message text

CEE000 0 — The service completed successfully.
CEE3PS 3 3900 The function code passed to CEE3USR was not 1

or 2.
CEE3PT 3 3901 The field number passed to CEE3USR was not 1

or 2.

Usage notes
v z/OS UNIX consideration—CEE3USR applies to the enclave.

Examples
1. Following is an example of CEE3USR called by C/C++.

/*Module/File Name: EDC3USR */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <leawi.h>
#include <ceeedcct.h>

typedef struct {
int value1,value2,value3;
char slot1_80};

} info_struct;

int main (void) {

_INT4 function_code, field_number, field_value;
_FEEDBACK fc;
info_struct *info;

info = (info_struct *)malloc(sizeof(info_struct));
/* .

.

. */
/* Set User field 1 to point to info_struct */
function_code = 1;
field_number = 1;
field_value = (int)info;

CEE3USR(&function_code,&field_number,&field_value,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEE3USR failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}
/* .

.

. */
/* get the value of field 2 */
function_code = 2;
field_number = 1;

CEE3USR(&function_code,&field_number,&field_value,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEE3USR failed with message number %d\n",

CEE3USR

Chapter 5. Callable services 211

fc.tok_msgno);
exit(2999);

}
/* .

.

. */
}

2. Following is an example of CEE3USR called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZT3USR

** **
** CBL3USR - Call CEE3USR to set or query user **
** area fields **
** **
** In this example, CEE3USR is called twice: **
** once to set the value of a user area, and **
** once to query it. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBL3USR.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 FUNCODE PIC S9(9) BINARY.
01 FIELDNO PIC S9(9) BINARY.
01 INVALUE PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.

** Specify 1 for SET function.
** Specify field number 1 to set the value field
** number 1.
** Specify 23 to make the value of field number 1
** equal to 23.

PARA-3USRSET.

MOVE 1 TO FUNCODE.
MOVE 1 TO FIELDNO.
MOVE 23 TO INVALUE.
CALL "CEE3USR" USING FUNCODE, FIELDNO,

INVALUE, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEE3USR failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

** Specify 2 for QUERY function.
** Specify field number 1 to query the value
** of field number 1.

CEE3USR

212 z/OS Language Environment Programming Reference

PARA-3USRQRY.
MOVE 2 TO FUNCODE.
MOVE 1 TO FIELDNO.
CALL "CEE3USR" USING FUNCODE, FIELDNO,

INVALUE, FC.
IF CEE000 of FC THEN

DISPLAY "User Area field " FIELDNO
" is: " INVALUE

ELSE
DISPLAY "CEE3USR failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

GOBACK.

3. Following is an example of CEE3USR called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBM3USR */
/**/
/** **/
/** Function: CEE3USR - set/query user area fields **/
/** **/
/** In this example, CEE3USR is called twice: once **/
/** to set the value of a user area, and once to **/
/** query it. **/
/**/
PLI3USR: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL FUNCODE REAL FIXED BINARY(31,0);
DCL FIELDNO REAL FIXED BINARY(31,0);
DCL OUTVALUE REAL FIXED BINARY(31,0);
DCL INVALUE REAL FIXED BINARY(31,0);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

FUNCODE = 1; /* Specify 1 for the set function */
FIELDNO = 1; /* Specify field 1 of two */
INVALUE = 5; /* Value to put in field 1 */
/* Call CEE3USR to set user field 1 to 5 */
CALL CEE3USR (FUNCODE, FIELDNO, INVALUE, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’LE/370 User field ’ || FIELDNO
|| ’ has been set to ’ || INVALUE);

END;
ELSE DO;

DISPLAY(’CEE3USR failed with msg ’
|| FC.MsgNo);

STOP;
END;

/* Call CEE3USR to query the value of field 1 */

FUNCODE = 2; /* Specify 2 for query function */
FIELDNO = 1; /* Specify field 1 of two */

CEE3USR

Chapter 5. Callable services 213

CALL CEE3USR (FUNCODE, FIELDNO, OUTVALUE, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’LE/370 User field ’ || FIELDNO
|| ’ is currently set to ’ || OUTVALUE);

END;
ELSE DO;

DISPLAY(’CEE3USR failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLI3USR;

CEECBLDY—Convert date to COBOL Integer format

CEECBLDY converts a string representing a date into a COBOL Integer format,
which is the number of days since 1 January 1601. This service is similar to
CEEDAYS, except that it provides a string in COBOL Integer format, which is
compatible with ANSI intrinsic functions. Use CEECBLDY to access the century
window of Language Environment and to perform date calculations with COBOL
intrinsic functions for programs compiled with the INTDATE(ANSI) compiler
option.

Call CEECBLDY only from COBOL programs that use the returned value as input
for COBOL intrinsic functions. You should not use the returned value with other
Language Environment callable services, nor should you call CEECBLDY from any
non-COBOL programs. Unlike CEEDAYS, there is no inverse function for
CEECBLDY, because it is only for COBOL users who want to use the Language
Environment century window service together with COBOL intrinsic functions for
date calculations. The inverse function for CEECBLDY is provided by the
DATE-OF-INTEGER and DAY-OF-INTEGER intrinsic functions.

To handle dates earlier than 1601, add 4000 to each year, convert to Integer,
calculate, subtract 4000 from the result, and then convert back to character format.
By default, 2-digit years lie within the 100-year range starting 80 years prior to the
system date. Thus, in 1995, all 2-digit years represent dates between 1915 and 2014,
inclusive. You can change this default range by using the CEESCEN callable
service.

Syntax

►► CEECBLDY (input_char_date , picture_string , output_ANSI_date , ►

►) ►◄

input_char_date (input)
A halfword length-prefixed character string (VSTRING) representing a date or
timestamp, in a format conforming to that specified by picture_string. The
character string must contain between 5 and 255 characters, inclusive.
input_char_date can contain leading or trailing blanks. Parsing for a date begins
with the first nonblank character (unless the picture string itself contains
leading blanks, in which case CEECBLDY skips exactly that many positions
before parsing begins). After parsing a valid date, as determined by the format
of the date specified in picture_string, CEECBLDY ignores all remaining

CEE3USR

214 z/OS Language Environment Programming Reference

characters. Valid dates range between and include 01 January 1601 to 31
December 9999. See Table 33 on page 489 for a list of valid picture character
terms that can be specified in input_char_date.

picture_string (input)
A halfword length-prefixed character string (VSTRING), indicating the format
of the date specified in input_char_date. Each character in the picture_string
corresponds to a character in input_char_date. For example, if you specify
MMDDYY as the picture_string, CEECBLDY reads an input_char_date of 060288
as 02 June 1988. If delimiters such as the slash (/) appear in the picture string,
leading zeros can be omitted. For example, the following calls to CEECBLDY
would each assign the same value, 148155 (02 June 1988), to COBINTDATE:

Whenever characters such as colons or slashes are included in the picture_string
(such as HH:MI:SS YY/MM/DD), they count as placeholders but are otherwise
ignored. See Table 33 on page 489 for a list of valid picture character terms and
Table 34 on page 490 for examples of valid picture strings.

If picture_string includes a Japanese Era symbol <JJJJ>, the YY position in
input_char_date is replaced by the year number within the Japanese Era. For
example, the year 1988 equals the Japanese year 63 in the Showa era. See
Table 34 on page 490 for an additional example. See also Table 35 on page 490
for a list of Japanese Eras supported by CEEDATE.

If picture_string includes era symbol <CCCC> or <CCCCCCCC>, the YY position in
input_char_date is replaced by the year number within the era. See Table 34 on
page 490 for an additional example.

output_Integer_date (output)
A 32-bit binary integer representing the COBOL Integer date, the number of
days since 31 December 1600. For example, 16 May 1988 is day number 141485.
If input_char_date does not contain a valid date, output_Integer_date is set to 0
and CEECBLDY terminates with a non-CEE000 symbolic feedback code. Date
calculations are performed easily on the output_Integer_date, because
output_Integer_date is an integer. Leap year and end-of-year anomalies do not
affect the calculations.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can arise from this service:

MOVE ’6/2/88’ TO DATEVAL.
MOVE ’MM/DD/YY’ TO PICSTR.
CALL CEECBLDY USING DATEVAL, PICSTR, COBINTDATE, fc);

MOVE ’06/02/88’ TO DATEVAL.
MOVE ’MM/DD/YY’ TO PICSTR.
CALL CEECBLDY USING DATEVAL, PICSTR, COBINTDATE, fc);

MOVE ’060288’ TO DATEVAL.
MOVE ’MMDDYY’ TO PICSTR.
CALL CEECBLDY USING DATEVAL, PICSTR, COBINTDATE, fc);

MOVE ’88154’ TO DATEVAL.
MOVE ’YYDDD’ TO PICSTR.
CALL CEECBLDY USING DATEVAL, PICSTR, COBINTDATE, fc);

CEECBLDY

Chapter 5. Callable services 215

Code Severity Message
number

Message text

CEE000 0 — The service completed successfully.
CEE2EB 3 2507 Insufficient data was passed to CEEDAYS or

CEESECS. The Lilian value was not calculated.
CEE2EC 3 2508 The date value passed to CEEDAYS or CEESECS

was invalid.
CEE2ED 3 2509 The era passed to CEEDAYS or CEESECS was not

recognized.
CEE2EH 3 2513 The input date passed in a CEEISEC, CEEDAYS, or

CEESECS call was not within the supported range.
CEE2EL 3 2517 The month value in a CEEISEC call was not

recognized.
CEE2EM 3 2518 An invalid picture string was specified in a call to

a date/time service.
CEE2EO 3 2520 CEEDAYS detected non-numeric data in a numeric

field, or the date string did not match the picture
string.

CEE2EP 3 2521 The (<JJJJ>) or (<CCCC>) year-within-era value
passed to CEEDAYS or CEESECS was zero.

Usage notes
v The probable cause for receiving message number 2518 is a picture string that

contains an invalid DBCS string. You should verify that the data in the picture
string is correct.

v z/OS UNIX consideration—In multithread applications, CEECBLDY affects only
the calling thread.

For more information
v See the INTDATE COBOL compiler installation option in the appropriate version

of the COBOL programming guide in the COBOL library at Enterprise COBOL
for z/OS library (http://www.ibm.com/support/
docview.wss?uid=swg27036733) for information about how to get ANSI integer
values from COBOL Intrinsic Functions that are compatible with the Language
Environment callable services CEEDAYS and CEEDATE.

v See “CEESCEN—Set the century window” on page 396 for more information
about the CEESCEN callable service.

v See Table 33 on page 489 for a list of valid picture character terms that can be
specified in input_char_date.

Examples
1. Following is an example of CEECBLDY called by COBOL.

CBL LIB,QUOTE
*Module/File Name: IGZTCBLD

** **
** Function: Invoke CEECBLDY callable service **
** to convert date to COBOL Integer format. **
** This service is used when using the **
** Lang. Environ. Century Window **
** mixed with COBOL Intrinsic Functions. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLDY.

CEECBLDY

216 z/OS Language Environment Programming Reference

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

DATA DIVISION.
WORKING-STORAGE SECTION.
01 CHRDATE.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of CHRDATE.
01 PICSTR.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of PICSTR.
01 INTEGER PIC S9(9) BINARY.
01 NEWDATE PIC 9(8).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.

PARA-CBLDAYS.

** Specify input date and length **

MOVE 25 TO Vstring-length of CHRDATE.
MOVE "1 January 00"

to Vstring-text of CHRDATE.

** Specify a picture string that describes **
** input date, and set the string’s length. **

MOVE 23 TO Vstring-length of PICSTR.
MOVE "ZD Mmmmmmmmmmmmmmz YY"

TO Vstring-text of PICSTR.

** Call CEECBLDY to convert input date to a **
** COBOL Integer date **

CALL "CEECBLDY" USING CHRDATE, PICSTR,
INTEGER, FC.

** If CEECBLDY runs successfully, then compute **
** the date of the 90th day after the **
** input date using Intrinsic Functions **

IF CEE000 of FC THEN
COMPUTE INTEGER = INTEGER + 90
COMPUTE NEWDATE = FUNCTION

DATE-OF-INTEGER (INTEGER)
DISPLAY NEWDATE

" is ANSI day: " INTEGER
ELSE

CEECBLDY

Chapter 5. Callable services 217

DISPLAY "CEECBLDY failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

GOBACK.

CEECMI—Store and load message insert data

CEECMI copies message insert data and loads the address of that data into the
Instance Specific Information (ISI) associated with the condition being processed.
CEECMI also allocates storage for the ISI, if necessary. The number of ISIs per
thread is determined by the MSGQ runtime option. ISIs are released when the
value specified in the MSGQ runtime option is exceeded. The least recently used
ISI is overwritten.

If you plan on using a routine that signals a new condition with a call to the
CEESGL callable service, you should first call CEECMI to copy any insert
information into the ISI associated with the condition.

Syntax

►► CEECMI (cond_rep , insert_seq_num , insert_data , fc) ►◄

cond_rep (input/output)
A condition token that defines the condition for which the q_data_token is
retrieved.

insert_seq_num (input)
A 4-byte integer that contains the insert sequence number (such as insert 1
insert 2). It corresponds to an insert number specified with an ins tag in the
message source file created by the CEEBLDTX EXEC.

insert_data (input)
A halfword-prefixed length string that represents the insert data. The entire
length described in the halfword prefix is used without truncation. DBCS
strings must be enclosed within shift-out (X'0E') and shift-in (X'0F') characters.
The maximum size for an individual insert data item is 254 bytes.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can arise from this service:

Code Severity
Message
number Message text

CEE000 0 — The service completed successfully.
CEE0EB 3 0459 Not enough storage was available to create a new

instance specific information block.
CEE0EC 1 0460 Multiple instances of the condition token with

message number message-number and facility ID
facility-id were detected.

CEECBLDY

218 z/OS Language Environment Programming Reference

Code Severity
Message
number Message text

CEE0ED 3 0461 The maximum number of unique message insert
blocks was reached. This condition token had its
I_S_info field set to 1.

CEE0EE 3 0462 Instance specific information for the condition token
with message number message-number and facility ID
facility-id could not be found.

CEE0EF 3 0463 The maximum size for an insert data item was
exceeded.

CEE0H9 3 0553 An internal error was detected in creating the inserts
for a condition.

Usage notes
v z/OS UNIX consideration—In multithread applications, CEECMI applies to

message insert data for only the calling thread.

For more information
v See “MSGQ” on page 58 for more information about the MSGQ runtime option.
v For more information about CEEBLDTX, see z/OS Language Environment

Programming Guide.

Examples
1. Following is an example of CEECMI called by C/C++.

/*Module/File Name: EDCCMI */
/**
** *
** FUNCTION: CEENCOD - set up a condition token *
** : CEECMI - store and load message *
** insert data *
** : CEEMSG - retrieve, format, and *
** dispatch a message to *
** message file *
** *
** This example illustrates the invocation of *
** the Lang. Environ. message services to *
** store and load message insert data. *
** The resulting message and insert is written *
** to the Lang. Environ. MSGFILE ddname. *
** *
**/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

void main ()
{

_INT2 c_1,c_2,cond_case,sev,control;
_CHAR3 facid;
_INT4 isi;
_VSTRING insert;
_FEEDBACK ctok;
_FEEDBACK fbcode;
_INT4 MSGFILE;
_INT4 insert_no ;
/* Condition Token Declarations */
/**
* EXMPLMSG is a token that represents message *

CEECMI

Chapter 5. Callable services 219

* number 10 in a user message file constructed *
* using the CEEBLDTXT facility. *
* Message 10 is designed to allow one insert. *
**/

insert.length = 18;
memcpy(insert.string ,"<CEPGCMI’s insert>",

insert.length);
/*give ctok value of hex 0000000A40E7D4D700000000 */
/*sev = 0 msgno = 10 facid = XMP */
c_1 = 0;
c_2 = 10;
cond_case = 1;
sev = 0;
control = 0;
memcpy(facid,"XMP",3);
isi = 0;

/**/
/* Call CEENCOD to set-up a condition token */
/**/
CEENCOD(&c_1,&c_2,&cond_case,&sev,&control,;

facid,&isi,&ctok,&fbcode);
if (_FBCHECK (fbcode , CEE000) != 0)
printf("CEENCOD failed with message number %d\n",

fbcode.tok_msgno);
/**/
/* Call CEECMI to create a message insert */
/**/
CEECMI(&ctok, &insert_no, &insert, &fbcode);
if (_FBCHECK (fbcode , CEE000) != 0)
printf("CEECMI failed with message number %d\n",

fbcode.tok_msgno);

/**/
/* Call CEEMSG to issue the message */
/**/
CEEMSG(&ctok, &MSGFILE , &fbcode);
if (_FBCHECK (fbcode , CEE000) != 0)
printf("CEEMSG failed with message number %d\n",

fbcode.tok_msgno);
}

2. Following is an example of CEECMI called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTCMI

** *
** Function: CEECMI - Store and load message *
** insert data *
** : CEENCOD - Construct a condition *
** token *
** : CEEMSG - Dispatch a Message. *
** *
** This example illustrates the invocation *
** of the Lang. Environ. message services to*
** store and load message insert data. *
** CEENCOD is called to construct a token *
** for a user defined message (message 10) *
** in a user message file. *
** CEECMI is called to insert text into *
** message 10. The resulting message and *
** insert is written to the MSGFILE. *
** *

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLCMI.
DATA DIVISION.

CEECMI

220 z/OS Language Environment Programming Reference

WORKING-STORAGE SECTION.
01 INSERTNO PIC S9(9) BINARY.
01 CTOK PIC X(12).
01 FBCODE.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 MSGDEST PIC S9(9) BINARY.
01 SEV PIC S9(4) BINARY.
01 MSGNO PIC S9(4) BINARY.
01 CASE PIC S9(4) BINARY.
01 SEV2 PIC S9(4) BINARY.
01 CNTRL PIC S9(4) BINARY.
01 FACID PIC X(3).
01 ISINFO PIC S9(9) BINARY.
01 VSTRING.

05 INSERT-TXTL PIC S9(4) BINARY.
05 INSERT-TXT PIC X(80).

PROCEDURE DIVISION.
PARA-CEPGCMI.

**
* Set up token fields for creation of a *
* condition token for the user defined *
* message file and message number. *
**

MOVE 0 TO SEV.
MOVE 10 TO MSGNO.
MOVE 1 TO CASE.
MOVE 0 TO SEV2.
MOVE 0 TO CNTRL.
MOVE "XMP" TO FACID.
MOVE 0 TO ISINFO.

**
* Call CEENCOD to construct a condition token *
**

CALL "CEENCOD" USING SEV, MSGNO, CASE,
SEV2, CNTRL, FACID,
ISINFO, CTOK, FBCODE.

IF NOT CEE000 of FBCODE THEN
DISPLAY "CEENCOD failed with msg"

Msg-No of FBCODE UPON CONSOLE
STOP RUN

END-IF.

* Call CEECMI to store and load message *
* insert 1. *

MOVE "<CEPGCMI""s insert>" TO INSERT-TXT.
MOVE 19 TO INSERT-TXTL.
MOVE 1 TO INSERTNO.
CALL "CEECMI" USING CTOK, INSERTNO, VSTRING.

* Call CEEMSG to write message to MSGFILE *

MOVE 2 TO MSGDEST.
CALL "CEEMSG" USING CTOK, MSGDEST, FBCODE.
IF NOT CEE000 of FBCODE THEN

DISPLAY "CEEMSG failed with msg "

CEECMI

Chapter 5. Callable services 221

Msg-No of FBCODE UPON CONSOLE
STOP RUN

END-IF.

GOBACK.

3. Following is an example of CEECMI called by PL/I.
*PROCESS MACRO;
IBMCMI: Proc Options(Main);

/*Module/File Name: IBMCMI */
/***
** *
** FUNCTION : CEECMI - store and load message *
** insert data *
** : CEEMSG - retrieve, format, and *
** dispatch a message to *
** message file *
** *
** This example illustrates the invocation of *
** LE/370 message services to store and load *
** message insert data. The resulting message *
** and insert are written to the MSGFILE. *
** *
**/
%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;
DECLARE INSERT CHAR(255) VARYING;
DCL 01 CTOK, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
DCL 01 FBCODE, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
DECLARE MSGFILE REAL FIXED BINARY(31,0);
DECLARE INSERT_NO REAL FIXED BINARY(31,0);

/***/
/* Ctok is initialized in the DECLARE statement */
/* to message 10 in a user message file */
/* constructed using the CEEBLDTX tool. */
/* Message 10 is designed to allow one insert. */
/* The message facility ID is XMP. */
/***/
insert = ’<CEPGCMI’s insert>’;
insert_no = 1;

/**/
/* Call CEECMI to create a message insert */
/**/
Call CEECMI(ctok, insert_no, insert, *);

/**/

CEECMI

222 z/OS Language Environment Programming Reference

/* Call CEEMSG to issue the message */
/**/
MSGFILE = 2;
Call CEEMSG(ctok, MSGFILE, *);

End IBMCMI;

CEECRHP—Create new additional heap

CEECRHP lets you define additional heaps. It returns a unique heap_id. The heaps
defined by CEECRHP can be used just like the initial heap (heap_id=0), below heap,
and anywhere heap. Unlike the heaps created by these heap services, all heap
elements within an additional heap can be quickly freed by a single call to
CEEDSHP (discard heap). The number of heaps supported by Language
Environment is limited only by the amount of virtual storage available.

Syntax

►► CEECRHP (heap_id , initial_size , increment , options , fc ►

►) ►◄

heap_id (output)
A fullword binary signed integer. heap_id is the heap identifier of the created
heap. If a new heap cannot be created, the value of heap_id remains undefined.
Storage obtained from heap_ids 79 and 80 is set to binary 0 independent of any
initialization value specified by the STORAGE option.

initial_size (input)
A fullword binary signed integer. initial_size is the initial amount of storage, in
bytes, allocated for the new heap. initial_size is rounded up to the nearest
increment of 4096 bytes. If initial_size is specified as 0, then the init_size
specified in the HEAP runtime option is used. If no HEAP runtime option was
provided and initial_size is specified as 0, CEECRHP uses the system-level or
region-level default.

increment (input)
A fullword binary signed integer. When it is necessary to enlarge the heap to
satisfy an allocation request, increment represents the number of bytes by which
the heap is extended. increment is rounded up to the nearest 4096 bytes. If
increment is specified as 0, then the incr_size specified in the HEAP run time
option is used. If no HEAP runtime option was provided and increment equals
0, CEECRHP uses the installation default.

options (input)
A fullword binary signed integer. options are specified with the decimal codes,
as shown in Table 25.

Table 25. HEAP attributes based on the setting of the options parameter

Option
setting

HEAP attributes

00 Use same attributes as the initial heap (copy them from the HEAP runtime
option)

01 HEAP(,,,FREE) (location inherited from HEAP runtime option)

CEECMI

Chapter 5. Callable services 223

Table 25. HEAP attributes based on the setting of the options parameter (continued)

Option
setting

HEAP attributes

70 HEAP(,,,KEEP) (location inherited from HEAP runtime option)

71 HEAP(,,ANYWHERE,KEEP)

72 HEAP(,,ANYWHERE,FREE)

73 HEAP(,,BELOW,KEEP)

74 HEAP(,,BELOW,FREE)

75 HEAP(,,ANYWHERE,) (disposition inherited from the HEAP runtime option)

76 HEAP(,,BELOW,) (disposition inherited from the HEAP runtime option)

77 HEAP(,,ANYWHERE,KEEP) (all heap storage obtained using this heap_id is
allocated on a 4K boundary)

78 HEAP(,,ANYWHERE,FREE) (all heap storage obtained using this heap_id is
allocated on a 4K boundary)

79 HEAP(,,ANYWHERE,KEEP) (all heap storage obtained using this heap_id is set
to binary 0 when allocated using CEEGTST)

80 HEAP(,,ANYWHERE,FREE) (all heap storage obtained using this heap_id is set
to binary 0 when allocated using CEEGTST)

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can arise from this service:

Code Severity Message
number

Message text

CEE000 0 — The service completed successfully.
CEE0P2 4 0802 Heap storage control information was damaged.
CEE0P4 3 0804 The initial size value supplied in a create heap

request was unsupported.
CEE0P5 3 0805 The increment size value supplied in a create heap

request was unsupported.
CEE0P6 3 0806 The options value supplied in a create heap request

was unrecognized.
CEE0PD 3 0813 Insufficient storage was available to satisfy a get

storage request.

Usage notes
v z/OS UNIX consideration—CEECRHP applies to the enclave.
v The heapid can only be used by the TCB on which the CEECRHP request was

issued. Using the heapid on other TCBs is not supported and will generate
unpredictable results.

For more information
v See “CEEDSHP—Discard heap” on page 258 for more information about the

CEEDSHP callable service.
v See “HEAP” on page 38 for more information about the HEAP runtime option

and IBM-supplied defaults.

CEECRHP

224 z/OS Language Environment Programming Reference

Examples
1. Following is an example of CEECRHP called by C/C++.

/*Module/File Name: EDCCRHP */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_INT4 heapid, size, increment, options;
_FEEDBACK fc;

/* .
.
. */

heapid = 0; /* heap identifier is set */
/* by CEECRHP */

size = 4096; /* initial size of heap (in */
/* bytes) */

increment = 4096; /* increment to extend heap by */
options = 72; /* set up heap as */

/* (,,ANYWHERE,FREE) */

/* create heap using CEECRHP */
CEECRHP(&heapid,&size,&increment,&options,&fc);

/* check the first 4 bytes of the feedback token */
/* (0 if successful) */
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEECRHP failed with message number %d\n",
fc.tok_msgno);

exit(99);
}

/* .
.
. */

/* discard the heap that was previously created */
/* using CEECRHP */
CEEDSHP(&heapid,&fc);

/* check the first 4 bytes of the feedback token */
/* (0 if successful) */
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEDSHP failed with message number %d\n",
fc.tok_msgno);

exit(99);
}

/* .
.
. */

}

2. Following is an example of CEECRHP called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTCRHP

** **
** Function: CEECRHP - create new additional **
** heap **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLCRHP.
DATA DIVISION.

CEECRHP

Chapter 5. Callable services 225

WORKING-STORAGE SECTION.
01 HEAPID PIC S9(9) BINARY.
01 HPSIZE PIC S9(9) BINARY.
01 INCR PIC S9(9) BINARY.
01 OPTS PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.

** Specify 0 for HEAPID, and heap id will be **
** set by CEECRHP. **
** Heap size and increment will each be **
** 4096 bytes. **
** Specify 00 for OPTS, and HEAP attributes **
** will be inherited from the initial heap **
** (copied from the HEAP runtime option). **

MOVE 0 TO HEAPID.
MOVE 4096 TO HPSIZE.
MOVE 4096 TO INCR.
MOVE 00 TO OPTS.

CALL "CEECRHP" USING HEAPID, HPSIZE,
INCR, OPTS, FC.

IF CEE000 of FC THEN
DISPLAY "Created heap number " HEAPID

" which is " HPSIZE " bytes long"
ELSE

DISPLAY "CEECRHP failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

GOBACK.

3. Following is an example of CEECRHP called by PL/I.
*PROCESS MACRO;
/*Module/File Name: IBMCRHP */

/**/
/** */
/** Function: CEECRHP - create new additional */
/** heap */
/** */
/** In this example, CEECRHP is called to set up */
/** a new additional heap of 4096 bytes. Each */
/** time the heap needs to be extended, an */
/** increment of 4096 bytes will be added. */
/** */
/**/
PLICRHP: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;
DCL HEAPID REAL FIXED BINARY(31,0) ;
DCL HPSIZE REAL FIXED BINARY(31,0) ;

CEECRHP

226 z/OS Language Environment Programming Reference

DCL INCR REAL FIXED BINARY(31,0) ;
DCL OPTS REAL FIXED BINARY(31,0) ;
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

HEAPID = 0; /* HEAPID will be set and */
/* returned by CEECRHP */

HPSIZE = 4096; /* Initial size of heap, */
/* in bytes */

INCR = 4096; /* Number of bytes to extend */
/* heap by */

OPTS = 00; /* Set up heap with the same */
/* attributes as the */
/* initial heap (HEAPID = 0) */

/* Call CEECRHP to set up new heap */
CALL CEECRHP (HEAPID, HPSIZE, INCR, OPTS, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’Created heap number ’ || HEAPID
|| ’ consisting of ’ || HPSIZE || ’ bytes’);

END;
ELSE DO;

DISPLAY(’CEECRHP failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLICRHP;

CEECZST—Reallocate (change size of) storage

CEECZST changes the size of a previously allocated heap element. The address
parameter points to the beginning of the heap element. The new_size parameter
gives the new size of the heap element, in bytes. The contents of the heap element
are unchanged up to the shorter of the new and old sizes.

The CEECZST service returns a pointer to the reallocated heap element. It can
move the storage location of the heap element. As a result, the address parameter
passed to CEECZST is not necessarily the same as the value returned.

Because the new storage might be allocated at a different location from the existing
allocation, any pointers (specifically any addresses) that referred to the old storage
become invalid. Continued use of such dangling pointers gives unpredictable, and
almost certainly incorrect, results.

The heap identifier is inferred from the address. The new storage block is allocated
from the same heap that contained the old block.

The contents of the old storage are preserved in the following manner:
v If new_size is greater than the old size, the entire contents of the old storage

block are copied to the new block. The remaining bytes in the new element are
left uninitialized unless an initialization suboption value was specified for the
heap in the STORAGE option.

CEECRHP

Chapter 5. Callable services 227

v If new_size is less than the old size, the contents of the old block are truncated to
the size of the new block.

v If new_size is equal to the old size, no operations are performed; a successful
feedback code is returned.

Syntax

►► CEECZST (address , new_size , fc) ►◄

address (input/output)
A fullword address pointer. On input, this parameter contains an address
returned by a previous CEEGTST call. On output, the address of the first byte
of the newly allocated storage is returned in this parameter.

new_size (input)
A fullword binary signed integer. new_size is the number of bytes of storage to
be allocated for the new heap element.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity
Message
number Message text

CEE000 0 — The service completed successfully.
CEE0P2 4 0802 Heap storage control information was damaged.
CEE0P8 3 0808 Storage size in a get storage request or a reallocate

request was not a positive number.
CEE0PA 3 0810 The storage address in a free storage request was not

recognized, or heap storage control information was
damaged.

CEE0PD 3 0813 Insufficient storage was available to satisfy a get
storage request.

Usage notes
v Storage that is reallocated maintains the same mark/release status as the old

storage block. If the old storage block was marked, the new storage block carries
the same mark and is released by a release operation that specifies that mark.

v z/OS UNIX consideration—CEECZST applies to the enclave.
v The _CEE_REALLOC_CONTROL environment variable provides additional

levels of storage control, which can aid CEECZST to more efficiently use storage.
For more information about _CEE_REALLOC_CONTROL, seez/OS XL C/C++
Programming Guide.

For more information
v See “STORAGE” on page 81 for more information about the STORAGE runtime

option.

CEECZST

228 z/OS Language Environment Programming Reference

v For information about CEEGTST, see “CEEGTST—Get heap storage” on page
315.

Examples
1. Following is an example of CEECZST called by C/C++.

/*Module/File Name: EDCCZST */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>
int main(void) {

_INT4 heapid, size;
_POINTER address;
_FEEDBACK fc;
/* .

.

. */
heapid = 0; /* get storage from initial heap */
size = 4000; /* number of bytes of heap storage */

/* obtain the storage using CEEGTST */
CEEGTST(&heapid,&size,&address,&fc);

/* check the first 4 bytes of the feedback token */
/* (0 if successful) */
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEGTST failed with message number %d\n",
fc.tok_msgno);

exit(99);
}
/* .

.

. */
size = 2000; /* new size of storage element */

/* change the size of the storage element */
CEECZST(&address,&size,&fc);

/* check the first 4 bytes of the feedback token */
/* (0 if successful) */
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEECZST failed with message number %d\n",
fc.tok_msgno);

exit(99);
}
/* .

.

. */
/* free the storage that was previously obtained */
/* using CEEGTST */
CEEFRST(&address,&fc);

/* check the first 4 bytes of the feedback token */
/* (0 if successful) */
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEFRST failed with message number %d\n",
fc.tok_msgno);

exit(99);
}
/* .

.

. */
}

2. Following is an example of CEECZST called by COBOL.

CEECZST

Chapter 5. Callable services 229

CBL LIB,QUOTE
*Module/File Name: IGZTCZST
**
** **
** Function: CEECZST - reallocate storage **
** **
** In this example, CEEGTST is called to **
** request storage from HEAPID = 0, and **
** CEECZST is called to change the size of **
** that storage request. **
** **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBLCZST.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 HEAPID PIC S9(9) BINARY.
01 HPSIZE PIC S9(9) BINARY.
01 ADDRSS POINTER.
01 NEWSIZE PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLGTST.

** Specify 0 to get storage from the initial **
** heap. Specify 4000 to get 4000 bytes of **
** storage. **

MOVE 0 TO HEAPID.
MOVE 4000 TO HPSIZE.

** Call CEEGTST to obtain storage. **

CALL "CEEGTST" USING HEAPID, HPSIZE,
ADDRSS, FC.

** If CEEGTST runs successfully, display result**

IF CEE000 OF FC THEN
DISPLAY " " HPSIZE

" bytes have been allocated."
ELSE

DISPLAY "CEEGTST failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

** Specify a new size of 2000 bytes. **

MOVE 2000 TO NEWSIZE.

CEECZST

230 z/OS Language Environment Programming Reference

** Call CEECZST to change the size of the **
** storage allocated in the call to CEEGTST. **

CALL "CEECZST" USING ADDRSS, NEWSIZE, FC.

** If CEECZST runs successfully, display result**

IF CEE000 OF FC THEN
DISPLAY

"The storage element now contains "
NEWSIZE " bytes."

ELSE
DISPLAY "CEEGTST failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

GOBACK.

3. Following is an example of CEECZST called by PL/I.
*PROCESS MACRO;
/*Module/File Name: IBMCZST */
/***/
/** **/
/** Function: CEECZST - reallocate storage **/
/** **/
/** In this example, CEEGTST is called to request **/
/** storage from HEAPID = 0, and CEECZST is called**/
/** to change the size of that storage request. **/
/** **/
/** **/
/***/
PLICZST: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL HEAPID REAL FIXED BINARY(31,0) ;
DCL STGSIZE REAL FIXED BINARY(31,0) ;
DCL ADDRSS1 POINTER;
DCL 01 FC1, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
DCL ADDRSS2 POINTER;
DCL NEWSIZE REAL FIXED BINARY(31,0) ;
DCL 01 FC2, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

HEAPID = 0; /* get storage from initial heap */
STGSIZE = 4000; /* get 4000 bytes of storage */

CEECZST

Chapter 5. Callable services 231

/* Call CEEGTST to obtain the storage */
CALL CEEGTST (HEAPID, STGSIZE, ADDRSS1, FC1);
IF FBCHECK(FC1, CEE000) THEN DO;

PUT SKIP LIST(’Obtained ’ || STGSIZE
|| ’ bytes of storage at location ’
|| DECIMAL(UNSPEC(ADDRSS1))
|| ’ from heap ’ || HEAPID);

END;
ELSE DO;

DISPLAY(’CEEGTST failed with msg ’
|| FC1.MsgNo);

STOP;
END;

NEWSIZE = 2000;
/* change size of HEAPID 0 to 2000 bytes */

/* Call CEECZST to change the size of storage */
ADDRSS2 = ADDRSS1;
CALL CEECZST (ADDRSS2, NEWSIZE , FC2);
IF FBCHECK(FC2, CEE000) THEN DO;

PUT SKIP LIST(’Obtained ’ || NEWSIZE
|| ’ bytes of storage at location ’
|| DECIMAL(UNSPEC(ADDRSS1)));

PUT SKIP LIST(’Original ’ || STGSIZE
|| ’ bytes of storage at location ’
|| DECIMAL(UNSPEC(ADDRSS1))
|| ’ no longer valid’);

END;
ELSE DO;

DISPLAY(’CEECZST failed with msg ’
|| FC2.MsgNo);

STOP;
END;

END PLICZST;

CEEDATE—Convert Lilian date to character format

CEEDATE converts a number representing a Lilian date to a date written in
character format. The output is a character string, such as 1993/09/09.

Do not use CEEDATE in combination with COBOL intrinsic functions.

The inverse of CEEDATE is CEEDAYS, which converts character dates to the Lilian
format.

CEEDATE is affected only by the country code setting of the COUNTRY runtime
option or CEE3CTY callable service, not the CEESETL callable service or the
setlocale() function.

Syntax

►► CEEDATE (input_Lilian_date , picture_string , output_char_date ►

► , fc) ►◄

CEECZST

232 z/OS Language Environment Programming Reference

input_Lilian_date (input)
A 32-bit integer representing the Lilian date. The Lilian date is the number of
days since 14 October 1582. For example, 16 May 1988 is Lilian day number
148138. The valid range of Lilian dates is 1 to 3,074,324 (15 October 1582 to 31
December 9999).

picture_string (input)
A halfword length-prefixed character string (VSTRING), representing the
desired format of output_char_date, for example MM/DD/YY. Each character in
picture_string represents a character in output_char_date. If delimiters such as the
slash (/) appear in the picture string, they are copied to output_char_date.

See Table 33 on page 489 for a list of valid picture characters, and Table 34 on
page 490 for examples of valid picture strings.

If picture_string is null or blank, CEEDATE gets picture_string based on the
current value of the COUNTRY runtime option. For example, if the current
value of the COUNTRY runtime option is US (United States), the date format
would be MM/DD/YY. If the current COUNTRY value is FR (France), the date
format would be MM/DD/YY HH:MM:SS AM (or PM), for example: 09/09/93
4:56:29 PM. This default mechanism makes it easy for translation centers to
specify the preferred date, and for applications and library routines to use this
format automatically.

If picture_string includes a Japanese Era symbol <JJJJ>, the YY position in
output_char_date is replaced by the year number within the Japanese Era. For
example, the year 1988 equals the Japanese year 63 in the Showa era. See
Table 34 on page 490 for an additional example. Also see Table 35 on page 490
for a list of Japanese Eras supported by CEEDATE.

If picture_string includes a era symbol <CCCC> or <CCCCCCCC>, the YY position in
output_char_date is replaced by the year number within the era. See Table 34 on
page 490 for an example.

output_char_date (output)
A fixed-length 80-character string (VSTRING), is the result of converting
input_Lilian_date to the format specified by picture_string. See Table 26 on page
237 for sample output dates. If input_Lilian_date is not valid, output_char_date is
set to all blanks. CEEDATE terminates with a non-CEE000 symbolic feedback
code.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE2EG 3 2512 The Lilian date value was not within the

supported range.
CEE2EM 3 2518 An incorrect picture string was specified.
CEE2EQ 3 2522 <JJJJ>, <CCCC> or <CCCCCCCC> was used in

a picture string passed to CEEDATE, but the
Lilian date value was not within the supported
range. The Era could not be determined.

CEE2EU 2 2526 The date string returned by CEEDATE was
truncated.

CEEDATE

Chapter 5. Callable services 233

Usage notes
v The probable cause for receiving message number 2518 is a picture string that

contains a DBCS string that is not valid. You should verify that the data in the
picture string is correct.

v To create a null VSTRING, set the length to zero; the content of the text portion
does not matter. To create a blank VSTRING, any length greater than zero can be
used; the content of the text portion must be spaces or blanks.

v z/OS UNIX consideration—In multithread applications, CEEDATE applies to the
enclave.

For more information
v See the INTDATE COBOL compiler installation option in the appropriate version

of the COBOL programming guide in the COBOL library at Enterprise COBOL
for z/OS library (http://www.ibm.com/support/
docview.wss?uid=swg27036733) for information about how to get Lilian integer
values from COBOL intrinsic functions that are compatible with the Language
Environment callable services CEEDAYS and CEEDATE.

v See “CEEDAYS—Convert date to Lilian format” on page 243 for more
information about the CEEDAYS callable service.

v See “COUNTRY” on page 24 for more information about the COUNTRY runtime
option.

v See “CEEFMDA—Get default date format” on page 270 for information about
how to get the default format for a given country code.

Examples
1. Following is an example of CEEDATE called by C/C++.

/*Module/File Name: EDCDATE */

#include <leawi.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_INT4 lil_date = 139370; /* May 14, 1964 */
_VSTRING date_pic,date;
_CHAR80 date_out;

strcpy(date_pic.string,
"The date is Wwwwwwwwwz, Mmmmmmmmmz ZD, YYYY");

date_pic.length = strlen(date_pic.string);

CEEDATE(&lil_date,&date_pic,date_out,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEDATE failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}
printf("%.80s\n",date_out);

}

2. Following is an example of CEEDATE called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTDATE
**
** **

CEEDATE

234 z/OS Language Environment Programming Reference

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

** Function: CEEDATE - convert Lilian date to **
** character format **
** **
** In this example, a call is made to CEEDATE **
** to convert a Lilian date (the number of **
** days since 14 October 1582) to a character **
** format (such as 6/22/88). The result is **
** displayed. The Lilian date is obtained **
** via a call to CEEDAYS. **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBLDATE.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 LILIAN PIC S9(9) BINARY.
01 CHRDATE PIC X(80).
01 IN-DATE.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of IN-DATE.
01 PICSTR.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of PICSTR.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.
PARA-CBLDAYS.

** Call CEEDAYS to convert date of 6/2/88 to **
** Lilian representation **

MOVE 6 TO Vstring-length of IN-DATE.
MOVE "6/2/88" TO Vstring-text of IN-DATE(1:6).
MOVE 8 TO Vstring-length of PICSTR.
MOVE "MM/DD/YY" TO Vstring-text of PICSTR(1:8).
CALL "CEEDAYS" USING IN-DATE, PICSTR,

LILIAN, FC.

** If CEEDAYS runs successfully, display result**

IF CEE000 of FC THEN
DISPLAY Vstring-text of IN-DATE

" is Lilian day: " LILIAN
ELSE

DISPLAY "CEEDAYS failed with msg "
Msg-No of FC UPON CONSOLE

CEEDATE

Chapter 5. Callable services 235

STOP RUN
END-IF.

** Specify picture string that describes the **
** desired format of the output from CEEDATE, **
** and the picture string’s length. **

MOVE 23 TO Vstring-length OF PICSTR.
MOVE "ZD Mmmmmmmmmmmmmmz YYYY" TO

Vstring-text OF PICSTR(1:23).

** Call CEEDATE to convert the Lilian date **
** to a picture string. **

CALL "CEEDATE" USING LILIAN, PICSTR,
CHRDATE, FC.

** If CEEDATE runs successfully, display result**

IF CEE000 of FC THEN
DISPLAY "Input Lilian date of " LILIAN

" corresponds to: " CHRDATE
ELSE

DISPLAY "CEEDATE failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

GOBACK.

3. Following is an example of CEEDATE called by PL/I.
*PROCESS MACRO;
/*Module/File Name: IBMDATE */
/***/
/** */
/** Function: CEEDATE - convert Lilian date to */
/** character format */
/** */
/** In this example, a call is made to CEEDATE */
/** to convert a date in the Lilian format */
/** (the number of days since 14 October 1582) */
/** to a date in character format. This date */
/** is then printed out. */
/** */
/*** */
PLIDATE: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL LILIAN REAL FIXED BINARY(31,0) ;
DCL PICSTR CHAR(255) VARYING;
DCL CHRDATE CHAR(80) ;
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI * Instance-Specific Information */

REAL FIXED BINARY(31,0);

LILIAN = 152385; /* input date in Lilian format */

CEEDATE

236 z/OS Language Environment Programming Reference

/* picture string that describes how converted */
/* date is to be formatted */
PICSTR = ’ZD Mmmmmmmmmmmmmmz YYYY’;

/* Call CEE3DATE to convert input Lilian date to */
/* a date in the character format specified in */
/* PICSTR */
CALL CEEDATE (LILIAN , PICSTR , CHRDATE , FC);

/* Print results if call to CEEDATE succeeds */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’Lilian day ’ || LILIAN
|| ’ is equivalent to ’ || CHRDATE);

END;
ELSE DO;

DISPLAY(’CEEDATE failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLIDATE;

Table 26 shows the sample output from CEEDATE.

Table 26. Sample output of CEEDATE

input_Lilian_date picture_string output_char_date

148138 YY
YYMM
YY-MM
YYMMDD
YYYYMMDD
YYYY-MM-DD
YYYY-ZM-ZD

JJJJ YY.MM.DD

CCCC YY.MM.DD

88
8805
88-05
880516
19880516
1988-05-16
1988-5-16
Showa 63.05.16
(in a DBCS string)
Min Guo 77.05.16
(in a DBCS string)

148139 MM
MMDD
MM/DD
MMDDYY
MM/DD/YYYY
ZM/DD/YYYY

05
0517
05/17
051788
05/17/1988
5/17/1988

148140 DD
DDMM
DDMMYY
DD.MM.YY
DD.MM.YYYY
DD Mmm YYYY

18
1805
180588
18.05.88
18.05.1988
18 May 1988

148141 DDD
YYDD
YY.DDD
YYYY.DDD

140
88148
88.140
1988.140

148142 YY/MM/DD HH:MI:SS.99

YYYY/ZM/ZD ZH:MI AP

88/05/20
00:00:00.00
1988/5/20 0:00 AM

CEEDATE

Chapter 5. Callable services 237

Table 26. Sample output of CEEDATE (continued)

input_Lilian_date picture_string output_char_date

148143 WWW., MMM DD, YYYY

Www., Mmm DD, YYYY
Wwwwwwwwww Mmmmmmmmmm
DD, YYYY

Wwwwwwwwwz, Mmmmmmmmmz
DD, YYYY

SAT., MAY 21,
1988
Sat., May 21, 1988
Saturday��,
May������� 21,
1988
Saturday, May 21,
1988

CEEDATM—Convert seconds to character timestamp

CEEDATM converts a number representing the number of seconds since 00:00:00
14 October 1582 to a character string format. The format of the output is a
character string timestamp, for example: 1988/07/26 20:37:00.

The inverse of CEEDATM is CEESECS, which converts a timestamp to number of
seconds.

CEEDATM is affected only by the country code setting of the COUNTRY runtime
option or CEE3CTY callable service, not the CEESETL callable service or the
setlocale() function.

Syntax

►► CEEDATM (input_seconds , picture_string , output_timestamp , ►

► fc) ►◄

input_seconds (input)
A 64-bit double floating-point number representing the number of seconds
since 00:00:00 on 14 October 1582, not counting leap seconds. For example,
00:00:01 on 15 October 1582 is second number 86,401 (24*60*60 + 01). The valid
range of input_seconds is 86,400 to 265,621,679,999.999 (23:59:59.999 31
December 9999).

picture_string (input)
A halfword length-prefixed character string (VSTRING), representing the
desired format of output_timestamp, for example, MM/DD/YY HH:MI AP.

Each character in the picture_string represents a character in output_timestamp. If
delimiters such as a slash (/) appear in the picture string, they are copied as is
to output_timestamp.

See Table 33 on page 489 for a list of valid picture character terms and Table 34
on page 490 for examples of valid picture strings.

If picture_string is null or blank, CEEDATM gets picture_string based on the
current value of the COUNTRY runtime option. For example, if the current
value of the COUNTRY runtime option is US (United States), the date-time
format would be “MM/DD/YY HH:MI:SS AP”; if the current COUNTRY value is
FR (France), however, the date-time format would be “DD.MM.YYYY HH:MI:SS”.

CEEDATE

238 z/OS Language Environment Programming Reference

If picture_string includes the Japanese Era symbol <JJJJ>, the YY position in
output_timestamp represents the year within Japanese Era. See Table 34 on page
490 for an example. See Table 35 on page 490 for a list of Japanese Eras
supported by CEEDATM.

If picture_string includes era symbol <CCCC> or <CCCCCCCC>, the YY position in
output_timestamp represents the year within the era. See Table 34 on page 490
for an example.

output_timestamp (output)
A fixed-length 80-character string (VSTRING), that is the result of converting
input_seconds to the format specified by picture_string. If necessary, the output is
truncated to the length of output_timestamp. See Table 27 on page 243 for
sample output.

If input_seconds is not valid, output_timestamp is set to all blanks and
CEEDATM terminates with a non-CEE000 symbolic feedback code.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE2E9 3 2505 The number-of-seconds value was not within the

supported range.
CEE2EA 3 2506 <JJJJ>, <CCCC> or <CCCCCCCC> was used in a

picture string passed to CEEDATM, but the input
number-of-seconds value was not within the
supported range. The Era could not be determined.

CEE2EM 3 2518 An invalid picture string was specified.
CEE2EV 2 2527 The timestamp string returned by CEEDATM was

truncated.
CEE3CF 2 3471 The country code country-code was not valid for

CEEFMDT. The default date and time picture
string datetime-string was returned.

Usage notes
v The probable cause for receiving message number 2518 is a picture string that

contains a DBCS string that is not valid. You should verify that the data in the
picture string is correct.

v To create a null VSTRING, set the length to zero; the content of the text portion
does not matter. To create a blank VSTRING, any length greater than zero can be
used; the content of the text portion must be spaces or blanks.

v z/OS UNIX consideration—In multithread applications, CEEDATM applies to
the enclave.

For more information
v See “CEESECS—Convert timestamp to seconds” on page 407 for more

information about the CEESECS callable service.
v See “COUNTRY” on page 24 for more information about the COUNTRY runtime

option.

CEEDATM

Chapter 5. Callable services 239

v See “CEEFMDT—Get default date and time format” on page 273 for information
about how to get a default timestamp for a given country code.

Examples
1. Following is an example of CEEDATM called by C/C++.

/*Module/File Name: EDCDATM */

#include <leawi.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main(void) {

/* September 13, 1991 at 11:23:23 PM */
_FLOAT8 seconds = 12904183403.0;
_VSTRING date,date_pic;
_CHAR80 out_date;
_FEEDBACK fc;

strcpy(date_pic.string,
"Mmmmmmmmmmmz DD, YYYY at ZH:MI:.SS AP");
date_pic.length = strlen(date_pic.string);

CEEDATM(&seconds,&date_pic,out_date,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEDATM failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

printf("%.80s\n",out_date);
}

2. Following is an example of CEEDATM called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTDATM

** **
** Function: CEEDATM - convert seconds to **
** character timestamp **
** **
** In this example, a call is made to CEEDATM **
** to convert a date represented in Lilian **
** seconds (the number of seconds since **
** 00:00:00 14 October 1582) to a character **
** format (such as 06/02/88 10:23:45). The **
** result is displayed. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLDATM.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DEST PIC S9(9) BINARY VALUE 2.
01 SECONDS COMP-2.
01 IN-DATE.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of IN-DATE.
01 PICSTR.

02 Vstring-length PIC S9(4) BINARY.

CEEDATM

240 z/OS Language Environment Programming Reference

02 Vstring-text.
03 Vstring-char PIC X

OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of PICSTR.
01 TIMESTP PIC X(80).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.
PARA-CBLDATM.

** Call CEESECS to convert timestamp of 6/2/88 **
** at 10:23:45 AM to Lilian representation **

MOVE 20 TO Vstring-length of IN-DATE.
MOVE "06/02/88 10:23:45 AM"

TO Vstring-text of IN-DATE.
MOVE 20 TO Vstring-length of PICSTR.
MOVE "MM/DD/YY HH:MI:SS AP"

TO Vstring-text of PICSTR.
CALL "CEESECS" USING IN-DATE, PICSTR,

SECONDS, FC.

** If CEESECS runs successfully, display result**

IF CEE000 of FC THEN
DISPLAY Vstring-text of IN-DATE

" is Lilian second: " SECONDS
ELSE

DISPLAY "CEESECS failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

** Specify desired format of the output. **

MOVE 35 TO Vstring-length OF PICSTR.
MOVE "ZD Mmmmmmmmmmmmmmz YYYY at HH:MI:SS"

TO Vstring-text OF PICSTR.

** Call CEEDATM to convert Lilian seconds to **
** a character timestamp **

CALL "CEEDATM" USING SECONDS, PICSTR,
TIMESTP, FC.

** If CEEDATM runs successfully, display result**

IF CEE000 of FC THEN
DISPLAY "Input seconds of " SECONDS

" corresponds to: " TIMESTP

CEEDATM

Chapter 5. Callable services 241

ELSE
DISPLAY "CEEDATM failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

GOBACK.

3. Following is an example of CEEDATM called by PL/I.
*PROCESS MACRO;
/*Module/File Name: IBMDATM

/**/
/** **/
/** Function: CEEDATM - Convert seconds to **/
/** character timestamp **/
/** **/
/** In this example, CEEDATM is called to convert **/
/** the number of seconds since 00:00:00 14 **/
/** October 1582 to the character format specified **/
/** in PICSTR. **/
/** **/
/**/

PLIDATM: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL SECONDS REAL FLOAT DECIMAL(16);
DCL PICSTR CHAR(255) VARYING;
DCL TIMESTP CHAR(80);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

SECONDS = 13166064060; /* Input is Lilian seconds*/

PICSTR = ’ZD Mmmmmmmmmmmmmmz YYYY’; /* Picture */
/* string describing desired output format */

/* Call CEEDATM to convert Lilian seconds to */
/* format specified in PICSTR */
CALL CEEDATM (SECONDS , PICSTR , TIMESTP , FC);

/* If CEEDATM ran successfully, print result */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(
’Input Lilian seconds correspond to ’
|| TIMESTP);

END;
ELSE DO;

DISPLAY(’CEEDATM failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLIDATM;

Table 27 on page 243 shows the sample output of CEEDATM.

CEEDATM

242 z/OS Language Environment Programming Reference

Table 27. Sample output of CEEDATM

input_seconds picture_string output_timestamp

12,799,191,601.000 YYMMDD
HH:MI:SS
YY-MM-DD
YYMMDDHHMISS
YY-MM-DD HH:MI:SS
YYYY-MM-DD HH:MI:SS
AP

880516
19:00:01
88-05-16
880516190001
88-05-16
19:00:01
1988-05-16
07:00:01 PM

12,799,191,661.986 DD Mmm YY
DD MMM YY HH:MM
WWW, MMM DD, YYYY
ZH:MI AP
Wwwwwwwwwz, ZM/ZD/YY
HH:MI:SS.99

16 May 88
16 MAY 88 19:01
MON, MAY 16,
1988 7:01 PM
Monday, 5/16/88
19:01:01.98

12,799,191,662.009 YYYY
YY
Y
MM
ZM
RRRR
MMM
Mmm
Mmmmmmmmmm
Mmmmmmmmmz
DD
ZD
DDD
HH
ZH
MI
SS
99
999
AP
WWW
Www
Wwwwwwwwww
Wwwwwwwwwz

1988
88
8
05
5
V���
MAY
May������
May
16
16
137
19
01
02
00
009
PM
MON
Mon
Monday����
Monday

CEEDAYS—Convert date to Lilian format

CEEDAYS converts a string representing a date into a Lilian format, which
represents a date as the number of days from the beginning of the Gregorian
calendar. CEEDAYS converts the specified input_char_date to a number representing
the number of days since day one in the Lilian format: Friday, 14 October, 1582.

The inverse of CEEDAYS is CEEDATE, which converts output_Lilian_date from
Lilian format to character format.

Do not use CEEDAYS in combination with COBOL intrinsic functions unless the
programs are compiled with the INTDATE(LILIAN) compiler option. Use
CEECBLDY for COBOL programs that use intrinsic functions and that are
compiled with INTDATE(ANSI).

CEEDATM

Chapter 5. Callable services 243

To handle dates earlier than 1601, it is possible to add 4000 to each year, convert to
Lilian, calculate, subtract 4000 from the result, and then convert back to character
format.

By default, 2-digit years lie within the 100-year range starting 80 years prior to the
system date. Thus, in 1995, all 2-digit years represent dates between 1915 and 2014,
inclusive. This default range is changed by using the callable service CEESCEN.

Syntax

►► CEEDAYS (input_char_date , picture_string , output_Lilian_date ►

► , fc) ►◄

input_char_date (input)
A halfword length-prefixed character string (VSTRING), representing a date or
timestamp, in a format conforming to that specified by picture_string.

The character string must contain between 5 and 255 characters, inclusive.
input_char_date can contain leading or trailing blanks. Parsing for a date begins
with the first nonblank character (unless the picture string itself contains
leading blanks, in which case CEEDAYS skips exactly that many positions
before parsing begins).

After parsing a valid date, as determined by the format of the date specified in
picture_string, CEEDAYS ignores all remaining characters. Valid dates range
between and include 15 October 1582 to 31 December 9999. See Table 33 on
page 489 for a list of valid picture character terms that can be specified in
input_char_date.

picture_string (input)
A halfword length-prefixed character string (VSTRING), indicating the format
of the date specified in input_char_date.

Each character in the picture_string corresponds to a character in
input_char_date. For example, if you specify MMDDYY as the picture_string,
CEEDAYS reads an input_char_date of 060288 as 02 June 1988.

If delimiters such as a slash (/) appear in the picture string, leading zeros can
be omitted. For example, the following calls to CEEDAYS, would each assign
the same value, 148155 (02 June 1988), to lildate.

Whenever characters such as colons or slashes are included in the picture_string
(such as HH:MI:SS YY/MM/DD), they count as placeholders but are otherwise
ignored. See Table 33 on page 489 for a list of valid picture character terms and
Table 34 on page 490 for examples of valid picture strings.

If picture_string includes a Japanese Era symbol <JJJJ>, the YY position in
input_char_date is replaced by the year number within the Japanese Era. For
example, the year 1988 equals the Japanese year 63 in the Showa era. See

CALL CEEDAYS(’6/2/88’ , ’MM/DD/YY’, lildate, fc);
CALL CEEDAYS(’06/02/88’, ’MM/DD/YY’, lildate, fc);
CALL CEEDAYS(’060288’ , ’MMDDYY’ , lildate, fc);
CALL CEEDAYS(’88154’ , ’YYDDD’ , lildate, fc);
CALL CEEDAYS(’1988154’ , ’YYYYDDD’ , lildate, fc);

CEEDAYS

244 z/OS Language Environment Programming Reference

Table 34 on page 490 for an additional example. See also Table 35 on page 490
for a list of Japanese Eras supported by CEEDATE.

If picture_string includes era symbol <CCCC> or <CCCCCCCC>, the YY position in
input_char_date is replaced by the year number within the era. See Table 34 on
page 490 for an additional example.

output_Lilian_date (output)
A 32-bit binary integer representing the Lilian date, the number of days since
14 October 1582. For example, 16 May 1988 is day number 148138.

If input_char_date does not contain a valid date, output_Lilian_date is set to 0
and CEEDAYS terminates with a non-CEE000 symbolic feedback code.

Date calculations are performed easily on the output_Lilian_date, because it is
an integer. Leap year and end-of-year anomalies do not affect the calculations.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE2EB 3 2507 Insufficient data was passed to CEEDAYS or

CEESECS. The Lilian value was not calculated.
CEE2EC 3 2508 The date value passed to CEEDAYS or CEESECS

was not valid.
CEE2ED 3 2509 Tbe era passed to CEEDAYS or CEESECS was

not recognized.
CEE2EH 3 2513 The input date was not within the supported

range.
CEE2EL 3 2517 The month value was not recognized.
CEE2EM 3 2518 An incorrect picture string was specified.
CEE2EO 3 2520 CEEDAYS detected non-numeric data in a

numeric field, or the date string did not match
the picture string.

CEE2EP 3 2521 The year-within-era value passed to CEEDAYS
or CEESECS was zero.

Usage notes
v The probable cause for receiving message number 2518 is a picture string that

contains a DBCS string that is not valid. You should verify that the data in the
picture string is correct.

v z/OS UNIX consideration—In multithread applications, CEEDAYS applies to the
enclave.

For more information
v See the INTDATE COBOL compiler installation option in the appropriate version

of the COBOL programming guide in the COBOL library at Enterprise COBOL
for z/OS library (http://www.ibm.com/support/
docview.wss?uid=swg27036733) for information about how to get Lilian integer
values from COBOL intrinsic functions that are compatible with the Language
Environment callable services CEEDAYS and CEEDATE.

CEEDAYS

Chapter 5. Callable services 245

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

v See “CEEDATE—Convert Lilian date to character format” on page 232 for more
information about the CEEDATE runtime option.

v See “CEESCEN—Set the century window” on page 396 for more information
about the CEESCEN callable service.

Examples
1. Following is an example of CEEDAYS called by C/C++.

/*Module/File Name: EDCDAYS */

#include <leawi.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_INT4 lil_date1,lil_date2;
_VSTRING date,date_pic;

/* use CEEDAYS to get the Lilian format */
strcpy(date.string,"05/14/64");
date.length = strlen(date.string);
strcpy(date_pic.string,"MM/DD/YY");
date_pic.length = strlen(date_pic.string);

CEEDAYS(&date,&date_pic,&lil_date1,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEDAYS failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

/* use CEEDAYS to get the Lilian format */
strcpy(date.string,"August 14, 1966");
date.length = strlen(date.string);
strcpy(date_pic.string,"Mmmmmmmmmmmz DD, YYYY");
date_pic.length = strlen(date_pic.string);

CEEDAYS(&date,&date_pic,&lil_date2,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEDAYS failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

/* subtract the two Lilian dates to find out */
/* difference in days */
printf("The number of days between"
" May 14, 1964 and August 14, 1966"
" is: %d\n",lil_date2 - lil_date1);

}

2. Following is an example of CEEDAYS called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTDAYS

** **
** Function: CEEDAYS - convert date to **
** Lilian format **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLDAYS.

CEEDAYS

246 z/OS Language Environment Programming Reference

DATA DIVISION.
WORKING-STORAGE SECTION.
01 CHRDATE.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of CHRDATE.
01 PICSTR.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of PICSTR.
01 LILIAN PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.
PARA-CBLDAYS.

** Specify input date and length **

MOVE 16 TO Vstring-length of CHRDATE.
MOVE "1 January 2000"

TO Vstring-text of CHRDATE.

** Specify a picture string that describes **
** input date, and the picture string’s length.**

MOVE 25 TO Vstring-length of PICSTR.
MOVE "ZD Mmmmmmmmmmmmmmz YYYY"

TO Vstring-text of PICSTR.

** Call CEEDAYS to convert input date to a **
** Lilian date **

CALL "CEEDAYS" USING CHRDATE, PICSTR,
LILIAN, FC.

** If CEEDAYS runs successfully, display result**

IF CEE000 of FC THEN
DISPLAY Vstring-text of CHRDATE

" is Lilian day: " LILIAN
ELSE

DISPLAY "CEEDAYS failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

GOBACK.

CEEDAYS

Chapter 5. Callable services 247

3. Following is an example of CEEDAYS called by PL/I.
*PROCESS MACRO;
/*Module/File Name: IBMDAYS */
/***/
/** **/
/** Function : CEEDAYS - Convert date to **/
/** Lilian format **/
/** **/
/** This example converts two dates to the Lilian **/
/** format in order to calculate the number of **/
/** days between them. **/
/** **/
/***/

PLIDAYS: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL CHRDATE CHAR(255) VARYING;
DCL CHRD2 CHAR(255) VARYING;
DCL PICSTR CHAR(255) VARYING;
DCL PICST2 CHAR(255) VARYING;
DCL LILIAN REAL FIXED BINARY(31,0);
DCL LIL2 REAL FIXED BINARY(31,0);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

/* First date to be converted to Lilian format */
CHRDATE = ’5/7/69’;

/* Picture string of first input date */
PICSTR = ’ZM/ZD/YY’;

/* Call CEEDAYS to convert input date to the */
/* Lilian format */
CALL CEEDAYS (CHRDATE , PICSTR , LILIAN , FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’The Lilian date for ’ || CHRDATE
|| ’ is ’ || LILIAN);

END;
ELSE DO;

DISPLAY(’CEEDAYS failed with msg ’
|| FC.MsgNo);

STOP;
END;

/* Second date to be converted to Lilian format */
CHRD2 = ’1 January 2000’;

/* Picture string of second input date */
PICST2 = ’ZD Mmmmmmmmmmmmmmz YYYY’;

/* Call CEEDAYS to convert input date to the */
/* Lilian format */
CALL CEEDAYS (CHRD2 , PICST2 , LIL2 , FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’The Lilian date for ’ || CHRD2
|| ’ is ’ || LIL2);

CEEDAYS

248 z/OS Language Environment Programming Reference

END;
ELSE DO;

DISPLAY(’CEEDAYS failed with msg ’
|| FC.MsgNo);

STOP;
END;

/* Subtract the two Lilian dates to find out */
/* the difference in days between the two */
/* input dates */
PUT SKIP LIST(’The number of days between ’

|| CHRDATE || ’ and ’ || CHRD2 || ’ is’
|| LIL2 - LILIAN || ’.’);

END PLIDAYS;

CEEDCOD—Decompose a condition token

CEEDCOD alters an existing condition token. Language Environment-conforming
HLLs can decompose or alter the condition token fields without using the
CEEDCOD service. See the CEESGL HLL examples in “Examples” on page 419 for
examples of how to alter the condition token field.

Syntax

►► CEEDCOD (cond_token , c_1 , c_2 , case , severity , ►

► control , facility_ID , i_s_info , fc) ►◄

cond_token (input)
A 12-byte condition token representing the current condition or feedback
information.

c_1 (output)
A 2-byte binary integer representing the value of the first 2 bytes of the
condition_ID.

c_2 (output)
A 2-byte binary integer representing the value of the second 2 bytes of the
condition_ID. See “CEENCOD—Construct a condition token” on page 379 for
a detailed explanation of the condition_ID.

case (output)
A 2-byte binary integer field defining the format of the condition_ID portion of
the token. A value of 1 identifies a case 1 condition. A value of 2 identifies a
case 2 condition. The values 0 and 3 are reserved.

severity (output)
A 2-byte binary integer representing the severity of the condition. severity
specifies the following values:

0 Information only (or, if the entire token is zero, no information).

1 Warning—service completed, probably correctly.

2 Error detected—correction attempted; service completed, perhaps
incorrectly.

3 Severe error—service not completed.

CEEDAYS

Chapter 5. Callable services 249

4 Critical error—service not completed; condition signaled. A critical
error is a condition that jeopardizes the environment. If a critical error
occurs during a Language Environment callable service, instead of
returning synchronously to the caller, the condition manager is always
signaled.

control (output)
A 2-byte binary integer containing flags describing aspects of the state of the
condition. Valid values for the control field are 1 and 0.
1 Indicates that the facility_ID is assigned by IBM.
0 indicates the facility_ID is assigned by the user.

facility_ID (output)
A 3-character field containing three alphanumeric characters identifying the
product generating the condition or feedback information.

i_s_info
A fullword binary integer that identifies the ISI associated with the given
instance of the condition represented by the condition token where it is
contained. If an ISI is not associated with a given condition token, the i_s_info
field contains a value of binary zero.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE036 3 0102 An unrecognized condition token was passed to

routine and could not be used.

Usage notes
v C/C++ considerations—The structure of the condition token (type_FEEDBACK)

is described in the leawi.h header file shipped with Language Environment. C
users can assign values directly to the fields of the token in the header file
without using the CEENCOD service. The layout of the type_FEEDBACK
condition token in the header file is shown in Figure 12 on page 381.

v z/OS UNIX consideration—In multithread applications, CEEDCOD affects only
the calling thread.

For more information
v See the CEESGL HLL examples starting in “Examples” on page 419 for examples

of how to alter the condition token field.
v See “CEENCOD—Construct a condition token” on page 379 for a detailed

explanation of the condition_ID.
v See CEENCOD “Usage notes” on page 380 for a discussion of case 1 and case 2

types.
v See the facility_ID parameter of “CEENCOD—Construct a condition token” on

page 379 for more information.
v For more C user information about assigning values directly to the fields of the

token in the header file without using the CEENCOD service, see the example
for “CEESGL—Signal a condition” on page 417.

CEEDCOD

250 z/OS Language Environment Programming Reference

Examples
1. Following shows an example of CEEDCOD being called by C/C++.

/*Module/File Name: EDCDCOD */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

/**/
/* In C/C++ it is not necessary to use this service.*/
/* The fields can be manipulated directly. See the */
/* example for CEESGL to see how to manipulate */
/* condition token fields directly. */
/**/

int main(void) {

_FEEDBACK fc,newfc;
_INT2 c_1,c_2,cond_case,sev,control;
_CHAR3 facid;
_INT4 isi, heapid, size;
_POINTER address;

heapid = 0;
size = 4000;

CEEGTST(&heapid,&size,&address,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEGTST failed with msgno %d\n",
fc.tok_msgno);

exit(2999);
}

/* decompose the feedback token to check for errors */
CEEDCOD(&fc,&c_1,&c_2,&cond_case,&sev,&control,facid,;

&isi,&newfc);

if (_FBCHECK (newfc , CEE000) != 0) {
printf("CEEDCOD failed with msgno %d\n",

newfc.tok_msgno);
exit(2889);

}
if (c_1 != 0 || c_2 != 0)

printf(
"c_1 and c_2 returned from CEEDCOD should be 0\n");

/*

...
*/

}

2. Following an example of CEEDCOD being called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTDCOD

** **
** Function: CEEDCOD - Decompose a condition **
** token **

** **
** In this example, a call is made to **
** CEEGTST in order to obtain a condition **
** token to use in the call to CEEDCOD. **
** A call could also have been made to any **
** other Lang Env svc., or a condition token **

CEEDCOD

Chapter 5. Callable services 251

** could have been constructed using **
** CEEDCOD. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLDCOD.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 HEAPID PIC S9(9) BINARY.
01 HPSIZE PIC S9(9) BINARY.
01 ADDRSS USAGE POINTER.
01 SEV PIC S9(4) BINARY.
01 MSGNO PIC S9(4) BINARY.
01 CASE PIC S9(4) BINARY.
01 SEV2 PIC S9(4) BINARY.
01 CNTRL PIC S9(4) BINARY.
01 FACID PIC X(3).
01 ISINFO PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 FC2.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.

** Call any Lang Env svc to receive a condition**
** token to use as input to CEEDCOD. **

PARA-CBLGTST.
**
** Specify 0 to get storage from the initial **
** heap. **
** Specify 4000 to get 4000 bytes of storage. **
** Call CEEGTST to obtain storage. **
**

MOVE 0 TO HEAPID.
MOVE 4000 TO HPSIZE.

CALL "CEEGTST" USING HEAPID, HPSIZE,
ADDRSS, FC.

PARA-CBLDCOD.
**

CEEDCOD

252 z/OS Language Environment Programming Reference

** Use the FC returned from CEEGTST as an **
** input condition token to CEEDCOD. **
**

CALL "CEEDCOD" USING FC, SEV, MSGNO, CASE,
SEV2, CNTRL, FACID,
ISINFO, FC2.

IF CEE000 of FC2 THEN
DISPLAY "CEEGTST completed with msg "

MSGNO ", Severity " SEV ", Case "
CASE ", Control " CNTRL ", and "
"Instance-Specific Information of "
ISINFO "."

ELSE
DISPLAY "CEEDCOD failed with msg "

Msg-No of FC2 UPON CONSOLE
END-IF.
GOBACK.

3. Following is an example of CEEDCOD called by PL/I.
*PROCESS MACRO;
/*Module/File Name: IBMDCOD */
/***/
/** **/
/** Function: CEEDCOD - decompose a condition **/
/** token **/
/** **/
/** In this example, a call is made to CEEGTST to **/
/** receive a condition token to decompose. **/
/** A call could have been made to any LE/370 **/
/** service. The condition token returned by **/
/** CEEGTST is used as input to CEEDCOD. **/
/** **/
/***/
PLIDCOD: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL HEAPID REAL FIXED BINARY(31,0);
DCL STGSIZE REAL FIXED BINARY(31,0);
DCL ADDRSS POINTER;
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
DCL SEV REAL FIXED BINARY(15,0);
DCL MSGNO REAL FIXED BINARY(15,0);
DCL CASE REAL FIXED BINARY(15,0);
DCL SEV2 REAL FIXED BINARY(15,0);
DCL CNTRL REAL FIXED BINARY(15,0);
DCL FACID CHARACTER (3);
DCL ISINFO REAL FIXED BINARY(31,0);
DCL 01 FC2, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */

CEEDCOD

Chapter 5. Callable services 253

03 ISI /* Instance-Specific Information */
REAL FIXED BINARY(31,0);

HEAPID = -1; /* invalid heap ID */
STGSIZE = 4000; /* request 4000 bytes of storage */

/* Call any service (in this case, CEEGTST) to */
/* create a condition token to decompose */
CALL CEEGTST (HEAPID , STGSIZE , ADDRSS , FC);
/* Call CEEDCOD with the condition token */
/* returned in FC from CEEGTST */
CALL CEEDCOD (FC , SEV , MSGNO , CASE , SEV2 ,

CNTRL , FACID , ISINFO , FC2);
IF FBCHECK(FC2, CEE000) THEN DO;

PUT SKIP LIST(’Feedback token from CEEGTST has’
|| ’ Severity of ’ || SEV
|| ’, Message number of ’ || MSGNO
|| ’, Case of ’ || CASE || ’,’);

PUT SKIP LIST(’ Severity 2 of ’ || SEV2
|| ’, Control of ’ || CNTRL
|| ’, Facility ID of ’ || FACID
|| ’, and I-S-Info of ’ || ISINFO || ’.’);

END;
ELSE DO;

DISPLAY(’CEEDCOD failed with msg ’
|| FC2.MsgNo);

STOP;
END;

END PLIDCOD;

CEEDLYM—Suspend processing of the active enclave in milliseconds

CEEDLYM provides a service for Language Environment-conforming applications
that suspends the processing of the active enclave for a specified number of
milliseconds. The maximum is 1 hour.

Syntax

►► CEEDLYM (input_milliseconds , fc) ►◄

input_milliseconds
A full-word binary value in the range of 0 to 3,600,000 that specifies the total
number of milliseconds during which the enclave should be suspended.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE3QQ 1 CEE3930W The input value input_value in a call to the

callable service callable_service_name was not
within the valid range.

CEE3QR 1 CEE3931W CEEDLYM was invoked in a CICS
environment.

CEEDCOD

254 z/OS Language Environment Programming Reference

Code Severity Message number Message text
CEE3QS 1 CEE3932W The system service system_service failed with

return code return_code and reason code
reason_code.

Usage notes
v CICS consideration—CEEDLYM is not available under CICS.
v z/OS UNIX consideration—CEEDLYM is handled by the z/OS UNIX System

Services when POSIX is set to ON.
v This service is not intended for timing requests. Delays up to the nearest

millisecond might occur in some circumstances.
v In a multi-threaded application, only the calling thread is suspended.

Examples
1. Following is an example of CEEDLYM called by C/C++.

/*Module/File Name: EDCDLYM */
/***/
/* */
/* THIS EXAMPLE CALLS CEEDLYM TO SUSPEND PROCESSING OF THE ACTIVE */
/* ENCLAVE FOR SPECIFIED NUMBER OF MILLISECONDS. */
/* */
/***/
#include <string.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void)
{

_INT4 millisecs, lil_date;
_FLOAT8 local_date;
_CHAR17 gregorian_date;
_FEEDBACK fc1, fc2;

/* Get current date and time */
CEELOCT(&lil_date,&local_date,gregorian_date,&fc1);
if (_FBCHECK (fc1 , CEE000) != 0) {
printf("CEELOCT failed with message number %d\n",

fc1.tok_msgno);
exit(2999);

}
printf("CEEDLYM Start time : %.17s\n", gregorian_date);

millisecs = 5000;
CEEDLYM(&millisecs,&fc2);

if (_FBCHECK (fc2 , CEE000) != 0) {
printf("CEEDLYM failed with message number %d\n",fc2.tok_msgno);
exit(999);

}

CEELOCT(&lil_date,&local_date,gregorian_date,&fc1);
if (_FBCHECK (fc1 , CEE000) != 0) {
printf("CEELOCT failed with message number %d\n",

fc1.tok_msgno);
exit(2999);

}
printf("CEEDLYM Finish time : %.17s\n",gregorian_date);

}

CEEDLYM

Chapter 5. Callable services 255

2. Following is an example of CEEDLYM called by COBOL.
CBL LIB,QUOTE

*MODULE/FILE NAME: IGZTDLYM

** **
** FUNCTION: CEEDLYM - SUSPEND ENCLAVE EXECUTION IN MILLISECS **
** **
** THIS EXAMPLE CALLS CEEDLYM TO SUSPEND PROCESSING OF THE **
** ACTIVE ENCLAVE FOR SPECIFIED NUMBER OF MILLISECONDS. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLDLYM.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 LILIAN PIC S9(9) BINARY.
01 SECONDS COMP-2.
01 GREGORN PIC X(17).
01 MILLISECS PIC S9(9) BINARY.
01 FC1.

02 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.

03 CASE-1-CONDITION-ID.
04 SEVERITY PIC S9(4) BINARY.
04 MSG-NO PIC S9(4) BINARY.

03 CASE-2-CONDITION-ID
REDEFINES CASE-1-CONDITION-ID.

04 CLASS-CODE PIC S9(4) BINARY.
04 CAUSE-CODE PIC S9(4) BINARY.

03 CASE-SEV-CTL PIC X.
03 FACILITY-ID PIC XXX.

02 I-S-INFO PIC S9(9) BINARY.
01 FC2.

02 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.

03 CASE-1-CONDITION-ID.
04 SEVERITY PIC S9(4) BINARY.
04 MSG-NO PIC S9(4) BINARY.

03 CASE-2-CONDITION-ID
REDEFINES CASE-1-CONDITION-ID.

04 CLASS-CODE PIC S9(4) BINARY.
04 CAUSE-CODE PIC S9(4) BINARY.

03 CASE-SEV-CTL PIC X.
03 FACILITY-ID PIC XXX.

02 I-S-INFO PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLDLYM.

DISPLAY "CEEDLYM - BEGINS"
CALL "CEELOCT" USING LILIAN, SECONDS, GREGORN, FC1.
IF CEE000 OF FC1 THEN
DISPLAY "START DATE & TIME: " GREGORN

ELSE
DISPLAY "CEELOCT FAILED WITH MSG "

MSG-NO OF FC1
STOP RUN

END-IF.
MOVE 5000 TO MILLISECS.
CALL "CEEDLYM" USING MILLISECS, FC2.
IF NOT CEE000 OF FC2 THEN

DISPLAY "CEEDLYM FAILED WITH MSG "
MSG-NO OF FC2

STOP RUN
END-IF.
DISPLAY "CEEDLYM - COMPLETED"
CALL "CEELOCT" USING LILIAN, SECONDS,

GREGORN, FC1.

CEEDLYM

256 z/OS Language Environment Programming Reference

IF CEE000 OF FC1 THEN
DISPLAY "FINISH DATE & TIME: " GREGORN

ELSE
DISPLAY "CEELOCT FAILED WITH MSG "

MSG-NO OF FC1
STOP RUN

END-IF.
GOBACK.

3. Following is an example of CEEDLYM called by PL/I.
*PROCESS MACRO; 00001000

/*MODULE/FILE NAME: IBMDLYM */ 00014000
/***/ 00015000
/** **/ 00016000
/** FUNCTION: CEEDLYM - SUSPENDS ENCLAVE EXECUTION IN MILLISECS **/ 00017000
/** **/ 00018000
/** THIS EXAMPLE CALLS CEEDLYM TO SUSPEND PROCESSING OF THE **/ 00019000
/** ACTIVE ENCLAVE FOR SPECIFIED NUMBER OF MILLISECS. **/ 00020000
/** **/ 00021000
/***/ 00022000
PLIDLYM: PROCEDURE OPTIONS (MAIN) REORDER; 00023000

00024000
%INCLUDE CEEIBMAW; 00025000
%INCLUDE CEEIBMCT; 00026000

00027000
DECLARE MILLISECS REAL FIXED BINARY(31,0); 00028000
DECLARE LILIAN REAL FIXED BINARY(31,0); 00029000
DECLARE SECONDS REAL FLOAT DECIMAL(16); 00030000
DECLARE GREGORN CHARACTER (17); 00031000

00032000
DECLARE 01 FC1, /* FEEDBACK TOKEN FOR CEELOCT */ 00033000

03 MSGSEV REAL FIXED BINARY(15,0), 00034000
03 MSGNO REAL FIXED BINARY(15,0), 00035000
03 FLAGS, 00036000

05 CASE BIT(2), 00037000
05 SEVERITY BIT(3), 00038000
05 CONTROL BIT(3), 00039000

03 FACID CHAR(3), 00040000
03 ISI REAL FIXED BINARY(31,0); 00041000

00042000
DECLARE 01 FC2, /* FEEDBACK TOKEN FOR CEEDLYM */ 00043000

03 MSGSEV REAL FIXED BINARY(15,0), 00044000
03 MSGNO REAL FIXED BINARY(15,0), 00045000
03 FLAGS, 00046000

05 CASE BIT(2), 00047000
05 SEVERITY BIT(3), 00048000
05 CONTROL BIT(3), 00049000

03 FACID CHAR(3), 00050000
03 ISI REAL FIXED BINARY(31,0); 00051000

00052000
CALL CEELOCT (LILIAN, SECONDS, GREGORN, FC1); 00053000
IF FBCHECK(FC1, CEE000) THEN DO; 00054000

PUT SKIP LIST (’CEEDLYM START DATE AND TIME: ’ || GREGORN); 00055000
END; 00056000
ELSE DO; 00057000

PUT (’CEELOCT FAILED WITH MSG ’ || FC1.MSGNO); 00058000
STOP; 00059000

END; 00060000
00061000

MILLISECS = 6000; 00062000
CALL CEEDLYM(MILLISECS, FC2); 00063000
IF FBCHECK(FC2, CEE000) THEN DO; 00064000

CALL CEELOCT (LILIAN, SECONDS, GREGORN, FC1); 00065000
IF FBCHECK(FC1, CEE000) THEN DO; 00066000

PUT SKIP LIST (’CEEDLYM FINISH DATE AND TIME: ’ || GREGORN); 00067000
END; 00068000

ELSE DO; 00069000

CEEDLYM

Chapter 5. Callable services 257

PUT (’CEELOCT FAILED WITH MSG ’ || FC1.MSGNO); 00070000
STOP; 00071000

END; 00072000
PUT SKIP LIST (’CEEDLYM IS SUCCESSFUL!’); 00073000

END; 00074000
ELSE DO; 00075000

PUT SKIP LIST (’CEEDLYM FAILED WITH MSG ’ || FC2.MSGNO); 00076000
STOP; 00077000

END; 00078000
00079000

END PLIDLYM; 00080000

CEEDSHP—Discard heap

CEEDSHP discards an entire heap created by CEECRHP or by CEEGTST.
CEECRHP and CEEGTST return a unique heap_id to the caller; use this ID in the
CEEDSHP call. A heap_id of 0 is not permitted with CEEDSHP.

Discarding a heap with CEEDSHP immediately returns all storage allocated to the
heap to the operating system, even if the KEEP suboption has been specified with
the HEAP runtime option.

Syntax

►► CEEDSHP (heap_id , fc) ►◄

heap_id (input)
A fullword binary signed integer. heap_id is a token specifying the discarded
heap. A heap_id of 0 is not valid; the initial heap is logically created during
enclave initialization and cannot be discarded.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE0P2 4 0802 Heap storage control information was damaged.
CEE0P3 3 0803 The heap identifier in a get storage request or a

discard heap request was unrecognized.
CEE0PC 3 0812 An invalid attempt to discard the Initial Heap

was made.

Usage notes
v After the call to CEEDSHP, any existing pointers to storage allocated from this

heap are dangling pointers, that is, pointers to storage that is freed. Using these
pointers can cause unpredictable results.

v z/OS UNIX considerations—CEEDSHP applies to the enclave. Language
Environment frees all storage in the heap regardless of which thread allocated it.

CEEDLYM

258 z/OS Language Environment Programming Reference

For more information
v For more information about the CEEDSHP callable service, see

“CEECRHP—Create new additional heap” on page 223.
v For more information about the CEEGTST callable service, and “CEEGTST—Get

heap storage” on page 315.

Examples
1. Following is an example of CEEDSHP being called by C/C++.

/*Module/File Name: EDCDSHP */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_INT4 heapid, size, increment, options;
_FEEDBACK fc;

/* .
.
. */

heapid = 0; /* heap identifier is set */
/* by CEECRHP */

size = 4096; /* initial size of heap */
/* (in bytes) */

increment = 4096; /* increment to extend */
/* the heap by */

options = 72; /* set up heap as */
/* (,,ANYWHERE,FREE)*/

/* create heap using CEECRHP */
CEECRHP(&heapid,&size,&increment,&options,&fc);

/* check the first 4 bytes of the feedback token */
/* (0 if successful) */
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEECRHP failed with message number %d\n",
fc.tok_msgno);

exit(99);
}

/* .
.
. */

/* discard the heap that was previously created */
/* using CEECRHP */
CEEDSHP(&heapid,&fc);

/* check the first 4 bytes of the feedback token */
/* (0 if successful) */
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEDSHP failed with message number %d\n",
fc.tok_msgno);

exit(99);
}

/* .
.
. */

}

2. Following an example of CEEDSHP being called by COBOL.

CEEDSHP

Chapter 5. Callable services 259

CBL LIB,QUOTE
*Module/File Name: IGZTDSHP
**
** **
** Function: CEEDSHP - discard heap **
** **
** In this example, a new additional heap is **
** created a call to CEECRHP, and then **
** discarded through a call to CEEDSHP. **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBLDSHP.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 HEAPID PIC S9(9) BINARY.
01 HPSIZE PIC S9(9) BINARY.
01 INCR PIC S9(9) BINARY.
01 OPTS PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLCRHP.

** Specify 0 for HEAPID, and heap id will **
** be set by CEECRHP. **
** Heap size and increment will each be 4096 **
** bytes. **
** Specify 00 for OPTS, and HEAP attributes **
** will be inherited from the initial heap **
** (copied from the HEAP runtime option). **

MOVE 0 TO HEAPID.
MOVE 4096 TO HPSIZE.
MOVE 4096 TO INCR.
MOVE 00 TO OPTS.

CALL "CEECRHP" USING HEAPID, HPSIZE,
INCR, OPTS, FC.

IF CEE000 of FC THEN
DISPLAY "Created heap number " HEAPID

" which is " HPSIZE " bytes long"
ELSE

DISPLAY "CEECRHP failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

** To discard the heap, call CEEDSHP with the **
** heap id returned from CEECRHP. **

CALL "CEEDSHP" USING HEAPID, FC.
IF CEE000 of FC THEN

DISPLAY "Disposed of heap # " HEAPID
ELSE

DISPLAY "CEEDSHP failed with msg "

CEEDSHP

260 z/OS Language Environment Programming Reference

Msg-No of FC UPON CONSOLE
END-IF.

GOBACK.

3. Following is an example of CEEDSHP being called by PL/I.
*PROCESS MACRO;
/*Module/File Name: IBMDSHP */
/***/
/** **/
/** Function: CEEDSHP - discard heap **/
/** **/
/** In this example, calls are made to CEECRHP **/
/** and CEEDSHP to create a heap of 4096 bytes **/
/** and then discard it. **/
/** **/
/***/

PLIDSHP: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL HEAPID REAL FIXED BINARY(31,0) ;
DCL HPSIZE REAL FIXED BINARY(31,0) ;
DCL INCR REAL FIXED BINARY(31,0) ;
DCL OPTS REAL FIXED BINARY(31,0) ;
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
DCL 01 FC2, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

HEAPID = 0; /* HEAPID will be set and */
/* returned by CEECRHP */

HPSIZE = 4096; /* Initial size of heap in bytes */
INCR = 4096; /* Number of bytes to extend */

/* heap by */
OPTS = 00; /* Set up heap with the same */

/* attributes as the initial */
/* heap (HEAPID = 0) */

/* Call CEECRHP to set up new heap */
CALL CEECRHP (HEAPID, HPSIZE, INCR,

OPTS, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’Created heap number ’ || HEAPID
|| ’ consisting of ’ || HPSIZE || ’ bytes’);

END;
ELSE DO;

DISPLAY(’CEECRHP failed with msg ’
|| FC.MsgNo);

CEEDSHP

Chapter 5. Callable services 261

STOP;
END;

/* Call CEEDSHP to discard heap with the id */
/* returned by CEECRHP */
CALL CEEDSHP (HEAPID, FC2);
IF FBCHECK(FC2, CEE000) THEN DO;

PUT SKIP LIST(’Disposed of heap number ’
|| HEAPID);

END;
ELSE DO;

DISPLAY(’CEEDSHP failed with msg ’
|| FC2.MsgNo);

STOP;
END;

END PLIDSHP;

CEEDYWK—Calculate day of week from Lilian date

CEEDYWK calculates the day of the week on which a Lilian date falls. The day of
the week is returned to the calling routine as a number between 1 and 7. The
number returned by CEEDYWK is useful for end-of-week calculations.

Syntax

►► CEEDYWK (input_Lilian_date , output_day_no , fc) ►◄

input_Lilian_date (input)
A 32-bit binary integer representing the Lilian date, the number of days since
14 October 1582. For example, 16 May 1988 is day number 148138. The valid
range of input_Lilian_date is between 1 and 3,074,324 (15 October 1582 and 31
December 9999).

output_day_no (output)
A 32-bit binary integer representing input_Lilian_date's day-of-week: 1 equals
Sunday, 2 equals Monday, ..., 7 equals Saturday. If input_Lilian_date is invalid,
output_day_no is set to 0 and CEEDYWK terminates with a non-CEE000
symbolic feedback code.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE2EG 3 2512 The Lilian date value passed in a call to

CEEDATE or CEEDYWK was not within the
supported range.

CEEDSHP

262 z/OS Language Environment Programming Reference

Usage notes
v z/OS UNIX consideration—In multithread applications, CEEDYWK affects only

the calling thread.
v COBOL consideration—The CEEDYWK callable service has different values than

the COBOL ACCEPT statement with conceptual data item DAY-OF-WEEK. Use
one or the other, not both.

Examples
1. Following is an example of CEEDYWK called by C/C++.

/*Module/File Name: EDCDYWK */

#include <string.h>
#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main (void) {

_INT4 in_date, day;
_FEEDBACK fc;

in_date = 139370; /* Thursday */

CEEDYWK(&in_date,&day,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEDYWK failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}
printf("Lilian date %d, occurs on a ",in_date);
switch(day) {

case 1: printf("Sunday.\n");
break;

case 2: printf("Monday.\n");
break;

case 3: printf("Tuesday.\n");
break;

case 4: printf("Wednesday.\n");
break;

case 5: printf("Thursday.\n");
break;

case 6: printf("Friday.\n");
break;

case 7: printf("Saturday.\n");
break;

default: printf(
" ERROR! DAY RETURN BY CEEDYWK UNKNOWN\n");
break;

}
}

2. Following is an example of CEEDYWK called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTDYWK
**
** **
** CBLDYWK - Call CEEDYWK to calculate the **
** day of the week from Lilian date **
** **
** In this example, a call is made to CEEDYWK **
** to return the day of the week on which a **
** Lilian date falls. (A Lilian date is the **
** number of days since 14 October 1582) **

CEEDYWK

Chapter 5. Callable services 263

** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBLDYWK.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 LILIAN PIC S9(9) BINARY.
01 DAYNUM PIC S9(9) BINARY.
01 IN-DATE.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X,
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of IN-DATE.
01 PICSTR.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X,
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of PICSTR.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.
PARA-CBLDAYS.

** Call CEEDAYS to convert date of 6/2/88 to
** Lilian representation

MOVE 6 TO Vstring-length of IN-DATE.
MOVE "6/2/88" TO Vstring-text of IN-DATE(1:6).
MOVE 8 TO Vstring-length of PICSTR.
MOVE "MM/DD/YY" TO Vstring-text of PICSTR(1:8).
CALL "CEEDAYS" USING IN-DATE, PICSTR,

LILIAN, FC.

** If CEEDAYS runs successfully, display result.
IF CEE000 of FC THEN

DISPLAY Vstring-text of IN-DATE
" is Lilian day: " LILIAN

ELSE
DISPLAY "CEEDAYS failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.
PARA-CBLDYWK.

** Call CEEDYWK to return the day of the week on
** which the Lilian date falls

CALL "CEEDYWK" USING LILIAN , DAYNUM , FC.

** If CEEDYWK runs successfully, print results
IF CEE000 of FC THEN

DISPLAY "Lilian day " LILIAN
" falls on day " DAYNUM
" of the week, which is a:"

CEEDYWK

264 z/OS Language Environment Programming Reference

** Select DAYNUM to display the name of the day
** of the week.

EVALUATE DAYNUM
WHEN 1

DISPLAY "Sunday."
WHEN 2

DISPLAY "Monday."
WHEN 3

DISPLAY "Tuesday"
WHEN 4

DISPLAY "Wednesday."
WHEN 5

DISPLAY "Thursday."
WHEN 6

DISPLAY "Friday."
WHEN 7

DISPLAY "Saturday."
END-EVALUATE

ELSE
DISPLAY "CEEDYWK failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

GOBACK.

3. Following is an example of CEEDYWK called by PL/I.

CEEENV—Process environmental variables

CEEENV processes environment variables depending on the function code passed
in as input. Based on the input to this function, CEEENV can do the following:
v Obtain the value for an existing environment variable
v Create a new environment variable with a value
v Clear all environment variables
v Delete an existing environment variable
v Overwrite the value for an existing environment variable

Syntax

►► CEEENV (function_code , name_length , name , value_length , ►

► value , fc) ►◄

function_code (input)
A fullword binary integer containing the function code of one of the following
values:

1 Searches the environment table for environment variables specified by
name and if found returns a pointer to value.

2 Adds an environment variable to the environment table. It does not
overwrite an existing environment variable.

3 Clears all environment variables from the environment table.

4 Deletes an environment variable from the environment table.

CEEDYWK

Chapter 5. Callable services 265

5 Overwrites an existing environment variable in the environment table
and adds the environment variable if it does not exist.

name_length (input)
A fullword binary integer containing the length of the name for the
environment variable. If the request is for function code 3, this argument is
ignored.

name (input)
Specifies the name of an environment variable. If the request is for function
code 3, this argument is ignored.

value_length (input/output)
A fullword binary integer containing the length of the value for the
environment variable. This argument is input for setting or modifying an
environment variable and is output for getting an environment variable value.
If the request is for function code 3 or 4, this argument is ignored.

value (input/output)
A field that contains the address of a string that contains the value of the
environment variable. This argument is input for setting or modifying an
environment variable and is output for getting an environment variable value.
If the request is for function code 3 or 4, this argument is ignored. For function
code 1 (get), the value address is 0 (NULL) if the name is not found in the
environment.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE51O 3 5176 Not enough memory available.
CEE51P 3 5177 Bad input character detected for name or

value.
CEE51Q 3 5178 Bad address detected for the ENVAR anchor

or environment variable array.
CEE51R 3 5179 A parameter to the environment variable

processing routine contained a value that was
not valid.

CEE51S 0 5180 The specified environment variable name
already exists.

Usage notes
v The environment array is searched sequentially and the first occurrence of name

is used.
v Because an application can manipulate the environment using the environ

pointer, Language Environment cannot guarantee a single instance of any
particular environment variable.

v For a function code 1 request, the storage returned for the value character string
is supplied by Language Environment. There is one buffer per thread, making it
the user's responsibility to use or save the value before the next call for a
function code 1 on that thread.

v Specifying 0 for value_length with function code 2 or 5 results in the environment
variable being removed from the environment.

CEEENV

266 z/OS Language Environment Programming Reference

v Applications should not define environment variables that begin with the
characters “_BPXK_”, “_EDC_”, or “_CEE_” because there might be conflicts
with variable names reserved for z/OS that begin with those characters.

v name and value are copied into storage owned by Language Environment.
v If a function code 1 request is made and the variable name is not found in the

environment, value_length is set to 0 upon return.
v A NULL character in name is not valid and causes feedback code CEE51P to be

returned.
v A NULL character in value is interpreted as a string terminator. If a NULL

character is imbedded, CEEENV will truncate the value string at the last
character preceding the NULL.

Examples
1. Following is an example of CEEENV called by C/C++.

/*Module/File Name: EDCENV */
/***/
/* */
/* THIS EXAMPLE CALLS CEEENV TO CLEAR THE ENVIRONMENT VARIABLE */
/* ARRAY, SET AN ENVIRONMENT VARIABLE AND THEN GET THE VARIABLE */
/* FROM THE ARRAY. */
/* */
/***/
#include <stdio.h>
#include <stdlib.h>
#include <leawi.h>

int main(void) {
_INT4 func_code;
_INT4 name_len;
_POINTER name = (_POINTER)malloc(255);
_INT4 value_len;
_POINTER value_ptr;
_FEEDBACK fc;
char value[255];

/* Clearing all the environment variables */
func_code = 3;
CEEENV(func_code,name_len,name,value_len,value_ptr,fc);

/* Setting a new environment variable */
func_code = 2;
strcpy(name,"ENVAR1");
strcpy(value,"DEFAULT");
name_len = strlen(name);
value_len = strlen(value);
value_ptr = value;
CEEENV(func_code,name_len,name,value_len,value_ptr,fc);

/* Getting the value of the new variable */
func_code = 1;
strcpy(name,"ENVAR1");
strcpy(value,"");
value_ptr = value;
CEEENV(func_code,name_len,name,value_len,value_ptr,fc);

if (value_len != 0)
printf("$%s=%s\n",name,value_ptr);

else
printf("$%s not found\n",name);

}

2. Following is an example of CEEENV called by COBOL.

CEEENV

Chapter 5. Callable services 267

CBL LIB,QUOTE
**
*Module/File Name: IGZTENV
**
** Function: CEEENV - Process environment variables *
** *
** This example calls CEEENV to clear the environment *
** variable array, set an environment variable and then get *
** the variable from the array. *
** *
**
IDENTIFICATION DIVISION.
PROGRAM-ID. IGZTENV.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 FUNCCODE PIC 9(9) BINARY.
01 NAMELEN PIC 9(9) BINARY.
01 VALUELEN PIC 9(9) BINARY.
01 NAME PIC X(255).
01 VALPTR POINTER.

01 FC.
02 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.

03 CASE-1-CONDITION-ID.
04 SEVERITY PIC S9(4) BINARY.
04 MSG-NO PIC S9(4) BINARY.

03 CASE-SEV-CTL PIC X.
03 FACILITY-ID PIC XXX.

02 I-S-INFO PIC S9(9) BINARY.
01 VAL PIC X(255).

LINKAGE SECTION.
01 VAR PIC X(5000).

PROCEDURE DIVISION.
MAIN-PROG.

** Clear environment array

MOVE 3 TO FUNCCODE.
CALL "CEEENV" USING FUNCCODE,

NAMELEN,
NAME,
VALUELEN,
VALPTR,
FC.

** Set an environment variable

MOVE 2 TO FUNCCODE.
MOVE "ENVAR1" TO NAME.
MOVE "DEFAULT" TO VAL.
MOVE 6 TO NAMELEN.
MOVE 7 TO VALUELEN.
SET VALPTR TO ADDRESS OF VAL.
CALL "CEEENV" USING FUNCCODE,

NAMELEN,
NAME,
VALUELEN,
VALPTR,
FC.

CEEENV

268 z/OS Language Environment Programming Reference

** Get the environment variable

MOVE 1 TO FUNCCODE.
MOVE " " TO VAL.
MOVE 0 TO VALUELEN.
CALL "CEEENV" USING FUNCCODE,

NAMELEN,
NAME,
VALUELEN,
VALPTR,
FC.

IF VALUELEN NOT = 0 THEN
SET ADDRESS OF VAR TO VALPTR
DISPLAY NAME(1:NAMELEN) "=" VAR(1:VALUELEN)

ELSE
DISPLAY NAME " NOT FOUND"

END-IF.

GOBACK.

3. Following is an example of CEEENV called by PL/I.
*PROCESS MACRO;

/***/
/*Module/File Name: IBMENV */
/***/
/** **/
/** Function: CEEENV - process environment variables **/
/** **/
/** This example calls CEEENV to clear the environment variable **/
/** array, set an environment variable and then get the variable **/
/** from the array. **/
/** **/
/***/
PLIENV: PROCEDURE OPTIONS (MAIN) REORDER;

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DECLARE FUNC_CODE REAL FIXED BINARY(31,0);
DECLARE NAME_LEN REAL FIXED BINARY(31,0);
DECLARE VALUE_LEN REAL FIXED BINARY(31,0);
DECLARE NAME CHAR(255) INIT(’’);
DECLARE VALUE CHAR(255) INIT(’’);
DECLARE VALUE2 CHAR(255) BASED(VALUE_PTR);
DECLARE VALUE_PTR POINTER;

DECLARE 01 LE_FEEDBACK_CODE,
03 MSGSEV REAL FIXED BINARY(15,0),
03 MSGNO REAL FIXED BINARY(15,0),
03 FLAGS,

05 CASE BIT(2),
05 SEVERITY BIT(3),
05 CONTROL BIT(3),

03 FACID CHAR(3),
03 ISI REAL FIXED BINARY(31,0);

DECLARE MSG_STRING CHAR(255) VARYING;
DECLARE MSG_DEST REAL FIXED BINARY(31,0);
DECLARE SUBSTR BUILTIN;
DECLARE SYSPRINT FILE PRINT;

MSG_DEST = 2;

/***************************************/
/* Clear all the environment variables */
/***************************************/

CEEENV

Chapter 5. Callable services 269

FUNC_CODE = 3;
CALL CEEENV(FUNC_CODE,

NAME_LEN,
NAME,
VALUE_LEN,
VALUE_PTR,
LE_FEEDBACK_CODE);

/***************************************/
/* Set an environment variable */
/***************************************/
FUNC_CODE = 2;
NAME = ’ENVAR1’;
VALUE = ’DEFAULT’;
VALUE_PTR = ADDR(VALUE);
NAME_LEN = 6;
VALUE_LEN = 7;
CALL CEEENV(FUNC_CODE,

NAME_LEN,
NAME,
VALUE_LEN,
VALUE_PTR,
LE_FEEDBACK_CODE);

/***************************************/
/* Get the variable, to see if added */
/***************************************/
FUNC_CODE = 1;
NAME = ’ENVAR1’;
VALUE = ’’;
NAME_LEN = 6;
VALUE_LEN = 0;
CALL CEEENV(FUNC_CODE,

NAME_LEN,
NAME,
VALUE_LEN,
VALUE_PTR,
LE_FEEDBACK_CODE);

IF VALUE_LEN ^= 0 THEN DO;
MSG_STRING = SUBSTR(NAME,1,NAME_LEN) ||

’=’ || SUBSTR(VALUE2,1,VALUE_LEN);
PUT SKIP LIST(MSG_STRING);

END;
ELSE DO;

MSG_STRING = ’SET REQUEST UNSUCCESSFUL’;
PUT SKIP LIST(MSG_STRING);

END;
END PLIENV;

CEEFMDA—Get default date format

CEEFMDA returns to the calling routine the default date picture string for a
specified country. CEEFMDA is affected only by the country code setting of the
COUNTRY runtime option or CEE3CTY callable service, not the CEESETL callable
service or the setlocale() function.

Syntax

►► CEEFMDA (country_code , date_pic_str , fc) ►◄

CEEENV

270 z/OS Language Environment Programming Reference

country_code (input)
A 2-character fixed-length string representing one of the country codes found
in Table 32 on page 483. The country_code is not case-sensitive. Also, if no value
is specified, the default country code (as set by either the COUNTRY runtime
option or the CEE3CTY callable service) is used. If you specify a country_code
that is not valid, the default date format is ’YYYY-MM-DD’.

date_pic_str (output)
A fixed-length 80-character string (VSTRING), returned to the calling routine. It
contains the default date picture string for the country specified. The picture
string is left-justified and padded on the right with blanks if necessary.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE3CB 2 3467 The country code country_code was invalid for

CEEFMDA. The default date picture string
date_pic_string was returned.

Usage notes
v z/OS UNIX considerations—CEEFMDA applies to the enclave. Every enclave

has a single current country setting that has a single date format. Every thread
in every enclave has the same default.

For more information
v For a list of the default settings for a specified country, see Table 32 on page 483.
v See “COUNTRY” on page 24 for an explanation of the COUNTRY runtime

option.
v See “CEE3CTY—Set default country” on page 135 for an explanation of the

CEE3CTY callable service.

Examples
1. Following is an example of CEEFMDA called by C/C++.

C/C++ example of CEEFMDA
/*Module/File Name: EDCFMDA */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_CHAR2 country;
_CHAR80 date_pic;

/* get the default date format for Canada */
memcpy(country,"CA",2);
CEEFMDA(country,date_pic,&fc);

CEEFMDA

Chapter 5. Callable services 271

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEEFMDA failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}
/* print out the default date format for Canada */
printf("%.80s\n",date_pic);

}

2. Following is an example of CEEFMDA called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTFMDA

** **
** CBLFMDA - Call CEEFMDA to obtain the **
** default date format **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLFMDA.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 COUNTRY PIC X(2).
01 PICSTR PIC X(80).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLFMDA.

** Specify country code for the US and call
** CEEFMDA to return the default date format
** for the US.

MOVE "US" TO COUNTRY.
CALL "CEEFMDA" USING COUNTRY , PICSTR , FC.

** If CEEFMDA runs successfully, display result
IF CEE000 of FC THEN

DISPLAY "The default date format for "
"the US is: " PICSTR

ELSE
DISPLAY "CEEFMDA failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.
GOBACK.

3. Following is an example of CEEFMDA called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMFMDA */
/**/
/** **/
/** Function: CEEFMDA - obtain default date **/
/** format **/
/** **/
/**/

PLIFMDA: PROC OPTIONS(MAIN);

CEEFMDA

272 z/OS Language Environment Programming Reference

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;
DCL COUNTRY CHARACTER (2);
DCL PICSTR CHAR(80);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

COUNTRY = ’US’; /* Specify country code for */
/* the United States */

/* Get the default date format for the US */
CALL CEEFMDA (COUNTRY , PICSTR , FC);

/* Print the default date format for the US */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(
’The default date format for the US is ’
|| PICSTR);

END;
ELSE DO;

DISPLAY(’CEEFMDA failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLIFMDA;

CEEFMDT—Get default date and time format

CEEFMDT returns the default date and time picture strings for the country
specified by country_code. CEEFMDT is affected only by the country code setting of
the COUNTRY runtime option or CEE3CTY callable service, not the CEESETL
callable service or the setlocale() function.

Syntax

►► CEEFMDT (country_code , datetime_str , fc) ►◄

country_code (input)
A 2-character fixed-length string representing one of the country codes found
in Table 32 on page 483. The country_code is not case-sensitive. Also, if no value
is specified, the default country code (as set by either the COUNTRY runtime
option or by CEE3CTY) is used. If you specify a country_code that is not valid,
the default date/time picture string is ’YYYY-MM-DD HH:MI:SS’.

datetime_str (output)
A fixed-length 80-character string (VSTRING), returned to the calling routine. It
contains the default date and time picture string for the country specified. The
picture string is left-justified and padded on the right with blanks, if necessary.

CEEFMDA

Chapter 5. Callable services 273

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE3CF 2 3471 The country code country_code was invalid for

CEEFMDT. The default date and time picture
string datetime_str was returned.

Usage notes
v z/OS UNIX considerations—CEEFMDT applies to the enclave. Every enclave

has a single current country setting that has a single date and time format. Every
thread in every enclave has the same default.

For more information
v For a list of the default settings for a specified country, see Table 32 on page 483.
v See “COUNTRY” on page 24 for an explanation of the COUNTRY runtime

option.
v See “CEE3CTY—Set default country” on page 135 for an explanation of

CEE3CTY.

Examples
1. Following is an example of CEEFMDT called by C/C++.

/*Module/File Name: EDCFMDT */

#include <stdio.h>
#include <string.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_CHAR2 country;
_CHAR80 date_pic;

/* get the default date and time format for Canada */
memcpy(country,"CA",2);
CEEFMDT(country,date_pic,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEFMDT failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}
/* print out the default date and time format */
printf("%.80s\n",date_pic);

}

2. Following is an example of CEEFMDT called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTFMDT

** **
** CBLFMDT - Call CEEFMDT to obtain the **

CEEFMDT

274 z/OS Language Environment Programming Reference

** default date & time format **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLFMDT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 COUNTRY PIC X(2).
01 PICSTR PIC X(80).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.
PARA-CBLFMDT.

** Specify country code for the US
MOVE "US" TO COUNTRY.

** Call CEEFMDT to return the default date and
** time format for the US

CALL "CEEFMDT" USING COUNTRY , PICSTR , FC.

** If CEEFMDT runs successfully, display result.
IF CEE000 of FC THEN

DISPLAY "The default date and time "
"format for the US is: " PICSTR

ELSE
DISPLAY "CEEFMDT failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.
GOBACK.

3. Following is an example of CEEFMDT called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMFMDT */
/**/
/** **/
/** Function: CEEFMDT - obtain default **/
/** date & time format **/
/** **/
/**/

PLIFMDT: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL COUNTRY CHARACTER (2);
DCL PICSTR CHAR(80);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */

CEEFMDT

Chapter 5. Callable services 275

03 ISI /* Instance-Specific Information */
REAL FIXED BINARY(31,0);

COUNTRY = ’US’; /* Specify country code for */
/* the United States */

/* Call CEEFMDT to get default date format */
/* for the US */
CALL CEEFMDT (COUNTRY , PICSTR , FC);

/* Print default date format for the US */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’The default date and time ’
|| ’format for the US is ’ || PICSTR);

END;
ELSE DO;

DISPLAY(’CEEFMDT failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLIFMDT;

CEEFMON—Format monetary string

CEEFMON, analogous to the C function strfmon(), converts numeric values to
monetary strings according to the specifications passed to it. These specifications
work in conjunction with the format conversions set in the current locale. The
current locale's LC_MONETARY category affects the behavior of this service,
including the monetary radix character, the thousands separator, the monetary
grouping, the currency symbols (national and international), and formats.

CEEFMON is sensitive to the locales set by setlocale() or CEESETL, not to the
Language Environment settings from COUNTRY or CEE3CTY.

Syntax

►► CEEFMON (omitted_parm , stringin , maxsize , format , ►

► stringout , result , fc) ►◄

omitted_parm
This parameter is reserved for future expansion and must be omitted. For
information about how to code an omitted parm, see “Invoking callable
services” on page 116.

stringin (input)
An 8-byte field that contains the value of a double-precision floating point
number.

maxsize (input)
A 4-byte integer that specifies the maximum number of bytes (including the
string terminator) that can be placed in stringout.

format (input)
A halfword length-prefixed character string (VSTRING) of 256 bytes that
contains plain characters and a conversion specification. Plain characters are

CEEFMDT

276 z/OS Language Environment Programming Reference

copied to the output stream. Conversion specification results in the fetching of
the input stringin argument that is converted and formatted.

A conversion specification consists of a percent character (%), optional flags,
optional field width, optional left precision, optional right precision, and a
required conversion character that determines the conversion to be performed.

Flags (optional)
You can specify one or more of the following flags to control the
conversion.

=f An = followed by a single character f specifies that the
character f should be used as the numeric fill character. The
default numeric fill character is the space character. This option
does not affect the other fill operations (such as field-width
filling), which always use the space as the fill character.

^ Do not format the currency amount with the grouping
characters. The default is to insert the grouping characters if
defined for the current locale.

+ or (Specifies the style of representing positive and negative
currency amounts. You must specify either + or (. If + is
specified, the locale's equivalent of + and - are used (for
example, in USA: the empty (null) string if positive and -
(minus sign) if negative). If (is specified, the locale's equivalent
of enclosing negative amounts within a parenthesis is used. If
this option is not included, a default specified by the current
locale is used.

! Suppresses the currency symbol from the output conversion.

Field Width (optional)
A decimal digit string w that specifies a minimum field width in which
the result of the conversion is right-justified (or left-justified if -w is
specified).

Left Precision (optional)
A # (pound sign) followed by the decimal digit string n, (specified as
#n), indicates a maximum number of digits expected to be formatted to
the left of the radix character. This option can be used to keep the
formatted output from multiple calls to the CEEFMON service aligned
in the same columns. It can also be used to fill unused positions with a
special character as in $***123.45. This option causes an amount to be
formatted as if it has the number of digits specified by n. If more digit
positions are required than are specified, this conversion specification
is ignored. Digit positions in excess of those actually required are filled
with the numeric fill character. See the =f specification above.

If grouping is enabled, it is applied to the combined fill characters plus
regular digits. However, if the fill character is not 0 (digit zero),
grouping separators inserted after a fill character are replaced by the
same fill character ($0,001,234.56 versus $****1,234.56).

Right Precision (optional)
A period (.) followed by the decimal digit string p, (specified as .p),
indicates the number of digits after the radix character. If the value of
the precision p is zero, no radix character appears. If this option is not
included, a default specified by the current locale is used. The amount
being formatted is rounded to the specified number of digits prior to
formatting.

CEEFMON

Chapter 5. Callable services 277

Conversion Characters (required)
One of the following conversion characters must be specified.

i The double argument is formatted according to the locale's
international currency format (for example, in USA: USD
1,234.56).

n The double argument is formatted according to the locale's
national currency format (for example, in USA: $1,234.56).

% No argument is converted; the conversion specification %% is
replaced by a single %.

stringout (output)
Contains the output of the CEEFMON service.

result (output)
Contains the number of characters placed in stringout, if successful. If
unsuccessful, an error is reported.

fc (output/optional)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE3T1 3 4001 General Failure: Service could not be completed.
CEE3VM 3 4086 Input Error: The number of characters to be

formatted must be greater than zero.

Usage notes
v PL/I MTF consideration—CEEFMON is not supported in PL/I MTF

applications.
v This callable service uses the C/C++ runtime library. The C/C++ library must be

installed and accessible even when this service is called from a non-C program.

For more information
v For more information about the setlocale() function, see “COUNTRY” on page

24, “CEE3CTY—Set default country” on page 135, and “CEE3LNG—Set national
language” on page 174.

v For more information about the CEESETL callable service, see “CEESETL—Set
locale operating environment” on page 413.

Examples
1. An example of CEEFMON called by COBOL:

CBL LIB,QUOTE
*Module/File Name: IGZTFMON

* Example for callable service CEEFMON *
* Function: Convert a numeric value to a *
* monetary string using specified *
* format passed as parameter. *
* Valid only for COBOL for MVS & VM Release 2 *
* or later. *

CEEFMON

278 z/OS Language Environment Programming Reference

IDENTIFICATION DIVISION.
PROGRAM-ID. COBFMON.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Monetary COMP-2.
01 Max-Size PIC S9(9) BINARY.
01 Format-Mon.

02 FM-Length PIC S9(4) BINARY.
02 FM-String PIC X(256).

01 Output-Mon.
02 OM-Length PIC S9(4) BINARY.
02 OM-String PIC X(60).

01 Length-Mon PIC S9(9) BINARY.
01 Locale-Name.

02 LN-Length PIC S9(4) BINARY.
02 LN-String PIC X(256).

** Use Locale category constants
COPY CEEIGZLC.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
**

PROCEDURE DIVISION.
** Set up locale name for United States

MOVE 14 TO LN-Length.
MOVE "En_US.IBM-1047"

TO LN-String (1:LN-Length).
** Set all locale categories to United States.
** Use LC-ALL category constant from CEEIGZLC.

CALL "CEESETL" USING Locale-Name, LC-ALL, FC.
** Check feedback code

IF Severity > 0
DISPLAY "Call to CEESETL failed. " Msg-No
STOP RUN

END-IF. ** Set up numeric value
MOVE 12345.62 TO Monetary.
MOVE 60 TO Max-Size.
MOVE 2 TO FM-Length.
MOVE "%i" TO FM-String (1:FM-Length).

** Call CEEFMON to convert numeric value
CALL "CEEFMON" USING OMITTED, Monetary,

Max-Size, Format-Mon
Output-Mon, Length-Mon,
FC.

** Check feedback code and display result
IF Severity > 0

DISPLAY "Call to CEEFMON failed. " Msg-No
ELSE

DISPLAY "International format is "
OM-String(1:OM-Length)

END-IF.

STOP RUN.
END PROGRAM COBFMON.

2. An example of CEEFMON called by PL/I:

CEEFMON

Chapter 5. Callable services 279

*PROCESS MACRO;
/*Module/File Name: IBMFMON */
/**/
/* Example for callable service CEEFMON */
/* Function: Convert a numeric value to a monetary */
/* string using specified format passed as parm */
/**/

PLIFMON: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */
%INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */
%INCLUDE CEEIBMLC; /* Locale category constants */

/* CEESETL service call arguments */
DCL LOCALE_NAME CHAR(14) VARYING;

/* CEEFMON service call arguments */
DCL MONETARY REAL FLOAT DEC(16); /* input value */
DCL MAXSIZE_FMON BIN FIXED(31); /* output size */
DCL FORMAT_FMON CHAR(256) VARYING; /* format spec */
DCL RESULT_FMON BIN FIXED(31); /* result status */
DCL OUTPUT_FMON CHAR(60) VARYING; /* output string */

DCL 01 FC, /* Feedback token */
03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

/* init locale name to United States */
LOCALE_NAME = ’En_US.IBM-1047’;

/* use LC_ALL category constant from CEEIBMLC */
CALL CEESETL (LOCALE_NAME, LC_ALL, FC);

/* FBCHECK macro used (defined in CEEIBMCT) */
IF FBCHECK (FC, CEE2KE) THEN
DO; /* invalid locale name */

DISPLAY (’Locale LC_ALL Call ’||FC.MsgNo);
STOP;

END;MONETARY = 12345.62; /* monetary numeric value */
MAXSIZE_FMON = 60; /* max char length returned */
FORMAT_FMON = ’%i’; /* international currency */

CALL CEEFMON (*, /* optional argument */
MONETARY , /* input, 8 byte floating point */
MAXSIZE_FMON, /* maximum size of output string*/
FORMAT_FMON, /* conversion request */
OUTPUT_FMON, /* string returned by CEEFMON */
RESULT_FMON, /* no. of chars in OUTPUT_FMON */
FC); /* feedback code structure */

IF RESULT_FMON = -1 THEN
DO;

/* FBCHECK macro used (defined in CEEIBMCT) */
IF FBCHECK(FC, CEE3VM) THEN
DISPLAY (’Invalid input ’||MONETARY);

ELSE
DISPLAY (’CEEFMON not completed ’||FC.MsgNo);

STOP;
END;

CEEFMON

280 z/OS Language Environment Programming Reference

ELSE
DO;

PUT SKIP LIST(
’International Format ’||OUTPUT_FMON);

END;

END PLIFMON;

CEEFMTM—Get default time format

CEEFMTM returns to the calling routine the default time picture string for the
country specified by country_code. For a list of the default settings for a specified
country, see Table 32 on page 483. CEEFMTM is affected only by the country code
setting of the COUNTRY runtime option or CEE3CTY callable service, not the
CEESETL callable service or the setlocale() function.

Syntax

►► CEEFMTM (country_code , time_pic_str , fc) ►◄

country_code (input)
A 2-character fixed-length string representing one of the country codes found
in Table 32 on page 483. The country_code is not case-sensitive. Also, if no value
is specified, the default country code (as set by either the COUNTRY runtime
option or the CEE3CTY callable service) is used. If you specify a country_code
that is not valid, the default time picture string is ’HH:MI:SS’.

time_pic_str (output)
A fixed-length 80-character string (VSTRING), representing the default time
picture string for the country specified. The picture string is left-justified and
padded on the right with blanks if necessary.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE3CD 2 3469 The country code country_code was invalid for

CEEFMTM. The default time picture string
time_pic_string was returned.

CEE3CE 2 3470 The date and time string datetime_str was
truncated and was not defined in CEEFMDT.

Usage notes
v z/OS UNIX considerations—CEEFMTM applies to the enclave. Every enclave

has a single current country setting that has a single time format. Every thread
in every enclave has the same default.

CEEFMON

Chapter 5. Callable services 281

For more information
v See “COUNTRY” on page 24 for an explanation of the COUNTRY runtime

option.
v See “CEE3CTY—Set default country” on page 135 for an explanation of the

CEE3CTY callable service.

Examples
1. Following is an example of CEEFMTM called by C/C++.

/*Module/File Name: EDCFMTM */

#include <stdio.h>
#include <string.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_CHAR2 country;
_CHAR80 time_pic;

/* get the default time format for Canada */
memcpy(country,"CA",2);
CEEFMTM(country,time_pic,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEFMTM failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}
/* print out the default time format */
printf("%.80s\n",time_pic);

}

2. Following is an example of CEEFMTM called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTFMTM

** **
** IGZTFMTM - Call CEEFMTM to obtain the **
** default time format **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. IGZTFMTM.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 COUNTRY PIC X(2).
01 PICSTR PIC X(80).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLFMTM.

CEEFMTM

282 z/OS Language Environment Programming Reference

** Specify country code for the US.
MOVE "US" TO COUNTRY.

** Call CEEFMTM to return the default time format
** for the US.

CALL "CEEFMTM" USING COUNTRY , PICSTR , FC.

** If CEEFMTM runs successfully, display result.
IF CEE000 of FC THEN

DISPLAY "The default time format for "
"the US is: " PICSTR

ELSE
DISPLAY "CEEFMTM failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.
GOBACK.

3. Following is an example of CEEFMTM called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMFMTM */
/**/
/** **/
/** Function: CEEFMTM - obtain default time **/
/** format **/
/** **/
/** This example calls CEEFMTM to request the **/
/** default time format for the US and print **/
/** it out. **/
/** **/
/**/
PLIFMTM: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL COUNTRY CHARACTER (2);
DCL PICSTR CHAR(80);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

COUNTRY = ’US’; /* Specify country code for */
/* the United States */

/* Call CEEFMTM to get default time format for */
/* the US */
CALL CEEFMTM (COUNTRY , PICSTR , FC);

/* Print the default time format for the US */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(
’The default time format for the US is ’
|| PICSTR);

END;
ELSE DO;

DISPLAY(’CEEFMTM failed with msg ’
|| FC.MsgNo);

CEEFMTM

Chapter 5. Callable services 283

STOP;
END;

END PLIFMTM;

CEEFRST—Free heap storage

CEEFRST frees storage previously allocated by CEEGTST or by a language intrinsic
function. Normally, you do not need to call CEEFRST because Language
Environment automatically returns all heap storage to the operating system when
the enclave terminates. However, if you are allocating a large amount of heap
storage, you should free the storage when it is no longer needed. This freed
storage then becomes available for later requests for heap storage, thus reducing
the total amount of storage needed to run the application.

All requests for storage are conditional. If storage is not available, the feedback
code (fc) is set and returned to you, but the thread does not abend. An attempt to
free storage that was already marked as free produces no action and returns a
non-CEE000 symbolic feedback code. An attempt to free storage at anything other
than a valid starting address produces no action and returns a non-CEE000
symbolic feedback code. The application does not abend.

However, if you call CEEFRST for an invalid address, and you had specified
TRAP(OFF), your application can abend. The reaction of Language Environment to
this is undefined. Also, partial freeing of an allocated area is not supported.

When storage is allocated by CEEGTST, its allocated size is used during free
operations. Storage allocated by CEEGTST, but not explicitly freed, is automatically
freed at enclave termination.

CEEFRST generates a system-level free storage call to return a storage increment to
the operating system only when:
v The last heap element within an increment is being freed, and
v The HEAP runtime option or a call to CEECRHP specifies FREE (note that KEEP

is the IBM-supplied default setting for the initial heap).

Otherwise, the freed storage is simply added to the free list; it is not returned to
the operating system until termination. The out-of-storage condition can cause
freeing of empty increments even when KEEP is specified.

Syntax

►► CEEFRST (address , fc) ►◄

address (input)
A fullword address pointer. address is the address returned by a previous
CEEGTST call or a language intrinsic function such as ALLOCATE or
malloc(). The storage at this address is deallocated.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result

CEEFMTM

284 z/OS Language Environment Programming Reference

of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following feedback codes can result from this service:

Code Severity
Message
number Message text

CEE000 0 — The service completed successfully.
CEE0P2 4 0802 Heap storage control information was damaged.
CEE0PA 3 0810 The storage address in a free storage (CEEFRST)

request was not recognized, or heap storage
(CEECZST) control information was damaged.

Usage notes
v If you specify heap_free_value in the STORAGE runtime option, all freed storage

is overwritten with heap_free_value. Otherwise, it is simply marked as available.
Portions of the freed storage area can be used to hold internal storage manager
control information. These areas are overwritten, but not with heap_free_value.

v The heap identifier is inferred from the address of the storage to be freed. The
storage is freed from the heap in which it was allocated.

v The address passed as the argument is a dangling pointer after a call to
CEEFRST. The storage freed by this operation can be reallocated on a subsequent
CEEGTST call. If the pointer is not reassigned, any further use of it causes
unpredictable results.

v z/OS UNIX considerations—CEEFRST applies to the enclave. One thread can
allocate storage, and another can free it.

For more information
v See “CEEGTST—Get heap storage” on page 315 for more information about the

CEEGTST callable service.
v See “HEAP” on page 38 for further information about the HEAP runtime option.
v See “CEECRHP—Create new additional heap” on page 223 for more information

about the CEECRHP callable service.
v See “STORAGE” on page 81 for further information about the STORAGE

runtime option.

Examples
1. An example of CEEFRST called by C/C++:

/*Module/File Name: EDCFRST */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_INT4 heapid, size;
_POINTER address;
_FEEDBACK fc;

/* .
.
. */

heapid = 0; /* get storage from initial heap */

CEEFRST

Chapter 5. Callable services 285

size = 4000; /* number of bytes of heap storage */

/* obtain the storage using CEEGTST */
CEEGTST(&heapid,&size,&address,&fc);

/* check the first 4 bytes of the feedback token */
/* (0 if successful) */
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEGTST failed with message number %d\n",
fc.tok_msgno);

exit(99);
}

/* .
.
. */

/* free the storage that was previously obtained */
/* using CEEGTST */
CEEFRST(&address,&fc);

/* check the first 4 bytes of the feedback token */
/* (0 if successful) */
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEFRST failed with message number %d\n",
fc.tok_msgno);

exit(99);
}

/* .
.
. */

}

2. An example of CEEFRST called by COBOL:
CBL LIB,QUOTE

*Module/File Name: IGZTFRST

** **
** IGZTFRST - Call CEEFRST to free heap **
** storage **
** **
** In this example, a call is made to **
** CEEGTST to obtain 4000 bytes of storage **
** from the initial heap (HEAPID = 0). **
** A call is then made to CEEFRST to free **
** the storage. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. IGZTFRST.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 HEAPID PIC S9(9) BINARY.
01 STGSIZE PIC S9(9) BINARY.
01 ADDRSS USAGE IS POINTER.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

CEEFRST

286 z/OS Language Environment Programming Reference

PROCEDURE DIVISION.
PARA-CBLFRST.

** Specify 0 to get storage from the initial
** heap.
** Specify 4000 to get 4000 bytes of storage.
** Call CEEGTST to obtain storage.

MOVE 0 TO HEAPID.
MOVE 4000 TO STGSIZE.

CALL "CEEGTST" USING HEAPID , STGSIZE ,
ADDRSS , FC.

IF CEE000 of FC THEN
DISPLAY "Obtained " STGSIZE " bytes of"

" storage at location " ADDRSS
" from heap number " HEAPID

ELSE
DISPLAY "CEEGTST failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.
** To free storage, use the address returned
** by CEECRHP in the call to CEEFRST.

CALL "CEEFRST" USING ADDRSS , FC.
IF CEE000 of FC THEN

DISPLAY "Returned " STGSIZE " bytes of"
" storage at location " ADDRSS
" to heap number " HEAPID

ELSE
DISPLAY "CEEFRST failed with msg "

Msg-No of FC UPON CONSOLE
END-IF.
GOBACK.

3. An example of CEEFRST called by PL/I:
*PROCESS MACRO;
/*Module/File Name: IBMFRST */
/**/
/** **/
/** Function: CEEFRST - free heap storage **/
/** **/
/** This example calls CEEGTST to obtain storage **/
/** from the initial heap, and then calls **/
/** CEEFRST to discard it. **/
/** **/
/**/
PLIFRST: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL ADDRSS POINTER;
DCL HEAPID REAL FIXED BINARY(31,0);
DCL STGSIZE REAL FIXED BINARY(31,0);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

DCL 01 FC2, /* Feedback token */
03 MsgSev REAL FIXED BINARY(15,0),

CEEFRST

Chapter 5. Callable services 287

03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

HEAPID = 0; /* get storage from the initial heap */

STGSIZE = 4000; /* get 4000 bytes of storage */

/* Call CEEGTST to obtain the storage */
CALL CEEGTST (HEAPID, STGSIZE, ADDRSS, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’Obtained ’ || STGSIZE
|| ’ bytes of storage at location ’
|| DECIMAL(UNSPEC(ADDRSS))
|| ’ from heap ’ || HEAPID);

END;

ELSE DO;
DISPLAY(’CEEGTST failed with msg ’

|| FC.MsgNo);
STOP;
END; /* Call CEEFRST with the address returned from */

/* CEEGTST to free the storage allocated by */
/* the call to CEEGTST */
CALL CEEFRST (ADDRSS, FC2);
IF FBCHECK(FC2, CEE000) THEN DO;

PUT SKIP LIST(’Storage block at location ’
|| DECIMAL(UNSPEC(ADDRSS)) || ’ freed’);

END;
ELSE DO;

DISPLAY(’CEEFRST failed with msg ’
|| FC2.MsgNo);

STOP;
END;

END PLIFRST;

CEEFTDS—Format time and date into character string

CEEFTDS, analogous to the C function strftime(), converts the internal time and
date to character strings according to the specifications passed to it by the
TD_STRUCT. These specifications work in conjunction with the format conversions
set in the current locale. The current locale's LC_TIME category affects the behavior
of this service, including the actual values for the format specifiers. CEEFTDS is
sensitive to the locales set by setlocale() or CEESETL, not to the Language
Environment settings from COUNTRY or CEE3CTY.

Syntax

►► CEEFTDS (omitted_parm , time_and_date , maxsize , format , ►

► stringout , fc) ►◄

CEEFRST

288 z/OS Language Environment Programming Reference

omitted_parm
This parameter is reserved for future expansion and must be omitted. For
information about how to code an omitted parm, see “Invoking callable
services” on page 116.

time_and_date (input)
Points to the time structure that is to be converted. The structure has the
following format:

td_sec
A 4-byte integer that describes the number of seconds in the range of 0
through 59.

td_min
A 4-byte integer that describes the number of minutes in the range of 0
through 59.

td_hour
A 4-byte integer that describes the number of hours in the range of 0
through 23.

td_mday
A 4-byte integer that describes the day of the month in the range of 1
through 31.

td_mon
A 4-byte integer that describes the month of the year in the range of 0
through 12.

td_year
A 4-byte integer that describes the year of an era.

td_wday
A 4-byte integer that describes the day of the week in the range of 0
through 6.

td_yday
A 4-byte integer that describes the day of the year in the range of 0
through 365.

td_isdst
A 4-byte integer that is a flag for daylight savings time.

maxsize (input)
A 4-byte integer that specifies the maximum length (including the string
terminator) of the string that can be placed in stringout.

format (input)
A halfword length-prefixed character string (VSTRING) of 256 bytes that
contains the conversion specifications. The format parameter is a character
string containing two types of objects: plain characters that are placed in the
output string and conversion specifications that convert information from
time_and_date into readable form in the output string. Each conversion
specification is a sequence of this form:
%[-][width][.precision]type

% A percent sign (%) introduces a conversion specification. This character
is required.

width (optional)
An optional decimal digit string that specifies a minimum field width.
A converted value that has fewer characters than the field width is

CEEFTDS

Chapter 5. Callable services 289

padded with spaces to the left. If the decimal digit string is preceded
by a minus sign, padding with spaces occurs to the right of the
converted value.

If no width is given, for numeric fields the appropriate default width is
used with the field padded on the left with zeros, as required. For
strings, the output field is made exactly wide enough to contain the
string.

precision (optional)
An optional value that specifies the maximum number of characters to
be printed for the conversion specification. The precision value is a
decimal digit string preceded by a period. If the value to be output is
longer than the precision, it is truncated on the right.

type Specifies the type of conversion to be performed. The characters and
their meanings are:

%a The abbreviated weekday name (for example, Sun) defined by
the abday statement in the current locale.

%A The full weekday name (for example, Sunday) defined by the
day statement in the current locale.

%b The abbreviated month name (for example, Jan) defined by the
abmon statement in the current locale.

%B The full month name (for example, January) defined by the
month statement in the current locale.

%c The date and time format defined by the d_t_fmt statement in
the current locale.

%d The day of the month as a decimal number (01 to 31).

%D The date in %m/%d/%y format (for example, 01/31/91).

%e The day of the month as a decimal number (1 to 31). The %e
field descriptor uses a two-digit field. If the day of the month
is not a two-digit number, the leading digit is filled with a
space character.

%E The combined alternative era year and name, respectively, in
%o %N format in the current locale.

%F The ISO 8601:2000 standard date format, equivalent to
%Y-%m-%d.

%g The last 2 digits of the week-based year as a decimal number
[00,99].

%G The week-based year as a 4-digit decimal number.

%h The abbreviated month name (for example, Jan) defined by the
abmon statement in the current locale. This field descriptor is a
synonym for the %b field descriptor.

%H The 24-hour clock hour as a decimal number (00 to 23).

%I The 12-hour clock hour as a decimal number (01 to 12).

%j The day of the year as a decimal number (001 to 366).

%m The month of the year as a decimal number (01 to 12).

%M The minutes of the hour as a decimal number (00 to 59).

CEEFTDS

290 z/OS Language Environment Programming Reference

%n Specifies a new-line character.

%N The alternative era name in the current locale.

%o The alternative era year in the current locale.

%p The AM or PM string defined by the am_pm statement in the
current locale.

%r The 12-hour clock time with AM/PM notation as defined by
the t_fmt_ampm statement (%I:%M:%S [AM|PM]) in the
current locale.

%S The seconds of the minute as a decimal number (00 to 60).

%t Specifies a tab character.

%T Represents 24-hour clock time in the format %H:%M:%S (for
example, 16:55:15).

%U The week of the year as a decimal number (00 to 53). Sunday,
or its equivalent as defined by the day statement, is considered
the first day of the week for calculating the value of this field
descriptor.

%w The day of the week as a decimal number (0 to 6). Sunday, or
its equivalent as defined by the .day statement, is considered as
0 for calculating the value of this field descriptor.

%W The week of the year as a decimal number (00 to 53). Monday,
or its equivalent as defined by the day statement, is considered
the first day of the week for calculating the value of this field
descriptor.

%x The date format defined by the d_fmt statement in the current
locale.

%X The time format defined by the t_fmt statement in the current
locale.

%y The year of the century (00 to 99).

%Y The year as a decimal number (for example, 1989).

%z The offset from UTC in ISO8601:2000 standard format (+hhmm
or -hhmm). For example, "-0430" means 4 hours 30 minutes
behind UTC (west of Greenwich).

%Z The time-zone name, if one can be determined (for example,
EST); no characters are displayed if a time zone cannot be
determined.

%% Specifies a percent sign (%) character.

stringout (output)
A halfword length-prefixed character string (VSTRING) of 256 bytes that
contains the formatted time and date output of the CEEFTDS service.

fc (output/optional)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

CEEFTDS

Chapter 5. Callable services 291

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE3T1 3 4001 General Failure: Service could not be completed.
CEE3VM 3 4086 Input Error: The number of characters to be

formatted must be greater than zero.

Usage notes
v PL/I MTF consideration—CEEFTDS is not supported in PL/I MTF applications.
v This callable service uses the C/C++ runtime library. The C/C++ library must be

installed and accessible even when this service is called from a non-C program.

For more information
v For more information about the setlocale() function, see “COUNTRY” on page

24, “CEE3CTY—Set default country” on page 135, and “CEE3LNG—Set national
language” on page 174.

v For more information about the CEESETL callable service, see “CEESETL—Set
locale operating environment” on page 413.

Examples
1. An example of CEEFTDS called by COBOL:

CBL LIB,QUOTE
*Module/File Name: IGZTFTDS

* Example for callable service CEEFTDS *
* Function: Convert numeric time and date *
* values to a string using specified *
* format string and locale format *
* conversions. *
* Valid only for COBOL for MVS & VM Release 2 *
* or later. *

IDENTIFICATION DIVISION.
PROGRAM-ID. MAINFTDS.
DATA DIVISION.
WORKING-STORAGE SECTION.

* Use TD-Struct for CEEFTDS calls
COPY CEEIGZTD.

*

PROCEDURE DIVISION.
* Subroutine needed for pointer addressing

CALL "COBFTDS" USING TD-Struct.

STOP RUN.
*
IDENTIFICATION DIVISION.
PROGRAM-ID. COBFTDS.
DATA DIVISION.
WORKING-STORAGE SECTION.

* Use Locale category constants
COPY CEEIGZLC.

*
01 Ptr-FTDS POINTER.
01 Output-FTDS.

02 O-Length PIC S9(4) BINARY.
02 O-String PIC X(72).

01 Format-FTDS.
02 F-Length PIC S9(4) BINARY.
02 F-String PIC X(64).

01 Max-Size PIC S9(9) BINARY.

CEEFTDS

292 z/OS Language Environment Programming Reference

01 FC.
02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
LINKAGE SECTION.

* Use TD-Struct for calls to CEEFTDS
COPY CEEIGZTD. *
PROCEDURE DIVISION USING TD-Struct.

* Set up time and date values
MOVE 1 TO TM-Sec.
MOVE 2 TO TM-Min.
MOVE 3 TO TM-Hour.
MOVE 9 TO TM-Day.
MOVE 11 TO TM-Mon.
MOVE 94 TO TM-Year.
MOVE 5 TO TM-Wday.
MOVE 344 TO TM-Yday.
MOVE 1 TO TM-Is-DLST.

* Set up format string for CEEFTDS call
MOVE 72 TO Max-Size.
MOVE 36 TO F-Length.
MOVE "Today is %A, %b %d Time: %I:%M %p"

TO F-String (1:F-Length).

* Set up pointer to structure for CEEFTDS call
SET Ptr-FTDS TO ADDRESS OF TD-Struct.

* Call CEEFTDS to convert numeric values
CALL "CEEFTDS" USING OMITTED, Ptr-FTDS,

Max-Size, Format-FTDS,
Output-FTDS, FC.

* Check feedback code and display result
IF Severity = 0

DISPLAY "Format " F-String (1:F-Length)
DISPLAY "Result " O-String (1:O-Length)

ELSE
DISPLAY "Call to CEEFTDS failed. " Msg-No

END-IF.

EXIT PROGRAM.
END PROGRAM COBFTDS.

*
END PROGRAM MAINFTDS.

2. An example of CEEFTDS called by PL/I:
*PROCESS MACRO;
/*Module/File Name: IBMFTDS */
/**/
/* Example for callable service CEEFTDS */
/* Function: Convert numeric time and date values */
/* to a string based on a format specification */
/* string parameter and locale format conversions */
/**/

PLIFTDS: PROC OPTIONS(MAIN);

CEEFTDS

Chapter 5. Callable services 293

%INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */
%INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */
%INCLUDE CEEIBMLC; /* Locale category constants */
%INCLUDE CEEIBMTD; /* TD_STRUCT for CEEFTDS calls */

/* use explicit pointer to local TD_STRUCT structure*/
DCL TIME_AND_DATE POINTER INIT(ADDR(TD_STRUCT));

/* CEEFTDS service call arguments */
DCL MAXSIZE_FTDS BIN FIXED(31); /* OUTPUT_FTDS size */
DCL FORMAT_FTDS CHAR(64) VARYING; /* format string */
DCL OUTPUT_FTDS CHAR(72) VARYING; /* output string */DCL 01 FC,

/* Feedback token */
03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

/* specify numeric input fields for conversion */
TD_STRUCT.TM_SEC=1; /* seconds after min (0-61) */
TD_STRUCT.TM_MIN=2; /* minutes after hour (0-59)*/
TD_STRUCT.TM_HOUR=3; /* hours since midnight(0-23)*/
TD_STRUCT.TM_MDAY=9; /* day of the month (1-31) */
TD_STRUCT.TM_MON=11; /* months since Jan(0-11) */
TD_STRUCT.TM_YEAR=94; /* years since 1900 */
TD_STRUCT.TM_WDAY=5; /* days since Sunday (0-6) */
TD_STRUCT.TM_YDAY=344;/* days since Jan 1 (0-365) */
TD_STRUCT.TM_ISDST=1; /* Daylight Saving Time flag*/

/* specify format string for CEEFTDS call */
FORMAT_FTDS = ’Today is %A, %b %d Time: %I:%M %p’;

MAXSIZE_FTDS = 72; /* specify output string size */

CALL CEEFTDS (*, TIME_AND_DATE, MAXSIZE_FTDS,
FORMAT_FTDS, OUTPUT_FTDS, FC);

/* FBCHECK macro used (defined in CEEIBMCT) */
IF FBCHECK(FC, CEE000) THEN
DO; /* CEEFTDS call is successful */

PUT SKIP LIST(’Format ’||FORMAT_FTDS);
PUT SKIP LIST(’Results in ’||OUTPUT_FTDS);

END;
ELSE
DISPLAY (’Format ’||FORMAT_FTDS||

’ Results in ’||FC.MsgNo);

END PLIFTDS;

CEEGMT—Get current Greenwich Mean Time

CEEGMT returns the current Greenwich Mean Time (GMT) as both a Lilian date
and as the number of seconds since 00:00:00 14 October 1582. The returned values
are compatible with those generated and used by the other Language Environment
date and time services. In order for the results of this service to be meaningful,
your system's TOD (time-of-day) clock must be set to Greenwich Mean Time and
be based on the standard epoch. Use CEEGMTO to get the offset from GMT to
local time.

CEEFTDS

294 z/OS Language Environment Programming Reference

The values returned by CEEGMT are handy for elapsed time calculations. For
example, you can calculate the time elapsed between two calls to CEEGMT by
calculating the differences between the returned values.

Language Environment treats Coordinated Universal Time (UTC) and Greenwich
Mean Time (GMT) as the same. You can use the CEEUTC service, which is an alias
of the CEEGMT service, to get the same value.

Syntax

►► CEEGMT (output_GMT_Lilian , output_GMT_seconds , fc) ►◄

output_GMT_Lilian (output)
A 32-bit binary integer representing the current time in Greenwich, England, in
the Lilian format (the number of days since 14 October 1582). For example, 16
May 1988 is day number 148138. If GMT is not available from the system,
output_GMT_Lilian is set to 0 and CEEGMT terminates with a non-CEE000
symbolic feedback code.

output_GMT_seconds (output)
A 64-bit double floating-point number representing the current date and time
in Greenwich, England, as the number of seconds since 00:00:00 on 14 October
1582, not counting leap seconds. For example, 00:00:01 on 15 October 1582 is
second number 86,401 (24*60*60 + 01). 19:00:01.078 on 16 May 1988 is second
number 12,799,191,601.078. If GMT is not available from the system,
output_GMT_seconds is set to 0 and CEEGMT terminates with a non-CEE000
symbolic feedback code.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE2E6 3 2502 The UTC/GMT was not available from the

system.

Usage notes
v CEEDATE converts output_GMT_Lilian to a character date, and CEEDATM

converts output_GMT_seconds to a character timestamp.
v CICS consideration—CEEGMT does not use the OS TIME macro.
v z/OS UNIX consideration—In multithread applications, CEEGMT affects only

the calling thread.
v Setting the TOD (time-of-day) clock to anything before January 1, 1972 may

produce unpredictable results in your applications.

For more information
v See “CEEGMTO—Get offset from Greenwich Mean Time to local time” on page

297 for more information about the CEEGMTO callable service.

CEEGMT

Chapter 5. Callable services 295

Examples
1. Following is an example of CEEGMT called by C/C++.

/*Module/File Name: EDCGMT */

#include <string.h>
#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_INT4 lilGMT_date;
_FLOAT8 secGMT_date;

CEEGMT(&lilGMT_date,&secGMT_date,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEGMT failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}
printf("The current Lilian date in Greenwich,");
printf(" England is %d\n", lilGMT_date);

}

2. Following is an example of CEEGMT called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTGMT

** **
** IGZTGMT - Call CEEGMT to get current **
** Greenwich Mean Time **
** **
** In this example, a call is made to CEEGMT **
** to return the current GMT as a Lilian date **
** and as Lilian seconds. The results are **
** displayed. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. IGZTGMT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 LILIAN PIC S9(9) BINARY.
01 SECS COMP-2.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLGMT.

CALL "CEEGMT" USING LILIAN , SECS , FC.

IF CEE000 of FC THEN
DISPLAY "The current GMT is also "

"known as Lilian day: " LILIAN

CEEGMT

296 z/OS Language Environment Programming Reference

DISPLAY "The current GMT in Lilian "
"seconds is: " SECS

ELSE
DISPLAY "CEEGMT failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

GOBACK.

3. Following is an example of CEEGMT called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMGMT */
/**/
/** **/
/** Function: CEEGMT - get current Greenwich Mean **/
/** Time **/
/** In this example, CEEGMT is called to return **/
/** the current Greenwich Mean Time as the number **/
/** of days and number of seconds since **/
/** 14 October 1582. The Lilian date is then **/
/** printed. **/
/** **/
/**/

PLICGMT: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL LILIAN REAL FIXED BINARY(31,0);
DCL SECONDS REAL FLOAT DECIMAL(16);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

/* Call CEEGMT to return current GMT as a */
/* Lilian date and Lilian seconds */
CALL CEEGMT (LILIAN, SECONDS, FC);

/* If CEEGMT ran successfully, print results */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(LILIAN ||
’ days have passed since 14 October 1582.’);

END;
ELSE DO;

DISPLAY(’CEEGMT failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLICGMT;

CEEGMTO—Get offset from Greenwich Mean Time to local time

CEEGMTO returns values to the calling routine representing the difference
between the local system time and Greenwich Mean Time (GMT).

CEEGMT

Chapter 5. Callable services 297

Syntax

►► CEEGMTO (offset_hours , offset_minutes , offset_seconds , fc ►

►) ►◄

offset_hours (output)
A 32-bit binary integer representing the offset from GMT to local time, in
hours. For example, for Pacific Standard Time, offset_hours equals -8. If local
time offset is not available, offset_hours equals 0 and CEEGMTO terminates
with a non-CEE000 symbolic feedback code.

offset_minutes (output)
A 32-bit binary integer representing the number of additional minutes that
local time is ahead of or behind GMT. The range of offset_minutes is 0 to 59. If
the local time offset is not available, offset_minutes equals 0 and CEEGMTO
terminates with a non-CEE000 symbolic feedback code.

offset_seconds (output)
A 64-bit double floating-point number representing the offset from GMT to
local time, in seconds. For example, Pacific Standard Time is eight hours
behind GMT. If local time is in the Pacific time zone during standard time,
CEEGMTO would return -28,800 (-8 * 60 * 60). offset_seconds can be used with
CEEGMT to calculate local date and time. See “CEEGMT—Get current
Greenwich Mean Time” on page 294 for more information.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE2E7 3 2503 The offset from UTC/GMT to local time was

not available from the system.

Usage notes
v CEEDATM is used to convert number of seconds to a character timestamp.
v CICS consideration—CEEGMTO does not use the OS TIME macro.
v z/OS UNIX consideration—In multithread applications, CEEGMTO affects only

the calling thread.

For more information
v See “CEEDATM—Convert seconds to character timestamp” on page 238 for

more information about the CEEDATM callable service.

Examples
1. An example of CEEGMTO called by C/C++:

/*Module/File Name: EDCGMTO */

#include <string.h>

CEEGMTO

298 z/OS Language Environment Programming Reference

#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_INT4 GMT_hours,GMT_mins;
_FLOAT8 GMT_secs;

CEEGMTO(&GMT_hours,&GMT_mins,&GMT_secs,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEGMTO failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}
printf("The difference between GMT and the local ");
printf("time is:\n");
printf("%d hours, %d minutes\n",GMT_hours,GMT_mins);

}

2. An example of CEEGMTO called by COBOL:
CBL LIB,QUOTE

*Module/File Name: IGZTGMTO

** **
** IGZTGMTO - Call CEEGMTO to get offset from **
** Greenwich Mean Time to local **
** time **
** **
** In this example, a call is made to CEEGMTO **
** to return the offset from GMT to local time **
** as separate binary integers representing **
** offset hours, minutes, and seconds. The **
** results are displayed. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. IGZTGMTO.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 HOURS PIC S9(9) BINARY.
01 MINUTES PIC S9(9) BINARY.
01 SECONDS COMP-2.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY. PROCEDURE DIVISION.
PARA-CBLGMTO.

CALL "CEEGMTO" USING HOURS , MINUTES ,
SECONDS , FC.

IF CEE000 of FC THEN
DISPLAY "Local time differs from GMT "

"by: " HOURS " hours, "
MINUTES " minutes, and "

CEEGMTO

Chapter 5. Callable services 299

SECONDS " seconds. "
ELSE

DISPLAY "CEEGMTO failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

GOBACK.

3. An example of CEEGMTO called by PL/I:
*PROCESS MACRO;
/* Module/File Name: IBMGMTO */
/**/
/** **/
/** Function: CEEGMTO - get the offset from **/
/** Greenwich Mean Time **/
/** to local time **/
/** **/
/**/
PLIGMTO: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL HOURS REAL FIXED BINARY(31,0);
DCL MINUTES REAL FIXED BINARY(31,0);
DCL SECONDS REAL FLOAT DECIMAL(16);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

/* Call CEEGMTO to return hours, minutes, and */
/* seconds that local time is offset from GMT */

CALL CEEGMTO (HOURS, MINUTES, SECONDS, FC);

/* If CEEGMTO ran successfully, print results */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP EDIT(’The difference between GMT and ’
|| ’local time is ’, HOURS, ’:’, MINUTES)

(A, P’S99’, A, P’99’);
END;

ELSE DO;
DISPLAY(’CEEGMTO failed with msg ’

|| FC.MsgNo);
STOP;
END;

END PLIGMTO;

CEEGPID—Retrieve the Language Environment version and platform
ID

CEEGPID retrieves the Language Environment version ID and the platform ID of
the version and platform of Language Environment that is processing the currently
active condition.

CEEGMTO

300 z/OS Language Environment Programming Reference

Syntax

►► CEEGPID (CEE_Version_ID , Plat_ID , fc) ►◄

CEE_Version_ID (output)
A four-byte hexadecimal number representing the version of Language
Environment that created this data block.
|pp|vv|rr|mm|
pp = Product Number
vv = Version
rr = Release
mm = Modification

The current value of this parameter is:

X'04010800'
Version 1 Release 8 Modification 0

X'04010900'
Version 1 Release 9 Modification 0

X'04010A00'
Version 1 Release 10 Modification 0

X'04010B00'
Version 1 Release 11 Modification 0

X'04010C00'
Version 1 Release 12 Modification 0

X'04010D00'
Version 1 Release 13 Modification 0

X'04020100'
Version 2 Release 1 Modification 0

X'04020200'
Version 2 Release 2 Modification 0

Plat_ID (output)
A fullword integer representing the platform used for processing the current
condition. The current values of this parameter are:
3 z/OS or VM
4 AS/400

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.

Usage notes
v z/OS UNIX consideration—In multithread applications, CEEGPID affects only

the calling thread.

CEEGPID

Chapter 5. Callable services 301

|
|

v To make a decision concerning Language Environment and z/OS levels at
assembly time instead of runtime, use CEEGLOB instead. See z/OS Language
Environment Programming Guide for more information.

Examples
1. Following is an example of CEEGPID called by C/C++.

/*Module/File Name: EDCGPID */
/**/
/**/
/* Note that the format of data returned by CEEGPID */
/* changed in OS/390 V2R10. This sample tests the */
/* version and chooses the appropriate format. */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {
_INT4 cee_ver_id, plat_id;
_FEEDBACK fc;
int Vmask= 0x00FF0000;
int Rmask= 0x0000FF00;
int Mmask= 0x000000FF;
/* get the LE version and the platform id */
CEEGPID(cee_ver_id,plat_id,fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEGPID failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

/* If platform is z/OS and LE is at release 2.10 or later, */
/* use the new interface definition. */
if ((plat_id == 3) & (cee_ver_id > 290)) {

printf("The LE version id is %08X\n",cee_ver_id);
printf(" Version: %d\n",(Vmask & cee_ver_id)>>16);
printf(" Release: %d\n",(Rmask & cee_ver_id)>>8);
printf(" Modification: %d\n\n",Mmask & cee_ver_id);
}

/* else use the old interface */
else {

printf("The LE version is %d\n",cee_ver_id);
}
printf("The current platform is ");
switch(plat_id) {

case 3: printf("z/OS\n");
break;

case 4: printf("AS/400\n");
break;

default: printf("unrecognized platform id\n");

}
}

2. Following is an example of CEEGPID called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTGPID

** **
** IGZTGPID - Call CEEGPID to retrieve the **
** LE version and platform ID **
** **

IDENTIFICATION DIVISION.

CEEGPID

302 z/OS Language Environment Programming Reference

PROGRAM-ID. IGZTGPID.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 VERSION PIC S9(9) BINARY.
01 VER-MAP REDEFINES VERSION.

03 FILLER PIC X(1).
03 VER-VERSION PIC X(1).
03 VER-RELEASE PIC X(1).
03 VER-MOD PIC X(1).

01 WORK-AREA.
03 WORK-BIN PIC S9(4) BINARY.
03 WORK-BIN-BY-BYTE REDEFINES WORK-BIN.

05 WORK-BIN-BYTE1 PIC X(1).
05 WORK-BIN-BYTE2 PIC X(1).

01 VERSION-F PIC 99.
01 RELEASE-F PIC 99.
01 MOD-F PIC 99.
01 PLATID PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLGPID.

** Call CEEGPID to return the version and
** platform ID

CALL "CEEGPID" USING VERSION , PLATID , FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEGPID failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

** If platform is OS/390 or VM and version is greater than 290,
** then use different format of VERSION.

IF PLATID = 3 AND
VERSION > 290 THEN

** Format the version, release, and modification level
MOVE 0 to WORK-BIN
MOVE VER-VERSION TO WORK-BIN-BYTE2
MOVE WORK-BIN TO VERSION-F
MOVE VER-RELEASE TO WORK-BIN-BYTE2
MOVE WORK-BIN TO RELEASE-F
MOVE VER-MOD TO WORK-BIN-BYTE2
MOVE WORK-BIN TO MOD-F
DISPLAY "Currently running version " VERSION-F

" release " RELEASE-F " modification " MOD-F
" of IBM Language Environment"

ELSE
DISPLAY "Currently running version " VERSION

" of IBM Language Environment"
END-IF

** Evaluate PLATID to display this platform
EVALUATE PLATID
WHEN 3

DISPLAY "on OS/390 or VM"

CEEGPID

Chapter 5. Callable services 303

WHEN 4
DISPLAY "on an AS/400"

END-EVALUATE

GOBACK.

3. Following is an example of CEEGPID called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMGPID */
/**/
/** **/
/** Function: CEEGPID - Get LE/370 Version **/
/** and Platform ID **/
/** **/
/** This example calls CEEGPID to get the **/
/** version and platform of Language **/
/** Environment that is currently running. **/
/** This information is then printed out. **/
/** **/
/**/
PLIGPID: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL VERSION REAL FIXED BINARY(31,0);
DCL PLATID REAL FIXED BINARY(31,0);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

/* Call CEEGPID to get the version and platform */
/* of Language Environment that is currently */
/* running */
CALL CEEGPID (VERSION, PLATID, FC);

IF FBCHECK(FC, CEE000) THEN DO;
PUT SKIP LIST

(’Language Environment Version ’ || VERSION);
PUT LIST (’ is running on system ’);
SELECT (PLATID);

WHEN (2) PUT LIST(’OS/2’);
WHEN (3) PUT LIST(’MVS/VM/370’);
WHEN (4) PUT LIST(’AS/400’);
END /* Case of PLATID */;

END;
ELSE DO;

DISPLAY(’CEEGPID failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLIGPID;

CEEGPID

304 z/OS Language Environment Programming Reference

CEEGQDT—Retrieve q_data_token

CEEGQDT retrieves the q_data_token from the Instance-Specific Information (ISI).
CEEGQDT is particularly useful when you have user-written condition handlers
registered by CEEHDLR.

Syntax

►► CEEGQDT (cond_rep , q_data_token , fc) ►◄

cond_rep (input)
A condition token defining the condition for which the q_data_token is
retrieved.

q_data_token (output)
A pointer to the q_data associated with condition token cond_rep.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service.

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE0EE 3 0462 Instance-specific information for the condition

token with message number message-number
and facility ID facility-id could not be found.

CEE0EG 3 0464 Instance-specific information for the condition
token with message number message-number
and facility ID facility-id did not exist.

Usage notes
v z/OS UNIX consideration—In multithread applications, CEEGQDT affects only

the calling thread.

For more information
v For more information about the various types of q_data structures, see z/OS

Language Environment Programming Guide.
v For more information about the CEEHDLR callable service, see

“CEEHDLR—Register user-written condition handler” on page 319.
v For more information about the CEESGL callable service, see “CEESGL—Signal

a condition” on page 417.

Examples
1. Following is an example of CEEGQDT called by C/C++.

/*Module/File Name: EDCGQDT */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <leawi.h>

CEEGQDT

Chapter 5. Callable services 305

#include <ceeedcct.h>
#ifdef __cplusplus

extern "C" {
#endif

void handler(_FEEDBACK *,_INT4 *,_INT4 *,_FEEDBACK *);
#ifdef __cplusplus

}
#endif

typedef struct { /* condition info structure */
int error_value;
char err_msg_80};
int retcode;

} info_struct;
int main(void) {

_FEEDBACK fc,condtok;
_ENTRY routine;
_INT4 token,qdata;
_INT2 c_1,c_2,cond_case,sev,control;
_CHAR3 facid;
_INT4 isi;
info_struct *info;

/* .
.
. */

/* register the condition handler */
token = 99;
routine.address = (_POINTER)&handler;;
routine.nesting = NULL;
CEEHDLR(&routine,&token,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEHDLR failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

/* .
.
. */

/* set up the condition info structure */
info = (info_struct *)malloc(sizeof(info_struct));
if (info == NULL) {

printf("error allocating info_struct\n");
exit(2399);

}

info->error_value = 86;
strcpy(info->err_msg,"Test message");
info->retcode = 99;
/* set qdata to be the condition info structure */
qdata = (int)info;
/* build the condition token */
c_1 = 3;
c_2 = 99;
cond_case = 1;
sev = 3;
control = 0;
memcpy(facid,"ZZZ",3);
isi = 0;
CEENCOD(&c_1,&c_2,&cond_case,&sev,&control,;

facid,&isi,&condtok,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEENCOD failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}
/* signal the condition */
CEESGL(&condtok,&qdata,&fc);

CEEGQDT

306 z/OS Language Environment Programming Reference

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEESGL failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}
/* .

.

. */
}
void handler(_FEEDBACK *fc, _INT4 *token, _INT4 *result,

_FEEDBACK *newfc) {
_FEEDBACK qdatafc;
_INT4 idata;
info_struct *qdata;

/* .
.
. */
/* get the q_data_token from the ISI */
CEEGQDT(fc, &idata, &qdatafc);
if (_FBCHECK (qdatafc , CEE000) != 0) {

printf("CEEGQDT failed with message number %d\n",
qdatafc.tok_msgno);

result = 20; / percolate */
return;

}
/**/
/* set info_struct pointer to address return by */
/* CEEGQDT */
/**/
qdata = (info_struct *) idata;
/* use the condition info structure (qdata) */
if (qdata->error_value == 86) {

printf("%.12s\n",qdata->err_msg);
printf("retcode = %d\n",qdata->retcode);
result = 10; / resume this is what we want */
return;

}
/* .

.

. */
result = 20; / percolate */

}

2. Following is an example of CEEGQDT called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTGQDT

** DRVGQDT - Drive sample program for CEEGQDT **

IDENTIFICATION DIVISION.
PROGRAM-ID. DRVGQDT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ROUTINE PROCEDURE-POINTER.
01 TOKEN PIC S9(9) BINARY.
01 SEV PIC S9(4) BINARY.
01 MSGNO PIC S9(4) BINARY.
01 CASE PIC S9(4) BINARY.
01 SEV2 PIC S9(4) BINARY.
01 CNTRL PIC S9(4) BINARY.
01 FACID PIC X(3).
01 ISINFO PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.

CEEGQDT

Chapter 5. Callable services 307

04 Msg-No PIC S9(4) BINARY.
03 Case-2-Condition-ID

REDEFINES Case-1-Condition-ID.
04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 QDATA PIC S9(9) BINARY.
01 CONDTOK.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.
** Register handler

SET ROUTINE TO ENTRY "CBLGQDT".
CALL "CEEHDLR" USING ROUTINE , TOKEN , FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLR failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

** Signal a condition
MOVE 1 TO QDATA.
SET CEE001 of CONDTOK to TRUE.
MOVE ZERO to I-S-Info of CONDTOK.
CALL "CEESGL" USING CONDTOK , QDATA , FC.
IF CEE000 of FC THEN

DISPLAY "**** Resumed execution in the "
"routine which registered the handler"

ELSE
DISPLAY "CEESGL failed with msg "

Msg-No of FC UPON CONSOLE
END-IF.

** UNregister handler
CALL "CEEHDLU" USING ROUTINE , TOKEN , FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLU failed with msg "
Msg-No of FC UPON CONSOLE

END-IF.
STOP RUN.

END PROGRAM DRVGQDT.
**
** CBLGQDT - Call CEEGQDT to get **
** the Q_DATA_TOKEN **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBLGQDT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID

CEEGQDT

308 z/OS Language Environment Programming Reference

REDEFINES Case-1-Condition-ID.
04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 QDATA PIC S9(9) BINARY.
LINKAGE SECTION.
01 CURCOND.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY. 01 TOKEN
PIC S9(9) BINARY.

01 RESULT PIC S9(9) BINARY.
88 RESUME VALUE 10.

01 NEWCOND.
02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION

USING CURCOND, TOKEN, RESULT, NEWCOND.
PARA-CBLGQDT.

** Obtain the Qdata for the current condition
CALL "CEEGQDT" USING CURCOND , QDATA , FC.
IF CEE000 of FC THEN

DISPLAY "QDATA for " Facility-ID of
CURCOND Msg-No of CURCOND
" is " QDATA

ELSE
DISPLAY "CEEGQDT failed with msg "

Msg-No of FC UPON CONSOLE
END-IF.
SET RESUME TO TRUE.
GOBACK.

END PROGRAM CBLGQDT.

3. The following example uses a COBOL program and handler to establish the
condition handling environment prior to calling a PL/I subroutine to illustrate
the use of the callable service from PL/I.
CBL LIB,QUOTE

*Module/File Name: IGZTGQDP

** IGZTGQDP - Drive sample program for CEEGQDT **

IDENTIFICATION DIVISION.
PROGRAM-ID. IGZTGQDP.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ROUTINE PROCEDURE-POINTER.

CEEGQDT

Chapter 5. Callable services 309

01 TOKEN PIC S9(9) BINARY.
01 SEV PIC S9(4) BINARY.
01 MSGNO PIC S9(4) BINARY.
01 CASE PIC S9(4) BINARY.
01 SEV2 PIC S9(4) BINARY.
01 CNTRL PIC S9(4) BINARY.
01 FACID PIC X(3).
01 ISINFO PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 QDATA PIC S9(9) BINARY.
01 CONDTOK.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.

** Register handler
SET ROUTINE TO ENTRY "HDLGQDT".
CALL "CEEHDLR" USING ROUTINE, TOKEN, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLR failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

** Signal a condition
MOVE 1 TO QDATA.
SET CEE001 of CONDTOK to TRUE.
MOVE ZERO to I-S-Info of CONDTOK.
CALL "CEESGL" USING CONDTOK, QDATA, FC.
IF CEE000 of FC THEN

DISPLAY "**** Resumed execution in the "
"routine which registered the handler"

ELSE
DISPLAY "CEESGL failed with msg "

Msg-No of FC UPON CONSOLE
END-IF.

** UNregister handler
CALL "CEEHDLU" USING ROUTINE, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLU failed with msg "
Msg-No of FC UPON CONSOLE

END-IF.
STOP RUN.

END PROGRAM IGZTGQDP.

** HDLGQDT -- COBOL condition handler to call **

CEEGQDT

310 z/OS Language Environment Programming Reference

** PL/I routine for actual work. **

IDENTIFICATION DIVISION.
PROGRAM-ID. HDLGQDT.
DATA DIVISION.
LINKAGE SECTION.
01 CURCOND.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 TOKEN PIC S9(9) BINARY.
01 RESULT PIC S9(9) BINARY.
01 NEWCOND.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION

USING CURCOND, TOKEN, RESULT, NEWCOND.
PARA-CBLGQDT.

** Invoke the PL/I routine to handle condition

CALL "IBMGQDT"
USING ADDRESS OF CURCOND,

ADDRESS OF TOKEN,
ADDRESS OF RESULT,
ADDRESS OF NEWCOND.

GOBACK.

END PROGRAM HDLGQDT.

4. Following is an example of CEEGQDT called by COBOL.
*PROCESS OPT(0), MACRO;
/* Module/File Name: IBMGQDT */
/**/
/** **/
/** Function: CEEGQDT -- get qualifying data **/
/** **/
/**/
IBMGQDT: PROC (@CONDTOK, @TOKEN, @RESULT, @NEWCOND)

OPTIONS(COBOL);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

/* Parameters */
DCL @CONDTOK POINTER;
DCL @TOKEN POINTER;
DCL @RESULT POINTER;

CEEGQDT

Chapter 5. Callable services 311

DCL @NEWCOND POINTER;
DCL 01 CONDTOK BASED(@CONDTOK),

/* Feedback token */
03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
DCL TOKEN BASED(@TOKEN) REAL FIXED BIN(31,0);
DCL RESULT BASED(@RESULT) REAL FIXED BIN(31,0);

DCL 01 NEWCOND BASED(@NEWCOND),
/* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
/* Local identifiers */
DCL QDATA REAL FIXED BINARY(31,0);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

IF FBCHECK(CONDTOK, CEE001) THEN /* expected */ DO;

/* Call CEEGQDT with condition token defined */
/* above to retrieve associated q_data */
CALL CEEGQDT (CONDTOK, QDATA, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’Qualifying data for current ’
|| ’ condition is ’ || QDATA);

RESULT = 10 /* Resume */;
END;

ELSE DO;
DISPLAY(’CEEGQDT failed with msg ’ ||

FC.MsgNo);
NEWCOND = FC;
RESULT = 30 /* Promote */;
END;

END;
ELSE /* Unexpected condition -- percolate */ DO;

DISPLAY(’User condition handler entered for ’
|| CONDTOK.FacID || ’ condition...’);

DISPLAY(’... with message number ’ ||
CONDTOK.MsgNo);

RESULT = 20 /* Percolate */;
END;

RETURN;
END IBMGQDT;

CEEGQDT

312 z/OS Language Environment Programming Reference

CEEGTJS—Retrieves the value of an exported JCL symbol

CEEGTJS retrieves and returns to the caller the symbol value and length of the
requested exported JCL symbol.

Syntax

►► CEEGTJS (function_code , symbol_name , symbol_value , ►

► value_length , fc) ►◄

function_code (input)
A fullword integer that contains the function code of the following value:

1 Retrieves the value and its associated length of an exported JCL
symbol.

symbol_name (input)
A halfword length-prefixed character string (VSTRING), representing the name
of an exported JCL symbol to be retrieved.

symbol_value (output)
A 255-byte fixed-length string. On return from this service, the ssymbol_value
contains the value of the exported JCL symbol. If the length of the exported
JCL symbol is shorter than 255 characters, the returned string is padded with
blanks.

value_length (output)
A fullword integer that contains the length of the value of the specified JCL
symbol.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you omit this parameter, refer to “Invoking callable services”
on page 116 for the appropriate syntax to indicate that the feedback code was
omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE3L9 0 3753 The input symbol cannot be found in the

current job step.
CEE3LA 3 3754 Incorrect parameters detected.
CEE3QS 1 3932 The system service service failed with return

code return_code and reason code reason_code.

Usage notes
v Lowercase characters in the symbol_name are converted to uppercase by

CEEGTJS.
v For more information about JCL symbols, refer to the topic on system symbols

and JCL symbols in z/OS MVS JCL Reference.

CEEGTJS

Chapter 5. Callable services 313

Examples
1. This example uses CEEGTJS to retrieve the value of an exported JCL symbol.

/*Module/File Name: EDCGTJS */
/***/
/* */
/* THIS EXAMPLE CALLS CEEGTJS TO RETRIEVE THE VALUE OF AN EXPORTED */
/* JCL SYMBOL. */
/* */
/***/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {
_FEEDBACK fc;
_INT4 funcode;
_CHAR255 symvalue;
_VSTRING symname;
_INT4 valuelen;
char *symbol="SYM1";

/* Setting the function code */
funcode=1;

/* Preparing the JCL symbol */
symname.length=strlen(symbol);
memcpy(symname.string, symbol,strlen(symbol));

/* Retrieving the value of the JCL symbol */
CEEGTJS(&funcode,&symname,symvalue,&valuelen,&fc);
if(_FBCHECK (fc, CEE000) !=0) {
printf("CEEGTJS failed with message number %d\n",

fc.tok_msgno);
exit(1);

}
symvalue[valuelen]=’\0’;
printf("The value of JCL symbol %s is %s. The length

of the value is %d\n",symbol,symvalue,valuelen);
}

Use the following JCL to run EDCGTJS:
//JOB1 JOB FELE,MSGLEVEL=(2,0)
//STEP1 EXEC PGM=EDCGTJS
//E1 EXPORT SYMLIST=(SYM1,SYM2,SYM3)
//S1 SET SYM1=XXXX
//S2 SET SYM2=YYYY
//STEPLIB DD DSN=USER.LOADLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*

Running this example would produce the following output:
The value of JCL symbol SYM1 is XXXX. The length of the value is 4.

CEEGTJS

314 z/OS Language Environment Programming Reference

CEEGTST—Get heap storage

CEEGTST gets storage from a heap whose ID you specify. It is used to acquire
both large and small blocks of storage. CEEGTST always allocates storage that is
addressable by the caller. Therefore, if the caller is in 24-bit addressing mode, or if
HEAP(,,BELOW) is in effect, the storage returned is always below the 16M line.
Above-the-line storage is returned only if the caller is in 31-bit addressing mode
and HEAP(,,ANY) is in effect.

All requests for storage are conditional. If storage is not available, the feedback
code (fc) is set and returned to you, but the thread does not abend. When storage
is not available, the appropriate action in the member environment should be
taken. One option is to use the CEESGL callable service to signal the Language
Environment condition handler with the returned feedback code.

Storage obtained by CEEGTST can be freed by a call to CEEFRST or CEEDSHP.
You can also free storage by using a language intrinsic function. If storage is not
explicitly freed, it is freed automatically at termination.

If you have specified a heap_alloc_value in the STORAGE runtime option, all storage
allocated by CEEGTST is initialized to heap_alloc_value. Otherwise, it is left
uninitialized.

If the value specified in the size parameter of CEEGTST is greater than the size of
an increment (as specified in the HEAP runtime option), all of the requested
storage (rounded up to the nearest doubleword) is allocated in a single
system-level call.

Heap storage is acquired by a system-level get storage call in increments of
init_size and incr_size bytes as specified by the HEAP runtime option, or in the
CEECRHP callable service. If the increment size is chosen appropriately, only a few
of the calls to CEEGTST result in a system call. The storage report generated when
the RPTSTG runtime option is specified shows the number of system-level get
storage calls required. This helps you tune the init_size and incr_size fields in order
to minimize calls to the operating system.

Syntax

►► CEEGTST (heap_id , size , address , fc) ►◄

heap_id (input)
A fullword binary signed integer. heap_id is a token denoting the heap in which
the storage is allocated. A heap_id of 0 allocates storage from the initial heap (or
user heap). Any other heap_id must be a value obtained from the CEECRHP
callable service. If the heap_id you specify is invalid, no storage is allocated.
CEEGTST terminates with a non-CEE000 symbolic feedback code and the
value of the address parameter is undefined.

size (input)
A fullword binary signed integer. size represents the amount of storage
allocated, in bytes. If the specified amount of storage cannot be obtained, no
storage is allocated, CEEGTST terminates with a non-CEE000 symbolic
feedback code, and the value of the address parameter is undefined.

CEEGTST

Chapter 5. Callable services 315

address (output)
A fullword address pointer. address is the main storage address of the first byte
of allocated storage. If storage cannot be obtained, address remains undefined.
Storage is always allocated on a doubleword boundary. This parameter
contains an address that is returned as output to CEECZST.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE0P2 4 0802 Heap storage control information was

damaged.
CEE0P3 3 0803 The heap identifier in a get storage request or

a discard heap request was unrecognized.
CEE0P8 3 0808 Storage size in a get storage request

(CEEGTST) or a reallocate request (CEECZST)
was not a positive number.

CEE0PD 3 0813 Insufficient storage was available to satisfy a
get storage (CEECZST) request.

Usage notes
v COBOL considerations— If you want to use the CEEGTST callable service in a

24-bit addressing mode COBOL program to request 24-bit heap storage, you can
make a static call to CEEGTST without any additional changes. If you want to
call it dynamically (either by using the COBOL DYNAM compiler option, or
using the "CALL identifier" statement, where identifier is a variable that holds
the name of the program you want to call), you must also specify
HEAP(,,BELOW,,,) as a runtime option.
This runtime specification affects all programs in the enclave using the user
heap, not just the 24-bit addressing mode program. If this is undesirable, one
alternative is to use the CEECRHP callable service to create an additional heap,
specifying for the options parameter a value that will create the heap BELOW.
The 24-bit addressing mode COBOL program can then obtain storage from this
additional heap using the CEEGTST callable service.

v PL/I considerations—Storage allocated within PL/I AREAs is managed by PL/I.
Therefore, only PL/I language functions can allocate and free storage within a
PL/I area.

v Based upon the layout of a PL/I structure, PL/I might adjust the starting byte of
the PL/I structure to a non-doubleword aligned byte. The difference between the
doubleword boundary and the first byte of such a structure is known as the
hang. Because Language Environment callable storage services do not adjust the
starting byte, you must be careful using callable services to allocate storage for
PL/I structures. Use either the PL/I ALLOCATE statement or fully defined
structures and aggregates to avoid this problem.

v CICS considerations—In a CICS environment, size should not exceed 1024M (1
gigabyte or X'40000000') when running in AMODE ANY, and 65,504 bytes when
running in 24-bit addressing mode. These CICS restrictions are subject to change
from one release of CICS to another. Portable applications should respect current
CICS limitations.

CEEGTST

316 z/OS Language Environment Programming Reference

v z/OS UNIX considerations—CEEGTST applies to the enclave. Any thread can
free the allocated storage.

For more information
v See “HEAP” on page 38 for further information about the Language

Environment HEAP runtime option.
v For more information about the CEESGL callable service, see “CEESGL—Signal

a condition” on page 417.
v For more information about the CEEFRST callable service, see “CEEFRST—Free

heap storage” on page 284.
v For more information about the CEEDSHP callable service, see

“CEEDSHP—Discard heap” on page 258.
v For more information about the STORAGE runtime option, see “STORAGE” on

page 81.
v For more information about the CEECRHP callable service, see

“CEECRHP—Create new additional heap” on page 223.
v For more information about the RPTSTG runtime option, see “RPTSTG” on page

73.
v For more information about the CEECRHP callable service, see

“CEECRHP—Create new additional heap” on page 223.
v For more information about the CEECZST callable service, see

“CEECZST—Reallocate (change size of) storage” on page 227.

Examples
1. Following is an example of CEEGTST called by C/C++.

/*Module/File Name: EDCGTST */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_INT4 heapid, size;
_POINTER address;
_FEEDBACK fc;
/* .

.

. */
heapid = 0; /* get storage from initial heap */
size = 4000; /* number of bytes of heap storage */

/* obtain the storage using CEEGTST */
CEEGTST(&heapid,&size,&address,&fc);

/* check the first 4 bytes of the feedback token */
/* (0 if successful) */
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEGTST failed with message number %d\n",
fc.tok_msgno);

exit(99);
}
/* .

.

. */
/* free the storage that was previously obtained */
/* using CEEGTST */

CEEGTST

Chapter 5. Callable services 317

CEEFRST(&address,&fc);

/* check the first 4 bytes of the feedback token */
/* (0 if successful) */
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEFRST failed with message number %d\n",
fc.tok_msgno);

exit(99);
}

/* .
.
. */

}

2. Following is an example of CEEGTST called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTGTST

** **
** IGZTGTST - Call CEEGTST to get heap storage **
** **
** In this example, a call is made to CEEGTST to **
** obtain 4000 bytes of storage from the initial **
** heap (HEAPID=0). **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. IGZTGTST.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 HEAPID PIC S9(9) BINARY.
01 STGSIZE PIC S9(9) BINARY.
01 ADDRSS POINTER.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.

** Specify 0 to get storage from initial heap. **
** Specify 4000 to get 4000 bytes of storage. **
** Call CEEGTST to obtain storage. **

PARA-CBLGTST.

MOVE 0 TO HEAPID.
MOVE 4000 TO STGSIZE.

CALL "CEEGTST" USING HEAPID, STGSIZE,
ADDRSS, FC.

IF CEE000 of FC THEN
DISPLAY "Obtained " STGSIZE " bytes of"

" storage at location " ADDRSS
" from heap number " HEAPID

ELSE
DISPLAY "CEEGTST failed with msg "

Msg-No of FC UPON CONSOLE

CEEGTST

318 z/OS Language Environment Programming Reference

STOP RUN
END-IF.

GOBACK.

3. Following is an example of CEEGTST called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMGTST */
/**/
/** **/
/** Function: CEEGTST - Get Heap Storage **/
/** **/
/** In this example, a call is made to CEEGTST to **/
/** request 4000 bytes of storage from the **/
/** initial heap. **/
/** **/
/**/
PLIGTST: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL HEAPID REAL FIXED BINARY(31,0);
DCL STGSIZE REAL FIXED BINARY(31,0);
DCL ADDRSS POINTER;
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

HEAPID = 0; /* get storage from the initial heap */
STGSIZE = 4000; /* get 4000 bytes of storage */

/* Call CEEGTST to obtain the storage */
CALL CEEGTST (HEAPID, STGSIZE, ADDRSS, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’Obtained ’ || STGSIZE
|| ’ bytes of storage at location ’
|| DECIMAL(UNSPEC(ADDRSS1))
|| ’ from heap ’ || HEAPID);

END;
ELSE DO;

DISPLAY(’CEEGTST failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLIGTST;

CEEHDLR—Register user-written condition handler

CEEHDLR registers a user-written condition handler for the current stack frame.
The user condition handler is invoked when:
v It is registered for the current stack frame by CEEHDLR, and
v The Language Environment condition manager requests the condition handler

associated with the current stack frame handle the condition.

CEEGTST

Chapter 5. Callable services 319

Language Environment places the user-written condition handlers associated with
each stack frame in a queue. The queue can be empty at any given time. The
Language Environment condition manager invokes the registered condition
handlers in LIFO (last in, first out) order to handle the condition.

The opposite of CEEHDLR, which registers a user-written condition handler, is
CEEHDLU, which unregisters the handler. You do not necessarily need to use
CEEHDLU to remove user-written condition handlers you registered with
CEEHDLR. Any user-written condition handlers created through CEEHDLR and
not unregistered by CEEHDLU are unregistered automatically by Language
Environment, but only when the associated stack frame is removed from the stack.

Language Environment condition handlers are driven only for synchronous
conditions.

Syntax

►► CEEHDLR (routine , token , fc) ►◄

routine (input)
An entry variable or entry constant for the routine called to process the
condition. The entry variable or constant must be passed by reference. The
routine must be an external routine; that is, it must not be a nested routine.

token (input)
A fullword integer of information you want passed to your user handler each
time it is called. This can be a pointer or any other fullword integer you want
to pass.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE080 1 0256 The user-written condition handler routine

specified was already registered for this stack
frame. It was registered again.

CEE081 3 0257 The routine specified contained an invalid entry
variable.

Usage notes
v PL/I MTF consideration—CEEHDLR is not supported in PL/I MTF applications.

This includes any CEEHDLR service called from a COBOL program in the
application.

v COBOL consideration—You should not call CEEHDLR from a nested COBOL
program.

v z/OS UNIX consideration—In multithread applications, CEEHDLR affects only
the calling thread.

CEEHDLR

320 z/OS Language Environment Programming Reference

v C consideration—The CEEHDLR service does not save Writeable Static Area
(WSA) information about the user handler, so it's possible that the user handler
will be given control with the wrong WSA. Specifically, the user handlers on the
stack will be invoked with the WSA of the routine that incurred the condition.
The preferred method of handling conditions from a C application is to use C
signal handlers.

For more information
v For more information about the CEEHDLU callable service, see

“CEEHDLU—Unregister user-written condition handler” on page 328.

Examples
1. Following is an example of CEEHDLR called by C/C++.

/*Module/File Name: EDCHDLR */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

#ifdef __cplusplus
extern "C" {

#endif
void handler(_FEEDBACK *,_INT4 *,_INT4 *,_FEEDBACK *);

#ifdef __cplusplus
}

#endif

int main(void) {

_FEEDBACK fc;
_ENTRY routine;
_INT4 token;

/* set the routine structure to point to the handler */
/* and use CEEHDLR to register the user handler */

token = 99;
routine.address = (_POINTER)&handler;
routine.nesting = NULL;

CEEHDLR(&routine,&token,&fc);

/* verify that CEEHDLR was successful */
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEHDLR failed with message number %d\n",
fc.tok_msgno);

exit (2999);
}

/*

...
*/
}
/***/
/* handler is a user condition handler */
/***/
void handler(_FEEDBACK *fc, _INT4 *token, _INT4 *result,

_FEEDBACK *newfc) {
/*

CEEHDLR

Chapter 5. Callable services 321

...
*/

}

2. Following is an example of CEEHDLR called by a COBOL program that
registers a handler routine.
CBL LIB,QUOTE

*Module/File Name: IGZTHDLR

** **
** CBLHDLR - Call CEEHDLR to register a user **
** condition handler **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLHDLR.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ROUTINE PROCEDURE-POINTER.
01 TOKEN PIC S9(9) BINARY.
01 SEV PIC S9(4) BINARY.
01 MSGNO PIC S9(4) BINARY.
01 CASE PIC S9(4) BINARY.
01 SEV2 PIC S9(4) BINARY.
01 CNTRL PIC S9(4) BINARY.
01 FACID PIC X(3).
01 ISINFO PIC S9(9) BINARY.
01 QDATA PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 CONDTOK.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLHDLR.

SET ROUTINE TO ENTRY "HANDLER".
CALL "CEEHDLR" USING ROUTINE, TOKEN, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLR failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

* RAISE A SIGNAL

PARA-CBLSGL.

CEEHDLR

322 z/OS Language Environment Programming Reference

** Call CEENCOD with the values assigned above **
** to build a condition token "CONDTOK" **
** Set CONDTOK to sev=3, msgno=1 facid=CEE. We **
** raise a sev 3 to ensure our handler is driven*

MOVE 3 TO SEV.
MOVE 1 TO MSGNO.
MOVE 1 TO CASE.
MOVE 3 TO SEV2.
MOVE 1 TO CNTRL.
MOVE "CEE" TO FACID.
MOVE 0 TO ISINFO.

CALL "CEENCOD" USING SEV, MSGNO, CASE,
SEV2, CNTRL, FACID, ISINFO, CONDTOK, FC.

IF NOT CEE000 of FC THEN
DISPLAY "CEENCOD failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

** Call CEESGL to signal the condition with **
** the condition token and qdata described **
** in CONDTOK and QDATA **

MOVE 0 TO QDATA.
CALL "CEESGL" USING CONDTOK, QDATA, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEESGL failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

GOBACK.

3. Following is an example of a COBOL user-written condition handler that is
registered by CBLHDLR and unregistered by CBLHDLU.
CBL LIB,QUOTE,NOOPT,NODYNAM

*Module/File Name: IGZTHAND

** **
** DRVHAND - Drive sample program for COBOL **
** user-written condition handler. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. DRVHAND.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ROUTINE PROCEDURE-POINTER.
01 DENOMINATOR PIC S9(9) BINARY.
01 NUMERATOR PIC S9(9) BINARY.
01 RATIO PIC S9(9) BINARY.
01 TOKEN PIC S9(9) BINARY VALUE 0.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.

CEEHDLR

Chapter 5. Callable services 323

03 Facility-ID PIC XXX.
02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.

REGISTER-HANDLER.
**
** Register handler **
**

SET ROUTINE TO ENTRY "HANDLER".
CALL "CEEHDLR" USING ROUTINE , TOKEN , FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLR failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

RAISE-CONDITION.
**
** Cause a zero-divide condition. **
**

MOVE 0 TO DENOMINATOR.
MOVE 1 TO NUMERATOR.
DIVIDE NUMERATOR BY DENOMINATOR

GIVING RATIO.
DISPLAY "Execution continues following "

"divide-by-zero exception".
UNREGISTER-HANDLER.

**
** UNregister handler **
**

CALL "CEEHDLU" USING ROUTINE, TOKEN, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLU failed with msg "
Msg-No of FC UPON CONSOLE

END-IF.
STOP RUN.

END PROGRAM DRVHAND.

IDENTIFICATION DIVISION.
PROGRAM-ID. HANDLER.
DATA DIVISION.
WORKING-STORAGE SECTION.

LINKAGE SECTION.
01 TOKEN PIC S9(9) BINARY.
01 RESULT PIC S9(9) BINARY.

88 RESUME VALUE 10.
01 CURCOND.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 NEWCOND.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

CEEHDLR

324 z/OS Language Environment Programming Reference

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION USING CURCOND, TOKEN,

RESULT, NEWCOND.

PARA-HANDLER.
DISPLAY "Entered user handler for condition"

" with message number " Msg-No Of CURCOND
" -- will resume execution".

SET RESUME TO TRUE.

GOBACK.
END PROGRAM HANDLER.

4. Following is an example of a PL/I program to handle divide-by-zero condition.
*Process macro;
/* Module/File Name: IBMHDLR */
/**/
/* */
/* EXCOND .-> DIVZERO */
/* - register handler | - force a divide-by-0 */
/* - call DIVZERO --’ */
/* ==> "resume point" */
/* - unregister handler */
/* USRHDLR: */
/* - if divide-by-zero then */
/* - move resume cursor */
/* - resume at "resume" */
/* point */
/* */
/**/
Excond :Proc Options(Main);

/**/
/* Important elements are found in these includes */
/* - feedback declaration */
/* - fbcheck macro call */
/* - condition tokens such as CEE000 */
/* - entry declarations such as ceehdlr */
/**/

%include ceeibmct;
%include ceeibmaw;

dcl Usrhdlr external entry;

dcl 1 fback feedback;
dcl divisor fixed bin(31);
dcl token fixed bin(31);

/***/
/* Register a user-written condition handler */
/***/
token = 97;
Call ceehdlr(Usrhdlr, token, fback);
If fbcheck (fback, cee000) then

display (’MAIN: registered USRHDLR’);
else

do;
display (’CEEHDLR failed with message number ’ ||

fback.MsgNo);
stop;

CEEHDLR

Chapter 5. Callable services 325

end;

/***/
/* Call DIVZERO to divide by zero */
/* and drive USRHDLR */
/***/
divisor = 0;
call divzero (divisor);
display (’MAIN: resumption after DIVZERO’);

/***/
/* Unregister the user condition handler */
/***/

Call ceehdlu (Usrhdlr, fback);
If fbcheck (fback, cee000) then
display (’MAIN: unregistered USRHDLR’);

else
do;

display (’CEEHDLU failed with message number ’ ||
fback.MsgNo);

stop;
end;

/***/
/* Subroutine that simply raises ZERODIVIDE */
/***/
divzero: proc (arg);

dcl arg fixed bin(31);

display(’ DIVZERO: starting.’);
arg = 1 / arg;
display(’ DIVZERO: Returning to its caller’);

end divzero;

end Excond;

5. Following is an example of CEEHDLR called by PL/I.
AHDL TITLE ’Main program that registers a handler’
*
* Symbolic Register Definitions and Usage
*
R0 EQU 0 Parm list addr (CMS only)
R1 EQU 1 Parm list addr, 0=no parms
R10 EQU 10 Base reg for executable code
R12 EQU 12 Language Environment Common Anchor Area addr
R13 EQU 13 Dynamic Storage Area addr
R14 EQU 14 Return point addr
R15 EQU 15 Entry point address
*
* Prologue
*
CEEHDLRA CEEENTRY AUTO=DSASIZ, Main memory to obtain *

MAIN=YES, This program is a MAIN prog *
PPA=PPA1, Our Program Prolog Area *
BASE=R10 Base reg for executable code

USING CEECAA,R12 Addressing for LE/370 CAA
USING CEEDSA,R13 Addressing for dynamic data

*
* Announce ourselves
*

WTO ’CEEHDLRA Says "HELLO"’,ROUTCDE=11
*
* Register User Handler
*

LA R1,USRHDLPP Get addr of proc-ptr to Hdlr
ST R1,PARM1 Make it 1st parameter

CEEHDLR

326 z/OS Language Environment Programming Reference

LA R1,TOKEN Get addr of 32-bit token
ST R1,PARM2 Make it 2nd parameter
LA R1,FEEDBACK Get addr of feedback code
ST R1,PARM3 Make it 3rd parameter
LA R1,HDLRPLST Point to CEEHDLR’s parm list
CALL CEEHDLR Invoke CEEHDLR service
CLC FEEDBACK,=XL12’00’ Check for success..
BE HDLRGOOD Skip diagnostics if success

* Failure.. issue diagnostics
WTO ’**** Call to CEEHDLR failed ****’, *

ROUTCDE=11
ABEND 1,DUMP Terminate program with Dump

HDLRGOOD EQU * Handler registered OK
* ... code covered by User-Written Handler goes here...
* Un-Register User Handler
*

LA R1,USRHDLPP Get addr of proc-ptr to Hdlr
ST R1,HDLUPRM1 Make it 1st parameter
LA R1,HDLUFBC Address for feedback code
ST R1,HDLUPRM2 Make it 2nd parameter
LA R1,HDLUPLST Point to CEEHDLU parm list
CALL CEEHDLU Invoke CEEHDLU service

* Bid a fond farewell
WTO ’CEEHDLRA Says "GOOD-BYE"’,ROUTCDE=11

*
* Epilogue
*

CEETERM RC=4,MODIFIER=1 Terminate program
*
* Program Constants and Local Static Variables
*
USRHDLPP DC V(USRHDLR),A(0) Procedure-ptr to Handlr
*

LTORG , Place Literal Pool here
EJECT

PPA1 CEEPPA , Our Program Prolog Area
EJECT
CEEDSA , Map CEE Dynamic Save Area

*
* Local Automatic (Dynamic) Storage.
*
HDLRPLST DS 0F
PARM1 DS A Addr of User-written Handler
PARM2 DS A Addr of 32-bit Token
PARM3 DS A Addr of feedback code
*
HDLUPLST DS 0F
HDLUPRM1 DS A Addr of User-written Handler
HDLUPRM2 DS A Addr of feedback code
*
TOKEN DS F 32-bit Token: fullword whose
* *value* will be passed
* to the user handler
* each time it is called.
FEEDBACK DS CL12 CEEHDLR Feedback code
*
HDLUFBC DS CL12 CEEHDLU Feedback code
*
DSASIZ EQU *-CEEDSA Length of DSA

EJECT
CEECAA , Map LE370 Common Anchor Area
END CEEHDLRA

CEEHDLR

Chapter 5. Callable services 327

CEEHDLU—Unregister user-written condition handler

CEEHDLU unregisters a user condition handler for the current stack frame. You do
not necessarily need to use CEEHDLU to remove user-written condition handlers
you registered with CEEHDLR. Any user-written condition handlers created
through CEEHDLR and not unregistered by CEEHDLU are unregistered
automatically by Language Environment, but only when the associated stack frame
is removed from the stack.

Note: For information about restrictions on the use of CEEHDLU with PL/I, see
z/OS Language Environment Programming Guide.

Syntax

►► CEEHDLU (routine , fc) ►◄

routine (input)
An entry variable or constant for the routine to be unregistered as a user
condition handler. This routine must be previously registered (with CEEHDLR)
by the same stack frame that invokes CEEHDLU.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE07S 1 0252 CEEHDLU was unable to find the requested

user-written condition handler routine.

Usage notes
v PL/I MTF consideration—CEEHDLU is not supported in PL/I MTF

applications. This includes any CEEHDLR service called from a COBOL program
in the application.

v z/OS UNIX consideration—In multithread applications, CEEHDLU affects only
the calling thread.

For more information
v See “CEEHDLR—Register user-written condition handler” on page 319 for more

information about specifying the routine parameter.

Examples
1. Following an example of CEEHDLU called by C/C++.

/*Module/File Name: EDCHDLU */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

CEEHDLU

328 z/OS Language Environment Programming Reference

#include <leawi.h>
#include <ceeedcct.h>

#ifdef __cplusplus
extern "C" {

#endif
void handler(_FEEDBACK *,_INT4 *,_INT4 *,_FEEDBACK *);

#ifdef __cplusplus
}

#endif

int main(void) {

_FEEDBACK fc;
_ENTRY routine;
_INT4 token;

/* set the routine structure to point to the handler */
/* and use CEEHDLR to register the user handler */

token = 99;
routine.address = (_POINTER)&handler;;
routine.nesting = NULL;

CEEHDLR(&routine,&token,&fc);

/* verify that CEEHDLR was successful */
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEHDLR failed with message number %d\n",
fc.tok_msgno);

exit (2999);
}

/*...
*/
/* Unregister the condition handler */
CEEHDLU(&routine,&fc);

/* verify that CEEHDLU was successful */
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEHDLU failed with message number %d\n",
fc.tok_msgno);

exit (2999);
}

/*...
*/

}

void handler(_FEEDBACK *fc, _INT4 *token, _INT4 *result,
_FEEDBACK *newfc) {

/*...
*/

}

2. Following is an example of a COBOL program that unregisters a user-written
condition handler.
CBL LIB,QUOTE

*Module/File Name: IGZTHDLU

** **
** CBLHDLU - Call CEEHDLU to unregister a user **
** condition handler **
** **
** In this example, a call is made to CEEHDLU **

CEEHDLU

Chapter 5. Callable services 329

** to unregister a user condition handler **
** previously registered using CEEHDLR. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLHDLU.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ROUTINE PROCEDURE-POINTER.
01 TOKEN PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.
PARA-CBLHDLR.

SET ROUTINE TO ENTRY "HANDLER".
CALL "CEEHDLR" USING ROUTINE, TOKEN, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLR failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
ELSE

DISPLAY "HANDLER REGISTERED"
END-IF.

*...
PARA-CBLHDLU.

CALL "CEEHDLU" USING ROUTINE, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLU failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
ELSE

DISPLAY "HANDLER UNREGISTERED"
END-IF.

GOBACK.

END PROGRAM CBLHDLU.

3. Following is an example of a COBOL user-written condition handler that is
registered by CBLHDLR and unregistered by CBLHDLU.
CBL LIB,QUOTE,NOOPT,NODYNAM

*Module/File Name: IGZTHAND

** **
** DRVHAND - Drive sample program for COBOL **
** user-written condition handler. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. DRVHAND.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ROUTINE PROCEDURE-POINTER.

CEEHDLU

330 z/OS Language Environment Programming Reference

01 DENOMINATOR PIC S9(9) BINARY.
01 NUMERATOR PIC S9(9) BINARY.
01 RATIO PIC S9(9) BINARY.
01 TOKEN PIC S9(9) BINARY VALUE 0.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.

REGISTER-HANDLER.
**
** Register handler **
**

SET ROUTINE TO ENTRY "HANDLER".
CALL "CEEHDLR" USING ROUTINE , TOKEN , FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLR failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

RAISE-CONDITION.
**
** Cause a zero-divide condition. **
**

MOVE 0 TO DENOMINATOR.
MOVE 1 TO NUMERATOR.
DIVIDE NUMERATOR BY DENOMINATOR

GIVING RATIO.
DISPLAY "Execution continues following "

"divide-by-zero exception".
UNREGISTER-HANDLER.

**
** UNregister handler **
**

CALL "CEEHDLU" USING ROUTINE, TOKEN, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLU failed with msg "
Msg-No of FC UPON CONSOLE

END-IF.
STOP RUN.

END PROGRAM DRVHAND.

IDENTIFICATION DIVISION.
PROGRAM-ID. HANDLER.
DATA DIVISION.
WORKING-STORAGE SECTION.

LINKAGE SECTION.
01 TOKEN PIC S9(9) BINARY.
01 RESULT PIC S9(9) BINARY.

88 RESUME VALUE 10.
01 CURCOND.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.

CEEHDLU

Chapter 5. Callable services 331

04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 NEWCOND.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION USING CURCOND, TOKEN,

RESULT, NEWCOND.

PARA-HANDLER.
DISPLAY "Entered user handler for condition"

" with message number " Msg-No Of CURCOND
" -- will resume execution".

SET RESUME TO TRUE.

GOBACK.
END PROGRAM HANDLER.

CEEISEC—Convert integers to seconds

CEEISEC converts separate binary integers representing year, month, day, hour,
minute, second, and millisecond to a number representing the number of seconds
since 00:00:00 14 October 1582. Use CEEISEC instead of CEESECS when the input
is in numeric format rather than character format.

The inverse of CEEISEC is CEESECI, which converts number of seconds to integer
year, month, day, hour, minute, second, and millisecond.

Syntax

►► CEEISEC (input_year , input_months , input_day , input_hours ►

► , input_minutes , input_seconds , input_milliseconds , ►

► output_seconds , fc) ►◄

input_year (input)
A 32-bit binary integer representing the year. The valid range for input_year is
1582 to 9999, inclusive.

CEEHDLU

332 z/OS Language Environment Programming Reference

input_month (input)
A 32-bit binary integer representing the month. The valid range for
input_month is 1 to 12.

input_day (input)
A 32-bit binary integer representing the day. The valid range for input_day is 1
to 31.

input_hours (input)
A 32-bit binary integer representing the hours. The range of valid input_hours is
0 to 23.

input_minutes (input)
A 32-bit binary integer representing the minutes. The range of valid
input_minutes is 0 to 59.

input_seconds (input)
A 32-bit binary integer representing the seconds. The range of valid
input_seconds is 0 to 59.

input_milliseconds (input)
A 32-bit binary integer representing milliseconds. The range of valid
input_milliseconds is 0 to 999.

output_seconds (output)
A 64-bit double floating-point number representing the number of seconds
since 00:00:00 on 14 October 1582, not counting leap seconds. For example,
00:00:01 on 15 October 1582 is second number 86,401 (24*60*60 + 01). The valid
range of output_seconds is 86,400 to 265,621,679,999.999 (23:59:59.999 31
December 9999). If any input values are invalid, output_seconds is set to zero.
To convert output_seconds to a Lilian day number, divide output_seconds by
86,400 (the number of seconds in a day).

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE2EE 3 2510 The hours value in a call to CEEISEC or

CEESECS was not recognized.
CEE2EF 3 2511 The day parameter passed in a CEEISEC call

was invalid for year and month specified.
CEE2EH 3 2513 The input date passed in a CEEISEC, CEEDAYS,

or CEESECS call was not within the supported
range.

CEE2EI 3 2514 The year value passed in a CEEISEC call was
not within the supported range.

CEE2EJ 3 2515 The milliseconds value in a CEEISEC call was
not recognized.

CEE2EK 3 2516 The minutes value in a CEEISEC call was not
recognized.

CEE2EL 3 2517 The month value in a CEEISEC call was not
recognized.

CEE2EN 3 2519 The seconds value in a CEEISEC call was not
recognized.

CEEISEC

Chapter 5. Callable services 333

Usage notes
v z/OS UNIX consideration—In multithread applications, CEEISEC affects only

the calling thread.

For more information
v For more information about the CEESECS callable service, see

“CEESECS—Convert timestamp to seconds” on page 407.
v See “CEESECI—Convert seconds to integers” on page 402 for more information

about the CEESECI callable service.

Examples
1. Following is an example of CEEISEC called by C/C++.

/*Module/File Name: EDCISEC */

#include <string.h>
#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main(void) {

_INT4 year, month, day, hours, minutes, seconds,
millisecs;

_FLOAT8 output;
_FEEDBACK fc;

year = 1991;
month = 9;
day = 13;
hours = 4;
minutes = 34;
seconds = 25;
millisecs = 746;

CEEISEC(&year,&month,&day,&hours,&minutes,&seconds,;
&millisecs,&output,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEEISEC failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}
printf("The number of seconds between 00:00:00.00"

" 10/14/1582 and 04:34:25.746 09/13/1991"
" is %.3f\n",output);

}

2. Following is an example of CEEISEC called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTISEC

** **
** CBLISEC - Call CEEISEC to convert integers **
** to seconds **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLISEC.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 YEAR PIC S9(9) BINARY.
01 MONTH PIC S9(9) BINARY.

CEEISEC

334 z/OS Language Environment Programming Reference

01 DAYS PIC S9(9) BINARY.
01 HOURS PIC S9(9) BINARY.
01 MINUTES PIC S9(9) BINARY.
01 SECONDS PIC S9(9) BINARY.
01 MILLSEC PIC S9(9) BINARY.
01 OUTSECS COMP-2.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLISEC.

** Specify seven binary integers representing **
** the date and time as input to be converted **
** to Lilian seconds **

MOVE 2000 TO YEAR.
MOVE 1 TO MONTH.
MOVE 1 TO DAYS.
MOVE 0 TO HOURS.
MOVE 0 TO MINUTES.
MOVE 0 TO SECONDS.
MOVE 0 TO MILLSEC.

** Call CEEISEC to convert the integers **
** to seconds **

CALL "CEEISEC" USING YEAR, MONTH, DAYS,
HOURS, MINUTES, SECONDS,
MILLSEC, OUTSECS , FC.

** If CEEISEC runs successfully, display result**

IF CEE000 of FC THEN
DISPLAY MONTH "/" DAYS "/" YEAR

" AT " HOURS ":" MINUTES ":" SECONDS
" is equivalent to " OUTSECS " seconds"

ELSE
DISPLAY "CEEISEC failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

GOBACK.

3. Following is an example of CEEISEC called by PL/I.
*PROCESS MACRO;
/*Module/File Name: IBMISEC
/**/
/** **/
/** Function: CEEISEC - Convert integers to **/
/** seconds **/
/** **/
/** In this example, CEEISEC is called to convert **/
/** integers representing the date and time to the **/
/** number of seconds since 00:00 14 October 1582. **/

CEEISEC

Chapter 5. Callable services 335

/** **/
/**/
PLIISEC: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL YEAR REAL FIXED BINARY(31,0);
DCL MONTH REAL FIXED BINARY(31,0);
DCL DAYS REAL FIXED BINARY(31,0);
DCL HOURS REAL FIXED BINARY(31,0);
DCL MINUTES REAL FIXED BINARY(31,0);
DCL SECONDS REAL FIXED BINARY(31,0);
DCL MILLSEC REAL FIXED BINARY(31,0);
DCL OUTSECS REAL FLOAT DECIMAL(16);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
/* Specify integers representing */
/* 00:00:00 1 January 2000 */

YEAR = 2000;
MONTH = 1;
DAYS = 1;
HOURS = 0;
MINUTES = 0;
SECONDS = 0;
MILLSEC = 0;
/* Call CEEISEC to convert integers to Lilian */
/* seconds */

CALL CEEISEC (YEAR, MONTH, DAYS, HOURS,
MINUTES, SECONDS, MILLSEC, OUTSECS, FC);

IF FBCHECK(FC, CEE000) THEN DO;
PUT EDIT(OUTSECS, ’ seconds corresponds to ’,

MONTH, ’/’, DAYS, ’/’, YEAR, ’ at ’, HOURS,
’:’, MINUTES, ’:’, SECONDS, ’.’, MILLSEC)
(SKIP, F(9), A, 2 (P’99’,A), P’9999’, A,
3 (P’99’, A), P’999’);

END;
ELSE DO;

DISPLAY(’CEEISEC failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLIISEC;

CEEITOK—Return initial condition token

CEEITOK returns the condition that initially triggered the current condition. The
current condition might be different from the initial condition if the initial
condition has been promoted by a user-written condition handler.

CEEISEC

336 z/OS Language Environment Programming Reference

Syntax

►► CEEITOK (i_ctok , fc) ►◄

i_ctok (output)
A 12-byte condition token identifying the initial condition in the current active
data block being processed.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE35S 1 3260 No condition was active when a call to a

condition management routine was made.

Usage notes
v z/OS UNIX considerations—In multithread applications, CEEITOK affects only

the calling thread. CEEITOK returns the initial token for the condition of the
thread.

For more information
v See “CEENCOD—Construct a condition token” on page 379, for more

information about the CEENCOD callable service.

Examples
1. Following is an example of CEEITOKC called by C/C++.

/*Module/File Name: EDCITOK */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

#ifdef __cplusplus
extern "C" {

#endif
void handler(_FEEDBACK *,_INT4 *,_INT4 *,_FEEDBACK *);

#ifdef __cplusplus
}

#endif

int main(void) {

_FEEDBACK fc,condtok;
_ENTRY routine;
_INT4 token,qdata;
_INT2 c_1,c_2,cond_case,sev,control;
_CHAR3 facid;
_INT4 isi;

CEEITOK

Chapter 5. Callable services 337

/* register condition handler */
token = 99;
routine.address = (_POINTER)&handler;;
routine.nesting = NULL;
CEEHDLR(&routine,&token,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEHDLR failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

/* .
.
. */

/* build the condition token */
c_1 = 1;
c_2 = 99;
cond_case = 1;
sev = 1;
control = 0;
memcpy(facid,"ZZZ",3);
isi = 0;
CEENCOD(&c_1,&c_2,&cond_case,&sev,&control,;

facid,&isi,&condtok,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEENCOD failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}

/*...
*/
/* signal the condition */
CEESGL(&condtok,&qdata,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEESGL failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

/*...
*/

}
void handler(_FEEDBACK *fc, _INT4 *token, _INT4 *result,

_FEEDBACK *newfc) {

_FEEDBACK orig_fc, itok_fc;
/*...

*/
/* get the original condition token */
CEEITOK(&orig_fc, &itok_fc);

if (_FBCHECK (itok_fc , CEE000) != 0) {
printf("CEEITOK failed with message number %d\n",

itok_fc.tok_msgno);
exit(2999);

}
/*...

*/
*result = 10;

}

2. Following is an example of CEEITOKC called by COBOL.

CEEITOK

338 z/OS Language Environment Programming Reference

CBL LIB,QUOTE,NOOPT
*Module/File Name: IGZTITOK

** **
** Purpose: Drive sample program for CEEITOK. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. DRVITOK.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ROUTINE PROCEDURE-POINTER.
01 DENOMINATOR PIC S9(9) BINARY.
01 NUMERATOR PIC S9(9) BINARY.
01 RATIO PIC S9(9) BINARY.
01 TOKEN PIC S9(9) BINARY VALUE 0.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.

REGISTER-HANDLER.

** Register handler **

SET ROUTINE TO ENTRY "CBLITOK".
CALL "CEEHDLR" USING ROUTINE, TOKEN, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLR failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

RAISE-CONDITION.

** Cause a zero-divide condition. **

MOVE 0 TO DENOMINATOR.
MOVE 1 TO NUMERATOR.
DIVIDE NUMERATOR BY DENOMINATOR, GIVING RATIO.

UNREGISTER-HANDLER.

** UNregister handler **

CALL "CEEHDLU" USING ROUTINE, TOKEN, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLU failed with msg "
Msg-No of FC UPON CONSOLE

END-IF.
STOP RUN.

END PROGRAM DRVITOK.

** **
** Function: CEEITOK - Return initial **

CEEITOK

Chapter 5. Callable services 339

** condition token **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLITOK.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ITOKEN.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
LINKAGE SECTION.
01 TOKEN PIC S9(9) BINARY.
01 RESULT PIC S9(9) BINARY.

88 RESUME VALUE 10.
01 CURCOND.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 NEWCOND.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION USING CURCOND, TOKEN,
RESULT, NEWCOND.

PARA-CBLITOK.

CEEITOK

340 z/OS Language Environment Programming Reference

CALL "CEEITOK" USING ITOKEN, FC.
IF CEE000 of FC THEN

DISPLAY "Initial condition has msg "
Msg-No of ITOKEN

ELSE
DISPLAY "CEEITOK failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.
PARA-HANDLER.

**
** In user handler - resume execution **
**

SET RESUME TO TRUE.

GOBACK.

END PROGRAM CBLITOK.

3. Following is an example of CEEITOKC called by PL/I.
*PROCESS OPT(0), MACRO;
/* Module/File Name: IBMITOK */
/**/
/** **/
/** Function: CEEITOK - example of CEEITOK **/
/** invoked from PL/I ON-unit **/
/** **/
/**/
IBMITOK: PROCEDURE OPTIONS(MAIN);
%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;
DECLARE

01 ITOKEN, /* Feedback token */
03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0),
01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0),
divisor FIXED BINARY(31) INITIAL(0);

ON ZERODIVIDE BEGIN;
CALL CEEITOK (ITOKEN, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’The initial condition for the ’
|| ’current active block was message ’
|| ITOKEN.MsgNo
|| ’ for facility ’|| ITOKEN.FacID);

END;
ELSE DO;

DISPLAY(’CEEITOK failed with msg ’
|| FC.MsgNo);

CALL CEEMSG(FC, 2, *);

CEEITOK

Chapter 5. Callable services 341

END;
END /* ON ZeroDivide */;

divisor = 15 / divisor /* signals ZERODIVIDE */;
END IBMITOK;

CEELCNV—Query locale numeric conventions

CEELCNV, which calls the C function localeconv(), queries the numeric
formatting information from the current locale and sets the components of a
structure with values pertaining to the LC_NUMERIC and LC_MONETARY
categories. It sets the components of an object of the type NM_STRUCT with the
values appropriate for the formatting of the numeric quantities (monetary and
otherwise) according to the rules of the current locale.

CEELCNV is sensitive to the locales set by setlocale() or CEESETL, not to the
Language Environment settings from COUNTRY or CEE3CTY.

Syntax

►► CEELCNV (version , num_and_mon , fc) ►◄

version
This parameter points to a user supplied VERSION_INFO structure, in which
the first four bytes contain the callable service version number.

Requirement: If the parameter does not point to a user supplied
VERSION_INFO structure, it must be omitted.If the parameter points to a
VERSION_INFO containing version number 2, CEELCNV returns a
num_and_mon structure with the international monetary string formatting
elements added for ISO/IEC 9899:1999 (C99). This corresponds to the current C
language lconv structure. If the parameter is omitted, CEELCNV returns the
structure format used before C99. For information about how to code this
parameter, see “Invoking callable services” on page 116.

num_and_mon (output)
Points to the numeric and monetary structure that is filled in by this service. If
the service fails, the contents of the structure are undefined. num_and_mon has
the following structure:

NM_STRUCT
A halfword length-prefixed character string (VSTRING). A pointer to the
filled-in structure NM_STRUCT is returned. The structure pointed to by
the return value should not be modified by the program but can be
overridden by subsequent calls to CEELCNV. In addition, calls to
CEESETL with the LC_ALL, LC_MONETARY or LC_NUMERIC categories
can cause subsequent calls to CEELCNV to return different values based
on the selection of the locale.

The members of the structure with the type VSTRING are strings, any of
which (except decimal_point) can point to an empty string, to indicate that
the value is not available in the current locale or is of zero length. The
members with type VINT are non-negative numbers, any of which can be
CHAR_MAX to indicate that the value is not available in the current
locale. The members include the following:

CEEITOK

342 z/OS Language Environment Programming Reference

VSTRING decimal_point
A halfword length-prefixed character string (VSTRING) of 22 bytes that
is the decimal-point character used to format non-monetary quantities.

VSTRING thousands_sep
A halfword length-prefixed character string (VSTRING) of 22 bytes that
is the character used to separate groups of digits to the left of the
decimal point in formatted non-monetary quantities.

VSTRING grouping
A halfword length-prefixed character string (VSTRING) of 22 bytes
whose elements indicate the size of each group of digits in formatted
non-monetary quantities.

VSTRING int_curr_symbol
A halfword length-prefixed character string (VSTRING) of 22 bytes that
is the international currency symbol applicable to the current locale,
left justified within a four-character space-padded field.

VSTRING currency_symbol
A halfword length-prefixed character string (VSTRING) of 22 bytes that
is the local currency symbol applicable to the current locale.

VSTRING mon_decimal_point
A halfword length-prefixed character string(VSTRING) of 22 bytes that
is the decimal point character used to format monetary quantities.

VSTRING mon_thousands_sep
A halfword length-prefixed character string (VSTRING) of 22 bytes that
is the separator for groups of digits to the left of the decimal point in
formatted monetary quantities.

VSTRING mon_grouping
A halfword length-prefixed character string (VSTRING) of 22 bytes
whose elements indicate the size of each group of digits in formatted
monetary quantities.

VSTRING positive_sign
A halfword length-prefixed character string (VSTRING) of 22 bytes that
indicates a non-negative-formatted monetary quantity.

VSTRING negative_sign
A halfword length-prefixed character string (VSTRING) of 22 bytes
used to indicate a negative-formatted monetary quantity.

VINT int_frac_digits
A 1-byte integer that is the number of fractional digits (those to the
right of the decimal point) to be displayed in an internationally-
formatted monetary quantity.

VINT frac_digits
A 1-byte integer that is the number of fractional digits (those to the
right of the decimal point) to be displayed in a formatted monetary
quantity.

VINT p_cs_precedes
A 1-byte integer that is set to 1 if the currency_symbol precedes the
value for a non-negative-formatted monetary quantity. It is set to 0 if it
follows.

CEELCNV

Chapter 5. Callable services 343

VINT p_sep_by_space
A 1-byte integer that is set to 1 if the currency_symbol is separated by a
space from the value for a non-negative-formatted monetary quantity.
It is set to 0 if it is not separated.

VINT n_cs_precedes
A 1-byte integer that is set to 1 if the currency_symbol precedes the
value for a negative-formatted monetary quantity. It is set to 0 if it
follows.

VINT n_sep_by_space
A 1-byte integer that is set to 1 if the currency_symbol is separated by a
space from the value for a negative-formatted monetary quantity. It is
set to 0 is it is not separated.

VINT p_sign_posn
A 1-byte integer that is set to a value indicating the positioning of the
positive_sign for non-negative-formatted monetary quantity.

VINT n_sign_posn
A 1-byte integer that is set to a value indicating the position of the
negative_sign for negative-formatted monetary quantity.

VSTRING left_parenthesis
A halfword length-prefixed character string (VSTRING) of 22 bytes that
is the used to denote a negative monetary quantity.

VSTRING right_parenthesis
A halfword length-prefixed character string (VSTRING) of 22 bytes that
is the used to denote a negative monetary quantity.

VSTRING debit_sign
A halfword length-prefixed character string (VSTRING) of 22 bytes that
is the debit sign character in monetary formats.

VSTRING credit_sign
A halfword length-prefixed character string (VSTRING) of 22 bytes that
is the credit sign character in monetary formats.

VINT int_p_cs_precedes
A 1-byte integer that is set to 1 if the currency_symbol precedes the
value for a non-negative-formatted international monetary quantity. It
is set to 0 if it follows.

VINT int_p_sep_by_space
A 1-byte integer that is set to 1 if the currency_symbol is separated by a
space from the value for a non-negative-formatted international
monetary quantity. It is set to 0 if it is not separated.

VINT int_n_cs_precedes
A 1-byte integer that is set to 1 if the currency_symbol precedes the
value for a negative-formatted international monetary quantity. It is set
to 0 if it follows.

VINT int_n_sep_by_space
A 1-byte integer that is set to 1 if the currency_symbol is separated by a
space from the value for a negative-formatted international monetary
quantity. It is set to 0 is it is not separated.

CEELCNV

344 z/OS Language Environment Programming Reference

VINT int_p_sign_posn
A 1-byte integer that is set to a value indicating the positioning of the
positive_sign for non-negative-formatted international monetary
quantity.

VINT n_sign_posn
A 1-byte integer that is set to a value indicating the position of the
negative_sign for negative-formatted international monetary quantity.

fc (output/optional)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE3T1 3 4001 General Failure: Service could not be completed.
CEE3VN 3 4087 Input Error: The version_info control block

contains a version number that is not valid.

Usage notes
v PL/I MTF consideration—CEELCNV is not supported in PL/I MTF applications.
v This callable service uses the C/C++ runtime library. The C/C++ library must be

installed and accessible even when this service is called from a non-C program.
v CEELCNV does not return all numeric conventions.
v CHAR_MAX determines when no further grouping is to be performed. The

elements of grouping and mon_grouping are interpreted according to the following
CHAR_MAX settings:
– 0 specifies that the previous element is to be repeatedly used for the

remainder of the digits. Indicates that no further grouping is to be performed.
– Any other value represents the number of digits comprising the current

group. The next element is examined to determine the size of the next group
of digits to the left of the current group.

v The value of p_sign_posn and n_sign_posn is interpreted according to the
following:

0 Parentheses surround the quantity and currency_symbol.

1 The sign string precedes the quantity and currency_symbol.

2 The sign string follows the quantity and currency_symbol.

3 The sign string immediately precedes the currency_symbol.

4 The sign string immediately follows the currency_symbol.

For more information
v See “CEEQRYL—Query active locale environment” on page 391 for a description

of LC_NUMERIC and LC_MONETARY catagories.
v See “CEESETL—Set locale operating environment” on page 413 for details on

the CEESETL callable service.

Examples
1. Following is an example of CEELCNV called by COBOL.

CEELCNV

Chapter 5. Callable services 345

CBL LIB,QUOTE
*Module/File Name: IGZTLCNV

** Example for callable service CEELCNV **
** Function: Retrieve numeric and monetary **
** format for default locale and **
** print an item. **
** Set locale to France, retrieve **
** structure, and print an item. **
** Valid only for COBOL for MVS & VM Release 2 **
** or later. **

IDENTIFICATION DIVISION.
PROGRAM-ID. MAINLCNV.
DATA DIVISION.
WORKING-STORAGE SECTION.

** Use Locale NM-Struct for CEELCNV calls **

COPY CEEIGZN2M.

*
PROCEDURE DIVISION.

** Subroutine needed for addressing **

CALL "COBLCNV" USING NM-Struct.
STOP RUN.

*
IDENTIFICATION DIVISION.
PROGRAM-ID. COBLCNV.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PTR1 Pointer.
01 Locale-Name.

02 LN-Length PIC S9(54) BINARY.
02 LN-String PIC X(256).

** Use Locale category constants **

COPY CEEIGZLC.

*
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
LINKAGE SECTION.

** Use Locale NM-Struct for CEELCNV calls **

COPY CEEIGZN2M.

*
PROCEDURE DIVISION USING NM-Struct.

** Call CEELCNV to retrieve values for locale**

CALL "CEELCNV" USING OMITTED,
ADDRESS OF NM-Struct, FC.

CEELCNV

346 z/OS Language Environment Programming Reference

** Check feedback code and display result **

IF Severity = 0 THEN
DISPLAY "Default decimal point is "
DECIMAL-PT-String(1:DECIMAL-PT-Length)

ELSE
DISPLAY "Call to CEELCNV failed. " Msg-No

END-IF.

** Set up locale for France **

MOVE 54 TO LN-Length.
MOVE "Fr_FR" TO LN-String (1:LN-Length).

** Call CEESETL to set monetary locale **

CALL "CEESETL" USING Locale-Name,
LC-MONETARY, FC.

** Call CEESETL to set numeric locale **

CALL "CEESETL" USING Locale-Name,
LC-NUMERIC, FC.

** Check feedback code and call CEELCNV again **
** using version 2 to get at C99 mapping. **

IF Severity = 0
MOVE 2 TO Version

set PTR1 to address of Version-Info
CALL "CEELCNV" USING PTR1,

ADDRESS OF NM-Struct, FC
IF Severity > 0

DISPLAY "Call to CEELCNV failed. "
Msg-No

ELSE
DISPLAY "French decimal point is "
DECIMAL-PT-String(1:DECIMAL-PT-Length)

END-IF
ELSE

DISPLAY "Call to CEESETL failed. " Msg-No
END-IF.
EXIT PROGRAM.

END PROGRAM COBLCNV.
*
END PROGRAM MAINLCNV.

2. Following is an example of CEELCNV called by PL/I.
*PROCESS MACRO;

/*Module/File Name: IBMLCNV */
/**/
/* Example for callable service CEELCNV */
/* Function: Retrieve numeric and monetary format */
/* structure for default locale and print an item. */
/* Set locale to France, retrieve structure and */
/* print an item. */
/**/
PLILCNV: PROC OPTIONS(MAIN);
%INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */
%INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */
%INCLUDE CEEIBMLC; /* Locale category constants */
%INCLUDE CEEIBMN2M; /* NM_STRUCT for CEELCNV calls */
/* use explicit pointer for local NM_STRUCT struct */
DCL NUM_AND_MON POINTER INIT(ADDR(NM_STRUCT));

CEELCNV

Chapter 5. Callable services 347

/* Point to local version_info struct and initialize*/
/* VERSION TO 2 TO USE C99 MAPPING OF NM_STRUCT */
DCL VERSN POINTER INIT(ADDR(version_info));
VERSION_INFO.VERSION = 2;

/* CEESETL service call arguments */
DCL LOCALE_NAME CHAR(256) VARYING;

DCL 01 FC, /* Feedback token */
03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
/* retrieve structure for default locale */
CALL CEELCNV (*, NUM_AND_MON, FC);
PUT SKIP LIST(’Default DECIMAL_POINT is ’,

NM_STRUCT.DECIMAL_POINT);
/* set locale for France */
LOCALE_NAME = ’Fr_FRFRAN’;

/* use LC_NUMERIC category const from CEEIBMLC */
CALL CEESETL (LOCALE_NAME, LC_NUMERIC, FC);
/* use LC_MONETARY category const from CEEIBMLC */
CALL CEESETL (LOCALE_NAME, LC_MONETARY, FC);
/* FBCHECK macro used (defined in CEEIBMCT) */
IF FBCHECK(FC, CEE000) THEN
DO;

/* retrieve active NM_STRUCT, France Locale */
CALL CEELCNV (*VERSN, NUM_AND_MON, FC);
PUT SKIP LIST(’French DECIMAL_POINT is ’,

NM_STRUCT.DECIMAL_POINT);
END;

END PLILCNV;

CEELOCT—Get current local date or time

CEELOCT returns the current local date or time in three formats:
v Lilian date (the number of days since 14 October 1582)
v Lilian seconds (the number of seconds since 00:00:00 14 October 1582)
v Gregorian character string (in the form YYYYMMDDHHMISS999)

These values are compatible with other Language Environment date and time
services, and with existing language intrinsic functions.

CEELOCT performs the same function as calling the CEEGMT, CEEGMTO, and
CEEDATM date and time services separately. CEELOCT, however, performs the
same services with much greater speed.

The character value returned by CEELOCT is designed to match that produced by
existing language intrinsic functions. The numeric values returned can be used to
simplify date calculations.

CEELCNV

348 z/OS Language Environment Programming Reference

Syntax

►► CEELOCT (output_Lilian , output_seconds , output_Gregorian , ►

► fc) ►◄

output_Lilian (output)
A 32-bit binary integer representing the current local date in the Lilian format,
that is, day 1 equals 15 October 1582, day 148,887 equals 4 June 1990. If the
local time is not available from the system, output_Lilian is set to 0 and
CEELOCT terminates with a non-CEE000 symbolic feedback code.

output_seconds (output)
A 64-bit double-floating point number representing the current local date and
time as the number of seconds since 00:00:00 on 14 October 1582, not counting
leap seconds. For example, 00:00:01 on 15 October 1582 is second number
86,401 (24*60*60 + 01). 19:00:01.078 on 4 June 1990 is second number
12,863,905,201.078. If the local time is not available from the system,
output_seconds is set to 0 and CEELOCT terminates with a non-CEE000
symbolic feedback code.

output_Gregorian (output)
A 17-byte fixed-length character string in the form YYYYMMDDHHMISS999
representing local year, month, day, hour, minute, second, and millisecond. If
the format of output_Gregorian does not meet your needs, you can use the
CEEDATM callable service to convert output_seconds to another format.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE2F3 3 2531 The local time was not available from the

system.

Usage notes
v z/OS consideration—The MVS command SET DATE will not affect the value

returned by CEELOCT.
v CICS consideration—CEELOCT does not use the OS TIME macro.
v z/OS UNIX consideration—In multithread applications, CEELOCT affects only

the calling thread.

For more information
v See “CEEDATM—Convert seconds to character timestamp” on page 238 for

more information about the CEEDATM callable service.

Examples
1. Following is an example of CEELOCT called by C/C++.

CEELOCT

Chapter 5. Callable services 349

/*Module/File Name: EDCLOCT */

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_INT4 lil_date;
_FLOAT8 local_date;
_CHAR17 gregorian_date;

CEELOCT(&lil_date,&local_date,gregorian_date,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEELOCT failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

printf("The current date is YYYYMMDDHHMISS999\n");
printf(" %.17s\n",gregorian_date);

}

2. Following is an example of CEELOCT called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTLOCT
**
** **
** CBLLOCT - Call CEELOCT to get current **
** local time **
** **
** In this example, a call is made to CEELOCT **
** to return the current local time in Lilian **
** days (the number of days since 14 October **
** 1582), Lilian seconds (the number of **
** seconds since 00:00:00 14 October 1582), **
** and a Gregorian string (in the form **
** YYYMMDDMISS999). The Gregorian character **
** string is then displayed. **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBLLOCT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 LILIAN PIC S9(9) BINARY.
01 SECONDS COMP-2.
01 GREGORN PIC X(17).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLLOCT.

CALL "CEELOCT" USING LILIAN, SECONDS,

CEELOCT

350 z/OS Language Environment Programming Reference

GREGORN, FC.
**
** If CEELOCT runs successfully, display **
** Gregorian character string **
**

IF CEE000 of FC THEN
DISPLAY "Local Time is " GREGORN

ELSE
DISPLAY "CEELOCT failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

GOBACK.

3. Following is an example of CEELOCT called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMLOCT */
/**/
/** **/
/** Function: CEELOCT - get current local time **/
/** **/
/** In this example, CEELOCT is called to return **/
/** the current local time as a Lilian date, **/
/** Lilian timestamp, and Gregorian character **/
/** string. **/
/** **/
/**/
PLILOCT: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL LILIAN REAL FIXED BINARY(31,0);
DCL SECONDS REAL FLOAT DECIMAL(16);
DCL GREGORN CHARACTER (17);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

/* Call CEELOCT to return local time in 3 formats */
CALL CEELOCT (LILIAN, SECONDS, GREGORN, FC);

/* If CEELOCT ran successfully, print Gregorian */
/* result */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’The local date and time are ’
|| GREGORN || ’.’);

END;
ELSE DO;

DISPLAY(’CEELOCT failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLILOCT;

CEELOCT

Chapter 5. Callable services 351

CEEMGET—Get a message

CEEMGET retrieves, formats, and stores in a passed message area a message
corresponding to a condition token that is either returned from a callable service or
passed to a user-written condition handler. The caller can later retrieve the message
to change or to write as output.

Syntax

►► CEEMGET (cond_token , message_area , msg_ptr , fc) ►◄

cond_token (input/output)
A 12-byte condition token received or returned as the result of a Language
Environment callable service.

message_area (input/output)
A fixed-length 80-character string (VSTRING), where the message is placed.
The message is left-justified and padded on the right with blanks.

msg_ptr (input/output)
A 4-byte binary integer returned to the calling routine. The msg_ptr should be
passed a value of zero on the initial call to CEEMGET. If a message is too large
to be contained in the message_area, msg_ptr (containing the index) is returned
into the message. This index is used on subsequent calls to CEEMGET to
retrieve the remaining portion of the message. A feedback code is also
returned, indicating that the message was truncated. When the entire message
is returned, msg_ptr is zero.

The msg_ptr contains different results based on the length of the message:
v If a message contains fewer than 80 characters, the entire message is

returned on the first call. msg_ptr contains 0.
v If a message contains exactly 80 characters, the entire message is returned on

the first call. msg_ptr contains 0.
v If the message is too long, CEEMGET splits it into segments. The msg_ptr

does not contain the cumulative index for the entire message returned so far,
but contains only the index into the segment that was just returned. It is up
to the user of CEEMGET to maintain the cumulative count if needed. When
a message is too long, the following can occur:
– If a message contains more than 80 characters and at least one blank is

contained in the first 80 characters, the string up to and including the last
blank is returned on the first call.

– If the 80th character is nonblank (even if the 81st character is a blank),
msg_ptr contains the index of the last blank (something less than 80), and
the next call starts with the next character.

– If the 80th character is a blank, msg_ptr contains 80 and the next call starts
with the 81st character, blank or nonblank.

– If a message contains more than 80 characters and at least the first 80 are
all nonblank, the first 80 are returned and the next call does not add any
blanks and starts with the 81st character. msg_ptr contains 80.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result

CEEMGET

352 z/OS Language Environment Programming Reference

of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE036 3 0102 An unrecognized condition token was passed to

routine and could not be used.
CEE0E2 3 0450 The message inserts for the condition token with

message number message-number and facility ID
facility-id could not be located.

CEE0E6 3 0454 The message number message-number could not
be found for facility ID facility-id.

CEE0E7 1 0455 The message with message number
message-number and facility ID facility-id was
truncated.

CEE0EA 3 0458 The message repository repository-name could not
be located.

Usage notes
v z/OS UNIX considerations—In multithread applications, CEEMGET affects only

the calling thread. However, CEEMGET uses the NATLANG value of the
enclave. Any subsequent calls to CEEMGET, for a given condition, use the
NATLANG value in effect at the time of the first call.

For more information
v See “CEENCOD—Construct a condition token” on page 379 for a description of

the 12-byte condition token constructed by the CEENCOD callable service.

Examples
1. Following is an example of CEEMGET called by C/C++.

/*Module/File Name: EDCMGET */

#include <string.h>
#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main(void) {

_VSTRING message;
_INT4 dest,msgindx;
_INT2 c_1,c_2,cond_case,sev,control;
_CHAR3 facid;
_INT4 isi;
_CHAR80 msgarea;
_FEEDBACK fc,token;

/* construct a token for CEE message 2523 */
c_1 = 1;
c_2 = 2523;
cond_case = 1;
sev = 1;
control = 1;
memcpy(facid,"CEE",3);
isi = 0;

CEEMGET

Chapter 5. Callable services 353

CEENCOD(&c_1,&c_2,&cond_case,&sev,&control,;
facid,&isi,&token,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEENCOD failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}

msgindx = 0;
memset(msgarea,’ ’,79);/* initialize the message area */
msgarea_80} = ’\0’;

/* use CEEMGET until all the message has been */
/* retrieved */
/* msgindx will be zero when all the message has */
/* been retrieved */
do {

CEEMGET(&token,msgarea,&msgindx,&fc);

if (fc.tok_sev > 1) {
printf("CEEMGET failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}
/* put out the message using CEEMOUT */
memcpy(message.string,msgarea,80);
message.length = 80;
dest = 2;
CEEMOUT(&message,&dest,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEEMOUT failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}
} while (msgindx != 0);

}

2. Following is an example of CEEMGET called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTMGET
**
** **
** CBLMGET - Call CEEMGET to get a **
** message. First set up a **
** condition token using **
** CEENCOD. **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBLMGET.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 MSGBUF PIC X(80).
01 MSGPTR PIC S9(9) BINARY.
01 SEV PIC S9(4) BINARY.
01 MSGNO PIC S9(4) BINARY.
01 CASE PIC S9(4) BINARY.
01 SEV2 PIC S9(4) BINARY.
01 CNTRL PIC S9(4) BINARY.
01 FACID PIC X(3).
01 ISINFO PIC S9(9) BINARY.
01 NEWTOK.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.

CEEMGET

354 z/OS Language Environment Programming Reference

04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLMGET.

**
** Give contok value of **
** sev = 0, msgno = 1 facid = CEE **
**

MOVE 0 TO SEV.
MOVE 1 TO MSGNO.
MOVE 1 TO CASE.
MOVE 0 TO SEV2.
MOVE 1 TO CNTRL.
MOVE "CEE" TO FACID.
MOVE 0 TO ISINFO.

** Call CEENCOD with the values assigned above **
** to build a condition token "NEWTOK" **

CALL "CEENCOD" USING SEV, MSGNO, CASE,
SEV2, CNTRL, FACID,
ISINFO, NEWTOK, FC.

IF NOT CEE000 of FC THEN
DISPLAY "CEENCOD failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

** Always pass 0 in MSGPTR on the initial **
** call to CEEMGET. If the message is too **
** long to be returned in a single call, **
** MSGPTR will be returned containing an **
** index to the message that can be used on **
** subsequent calls to CEEMGET. **

MOVE 0 TO MSGPTR.

** Call CEEMGET to get the message associated **
** with the condition token **

CALL "CEEMGET" USING NEWTOK, MSGBUF,
MSGPTR , FC.

IF NOT CEE000 of FC THEN
DISPLAY "CEEMGET failed with msg "

CEEMGET

Chapter 5. Callable services 355

Msg-No of FC UPON CONSOLE
STOP RUN

ELSE
DISPLAY "The message is: " MSGBUF

END-IF.

GOBACK.

3. Following is an example of CEEMGET called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMMGET */
/**/
/** **/
/**Function : CEEMGET - Get a Message **/
/** **/
/**/
PLIMGET: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL 01 CONTOK, /* Feedback token */
03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
DCL MSGBUF CHAR(80);
DCL MSGPTR REAL FIXED BINARY(31,0);

/* Give CONTOK value of condition CEE001 */
ADDR(CONTOK) -> CEEIBMCT = CEE001;
MSGPTR = 0;

/* Call CEEMGET to retrieve msg corresponding */
/* to condition token */
CALL CEEMGET (CONTOK, MSGBUF, MSGPTR, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’Message text for message number’
|| CONTOK.MsgNo || ’ is "’ || MSGBUF || ’"’);

END;
ELSE DO;

DISPLAY(’CEEMGET failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLIMGET;

CEEMGET

356 z/OS Language Environment Programming Reference

CEEMOUT—Dispatch a message

CEEMOUT dispatches a user-defined message string to the message file.

Syntax

►► CEEMOUT (message_string , destination_code , fc) ►◄

message_string (input)
A halfword-prefixed printable character string containing the message. DBCS
characters must be enclosed within shift-out (byte X'0F') shift-in (X'0E')
characters. Insert data cannot be placed in the message with CEEMOUT. The
halfword-prefixed message string (input) must contain only printable
characters. For length greater than zero, unpredictable results will occur if the
byte following the halfword prefix is X'00"

destination_code (input)
A 4-byte binary integer. The only accepted value for destination_code is 2. Under
systems other than CICS, Language Environment writes the message to the
ddname of the file specified in the MSGFILE runtime option. Under CICS, the
message is written to a transient data queue named CESE.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE0E3 3 0451 An invalid destination code destination-code was

passed to routine routine-name.
CEE0E9 3 0457 The message file destination ddname could not

be located.

Usage notes
v z/OS UNIX considerations—In multithread applications, CEEMOUT affects only

the calling thread. When multiple threads write to the message file, the output is
interwoven by line. To group lines of output, serialize MSGFILE access (by using
a mutex, for example).

v If the message file is defined with an LRECL greater than 256, and the input to
CEEMOUT is greater than 256 bytes, the output results in multiple records. The
first 256 bytes of each record contains output data. The remaniing bytes of each
record, up to the LRECL size, might contain unpredictable data.

For more information
v See “MSGFILE” on page 55 for more information about the MSGFILE runtime

option.
v See z/OS Language Environment Programming Guide for more information about

CESE.

CEEMOUT

Chapter 5. Callable services 357

Examples
1. Following is an example of CEEMOUT called by C/C++.

/*Module/File Name: EDCMOUT */

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_VSTRING message;
_INT4 dest;
_FEEDBACK fc;

strcpy(message.string,"This is a test message");
message.length = strlen(message.string);
dest = 2;

CEEMOUT(&message,&dest,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEEMOUT failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}
/* .

.

. */
}

2. Following is an example of CEEMOUT called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTMOUT
**
** CBLMOUT - Call CEEMOUT to dispatch a msg. **
** In this example, a call is made to CEEMOUT **
** to dispatch a user-defined message string **
** to the ddname specified defaulted in the **
** MSGFILE runtime option. **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBLMOUT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 MSGSTR.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X,
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of MSGSTR.
01 DESTIN PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

CEEMOUT

358 z/OS Language Environment Programming Reference

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLMOUT.

** Create message string and specify length **

MOVE 25 TO Vstring-length of MSGSTR.
MOVE "CEEMOUT ran successfully"

TO Vstring-text of MSGSTR.

** Specify 2 to send the message to the ddname **
** specified or defaulted in the MSGFILE **
** runtime option. **

MOVE 2 TO DESTIN.
CALL "CEEMOUT" USING MSGSTR, DESTIN, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEMOUT failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.
GOBACK.

3. Following is an example of CEEMOUT called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMMOUT */
/**/
/** Function: CEEMOUT - Dispatch a message **/
/** **/
/** In this example, CEEMOUT is called to dispatch **/
/** a user-defined message string to the ddname **/
/** specified or defaulted in the MSGFILE runtime **/
/** option. **/
/**/
PLIMOUT: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL MSGSTR CHAR(255) VARYING;
DCL DESTIN REAL FIXED BINARY(31,0);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

MSGSTR = ’CEEMOUT ran successfully.’;
/* Set message string */

DESTIN = 2; /* Send to MSGFILE ddname */

/* Dispatch message to destination by a */
/* call to CEEMOUT */
CALL CEEMOUT (MSGSTR, DESTIN, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’Message "’ || MSGSTR
|| ’" sent to destination ’ || DESTIN);

END;
ELSE DO;

DISPLAY(’CEEMOUT failed with msg ’
|| FC.MsgNo);

CEEMOUT

Chapter 5. Callable services 359

STOP;
END;

END PLIMOUT;

CEEMRCE—Move resume cursor explicit

The CEEMRCE service resumes execution of a user routine at the location
established by CEE3SRP. CEEMRCE is designed to be called from a user condition
handler and works only in conjunction with the CEE3SRP service.

Syntax

►► CEEMRCE (resume_token , fc) ►◄

resume_token (input)
An INT4 data type that contains a token, returned from the CEE3SRP service,
representing the resume point in the user routine.

fc (output/optional)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE07V 2 0255 The first parameter passed to CEEMRCE was

an unrecognized label.

Usage notes
v Exit DSA routines are invoked as the resume cursor is moved back across stack

frames.
v When a resume is requested, the state of the machine indicated in the machine

state block is established prior to entry at the resume point.

For more information
v See z/OS Language Environment Programming Guide for more information about

the CEEMRCE callable service.

Examples
1. An example of CEEMRCE called by COBOL:

CBL NODYNAM APOST
IDENTIFICATION DIVISION.
PROGRAM-ID. PGM2.

*Module/File Name: IGZTMRCE
__
* *
* Sample program using CEE3SRP and CEEMRCE.*
* PGM2 registers user-written condition *
* handler UCH1 using CEEHDLR. It *
* sets a resume point using CEE3SRP. After *

CEEMOUT

360 z/OS Language Environment Programming Reference

* incurring a condition and returning *
* to PGM2, PGM3 is called. PGM3 sets up *
* new resume point, does a divide-by-zero, *
* and after resuming in PGM3, resets the *
* resume point to PGM2 and does a GOBACK. *
__

DATA DIVISION.
WORKING-STORAGE SECTION.

01 RECOVERY-AREA EXTERNAL.
05 RECOVERY-POINT POINTER.
05 ERROR-INDICATOR PIC X(01).

01 UCH-ROUTINE PROCEDURE-POINTER.

01 FIELDS.
05 FIRST-TIME-SW PIC X(03) VALUE ’ ON’.

88 FIRST-TIME-88 VALUE ’ ON’.
05 ANSWER PIC S9(02) COMP-3 VALUE 0.
05 UCH1 PIC X(08) VALUE ’UCH1 ’.
05 PGM3 PIC X(08) VALUE ’PGM3 ’.
05 CEEHDLR PIC X(08) VALUE ’CEEHDLR ’.
05 CEE3SRP PIC X(08) VALUE ’CEE3SRP ’.
05 TOKEN PIC S9(09) BINARY.
05 FC.

10 CASE-1.
15 SEVERITY PIC S9(04) BINARY.
15 MSG-NO PIC S9(04) BINARY.

10 SEV-CTL PIC X(01).
10 FACILITY-ID PIC X(03).
10 I-S-INFO PIC S9(09) BINARY.

PROCEDURE DIVISION.

SET UCH-ROUTINE TO ENTRY ’UCH1’.
__
* *
* Register the condition handler, UCH1. *
__

CALL CEEHDLR USING UCH-ROUTINE, TOKEN, FC.
IF CASE-1 NOT = LOW-VALUE

GOBACK.
PERFORM COMPUTE-LOOP 3 TIMES.
CALL PGM3 USING RECOVERY-AREA.
SET RECOVERY-POINT TO NULL.
GOBACK. COMPUTE-LOOP.
IF FIRST-TIME-88

MOVE ’OFF’ TO FIRST-TIME-SW
__
* *
* Set up a new resume point. *
__

CALL CEE3SRP USING RECOVERY-POINT,
CASE-1

SERVICE LABEL

IF CASE-1 NOT = LOW-VALUE
GOBACK.

IF ERROR-INDICATOR = ’E’
MOVE SPACE TO ERROR-INDICATOR
MOVE 1 TO ANSWER.

CEEMRCE

Chapter 5. Callable services 361

* Application code may go here.

COMPUTE ANSWER = 1 / ANSWER.

* Put application code here.

CBL NODYNAM APOST
IDENTIFICATION DIVISION.
PROGRAM-ID. PGM3.

__
* *
* Sample program using CEE3SRP and CEEMRCE.*
* PGM2 registered UCH1. This program sets a*
* new resume point, does a divide-by-zero, *
* and after resuming in PGM3, resets the *
* resume point to PGM2 and does a GOBACK. *
__

DATA DIVISION.
WORKING-STORAGE SECTION.

01 RECOVERY-AREA EXTERNAL.
05 RECOVERY-POINT POINTER.
05 ERROR-INDICATOR PIC X(01).

01 UCH-ROUTINE PROCEDURE-POINTER. 01 FIELDS.
05 FIRST-TIME-SW PIC X(03) VALUE ’ ON’.

88 FIRST-TIME-88 VALUE ’ ON’.
05 ANSWER PIC S9(02) COMP-3 VALUE 0.
05 CEEHDLR PIC X(08) VALUE ’CEEHDLR ’.
05 CEE3SRP PIC X(08) VALUE ’CEE3SRP ’.
05 TOKEN PIC S9(09) BINARY.
05 SEV PIC -9(05).
05 MSG PIC -9(05).
05 FC.

10 CASE-1.
15 SEVERITY PIC S9(04) BINARY.
15 MSG-NO PIC S9(04) BINARY.

10 SEV-CTL PIC X(01).
10 FACILITY-ID PIC X(03).
10 I-S-INFO PIC S9(09) BINARY.

PROCEDURE DIVISION.

PERFORM COMPUTE-LOOP 3 TIMES.
SET RECOVERY-POINT TO NULL.
GOBACK.

COMPUTE-LOOP.
IF FIRST-TIME-88

MOVE ’OFF’ TO FIRST-TIME-SW
__
* *
* Set new resume point. *
__

CALL CEE3SRP USING RECOVERY-POINT, FC

SERVICE LABEL

IF CASE-1 NOT = LOW-VALUE
GOBACK.

IF ERROR-INDICATOR = ’E’
MOVE SPACE TO ERROR-INDICATOR
MOVE 1 TO ANSWER.

CEEMRCE

362 z/OS Language Environment Programming Reference

* Application code may go here.

COMPUTE ANSWER = 1 / ANSWER.

* Put application code here.

CBL NODYNAM APOST
IDENTIFICATION DIVISION.
PROGRAM-ID. UCH1.

__
* *
* Sample user condition handler using *
* CEEMRCE. This program sets an error *
* flag for the program-in-error to query *
* and issues a call to CEEMRCE to return *
* control to the statement following the *
* call to CEE3SRP. *
__

DATA DIVISION.
WORKING-STORAGE SECTION.

01 RECOVERY-AREA EXTERNAL.
05 RECOVERY-POINT POINTER.
05 ERROR-INDICATOR PIC X(01).

01 FC.
10 CASE-1.

15 SEVERITY PIC S9(04) BINARY.
15 MSG-NO PIC S9(04) BINARY.

10 SEV-CTL PIC X(01).
10 FACILITY-ID PIC X(03).
10 I-S-INFO PIC S9(09) BINARY.

01 CEEMRCE PIC X(08) VALUE ’CEEMRCE ’.
LINKAGE SECTION.

01 CURRENT-CONDITION PIC X(12).
01 TOKEN PIC X(04).
01 RESULT-CODE PIC S9(09) BINARY.

88 RESUME VALUE +10.
88 PERCOLATE VALUE +20.
88 PERC-SF VALUE +21.
88 PROMOTE VALUE +30.
88 PROMOTE-SF VALUE +31.

01 NEW-CONDITION PIC X(12).

PROCEDURE DIVISION USING CURRENT-CONDITION,
TOKEN,
RESULT-CODE,
NEW-CONDITION.

MOVE ’E’ TO ERROR-INDICATOR.

__
* *
* Call CEEMRCE to return control to the *
* last resume point. *
__

CALL CEEMRCE USING RECOVERY-POINT,
FC.

IF CASE-1 NOT = LOW-VALUE

CEEMRCE

Chapter 5. Callable services 363

GOBACK.
MOVE +10 TO RESULT-CODE.

GOBACK.

2. An example of CEEMRCE called by PL/I:
*Process lc(101),opt(0),s,map,list,stmt,a(f),ag;
*Process macro;
DRV3SRP: Proc Options(Main);

/*Module/File Name: IBM3SRP */
/***
** *
** DRV3SRP - Set an explicit resume point by *
** calling CEE3SRP then registering a *
** condition handler that calls CEEMRCE *
** to resume at the explicitly set *
** resume point. *
** *
**/

%include CEEIBMCT;
%include CEEIBMAW;
declare 01 FBCODE feedback; /* Feedback token */
declare DENOMINATOR fixed binary(31,0);
declare NUMERATOR fixed binary(31,0);
declare RATIO fixed binary(31,0);
declare PLI3SRP external entry;
declare U_PTR pointer;
declare 01 U_DATA,

03 U_CNTL fixed binary(31),
03 U_TOK pointer;

U_PTR = addr(U_DATA);
U_CNTL = 0;

/* Set Resume Point */

Display(’Setting resume point via CEE3SRP’);
Call CEE3SRP(U_TOK,FBCODE);
Display(’After CEE3SRP ... Resume point’);
If U_CNTL = 0 Then
Do;
Display(’First time through...’);

Display(’Registering user handler’);
Call CEEHDLR(PLI3SRP, U_PTR, FBCODE);
If FBCHECK(FBCODE, CEE000) Then

Do;
/* Cause a zero-divide condition */

DENOMINATOR = 0;
NUMERATOR = 1;
RATIO = NUMERATOR / DENOMINATOR;

End;
Else

Do;
Display(’CEEHDLR failed with msg ’);
Display(MsgNo);

End;
End;

Else
Display(’Second time through...’);

/* Unregister handler */
Call CEEHDLU(PLI3SRP, FBCODE);

If FBCHECK(FBCODE, CEE000) Then

CEEMRCE

364 z/OS Language Environment Programming Reference

Display(’Main: unregistered PLI3SRP’);
Else

Do;
Display(’CEEHDLU failed with msg ’);
Display(MsgNo);

End;
End DRV3SRP;

*Process lc(101),opt(0),s,map,list,stmt,a(f),ag;
*Process macro;
PLI3SRP: Proc (PTR1,PTR2,PTR3,PTR4) Options(byvalue);
/***
** *
** PLI3SRP - Call CEEMCRE to resume at the resume *
** point explicitly set in user *
** program. *
** *
**/

%include CEEIBMCT;
%include CEEIBMAW;
declare (PTR1,PTR2,PTR3,PTR4) pointer;
declare 01 CURCOND based(PTR1) feedback;
declare TOKEN pointer based(PTR2);
declare RESULT fixed bin(31,0) based(PTR3);
declare 01 NEWCOND based(PTR4) feedback;
declare 01 U_DATA based(TOKEN),

03 U_CNTL fixed binary(31,0),
03 U_TOK pointer;

declare 01 FBCODE feedback;

Display(’In user handler’);
RESULT = 10;
Call CEEMRCE(U_TOK,FBCODE);
Display(U_CNTL);
U_CNTL = 1;
Return;

CEEMRCR—Move resume cursor

CEEMRCR moves the resume cursor to a position relative to the current position
of the handle cursor. The actions supported are:
v Moving the resume cursor to the call return point of the routine registering the

executing condition handler.
v Moving the resume cursor to the caller of the routine registering the executing

condition handler.

Initially, the resume cursor is placed after the instruction that caused the condition.
Whenever CEEMRCR moves the resume cursor and passes stack frames, associated
exit routines are invoked. Note that “exit routine” refers to user condition handlers
as well as language-specific condition handlers. In addition, any associated user
condition handlers are unregistered. The movement direction is always toward
earlier stack frames, never toward more recent stack frames. The movement occurs
only after the condition handler returns to the Language Environment condition
manager.

Multiple calls to CEEMRCR yield the net results of the calls; that is, if two calls
move the resume cursor to different places for the same stack frame, the most
restrictive call (that closest to the earliest stack frame) is used for that stack frame.

Moving the resume cursor to a particular stack frame:

CEEMRCE

Chapter 5. Callable services 365

v Cancels all stack frames from the previous resume point up to but not including
the new resume point

v Unregisters any user condition handlers registered for the canceled stack frames

Syntax

►► CEEMRCR (type_of_move , fc) ►◄

type_of_move (input)
A fullword binary signed integer indicating the target of the resume cursor
movement. The possible values for type_of_move are:

0 Move the resume cursor to the call return point of the stack frame
associated with the handle cursor.

1 Move the resume cursor to the call return point of the stack frame
prior to the stack frame associated with the handle cursor. The handle
cursor is moved to the most recently established condition handler of
the stack frame. The new resume cursor position now points to this
condition handler for the stack frame. Do not use a type_of_move value
of 1 if the caller of the stack frame associated with the handle cursor is
a nested COBOL program.

Modifying the resume cursor to point to stack frame 0 is not allowed. You
cannot move the resume cursor beyond the earliest stack frame.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE07U 1 0254 The first parameter passed to CEEMRCR was

not 0 or 1.
CEE083 3 0259 A move to stack frame zero using CEEMRCR

was attempted from a MAIN routine.
CEE084 3 0260 No condition was active when a call to a

condition management routine was made. The
requested function was not performed.

CEE08L 1 0277 CEEMRCR was called to perform an
unnecessary move.

Usage notes
v PL/I MTF consideration—CEEMRCR is not supported in PL/I MTF

applications. This includes any CEEHDLR service called from a COBOL program
in the application.

v z/OS UNIX considerations—In multithread applications, CEEMRCR affects only
the calling thread. You can use CEEMRCR only within the thread's call chain.

CEEMRCR

366 z/OS Language Environment Programming Reference

Illustration of CEEMRCR Usage

The following three figures illustrate how you can move the resume cursor by
using the CEEMRCR service.

In Figure 9, routine A calls routine B, which in turn calls C, which calls D. User
condition handlers are registered in routines B and C.

When a condition is raised in routine D, the Language Environment condition
manager passes control to the user condition handler established for routine C. The
handle cursor now points to the stack frame for routine C. Routine C percolates
the condition.

The handle cursor now points to the stack frame for routine B. The next user
condition handler to gain control is that one established for routine B; it recognizes
the condition and issues a resume by calling CEEMRCR.

A 0 type_of_move, meaning move the resume cursor to the stack frame associated
with the handle cursor, causes control to resume at the call return point in routine
B, the instruction immediately following the call to routine C. A 1 type_of_move,
meaning move the resume cursor to the call return point of the stack frame
immediately preceding the one to which the handle cursor points, moves the
resume cursor to the instruction immediately following a call in routine A to
routine B.

The same scenario is illustrated in Figure 10 on page 368, except that HDLR2
issues a resume for the signaled condition rather than percolating it. HDLR1 never

type=1

A .
call b
.
.
.

B

C

D

.
register HDLR1
.
call c
.

.
register HDLR2
.
call d
.

.
signal condition
.
.
.

HDLR1

call CEEMRCR

HDLR2
.
percolate
.

type=0

Figure 9. First example moving resume cursor using CEEMRCR

CEEMRCR

Chapter 5. Callable services 367

gains control. Because the handle cursor now points to the stack frame for routine
C, a 0 type_of_move causes control to resume at the call return point in routine C,
the instruction immediately following the call to routine D. A 1 type_of_move moves
the resume cursor to the instruction immediately following a call in routine B to
routine C.

In Figure 11 on page 369, the user condition handlers are established for routines C
and D. When a condition is raised in routine D, only a 1 type_of_move is permitted.
A 0 type_of_move results in error warning message CEE0277.

type=1

type=0

A .
call b
.
.
.

B

C

D

.
register HDLR1
.
call c
.

.
register HDLR2
.
call d
.

.
signal condition
.
.
.

HDLR1

HDLR2
.

.
call CEEMRCR

.

.

.

.

Figure 10. Second example moving resume cursor using CEEMRCR

CEEMRCR

368 z/OS Language Environment Programming Reference

Examples
1. Following is an example of CEEMRCR called by C/C++.

/*Module/File Name: EDCMRCR */

#include <stdio.h>
#include <string.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

#ifdef __cplusplus
extern "C" {
#endif
void handler(_FEEDBACK *,_INT4 *,_INT4 *,_FEEDBACK *);
#ifdef __cplusplus
}
#endif

void b(void);

int main(void) {
/*

...
*/
b();
/* the CEEMRCR call in the handler will place the */
/* resume cursor at this point. */

/*

type=1

A .
call b
.
.
.

B

C

D

.

.

.
call c
.

.
register HDLR1
.
call d
.

.

signal condition
.

register HDLR2
.

HDLR1

HDLR2
.

.
call CEEMRCR

.

.

.

.

Figure 11. Third example moving resume cursor using CEEMRCR

CEEMRCR

Chapter 5. Callable services 369

...
*/

}

void b(void) {

_FEEDBACK fc,condtok;
_ENTRY routine;
_INT4 token,qdata;
_INT2 c_1,c_2,cond_case,sev,control;
_CHAR3 facid;
_INT4 isi;

/* register the condition handler */
token = 99;
routine.address = (_POINTER)&handler;;
routine.nesting = NULL;
CEEHDLR(&routine,&token,&fc);
if (_FBCHECK (fc , CEE000) != 0) {
printf("CEEHDLR failed with message number %d\n",

fc.tok_msgno);
exit (2999);

}
/*

...
*/

/* set up the condition using CEENCOD */
c_1 = 3;
c_2 = 2523;
cond_case = 1;
sev = 3;
control = 0;
memcpy(facid,"CEE",3);
isi = 0;

CEENCOD(&c_1,&c_2,&cond_case,&sev,&control,;
facid,&isi,&condtok,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEENCOD failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}

/* signal the condition */
CEESGL(&condtok,&qdata,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEESGL failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

/*...
*/
}

void handler(_FEEDBACK *fc, _INT4 *token, _INT4 *result,
_FEEDBACK *newfc) {

_FEEDBACK cursorfc, orig_fc;
_INT4 type;

/* .
.
. */
/* move the resume cursor to the caller of the */

CEEMRCR

370 z/OS Language Environment Programming Reference

/* routine that registered the condition handler */
type = 1;
CEEMRCR(&type,&cursorfc);
if (_FBCHECK (cursorfc , CEE000) != 0) {

printf("CEEMRCR failed with message number %d\n",
cursorfc.tok_msgno);

exit (2999);
}
printf("condition handled\n");
*result = 10;
return;

}

2. Following is an example of CEEMRCR called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTMRCR
**
** **
** CBLMAIN - Main for sample program for **
** CEEMRCR. **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBLMAIN.
PROCEDURE DIVISION.

CALL "DRVMRCR"
DISPLAY "Resumed execution in the CALLER "

"of the routine which registered the "
"handler"

GOBACK.
END PROGRAM CBLMAIN.

**
** **
** DRVMRCR - Drive sample program CEEMRCR. **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. DRVMRCR.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ROUTINE PROCEDURE-POINTER.
01 TOKEN PIC S9(9) BINARY.
01 SEV PIC S9(4) BINARY.
01 MSGNO PIC S9(4) BINARY.
01 CASE PIC S9(4) BINARY.
01 SEV2 PIC S9(4) BINARY.
01 CNTRL PIC S9(4) BINARY.
01 FACID PIC X(3).
01 ISINFO PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 QDATA PIC S9(9) BINARY.
01 CONDTOK.

02 Condition-Token-Value.
COPY CEEIGZCT.

CEEMRCR

Chapter 5. Callable services 371

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.

**
** Register handler **
**

SET ROUTINE TO ENTRY "CBLMRCR".
CALL "CEEHDLR" USING ROUTINE, TOKEN, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLR failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

**
** Signal a condition **
**

MOVE 1 TO QDATA.
SET CEE001 of CONDTOK to TRUE.
MOVE ZERO to I-S-Info of CONDTOK.
CALL "CEESGL" USING CONDTOK, QDATA, FC.
IF CEE000 of FC THEN

DISPLAY "**** Resumed execution in the "
"routine which registered the handler"

ELSE
DISPLAY "CEESGL failed with msg "

Msg-No of FC UPON CONSOLE
END-IF.

**
** UNregister handler **
**

CALL "CEEHDLU" USING ROUTINE, TOKEN, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEHDLU failed with msg "
Msg-No of FC UPON CONSOLE

END-IF.
STOP RUN.

END PROGRAM DRVMRCR.
**
** **
** CBLMRCR - Invoke CEEMRCR to Move resume **
** cursor relative to handle cursor **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBLMRCR.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 MOVETYP PIC S9(9) BINARY.
01 DEST PIC S9(9) BINARY VALUE 2.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.

CEEMRCR

372 z/OS Language Environment Programming Reference

04 Cause-Code PIC S9(4) BINARY.
03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 FC2.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
LINKAGE SECTION.
01 CURRENT-CONDITION.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 TOKEN PIC X(4).
01 RESULT-CODE PIC S9(9) BINARY.

88 RESUME VALUE +10.
88 PERCOLATE VALUE +20.
88 PROMOTE VALUE +30.

01 NEW-CONDITION.
02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION USING CURRENT-CONDITION,

TOKEN, RESULT-CODE,
NEW-CONDITION

**
** Move the resume cursor to the caller of **
** the routine that registered the condition **
** handler **
**

MOVE 1 TO MOVETYP.
CALL "CEEMRCR" USING MOVETYP , FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEEMRCR failed with msg "
Msg-No of FC UPON CONSOLE

CALL "CEEMSG" USING FC, DEST, FC2
IF NOT CEE000 of FC2 THEN
DISPLAY "CEEMSG failed with msg "

Msg-No of FC2 UPON CONSOLE
MOVE FC TO NEW-CONDITION

CEEMRCR

Chapter 5. Callable services 373

SET PROMOTE TO TRUE
GOBACK

END-IF.

SET RESUME TO TRUE.

GOBACK.

END PROGRAM CBLMRCR.

3. Following is an example of a PL/I to handle divide-by-zero condition.
*Process macro;
/* Module/File Name: IBMMRCR */
/**/
/* */
/* Usrhdlr - the user handler routine. */
/* Handle DIVIDE-BY-ZERO conditions, */
/* percolate all others. */
/* */
/**/
Usrhdlr: Proc (@condtok, @token, @result, @newcond)

options(byvalue);

%include ceeibmct;
%include ceeibmaw;

/* Parameters */
dcl @condtok pointer;
dcl @token pointer;
dcl @result pointer;
dcl @newcond pointer;
dcl 1 condtok based(@condtok) feedback;
dcl token fixed bin(31) based(@token);
dcl result fixed bin(31) based(@result);
dcl 1 newcond based(@newcond) feedback;
dcl 1 fback feedback;
dcl move_type fixed bin(31);
dcl resume fixed bin(31) static initial(10);
dcl percolate fixed bin(31) static initial(20);
dcl promote fixed bin(31) static initial(30);
dcl promote_sf fixed bin(31) static initial(31);
display (’>>> USRHDLR: Entered user handler’);
display (’>>> USRHDLR: passed token value is ’ ||

token);

/* Check if this is the divide-by-zero token */
if fbcheck (condtok, cee349) then
do;

move_type = 0;
call ceemrcr (move_type, fback);
If fbcheck (fback, cee000) then
do;
result = resume;
display (’>>> USRHDLR: Resuming execution’);

end;
else
do;
display
(’CEEMRCR failed with message number ’ ||
fback.MsgNo);

stop;
end;

end;
else /* something besides div-zero token */
do;

CEEMRCR

374 z/OS Language Environment Programming Reference

result = percolate;
display (’>>> USRHDLR: Percolating it’);

end;
end Usrhdlr;

CEEMSG—Get, format, and dispatch a message

CEEMSG gets, formats, and dispatches a message corresponding to an input
condition token received from a callable service or passed to a user-written
condition handler. You can use this service to print a message after a call to any
Language Environment service that returns a condition token.

Syntax

►► CEEMSG (cond_token , destination_code , fc) ►◄

cond_token (input)
A 12-byte condition token received as the result of a Language Environment
callable service.

destination_code (input)
A 4-byte binary integer. destination_code can be specified only as 2, meaning
write the message to the ddname of the file specified in the MSGFILE runtime
option .

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE0E2 3 0450 The message inserts for the condition token with

message number message-number and facility ID
facility-id could not be located.

CEE0E3 3 0451 An invalid destination code destination-code was
passed to routine routine-name.

CEE0E6 3 0454 The message number message-number could not
be found for facility ID facility-id.

CEE0E9 3 0457 The message file destination ddname could not be
located.

CEE0EA 3 0458 The message repository repository-name could not
be located.

CEE3CT 3 3485 An internal message services error occurred
while locating the message number within a
message file.

CEE3CU 3 3486 An internal message services error occurred
while formatting a message.

CEE3CV 3 3487 An internal message services error occurred
while locating a message number within the
ranges specified in the repository.

CEEMRCR

Chapter 5. Callable services 375

Usage notes
v z/OS UNIX considerations—In multithread applications, CEEMSG affects only

the calling thread. When multiple threads write to the message file, the output is
interwoven by line. To group lines of output, serialize MSGFILE access (by using
a mutex, for example).

For more information
v See “CEENCOD—Construct a condition token” on page 379 for more

information about the CEENCOD callable service.
v See “MSGFILE” on page 55 for more information about the MSGFILE runtime

option.

Examples
1. Following is an example of CEEMSG called by C/C++.

/*Module/File Name: EDCMSG */

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_VSTRING message;
_INT4 dest,msgindx;
_CHAR80 msgarea;
_FEEDBACK fc,token;

strcpy(message.string,"This is a test message");
message.length = strlen(message.string);
dest = 5; /* invalid dest so CEEMOUT will fail */

CEEMOUT(&message,&dest,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
/* put the message if CEEMOUT failed */
dest = 2;
CEEMSG(&fc,&dest,NULL);
exit(2999);

}
}

2. Following is an example of CEEMSG called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTMSG

** **
** CBLMSG - Call CEEMSG to get, format and **
** dispatch a message **
** **
** In this example, CEE3MDS is called with an **
** invalid country code so that a condition **
** token would be returned to use as input to **
** Any Lang Env service could have been called.**
** CEEMSG uses the condition token to get, **
** format and dispatch the message associated **
** with the condition that occurred in CEE3MDS.**
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLMSG.
DATA DIVISION.

CEEMSG

376 z/OS Language Environment Programming Reference

WORKING-STORAGE SECTION.
01 COUNTRY PIC X(2).
01 DECSEP PIC X(2).
01 MSGDEST PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 FC2.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBL3MDS.

** Call a Lang Env svc, CEE3MDS in this case, **
** to receive a condition token that CEEMSG **
** can format as a message. Specify an **
** invalid value for country code so that a **
** condition will be built **

MOVE "LN" TO COUNTRY.
CALL "CEE3MDS" USING COUNTRY, DECSEP, FC.

PARA-CBLMSG.

** Specify 2 for destination, so message will **
** be written to the ddname specified or **
** defaulted in the MSGFILE runtime option. **

MOVE 2 TO MSGDEST.

** Call CEEMSG using the FC returned from **
** CEE3MDS as the input condition token. **

CALL "CEEMSG" USING FC, MSGDEST, FC2.
IF NOT CEE000 of FC2 THEN

DISPLAY "CEEMSG failed with msg "
Msg-No of FC2 UPON CONSOLE

STOP RUN
END-IF.
GOBACK.

3. Following is an example of CEEMSG called by PL/I.
*PROCESS LANGLVL(SAA), MACRO;
/* Module/File Name: IBMMSG */
/**/
/** **/
/** Function: CEEMSG - get, format and dispatch **/

CEEMSG

Chapter 5. Callable services 377

/** a message **/
/** **/
/** In this example, CEE3MDS is called with an **/
/** invalid country code so that a condition token **/
/** would be returned to use as input to CEEMSG. **/
/** Any LE/370 could have been called. CEEMSG uses **/
/** the condition to get, format and dispatch the **/
/** message associated with the condition that **/
/** occurred in CEE3MDS **/
/** **/
/**/
PLIMSG: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL COUNTRY CHARACTER (2);
DCL DECSEP CHARACTER (2);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
DCL MSGDEST REAL FIXED BINARY(31,0);
DCL 01 FC2, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

COUNTRY = ’LN’; /* Specify an invalid country */
/* code to receive a non-zero */
/* feedback code */

/* Call any service (CEE3MDS in this case) to */
/* receive a condition token that CEEMSG will */
/* format and dispatch a message */
CALL CEE3MDS (COUNTRY, DECSEP, FC);

MSGDEST = 2; /* Specify 2 as destination, so */
/* message will go to ddname speci- */
/* fied in MSGFILE runtime option */

CALL CEEMSG (FC, MSGDEST, FC2);
IF ¬ FBCHECK(FC2, CEE000) THEN DO;

DISPLAY(’CEEMSG failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLIMSG;

CEEMSG

378 z/OS Language Environment Programming Reference

CEENCOD—Construct a condition token

CEENCOD dynamically constructs a 12-byte condition token that communicates a
condition in Language Environment. The condition token communicates with the
Language Environment message and condition handling callable services, and user
routines. Also, all Language Environment callable services use the condition-token
data type to return information to the user as a feedback code.

Syntax

►► CEENCOD (c_1 , c_2 , case , severity , control , ►

► facility_ID , i_s_info , cond_token , fc) ►◄

c_1 (input)
c_1 and c_2 together make up the condition_ID portion of the condition token.
c_1 is a 2-byte binary integer representing the value of the first 2 bytes of the
4-byte condition_ID. For case 1, c_1 represents the severity; for case 2, it is the
class_code.

c_2 (input)
A 2-byte binary integer representing the value of the second 2 bytes of the
condition_ID. For case 1, this is the Msg_No; for case 2, it is the cause_code.

case (input)
A 2-byte binary integer defining the format of the condition_ID portion of the
token.

severity (input)
A 2-byte binary integer indicating the condition's severity. For case 1
conditions, the value of this field is the same as the severity value specified in
the condition_ID. For case 1 and 2 conditions, this field is also used to test the
condition's severity. severity can be specified with the following values:

0 Information only (or, if the entire token is 0, no information).

1 Warning; service completed, probably correctly.

2 Error detected and correction attempted; service completed, perhaps
incorrectly.

3 Severe error; service not completed.

4 Critical error; service not completed; condition signaled. A critical error
is a condition jeopardizing the environment. If a critical error occurs
during a Language Environment callable service, it is always signaled
to the condition manager instead of returning synchronously to the
caller.

control (input)
A 2-byte binary integer containing flags describing or controlling various
aspects of condition handling. Valid values for the control field are 1 and 0. 1
indicates the facility_ID is assigned by IBM. 0 indicates the facility_ID is
assigned by the user.

facility_ID (input)
A 3-character field containing three alphanumeric characters (A-Z, a-z and 0-9)

CEENCOD

Chapter 5. Callable services 379

identifying the product or component of a product generating this condition or
feedback information, for example, CEE.

The facility_ID is associated with the repository (for example, a file) of the
runtime messages. If a unique ID is required (for IBM and non-IBM products),
an ID can be obtained by contacting an IBM project office.

If you create a new facility_ID to use with a message file you created by using
the CEEBLDTX utility, be aware that the facility_ID must be part of the
message file name. It is therefore important to follow the naming guidelines
described below in order to have a module name that does not cause your
application to abend.

Begin a non-IBM assigned product facility_ID with letters J through Z. (See the
preceding description control (input) parameter on how to indicate whether the
facility_ID has been assigned by IBM.) Special characters, including blank
spaces, cannot be used in a facility_ID. There are no other constraints (besides
the alphanumeric requirement) on a non-IBM assigned facility_ID.

i_s_info (input)
A fullword binary integer identifying the ISI, that contains insert data.
Whenever a condition is detected by the Language Environment condition
manager, insert data is generated describing the instance of its occurrence is
generated. This insert data is used, for example, to write to a file a message
associated with that instance or occurrence of the condition.

cond_token (output)
The 12-byte representation of the constructed condition token.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE0CH 3 0401 An invalid case code case-code was passed to

routine routine-name.
CEE0CI 3 0402 An invalid control code control-code was passed

to routine routine-name.
CEE0CJ 3 0403 An invalid severity code severity-code was

passed to routine routine-name.
CEE0CK 1 0404 Facility ID facility-id with non-alphanumeric

characters was passed to routine routine-name.
CEE0E4 3 0452 An invalid facility ID facility-id was passed to

routine routine-name.

Usage notes
v C/C++ considerations—The structure of the condition token (type_FEEDBACK)

is described in the leawi.h header file shipped with Language Environment. You
can assign values directly to the fields of the token in the header file without
using the CEENCOD service.
Figure 12 on page 381 shows the layout of the type_FEEDBACK condition token
in the header file.

CEENCOD

380 z/OS Language Environment Programming Reference

v z/OS UNIX consideration—In multithread applications, CEENCOD affects only
the calling thread.

For more information
v For more information about case 1 and case 2, see CEENCOD “Usage notes” on

page 380.

Examples
1. Following is an example of CEENCOD called by C/C++.

/*Module/File Name: EDCNCOD */

/***/
/* Note that it is not necessary to use this service. */
/* The fields may be manipulated directly. */
/***/

#include <stdio.h>
#include <string.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc,condtok;
_INT2 c_1,c_2,cond_case,sev,control;
_CHAR3 facid;
_INT4 isi;

c_1 = 1;
c_2 = 99;
cond_case = 1;
sev = 1;
control = 0;
memcpy(facid,"ZZZ",3);
isi = 0;

CEENCOD(&c_1,&c_2,&cond_case,&sev,&control,;
facid,&isi,&condtok,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEENCOD failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}
/* .

.

. */
}

2. Following is an example of CEENCOD called by COBOL.

typedef struct {
short tok_sev ; /* severity */
short tok_msgno ; /* message number */
int tok_case :2, /* flags-case/sev/cont */

tok_sever:3,
tok_ctrl :3 ;

char tok_facid[3]; /* fac ID */
int tok_isi ; /* index in ISI block */

} _FEEDBACK;

Figure 12. type_FEEDBACK data type as defined in the leawi.h header file

CEENCOD

Chapter 5. Callable services 381

CBL LIB,QUOTE
*Module/File Name: IGZTNCOD

** **
** CBLNCOD - Call CEENCOD to construct a **
** condition token **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLNCOD.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 SEV PIC S9(4) BINARY.
01 MSGNO PIC S9(4) BINARY.
01 CASE PIC S9(4) BINARY.
01 SEV2 PIC S9(4) BINARY.
01 CNTRL PIC S9(4) BINARY.
01 FACID PIC X(3).
01 ISINFO PIC S9(9) BINARY.
01 NEWTOK.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLNCOD.

** Set severity portion of Condition-ID to 0, **
** or information only. **
** Set msg number portion of Condition-ID to 1.**
** Set case to 1. This is a service condition. **
** Set severity to 0, for information only. **
** Set control to 1, for Facility-ID has been **
** assigned by IBM. **
** Set Facility-ID to CEE for a Language **
** Environment condition token. **
** Set I-S-Info to 0, indicating that no **
** Instance Specific Information (ISI) is **
** to be supplied. **

MOVE 0 TO SEV.
MOVE 1 TO MSGNO.
MOVE 1 TO CASE.
MOVE 0 TO SEV2.
MOVE 1 TO CNTRL.
MOVE "CEE" TO FACID.

CEENCOD

382 z/OS Language Environment Programming Reference

MOVE 0 TO ISINFO.

** Call CEENCOD with the values assigned above **
** to build a condition token "NEWTOK" **

CALL "CEENCOD" USING SEV, MSGNO, CASE, SEV2,
CNTRL, FACID, ISINFO,
NEWTOK, FC.

IF NOT CEE000 of FC THEN
DISPLAY "CEENCOD failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

GOBACK.

3. Following is an example of CEENCOD called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMNCOD */
/**/
/** */
/** Function: CEENCOD - construct a condition token */
/** */
/**/
PLINCOD: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL SEV REAL FIXED BINARY(15,0);
DCL MSGNO REAL FIXED BINARY(15,0);
DCL CASE REAL FIXED BINARY(15,0);
DCL SEV2 REAL FIXED BINARY(15,0);
DCL CNTRL REAL FIXED BINARY(15,0);
DCL FACID CHARACTER (3);
DCL ISINFO REAL FIXED BINARY(31,0);
DCL 01 NEWTOK, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
SEV = 0; /* Set severity portion of */

/* Condition_ID to 0, or */
/* information only. */

MSGNO = 1; /* Set msg number portion of */
/* Condition_ID to 1. */

CASE = 1; /* Set case to 1. This is a */
/* service condition. */

SEV2 = 0; /* Set severity to 0, or */
/* information only. */

CNTRL = 0; /* Set control to 0, or Facility */

CEENCOD

Chapter 5. Callable services 383

/* ID has been assigned by user */
FACID = ’USR’; /* Set Facility_ID to USR for a */

/* user condition token. */
ISINFO = 0; /* Set I_S_Info to 0, indicating */

/* that no Instance Specific */
/* Information is to be supplied. */

EENCOD (SEV, MSGNO, CASE, SEV2,
CALL CEENCOD (SEV, MSGNO, CASE, SEV2,

CNTRL, FACID, ISINFO, NEWTOK, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’CEENCOD created token for msg ’
|| NEWTOK.MsgNo || ’ and facility ’
|| NEWTOK.FacID);

END;
ELSE DO;

DISPLAY(’CEENCOD failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLINCOD;

CEEQCEN—Query the century window

CEEQCEN queries the century in which Language Environment contains the
2-digit year value. When you want to change the setting, use CEEQCEN to get the
setting and then use CEESCEN to save and restore the current setting.

Syntax

►► CEEQCEN (century_start , fc) ►◄

century_start (output)
An integer between 0 and 100 indicating the year on which the century
window is based. For example, if the Language Environment default is in
effect, all 2-digit years lie within the 100-year window starting 80 years prior to
the system date. CEEQCEN then returns the value 80. An 80 value indicates to
Language Environment that, in 1995, all 2-digit years lie within the 100-year
window starting 80 years before the system date (between 1915 and 2014,
inclusive).

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.

Usage notes
v z/OS UNIX considerations—CEEQCEN applies to the enclave, as does the

century window.

CEENCOD

384 z/OS Language Environment Programming Reference

For more information
v See “CEESCEN—Set the century window” on page 396 for more information

about the CEESCEN callable service.

Examples
1. Following is an example of CEEQCEN called by C/C++.

/*Module/File Name: EDCQCEN */

#include <string.h>
#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main (void) {

_INT4 century_start;
_FEEDBACK fc;

/* query the century window */
CEEQCEN(¢ury_start,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEEQCEN failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

/* if the century window is not 50 set it to 50 */
if (century_start != 50) {

century_start = 50;

CEESCEN(¢ury_start,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEESCEN failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

}
}

2. Following is an example of CEEQCEN called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTQCEN

** CBLQCEN - Call CEEQCEN to query the Lang Env**
** century window **
** In this example, CEEQCEN is called to query **
** the date at which the century window starts **
** The century window is the 100-year window **
** within which Lang Envir **
** assumes all two-digit years lie. **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLQCEN.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 STARTCW PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

CEEQCEN

Chapter 5. Callable services 385

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLQCEN.

** Call CEEQCEN to return the start of the **
** century window **

CALL "CEEQCEN" USING STARTCW, FC.

** CEEQCEN has no non-zero feedback codes to **
** check, so just display result. **

IF CEE000 of FC THEN
DISPLAY "The start of the century "

"window is: " STARTCW
ELSE

DISPLAY "CEEQCEN failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

GOBACK.

3. Following is an example of CEEQCEN called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMQCEN */
/**/
/** **/
/** Function: CEEQCEN - query the century window **/
/** **/
/** In this example, CEEQCEN is called to query **/
/** The date at which the century window starts. **/
/** The century window is the 100-year window **/
/** within which Language Environment assumes **/
/** all two-digit years lie. **/
/** **/
/**/
PLIQCEN: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL STARTCW REAL FIXED BINARY(31,0);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

/* Call CEEQCEN to return the start of the */
/* century window */
CALL CEEQCEN (STARTCW, FC);

/* CEEQCEN has no non-zero feedback codes */
/* to check, so print result */
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST (’The century window starts ’
|| STARTCW || ’ years before today.’);

CEEQCEN

386 z/OS Language Environment Programming Reference

END;
ELSE DO;

DISPLAY(’CEEQCEN failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLIQCEN;

CEEQDTC—Query locale date and time conventions

CEEQDTC, analogous to the C language function localdtconv(), queries the date
and time conventions from the current locale and sets the components of a
structure with values appropriate to the settings for the LC_TIME category.
CEEQDTC is sensitive to the locales set by setlocale() or CEESETL, not to the
Language Environment settings from COUNTRY or CEE3CTY.

Syntax

►► CEEQDTC (version , localdt , fc) ►◄

version
This parameter points to a user supplied VERSION_INFO structure, in which
the first four bytes contain the callable service version number.

Requirement: If the parameter does not points to a user supplied
VERSION_INFO structure, it must be omitted.If the parameter points to a
VERSION_INFO containing version number 1, CEEQDTC returns a DTCONV
structure with the new element showing the format of the ISO 8601:2000
standard date. If the parameter is omitted, CEEQDTC returns the DTCONV
format used before C99. For information about how to code this parameter, see
“Invoking callable services” on page 116.

localdt (output)
A pointer to the data structure containing the date and time formatting
information from the current, active locale. The fields used to populate the
structure come from the LC_TIME category. The LC_TIME category structure
fields used to retrieve the date and time values are:

abmon
Abbreviated month names (12 instances of a halfword length-prefixed
character string, VSTRING, of 22 bytes)

mon Month names (12 instances of a halfword length-prefixed character
string, VSTRING, of 62 bytes)

abday Abbreviated day names (7 instances of a halfword length-prefixed
character string, VSTRING, of 22 bytes)

day Day names (7 instances of a halfword length-prefixed character string,
VSTRING, of 62 bytes)

d_t_fmt
Date and time format (1 instance of a halfword length-prefixed
character string, VSTRING, of 82 bytes)

CEEQCEN

Chapter 5. Callable services 387

d_fmt Date format (1 instance of a halfword length-prefixed character string,
VSTRING, of 42 bytes)

t_fmt Time format (1 instance of a halfword length-prefixed character string,
VSTRING, of 42 bytes)

am_fmt
AM string (1 instance of a halfword length-prefixed character string,
VSTRING, of 22 bytes)

pm_fmt
PM string (1 instance of a halfword length-prefixed character string,
VSTRING, of 22 bytes)

t_fmt_ampm
Time format ampm (1 instance of a halfword length-prefixed character
string, VSTRING, of 42 bytes)

ISO_STD8601_2000
ISO8601:2000 standard date format (1 instance of a halfword
length-prefixed character string, VSTRING, of 42 bytes)

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE3T1 3 4001 General Failure: Service could not be

completed.
CEE3VN 3 4087 Input Error: The version_info control block

contains a version number that is not valid.

Usage notes
v PL/I MTF consideration—CEEQDTC is not supported in PL/I MTF applications.
v If no call to CEESETL has been made, the default locale values to be used are

determined at installation time for Language Environment.
v This callable service uses the C/C++ runtime library. The C/C++ library must be

installed and accessible even when this service is called from a non-C program.

For more information
v See “CEESETL—Set locale operating environment” on page 413 for more

information about the current locale.

Examples
1. Following is an example of CEEQDTC called by COBOL.

CBL LIB,QUOTE
*Module/File Name: IGZTQDTC
**
* Example for callable service CEEQDTC *
* MAINQDTC - Retrieve date and time convention *
* structures for two countries and *
* compare an item. *
* Valid only for COBOL for MVS & VM Release 2 *
* or later. *

CEEQDTC

388 z/OS Language Environment Programming Reference

**
IDENTIFICATION DIVISION.
PROGRAM-ID. MAINQDTC.
DATA DIVISION.
WORKING-STORAGE SECTION.

* Use DTCONV structure for CEEQDTC calls
COPY CEEIGZDT.

*
PROCEDURE DIVISION.

* Subroutine needed for addressing
CALL "COBQDTC" USING DTCONV.

STOP RUN.
*
IDENTIFICATION DIVISION.
PROGRAM-ID. COBQDTC.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Locale-Name.

02 LN-Length PIC S9(4) BINARY.
02 LN-String PIC X(256).

* Use Locale category constants
COPY CEEIGZLC.

*
01 Test-Length1 PIC S9(4) BINARY.
01 Test-String1 PIC X(80).
01 Test-Length2 PIC S9(4) BINARY.
01 Test-String2 PIC X(80).
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
*
LINKAGE SECTION.

* Use Locale structure DTCONV for CEEQDTC calls
COPY CEEIGZDT.

*
PROCEDURE DIVISION USING DTCONV.

* Set up locale for France
MOVE 4 TO LN-Length.
MOVE "FFEY" TO LN-String (1:LN-Length).

* Call CEESETL to set all locale categories
CALL "CEESETL" USING Locale-Name, LC-ALL,

FC.
* Check feedback code

IF Severity > 0
DISPLAY "Call to CEESETL failed. " Msg-No
EXIT PROGRAM

END-IF.

* Call CEEQDTC for French values
CALL "CEEQDTC" USING OMITTED,

ADDRESS OF DTCONV, FC.
* Check feedback code

IF Severity > 0
DISPLAY "Call to CEEQDTC failed. " Msg-No
EXIT PROGRAM

CEEQDTC

Chapter 5. Callable services 389

END-IF.

* Save date and time format for FFEY locale
MOVE D-T-FMT-Length IN DTCONV TO Test-Length1
MOVE D-T-FMT-String IN DTCONV TO Test-String1

* Set up locale for French Canadian
MOVE 4 TO LN-Length.
MOVE "FCEY" TO LN-String (1:LN-Length).

* Call CEESETL to set locale for all categories
CALL "CEESETL" USING Locale-Name, LC-ALL,

FC.
* Check feedback code

IF Severity > 0
DISPLAY "Call to CEESETL failed. " Msg-No
EXIT PROGRAM

END-IF.

* Call CEEQDTC again for French Canadian values
CALL "CEEQDTC" USING OMITTED,

ADDRESS OF DTCONV, FC.

* Check feedback code and display results
IF Severity = 0

* Save date and time format for FCEY locale
MOVE D-T-FMT-Length IN DTCONV

TO Test-Length2
MOVE D-T-FMT-String IN DTCONV

TO Test-String2
IF Test-String1(1:Test-Length1) =

Test-String2(1:Test-Length2)
DISPLAY "Same date and time format."

ELSE
DISPLAY "Different formats."
DISPLAY Test-String1(1:Test-Length1)
DISPLAY Test-String2(1:Test-Length2)

END-IF
ELSE

DISPLAY "Call to CEEQDTC failed. " Msg-No
END-IF.

EXIT PROGRAM.
END PROGRAM COBQDTC.

*
END PROGRAM MAINQDTC.

2. Following is an example of CEEQDTC called by PL/I.
*PROCESS MACRO;
/*Module/File Name: IBMQDTC */
/**/
/* Example for callable service CEEQDTC */
/* Function: Retrieve date and time convention */
/* structures for two countries, compare an item. */
/**/

PLIQDTC: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */
%INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */
%INCLUDE CEEIBMLC; /* Locale category constants */
%INCLUDE CEEIBMDT; /* DTCONV for CEEQDTC calls */

/* use explicit pointer to local DTCONV structure */
DCL LOCALDT POINTER INIT(ADDR(DTCONV));

/* CEESETL service call arguments */

CEEQDTC

390 z/OS Language Environment Programming Reference

DCL LOCALE_NAME CHAR(256) VARYING;

DCL 1 DTCONVC LIKE DTCONV; /* Def Second Structure */

DCL 1 FC, /* Feedback token */
3 MsgSev REAL FIXED BINARY(15,0),
3 MsgNo REAL FIXED BINARY(15,0),
3 Flags,

5 Case BIT(2),
5 Severity BIT(3),
5 Control BIT(3),

3 FacID CHAR(3), /* Facility ID */
3 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

/* set locale with IBM default for France */
LOCALE_NAME = ’FFEY’; /* or Fr_FR.IBM-1047 */

/* use LC_ALL category constant from CEEIBMLC */
CALL CEESETL (LOCALE_NAME, LC_ALL, FC);

/* retrieve date and time structure, France Locale*/
CALL CEEQDTC (*, LOCALDT, FC);
/* set locale with French Canadian(FCEY) defaults */
/* literal constant -1 used to set all categories */
CALL CEESETL (’FCEY’, -1, FC);

/* retrieve date and time tables for French Canada*/
/* example of temp pointer used for service call */
CALL CEEQDTC (*, ADDR(DTCONVC), FC);

/* compare date and time formats for two countries*/
IF DTCONVC.D_T_FMT = DTCONV.D_T_FMT THEN

DO;
PUT SKIP LIST(’Countries have same D_T_FMT’);

END;
ELSE

DO;
PUT SKIP LIST(’Date and Time Format ’,

DTCONVC.D_T_FMT||’ vs ’||
DTCONV.D_T_FMT);

END;

END PLIQDTC;

CEEQRYL—Query active locale environment

CEEQRYL, analogous to the C language function localename=setlocale(category,
NULL), queries the environment for which locale defines the current setting for the
locale category. CEEQRYL is sensitive to the locales set by setlocale() or
CEESETL, not to the Language Environment settings from COUNTRY or
CEE3CTY.

Syntax

►► CEEQRYL (category , localename , fc) ►◄

category (input)
A symbolic integer number that represents all or part of the locale for a

CEEQDTC

Chapter 5. Callable services 391

program. Depending on the value of the localename, these categories can be
initiated by the values of global categories of corresponding names. The
following values for the category parameter are valid; Language Environment
locale callable services do not support the LC_TOD and LC_SYNTAX
categories.

LC_ALL
A 4-byte integer (with a value of -1) that affects all locale categories
associated with a program's locale.

LC_COLLATE
A 4-byte integer (with a value of 0) that affects the behavior of regular
expression and collation subroutines.

LC_CTYPE
A 4-byte integer (with a value of 1) that affects the behavior of regular
expression, character classification, case conversion, and wide character
subroutines.

LC_MESSAGES
A 4-byte integer (with a value of 6) that affects the format and values for
positive and negative responses.

LC_MONETARY
A 4-byte integer (with a value of 3) that affects the behavior of subroutines
that format monetary values.

LC_NUMERIC
A 4-byte integer (with a value of 2) that affects the behavior of subroutines
that format non-monetary numeric values.

LC_TIME
A 4-byte integer (with a value of 4) that affects the behavior of time
conversion subroutines.

localename (output)
Returns the name of the locale that describes the current setting of the category
requested.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE2KD 3 2701 An invalid category parameter was passed to a

locale function.
CEE3T1 3 4001 General Failure: Service could not be completed.

Usage notes
v PL/I MTF consideration—CEEQRYL is not supported in PL/I MTF applications.
v CEEQRYL does not change the status of the active locales.
v This callable service uses the C/C++ runtime library. The C/C++ library must be

installed and accessible even when this service is called from a non-C program.

CEEQRYL

392 z/OS Language Environment Programming Reference

v If the active locale is not explicitly set with CEESETL or setlocale(category,
localename), then the locale chosen is as follows:
– With POSIX(OFF), the SAA C locale is chosen, and querying the locale with

CEEQRYL returns “C” as the locale name.
– With POSIX(ON), the POSIX C locale is chosen, and querying the locale with

CEEQRYL returns “POSIX” as the locale name.
The SAA C locale provides compatibility with previous releases of C/370. The
POSIX C locale provides consistency with POSIX requirements and supports the
z/OS UNIX System Services environment.

For more information
v See “CEESETL—Set locale operating environment” on page 413 for more

information about the current locale.
v For more information about LC_TIME, see “CEEQDTC—Query locale date and

time conventions” on page 387.
v For information about the definition of the SAA C and POSIX C locales and the

differences between them, see z/OS XL C/C++ Programming Guide.

Examples

For examples of how to use CEEQRYL with other Language Environment locale
callable services, see “CEESETL—Set locale operating environment” on page 413.

CEERAN0—Calculate uniform random numbers

CEERAN0 generates a sequence of uniform pseudo-random numbers between 0.0
and 1.0 using the multiplicative congruential method with a user-specified seed.
The uniform (0,1) pseudo-random numbers are generated using the multiplicative
congruential method:

Syntax

►► CEERAN0 (seed , random_no , fc) ►◄

seed (input/output)
A fullword binary signed integer representing an initial value used to generate
random numbers. seed must be a variable; it cannot be an input-only
parameter. The valid range is 0 to +2,147,483,646. If seed equals 0, the seed is
generated from the current Greenwich Mean Time. On return to the calling
routine, CEERAN0 changes the value of seed so that it can be used as the new
seed in the next call.

random_no (output)
An 8-byte double precision floating-point number with a value between 0 and
1, exclusive. If seed is invalid, random_no is set to -1 and CEERAN0 terminates
with a non-CEE000 symbolic feedback code.

seed(i) = (950706376 * seed(i-1)) mod 2147483647;

randomno(i) = seed(i) / 2147483647;

CEEQRYL

Chapter 5. Callable services 393

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE2ER 1 2523 The system time was not available when

CEERAN0 was called. A seed value of 1 was
used to generate a random number and a new
seed value.

CEE2ES 3 2524 An invalid seed value was passed to
CEERAN0. The random number was set to -1.

Usage notes
v z/OS UNIX considerations—In multithread applications, CEERAN0 affects only

the calling thread. The seed is unique to the thread.

Examples
1. Following is an example of CEERAN0 called by C/C++.

/*Module/File Name: EDCRAN0 */

#include <string.h>
#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main (void) {

_INT4 seed;
_FLOAT8 random;
_FEEDBACK fc;
int number;

seed = 0;
CEERAN0(&seed,&random,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEERAN0 failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}
number = random * 1000;
printf("The 3 digit random number is %d\n",number);

}

2. Following is an example of CEERAN0 called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTRAN0
**
** CBLRAN0 - Call CEERAN0 to generate uniform **
** random numbers **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBLRAN0.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 SEED PIC S9(9) BINARY.
01 RANDNUM COMP-2.

CEERAN0

394 z/OS Language Environment Programming Reference

01 FC.
02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.

PROCEDURE DIVISION.

PARA-CBLRAN0.
**
** Specify 0 for SEED, so the seed will be
** derived from the current Greenwich Mean Time
**

MOVE 0 TO SEED.
**
** Call CEERAN0 to return random number between
** 0.0 and 1.0
**

CALL "CEERAN0" USING SEED , RANDNUM , FC.
**
** If CEERAN0 runs successfully, display result.
**

IF CEE000 of FC THEN
DISPLAY "The random number is: " RANDNUM

ELSE
DISPLAY "CEERAN0 failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.
GOBACK.

3. Following is an example of CEERAN0 called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMRAN0 */
/**/
/** **/
/** Function: CEERAN0 - calculate uniform random **/
/** numbers **/
/** **/
/**/
PLIRAN0: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL SEED REAL FIXED BINARY(31,0);
DCL RANDNUM REAL FLOAT DECIMAL(16);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

SEED = 7; /* Specify an integer as the initial */

CEERAN0

Chapter 5. Callable services 395

/* value used to calculate the random */
/* numbers */

/* Call CEERAN0 to generate random number between */
/* 0.0 and 1.0 */
CALL CEERAN0 (SEED, RANDNUM, FC);

IF FBCHECK(FC, CEE000) THEN DO;
PUT SKIP LIST (’The random number is ’

|| RANDNUM);
END;

ELSE DO;
DISPLAY(’CEERAN0 failed with msg ’

|| FC.MsgNo);
STOP;
END;

END PLIRAN0;

CEESCEN—Set the century window

CEESCEN sets the century in which Language Environment contains the 2-digit
year value. Use it in conjunction with CEEDAYS or CEESECS when:
v You process date values containing 2-digit years (for example, in the YYMMDD

format).
v The Language Environment default century interval does not meet the

requirements of a particular application.

Century intervals are kept as thread-level data, so changing the interval in one
thread does not affect the interval in another thread. To query the century window,
use CEEQCEN.

CEEQCEN affects and is affected by only the Language Environment NLS and
date and time services, not the Language Environment locale callable services or
the C locale-sensitive functions.

Syntax

►► CEERAN0 (century_start , fc) ►◄

century_start
An integer between 0 and 100, setting the century window. A value of 80, for
example, places all two-digit years within the 100-year window starting 80
years before the system date. In 1995, therefore, all two-digit years are assumed
to represent dates between 1915 and 2014, inclusive.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

CEERAN0

396 z/OS Language Environment Programming Reference

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE2E6 3 2502 The UTC/GMT was not available from the

system.

Usage notes
v z/OS UNIX considerations—CEESCEN applies to the enclave. The century

window applies to the enclave.

For more information
v See “CEEDAYS—Convert date to Lilian format” on page 243 for more

information about the CEEDAYS callable service.
v See “CEESECS—Convert timestamp to seconds” on page 407 for more

information about the CEESECS callable service.
v See “CEEQCEN—Query the century window” on page 384 for more information

about the CEEQCEN callable service.

Examples
1. Following is an example of CEESCEN called by C/C++.

/*Module/File Name: EDCSCEN */

#include <string.h>
#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main (void) {

_INT4 century_start;
_FEEDBACK fc;

century_start = 50;

CEESCEN(¢ury_start,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEESCEN failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

}

2. Following is an example of CEESCEN called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTSCEN
**
** **
** CBLSCEN - Call CEESCEN to set the Lang. Env. **
** century window **
** **
** In this example, CEESCEN is called to change **
** the start of the century window to 30 years **
** before the system date. CEEQCEN is then **
** called to query that the change made. A **
** message that this has been done is then **
** displayed. **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBLSCEN.

CEESCEN

Chapter 5. Callable services 397

DATA DIVISION.
WORKING-STORAGE SECTION.
01 STARTCW PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLSCEN.

**
** Specify 30 as century start, and two-digit
** years will be assumed to lie in the
** 100-year window starting 30 years before
** the system date.
**

MOVE 30 TO STARTCW.

**
** Call CEESCEN to change the start of the century
** window.
**

CALL "CEESCEN" USING STARTCW, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEESCEN failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

PARA-CBLQCEN.
**
** Call CEEQCEN to return the start of the century
** window
**

CALL "CEEQCEN" USING STARTCW, FC.

**
** CEEQCEN has no non-zero feedback codes to
** check, so just display result.
**

DISPLAY "The start of the century "
"window is: " STARTCW

GOBACK.

3. Following is an example of CEESCEN called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMSCEN */
/**/
/** **/
/** Function: CEESCEN - set the century window **/
/** **/
/**/
PLISCEN: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL STARTCW REAL FIXED BINARY(31,0);

CEESCEN

398 z/OS Language Environment Programming Reference

DCL 01 FC, /* Feedback token */
03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

STARTCW = 20; /* Set 20 as century start */

/* Call CEESCEN to request that two-digit years */
/* lie in the 100-year window starting 20 */
/* years before the system date */
CALL CEESCEN (STARTCW, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST (’The century window now starts ’
|| STARTCW || ’ years before today.’);

END;
ELSE DO;

DISPLAY(’CEESCEN failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLISCEN;

CEESCOL—Compare collation weight of two strings

CEESCOL, which is analogous to the C language function strcoll(), compares
two character strings based on the collating sequence specified in the
LC_COLLATE category of the current locale. CEESCOL associates a collation
weight with every character in the code set for the locale. The characters in the
input strings are converted to their collation weights and then compared on the
basis of these weights. CEESCOL is sensitive to the locales set by setlocale() or
CEESETL, not to the Language Environment settings from COUNTRY or
CEE3CTY.

Syntax

►► CEESCOL (omitted_parm , string1 , string2 , result , fc) ►◄

omitted_parm
This parameter is reserved for future expansion and must be omitted. For
information about how to code an omitted parameter, see “Invoking callable
services” on page 116.

string1 (input)
A halfword length-prefixed character string (VSTRING) with a maximum
length of 4K bytes. string1 points to a string of characters that are to be
compared against string2 .

string2 (input)
A halfword length-prefixed character string (VSTRING) with a maximum
length of 4K bytes. string2 points to a string of characters that string1 is
compared against.

CEESCEN

Chapter 5. Callable services 399

result (output)
Specifies the result of the string comparison. If successful, the following values
are returned:
v Less than 0, if string1 is less than string2
v Equal to 0, if string1 is equal to string2
v Greater than 0, if string1 is greater than string2

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE3T1 3 4001 General Failure: Service could not be

completed.

Usage notes
v PL/I MTF consideration—CEESCOL is not supported in PL/I MTF applications.
v This callable service uses the C/C++ runtime library. The C/C++ library must be

installed and accessible even when this service is called from a non-C program.

For more information
v See “CEESETL—Set locale operating environment” on page 413 for more

information about the CEESETL callable service.

Examples
1. Following is an example of CEESCOL called by COBOL.

CBL LIB,QUOTE
*Module/File Name: IGZTSCOL

* Example for callable service CEESCOL *
* COBSCOL - Compare two character strings *
* and print the result. *
* Valid only for COBOL for MVS & VM Release 2 *
* or later. *

IDENTIFICATION DIVISION.
PROGRAM-ID. COBSCOL.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 String1.

02 Str1-Length PIC S9(4) BINARY.
02 Str1-String.

03 Str1-Char PIC X
OCCURS 0 TO 256 TIMES
DEPENDING ON Str1-Length.

01 String2.
02 Str2-Length PIC S9(4) BINARY.
02 Str2-String.

03 Str2-Char PIC X
OCCURS 0 TO 256 TIMES
DEPENDING ON Str2-Length.

01 Result PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.

CEESCOL

400 z/OS Language Environment Programming Reference

COPY CEEIGZCT.
03 Case-1-Condition-ID.

04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
*
PROCEDURE DIVISION.

* Set up two strings for comparison

MOVE 9 TO Str1-Length.
MOVE "12345a789"

TO Str1-String (1:Str1-Length)
MOVE 9 TO Str2-Length.
MOVE "12346$789"

TO Str2-String (1:Str2-Length)

* Call CEESCOL to compare the strings

CALL "CEESCOL" USING OMITTED, String1,
String2, Result, FC.

* Check feedback code

IF Severity > 0
DISPLAY "Call to CEESCOL failed. " Msg-No
STOP RUN

END-IF.

* Check result of compare

EVALUATE TRUE
WHEN Result < 0

DISPLAY "1st string < 2nd string."
WHEN Result > 0

DISPLAY "1st string > 2nd string."
WHEN OTHER

DISPLAY "Strings are identical."
END-EVALUATE.

STOP RUN.
END PROGRAM COBSCOL.

2. Following is an example of CEESCOL called by PL/I.
*PROCESS MACRO;
/*Module/File Name: IBMSCOL */
/**/
/* Example for callable service CEESCOL */
/* Function: Compare two character strings and */
/* print the result. */
/**/

PLISCOL: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW; /* ENTRY defs, macro defs for Language Environment */
%INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */
%INCLUDE CEEIBMLC; /* Locale category constants */

/* CEESCOL service call arguments */

CEESCOL

Chapter 5. Callable services 401

DCL STRING1 CHAR(256) VARYING;/* first string */
DCL STRING2 CHAR(256) VARYING;/* second string */
DCL RESULT_SCOL BIN FIXED(31);/* result of compare */

DCL 01 FC, /* Feedback token */
03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

STRING1 = ’12345a789’;
STRING2 = ’12346$789’;

CALL CEESCOL(*, STRING1, STRING2, RESULT_SCOL,FC);

/* FBCHECK macor used (defined in CEEIBMCT) */
IF FBCHECK(FC, CEE3T1) THEN
DO;

DISPLAY (’CEESCOL not completed ’||FC.MsgNo);
STOP;

END;

SELECT;
WHEN(RESULT_SCOL < 0)
PUT SKIP LIST(

’"firststring" is less than "secondstring" ’);
WHEN(RESULT_SCOL > 0)
PUT SKIP LIST(
’"firststring" is greater than "secondstring" ’);

OTHERWISE
PUT SKIP LIST(’Strings are identical’);

END; /* END SELECT */

END PLISCOL;

CEESECI—Convert seconds to integers

CEESECI converts a number representing the number of seconds since 00:00:00 14
October 1582 to seven separate binary integers representing year, month, day, hour,
minute, second, and millisecond. Use CEESECI instead of CEEDATM when the
output is needed in numeric format rather than in character format.

The inverse of CEESECI is CEEISEC, which converts integer year, month, day,
hour, second, and millisecond to number of seconds. If the input value is a Lilian
date instead of seconds, multiply the Lilian date by 86,400 (number of seconds in a
day), and pass the new value to CEESECI.

CEESCOL

402 z/OS Language Environment Programming Reference

Syntax

►► CEESECI (input_seconds , output_year , output_month , ►

► output_day , output_hours , output_minutes , output_seconds , ►

► output_milliseconds , fc) ►◄

input_seconds
A 64-bit double floating-point number representing the number of seconds
since 00:00:00 on 14 October 1582, not counting leap seconds. For example,
00:00:01 on 15 October 1582 is second number 86,401 (24*60*60 + 01). The valid
range for input_seconds is 86,400 to 265,621,679,999.999 (23:59:59.999 31
December 9999). If input_seconds is invalid, all output parameters except the
feedback code are set to 0.

output_year (output)
A 32-bit binary integer representing the year. The range of valid output_years is
1582 to 9999, inclusive.

output_month (output)
A 32-bit binary integer representing the month. The range of valid
output_months is 1 to 12.

output_day (output)
A 32-bit binary integer representing the day. The range of valid output_days is 1
to 31.

output_hours (output)
A 32-bit binary integer representing the hour. The range of valid output_hours is
0 to 23.

output_minutes (output)
A 32-bit binary integer representing the minutes. The range of valid
output_minutes is 0 to 59.

output_seconds (output)
A 32-bit binary integer representing the seconds. The range of valid
output_seconds is 0 to 59.

output_milliseconds (output)
A 32-bit binary integer representing milliseconds. The range of valid
output_milliseconds is 0 to 999.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity
Message
number Message text

CEE000 0 — The service completed successfully.
CEE2E9 3 2505 The input_seconds value in a call to CEEDATM

or CEESECI was not within the supported
range.

CEESECI

Chapter 5. Callable services 403

Usage notes
v z/OS UNIX consideration—In multithread applications, CEESECI affects only

the calling thread.

For more information
v For more information about the CEEISEC callable service, see

“CEEISEC—Convert integers to seconds” on page 332.

Examples
1. Following is an example of CEESECI called by C/C++.

/*Module/File Name: EDCSECI */

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_INT4 year, month, day, hours, minutes, seconds,
millisecs;

_FLOAT8 input;
_FEEDBACK fc;

input = 13166064000.0;
CEESECI(&input,&year,&month,&day,&hours,&minutes,;

&seconds,&millisecs,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEESECI failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}
printf("%f seconds corresponds to the date"

" %d:%d:%d.%d %d/%d/%d\n",input,hours,minutes,
seconds,millisecs,month,day,year);

}

2. Following is an example of CEESECI called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTSECI

** **
** CBLSECI - Call CEESECI to convert seconds **
** to integers **
** **
** In this example a call is made to CEESECI **
** to convert a number representing the number **
** of seconds since 00:00:00 14 October 1582 **
** to seven binary integers representing year, **
** month, day, hour, minute, second, and **
** millisecond. The results are displayed in **
** this example. **
** **

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLSECI.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 INSECS COMP-2.
01 YEAR PIC S9(9) BINARY.

CEESECI

404 z/OS Language Environment Programming Reference

01 MONTH PIC S9(9) BINARY.
01 DAYS PIC S9(9) BINARY.
01 HOURS PIC S9(9) BINARY.
01 MINUTES PIC S9(9) BINARY.
01 SECONDS PIC S9(9) BINARY.
01 MILLSEC PIC S9(9) BINARY.
01 IN-DATE.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X,
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of IN-DATE.
01 PICSTR.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X,
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of PICSTR.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-CBLSECS.

** Call CEESECS to convert timestamp of 6/2/88
** at 10:23:45 AM to Lilian representation

MOVE 20 TO Vstring-length of IN-DATE.
MOVE "06/02/88 10:23:45 AM"

TO Vstring-text of IN-DATE.
MOVE 20 TO Vstring-length of PICSTR.
MOVE "MM/DD/YY HH:MI:SS AM"

TO Vstring-text of PICSTR.
CALL "CEESECS" USING IN-DATE, PICSTR,

INSECS, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEESECS failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

PARA-CBLSECI.

** Call CEESECI to convert seconds to integers

CALL "CEESECI" USING INSECS, YEAR, MONTH,
DAYS, HOURS, MINUTES,
SECONDS, MILLSEC, FC.

** If CEESECI runs successfully, display results

IF CEE000 of FC THEN
DISPLAY "Input seconds of " INSECS

" represents:"
DISPLAY " Year......... " YEAR
DISPLAY " Month........ " MONTH

CEESECI

Chapter 5. Callable services 405

DISPLAY " Day.......... " DAYS
DISPLAY " Hour......... " HOURS
DISPLAY " Minute....... " MINUTES
DISPLAY " Second....... " SECONDS
DISPLAY " Millisecond.. " MILLSEC

ELSE
DISPLAY "CEESECI failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

GOBACK.

3. Following is an example of CEESECI called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMSECI */
/**/
/** */
/** Function: CEESECI - convert seconds to integers */
/** */
/**/
PLISECI: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL INSECS REAL FLOAT DECIMAL(16);
DCL YEAR REAL FIXED BINARY(31,0);
DCL MONTH REAL FIXED BINARY(31,0);
DCL DAYS REAL FIXED BINARY(31,0);
DCL HOURS REAL FIXED BINARY(31,0);
DCL MINUTES REAL FIXED BINARY(31,0);
DCL SECONDS REAL FIXED BINARY(31,0);
DCL MILLSEC REAL FIXED BINARY(31,0);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

INSECS = 13166064060; /* number of seconds since */
/* 14 October 1582 */

/* Call CEESECI to convert INSECS to separate */
/* binary integers representing the year, */
/* month, day, hours, minutes, seconds and */
/* milliseconds. */
CALL CEESECI (INSECS, YEAR, MONTH, DAYS,

HOURS, MINUTES, SECONDS, MILLSEC, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT EDIT(INSECS, ’ seconds corresponds to ’,
MONTH, ’/’, DAYS, ’/’, YEAR, ’ at ’, HOURS,
’:’, MINUTES, ’:’, SECONDS, ’.’, MILLSEC)
(SKIP, F(9), A, 2 (P’99’,A), P’9999’, A,
3 (P’99’, A), P’999’);

END;
ELSE DO;

DISPLAY(’CEESECI failed with msg ’
|| FC.MsgNo);

CEESECI

406 z/OS Language Environment Programming Reference

STOP;
END;

END PLISECI;

CEESECS—Convert timestamp to seconds

CEESECS converts a string representing a timestamp into the number of Lilian
seconds (number of seconds since 00:00:00 14 October 1582). This service makes it
easier to perform time arithmetic, such as calculating the elapsed time between
two timestamps.

CEESECS is affected only by the country code setting of the COUNTRY runtime
option or CEE3CTY callable service, not the CEESETL callable service or the
setlocale() function.

The inverse of CEESECS is CEEDATM, which converts output_seconds to character
format. By default, 2-digit years lie within the 100 year range starting 80 years
prior to the system date. Thus, in 1995, all 2-digit years represent dates between
1915 and 2014, inclusive. You can change this range by using the callable service
CEESCEN.

Syntax

►► CEESECS (input_timestamp , picture_string , output_seconds , ►

► fc) ►◄

input_timestamp (input)
A length-prefixed character string representing a date or timestamp in a format
matching that specified by picture_string. The character string must contain
between 5 and 80 picture characters, inclusive. input_timestamp can contain
leading or trailing blanks. Parsing begins with the first nonblank character
(unless the picture string itself contains leading blanks; in this case, CEESECS
skips exactly that many positions before parsing begins).

After a valid date is parsed, as determined by the format of the date you
specify in picture_string, all remaining characters are ignored by CEESECS.
Valid dates range between and including the dates 15 October 1582 to 31
December 9999. A full date must be specified. Valid times range from
00:00:00.000 to 23:59:59.999.

As the following example shows, if any part or all of the time value is omitted,
zeros are substituted for the remaining values.

picture_string (input)
A halfword length-prefixed character string (VSTRING), indicating the format
of the date or timestamp value specified in input_timestamp. Each character in
the picture_string represents a character in input_timestamp. For example, if you
specify MMDDYY HH.MI.SS as the picture_string, CEESECS reads an

1992-05-17-19:02 is equivalent to 1992-05-17-19:02:00
1992-05-17 is equivalent to 1992-05-17-00:00:00

CEESECI

Chapter 5. Callable services 407

input_char_date of 060288 15.35.02 as 3:35:02 PM on 02 June 1988. If delimiters
such as the slash (/) appear in the picture string, leading zeros can be omitted.
For example, the following calls to CEESECS all assign the same value to
variable secs:

If picture string is left null or blank, CEESECS gets picture_string based on the
current value of the COUNTRY runtime option. For example, if the current
value of the COUNTRY runtime option is FR (France), the date format would
be DD.MM.YYYY.

If picture_string includes a Japanese era symbol <JJJJ>, the YY position in
input_timestamp represents the year number within the Japanese era. For
example, the year 1988 equals the Japanese year 63 in the Showa era. See
Table 35 on page 490 for a list of Japanese eras supported by CEESECS.

If picture_string includes era symbol <CCCC> or <CCCCCCCC>, the YY position in
input_timestamp represents the year number within the era.

See Table 33 on page 489 for a list of valid picture characters, and Table 34 on
page 490 for examples of valid picture strings.

output_seconds (output)
A 64-bit double floating-point number representing the number of seconds
since 00:00:00 on 14 October 1582, not counting leap seconds. For example,
00:00:01 on 15 October 1582 is second 86,401 (24*60*60 + 01) in the Lilian
format. 19:00:01.12 on 16 May 1988 is second 12,799,191,601.12.

The largest value represented is 23:59:59.999 on 31 December 9999, which is
second 265,621,679,999.999 in the Lilian format.

A 64-bit double floating-point value can accurately represent approximately 16
significant decimal digits without loss of precision. Therefore, accuracy is
available to the nearest millisecond (15 decimal digits).

If input_timestamp does not contain a valid date or timestamp, output_seconds is
set to 0 and CEESECS terminates with a non-CEE000 symbolic feedback code.

Elapsed time calculations are performed easily on the output_seconds, because it
represents elapsed time. Leap year and end-of-year anomalies do not affect the
calculations.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.

CALL CEESECS(’92/06/03 15.35.03’, ’YY/MM/DD
HH.MI.SS’, secs, fc);

CALL CEESECS(’92/6/3 15.35.03’ , ’YY/MM/DD
HH.MI.SS’, secs, fc);

CALL CEESECS(’92/6/3 3.35.03 PM’, ’YY/MM/DD
HH.MI.SS AP’, secs, fc);

CALL CEESECS(’92.155 3.35.03 pm’, ’YY.DDD
HH.MI.SS AP’, secs, fc);

CEESECS

408 z/OS Language Environment Programming Reference

Code Severity Message number Message text
CEE2EB 3 2507 Insufficient data was passed to CEEDAYS or

CEESECS. The Lilian value was not calculated.
CEE2EC 3 2508 The date value passed to CEEDAYS or

CEESECS was invalid.
CEE2ED 3 2509 The era passed to CEEDAYS or CEESECS was

not recognized.
CEE2EE 3 2510 The hours value in a call to CEEISEC or

CEESECS was not recognized.
CEE2EH 3 2513 The input date passed in a CEEISEC,

CEEDAYS, or CEESECS call was not within the
supported range.

CEE2EK 3 2516 The minutes value in a CEEISEC call was not
recognized.

CEE2EL 3 2517 The month value in a CEEISEC call was not
recognized.

CEE2EM 3 2518 An invalid picture string was specified in a call
to a date/time service.

CEE2EN 3 2519 The seconds value in a CEEISEC call was not
recognized.

CEE2EP 3 2521 The year-within-era value passed to CEEDAYS
or CEESECS was zero.

CEE2ET 3 2525 CEESECS detected non-numeric data in a
numeric field, or the timestamp string did not
match the picture string.

Usage notes
v The probable cause for receiving message number 2518 is a picture string that

contains an invalid DBCS string. You should verify that the data in the picture
string is correct.

v z/OS UNIX consideration—In multithread applications, CEESECS affects only
the calling thread.

For more information
v See “CEESCEN—Set the century window” on page 396 for more information

about the CEESCEN callable service.
v See “COUNTRY” on page 24 for more information about the COUNTRY runtime

option.

Examples
1. Following is an example of CEESECS called by C/C++.

/*Module/File Name: EDCSECS */

#include <stdio.h>
#include <string.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc;
_FLOAT8 seconds1, seconds2;
_VSTRING date,date_pic;

/* use CEESECS to convert to seconds timestamp */
strcpy(date.string,"09/13/91 23:23:23");

CEESECS

Chapter 5. Callable services 409

date.length = strlen(date.string);
strcpy(date_pic.string,"MM/DD/YY HH:MI:SS");
date_pic.length = strlen(date_pic.string);

CEESECS(&date,&date_pic,&seconds1,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEESECS failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

strcpy(date.string,
"December 15, 1992 at 8:23:45 AM");

date.length = strlen(date.string);
strcpy(date_pic.string,

"Mmmmmmmmmmmz DD, YYYY at ZH:MI:SS AP");
date_pic.length = strlen(date_pic.string);

CEESECS(&date,&date_pic,&seconds2,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEESECS failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

printf("The number of seconds between:\n");
printf(" September 13, 1991 at 11:23:23 PM");
printf(
" and December 15, 1992 at 8:23:45 AM is:\n %f\n",

seconds2 - seconds1);
}

2. Following is an example of CEESECS called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTSECS
**
** CBLSECS - Call CEESECS to convert **
** timestamp to number of seconds **
** **
** In this example, calls are made to CEESECS **
** to convert two timestamps to the number of **
** seconds since 00:00:00 14 October 1582. **
** The Lilian seconds for the earlier **
** timestamp are then subtracted from the **
** Lilian seconds for the later timestamp **
** to determine the number of between the **
** two. This result is displayed. **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBLSECS.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 SECOND1 COMP-2.
01 SECOND2 COMP-2.
01 TIMESTP.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X,
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of TIMESTP.
01 TIMESTP2.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X,
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

CEESECS

410 z/OS Language Environment Programming Reference

of TIMESTP2.
01 PICSTR.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X,
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of PICSTR.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-SECS1.

**
** Specify first timestamp and a picture string
** describing the format of the timestamp
** as input to CEESECS
**

MOVE 25 TO Vstring-length of TIMESTP.
MOVE "1969-05-07 12:01:00.000"

TO Vstring-text of TIMESTP.
MOVE 25 TO Vstring-length of PICSTR.
MOVE "YYYY-MM-DD HH:MI:SS.999"

TO Vstring-text of PICSTR.
**
** Call CEESECS to convert the first timestamp
** to Lilian seconds
**

CALL "CEESECS" USING TIMESTP, PICSTR,
SECOND1, FC.

IF NOT CEE000 of FC THEN
DISPLAY "CEESECS failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.
PARA-SECS2.

**
** Specify second timestamp and a picture string
** describing the format of the timestamp as
** input to CEESECS.
**

MOVE 25 TO Vstring-length of TIMESTP2.
MOVE "2000-01-01 00:00:01.000"

TO Vstring-text of TIMESTP2.
MOVE 25 TO Vstring-length of PICSTR.
MOVE "YYYY-MM-DD HH:MI:SS.999"

TO Vstring-text of PICSTR.

**
** Call CEESECS to convert the second timestamp
** to Lilian seconds
**

CALL "CEESECS" USING TIMESTP2, PICSTR,
SECOND2, FC.

IF NOT CEE000 of FC THEN
DISPLAY "CEESECS failed with msg "

CEESECS

Chapter 5. Callable services 411

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

PARA-SECS2.
**
** Subtract SECOND2 from SECOND1 to determine the
** number of seconds between the two timestamps
**

SUBTRACT SECOND1 FROM SECOND2.
DISPLAY "The number of seconds between "

Vstring-text OF TIMESTP " and "
Vstring-text OF TIMESTP2 " is: " SECOND2.

GOBACK.

3. Following is an example of CEESECS called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMSECS */
/**/
/** */
/** Function: CEESECS - Change timestamp to seconds */
/** */
/** In this example, CEESECS is called to return an */
/** input timestamp as the number of seconds since */
/** 14 October 1582. */
/** */
/**/
PLISECS: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL TIMESTP CHAR(255) VARYING;
DCL PICSTR CHAR(255) VARYING;
DCL SECONDS REAL FLOAT DECIMAL(16);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

TIMESTP = ’10 November 1992’; /* Specify input */
/* date as timestamp */

PICSTR = ’ZD Mmmmmmmmmmmmmmz YYYY’;
/* Picture string that descibes timestamp */

/* Call CEESECS to return the input date as */
/* Lilian seconds */
CALL CEESECS (TIMESTP, PICSTR, SECONDS, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’There were ’ || SECONDS
|| ’ seconds between 14 Oct 1582 and ’
|| TIMESTP);

END;
ELSE DO;

DISPLAY(’CEESECS failed with msg ’
|| FC.MsgNo);

STOP;
END;

END PLISECS;

CEESECS

412 z/OS Language Environment Programming Reference

CEESETL—Set locale operating environment

CEESETL, analogous to the C language function setlocale(), establishes a global
locale operating environment, which determines the behavior of character collation,
character classification, date and time formatting, numeric punctuation, and
positive/negative response patterns. CEESETL is sensitive to the locales set by
setlocale() or CEESETL, not to the Language Environment settings from
COUNTRY or CEE3CTY.

Syntax

►► CEESETL (localename , category , fc) ►◄

localename (input)
A halfword length-prefixed character string (VSTRING) with a maximum of
256 bytes. localename is a valid locale name known to the locale model. The
category named in the call is set according to the named locale. If localename is
null or blank, CEESETL sets the locale environment according to the
environment variables. This is the equivalent to specifying
setlocale(LC_ALL,""). If these environment variables are defined, you can
locate them in the following order:
v LC_ALL if it is defined and not null
v LANG if it is defined and not null
v The default C locale

category (input)
A symbolic integer number that represents all or part of the locale for a
program. Depending on the value of the localename, these categories can be
initiated by the values of global categories of corresponding names. The
following values for the category parameter are valid:

LC_ALL
A 4-byte integer (with a value of -1) that affects all locale categories
associated with a program's locale.

LC_COLLATE
A 4-byte integer (with a value of 0) that affects the behavior of regular
expression and collation subroutines.

LC_CTYPE
A 4-byte integer (with a value of 1) that affects the behavior of regular
expression, character classification, case conversion, and wide character
subroutines.

LC_MESSAGES
A 4-byte integer (with a value of 6) that affects the format and values for
positive and negative responses.

LC_MONETARY
A 4-byte integer (with a value of 3) that affects the behavior of subroutines
that format monetary values.

LC_NUMERIC
A 4-byte integer (with a value of 2) that affects the behavior of subroutines
that format non-monetary numeric values.

CEESETL

Chapter 5. Callable services 413

LC_TIME
A 4-byte integer (with a value of 4) that affects the behavior of time
conversion subroutines.

Language Environment locale callable services do not support the LC_TOD
and LC_SYNTAX categories.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE2KD 3 2701 An invalid category parameter was passed to a

locale function.
CEE2KE 3 2702 An invalid locale name parameter was passed

to a locale function.
CEE3T1 3 4001 General Failure: Service could not be

completed.

Usage notes
v PL/I MTF consideration—CEESETL is not supported in PL/I MTF applications.
v This callable service uses the C/C++ runtime library. The C/C++ library must be

installed and accessible even when this service is called from a non-C program.
v The LC_ALL category indicates that all categories are to be changed with regard

to the specific locale. The LC_ALL value, when set by CEESETL, becomes the
current values for all six LC_* categories.

v If the active locale is not explicitly set with CEESETL or setlocale(category,
localename), then the locale chosen is as follows:
– With POSIX(OFF), the SAA C locale is chosen, and querying the locale with

CEEQRYL returns “C” as the locale name.
– With POSIX(ON), the POSIX C locale is chosen, and querying the locale with

CEEQRYL returns “POSIX” as the locale name.
The SAA C locale provides compatibility with previous releases of C/370. The
POSIX C locale provides consistency with POSIX requirements and supports the
z/OS UNIX environment.

For more information
v See z/OS XL C/C++ Runtime Library Reference for details of how various locale

categories affect C/C++ language functions.
v For more information about specifying environment variables to set the locale,

see z/OS XL C/C++ Programming Guide.
v For information about the definition of the SAA C and POSIX C locales and the

differences between them, see z/OS XL C/C++ Programming Guide.
v For more information about LC_TIME, see “CEEQDTC—Query locale date and

time conventions” on page 387.

Examples
1. Following is an example of CEESETL called by COBOL.

CEESETL

414 z/OS Language Environment Programming Reference

CBL LIB,QUOTE
*Module/File Name: IGZTSETL

* Example for callable service CEESETL *
* COBSETL - Set all global locale environment *
* categories to country Sweden. *
* Query one category. *

IDENTIFICATION DIVISION.
PROGRAM-ID. COBSETL.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Locale-Name.

02 LN-Length PIC S9(4) BINARY.
02 LN-String PIC X(256).

01 Locale-Time.
02 LT-Length PIC S9(4) BINARY.
02 LT-String PIC X(256).

* Use Locale category constants
COPY CEEIGZLC.

*
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
*
PROCEDURE DIVISION.

* Set up locale name for Sweden

MOVE 14 TO LN-Length.
MOVE ’Sv_SE.IBM-1047’

TO LN-String (1:LN-Length).

* Set all locale categories to Sweden
* Use LC-ALL category constant from CEEIGZLC

CALL ’CEESETL’ USING Locale-Name, LC-ALL,
FC.

* Check feedback code

IF Severity > 0
DISPLAY ’Call to CEESETL failed. ’ Msg-No
STOP RUN

END-IF.

* Retrieve active locale for LC-TIME category

CALL ’CEEQRYL’ USING LC-TIME, Locale-Time,
FC.

* Check feedback code and correct locale

IF Severity = 0

CEESETL

Chapter 5. Callable services 415

IF LT-String(1:LT-Length) =
LN-String(1:LN-Length)

DISPLAY ’Successful query.’
ELSE

DISPLAY ’Unsuccessful query.’
END-IF

ELSE
DISPLAY ’Call to CEEQRYL failed. ’ Msg-No

END-IF.

STOP RUN.
END PROGRAM COBSETL.

2. Following is an example of CEESETL called by COBOL.
*PROCESS MACRO;
/*Module/File Name: IBMSETL */
/**/
/* Example for callable service CEESETL */
/* Function: Set all global locale environment */
/* categories to country. Query one category. */
/**/

PLISETL: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */
%INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */
%INCLUDE CEEIBMLC; /* Locale category constants */

/* CEESETL service call arguments */
DCL LOCALE_NAME CHAR(14) VARYING;

/* CEEQRYL service call arguments */
DCL LOCALE_NAME_TIME CHAR(256) VARYING;

DCL 01 FC, /* Feedback token */
03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
/* init locale name with IBM default for Sweden */
LOCALE_NAME = ’Sv_SE.IBM-1047’;

/* use LC_ALL category const from CEEIBMLC */
CALL CEESETL (LOCALE_NAME, LC_ALL, FC);

/* FBCHECK macro used (defined in CEEIBMCT) */
IF FBCHECK(FC, CEE2KE) THEN
DO; /* invalid locale name */

DISPLAY (’Locale LC_ALL Call ’||FC.MsgNo);
STOP;

END;

/* retrieve active locale for LC_TIME category */
/* use LC_TIME category const from CEEIBMLC */
CALL CEEQRYL (LC_TIME, LOCALE_NAME_TIME, FC);

IF FBCHECK(FC, CEE000) THEN
DO; /* successful query, check category name */

IF LOCALE_NAME_TIME ¬= LOCALE_NAME THEN
DO;
DISPLAY (’Invalid LOCALE_NAME_TIME ’);
STOP;

CEESETL

416 z/OS Language Environment Programming Reference

END;
ELSE
DO;

PUT SKIP LIST(’Successful query LC_TIME’,
LOCALE_NAME_TIME);

END;
END;

ELSE
DO;

DISPLAY (’LC_TIME Category Call ’||FC.MsgNo);
STOP;

END;

END PLISETL;

CEESGL—Signal a condition

CEESGL raises, or signals, a condition to the Language Environment condition
manager. It also provides qualifying data and creates an ISI for a particular
instance of the condition. The ISI contains information used by the Language
Environment condition manager to identify and react to conditions.

CEESGL is typically used to generate application-specific conditions that are
recognized by condition handlers registered using CEEHDLR. Conditions can also
be selected to simulate a Language Environment or system condition. If you plan
on using a routine that signals a new condition with a call to CEESGL, you should
first call the CEECMI callable service to copy any insert information into the ISI
associated with the condition.

CEESGL generates a Language Environment condition. You can map some of the
Language Environment condition tokens to POSIX signals. Unique conditions
signaled by CEESGL are considered to be enabled under Language Environment.
Therefore, they undergo Language Environment condition handling.

CEESGL can signal a POSIX condition. If CEESGL signals a POSIX condition and
the signal is blocked at the time of the generation but later unblocked and
delivered, the POSIX signal processing semantics are applied. The Language
Environment synchronous condition manager semantics do not apply.

Severity 0 and 1 conditions are considered safe conditions. They can be ignored if
they are not handled and if no feedback token is passed when the condition is
raised.

Each signaled condition (of severity 2 or above) increments the error count by one.
If the error count exceeds the error count limit (as specified by the ERRCOUNT
runtime option—see “ERRCOUNT” on page 32) the condition manager terminates
the enclave with abend code 4091, reason code 11. T_I_U (Termination Imminent
due to an Unhandled Condition) is not issued. Promoted conditions do not
increment the error count. A program established using the CEEHDLR callable
service or one of the HLL condition handlers, can then process the raised
condition.

ERRCOUNT applies to CEESGL only if the condition generated by CEESGL is
delivered synchronously. POSIX signal handling semantics are then applied to the
condition.

CEESETL

Chapter 5. Callable services 417

Table 24 on page 205 contains a list of the S/370 program interrupt codes and their
corresponding Language Environment condition token names and message
numbers.

Syntax

►► CEESGL (cond_rep ,
q_data_token ,

fc) ►◄

cond_rep (input)
A 12-byte condition token representing the condition to be signaled. You can
either construct your own condition token or use one that Language
Environment has already defined. Conditions signaled by CEESGL are not
necessarily handled by Language Environment. If you call CEESGL with a
cond_rep, Language Environment passes control to the language in which the
routine is written. The condition manager then determines if it should handle
the condition. If so, the HLL handles the condition. If not, control returns to
Language Environment. The condition might also be ignored or blocked, or
might result in enclave termination.

q_data_token (input/output)
An optional 32-bit data object placed in the ISI to access the qualifying data
(q_data) associated with the given instance of the condition. The q_data_token is
a list of information addresses a user condition handler uses to specifically
identify and, if necessary, react to, a given condition. The information in the
q_data_token provides a mechanism by which user-written condition handlers
can provide a complete fix-up of some conditions. The q_data token associated
with a condition using CEESGL can be extracted later using the CEEGQDT
callable service.

fc (output / optional)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE069 0 0201 An unhandled condition was returned in a

feedback code.
CEE0CE 1 0398 Resume with new input.
CEE0CF 1 0399 Resume with new output.
CEE0EB 3 0459 Not enough storage was available to create a

new instance specific information block.
CEE0EE 3 0462 Instance specific information for the condition

token with message number message-number
and facility ID facility-id could not be found.

Usage notes
v PL/I consideration: Conditions with a facility_ID of IBM cannot be used in

CEESGL.

CEESGL

418 z/OS Language Environment Programming Reference

v z/OS UNIX consideration: In multithread applications, CEESGL affects only the
calling thread. Delivery of a CEESGL generated condition is limited to the thread
that generated the condition. However, if the condition is a severity 2 or higher,
and is not handled by the application, the default action of terminate applies to
the enclave, not just the calling thread.

v COBOL consideration: When a resume occurs and control resumes to the next
instruction that follows the call to CEE3SRP, the COBOL RETURN-CODE special
register contains an unpredictable value.

For more information
v See “CEECMI—Store and load message insert data” on page 218 for more

information about the CEECMI callable service.
v See z/OS Language Environment Programming Guide for more information about

mapping Language Environment condition tokens to POSIX signals.
v See “ERRCOUNT” on page 32 for more information about the ERRCOUNT

runtime option.
v To construct your own condition token, see “CEENCOD—Construct a condition

token” on page 379.
v For more information about condition handling, see z/OS Language Environment

Programming Guide.
v See “CEEGQDT—Retrieve q_data_token” on page 305 for more information

about the CEEGQDT callable service.

Examples
1. Following is an example of CEESGL called by C/C++.

/*Module/File Name: EDCSGL */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

_FEEDBACK fc,condtok;
_ENTRY routine;
_INT4 token,qdata;
_INT2 c_1,c_2,cond_case,sev,control;
_CHAR3 facid;
_INT4 isi;

/* .
.
. */

/* build the condition token */
c_1 = 1;
c_2 = 99;
cond_case = 1;
sev = 1;
control = 0;
memcpy(facid,"ZZZ",3);
isi = 0;

CEENCOD(&c_1,&c_2,&cond_case,&sev,&control,;
facid,&isi,&condtok,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEENCOD failed with message number %d\n",

fc.tok_msgno);

CEESGL

Chapter 5. Callable services 419

exit(2999);
}

/* signal the condition */
CEESGL(&condtok,&qdata,&fc);
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEESGL failed with message number %d\n",
fc.tok_msgno);

exit(2999);
}

/* .
.
. */

}

2. Following is an example of CEESGL called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTSGL
**
** **
** CBLSGL - Call CEESGL to signal a condition **
** **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. CBLSGL.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CONDTOK.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 QDATA PIC S9(9) BINARY.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
01 SEV PIC S9(4) BINARY.
01 MSGNO PIC S9(4) BINARY.
01 CASE PIC S9(4) BINARY.
01 SEV2 PIC S9(4) BINARY.
01 CNTRL PIC S9(4) BINARY.
01 FACID PIC X(3).
01 ISINFO PIC S9(9) BINARY.

PROCEDURE DIVISION.
PARA-CBLSGL.

**
** Call CEENCOD with the values assigned above
** to build a condition token "CONDTOK"

CEESGL

420 z/OS Language Environment Programming Reference

** Set CONDTOK to sev = 0, msgno = 1 facid = CEE
**

MOVE 0 TO SEV.
MOVE 1 TO MSGNO.
MOVE 1 TO CASE.
MOVE 0 TO SEV2.
MOVE 1 TO CNTRL.
MOVE "CEE" TO FACID.
MOVE 0 TO ISINFO.

CALL "CEENCOD" USING SEV, MSGNO, CASE,
SEV2, CNTRL, FACID, ISINFO, CONDTOK, FC.

IF NOT CEE000 of FC THEN
DISPLAY "CEENCOD failed with msg "

Msg-No of FC UPON CONSOLE
STOP RUN

END-IF.

** Call CEESGL to signal the condition with
**
** the condition token and qdata described
** in CONDTOK and QDATA
**

MOVE 0 TO QDATA.
CALL "CEESGL" USING CONDTOK, QDATA, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEESGL failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

GOBACK.

3. Following is an example of CEESGL called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMSGL */
/**/
/** */
/** Function: CEESGL - Signal a Condition */
/** */
/**/
PLISGL: PROC OPTIONS(MAIN);

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL 01 CONDTOK, /* Feedback token */
03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
DCL QDATA REAL FIXED BINARY(31,0);
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

CEESGL

Chapter 5. Callable services 421

/* Give CONDTOK value of condition CEE001 */
ADDR(CONDTOK) -> CEEIBMCT = CEE001;

/* Signal condition CEE001 with qualifying data */
QDATA = 1;
CALL CEESGL (CONDTOK, QDATA, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’Condition CEE001 signalled’);
END;

ELSE DO;
DISPLAY(’CEESGL failed with msg ’

|| FC.MsgNo);
STOP;
END;

END PLISGL;

CEESTXF—Transform string characters into collation weights

CEESTXF, which is analogous to the C language function strcfrm(), transforms
every character in a character string to its unique collation weight. The collation
weights are established from the LC_COLLATE category for the locale. CEESTFX
also returns the length of the transformed string. CEESTXF is sensitive to the
locales set by setlocale() or CEESETL, not to the Language Environment settings
from COUNTRY or CEE3CTY.

Syntax

►► CEESTXF (omitted_parm , mbstring , number , txfstring , ►

► length , fc) ►◄

omitted_parm
This parameter is reserved for future expansion and must be omitted. For
information about how to code an omitted parm, see “Invoking callable
services” on page 116.

mbstring (input)
A halfword length-prefixed character string (VSTRING) that is to be
transformed.

number (input)
A 4-byte integer that specifies the number of bytes of mbstring to be
transformed. The value of this parameter must be greater than zero; otherwise,
an error is reported, and no transformation is attempted.

txfstring (output)
A halfword length-prefixed character string (VSTRING) where the
transformation of mbstring is to be placed.

length (output)
A 4-byte integer that specifies the length of the transformed string, if
successful.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result

CEESGL

422 z/OS Language Environment Programming Reference

of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE3T1 3 4001 General Failure: Service could not be

completed.
CEE3TF 3 4015 Input Error: The number of characters to be

transformed must be greater than zero.

Usage notes
v PL/I MTF consideration—CEESETL is not supported in PL/I MTF applications.
v This callable service uses the C/C++ runtime library. The C/C++ library must be

installed and accessible even when this service is called from a non-C program.

For more information
v For more information about the setlocale() ,see “COUNTRY” on page 24,

“CEE3CTY—Set default country” on page 135, and “CEE3LNG—Set national
language” on page 174.

v For more information about the CEESETL callable service, see “CEESETL—Set
locale operating environment” on page 413.

Examples
1. Following is an example of CEESTXF called by COBOL.

CBL LIB,QUOTE
*Module/File Name: IGZTSTXF

* Example for callable service CEESTXF *
* COBSTXF - Query current collate category and *
* build input string as function of *
* locale name. *
* Translate string as function of *
* locale. *
* Valid only for COBOL for MVS & VM Release 2 *
* or later. *

IDENTIFICATION DIVISION.
PROGRAM-ID. COBSTXF.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 MBS.

02 MBS-Length PIC S9(4) BINARY.
02 MBS-String PIC X(10).

01 TXF.
02 TXF-Length PIC S9(4) BINARY.
02 TXF-String PIC X(256).

01 Locale-Name.
02 LN-Length PIC S9(4) BINARY.
02 LN-String PIC X(256).

* Use Locale category constants
COPY CEEIGZLC.
01 MBS-Size PIC S9(9) BINARY VALUE 0.
01 TXF-Size PIC S9(9) BINARY VALUE 0.
01 FC.

02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.

CEESTXF

Chapter 5. Callable services 423

04 Severity PIC S9(4) BINARY.
04 Msg-No PIC S9(4) BINARY.

03 Case-2-Condition-ID
REDEFINES Case-1-Condition-ID.

04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.

* Call CEEQRYL to retrieve locale name

CALL "CEEQRYL" USING LC-COLLATE,
Locale-Name, FC.

* Check feedback code and set input string

IF Severity = 0
IF LN-String (1:LN-Length) =

"Sv-SE.IBM-1047"
MOVE 10 TO MBS-Length
MOVE 10 TO MBS-Size
MOVE "7,123,456."

TO MBS-String (1:MBS-Length)
ELSE

MOVE 7 TO MBS-Length
MOVE 7 TO MBS-Size
MOVE "8765432"

TO MBS-String (1:MBS-Length)
END-IF

ELSE
DISPLAY "Call to CEEQRYL failed. " Msg-No
STOP RUN

END-IF.
MOVE SPACES TO TXF-String.

MOVE 0 to TXF-Length.

* Call CEESTXF to translate the string

CALL "CEESTXF" USING OMITTED, MBS, MBS-Size,
TXF, TXF-Size, FC.

* Check feedback code and return length

IF Severity = 0
IF TXF-Length > 0

DISPLAY "Translated string is "
TXF-String

ELSE
DISPLAY "String not translated."

END-IF
ELSE

DISPLAY "Call to CEESTXF failed. " Msg-No
END-IF.

STOP RUN.
END PROGRAM COBSTXF.

2. Following is an example of CEESTXF called by PL/I.
*PROCESS MACRO;
/*Module/File Name: IBMSTXF */
/**/
/* Example for callable service CEESTXF */
/* Function: Query current collate category and */
/* build input string as function of locale name. */
/* Translate string as function of locale. */

CEESTXF

424 z/OS Language Environment Programming Reference

/**/
PLISTXF: PROC OPTIONS(MAIN);
%INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */
%INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */
%INCLUDE CEEIBMLC; /* Locale category constants */
/* CEESTXF service call arguments */
DCL MBSTRING CHAR(10) VARYING; /* input string */
DCL MBNUMBER BIN FIXED(31); /* input length */
DCL TXFSTRING CHAR(256) VARYING; /* output string */
DCL TXFLENGTH BIN FIXED(31); /* output length */
/* CEEQRYL service call arguments */
DCL LOCALE_NAME_COLLATE CHAR(256) VARYING;
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);
/* retrieve active locale for collate category */
/* Use LC_COLLATE category const from CEEIBMLC */
CALL CEEQRYL (LC_COLLATE, LOCALE_NAME_COLLATE, FC);
/* FBCHECK macro used (defined in CEEIBMCT) */
IF FBCHECK(FC, CEE000) THEN

DO; /* successful query, set string for CEESTXF */
IF LOCALE_NAME_COLLATE = ’Sv_SE.IBM-1047’ THEN

MBSTRING = ’7,123,456.’;
ELSE

MBSTRING = ’8765432’;
MBNUMBER = LENGTH(MBSTRING);

END;
ELSE

DO;
DISPLAY (’Locale LC_COLLATE ’||FC.MsgNo);
STOP;

END;
TXFSTRING = ’;
CALL CEESTXF (*, MBSTRING, MBNUMBER,

TXFSTRING, TXFLENGTH, FC);
IF FBCHECK(FC, CEE000) THEN

DO; /* successful call, use transformed length */
IF TXFLENGTH >0 THEN
DO;

PUT SKIP LIST(’Transformed string is ’||
SUBSTR(TXFSTRING,1, TXFLENGTH));

END;
END;

ELSE
DO;

IF FBCHECK(FC, CEE3TF) THEN
DO;

DISPLAY (’Zero length input string’);
END;

END;
END PLISTXF;

CEETDLI—Invoke IMS

CEETDLI provides an interface to PL/I facilities that operates in IMS. In assembler,
COBOL, PL/I, and C/C++, you can also invoke IMS by using the following
interfaces:
v In assembler, the ASMTDLI interface

CEESTXF

Chapter 5. Callable services 425

v In COBOL, the CBLTDLI interface
v In PL/I, the PLITDLI interface
v In C/C++, the CTDLI interface, a ctdli() function call

CEETDLI performs essentially the same functions as these interfaces, but it offers
some advantages, particularly if you plan to run an ILC application in IMS.

The names CEETDLI, AIBTDLI, ASMTDLI, CBLTDLI, CTDLI, and PLITDLI are all
interpreted as IMS interfaces. If you are currently using them in any other way in
your application, you must change them. The CEETDLI interface supports calls to
IMS that use an application interface block (AIB) or a program communication
block (PCB).

Syntax

►► CEETDLI (
parmcount ,

, function ,
args

) ►◄

parmcount
A fullword integer specifying the total number of arguments for the CEETDLI
call. This option usually is not needed and can be omitted; it is supported for
compatibility with earlier interface modules.

function
The IMS function that you want to perform. The possible values for this field
are defined by IMS, not Language Environment.

args
Arguments that you pass to IMS. You cannot pass runtime options as
CEETDLI arguments. You cannot alter the settings of runtime options when
invoking IMS facilities. The order and meaning of the arguments is defined by
IMS, not Language Environment.

Usage notes
v CEETDLI is not supported with CICS.
v z/OS UNIX considerations—IMS supports only applications that use the

POSIX(ON) runtime option from a single thread. Calls to z/OS UNIX threading
functions are restricted under IMS. See z/OS XL C/C++ Programming Guide for a
list of restrictions on running IMS and z/OS UNIX.

For more information
v For more information about AIB and a complete description of all available IMS

functions and argument parameters you can specify in CEETDLI, see IMS
Application Programming Guide.

v For more information about CEETDLI in the context of other DLI interfaces, and
in the context of IMS condition handling, see z/OS Language Environment
Programming Guide.

Examples
1. Following is an example of CEETDLI called by C.

/*Module/File Name: EDCMRCR */

#pragma runopts(env(IMS),plist(IMS))

CEETDLI

426 z/OS Language Environment Programming Reference

#include <ims.h>
#include <leawi.h>
#define io_pcb ((IO_PCB_TYPE *)(__pcblist??(0??)))

/* -- */
/* */
/* Function: Use CEETDLI - interface to IMS */
/* from C. */
/* */
/* In this example, a call is made to CEETDLI */
/* to interface to IMS for an IMS service. */
/* */
/* -- */
/* ENTRY POINT */
/* -- */

main() {

static char func_GU??(4??) = "GU ";
char msg_seg_io_area??(32??);
CEETDLI(func_GU,io_pcb,msg_seg_io_area);

}

2. Following is an example of CEETDLI called by COBOL.
*Module/File Name: IGZTTDLI
***/
** */
** Function: Use CEETDLI - interface to IMS */
** from COBOL. */
** */
** In this example, a call is made to CEETDLI */
** to interface to IMS for an IMS service. */
** */
***/
IDENTIFICATION DIVISION.
PROGRAM-ID. CBL2IMS.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 FUNC-GU PIC X(4) VALUE "GU ".
01 MSG-SEG-IO-AREA PIC X(32).
LINKAGE SECTION.
01 IO-PCB PIC X(48).

** ENTRY POINT: */
PROCEDURE DIVISION USING IO-PCB.

CALL "CEETDLI" USING FUNC-GU,IO-PCB,
MSG-SEG-IO-AREA.

GOBACK.

3. Following is an example of CEETDLI called by PL/I.
*PROCESS MACRO SYSTEM(IMS);
/*Module/File Name: IBMTDLI */
/* --- */
/* */
/* Function: Use CEETDLI - interface to IMS */
/* from PL/I. */
/* */
/* In this example, a call is made to CEETDLI */
/* to interface to IMS for an IMS service. */
/* */
/* --- */
/* ENTRY POINT */
/* --- */
PLI2IMS: PROCEDURE(IO_PTR) OPTIONS(MAIN NOEXECOPS);

%INCLUDE CEEIBMAW;

DCL FUNC_GU CHAR(4) INIT(’GU ’);

CEETDLI

Chapter 5. Callable services 427

DCL IO_PTR PTR;
DCL 1 IO_PCB CHAR(48) BASED (IO_PTR);

DCL 1 MSG_SEG_IO_AREA CHAR(32);

CALL CEETDLI (FUNC_GU, IO_PCB, MSG_SEG_IO_AREA);

RETURN;

END PLI2IMS;

CEETEST—Invoke Debug Tool

CEETEST invokes a debug service such as Debug Tool, which is supplied with
z/OS.

Debug Tool supports debugging of Language Environment, except for some noted
restrictions. For more information about Debug Tool for z/OS, see Debug Tool
Utilities and Advanced Functions (http://www.ibm.com/software/awdtools/
debugtool/). If you want to invoke another interactive debug service, refer to the
appropriate user's guide.

Syntax

►► CEETEST (
string_of_commands ,

, fc) ►◄

string_of_commands (input)
A halfword-prefixed string containing a debug tool command list.
string_of_commands is optional. If a debug tool is available, the commands in
the list are passed to the debug tool and carried out. If this parameter is
omitted, your debug service defines the action taken. For more information,
refer to the appropriate user's guide for your debug service.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text
CEE000 0 — The service completed successfully.
CEE2F2 3 2530 A debug tool was not available.
CEE2F7 3 2535 Profiler loaded; a debug tool was not available.

Usage notes
v z/OS UNIX considerations—CEETEST applies to the enclave. All threads in the

enclave can access debugger information.

CEETDLI

428 z/OS Language Environment Programming Reference

http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/debugtool/

For more information
v If you are using CEETEST to invoke Debug Tool and need more information

about how to create a Debug Tool command list, refer to Debug Tool Utilities
and Advanced Functions (http://www.ibm.com/software/awdtools/debugtool/
)..

Examples
1. Following is an example of CEETEST called by C/C++.

/*Module/File Name: EDCTEST */

#include <string.h>
#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main (void) {

int x,y,z;
_VSTRING commands;
_FEEDBACK fc;

strcpy(commands.string,
"AT LINE 30 { LIST(x); LIST(y); GO; }");

commands.length = strlen(commands.string);

CEETEST(&commands,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
printf("CEETEST failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}
x = y = 12;
/* .

.

. */
/* debug tool displays the values of x and y */
/* at statement 30 */
/* .

.

. */
}

2. Following is an example of CEETEST called by COBOL.
CBL LIB,QUOTE

*Module/File Name: IGZTTEST
IDENTIFICATION DIVISION.
PROGRAM-ID. IBCT002.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 MANVAR1 PIC S9(9) BINARY.
01 CEETEST-PARMS.

02 Vstring-length PIC S9(4) BINARY.
02 Vstring-text.

03 Vstring-char PIC X,
OCCURS 0 TO 256 TIMES
DEPENDING ON Vstring-length

of CEETEST-PARMS.
01 FC.
02 Condition-Token-Value.
COPY CEEIGZCT.

03 Case-1-Condition-ID.
04 Severity PIC S9(4) BINARY.

CEETEST

Chapter 5. Callable services 429

http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/debugtool/

04 Msg-No PIC S9(4) BINARY.
03 Case-2-Condition-ID

REDEFINES Case-1-Condition-ID.
04 Class-Code PIC S9(4) BINARY.
04 Cause-Code PIC S9(4) BINARY.

03 Case-Sev-Ctl PIC X.
03 Facility-ID PIC XXX.

02 I-S-Info PIC S9(9) BINARY.
PROCEDURE DIVISION.
PARA-IBCT002.

MOVE 0 TO MANVAR1
COMPUTE MANVAR1 = MANVAR1 + 100
DISPLAY "The value of MANVAR1 is " , MANVAR1

* CALL CEETEST FOR FIRST TIME. *

MOVE 70 TO Vstring-length of CEETEST-PARMS.
MOVE "DESC PROGRAM AT ENTRY IBCT002:>SUBRTN"
TO Vstring-text of CEETEST-PARMS(1:37).

move " PERFORM Q LOC GO END-PERFORM GO "
TO Vstring-text of CEETEST-PARMS(38:33).

CALL "CEETEST" USING CEETEST-PARMS, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEETEST(1st call) failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

* CALL CEETEST A SECOND TIME. *

MOVE 4 TO Vstring-length of CEETEST-PARMS.
MOVE "QUIT "
TO Vstring-text of CEETEST-PARMS.

CALL "CEETEST" USING CEETEST-PARMS, FC.
IF NOT CEE000 of FC THEN

DISPLAY "CEETEST(2nd call) failed with msg "
Msg-No of FC UPON CONSOLE

STOP RUN
END-IF.

**
GOBACK.

**
IDENTIFICATION DIVISION.
PROGRAM-ID. SUBRTN.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 MANVAR1 PIC S9(9) BINARY.
01 MVAR PIC S9(9) BINARY.

PROCEDURE DIVISION.
PARA-SUBRTN.

COMPUTE MVAR = MVAR + 100 .
COMPUTE MANVAR1 = MANVAR1 + 100 .

GOBACK.
END PROGRAM SUBRTN.
END PROGRAM IBCT002.

3. Following is an example of CEETEST called by PL/I.
*PROCESS MACRO;
/* Module/File Name: IBMTEST */
/**/
/** **/
/** Function: CEETEST - Invoke a Debug Tool **/
/** **/
/**/
PLITEST: PROC OPTIONS(MAIN);

CEETEST

430 z/OS Language Environment Programming Reference

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

DCL DBGCMD CHAR(255) VARYING;
DCL 01 FC, /* Feedback token */

03 MsgSev REAL FIXED BINARY(15,0),
03 MsgNo REAL FIXED BINARY(15,0),
03 Flags,

05 Case BIT(2),
05 Severity BIT(3),
05 Control BIT(3),

03 FacID CHAR(3), /* Facility ID */
03 ISI /* Instance-Specific Information */

REAL FIXED BINARY(31,0);

DBGCMD = ’QUERY PROGRAMMING LANGUAGE’;

CALL CEETEST (DBGCMD, FC);
IF FBCHECK(FC, CEE000) THEN DO;

PUT SKIP LIST(’Debug tool called with command: ’
|| DBGCMD);

END;
ELSE DO;

DISPLAY(’CEETEST failed with msg ’ || FC.MsgNo);
STOP;
END;

END PLITEST;

CEEUTC—Get coordinated universal time

CEEUTC is an alias of CEEGMT. See “CEEGMT—Get current Greenwich Mean
Time” on page 294 for more information.

CEETEST

Chapter 5. Callable services 431

CEEUTC

432 z/OS Language Environment Programming Reference

Chapter 6. Bit manipulation routines

This topic lists the Language Environment bit manipulation routines. Bits are
numbered from right to left, starting from 0.

CEESICLR—Bit clear
Purpose

CEESICLR returns a copy of its parm1 input, but with one bit selectively set to 0.

Syntax

►► CEESICLR (parm1 , parm2 , fc , result) ►◄

parm1 (input)
The first input to the Bit Clear routine. The input can be any 32-bit integer.

parm2 (input)
The second input to the Bit Clear routine. The parm2 value is a 32-bit integer in
the range between 0 and 31, inclusive.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 The service completed successfully.

CEE1VC 2 2028 The value of the second argument was outside the valid
range range in math routine routine-name.

result (output)
The result of the Bit Clear routine. The output is a copy of parm1, but with the
bit numbered parm2 (counting from the right) set to 0.

CEESISET—Bit set
Purpose

CEESISET returns a copy of its parm1 input, but with one bit selectively set to 1.

© Copyright IBM Corp. 1991, 2015 433

Syntax

►► CEESISET (parm1 , parm2 , fc , result) ►◄

parm1 (input)
The first input to the Bit Set routine. The input can be any 32-bit integer.

parm2 (input)
The second input to the Bit Set routine. The parm2 value is a 32-bit integer in
the range between 0 and 31, inclusive.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 The service completed successfully.

CEE1VC 2 2028 The value of the second argument was outside the valid
range range in math routine routine-name.

result (output)
The result of the Bit Set routine. The output is a copy of parm1, but with the bit
numbered parm2 (counting from the right) set to 1.

CEESISHF—Bit shift
Purpose

CEESISHF returns a copy of its parm1 input right- or left-shifted by the number of
bits indicated by parm2.

Syntax

►► CEESISHF (parm1 , parm2 , fc , result) ►◄

parm1 (input)
The first input to the Bit Shift routine. The input can be any 32-bit integer.

parm2 (input)
The second input to the Bit Shift routine. The parm2 value is a 32-bit integer in
the range between -32 and 32, inclusive.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

434 z/OS Language Environment Programming Reference

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 The service completed successfully.

CEE1VC 2 2028 The value of the second argument was outside the
valid range range in math routine routine-name.

result (output)
The result of the Bit Shift routine. The output is a 32-bit integer whose value
depends upon the value of parm2; in either case, vacated bits are set to 0:
v If parm2 is greater than or equal to 0, result is a copy of parm1 shifted left by

parm2 bits.
v If parm2 is less than 0, result is a copy of parm1 shifted right by |parm2| bits.

CEESITST—Bit test
Purpose

CEESITST selectively tests a bit in its parm1 input to determine if the bit is on.

Syntax

►► CEESITST (parm1 , parm2 , fc , result) ►◄

parm1 (input)
The first input to the Bit Test routine. The input can be any 32-bit integer.

parm2 (input)
The second input to the Bit Test routine. The parm2 value is a 32-bit integer in
the range between 0 and 31, inclusive.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 The service completed successfully.

CEE1VC 2 2028 The value of the second argument was outside the valid
range range in math routine routine-name.

result (output)
The result of the Bit Test routine. The output is a 32-bit integer with one of the
following values; bits are counted from the right:

1 if bit number parm2 in parm1 is 1

0 if bit number parm2 in parm1 is 0

Chapter 6. Bit manipulation routines 435

436 z/OS Language Environment Programming Reference

Chapter 7. Language Environment math services

Language Environment math services provide standard math computations. You
can call them from Language Environment-conforming languages or from
assembler routines by using the call interface, or the syntax specific to the HLL of
your application.

Math services do not depend on enclave-level resources. You can invoke them from
any thread.

If your application uses extended-precision arithmetic and runs on a 370-mode
machine under VM, you must specify the TRAP(ON) runtime option (the default)
and add the CMSLIB TXTLIB with the GLOBAL TXTLIB command.

Call interface to math services
The syntax for math services has two forms, depending on how many input
parameters the routine requires. The first four letters of the math services are
always CEES. The fifth character is x, which you replace according to the
parameter types listed in “Parameter types: parm1 and parm2.” The last three
letters name the math function performed. In the following examples, the first
function performed is the absolute value (ABS), and the second function is the
positive difference (DIM).

One Parameter

►► CEESxABS (parm1 , fc , result) ►◄

Two Parameters

►► CEESxDIM (parm1 , parm2 , fc , result) ►◄

Parameter types: parm1 and parm2
The first parameter (parm1) is mandatory. The second parameter (parm2) is used
only when you use a math service with two parameters. The x in the fifth space of
CEESx must be replaced by a parameter type for input and output. Substitute I, S,
D, Q, T, E, or R for x:

I 32-bit binary integer

S 32-bit single floating-point number

D 64-bit double floating-point number

Q 128-bit extended floating-point number

© Copyright IBM Corp. 1991, 2015 437

T 32-bit single floating-point complex number. This parameter type consists
of a real part and an imaginary part, each of which is a 32-bit single
floating-point number.

E 64-bit double floating-point complex number. This parameter type consists
of a real part and an imaginary part, each of which is a 64-bit double
floating-point number.

R 128-bit extended floating-point complex number. This parameter type
consists of a real part and an imaginary part, each of which is a 128-bit
extended floating-point number.

Language Environment math services expect normalized input.

In the described routines, the output range for complex-valued functions can be
determined from the input range. For functions of complex variables, the image of
the input is generally a non-rectangular shape. For this reason, the output range is
not provided .

Feedback code parameter (fc)
The fc value is a feedback code that indicates the result of the math service. If you
specify fc as an argument, feedback information in the form of a condition token is
returned to the calling routine. The condition token indicates whether the routine
completed successfully or whether a condition was encountered while the routine
was running. If you do not specify fc as an argument and the requested service
does not successfully complete, the condition is signaled. Math services call other
services that might generate feedback codes.

Language-specific built-in math services
C/C++, COBOL, Fortran, and PL/I offer built-in math services that you can also
use under Language Environment. For a description of these functions, refer to the
reference documentation associated with each language.

438 z/OS Language Environment Programming Reference

Calls to math services from different languages
Table 28 shows sample calls to the Language Environment math service
CEESLOG—logarithm base e, as made from C/C++, COBOL, and PL/I. For more
examples, see “Examples of math services” on page 477.

Table 28. Examples of calls to CEESLOG

Called from Code example

C/C++ #include <leawi.h>
#include <string.h>
#include <stdio.h>

int main (void) {

float int1, intr;

_FEEDBACK fc;
#define SUCCESS "\0\0\0\0"

int1 = 39;
CEESSLOG(&int1,&fc,&intr);

if (memcmp(&fc,SUCCESS,4) != 0) {
printf("CEESSLOG failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}

printf("Log base e of %f is %f\n",int1,intr);
}

COBOL ...
77 ARG1RS COMP-1.
77 FBCODE PIC X(12).
77 RESLTRS COMP-1.

CALL "CEESSLOG" USING ARG1RS , FBCODE , RESLTRS....

PL/I ...
DCL ARG1 RESULT REAL FLOAT DEC (6);
DCL FC CHARACTER (12);

CALL CEESSLOG (ARG1, FC, RESULT)...

Math services
This section describes the Language Environment math services. It also provides
examples of how various services are called by different programming languages.

CEESxABS—Absolute value
CEESxABS returns the absolute value of the parameter by using the equation:
result = |parm1|

The following routines are provided for the various data types supported:

Chapter 7. Language Environment math services 439

CEESIABS
32-bit binary integer

CEESSABS
32-bit single floating-point number

CEESDABS
64-bit double floating-point number

CEESQABS
128-bit extended floating-point number

CEESTABS
32-bit single floating-point complex number

CEESEABS
64-bit double floating-point complex number

CEESRABS
128-bit extended floating-point complex number

Syntax

►► CEESxABS (parm1 , fc , result) ►◄

parm1 (input)
The input to the absolute value routine. The input range is not restricted.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1V9 1 2025 An underflow occurred in math routine
routine-name.

result (output)
The result of the absolute value routine. The output range is the non-negative
numbers:

Omega varies depending on the precision of parm1:

CEESxABS

440 z/OS Language Environment Programming Reference

CEESxACS—Arccosine
CEESxACS returns the arccosine of the parameter by using the equation: result =
arccos (parm1)

The following routines are provided for the various data types supported:

CEESSACS
32-bit single floating-point number

CEESDACS
64-bit double floating-point number

CEESQACS
128-bit extended floating-point number

Syntax

►► CEESxACS (parm1 , fc , result) ►◄

parm1 (input)
The input to the arccosine routine. The input range is:

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1V0 2 2016 The absolute value of the parameter was
greater than limit in math routine routine-name.

result (output)
The result, in radians, of the arccosine routine.

63 -6For single-precision routines,

For extended-precision routines,
For double-precision routines,

= 16 (1 -16)
63 -14= 16 (1 -16)

63 -28= 16 (1 -16)

| | 1parm1 [

CEESxABS

Chapter 7. Language Environment math services 441

CEESxASN—Arcsine
CEESxASN returns the arcsine of the parameter by using the equation: result =
arcsin(parm1)

The following routines are provided for the various data types supported:

CEESSASN
32-bit single floating-point number

CEESDASN
64-bit double floating-point number

CEESQASN
128-bit extended floating-point number

Syntax

►► CEESxASN (parm1 , fc , result) ►◄

parm1 (input)
The input to the arcsine routine. The input range is:

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1V0 2 2016 The absolute value of the parameter was
greater than limit in math routine routine-name.

result (output)
The result, in radians, of the arcsine routine. The output range is:

0 [[result o

| | 1parm1 [

| /2result| < P

CEESxACS

442 z/OS Language Environment Programming Reference

CEESxATH—Hyperbolic arctangent
CEESxATH returns the hyperbolic arctangent of the parameter by using the
following equation:

The following routines are provided for the various data types supported:

CEESSATH
32-bit single floating-point number

CEESDATH
64-bit double floating-point number

CEESQATH
128-bit extended floating-point number

CEESTATH
32-bit single floating-point complex number

CEESEATH
64-bit double floating-point complex number

CEESRATH
128-bit extended floating-point complex number

Syntax

►► CEESxATH (parm1 , fc , result) ►◄

parm1 (input)
The input to the hyperbolic arctangent routine. The input range for real
variables is:

For complex variables, parm1 cannot be equal to 1 or -1.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

result = tanh-1(1)parm

| | 1parm1 [

CEESxATH

Chapter 7. Language Environment math services 443

Code Severity Message number Message text

CEE1V1 2 2017 The absolute value of the argument was
greater than or equal to limit in math routine
routine-name.

CEE1V6 2 2022 The value of the argument was plus or minus
limit in math routine routine-name.

result (output)
The result of the hyperbolic arctangent routine. The output range for functions
of real variables is:

Omega varies, depending on the precision of parm1:

CEESxATN—Arctangent
CEESxATN returns the arctangent of the parameter by using the equation : result =
arctan(parm1)

The following routines are provided for the various data types supported:

CEESSATN
32-bit single floating-point number

CEESDATN
64-bit double floating-point number

CEESQATN
128-bit extended floating-point number

CEESTATN
32-bit single floating-point complex number

CEESEATN
64-bit double floating-point complex number

CEESRATN
128-bit extended floating-point complex number

Syntax

►► CEESxATN (parm1 , fc , result) ►◄

parm1 (input)
The input to the arctangent routine. The input range for real variables is not

|result| [W

63 -6For single-precision routines,

For extended-precision routines,
For double-precision routines,

= 16 (1 -16)
63 -14= 16 (1 -16)

63 -28= 16 (1 -16)

CEESxATH

444 z/OS Language Environment Programming Reference

restricted. The input range of complex variables in parm1 is not equal to i or -i,
where:

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1V6 2 2022 The value of the parameter was plus or minus
limit in math routine routine-name.

CEE1V9 1 2025 An underflow occurred in math routine
routine-name.

result (output)
The result, in radians, of the arctangent routine. The output range for functions
of real variables is:

CEESxAT2—Arctangent2
CEESxAT2 calculates a result by using the equation: result = the angle (in radians)
between the positive X axis and a vector defined by (parm2, parm1) with a range
from:

For example, if parm1 and parm2 are positive, then result = arctan (parm1/parm2).

The following routines are provided for the various data types supported:

CEESSAT2
32-bit single floating-point number

CEESDAT2
64-bit double floating-point number

CEESQAT2
128-bit extended floating-point number

-1i =

| /2result| < P

-P to P, with P,

CEESxATN

Chapter 7. Language Environment math services 445

Syntax

►► CEESxAT2 (parm1 , parm2 , fc , result) ►◄

parm1 (input)
The first input to the arctangent2 routine. The input range of parm1 cannot
equal 0 if parm2 equals 0.

parm2 (input)
The second parameter to the arctangent2 routine. The input range of parm2
cannot equal 0 if parm1 equals 0.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1UU 2 2014 Both parameters were equal to limit in math
routine routine-name.

CEE1V9 1 2025 An underflow occurred in math routine
routine-name.

result (output)
The result, in radians, of the arctangent2 routine. The output range is:

CEESxCJG—Conjugate of complex
CEESxCJG returns the conjugate of the complex number by using the equation:
result = u - vi, where parm1 = u + vi.

The following routines are provided for the various data types supported:

CEESTCJG
32-bit single floating-point complex number

CEESECJG
64-bit double floating-point complex number

CEESRCJG
128-bit extended floating-point complex number

| |result [P

CEESxAT2

446 z/OS Language Environment Programming Reference

Syntax

►► CEESxCJG (parm1 , fc , result) ►◄

parm1 (input)
The input to the math service. Any representable complex number can be used
as input.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

result (output)
The result of the conjugate of complex routine.

CEESxCOS—Cosine
CEESxCOS returns the cosine of the parameter by using the equation: result =
cos(parm1)

The following routines are provided for the various data types supported:

CEESSCOS
32-bit single floating-point number

CEESDCOS
64-bit double floating-point number

CEESQCOS
128-bit extended floating-point number

CEESTCOS
32-bit single floating-point complex number

CEESECOS
64-bit double floating-point complex number

CEESRCOS
128-bit extended floating-point complex number

Syntax

►► CEESxCOS (parm1 , fc , result) ►◄

parm1 (input)
The type is determined by the fifth character of the service name. The input
range for real variables varies:

CEESxCJG

Chapter 7. Language Environment math services 447

For Input range

Single floating-point numbers: P
18|parm1| < (2)

Double floating-point numbers: | 1| < (2)parm P
50

Extended floating-point numbers: | 1| < 2parm
100

For complex functions, the input range differs for the imaginary and real parts
of the input.

For ... Input range

The imaginary part: | Im (1)| < 174.673parm

The real part: single floating-point complex
numbers:

| Re (1)|parm < (2 P)18

The real part: double floating-point complex
numbers:

| Re (1)| < (2)parm P
50

The real part: extended floating-point
complex numbers:

| Re (1)| < 2parm
100

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1UT 2 2013 The absolute value of the imaginary part of the
parameter was greater than limit in math
routine routine-name.

CEE1V1 2 2017 The absolute value of the parameter was
greater than or equal to limit in math routine
routine-name.

CEE1V3 2 2019 The absolute value of the real part of the
parameter was greater than or equal to limit in
math routine routine-name.

result (output)
The result of the cosine routine. The output range for functions of real
variables is:

CEESxCSH—Hyperbolic cosine
CEESxCSH returns the hyperbolic cosine of the parameter by using the equation:
result = cosh(parm1)

| |result [1

CEESxCOS

448 z/OS Language Environment Programming Reference

The following routines are provided for the various data types supported:
CEESSCSH

32-bit single floating-point number
CEESDCSH

64-bit double floating-point number
CEESQCSH

128-bit extended floating-point number
CEESTCSH

32-bit single floating-point complex number
CEESECSH

64-bit double floating-point complex number
CEESRCSH

128-bit extended floating-point complex number

Syntax

►► CEESxCSH (parm1 , fc , result) ►◄

parm1 (input)
The input to the hyperbolic cosine routine. The input range varies, depending
on the function and type of number:

For ... Input range

Functions of real variables: | 1| < 175.366parm

The real part of complex numbers: |Re (1)| < 174.673parm

The imaginary part of complex numbers:
single floating-point complex numbers:

| Im (1)|parm < (2 P)18

The imaginary part of complex numbers:
double floating-point complex numbers:

| Im (1)|parm < (2 P)50

The imaginary part of complex numbers:
extended floating-point complex numbers:

| Im (parm1) | < 2100

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1V0 2 2016 The absolute value of the parameter was
greater than limit in math routine routine-name.

result (output)
The result of the hyperbolic cosine routine. The output range for functions of
real variables varies:

CEESxCSH

Chapter 7. Language Environment math services 449

For ... Output range

Single-precision routines: 1 result

Double-precision routines: = 16
63(1 - 16)

-6

16 (1 - 16)
63 -14

Extended-precision routines:
16 (1 - 16)

63 -28

CEESxCTN—Cotangent
CEESxCTN returns the cotangent of the parameter by using the equation: result =
cot(parm1)

The following routines are provided for the various data types supported:

CEESSCTN
32-bit single floating-point number

CEESDCTN
64-bit double floating-point number

CEESQCTN
128-bit extended floating-point number

Syntax

►► CEESxCTN (parm1 , fc , result) ►◄

parm1 (input)
The input, in radians, into the cotangent routine. The input range varies,
depending on the value of parm1:

If parm1 is a 32-bit single floating-point
number:

| 1|parm < (2)
18

If parm1 is a 64-bit double floating-point
number:

| 1|parm < (2)
50

If parm1 is a 128-bit extended floating-point
number:

| 1| < 2parm
100

If this is an extended floating-point number, this argument cannot approach a
multiple of pi. Single floating-point numbers and double floating-point
numbers cannot approach zero.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

CEESxCSH

450 z/OS Language Environment Programming Reference

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1UI 2 2002 The parameter value was too close to one of
the singularities (plus or minus pi/2, plus or
minus 3pi/2, for the tangent; or plus or minus
pi, plus or minus 2pi, for the cotangent) in
math routine routine-name.

CEE1V1 2 2017 The absolute value of the parameter was
greater than or equal to limit in math routine
routine-name.

result (output)
The result of the cotangent routine. The output range is:

The output range is:

CEESxDIM—Positive difference
CEESxDIM returns the positive difference between two numbers by using one of
the following equations:

If Result

parm1 > parm2 Then, result = parm1 - parm2

parm1 [parm2 Then, result = 0

The following routines are provided for the various data types supported:

CEESIDIM
32-bit binary integer

CEESSDIM
32-bit single floating-point number

CEESDDIM
64-bit double floating-point number

CEESQDIM
128-bit extended floating-point number

|result| [W

63 -6For single-precision routines,

For extended-precision routines,
For double-precision routines,

= 16 (1 -16)
63 -14= 16 (1 -16)

63 -28= 16 (1 -16)

result [W

CEESxCTN

Chapter 7. Language Environment math services 451

Syntax

►► CEESxDIM (parm1 , parm2 , fc , result) ►◄

parm1 (input)
The first input to the positive difference routine. The input range is not
restricted.

parm2 (input)
The second parameter to the positive difference routine. The input range is not
restricted.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

result (output)
The result of the positive difference routine. The output range is the
non-negative numbers.

CEESxDVD—Floating-point complex divide
CEESxDVD performs the mathematical function of floating-point complex divide
by using the equation:

The following routines are provided for the various data types supported:

CEESTDVD
32-bit single floating-point complex number

CEESEDVD
64-bit double floating-point complex number

CEESRDVD
128-bit extended floating-point complex number

63 -6For single-precision routines,

For extended-precision routines,
For double-precision routines,

= 16 (1 -16)
63 -14= 16 (1 -16)

63 -28= 16 (1 -16)

result parm1=

parm2

CEESxDIM

452 z/OS Language Environment Programming Reference

Syntax

►► CEESxDVD (parm1 , parm2 , fc , result) ►◄

parm1 (input)
The first input to the math service. Any representable complex number can be
used as input.

parm2 (input)
The second parameter to the math service. Do not set parm2 to 0.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

result (output)
The result of the floating-point complex divide routine.

CEESxERC—Error function complement
CEESxERC calculates the error function complement by using the equation:

The following routines are provided for the various data types supported:

CEESSERC
32-bit single floating-point number

CEESDERC
64-bit double floating-point number

CEESQERC
128-bit extended floating-point number

Syntax

►► CEESxERC (parm1 , fc , result) ►◄

parm1 (input)
The input to the error function complement routine. The input range is not
restricted.

result = (1-())
2

parm1

e -u2

o
du

P
°

CEESxDVD

Chapter 7. Language Environment math services 453

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

result (output)
The result of the error function complement routine. The output range is: 0 <
result < 2.

CEESxERF—Error function
CEESxERF calculates the error function by using the equation:

The following routines are provided for the various data types supported:

CEESSERF
32-bit single floating-point number

CEESDERF
64-bit double floating-point number

CEESQERF
128-bit extended floating-point number

Syntax

►► CEESxERF (parm1 , fc , result) ►◄

parm1 (input)
The input to the error function. The input range is not restricted.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

result =
2

parm1

e -u2

o
du

P
°

CEESxERC

454 z/OS Language Environment Programming Reference

result (output)
The result of the error function. The output range is:

CEESxEXP—Exponential base e
CEESxEXP calculates the mathematical function of e raised to a power by using the
equation:

The following routines are provided for the various data types supported:

CEESSEXP
32-bit single floating-point number

CEESDEXP
64-bit double floating-point number

CEESQEXP
128-bit extended floating-point number

CEESTEXP
32-bit single floating-point complex number

CEESEEXP
64-bit double floating-point complex number

CEESREXP
128-bit extended floating-point complex number

Syntax

►► CEESxEXP (parm1 , fc , result) ►◄

parm1 (input)
The input to the exponential base e routine. The input range varies, depending
on the type of function and number:

For Input range

Functions of real variables: |parm1| 174.673[

The real part of complex numbers: |Re (1)| < 174.673parm

The imaginary part: single floating-point
complex numbers:

|Im (1)|parm < 2
18

The imaginary part: double floating-point
complex numbers:

|Im (1)|parm < 2
50

| |result [1

result = e
parm1

CEESxERF

Chapter 7. Language Environment math services 455

For Input range

The imaginary part: extended floating-point
complex numbers:

|Im (1)| < 2parm 100

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1UP 2 2009 The value of the real part of the parameter
was greater than limit in math routine
routine-name.

CEE1UR 2 2011 The parameter was greater than limit in math
routine routine-name.

CEE1UT 2 2013 The absolute value of the imaginary part of
the parameter was greater than limit in math
routine routine-name.

CEE1UV 2 2015 The absolute value of the imaginary part of
the parameter was greater than or equal to
limit in math routine routine-name.

CEE1V9 1 2025 An underflow occurred in math routine
routine-name.

result (output)
The result of the exponential base e routine. The output range for functions of
real variables is:

CEESxGMA—Gamma function
CEESxGMA performs the mathematical gamma function by using the equation:

The following routines are provided for the various data types supported:

CEESSGMA
32-bit single floating-point number

0 < result

63 -6For single-precision routines,

For extended-precision routines,
For double-precision routines,

= 16 (1 -16)
63 -14= 16 (1 -16)

63 -28= 16 (1 -16)

result u du= -1eOO

0

parm1 -U

CEESxEXP

456 z/OS Language Environment Programming Reference

CEESDGMA
64-bit double floating-point number

Syntax

►► CEESxGMA (parm1 , fc , result) ►◄

parm1 (input)
The input to the gamma function. The input range is:

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1UL 2 2005 The value of the parameter was outside the
valid range range in math routine routine-name.

result (output)
The result of the gamma function. The output range varies, depending on the
type of routine:

For Output range

Single-precision routines: 0.88560 [result [W

= 16 (1-16
6
)

63
W

Double-precision routines:
= 16

63
(1-16

-14
)W

CEESxIMG—Imaginary part of complex
CEESxIMG returns the imaginary part of a complex number using the equation
result = v, where parm1 = u + vi.

The following routines are provided for the various data types supported:
CEESTIMG

32-bit single floating-point complex number
CEESEIMG

64-bit double floating-point complex number
CEESRIMG

128-bit extended floating-point complex number

2 < 1 < 57.5744parm-252

CEESxGMA

Chapter 7. Language Environment math services 457

Syntax

►► CEESxIMG (parm1 , fc , result) ►◄

parm1 (input)
The input to the math service. Any complex number can be used as input.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

result (output)
The result of the math service is:

CEESxINT—Truncation
CEESxINT returns the truncated value of the parameter by using the equation,
where m is the greatest integer satisfying the relationship:

The result is expressed as a floating-point number:

The following routines are provided for the various data types supported:

CEESSINT
32-bit single floating-point number

CEESDINT
64-bit double floating-point number

| |result [W

63 -6For single-precision routines,

For extended-precision routines,
For double-precision routines,

= 16 (1 -16)
63 -14= 16 (1 -16)

63 -28= 16 (1 -16)

result = (sign of parm1) n, where n = |parm1|

| 1| = | |parm m

| |m | |parm1[

CEESxIMG

458 z/OS Language Environment Programming Reference

CEESQINT
128-bit extended floating-point number

Syntax

►► CEESxINT (parm1 , fc , result) ►◄

parm1 (input)
The input to the truncation routine. The input range is not restricted.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

result (output)
The result of the truncation routine. The output range is:

CEESxLGM—Log gamma
CEESxLGM performs the mathematical function of log gamma by using either of
the following equations:

First equation Alternate equation

result parm= log (1)
e

G

result u du= log -1e
OO

0

parm1 -U
e

The following routines are provided for the various data types supported:

CEESSLGM
32-bit single floating-point number

CEESDLGM
64-bit double floating-point number

|result| [W

63 -6For single-precision routines,

For extended-precision routines,
For double-precision routines,

= 16 (1 -16)
63 -14= 16 (1 -16)

63 -28= 16 (1 -16)

CEESxINT

Chapter 7. Language Environment math services 459

Syntax

►► CEESxLGM (parm1 , fc , result) ►◄

parm1 (input)
The input to the log gamma routine. The input range is:

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1UL 2 2005 The value of the parameter was outside the
valid range range in math routine routine-name.

result (output)
The result of the log gamma routine. The output range varies:

For Output range

Single-precision routines: -0.12149 [result [W

Double-precision routines:
= 16 (1-16

6
)

63
W

= 16
63

(1-16
-14

)W

CEESxLG1—Logarithm base 10
CEESxLG1 returns the logarithm base 10 of the input parameter by using the
equation:

The following routines are provided for the various data types supported:

CEESSLG1
32-bit single floating-point number

CEESDLG1
64-bit double floating-point number

CEESQLG1
128-bit extended floating-point number

parm1 < 4.2913 10
73

result = parmlog 110

CEESxLGM

460 z/OS Language Environment Programming Reference

Syntax

►► CEESxLG1 (parm1 , fc , result) ►◄

parm1 (input)
The input to the log base 10 routine. The input range is: parm1 > 0.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1US 2 2012 The parameter was less than or equal to limit
in math routine routine-name.

result (output)
The result of the log base 10 routine. The output range is: result is greater than
or equal to -78.268 and is less than or equal to 75.859.

CEESxLG2—Logarithm base 2
CEESxLG2 performs the mathematical function logarithm base 2 by using the
equation:

The following routines are provided for the various data types supported:

CEESSLG2
32-bit single floating-point number

CEESDLG2
64-bit double floating-point number

CEESQLG2
128-bit extended floating-point number

Syntax

►► CEESxLG2 (parm1 , fc , result) ►◄

parm1 (input)
The input to the log base 2 routine. The input range is: parm1 > 0.

result = parmlog 1
2

CEESxLG1

Chapter 7. Language Environment math services 461

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1US 2 2012 The parameter was less than or equal to limit
in math routine routine-name.

result (output)
The result of the log base 2 routine. The output range is: result is greater than
or equal to -260 and is less than or equal to 252.

CEESxLOG—Logarithm base e
CEESxLOG performs the mathematical function logarithm base e by using the
equation:

The following routines are provided for the various data types supported:

CEESSLOG
32-bit single floating-point number

CEESDLOG
64-bit double floating-point number

CEESQLOG
128-bit extended floating-point number

CEESTLOG
32-bit single floating-point complex number

CEESELOG
64-bit double floating-point complex number

CEESRLOG
128-bit extended floating-point complex number

Syntax

►► CEESxLOG (parm1 , fc , result) ►◄

parm1 (input)
The input to the log base e routine. The input range varies:

For Input range

Real numbers: parm1 > 0

result = parm (result = parm)log 1 In 1e

CEESxLG2

462 z/OS Language Environment Programming Reference

For Input range

Complex numbers: parm1 is not equal to 0

G

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1US 2 2012 The parameter was less than or equal to limit
in math routine routine-name.

CEE1V2 2 2018 The real and imaginary parts of the parameter
were equal to limit in math routine
routine-name.

result (output)
The result of the log base e routine. The output range for functions of real
variables is: result is greater than or equal to -180.218 and is less than or equal
to ≤ 174.673.

CEESxMLT—Floating-point complex multiply
CEESxMLT performs the mathematical function floating-point complex multiply by
using the equation:

The following routines are provided for the various data types supported:

CEESTMLT
32-bit single floating-point complex number

CEESEMLT
64-bit double floating-point complex number

CEESRMLT
128-bit extended floating-point complex number

Syntax

►► CEESxMLT (parm1 , parm2 , fc , result) ►◄

parm1 (input)
The first input to the math service. Any representable complex number can be
used as input.

result = parm parm1 2

CEESxLOG

Chapter 7. Language Environment math services 463

parm2 (input)
The second parameter to the math service. Any representable complex number
can be used as input.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

result (output)
The result of the floating-point complex multiply routine.

CEESxMOD—Modular arithmetic
CEESxMOD performs the mathematical function modular arithmetic by using the
equation:

The expression parm1(modulo parm2) is defined as follows, with the brackets
indicating an integer part:

That is, the largest integer whose magnitude does not exceed the magnitude of
parm1/parm2 is used.

The sign of the integer is the same as the sign of

The following routines are provided for the various data types supported:

CEESIMOD
32-bit binary integer

CEESSMOD
32-bit single floating-point number

CEESDMOD
64-bit double floating-point number

CEESQMOD
128-bit extended floating-point number

result = parm parm1(modulo 2)

parm parm parm parm1 - [(1/ 2) 2]

parm parm1 2

CEESxMLT

464 z/OS Language Environment Programming Reference

Syntax

►► CEESxMOD (parm1 , parm2 , fc , result) ►◄

parm1 (input)
The first parameter to the modular arithmetic routine. The input range is not
restricted.

parm2 (input)
The second parameter to the modular arithmetic routine. The input range is:
parm2 is not equal to 0.

If parm2 = 0, the modulus routine is undefined. In addition, a divide exception
is recognized and an interrupt occurs.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

result (output)
The result of the mod routine. The output range is:

CEESxNIN—Nearest integer
CEESxNIN performs the mathematical function nearest integer by using the
equation:

The following routines are provided for the various data types supported:

CEESSNIN
32-bit single floating-point number

|result| [W

63 -6For single-precision routines,

For extended-precision routines,
For double-precision routines,

= 16 (1 -16)
63 -14= 16 (1 -16)

63 -28= 16 (1 -16)

result parm= (sign of 1) n

If 1 m 0, then = [| 1 + .5|]
If 1 < 0, then = [| 1 - .5|]

parm n parm

parm n parm

n m m m parm

m parm

= | |, where is the greatest integer satisfying the relationship | | [| 1 + .5|,
or | | [| 1 - .5|, respectively.

CEESxMOD

Chapter 7. Language Environment math services 465

CEESDNIN
64-bit double floating-point number

Syntax

►► CEESxNIN (parm1 , fc , result) ►◄

parm1 (input)
The input to the nearest integer routine. The input range is not restricted.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

result (output)
The result of the nearest integer routine. The output parameter is an
unrestricted type I, a 32-bit binary integer.

CEESxNWN—Nearest whole number
CEESxNWN performs the mathematical function nearest whole number by using
the equation:

and the resulting v is expressed as a floating-point number.

The following routines are provided for the various data types supported:

CEESSNWN
32-bit single floating-point number

CEESDNWN
64-bit double floating-point number

result = (sign of parm1) v

If parm1 m 0, then v = [| 1parm +.5|]. If parm1 <0, then v = [| 1parm - .5|].

v = | |,m where m is the greatest integer satisfying the relationship | |m [| 1parm + .5|,
or | |m [| 1parm - .5|, respectively.

CEESxNIN

466 z/OS Language Environment Programming Reference

Syntax

►► CEESxNWN (parm1 , fc , result) ►◄

parm1 (input)
The input to the nearest whole number routine. The input range is not
restricted.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

result (output)
The result of the nearest whole number routine. The output range varies:

For Output range

Single-precision routines: |result| [W

= 16 (1-16
6
)

63
W

Double-precision routines:
= 16

63
(1-16

-14
)W

CEESxSGN—Transfer of sign
CEESxSGN performs the mathematical function transfer of sign by using either of
the two equations:

The following routines are provided for the various data types supported:

CEESISGN
32-bit binary integer

CEESSSGN
32-bit single floating-point number

CEESDSGN
64-bit double floating-point number

CEESQSGN
128-bit extended floating-point number

result = | 1|parm if parm2 m 0 or result = -| 1|parm if parm2 < 0.

CEESxNWN

Chapter 7. Language Environment math services 467

Syntax

►► CEESxSGN (parm1 , parm2 , fc , result) ►◄

parm1 (input)
The first input to the transfer of sign routine. The input range is not restricted.

parm2 (input)
The second parameter to the transfer of sign routine. The input range is not
restricted.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

result (output)
The result of the transfer of sign routine. The output range is:

CEESxSIN—Sine
CEESxSIN returns the sine of the parameter by using the equation: result = sin
(parm1)

The following routines are provided for the various data types supported:

CEESSSIN
32-bit single floating-point number

CEESDSIN
64-bit double floating-point number

CEESQSIN
128-bit extended floating-point number

CEESTSIN
32-bit single floating-point complex number

CEESESIN
64-bit double floating-point complex number

CEESRSIN
128-bit extended floating-point complex number

|result| [W

63 -6For single-precision routines,

For extended-precision routines,
For double-precision routines,

= 16 (1 -16)
63 -14= 16 (1 -16)

63 -28= 16 (1 -16)

CEESxSGN

468 z/OS Language Environment Programming Reference

Syntax

►► CEESxSIN (parm1 , fc , result) ►◄

parm1 (input)
The input, in radians, to the sine routine. For real functions, the input range
varies, depending on the value of parm1:

If Input range

parm1 is a 32-bit single floating-point
number:

P
18|parm1| < (2)

parm1 is a 64-bit double floating-point
number:

| 1| < (2)parm P
50

parm1 is an extended floating-point number: | 1| < 2parm
100

For complex functions, the input range differs for the imaginary and real parts
of the input.

Part Input range

For the imaginary part: | Im (1)| < 174.673parm

For the real part: single floating-point
complex numbers

| Re (1)|parm < (2 P)18

For the real part: double floating-point
complex numbers

| Re (1)| < (2)parm P
50

For the real part: extended floating-point
complex numbers

| Re (1)| < 2parm
100

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1UT 2 2013 The absolute value of the imaginary part of
the parameter was greater than limit in math
routine routine-name.

CEE1V1 2 2017 The absolute value of the parameter was
greater than or equal to limit in math routine
routine-name.

CEE1V3 2 2019 The absolute value of the real part of the
parameter was greater than or equal to limit
in math routine routine-name.

CEESxSIN

Chapter 7. Language Environment math services 469

result (output)
The result of the sine routine. The output range for functions of real variables
is: result is greater than or equal to -1 and is less than or equal to 1.

CEESxSNH—Hyperbolic sine
CEESxSNH performs the mathematical function hyperbolic sine by using the
equation: result = sinh (parm1)

The following routines are provided for the various data types supported:

CEESSSNH
32-bit single floating-point number

CEESDSNH
64-bit double floating-point number

CEESQSNH
128-bit extended floating-point number

CEESTSNH
32-bit single floating-point complex number

CEESESNH
64-bit double floating-point complex number

CEESRSNH
128-bit extended floating-point complex number

Syntax

►► CEESxSNH (parm1 , fc , result) ►◄

parm1 (input)
The input to the hyperbolic sine routine. The input range varies.

For Input range

Input range for reals: | 1|parm < 175.366

For complex functions, the input range differs for the imaginary and real parts
of the input. The input range of the imaginary part also differs depending on
the precision of parm1.

For Input range

Complex functions: real part |Re(1)|parm < 174.673

Imaginary part: single floating-point
complex numbers

|Im(1)|parm < 2 P
18

Imaginary part: double floating-point
complex numbers

|Im(1)|parm < 2 P
50

Imaginary part: extended floating-point
complex numbers:

|Im(1)|parm < 2
100

CEESxSIN

470 z/OS Language Environment Programming Reference

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1V0 2 2016 The absolute value of the parameter was
greater than limit in math routine
routine-name.

result (output)
The result of the hyperbolic sine routine. The output range for functions of real
variables is:

CEESxSQT—Square root
CEESxSQT returns the square root of parm1 by using the equation:

The following routines are provided for the various data types supported:

CEESSSQT
32-bit single floating-point number

CEESDSQT
64-bit double floating-point number

CEESQSQT
128-bit extended floating-point number

CEESTSQT
32-bit single floating-point complex number

CEESESQT
64-bit double floating-point complex number

CEESRSQT
128-bit extended floating-point complex number

Syntax

►► CEESxSQT (parm1 , fc , result) ►◄

|result| [W

result = parm1✓
_

CEESxSNH

Chapter 7. Language Environment math services 471

parm1 (input)
The input to the square root routine. The input range for real number functions
is: parm1 is greater than, or equal to, 0.

For complex numbers, the input range is not restricted.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1UQ 2 2010 The parameter was less than limit in math
routine routine-name.

result (output)
The result of the square root routine. The output range for functions of real
variables is:

CEESxTAN—Tangent
CEESxTAN returns the tangent of the parameter by using the equation: result = tan
(parm1)

The following routines are provided for the various data types supported:

CEESSTAN
32-bit single floating-point number

CEESDTAN
64-bit double floating-point number

CEESQTAN
128-bit extended floating-point number

CEESTTAN
32-bit single floating-point complex number

CEESETAN
64-bit double floating-point complex number

CEESRTAN
128-bit extended floating-point complex number

0 [result [W
1/2

63 -6For single-precision routines,

For extended-precision routines,
For double-precision routines,

= 16 (1 -16)
63 -14= 16 (1 -16)

63 -28= 16 (1 -16)

CEESxSQT

472 z/OS Language Environment Programming Reference

Syntax

►► CEESxTAN (parm1 , fc , result) ►◄

parm1 (input)
The input, in radians, to the tangent routine. The input range varies,
depending on the value of parm1:

For Input range

parm1 is a single floating-point number:
| 1|parm < 2 P

18

parm1 is a double floating-point number:
| 1| < 2parm P

50

parm1 is an extended floating-point number: <

| 1| < 2parm
100

Also, for extended and as complex functions, this argument cannot approach
odd multiples of:

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1UI 2 2002 The parameter value was too close to one of
the singularities (plus or minus pi/2, plus or
minus 3pi/2, for the tangent; or plus or minus
pi, plus or minus 2pi, for the cotangent) in
math routine routine-name.

CEE1V1 2 2017 The absolute value of the parameter was
greater than or equal to limit in math routine
routine-name.

CEE1V9 1 2025 An underflow occurred in math routine
routine-name.

result (output)
The result of the tangent routine. The output range for functions of real
variables is:

P/2

CEESxTAN

Chapter 7. Language Environment math services 473

CEESxTNH—Hyperbolic tangent
CEESxTNH performs the mathematical function hyperbolic tangent by using the
equation: result = tanh (parm1)

The following routines are provided for the various data types supported:

CEESSTNH
32-bit single floating-point number

CEESDTNH
64-bit double floating-point number

CEESQTNH
128-bit extended floating-point number

CEESTTNH
32-bit single floating-point complex number

CEESETNH
64-bit double floating-point complex number

CEESRTNH
128-bit extended floating-point complex number

Syntax

►► CEESxTNH (parm1 , fc , result) ►◄

parm1 (input)
The input to the hyperbolic tangent routine. The input range is not restricted
for real functions. For complex functions, parm1 must not approach odd
multiples of:

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

|result| [W

P/2 i, where i = -1✓

CEESxTAN

474 z/OS Language Environment Programming Reference

result (output)
The result of the hyperbolic tangent routine. The output range for functions of
real variables is:

CEESxXPx—Exponentiation
CEESxXPx performs the mathematical function exponentiation by using the
equation:

The following routines are provided for the various data types supported:

CEESIXPI
32-bit binary integer raised to a 32-bit binary integer

CEESSXPI
32-bit single floating-point number raised to a 32-bit binary integer

CEESDXPI
64-bit double floating-point number raised to a 32-bit binary integer

CEESQXPI
128-bit extended floating-point number raised to a 32-bit binary integer

CEESTXPI
32-bit single floating-point complex number raised to a 32-bit binary
integer

CEESEXPI
64-bit double floating-point complex number raised to a 32-bit binary
integer

CEESRXPI
128-bit extended floating-point complex number raised to a 32-bit binary
integer

CEESSXPS
32-bit single floating-pointing point raised to a 32-bit single floating-point

CEESDXPD
64-bit double floating-point raised to a 64-bit double floating-point

CEESQXPQ
128-bit extended floating-point raised to a 128-bit extended floating-point

CEESTXPT
32-bit single floating-point complex raised to a 32-bit single floating-point
complex

CEESEXPE
64-bit double floating-point complex raised to a 64-bit double
floating-point complex

CEESRXPR
128-bit extended floating-point complex raised to a 128-bit extended
floating-point complex

| |result < 1

result = parm1
parm2

CEESxTNH

Chapter 7. Language Environment math services 475

Syntax

►► CEESxXPx (parm1 , parm2 , fc , result) ►◄

parm1 (input)
The input for the base of the exponentiation routine. The input range varies.

For functions of real variables:
if parm1 = 0, then > 0.parm2

If parm1 is a 32-bit number and parm1 < 0: |parm1| [(16 - 1)
6

and parm2 = 'awholenumber'

If parm1 is a 64-bit number and parm1 < 0: |parm1| [(16 -1)
14

and parm2 = 'awholenumber'

If parm1 is a 128-bit number and parm1 < 0:
|Parm1| [(16 - 1)

28

and parm2 = 'awholenumber'

The input range for functions of complex variables: If Re(parm1) = 0 and
Im(parm1) = 0, then Re(parm2) must be positive.

parm2 (input)
The input for the power of the exponentiation routine. The type is determined
by the eighth character of the service name.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service. If you choose to omit this parameter, refer to “Invoking callable
services” on page 116 for the appropriate syntax to indicate that the feedback
code was omitted.

The following symbolic conditions can result from this service:

Code Severity Message number Message text

CEE000 0 — The service completed successfully.

CEE1UJ 2 2003 For an exponentiation operation (I**J) where I
and J are integers, I was equal to zero and J
was less than or equal to zero in math routine
routine-name.

CEE1UK 2 2004 For an exponentiation operation (R**I) where
R is real and I is an integer, R was equal to
zero and I was less than or equal to zero in
math routine routine-name.

CEE1UL 2 2005 The value of the parameter was outside the
valid range range in math routine routine-name.

CEE1UM 2 2006 For an exponentiation operation (R**S) where
R and S are real values, R was equal to zero
and S was less than or equal to zero in math
routine routine-name.

CEE1UN 2 2007 The exponent exceeded limit in math routine
routine-name.

CEESxXPx

476 z/OS Language Environment Programming Reference

Code Severity Message number Message text

CEE1UO 2 2008 For an exponentiation operation (Z**P) where
the complex base Z equals zero, the real part
of the complex exponent P, or the integer
exponent P was less than or equal to zero in
math routine routine-name.

CEE1V4 2 2020 For an exponentiation operation (R**S) where
R and S are real values, either R is equal to
zero and S is negative, or R is negative and S
is not an integer whose absolute value is less
than or equal to limit in math routine
routine-name.

CEE1V5 2 2021 For an exponentiation operation (X**Y), the
parameter combination of Y*log2(X) generated
a number greater than or equal to limit in
math routine routine-name.

CEE1V8 2 2024 An overflow occurred in math operation
(X**Y).

CEE1V9 1 2025 An underflow occurred in math routine
routine-name. The output value from the math
routine is undefined.

CEE1VF 2 2031 The value of the argument was a non-
positive whole number in math routine
(X**Y).

result (output)
The result of the exponentiation routine. The output range for functions of real
variables is:

Examples of math services
The following sections contain examples of calls to various math services made
from supported languages.

C/C++ math service examples
Table 29 on page 478 shows code examples of calling various math services from
C/C++.

|result| [W

CEESxXPx

Chapter 7. Language Environment math services 477

Table 29. C/C++ examples

Function called Code example

Log base 10 and
modular
arithmetic
(CEESDGL1 and
CEESIMOD)

#include <leawi.h>
#include <string.h>
#include <stdio.h>

int main (void) {

_FLOAT8 f1,result;
_INT4 int1, int2, intr;

_FEEDBACK fc;
#define SUCCESS "\0\0\0\0"

f1 = 1000.0;

CEESDLG1(&f1,&fc,&result);

if (memcmp(&fc,SUCCESS,4) != 0) {
printf("CEESDLG1 failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}

printf("%f log base 10 is %f\n",f1,result);

int1 = 39;
int2 = 7;
CEESIMOD(&int1,&int2,&fc,&intr);

if (memcmp(&fc,SUCCESS,4) != 0) {
printf("CEESIMOD failed with message number %d\n",

fc.tok_msgno);
exit(2999);

}

printf("%d modulo %d is %d\n",int1,int2,intr);
}

COBOL math service examples
Table 30 shows code examples of calling various math services from COBOL.

Table 30. COBOL examples

Function called Code example

Log base e
(CEESSLOG)

77 ARG1RS COMP-1.
77 FBCODE PIC X(12).
77 RESLTRS COMP-1.

CALL "CEESSLOG" USING ARG1RS , FBCODE ,
RESLTRS.

Log base 10
(CEESDLG1)

77 ARG1RL COMP-2.
77 FBCODE PIC X(12).
77 RESLTRL COMP-2.

CALL "CEESDLG1" USING ARG1RL , FBCODE ,
RESLTRL.

Examples

478 z/OS Language Environment Programming Reference

Table 30. COBOL examples (continued)

Function called Code example

Exponentiation
(CEESIXPI)

77 ARG1IS PIC S9(9) COMP.
77 ARG2IS PIC S9(9) COMP.
77 FBCODE PIC X(12).
77 RESLTIS PIC S9(9) COMP.

CALL "CEESIXPI" USING ARG1IS , ARG2IS ,
FBCODE , RESLTIS.

Exponentiation
(CEESSXPI)

77 ARG1RS COMP-1.
77 ARG2IS PIC S9(9) COMP.
77 FBCODE PIC X(12).
77 RESLTRS COMP-1.

CALL "CEESSXPI" USING ARG1RS , ARG2IS ,
FBCODE , RESLTRS.

Arctangent2
(CEESSAT2)

77 ARG1RS COMP-1.
77 ARG2RS COMP-1.
77 FBCODE PIC X(12).
77 RESLTRS COMP-1.

CALL "CEESSAT2" USING ARG1RS , ARG2RS ,
FBCODE , RESLTRS.

PL/I math service examples
Table 31 shows code examples of calling various math services from PL/I.

Table 31. PL/I examples

Function called Code example

Modular
arithmetic and log
base e
(CEESIMOD and
CEESSLOG)

PLIMATH: PROC OPTIONS(MAIN);

DCL CEESSLOG ENTRY OPTIONS(ASM) EXTERNAL;
DCL CEESIMOD ENTRY OPTIONS(ASM) EXTERNAL;

DCL ARG1 RESULT REAL FLOAT DEC (6);
DCL ARGM1 ARGM2 RES2 FLOAT BINARY(21)
DCL FC CHARACTER (12);

/* Call log base e routine, which has */
/* only one input parameter */
CALL CEESSLOG (ARG1, FC, RESULT)

IF (FC = ’000000000000000000000000’X)
THEN DO;
PUT SKIP LIST

(’Error occurred in call to CEESSLOG.’);
ELSE;

/* Call modular arithmetic routine, */
/* which has two input parameters */
CALL CEESIMOD (ARGM1, ARGM2, FC, RES2);

IF (FC = ’000000000000000000000000’X)
THEN DO;
PUT SKIP LIST

(’Error occurred in call to CEESIMOD.’);
ELSE;

END;

Examples

Chapter 7. Language Environment math services 479

Table 31. PL/I examples (continued)

Function called Code example

Double-precision
complex tangent
(CEESETAN)

TRYETAN: PROCEDURE OPTIONS(MAIN);

DECLARE FC CHARACTER(12);
DECLARE PARM1 COMPLEX FLOAT BINARY(53);
DECLARE RESULT COMPLEX FLOAT BINARY(53);

DECLARE CEESETAN ENTRY(COMPLEX FLOAT BINARY(53),
*, COMPLEX FLOAT BINARY(53))
OPTIONS(ASSEMBLER) EXTERNAL;

PARM1 = COMPLEX(7,1.1);
CALL CEESETAN (PARM1, FC, RESULT);
IF (FC ¬= ’000000000000000000000000’X) THEN

PUT SKIP LIST(’Error in call to CEESETAN.’);
ELSE

PUT SKIP LIST(’Result is ’ || RESULT);
END TRYETAN;

Examples

480 z/OS Language Environment Programming Reference

Part 3. Appendixes

© Copyright IBM Corp. 1991, 2015 481

482 z/OS Language Environment Programming Reference

Appendix A. IBM-supplied country code defaults

Table 32 contains the currency symbols and default picture strings for the
country_code parameters of the COUNTRY runtime option and the national
language support callable services. See “COUNTRY” on page 24 and the services
listed in Table 17 on page 114 for more information.

Note: In the table, some currency symbols are shown as hexadecimal strings. How
these are displayed depends on the codeset in use by the terminal device. For
example, when using code page 01140, X'9F404040' is displayed as the Euro symbol
followed by three blanks.

Table 32. Defaults currency and picture strings based on COUNTRY setting
Country/
region

Country
code

Decimal
separator

Thousand
separator

Currency
symbol

Int.
currency
symbol

Time picture
string

Date picture
string

Date and time picture
string

Afghanistan AF , . X'9F404040' AFN HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Albania AL , . Lek ALL HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Algeria DZ , . DZD HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Andorra AD , . X'9F404040' EUR HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Angola AO , . X'9F404040' AOA HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Antigua and
Barbuda

AG , . X'9F404040' XCD HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Argentina AR , . A ARS HH.MI.SS DD/MM/YY DD/MM/YY HH.MI.SS

Armenia AM ` : AMD dr: HH:MI:SS' MM/DD/YY Mmmmmmmmmz DD,
YYYY HH:MI:SS

Australia AU . , $ AUD HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

Austria AT , . X'9F404040' EUR HH:MI:SS,999 YYYY-MM-DD YYYY-MM-DD
HH:MI:SS,999

Azerbaijan AZ . , AZN man HH:MI:SS MM/DD/YY ZD Mmmmmmmmz , YY
HH.MI.SS'

Bahamas BS , . X'9F404040' BSD HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Bahrain BH , . BHD HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Bangladesh BD , . X'9F404040' BDT HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Barbados BB , . X'9F404040' BBD HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Belgium BE , . X'9F404040' EUR HH:MI:SS,999 DD/MM/YY DD/MM/YY HH:MI:SS,999

Benin BJ , . X'9F404040' XOF HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Bermuda BM , . X'9F404040' BMD HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Bolivia BO , . BS BOB HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

Bosnia/
Herzegovina

BA , . Din BAM HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Botswana BW , . X'9F404040' BWP HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Brazil BR , . NCz$ BRL HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

Brunei
Darussalam

BN , . X'9F404040' BND HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Bulgaria BG , . Lv BGN HH:MI:SS YYYY-RRRZ-DD YYYY-RRRZ-DD HH:MI:SS

Burkina Faso
(Upper
Volta)

BF , . X'9F404040' XOF HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Burma BU , . X'9F404040' MMK HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Canada CA . , $ CAD HH:MI:SS.99 YY-MM-DD YY-MM-DD HH:MI:SS.99

Cayman
Islands

KY , . X'9F404040' KYD HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Chad TD , . X'9F404040' XAF HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

© Copyright IBM Corp. 1991, 2015 483

Table 32. Defaults currency and picture strings based on COUNTRY setting (continued)
Country/
region

Country
code

Decimal
separator

Thousand
separator

Currency
symbol

Int.
currency
symbol

Time picture
string

Date picture
string

Date and time picture
string

Chile CL , . $ CLP HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

Colombia CO , . $ COP ZH:MI:SS AP DD/MM/YY DD/MM/YY ZH:MI:SS AP

Costa Rica CR , . c/ CRC ZH:MI:SS AP DD/MM/YY DD/MM/YY ZH:MI:SS AP

Croatia HR , . Din HRK HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Cuba CU , . X'9F404040' CUP HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Cyprus CY , . X'9F404040' CYP HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Czech
Republic

CZ , . X'D247A240' CZK HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Denmark DK , . kr DKK HH.MI.SS,99 DD-MM-YY DD-MM-YY HH.MI.SS,99

Dominican
Republic

DO . , $ DOP ZH:MI:SS AP DD/MM/YY DD/MM/YY ZH:MI:SS AP

Ecuador EC , . $ USD HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

Egypt EG , . EGP HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

El Salvador SV . , c/. SVC HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

Estonia EE , Kr EEK HH:MI:SS DD-MM-YYYY DD-MM-YYYY HH:MI:SS

Ethiopia ET , . X'9F404040' ETB HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Finland FI , X'5A404040' EUR HH.MI.SS,999 DD.MM.YYYY DD.MM.YYYY HH.MI.SS,99

France FR , X'9F404040' EUR HH:MI:SS,9 DD.MM.YYYY DD.MM.YYYY HH:MI:SS,9

Gabon GA , . X'9F404040' XAF HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Gambia GM , . X'9F404040' GMD HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Georgia,
Republic of

GE : , GEL GEL HH:MI:SS YYYY-MM-DD YYYY Mmz ZD HH:MI:SS

Germany DE , . X'9F404040' EUR HH:MI:SS DD.MM.YYYY DD.MM.YYYY HH:MI:SS

Ghana GH , . X'9F404040' GHC HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Greece GR , . X'FC404040' EUR HH:MI:SS.999 DD/MM/YY DD/MM/YY HH:MI:SS.999

Guatemala GT . , Q GTQ HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

Guinea-
Bissau

GW , . X'9F404040' XOF HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Guyana GY , . X'9F404040' GYD HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Haiti HT , . X'9F404040' HTG HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Honduras HN . , L. HNL ZH:MI:SS AP DD/MM/YY DD/MM/YY ZH:MI:SS AP

China (Hong
Kong S.A.R.)

HK , . X'9F404040' HKD HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Hungary HU , FT HUF HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Iceland IS , . kr ISK HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

India IN , . X'9F404040' INR HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Indonesia ID , . X'9F404040' IDR HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Iran IR , . IRR HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Iraq IQ , . IQD HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Ireland IE , , X'9F404040' EUR HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

Israel IL . , NIS ILS HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

Italy IT , . X'9F404040'. EUR HH.MI.SS,999 DD/MM/YY DD/MM/YY HH.MI.SS,999

Jamaica JM , . X'9F404040' JMD HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Japan JP . , X'5B404040' JPY HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Jordan JO , . JOD HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Kenya KE , . X'9F404040' KES HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Korea,
Republic of

KR . , X'E0404040' KRW HH:MI:SS YYYY.MM.DD YYYY.MM.DD HH:MI:SS

Kuwait KW , . KWD HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Latvia LV , Ls LVL HH:MI:SS YYYY.DD.RRRZ YYYY.DD.RRRZ HH:MI:SS

Lebanon LB , . LBP HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

484 z/OS Language Environment Programming Reference

Table 32. Defaults currency and picture strings based on COUNTRY setting (continued)
Country/
region

Country
code

Decimal
separator

Thousand
separator

Currency
symbol

Int.
currency
symbol

Time picture
string

Date picture
string

Date and time picture
string

Lesotho LS , . X'9F404040' ZAR HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Liberia LR , . X'9F404040' LRD HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Libya LY , . LYD HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Liecht-
enstein

LI X'X'9F404040'
'

CHF HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Lithuania LT , . Lt LTL HH:MI:SS YYYY.MM.DD YYYY.MM.DD HH:MI:SS

Luxembourg LU , . X'9F404040' EUR HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

China
(Macau
S.A.R.)

MO , . X'9F404040' MOP HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Macedonia,
Former
Yugoslav
Republic of

MK , . Den MKD HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Madagascar MG , . X'9F404040' MGA HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Malawi MW , . X'9F404040' MWK HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Malaysia MY , . X'9F404040' MYR HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Malta MT , . X'9F404040'' EUR HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Mali ML , . X'9F404040' XOF HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Mauritania MR , . X'9F404040' MRO HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Mauritius MU , . X'9F404040' MUR HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Mexico MX . , $ MXN ZH:MI:SS AP DD/MM/YY DD/MM/YY ZH:MI:SS AP

Monaco MC , . X'9F404040' EUR HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Morocco MA , . MAD HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Mozam-
bique

MZ , . X'9F404040' MZN HH:MI:SS YYYY-MM-DD
HH:MI:SS

Namibia NA , . X'9F404040' ZAR HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Netherlands NL , . X'9F404040' EUR HH:MI:SS DD-MM-YY DD-MM-YY HH:MI:SS

Netherlands
Antilles

AN , . X'9F404040' ANG HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

New
Caledonia

NC , . X'9F404040' XPF HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

New
Zealand

NZ . , $ NZD HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

Nicaragua NI . , X'9F404040' NIO HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

Niger NE , . X'9F404040' XOF HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Nigeria NG , . X'9F404040' NGN HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Norway NO , . kr NOK HH:MI:SS,999 DD.MM.YY DD.MM.YY HH:MI:SS,999

Oman OM , . OMR HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Pakistan PK , . PKR HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Panama PA . , B/ PAB ZH:MI:SS AP DD/MM/YY DD/MM/YY ZH:MI:SS AP

Papua New
Guinea

PG , . X'9F404040' PGK HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Paraguay PY , . Gs. PYG HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

People's
Republic of
China

CN . , X'5B404040' CNY HH:MI:SS YYYY.MM.DD YYYY.MM.DD HH:MI:SS

Peru PE . , I/. PEN HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

Philippines PH , . X'9F404040' PHP HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Poland PL , . X'E99A4040' PLN HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Portugal PT , . X'9F404040'. EUR HH:MI:SS DD-MM-YYYY DD-MM-YYYY HH:MI:SS

Puerto Rico PR . , $ USD ZH:MI:SS AP DD/MM/YY DD/MM/YY ZH:MI:SS AP

Qatar QA , . QAR HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Appendix A. IBM-supplied country code defaults 485

Table 32. Defaults currency and picture strings based on COUNTRY setting (continued)
Country/
region

Country
code

Decimal
separator

Thousand
separator

Currency
symbol

Int.
currency
symbol

Time picture
string

Date picture
string

Date and time picture
string

Taiwan TW . , $ TWD HH:MI:SS.999 YY/MM/DD YY/MM/DD HH:MI:SS.999

Romania RO , . Lei RON HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Russia RU , . Rub RUB HH:MI:SS DD mmm. YYYY
g.

DD mmm. YYYY g.
HH:MI:SS

Saint Lucia LC , . X'9F404040' XCD HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Saudi Arabia SA , . SAR HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Senegal SN , . X'9F404040' XOF HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Seychelles SC , . X'9F404040' SCR HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Sierra Leone SL , . X'9F404040' SLL HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Singapore SG , . X'9F404040' SGD HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Slovakia SK , . X'D247A240' SKK HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Slovenia SI , . X'9F404040' EUR HH:MI:SS DD.MM.YYYY DD.MM.YYYY HH:MI:SS

Somalia SO , . X'9F404040' SOS HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

South Africa ZA . R ZAR HHhMI:SS.999 YYYY-MM-DD YYYY-MM-DD
HHhMI:SS.999

Spain ES , . X'9F404040' EUR HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

Sri Lanka LK , . X'9F404040' LKR HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Sudan SD , . SDD HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Surinam SR , . X'9F404040' SRD HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Swaziland SZ , . X'9F404040' SZL HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Sweden SE , . kr SEK kl HH.MI.SS YYYY-MM-DD YYYY-MM-DD kl HH.MI.SS

Switzerland CH , . Fr CHF HH,MI,SS DD.
Mmmmmmmmz
YYYY

DD. Mmmmmmmmz YYYY
HH,MI,SS

Syria SY , . SYP HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Tanzania TZ , . X'9F404040' TZS HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Thailand TH . , X'70404040' THB HH:MI:SS DD/MM/YYYY DD/MM/YYYY HH:MI:SS

Togo TG , . X'9F404040' XOF HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Tunisia TN , . TND HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Turkey TR , . YTL TRY HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

Uganda UG , . X'9F404040' UGX HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Union of
Soviet
Socialist
Republics
(See note
below)

SU , . Rub RUB HH:MI:SS DD mmm. YYYY
g.

DD mmm. YYYY g.
HH:MI:SS

United Arab
Emirates

AE , . AED HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

United
Kingdom

GB . , X'5B404040' GBP HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

United States US . , $ USD ZH:MI:SS AP MM/DD/YY MM/DD/YY ZH:MI:SS AP

Uruguay UY , . N$ UYU HH:MI:SS DD/MM/YY DD/MM/YY HH:MI:SS

Vanuatu VU , . X'9F404040' VUV HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Venezuela VE , . BsF VEB ZH:MI:SS AP DD/MM/YY DD/MM/YY ZH:MI:SS AP

Western
Samoa

WS , . X'9F404040' WST HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Yemen YE , . YER HH:MI:SS YYYY/MM/DD YYYY/MM/DD HH:MI:SS

Yugoslavia YU , . Din YUM HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Zaire ZR , . X'9F404040' CDF HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Zambia ZM , . X'9F404040' ZMK HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

Zimbabwe ZW , . X'9F404040' ZWD HH:MI:SS YYYY-MM-DD YYYY-MM-DD HH:MI:SS

486 z/OS Language Environment Programming Reference

Table 32. Defaults currency and picture strings based on COUNTRY setting (continued)
Country/
region

Country
code

Decimal
separator

Thousand
separator

Currency
symbol

Int.
currency
symbol

Time picture
string

Date picture
string

Date and time picture
string

Note:

1. The Czechoslovakia country code CS is obsolete. Use either the Czech Republic country code CZ, or the Slovakia country code SK.

2. Country code DE was used for the former Federal Republic of Germany and now represents the settings for Germany. The DD country code, used
in the past for the German Democratic Republic, is obsolete and should be replaced by DE.

3. The SU country code is obsolete. Use the following country codes for the appropriate country: Estonia, EE; Latvia, LV; Lithuania, LT; Russian
Federation, RU.

Appendix A. IBM-supplied country code defaults 487

488 z/OS Language Environment Programming Reference

Appendix B. Date and time services tables

This appendix contains information to help you use Language Environment date
and time callable services. Included are tables for picture term and national
language era usage.

Table 33. Picture character terms used in picture strings for date and time services
Picture terms Explanations Valid values Note

Y
YY

YYY
ZYY
YYYY

1-digit year
2-digit year

3-digit year
3-digit year within era
4-digit year

0-9
00-99

000-999
1-999
1582-9999

Y valid for output only.
YY assumes range set by
CEESCEN.
YYY and ZYY valid only if
used with <JJJJ>, <CCCC>,
or <CCCCCCCC>.

<JJJJ> Japanese era name in DBCS
characters Heisei (X'0E458D45BA0F')

Showa (X'0E45B3457A0F')
Taisho (X'0E455B45770F')
Meiji (X'0E45A645840F')

Affects YY field: if <JJJJ> specified, YY
means the year within Japanese era, for
example, 1988 equals Showa 63. See
example in Table 34 on page 490.

<CCCC> <CCCCCCCC> Era name in DBCS characters (X'0E4D8256CE0F')
(X'0E4C845ADD4D8256CE0F')

Affects YY field: if <CCCC> specified, YY
means the year within the era. See
example in Table 34 on page 490.

MM ZM 2-digit month 1- or 2-digit month 01-12 1-12 For output, leading zero suppressed. For
input, ZM treated as MM.

RRRR RRRZ Roman numeral month I���-XII� (left-aligned) For input, source string is folded to
uppercase. For output, uppercase only.
I=Jan, II=Feb, ..., XII=Dec.

MMM
Mmm
Mmmm...m
MMMM...M
MMMMMMMMMZ
Mmmmmmmmmz

3-char month, uppercase
3-char month, mixed case
3-20 char mo., mixed case
3-20 char mo., uppercase
trailing blanks suppressed
trailing blanks suppressed

JAN-DEC
Jan-Dec
January-December
JANUARY-DECEMBER
JANUARY��-DECEMBER�
January��-December�

For input, source string always folded to
uppercase. For output, M generates
uppercase and m generates lowercase.
Output is padded with blanks (�) (unless Z
specified) or truncated to match the
number of M's, up to 20.

DD ZD DDD 2-digit day of month 1- or 2-digit
day of mo. day of year (Julian
day)

01-31 1-31 001-366 For output, leading zero is always
suppressed. For input, ZD treated as DD.

HH ZH 2-digit hour 1- or 2-digit hour 00-23 0-23 For output, leading zero suppressed. For
input, ZH treated as HH. If AP specified,
valid values are 01-12.

MI minute 00-59

SS second 00-59

9 99 999

tenths of a second
hundredths of a second
thousandths of a second

0-9
00-99
000-999

No rounding.

AP ap A.P. a.p. AM/PM indicator AM or PM am or pm A.M. or
P.M. a.m. or p.m.

AP affects HH/ZH field. For input, source
string always folded to uppercase. For
output, AP generates uppercase and ap
generates lowercase.

W
WWW
Www
WWW...W
Www...w
WWWWWWWWWZ
Wwwwwwwwwz

1-char day-of-week
3-char day, uppercase
3-char day, mixed case
3-20 char day, uppercase
3-20 char day, mixed case
trailing blanks suppressed
trailing blanks suppressed

S, M, T, W, T, F, S
SUN-SAT
Sun-Sat
SUNDAY-SATURDAY
Sunday-Saturday
SUNDAY���-SATURDAY�
Sunday���-Saturday�

For input, Ws are ignored. For output, W
generates uppercase and w generates
lowercase. Output padded with blanks
(unless Z specified) or truncated to match
the number of Ws, up to 20.

© Copyright IBM Corp. 1991, 2015 489

Table 33. Picture character terms used in picture strings for date and time services (continued)
Picture terms Explanations Valid values Note

All others Delimiters Constants X'01'-X'FF' (X'00' reserved for
Language Environment use)

For input, treated as delimiters between
the month, day, year, hour, minute,
second, and fraction of a second. For
output, copied exactly as is to the target
string. Constant designating year in
Russia, Estonia, Latvia, Lithuania, and the
Russian Federation. Constant designating
time in Sweden.

Note: If a Z/z could be interpreted as belonging to the preceding character string and to the following string, then it is always considered part of the
following string, even if it would be legal with the preceding string but illegal with the following string. For clarity, you should always use a delimiter
to define which string the Z/z belongs with. See Table 34 for an example.

Table 34. Examples of picture strings recognized by date and time services

Picture strings Examples Notes®

YYMMDD
YYYYMMDD
YYYY-MM-DD
<JJJJ> YY.MM.DD

<CCCC> YY.MM.DD

880516
19880516
1988-05-16
Showa 63.05.16

MinKow 77.05.16

1988-5-16 would also be valid input.
Showa is a Japanese Era name. Showa
63 equals 1988.

MMDDYY
MM/DD/YY
ZM/ZD/YY
MM/DD/YYYY
MM/DD/Y

050688
05 688
05/06/88
5/6/88
05/06/1988
05/06/8

Accepts imbedded blanks 1-digit year
format (Y) valid for output only

DD.MM.YY
DD-RRRR-YY
DD MMM YY
DD Mmmmmmmmmm YY
ZD Mmmmmmmmmz YY
Mmmmmmmmmz ZD, YYYY

09.06.88
09-VI -88
09 JUN 88
09 June 88
9 June 88
June 9, 1988

Z suppresses zeros/blanks

YY.DDD
YYDDD
YYYY/DDD

88.137
88137
1988/137

Julian date

YYMMDDHHMISS
YYYYMMDDHHMISS
YYYY-MM-DD HH:MI:SS.999
WWW, ZM/ZD/YY HH:MI AP
Wwwwwwwwwz DD Mmm YYYY ZH:MI AP

880516204229
19880516204229
1988-05-16 20:42:29.046
MON, 5/16/88 08:42 PM
Monday, 16 May 1988, 8:42 PM

Timestamp valid only for CEESECS
and CEEDATM. If used with
CEEDATE, time positions are left
blank. If used with CEEDAYS, HH, MI,
SS, and 999 fields are ignored.

Note: Lowercase characters must be used only for alphabetic picture terms.

Table 35. Japanese Eras used by date/time services when <JJJJ> is specified

First date of Japanese Era Era name Era name in IBM Japanese
DBCS code

Valid year values

1868-09-08 Meiji X'0E45A645840F' 01-45

1912-07-30 Taisho X'0E455B45770F' 01-15

1926-12-25 Showa X'0E45B3457A0F' 01-64

1989-01-08 Heisei X'0E458D45BA0F' 01-999 (01 = 1989)

490 z/OS Language Environment Programming Reference

Appendix C. Controlling storage allocation

To generate a report of the storage a routine (or more specifically, an enclave) used
during its run, specify the RPTSTG(ON) runtime option. The storage report,
generated during enclave termination, provides statistics that can help you
understand how space is being consumed as the enclave runs. If storage
management tuning is desired, the statistics can help you set the corresponding
storage-related runtime options for future runs.

Neither the storage report nor the corresponding runtime options include the
storage that Language Environment acquires during early initialization, before
runtime options processing, and before the start of space management monitoring.

Storage statistics
Attention: This section does not apply to AMODE 64 applications. For information
about AMODE 64 statistics, see “Storage statistics for AMODE 64 applications.”

The following runtime options control storage allocation:
v ANYHEAP
v BELOWHEAP
v HEAP
v HEAPPOOLS
v LIBSTACK
v STORAGE
v STACK
v THREADHEAP
v THREADSTACK

Ensure that these options are tuned appropriately to avoid performance problems.
Tuning tips are provided in the z/OS Language Environment Programming Guide. For
an example and complete description of the storage report, see z/OS Language
Environment Debugging Guide.

Storage statistics for AMODE 64 applications
The following runtime options control storage allocation:
v HEAP64
v HEAPPOOLS
v HEAPPOOLS64
v IOHEAP64
v LIBHEAP64
v STACK64
v THREADSTACK64

Ensure that these options are tuned appropriately to avoid performance problems.
Tuning tips are provided in the z/OS V2R1.0 Language Environment Programming
Guide for 64-bit Virtual Addressing Mode. For an example and complete description
of the storage report, see z/OS Language Environment Debugging Guide.

© Copyright IBM Corp. 1991, 2015 491

492 z/OS Language Environment Programming Reference

Appendix D. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the "Contact us" web page for z/OS (http://www.ibm.com/
systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS V2R2 ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out

© Copyright IBM Corp. 1991, 2015 493

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html

punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

494 z/OS Language Environment Programming Reference

default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix D. Accessibility 495

496 z/OS Language Environment Programming Reference

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1991, 2015 497

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

498 z/OS Language Environment Programming Reference

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming Interface information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of Language Environment in z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at www.ibm.com/legal/copytrade.shtml (http://www.ibm.com/legal/
copytrade.shtml).

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 499

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

500 z/OS Language Environment Programming Reference

Index

Special characters
/ (slash)

NOEXECOPS alters behavior of 34
specifying in parameters of TEST

runtime option 90
* (asterisk) 89, 90
= (equal sign)

in ENVAR runtime option 31
' (straight single quote)

initializing storage with 81, 83
specifying in parameters of TEST

runtime option 89, 90
" (straight double quote)

initializing storage with 81, 83
specifying in parameters of TEST

runtime option 89, 90

Numerics
0 type_of_move 366, 368
1 type_of_move 366, 368
16M line

ALL31 runtime option and 13
allocating library heap storage not

restricted to below 15
ANYHEAP runtime option and 15
HEAP runtime option and 38
storage received from CEEGTST

and 315
2-digit years

querying within 100-year range
(CEEQCEN) 384

examples of 385
setting within 100-year range

(CEESCEN) 396
examples of 397

24-bit addressing
ANYHEAP runtime option and 14

A
abbreviating runtime options 9
abcode parameter 9, 125, 129
abend codes

abend 4088, reason code 1004 82
abend 4091, reason code 21 27
dumping 125, 129
ERRCOUNT runtime option and 417
in CEE3DMP callable service 147
percolating in ABPERC runtime

option 9
abends

bad filenames in CEEBLDTX macro
can cause 380

dumps, getting when enclave
terminates with abend
(CEE3ABD) 125, 129

ERRCOUNT runtime option and 32
in CEEFRST callable service 284
in CEEGTST callable service 315

abends (continued)
not handled if initiated by SVC 13 99
options report not generated

(RPTOPTS runtime option) 72
out-of-storage condition, cause 82
percolating

ABPERC runtime option and 10
CEEBXITA and 99

percolating certain abends in
CEEBXITA 98

side effects if encountered using
TRAP(OFF) 99

storage report not generated (RPTSTG
runtime option) 73

system abends
ABPERC runtime option and 10
percolating in the assembler user

exit 99
terminating enclave with

(CEE3ABD) 125, 128, 170
trapping 98
user

using ABPERC runtime option to
percolate 10

when nested condition exceeded
(DEPTHCONDLMT runtime
option) 27

ABPERC runtime option
CICS ignores this option 10
S0Cx abends can't be percolated 10
syntax 9

absolute value math service
(CEESxABS) 440

ABTERMENC runtime option
abend codes and 10
choosing between abend codes and

return codes 10
syntax 10

access method service (AMS) 11
accessibility 493

contact IBM 493
features 493

active condition
CEEGPID callable service and 300
CEERCDM callable service and

recording information for an active
condition 22

dumping information related to 147
additional heap

creating (CEECRHP) 223
discarding (CEEDSHP) 258
reducing the amount of storage you

need to run an application 284
address parameter

CEECZST callable service and 227
CEEFRST callable service and 284
CEEGTST callable service and 315

addressing exception 205
aggregate

dumping arrays and structures 146

AIXBLD runtime option
syntax 11

alignment
PL/I structures and Language

Environment storage callable
services 316

ALL31 runtime option
ALL31(ON) default under CICS 13
syntax 12

allocating
storage

additional heap, setting size of
(CEECRHP) 223

anywhere heap, setting size of
(ANYHEAP runtime option) 15

below heap, setting size of
(BELOWHEAP runtime
option) 17, 18

gett heap storage (CEEGTST) 315,
317, 319

initial heap, setting size of (HEAP
runtime option) 38, 51

initializing when allocating
(STORAGE runtime option) 81,
83

library stack storage, setting size of
(LIBSTACK runtime option) 54

stack storage, setting size of
(STACK runtime option) 76, 79,
81, 96

alternate indices, building with AIXBLD
| NOAIXBLD runtime option 12

AMODE
ALL31 runtime option and 12, 13
callable services and 116
heap storage 39
STACK runtime option and 13
under CICS 316

AMS (access method service) 11
ANYHEAP runtime option

syntax 14
anywhere heap

allocating storage from 15
ANYHEAP runtime option and 15
controlling whether storage is freed

from 14
ANYWHERE suboption

ANYHEAP runtime option and 14
HEAP runtime option and 38

application writer interface (AWI) 115
arccosine math service (CEESxACS) 441
arcsine math service (CEESxASN) 442
arctangent math service

(CEESxATN) 444
arctangent2 math service

(CEESxAT2) 445
AREA storage for PL/I 316
ARGPARSE runtime option

CICS ignores this option 16
syntax 15

© Copyright IBM Corp. 1991, 2015 501

argument
dumping 146
format of in invoked routine 66, 67
list format

effect of EXECOPS runtime option
on 34

arithmetic
calculation on dates

convert date to COBOL Lilian
format (CEECBLDY) 214, 216

convert date to Lilian format
(CEEDAYS) 243, 245

convert timestamp to number of
seconds (CEESECS) 407, 409

get current Greenwich Mean Time
(CEEGMT) 294, 295

examples using 438, 477, 480
parameter types 437
services

Quick Reference Tables 112
syntax variations of 112, 437

array 146
assembler language

routines
calling math services from 437
invoking callable services

from 116
assistive technologies 493
asterisk (*) 89, 90
AT OCCURRENCE debug command for

Debug Tool 89
AT TERMINATION debug command for

Debug Tool 89
attention processing

handling with a debug tool (TEST
runtime option) 89

handling with INTERRUPT runtime
option 50

AUTOTASK runtime option
syntax 16

B
below heap

allocating storage from 17, 18
BELOWHEAP runtime option

and 17, 18
controlling whether storage is

freed 17
BELOW suboption

ANYHEAP runtime option and 14
BELOWHEAP runtime option

syntax 17
BIF (built-in functions), in

CEE3DMP 147
bimodal addressing

ANYHEAP runtime option 14
HEAP runtime option 38

bit manipulation services 433
CEESICLR—bit clear 433
CEESISET—bit set 433
CEESITST—bit test 435

buffer
dumping contents of buffers used by

files 146
storing messages in

syntax description 352

building condition token
examples of 381, 383
syntax description 379

built-in functions (BIF) for PL/I, in
CEE3DMP 144

C
C 314

applications, specifying operating
system for 30, 31

calloc() function 38
CEE3PRM callable service

considerations 194
declares for Language Environment

data types 121
examples

CEE3ABD—terminate enclave with
abend 126, 130, 171

CEE3CTY—set default
country 138

CEE3GRC—get enclave return
code 152

CEE3GRN—get name of routine
that incurred condition 161

CEE3LNG—set national
language 177

CEE3MCS—get default
currency 182

CEE3MDS—get default decimal
separator 188

CEE3MTS—get default thousands
separator 191

CEE3PRM—query parameter
string 194

CEE3RPH—set report
heading 200

CEE3SPM—query and modify
Language Environment hardware
condition enablement 205

CEE3SRC—set enclave return
code 152

CEE3USR—set or query user area
fields 211

CEECMI—store and load message
insert data 219

CEECRHP—create new additional
heap 225

CEECZST—reallocate storage 229
CEEDATE—convert Lilian date to

character format 234
CEEDATM—convert seconds to

character timestamp 240
CEEDCOD—decompose a

condition token 251
CEEDSHP—discard heap 261
CEEDYWK—calculate day of week

from Lilian date 263
CEEFMDA—get default date

format 271
CEEFMTM—get default time

format 282
CEEFRST—free heap storage 286
CEEGMT—get current GMT 296
CEEGPID—retrieve the Language

Environment version/platform
ID 302

C (continued)
examples (continued)

CEEGQDT—retrieve
q_data_token 305

CEEGTST—get heap storage 229,
251, 317

CEEHDLR—register user-written
condition handler 152, 161, 322

CEEHDLU—unregister
user-written condition
handler 329

CEEISEC—convert integers to
seconds 334

CEEITOK—return initial condition
token 337

CEELOCT—get current local date
or time 350

CEEMOUT—dispatch a
message 358

CEEMRCR—move resume
cursor 369

CEEMSG—get, format, and
dispatch a message 376

CEENCOD—construct a condition
token 381

CEEQCEN—query century
window 385

CEERAN0—calculate uniform
random numbers 394

CEERCDM — record information
for an active condition 23

CEESCEN—set century
window 397

CEESDLG1—logarithm base
10 477

CEESECI—convert seconds to
integers 404

CEESECS—convert timestamp to
seconds 410

CEESGL—signal a condition 161,
420

CEESIMOD—modular
arithmetic 477

CEETEST—invoke debug tool 429
fc parm, omitting 118
hardware interrupts that cannot be

enabled 204
HEAP considerations 39
invoking callable services from 118
leawi.h header files and 250, 380
malloc() function 38
mapping SPIE and STAE to TRAP 99
MSGFILE runtime option and 57
perror() function 57
PLIST setting under IMS differs

depending on version of C
compiler 66

runtime options specific to Language
Environment

ARGPARSE 15
ENV 30, 31
EXECOPS 34
PLIST 66
REDIR 71

runtime options, specifying on the
command line 34

502 z/OS Language Environment Programming Reference

C (continued)
stderr

MSGFILE runtime option and 57
REDIR runtime option and 71
redirecting output from 57

system() function
CEE3DMP ENCLAVE

considerations 149
call return point 365
callable services

AMODE switching across calls to 13
CEE3ABD—terminate enclave with an

abend 125, 128, 170
CEE3CIB—return pointer to condition

information block 128, 131
CEE3CTY—set default country 135
CEE3DMP—generate dump 144
CEE3GRC—get the enclave return

code 152
CEE3GRN—get name of routine that

incurred condition 160
CEE3GRO—get offset of

condition 165
CEE3LNG—set national

language 174
CEE3MCS—get default currency

symbol 181
CEE3MDS—get default decimal

separator 187
CEE3MTS—get default thousands

separator 190
CEE3PRM—query parameter

string 193
CEE3RPH—set report heading 199
CEE3SPM—query and modify

Language Environment hardware
condition enablement 202

CEE3SRC—set the enclave return
code 208

CEE3SRP—set resume point 209
CEE3USR—set or query user area

fields 210
CEECBLDY—convert date to COBOL

Lilian format 214
CEECMI—store and load message

insert data 218
CEECRHP—create new additional

heap 223
CEECZST—reallocate (change size of)

storage 227
CEEDATE—convert Lilian date to

character format 232
CEEDATM—convert seconds to

character timestamp 238
CEEDAYS—convert date to Lilian

format 243
CEEDCOD—decompose a condition

token 249
CEEDSHP—discard heap 258
CEEDYWK—calculate day of week

from Lilian date 262
CEEFMDA—get default date

format 270
CEEFMDT—get default date and time

format 273
CEEFMON—format monetary

string 276

callable services (continued)
CEEFMTM—get default time

format 281
CEEFRST—free heap storage 284
CEEFTDS—format date and time into

character string 288
CEEGMT—get current Greenwich

Mean Time 294
CEEGMTO—get offset from

Greenwich Mean Time to local
time 297

CEEGPID—retrieve Language
Environment version and platform
ID 300

CEEGQDT—retrieve
q_data_token 305

CEEGTST—get heap storage 315
CEEHDLR—register user condition

handler 319
CEEHDLU—unregister user condition

handler 328
CEEISEC—convert integers to

seconds 332
CEEITOK—return initial condition

token 336
CEELCNV—query locale numeric

conventions 342
CEELOCT—get current local

time 348
CEEMGET—get a message 352
CEEMOUT—dispatch a message 357
CEEMRCE—move resume cursor

explicit 360
CEEMRCR—move resume cursor

relative to handle cursor 365
CEEMSG—get, format, and dispatch a

message 375
CEENCOD—construct a condition

token 379
CEEQCEN—query the century

window 384
CEEQDTC—query locale date and

time conventions 387
CEEQRYL—query active locale

environment 391
CEERAN0—calculate uniform random

numbers 393
CEERCDM—record information for an

active condition 22
CEESCEN—set the century

window 396
CEESCOL—compare string collation

weight 399
CEESECI—convert seconds to

integers 402
CEESECS—convert timestamp to

number of seconds 407
CEESETL—set the locale operating

environment 413
CEESGL—signal a condition 417
CEESICLR—bit clear 433
CEESISET—bit set 433
CEESITST—bit test 435
CEESTXF—transform string characters

into collation weights 422
CEESxABS—absolute value 439
CEESxACS—arccosine 441

callable services (continued)
CEESxASN—arcsine 442
CEESxAT2—artangent of two

arguments 445
CEESxATH—hyperbolic

arctangent 443
CEESxATN—arctangent 444
CEESxCJG—conjugate complex 446
CEESxCOS—cosine 447
CEESxCSH—hyperbolic cosine 448
CEESxCTN—cotangent 450
CEESxDIM—positive difference 451
CEESxDVD—division 452
CEESxERC—error function 453
CEESxERF—error function

complement 454
CEESxEXP—exponent (base e) 455
CEESxGMA—gamma function 456
CEESxIMG—imaginary part of

complex 457
CEESxINT—truncation 458
CEESxLG1—logarithm base 10 460
CEESxLG2—logarithm base 2 461
CEESxLGM—log gamma

function 459
CEESxLOG—logarithm base e 462
CEESxMLT—floating complex

multiply 463
CEESxMOD—modular

arithmetic 464
CEESxNIN—nearest integer 465
CEESxNWN—nearest whole

number 466
CEESxSGN—transfer of sign 467
CEESxSIN—sine 468
CEESxSNH—hyperbolic sine 470
CEESxSQT—square root 471
CEESxTAN—tangent 472
CEESxTNH—hyperbolic tangent 474
CEESxXPx—exponential (* *) 475
CEETDLI—invoke IMS 425
CEETEST—invoke debug tool 428
data types allowed in 121, 124
feedback code parameter 121
invoking 116

in C 118
in COBOL 119
in PL/I 120, 121

Quick Reference Tables 109, 112
case 1 condition token 380
case 2 condition token 380
cause code condition 380
CBLOPTS runtime option

syntax 18
CBLPSHPOP runtime option

EXEC CICS PUSH and EXEC CICS
POP commands and 18

syntax 18
CBLQDA runtime option

CICS ignores this option 19
relationship to dump and message

file 19
syntax 19

CEE_ENTRY Language Environment data
type and HLL equivalents 121

CEE3 prefix, meaning of 116

Index 503

CEE3ABD—terminate enclave with an
abend

CICS considerations 125, 129
examples using 126, 128, 130, 131,

171
syntax 125, 128, 170

CEE3CIB—return pointer to condition
information block 128, 131

syntax 128, 131
CEE3CTY—set default country

COUNTRY runtime option and 24
date and time services and 135
examples using 138, 139
other national language support

services and 135
RPTOPTS runtime option and 135
RPTSTG runtime option and 135
setlocale() and 137
syntax 135
table of default values for specified

country_code 483
CEE3DLY 140, 254
CEE3DMP—generate dump

default dump file of 144
examples using 151
options used in TERMTHDACT

runtime option 88
syntax 144
using TEST compile-time option

with 146
CEE3GRC—get the enclave return code

examples using 152, 159
syntax 152

CEE3GRN—get name of routine that
incurred condition

examples using 161, 164
syntax 160

CEE3GRO—get offset of condition
examples using 165
syntax 165

CEE3LNG—set national language
examples using 177, 179
messages and 174
NATLANG runtime option and 59
syntax 174

CEE3MC2 184
CEE3MCS—get default currency symbol

CEE3CTY callable service 181, 184
COUNTRY runtime option and 181,

184
default if invalid country_code

specified 181, 185
examples using 182, 183
syntax 181
table of default values for specified

country_code 483
CEE3MDS—get default decimal separator

CEE3CTY callable service and 187
COUNTRY runtime option and 187
default if invalid country_code

specified 188
defaults of country_code

parameter 483
examples using 188, 189
syntax 187

CEE3MTS—get default thousands
separator

CEE3CTY callable service and 190
COUNTRY runtime option and 190
default if invalid country_code

specified 191
examples using 191
syntax 190
table of default values for specified

country_code 483
CEE3PRM—query parameter string 384

examples using 194, 195
syntax 193

CEE3RPH—set report heading
examples using 199
syntax 199

CEE3SPM—query and modify Language
Environment hardware condition
enablement

examples using 205
syntax 202

CEE3SRC—set the enclave return code
examples using 209
syntax 208

CEE3SRP—set resume point
examples using 210
syntax 209

CEE3USR—set or query user area fields
examples using 211, 213
syntax 210

CEEBLDTX EXEC
use caution when creating new facility

ID for 380
CEEBXITA assembler user exit

percolating certain abends with
TRAP(ON) 99

CEECBLDY—convert date to COBOL
Lilian format 214

examples using 215
syntax 214

CEECMI—store and load message insert
data 218

examples using 219, 222
syntax 218

CEECRHP—create new additional heap
examples using 225, 226
HEAP runtime option and 315
syntax 223

CEECZST—reallocate (change size of)
storage

CEEGTST callable service and 228
examples using

example with CEEGTST and
CEEFRST 229

examples with CEEHDLR,
CEEGTST, and CEEMRCR 229,
231

syntax 228
CEEDATE—convert Lilian date to

character format
CEEDAYS callable service and 232
CEEFMDA callable service and 233
COUNTRY runtime option and 233
examples using 234
syntax 232
table of sample output 234

CEEDATM—convert seconds to character
timestamp

CEEFMDT callable service and 238
CEESECI callable service and 402
CEESECS callable service and 238
COUNTRY runtime option and 238
examples using 240, 242
syntax 238
table of sample output 243

CEEDAYS—convert date to Lilian format
CEEDATE callable service and 243
CEESCEN callable service and 214,

244
syntax 243

CEEDCOD—decompose a condition
token

examples using
C example showing alternative to

using 420
examples with CEEGTST 251, 253

syntax 249
CEEDOPT

CBLOPTS runtime option must be
specified in CEEDOPT or
CEEUOPT 18

COUNTRY runtime option
consideration 25

country_code and 24
ENVAR runtime option and 32
national language codes and 59
specifying nonexistent national

language code in 59
CEEDSHP—discard heap

can overrule HEAP runtime
option 258

CEECRHP callable service and 258
examples with CEECRHP 259, 261
HEAP runtime option and 258
syntax 258

CEEDUMP default dump file
CBLQDA runtime option and 19
CEE3DMP callable service and 144

CEEDYWK—calculate day of week from
Lilian date

examples using 263
syntax 262

CEEEBMAW file, description of 117
CEEEDCCT file, description of 117
CEEENV—Process environmental

variables 265
CEEFMDA—get default date format

CEE3CTY callable service 271
COUNTRY runtime option and 271
default if invalid country_code

specified 271
defaults of country_code

parameter 483
examples using 271, 272
syntax 270

CEEFMDT—get default date and time
format

CEE3CTY callable service and 273
COUNTRY runtime option and 273
default if invalid country_code

specified 273
defaults of country_code

parameter 483

504 z/OS Language Environment Programming Reference

CEEFMDT—get default date and time
format (continued)

examples using 274, 275
syntax 273

CEEFMON—format monetary string
about 276
examples using 278

CEEFMTM—get default time format
CEE3CTY callable service and 281
COUNTRY runtime option and 281
default if invalid country_code

specified 281
defaults of country_code

parameter 483
examples using 282, 283
syntax 281

CEEFRST—free heap storage
CEECRHP callable service and 284
CEEGTST callable service and 284
examples with CEEGTST 286, 287
HEAP runtime option and 284
syntax 284

CEEFTDS—format date and time into
character string

syntax 288
CEEGMT—get current Greenwich Mean

Time 431
CEEDATE callable service and 295
CEEDATM callable service and 295
CEEGMTO callable service and 294
examples using 296, 297
syntax 294

CEEGMTO—get offset from Greenwich
Mean Time to local time

CEEDATM callable service and
CEEDATM and 298

examples using 298, 300
syntax 297

CEEGPID— retrieve the Language
Environment version and platform ID

examples using 302, 304
syntax 300

CEEGQDT—retrieve q_data_token
CEESGL callable service and 305
examples using

CEEGQDT by itself 307
examples with CEEHDLR and

CEESGL 305, 307
instance specific information (ISI)

and 305
syntax 305

CEEGTJS—retrieves the value of an
exported JCL symbol 313

examples using 314
CEEGTST—get heap storage

CEECRHP callable service and 315
CEEDSHP callable service and 315
CEEFRST callable service and 315
CEESGL callable service and 315
examples using

examples with CEECZST and
CEEFRST 229

examples with CEEFRST 286, 317,
319

HEAP runtime option and 315
syntax 315

CEEGTST—get heap storage (continued)
using STORAGE runtime option to

initialize storage received from 315
CEEHDLR—register user condition

handler
CEEHDLU callable service and 328
condition handling example 321
examples using

CEEHDLR by itself 322, 326
examples with CEE3SRC and

CEE3GRC 161, 164
syntax 319

CEEHDLU—unregister user condition
handler

CEEHDLR callable service and 328
examples with CEEHDLR 329, 330
syntax 328

CEEIBMCI file, description of 117
CEEIBMCT file, description of 117
CEEIGZCI file, description of 117
CEEIGZCT file, description of 117
CEEISEC—convert integers to seconds

CEESECI callable service and 332
examples using 334, 335
syntax 332

CEEITOK—return initial condition token
examples using 337, 341
syntax 336

CEELCNV—query locale numeric
conventions

syntax 342
CEELOCT—get current local time

CEEDATM callable service and 349
CEEGMT callable service and 348
CEEGMTO callable service and 348
examples using 350, 351
syntax 348

CEEMGET—get a message
examples using

CEEMGET by itself 356
examples with CEEMOUT 354

syntax 352
CEEMOUT—dispatch a message

examples using 358, 359
MSGFILE runtime option and 357
syntax 357

CEEMRCE—move resume cursor explicit
examples using 360, 364
syntax 360

CEEMRCR—move resume cursor relative
to handle cursor

examples with CEEHDLR and
CEESGL 369, 374

illustrations of 368
syntax 365

CEEMSG—get, format, and dispatch a
message

examples using 376, 377
MSGFILE runtime option and 375
MSGQ runtime option and 59
syntax 375

CEENCOD—construct a condition token
CEEDCOD callable service and 249
examples using 381, 383
how C users can use CEESGL callable

service instead of 420
syntax 379

CEEQCEN—query the century window
CEESCEN callable service and 384
examples using 385, 386
syntax 384

CEEQDTC—query locale, date, and time
conventions

syntax 387
CEEQRYL—query active locale

environment
syntax 391

CEERAN0—calculate uniform random
numbers

examples using 394, 395
syntax 393

CEERCDM — record information for an
active condition

examples using 23
CEERCDM— record information for an

active condition 22
CEESCEN—set the century window

CEEDAYS callable service and 396
CEESECS callable service and 396
examples using 397, 398
syntax 396

CEESCOL—compare string collation
weight

syntax 399
CEESECI—convert seconds to integers

examples using 404, 406
relationship to CEEISEC callable

service 402
syntax 402

CEESECS—convert timestamp to number
of seconds

CEEDATM callable service and 407
CEEISEC callable service and 332
CEESCEN callable service and 396
COUNTRY runtime option and 408
syntax 407

CEESETL—set locale operating
environment

syntax 413
CEESGL—signal a condition

CEEGQDT callable service and 305
examples using 420, 421
HLL-specific condition handlers

and 418
q_data_token and 305, 418
setting of ERRCOUNT runtime option

can cause abend 417
syntax 417
TRAP runtime option does not

affect 98
using to create an ISI 417, 418

CEESTXF—transform string into collation
weights

syntax 422
CEETDLI interface to IMS

syntax 425
CEETEST—invoke debug tool

examples using 429, 431
NOTEST runtime option and 91
syntax 428

CEEUOPT
CBLOPTS runtime option must be

specified in CEEUOPT or
CEEDOPT 18

Index 505

CEEUOPT (continued)
COUNTRY runtime option

considerations 25
country_code and 24
national language codes and 59
specifying nonexistent national

language code in 25
specifying UPSI runtime option in 26

century window
CEEDAYS callable service and 214,

244
CEEQCEN callable service and 384

examples of 385, 386
CEESCEN callable service and 396

examples of 385, 386, 397, 398
CEESECS callable service and 407

CESE transient data queue
CEEMOUT callable service and 357
TERMTHDACT runtime option

and 88
char_parm_string parameter 193
character timestamp

converting Lilian seconds to
(CEEDATM) 238

examples of 240, 242
converting to COBOL Lilian seconds

(CEECBLDY) 214
examples of 216

converting to Lilian seconds
(CEESECS)

examples of 407
CHARn Language Environment data

type and HLL equivalents 121
CHECK runtime option

syntax 24
using while debugging 24

checking errors, flagging with CHECK
runtime option 24

ChuHwaMinKow era 490
CIB (Condition Information Block) 128,

131
CICS

callable service behavior under
abend codes in CEE3ABD callable

service 125, 129
storage considerations 316

CBLPSHPOP runtime option and 18
CEE3DMP ENCLAVE

considerations 149
CESE transient data queue and 57
PLIST setting 66
storage and 316

class code condition 380
clean-up parameter 125, 129
CMS

CEE3DMP special considerations 149
CMSSTOR OBTAIN/RELEASE

commands 73
OSRUN command 66
PLIST runtime option settings to

specify when running under 66
specifying a C application is running

under 30, 33
CMSCALL

CEE3DMP ENCLAVE
considerations 149

CMSSTOR OBTAIN/RELEASE 73

COBOL
batch debugging features 26
callable services, invoking from 119
declares for Language Environment

data types 121
examples

CEE3ABD—terminate enclave with
abend 126, 130, 171

CEE3CTY—set default
country 138

CEE3GRC—get enclave return
code 152, 159

CEE3GRN—get name of routine
that incurred condition 164

CEE3LNG—set national
language 178

CEE3MCS—get default
currency 182

CEE3MDS—get default decimal
separator 188

CEE3MTS—get default thousands
separator 191

CEE3PRM—query parameter
string 194

CEE3RPH—set report
heading 200

CEE3SPM—query and modify
Language Environment hardware
condition enablement 205

CEE3SRC—set enclave return
code 152, 159

CEE3USR—set or query user area
fields 211

CEECMI—store and load message
insert data 219

CEECRHP—create new additional
heap 225

CEECZST—reallocate storage 229
CEEDATE—convert Lilian date to

character format 234
CEEDAYS—convert date to Lilian

format 216
CEEFMON—format monetary

string 278
CEEFTDS—format date and time

into character string 292
CEEGPID—retrieve Language

Environment version/platform
ID 302

CEEGQDT—retrieve
q_data_token 307

CEEGTST—get heap storage 229,
318

CEEHDLR—register user-written
condition handler 152, 159, 322

CEEHDLU—unregister
user-written condition
handler 329

CEEISEC—convert integers to
seconds 334

CEELCNV—query locale numeric
conventions 347

CEELOCT—get current local date
or time 351

CEEMGET—get a message 354
CEEMOUT—dispatch a

message 358

COBOL (continued)
examples (continued)

CEEMRCR—move resume
cursor 371

CEEMSG—get, format, and
dispatch a message 376

CEENCOD—construct a condition
token 383

CEEQCEN—query century
window 385

CEEQDTC—return locale date and
time 388

CEEQRYL—query active locale
environment 393

CEESCEN—set century
window 397

CEESCOL—compare string
collation weight 399

CEESECI—convert seconds to
integers 404

CEESECS—convert timestamp to
seconds 410

CEESETL—set locale operating
environment 402, 414

CEESGL—signal a condition 420
CEESSLOG—calculate logarithm

base e 478
CEESTXF—transform string

characters into collation
weights 423

CEETEST—invoke a debug
tool 429

GOBACK statement
RTEREUS runtime option and 75

hardware conditions that cannot be
enabled under 204

options, mapping
mapping STAE to TRAP 98

reusability of an environment when
COBOL is main 74

runtime options specific to 100
AIXBLD—invoke AMS 11, 12
CBLOPTS—specify format of

argument string 18
CBLPSHPOP—control usage of

CICS commands 18
CBLQDA—control QSAM dynamic

allocation 19
CHECK—allow for checking

errors 24
DEBUG—activate COBOL batch

debugging 26
FLOW—control OS/VS COBOL

FLOW output 37
RTEREUS—make first COBOL

routine reusable 74
SIMVRD—specify VSAM

KSDS 76
severity 0 and 1 conditions,

ERRCOUNT runtime option
and 32

space management tuning table, using
HEAP runtime option with 39

STOP RUN statement 75
tuning, with HEAP runtime

option 39

506 z/OS Language Environment Programming Reference

COBOL (continued)
using VSAM KSDS to simulate

variable length relative organization
data sets 11

variables, where stored 76, 79
command

syntax diagrams xiii
command line

parsing of C arguments (ARGPARSE
runtime option) 15

specifying whether C redirections are
allowed from (REDIR runtime
option) 71

specifying whether runtime options
can be specified on (EXECOPS
runtime option) 34

commands_file parameter 89
compatibility

CICS 18
complex numbers

complex number math services
conjugate of complex

(CEESxCJG) 446
floating complex divide

(CEESxDVDF) 452
floating complex multiply

(CEESxMLT) 463
imaginary part of complex

(CEESxIMG) 457
cond_rep parameter

CEECMI callable service and 218
CEEGQDT callable service and 305
CEESGL callable service and 418

cond_str parameter 203
cond_token parameter

CEEMGET callable service and 352
CEEMSG callable service and 375
CEENCOD callable service and 380

condition
active

CEEGPID callable service
and 300

dumping information related
to 147

specifying how much information
produced for 88

cause code 380
class code 380
enabled 417
getting name of routine that incurred

condition (CEE3GRN) 160
examples of 161, 164

getting offset of condition 165
initial

allowing the handling of 27
returning initial condition token

for (CEEITOK) 336
nested, allowing levels of 26
original 88
promoted 88
providing q_data_token for (in

CEESGL)
examples of 420, 421
syntax description 417

safe conditions 417
severity

CEESGL callable service and 417

condition (continued)
severity (continued)

ERRCOUNT runtime option
and 32

severity levels that cause the
debug tool to gain control 89

tolerating a given number of 27
condition handler

C signal handlers
CEEMRCR callable service

and 365
CEESGL callable service and 418

HLL semantics
ABPERC runtime option and 9
TRAP runtime option and 98

Language Environment condition
handler 98

PL/ION-units
CEESGL callable service and 418

user-written
allowing nested conditions in 26
CEE3SPM callable service

and 203
moving the resume cursor from

a 365
registering with CEEHDLR 319
retrieving q_data_token 305
TRAP runtime option and 98
unregistering 328
vector facility and 102

condition handling
callable services for

CEE3ABD—terminate enclave with
an abend 125, 128, 170

CEE3GRN—get name of routine
that incurred condition 160

CEE3GRO—get offset of
condition 165

CEE3SPM—query and modify
Language Environment hardware
condition enablement 202

CEE3SRP—set resume point 209
CEEDCOD—decompose a

condition token 249
CEEGPID—retrieve the Language

Environment version and
platform ID 300

CEEGQDT—retrieve
q_data_token 305

CEEHDLR—register user condition
handler 319

CEEHDLU—unregister user
condition handler 328

CEEITOK—return initial condition
token 336

CEEMRCE—move resume cursor
explicit 360

CEEMRCR—move resume cursor
relative to handle cursor 365

CEENCOD—construct a condition
token 379

CEESGL—signal a condition 417
Quick Reference Tables 109

CICS, under 18
depth of conditions allowed 26
dumps, handling of conditions that

arise when processing 144

condition handling (continued)
runtime options for

ABPERC 9
DEPTHCONDLMT 26
ERRCOUNT 32
TRAP 98
XUFLOW 105

signaling condition with
CEESGL 417

user-written condition handler
allowing nested conditions in

(DEPTHCONDLMT runtime
option) 26

moving the resume cursor from a
(CEEMRCR) 365

registering (CEEHDLR) 319
retrieving q_data token

(CEEGQDT) 305
TRAP runtime option and 98
unregistering (CEEHDLU) 328
vector facility and 102

condition information block
dumping information related to 147
returning initial condition token for

(CEEITOK) 336
examples of 337, 341

Condition Information Block (CIB) 128,
131

condition token
altering (CEEDCOD) 249, 250
constructing (CEENCOD) 379

examples of 381, 383
decomposing (CEEDCOD) 249
dumping information associated with

(CEE3DMP) 147
input to CEESGL, using as 418
message corresponding to, getting

get, format, and dispatch message
(CEEMSG) 375, 377

get, format, and store message in a
buffer (CEEMGET) 352, 356

q_data_token from the ISI, using to
retrieve (CEEGQDT) 305

examples of 305, 311
returning initial condition token

(CEEITOK) 336
examples of 337, 341

SCEESAMP files for 117
condition_ID portion of condition

token 380
conjugate of complex math service

(CEESxCJG) 446
constructing a condition token

(CEENCOD) 379
contact

z/OS 493
control portion of condition token 250,

379
convert character format to Lilian date

(CEEDAYS) 243
examples of 243

convert Lilian date to character format
(CEEDATE) 232

examples of 234
COPY statement, in COBOL 117
cosine math service (CEESxCOS) 447
cotangent math service (CEESxCTN) 450

Index 507

COUNTRY runtime option
defaults of country_code

parameter 483
relationship to setlocale() 25
syntax 24

country setting
default, querying with CEE3CTY

callable service 135
default, setting with CEE3CTY callable

service 135
country_code

country codes defaults table 483
in CEE3MCS callable service 181

examples of 182, 183
in CEE3MDS callable service 187

examples of 188, 189
in CEE3MTS callable service 190

examples of 191
in CEEFMDA callable service 270

examples of 271, 272
in CEEFMDT callable service 273

examples of 274, 275
in CEEFMTM callable service 281

examples of 282, 283
nonexistent country_code, specifying

a 24
parameter 483
popping country_code off stack with

CEE3CTY 136
pushing prior country_code to top of

stack with CEE3CTY 136
querying (CEE3CTY) 135

examples of 138, 139
setting

with CEE3CTY callable
service 135, 139

with COUNTRY runtime
option 24

currency symbol
currency symbol defaults for a given

country 483
default, obtaining with CEE3MCS

callable service 181
examples of 182, 183

setting defaults for
with CEE3CTY callable

service 135
with COUNTRY runtime

option 24, 135

D
data types

definitions of Language Environment
and HLL data types 121

data, external
relationship to ALL31 runtime

option 12
DATAFIELD built-in function, in

CEE3DMP 147
date and time

format
converting from character format

to COBOL Lilian format
(CEECBLDY) 214, 243

converting from character format
to Lilian format (CEEDAYS) 243

date and time (continued)
format (continued)

converting from integers to
seconds (CEEISEC) 332

converting from Lilian format to
character format
(CEEDATE) 232

converting from seconds to
character timestamp
(CEEDATM) 238

converting from seconds to
integers (CEESECI) 402

converting from timestamp to
number of seconds
(CEESECS) 407

default formats for given
country 483

setting default country
(CEE3CTY) 135

setting default country (COUNTRY
runtime option) 24

getting date and time
(CEELOCT) 348

services
CEEDATE—convert Lilian date to

character format 232
CEEDATM—convert seconds to

character timestamp 238
CEEDAYS—convert date to Lilian

format 214, 243
CEEDYWK—calculate day of week

from Lilian date 262
CEEGMT—get current Greenwich

Mean Time 294
CEEGMTO—get offset from

Greenwich Mean Time to local
time 297

CEEISEC—convert integers to
seconds 332

CEELOCT—get current local
time 348

CEEQCEN—query the century
window 384

CEESCEN—set the century
window 396

CEESECI—convert seconds to
integers 402

CEESECS—convert timestamp to
number of seconds 407

Quick Reference Tables 110
day of week, calculating with

CEEDYWK 262
DB2

POSIX runtime option and 68
DEBUG runtime option

syntax 26
Debug Tool

CEETEST callable service, invoking
with 428

giving control to with TEST runtime
option 89

invoking with CEETEST callable
service 428

TEST runtime option and 89
debugging

COBOL batch 26

decimal separator
default, obtaining with CEE3MDS

callable service 187
for countries, defaults 483
setting defaults for with CEE3CTY

callable service 24, 135
table of defaults for a given

country_code 483
DECIMAL-OVERFLOW condition 202,

204
dump

CEE3ABD callable service and
abend with clean-up can generate

Language Environment
dump 125, 129

abend without clean-up generates
only system dump 125, 129

Language Environment dump,
requesting

CEEDUMP default dump file 144,
147

examples of 151
syntax description 144, 149
TEST compile-time option

and 146
TERMTHDACT runtime option

and 84
dynamic storage

allocating
additional heap, setting size

of 223
initial heap, setting size of 38, 51

callable services for
CEE3RPH—set report

heading 199, 201
CEECRHP—create new additional

heap 223, 226
CEECZST—reallocate heap

storage 229
CEEDSHP—discard heap 258, 261
CEEFRST—free heap storage 284,

287
CEEGTST—get heap storage 315,

319
Quick Reference Tables 111

initializing (STORAGE runtime
option) 81

DYNDUMP runtime option 28

E
enablement

condition handling step
TRAP runtime option and 98

enabling exceptions
CEE3SPM callable service and 202,

205
CEESGL callable service and 417
XUFLOW runtime option and 105

enclave
return code of

obtaining current value of 152,
161, 164

setting new value of 161, 164, 208
termination with abend

using CEE3ABD for 125, 128, 170
enclave return code 152, 161, 164

508 z/OS Language Environment Programming Reference

ENV runtime option
syntax 30

ENVAR runtime option
overriding 31
POSIX runtime option and 31
syntax 31

equal (=)
in ENVAR runtime option 31

ERRCOUNT runtime option
CEESGL and 417
syntax 32

error function compliment math service
(CEESxERC) 453

error function math service
(CEESxERF) 454

ERRUNIT runtime option
syntax 33

ESPIE 98
TRAP runtime option and 98

ESTAE
TRAP runtime option and 98

examples
CEE3ABD—terminate enclave with an

abend 126, 128, 130, 131, 171
CEE3CTY—set default country 138,

139
CEE3DMP—generate dump 151
CEE3GRC—get enclave return

code 152, 159
CEE3GRN—get name of routine that

incurred condition 161, 164
CEE3LNG—set national

language 177, 179
CEE3MCS—get default currency

symbol 182, 183
CEE3MDT—get default decimal

separator 188, 189
CEE3MTS—get default thousands

separator 191
CEE3PRM—query parameter

string 194, 195
CEE3RPH—set report heading 200,

201
CEE3SPM—query and modify

Language Environment hardware
condition enablement 205

CEE3SRC—set enclave return
code 209

CEE3USR—set or query user area
fields 211, 213

CEECMI—store and load message
insert data 219, 222

CEECRHP—create new additional
heap 225, 226

CEECZST—reallocate (change size of)
storage 229, 231

CEEDATE—convert Lilian date to
character format 234

CEEDATM—convert seconds to
character format 240, 242

CEEDCOD—decompose a condition
token 251, 253

CEEDSHP—discard heap 259, 261
CEEDYWK—calculate day of week

from Lilian date 263
CEEFMDA—get default date

format 271, 272

examples (continued)
CEEFMDT—get default date and time

format 274, 275
CEEFMON—format monetary

string 278
CEEFMTM—get default time

format 282, 283
CEEFRST—free heap storage

with CEEGTST 286, 287
CEEFTDS—format date and time into

character string 292
CEEGMT—get current GMT 296, 297
CEEGMTO—get offset from

GMT 300
CEEGPID—retrieve Language

Environment version/platform
ID 302, 304

CEEGQDT—get q_data_token 305,
307, 311

CEEGTJS—retrieves the value of an
exported JCL symbol 314

CEEGTST—get heap storage 317, 319
CEEHDLR—register user-written

condition handler
by itself 319
with CEE3GRC and

CEE3SRC 152, 159
CEEHDLU—unregister user-written

condition handler
with CEEHDLR 329, 330

CEEISEC—convert integers to
seconds 334, 335

CEEITOK—return initial condition
token 337, 341

CEELCNV—query locale numeric
conventions 347

CEELOCT—get current local
time 350

CEEMGET—get a message 356
CEEMOUT—dispatch a message

with CEEMGET 358
CEEMRCR—move resume cursor

with CEEHDLR and
CEEHDLU 369, 374

CEEMSG—get, format, and dispatch a
message 376, 377

CEENCOD—construct a condition
token 383

CEEQCEN—query century
window 385, 386

CEEQDTC—query locale, date, and
time conventions 388

CEEQRYL—query active locale
environment 393

CEERCDM — record information for
an active condition 23

CEESCEN—set century window 397,
398

CEESCOL—compare string collation
weight 402

CEESDLG1—calculate logarithm base
10 477

CEESECI—convert seconds to
integers 404, 406

CEESECS—convert timestamp to
number of seconds 410, 412

examples (continued)
CEESETL—set locale operating

environment 414
CEESGL—signal a condition 420, 421
CEESIMOD—perform modular

arithmetic 439
CEESSLOG—calculate logarithm base

e 439
CEESTXF—transform string characters

into collation weights 423
CEETEST—invoke debug tool 429,

431
declares in COBOL and PL/I for

Language Environment data
types 121

math services 438
exceptions

S/370 interrupt codes 205
EXEC CICS command

HANDLE ABEND
CBLPSHPOP runtime option

and 18
HANDLE AID

CBLPSHPOP runtime option
and 18

HANDLE CONDITION
CBLPSHPOP runtime option

and 18
POP HANDLE

CBLPSHPOP runtime option
and 18

PUSH HANDLE
CBLPSHPOP runtime option

and 18
EXECOPS runtime option

syntax 34
exponent underflow 105, 202, 204
exponential base e math service

(CEESxEXP) 455
exponentiation math service

(CEESxXPx) 475
external data

relationship to ALL31 runtime
option 12

F
facility ID

CEENCOD callable service and 379
IGZ severity 0 and 1 conditions and

the ERRCOUNT runtime option 33
feedback code

FEEDBACK data type 121
in callable services 121
omitting 121

FILEDEF command for CMS
SYSABEND PRINTER 125, 129
SYSUDUMP PRINTER 125, 129

FILEHIST runtime option
syntax 35

FILETAG runtime option 35
fixed-overflow condition, in

CEE3SPM 202, 204
floating complex divide math service

(CEESxDVD) 452
floating complex multiply math service

(CEESxMLT) 463

Index 509

FLOW runtime option
syntax 37

G
gamma function math service

(CEESxGMA) 457
general callable services

CEE3GRC—get enclave return
code 152, 159

CEE3PRM—query parameter
string 193, 195

CEE3SRC—set enclave return
code 208, 209

CEE3USR—set or query user area
fields 210, 213

CEERAN0—calculate uniform random
numbers 393, 395

CEETEST—invoke debug tool 428,
430

Quick Reference Tables 111
GOBACK statement

RTEREUS runtime option and 75
Greenwich Mean Time (GMT)

as seed parameter of CEERAN0
callable service 393

getting offset to local time from
(CEEGMTO) 297

examples of 299, 300
return Lilian date and Lilian seconds

(CEEGMT) 294
examples of 296, 297

Gregorian character string
returning local time as a

(CEELOCT) 348
examples of 350

H
HANDLE ABEND EXEC CICS command

CBLPSHPOP runtime option and 18
handle cursor

moving resume cursor relative to
(CEEMRCR) 365

examples of 369
header files

leawi.h (C)
condition token structure and 380

HEAP runtime option
ALL31 runtime option and 12
CEECRHP and 224
different treatment under CICS 39
STORAGE runtime option and 81
syntax 38, 51

heap storage
allocating

from anywhere heap (ANYHEAP
runtime option) 15

from below heap (BELOWHEAP
runtime option) 17, 18

from initial heap segment
(CEEGTST) 315

of initial heap storage (HEAP
runtime option) 38, 51

heap storage (continued)
allocating (continued)

thread-level heap storage
(THREADHEAP runtime
option) 91

AMODE considerations of 13, 39
callable services for

CEE3RPH—set report
heading 199

CEECRHP—create new additional
heap 223

CEECZST—reallocate heap
storage 228

CEEDSHP—discard heap 258
CEEFRST—free heap storage 284
CEEGTST—get heap storage 315
Quick Reference Tables 111

clearing after freeing, in STORAGE
runtime option 81

discarding an entire heap
(CEEDSHP) 258

examples of 259
freeing (CEEFRST) 284
getting (CEEGTST) 315
heap element, changing size of

(CEECZST) 228
heap ID

heap ID 0 invalid in
CEEDSHP 258

returned by CEECRHP 223
using to indicate which heap to

discard, in CEEDSHP 258
using to receive storage from a

given heap, in CEEGTST 315
heap increment

determining size of, with HEAP
runtime option 38

HEAP runtime option and 38, 51
initial heap segment

determining size of (HEAP
runtime option) 38

initializing (STORAGE runtime
option) 81

managing allocation of (HEAP
runtime option) 38, 51

types of variables stored in 38, 51
HEAP64 runtime option 40
HEAPCHK runtime option 41
HEAPPOOLS (C/C++ and Enterprise

PL/I only) 44
HEAPPOOLS64 runtime option 46, 48
HEAPZONES runtime option 48
Heisei era 490
hyperbolic

math services
arctangent (CEESxATH) 443
cosine (CEESxCSH) 448
sine (CEESxSNH) 470
tangent (CEESxTNH) 474

hyperbolic arctangent math service
(CEESxATH) 443

hyperbolic cosine math service
(CEESxCSH) 449

hyperbolic sine math service
(CEESxSNH) 470

hyperbolic tangent math service
(CEESxTNH) 474

I
I/O

BELOWHEAP runtime option
and 17

IGZ Facility ID
ERRCOUNT runtime option and 33

imaginary part of complex math service
(CEESxIMG) 457, 458

IMS (Information Management System)
PLIST runtime option and 66
POSIX runtime option and 67, 96
specifying a C application is running

under 30, 31
include statement, in C and PL/I 117
INFOMSGFILTER runtime option 49

INFOMSGFILTER—eliminates
unwanted informational
messages 49

initial heap
allocating storage from (HEAP

runtime option, CEEGTST) 38, 51,
315

restrictions against discarding 258
initial heap segment

determining size of (HEAP runtime
option) 38, 51

reallocating (changing size of) 227
initializing storage

using options of CEECRHP callable
service 223

using STORAGE runtime option 81,
83

INQPCOPN runtime option
syntax 50

insert data
Language Environment-

generated 380
user-created

cannot use CEEMOUT callable
service to create 357

storing and loading 218
INSPPREF preference file 90
instance specific information (ISI)

CEEDCOD callable service and 250
creating, when building a condition

token 380
insert data is part of 380
maintaining a number of 58
overwriting 219
retrieving q_data_token from

(CEEGQDT) 305
examples of 305, 311

storing address of message insert data
in 218

using CEESGL callable service to
create 417, 418

examples of 420, 421
integers

converting Lilian seconds to
(CEESECI) 402

examples of 406
converting to Lilian seconds

(CEEISEC) 332
examples of 334, 335

INTERRUPT runtime option
debug tool and 50
syntax 50

510 z/OS Language Environment Programming Reference

INTERRUPT runtime option (continued)
TEST runtime option and 51

intrinsic functions, compatibility with
CEELOCT callable service 348

invoking
Debug Tool

with CEETEST callable
service 428, 430

with TEST runtime option 89
IOHEAP64 runtime option 51

J
Japanese

eras 490
JCL symbol

retrieving value of an exported 313

K
keyboard

navigation 493
PF keys 493
shortcut keys 493

L
language-specific condition handlers, use

with XUFLOW runtime option 103
leawi file, description of 117
LIBHEAP64 (AMODE 64 only) 52
library

stack storage
specifying size of (LIBSTACK

runtime option) 54
LIBSTACK runtime option

syntax 54
Lilian date

calculate day of week from
(CEEDYWK) 262

convert date to (CEEDAYS) 214, 243
convert output_seconds to

(CEEISEC) 333
convert to character format

(CEEDATE) 232
get current local date or time as a

(CEELOCT) 348
get GMT as a (CEEGMT) 294
using as input to CEESECI callable

service 402
local time

getting (CEELOCT) 348
locale services

CEEFMON—format monetary
string 276

CEEFTDS—format date and time into
character string 288

CEELCNV—query locale numeric
conventions 342

CEEQDTC—return locale date and
time 387

CEEQRYL—query active locale
environment 391

CEESCOL—compare string collation
weight 399

locale services (continued)
CEESETL—set locale operating

environment 413
CEESTXF—transform string character

into collation weight 422
log gamma math service

(CEESxLGM) 459
logarithm base 10 math service

(CEESxLG1) 461
examples using 477

logarithm base 2 math service
(CEESxLG2) 461

logarithm base e math service
(CEESxLOG) 462

examples using 478
logarithm routines

base 10 (CEESxLG1) 460
base 2 (CEESxLG2) 461
base e (CEESxLOG) 462
log gamma (CEESxLGM) 459

M
math services

absolute value (CEESxABS) 439
arccosine (CEESxACS) 441
arcsine (CEESxASN) 442
arctangent (CEESxATN) 444
arctangent2 (CEESxAT2) 445
conjugate of complex

(CEESxCJG) 446
cosine (CEESxCOS) 447
cotangent (CEEsxCTN) 450
error function (CEESxERF) 454
error function compliment

(CEESxERC) 453
exponential base e (CEESxEXP) 455
exponentiation (CEESxXPx) 475
floating complex divide

(CEESxDVD) 452
floating complex multiply

(CEESxMLT) 463
gamma function (CEESxGMA) 456
hyperbolic arctangent

(CEESxATH) 443
hyperbolic cosine (CEESxCSH) 448,

449
hyperbolic sine (CEESxSNH) 470
hyperbolic tangent (CEESxTNH) 474
imaginary part of complex

(CEESxIMG) 457
log gamma (CEESxLGM) 459
logarithm base 10 (CEESxLG1) 460
logarithm base 2 (CEESxLG2) 461
logarithm base e (CEESxLOG) 462
modular arithmetic

(CEESxMOD) 464
nearest integer (CEESxNIN) 465
nearest whole number

(CEESxNWN) 466
positive difference (CEESxDIM) 451
sine (CEESxSIN) 468
square root (CEESxSGT) 471
tangent (CEESxTAN) 472
transfer of sign (CEESxSGN) 467
truncation (CEESxINT) 458

Meiji era 490

message
get, format, and dispatch a message

(CEEMSG) 375, 376, 377
get, format, and store message in a

buffer(CEEMGET) 352, 356
obtaining 352, 375
truncated 352

message file
pre-Language Environment options to

Language Environment options 106
relationship to CBLQDA runtime

option 19
message handling

nested conditions and 58
quick reference of callable services

for 113
MinKow era 490
modular arithmetic math service

(CEESxMOD) 464
examples using 477

MSGFILE runtime option
different treatment under CICS 57
MSGFILE runtime option

RPTOPTS options report and 55
RPTSTG storage report and 55

MSGQ runtime option
relationship to Instance Specific

Information (ISIs) 58
syntax 58

MTF (Multitasking Facility)
allocating heap storage under (HEAP

runtime option) 39
multithreading

RPTSTG runtime option and 73

N
national language

querying (CEE3LNG) 174
setting (NATLANG runtime option,

CEE3LNG) 59, 174
national language support (NLS)

default values for a specified
country 483

quick reference of callable services
for 112, 114

specifying national language
(NATLANG runtime option) 59

NATLANG runtime option
default of 59
syntax 59

natural log math service
(CEESxLOG) 462

navigation
keyboard 493

nearest integer math service
(CEESxNIN) 466

nearest whole number math service
(CEESxNWN) 466

nested condition
getting name of routine that incurred

a condition (CEE3GRN) 160
limiting (DEPTHCONDLMT runtime

option) 26
MSGQ runtime options and 58

Notices 497

Index 511

O
OCSTATUS runtime option

syntax 60
offset of condition, getting

(CEE3GRO) 165, 210
omitted parameter

how C indicates omission 118
ONCHAR built-in function, in

CEE3DMP 147
ONCOUNT built-in function, in

CEE3DMP 147
ONFILE built-in function, in

CEE3DMP 147
ONKEY built-in function, in

CEE3DMP 147
ONSOURCE built-in function, in

CEE3DMP 147
options report, generating (RPTOPTS

runtime option) 71
osplist macro 194
OSRUN command for CMS

PLIST runtime option and 66
out-of-storage condition 81, 82

P
PAGEFRAMESIZE 61
PAGEFRAMESIZE64 62
parameter

list 384
querying 193

list format
PLIST runtime option and 66

PC runtime option
syntax 65

perror() function 57
picture string

defaults 483
tables of valid 236, 237

PL/I
built-in functions

DATAFIELD 147
ONCHAR 147
ONCOUNT 147
ONFILE 147
ONKEY 147
ONSOURCE 147

callable services, invoking from 115,
124

CEE3DMP callable service
considerations

built-in function information
dumped 147

traceback information 145
variables 146

CEE3RPH callable service equivalent
to PLIXHD 200

CEEHDLR callable service not
allowed with 321

CEEHDLU callable service not
allowed with 321

CEESGL callable service
restriction 417

ERRCOUNT runtime option
consideration 33

PL/I (continued)
examples

CEE3ABD—terminate enclave with
an abend 131, 173

CEE3CTY—set default
country 139

CEE3DMP—generate dump 151
CEE3GRC—get enclave return

code 159
CEE3GRN—get name of routine

that incurred condition 165
CEE3LNG—set national

language 179
CEE3MDS—get default decimal

separator 188
CEE3MTS—get default thousands

separator 191
CEE3PRM—query parameter

string 194
CEE3SPM—query and modify

Language Environment hardware
condition enablement 205

CEE3SRC—set enclave return
code 159

CEE3USR—set or query user area
fields 214

CEECMI—store and load message
insert data 222

CEECZST—reallocate (change size
of) storage 231

CEEDATE—convert Lilian date to
character format 236

CEEDATM—convert seconds to
character timestamp 242

CEEDAYS—convert date to Lilian
format 248

CEEDCOD—decompose a
condition token 253

CEEDSHP—discard heap 261
CEEFMDA—get default date

format 273
CEEFMDT—get default date and

time format 275
CEEFMTM—get default time

format 283
CEEFRST—free heap storage 287
CEEFTDS—format date and time

into character string 293
CEEGMT—get current Greenwich

Mean Time 297
CEEGMTO—get offset from

Greenwich Mean Time to local
time 300

CEEGQDT—get q_data_token 311
CEEGTST—get heap storage 287
CEEISEC—convert integers to

seconds 336
CEEITOK—return initial condition

token 341
CEELCNV—query locale numeric

conventions 347
CEELOCT—get current local

time 351
CEEMGET—get a message 356
CEEMOUT—dispatch a

message 359

PL/I (continued)
examples (continued)

CEEMSG—get, format, and
dispatch a message 378

CEENCOD—construct a condition
token 384

CEEQCEN—query century
window 386

CEEQDTC—return locale date and
time 390

CEEQRYL—query active locale
environment 393

CEESCEN—set century
window 399

CEESCOL—compare string
collation weight 402

CEESECI—convert seconds to
integers 406

CEESETL—set locale operating
environment 417

CEESGL—signal a condition 421
CEESTXF—transform string

characters into collation
weights 425

CEESxLOG—calculate log base
e 479

CEESxMOD—perform modular
arithmetic 479

INTERRUPT option and 50
mapping pre-Language Environment

runtime options to Language
Environment runtime options 106

mapping SPIE to TRAP 98
MSGFILE runtime option and

SYSPRINT 57
MTF (Multitasking Facility)

allocating heap storage under
(HEAP runtime option) 39

controlling number of tasks
(PLITASKCOUNT runtime
option) 88

omitting fc parameter 120
ON-units

ZERODIVIDE 159
semantics require exponent underflow

be signaled 106
XUFLOW runtime option

considerations 106
PLIST runtime option

CICS ignores this option 67
syntax 66

PLITASKCOUNT—control the maximum
number of active tasks

syntax 67
POP function

using to change the current country
setting, in CEE3CTY 136

using to change the current national
language setting, in CEE3LNG 174,
175

using to query or modify the
enablement of hardware conditions,
in CEE3SPM 203

positive difference math service
(CEESxDIM) 451

POSIX runtime option
ANSI C routines and 67, 96

512 z/OS Language Environment Programming Reference

POSIX runtime option (continued)
service routine vector in PIPI interface

and 67, 96
syntax 96

previously allocated storage, changing
size of (CEECZST) 228

examples of 229, 231
program interrupts

CEE3SPM and 202
math services and 458, 465
table of S/370 interrupt codes 205
TRAP runtime option and 98
XUFLOW runtime option and 105

program mask 203
PRTUNIT runtime option

syntax 69
PUNUNIT runtime option

syntax 69
PUSH function

using to change the current country
setting, in CEE3CTY 136

using to change the current national
language, in CEE3LNG 174, 175

using to query or modify the
enablement of hardware conditions,
in CEE3SPM 203

Q
q_data_token, in CEESGL

creating 418
retrieving from the ISI

(CEEGQDT) 305
QUERY function

using to check the current country
setting, in CEE3CTY 136

using to check the current national
language, in CEE3LNG 175

using to check the enablement of
hardware conditions, in
CEE3SPM 203

Quick Reference Tables 3

R
random numbers

generation of (CEERAN0) 393
RDRUNIT runtime option

syntax 70
reason code

CEE3DMP callable service and 147
dumps and 147

RECPAD runtime option
syntax 70

REDIR runtime option
syntax description 71

redirections
of stderr, stdout and stdin output 57,

71
REDIR runtime option and 71

register
save area, as component of

dsa_alloc_value 82
report

generating options report (RPTOPTS
runtime option) 71

resume
cursor

moving (CEEMRCR) 365
setting resume point (CEE3SRP) 209

reusability of an environment 74
routine that incurred condition, getting

(CEE3GRN) 160, 161, 164
RPTOPTS runtime option

relationship to MSGFILE runtime
option 71

sample options report generated
by 72

syntax 72
RPTSTG runtime option

CEEGTST and 315
storage report generated by

setting heading for 199
RTEREUS runtime option

CICS ignores this option 75
syntax 74

runtime options
ABPERC—percolate an abend 9
AIXBLD—invoke AMS for

COBOL 11
ALL31—indicate whether application

runs in AMODE(31) 12
ARGPARSE—specify whether

arguments are parsed 15
AUTOTASK—specify whether Fortran

MTF is to be used 16
BELOWHEAP—control library heap

storage below 16M 17
CBLOPTS—specify format of COBOL

argument 18
CBLPSHPOP—control CICS

commands 18
CBLQDA—control COBOL

QSAM 19
CHECK—detect checking errors 24
COUNTRY—specify default date/time

formats 24
DEBUG—activate COBOL batch

debugging 26
DEPTHCONDLMT—limit extent of

nested conditions 26
ENV—specify operating environment

for C application 31
ERRCOUNT—specify number of

errors allowed 32
ERRUNIT—specify unit number to

which error information is
directed 33

EXECOPS—let runtime options be
specified on command line 34

FILEHIST—specify whether to allow a
file definition to be changed at run
time 35

FILETAG—specify whether to allow
AUTOTAG / AUTOCVT. 35

FLOW—control FLOW output for
OS/VS COBOL 37

HEAP—control allocation of
heaps 38, 51

HEAP64 — controls allocation of user
heap storage 40

HEAP64 — performs diagnostic tests
against the user heap 41

runtime options (continued)
HEAPPOOLS64 — controls optional

user heap storage management
algorithm 46, 48

HEAPZONES 48
INQPCOPN—control value in

OPENED specifier of INQUIRE by
unit statement 50

INTERRUPT—cause attentions to be
recognized by Language
Environment 50

IOHEAP64 — controls allocation of
I/O heap storage 51

LIBSTACK—control library stack
storage 54

MSGQ—specify number of ISI blocks
allocated 58

NATLANG—specify national
language 59

OCSTATUS—control checking of file
existence and whether file deletion
occurs 60

PC—control whether Fortran status
common blocks are shared among
load modules 65

PLIST—specify format of C
arguments 66

PLITASKCOUNT—control the
maximum number of active
tasks 67

PRTUNIT—specifies unit number
used for PRINT and WRITE
statements 69

PUNUNIT—specifies unit number
used for PUNCH statements 69

Quick Reference Tables 3, 6
RDRUNIT—specifies unit number

used for READ statements 70
RECPAD—specifies whether a

formatted input record is padded
with blanks 70

REDIR—specify redirections for C
output 71

report of options specified
generating heading for 199
language report is written in 59,

71, 73
not generated if application

abends 72
sample of 72

RPTOPTS—generate a report of
runtime options used 71

RTEREUS—initialize a reusable
COBOL environment 74

SIMVRD—specify VSAM KSDS for
COBOL 76

STACK—allocate stack storage 76, 79
STORAGE—control storage 81
TERMTHDACT—specify type of

information generated with
unhandled error 83

TEST—indicate debug tool to gain
control 89

TRACE—activate Language
Environment runtime library
tracing 96

Index 513

runtime options (continued)
TRAP—handle abends and program

interrupts 98
UPSI—set UPSI switches 100
USRHDLR—register a user condition

handler at stack frame 0 101
VCTRSAVE—use vector facility 102
XUFLOW—specify program interrupt

due to exponent underflow 105

S
safe condition 417
sample programs 118
SCEESAMP sample library

declaration files in 117
sending comments to IBM xvii
sending product messages to a file

(CEEMSG) 375
examples of 376, 377

sending user-defined message string to
file (CEEMOUT) 357

examples of 358, 359
SET function

changing the COUNTRY setting
with 136

changing the enablement of hardware
conditions with 203

changing the national language
with 174, 175

setlocale () function
COUNTRY runtime option and 25

setlocale() function
CEE3CTY callable service and 137

severity
of a condition

CEESGL and 417
ERRCOUNT runtime option

and 32
severity levels that cause the

debug tool to gain control 89
shortcut keys 493
Showa era 490
SIGNIFICANCE condition 203, 204
SIMVRD runtime option

syntax 76
sine math service (CEESxSIN) 469
slash (/)

NOEXECOPS alters behavior of 34
specifying in parameters of TEST

runtime option 90
SPIE runtime option 98
square root math service

(CEESxSQT) 471
SSRANGE option for COBOL 24
stack

frame
CEE3DMP callable service

and 147
library, allocating (LIBSTACK runtime

option) 54
storage

ALL31 runtime option and 12
allocating (STACK runtime

option) 76, 79
initializing (STACK runtime

option) 81

stack (continued)
storage (continued)

RPTSTG runtime option and 74
setting initial stack segment

(STACK runtime option) 76, 79
threads and 74

user, allocating (STACK runtime
option) 76, 79

STACK runtime option
syntax 76, 79
using with RPTSTG to tune the

stack 74
stack storage

allocating
stack storage (THREADSTACK

runtime option) 93
stack storage (THREADSTACK64

runtime option) 95
STAE

Coptions 98
VS COBOL IIoptions 98

stderr
MSGFILE runtime option and 57
REDIR runtime option and 71
redirecting output from 71

stdin 71
MSGFILE runtime option and 71
REDIR runtime option and 71
redirecting output from 71

stdout 71
MSGFILE runtime option and 71
REDIR runtime option and 71
redirecting output from 71

storage
additional heaps, creating new

(CEECRHP) 223
discarding an entire heap

(CEEDSHP) 258
freeing

discarding an entire heap
(CEEDSHP) 258, 261

freeing additional heap
(CEEFRST) 284, 287

getting
heap storage (CEEGTST) 315

initializing (STORAGE runtime
option) 81

options for 81
BELOWHEAP—control library

heap below 16M 17
HEAP—control initial heap 38, 51
LIBSTACK—control library stack

storage 54
STACK—control thread stack

storage 76, 79
report

language written in 59, 71, 73
not generated if application

abends 73
setting heading for 199
STACK runtime option and 74

services
CEE3RPH—set report

heading 199
CEECRHP—create new additional

heap 223

storage (continued)
services (continued)

CEECZST—reallocate (change size
of) storage 227

CEEDSHP—discard heap 258
CEEFRST—free heap storage 285
CEEGTST—get heap storage 315

stack storage, controlling
(THREADSTACK runtime
option) 93

stack storage, controlling
(THREADSTACK64 runtime
option) 95

thread-level heap, controlling
(THREADHEAP runtime
option) 91

tuning
additional heap, setting size of

(CEECRHP) 223
anywhere heap, setting size of

(ANYHEAP) 14
below heap, setting size of

(BELOWHEAP) 17
initial heap, setting size of

(HEAP) 38, 51
initial stack segment, setting size

of (STACK) 76, 79
library stack storage, setting size of

(LIBSTACK) 54
with CEEGTST 315
with STORAGE runtime

option 81
STORAGE runtime option

CEECZST callable service and 227
CEEFRST callable service and 285
syntax 81

STORAGE—control initial heap or
stack 81

straight double quote (")
initializing storage with 81, 83
specifying in parameters of TEST

runtime option 89, 90
straight single quote (')

initializing storage with 81, 83
specifying in parameters of TEST

runtime option 89, 90
Summary of changes xix
summary of changes for V2R2 xix
summary of changes for V2R2 as

updated December 2015 xix
symbol

table, generated by CEE3DMP 146
syntax diagrams

how to read xiii
SYSABEND PRINTER 125, 129
SYSOUT

default destinations of MSGFILE
runtime option 56

SYSUDUMP PRINTER 125, 129

T
Taisho era 490
Taiwan era 490
tangent math service (CEESxTAN) 472

514 z/OS Language Environment Programming Reference

task
controlling number of tasks under

MTF (PLITASKCOUNT option) 88
termination

enclave
CEE3ABD and 125, 128, 170

termination imminent step
TERMTHDACT runtime option

and 88
TERMTHDACT runtime option

CEE3DMP and 88
CESE transient data queue and 88
different treatment under CICS 88

TEST compile-time option 146
TEST runtime option

syntax 89
thousands separator

obtaining default of (CEE3CTY) 135
setting defaults for (COUNTRY) 24

thread
multiple

storage report for (RPTSTG
runtime option) 74

THREADHEAP—control the allocation of
thread-level heap storage

syntax 91
THREADSTACK—control the allocation

of the thread's stack storage for both the
upward and downward-growing stacks

syntax 93
THREADSTACK64—control the

allocation of the thread's stack storage
for for AMODE 64 applications

syntax 95
time, getting local (CEELOCT) 348
timestamp 238, 407
TRACE runtime option

syntax 96
trace, generating a 84
trademarks 499
transfer of sign math service

(CEESxSGN) 467
TRAP runtime option

ABPERC runtime option and 9
syntax 98

truncation math service (CEESxINT) 459

U
UNDERFLOW condition 105, 202, 204
UPSI runtime option

syntax 100
UPSI—set UPSI switches 100
USE FOR DEBUGGING declarative 26
user

area fields 208, 210, 211
heap (initial heap)

allocating storage from 38, 51,
315

restrictions against discarding 258
stack, controlling (STACK runtime

option) 74
user interface

ISPF 493
TSO/E 493

user-written condition handler
CEE3SPM callable service and 203

user-written condition handler (continued)
CEEMRCR callable service and 365
registering with CEEHDLR callable

service 319
unregistering 328
VCTRSAVE runtime option and 102

USRHDLR runtime option
syntax 101

V
valid condition 417
VCTRSAVE runtime option

syntax 102
vector facility 102
VSAM

KSDS 11, 76
RRDS 11

W
WITH DEBUGGING MODE clause for

COBOL 26

X
XPLINK runtime option 103

XPLink 103
XUFLOW runtime option

syntax 105

Index 515

516 z/OS Language Environment Programming Reference

IBM®

Product Number: 5650-ZOS

Printed in USA

SA38-0683-02

	Contents
	Figures
	Tables
	About this document
	Using your documentation
	How to read syntax diagrams
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 2 (V2R2) as updated December, 2015
	Summary of changes for z/OS Version 2 Release 2 (V2R2)
	z/OS Version 2 Release 1 summary of changes

	Part 1. Language Environment runtime options
	Chapter 1. Summary of Language Environment runtime options
	Quick reference table for AMODE 31 runtime options
	Quick reference table for AMODE 64 runtime options
	How to specify runtime options
	Propagating runtime options with spawn and exec

	Chapter 2. Using the Language Environment runtime options
	ABPERC
	ABTERMENC
	AIXBLD (COBOL only)
	ALL31
	ANYHEAP
	ARGPARSE | NOARGPARSE (C only)
	AUTOTASK | NOAUTOTASK (Fortran only)
	BELOWHEAP
	CBLOPTS (COBOL only)
	CBLPSHPOP (COBOL only)
	CBLQDA (COBOL only)
	CEEDUMP
	CEERCDM—Record information for an active condition
	CHECK (COBOL only)
	COUNTRY
	DEBUG (COBOL only)
	DEPTHCONDLMT
	DYNDUMP
	ENV (C only)
	ENVAR
	ERRCOUNT
	ERRUNIT (Fortran only)
	EXECOPS | NOEXECOPS (C only)
	FILEHIST (Fortran only)
	FILETAG (C/C++ only)
	FLOW (COBOL only)
	HEAP
	HEAP64 (AMODE 64 only)
	HEAPCHK
	HEAPPOOLS (C/C++ and Enterprise PL/I only)
	HEAPPOOLS64 (C/C++ and AMODE 64 only)
	HEAPZONES
	INFOMSGFILTER
	INQPCOPN (Fortran only)
	INTERRUPT
	IOHEAP64 (AMODE 64 only)
	LIBHEAP64 (AMODE 64 only)
	LIBSTACK
	MSGFILE
	MSGQ
	NATLANG
	OCSTATUS (Fortran only)
	PAGEFRAMESIZE
	PAGEFRAMESIZE64
	PC (Fortran only)
	PLIST (C only)
	PLITASKCOUNT (PL/I only)
	POSIX
	PROFILE
	PRTUNIT (Fortran only)
	PUNUNIT (Fortran only)
	RDRUNIT (Fortran only)
	RECPAD (Fortran only)
	REDIR | NOREDIR (C only)
	RPTOPTS
	RPTSTG
	RTEREUS (COBOL only)
	SIMVRD (COBOL only)
	STACK
	STACK64 (AMODE 64 only)
	STORAGE
	TERMTHDACT
	TEST | NOTEST
	THREADHEAP
	THREADSTACK
	THREADSTACK64 (AMODE 64 only)
	TRACE
	TRAP
	UPSI (COBOL only)
	USRHDLR | NOUSRHDLR
	VCTRSAVE
	XPLINK
	XUFLOW
	Language runtime option mapping

	Part 2. Language Environment callable services
	Chapter 3. Quick reference tables for Language Environment services
	Bit manipulation routines
	Condition-handling callable services
	Date and time callable services
	Dynamic storage callable services
	General callable services
	Initialization and termination services
	Locale callable services
	Math services
	Message handling callable services
	National Language Support callable services

	Chapter 4. Using Language Environment callable services
	Locating callable service information
	General usage notes for callable services
	Invoking callable services
	Header, copy, or include files
	Sample programs
	C/C++ syntax
	COBOL syntax
	PL/I syntax
	Parameter list for invoking callable services

	Data type definitions
	C/C++ data type definitions
	COBOL data type definitions
	PL/I data type definitions

	Chapter 5. Callable services
	CEE3ABD—Terminate enclave with an abend
	CEE3AB2—Terminate enclave with an abend and reason code
	CEE3CIB—Return pointer to condition information block
	CEE3CTY—Set default country
	CEE3DLY—Suspend processing of the active enclave in seconds
	CEE3DMP—Generate dump
	CEE3GRC—Get the enclave return code
	CEE3GRN—Get name of routine that incurred condition
	CEE3GRO—Get offset of condition
	CEE3INF—Query enclave information
	CEE3LNG—Set national language
	CEE3MCS—Get default currency symbol
	CEE3MC2—Get default and international currency symbols
	CEE3MDS—Get default decimal separator
	CEE3MTS—Get default thousands separator
	CEE3PRM—Query parameter string
	CEE3PR2—Query parameter string long
	CEE3RPH—Set report heading
	CEE3SPM—Query and modify Language Environment hardware condition enablement
	CEE3SRC—Set the enclave return code
	CEE3SRP—Set resume point
	CEE3USR—Set or query user area fields
	CEECBLDY—Convert date to COBOL Integer format
	CEECMI—Store and load message insert data
	CEECRHP—Create new additional heap
	CEECZST—Reallocate (change size of) storage
	CEEDATE—Convert Lilian date to character format
	CEEDATM—Convert seconds to character timestamp
	CEEDAYS—Convert date to Lilian format
	CEEDCOD—Decompose a condition token
	CEEDLYM—Suspend processing of the active enclave in milliseconds
	CEEDSHP—Discard heap
	CEEDYWK—Calculate day of week from Lilian date
	CEEENV—Process environmental variables
	CEEFMDA—Get default date format
	CEEFMDT—Get default date and time format
	CEEFMON—Format monetary string
	CEEFMTM—Get default time format
	CEEFRST—Free heap storage
	CEEFTDS—Format time and date into character string
	CEEGMT—Get current Greenwich Mean Time
	CEEGMTO—Get offset from Greenwich Mean Time to local time
	CEEGPID—Retrieve the Language Environment version and platform ID
	CEEGQDT—Retrieve q_data_token
	CEEGTJS—Retrieves the value of an exported JCL symbol
	CEEGTST—Get heap storage
	CEEHDLR—Register user-written condition handler
	CEEHDLU—Unregister user-written condition handler
	CEEISEC—Convert integers to seconds
	CEEITOK—Return initial condition token
	CEELCNV—Query locale numeric conventions
	CEELOCT—Get current local date or time
	CEEMGET—Get a message
	CEEMOUT—Dispatch a message
	CEEMRCE—Move resume cursor explicit
	CEEMRCR—Move resume cursor
	CEEMSG—Get, format, and dispatch a message
	CEENCOD—Construct a condition token
	CEEQCEN—Query the century window
	CEEQDTC—Query locale date and time conventions
	CEEQRYL—Query active locale environment
	CEERAN0—Calculate uniform random numbers
	CEESCEN—Set the century window
	CEESCOL—Compare collation weight of two strings
	CEESECI—Convert seconds to integers
	CEESECS—Convert timestamp to seconds
	CEESETL—Set locale operating environment
	CEESGL—Signal a condition
	CEESTXF—Transform string characters into collation weights
	CEETDLI—Invoke IMS
	CEETEST—Invoke Debug Tool
	CEEUTC—Get coordinated universal time

	Chapter 6. Bit manipulation routines
	CEESICLR—Bit clear
	CEESISET—Bit set
	CEESISHF—Bit shift
	CEESITST—Bit test

	Chapter 7. Language Environment math services
	Call interface to math services
	Parameter types: parm1 and parm2
	Feedback code parameter (fc)
	Language-specific built-in math services

	Calls to math services from different languages
	Math services
	CEESxABS—Absolute value
	CEESxACS—Arccosine
	CEESxASN—Arcsine
	CEESxATH—Hyperbolic arctangent
	CEESxATN—Arctangent
	CEESxAT2—Arctangent2
	CEESxCJG—Conjugate of complex
	CEESxCOS—Cosine
	CEESxCSH—Hyperbolic cosine
	CEESxCTN—Cotangent
	CEESxDIM—Positive difference
	CEESxDVD—Floating-point complex divide
	CEESxERC—Error function complement
	CEESxERF—Error function
	CEESxEXP—Exponential base e
	CEESxGMA—Gamma function
	CEESxIMG—Imaginary part of complex
	CEESxINT—Truncation
	CEESxLGM—Log gamma
	CEESxLG1—Logarithm base 10
	CEESxLG2—Logarithm base 2
	CEESxLOG—Logarithm base e
	CEESxMLT—Floating-point complex multiply
	CEESxMOD—Modular arithmetic
	CEESxNIN—Nearest integer
	CEESxNWN—Nearest whole number
	CEESxSGN—Transfer of sign
	CEESxSIN—Sine
	CEESxSNH—Hyperbolic sine
	CEESxSQT—Square root
	CEESxTAN—Tangent
	CEESxTNH—Hyperbolic tangent
	CEESxXPx—Exponentiation
	Examples of math services

	Part 3. Appendixes
	Appendix A. IBM-supplied country code defaults
	Appendix B. Date and time services tables
	Appendix C. Controlling storage allocation
	Storage statistics
	Storage statistics for AMODE 64 applications

	Appendix D. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface information
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

