
CICS Transaction Server for z/OS
Version 6

Using EXCI

IBM

Note

Before using this information and the product it supports, read the information in Product Legal Notices.

This edition applies to the IBM® CICS® Transaction Server for z/OS®, Version 6 (product number 5655-BTA) and to all
subsequent releases and modifications until otherwise indicated in new editions.

The beta version of IBM CICS Transaction Server for z/OS might be referred to in the product and documentation as CICS
TS for z/OS, beta or 6.3.
© Copyright International Business Machines Corporation 1974, 2025.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/docs/en/SSJL4D_6.x/documentation/notices.html

Contents

About this PDF...v

Chapter 1. EXCI...1

Chapter 2. The external CICS interface...3
The EXCI programming interfaces...4

Choosing between the EXEC CICS and the CALL interface... 5
Illustrations of the external CICS CALL interface ... 5
Illustration of the EXCI EXEC CICS interface...7

Resource recovery..8
Use of RRMS with the external CICS interface.. 8
Use of sync points in the client program... 11

The EXCI CALL interface.. 11
The EXCI CALL interface commands... 14
EXCI call response code values... 34
Return area for the EXCI CALL interface..34
Example of EXCI CALL with null parameters...36

The EXCI EXEC CICS interface.. 37
EXEC CICS LINK command (EXCI)...38
EXEC CICS DELETE CHANNEL command (EXCI)...45
EXEC CICS DELETE CONTAINER command (EXCI)...46
EXEC CICS ENDBROWSE CONTAINER command (EXCI)..47
EXEC CICS GET CONTAINER command (EXCI)...48
EXEC CICS GETNEXT CONTAINER command (EXCI)..52
EXEC CICS MOVE CONTAINER command (EXCI)..53
EXEC CICS PUT CONTAINER command (EXCI)...55
EXEC CICS QUERY CHANNEL command (EXCI)..59
EXEC CICS STARTBROWSE CONTAINER command (EXCI).. 59

Compiling and link-editing EXCI client programs... 60
Job control language to run an EXCI client program...61
EXCI programming considerations.. 63

Chapter 3. Configuring EXCI...65
Setting up EXCI for static routing.. 65
Setting up EXCI for dynamic routing... 66
Defining connections to CICS.. 66
The EXCI user-replaceable module.. 67
Using the EXCI options table, DFHXCOPT...69

Chapter 4. Security for EXCI...75
Using MRO logon and bind-time security..75
Link security for EXCI...76
User security for EXCI..76
Surrogate user checking for EXCI..76

Chapter 5. Troubleshooting EXCI..79
EXCI trace.. 79
EXCI system dumps...79
The EXCI service trap, DFHXCTRA.. 80
Problem determination with RRMS... 81

 iii

Chapter 6. Response and reason codes returned on EXCI calls.............................. 83
Reason codes for response: WARNING.. 83
Reason codes for response: RETRYABLE..85
Reason codes for response: USER_ERROR.. 87
Reason codes for response: SYSTEM_ERROR.. 95

Chapter 7. EXCI samples: channel and containers sample applications............... 105
About the EXCI channel and containers sample applications... 105
Setting up the EXCI channel and containers sample programs...106
Running the EXCI channel and containers sample applications..107

Notices..109

Index.. 115

iv

About this PDF

This PDF describes how you can use the EXternal CICS Interface (EXCI) to make the services of CICS
Transaction Server for z/OS available to external programs. Before CICS TS 5.4, this information was in
the External Interfaces Guide.

For details of the terms and notation used in this book, see Conventions and terminology used in the CICS
documentation in IBM Documentation.

Date of this PDF
This PDF was created on 2026-01-15 (Year-Month-Date).

© Copyright IBM Corp. 1974, 2025 v

https://www.ibm.com/docs/en/SSJL4D_6.x/documentation/conventions.html
https://www.ibm.com/docs/en/SSJL4D_6.x/documentation/conventions.html

vi CICS TS for z/OS: Using EXCI

Chapter 1. How external programs access CICS
through EXCI

The external CICS interface (EXCI) makes CICS applications more easily accessible from non-CICS
environments.

Programs running in z/OS can issue an EXEC CICS LINK PROGRAM command to call a CICS application
programs running in a CICS region. Alternatively, the z/OS programs can use the CALL interface when it is
more appropriate to do so.

The provision of this programming interface means that, for example, z/OS programs can:

• Update resources with integrity while CICS is accessing them.
• Take CICS resources offline, and back online, at the start and end of a z/OS job. For example, you can:

– Open and close CICS files.
– Enable and disable transactions in CICS (and so eliminate the need for a main terminal operator

during system backup and recovery procedures).

The external CICS interface opens up a new way to implement client/server applications, where the
client program in a non-CICS environment calls a server program running in the CICS address space. The
external CICS interface benefits not only TSO and batch applications, but allows you to extend the use of
CICS application programs in an open client/server environment.

© Copyright IBM Corp. 1974, 2025 1

2 CICS TS for z/OS: Using EXCI

Chapter 2. The external CICS interface
The external CICS interface (EXCI) is an application programming interface that enables a non-CICS
program (a client program) running in z/OS to call a program (a server program) running in a CICS
region and to pass and receive data by using a communications area or by using a channel and a set of
containers. The CICS application program is started as if linked to by another CICS application program.

You can use the external CICS interface to allocate and open sessions, or pipes (a one-way
communication path between a sending process and a receiving process) to a CICS region, and to pass
distributed program link (DPL) requests over them. The multiregion operation (MRO) facility of CICS
interregion communication (IRC) facility supports these requests, and each pipe maps onto one MRO
session, where the client program represents the sending process and the CICS server region represents
the receiving process.

There is a default limit of 100 pipes per EXCI address space; the limit can be changed when z/OS is
IPLed. This limit prevents EXCI clients monopolizing MRO resources, which could prevent CICS regions
from using MRO. The limit is applied in both MRO and cross-system MRO (XCF/MRO) environments. An
allocate_pipe request results in an MRO LOGON request being issued, and there is a limit on the total
number of MRO LOGON requests allowed from all address spaces. This is critical when you are using
XCF/MRO, where the limit on the number of members in an XCF group also limits the total number of MRO
LOGON requests.

Therefore, when a pipe is no longer needed, you must ensure that the pipe is closed and deallocated. It
is the user's responsibility to ensure that the client program closes and deallocates the pipe that it has
opened, before the program terminates. Failure to deallocate pipes can lead to errors resulting from the
logon limit being reached.

Note: After a successful Open_Pipe request, when your client program finishes using the pipe, you must
first issue a Close_Pipe command and then a Deallocate_Pipe command to free the pipe. If you
issue a Deallocate_Pipe command without first closing an open pipe with Close_Pipe, your request
fails with USER_ERROR (RC12) with reason code 405 PIPE_NOT_CLOSED.

If your Open_Pipe request fails, it is recommended to deallocate the pipe to avoid the logon limit being
reached.

The external CICS interface identifies the CICS region to communicate with by the CICS region APPLID, as
defined in the APPLID system initialization parameter. You can specify the APPLID either on an EXCI API
call or by using the DFHXCURM user-replaceable program. You can also use DFHXCURM to change the
value of XCFGROUP to be used on an allocate_pipe request. For more information about DFHXCURM,
see The EXCI user-replaceable module.

Note: Do not confuse the term generic APPLID with generic resource name. Generic resource names apply
only to z/OS Communications Server generic resource groups, which are not supported by EXCI.

The client program and the CICS server region (the region where the server program runs or is defined)
must be in the same z/OS image unless under the following conditions:

• The CICS region is running in a sysplex that supports cross-system MRO.
• All DPL requests issued by the client program specify the SYNCONRETURN option.

Alternatively, if there is no local CICS region in the z/OS image, you must specify the SVC parameter that
the external CICS interface is to use, by coding a CICSSVC parameter in the DFHXCOPT table. Although
the external CICS interface does not support the cross-memory access method, it can use the XCF access
method provided by the CICS XCF/MRO facility.

A client program that uses the external CICS interface can operate multiple sessions for different
users (either under the same or separate TCBs) all coexisting in the same z/OS address space without
knowledge of, or interference from, each other.

Where a client program attaches another client program, the attached program runs under its own TCB.

© Copyright IBM Corp. 1974, 2025 3

https://www.ibm.com/docs/SSJL4D_6.x/configuring/interfaces/dfhtm4z.html
https://www.ibm.com/docs/SSJL4D_6.x/configuring/interfaces/dfhtmf0.html

API restrictions for server programs: A CICS server program invoked by an external CICS interface
request is restricted to the DPL subset of the CICS application programming interface. This subset (the
DPL subset) of the API commands is the same as for a CICS-to-CICS server program. See Distributed
Program Link (DPL) for details of the DPL subset for server programs.

The EXCI programming interfaces
The external CICS interface provides two forms of programming interface:

• The EXCI CALL interface
• The EXCI EXEC CICS interface

The EXCI programming interfaces
The external CICS interface (EXCI) provides two forms of programming interface: the EXCI CALL interface
and the EXEC CICS interface.

EXCI CALL interface
The EXCI CALL interface consists of six commands that you can use for the following actions:

• Allocate and open sessions to a CICS system from non-CICS programs running under z/OS
• Issue DPL requests on these sessions from the non-CICS programs
• Close and deallocate the sessions on completion of the DPL requests.

Here is the list of the six EXCI commands:

• Initialize_User
• Allocate_Pipe
• Open_Pipe
• DPL_Request
• Close_Pipe
• Deallocate_Pipe

For detailed descriptions of these commands and an EXCI CALL example, see “The EXCI CALL interface”
on page 11.

EXEC CICS interface
The EXEC CICS interface provides several commands.

For example, the interface provides a single, composite command, EXEC CICS LINK PROGRAM , that
performs all six commands of the EXCI CALL interface in one invocation. Each time you issue an EXEC
CICS LINK PROGRAM command in a client application program, the external CICS interface invokes each
of the six EXCI calls on your behalf.

The EXEC CICS LINK PROGRAM command is similar but not identical to the distributed program link
command of the CICS command-level application programming interface.

EXCI also provides the ability to process data using channel and container commands. A channel together
with its set of containers can then be passed on the EXEC CICS LINK PROGRAM command or on a call
API DPL_REQUEST , as an alternative to using a communications area to transfer data or information from
one program to another.

For detailed descriptions of the commands that are available with the EXEC CICS interface, see “The EXCI
EXEC CICS interface” on page 37.

API restrictions for server programs: A CICS server program invoked by an external CICS interface
request is restricted to the DPL subset of the CICS application programming interface. This subset (the

4 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/applications/designing/dfhp365.html
https://www.ibm.com/docs/SSJL4D_6.x/applications/designing/dfhp365.html

DPL subset) of the API commands is the same as for a CICS-to-CICS server program. See Distributed
Program Link (DPL) for details of the DPL subset for server programs.

Choosing between the EXEC CICS and the CALL interface
You can use both the CALL interface (all six commands) and the EXEC CICS LINK command in the same
program, to perform separate requests. As a general rule, it is unlikely that you would want to do this in a
production program.

EXCI sample programs illustrates the various language versions of the CICS-supplied sample client
program.

Each form of the external CICS interface has its particular benefits.

• For low-frequency or single DPL requests, you are recommended to use the EXEC CICS LINK
command.

It is easier to code, and therefore less prone to programming errors.

Note that each invocation of an EXEC CICS LINK command causes the external CICS interface to
perform all the functions of the CALL interface, which results in unnecessary overhead.

Note also that this overhead is greatly increased if you use the EXEC CICS LINK command to
communicate with a CICS server region in a different LPAR. In this case each invocation of the EXEC
CICS LINK command generates a great deal of XCF activity because of the IRP logon, connect,
disconnect and logoff which is required. You might find that you experience severe degradation of
elapsed time between EXEC CICS LINK commands issued to a CICS server region in a separate LPAR,
compared to the elapsed time of the same commands issued to a CICS server region in the same LPAR.

• For multiple or frequent DPL requests from the same client program, you are recommended to use the
EXCI CALL interface.

This is more efficient, because you need only perform the Initialize_User and Allocate_Pipe commands
once, at or near the beginning of your program, and the Deallocate_Pipe once on completion of all DPL
activity. In between these functions, you can open and close the pipe as necessary, and while the pipe is
opened, you can issue as many DPL calls as you want.

Illustrations of the external CICS CALL interface
These four diagrams illustrate the external CICS interface using the EXCI CALL interface.

Figure 1. Stage 1: Status after an INITIALIZE_USER call

Note:

Chapter 2. The external CICS interface 5

https://www.ibm.com/docs/SSJL4D_6.x/applications/designing/dfhp365.html
https://www.ibm.com/docs/SSJL4D_6.x/applications/designing/dfhp365.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-samples/dfhtmf3.html

1. In Figure 1 on page 5, the target CICS region is running with IRC open, and one EXCI connection with
three sessions installed, at the time the client application program issues an INITIALIZE_USER call.

2. The client application program address space is initialized with the EXCI user environment. There is no
MRO activity at this stage, and no pipe exists.

Figure 2. Stage 2: Status after the first ALLOCATE_PIPE call

Note: In Figure 2 on page 6, the external CICS interface logs on to MRO, identifying the target CICS server
region.

Figure 3. Stage 3: Status after the OPEN_PIPE call

Note:

1. In Figure 3 on page 6, the external CICS interface connects to the CICS server region, and the pipe is
now available for use.

2. The remaining two EXCI sessions are free, and can be used by further open pipe requests from the
same, or a different, client application program (provided the connection is generic).

6 CICS TS for z/OS: Using EXCI

Figure 4. Stage 4: Status with one open pipe, processing a DPL call

Note: In Figure 4 on page 7, the external CICS interface passes the DPL request over the open pipe, with
any associated data. The CICS server region returns a response and data over the open pipe.

Closing pipes: When the client application program closes a pipe, it remains allocated ready for use by the
same user, and the status is as shown in Figure 2 on page 6. At this stage, the MRO session is available for
use by another open pipe request, from the same or from a different client application program (provided
the connection is generic).

Deallocating pipes: When the client application program deallocates a pipe, it logs off from MRO and frees
all the storage associated with the session. This leaves the status as shown in Figure 1 on page 5.

Illustration of the EXCI EXEC CICS interface
This diagram illustrates the EXEC CICS interface, and how it resolves to the six EXCI CALLs.

Figure 5. Illustration of the external CICS interface using the EXEC CICS command

Chapter 2. The external CICS interface 7

Resource recovery
Resource recovery consists of the protocols and program interfaces that allow an application program to
make consistent changes to multiple protected resources. The external CICS interface supports resource
recovery.

A CICS server program that is invoked by an external CICS interface request can update recoverable
resources; the changes are committed when the mirror transaction in the CICS server region takes a sync
point. The client program can determine when sync pointing should occur. There are two options:

• Resource recovery controlled by the CICS server regions. In this case, changes to recoverable resources
are committed at the completion of each DPL request, independently of the client program. Also, in
addition to the sync point taken when the server program returns control to CICS (the SYNCONRETURN
option), the server program can take explicit sync points during execution.

• Resource recovery controlled by the EXCI client program with the support of recoverable resource
management services (RRMS). When the client program requests it, updates made by the server
program in successive DPL requests are committed together.

To support this option, CICS and the external CICS interface both use resource recovery services (RRS),
the z/OS sync point manager 1 , which is a z/OS component of recoverable resource management
services (RRMS). In the context of RRMS, CICS is a resource manager ; the client program can
issue requests to other resource managers, and have resources owned by those resource managers
committed in the same unit-of-recovery (UR). 2

These options are controlled as follows:

• By the DPL_opts parameter of the DPL_request.
• By the SYNCONRETURN option, either specified or omitted, on the EXEC CICS LINK PROGRAM

command.

If you specify SYNCONRETURN, a sync point is taken on completion of each DPL request. If
SYNCONRETURN is omitted, a sync point is taken when the client program requests it using the interfaces
described in “Use of sync points in the client program” on page 11.

Use of RRMS with the external CICS interface
You can use z/OS recoverable resource management services (RRMS) to coordinate distributed program
link (DPL) requests.

To use RRMS to coordinate DPL requests, ensure that the following conditions are met:

• The EXCI client and the CICS region to which it sends DPL requests run in the same z/OS image. This is
an RRMS restriction, and does not apply to DPL requests that specify SYNCONRETURN.

• The CICS region that receives the DPL requests is started with RRMS=YES specified as a system
initialization parameter (the default is RRMS=NO).

• Resource recovery services (RRS) run in the z/OS image where CICS and the client program execute.
See z/OS MVS Programming: Resource Recovery.

The following figure shows how the external CICS interface and CICS use RRMS. It shows the flow
between the z/OS batch region that contains the external CICS interface and the EXCI client program, and
the CICS server region that contains the CICS mirror and a CICS application program. The numbers on the
diagram refer to the principal steps in a unit of recovery (UR), as listed after the figure.

1 RRMS comprises three z/OS components: registration services, context services, and resource recovery
services (RRS)

2 A unit of recovery is analogous to a CICS unit of work

8 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.iean100/abstract.htm

Figure 6. Conceptual view of EXCI client and CICS server region using RRMS

1. If the CICS system initialization parameter RRMS=YES is specified, CICS registers with RRMS as a
resource manager. This registration occurs during CICS initialization.

2. When the EXCI client program issues a DPL_Request call in 2-phase commit mode (a call that omits
the SYNCONRETURN option), it receives the following from RRMS:

• A unit-of-recovery identifier (URID)
• A context token
• A pass token

3. The URID and the tokens obtained by EXCI on behalf of the client program are included on the DPL
request that is passed to the CICS server region. If the DPL request is the first one in the UR, CICS
calls RRS to express an interest in the UR, attaches a new mirror transaction, and validates the tokens.
If the request is valid, the mirror program links to the specified server application program. The
server program completes its work, which is all performed in the UR. This work can include updating
recoverable resources in the local server region, or daisy chaining to other CICS regions.

4. When the server program completes, it returns the communications area (COMMAREA) or channels
and containers , with return codes, to the client program.

Note: Steps 3 and 4 can repeated many times for the same UR.
5. When the EXCI client program is ready to commit or back out its changes, the program invokes RRS to

begin the 2-phase commit protocol.
6. RRS acts as coordinator and completes one of the following actions:

• RRS asks the resource managers to prepare to commit all updates in the UR. Resource managers
other than the CICS server region might also express an interest in the UR. If all vote yes, RRS tells
them to go ahead and commit the changes. If any vote no, RRS tells all the resource managers to
back out all the changes made in the UR.

Chapter 2. The external CICS interface 9

• RRS tells all the resource managers that express an interest in the UR to back out all the changes
made in the UR.

The UR is now complete and CICS detaches the mirror task. If the EXCI client sends any new DPL
requests after this point, EXCI starts a new UR and CICS attaches a new mirror transaction.

Each DPL request that specifies the SYNCONRETURN option attaches a new mirror task in the target CICS
region. The first DPL request that does not specify SYNCONRETURN also attaches a new mirror task, but
subsequent requests are directed to the same mirror task. When a sync point takes place, the mirror task
ends, and the next non-SYNCONRETURN request attaches a new mirror. See Figure 7 on page 10. In this
figure, a z/OS client application issues DPL requests with and without SYNCONRETURN. The numbers on
the figure refer to the principal flow, as listed after the figure.

Figure 7. Effect of mixing DPL requests with and without the SYNCONRETURN option

1. Client issues a DPL request without the SYNCONRETURN option.

Because no mirror transaction is running, a new mirror (Mirror 1) is attached.
2. The DPL request completes, and because it was issued without the SYNCONRETURN option, the mirror

transaction waits for another request.
3. Client issues DPL request with the SYNCONRETURN option.

A new mirror transaction (Mirror 2) is attached.
4. On completion of the DPL request, resources updated by the mirror transaction are committed, and

the mirror transaction ends.
5. Client issues another DPL request without the SYNCONRETURN option. Mirror 1 receives and executes

the DPL request.
6. The DPL request completes, and once again, the mirror transaction waits for another request.
7. Client issues DPL request with the SYNCONRETURN option.

A new mirror transaction (Mirror 3) is attached.
8. On completion of the DPL request, resources updated by the mirror transaction are committed, and

the mirror transaction ends.
9. The client program requests a syncpoint. Resources updated by mirror 1 are committed, and the

transaction ends.

10 CICS TS for z/OS: Using EXCI

Use of sync points in the client program
A client program can request that a sync point is taken by using a z/OS callable service to commit or back
out changes.

To commit changes instigated by the client program, use one of the following z/OS callable services:
Application_Commit_UR (SRRCMIT)

For a description of Application_Commit_UR, see z/OS MVS Programming: Callable Services for High-
Level Languages.

Commit_UR (ATRCMIT)
For a description of Commit_UR, see z/OS MVS Programming: Resource Recovery.

To back out changes in the client program, use one of the following z/OS callable services:
Application_Backout_UR (SRRBACK)

For a description of Application_Backout_UR, see z/OS MVS Programming: Callable Services for High-
Level Languages.

Backout_UR (ATRBACK)
For a description of Backout_UR, see z/OS MVS Programming: Resource Recovery.

If none of these interfaces are used, changes are committed or backed out explicitly when the client
program either ends normally or abends. It is not advisable to use implicit commit or backout for the
following reasons:

• The client program cannot tell whether updates were committed or backed out. Even if the program
ends normally, a resource manager might back out any changes.

• The runtime environment for high level languages might intercept errors that would otherwise result
in an operating system abend. If such an error is intercepted and the client program does not take
any explicit action, the program might terminate normally and updates might be committed. Code your
client program to ensure that resources are committed or backed out correctly in these situations. For
example, a PL/I program can include an ON unit that issues an SRRBACK command when errors are
encountered. Similarly, a COBOL program can use the ON phrase on statements that might encounter
errors.

The EXCI CALL interface
The EXCI CALL interface consists of six commands that you can use for the following actions:

• Allocate and open sessions to a CICS system from non-CICS programs running under z/OS.
• Issue distributed program link (DPL) requests on these sessions from the non-CICS programs.
• Close and deallocate the sessions on completion of the DPL requests.

The six EXCI commands are as follows:

• Initialize_User
• Allocate_Pipe
• Open_Pipe
• DPL_Request
• Close_Pipe
• Deallocate_Pipe

Illustration of the EXCI CALL interface
These four diagrams illustrate the EXCI interface using the EXCI CALL interface.

Stage 1: INITIALIZE_USER (initializing the user environment)
This diagram shows the z/OS Client Application with the External CICS user environment established
and the CICS server region with MRO EXCI CONNECTION installed with 3 sessions.

Chapter 2. The external CICS interface 11

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieac100/abstract.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieac100/abstract.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.iean100/abstract.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieac100/abstract.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieac100/abstract.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.iean100/abstract.htm

Figure 8. Stage 1: Status after an INITIALIZE_USER call

1. In Figure 8 on page 12, the target CICS region is running with IRC open, and one EXCI
connection with three sessions installed, at the time the client application program issues an
INITIALIZE_USER call.

2. The client application program address space is initialized with the EXCI user environment. There
is no MRO activity at this stage, and no pipe exists.

Stage 2: ALLOCATE_PIPE (allocating a pipe to CICS)
This diagram shows the z/OS Client Application with a pipe allocated and the CICS server region with
an MRO EXCI CONNECTION installed with 3 sessions.

Figure 9. Stage 2: Status after the first ALLOCATE_PIPE call

In Figure 9 on page 12, the external CICS interface logs on to MRO, identifying the target CICS server
region.

Stage 3: OPEN_PIPE (connecting an allocated pipe to a receive session)
This diagram shows the z/OS Client Application with a pipe opened and the CICS server region with an
MRO EXCI CONNECTION installed with 3 sessions.

12 CICS TS for z/OS: Using EXCI

Figure 10. Stage 3: Status after the OPEN_PIPE call

1. In Figure 10 on page 13, the external CICS interface connects to the CICS server region, and the
pipe is now available for use.

2. The remaining two EXCI sessions are free, and can be used by further open pipe requests from the
same, or a different, client application program (provided the connection is generic).

Stage 4: DPL_Request (issuing a DPL request across an open pipe)
This diagram shows that a DPL request and data flows from the client to the server and response and
data flows back. The z/OS Client Application has a pipe opened and the CICS server region has an
MRO EXCI CONNECTION installed with 3 sessions.

Figure 11. Stage 4: Status with one open pipe, processing a DPL call

In Figure 11 on page 13, the external CICS interface passes the DPL request over the open pipe, with
any associated data. The CICS server region returns a response and data over the open pipe.

Stage 5: Close_Pipe (closing pipes)
When the client application program closes a pipe, it remains allocated ready for use by the same
user, and the status is as shown in Figure 9 on page 12. At this stage, the MRO session is available
for use by another open pipe request, from the same or from a different client application program
(provided the connection is generic).

Stage 6: Deallocate_Pipe (deallocating pipes)
When the client application program deallocates a pipe, it logs off from MRO and frees all the storage
associated with the session. This leaves the status as shown in Figure 8 on page 12.

Chapter 2. The external CICS interface 13

The application program stub, DFHXCSTB
The EXCI commands invoke the external CICS interface through an application programming stub, called
DFHXCSTB, provided by CICS. You must include this stub when you link-edit your non-CICS program.

The EXCI CALL interface commands
In the description of each command that follows, the syntax box illustrates the assembler form of the
command. The syntax shows VL,MF=(E,(1)) for each command, indicating the execute form of the CALL
macro, with the parameter list storage area addressed by Register 1.

The commands are also supported by C®, COBOL, and PL/I programming languages, using the CALL
conventions appropriate for these languages.

There are examples of these CALLs, in all the supported languages, in the sample client programs
provided by CICS. For more information, see EXCI sample programs.

Initialize_User
Initialize the user environment. This includes obtaining authority to use IRC facilities. The environment
is created for the lifetime of the TCB, so the command needs to be issued only once per user per TCB.
Further commands from this user must be issued under the same TCB.

Syntax

CALL DFHXCIS,(version_number,return_area,user_token,call_type,
 user_name),VL,MF=(E,(1))

Parameters
version_number

A fullword binary input area indicating the version of the external CICS interface parameter list being
used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook DFHXCPL x (where x indicates
the language) is VERSION_1. See “Return area and function call EQUATE copybooks” on page 35 for
copybook details.

return_area
A 5-word output area to receive response and reason codes, and a message pointer field. For more
details see “Return area for the EXCI CALL interface” on page 34.

user_token
A 1-word output area containing a 32-bit token supplied by the CICS external interface to represent
the client program.

The user token corresponds to the user-name parameter. The client program must pass this token
on all subsequent external CICS interface commands made for the user defined on the user_name
parameter.

call_type
A 1-word input area indicating the function of the command. It must be set to 1 in the client program
to indicate that this is an Initialize_User command.

The equated value for this call in the CICS-supplied copybook DFHXCPL x (where x indicates the
language) is INIT_USER. See “Return area and function call EQUATE copybooks” on page 35 for
copybook details.

user_name
An input area holding a name that identifies the user of the external CICS interface. Generally, this is
the client program. If this user is to use a specific pipe, then the value in user_name must match that
of the NETNAME attribute of the CONNECTION definition for the specific pipe.

14 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/reference-samples/dfhtmf3.html

Responses and reason codes

For all non-zero response codes, a unique reason code value identifies the reason for the response.

Note: All numeric response and reason code values are in decimal.

The following is a summary of the response and reason codes that the external CICS interface can return
on the Initialize_User call:
Response OK

Command executed successfully (RC 0). Reason code:
0

Normal response
Response WARNING

The command executed successfully, but with an error (RC 4). Reason codes:
3

VERIFY_BLOCK_FM_ERROR
Initialize_User processing requires storage below 16MB to build the parameter list for the SSI
Verify call, and an error has occurred during the FREEMAIN for this area.

4
WS_FREEMAIN_ERROR
An attempt to FREEMAIN working storage has resulted in a z/OS FREEMAIN error.

Response RETRYABLE
The command failed because of setup errors but can be reissued (RC 8). Reason code:
201

NO_CICS_IRC_STARTED
An Initialize_User command has been issued on a z/OS image that has had no IRC activity since
the previous IPL, and the external CICS interface cannot determine the CICS SVC number.

Response USER_ERROR
The command failed because of an error in either the client or the server (RC 12). Reason codes:
401

INVALID_CALL_TYPE
An invalid call-type parameter value is specified on this EXCI request.

402
INVALID_VERSION_NUMBER
The version_number parameter does not specify a value of 1 or 2.

403
INVALID_USER_NAME
The user_name parameter consists of all blank characters (X'40').

410
DFHMEBM_LOAD_FAILED
During Initialize_User processing, the external CICS interface attempted to load the main message
module in preparation for issuing external CICS interface messages, and the load of this module
failed.

411
DFHMET4E_LOAD_FAILED
The load of message module, DFHMET4E, has failed. During Initialize_User processing, the
external CICS interface attempted to load its message table in preparation for issuing messages.
The load of this module failed.

Chapter 2. The external CICS interface 15

412
DFHXCURM_LOAD_FAILED
During Initialize_User processing, the external CICS interface attempted to load the user-
replaceable module, DFHXCURM. The load of this module failed.

413
DFHXCTRA_LOAD_FAILED
During Initialize_User processing, the external CICS interface attempted to load the trap module
(DFHXCTRA). The load of this module has failed.

419
CICS_AFCB_PRESENT
An Initialize_User request has been issued on a TCB that has already been used by CICS . The
external CICS interface cannot share a TCB with CICS , ensuring that a CICS application program
cannot issue EXCI requests.

420
DFHXCOPT_LOAD_FAILED
During Initialize_User processing, the external CICS interface attempted to load its options
module, DFHXCOPT. The load of this module failed.

421
RUNNING_UNDER_AN_IRB
The EXCI call is issued under a z/OS IRB, which is not permitted.

422
SERVER_ABENDED
While processing a DPL request, the CICS server application program abended without handling
the error.

423
SURROGATE_CHECK_FAILED
A DPL request has been issued specifying a USERID parameter.

424
RRMS_NOT_SUPPORTED
A DPL request omitting the SYNCONRETURN option has been made on a system that is not
running OS/390® Version 2 Release 5 or higher.

425
UOWID_NOT_ALLOWED
A DPL request omitted the SYNCONRETURN option, but specified a value of UOWID. This
combination of parameters is not permitted on a DPL request.

426
INVALID_TRANSID2
A DPL request has been issued with a TRANSID2 parameter that consists of all blanks.

427
INVALID_CCSID
A DPL request has been issued with a CCSID parameter that specifies an invalid value.

428
INVALID_ENDIAN
A DPL request has been issued with a endian parameter that specifies an invalid value.

429
DFHXCEIX_LOAD_FAILED
During Initialize_User processing, the external CICS interface attempted to load the module
(DFHXCEIX). The load of this module has failed.

16 CICS TS for z/OS: Using EXCI

430
DFHXCPRX_LOAD_FAILED
During Initialize_User processing, the external CICS interface attempted to load the module
(DFHXCPRX). The load of this module has failed.

Response SYSTEM_ERROR
The command failed (RC 16). Reason codes:
601

WS_GETMAIN_ERROR
During Initialize_User processing, a GETMAIN for working storage failed.

602
XCGLOBAL_GETMAIN_ERROR
During Initialize_User processing, a GETMAIN failed for a critical control block (XCGLOBAL).

603
XCUSER_GETMAIN_ERROR
During Initialize_User processing, a GETMAIN request failed for the user control block (XCUSER).

605
VERIFY_BLOCK_GM_ERROR
During Initialize_User processing, a GETMAIN failed for an EXCI internal control block.

606
SSI_VERIFY_FAILED
A VERIFY call to the z/OS subsystem interface (SSI) to obtain the current CICS SVC number failed.

607
CICS_SVC_CALL_FAILURE
During Initialize_User processing, a call to the currently installed CICS SVC failed.

622
ESTAE_SETUP_FAILURE
To protect itself from possible program checks the external CICS interface establishes a z/OS
ESTAE. In this case, the z/OS ESTAE macro has failed.

623
ESTAE_INVOKED
A program check is encountered during call processing, and the ESTAE is invoked.

627
INCORRECT_SVC_LEVEL
The release level of the CICS SVC (DFHCSVC) is not the same (or higher) than the release level of
the external CICS interface.

For more information about response codes, see “EXCI call response code values” on page 34.

For information about the reason codes, see Response and reason codes returned on EXCI calls.

Allocate_Pipe
Allocate a single session, or pipe, to a CICS region. This command does not connect the client program to
a CICS region; this happens on the Open_Pipe command.

You can allocate up to 250 pipes in an EXCI address space. The default limit is 100 pipes. However, you
can increase this using the LOGONLIM parameter when you define CICS as a z/OS subsystem. See EXCI
pipe allocation in Installing.

This limit is set to prevent EXCI clients from monopolizing MRO resources, which could prevent
CICS systems from using MRO. The limit is applied in both MRO and cross system MRO (XCF/MRO)
environments.

Chapter 2. The external CICS interface 17

https://www.ibm.com/docs/SSJL4D_6.x/reference-applications/interfaces/dfhtmfb.html
https://www.ibm.com/docs/SSJL4D_6.x/installing/dfha1pd.html
https://www.ibm.com/docs/SSJL4D_6.x/installing/dfha1pd.html

An ALLOCATE_PIPE request results in an MRO LOGON request being issued and there is a limit on the
total number of MRO LOGON requests allowed from all address spaces. This is particularly critical when
using XCF/MRO, where the limit on the number of members in a XCF group also limits the total number of
MRO LOGON requests.

Syntax

CALL DFHXCIS,(version_number,return_area,user_token,call_type,
 pipe_token,CICS applid,allocate_opts),VL,MF=(E,(1))

Parameters
version_number

A fullword binary input area indicating the version of the external CICS interface parameter list being
used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook DFHXCPL x (where x indicates
the language) is VERSION_1. See Table 3 on page 35 for copybook details.

return_area
A 5-word output area to receive response and reason codes, and a message pointer field. For more
details, see “Return area for the EXCI CALL interface” on page 34.

user_token
The 1-word token returned on the Initialize_User command.

call_type
A 1-word input area indicating the function of the command. It must be set to 2 in the client program
to indicate that this is an Allocate_Pipe command.

The equated value for this call in the CICS-supplied copybook DFHXCPL x (where x indicates the
language) is ALLOCATE_PIPE. See Table 3 on page 35 for copybook details.

pipe_token
A 1-word output area. CICS returns a 32-bit token in this area to represent the allocated session. This
token must be used on any subsequent command that uses this session.

CICS_applid (or null_ptr)
An 8-byte input area containing the applid of the CICS system to which the allocated session is to be
connected.

Although an applid is required to complete the Allocate_Pipe function, this parameter is
optional on the Allocate_Pipe call. You can specify the applid either on this parameter to the
Allocate_Pipe call, or on the URMCICS parameter in the user-replaceable module, DFHXCURM
(DFHXCURM is always invoked during Allocate_Pipe processing). You can also use the URMCICS
parameter in DFHXCURM to override an applid specified on the Allocate_Pipe call. See The EXCI
user-replaceable module for information about the URMCICS parameter.

If you omit the applid from the call, you must ensure that the CALL parameter list contains a null
address for CICS_applid . How you do this depends on the language you are using for the non-CICS
client program. For an example of a call that omits an optional parameter, see “Example of EXCI CALL
with null parameters” on page 36.

allocate_opts
A 1-byte input area to represent options specified on this command. The options specify which type
of session is to be used—specific or generic. X'00' represents a specific session. X'80' represents a
generic session.

The equated value for these options in the CICS-supplied copybook DFHXCPL x (where x indicates the
language) are SPECIFIC_PIPE and GENERIC_PIPE. See Table 3 on page 35 for copybook details.

18 CICS TS for z/OS: Using EXCI

Responses and reason codes

For all non-zero response codes, a unique reason code value identifies the reason for the response.

Note: All numeric response and reason code values are in decimal.

The following is a summary of the response and reason codes that the external CICS interface can return
on the Allocate_Pipe call:
Response OK

Command executed successfully (RC 0). Reason code:
0

Normal response
Response USER_ERROR

The command failed because of an error in either the client or the server (RC 12). Reason codes:
401

INVALID_CALL_TYPE
402

INVALID_VERSION_NUMBER
404

INVALID_USER_TOKEN
421

RUNNING_UNDER_AN_IRB
Response SYSTEM_ERROR

The command failed (RC 16). Reason codes:
604

XCPIPE_GETMAIN_ERROR
608

IRC_LOGON_FAILURE
622

ESTAE_SETUP_FAILURE
623

ESTAE_INVOKED
628

IRP_LEVEL_CHECK_FAILURE

For information about response codes, see “EXCI call response code values” on page 34.

For information about the reason codes, see Response and reason codes returned on EXCI calls.

Open_Pipe
Cause IRC to connect an allocated pipe to a receive session.

Open_Pipe causes IRC to connect an allocated pipe to a receive session of the appropriate connection
defined in the CICS region named either on the Allocate_Pipe command, or in DFHXCURM. The
appropriate connection is either of the following:

• The EXCI connection with a NETNAME value equal to the user_name parameter on the Initialize_User
command (that is, you are using a specific connection, dedicated to this client program)

• The EXCI connection defined as generic

In an XCF environment, the Open_Pipe command causes the interregion communication program,
DFHIRP, to connect to the LPAR that receives the request. This request is asynchronous, so although
the Open_Pipe command can receive a good return code, the subsequent DPL_Request call might fail.

Chapter 2. The external CICS interface 19

https://www.ibm.com/docs/SSJL4D_6.x/reference-applications/interfaces/dfhtmfb.html

If you shut down CICS without the support of the supplied shutdown-assist transaction (CESD) or an
equivalent, and sessions remain open, CICS might not be able to shut its IRC facility in an orderly manner.
A normal shutdown of CICS without the support of the shutdown assist transaction waits if any EXCI
sessions are not closed. CICS issues message DFHIR2321 indicating the following information:

• The netname of the session if it is on a specific connection
• The word GENERIC if the open sessions are on a generic connection

If you use the supplied shutdown-assist transaction, CESD, sessions that remain open do not present a
problem to normal shutdown, because CESD issues an immediate close of IRC. Provided that at least one
DPL_Request call has been issued on the session, message DFHIR2321 also shows the job name, step
name, and procedure name of the client job that is using the session, and the z/OS ID of the z/OS image
on which the client program is running.

Syntax

CALL DFHXCIS,(version_number,return_area,user_token,call_type,
 pipe_token),VL,MF=(E,(1))

Parameters
version_number

A fullword binary input area indicating the version of the external CICS interface parameter list being
used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook DFHXCPL x (where x indicates
the language) is VERSION_1. See topic Table 3 on page 35 for copybook details.

return_area
A 5-word output area to receive response and reason codes, and a message pointer field. For more
details, see “Return area for the EXCI CALL interface” on page 34.

user_token
The 1-word token returned on the Initialize_User command.

call_type
A 1-word input area indicating the function of the command. This must be set to 3 in the client
program to indicate that this is an Open_pipe command.

The equated value for this call in the CICS-supplied copybook DFHXCPL x (where x indicates the
language) is OPEN_PIPE. See topic Table 3 on page 35 for copybook details.

pipe_token
A 1-word output area containing the token passed by CICS on the Allocate_Pipe command. It
represents the pipe being opened on this command.

Responses and reason codes

For all non-zero response codes, a unique reason code value identifies the reason for the response.

Note: All numeric response and reason code values are in decimal.

The following is a summary of the response and reason codes that the external CICS interface can return
on the Open_Pipe call:
Response OK

Command executed successfully (RC 0).

Reason code:

0
NORMAL

20 CICS TS for z/OS: Using EXCI

Response WARNING
The command executed successfully, but with an error (RC 4).

Reason code:

1
PIPE_ALREADY_OPEN

Response RETRYABLE
The command failed because of setup errors but can be reissued (RC 8).

Reason codes:

202
NO_PIPE

203
NO_CICS

When all the EXCI connections of a CICS server region are in use, the CICS server region receives two
responses, RESP2=202 (NO_PIPE) and RESP2=203 (NO_CICS) depending upon the following:

1. When using OPEN_PIPE request to communicate with a local CICS system (using IRC/MRO),
RESP2=202 (NO_PIPE) is raised.

2. When using OPEN_PIPE request to communicate with a remote CICS system on a different LPAR
(using XCF), RESP2=203 (NO_CICS) is raised.

Response USER_ERROR
The command failed because of an error in either the client or the server (RC 12).

Reason codes:

401
INVALID_CALL_TYPE

402
INVALID_VERSION_NUMBER

404
INVALID_USER_TOKEN

418
INVALID_PIPE_TOKEN

421
RUNNING_UNDER_AN_IRB

Response SYSTEM_ERROR
The command failed (RC 16).

Reason codes:

608
IRC_LOGON_FAILURE

609
IRC_CONNECT_FAILURE

621
PIPE_RECOVERY_FAILURE

622
ESTAE_SETUP_FAILURE

623
ESTAE_INVOKED

For information about the response codes, see “EXCI call response code values” on page 34.

For information about the reason codes, see Response and reason codes returned on EXCI calls.

Chapter 2. The external CICS interface 21

https://www.ibm.com/docs/SSJL4D_6.x/reference-applications/interfaces/dfhtmfb.html

DPL_Request
Issue a distributed program link request across an open pipe connected to the CICS system on which the
server (or target) application program resides.

The command is synchronous, and the TCB waits for a response from CICS. After a pipe is opened, any
number of DPL requests can be issued before the pipe is closed. To the server program, the link request
appears just like a standard EXEC CICS LINK request from another CICS region, and it is not aware that
it is sent from a non-CICS client program using EXCI.

The syntax of the call is shown in three forms: the parameters that can be used when version_number is
set to VERSION_1, the parameters that can be used when version_number is set to VERSION_2, and the
parameters that can be used when version_number is set to VERSION_3.

Syntax
VERSION_1

CALL DFHXCIS,(version_number,return_area,user_token,call_type,
 pipe_token,pgmname,COMMAREA,COMMAREA_len,data_len,
 transid,uowid,userid,dpl_retarea,DPL_opts),VL,MF=(E,(1))

VERSION_2

CALL DFHXCIS,(version_number,return_area,user_token,call_type,
 pipe_token,pgmname,COMMAREA,COMMAREA_len,data_len,
 transid,uowid,userid,dpl_retarea,DPL_opts,
 transid2,ccsid,endian),VL,MF=(E,(1))

VERSION_3

CALL DFHXCIS,(version_number,return_area,user_token,call_type,
 pipe_token,pgmname,CHANNEL,0,0,
 transid,uowid,userid,dpl_retarea,DPL_opts,
 transid2,0,0),VL,MF=(E,(1))

Parameters
version_number

A fullword binary input area that indicates the version of the external CICS interface parameter list
being used. This can be set to 1, 2, or 3 in the client program.

The equated value for this parameter in the CICS-supplied copybook DFHXCPL x (where x indicates
the language) is either VERSION_1, VERSION_2, or VERSION_3. See “Return area and function call
EQUATE copybooks” on page 35 for copybook details.

return_area
A 5-word output area to receive response and reason codes, and a message pointer field. For more
details, see “Return area for the EXCI CALL interface” on page 34.

user_token
A 1-word input area that specifies the user token returned to the client program on the
Initialize_User command.

call_type
A 1-word input area that indicates the function of the command. This must be set to 6 in the client
program to indicate that the pipe is now being used for the DPL_Request call.

The equated value for this call in the CICS-supplied copybook DFHXCPL x (where x indicates the
language) is DPL_REQUEST. See “Return area and function call EQUATE copybooks” on page 35 for
copybook details.

22 CICS TS for z/OS: Using EXCI

pipe_token
A 1-word input area that specifies the token returned by EXCI on the Allocate_Pipe command. It
represents the pipe being used for the DPL_Request call.

pgmname
The 8-character name of the CICS application program being called as the server program.

This is either the name as specified on a predefined PROGRAM resource definition installed in the
CICS server region, or as it is known to a user-written autoinstall program if the program is to be
autoinstalled. The program can be defined in the CICS server region as a local program, or it can be
defined as remote. Programs defined as remote enable daisy-chaining , where EXCI-CICS DPL calls
become EXCI-CICS-CICS DPL calls.

COMMAREA (or null_ptr)
A variable length input area for the communications area (COMMAREA) between the client and server
programs. The length is defined by COMMAREA_len.

This is the storage area that contains the data to be sent to the CICS application program. This
area is also used to receive the updated COMMAREA from the CICS application program (the server
program).

This parameter is optional. If it is not required, you must ensure that the CALL parameter list contains
a null address for this parameter. How you do this depends on the language you are using for the
non-CICS client program. For an example of a call that omits an optional parameter, see “Example of
EXCI CALL with null parameters” on page 36.

COMMAREA_len
A fullword binary input area. This parameter specifies the length of the COMMAREA. It is also the
length of the server program's COMMAREA (EIBCALEN).

If you specify a COMMAREA, you must also specify this parameter to define the length.

This value should not exceed 24 KB if the COMMAREA is to be passed between any two CICS servers
(for any combination of product/version/release). Otherwise, if you are confident that the COMMAREA
will not be passed on a further LINK request, you can use a COMMAREA up to 32 KB in length.

If you do not specify a COMMAREA, this parameter is ignored.

data_len
A fullword binary input area. This parameter specifies the length of contiguous storage, from the start
of the COMMAREA, to be sent to the server program.

This parameter restricts the amount of data sent to the server program, and should be used to
optimize performance if, for example, the COMMAREA is large but the amount of data being passed is
small.

On return from the server program, the EXCI data transformer program ensures that the COMMAREA
in the non-CICS client program is the same as that of the server program. This caters for the following
conditions:

• The data returned is more than the data passed in the original COMMAREA.
• The data returned is less than the data passed in the original COMMAREA.
• There is no data returned because it is unchanged.
• The server is returning null data.

The value of data_len must not be greater than the value of COMMAREA_len . A value of zero is valid
and results in no data being sent to the server program.

If you do not specify a COMMAREA, this parameter is ignored.

CHANNEL
A 16-character input area that contains the name of a channel that is to be made available to the
called program. The acceptable characters are A - Z a - z 0 - 9 $ @ # / % & ? ! : | " = ¬ , ; < > . - and
_. Leading and embedded blank characters are not permitted. If the name supplied is less than 16
characters, it is padded with trailing blanks up to 16 characters. If the channel does not exist, it is

Chapter 2. The external CICS interface 23

created. As there is only one LINK level for an EXCI client, this channel remains in scope. For more
information about channel scope, see The scope of a channel.

Channel names are always in EBCDIC. The set of allowed characters for channel names, as listed
earlier, includes some characters that do not have the same representation in all EBCDIC code pages.
Therefore, if channels are to be shipped between regions, it is advisable to restrict the characters that
are used to name channels to A-Z a-z 0-9 & : = , ; < > . - and _.

You can specify the channel name DFHTRANSACTION to use a transaction channel. In CICS, a
transaction channel does not go out of scope when the link level changes: it is always accessible in
the transaction. For more information, see Channels and containers.

The program that issues the DPL_REQUEST command can specify the name of a channel on the
command. The specified channel might already exist, created by the program using one or more PUT
CONTAINER commands. Alternatively, the program can specify the name of a channel that does not
currently exist, in which case a new empty channel is created.

Note: The two parameters following CHANNEL must be null. In addition, the ccsid and endian
parameters must be null.

transid (or null_ptr)
A 4-character input area that contains the id of the CICS mirror transaction under which the server
program is to run. This transaction must be defined to the CICS server region, and its definition must
specify:
PROGRAM(DFHMIRS)

The initial program must be the CICS supplied mirror program DFHMIRS.

Failure to specify DFHMIRS as the initial program means that a COMMAREA passed from the
client application program is not passed to the CICS server program. Also, the DPL request
fails and the client application program receives a response of SYSTEM_ERROR and reason
SERVER_PROTOCOL_ERROR.

PROFILE(DFHCICSA)
The DFHCICSA profile specifies the correct value for the INBFMH parameter, which must be
specified as INBFMH(ALL) for a mirror transaction.

When the CICS server region receives a DPL request, it attaches the mirror transaction and invokes
DFHMIRS. The mirror program then passes control to the requested server program, passing the
COMMAREA supplied by the client program. The COMMAREA passed to the server program is primed
with the data only, the remainder of the COMMAREA being set to nulls.

The purpose of the transid parameter is to distinguish between different invocations of the server
program. This enables you to run different invocations of the server program under transactions
that specify different attributes. For example, you can vary the transaction priorities, or the security
requirements.

A transid is optional. By default, the CICS server region uses the CICS-supplied mirror transaction,
CSMI. If you do not want to specify transid , you must ensure that the CALL parameter list contains
a null address for this parameter. How you do this depends on the language you are using for the
non-CICS client program. For an example of a call that omits an optional parameter, see “Example of
EXCI CALL with null parameters” on page 36.

If you issue multiple requests in the same z/OS unit-of-recovery, the same transid must be used in all
of them.

uowid (or null_ptr)
An input area that contains a unit-of-work identifier, using the APPC architected format, that is passed
on the DPL_Request for correlation purposes.

For DPL requests that are committed when the CICS program returns control to the z/OS application,
this parameter is optional.

For DPL requests that are part of an RRMS unit-of-recovery, null_ptr must be specified. The unit-of-
work identifier that is already associated with the RRMS unit-of-recovery is used, if there is one; if not,

24 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/applications/designing/dfhp3_ch_scopeif.html
https://www.ibm.com/docs/SSJL4D_6.x/applications/designing/dfhp3_ch_ifcons.html

CICS (or another RRMS resource manager) generates a unique unit-of-work identifier and associates it
with the RRMS unit-of-recovery.

If you do not want to specify a uowid parameter , you must ensure that the CALL parameter list
contains a null address for this parameter. How you do this depends on the language you are using for
the non-CICS client program. For an example of a call that omits an optional parameter, see “Example
of EXCI CALL with null parameters” on page 36.

The uowid parameter is passed to the CICS server region, which uses it as the UOWID for the first unit
of work executed by the CICS server program. If the server program issues intermediate sync points
before returning to the client program, CICS uses the supplied uowid for the subsequent units of work,
but with the two-byte sequence number incremented for each new logical unit of work. If the CICS
server program updates remote resources, the client-supplied UOWID is distributed to the remote
systems that own the resources.

The uowid parameter is supplied on the EXCI CALL interface for correlation purposes only, to allow
units of work that originated from a particular client program to be identified in CICS . The uowid is not
provided for recovery purposes between CICS and the client program.

The uowid can be a maximum of 27 bytes long and has the following format:

• A 1-byte length field that contains the overall length of the UOWID (excluding this field).
• A 1-byte length field that contains the length of the logical unit name (excluding this field).
• A logical unit name field of variable length up to a maximum of 17 bytes.

To conform to APPC architecture rules, the LUNAME must be of the form AAAAAAAA.BBBBBBBB ,
where AAAAAAAA is optional and:

– AAAAAAAA and BBBBBBBB are 8-byte names separated by a period
– If AAAAAAAA is omitted, the period must also be omitted
– AAAAAAAA and BBBBBBBB must be type-1134 symbol strings (that is, character strings

consisting of one or more EBCDIC uppercase letters A - Z and 0 - 9, the first character of which
must be an uppercase letter).

• The clock value; the middle 6 bytes of an 8-byte store clock (STCK) value.
• A 2-byte sequence number.

If you omit a unit-of-work identifier (by specifying a null pointer), and the DPL request is not part of an
RRMS unit-of-recovery, the external CICS interface generates one for you, consisting of the following:

• A 1-byte length field set to X'1A'.
• A 1-byte LU length field set to X'11'.
• A 17-byte LU name consisting of:

– An 8-byte eyecatcher set to DFHEXCIU.
– A 1-byte field that contains a period (.)
– A 4-byte field that contains the z/OS system identifier (SYSID), in characters, under which the

client is running.
– A 4-byte field that contains the address space id (ASID) in which the z/OS client program is

running. The field contains the four character EBCDIC representation of the 2-byte hex address
space id.

• The clock value; the middle 6 bytes of an 8-byte store clock (STCK) value
• A 2-byte sequence number set to X'0001'.

userid (or null_ptr)
An 8-character input area that contains the RACF® userid for user security checking in the CICS
region. The external CICS interface passes this userid to the CICS server region for user resource and
command security checking in the server application program.

Chapter 2. The external CICS interface 25

A userid is required only if the MRO connection specifies the ATTACHSEC(IDENTIFY) attribute. If the
connection specifies ATTACHSEC(LOCAL), the CICS server region applies link security checking. See
Intercommunication security for information about link security on MRO connections.

See also EXCI security for information about external CICS interface security considerations.

This parameter is optional. However, if you do not specify a userid, the external CICS interface passes
the security userid under which the client program is running. For example, if the client program is
running as a z/OS batch job, the external CICS interface obtains and passes the userid specified on
the USER parameter of the JOB statement.

If you specify a userid, the userid under which the EXCI job is running is subject to a surrogate user
check. This check is performed by the external CICS interface to ensure that the client job userid is
authorized to use the userid specified on the DPL call. For more information about surrogate user
security checking, see EXCI security.

If you want to let userid default, you must ensure that the CALL parameter list contains a null address
for this parameter. How you do this depends on the language you are using for the non-CICS client
program. For an example of a call that omits an optional parameter, see “Example of EXCI CALL with
null parameters” on page 36.

If you issue multiple requests in the same z/OS unit-of-recovery, the same userid must be used in
all of them. If the unit-of-recovery also includes EXEC CICS calls, you should allow the userid on all
DPL_requests to default to the security userid under which the client program is running.

dpl_retarea
A 12-byte output area into which the DPL_Request processor places responses to the DPL request.
Generally, these responses are from CICS , but in some cases the error detection occurs in the
external CICS interface, which returns exception conditions that are the equivalent of those returned
by an EXEC CICS LINK command.

This field is only meaningful in the following circumstances:

• The response field of the EXCI return-area has a zero value
• The EXCI return-area indicates that the server program has abended (response=USER_ERROR and

reason=SERVER_ABENDED).

The 12 bytes form three fields, providing the following information:
Field 1 (fullword value)

This field is a fullword that contains a RESP value from the DPL_Request call. See “Error codes” on
page 40 for the RESP values that can be returned on a DPL_Request call.

If the DPL_Request call reaches CICS , this field contains the EIBRESP value, otherwise it contains
an equivalent response set by the external CICS interface. If this field is set by the external CICS
interface, RESP is further qualified by a RESP2 value in the second field.

A zero value is the normal response, which equates to EXEC_NORMAL in the return codes
copybooks.

Field 2 (fullword value)
This field is a fullword that can contain a RESP2 value from the link request, further qualifying the
RESP value in field 1.

If the DPL_Request call reaches CICS , the RESP2 field generally is null (CICS does not return
RESP2 values across MRO links). However, if the RESP field indicates SYSIDERR (value 53), this
field provides a reason code. See “Dpl_retarea return codes” on page 35 for more information.

If the RESP field is set by the external CICS interface, it is further qualified by a RESP2 value
in this second field. For example, if the data_len parameter specifies a value greater than the
COMMAREA_len parameter, the external CICS interface returns the RESP value 22 (which equates
to EXEC_LENGERR in the return codes copybooks), and a RESP2 value of 13.

See the LINK conditions in LINK for full details of the possible RESP and RESP2 values.

26 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/security/cics/link-security.html
https://www.ibm.com/docs/SSJL4D_6.x/security/interfaces/dfhtmf5.html
https://www.ibm.com/docs/SSJL4D_6.x/security/interfaces/dfhtmf5.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-applications/commands-api/dfhp4_link.html

Note: The data transformer program makes special use of the RESP2 field. If any error occurs in
the transformer, the error is returned in RESP2.

Field 3 (fullword value)
The third field, a 4-character field, contains the following information:

• The abend code if the server program abended
• Four blanks if the server program did not abend.

If a server program abends, it is backed out to its last syncpoint, which can be the start of the
task, or an intermediate syncpoint. The server program can issue intermediate syncpoints because
SYNCONRETURN is forced.

DPL_opts (or null_ptr)
A 1-byte input area that indicates options to be used on the DPL_Request call.

If you omit this parameter, it defaults to the value X'00'. If you want to omit DPL_opts and let it
default, ensure that the CALL parameter list contains a null address for this parameter. How you do
this depends on the language you are using for the non-CICS program. For an example of a call that
omits an optional parameter, see “Example of EXCI CALL with null parameters” on page 36.

Currently, the DPL_opts parameter applies only to resource recovery, using the following values:

X'00'
Indicates that you specified NOSYNCONRETURN, because you want the client batch program to
control resource recovery, using 2-phase commit protocols supported by z/OS RRS. With this
option, the CICS server region does not perform a syncpoint when the server program returns
control to CICS . Furthermore, the CICS server application program must not take any explicit
syncpoints, otherwise it is abended by CICS . For more information, see “Resource recovery” on
page 8.

X'80'
Indicates that SYNCONRETURN is required in the CICS server region.

SYNCONRETURN specifies that the server region is to take a syncpoint on successful completion
of the server program, independently of the client program. This option does not prevent a server
program from taking its own explicit syncpoints.

The equated value for this parameter in the CICS-supplied copybook DFHXCPL x (where x indicates
the language) is SYNCONRETURN. See “Return area and function call EQUATE copybooks” on page
35 for copybook details.

transid2 (or null_ptr) Applicable to VERSION_2 or later
A 4-character input area that contains a CICS transaction id.

The server program runs under a CICS -supplied mirror transaction, CSMI or CPMI. However the
transaction id made available to the server program through the EIBTRNID field in the Exec Interface
Block is the one specified by the transid2 parameter. The transid2 parameter is ignored if the
transid parameter is specified. The following table gives an example of different combinations of
transid and transid2 :

Table 1. Use of transid2

transid transid2 program executes under EIBTRNID seen by program

UTRN omitted UTRN UTRN

UTRN UEIB UTRN UTRN

omitted omitted CSMI CSMI

omitted UEIB CSMI UEIB

The transid2 parameter is useful for server programs that access Db2®, because EIBTRNID is
used to determine which DB2ENTRY definition to use. Previously, EIBTRNID could only be set by

Chapter 2. The external CICS interface 27

using transid , which then required you to define a mirror transaction to CICS . Using transid2 ,
EIBTRNID is set, but the mirror program executes under the CICS provided definition CSMI.

ccsid (or null_ptr) VERSION_2 only
A fullword binary input area that indicates the Coded Character Set Identifier (CCSID) of the character
data contained in the COMMAREA. The ccsid parameter must be specified if character data has to be
converted when the COMMAREA is passed to, or returned from, the server program. The parameter
can take the following values:
-1 (X'FFFFFFFF')

Indicates that conversion of character data is required and that the source CCSID is defined in the
conversion template installed in the server.

1 <= ccsid <= 65535
Indicates that conversion of character data is required and that the value specified overrides the
source CCSID defined in the conversion template installed in the server.

endian (or null_ptr) VERSION_2 only
A fullword binary input area that indicates the format, big endian or little endian, for binary data
contained in the COMMAREA. Big endian indicates that the leftmost byte contains the most significant
digits, as used, for example, in System 390 architecture. Little endian indicates that the rightmost byte
contains the most significant digits, as used, for example, in Intel architecture. The endian parameter
should be specified if binary data has to be converted when the COMMAREA is passed to, or returned
from, the server program. If the ccsid parameter indicates that conversion is required, but endian is
not specified (defaults to null), conversion of binary data depends on what is specified in the DFHCNV
conversion template installed in the server. The parameter can take the following values:
16909060 (X'01020304')

Binary data is held in big endian format.
67305985 (X'04030201')

Binary data is held in little endian format.

Responses and reason codes

For all non-zero response codes, a unique reason code value identifies the reason for the response.

Note: All numeric response and reason code values are in decimal.

The following is a summary of the response and reason codes that the external CICS interface can return
on the DPL call:
Response OK

Command executed successfully (RC 0). Reason code:
0

NORMAL
Response WARNING

The command executed successfully, but with an error (RC 4). Reason codes:
6

IRP_IOAREA_FM_FAILURE
7

SERVER_TERMINATED
Response RETRYABLE

The command failed because of setup errors but can be reissued (RC 8). Reason codes:
203

NO_CICS
204

WRONG_MVS_FOR_RRMS

28 CICS TS for z/OS: Using EXCI

205
RRMS_NOT_AVAILABLE

Response USER_ERROR
The command failed because of an error in either the client or the server (RC 12). Reason codes:
401

INVALID_CALL_TYPE
402

INVALID_VERSION_NUMBER
404

INVALID_USER_TOKEN
406

PIPE_NOT_OPEN
407

INVALID_USERID
408

INVALID_UOWID
409

INVALID_TRANSID
414

IRP_ABORT_RECEIVED
415

INVALID_CONNECTION_DEFN
416

INVALID_CICS_RELEASE
417

PIPE_MUST_CLOSE
418

INVALID_PIPE_TOKEN
421

RUNNING_UNDER_AN_IRB
422

SERVER_ABENDED
423

SURROGATE_CHECK_FAILED
425

UOWID_NOT_ALLOWED
426

INVALID_TRANSID2
427

INVALID_CCSID
428

INVALID_ENDIAN
431

COMMAREA_LEN_NOT_ALLOWED
432

DATA_LEN_NOT_ALLOWED
433

CCSID_NOT_ALLOWED

Chapter 2. The external CICS interface 29

434
ENDIAN_NOT_ALLOWED

Response SYSTEM_ERROR
The command failed (RC 16). Reason codes:
612

TRANSFORM_1_ERROR
613

TRANSFORM_4_ERROR
614

IRP_NULL_DATA_RECEIVED
615

IRP_NEGATIVE_RESPONSE
616

IRP_SWITCH_PULL_FAILURE
617

IRP_IOAREA_GM_FAILURE
619

IRP_BAD_IOAREA
620

IRP_PROTOCOL_ERROR
622

ESTAE_SETUP_FAILURE
623

ESTAE_INVOKED
624

SERVER_TIMEDOUT
625

STIMER_SETUP_FAILURE
626

STIMER_CANCEL_FAILURE
629

SERVER_PROTOCOL_ERROR
630

RRMS_ERROR
631

RRMS_SEVERE_ERROR
632

XCGUR_GETMAIN_ERROR

Close_PIPE
Disconnect an open pipe from CICS. The pipe remains in an allocated state, and its tokens remain valid
for use by the same user. To reuse a closed pipe, the client program must first reissue an Open_Pipe
command using the pipe token returned on the Allocate_Pipe command for the pipe.

Pipes should be closed when not in use because this prevents CICS from shutting down its IRC facility
in an orderly manner. Therefore, the Close_Pipe command should be issued as soon as possible after all
DPL_Request calls have completed.

30 CICS TS for z/OS: Using EXCI

Syntax

CALL DFHXCIS,(version_number,return_area,user_token,call_type,
 pipe_token),VL,MF=(E,(1))

Parameters
version_number

A fullword binary input area indicating the version of the external CICS interface parameter list being
used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook DFHXCPL x (where x indicates
the language) is VERSION_1. See “Deallocate_Pipe” on page 32 for copybook details.

return_area
A 5-word output area to receive response and reason codes, and a message pointer field. For more
details, see “Return area for the EXCI CALL interface” on page 34.

user_token
The 1-word input area specifying the token, returned to the client program by EXCI on the
Initialize_User command, that represents the user of the pipe being closed.

call_type
A 1-word input area indicating the function of the command. This must be set to 4 in the client
program to indicate that this is a Close_Pipe command.

The equated value for this call in the CICS-supplied copybook DFHXCPL x (where x indicates the
language) is CLOSE_PIPE. See “Return area and function call EQUATE copybooks” on page 35 for
copybook details.

pipe_token
A 1-word input area specifying the token, returned to the client program by EXCI on the original
Allocate_Pipe command, that represents the pipe being closed.

Responses and reason codes

For all non-zero response codes, a unique reason code value identifies the reason for the response.

Note: All numeric response and reason code values are in decimal.

The following is a summary of the response and reason codes that the external CICS interface can return
on the Close_Pipe call:
Response OK

Command executed successfully (RC 0). Reason code:
0

NORMAL
Response WARNING

The command executed successfully, but with an error (RC 4). Reason codes:
2

PIPE_ALREADY_CLOSED
Response USER_ERROR

The command failed because of an error in either the client or the server (RC 12). Reason codes:
401

INVALID_CALL_TYPE
402

INVALID_VERSION_NUMBER

Chapter 2. The external CICS interface 31

404
INVALID_USER_TOKEN

418
INVALID_PIPE_TOKEN

421
RUNNING_UNDER_AN_IRB

Response SYSTEM_ERROR
The command failed (RC 16). Reason codes:
610

IRC_DISCONNECT_FAILURE
622

ESTAE_SETUP_FAILURE
623

ESTAE_INVOKED

For information about response codes, see “EXCI call response code values” on page 34.

For information about the reason codes, see Response and reason codes returned on EXCI calls.

Deallocate_Pipe
Deallocate a pipe from CICS. On completion of this command, the pipe can no longer be used, and its
associated tokens are invalid. This command should be issued for pipes that are no longer required. This
command frees storage associated with the pipe.

Note: After a successful Open_Pipe request, when your client program finishes using the pipe, you must
first issue a Close_Pipe command and then a Deallocate_Pipe command to free the pipe. If you
issue a Deallocate_Pipe command without first closing an open pipe with Close_Pipe, your request
fails.

Syntax

CALL DFHXCIS,(version_number,return_area,user_token,call_type,
 pipe_token),VL,MF=(E,(1))

Parameters
version_number

A fullword binary input area indicating the version of the external CICS interface parameter list being
used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook DFHXCPLx (where x indicates
the language) is VERSION_1. See “Return area and function call EQUATE copybooks” on page 35 for
copybook details.

return_area
A 5-word output area to receive response and reason codes, and a message pointer field. For more
details, see “Return area for the EXCI CALL interface” on page 34.

user_token
A 1-word input area containing the token returned on the Initialize_User command.

call_type
A 1-word input area indicating the function of the command. This must be set to 5 in the client
program to indicate that this is a Deallocate_Pipe command.

The equated value for this call in the CICS-supplied copybook DFHXCPLx (where x indicates the
language) is DEALLOCATE_PIPE. See “Return area and function call EQUATE copybooks” on page 35
for copybook details.

32 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/reference-applications/interfaces/dfhtmfb.html

pipe_token
A 1-word input area containing the token passed back on the original Allocate_Pipe command,
that represents the pipe now being deallocated.

Responses and reason codes

For all non-zero response codes, a unique reason code value identifies the reason for the response.

Note: All numeric response and reason code values are in decimal.

The following is a summary of the response and reason codes that the external CICS interface can return
on the Deallocate_Pipe call:
Response OK

Command executed successfully (RC 0). Reason code:
0

NORMAL
Response WARNING

The command succeeded successfully, but with an error (RC 4). Reason codes:
5

XCPIPE_FREEMAIN_ERROR
6

IRP_IOAREA_FM_FAILURE
Response USER_ERROR

The command failed because of an error in either the client or the server (RC 12). Reason codes:
401

INVALID_CALL_TYPE
402

INVALID_VERSION_NUMBER
404

INVALID_USER_TOKEN
405

PIPE_NOT_CLOSED
418

INVALID_PIPE_TOKEN
421

RUNNING_UNDER_AN_IRB
Response SYSTEM_ERROR

The command failed (RC 16). Reason codes:
611

IRC_LOGOFF_FAILURE
622

ESTAE_SETUP_FAILURE
623

ESTAE_INVOKED

For information about response codes, see “EXCI call response code values” on page 34.

For information about the reason codes, see Response and reason codes returned on EXCI calls.

Chapter 2. The external CICS interface 33

https://www.ibm.com/docs/SSJL4D_6.x/reference-applications/interfaces/dfhtmfb.html

EXCI call response code values
This table shows the values that can be returned in the response field. All values are in decimal.

Table 2. EXCI response codes (returned in response field of return_area)

Code Meaning Explanation

0 OK For all EXCI CALL commands other than the DPL_request, the call was
successful. If an OK response is received for a DPL_request, you must
also check dpl_retarea to ensure CICS did not return a condition code.
If the EIBRESP field of Dpl_retarea is zero, the DPL call was successful.

4 WARNING The external CICS interface detected an error, but this did not stop
the CALL command completing successfully. The reason code field
describes the error detected.

8 RETRYABLE The EXCI CALL command failed. This class of failure relates to errors in
the setup of the system environment, and not errors in the external
CICS interface or client program. The reason code documents the
specific error in the environment setup.

The external CICS interface command can be reissued without
changing the client program once the environment error has been
corrected. The environmental errors concerned are ones that do not
require a z/OS re-IPL. Each reason code value for a RETRYABLE
response documents whether the CALL can be reissued directly, or
whether the pipe being used has to be closed and reopened first.

12 USER_ERROR The EXCI CALL command failed. This class of error means there is an
error either in the client program, or in the CICS server program, or
in the CICS server region. An example of an error in the CICS server
system would be a failed security check, or an abend of the CICS server
program, in which case the abend code is set in the abend code field
of dpl_retarea . Each reason code value for a response of USER_ERROR
explains whether the command can be reissued directly, or whether the
pipe being used has to be closed and reopened first.

16 SYSTEM_ ERROR The EXCI CALL command failed. This class of error means that
the external CICS interface has detected an error. The reason code
value identifies the specific error. If the error can be corrected,
then the command can be reissued. Each reason code value for a
SYSTEM_ERROR response explains whether the command can be
reissued directly, or whether the pipe being used has to be closed and
reopened first.

Return area for the EXCI CALL interface
This is the format of the 5-word return area for the EXCI CALL interface.

1. 1–word response field.
2. 1–word reason field.
3. Two 1–word subreason fields—subreason field-1 and subreason field-2.
4. 1–word CICS message pointer field. This is zero if there is no message present. If a message is

present, this field contains the address of the storage area containing the message, which is formatted
as follows:

• A 2-byte LL field. LL is the length of the message plus the length of the LLBB field.
• A 2-byte BB field, set to binary zero.
• A variable length field containing the text of the message.

34 CICS TS for z/OS: Using EXCI

Return area and function call EQUATE copybooks
CICS provides four language-specific copybooks that map the storage areas for the return_area and
dpl_retarea parameters of the EXCI CALL commands. The copybooks also provide EQUATE statements for
each type of EXCI CALL.

These copybooks, and the libraries they are supplied in for the supported languages, are shown in Table
3 on page 35. All the libraries are shown using the format CICSTSnn, where nn represents the CICS
version.

Table 3. Supplied copybooks of return areas and equated names

Copybook name Language Library

DFHXCPLD Assembler CICSTSnn.CICS.SDFHMAC

DFHXCPLH C CICSTSnn.CICS.SDFHC370

DFHXCPLO COBOL CICSTSnn.CICS.SDFHCOB

DFHXCPLL PL/I CICSTSnn.CICS.SDFHPL1

Return codes
All the possible return codes are contained in a CICS-supplied copybook, which you must include in the
program source of your external, non-CICS program.

The names of the copybooks for the supported languages, and the libraries that they are supplied in,
are shown in Table 4 on page 35. All the libraries are shown using the format CICSTSnn, where nn
represents the CICS version.

Table 4. Supplied copybooks of RESPONSE and REASON codes

Copybook name Language Library

DFHXCRCD Assembler CICSTSnn.CICS.SDFHMAC

DFHXCRCH C CICSTSnn.CICS.SDFHC370

DFHXCRCO COBOL CICSTSnn.CICS.SDFHCOB

DFHXCRCL PL/I CICSTSnn.CICS.SDFHPL1

z/OS provides copybooks for use with the interfaces described in “Use of sync points in the client
program” on page 11. These are described in z/OS MVS Programming: Resource Recovery and z/OS MVS
Programming: Callable Services for High-Level Languages.

Dpl_retarea return codes
These are the same as for CICS-to-CICS EXEC CICS DPL commands but with the following additions for
the EXCI call interface.

Table 5. Exceptional conditions. RESP and RESP2 values returned to dpl_retarea

Condition RESP2 Meaning

LENGERR 22 COMMAREA_LEN_TOO_BIG

LENGERR 23 COMMAREA_BUT_NO_COMMAREA_LEN

SYSIDERR also can be returned on an EXCI DPL_Request, if the DPL_Request specifies a program defined
in the CICS server region as a remote program, and the link between the server and the remote CICS
region is not open. In this situation, SYSIDERR is returned in the first word of the DPL_Retarea (code
53). The reason code qualifying SYSIDERR is placed in the second word of this area (the equivalent of a
RESP2 value).For SYSIDERR, the information stored in this field is derived from bytes 1 and 2 of the CICS

Chapter 2. The external CICS interface 35

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.iean100/abstract.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieac100/abstract.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieac100/abstract.htm

EIBRCODE field. For example, if a remote link is not available, the EIBRCODE value stored in bytes 2 and 3
of the DPL_Retarea RESP2 field is X'0800' . For a list of the SYSIDERR reason codes that can be returned
in the RESP2 field, see the SYSIDERR section of the notes on EIBRCODE in Attention identifier constants.

TERMERR also may be returned on an EXCI DPL request if the DPL request was to a program defined
as remote, and an unrecoverable error occurs during conversation with the mirror on the remote CICS
system. For example, suppose client program BATCH1 issues an EXCI DPL request to CICSA for program
PROG1, which is defined as remote, and the request is function-shipped to CICSB where the program
resides. If the session between CICSA and CICSB fails, or CICSB itself fails while executing the program
PROG1, then TERMERR is returned to CICSA, and in turn to BATCH1.

No unique EXCI_DPL_RESP2 values are returned for TERMERR, PGMIDERR, NOTAUTH, and ROLLBACK.

Example of EXCI CALL with null parameters
If you omit an optional parameter, such as userid on a DPL_Request, you must ensure that the parameter
list is built with a null address for the missing parameter.

The example that follows illustrates how to issue an EXCI DPL_Request with the userid and uowid
parameters omitted in a COBOL program.

DPL CALL without userid and uowid (COBOL): In this example, the DPL parameters used on the call are
defined in the WORKING-STORAGE SECTION, as follows:

DPL parameter COBOL variable Field definition

version_number 01 VERSION-1 PIC S9(8) COMP VALUE 1.

return_area 01 EXCI-RETURN-CODE. (structure)

user_token 01 USER-TOKEN PIC S9(8) COMP VALUE ZERO.

call_type 03 DPL-REQUEST PIC S9(8) COMP VALUE 6.

pipe_token 01 PIPE-TOKEN PIC S9(8) COMP VALUE ZERO.

pgmname 01 TARGET-PROGRAM PIC X(8) VALUE "DFHœAXCS".

commarea 01 COMMAREA. (structure)

commarea_len 01 COMM-LENGTH PIC S9(8) COMP VALUE 98.

data_len 01 DATA-LENGTH PIC S9(8) COMP VALUE 18.

transid 01 TARGET-TRANSID PIC X(4) VALUE "EXCI".

dpl_retarea 01 EXCI-DPL-RETAREA. (structure)

dpl_opts 01 SYNCONRETURN PIC X VALUE X'80'.

The variable used for the null address is defined in the LINKAGE SECTION:

 LINKAGE SECTION.
 01 NULL-PTR USAGE IS POINTER.

Using the data names specified in the WORKING-STORAGE SECTION, and the NULL-PTR name as
described in the LINKAGE SECTION, the following invocation of the DPL function omits the uowid and
the userid parameters, and replaces them in the parameter list with the NULL-PTR variable:

 DPL-SECTION.
*
SET ADDRESS OF NULL-PTR TO NULLS.
*
CALL 'DFHXCIS' USING VERSION-1 EXCI-RETURN-CODE USER-TOKEN
DPL-REQUEST PIPE-TOKEN TARGET-PROGRAM
COMMAREA COMM-LENGTH DATA-LENGTH

36 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/reference-applications/bms/dfhp4_bmsconstants.html

TARGET-TRANSID NULL-PTR NULL-PTR
EXCI-DPL-RETAREA SYNCONRETURN.

This example is taken from the CICS-supplied sample external CICS interface program, DFH0CXCC, which
is supplied in CICSTSxx.CICS.SDFHSAMP, where xx represents the CICS version. For an example of how to
omit the same parameters from the DPL call in the other supported languages, see the following sample
programs:
DFH$AXCC

The assembler sample
DFH$PXCC

The PL/I sample
DFH$DXCC

The C sample.

The EXCI EXEC CICS interface
The EXCI EXEC CICS interface provides several commands. For example, the interface provides a single,
composite command, EXEC CICS LINK PROGRAM command, that performs all six commands of the
EXCI CALL interface in one invocation. Each time you issue an EXEC CICS LINK PROGRAM command in
a client application program, the external CICS interface invokes each of the six EXCI calls on your behalf.
The EXEC CICS LINK PROGRAM command is similar but not identical to the distributed program link
command of the CICS command-level application programming interface.

EXCI also provides the ability to process data using channel and container commands. A channel together
with its set of containers can then be passed on the EXEC CICS LINK PROGRAM command or on a call
API DPL_REQUEST, as an alternative to using a communications area to transfer data or information from
one program to another.

Illustration of the EXCI EXEC CICS interface
This diagram illustrates the EXEC CICS interface, and how it resolves to the six EXCI CALLs.

Figure 12. Illustration of the external CICS interface using the EXEC CICS command

Chapter 2. The external CICS interface 37

1. The z/OS Client Application issues an EXEC CICS LINK command.
2. The EXEC interface stub DFHXCSTB calls the EXCI EXEC interface program which issues the following

calls:

INITIALIZE_USER
ALLOCATE_PIPE
OPEN_PIPE
DPL
CLOSE_PIPE
DEALLOCATE_PIPE

EXEC CICS LINK command (EXCI)
Link from a z/OS client program to the specified server program in a server CICS region.

Format
LINK

LINK PROGRAM (name) RETCODE (data-area)

SYNCONRETURN

COMMAREA (data-area)

LENGTH (data-value) DATALENGTH (data-value)

CHANNEL (name)

APPLID (name) TRANSID (name)

Notes:

Error conditions: CCSIDERR , CHANNELERR , CODEPAGEERR , CONTAINERERR , LENGERR, LINKERR,
NOTAUTH, PGMIDERR, RESUNAVAIL, ROLLEDBACK, SYSIDERR, TERMERR, WARNING

Comments
With the exception of the APPLID and RETCODE parameters, the external CICS interface parameters for
an EXEC CICS LINK command are the same as for a CICS-CICS DPL command.

This information describes only those parameters that you can use with the external CICS interface. For
programming information about the EXEC CICS LINK PROGRAM command, see LINK.

Note that the LENGTH and DATALENGTH parameters specify halfword binary values, unlike the
corresponding COMMAREA_len and data_len parameters of the EXCI CALL interface, which specify
fullword values.

An external CICS interface EXEC CICS LINK command always uses a generic connection.

Parameters
The parameters that you can use on the external CICS interface form of the LINK command, are as
follows:
APPLID(name)

Specifies the APPLID of the target CICS server region.

Although an applid is required for an external CICS interface command, this parameter is optional on
the LINK command itself because you can also specify it in the user-replaceable module, DFHXCURM.
If you omit the generic APPLID from the LINK command, you must ensure it is specified by the
user-replaceable module, DFHXCURM, on the URMCICS parameter. You can also use the URMCICS

38 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/reference-applications/commands-api/dfhp4_link.html

parameter in DFHXCURM to override an applid specified on the LINK command. See The EXCI
user-replaceable module for information about the URMCICS parameter.

CHANNEL(name)
Specifies the name (1 - 16 characters) of a channel that is to be made available to the called program.
The acceptable characters are A - Z a - z 0 - 9 $ @ # / % & ? ! : | " = ¬ , ; < > . - and _. Leading and
embedded blank characters are not permitted. If the name supplied is less than 16 characters, it is
padded with trailing blanks up to 16 characters. If the channel does not exist, it is created. As there
is only one LINK level for an EXCI client, this channel remains in scope. For more information about
channel scope, see The scope of a channel.

Channel names are always in EBCDIC. The set of allowed characters for channel names, as listed
earlier, includes some characters that do not have the same representation in all EBCDIC code pages.
Therefore, if channels are to be shipped between regions, it is advisable to restrict the characters that
are used to name channels to A-Z a-z 0-9 & : = , ; < > . - and _.

You can specify the channel name DFHTRANSACTION to use a transaction channel. In CICS, a
transaction channel does not go out of scope when the link level changes: it is always accessible in
the transaction. For more information, see Channels and containers.

The program that issues the LINK command can specify the name of a channel on the command. The
specified channel might already exist, created by the program using one or more PUT CONTAINER
commands. Alternatively, the program can specify the name of a channel that does not currently exist,
in which case a new empty channel is created.

COMMAREA(data-area)
Specifies a communication area that is to be made available to the invoked program. In this option, a
pointer to the data area is passed.

See Passing data to other programs for more information about passing data to CICS application
programs.

DATALENGTH(data-value)
Specifies a halfword binary value that is the length of a contiguous area of storage from the start of the
COMMAREA. If the amount of data in a COMMAREA is small, but the COMMAREA itself is large, specify
DATALENGTH to improve performance.

LENGTH(data-value)
Specifies a halfword binary value that is the length in bytes of the COMMAREA.

This value should not exceed 24 KB if the COMMAREA is to be passed between any two CICS servers
(for any combination of product/version/release), otherwise, if you are confident that the COMMAREA
will not be passed on a further LINK request, you can use a COMMAREA up to 32763 in length.

PROGRAM(name)
Specifies the program name (1-8 characters) of the CICS server application program to which control
is to be passed unconditionally. The specified name must either have been defined as a program to
CICS , or the CICS server region must be capable of autoinstalling a definition for the named program.

Note the use of quotation marks:

 EXEC CICS LINK PROGRAM('PROGX')

PROGX is in quotation marks because it is the program name.

 EXEC CICS LINK PROGRAM(DAREA)

DAREA is not in quotes because it is the name of a data area that contains the 8-character program
name.

RETCODE(data-area)
Specifies a 20-byte area into which the external CICS interface places return code information. This
area is formatted into five 1–word fields as follows:

Chapter 2. The external CICS interface 39

https://www.ibm.com/docs/SSJL4D_6.x/configuring/interfaces/dfhtm4z.html
https://www.ibm.com/docs/SSJL4D_6.x/configuring/interfaces/dfhtm4z.html
https://www.ibm.com/docs/SSJL4D_6.x/applications/designing/dfhp3_ch_scopeif.html
https://www.ibm.com/docs/SSJL4D_6.x/applications/designing/dfhp3_ch_ifcons.html
https://www.ibm.com/docs/SSJL4D_6.x/applications/designing/dfhp37t.html

RESP
The primary response code indicating whether the external CICS interface LINK command caused
an exception condition during its execution.

RESP2
The secondary response code that further qualifies, where necessary, some of the conditions
raised in the RESP parameter.

ABCODE
Contains a valid CICS abend code if the server program abended in the server region.

MSGLEN
Indicates the length of the message (if any) issued by the CICS server region during the execution
of the server program. Note that the length is the actual length of the message text only, and does
not include this 1—word length field.

MSGPTR
This is the address of the message text returned by the CICS server region.

Note: MSGLEN and MSGPTR are only valid on a LINKERR condition, with the RESP2 value 414.

SYNCONRETURN
Specifies that the CICS server region, named on the APPLID parameter, is to take a syncpoint on
successful completion of the server program.

TRANSID(name)
Specifies the name of the mirror transaction that the remote region is to attach, and under which it is
to run the server program. If you omit the TRANSID option, the CICS server region attaches CSMI.

Note: The TRANSID option specified on the LINK command overrides any TRANSID option specified
on the program resource definition installed in the CICS server region.

While you can specify your own name for the mirror transaction initiated by DPL requests, the
transaction must be defined in the server region, and the transaction definition must specify the
mirror program, DFHMIRS. Defining your own transaction to invoke the mirror program gives you the
freedom to specify appropriate values for some other options on the transaction resource definition.

See also the important rules about specifying transid with a DPL_Request in DPL_Request. .

Error codes

Most of the exception conditions that are returned on the external CICS interface LINK command are
the same as for the CICS-to-CICS distributed program link command. Those that are the same, and their
corresponding numeric values are as follows:
LENGERR

22
PGMIDERR

27
SYSIDERR

53
NOTAUTH

70
TERMERR

81
ROLLEDBACK

82
CONTAINERERR

110
RESUNAVAIL

121

40 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/applications/developing/interfaces/dfhtm4n.html

CHANNELERR
122

CCSIDERR
123

CODEPAGEERR
125

These exception condition codes are returned in the RESP field.

RESP and RESP2: References to the RESP and RESP2 fields in this section are to the first two fields of the
RETCODE parameter.

The exception conditions that are specific to the external CICS interface are as follows:

• The RESP2 values on the error condition LENGERR is specific to the external CICS interface.
• The exception conditions WARNING and LINKERR are specific to the external CICS interface.

The WARNING and LINKERR exceptions are a result of responses to individual EXCI calls issued by the
external CICS interface in response to an EXEC CICS LINK command. These WARNING and LINKERR
exceptions correspond to EXCI call responses as indicated in the descriptions.
WARNING (RESP value 4)

This is returned when the EXCI module handling the EXEC CICS LINK request receives a
USER_ERROR or SYSTEM_ERROR response to a Close_Pipe or Deallocate_Pipe request issued on
behalf of an EXEC CICS LINK command. The RESP value is set to WARNING because the DPL
request to CICS completed successfully, but an error occurred in subsequent processing.

The RESP2 field is set to the EXCI reason code, which gives more information about the error.

LINKERR (RESP value 88)
This is returned when the EXCI module handling the EXEC CICS LINK request receives a
RETRYABLE, USER_ERROR, or SYSTEM_ERROR response to an EXCI call issued on behalf of the EXEC
CICS LINK command. The DPL request has failed. The RESP2 field is set to the EXCI reason code,
which gives more information about the error.

See Response and reason codes returned on EXCI calls for descriptions of EXCI reason codes.

Note: The external CICS interface ignores any WARNING conditions that occur in response to EXCI calls
it issues on behalf of an EXEC CICS LINK command. It treats the WARNING on an EXCI call as a good
response and continues normally. If no other errors occur, the EXEC CICS command completes with a
zero response in the EXEC_RESP field.

Retries on an EXEC CICS LINK command
If the external CICS interface receives a RETRYABLE response on an EXCI call that it makes on behalf
of an EXEC CICS LINK command, it automatically retries the EXEC CICS LINK command up to five
times, providing more serious errors do not occur. If the RETRYABLE response is still received after the
fifth retry, the RESP field is set to LINKERR, and the reason returned on the EXCI CALL request that
causes the exception is returned in the RESP2 field.

The external CICS interface retries the EXEC CICS LINK command by first closing and deallocating
the pipe, then reissuing the six EXCI CALL commands. During Allocate_Pipe processing, the EXCI CALL
interface calls the user-replaceable module, DFHXCURM, to give you the opportunity to change the
APPLID of the CICS system to which the request has been sent. See The EXCI user-replaceable module
for details of DFHXCURM.

Exception conditions and RESP2 values specific to EXEC CICS LINK for EXCI
Table 6 on page 42 lists all the exception conditions and RESP2 values that are specific to the EXEC
CICS LINK command for the external CICS interface.

Chapter 2. The external CICS interface 41

https://www.ibm.com/docs/SSJL4D_6.x/reference-applications/interfaces/dfhtmfb.html
https://www.ibm.com/docs/SSJL4D_6.x/configuring/interfaces/dfhtm4z.html

Table 6. Exception conditions. RESP and RESP2 values returned from the EXEC API.

Condition
(RESP)

RESP2 Meaning

LENGERR (22) 22 COMMAREA length greater than 32763 bytes specified

 23 COMMAREA specified but no LENGTH parameter specified

WARNING (4) 401 Invalid call_type parameter value specified on Close_Pipe or
Deallocate_Pipe call

 402 Invalid version_number parameter specified on Close_Pipe or
Deallocate_Pipe call

 404 Invalid user_token specified on Close_Pipe or Deallocate_Pipe call

 405 A Deallocate_Pipe call has been issued against a pipe that is not yet closed

 418 An invalid pipe token has been issued on a Close_Pipe or Deallocate_Pipe
call

 421 A Close_Pipe or Deallocate_Pipe command has been issued under an IRB

 610 There has been a CICS IRP logoff failure on a Deallocate_Pipe call

 611 There has been a CICS IRC disconnect failure on a Close_Pipe call

 622 There has been a z/OS ESTAE setup failure on a Close_Pipe or
Deallocate_Pipe call

 623 A program check on a Close_Pipe or Deallocate_Pipe call has caused the
ESTAE to be invoked

LINKERR (88) 201 Command has been issued on a z/OS image which has had no IRC activity
since the previous IPL

 202 There are no available sessions

 203 CICS has not yet been brought up, or (2) has not yet opened IRC, or (3)
no generic connection is installed, or (4) no specific connection is installed
with the required netname.

204 An EXEC CICS LINK command without the SYNCONRETURN option has
been issued specifying a CICS system on a different z/OS image.

205 An EXEC CICS LINK command without the SYNCONRETURN option has
been issued when RRS is not available

 401 Invalid parameter

 402 Invalid version number

 403 User name is all blanks

 404 Invalid address in user token

 405 Command has been issued against a pipe that is not closed

 406 Command has been issued against a pipe that is not open

 407 Userid of all blanks has been passed

 408 Error in UOWID parameter

LINKERR (88) 409 Transid consisting of all blanks or zero has been passed

 410 Load of message module, DFHMEBMX, failed

 411 Load of message module, DFHMET4E, failed

 412 Load of DFHXCURM failed

42 CICS TS for z/OS: Using EXCI

Table 6. Exception conditions. RESP and RESP2 values returned from the EXEC API. (continued)

Condition
(RESP)

RESP2 Meaning

 413 Load of DFHXCTRA failed

 414 If run as a CICS-to-CICS linked-to program, this server program would have
resulted in an error with an appropriate message sent to the terminal.
Running the program as an EXCI server program returns the message
addressed by the MSGPTR field of the RETCODE area.

 415 Target connection is an MRO connection, not an EXCI connection.

 416 Command has been issued against a CICS region running under a release of
CICS earlier than CICS for MVS/ESA 4.1.

 417 Command has been issued against a pipe in the MUST CLOSE state. Further
EXCI EXEC CICS LINK commands will have unpredictable results and
are, therefore, not permitted.

 418 Pipe_token does not address an XCPIPE control block, or there is a
mismatch between user_token and pipe_token.

 419 CICS runs, or did run, under the TCB that this command is attempting to
use. This is not permitted and the command fail.

 420 Load of DFHXCOPT failed.

 421 The command has been issued under a z/OS IRB, which is not permitted.

 422 The server has bended.

 423 Surrogate user check failed

424 An EXEC CICS LINK command without the SYNCONRETURN option has
been issued on a system that does not support RRMS

425 A DPL request omitted the SYNCONRETURN option, but specified a value of
UOWID.

 601 A GETMAIN of working storage failed. This error leads to user abend 408

 602 A GETMAIN failed. This error leads to user abend 403.

 603 A GETMAIN failed. This error leads to user abend 410

 604 A GETMAIN failed.

 605 A GETMAIN for the VERIFY block failed. This error leads to user abend 409.

 606 An SSI verify request (to obtain CICS SVC instruction) failed. This error
leads to user abend 405.

 607 An SVC call failed. This error leads to user abend 406.

 608 Logon to IRP failed

 609 Connect to IRP failed

 610 Disconnect from IRP failed

 611 Logoff from IRP failed

 612 Invalid data input to transformer_1

 613 Invalid data input to transformer_4

LINKERR (88) 614 CICS has responded but has not sent any data.

 615 CICS cannot satisfy the request.

Chapter 2. The external CICS interface 43

Table 6. Exception conditions. RESP and RESP2 values returned from the EXEC API. (continued)

Condition
(RESP)

RESP2 Meaning

 616 IRP_SWITCH_PULL request (to read data sent from CICS into a larger input/
output area) has failed.

 617 A GETMAIN for a larger input/output area failed

 619 IRP has had a problem with the input/output area passed from the client
program

 620 IRP has disconnected from EXCI

 621 A DISCONNECT command is issued in an error situation following an IRP
CONNECT. The DISCONNECT has failed, indicating a serious error.

 622 XCPRH ESTAE setup command failed This error leads to user abend 402.

 623 XCPRH ESTAE invoked due to program check during the processing of
this command. ESTAE attempts backout and takes a SYSMDUMP. Further
requests are permitted although the pipe is now in a MUST CLOSE state.

 624 The DPL request has been passed to CICS but the time specified in
DFHXCOPT has been exceeded. The request is canceled.

 625 A z/OS STIMERM macro call failed.

 626 A z/OS STIMERM CANCEL request failed.

 627 The CICS SVC is at the incorrect level. This error leads to user abend 407.

 628 DFHIRP is at the incorrect level.

 629 A response to a DPL request has been returned by CICS but the external
CICS interface does not understand the response.

630 An unexpected return code was received from RRMS when processing an
EXEC CICS LINK command without the SYNCONRETURN option.

631 An unexpected error was encountered when processing an EXEC CICS
LINK command without the SYNCONRETURN option.

632 A GETMAIN for DFHXCGUR's working storage failed while processing an
EXEC CICS LINK command without the SYNCONRETURN option.

633 An INQUIRE_CHANNEL request to obtain the channel token failed due to
an external CICS interface error.

 903 An XCEIP ESTAE setup command failed.

 904 XCEIP ESTAE invoked.

See Return codes for details of the various copybooks that contain full details of all response and reason
codes, including equated values.

Note: All numeric response and reason code values are shown in decimal.

Translation required for EXEC CICS LINK command
Application programs that use the EXEC CICS LINK form of the external CICS interface command
must translate their programs before assembly or compilation. You do this using the version of the CICS
translator that is appropriate for the language of your client program, specifying the translator option
EXCI.

The translator option EXCI is mutually exclusive with the CICS and DLI options.

44 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/applications/developing/interfaces/dfhtm4j.html

For more information about translating programs that contain EXEC CICS commands, see The CICS-
supplied translators.

For information about compiling and link-editing external CICS interface client programs, see Compiling
and link-editing EXCI client programs.

EXEC CICS DELETE CHANNEL command (EXCI)
Delete a named channel and all the containers that are in it.

DELETE CHANNEL (EXCI)
DELETE CHANNEL( data-value) RETCODE( data-area)

Conditions: CHANNELERR

Description
DELETE CHANNEL (EXCI) deletes the specified channel and all the containers that are in it. When you
delete a channel and its containers:

• Any data that is in the containers is discarded.
• All storage that relates to the channel and to its containers is released.

The application program that issues the DELETE CHANNEL command must be the program that owns the
channel. The program that owns the channel is the program that created the channel by naming it on one
of the following commands:

• LINK PROGRAM CHANNEL
• MOVE CONTAINER CHANNEL TOCHANNEL
• PUT CONTAINER CHANNEL

An application program cannot delete the following channels:

• Any channel that the application program did not create
• Any channel that is read-only
• The transaction channel DFHTRANSACTION

Options
CHANNEL(data-value)

Specifies the 1–16 character name of the channel that is to be deleted. Every container that is owned
by the channel is deleted, and the channel itself is deleted.

RETCODE(data-area)
Specifies a 20-byte area into which the external CICS interface places return information. This area is
formatted into five 1–word fields. This command will return information in the first two words. These
words will contain the RESP and RESP2 codes. The other three words will be set to nulls.
RESP

The primary response code, which indicates whether the external CICS interface DELETE
CHANNEL command caused an exception condition during its execution.

RESP2
The secondary response code that further qualifies, where necessary, some of the conditions that
are raised in the RESP parameter.

Conditions
122 CHANNELERR

RESP2 values:

Chapter 2. The external CICS interface 45

https://www.ibm.com/docs/SSJL4D_6.x/applications/developing/compiler/dfhp3_transl_cics.html
https://www.ibm.com/docs/SSJL4D_6.x/applications/developing/compiler/dfhp3_transl_cics.html
https://www.ibm.com/docs/SSJL4D_6.x/applications/developing/interfaces/dfhtmf1.html
https://www.ibm.com/docs/SSJL4D_6.x/applications/developing/interfaces/dfhtmf1.html

2
The channel specified on the CHANNEL option could not be found.

3
The channel specified on the CHANNEL option is a read-only channel.

5
The channel specified on the CHANNEL option is the transaction channel.

6
The channel specified on the CHANNEL option is not owned by the calling program.

904
XCEIP ESTAE invoked.

EXEC CICS DELETE CONTAINER command (EXCI)
Delete a named channel container.

DELETE CONTAINER (EXCI)
DELETE CONTAINER( data-value) CHANNEL( data-value) RETCODE( data-area)

Conditions: CHANNELERR, CONTAINERERR, INVREQ

Description
DELETE CONTAINER (EXCI) deletes a container from a channel and discards any data that it contains.

The container is identified by name and by the channel for which it is a container - the channel that
“owns” it.

Options
CHANNEL(data-value)

Specifies the name (1–16 characters) of the channel that owns the container. You can specify the
channel name DFHTRANSACTION to use the transaction channel.

CONTAINER(data-value)
Specifies the name (1–16 characters) of the container to be deleted.

RETCODE(data-area)
Specifies a 20-byte area into which the external CICS interface places return information. This area is
formatted into five 1–word fields. This command will return information in the first two words. These
words will contain the RESP and RESP2 codes. The other three words will be set to nulls.
RESP

The primary response code, which indicates whether the external CICS interface DELETE
CONTAINER command caused an exception condition during its execution.

RESP2
The secondary response code that further qualifies, where necessary, some of the conditions that
are raised in the RESP parameter.

Conditions
122 CHANNELERR

RESP2 values:
2

The channel specified on the CHANNEL option could not be found.
3

The channel specified on the CHANNEL option is read-only.
904

XCEIP ESTAE invoked.

46 CICS TS for z/OS: Using EXCI

110 CONTAINERERR
RESP2 values:
10

The container named on the CONTAINER option could not be found.
16 INVREQ

RESP2 values:
4

The command was issued outside the scope of a currently-active channel.
30

You cannot delete a CICS-defined read-only container.

EXEC CICS ENDBROWSE CONTAINER command (EXCI)
End a browse of the containers that are associated with a channel.

ENDBROWSE CONTAINER (EXCI)
ENDBROWSE CONTAINER BROWSETOKEN( data-value) RETCODE( data-area)

Conditions: TOKENERR

Description
ENDBROWSE CONTAINER (EXCI) ends a browse of the containers that are associated with a channel,
and invalidates the browse token.

Options
BROWSETOKEN(data-value)

Specifies, as a fullword binary value, the browse token to be deleted.
RETCODE(data-area)

Specifies a 20-byte area into which the external CICS interface places return information. This area is
formatted into five 1–word fields. This command will return information in the first two words. These
words will contain the RESP and RESP2 codes. The other three words will be set to nulls.
RESP

The primary response code, which indicates whether the external CICS interface ENDBROWSE
CONTAINER command caused an exception condition during its execution.

RESP2
The secondary response code that further qualifies, where necessary, some of the conditions that
are raised in the RESP parameter.

Conditions
112 TOKENERR

RESP2 values:
3

The browse token is not valid.

Chapter 2. The external CICS interface 47

EXEC CICS GET CONTAINER command (EXCI)
Retrieve data from a named channel container.

GET CONTAINER (EXCI)
GET CONTAINER( data-value) CHANNEL( data-value)

INTO( data-area)

FLENGTH( data-area)

BYTEOFFSET( data-area)

SET( ptr-ref) FLENGTH( data-area)

BYTEOFFSET( data-value)

NODATA FLENGTH( data-value)

INTOCCSID( data-value)

INTOCODEPAGE( data-value)

CONVERTST( cvda)

CCSID( data-area)

RETCODE( data-area)

Conditions: CCSIDERR, CHANNELERR, CODEPAGEERR, CONTAINERERR, INVREQ, LENGERR

Description
GET CONTAINER (EXCI) reads the data associated with a specified channel container.

The container that holds the data is identified by name and by the channel for which it is a container; the
channel that "owns" it.

Options
BYTEOFFSET(data-value)

Specifies the offset in bytes where the data returned starts. For CHAR containers, the BYTEOFFSET
value is used as an offset into the data in the requested code page. If you use a code page with
multibyte characters, depending on the BYTEOFFSET value you specify, the data returned might have
partial characters at the beginning, end, or both. In this situation, your application program must
be able to handle and interpret the data returned. If the value specified is less than zero, zero is
assumed.

CCSID(data-area)
Returns a fullword that contains the Coded Character Set Identifier (CCSID) of the data returned by
the CONVERTST(NOCONVERT) option. You can use this option to retrieve containers with a DATATYPE
of CHAR, without converting the data. If a DATATYPE of BIT is specified for the container, this value is
zero.

CHANNEL(data-value)
Specifies the name (1 - 16 characters) of the channel that owns the container. You can specify the
channel name DFHTRANSACTION to use the transaction channel.

CONTAINER(data-value)
Specifies the name (1 - 16 characters) of the container that holds the data to be retrieved.

CONVERTST(cvda)
Specifies the required data conversion status.
NOCONVERT

The container data is retrieved without being converted.

48 CICS TS for z/OS: Using EXCI

FLENGTH(data-area)
As an input field, FLENGTH specifies, as a fullword binary value, the length of the data to be read. As
an output field, FLENGTH returns the length of the data in the container. FLENGTH is an input or an
output field depending on which of the BYTEOFFSET , INTO , SET , or NODATA options you specify.
BYTEOFFSET option specified

FLENGTH is both an input and an output field.

On input , FLENGTH specifies the maximum length of the data that the program accepts. The data
returned begins at the offset specified by the BYTEOFFSET value. If the value specified is less
than zero, zero is assumed.

On output (that is, on completion of the retrieval operation) CICS sets the data area to the length
of the data returned. The maximum length returned is equal to the length of the data in the
container minus the BYTEOFFSET value.

INTO option specified
FLENGTH is both an input and an output field.

On input , FLENGTH specifies the maximum length of the data that the program accepts. If the
value specified is less than zero, zero is assumed. If the length of the data exceeds the value
specified, the data is truncated to that value and the LENGERR condition occurs. If the length of
the data is less than the specified value, the data is copied but no padding is performed.

You do not need to specify FLENGTH if the length can be generated by the compiler from the INTO
variable. If you specify both INTO and FLENGTH , FLENGTH specifies the maximum length of the
data that the program accepts.

On output (that is, on completion of the retrieval operation) CICS sets the data area, if specified,
to the actual length of the data in the container. If the container holds character data that has
been converted from one CCSID to another, this is the length of the data after conversion.

SET or NODATA option specified
FLENGTH is an output-only field. It must be present and must be specified as a data-area.

On completion of the retrieval operation, the data area is set to the actual length of the data in
the container. If the container holds character data that has been converted from one CCSID to
another, this is the length of the data after conversion.

INTO(data-area)
Specifies the data area into which the retrieved data is placed.

INTOCCSID(data-value)
Specifies the Coded Character Set Identifier (CCSID) into which the character data in the container is
converted, as a fullword binary number. If you prefer to specify an IANA name for the code page, or if
you prefer to specify the CCSID as alphanumeric characters, use the INTOCODEPAGE option instead.

For CICS Transaction Server for z/OS applications, the CCSID is typically an EBCDIC CCSID. However,
it is possible to specify an ASCII CCSID if, for example, you want to retrieve ASCII data without it
being automatically converted to EBCDIC.

If INTOCCSID and INTOCODEPAGE are not specified, the value for conversion defaults to the CCSID
of the EXCI job. The default CCSID of the EXCI job is specified on the LOCALCCSID parameter of
DFHXCOPT.

Only character data can be converted, and only then if a DATATYPE of CHAR was specified on the
PUT CONTAINER command used to place the data in the container. A DATATYPE of CHAR is implied if
FROMCCSID or FROMCODEPAGE is specified on the PUT CONTAINER command.

For more information about data conversion with channels, see Data conversion with channels.

For an explanation of CCSIDs, see Preparing for code page conversion with channels.

INTOCODEPAGE(data-value)
Specifies an IANA-registered alphanumeric charset name or a Coded Character Set Identifier (CCSID)
for the code page into which the character data in the container is to be converted, using up to 40

Chapter 2. The external CICS interface 49

https://www.ibm.com/docs/SSJL4D_6.x/applications/designing/dfhp3_ch20.html
https://www.ibm.com/docs/SSJL4D_6.x/applications/designing/dfhp3_dcprep.html

alphanumeric characters, including appropriate punctuation. Use this option instead of the CCSID
option if you prefer to use an IANA-registered charset name, as specified in the Content-Type header
for an HTTP request. CICS converts the IANA name into a CCSID, and the subsequent data conversion
process is identical. Also use this option if you prefer to specify the CCSID in alphanumeric characters,
rather than as a fullword binary number.

Where an IANA name exists for a code page and CICS supports its use, the name is listed with the
CCSID. For more information, see Preparing for code page conversion with channels.

NODATA
Specifies that no data is retrieved. Use this option to discover the length of the data in the container
(returned in FLENGTH).

The length of character data may change if data conversion takes place. Therefore, if character data is
to be converted into any CCSID other than that of this region , when you specify NODATA , you should
also specify INTOCCSID . This ensures that the correct length of the converted data is returned in
FLENGTH.

RETCODE(data-area)
Specifies a 20-byte area into which the external CICS interface places return information. This area is
formatted into five 1–word fields. This command will return information in the first two words. These
words will contain the RESP and RESP2 codes. The other three words will be set to nulls.
RESP

The primary response code, which indicates whether the external CICS interface GET CONTAINER
command caused an exception condition during its execution.

RESP2
The secondary response code that further qualifies, where necessary, some of the conditions that
are raised in the RESP parameter.

SET(ptr-ref)
Specifies a data area in which the address of the retrieved data is returned.

The external CICS interface maintains the data area until any of the following occurs:

• A subsequent GET CONTAINER command with the SET option, for the same container in the same
channel, is issued by any program that can access this storage.

• The container is deleted by a DELETE CONTAINER command.
• The container is moved by a MOVE CONTAINER command.
• The channel and the containers that are in it are deleted by a DELETE CHANNEL command.

Beware of linking to other programs that might issue one of these commands.

Do not issue a FREEMAIN command to release this storage.

If your application needs to keep the data, the application should move the data into its own storage.

Conditions
123 CCSIDERR

RESP2 values:
1

The CCSID specified on the INTOCCSID option is outside the range of valid CCSID values.
2

The CCSID specified on the INTOCCSID option and the CCSID of the container are an
unsupported combination. (The CCSID of the container is the value that was specified using either
FROMCODEPAGE or FROMCCSID , or defaulted, when the container was built.)

3
The data was created with a data type of BIT. Code page conversion is not possible. The data was
returned without any code page conversion.

50 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/applications/designing/dfhp3_dcprep.html

4
One or more characters could not be converted. The character has been replaced by a blank in the
converted data.

5
There was an internal error in the code page conversion of a container.

122 CHANNELERR
RESP2 values:
2

The channel specified on the CHANNEL option could not be found.
904

XCEIP ESTAE invoked.
125 CODEPAGEERR

RESP2 values:
1

The code page specified on the INTOCODEPAGE option is not supported.
2

The code page specified on the INTOCODEPAGE option and the code page of the channel are an
unsupported combination.

3
The data was created with a data type of BIT. Code page conversion is not possible. The data was
returned without any code page conversion.

4
One or more characters could not be converted. The character has been replaced by a blank in the
converted data.

5
There was an internal error in the code page conversion of a container.

110 CONTAINERERR
RESP2 values:
10

The container named on the CONTAINER option could not be found.
16 INVREQ

RESP2 values:
2

The INTOCCSID option was specified without the CHANNEL option, and there is no current
channel (because the program that issued the command was not passed one.) INTOCCSID is
valid only on GET CONTAINER commands that specify a channel.

4
The CHANNEL option was not specified, there is no current channel (because the program that
issued the command was not passed one), and the command was issued outside the scope of a
currently-active BTS activity.

5
The CONVERTST cvda value is invalid.

22 LENGERR
RESP2 values:
11

The length of the program area is shorter than the length of the data in the container. When the
area is smaller, the data is truncated to fit into it.

12
The offset is greater than, or equal to, the length of the container.

Chapter 2. The external CICS interface 51

EXEC CICS GETNEXT CONTAINER command (EXCI)
Browse the containers that are associated with a channel.

GETNEXT CONTAINER (EXCI)
GETNEXT CONTAINER( data-area) BROWSETOKEN( data-value) RETCODE( data-area)

Conditions: END, TOKENERR

Description
GETNEXT CONTAINER (EXCI) returns the name of the next container that is associated with a channel.

Note:

1. You can use successive GETNEXT CONTAINER (EXCI) commands to retrieve the names of all the
channel's containers that existed when the STARTBROWSE CONTAINER (EXCI) command was run.
However, the names of any containers that are deleted after the STARTBROWSE command and before
they were returned by a GETNEXT command are not returned.

2. The names of any containers that are created on (or moved to) this channel or activity after the
STARTBROWSE command is run might, or might not, be returned.

3. The order in which containers are returned is undefined and might change. As best practice,
applications should not rely on the order of returned containers.

Options
BROWSETOKEN(data-value)

Specifies, as a fullword binary value, a browse token returned on a previous STARTBROWSE
CONTAINER (EXCI) command.

CONTAINER(data-area)
Returns the 16-character name of the next data-container.

RETCODE(data-area)
Specifies a 20-byte area into which the external CICS interface places return information. This area is
formatted into five 1–word fields. This command will return information in the first two words. These
words will contain the RESP and RESP2 codes. The other three words will be set to nulls.
RESP

The primary response code, which indicates whether the external CICS interface GETNEXT
CONTAINER command caused an exception condition during its execution.

RESP2
The secondary response code that further qualifies, where necessary, some of the conditions that
are raised in the RESP parameter.

Conditions
83 END

RESP2 values:
2

There are no more containers.
112 TOKENERR

RESP2 values:
3

The browse token is not valid.

52 CICS TS for z/OS: Using EXCI

EXEC CICS MOVE CONTAINER command (EXCI)
Move a container (and its contents) from one channel to another.

MOVE CONTAINER (EXCI)
MOVE CONTAINER( data-value) AS( data-value) CHANNEL( data-value)

TOCHANNEL( data-value) RETCODE( data-area)

Conditions: CHANNELERR, CONTAINERERR, INVREQ

Description
MOVE CONTAINER (EXCI) moves a container from one channel to another. After the move, the source
container no longer exists.

The source and target containers are identified by name and by the channels that own them. The channel
that owns the source container is identified by the CHANNEL option. The channel that owns the target
container is identified by the TOCHANNEL option.

You can move a container:

• From one channel to another
• Within the same channel (This has the effect of renaming the container.)

You can use MOVE CONTAINER , instead of GET CONTAINER and PUT CONTAINER , as a more efficient
way of transferring data between channels.

Note:

1. The source channel must be within the scope of the program that issues the MOVE CONTAINER
command.

2. If the target channel does not exist, within the scope of the program that issues the MOVE CONTAINER
command, it is created.

3. If the source container does not exist, an error occurs.
4. If the target container does not already exist, it is created. If the target container already exists, its

previous contents are overwritten.
5. If you try to overwrite a container with itself, nothing happens. That is, if you specify the same value

for the CONTAINER and AS options and specify the same value for the CHANNEL and TOCHANNEL
options, so that the same channel is specified, the source container is not changed nor deleted. No
error condition is raised.

Options
AS(data-value)

Specifies the name (1–16 characters) of the target container. If the target container already exists, its
contents are overwritten.

The acceptable characters are A-Z a-z 0-9 $ @ # / % & ? ! : | " = ¬ , ; < > . - and _. Leading and
embedded blank characters are not permitted. If the name supplied is less than 16 characters, it is
padded with trailing blanks up to 16 characters.

Container names are always in EBCDIC. The allowable set of characters for container names, listed
above, includes some characters that do not have the same representation in all EBCDIC code pages.
Therefore, it is recommended that, if containers are to be shipped between regions, the characters
used in naming them should be restricted to A-Z a-z 0-9 & : = , ; < > . - and _.

CHANNEL(data-value)
Specifies the name (1–16 characters) of the channel that owns the source container. You can specify
the channel name DFHTRANSACTION to use the transaction channel.

Chapter 2. The external CICS interface 53

CONTAINER(data-value)
Specifies the name (1–16 characters) of the source container that is to be moved.

RETCODE(data-area)
Specifies a 20-byte area into which the external CICS interface places return information. This area is
formatted into five 1–word fields. This command will return information in the first two words. These
words will contain the RESP and RESP2 codes. The other three words will be set to nulls.
RESP

The primary response code, which indicates whether the external CICS interface MOVE
CONTAINER command caused an exception condition during its execution.

RESP2
The secondary response code that further qualifies, where necessary, some of the conditions that
are raised in the RESP parameter.

TOCHANNEL(data-value)
Specifies the name (1–16 characters) of the channel that owns the target container. If you are
specifying a new channel, remember that the acceptable characters are A-Z a-z 0-9 $ @ # / % & ? ! : |
" = ¬ , ; < > . - and _. Leading and embedded blank characters are not permitted. If the name supplied
is less than 16 characters, it is padded with trailing blanks up to 16 characters. If the channel does
not exist, it is created. This new channel remains in scope until the link level changes. For more
information about channel scope, see The scope of a channel.

Channel names are always in EBCDIC. The allowable set of characters for channel names, listed
above, includes some characters that do not have the same representation in all EBCDIC code pages.
Therefore, if channels are to be shipped between regions, it is advisable to restrict the characters that
are used to name them to A-Z a-z 0-9 & : = , ; < > . - and _.

You can specify the channel name DFHTRANSACTION to use a transaction channel. A transaction
channel does not go out of scope when the link level changes: it is always accessible in the task. For
more information, see Channels and containers.

Conditions
122 CHANNELERR

RESP2 values:
1

The name specified on the TOCHANNEL option contains an illegal character or combination of
characters.

2
The channel specified on the CHANNEL option could not be found.

3
The channel specified on the CHANNEL option is read-only.

904
XCEIP ESTAE invoked.

110 CONTAINERERR
RESP2 values:
10

The container named on the CONTAINER option could not be found.
18

The name specified on the AS option contains an illegal character or combination of characters.
16 INVREQ

RESP2 values:
30

You cannot move a CICS-defined read-only container.

54 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/applications/designing/dfhp3_ch_scopeif.html
https://www.ibm.com/docs/SSJL4D_6.x/applications/designing/dfhp3_ch_ifcons.html

31
You cannot move a container to (that is, overwrite) an existing, CICS-defined, read-only container.

EXEC CICS PUT CONTAINER command (EXCI)
Place data in a named channel container.

Syntax
The syntax differs between releases. The affected command options are represented as a fragment in
the main diagram. Some command options are available in specific releases; see “Applicable releases for
command options” on page 55 for the affected options.

PUT CONTAINER (EXCI)
PUT CONTAINER( data-value) CHANNEL( data-value) FROM( data-area)

FLENGTH( data-value)

BIT

DATATYPE( cvda)

CHAR

FROMCCSID( data-value)

FROMCODEPAGE( data-value)

APPEND

PREPEND

RETCODE( data-area)

Applicable releases for command options
Some command options are available in specific releases, as identified below:

• 6.2 6.3 Beta PREPEND

Conditions: CCSIDERR, CHANNELERR, CODEPAGEERR, CONTAINERERR, INVREQ, LENGERR

Description
PUT CONTAINER (EXCI) places data in a container associated with a specified channel. The container
is identified by name. The channel that owns the container is identified by the CHANNEL option.

If the named container does not exist, it is created. If the named channel does not exist, it is created.

6.2 6.3 Beta If the named container exists, its previous contents are overwritten, unless you
specify the APPEND or PREPEND option.

6.1 If the named container exists, its previous contents are overwritten, unless you specify the APPEND
option.

There is no limit to the number of containers that can be associated with a channel. The size of individual
containers is limited only by the amount of storage available. Container data is held in 64-bit storage. The
total amount of 64-bit storage available to an EXCI job is governed by MEMLIMIT, and the external CICS
interface limits the total amount of container data to 5% of the MEMLIMIT value.

CAUTION: If you create multiple large containers and pass them to CICS, unless the target CICS
program is a non-LE assembler amode-64 application, the container data will be copied into 31-bit
storage when accessed by the CICS application, so sufficient 31-bit storage must be available
to contain the copied data, and you might limit the amount of storage available to other CICS
applications.

Chapter 2. The external CICS interface 55

Options
APPEND

Specifies that the data passed to the container is appended to the existing data in the container.
If neither the APPEND nor the PREPEND option is specified, the existing data in the container is
overwritten by the data passed to the container.

CHANNEL(data-value)
Specifies the name (1–16 characters) of the channel that owns the container. The acceptable
characters are A-Z a-z 0-9 $ @ # / % & ? ! : | " = , ; < > . - and _. Leading and embedded blank
characters are not permitted. If the name supplied is less than 16 characters, it is padded with trailing
blanks up to 16 characters.

Channel names are always in EBCDIC. The set of allowed characters for channel names, as listed
earlier, includes some characters that do not have the same representation in all EBCDIC code pages.
Therefore, if channels are to be shipped between regions, it is advisable to restrict the characters that
are used to name them to A-Z a-z 0-9 & : = , ; < > . - and _.

If the channel does not exist, it is created. You can specify the channel name DFHTRANSACTION to
use a transaction channel in CICS. For more information about using a transaction channel with EXCI,
see Channels and containers.

CONTAINER(data-value)
Specifies the name (1–16 characters) of the container into which data is placed.

The acceptable characters are A-Z a-z 0-9 $ @ # / % & ? ! : | " = , ; < > . - and _. Leading and
embedded blank characters are not permitted. If the name supplied is less than 16 characters, it is
padded with trailing blanks up to 16 characters.

Do not use container names that begin with DFH, unless requested to do so by CICS.

Container names are always in EBCDIC. The set of allowed characters for container names, as listed
earlier, includes some characters that do not have the same representation in all EBCDIC code pages.
Therefore, if containers are to be shipped between regions, it is advisable to restrict the characters
used to name them to A-Z 0-9 & : = , ; < > . - and _.

DATATYPE(cvda)
Specifies the type of data to put into the container. This option applies only to new containers. If the
container exists, its data type was established when it was created and cannot be changed. CVDA
values are:
BIT

Bit data. The data in the container cannot be converted. This is the default value, unless
FROMCCSID is specified.

CHAR
Character data. The data to store in the container is converted (if required) according to the setting
in the FROMCCSID or FROMCODEPAGE value. If the FROMCCSID and FROMCODEPAGE options are
not specified, it is assumed that the data is encoded in the CCSID of the EXCI job as specified in
the LOCALCCSID parameter of DFHXCOPT.

All the data in a container is converted as if it were a single character string. For SBCS code pages,
a structure consisting of several character fields is equivalent to a single-byte character string.
However, for DBCS code pages this is not the case. If you use DBCS code pages, you must put
each character string into a separate container to ensure that data conversion works correctly.

FLENGTH(data-value)
Specifies, as a fullword binary value, the length of the data area from which data is read.

FROM(data-area)
Specifies the data area from which the data is written to the container.

FROMCCSID(data-value)
Specifies the current Coded Character Set Identifier (CCSID) of the character data to put into the
container, as a fullword binary number. If you prefer to specify an IANA name for the code page, or if
you prefer to specify the CCSID as alphanumeric characters, use the FROMCODEPAGE option instead.

56 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/applications/designing/dfhp3_ch_ifcons.html

Use this option if the data to place in the container is not encoded in the CCSID of the EXCI job, as
specified in the LOCALCCSID parameter of DFHXCOPT.

If the FROMCCSID option is specified, DATATYPE(DFHVALUE(CHAR)) is implied.

FROMCODEPAGE(data-value)
Specifies an IANA-registered alphanumeric charset name or a Coded Character Set Identifier (CCSID)
for the current code page of the character data to put into the container, using up to 40 alphanumeric
characters, including appropriate punctuation. Use this option instead of the CCSID option if you
prefer to use an IANA-registered charset name, as specified in the Content-Type header for an HTTP
request. CICS converts the IANA name into a CCSID, and the subsequent data conversion process is
identical. Also use this option if you prefer to specify the CCSID in alphanumeric characters, rather
than as a fullword binary number.

If the FROMCODEPAGE option is specified, DATATYPE(DFHVALUE(CHAR)) is implied.

6.2 6.3 Beta PREPEND
Specifies that the data passed to the container is prepended to the existing data in the container.
If neither the PREPEND nor the APPEND option is specified, the existing data in the container is
overwritten by the data passed to the container.

RETCODE(data-area)
Specifies a 20-byte area into which the external CICS interface places return information. This area is
formatted into five 1–word fields. This command will return information in the first two words. These
words will contain the RESP and RESP2 codes. The other three words will be set to nulls.
RESP

The primary response code, which indicates whether the external CICS interface PUT CONTAINER
command caused an exception condition during its execution.

RESP2
The secondary response code that further qualifies, where necessary, some of the conditions that
are raised in the RESP parameter.

Conditions
123 CCSIDERR

RESP2 values:
1

The CCSID specified on the FROMCCSID option is outside the range of valid CCSID values.
2

The CCSID specified on the FROMCCSID option and the CCSID of the container are an unsupported
combination. The CCSID of the container is the value that was specified, or defaulted, on the first
PUT CONTAINER command for this container. The first time each invalid combination is used,
CICS issues error message DFHAP0802 , which contains the pair of CCSIDs.

4
One or more characters could not be converted. Each unconverted character has been replaced by
a blank in the converted data.

5
There was an internal error in the code page conversion of a container. This error can occur only
when the target of the PUT is an existing, CICS-created container.

122 CHANNELERR
RESP2 values:
1

The name specified on the CHANNEL option contains an illegal character or combination of
characters.

3
The channel specified on the CHANNEL option is read-only.

Chapter 2. The external CICS interface 57

904
XCEIP ESTAE invoked.

125 CODEPAGEERR
RESP2 values:
1

The code page specified on the FROMCODEPAGE option is not supported.
2

The code page specified on the FROMCODEPAGE option and the CCSID of the container are an
unsupported combination. The CCSID of the container is the value that was specified using
either FROMCODEPAGE or FROMCCSID , or defaulted, on the first PUT CONTAINER command
for this container. The first time each invalid combination is used, CICS issues error message
DFHAP0802 , which contains the pair of CCSIDs.

4
One or more characters could not be converted. Each unconverted character has been replaced by
a blank in the converted data. This error can occur only when the target of the PUT is an existing
container.

5
There was an internal error in the code page conversion of a container. This error can occur only
when the target of the PUT is an existing, CICS-created container.

110 CONTAINERERR
RESP2 values:
18

The name specified on the CONTAINER option contains an illegal character or combination of
characters.

16 INVREQ
RESP2 values:
1

The DATATYPE option was specified without the CHANNEL option, and there is no current channel
(because the program that issued the command was not passed one.) DATATYPE is valid only on
PUT CONTAINER commands that specify (explicitly or implicitly) a channel.

2
The FROMCCSID option was specified without the CHANNEL option, and there is no current
channel (because the program that issued the command was not passed one.) FROMCCSID is
valid only on PUT CONTAINER commands that specify (explicitly or implicitly) a channel.

30
You tried to write to a CICS-defined read only container.

32
A CVDA value other than CHAR or BIT was specified for DATATYPE.

33
An attempt was made to change the data-type of an existing container.

34
A data-type of BIT is invalid with a CCSID.

22 LENGERR
RESP2 values:
1

A negative number was specified on the FLENGTH option.

58 CICS TS for z/OS: Using EXCI

EXEC CICS QUERY CHANNEL command (EXCI)
Count the number of containers that are in a channel.

QUERY CHANNEL (EXCI)
QUERY CHANNEL( data-value) CONTAINERCNT( data-area) RETCODE( data-area)

Conditions: CHANNELERR

Description
QUERY CHANNEL (EXCI) counts the number of containers that are in a specified channel. You must
specify the CHANNEL option and identify the channel explicitly. You can use the QUERY CHANNEL
command with any channel, including the transaction channel (DFHTRANSACTION), and channels that
EXCI created.

Options
CHANNEL(data-value)

Specifies the 1-16 character name of the channel.
CONTAINERCNT(data-area)

Returns, as a fullword binary value, a count of the number of containers that are in the specified
channel.

RETCODE(data-area)
Specifies a 20-byte area into which the external CICS interface places return information. This area is
formatted into five 1–word fields. This command will return information in the first two words. These
words will contain the RESP and RESP2 codes. The other three words will be set to nulls.
RESP

The primary response code, which indicates whether the external CICS interface QUERY CHANNEL
command caused an exception condition during its execution.

RESP2
The secondary response code that further qualifies, where necessary, some of the conditions that
are raised in the RESP parameter.

Conditions
122 CHANNELERR

RESP2 values:
2

The channel specified on the CHANNEL option could not be found.

EXEC CICS STARTBROWSE CONTAINER command (EXCI)
Start a browse of the containers that are associated with a channel.

STARTBROWSE CONTAINER (EXCI)
STARTBROWSE CONTAINER CHANNEL( data-value) BROWSETOKEN( data-area)

RETCODE( data-area)

Conditions: CHANNELERR

Description
STARTBROWSE CONTAINER (EXCI) initializes a browse token that can be used to identify the name of
each data-container that is associated with a specified channel.

Chapter 2. The external CICS interface 59

Note: The browse token should be used only by the program that issues the STARTBROWSE command.

The order in which containers are returned is undefined and might change. As best practice, applications
should not rely on the order of returned containers.

Options
BROWSETOKEN(data-area)

Specifies a fullword binary data area, into which CICS will place the browse token.
CHANNEL(data-value)

Specifies the name (1-16 characters) of the channel whose containers are to be browsed. This
must be the name of a channel created by the program that issues the STARTBROWSE CONTAINER
command. You can specify the channel name DFHTRANSACTION to use the transaction channel.

The order in which containers are returned is undefined.

RETCODE(data-area)
Specifies a 20-byte area into which the external CICS interface places return information. This area is
formatted into five 1–word fields. This command will return information in the first two words. These
words will contain the RESP and RESP2 codes. The other three words will be set to nulls.
RESP

The primary response code, which indicates whether the external CICS interface STARTBROWSE
CONTAINER command caused an exception condition during its execution.

RESP2
The secondary response code that further qualifies, where necessary, some of the conditions that
are raised in the RESP parameter.

Conditions
122 CHANNELERR

RESP2 values:
2

The channel specified on the CHANNEL option could not be found.

Compiling and link-editing EXCI client programs
All programs that use the external CICS interface to pass DPL requests to a CICS server region must
include the CICS-supplied program stub, DFHXCSTB.

Alternatively for COBOL programs, it is possible to call DFHXCSTB dynamically rather than link-editing the
stub with the program.

The stub intercepts all external CICS interface commands, whether they are EXCI CALL interface
commands or EXEC CICS interface commands, and ensures they are passed to the appropriate external
CICS interface routine for processing.

DFHXCSTB is a common stub, designed for inclusion in programs written in all the supported languages. It
is supplied in the CICSTSnn.CICS.SDFHEXCI library, where nn represents the CICS version.

Note: The CICSTSx.CICS.SDFHEXCI also contains entries for DFHXCIE and DFHXCIS, which are aliases for
DFHXCSTB.

To help you ensure that the stub is included, CICS provides a number of procedures, one for each
language, which you can use for translating, compiling, and link-editing.

You must specify AMODE(31) for your EXCI client program.

The CICS-supplied procedures for compiling and link-editing client programs include the following
parameters on the PARM statement of the linkage editor job step:

 LNKPARM='AMODE(31),LIST,XREF'

60 CICS TS for z/OS: Using EXCI

Samples
To help with writing programs that use the external CICS interface, CICS provides sample z/OS client
programs and a sample CICS server program. The samples show you how to code client applications that
use both the EXCI CALL interface and EXEC CICS LINK command. For more information, see EXCI
sample programs.

Job control language to run an EXCI client program
An EXCI client program runs in a z/OS address space, for example, as a batch job. When writing the JCL
for your client program, you should note these requirements.

Requirements
• Include in the STEPLIB concatenation those libraries that contain the CICS-supplied external CICS

interface modules and also the client program. All the libraries are shown using the format
CICSTSnn, where nn represents the CICS version. The external CICS interface modules are supplied
in CICSTSnn.CICS.SDFHEXCI, which contains the following:

DFH$ATXC
DFH$AXCC
DFH$AXNC
DFH$DXVC
DFHMEBMX
DFHMET4E
DFHXCEIX
DFHXCIE (alias of DFHXCSTB)
DFHXCIS (alias of DFHXCTSB)
DFHXCOPT
DFHXCPRX
DFHXCSTB
DFHXCTRA
DFHXCURM

• You are recommended to include a DD statement for SYSMDUMP. The external CICS interface uses
SYSMDUMP for some error conditions.

• The REGION parameter must specify a large enough region size to allow for the size of the internal trace
table specified by the TRACESZE parameter in the DFHXCOPT options table.

• If the EXCI client program uses channels and containers, instead of a COMMAREA, to pass data to CICS,
the MEMLIMIT parameter must be specified as container data is stored in 64-bit storage above the bar.
Storage for containers cannot exceed 5% of the MEMLIMIT value.

• Include a SYSPRINT or equivalent DD statement for any output from the client program.

Sample job for starting an EXCI client program
Figure 13 on page 62 shows a sample job that you can use or modify to start a client program.

Chapter 2. The external CICS interface 61

https://www.ibm.com/docs/SSJL4D_6.x/reference-samples/dfhtmf3.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-samples/dfhtmf3.html

//EXCI JOB (accounting_information),CLASS=A,TIME=1440,
// USER=userid,PASSWORD=pswd,REGION=100M
//*===*
//* JCL to execute an external CICS interface client program *
//*===*
//EXEC PGM=pgmname,REGION=nnM,MEMLIMIT=nnG
//STEPLIB DD DSN=CICSTSnn.CICS.EXCI.LOADLIB,DISP=SHR
// DD DSN=CICSTSnn.CICS.SDFHEXCI,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSMDUMP DD DSN=SYS1.SYSMDP00,VOL=SER=volid,SPACE=(CYL,(1,1)),
// DISP=OLD,UNIT=3390

Figure 13. Sample job for starting an EXCI client program

Note:

1. The job user ID, specified on the USER parameter, must be defined to RACF.
2. In addition to being used for job step initiation security, the job user ID is also used for MRO logon and

bind-time security checking.

See EXCI security for information about security when using the external CICS interface.
3. See Setting up the EXCI sample programs for information about modifying the sample connection

definitions before you run the sample application programs in an environment that does not have
RACF installed and active.

CICS-supplied procedures for the EXCI
CICS provides nine procedures you can use to translate, compile, and link-edit your client programs.

One assembler procedure is provided. For the high-level languages, a variant that uses the stand-alone
translator and one that uses the integrated translator is provided, as shown in the following list:
DFHEXTAL

The assembler procedure for assembler versions of client programs and that use the stand-alone
translator.

DFHYXTDL
The procedure for C versions of client programs that are running under Language Environment® and
using the stand-alone translator.

DFHYXTEL
The procedure for C++ versions of client programs that are running under Language Environment and
using the stand-alone translator.

DFHYXTPL
The procedure for PL/I versions of client programs that are running under Language Environment and
using the stand-alone translator.

DFHYXTVL
The procedure for COBOL versions of client programs that are running under Language Environment
and using the stand-alone translator.

DFHZXTCL
The procedure for COBOL versions of client programs that are running under Language Environment
and using the integrated translator.

DFHZXTDL
The procedure for C versions of client programs that are running under Language Environment and
using the integrated translator.

DFHZXTEL
The procedure for C++ versions of client programs that are running under Language Environment and
using the integrated translator.

DFHZXTPL
The procedure for PL/I versions of client programs that are running under Language Environment and
using the integrated translator.

62 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/security/interfaces/dfhtmf5.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-samples/dfhtmf4.html

To ensure that the EXCI stub is included with your client program, all these procedures include a step,
COPYLINK, that unloads the stub into a temporary data set defined with a block length suitable for the
linkage-editor. This temporary data set is then concatenated with the temporary data set containing your
object program on the SYSLIN DD statement in the LKED step.

These procedures are supplied in the CICSTSnn.CICS.SDFHPROC library, where nn represents the CICS
version. You are recommended to copy them to SYS1.PROCLIB or another suitable procedure library.

EXCI programming considerations
There are some language requirements that apply to writing a z/OS client program that uses the external
CICS interface. These affect programs written in PL/I and C. Also, for all languages, consider how you
handle return codes before terminating your z/OS client program.

PL/I considerations
PL/I programs written to the external CICS interface must provide their parameters on the CALL to
DFHXCIS in the form of an assembler-style parameter list.

The EXCI copybook for PL/I, DFHXCPLL, contains the necessary definition of the DFHXCIS entry point, as
follows:

 DCL DFHXCIS ENTRY OPTIONS(INTER ASSEMBLER);

The same rule applies for the EXCI LINK command, and in this case the CICS translator ensures that the
correct parameter list is built.

For an example of an EXCI client program written in PL/I, see the source of the sample program,
DFH$PXCC.

C considerations
C programs written to the external CICS interface must provide their parameters on the CALL to DFHXCIS
in the form of an assembler-style parameter list. You ensure this by declaring the entry point to DFHXCIS
with OS LINKAGE.

The EXCI copybook for C, DFHXCPLH, contains the necessary definition of the DFHXCIS entry point, as
follows:

 #pragma linkage(dfhxcis,OS)

The same rule applies for the EXCI LINK command, and in this case the CICS translator ensures that the
correct parameter list is built.

For an example of an EXCI client program written in C, see the source of the sample program, DFH$DXCC.

Setting the return code (R15) at termination
The external CICS interface does not clear register 15 at termination, regardless of whether your client
program executes normally or not. Therefore, even if your z/OS client program terminates normally after
successfully using the external CICS interface, the job step could end with an undefined return code.

The external CICS interface is not obliged to clear register 15 and does not clear it upon exit to the client
program that invokes it. The value in register 15 reflects a return code for the entire application, not just
for the external CICS interface. If register 15 is cleared during exit from the external CICS interface, it
might suggest that the client application works without any issue and this might lead the client to make
incorrect decisions. By not setting register 15 when control returns from the external CICS interface, it is
the responsibility of the client program to set it since it is aware of the application’s overall state.

To ensure a meaningful return code is given at termination, set the job step return code before
terminating your program. The sample client programs illustrate how you can do this, using the saved

Chapter 2. The external CICS interface 63

response code from last call to the external CICS interface. For example, the COBOL sample DFH0CXCC
program moves SAVED-RESPONSE to special register RETURN-CODE before terminating.

PL/I considerations
PL/I programs written to the external CICS interface must provide their parameters on the CALL to
DFHXCIS in the form of an assembler-style parameter list.

The EXCI copybook for PL/I, DFHXCPLL, contains the necessary definition of the DFHXCIS entry point, as
follows:

 DCL DFHXCIS ENTRY OPTIONS(INTER ASSEMBLER);

The same rule applies for the EXCI LINK command, and in this case the CICS translator ensures that the
correct parameter list is built.

For an example of an EXCI client program written in PL/I, see the source of the sample program,
DFH$PXCC.

C considerations
C programs written to the external CICS interface must provide their parameters on the CALL to DFHXCIS
in the form of an assembler-style parameter list. You ensure this by declaring the entry point to DFHXCIS
with OS LINKAGE.

The EXCI copybook for C, DFHXCPLH, contains the necessary definition of the DFHXCIS entry point, as
follows:

 #pragma linkage(dfhxcis,OS)

The same rule applies for the EXCI LINK command, and in this case the CICS translator ensures that the
correct parameter list is built.

For an example of an EXCI client program written in C, see the source of the sample program, DFH$DXCC.

Setting the return code (R15) at termination
The external CICS interface does not clear register 15 at termination, regardless of whether your client
program executes normally or not. Therefore, even if your z/OS client program terminates normally after
successfully using the external CICS interface, the job step could end with an undefined return code.

To ensure a meaningful return code is given at termination, set the job step return code before
terminating your program. The sample client programs illustrate how you can do this, using the saved
response code from last call to the external CICS interface. For example, the COBOL sample DFH0CXCC
program moves SAVED-RESPONSE to special register RETURN-CODE before terminating.

64 CICS TS for z/OS: Using EXCI

Chapter 3. Configuring EXCI
The external CICS interface (EXCI) is an application programming interface that enables a non-CICS
program (a client program) running in z/OS to call a program (a server program) running in a CICS
region and to pass and receive data by using a communications area or by using a channel and a set of
containers. This section provides instructions for configuring EXCI.

Setting up EXCI for static routing
You can statically route requests to CICS programs from applications that use the EXCI.

Before you begin
Before you begin, verify that the MVS parameter Maxmember is set to a high value. This parameter
controls how many connections can be made to the DFHIRP00 resource.

Procedure
1. Add RDO group EXCIXXXX to the grouplist of the CICS region. If EXCIXXXX is not available, make a

copy from the supplied DFH$EXCI RDO group.
This group contains all connections required for EXCI functions and can support up to 100 connections
for batch requests.

2. Add the RDO group for the application to the grouplist of the CICS region.
3. Assemble DFHXCOPT into the SDFHEXCI load library. Ensure that DFHXCOPT has SURROGATE=YES.
4. Assemble and compile your application programs.

If your application program is written in Assembler, use the linkage editor parameters AMODE(31) and
RMODE(ANY). Link the program into your application load library.

5. Configure the batch JCL to run your application program.
a) Edit the JCL to specify to which CICS region the batch program will send the EXCI request:

//step0010 EXEC PGM=program,PARM='applid,userid'

applid is the CICS region and userid is a RACF user ID.
b) Ensure your load library is concatenated as follows:

6.2

//STELIB DD Disp=shr,Dsn=SYS5C.CICn.CICS750.SDFHEXCI
 //DD Disp=shr,Dsn=Your.application.loadlib

6.1

//STELIB DD Disp=shr,Dsn=SYS5C.CICn.CICS740.SDFHEXCI
 //DD Disp=shr,Dsn=Your.application.loadlib

6. Run the batch program and check that the results are as expected.

© Copyright IBM Corp. 1974, 2025 65

Setting up EXCI for dynamic routing
You can dynamically route requests to CICS programs from applications that use the EXCI using
CICSPlex® SM.

Procedure
1. Specify the following system initialization parameters in the CICS region:

• DSRTPGM=EYU9XLOP
• DTRPGM=EYU9XLOP

2. Update your RDO group as follows:
a) Add an RDO entry for the EXCI server program, DFHMIRS.

You can use another transaction instead of EXCI if required, but it must point to program DFHMIRS
and have a profile of DFHCICSA. Model it after the EXCI transaction in group DFH$EXCI. This
transaction will point to DFHMIRS program.

Note: The user transaction when defined as remote will only work within an APPC configuration.
Within an EXCI or MRO configuration the mirror transaction must run in the local CICS region,
by specifying DYNAMIC(NO) and no REMOTE attributes. Routing the mirror transaction to another
CICS region can impact performance and make problem determination more difficult.

b) Add the RDO group to the terminal-owning region (TOR) LIST.
Ensure that the TOR region has program autoinstall disabled.

3. Log into CICSPlex SM and define the transaction for the routing region into these CICSPlex SM
resources: TRANGRP, WLMDEF, WLMGRP WLMSPEC.

For more information, see Creating workload management definitions.
4. For each application-owning region (AOR), create the RDO group in the same way as the sample

definition DFH$EXCI.
This group must contain only the connections, sessions, and application programs, or equivalent
transactions. If you used a different transaction instead of EXCI, you must specify it in this group.

Results
When an application issues a distributed program link, CICSPlex SM checks if the incoming transaction is
under its control. When it finds that EXCI or its equivalent is valid in its transaction group, CICSPlex SM
routes the transaction to one of the candidate AORs for processing.

An alternative to this approach is to define an RDO definition for the program or transaction with
DYNAMIC=Yes. CICSPlex SM routes the request to the selected region.

Defining connections to CICS
Connections between an EXCI client program and a CICS region require connection definitions in the CICS
region. You define these using the CONNECTION and the SESSIONS resource definition facilities provided
by CICS.

The following options are provided specifically for the external CICS interface:

• CONNTYPE on the CONNECTION resource definition. See CONNECTION resources. For EXCI
connections only, this option indicates whether the connection is generic or specific.

• EXCI on the PROTOCOL attribute of the CONNECTION and SESSIONS resource definitions. See
CONNECTION resources and SESSIONS resources.

66 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/administering/cpsm/eyuaas1.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-system-management/resources/connection/dfha4_summary.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-system-management/resources/connection/dfha4_summary.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-system-management/resources/sessions/dfha4_summary.html

Inquiring on the state of EXCI connections
If you have access, through a CICS terminal, to the CICS server region, you can inquire about batch jobs
that are running a client application program, and which are using the external CICS interface (EXCI) to
link to a server program in CICS.

To obtain this information about batch jobs linked to CICS through MRO, you use the CEMT INQUIRE
EXCI command. This command enables you to identify the names of EXCI batch jobs currently connected
to CICS through the interregion communication (IRC) facility.

CICS returns job identifications in the form: jobname.stepname.procname - mvsid

Either stepname, or procname, or both might not be present, indicated by the periods (.) being adjacent
to one another.

The mvsid identifies the z/OS system on which the job is running. If XCF/MRO is in use, the job can reside
on a different z/OS image from that on which CICS is running.

Information about jobs using the external CICS interface is available only when the job has issued at least
one DPL request. A non-zero task number indicates that a DPL request is currently active. A zero task
number indicates an external CICS interface session is still open (connected) for that job, although no DPL
request is currently active.

See CEMT - main terminal for more information about the CEMT command.

The EXCI user-replaceable module
The external CICS interface provides a user-replaceable module, DFHXCURM.

The load module and its source are supplied in CICS libraries: CICSTSnn.CICS.SDFHEXCI and
CICSTSnn.CICS.SDFHSAMP (source), where nn reflects the release of CICS TS. For example, in
CICS TS beta, the libraries are CICSTS64.CICS.SDFHEXCI and CICSTS64.CICS.SDFHSAMP. You can find
information about assembling and link-editing user-replaceable programs in Assembling and link-editing
user-replaceable programs.

DFHXCURM is started by the external CICS interface in the non-CICS region during the processing of
allocate_pipe commands, and after the occurrence of any retryable error.

The retryable responses are:

• The target CICS region is not available.
• There are no pipes available on the target CICS region.
• There has been no IRC activity since the MVS IPL.

To retry after a retryable error, issue the EXCI call again.

As supplied, DFHXCURM is effectively a dummy program because of a branch instruction that bypasses
the sample logic and returns control to the external CICS interface caller. To use the sample logic, remove
the branch instruction and assemble and link edit the module. You can customize DFHXCURM to do the
following actions:

• During allocate_pipe processing, you can change the specified CICS APPLID, to route the request to
another CICS system.

• During allocate_pipe processing, you can direct the request to a different XCF group.
• When DFHXCURM is started after an error that can be tried again, you can store information about CICS

availability. You can then use this information on the next invocation of DFHXCURM for allocate_pipe
processing, so that you can decide which CICS system to route the request.

DFHXCURM is called using standard MVS register conventions, with register 1 containing the address of
the parameter list, and register 14 the return address of the caller. The parameters addressed by register
1 are mapped in the EXCI_URM_PARMS DSECT, which is contained within the DFHXCPLD copybook. The
parameters passed to DFHXCURM are as follows:

Chapter 3. Configuring EXCI 67

https://www.ibm.com/docs/SSJL4D_6.x/reference-system-management/transactions/dfha721.html
https://www.ibm.com/docs/SSJL4D_6.x/system-programming/cics/dfha34m.html
https://www.ibm.com/docs/SSJL4D_6.x/system-programming/cics/dfha34m.html

URMINV
The address of a fullword that contains the reason for the invocation of DFHXCURM, defined by the
following equates:

URM_ALLOCATE EQU 1 This invocation is for an Allocate_Pipe
URM_NO_CICS EQU 2 The target CICS region is not available
URM_NO_PIPE EQU 3 There are no pipes available
URM_NO_CICS_IRC EQU 4 There has been no IRC activity since the MVS IPL

URMCICS
The address of an 8-byte area that contains the APPLID of the target CICS system, as specified on
the CICS_applid parameter of the Allocate_Pipe command, or on the APPLID parameter of the
EXEC CICS LINK command.

When specified by one of these commands, you can change the APPLID to that of a different target
CICS region. Also, if the APPLID specified by one of these commands is not a valid specific applid, you
must change the APPLID to that of a valid specific applid.

If the CICS_applid parameter is omitted from the allocate_pipe request, or APPLID is omitted from
the EXEC CICS LINK command, the field addressed by this parameter contains 8 blanks. In this
case, you must specify an APPLID in DFHXCURM before returning control to the caller.

URMAPPL
The address of an 8-byte area that contains the client program's user name as specified on the
my_name parameter of the Initialize_User command. If DFHXCURM is started for an EXEC CICS LINK
command, this name is always set to DFHXCEIP.

URMPROG
The address of an 8-byte area that contains the name of the target program (if available). This name
is available only if DFHXCURM is started for an EXEC CICS LINK command. For an external CICS
interface allocate_pipe command, the program name is not known until the DPL call is issued.

URMOPTS
The address of a 1-byte area that contains the allocate options, which can be X'00' or X'80', as
specified on the allocate_opts parameter. This address is valid for an Allocate_Pipe request only.

URMANCH
The address of a 4-byte area that is provided for use by DFHXCURM only. A typical use for this is to
store a global anchor address of an area used to save information across a number of invocations of
DFHXCURM. For example, you can GETMAIN the necessary storage and save the address in the 4-byte
area addressed by this parameter. The initial value of the 4-byte area is set to zero.

There is one URMANCH parameter for each TCB in the address space using EXCI.

URMXCFG
The address of an 8-byte area that contains the XCF group name as specified in the XCFGROUP
parameter of the DFHXCOPT table. Use this parameter to change the XCF group name when
DFHXCURM is called during the processing of EXCI Allocate_Pipe commands. If the call to DFHXCURM
failed but can be tried again, the area contains the value used when previously allocating the pipe.
Changing the value has no affect.

The group name must be 8 characters long, padded on the right with blanks if necessary. Valid
characters are A-Z 0-9 $ # @. Do not begin group names with the letters A, B, C, E, F, G, H, I "SYS."
These names are used by IBM for its XCF groups. Also, do not use the name "UNDESIG", which is
reserved for use by the system programmer in your installation.

It is advisable to use a group name beginning with the letters "DFHIR".

68 CICS TS for z/OS: Using EXCI

Using the EXCI options table, DFHXCOPT
The EXCI options table, which is generated by the DFHXCOPT macro, enables you to specify a number of
parameters that are required by the external CICS interface.

DFHXCOPT options table: New format versus older format
The DFHXCOPT options table changed since it was first introduced and now includes a version number to
allow more flexibility for future extensions. You need to be aware of this change if, for example, you plan
to migrate a customized DFHXCOPT table from an earlier release of CICS.

To distinguish between the old and newer formats, the new-format table is link-edited with an alias called
DFHXCOPE. The following sequence is used to load the options table:

1. CICS tries to load the DFHXCOPT table using its alias name of DFHXCOPE. If it finds and successfully
loads a load module named DFHXCOPE, CICS assumes that the table is in the new format.

2. If CICS does not find a load module named DFHXCOPE (or finds it but fails to load it), it tries to load
the table using its base name of DFHXCOPT. In this case, CICS assumes that the table is in the older
format.

CICS provides a default DFHXCOPT table and supplies the source code of the default table in the
CICSTSnn.CICS.SDFHSAMP library, where nn reflects the release of CICS TS. For example, the library
is CICSTS64.CICS.SDFHSAMP for CICS TS beta. The load module of the default DFHXCOPT table, with its
alias DFHXCOPE, is in the CICSTSnn.CICS.SDFHEXCI library, where nn reflects the release of CICS TS.
For example, the library is CICSTS64.CICS.SDFHEXCI for CICS TS beta.

Creating customized DFHXCOPT table
You can tailor the source code of the CICS-supplied default DFHXCOPT table to your own requirements.

You must assemble and link-edit your customized DFHXCOPT table into a suitable library in the STEPLIB
concatenation of the job that runs the z/OS client program.

Important: If you create your own, customized, DFHXCOPT table, ensure that you link-edit it using
the DFHXCOPE alias. Using the standard DFHAUPLE procedure ensures that this happens. If you
reassemble and link-edit your table without the alias, CICS will load the default table (found by means of
its DFHXCOPE alias), rather than your customized table.

You can use your own version of the CICS DFHAUPLE procedure to do this. The DFHAUPLE procedure
is supplied in the CICSTSnn.CICS.SDFHINST library, where nn reflects the release of CICS TS. For
example, the library is CICSTS64.CICS.SDFHINST for CICS TS beta.

DFHXCOPT macro: Format and parameters
Unlike the tables you specify for CICS regions, the DFHXCOPT table cannot be suffixed.

The following table shows the format of the DFHXCOPT macro and its parameters.

DFHXCO TYPE={CSECT|DSECT}

[,ABENDBKOUT={NO|YES}]

 [,CICSSVC={216|number}]

 [,CONFDATA={HIDE|SHOW}]

 [,DURETRY={30|number-of-seconds}]

 [,GTF={OFF|ON}]

[,LOCALCCSID={037|CCSID}]

 [,MSGCASE={MIXED|UPPER}]

 [,TIMEOUT={0|number}]

Chapter 3. Configuring EXCI 69

 [,TRACE={OFF|1|2|3}]

 [,TRACESZE={16|number-of-kilobytes}]

 [,TRAP={OFF|ON}]

 [,XCFGROUP={DFHIR000|name}]

 You must terminate your parameters with the following END statement.

END DFHXCOPT

TYPE={CSECT|DSECT}
Indicates the type of table to be generated.
CSECT

A regular control section that is normally used.
DSECT

A dummy control section.
ABENDBKOUT={NO|YES}

Specifies whether a task that abends within the CICS server is to trigger an automatic rollback of the
global unit of work. A global unit of work exists when an EXCI client program is controlling resource
recovery through z/OS RRS (that is, SYNCONRETURN is not specified on the DPL request). In this
case, you may well want the global unit of work to be marked for rollback if the CICS server program
abends.

Note: ABENDBKOUT has no effect when SYNCONRETURN is specified on the DPL request.

NO
The global unit of work is not marked for rollback.

YES
When processing the abend of the server program, the CICS mirror program marks the global unit
of work for backout.

In both cases, the EXCI client program receives a return code of 422, SERVER_ABENDED, on the EXCI
DPL request.

CICSSVC={216|number}
Specifies the CICS type 3 SVC number being used for MRO communication. The default is 216.

The external CICS interface must use the same SVC number that is in use by the CICS MRO regions
that reside in the z/OS image in which the client program is running.

0
Specify zero to indicate that the external CICS interface is to obtain the CICS SVC number from
z/OS by means of a z/OS VERIFY command.

You should only specify zero when you are sure that at least one CICS region has logged on to
DFHIRP during the life of the z/OS IPL.

number
Specify the CICS SVC number, in the range 200—255, that is in use for CICS interregion
communications. This must be the SVC number that is installed in the z/OS image in which the
client program is running (the local z/OS).

If no MRO CICS regions have ever logged on to DFHIRP in the local z/OS during the life of the IPL,
you must specify a non-zero SVC number. If you specify zero, the external CICS interface requests
the SVC from z/OS, which will fail if no CICS region has logged on to DFHIRP.

70 CICS TS for z/OS: Using EXCI

A non-zero value is required in those z/OS images that do not run any CICS regions, and the client
program is issuing DPL requests to a server CICS region that resides in another z/OS. In these
circumstances, the client program logs on to the local DFHIRP using the locally defined SVC, and
communicates with the remote CICS region using XCF/MRO.

Note: All CICS regions using MRO within the same z/OS image must use the highest level of both
DFHIRP and the CICS SVC, DFHCSVC. If your MRO CICSplex consists of CICS regions at different
release levels, the DFHIRP and DFHCSVC installed in the LPA must be from the highest release level of
CICS within the CICSplex.

CONFDATA={HIDE|SHOW}
Code this parameter to indicate whether the external CICS interface is to suppress (hide) user data
that might otherwise appear in EXCI trace entries output to GTF or in EXCI dumps. This option applies
to the tracing of the COMMAREA or CONTAINER data flowing between the EXCI client program and
the CICS server program.
HIDE

EXCI is to ‘hide' user COMMAREA or CONTAINER data from trace entries. Instead the trace entry
contains a character string stating that the data has been suppressed.

SHOW
Data suppression is not in effect. User data is traced.

DURETRY={30|number-of-seconds|0}
Specifies the total time, in seconds, that the external CICS interface is to continue trying to obtain a
z/OS system dump using the SDUMP macro.

DURETRY allows you to control whether, and for how long, the external CICS interface is to reissue
the SDUMP if another address space in the same z/OS system is already taking an SDUMP when the
external CICS interface issues an SDUMP request.

In the event of an SDUMP failure, the external CICS interface reacts as follows:

• If z/OS is already taking an SDUMP for another address space, and the DURETRY parameter is
nonzero, the external CICS interface issues an MVS STIMERM macro to wait for five seconds, before
retrying the SDUMP macro. The external CICS interface issues a message to say that it will retry the
SDUMP every five seconds until the DURETRY time limit.

• If the SDUMP fails for any other reason such as the following, the external CICS interface issues a
message to inform you that the SDUMP has failed, giving the reason why.

– There are no SYS1.DUMP data sets available.
– There are I/O errors preventing completion of the dump.
– The DURETRY limit expires while retrying SDUMP.

30
30 seconds allows the external CICS interface to retry up to six times (once every five seconds).

number-of-seconds
Code the total number of seconds (up to 32767 seconds) during which you want the external CICS
interface to continue retrying the SDUMP macro. The external CICS interface retries the SDUMP,
once every five seconds, until successful or until retries have been made over a period equal to or
greater than the DURETRY value.

0
Code a zero value if you do not want CICS to retry the SDUMP.

GTF={OFF|ON}
Specifies whether all trace entries normally written to the external CICS interface trace table are also
to be written to a z/OS generalized trace facility (GTF) data set (if GTF trace is active).
OFF

Code this if trace entries are not to be written to GTF.
ON

Code this if trace entries are to be written to GTF.

Chapter 3. Configuring EXCI 71

LOCALCCSID={037|CCSID}
Specifies the default CCSID for the EXCI job. The CCSID is a value of up to 8 characters. If a CCSID
value is not specified, the default LOCALCCSID is set to 037. For lists of valid CCSIDs, see the
following information:

• CICS-supported conversions
• The relevant appendix in z/OS Unicode Services User's Guide and Reference

037
The default value for LOCALCCSID.

CCSID
Represents any other valid EBCDIC CCSID value.

MSGCASE={MIXED|UPPER}
Specifies whether the DFHEXxxxx messages are to be issued in mixed case or in uppercase.
MIXED

Code this if messages are to be issued in mixed case.
UPPER

Code this if messages are to be issued in uppercase.
TIMEOUT={0|number}

Specifies the time interval, in hundredths of a second, during which the external CICS interface waits
for a DPL command to complete.

DPL commands can pass a channel and set of containers to CICS. Commands that pass this
information can involve multiple flows of data up to CICS to construct the container data. The timeout
interval starts when the last flow of data is sent to CICS, which completes the data and initiates the
invocation of the CICS server program.

0
Specifies that you do not want any time limit applied, and that the external CICS interface is to
wait indefinitely for a DPL command to complete.

number
Specifies the time interval, in hundredths of a second, that the external CICS interface is to wait
for a DPL command to complete. The number represents hundredths of a second, from 1 up to a
maximum of 2 147 483 647. For example:
6000

Represents a timeout value of one minute.
30000

Represents a timeout value of five minutes.
60000

Represents a timeout value of ten minutes.
TRACE={OFF|1|2|3}

Specifies whether you want internal trace for the external CICS interface, and at what level.
OFF

Internal trace for the external CICS interface is not required. However, even with normal tracing
switched off, exception trace entries are always written to the external CICS interface trace table
in the CICS region.

1
Exception and level 1 trace entries are written to the external CICS interface trace table.

2
Exception, level 1, and level 2 trace entries are written to the external CICS interface trace table.

3
Exception, level 1, level 2, and level 3 trace entries are written to the external CICS interface trace
table.

72 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/reference-connectivity/data-conversion/dfht8kn.html
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.cunu100/abstract.htm

TRACESZE={16|number-of-kilobytes}
Specifies the size in kilobytes of the trace table that is used by the external CICS interface. This trace
table is allocated in 31-bit storage (above the line) in the CICS region.
16

The default size of the trace table, and also the minimum size.
number-of-kilobytes

The number of kilobytes of storage to be allocated for the trace table, in the range 16 KB through
1 048 576 KB. Subpool 1 is used for the trace table storage, which exists for the duration of
the job step TCB. The table is page-aligned and occupies a whole number of pages. If the value
specified is not a multiple of the page size (4 KB), it is rounded up to the next multiple of 4 KB.

TRAP={OFF|ON}
Specifies whether the service trap module, DFHXCTRA, is to be used. DFHXCTRA is supplied as a
user-replaceable module, in which IBM service personnel can add code to trap errors.
OFF

Code this if you do not want to use DFHXCTRA.
ON

Code this if you require DFHXCTRA.
XCFGROUP={DFHIR000|name}

Specifies the name of the cross-system coupling facility (XCF) group to be joined by this client
program.

Note: XCF groups allow CICS regions in different MVS images within the same sysplex to
communicate with each other across multi-region operation (MRO) connections. For introductory
information about XCF/MRO, and instructions on how to set up XCF groups, see Cross-system
multiregion operation (XCF/MRO).

Each client program can join a maximum of one XCF group.

DFHIR000
The default XCF group name.

name
The group name must be eight characters long, padded on the right with blanks if necessary. The
valid characters are A-Z 0-9 and the national characters $ # and @. To avoid using the names IBM
uses for its XCF groups, do not begin group names with the letters A through C, E through I, or
the character string "SYS". Also, do not use the name "UNDESIG", which is reserved for use by the
system programmer in your installation.

It is recommended that you use a group name beginning with the letters "DFHIR".

Chapter 3. Configuring EXCI 73

https://www.ibm.com/docs/SSJL4D_6.x/fundamentals/connections/dfht17e.html
https://www.ibm.com/docs/SSJL4D_6.x/fundamentals/connections/dfht17e.html

74 CICS TS for z/OS: Using EXCI

Chapter 4. Security for EXCI
CICS applies security checks in a number of ways against requests received from an MVS client program.

Using MRO logon and bind-time security
DFHIRP, the CICS interregion communication program, performs two security checks against users that
want to either log on to IRP (specific connections only), or connect to a CICS region (also referred to as
bind-time security).

About this task
Generic EXCI connections: The discussion about logon security checking in this section applies only
to EXCI connections that are defined as SPECIFIC. The MRO logon security check is not performed for
generic connections.

The MVS client program is treated just the same as another CICS region as far as MRO logon and connect
(bind-time) security checking is concerned. This means that when the client program logs on to the
interregion communication program, IRP performs logon and bind-time security checks against the user
ID under which the client program is running. In the remainder of this information, this user ID is called
the user ID of the batch region.

To enable your client program to log on to IRP successfully, and to connect to the target server region,
first ensure that you define the user ID of the batch region in a user profile to RACF. After you define
the user ID of the batch region to RACF, you can then give the batch region the appropriate logon and
bind-time authorizations.

Procedure
Logon authorization:
• Authorize the user ID of the batch region to the DFHAPPL.user_name RACF FACILITY class profile,

with UPDATE authority. The user_name part of the profile name is the user name defined on the
INITIALIZE_USER command.

– For the EXCI CALL interface, the user_name must be the name you specify on the user_name
parameter of the INITIALIZE_USER command.

Define FACILITY class profiles, with appropriate authorizations, for each user name specified in a
client program if the program has INITIALIZE_USER commands for more than one user name.

For example, if the user_name defined on an INITIALIZE_USER command is DCEUSER1, define the
DFHAPPL profile in the FACILITY class as follows:

RDEFINE FACILITY (DFHAPPL.DCEUSER1) UACC(NONE)

If the batch region's user ID is CLIENTA, authorize the batch region to log on to IRP as follows:

PERMIT DFHAPPL.DCEUSER1 CLASS(FACILITY) ID(CLIENTA)
 ACCESS(UPDATE)

– For the EXEC CICS LINK command, the user_name is preset by the external CICS interface as
DFHXCEIP. This does not require authorization for IRP logon because the EXEC CICS LINK interface
uses a generic connection to which the logon security check does not apply.

Failure to authorize the user ID of the batch region to the DFHAPPL profile of the specific user
ID logging on to IRP causes Allocate_Pipe processing to fail with RESPONSE(SYSTEM_ERROR)
REASON(IRC_LOGON_FAILURE). The subreason field-1 for a logon security check failure returns
decimal 204.

Bind-time authorization

© Copyright IBM Corp. 1974, 2025 75

• Authorize the user ID of the batch region to the DFHAPPL.applid RACF FACILITY class profile of the
target CICS server region, with READ authority.

Failure to authorize the user ID of the batch region to the DFHAPPL.applid profile of
the CICS server region causes Open_Pipe processing to fail with RESPONSE(SYSTEM_ERROR)
REASON(IRC_CONNECT_FAILURE). The subreason field-1 for a bind-time security check failure
returns decimal 176.

See Bind security for information about the MRO logon and bind-time security checks, and for
examples of how to define the RACF DFHAPPL profiles.

Link security for EXCI
The target CICS server region performs link security checking against requests from the client program.

These security checks cover transaction attach security (when attaching the mirror transaction), and
resource and command security checking within the server application program. The link user ID that
CICS uses for these security checks is the batch region's user ID.

To ensure these link security checks do not cause security failures, you must ensure that the link user ID
is authorized to the following resource profiles, as appropriate:

• The profile for the mirror transaction, either CSMI for the default, or the mirror transaction specified on
the transid parameter. This is required for transaction attach security checking.

• The profiles for all the resources accessed by the CICS server application program—files, queues
(transient data and temporary storage), programs, and so on. This is required for resource security
checking.

• The CICS command profiles for the SPI commands issued by the CICS server application program—
INQUIRE, SET, DISCARD and so on. This is required for command security checking.

See CONNECT security checks for AORs for information about MRO link security checking.

User security for EXCI
The target CICS server region performs user security checking against the user ID passed
on a DPL_ Request call. User security checking is performed only when connections specify
ATTACHCSEC(IDENTIFY).

User security is performed in addition to any link security.

For user security, in addition to any authorizations you make for link security, you must also authorize the
user ID specified on the DPL_Request call.

Note that there is no provision for specifying a user ID on the EXEC CICS LINK command. In this case, the
external CICS interface passes the batch region's user ID. User security checking is therefore performed
against the batch region's user ID if the connection definition specifies ATTACHSEC(IDENTIFY).

Note: If your connection resource definitions for the external CICS interface specify
ATTACHSEC(IDENTIFY), your server programs will fail with an ATCY abend if you run them in an
environment that does not have RACF, or an equivalent external security manager (ESM), installed and
active.

If you want to run external CICS interface server programs without any security active, you must specify
ATTACHSEC(LOCAL).

Surrogate user checking for EXCI
EXCI client jobs are subject to surrogate user checking (see Surrogate security). You must authorize
the batch region's user ID as a surrogate of the user ID specified on all DPL_Request calls. This
configuration means that the batch region's user ID must have READ access to a profile named execution-
userid.DFHEXCI in the RACF SURROGAT general resource class (where execution-userid is the user ID
that is specified on the DPL call).

76 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/security/data-tables/dfht51g.html
https://www.ibm.com/docs/SSJL4D_6.x/security/data-tables/dfht51g.html
https://www.ibm.com/docs/SSJL4D_6.x/security/cics/surrogate-security.html

For example, the following commands define a surrogate profile for a DPL user ID, and grant READ access
to the EXCI batch region:

RDEFINE SURROGAT execution_userid.DFHEXCI UACC(NONE)
PERMIT execution-userid.DFHEXCI CLASS(SURROGAT) ID(batch_region_userid) ACCESS(READ)

If no user ID is specified on the DPL_Request call, no surrogate user check is performed because the
user ID on the DPL_Request call defaults to the batch region's user ID. For this bypass of surrogate user
checking to be successful, ensure that you have correctly omitted the user ID on the DPL_Request call.
See the example of EXCI CALLs with null parameters in The EXCI CALL interface for the correct way to
specify a null pointer when you omit an EXCI call parameter.

If the batch region user ID and the CICS region user ID are different, link security checking is enforced.
With link security, a nonauthenticated user ID passed on a DPL_Request call cannot acquire more
authority than that allowed by the link security check. It can acquire only the same, or less, authority
than that allowed by the link security check.

For more information about CICS security, see Securing CICS.

Chapter 4. Security for EXCI 77

https://www.ibm.com/docs/SSJL4D_6.x/applications/developing/interfaces/dfhtm4b.html
https://www.ibm.com/docs/SSJL4D_6.x/security/security.html

78 CICS TS for z/OS: Using EXCI

Chapter 5. Troubleshooting EXCI

Important: This information contains Diagnosis, Modification or Tuning information.

The external CICS interface (EXCI) provides diagnostic information that you can use to help with problem
determination.

CICS provides the following diagnostic information:

• Trace
• System dumps
• 04xx abends for the external CICS interface
• The EXCI service trap, DFHXCTRA
• EXCI trace points

For details of EXCI messages and abend codes, see DFHEX messages and 04xx (external CICS interface)
abend codes.

EXCI trace
The external CICS interface (EXCI) writes trace data to two destinations: an internal trace table and an
external z/OS GTF data set. The internal trace table resides in the non-CICS address space. Trace data is
formatted and included in any dumps produced by the EXCI.

Trace entries issued by the EXCI are listed in External CICS interface trace points.

To use z/OS GTF for EXCI tracing, CICS GTF trace must be active, z/OS GTF must be started in the z/OS
image, and you must specify GTF=ON in the DFHXCOPT options table. If you use GTF trace for both
the CICS server region and the EXCI region, the trace entries are interleaved, which can help you with
problem determination in the CICS-EXCI environment.

Note: The EXCI maintains a separate trace table for each user TCB in an EXCI application program.

The EXCI does not support any form of auxiliary trace.

To format EXCI trace entries written to z/OS GTF, you can use the standard CICS trace formatting routine,
DFHTRnnn, where nnn is a release identifier. For example, it is DFHTR760 for CICS TS beta. For reference
information about this utility, see Trace utility print program (DFHTUnnn).

To format EXCI trace entries, you use the same FID and ID as for CICS (that is, FID=X'EF', and ID=X'F6C').

EXCI system dumps
The external CICS interface (EXCI) produces SYSMDUMPs for some error conditions and SDUMPs for
other, more serious conditions. These dumps contain all the EXCI control blocks as well as trace entries.

Note: To capture SYSMDUMPs produced by the EXCI, ensure that you always include a DD statement for
the SYSMDUMP data set in the client application program's JCL.

Forcing dumps
In addition to the dumps taken automatically by the EXCI, you can force a dump of an address space
running a client application program by entering the z/OS DUMP command at the console. You can use the
CICS IPCS VERBEXIT routine DFHPDnnn to format dumps taken this way.

You can also use the DUMP command to dump the CICS server address space as well as the client address
space. Use the CICS IPCS VERBEXIT routine DFHPDnnn to format the dump that contains both address
spaces.

© Copyright IBM Corp. 1974, 2025 79

https://www.ibm.com/docs/reference/reference-messages/cics-messages/dfhg4_dfhex.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-abend-codes/abend-codes/dfhg4l6.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-abend-codes/abend-codes/dfhg4l6.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-diagnostics/trace/dfhs6_ex.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-system-management/utilities/dfha68m.html

Formatting system dumps
You can use the CICS IPCS VERBEXIT routine, DFHPDnnn to format the system dumps.

IPCS VERBEXIT DFHPDnnn keyword

DFHPDnnn is the dump formatting program, where nnn is a release identifier. For example, it is
DFHPD760 for CICS TS beta. For reference information about the CICS dump utilities, see Dump utilities
(DFHDUnnn and DFHPDnnn).

The following keywords are available for use when formatting an EXCI dump:
KE

Formats PSW and registers, and all EXCI control blocks.
LD

Formats a load map of where the EXCI modules are loaded in the address space, and gives their PTF
level.

MRO
Formats the MRO control blocks for the EXCI address space, including common control blocks that
reside in the common service area (CSA). This option also formats some MRO blocks that reside in the
CICS address space for pipes connected to CICS.

PG
Formats the PG control blocks for channels and containers.

TR
Formats the EXCI trace table. You can format the trace table in abbreviated and full forms (TR=1 gives
you the abbreviated trace).

SU
Produces a dump summary.

Note: If the EXCI takes a system dump when there is more than one TCB in use, it dumps only the control
blocks and trace table for the TCB that requested the dump. If you take a memory dump of the external
CICS address space using a console command, the CICS IPCS VERBEXIT routine, DFHPDnnn formats the
control blocks and trace tables for every TCB it finds in the dump.

For more information, see Formatting system dumps.

The EXCI service trap, DFHXCTRA
A user-replaceable program, DFHXCTRA, is available for use under the guidance of IBM Support. It is the
equivalent of DFHTRAP used in CICS. It is invoked every time the external CICS interface (EXCI) writes a
trace entry.

DFHXCTRA can perform one or all of the following actions:

1. Request the external CICS interface to write a trace entry on its behalf.
2. Instruct the external CICS interface to take an SDUMP.
3. Instruct the external CICS interface to skip writing the current trace entry to z/OS GTF.
4. Instruct the external CICS interface to disable DFHXCTRA.

The CICS-supplied sample version of DFHXCTRA performs all four functions if it detects a trace entry that
indicates that a FREEMAIN error occurred while trying to free an EXCI pipe control block.

The source for DFHXCTRA is supplied in the CICSTSnn.CICS.SDFHMAC library, where CICSTSnn is your
CICS release. For example, the library is CICSTS64.CICS.SDFHMAC for CICS TS beta. The parameter list
passed to DFHXCTRA is defined in the copybook DFHXCTRD, which is supplied in the SDFHMAC library.
DFHXCTRD also defines all the EXCI trace points for use by DFHXCTRA.

80 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/reference-system-management/utilities/dfha62k.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-system-management/utilities/dfha62k.html
https://www.ibm.com/docs/SSJL4D_6.x/troubleshooting/cics/dfhs14k.html

Problem determination with RRMS
Recoverable Resource Management Services (RRMS) is part of the z/OS operating system and comprises
registration services, context services, and recoverable resource services (RRS). RRMS provides the
context and unit of recovery management. RRMS is used to coordinate DPL requests, you can obtain
additional problem determination information from RRMS.

RRS provides Interactive System Productivity Facility (ISPF) panels for you to work with RRS. To obtain
debug information from RRMS, you can use ISPF dialogs as follows:

• You can browse the RRS log streams. RRS uses five log streams, including the resource manager data
log, the restart log, the main UR state log, the delayed UR state log, and the archive log, that are shared
by all the systems in a sysplex. For details about RRS log streams, see RRS log streams.

• You can display information about RRS resource managers.
• You can display information about RRS Units of Recovery.

For information about how to install and use the dialogs, see z/OS MVS Programming: Resource Recovery.

Chapter 5. Troubleshooting EXCI 81

https://www.ibm.com/docs/en/zos/latest?topic=streams-rrs-log
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.iean100/abstract.htm

82 CICS TS for z/OS: Using EXCI

Chapter 6. Response and reason codes returned on
EXCI calls

The EXCI call interface is part of the external CICS interface that enables a non-CICS program (a client
program) running in z/OS to call a program (a server program) running in a CICS region and to pass and
receive data by using a communications area or by using a channel and a set of containers. This reference
gives details of the reason codes for the responses returned on the EXCI call interface.

See also The EXCI CALL interface.

Note: All numeric response and reason code values shown are in decimal.

Table 7. EXCI response codes (returned in response field of return_area)

Code Meaning Explanation

0 OK For all EXCI CALL commands other than the DPL_request, the call was
successful. If an OK response is received for a DPL_request, you must
also check dpl_retarea to ensure CICS did not return a condition code.
If the EIBRESP field of Dpl_retarea is zero, the DPL call was successful.

4 WARNING The external CICS interface detected an error, but this did not stop
the CALL command completing successfully. The reason code field
describes the error detected.

8 RETRYABLE The EXCI CALL command failed. This class of failure relates to errors in
the setup of the system environment, and not errors in the external
CICS interface or client program. The reason code documents the
specific error in the environment setup.

The external CICS interface command can be reissued without
changing the client program once the environment error has been
corrected. The environmental errors concerned are ones that do not
require a z/OS re-IPL. Each reason code value for a RETRYABLE
response documents whether the CALL can be reissued directly, or
whether the pipe being used has to be closed and reopened first.

12 USER_ERROR The EXCI CALL command failed. This class of error means there is an
error either in the client program, or in the CICS server program, or
in the CICS server region. An example of an error in the CICS server
system would be a failed security check, or an abend of the CICS server
program, in which case the abend code is set in the abend code field
of dpl_retarea . Each reason code value for a response of USER_ERROR
explains whether the command can be reissued directly, or whether the
pipe being used has to be closed and reopened first.

16 SYSTEM_ ERROR The EXCI CALL command failed. This class of error means that
the external CICS interface has detected an error. The reason code
value identifies the specific error. If the error can be corrected,
then the command can be reissued. Each reason code value for a
SYSTEM_ERROR response explains whether the command can be
reissued directly, or whether the pipe being used has to be closed and
reopened first.

Reason codes for response: WARNING
The external CICS interface detected an error, but this did not stop the CALL command completing
successfully. The reason code field describes the error detected. The reason codes for response

© Copyright IBM Corp. 1974, 2025 83

https://www.ibm.com/docs/SSJL4D_6.x/applications/developing/interfaces/dfhtm4b.html

WARNING are 1 (PIPE_ALREADY_OPEN), 2 (PIPE_ALREADY_CLOSED), 3 (VERIFY_BLOCK_FM_ERROR),
4 (WS_FREEMAIN_ERROR), 5 (XCPIPE_FREEMAIN_ERROR), 6 (IRP_IOAREA_FM_FAILURE), 7
(SERVER_TERMINATED) and 8 (XFRASTG1_FM_FAILURE).

1: PIPE_ALREADY_OPEN
Explanation

An Open_Pipe request has been issued for a pipe that is already open.
System Action

None. The pipe remains open.
User Response

If this response is unexpected, investigate whether an incorrect pipe token has been used on the
Open_Pipe call.

2: PIPE_ALREADY_CLOSED
Explanation

A Close_Pipe request has been issued for a pipe that is already closed.
System Action

The external CICS interface ignores the request and the pipe remains closed.
User Response

If the response is unexpected, check that the Close_Pipe call is specifying the correct pipe token.

3: VERIFY_BLOCK_FM_ERROR
Explanation

Initialize_User processing requires storage below 16MB to build the parameter list for the SSI Verify
call, and an error has occurred during the FREEMAIN for this area.

System Action
The return code from the FREEMAIN is returned in the EXCI subreason field-1. The Initialize_User
request continues unaffected.

User Response
If the problem persists, take a memory dump of the batch region and use the memory dump, together
with the return code from the z/OS FREEMAIN, to determine why the FREEMAIN is failing.

4: WS_FREEMAIN_ERROR
Explanation

An attempt to FREEMAIN working storage has resulted in a z/OS FREEMAIN error.
System Action

The return code from the FREEMAIN is returned in the EXCI subreason field-1. The Initialize_User
request continues unaffected.

User Response
If the problem persists, take a memory dump of the batch region and use the memory dump, together
with the return code from the z/OS FREEMAIN to determine why the FREEMAIN is failing.

5: XCPIPE_FREEMAIN_ERROR
Explanation

An attempt to FREEMAIN pipe storage has resulted in a z/OS FREEMAIN error.
System Action

The return code from the FREEMAIN is returned in the EXCI subreason field-1. However, the external
CICS interface continues processing the Deallocate_Pipe request. If the request fails with another
error, this reason code is overwritten.

84 CICS TS for z/OS: Using EXCI

User Response
If the problem persists, take a memory dump of the client application program address space,
and use the memory dump, with the return code from the z/OS FREEMAIN to determine why the
FREEMAIN is failing.

6: IRP_IOAREA_FM_FAILURE
Explanation

An attempt to FREEMAIN an MRO I/O area has resulted in a z/OS FREEMAIN error.
System Action

The return code from the FREEMAIN is returned in the EXCI subreason field-1, but the DPL request
continued to completion. Reason IRP_IOAREA_FM_FAILURE is returned to your application only if the
DPL request completes; otherwise, it is overwritten by subsequent response and reason codes.

User Response
If the problem persists, take a memory dump of the batch region and use it with the return code from
the z/OS FREEMAIN to determine why the FREEMAIN is failing.

7: SERVER_TERMINATED
Explanation

The CICS session, on which the server program has been executing, has been freed by CICS.
System Action

The CICS application server program has been detached at some point in its processing, and control is
returned to the external CICS interface, which writes a trace entry for this error.

User Response
The most likely reason for this error is that the server program has caused CICS to terminate, perhaps
by an EXEC CICS PERFORM SHUTDOWN command. During shutdown, CICS frees EXCI sessions so
that shutdown can complete.

8: XFRASTG1_FM_FAILURE
Explanation

An attempt to FREEMAIN the transmission area has resulted in a z/OS FREEMAIN error.
System Action

The return code from the FREEMAIN is returned in the EXCI subreason field-1 but the DPL request
continued to completion. Reason XFRASTG1_FM_FAILURE is returned to your application only if the
DPL request completes; otherwise, it is overwritten by subsequent response and reason codes.

User Response
If the problem persists, take a memory dump of the batch region and use it with the return code from
the z/OS FREEMAIN to determine why the FREEMAIN is failing.

Reason codes for response: RETRYABLE
The EXCI CALL command failed. This class of failure relates to errors in the setup of the system
environment, and not errors in the external CICS interface or client program. The reason code documents
the specific error in the environment setup. The command can be reissued without changing the client
program after the environment error has been corrected. The reason codes for response RETRYABLE
are 201 (NO_CICS_IRC_STARTED), 202 (NO_PIPE), 203 (NO_CICS), 204 (WRONG_MVS_FOR_RRMS), and
205 (RRMS_NOT_AVAILABLE).

201: NO_CICS_IRC_STARTED
Explanation

An Initialize_User command has been issued on a z/OS image that has had no IRC activity since the
previous IPL, and the external CICS interface cannot determine the CICS SVC number.

Chapter 6. Response and reason codes returned on EXCI calls 85

System Action

The Initialize_User call fails, and the external CICS interface invokes the user-replaceable module,
DFHXCURM.

User Response

Ensure that a CICS region in the z/OS image has logged on to IRC (that is, has started up with
the system initialization parameter IRCSTRT=YES or has started IRC dynamically with an OPEN IRC
command). Alternatively, if there is no local CICS region in the z/OS image, you must specify the
SVC parameter that the external CICS interface is to use, by coding a CICSSVC parameter in the
DFHXCOPT table. This situation can occur if you are using XCF to communicate to a CICS region in
another z/OS image. Once the problem has been resolved, re-issue the Initialize_User request.

202: NO_PIPE
Explanation

An attempt has been made to open a pipe, but the target CICS system associated with the pipe has no
free receive sessions.

System Action

The Open_pipe call fails, and the external CICS interface invokes the user-replaceable module,
DFHXCURM.

User Response

This situation can occur even if the client application program has allocated (using Allocate_Pipe calls)
no more pipes than the number of receive sessions defined on the target connection. This is because
CICS can be in the process of cleaning up a pipe from a Close_Pipe request. For this reason, you are
recommended to specify a larger RECEIVECOUNT value than is theoretically necessary when defining
the SESSIONS resource definition to CICS. The application program can reissue the Open_Pipe
request.

203 (on Open_Pipe call): NO_CICS
Explanation

An attempt has been made to open a pipe but the target CICS system is not available, or hasn't yet
opened IRC, or the target connection is out of service, or the relevant EXCI connection definition is not
installed in the target CICS.

System Action

The open pipe request fails, and the external CICS interface invokes the user-replaceable module,
DFHXCURM.

User Response

If the subreason field-1 is non-zero (the IRP response code (R15)), the subreason field-2 contains the
IRP reason code. For an explanation of the IRP return codes, see the interregion control blocks in the
Data areas. The IRP return codes are in the DFHIRSPS copybook, listed under the heading IRC.

If the subreason code is 104 (hexadecimal 68), this code relates to IRERRNSS, which means that
no secondary Connection Control Block (CCB) was found for the primary system. This indicates that
the connection definition for the connecting job could not be found, typically because a generic
EXCI connection definition has not being installed. To install a generic EXCI connection definition
in the target CICS region, you can install the group DFH$EXCI to get the CICS-supplied generic
EXCI connection definition. If your application program intends to use a specific pipe instead of
a generic pipe, ensure that the allocate_opts parameter on Allocate_Pipe is set to X'00'. If
allocate_opts is set to x'80', this instructs CICS to allocate a generic pipe.

86 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/reference-data-areas/reference_data-areas.html

The client program should deallocate the pipe. When you have corrected the problem, your client
application program can reissue the allocate_pipe and Open_Pipe calls, or alternatively allocate and
open a pipe to a different CICS region.

204: WRONG_MVS_FOR_RRMS
Explanation

A DPL request omitting the SYNCONRETURN option has been made specifying a CICS region that is
on a different z/OS system from the batch program. Because the Recoverable Resource Management
Services (RRMS) context is not recognized in the target system, the request is rejected.

System Action

The DPL request fails, and the external CICS interface invokes the user-replacable module,
DFHXCURM.

User Response

Ensure that the batch program that issued the DPL request and the CICS region it was sent to are on
the same z/OS system.

205: RRMS_NOT_AVAILABLE
Explanation

A DPL request omitting the SYNCONRETURN option has been made when the Resource Recovery
Services (RRS) is not available.

There are two cases:

• When Resource Recovery Services (RRS) is not available.
• When Resource Recovery Services has restarted since the last DPL request omitting the

SYNCONRETURN option, and there has been no intervening syncpoint.

Note: RRS is a part of Recoverable Resource Management Services (RRMS).

System Action

The DPL request fails, and the external CICS interface invokes the user-replacable module,
DFHXCURM.

User Response

Retry the DPL request when Resource Recovery Services has restarted since the last DPL request
omitting the SYNCONRETURN option, and there has been no intervening syncpoint.

Reason codes for response: USER_ERROR
The EXCI CALL command failed. This class of error means there is an error either in the client program,
or in the CICS server program, or in the CICS server region. Each reason code value for a response of
USER_ERROR explains whether the command can be reissued directly, or whether the pipe being used
has to be closed and reopened first. The reason codes for response USER_ERROR are 401 through 434.

401: INVALID_CALL_TYPE
Explanation

An invalid call-type parameter value is specified on this EXCI request.
System Action

The request is rejected.
User Response

Check your EXCI client program and ensure the call_type parameter specifies the appropriate value
for the EXCI call, as follows.

Chapter 6. Response and reason codes returned on EXCI calls 87

1
Initialize_User

2
Allocate_Pipe

3
Open_Pipe

4
Close_Pipe

5
Deallocate_Pipe

6
DPL

402: INVALID_VERSION_NUMBER
Explanation

The version_number parameter does not specify a value of 1, 2, or 3.
System Action

The request is rejected.
User Response

Check the client application program and ensure that all EXCI calls specify the value of 1, 2, or 3 for
the version number.

403: INVALID_APPL_NAME
Explanation

The user_name parameter consists of all blank characters (X'40').
System Action

The call is rejected.
User Response

Change the application program to specify a valid, non-blank user name.

404: INVALID_USER_TOKEN
Explanation

The client application program has issued an EXCI request using a user token that is unknown to the
external CICS interface.

System Action
The request is rejected.

User Response
The Initialize_User call returns a 4-byte token that must be used on all further requests for the that
user. Check the client application program and correct the error to ensure that the correct token is
passed.

405: PIPE_NOT_CLOSED
Explanation

A Deallocate_Pipe request has been issued against a pipe that has not yet been closed.
System Action

The external CICS interface ignores the request and the pipe remains open.
User Response

Check the client application program, and ensure that the Deallocate_Pipe request is intended. If so,
issue a Close_Pipe request for the pipe before issuing the Deallocate_Pipe request.

88 CICS TS for z/OS: Using EXCI

406: PIPE_NOT_OPEN
Explanation

A DPL call has been issued on a pipe that is not open.
System Action

The external CICS interface rejects the DPL request.
User Response

Check the client application program, and ensure that an Open_Pipe request is issued before using
the pipe on a DPL request. If an Open_Pipe has been issued by the application program, check that it
has not been closed inadvertently before all the DPL requests have been made.

407: INVALID_USERID
Explanation

A DPL request has been issued with a USERID parameter that consists of all blanks.
System Action

The DPL request is rejected.
User Response

Check the EXCI client program and ensure that the DPL request passes a valid USERID parameter. If
you don't want to specify a userid, code the call parameter list with a null address for userid. If you
pass a null address, the external CICS interface passes the userid under which the client application
program is running (the batch region's userid).

408: INVALID_UOWID
Explanation

A DPL request has been issued with a uowid parameter that has invalid length fields.
System Action

The DPL request is rejected.
User Response

Check the client application program and ensure that the DPL request passes a valid uowid parameter.
If you don't want to specify a unit of work id, code the call parameter list with a null address for uowid,
in which case the external CICS interface generates a unit of work id for you.

409: INVALID_TRANSID
Explanation

A DPL request has been issued with a transid parameter that consists of all blanks.
System Action

The DPL request is rejected.
User Response

Check the client application program and ensure that the transid parameter is specified correctly or
has not been overwritten in some way. If you don't want to specify your own transid, code the call
parameter list with a null address for transid, in which case the external CICS interface uses the
default CICS mirror transaction, CSMI.

410: DFHMEBM_LOAD_FAILED
Explanation

During Initialize_User processing, the external CICS interface attempted to load the main message
module in preparation for issuing external CICS interface messages, and the load of this module
failed.

Chapter 6. Response and reason codes returned on EXCI calls 89

System Action
The Initialize_User call is rejected. The return code from the z/OS load macro (R15) is returned in
the subreason field-1. The external CICS interface handles the error, and returns the abend (R0) that
would have occurred in the subreason field-2.

User Response
Using the z/OS return code, determine why the load failed. The most likely reason is that the message
module, DFHMEBMX, is not in any library included in the STEPLIB of the batch job. Ensure that
the CICSTSnn.CICS.SDFHEXCI library is included in the STEPLIB concatenation (where nn reflects
the release of CICS: for example CICSTS64.CICS.SDFHEXCI for CICS TS beta. Restart the client
application program.

411: DFHMET4E_LOAD_FAILED
Explanation

The load of message module, DFHMET4E, has failed. During Initialize_User processing, the external
CICS interface attempted to load its message table in preparation for issuing messages. The load of
this module failed.

System Action
The Initialize_User call is rejected. The return code from the z/OS load macro (R15) is returned in
the subreason field-1. The external CICS interface handles the error, and returns the abend (R0) that
would have occurred in the subreason field-2.

User Response
Using the z/OS reason code, determine why the load failed. The most likely reason is that the message
table, DFHMET4E, is not in any library included in the STEPLIB of the batch job. Ensure that the
CICSTSnn.CICS.SDFHEXCI library is included in the STEPLIB concatenation (where nn reflects
the release of CICS: for example CICSTS64.CICS.SDFHEXCI for CICS TS beta. Restart the client
application program.

412: DFHXCURM_LOAD_FAILED
Explanation

During Initialize_User processing, the external CICS interface attempted to load the user-replaceable
module, DFHXCURM. The load of this module failed.

System Action
The Initialize_User call is rejected. The return code from the z/OS load macro (R15) is returned in
the subreason field-1. The external CICS interface handles the error, and returns the abend (R0) that
would have occurred in the subreason field-2.

User Response
Using the z/OS reason code, determine why the load failed. The most likely reason is that module
DFHXCURM is not in any library included in the STEPLIB of the batch job. Ensure the library containing
the module is included in the STEPLIB concatenation, and restart the client application program.

413: DFHXCTRA_LOAD_FAILED
Explanation

During Initialize_User processing, the external CICS interface attempted to load the trap module
(DFHXCTRA). The load of this module has failed.

System Action
The Initialize_User call is rejected. The return code from the z/OS load macro (R15) is returned in
the subreason field-1. The external CICS interface handles the error, and returns the abend (R0) that
would have occurred in the subreason field-2.

User Response
Using the z/OS reason code, determine why the load failed. The most likely reason is that DFHXCTRA
is not in any library included in the STEPLIB of the batch job. Ensure the library containing the module
is included in the STEPLIB concatenation, and restart the client application program.

90 CICS TS for z/OS: Using EXCI

414: IRP_ABORT_RECEIVED
Explanation

While processing a DPL request, an error occurred in the CICS server region, resulting in an abort
FMH7 flow being returned to the external CICS interface.

System Action
A message is returned to the client application program. This is the message that would have been
issued to the terminal if the server program had been initiated from a terminal. A pointer to the
message is returned to the client application program in the message pointer field of the EXCI return
area. See the description of the EXCI return areas for the exact definition of the message format. The
pipe is put into a "must close" state.

User Response
Use the message to determine the cause of the error. A typical example is where the server
transaction cannot be attached, either because is disabled, or it has not been defined, or because
of a security failure. Correct the problem, close and reopen the pipe, and reissue the DPL request.

415: INVALID_CONNECTION_DEFN
Explanation

A DPL request has been rejected by CICS because the target connection is not defined for use by an
external CICS client application program.

System Action
The DPL request is rejected and the pipe is put into a "must close" state.

User Response
The most likely reason for this is that the connection definition in the CICS server region has been
defined incorrectly as a CICS-to-CICS MRO connection, instead of an EXCI connection. Ensure that
PROTOCOL(EXCI) is specified on the appropriate CONNECTION and SESSIONS resource definitions.
You must close and reopen the pipe before reissuing the DPL request.

416: INVALID_CICS_RELEASE
Explanation

A DPL request has been rejected by the target CICS server region because it doesn't recognize the
request.

System Action
The DPL call is rejected and the pipe is put into a "must close" state.

User Response
The most likely reason for this is that the client application program has specified a target CICS server
region that does not support the external CICS interface.

417: PIPE_MUST_CLOSE
Explanation

A DPL request has been issued on a pipe that is in a "must close" state.
System Action

The DPL request is rejected.
User Response

Some EXCI errors are serious enough to require that the pipe be closed and reopened to restore the
pipe to a point where it can be used for further DPL requests. Others, more minor errors, allow further
calls without closing and reopening the pipe. A previous error on this pipe has been of the more
serious variety and the pipe is now in a "must close" state. Close and reopen the pipe and reissue the
DPL request.

Chapter 6. Response and reason codes returned on EXCI calls 91

418: INVALID_PIPE_TOKEN
Explanation

An Open_Pipe, Close_Pipe, Deallocate_Pipe, or DPL request has been issued, but the pipe token
passed on the call is either not a valid pipe, or is not a valid pipe allocated for this user (that is, there is
mismatch between the user token and the pipe token).

System Action
The call is rejected.

User Response
Ensure that the pipe token has not been overwritten and is being passed correctly on the call. Also
ensure there is no mismatch between the user token and the pipe token.

419: CICS_AFCB_PRESENT
Explanation

An Initialize_User request has been issued on a TCB that has already been used by CICS. The external
CICS interface cannot share a TCB with CICS, ensuring that a CICS application program cannot issue
EXCI requests.

System Action
The Initialize_User request is rejected.

User Response
To use the external CICS interface, you must create a new TCB (or daughter TCB), and issue the EXCI
calls under that unique TCB.

420: DFHXCOPT_LOAD_FAILED
Explanation

During Initialize_User processing, the external CICS interface attempted to load its options module,
DFHXCOPT. The load of this module failed.

System Action
The Initialize_User call is rejected. The return code from the z/OS load macro (R15) is returned in
the subreason field-1. The external CICS interface handles the error, and returns the abend (R0) that
would have occurred in the subreason field-2.

User Response
Using the z/OS reason code, determine why the load failed. The most likely reason is that DFHXCOPT
is not in any library included in the STEPLIB of the batch job. Correct the problem and restart the
client application program.

421: RUNNING_UNDER_AN_IRB
Explanation

The EXCI call is issued under an z/OS IRB, which is not permitted.
System Action

The call is rejected.
User Response

Determine why the call was issued under an IRB and change the client application program.

422: SERVER_ABENDED
Explanation

While processing a DPL request, the CICS server application program abended without handling the
error.

System Action
The server application program is abended and backout out. The abend code is returned in the abend
code field of the EXCI return area.

92 CICS TS for z/OS: Using EXCI

User Response
Determine why the server program abended and fix the problem.

423: SURROGATE_CHECK_FAILED
Explanation

A DPL request has been issued specifying a USERID parameter. The userid specified was subject to a
surrogate user check. The surrogate user check failed. The surrogate security check verifies whether
the EXCI batch region's userid is authorized as a surrogate of the userid specified on the DPL call.

System Action
The DPL call is rejected. The RACF return code and reason code are returned in subreason field-1 and
field-2. For RACF, these are documented in the z/OS Security Server RACROUTE Macro Reference.

User Response

Ensure that the EXCI batch region's userid has READ access to the profile userid.DFHEXCI in the
SURROGAT general resource class, where userid is the userid specified on the DPL call.

See Surrogate user checking for more information.

424: RRMS_NOT_SUPPORTED
Explanation

A DPL request omitting the SYNCONRETURN option has been made on a system that is not running
z/OS Release 5 (or a later, upward-compatible, release).

System Action
The call is rejected.

User Response
Ensure that the batch program is run on a system that is running the correct level of z/OS.

425: UOWID_NOT_ALLOWED
Explanation

A DPL request omitted the SYNCONRETURN option, but specified a value of UOWID. This combination
of parameters is not permitted on a DPL request.

System Action
The DPL_Request is rejected.

User Response
Check the client application program and ensure that the correct combination of parameters is used
on the DPL call.

426: INVALID_TRANSID2
Explanation

A DPL request has been issued with a transid2 parameter that consists of all blanks.
System Action

The DPL request is rejected.
User Response

Check the client application program and ensure that the transid2 parameter is specified correctly or
has not been overwritten in some way.

427: INVALID_CCSID
Explanation

A DPL request has been issued with a ccsid parameter that specifies an invalid value.
System Action

The DPL request is rejected.

Chapter 6. Response and reason codes returned on EXCI calls 93

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ichc600/abstract.htm
https://www.ibm.com/docs/SSJL4D_6.x/security/interfaces/dfhtmf8.html

User Response
Check the client application program and ensure that the ccsid parameter is specified correctly or has
not been overwritten in some way.

428: INVALID_ENDIAN
Explanation

A DPL request has been issued with a endian parameter that specifies an invalid value.
System Action

The DPL request is rejected.
User Response

Check the client application program and ensure that the endian parameter is specified correctly or
has not been overwritten in some way.

429: DFHXCEIX_LOAD_FAILED
Explanation

During processing of an EXEC CICS LINK call, the external CICS interface attempted to load the
module (DFHXCEIX). The load of this module has failed.

System Action
The EXEC CICS LINK call is rejected.

User Response
The most likely reason is that DFHXCEIX is not in any library included in the STEPLIB of the batch job.
Ensure the library containing the module is included in the STEPLIB concatenation, and restart the
client application program.

430: DFHXCPRX_LOAD_FAILED
Explanation

During Initialize_User processing, the external CICS interface attempted to load the module
(DFHXCPRX). The load of this module has failed.

System Action
The Initialize_User call is rejected. The return code from the z/OS load macro (R15) is returned in
the subreason field-1. The external CICS interface handles the error, and returns the abend (R1) that
would have occurred in the subreason field-2.

User Response
Using the z/OS reason code, determine why the load failed. The most likely reason is that DFHXCPRX
is not in any library included in the STEPLIB of the batch job. Ensure the library containing the module
is included in the STEPLIB concatenation, and restart the client application program.

431: COMMAREA_LEN_NOT_ALLOWED
Explanation

A DPL request that specifies a CHANNEL parameter and a COMMAREA_LEN parameter has been issued.

When a channel is used to transfer data between programs, the COMMAREA_LEN parameter must be
null.

System Action
The request is rejected.

User Response
Check your EXCI program. If it contains a DPL request that specifies a channel, ensure that the
COMMAREA_LEN parameter is null.

94 CICS TS for z/OS: Using EXCI

432: DATA_LEN_NOT_ALLOWED
Explanation

A DPL request that specifies a CHANNEL parameter and a DATA_LEN parameter has been issued.

When a channel is used to transfer data between programs, the DATA_LEN parameter must be null.

System Action
The request is rejected.

User Response
Check your EXCI program. If it contains a DPL request that specifies a channel, ensure that the
DATA_LEN parameter is null.

433: CCSID_NOT_ALLOWED
Explanation

A DPL request that specifies a CHANNEL parameter and a CCSID parameter has been issued.

When a channel is used to transfer data between programs, the CCSID parameter must be null.

System Action
The request is rejected.

User Response
Check your EXCI program. If it contains a DPL request that specifies a channel, ensure that the CCSID
parameter is null.

Reason codes for response: SYSTEM_ERROR
The EXCI CALL command failed. This class of error means that the external CICS interface has
detected an error. The reason code value identifies the specific error. The reason codes for response
SYSTEM_ERROR are 601 through 633.

601: WS_GETMAIN_ERROR
Explanation

During Initialize_User processing, a GETMAIN for working storage failed.
System Action

Processing cannot continue without working storage, so the request is terminated. At this point the
external CICS interface trace and dump services are not available to provide diagnostic information,
therefore EXCI issues an z/OS abend (U0408) to force a SYSMDUMP. The return code from the z/OS
GETMAIN request is returned in the return area.

User Response
Locate the GETMAIN return code in the dump, and use this and the rest of the dump to determine why
the GETMAIN failed. A possible reason for this is that the region size specified for the job is too small.
If this is the case, increase the region size and restart the client application program.

602: XCGLOBAL_GETMAIN_ERROR
Explanation

During Initialize_User processing, a GETMAIN failed for a critical control block (XCGLOBAL).
System Action

Processing cannot continue without this control block, and the request is terminated. At this point the
external CICS interface trace and dump services are not available to provide diagnostic information,
therefore EXCI issues an z/OS abend (U0403) to force a SYSMDUMP. The return code from the z/OS
GETMAIN request is returned in the return area.

Chapter 6. Response and reason codes returned on EXCI calls 95

User Response
Locate the GETMAIN return code in the dump, and use this and the rest of the dump to determine why
the GETMAIN failed. A possible reason for this is that the region size specified for the job is too small.
If this is the case, increase the region size and restart the client application program.

603: XCUSER_GETMAIN_ERROR
Explanation

During Initialize_User processing, a GETMAIN request failed for the user control block (XCUSER).
System Action

Initialize_User processing is terminated. The return code from the GETMAIN is returned in subreason
field-1 of the return area. The external CICS interface issues message DFHEX0003 and issues an z/OS
user abend (0410) to force a SYSMDUMP.

User Response
Use the return code from the GETMAIN, with the dump, to determine why the GETMAIN failed. A
possible reason for this is that the region size of the job is too small. If this is the case, increase the
region size and restart the client application program.

604: XCPIPE_GETMAIN_ERROR
Explanation

During Allocate_Pipe processing, a GETMAIN request for the pipe control block (XCPIPE) failed.
System Action

Allocate_Pipe processing is terminated. The return code from the GETMAIN is returned in subreason
field-1 of the EXCI return area. The external CICS interface issues message DFHEX0003, and takes a
system dump.

User Response
Use the return code from the GETMAIN, and the dump, to determine why the GETMAIN failed. A
possible reason for this is that the region size for the job is too small. If this is the case, increase the
region size and restart the client application program.

605: VERIFY_BLOCK_GM_ERROR
Explanation

During Initialize_User processing, a GETMAIN failed for an EXCI internal control block.
System Action

Initialize_User processing is terminated. The return code from the GETMAIN is returned in the
subreason field-1 of the EXCI return area. This error occurs before EXCI dumping services are
initialized, Therefore EXCI issues an z/OS abend (U0409) to force a SYSMDUMP The return code
from the z/OS GETMAIN request is returned in the return area.

User Response
Locate the GETMAIN return code in the dump, and use this and the rest of the dump to determine why
the GETMAIN failed. A possible reason for this is that the region size specified for the job is too small.
If this is the case, increase the region size and restart the client application program.

606: SSI_VERIFY_FAILED
Explanation

A VERIFY call to the MVS subsystem interface (SSI) to obtain the current CICS SVC number failed.
System Action

The Initialize_User request is terminated. The return code from the SSI call is returned in subreason
field-1 of the return area. This error occurs before the external CICS interface dump services are
initialized, therefore EXCI issues an z/OS user abend (0405) to force a SYSMDUMP.

96 CICS TS for z/OS: Using EXCI

User Response
Locate the return code in the dump, and use this with the rest of the dump and SSI documentation to
determine why the VERIFY request failed. When the problem is resolved, restart the client application
program.

607: CICS_SVC_CALL_FAILURE
Explanation

During Initialize_User processing, a call to the currently installed CICS SVC failed.
System Action

The return code from the CICS SVC is returned in the subreason field-1 of the EXCI return area. This
error occurs before the external CICS interface dump services are initialized, therefore EXCI issues an
z/OS user abend (0406) to force a SYSMDUMP.

User Response
Contact your IBM support center for assistance, with the return code and the dump available.

608: IRC_LOGON_FAILURE: XCPIPE_GETMAIN_ERROR
Explanation

During Allocate_Pipe processing, an attempt by the external CICS interface to LOGON to DFHIRP
failed.

System Action
The Allocate_Pipe request fails. DFHIRP returns a R15 value to subreason field-1 and a R0 value
(the reason code) to subreason field-2. The first two bytes of subreason field-1 are the return code
qualifier and the last two bytes are the return code itself.

User Response
For an explanation of the IRP return codes, see the interregion control blocks in the Data areas. The
IRP return codes are in the DFHIRSPS copybook, listed under the heading IRC. Use the return codes
to determine why the logon failed, or contact your IBM support personal with details of the failure.

609: IRC_CONNECT_FAILURE
Explanation

During Open_Pipe processing, an attempt to connect to the target CICS system failed.
System Action

The Open_Pipe request fails. DFHIRP returns a R15 value to subreason field-1 and a R0 value (the
reason code) to subreason field-2. The first two bytes of subreason field-1 are the return code
qualifier and the last two bytes are the return code itself.

User Response
For an explanation of the IRP return codes, see the interregion control blocks in the Data areas. The
IRP return codes are in the DFHIRSPS copybook, listed under the heading IRC. Use the return code to
determine why the logon failed, and reissue the open pipe request.

Note: This error is not caused by the target CICS being unavailable, which is returned as a RETRYABLE
condition (NO_CICS).

610: IRC_DISCONNECT_FAILURE
Explanation

During Close_Pipe processing, CICS issued a DFHIRP disconnect call to terminate the connection to
CICS. This request has failed.

System Action
The call fails and the pipe remains open. DFHIRP returns a R15 value to subreason field-1 and a R0
value (the reason code) to subreason field-2. The first two bytes of subreason field-1 are the return
code qualifier and the last two bytes are the return code itself.. The external CICS interface takes a

Chapter 6. Response and reason codes returned on EXCI calls 97

https://www.ibm.com/docs/SSJL4D_6.x/reference-data-areas/reference_data-areas.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-data-areas/reference_data-areas.html

system dump. Although the disconnect failed, it is possible that the pipe is still connected to CICS.
However, all connections are automatically disconnected at the end of the batch program.

User Response
For an explanation of the IRP return codes, see the interregion control blocks in the Data areas. The
IRP return codes are in the DFHIRSPS copybook, listed under the heading IRC. Use the return code
and the dump to determine the cause of the error.

611: IRC_LOGOFF_FAILURE
Explanation

During Deallocate_Pipe processing, CICS issued a DFHIRP logoff call. This request failed.
System Action

The Deallocate_Pipe call fails and the pipe remains allocated. DFHIRP returns a R15 value to
subreason field-1 and a R0 value (the reason code) to subreason field-2. The first two bytes of
subreason field-1 are the return code qualifier and the last two bytes are the return code itself. The
external CICS interface takes a system dump.

Note: Because it remains allocated, the pipe is available for further calls. Any storage associated with
the pipe is not freed. However, this storage is freed at the end of the client application program.

User Response

For an explanation of the IRP return codes, see the interregion control blocks in Data areas. The IRP
return codes are in the DFHIRSPS copybook, listed under the heading IRC. Use the return code and
the dump to determine the cause of the error.

612: TRANSFORM_1_ERROR
Explanation

During DPL processing, while processing the data in preparation for sending to CICS, an internal call to
program DFHXFQ resulted in an error.

System Action
The DPL request is terminated.

User Response

The return code from the call is returned in the EXCI subreason field-1, and the external CICS
interface takes a system dump.

This is an external CICS interface error. Contact your IBM support center with details of the return
code and the dump.

613: TRANSFORM_4_ERROR
Explanation

During DPL processing, while processing the data returned by the CICS server region, an internal call
to module DFHXFQ resulted in an error.

System Action
The DPL request is terminated. Note that the server application program has executed. The return
code from the call to DFHXFQ is returned in the EXCI subreason field-1. This return code corresponds
to any EIBRCODE information that was available. The external CICS interface takes a system dump.

User Response
This is an external CICS interface error. Contact your IBM support center with details of the return
code and the dump.

614: IRP_NULL_DATA_RECEIVED
Explanation

During DPL processing, a request has been sent to the target CICS and this target CICS has replied
without returning any data.

98 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/reference-data-areas/reference_data-areas.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-data-areas/reference_data-areas.html

System Action
The DPL processing is terminated and the external CICS interface takes a system dump.

User Response
This is an internal protocol error. Contact your IBM support center with details of the dump.

615: IRP_NEGATIVE_RESPONSE
Explanation

An internal protocol error has occurred while trying to communicate with the target CICS region.
System Action

The DPL request fails, the pipe is put into a "must close" state, and the external CICS interface takes a
system dump.

User Response
This is an external CICS interface error. Keep the dump and contact your IBM support center.

Note: The pipe is in a "must close" state. Before attempting further calls, the pipe must first be closed and
reopened.

616: IRP_SWITCH_PULL_FAILURE
Explanation

An internal protocol error has occurred while trying to communicate with the target CICS region.
System Action

The DPL request fails, the pipe is put into a "must close" state, and the external CICS interface takes
a system dump. The IRP return code (R15) and reason code if any (R0) are returned in the EXCI
subreason field-1 and subreason field-2.

User Response
This is an external CICS interface error. Keep the dump and contact your IBM support center.

Note: The pipe is in a "must close" state, and before attempting further DPL calls, the pipe must first be
closed and reopened.

617: IRP_IOAREA_GM_FAILURE
Explanation

During DPL processing, an z/OS GETMAIN request for an internal control block failed.
System Action

The DPL request is terminated. The return code from the GETMAIN is returned in the EXCI subreason
field-1.

Note: This error occurs while processing the data returned by CICS, after the server application
program has completed execution. This error results in the pipe being put into a "must close" state.

User Response
Use the return code to determine why the GETMAIN failed. A possible reason for this is that the region
size of the job is too small. If this is the case, increase the region size and restart the batch job.

619: IRP_BAD_IOAREA
Explanation

During a DPL request, an I/O area has been supplied to DFHIRP that could not be used.
System Action

The DPL request is terminated, the pipe is forced into a "must close" state, and the external CICS
interface takes a system dump.

User Response
This is an external CICS interface error. Contact the IBM support center with details of the return code
and the dump.

Chapter 6. Response and reason codes returned on EXCI calls 99

Note: The pipe is in a "must close" state after this error, and before attempting further calls must first be
closed and reopened.

620: IRP_PROTOCOL_ERROR
Explanation

An internal protocol error has occurred while trying to communicate with the target CICS system.
System Action

The DPL request is terminated, the pipe is forced into a "must close" state, and the external CICS
interface takes a system dump.

User Response
This is an external CICS interface error. Keep the dump and contact your IBM support center.

Note: The pipe is in a "must close" state after this error, and before attempting further calls must first be
closed and reopened.

621: PIPE_RECOVERY_FAILURE
Explanation

An error has occurred during an open pipe request. The external CICS interface attempts to recover by
disconnecting the pipe again. During this disconnection, further errors have occurred.

System Action
The Open_Pipe call is terminated and the pipe is placed in a "must close" state. The return code from
DFHIRP is returned in the EXCI subreason field-1, and a system dump is taken.

User Response
For an explanation of the IRP return codes, see the interregion control blocks in Data areas. The IRP
return codes are in the DFHIRSPS copybook, listed under the heading IRC. Use the dump and IRP
return codes to determine why the disconnect failed. You may also want to use the EXCI trace to
determine the earlier error that caused the open pipe recovery routine to be invoked.

Note: The pipe is now in a "must close" state and if further calls are to be issued, the pipe must be closed
and reopened again first.

622: ESTAE_SETUP_FAILURE
Explanation

To protect itself from possible program checks the external CICS interface establishes an z/OS ESTAE.
In this case, the z/OS ESTAE macro has failed.

System Action
The call terminated, and the return code from the z/OS ESTAE command is returned in the EXCI
subreason field-1. This error may occur before EXCI dump services are initialized, therefore an EXCI
issues an z/OS abend (U0402) to force a SYSMDUMP.

User Response
Use the return code and the dump to determine why the ESTAE command failed. This may be an
internal EXCI error and if the problem persists, contact your IBM support center.

623: ESTAE_INVOKED
Explanation

A program check is encountered during call processing, and the ESTAE is invoked.
System Action

The program check is handled by the EXCI ESTAE and an attempt is made to recover to a state that
can support further EXCI calls. The z/OS abend code is returned in the EXCI subreason field-1 of the
return area. To aid further diagnosis, a SYSMDUMP is taken.

100 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/reference-data-areas/reference_data-areas.html

User Response
Use the return code and the dump to determine why a program check occurred in the external CICS
interface. The most likely reason for this is that the EXCI code abended while trying to access the
client program's parameters. Use the EXCI trace to determine if any of the parameters might have
caused this error. If this is not the case, this may be an error in the external CICS interface. Keep the
dump and contact your IBM support center.

624: SERVER_TIMEDOUT
Explanation

A DPL request has been issued and the target server program has executed in the CICS server region.
However, the server program has been executing for longer than the timeout value specified in the
DFHXCOPT table.

System Action
The external CICS interface stops waiting for the server program to complete. Because the server
program might complete some time after the timeout, and try to respond to the DPL call, the pipe is
forced into a "must close" state.

User Response
Determine why the server application program timed out. Either there is a problem with the server
program itself (for example, it might be in a loop), or the timeout value is too low.

625: STIMER_SETUP_FAILURE
Explanation

To provide a TIMEOUT mechanism, the external CICS interface issues an z/OS STIMERM macro call.
This call has failed.

System Action
The return code from the call is returned in the subreason field-1 of the EXCI return area. The DPL
request is terminated and the external CICS interface takes a system dump. The pipe is placed in a
"must close" state.

User Response
Use the z/OS return code and the dump to determine why the call failed. This could be an external
CICS interface error. Contact your IBM support center with details of the dump.

Note: The pipe is in a "must close" state after this error, and before attempting further calls must first be
closed and reopened.

626: STIMER_CANCEL_FAILURE
Explanation

On successful completion of a DPL request, the cancel of an STIMERM request issued to check the
TIMEOUT value has failed with an error.

System Action
The return code from the STIMERM CANCEL is returned in the subreason field-1 of the EXCI return
area. The pipe is placed in a "must close" state, and the external CICS interface takes a system dump.

User Response
Use the return code and the dump to determine why the z/OS STIMERM CANCEL command failed.
This could be an external CICS interface error. Contact your IBM support center with details of the
dump.

Note: The pipe is in a "must close" state after this error, and before attempting further calls must first be
closed and reopened.

Chapter 6. Response and reason codes returned on EXCI calls 101

627: INCORRECT_SVC_LEVEL
Explanation

The release level of the CICS SVC (DFHCSVC) is not the same (or higher) than the release level of the
external CICS interface.

System Action
The Initialize_User request is terminated. This error occurs before the external CICS interface SDUMP
facilities are initialized, therefore EXCI issues an z/OS abend (U0407) to force a SYSMDUMP.

User Response
Determine the level of the CICS SVC being used and ensure it is the same release level as the
external CICS interface, or higher. If the SVC number is allowed to default (CICSSVC=0 in DFHXCOPT),
the SVC number being used is the SVC first used by a CICS region on the z/OS image. That is, the
SVC used by the first CICS region to open the CICS interregion communications (IRC). If the SVC
number is specified on CICSSVC in DFHXCOPT, the SVC number specified is at an incorrect level.
For more information, see the description of the CICSSVC parameter in Using the EXCI options table,
DFHXCOPT.

628: IRP_LEVEL_CHECK_FAILURE
Explanation

The release level of the module DFHIRP is not at the same, or higher, level than the release level of
the external CICS interface.

System Action
The Allocate_pipe request is terminated. The IRP return code (R15) is returned in the EXCI subreason
field-1, and the function level of DFHIRP being used is returned in the EXCI subreason field-2.
Subreason field-2 is only meaningful if subreason field-1 is zero. The external CICS interface takes a
system dump.

User Response
Check the level of the DFHIRP module installed in the LPA. Ensure that it is at least the same as the
external CICS interface. The installed level of DFHIRP must be the highest level of CICS or external
CICS interface in use in the z/OS image. For more details about installing DFHIRP, see Installing the
modules DFHIRP and DFHCSVC in the LPA in Installing.

629: SERVER_PROTOCOL_ERROR
Explanation

A response to a DPL request has been returned by CICS but the external CICS interface does not
understand the response.

System Action
The DPL request is terminated and the external CICS interface takes a system dump.

User Response
Use the dump to determine why the response was in error. The most likely reason for this is that the
CICS application server program was not running under the control of a CICS mirror task. This can
happen if the transaction definition named by the transid parameter on the DPL call does not specify
DFHMIRS as the program name. This would cause unidentified responses being sent from the CICS
server region.

630: RRMS_ERROR
Explanation

An unexpected return code was received from Recoverable Resource Management Services (RRMS)
while processing a DPL_Request.

System Action
DPL_Request processing is terminated. The value in subreason field-1 of the return area indicates
which RRMS interface returned the unexpected return code:

102 CICS TS for z/OS: Using EXCI

https://www.ibm.com/docs/SSJL4D_6.x/configuring/interfaces/dfhtmf0.html
https://www.ibm.com/docs/SSJL4D_6.x/configuring/interfaces/dfhtmf0.html
https://www.ibm.com/docs/SSJL4D_6.x/installing/dfha1ep.html
https://www.ibm.com/docs/SSJL4D_6.x/installing/dfha1ep.html

1
CTXRCC

2
ATRRURD

3
CTXSDTA

The return code from the RRMS request is returned in subreason field-2. The external CICS interface
issues message DFHEX0002, and takes a system dump.

User Response
Use the return code from the RRMS request and the dump, to determine why the request failed. This
may be an internal EXCI error or a problem with RRMS and you may need the assistance of your IBM
support center.

631: RRMS_SEVERE_ERROR
Explanation

During the processing of a DPL_Request, the EXCI code encountered an unexpected error while using
its interface with Recoverable Resource Management Services (RRMS).

System Action
DPL_Request processing is terminated. The external CICS interface issues message DFHEX0002, and
takes a system dump.

User Response
Use the dump, to determine why the request failed. This may be an internal EXCI error and you may
need the assistance of your IBM support center.

632: XCGUR_GETMAIN_ERROR
Explanation

During DPL_Request processing, a GETMAIN request for working storage for module DFHXCGUR
failed.

System Action
DPL_Request processing is terminated. The return code from the GETMAIN is returned in subreason
field-1 of the return area. The external CICS interface issues message DFHEX0003, and takes a
system dump.

User Response
Use the return code from the GETMAIN, and the dump, to determine why the GETMAIN failed. A
possible reason is that the region size of the job is too small. If this is the case, increase the region
size and restart the client application program.

633: INQUIRE_CHANNEL_FAILED
Explanation

During DPL_Request processing, an INQUIRE_CHANNEL request to obtain the channel token failed.
System Action

DPL_Request processing is terminated. The external CICS interface issues message DFHEX0002, and
takes a system dump.

User Response
This is an external CICS interface error. Contact your IBM support center with details of the return
code and the dump.

Chapter 6. Response and reason codes returned on EXCI calls 103

104 CICS TS for z/OS: Using EXCI

Chapter 7. EXCI samples: channel and containers
sample applications

To show you how to code client applications that use both the EXCI CALL interface and EXEC CICS
LINK command, CICS provides sample MVS client programs and a sample CICS server program. A set of
EXCI channel and containers sample applications shows using channels and containers to pass data to
and receive data from CICS.

About the EXCI channel and containers sample applications
The external CICS interface sample programs include two sample MVS client programs and a sample
CICS server program. Data is passed between the clients and the server program using channels and
containers.

Table 8. The external CICS interface sample programs

Language Name Type of program

Assembler1 DFH$AXNC Client program

COBOL2 DFH0CXNC Client program

Notes:

1. Assembler language programs are in source and executable form.
2. COBOL programs are provided in source form only.

The sample CICS server program
The sample CICS server program, DFH$AXNS, is provided in assembler only and is in source and
executable form.

The sample MVS client program
The sample client program shows you how to code a simple MVS client application using the EXCI CALL
interface and the EXEC CICS LINK command. The internal design of both client assembler and COBOL
sample programs is the same.

Note: The assembler version of the client program uses BSAM, which requires the programs to
be link-edited in RMODE(24), as a switch to AMODE(24) is made around the BSAM call. The
assembler source code includes the required RMODE(24) statement. Normally, EXCI client programs run
AMODE(31),RMODE(ANY). Therefore, the assembler version of the client program is unsuitable for use as
Language Environment MAIN programs.

Each version of the client is divided into three separate sections as follows:

Section 1
Section 1 uses the EXEC interface to send containers to the server (CICS). The request is in a
container called REQUEST_TYPE and will contain either "LINK1" or "LINK2". The server program
(DFH£AXNS) uses this container. For the first LINK request, a container called EBCDIC_DATA is set
up on channel FIRST_CHANNEL with a simple text string. This is then sent by an EXEC CICS LINK
request.

If the request succeeds an EXEC CICS QUERY CHANNEL request is issued to check how many
containers are on the channel. There should be three because the server program will have added an
EXCI_RESPONSE container to the channel. A browse using EXEC CICS STARTBROWSE CONTAINER,
EXEC CICS GETNEXT CONTAINER and EXEC CICS ENDBROWSE CONTAINER requests is then

© Copyright IBM Corp. 1974, 2025 105

performed to browse the names of the containers on the channel. This query and browse is not
necessary but is added to demonstrate how to use the EXCI SPI commands.

The final part of section 1 involves issuing a number of container commands to set up container
ASCII_DATA on channel SECOND_CHANNEL. This is sent again by an EXEC CICS LINK request.

Section 2
Section 2 uses the CALL interface. After INIT_USER, ALLOCATE_PIPE, and OPEN_PIPE have been
executed, the DPL section is in a loop that executes twice. It repeats the sending of the containers
sent in section 1 but uses the CALL interface instead.

In Section 2, the REQUEST_TYPE container will contain "CALL1" or "CALL2", not "LINK1" or "LINK2".
The other containers will be as sent for Section 1.

Section 3
Section 3 deletes the channels used. This is not required, but is done to show best practise. Then
CLOSE_PIPE and DEALLOCATE_PIPE are executed.

The server program, DFH£AXNS (in assembler) is invoked by both DFH£AXNC and DFH0CXNC. It uses the
contents of the REQUEST_TYPE container to know whether this is the first or second invocation by either
the EXEC or the CALL interface. If the container cannot be found, the program abends with abend code
NCON, which indicates that the REQUEST_TYPE container could not be found. If this succeeds, the server
program gets the appropriate container for the indicated request and returns a response in container
EXCI_RESPONSE. This is tested by the client programs to make sure the response contains the text 'OK'.
The program writes records to a TS main queue called DFHAXNSQ. This enables execution of the program
to be confirmed and shows whether everything worked properly.

The assembler version of the client program is supplied pregenerated in an executable form. Both
versions of the program accept two runtime parameters, as follows:

TARGET_SYSTEM
Specifies the server region APPLID.

If you use the pregenerated assembler version, you do not need to reassemble the program to
specify the APPLID of your own CICS server region. You can also use the sample client programs with
different CICS regions without needing to modify the programs each time.

USERID
Specifies the user ID to be used on the call interface DPL_request.

You specify these positional parameters on the PARM statement, separated by a comma.

Setting up the EXCI channel and containers sample programs
The sample external CICS interface programs are included on the CICS Transaction Server for z/OS
distribution tape. Resource definitions that support the EXCI sample programs are included in the CICS
system definition file (CSD) in groups DFH$EXCI.

About this task
The sample programs, shown in Table 8 on page 105, in source form in the version.CICS.SDFHSAMP
library, where version is your version of CICS. For example, for CICS Transaction Server for z/OS, beta,
this is CICSTS64.CICS.SDFHSAMP.

The sample assembler server program is also supplied in executable form in version.CICS.SDFHLOAD
library, where version is your version of CICS. For example, for CICS Transaction Server for z/OS, beta,
this is CICSTS64.CICS.SDFHLOAD.

The assembler client program is supplied in version.CICS.SDFHEXCI library, where version
is your version of CICS. For example, for CICS Transaction Server for z/OS, beta, this is
CICSTS64.CICS.SDFHEXCI.

Note: The resource definitions for the EXCI sample programs are included in the CSD but they are not
included in the IBM-defined group list DFHLIST. If CICS is initialized with GRPLIST=DFHLIST, you must

106 CICS TS for z/OS: Using EXCI

install the EXCI resource definition groups before using the samples. Alternatively, you can add the
sample groups to your startup group list, so that they are installed automatically at system initialization.

Procedure
1. Install the following resource definition group:

DFH$EXCI
This contains definitions for the sample server transaction, server program, EXCI connections, and
sessions.

Only one server program is included—in assembler language, called DFH$AXNS.

The sample application is designed to run the transaction EXCI, which is defined to invoke the
DFHMIRS mirror program and references profile DFHCICSA. The required transaction definition for
EXCI is included in the group.

Sample CONNECTION and SESSIONS definitions for specific and generic connections are included.

Note: Both the generic and specific connection definitions supplied in the sample group DFH$EXCI
specify ATTACHSEC(IDENTIFY). This security option causes the server program DFH$AXNS to fail
with an ATCY abend if you run the sample programs in an environment that does not have RACF
installed and active.

If you want to run the external CICS interface sample programs without any security active, you
must alter the connection resource definitions to specify ATTACHSEC(LOCAL).

2. For transactions that are to be linked to from the batch program, specify the mirror program DFHMIRS
as the program name in their transaction definitions.

3. Ensure that interregion communication (IRC) is open.
If IRC is not opened during CICS initialization, set it open using the CEMT SET IRC OPEN command.

4. If you want to use the COBOL version of the EXCI client program, translate, compile, and link-edit the
program into a suitable library by using the DFHZXTCL or DFHYXTVL procedure.

Running the EXCI channel and containers sample applications
You can create a batch job to run the client program. You can also run the client program by using the
pregenerated assembler version.

Before you begin
1. To use the COBOL version of the EXCI client program, you must translate, compile, and link-edit the

program into a suitable library by using the DFHZXTCL ot DFHYXTVL procedure.
2. The resource definitions for the EXCI sample programs are included in the CSD but they are not

included in the IBM-defined group list DFHLIST. If CICS is initialized with GRPLIST=DFHLIST, you
must install the EXCI resource definition groups before using the samples. Alternatively, you can
add the sample groups to your startup group list, so that they are installed automatically at system
initialization.

Procedure
• Create a batch job to run the client program, based on the following sample JCL:

Chapter 7. EXCI samples: channel and containers sample applications 107

//EXCI JOB (accounting_information),CLASS=A,TIME=1440,
// USER=userid,PASSWORD=pswd,REGION=100M
//*===*
//* JCL to execute an external CICS interface client program *
//*===*
// EXEC PGM=pgmname,REGION=nnM,MEMLIMIT=nnG
//STEPLIB DD DSN=CICSTS54.CICS.EXCI.LOADLIB,DISP=SHR
// DD DSN=CICSTS54.CICS.SDFHEXCI,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSMDUMP DD DSN=SYS1.SYSMDP00,VOL=SER=volid,SPACE=(CYL,(1,1)),
// DISP=OLD,UNIT=3390

Figure 14. Sample job for starting an EXCI client program
• If you want to use the pregenerated assembler version of the client program, issue the following EXEC

statement for the client program:

//*===*
//ASM EXEC PGM=client_program_name,PARM='applid,userid',REGION=0M,MEMLIMIT=1G

where:
client_program_name

Specify the name of the client program, for example, DFH$AXNC.
applid

Specify the APPLID of your target CICS server region.

Note: If you omit applid, you must keep the comma that precedes the user ID.

userid
Specify the user ID for the DPL_request call.

Results
Figure 15 on page 108 shows an example of the output from DFH$AXNC if the pregenerated assembler
version of the client program DFH$AXNC is executed successfully.

===================== EXCI Sample Batch Client Program =======================
* *
* Parameters: APPLID=IYK2Z2G1 *
* *
* EXEC Level Processor. *
* Setting up the EXEC level call. *
* The Link Request with channel FIRST_CHANNEL has completed successfully. *
* Checking response container sent by server. *
* Response OK, continue processing. *
* Query channel command completed successfully. *
* Correct number of containers returned. *
* Browse of channel names completed successfully. *
* The Link Request with channel SECOND_CHANNEL has completed successfully. *
* Checking response container sent by server. *
* Response OK, continue processing. *
* *
* CALL Level Processor. *
* Initialise_User call complete. *
* Allocate_Pipe call complete. *
* Open_Pipe call complete. *
* The connection has been successful. *
* Container EBCDIC_DATA was received correctly in channel FIRST_CHANNEL. *
* Container ASCII_DATA was received correctly in channel SECOND_CHANNEL. *
* Channels have been deleted. *
* Close_Pipe call complete. *
* Deallocate_Pipe call complete. *
* *
=================== End of EXCI Sample Batch Client Program ==================

Figure 15. Example output from successful execution of DFH$AXNC

108 CICS TS for z/OS: Using EXCI

Notices

This information was developed for products and services offered in the United States of America. This
material might be available from IBM in other languages. However, you may be required to own a copy of
the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119 Armonk,
NY 10504-1785
United States of America

© Copyright IBM Corp. 1974, 2025 109

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Client Relationship Agreement, IBM International Programming License
Agreement, or any equivalent agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions.
Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Beta content
Content described as “beta” relates to a release of the program prior to it being made commercially
available that may still be under development and therefore, potentially unreliable. Beta content may
change or be removed, is not intended for production use, and is provided as-is, without liability, warranty
or support, to the full extent permitted by applicable law.

Statements by IBM regarding its plans, directions, and intent are subject to change or withdrawal without
notice at the sole discretion of IBM. Information regarding potential future products is intended to outline
general product direction and should not be relied on in making a purchasing decision. The information
mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver
any material, code, or functionality. Information about potential future products may not be incorporated
into any contract. The development, release, and timing of any future features or functionality described
for IBM products remain at the sole discretion of IBM.

Licensed Program Specifications (LPS)
Where can I find license terms for Monthly License Charge (MLC)?

For more information about the license terms for MLC, see:

• 6.3 IBM CICS Transaction Server Licensed Program Specifications 6.3

• 6.2 IBM CICS Transaction Server Licensed Program Specifications 6.2

• 6.1 IBM CICS Transaction Server Licensed Program Specifications 6.1

Where can I find license terms for Value Unit Edition (VUE)?
For more information about the license terms for VUE, see:

110 Notices

https://publibfp.dhe.ibm.com/epubs/pdf/c3474970.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c3473970.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c3473921.pdf

• 6.3 License Information terms and conditions for Value Unit Edition 6.3

• 6.2 License Information terms and conditions for Value Unit Edition 6.2

• 6.1 License Information terms and conditions for Value Unit Edition 6.1

Programming interface information
IBM CICS supplies some documentation that can be considered to be Programming Interfaces, and some
documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS
Transaction Server for z/OS, Version 6 are included in the following sections of the online product
documentation:

• Developing applications
• Developing system programs
• Securing CICS
• Developing for external interfaces
• Application development reference
• Reference: system programming
• Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for
z/OS, Version 6, but that might be misconstrued as Programming Interfaces, is included in the following
sections of the online product documentation:

• Troubleshooting and support
• CICS TS diagnostics reference

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the
customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 6 are
included in the following manuals:

• Application Programming Guide and Application Programming Reference
• Business Transaction Services
• Customization Guide
• C++ OO Class Libraries
• Debugging Tools Interfaces Reference
• Distributed Transaction Programming Guide
• External Interfaces Guide
• Front End Programming Interface Guide
• IMS Database Control Guide
• Installation Guide
• Security Guide
• CICS Transactions
• CICSPlex System Manager (CICSPlex SM) Managing Workloads
• CICSPlex SM Managing Resource Usage
• CICSPlex SM Application Programming Guide and Application Programming Reference
• Java Applications in CICS

Notices 111

https://www.ibm.com/support/customer/csol/terms/?id=L-QYLL-G6VUXM
https://www.ibm.com/support/customer/csol/terms/?id=L-PFBL-T8WDNM
https://www.ibm.com/support/customer/csol/terms/?id=L-ACRR-CBQN58
https://www.ibm.com/docs/SSJL4D_6.x/applications/developing/developing-apps.html
https://www.ibm.com/docs/SSJL4D_6.x/system-programming/developing_sysprogs.html
https://www.ibm.com/docs/SSJL4D_6.x/security/security.html
https://www.ibm.com/docs/SSJL4D_6.x/applications/developing/interfaces/externalInterfaces.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-applications/reference-programming.html
https://www.ibm.com/docs/SSJL4D_6.x/home/reference-systemprogramming.html
https://www.ibm.com/docs/SSJL4D_6.x/reference-connectivity/reference-connections.html
https://www.ibm.com/docs/SSJL4D_6.x/troubleshooting/troubleshooting.html
https://www.ibm.com/docs/SSJL4D_6.x/home/reference-diagnostics.html

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to
be used as a Programming Interface of CICS Transaction Server for z/OS, Version 6, but that might be
misconstrued as Programming Interfaces, is included in the following manuals:

• Data Areas
• Diagnosis Reference
• Problem Determination Guide
• CICSPlex SM Problem Determination Guide

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Apache, Apache Axis2, Apache Maven, Apache Ivy, the Apache Software Foundation (ASF) logo, and the
ASF feather logo are trademarks of Apache Software Foundation.

Gradle and the Gradlephant logo are registered trademark of Gradle, Inc. and its subsidiaries in the United
States and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java™-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Red Hat®, and Hibernate® are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in
the United States and other countries.

Spring Boot is a trademark of Pivotal Software, Inc. in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Zowe™, the Zowe logo and the Open Mainframe Project™ are trademarks of The Linux Foundation.

The Stack Exchange name and logos are trademarks of Stack Exchange Inc.

Red Hat, JBoss, OpenShift, Fedora, Hibernate, Ansible, CloudForms, RHCA, RHCE, RHCSA, Ceph, and
Gluster are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the United States
and other countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,

112 Notices

https://www.ibm.com/legal/copytrade.shtml

or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement
IBM Software products, including software as a service solutions, (Software Offerings) may use cookies or
other technologies to collect product usage information, to help improve the end user experience, to tailor
interactions with the end user or for other purposes. In many cases no personally identifiable information
(PII) is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect
PII. If this Software Offering uses cookies to collect PII, specific information about this offering’s use of
cookies is set forth here:

For the CICSPlex SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user’s user name and other PII for purposes of session management,
authentication, enhanced user usability, or other usage tracking or functional purposes. These cookies
cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect each user's user name and other PII for purposes of session management, authentication, or
other usage tracking or functional purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that do
not collect PII. These cookies cannot be disabled.

For CICS Explorer®:
Depending upon the configurations deployed, this Software Offering may use session and persistent
preferences that collect each user’s user name and password, for purposes of session management,
authentication, and single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the user's explicit action
to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect PII
from end users via cookies and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Privacy Policy and IBM Online Privacy Statement, the section entitled Cookies, Web Beacons and
Other Technologies and the IBM Software Products and Software-as-a-Service Privacy Statement.

Notices 113

https://www.ibm.com/privacy
https://www.ibm.com/privacy/details
https://www.ibm.com/software/info/product-privacy

114 CICS TS for z/OS: Using EXCI

Index

Special Characters
> 32K COMMAREAs (channels)

DELETE CHANNEL (EXCI) command 45
DELETE CONTAINER (EXCI) command 46
ENDBROWSE CONTAINER (EXCI) command 47
GET CONTAINER (EXCI) command 48
GETNEXT CONTAINER (EXCI) command 52
MOVE CONTAINER (EXCI) command 53
QUERY CHANNEL (EXCI) command 59
STARTBROWSE CONTAINER (EXCI) command 59

Numerics
2–phase commit

DPL_Request 8
protocol invoked by RRS 8

A
addressing mode (AMODE)

client program requirements 60
allocate_opts, parameter of ALLOCATE_PIPE command 18
Allocate_Pipe command 17
ALLOCATE_PIPE command

invocation of DFHXCURM during 67
security check failure 75

allocating a pipe 17
application programming

commands 14
copybooks 35
DPL subset 4
exception conditions returned on LINK command 40
language considerations 63
RESP and RESP2 fields 40
restrictions for server programs 4
stub 60
translation required for EXEC CICS LINK command 44

applid, specifying on ALLOCATE_PIPE command 18
AS option

MOVE CONTAINER (EXCI) command 53
assembler

CICS-supplied procedure, DFHEXTAL 62
copybook 35
EXCI CALL interface 14
sample program 37

automatic retry of EXEC CICS LINK 41

B
benefits of external CICS interface 1
big COMMAREAs (channels)

DELETE CHANNEL (EXCI) command 45
DELETE CONTAINER (EXCI) command 46
QUERY CHANNEL (EXCI) command 59

big COMMAREAs, channels 45–48, 52, 53, 59

bind-time security 75
BROWSETOKEN option

ENDBROWSE CONTAINER (CHANNEL) command 47
GETNEXT CONTAINER (EXCI) command 52
STARTBROWSE CONTAINER command 60

BYTEOFFSET option
GET CONTAINER (EXCI) command 48

C
C language

CICS-supplied procedure, DFHYXTDL 62
CICS-supplied procedure, DFHYXTEL 62
copybook 35
EXCI CALL interface 14
sample program 37
special considerations for client program 63

C versions
DFHZXTDL 62

C++
CICS-supplied procedure, DFHZXTEL 62

call_type
parameter of ALLOCATE_PIPE command 18
parameter of CLOSE_PIPE command 31
parameter of DEALLOCATE_PIPE command 32
parameter of DPL_Request command 22
parameter of INITIALIZE_USER command 14
parameter of OPEN_PIPE command 20

CCSID option
GET CONTAINER (EXCI) command 48

ccsid, parameter of DPL_Request command 28
CCSIDERR condition

GET CONTAINER (EXCI) command 50
channel commands

DELETE CHANNEL (EXCI) 45
DELETE CONTAINER (EXCI) 46
ENDBROWSE CONTAINER (EXCI) 47
GET CONTAINER (EXCI) 48
GETNEXT CONTAINER (EXCI) 52
MOVE CONTAINER (EXCI) 53
QUERY CHANNEL (EXCI) 59
STARTBROWSE CONTAINER (EXCI) 59

CHANNEL option
DELETE CHANNEL command 45
DELETE CONTAINER (EXCI) command 46
GET CONTAINER (EXCI) command 48
MOVE CONTAINER (EXCI) command 53
QUERY CHANNEL command 59

CHANNELERR condition
DELETE CHANNEL (EXCI) command 45
DELETE CONTAINER (EXCI) command 46
GET CONTAINER (EXCI) command 51
MOVE CONTAINER (EXCI) command 54
QUERY CHANNEL command 59

channels as large COMMAREAs 45–48, 52, 53, 59
CICS_applid, parameter of ALLOCATE_PIPE command 18
CICSSVC, parameter of DFHXCOPT 70

Index 115

client program
addressing mode 60
compiling 62
definition of 3
JCL needed

running an EXCI client 61
link-editing 62
linking to server with EXEC CICS LINK 38
MRO logon and bind-time security 75
PL/I and C language considerations 63
sample job for starting 61
translating 44, 62
use of multiple sessions 3

Close_Pipe command 30
closing a pipe 30
COBOL

CICS-supplied procedure, DFHYXTVL 62
CICS-supplied procedure, DFHZXTCL 62
copybook 35
example of EXCI DPL call 36
EXCI CALL interface 14

CODEPAGEERR condition
GET CONTAINER (EXCI) command 51

COMMAREA_len, parameter of DPL_Request command 23
COMMAREA, parameter of DPL_Request command 23
CONFDATA, parameter of DFHXCOPT 71
container commands

DELETE CHANNEL (EXCI) 45
DELETE CONTAINER (EXCI) 46
ENDBROWSE CONTAINER (EXCI) 47
GET CONTAINER (EXCI) 48
GETNEXT CONTAINER (EXCI) 52
MOVE CONTAINER (EXCI) 53
QUERY CHANNEL (EXCI) 59
STARTBROWSE CONTAINER (EXCI) 59

CONTAINER option
DELETE CONTAINER (EXCI) command 46
GET CONTAINER (EXCI) command 48
GETNEXT CONTAINER command (EXCI) 52
MOVE CONTAINER (EXCI) command 54

CONTAINERCNT option
QUERY CHANNEL command 59

CONTAINERERR condition
DELETE CONTAINER (EXCI) command 47
GET CONTAINER (EXCI) command 51
MOVE CONTAINER (EXCI) command 54

CONVERTST option
GET CONTAINER (EXCI) command 48

copybooks for assembler, C language, COBOL, PL/I 35
cross-system multiregion operation (XCF/MRO) 3
CSMI

attached by CICS server 40
CSMI (CICS-supplied mirror transaction)

authorizing the link user ID 76
default transid 24
security 76

CVDA values
NOCONVERT

GET CONTAINER (EXCI) command 48

D
data_len, parameter of DPL_Request command 23
Deallocate_Pipe command 32

deallocating a pipe 32
DELETE CHANNEL (EXCI) command 45
DELETE CONTAINER (EXCI) command 46
DFH¢AXCC, assembler sample program 37
DFH¢DXCC, sample program 37
DFH¢PXCC, PL/I sample program 37
DFHAUPLE procedure 69
DFHEXTAL, procedure for assembler client programs 62
DFHIRP (interregion communication program)

security checks performed by 75
DFHXCIE, alias for DFHXCSTB stub 60
DFHXCIS, alias for DFHXCSTB stub 60
DFHXCPLD, return area and equate copybook for assembler
35
DFHXCPLH, return area and equate copybook for C language
35
DFHXCPLL, return area and equate copybook for PL/I 35
DFHXCPLO, return area and equate copybook for COBOL 35
DFHXCRCD, return code copybook for assembler 35
DFHXCRCH, return code copybook for C language 35
DFHXCRCL, return code copybook for PL/I 35
DFHXCRCO, return code copybook for COBOL 35
DFHXCSTB, stub for client programs 60
DFHXCURM, user-replaceable module 67
DFHYXTDL, procedure for client programs 62
DFHYXTEL, procedure for ++ client programs 62
DFHYXTPL, procedure for PL/I client programs 62
DFHYXTVL, procedure for COBOL client programs 62
DFHZXTCL, procedure for COBOL client programs 62
DFHZXTDL, procedure for C client programs 62
DFHZXTEL, procedure for C++ client programs 62
DFHZXTPL, procedure for PL/I client programs 62
disconnecting a pipe 30
distributed program link (DPL)

API subset for server programs 4
example COBOL call without userid and uowid 36
request program call 22

DPL_opts, parameter of DPL_Request command 27
DPL_Request call 22
dpl_retarea, parameter of DPL_Request command 26
DURETRY, parameter of DFHXCOPT 71
dynamic routing

EXCI 66

E
END condition

GETNEXT CONTAINER (CHANNEL) command 52
ENDBROWSE CONTAINER (EXCI) command 47
endian, parameter of DPL_Request command 28
EQUATE copybooks 35
exception conditions returned on LINK command 40
EXCI

dynamic routing 66
static routing 65

EXEC CICS LINK command
automatic retry 41
choosing between EXEC CICS and CALL interface 5
security checking 76
translation 44

external CICS interface (EXCI)
benefits 1
CALL interface

choosing between EXEC CICS and CALL interface 5

116 CICS TS for z/OS: Using EXCI

external CICS interface (EXCI) (continued)
CALL interface (continued)

return area 34
syntax 11

compiling and link-editing client programs 60
defining connections 66
description of 3
languages supported 14
PL/I and C language considerations 63
programming languages supported 14
reason codes 83
resource and recovery 8
response codes 83
security 75
taking a syncpoint in the client program 11
user-replaceable module (DFHXCURM) 67
using RRMS 8

F
FLENGTH option

GET CONTAINER (EXCI) command 49
freeing storage associated with a pipe 32
function call EQUATE copybooks 35

G
generic connection

note about lack of security checks 75
GET CONTAINER (EXCI) command 48
GETNEXT CONTAINER (EXCI) command 52
GTF, parameter of DFHXCOPT 71

I
Initialize_User command 14
INTO option

GET CONTAINER (EXCI) command 49
INTOCCSID option

GET CONTAINER (EXCI) command 49
INTOCODEPAGE option

GET CONTAINER (EXCI) command 49
INVREQ condition

DELETE CONTAINER (EXCI) command 47
GET CONTAINER (EXCI) command 51
MOVE CONTAINER (EXCI) command 54

J
job control language (JCL)

for running an EXCI client program 61

L
large COMMAREAs, channels 45–48, 52, 53, 59
LENGERR condition

GET CONTAINER (EXCI) command 51
LINK command

choosing between EXEC CICS and CALL interface 5
link-editing

DFHXCOPT options table 69
for client program 60
translation required for EXEC CICS LINK command 44

link-editing (continued)
use of DFHXCSTB stub 11
using DFHAUPLE 69

logon security 75

M
MOVE CONTAINER (EXCI) command 53
MSGCASE, parameter of DFHXCOPT 72
multiregion operation (MRO)

cross-system (XCF/MRO) 3
logon and bind time security 75

N
NODATA option

GET CONTAINER (EXCI) command 50
null parameters, example of EXCI CALLs with 36

O
open system interface (OSI) 1
OSI (open system interface) 1

P
parameters

null 36
pgmname

parameter of DPL_Request command 23
pipe

allocating 17
closing 30
deallocating 32
definition of 3
disconnecting 30
freeing storage associated with 32
invocation of DFHXCURM during ALLOCATE_PIPE 67
restriction on leaving open 20
reusing a closed pipe 30

pipe_token
parameter of ALLOCATE_PIPE command 18
parameter of CLOSE_PIPE command 31
parameter of DEALLOCATE_PIPE command 33
parameter of DPL_Request command 23
parameter of OPEN_PIPE command 20

PL/I
CICS-supplied procedure, DFHYXTPL 62
CICS-supplied procedure, DFHZXTPL 62
copybook 35
EXCI CALL interface 14
sample program 37
special considerations for client program 63

plus 32K COMMAREAs (channels)
DELETE CHANNEL (EXCI) command 45
DELETE CONTAINER (EXCI) command 46
ENDBROWSE CONTAINER (EXCI) command 47
GET CONTAINER (EXCI) command 48
GETNEXT CONTAINER (EXCI) command 52
MOVE CONTAINER (EXCI) command 53
QUERY CHANNEL (EXCI) command 59
STARTBROWSE CONTAINER (EXCI) command 59

programming restrictions for server programs 4

Index 117

Q
QUERY CHANNEL (EXCI) command 59

R
reason codes

Allocate_Pipe call 19
Close_Pipe call 31
Deallocate_Pipe call 33
DPL call 28
Initialize_User call 15
Open_Pipe call 20

resource access control facility (RACF)
specifying userid on DPL_Request command 25

resource definition
CONNECTION definition 66

resource recovery services (RRS)
2–phase commit protocol 8

RESP and RESP2 fields 40
response codes

Allocate_Pipe call 19
Close_Pipe call 31
Deallocate_Pipe call 33
DPL call 28
Initialize_User call 15
Open_Pipe call 20

retries on an EXEC CICS LINK command 41
return code

clearing R15 64
return_area

parameter of ALLOCATE_PIPE command 18
parameter of CLOSE_PIPE command 31
parameter of DEALLOCATE_PIPE command 32
parameter of DPL_Request command 22
parameter of INITIALIZE_USER command 14
parameter of OPEN_PIPE command 20

reusing a closed pipe 30
RRMS

used by external CICS interface (EXCI) 8

S
sample programs 37
security 75
server program

API restrictions 4
definition of 3
DPL subset 4
linking from client with EXEC CICS LINK 38
programming restrictions 4
security considerations 75

SET option
GET CONTAINER (EXCI) command 50

specific connection
MRO logon security checks 75

STARTBROWSE CONTAINER (EXCI) command 59
static routing

EXCI 65
storage, freeing 32
stub for client programs

DFHXCIE 60
DFHXCIS 60

stub for client programs (continued)
DFHXCSTB 60

suppressing user data in trace
CONFDATA option 71

SYNCONRETURN
DPL requests 8
omitted by DPL_Request 8

sysplex, use of cross-system MRO 3

T
TIMEOUT, parameter of DFHXCOPT 72
TOCHANNEL option

MOVE CONTAINER (EXCI) command 54
TOKENERR condition

ENDBROWSE CONTAINER (CHANNEL) command 47
GETNEXT CONTAINER (CHANNEL) command 52

trace
TRACE parameter of DFHXCOPT 72
TRACESZE parameter of DFHXCOPT 73

transid, parameter of DPL_Request command 24
transid2, parameter of DPL_Request command 27
translation of EXEC CICS LINK command 44
trap, DFHXCTRA

TRAP, parameter of DFHXCOPT 73
TYPE, parameter of DFHXCOPT 70

U
unit-of-work identifier, DPL_Request 24
uowid, parameter of DPL_Request 24
user environment, initializing 14
user security 76
user_name, parameter of INITIALIZE_USER command 15
user_token

parameter of ALLOCATE_PIPE command 18
parameter of CLOSE_PIPE command 31
parameter of DEALLOCATE_PIPE command 32
parameter of DPL_Request command 22
parameter of INITIALIZE_USER command 14
parameter of OPEN_PIPE command 20

user-replaceable module
DFHXCURM 67

userid, parameter of DPL_Request command 25

V
version_number

parameter of ALLOCATE_PIPE command 18
parameter of CLOSE_PIPE command 31
parameter of DEALLOCATE_PIPE command 32
parameter of DPL_Request command 22
parameter of INITIALIZE_USER command 14
parameter of OPEN_PIPE command 20

X
XCFGROUP, parameter of DFHXCOPT 73

118 CICS TS for z/OS: Using EXCI

IBM®

	Contents
	About this PDF
	Chapter 1. EXCI
	Chapter 2. The external CICS interface
	The EXCI programming interfaces
	Choosing between the EXEC CICS and the CALL interface
	Illustrations of the external CICS CALL interface
	Illustration of the EXCI EXEC CICS interface

	Resource recovery
	Use of RRMS with the external CICS interface
	Use of sync points in the client program

	The EXCI CALL interface
	The EXCI CALL interface commands
	Initialize_User
	Allocate_Pipe
	Open_Pipe
	DPL_Request
	Close_PIPE
	Deallocate_Pipe

	EXCI call response code values
	Return area for the EXCI CALL interface
	Return area and function call EQUATE copybooks
	Return codes
	Dpl_retarea return codes

	Example of EXCI CALL with null parameters

	The EXCI EXEC CICS interface
	EXEC CICS LINK command (EXCI)
	Retries on an EXEC CICS LINK command
	Translation required for EXEC CICS LINK command

	EXEC CICS DELETE CHANNEL command (EXCI)
	EXEC CICS DELETE CONTAINER command (EXCI)
	EXEC CICS ENDBROWSE CONTAINER command (EXCI)
	EXEC CICS GET CONTAINER command (EXCI)
	EXEC CICS GETNEXT CONTAINER command (EXCI)
	EXEC CICS MOVE CONTAINER command (EXCI)
	EXEC CICS PUT CONTAINER command (EXCI)
	EXEC CICS QUERY CHANNEL command (EXCI)
	EXEC CICS STARTBROWSE CONTAINER command (EXCI)

	Compiling and link-editing EXCI client programs
	Job control language to run an EXCI client program
	CICS-supplied procedures for the EXCI

	EXCI programming considerations
	PL/I considerations
	C considerations
	Setting the return code (R15) at termination

	Chapter 3. Configuring EXCI
	Setting up EXCI for static routing
	Setting up EXCI for dynamic routing
	Defining connections to CICS
	The EXCI user-replaceable module
	Using the EXCI options table, DFHXCOPT

	Chapter 4. Security for EXCI
	Using MRO logon and bind-time security
	Link security for EXCI
	User security for EXCI
	Surrogate user checking for EXCI

	Chapter 5. Troubleshooting EXCI
	EXCI trace
	EXCI system dumps
	The EXCI service trap, DFHXCTRA
	Problem determination with RRMS

	Chapter 6. Response and reason codes returned on EXCI calls
	Reason codes for response: WARNING
	Reason codes for response: RETRYABLE
	Reason codes for response: USER_ERROR
	Reason codes for response: SYSTEM_ERROR

	Chapter 7. EXCI samples: channel and containers sample applications
	About the EXCI channel and containers sample applications
	Setting up the EXCI channel and containers sample programs
	Running the EXCI channel and containers sample applications

	Notices
	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X

