
CICS Transaction Server for z/OS
5.6

XPI Function Reference

IBM

Note

Before using this information and the product it supports, read the information in Product Legal Notices.

This edition applies to the IBM® CICS® Transaction Server for z/OS®, Version 5 Release 6 (product number 5655-
Y305655-BTA) and to all subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1974, 2023.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/docs/cics-ts/latest?topic=available-notices

Contents

About this PDF...vii

Chapter 1. Business application manager domain XPI function............................... 1
The INQUIRE_ACTIVATION call.. 1

Chapter 2. Directory domain XPI functions...3
The BIND_LDAP call...3
The END_BROWSE_RESULTS call... 5
The FLUSH_LDAP_CACHE call... 5
The FREE_SEARCH_RESULTS call...6
The GET_ATTRIBUTE_VALUE call..7
The GET_NEXT_ATTRIBUTE call... 8
The GET_NEXT_ENTRY call..9
The SEARCH_LDAP call... 10
The START_BROWSE_RESULTS call..11
The UNBIND_LDAP call... 12

Chapter 3. Dispatcher XPI functions...15
Synchronization protocols for SUSPEND and RESUME processing..15

The normal synchronization protocol.. 15
The synchronization protocol and task purge... 16

The ADD_SUSPEND call... 17
The CHANGE_PRIORITY call...18
The DELETE_SUSPEND call... 19
The RESUME call..19
The SUSPEND call..20
The WAIT_MVS call..24

Chapter 4. Dump control XPI functions...29
The SYSTEM_DUMP call.. 29
The TRANSACTION_DUMP call... 30

Chapter 5. Enqueue domain XPI functions..33
The DEQUEUE function..33
The ENQUEUE function..33

Chapter 6. Kernel domain XPI functions... 37
The START_PURGE_PROTECTION function..37
The STOP_PURGE_PROTECTION function..37
Nesting purge protection calls...37

Chapter 7. Loader XPI functions...39
The ACQUIRE_PROGRAM call... 39
The DEFINE_PROGRAM call..41
The DELETE_PROGRAM call..44
The IDENTIFY_PROGRAM call.. 45
The RELEASE_PROGRAM call..46

Chapter 8. Log manager XPI functions..49

 iii

The INQUIRE_PARAMETERS call..49
The SET_PARAMETERS call... 49

Chapter 9. Monitoring XPI functions...51
The INQUIRE_APP_CONTEXT call...51
The INQUIRE_MONITORING_DATA call...52
The MONITOR call... 53
The SET_TRACKING_DATA call... 56

Chapter 10. Object transaction XPI functions... 59
The IMPORT_TRAN call..59
The COMMIT_ONE_PHASE call... 60
The PREPARE call.. 61
The COMMIT call..61
The ROLLBACK call.. 62
The SET_ROLLBACK_ONLY call... 62
The SET_COORDINATOR call...63

Chapter 11. Parameter domain XPI functions... 65
The INQUIRE_FEATUREKEY call...65

Chapter 12. Program management XPI functions... 67
The INQUIRE_PROGRAM call... 67
The INQUIRE_CURRENT_PROGRAM call..74
The SET_PROGRAM call...76
The START_BROWSE_PROGRAM call... 79
The GET_NEXT_PROGRAM call... 80
The END_BROWSE_PROGRAM call...81
The INQUIRE_AUTOINSTALL call... 82
The SET_AUTOINSTALL call.. 83
The BIND_CHANNEL call... 84

Chapter 13. State data access XPI functions.. 85
The INQ_APPLICATION_DATA call... 85
The INQUIRE_SYSTEM call..87
The SET_SYSTEM call...92

Chapter 14. Storage control XPI functions.. 95
The GETMAIN call..95
The FREEMAIN call.. 97
The INQUIRE_ACCESS call..98
The INQUIRE_ELEMENT_LENGTH call... 99
The INQUIRE_SHORT_ON_STORAGE call.. 100
The INQUIRE_TASK_STORAGE call.. 100
The SWITCH_SUBSPACE call.. 101

Chapter 15. Trace control XPI function... 103
The TRACE_PUT call..103

Chapter 16. Transaction management XPI functions...105
The INQUIRE_CONTEXT call... 105
The INQUIRE_DTRTRAN call...106
The INQUIRE_MXT call... 107
The INQUIRE_TCLASS call.. 108
The INQUIRE_TRANDEF call...109
The INQUIRE_TRANSACTION call.. 117

iv

The SET_TRANSACTION call... 120

Chapter 17. User journaling XPI function..123
The WRITE_JOURNAL_DATA call..123

Chapter 18. Threadsafe XPI commands..125

Notices..127

Index.. 133

 v

vi

About this PDF

This PDF is a reference of the XPI macro functions that can be used by global user exit programs to access
some CICS services. The XPI functions are grouped according to their functional relationships, generally
by CICS domain. To find out how to use these functions in programs, see the PDF called Developing CICS
System Programs. Before CICS TS V5.4, the information in this PDF was in the Customization Guide.

For details of the terms and notation used in this book, see Conventions and terminology used in CICS
documentation in IBM Documentation.

Date of this PDF
This PDF was created on 2024-04-22 (Year-Month-Date).

© Copyright IBM Corp. 1974, 2023 vii

https://www.ibm.com/docs/cics-ts/latest?topic=available-conventions-used-in-documentation
https://www.ibm.com/docs/cics-ts/latest?topic=available-conventions-used-in-documentation

viii CICS TS for z/OS: XPI Function Reference

Chapter 1. Business application manager domain XPI
function

The XPI provides one business application manager domain function. This is the DFHBABRX call
INQUIRE_ACTIVATION.

The INQUIRE_ACTIVATION call
The INQUIRE_ACTIVATION function is provided on the DFHBABRX macro call. Use the
INQUIRE_ACTIVATION call to obtain the activity name and the process type for the business transaction
activity of the current transaction.

INQUIRE_ACTIVATION

 DFHBABRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_ACTIVATION),
 [TRANSACTION_TOKEN(name8),]]
 [RETURNED_ACTIVITYID(buffer_descriptor)]
 [RETURNED_PROCESS_NAME(buffer_descriptor)]
 [OUT,
 [ACTIVITY_NAME(name16)]
 [PROCESS_TYPE(name8)]
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

ACTIVITY_NAME(name16)
Returns the 16-character, user-assigned, name of the BTS activity.

PROCESS_TYPE(name8)
Returns the 8-character identifier of the type definition of the BTS process.

RETURNED_ACTIVITYID(buffer_descriptor)
Returns the 52-character, CICS-assigned, identifier of the BTS activity. RETURNED_ACTIVITYID is an
output parameter (BAM returns it) and the data type is buffer, so the caller must supply an area to be
used as a buffer as input to the call.

RETURNED_PROCESS_NAME(buffer_descriptor)
Returns the 36-character name of the BTS process. RETURNED_PROCESS_NAME is an output
parameter (BAM returns it) and the data type is buffer, so the caller must supply an area to be
used as a buffer as input to the call.

TRANSACTION_TOKEN(name8)
Specifies the transaction token for the task being inquired on.

RESPONSE and REASON values for INQUIRE_ACTIVATION
RESPONSE REASON

OK None

EXCEPTION ACTIVITY_NOT_FOUND

DISASTER None

INVALID INVALID_BUFFER_LENGTH

© Copyright IBM Corp. 1974, 2023 1

RESPONSE REASON

KERNERROR None

PURGED None

For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

2 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

Chapter 2. Directory domain XPI functions
The XPI provides directory domain functions that you can use to open and close an LDAP session, browse
results for credentials, scan and locate results, close the browse, return the correct value and close the
search.

The directory domain functions are the following DFHDDAPX calls:

• BIND_LDAP
• END_BROWSE_RESULTS
• FLUSH_LDAP_CACHE
• FREE_SEARCH_RESULTS
• GET_ATTRIBUTE_VALUE
• GET_NEXT_ATTRIBUTE
• GET_NEXT_ENTRY
• SEARCH_LDAP
• START_BROWSE_RESULTS
• UNBIND_LDAP

The BIND_LDAP call
The BIND_LDAP call establishes a session with an LDAP server.

The LDAP server is identified by one of the following:

• The LDAP URL and the distinguished name and password of the user authorized to extract the expected
data.

• A RACF® profile in the LDAPBIND class that contains the LDAP URL and distinguished name and
password. This is the preferred option, as you do not need to code LDAP credentials in your application.

BIND_LDAP

 DFHDDAPX [CALL],
 [CLEAR],
 [IN,
 FUNCTION(BIND_LDAP),
 {LDAP_BIND_PROFILE(block-descriptor)|
 LDAP_SERVER_URL((block-descriptor),DISTINGUISHED_NAME((block-descriptor),
 PASSWORD(block-descriptor),}
 [CACHE_SIZE(name4),CACHE_TIME_LIMIT(name4),]]
 [OUT,
 LDAP_SESSION_TOKEN(name4),
 [LDAP_RESPONSE(name4),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

CACHE_SIZE(name4)
a fullword that specifies the number of bytes available for caching LDAP search results. A value of
zero indicates an unlimited cache size. If CACHE_SIZE is specified, CACHE_TIME_LIMIT must also be
specified. If neither parameter is specified, results will not be cached.

CACHE_TIME_LIMIT(name4)
a fullword that specifies the amount of time (in seconds) that LDAP search results are cached. A value
of zero indicates an unlimited cache time limit.

© Copyright IBM Corp. 1974, 2023 3

DISTINGUISHED_NAME(block-descriptor)
specifies the location of the LDAP distinguished name, of the user permitted to bind to the chosen
server. The block-descriptor is two fullwords of data, in which the first word contains the address of
the data, and the second word contains the length in bytes of the data.
For more information on block-descriptors, see XPI syntax.

LDAP_BIND_PROFILE(block-descriptor)
specifies the location of the name of a RACF profile in the LDAPBIND class that contains the URL and
credentials for the LDAP server being accessed. The block-descriptor is two fullwords of data, in which
the first word contains the address of the data, and the second word contains the length in bytes of
the data.
For more information on block-descriptors, see XPI syntax. You should specify either
LDAP_BIND_PROFILE, or all three LDAP_SERVER_URL, DISTINGUISHED_NAME and PASSWORD
parameters.

LDAP_RESPONSE(name4)
specifies the return code that is sent by the LDAP API, in response to receiving URL and user
credentials.

LDAP_SERVER_URL(block-descriptor)
specifies the location of the LDAP URL (in the format ldap://server:port) of the LDAP server being
accessed. If the colon and port number are omitted, the port defaults to 389. The block-descriptor is
two fullwords of data, in which the first word contains the address of the data, and the second word
contains the length in bytes of the data.
For more information on block-descriptors, see XPI syntax.

LDAP_SESSION_TOKEN(name4)
the name of the fullword token that specifies the LDAP connection.

PASSWORD(block-descriptor)
specifies the location of the password for the user identified in the DISTINGUISHED_NAME input. The
block-descriptor is two fullwords of data, in which the first word contains the address of the data, and
the second word contains the length in bytes of the data.
For more information on block-descriptors, see XPI syntax.

RESPONSE and REASON values for BIND_LDAP
RESPONSE REASON

OK None

EXCEPTION INVALID_BUFFER_LENGTH

INVALID_LDAP_PROFILE

INVALID_LDAP_URL

LDAP_INACTIVE

NOTAUTH

NOTFOUND

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

4 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

The END_BROWSE_RESULTS call
The END_BROWSE_RESULTS call allows you to end the browse session that was started by the
START_BROWSE_RESULTS call.

END_BROWSE_RESULTS

 DFHDDAPX [CALL],
 [CLEAR],
 [IN,
 FUNCTION(END_BROWSE_RESULTS),
 SEARCH_TOKEN(name4),]
 [OUT,
 [LDAP_RESPONSE(name4),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

LDAP_RESPONSE(name4)
specifies the return code that is sent by the LDAP API.

SEARCH_TOKEN(name4)
the name of the fullword token that is returned by the SEARCH_LDAP function.

RESPONSE and REASON values for END_BROWSE_RESULTS
RESPONSE REASON

OK None

EXCEPTION INVALID_TOKEN

INVALID_CALLING_SEQUENCE

NOTFOUND

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

The FLUSH_LDAP_CACHE call
The FLUSH_LDAP_CACHE call removes the contents of all cached search responses for the specified LDAP
connection.

FLUSH_LDAP_CACHE

 DFHDDAPX [CALL],
 [CLEAR],
 [IN,
 FUNCTION(FLUSH_LDAP_CACHE),
 LDAP_SESSION_TOKEN(name4),]
 [OUT,
 [LDAP_RESPONSE(name4),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

Chapter 2. Directory domain XPI functions 5

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

This command is threadsafe.

LDAP_RESPONSE(name4)
specifies the return code that is sent by the LDAP API.

LDAP_SESSION_TOKEN(name4)
the name of the fullword token that was returned by the BIND_LDAP function.

RESPONSE and REASON values for FLUSH_LDAP_CACHE
RESPONSE REASON

OK None

EXCEPTION INVALID_TOKEN

LDAP_INACTIVE

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

The FREE_SEARCH_RESULTS call
The FREE_SEARCH_RESULTS call releases all storage held by the SEARCH_LDAP function. The search
results are terminated and the search token is invalidated. If the application does not call the
FREE_SEARCH_RESULTS function, it is invoked by CICS when the task is terminated.

FREE_SEARCH_RESULTS

 DFHDDAPX [CALL],
 [CLEAR],
 [IN,
 FUNCTION(FREE_SEARCH_RESULTS),
 SEARCH_TOKEN(name4),]
 [OUT,
 [LDAP_RESPONSE(name4),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

LDAP_RESPONSE(name4)
specifies the return code that is sent by the LDAP API.

SEARCH_TOKEN(name4)
the name of the fullword token that is returned by the SEARCH_LDAP function.

RESPONSE and REASON values for FREE_SEARCH_RESULTS
RESPONSE REASON

OK None

EXCEPTION INVALID_TOKEN

DISASTER None

INVALID None

6 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

RESPONSE REASON

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

The GET_ATTRIBUTE_VALUE call
You can use the GET_ATTRIBUTE_VALUE call to retrieve the value associated with an attribute returned
by the SEARCH_LDAP call. An entry is an LDAP record, and an attribute is one element within an entry.
The attribute can be returned by either the GET_NEXT_ATTRIBUTE function, or by specifying the name of
the attribute.

GET_ATTRIBUTE_VALUE

 DFHDDAPX [CALL],
 [CLEAR],
 [IN,
 FUNCTION(GET_ATTRIBUTE_VALUE),
 SEARCH_TOKEN(name4),
 LDAP_ATTRIBUTE_NAME(block-descriptor),
 LDAP_ATTRIBUTE_VALUE(buffer-descriptor),
 [ATTRIBUTE_TYPE(name4),]
 [VALUE_ARRAY_POSITION(name4),]]
 [OUT,
 [LDAP_RESPONSE(name4),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

ATTRIBUTE_TYPE(name4)
Specifies the keyword CHARACTER or BINARY, indicating the format of the attribute. If this parameter
is not specified, a value of CHARACTER is assumed.

LDAP_ATTRIBUTE_NAME(block-descriptor)
Specifies the location of the LDAP attribute name. The block-descriptor is two fullwords of data, in
which the first word contains the address of the attribute name, and the second word contains the
length in bytes of the attribute name. For more information on block-descriptors, see XPI syntax.

LDAP_ATTRIBUTE_VALUE(buffer-descriptor)
Indicates the buffer where you want the attribute value returned. A group of three fullwords are
specified for the buffer-descriptor:

• The address where the result is returned.
• The maximum size in bytes, of the data returned.
• The actual length in bytes of the result. This can be specified as *, and the length is then returned in

DDAP_LDAP_ATTRIBUTE_VALUE_N.

For more information on buffer-descriptors, see XPI syntax.
LDAP_RESPONSE(name4)

specifies the return code that is sent by the LDAP API.
SEARCH_TOKEN(name4)

the name of the fullword token that is returned by the SEARCH_LDAP function.
VALUE_ARRAY_POSITION(name4)

Specifies the position of the requested value, in the value array for the current attribute. This
parameter is only required if multiple values are expected. Array indexing starts at position 1.

Chapter 2. Directory domain XPI functions 7

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html

RESPONSE and REASON values for GET_ATTRIBUTE_VALUE
RESPONSE REASON

OK None

EXCEPTION INVALID_TOKEN

NOTFOUND

INVALID_BUFFER_LENGTH

INVALID_CALLING_SEQUENCE

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

The GET_NEXT_ATTRIBUTE call
The GET_NEXT_ATTRIBUTE call allows you to get the next attribute in a series, from an entry returned by
the SEARCH_LDAP call. An entry is an LDAP record, and an attribute is one element within an entry.

GET_NEXT_ATTRIBUTE

 DFHDDAPX [CALL],
 [CLEAR],
 [IN,
 FUNCTION(GET_NEXT_ATTRIBUTE),
 SEARCH_TOKEN(name4),
 LDAP_ATTRIBUTE_NAME(buffer-descriptor),]
 [OUT,
 [LDAP_RESPONSE(name4),]
 [VALUE_COUNT(name4),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

LDAP_ATTRIBUTE_NAME(buffer-descriptor)
indicates the buffer where you want the attribute name returned. A group of three fullwords are
specified for the buffer-descriptor:

• The address where the data is returned.
• The maximum size in bytes, of the data returned.
• The actual length in bytes of the data. This can be specified as *, and the length is then returned in

DDAP_LDAP_ATTRIBUTE_NAME_N.

For more information on buffer-descriptors, see XPI syntax.
LDAP_RESPONSE(name4)

specifies the return code that is sent by the LDAP API.
SEARCH_TOKEN(name4)

the name of the fullword token that is returned by the SEARCH_LDAP function.
VALUE_COUNT(name4)

a fullword containing the number of values returned for this attribute. There is usually one value
returned.

8 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html

RESPONSE and REASON values for GET_NEXT_ATTRIBUTE
RESPONSE REASON

OK None

EXCEPTION BROWSE_END

INVALID_BUFFER_LENGTH

INVALID_CALLING_SEQUENCE

INVALID_TOKEN

NOT_FOUND

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

The GET_NEXT_ENTRY call
The GET_NEXT_ENTRY call allows you to get the next entry, from a series of entries returned by the
SEARCH_LDAP call. An entry is an LDAP record. The distinguished name associated with the entry is
returned by this call.

GET_NEXT_ENTRY

 DFHDDAPX [CALL],
 [CLEAR],
 [IN,
 FUNCTION(GET_NEXT_ENTRY),
 SEARCH_TOKEN(name4),
 [DISTINGUISHED_NAME(buffer-descriptor),]]
 [OUT,
 [LDAP_RESPONSE(name4),]
 [ATTRIBUTE_COUNT(name4),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

ATTRIBUTE_COUNT(name4)
specifies the number of attributes in the retrieved entry.

DISTINGUISHED_NAME(buffer-descriptor)
indicates the buffer where you want the distinguished name of the next entry in the search returned. A
group of three fullwords are specified for the buffer-descriptor:

• The address where the data is returned.
• The maximum size in bytes, of the data is returned.
• The actual length in bytes of the data. This can be specified as *, and the length is then returned in

DDAP_DISTINGUISHED_NAME_N.

For more information on buffer-descriptors, see XPI syntax.
LDAP_RESPONSE(name4)

specifies the return code that is sent by the LDAP API.
SEARCH_TOKEN(name4)

the name of the fullword token that is returned by the SEARCH_LDAP function.

Chapter 2. Directory domain XPI functions 9

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html

RESPONSE and REASON values for GET_NEXT_ENTRY
RESPONSE REASON

OK None

EXCEPTION INVALID_TOKEN

INVALID_BUFFER_LENGTH

INVALID_CALLING_SEQUENCE

BROWSE_END

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

The SEARCH_LDAP call
The SEARCH_LDAP call sends a search request to a specified LDAP server. The search specifies an LDAP
distinguished name, that is the target of the search.

The search returns a series of results (attributes or entries) that can be browsed or selected. An entry is
an LDAP record, and an attribute is one element within an entry.

SEARCH_LDAP

 DFHDDAPX [CALL],
 [CLEAR],
 [IN,
 FUNCTION(SEARCH_LDAP),
 LDAP_SESSION_TOKEN(name4),
 DISTINGUISHED_NAME(block-descriptor),
 [FILTER(block-descriptor),]
 [SEARCH_TIME_LIMIT(name4),]]
 [OUT,
 SEARCH_TOKEN(name4),
 [LDAP_RESPONSE(name4),]
 [ENTRY_COUNT(name4),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

DISTINGUISHED_NAME(block-descriptor)
specifies the location of the LDAP distinguished name. The block-descriptor is two fullwords of data,
in which the first word contains the address of the data, and the second word contains the length in
bytes of the data. For more information on block-descriptors, see XPI syntax.

ENTRY_COUNT(name4)
the number of LDAP entries returned by the search.

FILTER(block-descriptor)
specifies the location of an LDAP filter string that limits the search. If this parameter is not specified
or is zero, the search filter is set to (objectClass=*). The block-descriptor is two fullwords of data,
in which the first word contains the address of the data, and the second word contains the length in
bytes of the data. For more information on block-descriptors, see XPI syntax.

LDAP_RESPONSE(name4)
specifies the return code that is sent by the LDAP API.

10 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html

LDAP_SESSION_TOKEN(name4)
the name of the fullword token that was returned by the BIND_LDAP function.

SEARCH_TIME_LIMIT(name4)
specifies the time limit for the search (in seconds). If the search is not successful within this time
limit, the search is abandoned. If this parameter is not specified or is zero, the search time is
unlimited.

SEARCH_TOKEN(name4)
the name of the fullword token that identifies and holds the current position in the search.

RESPONSE and REASON values for SEARCH_LDAP
RESPONSE REASON

OK None

EXCEPTION INVALID_BUFFER_LENGTH

INVALID_TOKEN

NOTFOUND

TIMED_OUT

LDAP_INACTIVE

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

The START_BROWSE_RESULTS call
The START_BROWSE_RESULTS call allows you to browse the results (attributes or entries) returned by the
SEARCH_LDAP call. START_BROWSE_RESULTS starts the browse at the first or only entry returned (there
may be multiple entries returned by the search). The GET_NEXT_ENTRY call allows you to retrieve other
entries.

START_BROWSE_RESULTS can be issued more than once for a SEARCH_TOKEN. If the call is issued after
a GET_NEXT_ENTRY or GET_NEXT_ATTRIBUTE call, the browse position will be reset to the start of the
search results.

START_BROWSE_RESULTS

 DFHDDAPX [CALL],
 [CLEAR],
 [IN,
 FUNCTION(START_BROWSE_RESULTS),
 SEARCH_TOKEN(name4),
 [DISTINGUISHED_NAME(buffer-descriptor),]]
 [OUT,
 [LDAP_RESPONSE(name4),]
 [ATTRIBUTE_COUNT(name4),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

Chapter 2. Directory domain XPI functions 11

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

DISTINGUISHED_NAME(buffer-descriptor)
indicates the buffer where you want the distinguished name of the first, or only located result
returned. A group of three fullwords are specified for the buffer-descriptor:

• The address where the data is returned.
• The length of the buffer in bytes, where the data is returned.
• The maximum length in bytes of the data. This can be specified as *, and the length is then returned

in DDAP_DISTINGUISHED_NAME_N.

For more information on buffer-descriptors, see XPI syntax.
ATTRIBUTE_COUNT(name4)

a fullword indicating the number of attributes that can be browsed in the current entry.
LDAP_RESPONSE(name4)

specifies the return code that is sent by the LDAP API.
SEARCH_TOKEN(name4)

the name of the fullword token that is returned by the SEARCH_LDAP function.

RESPONSE and REASON values for START_BROWSE_RESULTS
RESPONSE REASON

OK None

EXCEPTION INVALID_TOKEN

INVALID_BUFFER_LENGTH

INVALID_CALLING_SEQUENCE

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

The UNBIND_LDAP call
The UNBIND_LDAP call terminates a session with an LDAP server.

UNBIND_LDAP

 DFHDDAPX [CALL],
 [CLEAR],
 [IN,
 FUNCTION(UNBIND_LDAP),
 LDAP_SESSION_TOKEN(name4),]
 [OUT,
 [LDAP_RESPONSE(name4),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

LDAP_RESPONSE(name4)
specifies the return code that is sent by the LDAP API.

LDAP_SESSION_TOKEN(name4)
the name of the fullword token that was returned by the BIND_LDAP function.

12 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

RESPONSE and REASON values for UNBIND_LDAP
RESPONSE REASON

OK None

EXCEPTION INVALID_TOKEN

LDAP_INACTIVE

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

Chapter 2. Directory domain XPI functions 13

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

14 CICS TS for z/OS: XPI Function Reference

Chapter 3. Dispatcher XPI functions
The XPI provides six dispatcher functions. These functions are the DFHDSSRX calls ADD_SUSPEND,
SUSPEND, RESUME, DELETE_SUSPEND, and WAIT_MVS, and the DFHDSATX call CHANGE_PRIORITY.

Use of these dispatcher calls is limited. Check the details supplied for each exit in Global user exit
programs before using any functions.

Note:

1. You must issue an ADD_SUSPEND call to create a suspend token before you issue a SUSPEND or
RESUME call.

2. If a suspended task is canceled, the SUSPEND fails with a RESPONSE value of 'PURGED' and a
REASON value of 'TASK_CANCELLED'. A corresponding RESUME call returns with a RESPONSE value of
'EXCEPTION' and a REASON value of 'TASK_CANCELLED'.

3. If a suspended task is timed out, the SUSPEND fails with a RESPONSE value of 'PURGED' and a
REASON value of 'TIMED_OUT'. A corresponding RESUME call returns with a RESPONSE value of
'EXCEPTION' and a REASON value of 'TIMED_OUT'.

4. Dispatcher protocols require that you issue a RESUME even if the SUSPEND was purged (due to task
cancel or time out). You must issue only one RESUME for each SUSPEND call.

Synchronization protocols for SUSPEND and RESUME processing
If you use XPI SUSPEND and RESUME processing, you must observe the correct protocols, so that task
purging can be handled effectively.

The normal synchronization protocol
In the normal case, synchronization involves two tasks and three operations.

In the following sample operations, the tasks are A (the task that requests a service) and B (the task that
processes a request from task A).

1. Task A starts the request by:

• Setting the parameters to be used by task B
• Resuming task B
• Issuing the SUSPEND call.

2. Task B performs the action by:

• Getting the parameters
• Performing the action
• Setting the results
• Terminating (or waiting for new work).

3. Task A ends the interaction by:

• Getting the results left by task B.

This sequence looks like:

Ignoring the Resume and Suspend, the execution amounts to:

© Copyright IBM Corp. 1974, 2023 15

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33e.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33e.html

where these actions are always sequential.

The synchronization protocol and task purge
If one of the tasks is to be purged, it is task A, because task A is the one suspended. In this case,
execution of task A after the failed SUSPEND would be in parallel with task B; the proper serialization
would be lost. If the program remained unchanged, Process request and Set results would be taking place
at the same time as Get results, with unpredictable results.

Alternative approach to task purge
One way of preventing this problem is to ensure that task A, if it is to be purged, does not do anything
that could interfere with task B. It might mean that A must not detach, if doing so releases storage that B
needs to access. Because the only task that is now involved is task B, task B is left with the responsibility
of cleaning up for both tasks.

The sequence is shown in the following diagram:

Because task-purging is effective only if performed between SUSPEND and RESUME, Suspend-fail
precedes Resume-fail. With the same constraints on serialization as in the normal synchronization
protocol, the task-purge protocol can be logically reduced to the following sequence:

The difference is that Set results and Get results are replaced by Clean up. It is vital that only these two
sequences can happen; this means that both programs must be coded correctly. CICS ensures that both
tasks are told either that SUSPEND and RESUME processing worked, or that it failed.

The following shows the programming steps that conform to these rules:

Program for Task A Program for Task B
SET PARAMETERS;
RESUME B; GET PARAMETERS;
SUSPEND A; PROCESS REQUEST;
 RESUME A;
if if
 RESPONSE = OK RESPONSE ¬= OK
then then
 GET RESULTS; CLEAN UP;
endif endif

If both the SUSPEND and RESUME return ‘OK', the example follows the rules for the normal
synchronization; processing finishes at Get results. If neither SUSPEND nor RESUME returns ‘OK', the
example follows the rules for the task-purge protocol, and processing finishes at Clean up.

The sequence described previously is one method for dealing with the problem of task purge. Using this
method, task B does not know, when it is processing the request, whether or not task A has been purged;
this means that B must take great care in its use of resources owned by A (in case A has been purged). In
some situations, this restriction may cause difficulties.

A different approach is as follows; if task A is to be purged:

1. A communicates to B that it is no longer available, thus informing B not to use any resources owned by
A.

2. A performs its own clean-up processing (including issuing the RESUME call for the purged SUSPEND,
as required by the dispatcher protocols), and abends.

3. B performs its own clean-up processing.

16 CICS TS for z/OS: XPI Function Reference

The ADD_SUSPEND call
ADD_SUSPEND acquires a suspend token that can later be used to identify a SUSPEND/RESUME pair.

ADD_SUSPEND

DFHDSSRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(ADD_SUSPEND),
 [RESOURCE_NAME(name16 | string | 'string'),]
 [RESOURCE_TYPE(name8 | string | 'string'),]]
 [OUT,
 SUSPEND_TOKEN(name4 | (Rn)),
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

RESOURCE_NAME(name16 | string | "string")
specifies a 16-character string that can be used to document and trace the resource involved in
suspend and resume processing. You cannot use register notation to specify the address of the string.
name16

The name of the location where a 16-byte value is stored.
string

A string of characters without intervening blanks; if it is not 16 bytes long, it is extended with
blanks or truncated as required.

"string"
A string of characters enclosed in quotation marks. Blanks are permitted in the enclosed string. If
you want to document a name (label) in your program, use this form.

Note: RESOURCE_NAME on ADD_SUSPEND supplies a default value which is used if
RESOURCE_NAME is not specified on a SUSPEND call.

RESOURCE_TYPE(name8 | string | "string")
specifies an 8-character string that can be used to document and trace the resource involved in
suspend and resume processing. You cannot use register notation to specify the address of the string.
name8

The name of the location where an 8-byte value is stored.
string

A string of characters without intervening blanks; if it is not 8 bytes long, it is extended with blanks
or truncated as required.

"string"
A string of characters enclosed in quotation marks. Blanks are permitted in the enclosed string. If
you want to document a name (label) in your program, use this form.

Note: RESOURCE_TYPE on ADD_SUSPEND supplies a default value which is used if RESOURCE_TYPE
is not specified on a SUSPEND call.

SUSPEND_TOKEN(name4 | (Rn))
returns a token assigned by the system to identify the SUSPEND/RESUME pair of operations used on
the task.
name4

The name of a 4-byte field where the token is stored
(Rn)

A register into which the token value is loaded.

Chapter 3. Dispatcher XPI functions 17

RESPONSE and REASON values for ADD_SUSPEND
RESPONSE REASON

OK None

EXCEPTION None

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

The CHANGE_PRIORITY call
CHANGE_PRIORITY allows the issuing task to change its own priority. It cannot be used to change the
priority of another task. This command causes the issuing task to release control, and so provide other
tasks with the opportunity to run.

CHANGE_PRIORITY

DFHDSATX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(CHANGE_PRIORITY),
 PRIORITY(name1 | (Rn) | decimalint | literalconst),]
 [OUT,
 [OLD_PRIORITY(name1 | (Rn)),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

OLD_PRIORITY(name1 | (Rn))
returns the previous priority of the issuing task.
name1

The name of a 1-byte field where the task’s previous priority is stored
(Rn)

A register in which the low-order byte receives the previous priority value and the other bytes are
set to zero.

PRIORITY(name1 | (Rn) | decimalint | literalconst)
specifies the new priority to be assigned to the issuing task.
name1

The name of a 1-byte field, with a value in the range 0 through 255.
(Rn)

A register with the low-order byte containing the new priority value.
decimalint

A decimal integer not exceeding 255 in value. Neither an expression nor hexadecimal notation is
allowed.

literalconst
A number in the form of a literal, for example B'00000000', X'FF', X'FCF4', "0" or an equate
symbol with a similar value.

18 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

RESPONSE and REASON values for CHANGE_PRIORITY
RESPONSE REASON

OK None

DISASTER None

INVALID None

KERNERROR None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

The DELETE_SUSPEND call
DELETE_SUSPEND releases a suspend token associated with this task.

DELETE_SUSPEND
DFHDSSRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(DELETE_SUSPEND),
 SUSPEND_TOKEN(name4 | (Rn)),]
 [OUT,
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

SUSPEND_TOKEN(name4 | (Rn))
specifies a token assigned by the system to identify the SUSPEND/RESUME pair of operations used on
the task.
name4

The name of a 4-byte field, where the token obtained by an ADD_SUSPEND call has been stored
(Rn)

A register containing the token value previously obtained.

RESPONSE and REASON values for DELETE_SUSPEND
RESPONSE REASON

OK None

EXCEPTION None

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

The RESUME call
RESUME restarts execution of a task that is suspended or timed out.

There must be only one RESUME request for each SUSPEND. However, because this is an asynchronous
interface, a SUSPEND can be received either before or after its corresponding RESUME. You must ensure
that you keep account of the SUSPEND and RESUME requests issued from your exit program.

Chapter 3. Dispatcher XPI functions 19

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

RESUME

DFHDSSRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(RESUME),
 SUSPEND_TOKEN(name4 | (Rn)),
 [COMPLETION_CODE(name1 | (Rn)),]]
 [OUT,
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

COMPLETION_CODE(name1 | (Rn))
specifies a user-defined “reason for RESUME” code during suspend and resume processing.
name1

The name of a 1-byte area to receive the code
(Rn)

A register, in which the low-order byte contains the completion code and the other bytes are zero.
SUSPEND_TOKEN(name4 | (Rn))

specifies a token assigned by the system to identify the SUSPEND/RESUME pair of operations used on
the task.
name4

The name of a location where you have a 4-byte token previously obtained as output from an
ADD_SUSPEND call

(Rn)
A register containing the token value.

RESPONSE and REASON values for RESUME
RESPONSE REASON

OK None

EXCEPTION TASK_CANCELLED

TIMED_OUT

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note:

1. For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.
2. ‘TASK_CANCELLED’ means that the task was canceled by operator action while it was suspended, and

that the suspend token is available for use.

The SUSPEND call
SUSPEND suspends execution of a running task.

Suspended tasks can be resumed in one of two ways. You can issue the XPI RESUME call, or the
task is resumed automatically if the INTERVAL value that you specify on the DFHDSSRX macro expires.
Suspended tasks can also be purged by the operator, or by an application, or by the deadlock timeout
facility.

20 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

SUSPEND

DFHDSSRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(SUSPEND),
 PURGEABLE(YES|NO),
 SUSPEND_TOKEN(name4 | (Rn)),
 [INTERVAL(name4 | (Rn)),]
 [RESOURCE_NAME(name16 | string | 'string'),]
 [RESOURCE_TYPE(name8 | string | 'string'),]
 [TIME_UNIT(SECOND|MILLI_SECOND),]
 [WLM_WAIT_TYPE,]]
 [OUT,
 [COMPLETION_CODE(name1 | (Rn)),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

COMPLETION_CODE (name1 | (Rn))
Returns a user-defined “reason for action” code during suspend and resume processing.
name1

The name of a 1-byte area to receive the code. The value in this field is user-defined, and is
ignored by CICS.

(Rn)
A register in which the low-order byte contains the completion code and the other bytes are zero.

INTERVAL(name4 | (Rn))
Specifies in seconds or milliseconds the time after which the task is automatically resumed and
given a RESPONSE value of PURGED and a REASON value of TIMED_OUT. The time unit used on the
INTERVAL option depends on the setting of the TIME_UNIT option. The INTERVAL value overrides any
timeout (DTIMOUT) value specified for the transaction.
name4

The name of a 4-byte area, which is interpreted as a binary fullword.
(Rn)

A register containing the interval value, a binary fullword.
PURGEABLE(YES|NO)

Specifies whether your code can cope with the request being abnormally terminated as a result of a
purge. There are four types of purge, as shown in Table 1 on page 21. Specifying PURGEABLE(NO)
tells the dispatcher:

• To reject any attempt to PURGE the task.
• To suppress the deadlock timeout (DTIMOUT) facility (if applicable to this task) for the duration of

this request.

Table 1. SUSPEND call - RESPONSE(PURGED)

REASON CONDITION PURGEABLE (NO) PURGEABLE (YES)

TASK_CANCELLED PURGE Canceled Proceeds normally

FORCEPURGE Proceeds normally Proceeds normally

TIMED_OUT DTIMOUT Canceled Proceeds normally

INTERVAL Proceeds normally Proceeds normally

Note: A FORCEPURGE always assumes that the user wants the task to be purged, and so overrides
the PURGEABLE(NO) option. If the user has set an INTERVAL, then this, too, overrides the
PURGEABLE(NO) option.

Chapter 3. Dispatcher XPI functions 21

RESOURCE_NAME(name16 | string | "string")
Specifies a 16-character string that can be used to document and trace the resource involved in
suspend and resume processing. You cannot use register notation to specify the address of the string.
name16

The name of the location where a 16-byte value is stored.
string

A string of characters without intervening blanks; if it is not 16 bytes long, it is extended with
blanks or truncated as required.

"string"
A string of characters enclosed in quotation marks. Blanks are permitted in the enclosed string. If
you want to document a name (label) in your program, use this form.

Note:

1. CICS does not use the RESOURCE_NAME information but includes it in trace entries, and displays
it on appropriate CEMT screens to help you to see what your task is doing. CICS internal requests
specify values, and you should use different values to avoid ambiguity. CICS internal request
values are described in The resources that CICS tasks can wait for in Troubleshooting.

2. If RESOURCE_NAME is not specified, the default value, if any, from ADD_SUSPEND is used.

RESOURCE_TYPE(name8 | string | "string")
Specifies an 8-character string that can be used to document and trace the resource involved in
suspend and resume processing. You cannot use register notation to specify the address of the string.
name8

The name of the location where an 8-byte value is stored.
string

A string of characters without intervening blanks; if it is not 8 bytes long, it is extended with blanks
or truncated as required.

"string"
A string of characters enclosed in quotation marks. Blanks are permitted in the enclosed string. If
you want to document a name (label) in your program, use this form.

Note:

1. CICS does not use the RESOURCE_TYPE information but includes it in trace entries, and displays
it on appropriate CEMT screens to help you to see what your task is doing. CICS internal requests
specify values, and you should use different values to avoid ambiguity. CICS internal request
values are documented in The resources that CICS tasks can wait for in Troubleshooting.

2. If RESOURCE_TYPE is not specified, the default value, if any, from ADD_SUSPEND is used.

SUSPEND_TOKEN(name4 | (Rn))
Specifies a token assigned by the system to identify the SUSPEND/RESUME pair of operations used on
the task.
name4

The name of a location where you have a 4-byte token previously obtained as output from an
ADD_SUSPEND call

(Rn)
A register containing the token value.

TIME_UNIT(SECOND | MILLI_SECOND)
Specifies the time unit used on the INTERVAL option.
SECOND

The INTERVAL option specifies the number of seconds before timeout.
MILLI_SECOND

The INTERVAL option specifies the number of milliseconds before timeout.

22 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/dfhs125.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/dfhs125.html

WLM_WAIT_TYPE(name1)
Specifies, in a 1-byte location, the reason for suspending the task. This reason indicates the nature of
the wait state to the MVS™ workload manager.

The equated values for the type of wait are as follows:

CMDRESP
Waiting on a command response.

CONV
Waiting on a conversation.

DISTRIB
Waiting on a distributed request.

IDLE
A CICS task, acting as a work manager, that has no work request that is allowed to service within
the monitoring environment. For example, journaling code that suspends itself when there are no
journaling I/O operations to perform.

IO
Waiting on an I/O operation or indeterminate I/O-related operation (locks, buffer, string, and so
on).

LOCK
Waiting on a lock.

MISC
Waiting on an unidentified resource.

Note: This value is the default reason given to the wait if you suspend a task and do not specify
the WLM_WAIT_TYPE parameter.

OTHER_PRODUCT
Waiting on another product to complete its function; for example, when the workload has been
passed to Db2®.

SESS_LOCALMVS
Waiting on the establishment of a session in the MVS image on which this CICS region is running.

SESS_NETWORK
Waiting on the establishment of a session elsewhere in the network (that is, not on this MVS
image).

SESS_SYSPLEX
Waiting on establishment of a session somewhere in the sysplex (that is, not on this MVS image).

TIMER
Waiting on the timeout of a timer (for example, a task that puts itself to sleep).

If you are running CICS in an MVS goal-mode workload management environment (that is, you are
using goal-oriented performance management), specify the reason for suspending the task on the
WLM_WAIT_TYPE parameter.

Table 2. RESPONSE and REASON values for SUSPEND

RESPONSE REASON

OK None

EXCEPTION None

DISASTER None

INVALID None

KERNERROR None

PURGED TASK_CANCELLED

Chapter 3. Dispatcher XPI functions 23

Table 2. RESPONSE and REASON values for SUSPEND (continued)

RESPONSE REASON

TIMED_OUT

Note:

1. For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.
2. TASK_CANCELLED means that the task has been canceled by operator action or by an application

command.
3. After a PURGED response, the suspend token must not be reused in another SUSPEND until it has

been reset by a RESUME corresponding to the purged SUSPEND.
4. TIMED_OUT means that the task has been automatically resumed because the specified INTERVAL (or

the timeout value specified at task attach) has expired. The token, however, remains suspended and
must be the object of a RESUME before it can be the object of a DELETE_SUSPEND.

The WAIT_MVS call
WAIT_MVS requests a wait on an MVS event control block (ECB) or on a list of MVS ECBs. For example,
you could issue the WAIT_MVS to wait for completion of an MVS task for which you have issued ATTACH
and provided a task-completion ECB.

The dispatcher does not clear the ECBs when a WAIT_MVS request is received. If any ECB is already
posted, control is returned immediately to the exit program with a response of ‘OK'.

A single ECB must not be the subject of more than one wait at a time. If any ECB is already being
waited on when a WAIT_MVS request is received, the request is rejected. The RESPONSE code is
‘DSSR_INVALID', and the REASON code ‘DSSR_ALREADY_WAITING'.

Note: ECBs used in WAIT_MVS requests must always be posted using the MVS POST macro.

WAIT_MVS

DFHDSSRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(WAIT_MVS),
 {ECB_ADDRESS(name4 | (Ra)) | ECB_LIST_ADDRESS(name4 | (Ra)),}
 PURGEABLE(YES|NO),
 [INTERVAL(name4 | (Rn)),]
 [RESOURCE_NAME(name16 | string | 'string'),]
 [RESOURCE_TYPE(name8 | string | 'string'),]]
 [TIME_UNIT(SECOND|MILLI_SECOND),]
 [WLM_WAIT_TYPE,]
 [OUT,
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

ECB_ADDRESS(name4 | (Ra))
Specifies the address of the ECB to be waited on.
name4

The name of a location that contains an ECB address.
(Ra)

A register that contains the address of an ECB.
ECB_LIST_ADDRESS(name4 | (Ra))

Specifies the address of a list of ECB addresses to be waited on.

24 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

name4
The name of a location that contains an ECB address, possibly followed by more ECB addresses.
The last address word in the list has the high-order bit set to 1.

(Ra)
A register pointing to an address list as previously described.

INTERVAL(name4 | (Rn))
Specifies in seconds or milliseconds the time after which the task is automatically resumed and given
a RESPONSE value of ‘PURGED' and a REASON value of ‘TIMED_OUT'. The time unit used on the
INTERVAL option depends on the setting of the TIME_UNIT option.

The INTERVAL value overrides any timeout (DTIMOUT) value specified for the transaction.
name4

The name of a 4-byte area, which is interpreted as a binary fullword
(Rn)

A register containing the interval value, a binary fullword.

PURGEABLE(YES|NO)
Specifies whether your code can cope with the request being abnormally terminated as a result of a
purge. There are four types of purge, as shown in Table 3 on page 25. Specifying PURGEABLE(NO)
tells the dispatcher:

• To reject any attempt to PURGE the task
• To suppress the deadlock timeout (DTIMOUT) facility (if applicable to this task) for the duration of

this request.

Table 3. SUSPEND call - RESPONSE(PURGED)

REASON CONDITION PURGEABLE (NO) PURGEABLE (YES)

TASK_CANCELLED PURGE Canceled Proceeds normally

FORCEPURGE Proceeds normally Proceeds normally

TIMED_OUT DTIMOUT Canceled Proceeds normally

INTERVAL Proceeds normally Proceeds normally

Note: A FORCEPURGE always assumes that the user wants the task to be purged, and so overrides
the PURGEABLE(NO) option. If the user has set an INTERVAL, then this, too, overrides the
PURGEABLE(NO) option.

RESOURCE_NAME(name16 | string | "string")
Specifies a 16-character string that can be used to document and trace the resource involved in
suspend and resume processing. You cannot use register notation to specify the address of the string.
name16

The name of the location where a 16-byte value is stored.
string

A string of characters without intervening blanks; if it is not 16 bytes long, it is extended with
blanks or truncated as required.

"string"
A string of characters enclosed in quotation marks. Blanks are permitted in the enclosed string. If
you want to document a name (label) in your program, use this form.

Note: CICS does not use the RESOURCE_NAME information but includes it in trace entries, and
displays it on appropriate CEMT screens to help you to see what your task is doing. CICS internal
requests specify values, and you should use different values to avoid ambiguity. CICS internal request
values are documented in The resources that CICS tasks can wait for in Troubleshooting.

Chapter 3. Dispatcher XPI functions 25

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/dfhs125.html

RESOURCE_TYPE(name8 | string | "string")
Specifies an 8-character string that can be used to document and trace the resource involved in
suspend and resume processing. You cannot use register notation to specify the address of the string.
name

The name of the location where an 8-byte value is stored.
string

A string of characters without intervening blanks; if it is not 8 bytes long, it will be extended with
blanks or truncated as required.

"string"
A string of characters enclosed in quotation marks. Blanks are permitted in the enclosed string. If
you want to document a name (label) in your program, use this form.

Note: CICS does not use the RESOURCE_TYPE information but includes it in trace entries, and
displays it on appropriate CEMT screens to help you to see what your task is doing. CICS internal
requests specify values, and you should use different values to avoid ambiguity. CICS internal request
values are documented in The resources that CICS tasks can wait for in Troubleshooting.

TIME_UNIT(SECOND | MILLI_SECOND)
Specifies the time unit used on the INTERVAL option.
SECOND

The INTERVAL option specifies the number of seconds before timeout.
MILLI_SECOND

The INTERVAL option specifies the number of milliseconds before timeout.
WLM_WAIT_TYPE(name1)

Specifies, in a 1-byte location, the reason for suspending the task. This indicates the nature of the
task's wait state to the MVS workload manager.

The equated values for the type of wait are as follows:

CMDRESP
Waiting on a command response.

CONV
Waiting on a conversation.

DISTRIB
Waiting on a distributed request.

IDLE
A CICS task, acting as a work manager, that has no work request that is allowed to service within
the monitoring environment. For example, journaling code that suspends itself when there are no
journaling I/O operations to perform.

IO
Waiting on an I/O operation or indeterminate I/O-related operation (locks, buffer, string, and so
on).

LOCK
Waiting on a lock.

MISC
Waiting on an unidentified resource. This is the default reason given to the wait if you suspend a
task and do not specify the WLM_WAIT_TYPE parameter.

OTHER_PRODUCT
Waiting on another product to complete its function; for example, when the workload has been
passed to Db2.

SESS_LOCALMVS
Waiting on the establishment of a session in the MVS image on which this CICS region is running.

26 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/dfhs125.html

SESS_NETWORK
Waiting on the establishment of a session elsewhere in the network (that is, not on this MVS
image).

SESS_SYSPLEX
Waiting on establishment of a session somewhere in the sysplex (that is, not on this MVS image).

TIMER
Waiting on the timeout of a timer (for example, a task that puts itself to sleep).

If you are running CICS in an MVS goal-mode workload management environment (that is, you are
using goal-oriented performance management), you are recommended to specify the reason for
suspending the task on the WLM_WAIT_TYPE parameter.

Table 4. RESPONSE and REASON values for WAIT_MVS

RESPONSE REASON

OK None

EXCEPTION None

DISASTER None

INVALID None

KERNERROR None

PURGED TASK_CANCELLED

TIMED_OUT

Note:

1. For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.
2. TIMED_OUT is returned if the INTERVAL expires, or if a deadlock timeout interval expires.
3. TASK_CANCELLED means that the task has been canceled by operator action or by an application

command.

Chapter 3. Dispatcher XPI functions 27

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

28 CICS TS for z/OS: XPI Function Reference

Chapter 4. Dump control XPI functions
The XPI provides two dump control functions. These are the DFHDUDUX macro calls SYSTEM_DUMP and
TRANSACTION_DUMP.

Restriction: DFHDUDUX calls cannot be used in any exit program invoked from any global user exit point
in the following domains or program:

• Statistics domain
• Monitor domain
• Dump domain
• Dispatcher domain
• Transient data program

The SYSTEM_DUMP call
SYSTEM_DUMP causes a system dump to be taken. If the system dump code that you supply on input is in
the system dump code table, the dump may be suppressed.

For information about the dump table and how it works, see How it works: dumps and SET
SYSDUMPCODE.

SYSTEM_DUMP

DFHDUDUX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(SYSTEM_DUMP),
 SYSTEM_DUMPCODE(name8 | string | "string"),
 [CALLER(block-descriptor),]
 [TITLE(block-descriptor),]]
 [OUT,
 DUMPID(name9 | *),
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

CALLER(block-descriptor)
specifies the source of a system dump request. The information that you supply here appears in the
dump header, so you could use it to identify the exit program that initiated the system dump request.
For a description of valid block-descriptors, see XPI syntax.

DUMPID(name9 | *)
returns the dump identifier.
name9

The name of a 9-byte field to receive the assigned ID.
SYSTEM_DUMPCODE(name8 | string | "string")

specifies the code corresponding to the error that caused this system dump call. System dump codes
are held in the dump table.
name8

The name of a location containing an 8-byte string.
string

A string of characters without intervening blanks. The macro generates, from the string, a literal
constant of length 8 bytes, extending with blanks or truncating as required.

© Copyright IBM Corp. 1974, 2023 29

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/dump-cics.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/commands-spi/dfha8_setsysdumpcode.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/commands-spi/dfha8_setsysdumpcode.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html

"string"
A string, enclosed in quotation marks and possibly containing blanks. This value is processed in
the same way as the preceding “string”.

TITLE(block-descriptor)
specifies an area containing the text you want to appear in the dump header when the system dump is
printed.

RESPONSE and REASON values for SYSTEM_DUMP
RESPONSE REASON

OK None

EXCEPTION FESTAE_FAILED

INSUFFICIENT_STORAGE

IWMWQWRK_FAILED

NO_DATASET

PARTIAL_SYSTEM_DUMP

SDUMP_BUSY

SDUMP_FAILED

SDUMP_NOT_AUTHORIZED

SUPPRESSED_BY_DUMPOPTION

SUPPRESSED_BY_DUMPTABLE

SUPPRESSED_BY_USEREXIT

DISASTER None

INVALID INVALID_DUMPCODE

INVALID_PROBDESC

INVALID_SVC_CALL

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

The TRANSACTION_DUMP call
TRANSACTION_DUMP causes a transaction dump to be taken. If the transaction dump code that you
supply on input is in the transaction dump code table, the dump may be suppressed and, optionally, a
system dump may be taken.

For information about the dump table and how it works, see How it works: dumps and SET
TRANDUMPCODE.

Valid characters include uppercase characters (A-Z), lowercase characters (a-z), digits (0-9), and the
special characters $ @ # / % & ? ! : | ; , ¢ + * ¬ - and _. In some cases, the characters < > . = and " are also
valid depending on where you set them. Any lowercase characters you enter are converted to uppercase.

Important
There is a restriction in using the XPI early during initialization. Do not start exit programs that use the
XPI functions TRANSACTION_DUMP, WRITE_JOURNAL_DATA, MONITOR, and INQUIRE_MONITOR_DATA

30 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/dump-cics.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/commands-spi/dfha8_settrandumpcode.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/commands-spi/dfha8_settrandumpcode.html

until the second phase of the PLTPI. For further information about the PLTPI, refer to Writing initialization
and shutdown programs .

TRANSACTION_DUMP

DFHDUDUX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(TRANSACTION_DUMP),
 TRANSACTION_DUMPCODE(name4 | string | 'string')
 [CSA(NO|YES),]
 [PROGRAM(NO|YES),]
 [SEGMENT(block-descriptor),]
 [SEGMENT_LIST(block-descriptor),]
 [TCA(NO|YES),]
 [TERMINAL(NO|YES),]
 [TRANSACTION(NO|YES),]
 [TRT(NO|YES),]]
 [OUT,
 DUMPID(name9 | *),
 RESPONSE(name1 | *),
 REASON(name1 | *)]

Note: This command is NOT threadsafe.

CSA(NO|YES)
specifies whether the common system area (CSA) is to be included in the transaction dump. The
default is NO.

DUMPID(name9 | *)
returns the dump identifier.
name9

The name of a 9-byte field to receive the assigned ID.
PROGRAM(NO|YES)

specifies whether all program storage areas associated with this task are to be included in the
transaction dump. The default is NO.

SEGMENT(block-descriptor)
specifies the address and the length of a single block of storage that is to be dumped. See XPI syntax
for a description of valid block-descriptors. SEGMENT and SEGMENT_LIST are mutually exclusive.

SEGMENT_LIST(block-descriptor)
specifies the address and length of a set of contiguous word pairs. The first word in each pair specifies
the length in bytes of a storage segment to be dumped; the second word contains the address of the
storage segment. The end of the list must be marked by a word containing X'FFFFFFFF'. SEGMENT
and SEGMENT_LIST are mutually exclusive.

TCA(NO|YES)
specifies whether the task control area (TCA) is to be included in the transaction dump. The default is
NO.

TERMINAL(NO|YES)
specifies whether all terminal storage areas associated with the task are to be included in the
transaction dump. The default is NO.

TRANSACTION(NO|YES)
specifies whether all transaction storage areas associated with the task are to be included in the
transaction dump. The default is NO.

TRANSACTION_DUMPCODE(name4 | string | "string")
specifies the code corresponding to the error that caused this transaction dump call. Transaction
dump codes are held in the dump table.
name4

The name of a location containing a 4-byte string.

Chapter 4. Dump control XPI functions 31

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha35h.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha35h.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html

string
A string of characters without intervening blanks. The macro generates a literal constant of length
4 bytes from the string, extending with blanks or truncating as required.

"string"
A string, enclosed in quotation marks and possibly containing blanks. This value is processed in
the same way as the preceding “string”.

TRT(NO|YES)
specifies whether the trace table (TRT) is to be included in the transaction dump. The default is NO.

RESPONSE and REASON values for TRANSACTION_DUMP
RESPONSE REASON

OK None

EXCEPTION FESTAE_FAILED

INSUFFICIENT_STORAGE

IWMWQWRK_FAILED

NOT_OPEN

OPEN_ERROR

PARTIAL_SYSTEM_DUMP

PARTIAL_TRANSACTION_DUMP

SDUMP_BUSY

SDUMP_FAILED

SDUMP_NOT_AUTHORIZED

SUPPRESSED_BY_DUMPOPTION

SUPPRESSED_BY_DUMPTABLE

SUPPRESSED_BY_USEREXIT

DISASTER None

INVALID INVALID_DUMPCODE

INVALID_PROBDESC

INVALID_SVC_CALL

KERNERROR None

PURGED None

Note:

1. For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.
2. NOT_OPEN means that the CICS dump data set is closed.
3. OPEN_ERROR means that an error occurred while a CICS dump data set was being opened.
4. PARTIAL means that the transaction dump resulting from this request is incomplete.

32 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

Chapter 5. Enqueue domain XPI functions
The XPI provides two enqueue domain functions. These are the DFHNQEDX calls DEQUEUE and
ENQUEUE.

The DEQUEUE function
The DEQUEUE function is provided on the DFHNQEDX macro call. It releases a resource previously
enqueued by an ENQUEUE function call.

DEQUEUE

DFHNQEDX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(DEQUEUE),
 {ENQUEUE_TOKEN(name4),|
 ENQUEUE_NAME1(address,length),[ENQUEUE_NAME2(address,length),]}
 MAX_LIFETIME(DISPATCHER_TASK),]
 [ENQUEUE_TYPE (XPI | EXECSTRN | EXECADDR),]
 [OUT,
 RESPONSE (name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

The ENQUEUE_TOKEN, ENQUEUE_NAME1, ENQUEUE_NAME2, MAX_LIFETIME (DISPATCHER_TASK), and
ENQUEUE_TYPE (XPI | EXECSTRN | EXECADDR) parameters are the same as in the ENQUEUE function
call.

RESPONSE and REASON values for DEQUEUE
RESPONSE REASON

OK None

EXCEPTION ENQUEUE_NOT_OWNED
ENQUEUE_LOCKED

The ENQUEUE function
The ENQUEUE function is provided on the DFHNQEDX macro call. It allows you to enqueue on a named
resource.

By default, all enqueues created by XPI ENQUEUE commands are allocated to a specific enqueue pool
called DISPATCH and are treated as internal to CICS. XPI enqueues do not conflict with enqueues created
by EXEC CICS ENQ commands, which are added to different enqueue pools, depending on the enqueue
model specified. For example, an active EXEC CICS ENQ on a string does not prevent an XPI ENQUEUE
command on the same string being obtained.

Note:

• XPI enqueues cannot be browsed using the CICS SPI.
• XPI enqueues cannot be controlled by the use of ENQMODELs.

When you use the optional ENQUEUE_TYPE parameter, the XPI ENQUEUE command can enqueue on
the same resource being enqueued on by EXEC CICS ENQ or vice versa. Applications can synchronize
processes using EXEC CICS and EXEC XPI commands.

© Copyright IBM Corp. 1974, 2023 33

ENQUEUE

DFHNQEDX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(ENQUEUE),
 ENQUEUE_NAME1(address,length),
 [ENQUEUE_NAME2(address,length),]
 MAX_LIFETIME(DISPATCHER_TASK),
 [ENQUEUE_TYPE (XPI | EXECSTRN | EXECADDR),]
 [WAIT(YES|NO),]
 [PURGEABLE(YES|NO),]]
 [OUT,
 [ENQUEUE_TOKEN(name4),]
 [DUPLICATE_REQUEST,]
 RESPONSE (name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

DUPLICATE_REQUEST
Indicates that the requesting dispatcher task already owns the resource being enqueued.

ENQUEUE_NAME1(address,length)
Specifies the high-order part of the name to be enqueued.

ENQUEUE_NAME2(address,length)
Specifies the low-order part, if any, of the name to be enqueued.

ENQUEUE_TOKEN(name4)
Enables a subsequent DEQUEUE request to identify the resource by a token rather than enqueue
name, allowing the NQ domain to locate the enqueue control block directly, and hence more
efficiently.

ENQUEUE_TYPE (XPI | EXECSTRN | EXECADDR)
Specifies the type of resource being enqueued on. The XPI option specifies the typical DFHNQEDX
behavior. The resource pool used is exclusive to XPI and cannot be accessed by the CICS API. Use
EXECSTRN or EXECADDR to indicate that ENQUEUE_NAME1 specifies an enqueue resource, located
in the same namespace as the one being used by EXEC CICS ENQ. For more information about
EXECSTRN and EXECADDR, see The resources that CICS tasks can wait for in Troubleshooting.

MAX_LIFETIME(DISPATCHER_TASK)
MAX_LIFETIME(DISPATCHER_TASK) is required and specifies that all XPI enqueues are owned by the
requesting dispatcher task.

If you use the ENQUEUE XPI call to ensure that your global user exit programs are threadsafe, you
are recommended to free (dequeue) resources during the invocation of the global user exit program in
which they were enqueued. However, because no recovery services are provided for stopping global
user exits, CICS ensures that any outstanding XPI enqueues are dequeued automatically when the
dispatcher task ends. If the dispatcher task is running a CICS transaction, the dispatcher task ends
when the CICS transaction ends, whether normally or abnormally.

Usually, enqueues are owned by the requesting transaction, which contains units of work (UOWs),
and these are used to anchor the enqueue control blocks. The XPI, however, does not require a
transaction environment, and global user exits can be called under dispatcher tasks that have no
transactions or UOWs.

PURGEABLE(YES|NO)
Specifies whether a purge (or timeout) request against the task is to be honored if the requesting
dispatcher task has to wait for the enqueue.

WAIT(YES|NO)
Specifies whether the dispatcher task is to wait if the resource is currently enqueued to another
dispatcher task.

34 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/dfhs125.html

RESPONSE and REASON values for ENQUEUE
RESPONSE REASON

OK None

EXCEPTION ENQUEUE_BUSY
ENQUEUE_LOCKED
ENQUEUE_DISABLED
LIMIT_EXCEEDED
SYSENQ_FAILURE
INVALID_PHASE

PURGED TASK_CANCELLED
TIMED_OUT

Chapter 5. Enqueue domain XPI functions 35

36 CICS TS for z/OS: XPI Function Reference

Chapter 6. Kernel domain XPI functions
The XPI provides two kernel domain functions. These are the DFHKEDSX calls
START_PURGE_PROTECTION and STOP_PURGE_PROTECTION.

The START_PURGE_PROTECTION function
The START_PURGE_PROTECTION function is provided on the DFHKEDSX macro call. It inhibits purge, but
not force-purge, for the current task. This function can be used by all global user exit programs to inhibit
purge during a global user exit call.

In general, each START_PURGE_PROTECTION call should have a corresponding
STOP_PURGE_PROTECTION function call to end the purge protection period on completion of any
program logic that needs such protection.

START_PURGE_PROTECTION

DFHKEDSX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(START_PURGE_PROTECTION),]
 [OUT,
 RESPONSE (name1 | *)]

This command is threadsafe.

There are no input or output parameters on this call, only a RESPONSE.

The STOP_PURGE_PROTECTION function
The STOP_PURGE_PROTECTION function is provided on the DFHKEDSX macro call. It is re-enables
purge for the current task after purge has been suspended by a preceding START_PURGE_PROTECTION
function call.

STOP_PURGE_PROTECTION

DFHKEDSX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(STOP_PURGE_PROTECTION),]
 [OUT,
 RESPONSE (name1 | *)]

This command is threadsafe.

There are no input or output parameters on this call, only a RESPONSE.

Nesting purge protection calls
The START_ and STOP_PURGE_PROTECTION functions can be nested. You should ensure that,
if multiple START_PURGE_PROTECTION calls are issued for a task, that the correct number of
STOP_PURGE_PROTECTION calls are issued to cancel the purge protection.

If you issue two starts and only one stop, purge protection remains on for the current task.

For example, for any current task, more than one global user exit program may be driven. You must design
your exit programs to ensure that purge protection is correctly cancelled. An example of nesting is shown
as follows:

 XEIIN:
 EXIT_PROG1: Calls START_PURGE_PROTECTION

© Copyright IBM Corp. 1974, 2023 37

 XFCREQ:
 EXIT_PROG2: Calls START_PURGE_PROTECTION

 XFCREQC:
 EXIT_PROG3: Calls STOP_PURGE_PROTECTION

 XEIOUT:
 EXIT_PROG4: Calls STOP_PURGE_PROTECTION

38 CICS TS for z/OS: XPI Function Reference

Chapter 7. Loader XPI functions
The XPI provides five loader functions. These functions are the DFHLDLDX calls ACQUIRE_PROGRAM,
DEFINE_PROGRAM, DELETE_PROGRAM, IDENTIFY_PROGRAM, and RELEASE_PROGRAM.

The CICS loader services, including the XPI, recognize non-Language Environment® (LE) assembler
programs that are linked AMODE(64). The addressing mode of the module is shown in the returned
entry point parameter. AMODE(64) is indicated when bit 0 is 0 and bit 31 is 1 (the same addressing mode
convention that is used in the z/OS operating system).

Restriction: DFHLDLDX calls cannot be used in any exit program invoked from any global user exit point in
the following domains or program:

• Statistics domain
• Monitor domain
• Dump domain
• Dispatcher domain
• Transient data program

The ACQUIRE_PROGRAM call
ACQUIRE_PROGRAM returns the entry and load point addresses, the length, and a new program token for
a usable copy of the named program, which can be identified by either its name or a program token.

ACQUIRE_PROGRAM

DFHLDLDX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(ACQUIRE_PROGRAM),
 {PROGRAM_NAME(name8 | string | 'string')|
 PROGRAM_TOKEN(name8)},
 [SUSPEND(NO|YES),]]
 [OUT,
 ENTRY_POINT(name4 | (Ra)),
 [LOAD_POINT(name4 | (Ra)),]
 [NEW_PROGRAM_TOKEN(name8),]
 [PROGRAM_ATTRIBUTE(name1 | (Rn)),]
 [PROGRAM_LENGTH(name4 | (Rn)),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

ENTRY_POINT(name4 | (Ra))
Returns the program’s entry point address.
name4

The name of a 4-byte location to receive the 31-bit entry address
(Ra)

A register to receive the entry address.
LOAD_POINT(name4 | (Ra))

Returns the program’s load point address.
name4

The name of a 4-byte location to receive the loaded address
(Ra)

A register that is to contain the load address.

© Copyright IBM Corp. 1974, 2023 39

NEW_PROGRAM_TOKEN(name8)
Returns the new program token for a usable copy of the named program.
name8

The name of a location to receive the 8-byte token that identifies this program and instance.
PROGRAM_ATTRIBUTE(name1 | (Rn))

Returns the program attribute.
name1

The name of a 1-byte location to receive the program attribute.
(Rn)

A register in which the low-order byte receives the program attribute and the other bytes are set
to zero. It can have the values RELOAD, RESIDENT, REUSABLE, or TRANSIENT.
RELOAD

The program is not reusable, and therefore several copies of the program may be loaded. A
copy is removed from storage when a RELEASE_PROGRAM call (for that copy) is issued.

RESIDENT
There is a single copy of the program that is not removed from storage unless deleted.
RESIDENT programs must be at least quasireentrant. Any program of PROGRAM_TYPE
SHARED has the RESIDENT attribute by default. The DELETE_PROGRAM call has no effect
on this type of RESIDENT program.

REUSABLE
Similar to RESIDENT, except that a REUSABLE program that is not in use can be removed from
storage by CICS, for storage optimization reasons.

TRANSIENT
Similar to RESIDENT, except that a TRANSIENT program is removed from storage as soon as
its use count drops to zero.

PROGRAM_LENGTH(name4 | (Rn))
Returns the length of the named program.
name4

The name of a 4-byte location that is to receive the length in bytes, expressed in binary
(Rn)

A register to contain the length in bytes, expressed in binary.
PROGRAM_NAME(name8 | string | "string")

Specifies the name of the program to be acquired.
name8

The name of a location containing an 8-byte program name.
string

A string of characters naming the program.
"string"

A string in quotation marks. The string length is set to 8 by padding with blanks or truncating.
PROGRAM_TOKEN(name8),

Specifies a token identifying the program whose details are to be acquired.
name8

The name of a location containing the 8-byte token obtained from a previous DEFINE_PROGRAM
or ACQUIRE_PROGRAM call.

SUSPEND(NO|YES)
Specifies whether execution is to be suspended until the request can be granted.

40 CICS TS for z/OS: XPI Function Reference

RESPONSE and REASON values for ACQUIRE_PROGRAM
RESPONSE REASON

OK None

EXCEPTION NO_STORAGE

PROGRAM_NOT_DEFINED

PROGRAM_NOT_FOUND

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note:

1. For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.
2. A REASON of ‘NO_STORAGE’ with a RESPONSE of ‘EXCEPTION’ means that there was insufficient

storage to satisfy this request, and SUSPEND(NO) was specified.
3. A REASON of ‘PROGRAM_NOT_FOUND’ is returned if the program has not been included in the library

concatenation, or if the link-edit failed. In such a case, the program is marked as “not executable”; it
must be re-linked before it can be successfully acquired.

The DEFINE_PROGRAM call
You can use the DEFINE_PROGRAM call to define new programs to the loader domain, or to change
the details of programs that are already defined. The details that you provide are recorded on the local
catalog, and become available immediately. They are used on all subsequent ACQUIRE requests for the
named program.

Program definitions made using DEFINE_PROGRAM are not retained over an XRF takeover. Also, the CSD
is not updated, only the loader domain definitions.

DEFINE_PROGRAM

DFHLDLDX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(DEFINE_PROGRAM),
 PROGRAM_NAME(name8 | string | 'string'),
 [EXECUTION_KEY(CICS|USER),]
 [PROGRAM_ATTRIBUTE(RELOAD|RESIDENT|REUSABLE|TRANSIENT),]
 [PROGRAM_TYPE(PRIVATE|SHARED|TYPE_ANY),]
 [REQUIRED_AMODE(24|31|AMODE_ANY|64),]
 [REQUIRED_RMODE(24|RMODE_ANY),]]
 [OUT,
 [NEW_PROGRAM_TOKEN(name8),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

EXECUTION_KEY(CICS|USER)
Specifies, in conjunction with other program attributes, the type of dynamic storage area (DSA) into
which the loader is to load the program.
CICS

For non-reentrant programs, the program is to be loaded into a CICS DSA above or below the 16
MB line; that is, the CDSA or ECDSA. The choice of CICS DSA depends on the residence mode
(RMODE) attribute of the program, as defined to the linkage-editor.

Chapter 7. Loader XPI functions 41

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

For reentrant RMODE(24) programs, the program is to be loaded into the CDSA.

USER
For non-reentrant programs, the program is to be loaded into a user DSA above or below the 16
MB line; that is, the UDSA or EUDSA. The choice of user DSA depends on the residence mode
(RMODE) attribute of the program, as defined to the linkage-editor.

For reentrant RMODE(24) programs, the program is to be loaded into the UDSA.

Reentrant programs eligible to reside above the 16 MB line: If a program is link-edited as reentrant
with AMODE(31),RMODE(ANY), the EXECUTION_KEY option is ignored, and it is loaded into a read-
only DSA (the RDSA or ERDSA). For details of the type of storage allocated for the ERDSA, see the
RENTPGM system initialization parameter.

See Table 5 on page 42 for a summary of the effect of the EXECUTION_KEY option in conjunction
with other factors.

Table 5. Summary of attributes defining DSA eligibility

EXECUTION_KEY
option

Reentrant Above or below 16 MB
line

Dynamic storage area
(DSA)

CICS No Below CDSA

CICS Yes Below RDSA

CICS No Above ECDSA

CICS Yes Above ERDSA

USER No Below UDSA

USER Yes Below RDSA

USER No Above EUDSA

USER Yes Above ERDSA

NEW_PROGRAM_TOKEN(name8)
Returns the token supplied for the newly-defined program.
name8

The name of a location to contain the 8-byte token obtained.
PROGRAM_ATTRIBUTE(RELOAD|RESIDENT|REUSABLE|TRANSIENT)

Specifies the residency status of the program.
RELOAD

Every ACQUIRE_PROGRAM request for this program is satisfied by loading a new copy into
storage. When a RELEASE request is issued for a copy, it is removed from storage.

Note: Do not use this attribute when defining an exit program.

RESIDENT
There is a single copy of the program that is not removed from storage unless it is deleted.
RESIDENT programs must be at least quasi-reentrant.

REUSABLE
The program is at least quasi-reentrant; a single copy in storage can be used by several tasks in
the system. A REUSABLE program becomes eligible for removal from storage as part of the normal
dynamic program storage compression (DPSC) scheme when its use count reaches zero.

TRANSIENT
Similar to REUSABLE, except that the program is removed from storage immediately when its use
count reaches zero. Specify this option only for less-frequently used programs, or for programs in
systems that are critically short on storage.

42 CICS TS for z/OS: XPI Function Reference

PROGRAM_NAME(name8 | string | "string")
Specifies the name of the program to be defined.
name8

The name of a location where there is an 8-byte program name.
string

A string of characters, without intervening blanks, naming the program.
"string"

A string of characters within quotation marks. The string length is set to 8 by padding with blanks
or by truncation.

PROGRAM_TYPE(PRIVATE|SHARED|TYPE_ANY)
Specifies where to load the program from.
PRIVATE

The program is in the DFHRPL or dynamic LIBRARY concatenation. A PRIVATE program need not
be reentrant, and is given only limited protection from unauthorized overwriting. The degree of
protection depends on the type of dynamic storage area (DSA) into which the program is loaded
(see the EXECUTION_KEY option):
DSA

Protection from unauthorized overwriting
CDSA

Cannot be overwritten by USER tasks.
ECDSA

Cannot be overwritten by USER tasks.
ERDSA

Complete: cannot be overwritten by USER tasks or CICS tasks.
EUDSA

None.
RDSA

Complete: cannot be overwritten by USER tasks or CICS tasks.
UDSA

None.
SHARED

The program is located in the link pack area (LPA), is reentrant, and is protected.
TYPE_ANY

Either the copy in DFHRPL or dynamic LIBRARY concatenation, or the LPA copy of the program can
be used, though preference is given to the LPA copy.

REQUIRED_AMODE(24|31|AMODE_ANY|64)
Specifies the addressing mode of the program. If, during subsequent ACQUIRE_PROGRAM
processing, no copy of the program that meets the defined addressing requirement can be
found, the ACQUIRE_PROGRAM call receives an EXCEPTION response and the REASON value
PROGRAM_NOT_FOUND.

Note:

1. AMODE_ANY and AMODE 31 have identical meanings for this function.
2. You cannot use this option to override the link-edited addressing mode of the program.

REQUIRED_RMODE(24|RMODE_ANY)
Specifies the residency mode of the program. If, during subsequent ACQUIRE_PROGRAM
processing, no copy of the program that meets the defined addressing requirement can be
found, the ACQUIRE_PROGRAM call receives an EXCEPTION response and the REASON value
PROGRAM_NOT_FOUND.

Note: You cannot use this option to override the link-edited residence mode of the program.

Chapter 7. Loader XPI functions 43

RESPONSE and REASON values for DEFINE_PROGRAM
RESPONSE REASON

OK None

EXCEPTION CATALOG_ERROR

CATALOG_NOT_OPERATIONAL

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

The DELETE_PROGRAM call
DELETE_PROGRAM removes the definition of a named program from the catalog and from the list of
current programs. When this request executes successfully, subsequent ACQUIRE_PROGRAM requests
fail with a REASON value of ‘PROGRAM_NOT_DEFINED’.

DELETE_PROGRAM
DFHLDLDX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(DELETE_PROGRAM),
 PROGRAM_NAME(name8 | string | 'string'),]
 [OUT,
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

PROGRAM_NAME(name8 | string | "string")
specifies the name of the program to be deleted.
name8

The name of a location containing an 8-byte program name.
string

A string of characters naming the program.
"string"

A string in quotation marks. The string length is set to 8 by padding with blanks or truncating.

RESPONSE and REASON values for DELETE_PROGRAM
RESPONSE REASON

OK None

EXCEPTION PROGRAM_NOT_DEFINED

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

44 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

The IDENTIFY_PROGRAM call
IDENTIFY_PROGRAM locates the program that is associated with an address. If the address is in a
CICS-defined program, the call returns information about that program.

If the address is not associated with a loader domain CICS-defined program, the request fails with a
REASON value of INSTANCE_NOT_FOUND.

IDENTIFY_PROGRAM
IDENTIFY_PROGRAM
DFHLDLDX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(IDENTIFY_PROGRAM),
 ADDRESS(name4 | (Rn)| *),]
 [OUT,
 [PROGRAM_NAME(name8 | *),]
 [PROGRAM_ATTRIBUTE(name1 | (Rn) | *),]
 [PROGRAM_LENGTH(name4 | (Rn) | *),]
 [LOAD_POINT(name4 | (Ra) | *),]
 [ENTRY_POINT(name4 | (Ra) | *),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

ADDRESS(name4 | (Rn) | *)
The storage address that is used to identify the program.
name4

The name of a 4-byte fullword where the storage address is stored.
(Rn)

A register that is set to the storage address.
PROGRAM_NAME(name8 | *)

Returns the name of the program that contains the storage address. The PROGRAM_NAME
corresponds to the CICS-defined program name, not a CSECT.
name8

The name of a location to contain an 8-byte program name.
PROGRAM_ATTRIBUTE(name1 | (Rn) | *)

Returns the program attribute.
name1

The name of a 1-byte location to receive the program attribute.
(Rn)

A register in which the low-order byte receives the program attribute and the other bytes are set
to zero. The register can have the values RELOAD, RESIDENT, REUSABLE, or TRANSIENT.
RELOAD

The program is not reusable, and therefore several copies of the program might be loaded. A
copy is removed from storage when a RELEASE_PROGRAM call (for that copy) is issued.

RESIDENT
There is a single copy of the program that is not removed from storage unless it is deleted.
RESIDENT programs must be at least quasi-reentrant. Any program of PROGRAM_TYPE
SHARED has the RESIDENT attribute by default. The DELETE_PROGRAM call has no effect
on this type of RESIDENT program.

REUSABLE
The program is similar to RESIDENT, except that if the program is not in use, CICS can remove
it from storage to optimize storage use.

Chapter 7. Loader XPI functions 45

TRANSIENT
The program is similar to RESIDENT, except that the program is removed from storage as soon
as its use count drops to zero.

PROGRAM_LENGTH(name4 | (Rn) | *)
Returns the length of the named program.
name4

The name of a 4-byte location to receive the length in bytes, expressed in binary.
(Rn)

A register to contain the length in bytes, expressed in binary.
LOAD_POINT(name4 | (Ra) | *)

Returns the load point address of the program.
name4

The name of a 4-byte location to receive the loaded address.
(Ra)

A register to contain the load address.
ENTRY_POINT(name4 | (Ra) | *)

Returns the entry point address of the program.
name4

The name of a 4-byte location to receive the 31-bit entry address.
(Ra)

A register to receive the entry address.

RESPONSE and REASON values for IDENTIFY_PROGRAM
RESPONSE REASON

OK None

EXCEPTION INSTANCE_NOT_FOUND

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more information, refer to the explanation of RESPONSE and REASON in Making an XPI call.

The RELEASE_PROGRAM call
RELEASE_PROGRAM decrements the use count of a currently loaded program by one.

If the program has been defined with the RELOAD attribute, the storage occupied by this copy of the
program is released.

You should issue the ACQUIRE_PROGRAM and RELEASE_PROGRAM requests for a single program during
the same execution of the exit program. If you do not want to do this, you should acquire the program
once during CICS initialization, and leave it resident until CICS termination.

RELEASE_PROGRAM

DFHLDLDX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(RELEASE_PROGRAM),
 ENTRY_POINT(pointer),
 {PROGRAM_NAME(name8 | string | 'string')|

46 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

 PROGRAM_TOKEN(name8)},]
 [OUT,
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

ENTRY_POINT(pointer)
Specifies the address of the entry point of this copy of the named program.

PROGRAM_NAME(name8 | string | "string")
Specifies the name of the program to be released.
name8

The name of a location containing an 8-byte program name.
string

A string of characters naming the program.
"string"

A string in quotation marks. The string length is set to 8 by padding with blanks or truncating.
PROGRAM_TOKEN(name8),

Specifies a token identifying the program to be released.
name8

The name of a location containing the 8-byte token obtained from a previous DEFINE_PROGRAM
or ACQUIRE_PROGRAM call.

RESPONSE and REASON values for RELEASE_PROGRAM
RESPONSE REASON

OK None

EXCEPTION PROGRAM_NOT_DEFINED

PROGRAM_NOT_IN_USE

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note:

1. For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.
2. ‘PROGRAM_NOT_DEFINED’ is returned if the program that you name is not known to the system.
3. ‘PROGRAM_NOT_IN_USE’ is returned when the use count for the named program is already zero.

Chapter 7. Loader XPI functions 47

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

48 CICS TS for z/OS: XPI Function Reference

Chapter 8. Log manager XPI functions
The XPI provides two log manager functions. These are the DFHLGPAX calls INQUIRE_PARAMETERS
and SET_PARAMETERS. You can use these calls to inquire upon, and set, the log manager parameter,
KEYPOINT_FREQUENCY. This parameter specifies the activity keypoint frequency of the CICS region.

The INQUIRE_PARAMETERS call
INQUIRE_PARAMETERS returns information about the activity keypoint frequency of the system.

INQUIRE_PARAMETERS

DFHLGPAX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_PARAMETERS),
 [OUT,
 [KEYPOINT_FREQUENCY(name4 | *),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

KEYPOINT_FREQUENCY(name4 | *)
returns the activity keypointing frequency of the CICS region.
name4

The name of a 4-byte location that is to receive the frequency value.

RESPONSE and REASON values for INQUIRE_PARAMETERS
RESPONSE REASON

OK None

DISASTER None

INVALID None

KERNERROR None

The SET_PARAMETERS call
SET_PARAMETERS allows you to set the activity keypoint frequency for the CICS region.

SET_PARAMETERS

DFHLGPAX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(SET_PARAMETERS),
 [KEYPOINT_FREQUENCY(name4 | (Rn)),]]
 [OUT,
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

KEYPOINT_FREQUENCY(name4 | *)
specifies the activity keypointing frequency of the CICS region.

Permitted values are 0, or any integer between 200 and 65535 inclusive.

© Copyright IBM Corp. 1974, 2023 49

name4
The name of a 4-byte location that contains the new frequency value.

(Rn)
A register that contains the new frequency value.

RESPONSE and REASON values for SET_PARAMETERS
RESPONSE REASON

OK None

EXCEPTION OUT_OF_RANGE

DISASTER None

INVALID None

KERNERROR None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

50 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

Chapter 9. Monitoring XPI functions
The XPI provides four monitoring functions: the DFHMNMNX calls INQUIRE_MONITORING_DATA and
MONITOR, the DFHMNTDX call SET_TRACKING_DATA, and the DFHMNIAX call INQUIRE_APP_CONTEXT.

Restriction:

DFHMNMNX, DFHMNTDX, and DFHMNIAX calls cannot be used in any exit program that is called from any
global user exit point in the following domains:

• Dispatcher domain
• Dump domain
• Monitor domain
• Statistics domain
• Transient data program

In addition, the SET_TRACKING_DATA and INQUIRE_APP_CONTEXT calls cannot be used in any exit
program that is called from any global user exit point in the following domains:

• Transaction manager domain

Also, the INQUIRE_APP_CONTEXT, INQUIRE_MONITORING_DATA, and SET_TRACKING_DATA calls
cannot be used in any exit program that is called from any global user exit point in DFHTCP or DFHZCP.

The INQUIRE_APP_CONTEXT call
The INQUIRE_APP_CONTEXT call returns to the exit program the application context data that is
associated with the current application running the issuing task.

Restriction
Do not start exit programs that use the INQUIRE_APP_CONTEXT function until the second phase of the
PLTPI. For more information about the PLTPI, see Writing initialization and shutdown programs .

INQUIRE_APP_CONTEXT
DFHMNIAX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_APP_CONTEXT),
 CONTEXT(INITIAL | CURRENT)]
 [OUT,
 [APPLNAME(name64),]
 [PLATNAME(name64),]
 [OPERNAME(name64),]
 [MAJORVER(name4 | (Rn)),]
 [MINORVER(name4 | (Rn)),]
 [MICROVER(name4 | (Rn)),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

APPLNAME(name64)
Returns the 64-byte name of the application that is associated with the task.

CONTEXT(INITIAL | CURRENT)
The parameter CONTEXT(INITIAL | CURRENT) determines whether the application context values
returned are for a tasks initial context or its current context. If the CONTEXT parameter is not
specified, the default is to return the tasks current application context.

© Copyright IBM Corp. 1974, 2023 51

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha35h.html

MAJORVER(name4 | (Rn))
Returns the major version number of the application that is associated with the task.
name4

The name of a 4-byte field that contains the major version number as a binary value.
(Rn)

A register to receive the major version number.
MICROVER(name4 | (Rn))

Returns the micro version number of the application that is associated with the task.
name4

The name of a 4-byte field that contains the micro version number as a binary value.
(Rn)

A register to receive the micro version number.
MINORVER(name4 | (Rn))

Returns the minor version number of the application that is associated with the task.
name4

The name of a 4-byte field that contains the minor version number as a binary value.
(Rn)

A register to receive the minor version number.
OPERNAME(name64)

Returns the 64-byte name of the operation that is associated with the task.
PLATNAME(name64)

Returns the 64-byte name of the platform that is associated with the task.

RESPONSE and REASON values for INQUIRE_APP_CONTEXT
RESPONSE REASON

OK None

EXCEPTION APP_CONTEXT_UNAVAILABLE

DISASTER None

INVALID None

KERNERROR None

PURGED None

For more information, see the explanation of RESPONSE and REASON in Making an XPI call.

The INQUIRE_MONITORING_DATA call
The INQUIRE_MONITORING_DATA function returns to the exit program the performance class monitoring
data that has been accumulated for the issuing task.

The DFHMNTDS DSECT that maps the data is of fixed format. Note that:

• All the CICS system-defined fields in the performance records (including fields that you have specified
for exclusion using the EXCLUDE option of the DFHMCT TYPE=RECORD macro) are listed.

• No user-defined data fields are listed.

52 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

INQUIRE_MONITORING_DATA

DFHMNMNX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_MONITORING_DATA),
 DATA_BUFFER(buffer-descriptor),]
 [OUT,
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

Important
There is a restriction in using the XPI early during initialization. Do not start exit programs that use the
XPI functions TRANSACTION_DUMP, WRITE_JOURNAL_DATA, MONITOR, and INQUIRE_MONITOR_DATA
until the second phase of the PLTPI. For further information about the PLTPI, refer to Writing initialization
and shutdown programs .

DATA_BUFFER(buffer-descriptor)
specifies the address and the length of a buffer to contain the returned monitoring data; see XPI
syntax for a full definition of a buffer-descriptor. The DSECT DFHMNTDS maps the monitoring data.

RESPONSE and REASON values for INQUIRE_MONITORING_DATA
RESPONSE REASON

OK None

EXCEPTION LENGTH_ERROR

MONITOR_DATA_UNAVAILABLE

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note:

1. For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.
2. ‘LENGTH_ERROR’ means that the length specified in the buffer-descriptor was too short for the

monitoring data returned from the XPI call.

The MONITOR call
The MONITOR XPI call is similar to the EXEC CICS MONITOR command. It enables you to invoke user
event-monitoring points (EMPs) in your exit programs.

The user event-monitoring points must be defined in the monitoring control table (MCT) using the
DFHMCT TYPE=EMP macro, or generated by the APPLNAME parameter on the DFHMCT TYPE=INITIAL
macro. For more information about CICS monitoring, see CICS monitoring facility: Performance and
tuning .

At a user EMP, you can add your own data (up to 256 counters, up to 256 clocks, and a single character
string of up to 256 bytes) to fields reserved unconditionally for you in performance class monitoring data
records. You can also add up to 12 bytes of user information at the DFHAPPL EMPs.

Chapter 9. Monitoring XPI functions 53

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha35h.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha35h.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht35e.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht35e.html

MONITOR
DFHMNMNX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(MONITOR),
 POINT(expression | name2 | (Rn)),
 [DATA1(expression | name4 | (Ra) | *),]
 [DATA2(expression | name4 | (Ra) | *),]
 [ENTRYNAME(name8 | string | 'string'),]]
 [OUT,
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

Important
There is a restriction in using the XPI early during initialization. Do not start exit programs that use the
XPI functions TRANSACTION_DUMP, WRITE_JOURNAL_DATA, MONITOR, and INQUIRE_MONITOR_DATA
until the second phase of the PLTPI. For further information about the PLTPI, see Writing initialization and
shutdown programs .

DATA1(expression | name4 | (Ra) | *)
Specifies a fullword binary variable whose contents depend on the type of user EMP being used:

• If the MCT user EMP definition contains an ADDCNT, SUBCNT, NACNT, EXCNT, or ORCNT option, the
DATA1 variable is an area used as defined by the user EMP definition.

• If the MCT user EMP definition contains an MLTCNT option, the DATA1 variable is an area with the
address of a series of adjacent fullwords containing the values to be added to the user count fields
defined in the user EMP definition.

• If the MCT user EMP definition contains a MOVE option, the DATA1 variable is an area with the
address of the character string to be moved. This rule also applies to the DFHAPPL EMPs.

For details of the user EMP options, see Monitoring control table (MCT).
expression

A valid assembler-language expression giving the fullword binary variable for this EMP.
name4

The name of a 4-byte field containing the fullword binary variable for this EMP.
(Ra)

A register containing the fullword binary variable for this EMP.
*

The value of this option is already present in the parameter list, or the option is not specified for
this EMP.

DATA2(expression | name4 | (Rn) | *)
Specifies a fullword binary variable whose contents depend on the type of user EMP being used:

• If the MCT user EMP definition contains an ADDCNT, SUBCNT, NACNT, EXCNT, or ORCNT option, the
DATA2 variable is an area used as defined by the user EMP definition.

• If the MCT user EMP definition contains an MLTCNT option, the DATA2 variable is an area with the
number of user count fields to be updated.

The number specified in DATA2 overrides the default value defined in the MCT for the operation.
A value of 0 instructs monitoring to use the default. Not specifying a value for DATA2 does
not prevent the MLTCNT operation from being successful; but, if it is, an exception response of
DATA2_NOT_SPECIFIED is returned. See note 5.

• If the MCT user EMP definition contains a MOVE option, the DATA2 variable is an area with the
length of the character string to be moved.

The length specified in DATA2 overrides the default value defined in the MCT for the operation.
A value of 0 instructs monitoring to use the default. Not specifying a value for DATA2 does

54 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha35h.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha35h.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/macros/mct/overview.html

not prevent the MOVE operation from being successful; but, if it is, an exception response of
DATA2_NOT_SPECIFIED is returned. See note 5.

For details of the user EMP options, see Monitoring control table (MCT).
expression

A valid assembler-language expression giving the fullword binary variable for this EMP.
name4

The name of a 4-byte field containing the fullword binary variable for this EMP.
(Rn)

A register containing the fullword binary variable for this EMP.
*

The value of this option is already present in the parameter list, or the option is not specified for
this EMP.

ENTRYNAME(name8 | string | "string")
Specifies the monitoring point entry name, which qualifies the POINT value and which is defined in the
monitoring control table (MCT).
name8

The name of a location containing an 8-byte string.
string

A string of characters without intervening blanks. The macro generates, from the string, a literal
constant of length 8 bytes, extending with blanks or truncating as required.

"string"
A string, enclosed in quotation marks, and possibly containing blanks. This value is processed in
the same way as the previous “string”.

Note: If, when defining the EMP in the MCT, you do not specify an entry name, the entry name defaults
to ‘USER'. ENTRYNAME likewise defaults to ‘USER' if not specified.

POINT(expression | name2 | (Rn))
Specifies the monitoring point identifier as defined in the MCT, and is in the range 0 through 255. Point
identifiers in the range 200 through 255 are reserved for use by IBM program products.
expression

A valid assembler-language expression that can be expressed in 2 bytes.
name2

The name of a 2-byte source of point data
(Rn)

A register containing the point data in the low-order 2 bytes

RESPONSE and REASON values for MONITOR
RESPONSE REASON

OK None

EXCEPTION DATA1_NOT_SPECIFIED

DATA2_NOT_SPECIFIED

POINT_NOT_DEFINED

INVALID_DATA1_VALUE

INVALID_DATA2_VALUE

DISASTER None

INVALID None

Chapter 9. Monitoring XPI functions 55

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/macros/mct/overview.html

RESPONSE REASON

KERNERROR None

PURGED None

Note:

1. For more detail, see the explanation of RESPONSE and REASON in Making an XPI call.
2. POINT_NOT_DEFINED means that the EMP you have specified was not defined in the MCT.
3. INVALID_DATA1_VALUE and INVALID_DATA2_VALUE are most likely to have been caused by provision

of bad addresses; this causes a program check.
4. DATA1_NOT_SPECIFIED and DATA2_NOT_SPECIFIED mean that you have not specified DATA1 or

DATA2 respectively when the operation required them. See the description of DATA2.
5. Any error response terminates processing of the EMP. Operations defined to execute before the point

of failure will have done so; later operations are canceled.

The SET_TRACKING_DATA call
The SET_TRACKING_DATA call function sets the transaction tracking origin data tag for the issuing task.

SET_TRACKING_DATA
DFHMNTDX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(SET_TRACKING_DATA),
 {TRACKING_TAG (MOBILE)|TRACKING_TAG_VALUE(name1 | *)},]
 [OUT,
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

Important
There is a restriction in using the XPI early during initialization. Do not start exit programs that use
the SET_TRACKING_DATA function until the second phase of the PLTPI. For more information about the
PLTPI, see Writing initialization and shutdown programs .

TRACKING_TAG (MOBILE)
Specifies the transaction tracking origin data tag information to be set in the transaction tracking origin
data.

MOBILE
The transaction tracking origin data tag is mobile.

RESPONSE and REASON values for SET_TRACKING_DATA
RESPONSE REASON

OK None

EXCEPTION NO_ASSOCIATION_DATA

TRACKING_TAG_ALREADY_SET

INVALID_TRACKING_TAG

INVALID_TRACKING_TAG_VALUE

56 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha35h.html

RESPONSE REASON

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note:

1. For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.
2. NO_ASSOCIATION_DATA means that the transaction under which this XPI call has been invoked has

no transaction tracking association data. For more information about association data and transaction
tracking, see Introduction to CICS intercommunication.

3. TRACKING_TAG_ALREADY_SET means that transaction tracking origin data tag for the issuing task has
already been set.

4. INVALID_TRACKING_TAG means that the transaction tracking origin data tag has an invalid value.
5. INVALID_TRACKING_TAG_VALUE means that the transaction tracking origin data tag value is not in the

range of 129 through to 255.

Chapter 9. Monitoring XPI functions 57

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/connections/dfht11f.html

58 CICS TS for z/OS: XPI Function Reference

Chapter 10. Object transaction XPI functions
You can use the object transaction XPI calls to implement a TRUE program that responds to calls
between a CICS unit of work and a remote transaction coordinator. These are the DFHOTTRX calls
COMMIT, COMMIT_ONE_PHASE, IMPORT_TRAN, PREPARE, ROLLBACK, and SET_ROLLBACK_ONLY, and
the DFHOTCOX call SET_COORDINATOR. These functions provide powerful control over the sync point
processing of a CICS unit of work. If you use these calls incorrectly, the CICS Recovery Manager
terminates CICS immediately and recovery and resynchronization processing is required.

The IMPORT_TRAN call
Links the current unit of work of a task to an external transaction. Some information about the external
transaction is recorded in the current unit of work.

IMPORT_TRAN
DFHOTTRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(IMPORT_TRAN),
 [FORMAT_ID,(name4|Rn),]
 [BQUAL_LEN,(name4|Rn),]
 [TID_BLOCK_IN,(block-descriptor),]
 [TIMEOUT,(name4|Rn),]
 [LOGICAL_SERVER,(name4|string|'string'),]
 [PUBLIC_ID,(name64|string|'string'),]]
 [OUT,
 UOW_ID,(name8 | *),
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

BQUAL_LEN (name4 | Rn)
Specifies the branch qualifier length of the OTS transaction identifier (TID).
name4

The name of a 4-byte location containing the branch qualifier length.
Rn

A register containing the branch qualifier length.
FORMAT_ID (name4 | Rn)

Specifies the OTS transactions format identifier.
name4

The name of a 4-byte location containing the format ID.
Rn

A register containing the format ID.
LOGICAL_SERVER (name4 | string | 'string')

Specifies the name of the logical server in which the transaction is executing. Users of this XPI should
choose values that are not similar to any CorbaServer definition that is installed in the CICS system.

PUBLIC_ID (name64 | string | 'string')
Specifies the public identifier associated with the transaction.

TID_BLOCK_IN (block-descriptor)
Specifies the unique OTS transaction identifier (TID) of the external transaction that will be associated
with the task's unit of work. The block-descriptor is two fullwords of data, where the first word
contains the address of the data, and the second word contains the length in bytes of the data.

TIMEOUT (name4 | Rn)
Specifies the OTS transaction timeout value in seconds.

© Copyright IBM Corp. 1974, 2023 59

name4
The name of a 4-byte location containing the timeout value.

Rn
A register containing the timeout value.

UOW_ID (name8 | *)
Specifies the identifier of the CICS unit of work into which the OTS transaction was imported.

RESPONSE and REASON values for IMPORT_TRAN
RESPONSE REASON

OK None

EXCEPTION TID_TOO_LONG
OTS_TRAN_ALREADY

DISASTER None

INVALID None

KERNERROR None

PURGED None

The COMMIT_ONE_PHASE call
Performs a sync point on the unit of work of the current task, without referencing an external coordinator.
You cannot use the COMMIT_ONE_PHASE call if you have used the SET_COORDINATOR call to add
information about a coordinator to the unit of work of the current task.

COMMIT_ONE_PHASE
DFHOTTRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(COMMIT_ONE_PHASE),]]
 [OUT,
 STATUS (name1 | *),
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

STATUS (name1 | *)
The outcome of the CICS unit of work.
This parameter can have the following values:

COMMITTED
ROLLEDBACK

RESPONSE and REASON values for COMMIT_ONE_PHASE
RESPONSE REASON

OK None

EXCEPTION None

DISASTER None

INVALID None

KERNERROR None

60 CICS TS for z/OS: XPI Function Reference

RESPONSE REASON

PURGED None

The PREPARE call
Performs the first phase of the sync point on the CICS unit of work on behalf of an OTS transaction.
The vote returned by this function is intended to be used by the coordinator of the OTS transaction to
determine the outcome of the overall transaction. The CICS unit of work enters the indoubt state when
PREPARE is called and remains indoubt until a subsequent COMMIT or ROLLBACK function is called. If the
CICS system fails and needs to be restarted, the CICS unit of work is recovered from the system log and
you must resynchronize to resolve the indoubt unit of work.

PREPARE
DFHOTTRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(PREPARE),]
 [OUT,
 VOTE (name1 | *),
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

VOTE (name1 | *)
The outcome of the first phase of the OTS transaction.
This parameter can have the following values:

YES
NO
READ_ONLY
HEURISTIC_MIXED

RESPONSE and REASON values for PREPARE
RESPONSE REASON

OK None

EXCEPTION None

DISASTER None

INVALID None

KERNERROR None

PURGED None

The COMMIT call
Performs the second phase of the sync point of an OTS transaction, ensuring that the transaction is
committed.

COMMIT
DFHOTTRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(COMMIT),]
 [OUT,

Chapter 10. Object transaction XPI functions 61

 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

RESPONSE and REASON values for COMMIT
RESPONSE REASON

OK None

EXCEPTION UOW_ROLLEDBACK

DISASTER None

INVALID None

KERNERROR None

PURGED None

The ROLLBACK call
Rolls back an OTS transaction.

ROLLBACK
DFHOTTRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(ROLLBACK),]
 [OUT,
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

RESPONSE and REASON values for ROLLBACK
RESPONSE REASON

OK None

EXCEPTION UOW_COMMITTED

DISASTER None

INVALID None

KERNERROR None

PURGED None

The SET_ROLLBACK_ONLY call
Marks the CICS unit of work so that the OTS coordinator is given a 'NO' vote when a sync point protocol
is performed, forcing the rollback of the global transaction. The CICS unit of work continues in the
inflight state, but any subsequent recoverable resource updates are rolled back with the rest of the global
transaction.

SET_ROLLBACK_ONLY
DFHOTTRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(SET_ROLLBACK_ONLY),]

62 CICS TS for z/OS: XPI Function Reference

 [OUT,
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

RESPONSE and REASON values for SET_ROLLBACK_ONLY
RESPONSE REASON

OK None

EXCEPTION None

DISASTER None

INVALID None

KERNERROR None

PURGED None

The SET_COORDINATOR call
Associates a link with the current task's unit of work to represent a remote coordinator.

SET_COORDINATOR
Ensure that the object transaction XPI functions for phase 1 (OTTR_PREPARE) and phase 2
(OTTR_COMMIT or OTTR_ROLLBACK) are used to drive the current unit of work through sync
point processing, in response to the actions of the remote coordinator. You cannot use the
OTTR_COMMIT_ONE_PHASE function if you have used the SET_COORDINATOR function to add
information about a coordinator to the unit of work of the current task, and you cannot allow the task
to end without using the correct object transaction XPIs to sync point the current unit of work.

DFHOTCOX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(SET_COORDINATOR),
 [IOR_BLOCK,(block-descriptor)]
 [HOST_BLOCK,(block-descriptor)]]
 [OUT,
 COORDINATOR_TOKEN,(name1 | *),
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

HOST_BLOCK (block-descriptor)
A pointer to and length of a character string that represents the identity of the system, which contains
the coordinator instance. The maximum supported length of this parameter is 4096 bytes.

IOR_BLOCK (block-descriptor)
A pointer to and length of a character string that represents the coordinator instance in the host
system. The maximum supported length of this parameter is 4096 bytes.

COORDINATOR_TOKEN (name1 | *)
A token representing the coordinator.

RESPONSE and REASON values for SET_COORDINATOR
RESPONSE REASON

OK None

Chapter 10. Object transaction XPI functions 63

RESPONSE REASON

EXCEPTION IOR_TOO LONG
HOST_TOO_LONG
LINK_UNKNOWN
COORDINATOR_NOT_FOUND
COORDINATOR_ALREADY
INVALID_SYNCPOINT_STATE

DISASTER None

INVALID None

KERNERROR None

PURGED None

64 CICS TS for z/OS: XPI Function Reference

Chapter 11. Parameter domain XPI functions
The XPI provides one parameter domain function, the DFHPAIQX call INQUIRE_FEATUREKEY for feature
toggles.

The INQUIRE_FEATUREKEY call
INQUIRE_FEATUREKEY obtains the value for a feature toggle.

For a list of toggle-enabled features by CICS release, see Toggle-enabled features, support by release.
Follow the links in the feature list table to locate the information that describes the feature toggles for
enabling and setting configuration options for a specific toggle-enabled feature.

INQUIRE_FEATUREKEY

DFHPAIQX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_FEATUREKEY),
 OPTION(name255|'string'),
 [STRING(buffer-descriptor),]
 [UPPERCASE (YES|NO),]
 [OUT,
 [NUMBER(name4),]
 [BOOLEAN(name1)]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

OPTION(name255|'string')
Specifies the name of the feature toggle.

STRING(buffer-descriptor)
Specifies the address and the length of a buffer to contain the returned character string value of the
toggle. See XPI syntax for a full definition of a buffer-descriptor.

UPPERCASE (YES|NO)
Specifies if the value returned in STRING is changed to uppercase.

NUMBER(name4)
Returns a numeric toggle value in binary.

BOOLEAN(name1)
Returns a boolean toggle value in boolean.
TRUE

The value is true.
FALSE

The value is false.

RESPONSE and REASON values for INQUIRE
RESPONSE REASON

OK None

© Copyright IBM Corp. 1974, 2023 65

https://www.ibm.com/docs/cics-ts/latest?topic=releases-changes-feature-toggles
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html

RESPONSE REASON

EXCEPTION NOT_FOUND

BUFFER_TOO_SMALL

BAD_OPTION

NOT_BOOLEAN

NOT_NUMBER

NO_LIST

DISASTER None

INVALID None

KERNERROR None

PURGED None

66 CICS TS for z/OS: XPI Function Reference

Chapter 12. Program management XPI functions
The XPI provides eight program management functions, including DFHPGISX, DFHPGAQX, and
DFHPGCHX calls. Together with the loader functions, these functions provide a comprehensive set of
tools to manipulate programs.

The program management functions include the following DFHPGISX calls:

• END_BROWSE_PROGRAM
• GET_NEXT_PROGRAM
• INQUIRE_CURRENT_PROGRAM
• INQUIRE_PROGRAM
• SET_PROGRAM
• START_BROWSE_PROGRAM

The program management functions include the following DFHPGAQX calls:

• INQUIRE_AUTOINSTALL
• SET_AUTOINSTALL

The program management functions include the following DFHPGCHX call:

• BIND_CHANNEL

You can use these functions together with the loader functions (DFHLDLDX calls) to manipulate programs.
However, the tokens returned in the NEW_PROGRAM_TOKEN fields of DFHPGISX calls are different from
the tokens that are returned by DFHLDLDX calls. Do not use a token obtained from a DFHPGISX call in a
DFHLDLDX call, or vice versa.

The INQUIRE_PROGRAM call
INQUIRE_PROGRAM returns information about the attributes of a specified program.

INQUIRE_PROGRAM

DFHPGISX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_PROGRAM),
 [AC_APPLICATION_NAME(block-descriptor),]
 [AC_MAJOR_VERSION(name4),]
 [AC_MICRO_VERSION(name4),]
 [AC_MINOR_VERSION(name4),]
 [AC_PLATFORM_NAME(block-descriptor),]
 [{PROGRAM_NAME(name8 | string | 'string')|
 PROGRAM_TOKEN(name4)},]
 [SHOW_PROGRAMS(PRIVATE|PRIVATE_AND_PUBLIC),]
 [OUT,
 [ACCESS(CICS|NONE|READ_ONLY|USER),]
 [APIST(CICSAPI|OPENAPI),]
 [AVAIL_STATUS(DISABLED|ENABLED),]
 [CEDF_STATUS(CEDF|NOCEDF|NOT_APPLIC),]
 [CONCURRENCY(QUASIRENT|THREADSAFE),]
 [DATA_LOCATION(ANY|BELOW|NOT_APPLIC),]
 [DYNAMIC_STATUS(DYNAMIC|NOT_DYNAMIC),]
 [ENTRY_POINT(name4),]
 [EXECUTION_KEY(CICS|NOT_APPLIC|USER),]
 [EXECUTION_SET(DPLSUBSET|FULLAPI|NOT_APPLIC),]
 [HOLD_STATUS(CICS_LIFE|NOT_APPLIC|TASK_LIFE),]
 [INSTALL_TYPE(AUTO|CATALOG|GROUPLIST|MANUAL|RDO|SYSAUTO),]
 [LANGUAGE_DEDUCED(ASSEMBLER|C370|COBOL|
 COBOL2|LE370|NOT_APPLIC|NOT_DEDUCED|PLI),]
 [LANGUAGE_DEFINED(ASSEMBLER|C370|COBOL|
 LE370|NOT_APPLIC|NOT_DEFINED|PLI),]
 [LIBRARY(name8),]

© Copyright IBM Corp. 1974, 2023 67

 [LIBRARYDSN(name44),]
 [LOAD_POINT(name4),]
 [LOAD_STATUS(LOADABLE|NOT_APPLIC|NOT_LOADABLE|NOT_LOADED),]
 [LOCATION(CDSA|ECDSA|ELPA|ERDSA|ESDSA|LPA|NONE|RDSA|SDSA),]
 [MODULE_TYPE(MAPSET|PARTITIONSET|PROGRAM),]
 [NEW_PROGRAM_TOKEN(name4),]
 [PROGRAM_ATTRIBUTE(RELOAD|RESIDENT|REUSABLE|TRANSIENT),]
 [PROGRAM_LENGTH(name4),]
 [PROGRAM_TYPE(NOT_APPLIC|PRIVATE|SHARED|TYPE_ANY),]
 [PROGRAM_USAGE(APPLICATION|NUCLEUS),]
 [PROGRAM_USE_COUNT(name4),]
 [PROGRAM_USER_COUNT(name4),]
 [REMOTE_DEFINITION(LOCAL|REMOTE),]
 [REMOTE_PROGID(name8),]
 [REMOTE_SYSID(name4),]
 [REMOTE_TRANID(name4),]
 [SPECIFIED_AMODE(24|31|AMODE_ANY|AMODE_NOT_SPECIFIED|64),]
 [SPECIFIED_RMODE(24|RMODE_ANY|RMODE_NOT_SPECIFIED),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

AC_APPLICATION_NAME(block-descriptor)
Specifies the address and length of the name of the application associated with the program.
To inquire on private programs for applications deployed on platforms, you must specify the
AC_APPLICATION_NAME, AC_MAJOR_VERSION, AC_MINOR_VERSION, AC_MICRO_VERSION, and
AC_PLATFORM_NAME fields to provide a complete application context. For more information on
block-descriptors, see XPI syntax.

AC_MAJOR_VERSION(name4)
Specifies the application major version in binary.

AC_MICRO_VERSION(name4)
Specifies the application micro version in binary.

AC_MINOR_VERSION(name4)
Specifies the application minor version in binary.

AC_PLATFORM_NAME(block-descriptor)
Specifies the address and length of the name of the platform associated with the program. For more
information on block-descriptors, see XPI syntax.

ACCESS(CICS|NONE|READ_ONLY|USER)
Returns a value that indicates the type of storage into which the program has been loaded.
CICS

CICS-key.
NONE

The program has not been loaded.
READ_ONLY

Read-only.
USER

User-key.
APIST(CICSAPI|OPENAPI)

Returns a value that indicates the API attribute of the installed program definition.
CICSAPI

The program is restricted to use of only the CICS permitted application programming interfaces.
OPENAPI

The program is not restricted to use of only the CICS permitted application programming
interfaces. The program must be coded to threadsafe standards and defined with
CONCURRENCY(THREADSAFE).

AVAIL_STATUS(DISABLED|ENABLED)
Returns a value that indicates whether the program can be used (ENABLED) or not (DISABLED).

68 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html

CEDF_STATUS(CEDF|NOCEDF|NOT_APPLIC)
Returns the execution diagnostic facility (EDF) status of the program.
CEDF

When the program is running under the control of the CICS EDF, EDF diagnostic screens are
displayed.

NOCEDF
EDF diagnostic screens are not displayed.

NOT_APPLIC
Not applicable. This module is a mapset, a partitionset, or a remote program.

CONCURRENCY(QUASIRENT|THREADSAFE)
Returns a value that indicates the concurrency attribute of the installed program definition.
QUASIRENT

The program is defined as being quasi-reentrant, and can run only under the CICS QR TCB.
THREADSAFE

The program is defined as threadsafe, and can run under whichever TCB is in use by its user task
when the program is given control. This could be either an open TCB or the CICS QR TCB.

Note: For a Language Environment-conforming program, the concurrency as originally defined can be
overridden when the program is subsequently loaded.

DATA_LOCATION(ANY|BELOW|NOT_APPLIC)
Returns a value that indicates whether the program can access data located above the 16 MB line.
ANY

The program can handle 31-bit addresses, and can be passed data that is located above or below
the 16 MB line.

BELOW
The program can handle only 24-bit addresses, and must therefore be passed only data that is
located below the 16 MB line.

NOT_APPLIC
Not applicable. This module is a mapset, a partitionset, or a remote program.

DYNAMIC_STATUS(DYNAMIC|NOT_DYNAMIC)
Returns a value that indicates whether, if the program is the subject of a program-link request, the
request can be dynamically routed.
DYNAMIC

If the program is the subject of a program-link request, the CICS dynamic routing program is
invoked. Providing that a remote server region is not named explicitly on the SYSID option of the
EXEC CICS LINK command, the routing program can route the request to the region on which the
program is to run.

NOT_DYNAMIC
If the program is the subject of a program-link request, the dynamic routing program is not
invoked.

For a distributed program link (DPL) request, the server region on which the program is to run
must be specified explicitly on the REMOTESYSTEM option of the PROGRAM definition, or on the
SYSID option of the EXEC CICS LINK command. Otherwise, it defaults to the local region.

For information about the dynamic routing of DPL requests, see Dynamically routing DPL requests.

ENTRY_POINT(name4)
Returns the entry point address of the program entry point address, as returned by a loader domain
ACQUIRE_PROGRAM call.

EXECUTION_KEY(CICS|NOT_APPLIC|USER)
Returns the key in which CICS gives control to the program, which determines whether the program
can modify CICS-key storage.

Chapter 12. Program management XPI functions 69

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/connections/dfht1m4.html

CICS
CICS gives control to the program in CICS key. The program is loaded into a CICS dynamic storage
area (DSA) above or below the 16 MB line; that is, the CDSA or ECDSA, depending on its residency
mode (RMODE) attribute, as defined to the linkage-editor.

NOT_APPLIC
Not applicable. This module is a mapset, a partitionset, or a remote program.

USER
CICS gives control to the program in user key. The program is loaded into a user DSA above or
below the 16 MB line; that is, the UDSA or EUDSA, depending on its residency mode (RMODE)
attribute, as defined to the linkage-editor.

EXECUTION_SET(DPLSUBSET|FULLAPI|NOT_APPLIC)
Returns a value that indicates whether CICS links to and runs the program as if it were running in a
remote CICS region.
DPLSUBSET

CICS links to and runs the program with the API restrictions of a remote DPL program. The
program can use only a subset of the CICS API.

FULLAPI
CICS links to and runs the program without the API restrictions of a remote DPL program. The
program can use the full CICS API.

NOT_APPLIC
Not applicable. This module is a mapset, a partitionset, or a remote program. (The
EXECUTIONSET option of DEFINE PROGRAM applies only to local program definitions. Its purpose
is to test programs in a local CICS environment as if they were running as DPL programs.)

HOLD_STATUS(CICS_LIFE|NOT_APPLIC|TASK_LIFE)
Returns a value that indicates how long the program is to remain loaded.
CICS_LIFE

The program remains loaded until CICS is shut down.
NOT_APPLIC

Not applicable. The program is not loaded, or is remote.
TASK_LIFE

The program remains loaded for the lifetime of the task.
INSTALL_TYPE(AUTO|CATALOG|GROUPLIST|MANUAL|RDO|SYSAUTO)

Returns the method that was used to install the PROGRAM resource definition.
AUTO

Autoinstall.
CATALOG

The CICS global catalog, after a restart.
GROUPLIST

The CICS startup grouplist.
MANUAL

The program is a CICS internal module explicitly defined to the Program Manager by another CICS
component.

RDO
RDO commands.

SYSAUTO
System autoinstall (that is, autoinstalled by CICS without calling the autoinstall user program).
The program might be a CICS internal module or, for example, a first phase PLTPI program.

LANGUAGE_DEDUCED(ASSEMBLER|C370|COBOL|COBOL2|LE370| NOT_APPLIC|NOT_DEDUCED|
PLI)

Returns the language deduced by CICS for the program. COBOL is OS/VS COBOL, which cannot run
under this CICS version, and COBOL2 is either Enterprise COBOL or VS COBOL II.

70 CICS TS for z/OS: XPI Function Reference

LANGUAGE_DEFINED(ASSEMBLER|C370|COBOL|LE370| NOT_APPLIC|NOT_DEFINED|PLI)
Returns the programming language specified on the resource definition.

LIBRARY(name)
Returns the 8-character name of the LIBRARY resource from which this program was loaded. This
field is blank if the program has not been loaded, or if the LPASTATUS is LPA (indicating that the
program has been loaded from the LPA).

LIBRARYDSN(name44)
Returns the 44-character name of the data set from which the program was loaded. This field is blank
if the program has not been loaded, or if the LPASTATUS is LPA (indicating that the program has been
loaded from the LPA).

• If the program was loaded from an installed LIBRARY, the LIBRARY and LIBRARYDSN names will be
returned.

• If the program was loaded from a LIBRARY that has been disabled, the LIBRARY name will be
returned but the LIBRARYDSN will be blank.

• If the program was loaded from a LIBRARY that has been discarded, both LIBRARY and
LIBRARYDSN will be blank.

LOAD_POINT(name4)
Returns the load point address of the program, as returned by a loader domain ACQUIRE_PROGRAM
call.

LOAD_STATUS(LOADABLE|NOT_APPLIC|NOT_LOADABLE|NOT_LOADED)
Returns a value that indicates whether or not the program can be loaded.
LOADABLE

The program is loadable.
NOT_APPLIC

Not applicable. The program is remote.
NOT_LOADABLE

CICS has tried to load the program and failed; the program is not in the library.
NOT_LOADED

CICS has not yet tried to load the program.
LOCATION(CDSA|ECDSA|ELPA|ERDSA|ESDSA|LPA|NONE|RDSA|SDSA)

Returns a value that indicates where the most recently loaded copy of the program resides.
CDSA

The CICS dynamic storage area
ECDSA

The extended CICS dynamic storage area
ELPA

The extended link pack area
ERDSA

The extended read-only dynamic storage area
ESDSA

The extended shared dynamic storage area
LPA

The link pack area
NONE

The program has not been loaded.
RDSA

The read-only dynamic storage area
SDSA

The shared dynamic storage area

Chapter 12. Program management XPI functions 71

MODULE_TYPE(MAPSET|PARTITIONSET|PROGRAM)
Returns the type of program resource.

NEW_PROGRAM_TOKEN(name4)
Returns a token that can be used to identify the named program.
name4

The name of a location to receive a 4-byte token that identifies this program.

If PROGRAM_NAME is specified on the request, NEW_PROGRAM_TOKEN is set to a program token
that can be used on subsequent requests for the same program. If PROGRAM_TOKEN is specified on
the request, NEW_PROGRAM_TOKEN is set to the same value.

PROGRAM_ATTRIBUTE(RELOAD|RESIDENT|REUSABLE|TRANSIENT)
Returns the residency status of the program; that is, when its storage is released.
RELOAD

The program is not reusable, and therefore several copies might be loaded. A copy is removed
from storage when a RELEASE_PROGRAM call (for that copy) is issued.

RESIDENT
There is a single copy of the program that is not removed from storage unless deleted.
RESIDENT programs must be at least quasi-reentrant. Any program of PROGRAM_TYPE SHARED
is RESIDENT by default.

REUSABLE
Similar to RESIDENT, except that CICS can remove a REUSABLE program that is not in use from
storage, for storage optimization reasons.

TRANSIENT
Similar to RESIDENT, except that a TRANSIENT program is removed from storage as soon as its
user count drops to zero.

PROGRAM_LENGTH(name4)
Returns the length of the program, in bytes, expressed in binary.

PROGRAM_NAME(name8 | string | 'string')
Specifies the name of the program to be queried.
name8

The name of a location that contains an 8-byte program name.
string

A string of characters that name the program.
'string'

A string of characters in quotation marks. The string length is set to 8 by padding with blanks or
truncating.

PROGRAM_TOKEN(name4)
Specifies a token that identifies the program to be queried.
name4

The name of a location that contains a 4-byte token that was obtained from a previous
INQUIRE_PROGRAM call.

PROGRAM_TYPE(NOT_APPLIC|PRIVATE|SHARED|TYPE_ANY)
Returns a value that indicates where the next new copy of the program is to be loaded from.
NOT_APPLIC

Not applicable. The program is remote.
PRIVATE

The program is to be loaded from the DFHRPL or dynamic LIBRARY concatenation.. A PRIVATE
program need not be reentrant, and is given only limited protection against unauthorized
overwriting. The degree of protection depends on the type of dynamic storage area into which the
program is loaded (see the description of the PROGRAM_TYPE option of the DEFINE_PROGRAM
call).

72 CICS TS for z/OS: XPI Function Reference

SHARED
The program is to be loaded from the link pack area (LPA). SHARED programs must be reentrant,
and are protected.

The next time a NEWCOPY or PHASEIN is received, an LPA copy of the program is used if it is
available. If no LPA version is available, the program is loaded from DFHRPL or dynamic LIBRARY
concatenation.

TYPE_ANY
Either the copy in DFHRPL or a dynamic LIBRARY concatenation, or the LPA copy of the program
can be used, although preference is given to the LPA copy.

PROGRAM_USAGE(APPLICATION|NUCLEUS)
Returns a value that indicates whether the program is used as a CICS nucleus program, or as a user
application program.

PROGRAM_USE_COUNT(name4)
Returns the number of different users that have invoked the program.

PROGRAM_USER_COUNT(name4)
Returns the current number of users of the program.

REMOTE_DEFINITION(LOCAL|REMOTE)
Returns a value that indicates whether this program is a local or a remote resource. If it is a remote
resource, CICS treats requests to link to the program as distributed program link (DPL) requests, and
ships them to the remote region.

REMOTE_PROGID(name8)
Returns the name by which the program is known in the remote CICS region, if the program is a
remote resource. If REMOTESYSTEM was specified on the PROGRAM definition, and REMOTENAME
omitted, the remote name will be the same as the local name (that is, REMOTE_PROGID will default to
the value of PROGRAM_NAME).

REMOTE_SYSID(name4)
Returns the name of the remote CICS region that owns the program, if the program is a remote
resource.

REMOTE_TRANID(name4)
Returns the name of the transaction that the remote CICS attaches, and under which it runs the
program, if the program is a remote resource.

SHOW_PROGRAMS(PRIVATE|PRIVATE_AND_PUBLIC)
If application context fields are specified for INQUIRE_PROGRAM, SHOW_PROGRAMS defines the
scope of the search.
PRIVATE

Searches only for private programs.
PRIVATE_AND_PUBLIC

Searches for private programs first, then public programs.
SPECIFIED_AMODE(24|31|AMODE_ANY|AMODE_NOT_SPECIFIED|64)

Returns the addressing mode that was specified on a DEFINE_PROGRAM call.
SPECIFIED_RMODE(24|RMODE_ANY|RMODE_NOT_SPECIFIED)

Returns the residency mode (that is, whether the program should be loaded above or below the 16
MB line) that was specified on a DEFINE_PROGRAM call.

RESPONSE and REASON values for INQUIRE_PROGRAM
RESPONSE REASON

OK None

EXCEPTION PROGRAM_NOT_DEFINED_TO_LD

PROGRAM_NOT_DEFINED_TO_PG

Chapter 12. Program management XPI functions 73

RESPONSE REASON

APP_CONTEXT_NOT_FOUND

DISASTER ABEND

LOCK_ERROR

INVALID INVALID_PROGRAM_TOKEN

KERNERROR None

PURGED None

The INQUIRE_CURRENT_PROGRAM call
INQUIRE_CURRENT_PROGRAM returns information about the attributes of the program that is currently
running. If this call is issued from within a global or task-related user exit, it returns the attributes of the
global or task-related user exit program itself.

INQUIRE_CURRENT_PROGRAM

DFHPGISX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_CURRENT_PROGRAM),]
 [IGNORE_EXITS(YES|NO),]
 [OUT,
 [AVAIL_STATUS(DISABLED|ENABLED),]
 [CEDF_STATUS(CEDF|NOCEDF|NOT_APPLIC),]
 [CURRENT_AMODE(24|31|64),]
 [CURRENT_CEDF_STATUS(CEDF|NOCEDF),]
 [CURRENT_ENTRY_POINT(name4),]
 [CURRENT_ENVIRONMENT(EXEC|GLUE|PLT|SYSTEM|TRUE|URM),]
 [CURRENT_EXECUTION_SET(DPLSUBSET|FULLAPI),]
 [CURRENT_LOAD_POINT(name4),]
 [CURRENT_PROGRAM_LENGTH(name4),]
 [CURRENT_PROGRAM_NAME(name8),]
 [DATA_LOCATION(ANY|BELOW|NOT_APPLIC),]
 [DYNAMIC_STATUS(DYNAMIC|NOT_DYNAMIC),]
 [EXECUTION_KEY(CICS|NOT_APPLIC|USER),]
 [EXECUTION_SET(DPLSUBSET|FULLAPI|NOT_APPLIC),]
 [HOLD_STATUS(CICS_LIFE|NOT_APPLIC|TASK_LIFE),]
 [IGNORE_EXITS(YES|NO),]
 [INSTALL_TYPE(AUTO|CATALOG|GROUPLIST|MANUAL|RDO|SYSAUTO),]
 [INVOKING_ENVIRONMENT (EXEC|GLUE|PLT|SYSTEM|TRUE|URM),]
 [INVOKING_PROGRAM_NAME(name8),]
 [LANGUAGE_DEDUCED(ASSEMBLER|C370|COBOL|
 COBOL2|LE370|NOT_APPLIC|NOT_DEDUCED|PLI),]
 [LANGUAGE_DEFINED(ASSEMBLER|C370|COBOL|
 LE370|NOT_APPLIC|NOT_DEFINED|PLI),]
 [LIBRARY(name8),]
 [LIBRARYDSN(name44),]
 [LOAD_STATUS(LOADABLE|NOT_APPLIC|NOT_LOADABLE|NOT_LOADED),]
 [MODULE_TYPE(MAPSET|PARTITIONSET|PROGRAM),]
 [NEW_PROGRAM_TOKEN(name4),]
 [REMOTE_DEFINITION(LOCAL|REMOTE),]
 [REMOTE_PROGID(name8),]
 [REMOTE_SYSID(name4),]
 [REMOTE_TRANID(name4),]
 [RETURN_PROGRAM_NAME(name8),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

Note: The options not described in the following list are identical to the equivalent options of the
INQUIRE_PROGRAM call. See “The INQUIRE_PROGRAM call” on page 67.

CURRENT_AMODE(24|31|64)
Returns the addressing mode that the running program is currently using.

74 CICS TS for z/OS: XPI Function Reference

CURRENT_CEDF_STATUS(CEDF|NOCEDF)
Returns the EDF status of the current instance of the program. The value returned is the same as
for CEDF_STATUS, which is the EDF status specified on the program definition. See the CEDF_STATUS
option of INQUIRE_PROGRAM.

CURRENT_ENTRY_POINT(name4)
Returns the entry point address of the current program.

CURRENT_ENVIRONMENT(EXEC|GLUE|PLT|SYSTEM|TRUE|URM)
Returns the environment in which the current program is running; that is, the type of program it is.
EXEC

User application program.
GLUE

Global user exit program.
PLT

Program list table program.
SYSTEM

CICS system code.
TRUE

Task-related user exit program.
URM

User-replaceable program.
CURRENT_EXECUTION_SET(DPLSUBSET|FULLAPI)

Returns the API execution set used by the current instance of the program. The value returned is
the same as for EXECUTION_SET (which is the API execution set specified on the program definition)
unless this is the first program in a transaction, when the value can be different. This is because
the DPLSUBSET attribute applies only to linked-to programs. It is ignored for the first program in
a transaction, because this cannot be the target of a DPL call. Therefore, for the first program
in a transaction, if EXECUTION_SET returns DPLSUBSET, CURRENT_EXECUTION_SET nevertheless
returns FULLAPI. See the EXECUTION_SET option of INQUIRE_PROGRAM.

CURRENT_LOAD_POINT(name4)
Returns the load point address of the current program.

CURRENT_PROGRAM_LENGTH(name4)
Returns the length of the current program, in bytes, expressed in binary.

CURRENT_PROGRAM_NAME(name8)
Returns the name of the program that is currently running.

IGNORE_EXITS(YES|NO)
Specifies whether global user exit programs and task-related user exit programs are ignored
when returning information about the program that invoked the current program, and to
which control will be returned. Your setting for this option affects the values returned by the
INVOKING_ENVIRONMENT, INVOKING_PROGRAM_NAME, and RETURN_PROGRAM_NAME options.
If YES is specified (the default), global user exit programs and task-related user exit programs are
ignored for these options. If NO is specified, where a global user exit program or task-related user exit
program is involved, the options return information about the exit program.

INVOKING_ENVIRONMENT (EXEC|GLUE|PLT|SYSTEM|TRUE|URM)
Returns the environment from which the current program was invoked; that is, the environment that
corresponds to the program named in INVOKING_PROGRAM_NAME. The values are as described for
CURRENT_ENVIRONMENT.

INVOKING_PROGRAM_NAME(name8)
Returns the name of the most recent program to invoke the current program. If IGNORE_EXITS(NO)
is specified, this might be a global user exit program or task-related user exit program, if one was
involved. If IGNORE_EXITS(YES) is specified, which is the default, this is the most recent program
that was not a global user exit program or task-related user exit program.

Chapter 12. Program management XPI functions 75

LIBRARY(name)
Returns the 8-character name of the LIBRARY resource from which this program was loaded. This
field is blank if the program has not been loaded, or if the LPASTATUS is LPA (indicating that the
program has been loaded from the LPA). If the program was loaded from an installed LIBRARY, the
LIBRARY and LIBRARYDSN names are returned.

LIBRARYDSN(data-area)
Returns the 44-character name of the data set from which the program was loaded. This fields is
blank if the program has not been loaded, or if the LPASTATUS is LPA (indicating that the program has
been loaded from the LPA). If the program was loaded from an installed LIBRARY, the LIBRARY and
LIBRARYDSN names are returned.

RETURN_PROGRAM_NAME(name8)
Returns the name of the program to which control will be returned. If IGNORE_EXITS(NO) is specified,
this might be a global user exit program or task-related user exit program. If IGNORE_EXITS(YES)
is specified, which is the default, this is the program to which control will be returned after any
intermediate global user exit programs or task-related user exit programs have completed.

RESPONSE and REASON values for INQUIRE_CURRENT_PROGRAM
RESPONSE REASON

OK None

EXCEPTION NO_CURRENT_PROGRAM

DISASTER LOCK_ERROR

ABEND

INVALID None

KERNERROR None

PURGED None

The SET_PROGRAM call
Use SET_PROGRAM to set selected attributes in the definition of a specified program.

SET_PROGRAM

DFHPGISX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(SET_PROGRAM),
 {PROGRAM_NAME(name8 | string | 'string')|
 PROGRAM_TOKEN(name4)},]
 [AVAIL_STATUS(DISABLED|ENABLED),]
 [CEDF_STATUS(CEDF|NOCEDF),]
 [EXECUTION_KEY(CICS|USER),]
 [EXECUTION_SET(DPLSUBSET|FULLAPI),]
 [PROGRAM_ATTRIBUTE(RELOAD|RESIDENT|REUSABLE|TRANSIENT),]
 [PROGRAM_TYPE(PRIVATE|SHARED|TYPE_ANY),]
 [PROGRAM_USAGE(APPLICATION|NUCLEUS),]
 [REQUIRED_AMODE(24|31|AMODE_ANY|64),]
 [REQUIRED_RMODE(24|RMODE_ANY),]]
 [OUT,
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

AVAIL_STATUS(DISABLED|ENABLED)
Specifies whether the program can be used (ENABLED) or not (DISABLED).

76 CICS TS for z/OS: XPI Function Reference

CEDF_STATUS(CEDF|NOCEDF)
Specifies whether, when the program is running under the control of the CICS execution diagnostic
facility (EDF), EDF diagnostic screens are displayed.

EXECUTION_KEY(CICS|USER)
Specifies the key in which CICS is to give control to the program. The key determines whether the
program can modify CICS-key storage.
CICS

CICS gives control to the program in CICS key. The program is loaded into a CICS dynamic storage
area (DSA) above or below the 16 MB line; that is, the CDSA or ECDSA, depending on its residency
mode (RMODE) attribute, as defined to the linkage-editor.

USER
CICS gives control to the program in user key. The program is loaded into a user DSA above or
below the 16 MB line; that is, the UDSA or EUDSA, depending on its residency mode (RMODE)
attribute, as defined to the linkage-editor.

Note: If the program has been link-edited as reentrant with AMODE(31),RMODE(ANY), the
EXECUTION_KEY option is ignored, and it is loaded into the extended read-only DSA (ERDSA). For
details of the type of storage allocated for the ERDSA, see RENTPGM system initialization parameter.

EXECUTION_SET(DPLSUBSET|FULLAPI)
Specifies whether CICS is to link to and run the program as if it were running in a remote CICS region.

Note: EXECUTION_SET applies only to local program definitions. Its purpose is to test programs in a
local CICS environment as if they were running as DPL programs.
DPLSUBSET

CICS links to and runs the program with the API restrictions of a remote DPL program. The
program can use only a subset of the CICS API.

FULLAPI
CICS links to and runs the program without the API restrictions of a remote DPL program. The
program can use the full CICS API.

PROGRAM_ATTRIBUTE(RELOAD|RESIDENT|REUSABLE|TRANSIENT)
Specifies the residency status of the program; that is, when its storage is to be released.
RELOAD

The program is not reusable, and therefore several copies might be loaded. A copy is removed
from storage when a RELEASE_PROGRAM call (for that copy) is issued.

RESIDENT
At any one time there will be no more than a single copy of the program in storage, and this
will not be removed unless deleted. RESIDENT programs must be at least quasi-reentrant. Any
program of PROGRAM_TYPE SHARED is RESIDENT by default.

REUSABLE
Similar to RESIDENT, except that CICS can remove a REUSABLE program that is not in use from
storage, for storage optimization reasons.

TRANSIENT
Similar to RESIDENT, except that a TRANSIENT program is removed from storage as soon as its
user count drops to zero.

PROGRAM_NAME(name8 | string | 'string')
Specifies the name of the program whose attributes are to be changed.
name8

The name of a location that contains an 8-byte program name.
string

A string of characters that name the program.
'string'

A string of characters in quotation marks. The string length is set to 8 by padding with blanks or
truncating.

Chapter 12. Program management XPI functions 77

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_rentpgm.html

PROGRAM_TOKEN(name4)
Specifies a token that identifies the program.
name4

The name of a location that contains a 4-byte token that was obtained from a
previous INQUIRE_PROGRAM, INQUIRE_CURRENT_PROGRAM, START_BROWSE_PROGRAM, or
GET_NEXT_PROGRAM call.

PROGRAM_TYPE(PRIVATE|SHARED|TYPE_ANY)
Specifies where the program is to be loaded from.
PRIVATE

The program is in the DFHRPL or dynamic LIBRARY concatenation. A PRIVATE program need not
be reentrant, and is given only limited protection against unauthorized overwriting. The degree of
protection depends on the type of dynamic storage area into which the program is loaded (see the
description of the PROGRAM_TYPE option of the DEFINE_PROGRAM call).

SHARED
The program is located in the link pack area (LPA), is reentrant, and is protected.

TYPE_ANY
Either the copy in the DFHRPL or a dynamic LIBRARY concatenation, or the LPA copy of the
program can be used, though preference is given to the LPA copy.

PROGRAM_USAGE(APPLICATION|NUCLEUS)
Specifies whether the program is used as a CICS nucleus program, or as a user application program.

REQUIRED_AMODE(24|31|AMODE_ANY|64)
Specifies the addressing mode of the program. If, during subsequent processing, no copy of the
program that meets the defined addressing requirement can be found, an exception occurs.

Note:

1. AMODE_ANY and 31 have identical meanings for this function.
2. You cannot use this option to override the link-edited addressing mode of the program.

REQUIRED_RMODE(24|AMODE_ANY)
Specifies the residency mode of the program (that is, whether it is to be loaded above or below
the 16MB line). If, during subsequent processing, no copy of the program that meets the defined
residency requirement can be found, an exception occurs.

Note: You cannot use this option to override the link-edited residency mode of the program.

RESPONSE and REASON values for SET_PROGRAM
RESPONSE REASON

OK None

EXCEPTION CEDF_STATUS_NOT_FOR_MAPSET

CEDF_STATUS_NOT_FOR_PTNSET

CEDF_STATUS_NOT_FOR_REMOTE

EXEC_KEY_NOT_FOR_MAPSET

EXEC_KEY_NOT_FOR_PTNSET

EXEC_KEY_NOT_FOR_REMOTE

EXEC_SET_NOT_FOR_MAPSET

EXEC_SET_NOT_FOR_PTNSET

EXEC_SET_NOT_FOR_REMOTE

INCOMPATIBLE_BUNDLE_SET

78 CICS TS for z/OS: XPI Function Reference

RESPONSE REASON

PROGRAM_NOT_DEFINED_TO_LD

PROGRAM_NOT_DEFINED_TO_PG

DISASTER ABEND

CATALOG_ERROR

CATALOG_NOT_OPERATIONAL

LOCK_ERROR

INVALID INVALID_MODE_COMBINATION

INVALID_PROGRAM_NAME

INVALID_PROGRAM_TOKEN

INVALID_TYPE_ATTRIB_COMBIN

KERNERROR None

PURGED None

The START_BROWSE_PROGRAM call
START_BROWSE_PROGRAM returns a token that enables you to begin browsing through program
definitions, optionally starting at the definition of a specified program.

START_BROWSE_PROGRAM

DFHPGISX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(START_BROWSE_PROGRAM),
 [PROGRAM_NAME(name8 | string | 'string'),]
 [OUT,
 BROWSE_TOKEN(name4)
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

BROWSE_TOKEN(name4)
returns a token to be used on a GET_NEXT_PROGRAM call, to initiate a sequential browse of program
definitions.
name4

The name of a location to receive a 4-byte token.
PROGRAM_NAME(name8 | string | 'string')

specifies the name of the program whose definition you want to look at first. The browsing sequence
is alphabetical. If there is no program with the specified name, CICS returns a token for the next
definition in the alphabetic sequence. If you do not specify a program, CICS returns a token for the
first definition.
name8

The name of a location containing an 8-byte program name.
string

A string of characters naming the program.
'string'

A string of characters in quotation marks. The string length is set to 8 by padding with blanks or
truncating.

Chapter 12. Program management XPI functions 79

RESPONSE and REASON values for START_BROWSE_PROGRAM
RESPONSE REASON

OK None

EXCEPTION

DISASTER ABEND

INVALID_DIRECTORY

LOCK_ERROR

INVALID None

KERNERROR None

PURGED None

The GET_NEXT_PROGRAM call
Use GET_NEXT_PROGRAM to inquire on the next program definition during a browse sequence that
is initiated by START_BROWSE_PROGRAM. The browsing sequence is alphabetical. The end of the
alphabetical list of definitions is indicated by an END_LIST exception response.

GET_NEXT_PROGRAM

DFHPGISX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(GET_NEXT_PROGRAM),
 BROWSE_TOKEN(name4),]
 [OUT,
 PROGRAM_NAME(name8),
 [ACCESS(CICS|NONE|READ_ONLY|USER),]
 [AVAIL_STATUS(DISABLED|ENABLED),]
 [CEDF_STATUS(CEDF|NOCEDF|NOT_APPLIC),]
 [DATA_LOCATION(ANY|BELOW|NOT_APPLIC),]
 [ENTRY_POINT(name4),]
 [EXECUTION_KEY(CICS|NOT_APPLIC|USER),]
 [EXECUTION_SET(DPLSUBSET|FULLAPI|NOT_APPLIC),]
 [HOLD_STATUS(CICS_LIFE|NOT_APPLIC|TASK_LIFE),]
 [INSTALL_TYPE(AUTO|CATALOG|GROUPLIST|MANUAL|RDO|SYSAUTO),]
 [LANGUAGE_DEDUCED(ASSEMBLER|C370|COBOL|
 COBOL2|LE370|NOT_APPLIC|NOT_DEDUCED|PLI),]
 [LANGUAGE_DEFINED(ASSEMBLER|C370|COBOL|
 LE370|NOT_APPLIC|NOT_DEFINED|PLI),]
 [LOAD_POINT(name4),]
 [LOAD_STATUS(LOADABLE|NOT_APPLIC|NOT_LOADABLE|NOT_LOADED),]
 [LOCATION(CDSA|ECDSA|ELPA|ERDSA|ESDSA|LPA|NONE|RDSA|SDSA),]
 [MODULE_TYPE(MAPSET|PARTITIONSET|PROGRAM),]
 [NEW_PROGRAM_TOKEN(name4),]
 [PROGRAM_ATTRIBUTE(RELOAD|RESIDENT|REUSABLE|TRANSIENT),]
 [PROGRAM_LENGTH(name4),]
 [PROGRAM_TYPE(NOT_APPLIC|PRIVATE|SHARED|TYPE_ANY),]
 [PROGRAM_USAGE(APPLICATION|NUCLEUS),]
 [PROGRAM_USE_COUNT(name4),]
 [PROGRAM_USER_COUNT(name4),]
 [REMOTE_DEFINITION(LOCAL|REMOTE),]
 [REMOTE_PROGID(name8),]
 [REMOTE_SYSID(name4),]
 [REMOTE_TRANID(name4),]
 [SPECIFIED_AMODE(24|31|AMODE_ANY|AMODE_NOT_SPECIFIED|64),]
 [SPECIFIED_RMODE(24|RMODE_ANY|RMODE_NOT_SPECIFIED),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

Note: The options not described in the following list are identical to the equivalent options of the
INQUIRE_PROGRAM call. See “The INQUIRE_PROGRAM call” on page 67.

80 CICS TS for z/OS: XPI Function Reference

BROWSE_TOKEN(name4)
Specifies a token that identifies the definition to be browsed. This can be either the token
returned in the NEW_PROGRAM_TOKEN field of the last GET_NEXT_PROGRAM call, or that in the
BROWSE_TOKEN field of the START_BROWSE_PROGRAM call (this token is updated after every
GET_PROGRAM call).
name4

The name of a location that contains a 4-byte token.
NEW_PROGRAM_TOKEN(name4)

Returns a token that identifies the next definition in the browse sequence. You can use it in
the BROWSE_TOKEN field of your next GET_NEXT_PROGRAM call (or END_BROWSE_PROGRAM
call, if you want to end the sequence). You can also use it in the PROGRAM_TOKEN field of
INQUIRE_PROGRAM and SET_PROGRAM calls.
name4

The name of a location to receive a 4-byte token that identifies the next program definition.

RESPONSE and REASON values for GET_NEXT_PROGRAM
RESPONSE REASON

OK None

EXCEPTION END_LIST

INVALID_BROWSE_TOKEN

PROGRAM_NOT_DEFINED_TO_LD

DISASTER ABEND

LOCK_ERROR

INVALID None

KERNERROR None

PURGED None

The END_BROWSE_PROGRAM call
END_BROWSE_PROGRAM allows you to end a browse of program definitions initiated by
START_BROWSE_PROGRAM.

END_BROWSE_PROGRAM

DFHPGISX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(END_BROWSE_PROGRAM),
 BROWSE_TOKEN(name4),]
 [OUT,
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

BROWSE_TOKEN(name4)
specifies either the token returned in the NEW_PROGRAM_TOKEN field of the last
GET_NEXT_PROGRAM call, or that in the BROWSE_TOKEN field of the START_BROWSE_PROGRAM
call (this token is updated after every GET_NEXT_PROGRAM call).

Chapter 12. Program management XPI functions 81

RESPONSE and REASON values for END_BROWSE_PROGRAM
RESPONSE REASON

OK None

EXCEPTION INVALID_BROWSE_TOKEN

DISASTER ABEND

LOCK_ERROR

INVALID None

KERNERROR None

PURGED None

The INQUIRE_AUTOINSTALL call
INQUIRE_AUTOINSTALL returns information about the current settings of the autoinstall function for
programs, mapsets, and partitionsets.

INQUIRE_AUTOINSTALL

DFHPGAQX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_AUTOINSTALL),]
 [OUT,
 [AUTOINSTALL_CATALOG (ALL|MODIFY|NONE),]
 [AUTOINSTALL_EXIT_NAME(name8),]
 [AUTOINSTALL_STATE (ACTIVE|INACTIVE),]
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

AUTOINSTALL_CATALOG(ALL|MODIFY|NONE)
returns the catalog status for autoinstalled program definitions.
ALL

All autoinstalled program, map, and partitionset definitions are cataloged.
MODIFY

Autoinstalled program, map, and partitionset definitions are recorded on the CICS global catalog
only if they are modified by a SET PROGRAM command after being autoinstalled.

NONE
No autoinstalled program, map, or partitionset definitions are cataloged.

AUTOINSTALL_EXIT_NAME(name8)
returns the name of the user-replaceable autoinstall control program for programs, mapsets, and
partitionsets.

AUTOINSTALL_STATE(ACTIVE|INACTIVE)
returns the status of the program autoinstall function.
ACTIVE

Autoinstall is enabled for programs, mapsets, and partitionsets.
INACTIVE

Autoinstall is not enabled for programs, mapsets, and partitionsets.

82 CICS TS for z/OS: XPI Function Reference

RESPONSE and REASON values for INQUIRE_AUTOINSTALL
RESPONSE REASON

OK None

EXCEPTION None

DISASTER None

INVALID INVALID_FUNCTION

KERNERROR None

PURGED None

The SET_AUTOINSTALL call
SET_AUTOINSTALL enables you to change the settings of the autoinstall function for programs, mapsets,
and partitionsets.

SET_AUTOINSTALL

DFHPGAQX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(SET_AUTOINSTALL),
 [AUTOINSTALL_CATALOG (ALL|MODIFY|NONE),]
 [AUTOINSTALL_EXIT_NAME(name8),]
 [AUTOINSTALL_STATE (ACTIVE|INACTIVE),]
 [LANGUAGES_AVAILABLE(NO|YES),]]
 [OUT,
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

AUTOINSTALL_CATALOG(ALL|MODIFY|NONE)
specifies the catalog status for autoinstalled program definitions.
ALL

All autoinstalled program, map, and partitionset definitions are to be cataloged.
MODIFY

Autoinstalled program, map, and partitionset definitions are to be recorded on the CICS global
catalog only if they are modified by a SET PROGRAM command after being autoinstalled.

NONE
No autoinstalled program, map, or partitionset definitions are to be cataloged.

AUTOINSTALL_EXIT_NAME(name8)
specifies the name of the user-replaceable autoinstall control program for programs, mapsets, and
partitionsets.

AUTOINSTALL_STATE(ACTIVE|INACTIVE)
specifies the status of the program autoinstall function.
ACTIVE

Enable autoinstall for programs, mapsets, and partitionsets.
INACTIVE

Disable autoinstall for programs, mapsets, and partitionsets.
LANGUAGES_AVAILABLE(NO|YES)

specifies whether the autoinstall control program can be called. It can only be called after language
establishment.
NO

The control program cannot be called.

Chapter 12. Program management XPI functions 83

YES
The control program can be called.

RESPONSE and REASON values for SET_AUTOINSTALL
RESPONSE REASON

OK None

EXCEPTION None

DISASTER None

INVALID INVALID_FUNCTION

KERNERROR None

PURGED None

The BIND_CHANNEL call
BIND_CHANNEL binds a channel to the task. This call must be issued before the first program in a task.

BIND_CHANNEL

DFHPGCHX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(BIND_CHANNEL),
 CHANNEL_TOKEN(name4)]
 [OUT,
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

CHANNEL_TOKEN(name4)
Specifies the name of a location that contains a 4-byte token representing the channel that is to be
bound to the task.

RESPONSE and REASON values for BIND_CHANNEL
RESPONSE REASON

OK None

EXCEPTION INVALID_TOKEN
 CHANNEL_ALREADY_SET
 CHANNEL_ON_RESTART

DISASTER None

INVALID INVALID_LINK_LEVEL

KERNERROR None

PURGED None

84 CICS TS for z/OS: XPI Function Reference

Chapter 13. State data access XPI functions
The XPI provides state data access functions that you can use to inquire on, and set, certain system
data in the AP domain. These are the DFHAPIQX calls INQ_APPLICATION_DATA, INQUIRE_SYSTEM, and
SET_SYSTEM.

The INQ_APPLICATION_DATA call
The INQ_APPLICATION_DATA call enables you to inquire on application system data in the AP domain.

INQ_APPLICATION_DATA

 DFHAPIQX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQ_APPLICATION_DATA),]
 [OUT,
 [ACEE(name4 | (Rn) | *),] [DSA(name4 | (Rn) | *),]
 [EIB(name4 | (Rn) | *),]
 [RSA(name4 | (Rn) | *),]
 [SYSEIB(name4 | (Rn) | *),]
 [TCTUA(name4 | (Rn) | *),]
 [TCTUASIZE(name4 | *),]
 [TWA(name4 | (Rn) | *),]
 [TWASIZE(name4 | (Rn) | *),]
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

ACEE(name4 | (Rn | *)
returns the address of the access control environment element (ACEE).
name4

The name of a fullword area that is to receive the address of the ACEE.
(Rn)

A register that is to receive the ACEE address.
*

The parameter list itself, in name APIQ_ACEE, is used to hold the address.
DSA(name4 | (Rn | *)

returns the head of the chain of dynamic storage used by application programs to make them
reentrant (for example, for assembler programs, the DFHEISTG storage).
name4

The name of a 4-byte area that is to receive the address of the head of the dynamic storage chain.
(Rn)

A register that is to receive the DSA address.
*

The parameter list itself, in name APIQ_DSA, is used to hold the address.
EIB(name4 | (Rn) | *)

returns the address of the EXEC interface block (EIB) for the current task.
name4

The name of a fullword area that is to receive the address of the EIB.
(Rn)

A register that is to receive the address of the EIB.
*

The parameter list itself, in name APIQ_EIB, is used to hold the address.

© Copyright IBM Corp. 1974, 2023 85

RSA(name4 | (Rn | *)
returns the address of the register save area for the current task.
name4

The name of a fullword area that is to receive the address of the register save area.
(Rn)

A register that is to receive the address of the register save area.
*

The parameter list itself, name APIQ_RSA, is used to hold the address.
SYSEIB(name4 | (Rn) | *)

returns the address of the system EXEC interface block of the current task.
name4

The name of a fullword area that is to receive the address of the system EXEC interface block.
(Rn)

A register that is to receive the address of the system EXEC interface block.
*

The parameter list itself, name APIQ_SYSEIB, is used to hold the address.
TCTUA(name4 | (Rn) | *)

returns the address of the terminal control table user area (TCTUA) for the current task.
name4

The name of a fullword area that is to receive the address of the TCTUA.
(Rn)

A register that is to receive the address of the TCTUA.
*

The parameter list itself, name APIQ_TCTUA, is used to hold the address.
TCTUASIZE(name4 | (Rn) | *)

returns the length in bytes of the TCTUA for the current task.
name4

The name of a 4-byte area that is to receive the length in bytes of the TCTUA.
(Rn)

A register that is to receive the length of the TCTUA.
*

The parameter list itself, name APIQ_TCTUASIZE, is used to hold the length of the TCTUA.
TWA(name4 | (Rn) | *)

returns the address of the transaction work area.
name4

The name of a fullword area that is to receive the address of the TWA.
(Rn)

A register that is to receive the address of the TWA.
*

The parameter list itself, name APIQ_TWA, is used to hold the address of the TWA.
TWASIZE(name4 | (Rn) | *)

returns the length, in bytes, of the transaction work area (TWA).
name4

The name of a 4-byte area that is to receive the length, in bytes, of the TWA.
(Rn)

A register that is to receive the length of the TWA.
*

The parameter list itself, name APIQ_TWASIZE, is used to hold the length of the TWA.

86 CICS TS for z/OS: XPI Function Reference

RESPONSE and REASON values for INQ_APPLICATION_DATA
RESPONSE REASON

OK None

EXCEPTION DPL_PROGRAM

NO_TRANSACTION_ENVIRONMENT

TRANSACTION_DOMAIN_ERROR

DISASTER ABEND

LOOP

INQ_FAILED

INVALID INVALID_FUNCTION

KERNERROR None

PURGED None

The INQUIRE_SYSTEM call
The INQUIRE_SYSTEM call gives you access to CICS system data in the AP domain.

INQUIRE_SYSTEM

 DFHSAIQX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_SYSTEM),
 [GMMTEXT(name4),]]
 [OUT,
 [CICSREL(name4 | *),]
 [CICSSTATUS(ACTIVE | FINALQUIESCE |
 FIRSTQUIESCE| INITIALIZING),]
 [CICSSYS(name1 | *),]
 [CICTSLEVEL(name6 | *),]
 [COLDSTATUS(COLD | INITIAL | NOTCOLD),]
 [CWA(name4 | (Rn) | *),]
 [CWALENGTH(name2 | *),]
 [DATE(name4|*),]
 [DTRPRGRM(name8 | *),]
 [GMMLENGTH(name2 | *),]
 [GMMTRANID(name4 | *),]
 [INITSTATUS(FIRSTINIT | INITCOMPLETE | SECONDINIT |
 THIRDINIT),]
 [JOBNAME(name8 | *),]
 [MESSAGECASE(UPPER | MIXED),]
 [MVSSMFID(name4 | *),]
 [MVSSYSNAME(name8 | *),]
 [OPREL(name2 | *),]
 [OPSYS(name1 | *),]
 [OSLEVEL(name4 | *),]
 [PLTPI(name2 | *),]
 [SDTRAN(name4 | *),]
 [SECURITYMGR(EXTSECURITY | NOSECURITY),]
 [SHUTSTATUS(CONTROLSHUT | NOTSHUTDOWN | SHUTDOWN),]
 [STARTUP(COLDSTART | EMERGENCY | WARMSTART),]
 [STARTUPDATE(name4| *),]
 [TERMURM(name8 | *),]
 [TIMEOFDAY(name4| *),]
 [XRFSTATUS(NOXRF | PRIMARY | TAKEOVER),]
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

CICSREL(name4 | *)
returns the level number of the CICS code under which the CICS region is running.

Chapter 13. State data access XPI functions 87

name4
The name of a 4-byte location that is to receive the level number characters as hexadecimal
values.

CICSSTATUS(ACTIVE|FINALQUIESE|FIRSTQUIESCE|INITIALIZING)
returns the status of the CICS region.
ACTIVE

The CICS region is active and ready to receive work.
FINALQUIESCE

The CICS region is shutting down, and is in the final stage of quiescing.
FIRSTQUIESCE

The CICS region is shutting down, and is in the first stage of quiescing.
INITIALIZING

The CICS region is initializing.
CICSSYS(name1 | *)

returns the operating system for which the running CICS has been built.
name1

The name of a 1-byte area that is to receive the hexadecimal character of the operating system. A
value of "X" represents MVS.

CICSTSLEVEL(name6 | *)
returns the release of CICS Transaction Server under which CICS is running.
name6

The name of a 6-byte area that is to receive the release characters as hexadecimal values.
COLDSTATUS(COLD|INITIAL|NOTCOLD)

returns a CVDA value that indicates whether CICS performed a cold start or an initial start.

The CVDA values are as follows:
COLD

CICS performed a cold start. Log information about local resources was erased, but information
about the outcome of local units of work, needed to allow remote systems or RMI-connected
resource managers to resynchronize their resources, was preserved.

INITIAL
CICS performed an initial start. All log information about both local and remote resources was
erased.

NOTCOLD
CICS performed neither a cold nor an initial start.

CWA(name4 | (Rn) | *)
returns the address of the common work area.
name4

The name of a 4-byte field that is to receive the address of the CWA.
(Rn)

A register to receive the address of the CWA.
CWALENGTH(name2 | *)

returns the length in bytes of the CWA.
name2

The name of a 2-byte field that is to receive the length of the CWA.
DATE(name4 | *)

returns today's date in packed-decimal form—4-bytes 0Cyyddds, where:

• Cis a century indicator. (0=1900, 1=2000, 2=2100, and so on.)
• yy=years.

88 CICS TS for z/OS: XPI Function Reference

• ddd=days.
• s is the sign.

name4
The name of a 4-byte location that is to receive the date.

DTRPRGRM(name8 | *)
returns the name of the dynamic routing program.
name8

The name of an 8-byte area that is to receive the name of the dynamic routing program.
GMMLENGTH(name2 | *)

returns the length in bytes of the "good morning" message.
name2

The name of a 2-byte area that is to receive the length of the good morning message.
GMMTEXT(name4)

specifies the address of an area of storage, at least 244 bytes in length and owned by the caller, into
which CICS is to return the good morning message.
name4

The address of an area of storage that is to receive the good morning message.

Note: The GMMTEXT parameter must follow the IN statement as an input parameter.

GMMTRANID(name4 | *)
returns the transaction identifier of the CICS good morning transaction.
name4

The name of a 4-byte area that is to receive the CICS good morning transaction id.
INITSTATUS(FIRSTINIT|INITCOMPLETE|SECONDINIT|THIRDINIT)

returns a value indicating the stage reached during CICS initialization.
FIRSTINIT

The first stage of CICS initialization.
INITCOMPLETE

CICS initialization is complete.
SECONDINIT

The second stage of CICS initialization. This stage corresponds to the period when first phase
PLTPI programs are run; that is those programs in a PLT that are defined before the DFHDELIM
statement.

THIRDINIT
The third stage of CICS initialization. This stage corresponds to the period when second phase
PLTPI programs are run; that is those programs in a PLT that are defined after the DFHDELIM
statement.

JOBNAME(name8 | *)
returns the 8-character MVS job name under which the CICS region is running.
name8

The name of a 8-byte area that is to receive the MVS job name.
MESSAGECASE(UPPER|MIXED)

returns a CVDA value that shows how the message domains display mixed case messages, as set by
the MSGCASE system initialization parameter. The CVDA values are as follows:
MIXED

All messages that are displayed by the CICS message domain or by the CICSPlex® SM message
domain remain in mixed case.

UPPER
The message domain displays all mixed case messages in uppercase only.

Chapter 13. State data access XPI functions 89

MVSSMFID(name4 | *)
returns a 4-byte value that indicates the MVS system identification. This field is copied from the
SMCASID field of the SMCA MVS control block.
name4

The name of a 4-byte area to receive the MVS system identification.
MVSSYSNAME(name8 | *)

returns an 8-byte value that indicates the MVS system name. This field is copied from the CVTSNAME
field of the MVS CVT control block.
name8

The name of an 8-byte area to receive the MVS system name.
OPREL(name2 | *)

returns the last 2 digits of the level number of the MVS element of z/OS, under which the CICS region
is running.
name2

The name of a 2-byte area that is to receive, as a half-word binary value, the level number of the
MVS element of z/OS. For example, z/OS Release 3 MVS is represented by 03.

Note: This field is supported for compatibility purposes only. The information is derived from the last
two numbers held in the MVS CVTPRODN field. For example, CVTPRODN holds SP5.2.2 for MVS/ESA
SP Version 5 Release 2.2 (in which case OPREL returns 22), and SP6.0.3 for z/OS Release 3. You are
recommended to use the OSLEVEL field for the full version and release number of the z/OS product.

OPSYS(name1 | *)
returns the type of operating system on which the CICS regions is running.
name1

The name of a 1-byte area that is to receive the hexadecimal character of the operating system on
which CICS is running. A value of "X" represents MVS.

OSLEVEL(name4 | *)
is the version, release, and modification level of the z/OS product on which CICS is running.
name1

The name of a 4-byte area that is to receive the version and release number of z/OS on which CICS
is running. A value of "0240" represents z/OS Release 4.

PLTPI(name2 | *)
returns the suffix that identifies the program list table (PLT) containing the list of programs to be run
during CICS initialization—the program list table post initialization (PLTPI) list.
name2

The name of a 2-byte area that is to receive the suffix.
SDTRAN(name4 | *)

returns the name of the “shutdown assist” transaction to be run at the beginning of normal or
immediate shutdown. The shutdown assist transaction is described in The shutdown assist utility
program, DFHCESD.
name4

The name of a 4-byte area to receive the name.
SECURITYMGR(EXTSECURITY|NOSECURITY)

returns a value indicating whether security is active.
EXTSECURITY

CICS is using an external security manager (for example, RACF).
NOSECURITY

Security is not in use in the CICS region—SEC=NO is specified as a system initialization parameter.
SHUTSTATUS(CONTROLSHUT|NOTSHUTDOWN|SHUTDOWN)

returns the shutdown status of the CICS region.

90 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha327.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha327.html

CONTROLSHUT
CICS is performing a controlled shutdown; that is, a normal shutdown with a warm keypoint.

NOTSHUTDOWN
CICS is not in shutdown mode.

SHUTDOWN
CICS is performing an immediate shutdown.

STARTUP(COLDSTART|EMERGENCY|WARMSTART)
returns the type of startup the CICS region performed.
COLDSTART

CICS performed a cold start, either because this was explicitly specified on the system
initialization parameter, or because CICS forced a cold start because of the state of the global
catalog.

EMERGENCY
CICS performed an emergency restart because the previous run did not shut down normally with a
warm keypoint.

WARMSTART
CICS performed a warm restart following the normal shutdown of the previous run.

STARTUPDATE(name4 | *)
returns the start-up-date of this CICS region, in packed decimal form (4-bytes 00yydddc where
yy=years, ddd=days, c is the sign).
name4

The name of a 4-byte location that is to receive the startup date of this CICS system.
TERMURM(name8 | *)

returns the name of the autoinstall user program for terminals.
name8

The name of an 8-byte area that is to receive the name of the autoinstall user program for
terminals.

TIMEOFDAY(name4 | *)
returns the current time-of-day in packed decimal form (4-bytes hhmmsstc where hh=hours,
mm=minutes, ss=seconds, t=tenths of a second, and c is the sign).
name4

The name of a 4-byte location that is to receive the time.
XRFSTATUS(NOXRF|PRIMARY|TAKEOVER)

returns the XRF status of the CICS region.
NOXRF

CICS was started with the system initialization parameter XRF=NO specified. XRF is not active.
PRIMARY

The CICS region was started as an active CICS in an XRF environment.
TAKEOVER

The CICS region was started as an alternate CICS, with the START=STANDBY system initialization
parameter.

RESPONSE and REASON values for INQUIRE_SYSTEM
RESPONSE REASON

OK None

INVALID INVALID_FUNCTION

EXCEPTION LENGTH_ERROR

UNKNOWN_DATA

Chapter 13. State data access XPI functions 91

RESPONSE REASON

DISASTER INQ_FAILED

PURGED None

The SET_SYSTEM call
The SET_SYSTEM call allows you to set CICS system data values in the AP domain.

SET_SYSTEM

 DFHSAIQX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(SET_SYSTEM),
 [DTRPRGRM(name8 | string | 'string'),]
 [GMMLENGTH(name2 | (Rn) | expression),]
 [GMMTEXT(name8 | (Rn)),]]
 [OUT,
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

DTRPRGRM(name8 | string | 'string')
specifies the name of the dynamic routing program.
name8

The name of an 8-byte area that contains the name of the dynamic routing program.
string

A string of character, without intervening blanks, that defines the name of the dynamic routing
program being set.

‘string’
A string of character without intervening blanks. If you want to document a name (label) in your
program, use this form.

GMMLENGTH(name2 | (Rn))
specifies the length of the new "good morning" message supplied by the GMMTEXT parameter.
name2

The name of a 2-byte area that contains, as a half-word binary value, the length of the new good
morning message.

(Rn)
A register that contains the length of the new good morning message.

GMMTEXT(name4 | (Rn))
specifies the new good morning message.
name4

The name of a 4-byte location that contains the address of a storage area (up to a maximum of
246 bytes long) that contains the good morning message.

(Rn)
A register that contains the address of a storage area (up to a maximum of 246 bytes long) that
contains the good morning message.

RESPONSE and REASON values for SET_SYSTEM
RESPONSE REASON

OK None

92 CICS TS for z/OS: XPI Function Reference

RESPONSE REASON

INVALID INVALID_FUNCTION

EXCEPTION AKP_SIZE_ERROR

NO_KEYPOINT

DISASTER SET_FAILED

PURGED None

Chapter 13. State data access XPI functions 93

94 CICS TS for z/OS: XPI Function Reference

Chapter 14. Storage control XPI functions
The XPI provides seven storage control functions. These are the DFHSMMCX macro calls GETMAIN,
FREEMAIN, INQUIRE_ELEMENT_LENGTH, and INQUIRE_TASK_STORAGE, and the DFHSMSRX calls
INQUIRE_ACCESS, INQUIRE_SHORT_ON_STORAGE, and SWITCH_SUBSPACE.

DFHSMMCX calls cannot be used in any exit program invoked from any global user exit point in the
following domains or program:

• Dispatcher domain
• Dump domain
• Monitor domain
• Statistics domain
• Transient data program.

The GETMAIN call
GETMAIN acquires an element of storage for use by your exit program. You can ask for a specific CLASS of
storage, and you can request that it is initialized to a single-byte value.

Storage that is acquired by using a GETMAIN call and that is in the following classes is released by CICS
when the TCA being used at the time of the acquisition terminates:

• CICS
• CICS24
• USER
• USER24.

In contrast, storage in the following classes is not released automatically at task-end. You must use the
FREEMAIN call to release it.

• SHARED_CICS
• SHARED_CICS24
• SHARED_USER
• SHARED_USER24
• TERMINAL.

Also, some user exits can be invoked from system tasks. In these circumstances, storage is not released
until the next CICS shutdown. Therefore, use the FREEMAIN call to release all storage areas acquired by a
GETMAIN call as soon as you finish using them.

GETMAIN

DFHSMMCX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(GETMAIN),
 GET_LENGTH(name4 | (Rn) | expression),
 STORAGE_CLASS(CICS|CICS24|SHARED_CICS|SHARED_CICS24|
 SHARED_USER|SHARED_USER24|USER|USER24|TERMINAL),
 SUSPEND(NO|YES),
 [INITIAL_IMAGE(name1 | literalconst),]
 [TCTTE_ADDRESS(name4 | (Ra)),]]
 [OUT,
 ADDRESS(name4 | (Rn) | *),
 RESPONSE(name1 | *),
 REASON(name1 | *)]

© Copyright IBM Corp. 1974, 2023 95

This command is threadsafe.

ADDRESS(name4 | (Rn) | *)
Returns the address of the storage obtained by the call.
name4

The name of a fullword where the obtained storage address is saved.
(Rn)

A register that is set to point to the obtained storage.
*

The parameter list itself, name SMMC_ADDRESS, is used to keep the address.
GET_LENGTH(name4 | (Rn) | expression)

Specifies the number of bytes of storage you want, expressed in any of the following ways:
name4

The name of a fullword specifying, in binary, the number of bytes.
(Rn)

A register containing, in binary, the number of bytes.
expression

A valid assembler-language expression; for example, a number, a symbolic expression, or a
combination of the two.

If you request TERMINAL storage, the length you specify does not include the length of the
storage accounting area (SAA). The maximum length you can specify is 65,515 bytes. CICS storage
management adds an 8-byte SAA, and the address returned by the XPI call is that of the start of the
SAA.

If you request CICS24, CICS, USER24, USER, SHARED_CICS24, SHARED_CICS, SHARED_USER24,
or SHARED_USER storage, you need only specify the length needed by your program. The address
returned is that of the start of your data storage. The maximum size of storage for these storage
classes is the same as the size of the DSA from which they are allocated.

INITIAL_IMAGE(name1 | literalconst)
Specifies the initializing pattern. For example, you might want to set the acquired storage to binary
zeros.
name1

The name of a location where the one-byte initializing pattern is stored.
literalconst

A number in the form of a literal, for example B'00000000', X'FF', X'FC', "0", or an equate symbol
with a similar value.

STORAGE_CLASS(CICS|CICS24|SHARED_CICS|SHARED_CICS24| SHARED_USER|SHARED_USER24|
USER|USER24|TERMINAL)

Specifies the class of the storage that is the subject of the call. The values you can assign to this
option, and the type of storage each represents, are listed in Table 6 on page 96.

Table 6. CICS storage classes

STORAGE_CLASS Type of storage

CICS Task-lifetime CICS-key storage above 16 MB but below 2 GB

CICS24 Task-lifetime CICS-key storage below 16 MB

SHARED_CICS Shared CICS-key storage above 16 MB but below 2 GB

SHARED_CICS24 Shared CICS-key storage below 16 MB

SHARED_USER Shared user-key storage above 16 MB but below 2 GB

SHARED_USER24 Shared user-key storage below 16 MB

96 CICS TS for z/OS: XPI Function Reference

Table 6. CICS storage classes (continued)

STORAGE_CLASS Type of storage

TERMINAL This class of storage has an 8-byte SAA.

USER Task-lifetime user-key storage above 16 MB but below 2 GB

USER24 Task-lifetime user-key storage below 16 MB

You must specify a storage class on a GETMAIN request. On a FREEMAIN request it is an optional
parameter, and any value that you specify is not checked by CICS.

SUSPEND(YES|NO)
Specifies whether to suspend your request if there is less storage available than you requested in the
GET_LENGTH option.

TCTTE_ADDRESS(name4 | (Ra))
Specifies the address of the terminal control table terminal entry (TCTTE). On GETMAIN requests,
you must code this option if you specify a class of TERMINAL on the STORAGE_CLASS option. On
FREEMAIN requests, you must code this option if you release TERMINAL-class storage.

Note: Before you obtain TERMINAL class storage, check TCAFCI bit 7 to ensure that the TCA is
running under a terminal.
name4

The name of a fullword containing the address.
(Ra)

A register that points to the TCTTE.

RESPONSE and REASON values for GETMAIN
RESPONSE REASON

OK None

EXCEPTION INSUFFICIENT_STORAGE

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note:

1. For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.
2. INSUFFICIENT_STORAGE is returned if the GETMAIN request was specified with SUSPEND(NO), and

there was not enough storage available to satisfy the request.
3. PURGED is returned if the GETMAIN request was specified with SUSPEND(YES), there was not enough

storage to satisfy the request, and the task was purged.

The FREEMAIN call
FREEMAIN releases an area of storage that is currently allocated to your exit program.

FREEMAIN

DFHSMMCX [CALL,]
 [CLEAR,]

Chapter 14. Storage control XPI functions 97

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

 [IN,
 FUNCTION(FREEMAIN),
 ADDRESS(name4 | (Rn) | *),
 [STORAGE_CLASS(CICS|CICS24|SHARED_CICS|SHARED_CICS24|
 SHARED_USER|SHARED_USER24|USER|USER24|TERMINAL),]
 [TCTTE_ADDRESS(pointer),]]
 [OUT,
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

For an explanation of the options, see “The GETMAIN call” on page 95.

RESPONSE and REASON values for FREEMAIN
RESPONSE REASON

OK None

EXCEPTION None

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

The INQUIRE_ACCESS call
INQUIRE_ACCESS returns the access-key of an element of storage specified by start address and length.
If the element is not wholly contained within one of the CICS dynamic storage areas (DSAs), CICS returns
an exception response.

INQUIRE_ACCESS

DFHSMSRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_ACCESS),
 ELEMENT_ADDRESS(name4 | (Rn) | *),
 ELEMENT_LENGTH(name4 | (Rn) | *),]
 [OUT,
 ACCESS(CICS | READ_ONLY | USER),
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

ACCESS(CICS|READ_ONLY|USER)
returns the access-key of the storage element.
CICS

CICS-key
READ_ONLY

Readonly storage
USER

User-key.
ELEMENT_ADDRESS(name4 | (Rn) | *)

specifies the address of the storage element.

98 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

ELEMENT_LENGTH(name4 | (Rn) | *)
specifies the length of the storage element, in bytes. A length of zero is treated as a length of one.

RESPONSE and REASON values for INQUIRE_ACCESS
RESPONSE REASON

OK None

EXCEPTION INVALID_ELEMENT

DISASTER None

INVALID None

KERNERROR None

The INQUIRE_ELEMENT_LENGTH call
INQUIRE_ELEMENT_LENGTH enables you to pass the address of any part of an element of task-lifetime
storage, and to obtain from CICS the start address and the length of the storage element that contains the
passed address.

INQUIRE_ELEMENT_LENGTH

DFHSMMCX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION (INQUIRE_ELEMENT_LENGTH),
 ADDRESS (name4 | (Rn) | *),]
 [OUT,
 ELEMENT_ADDRESS(name4 | (Rn) | *),
 ELEMENT_LENGTH(name4 | (Rn) | *),
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

ADDRESS(name4 | (Rn) | *)
specifies an address that lies within an element of task-lifetime storage of the current task.

CICS accepts addresses that reference the leading or trailing check zones as being valid addresses for
the element of storage you are inquiring upon.

ELEMENT_ADDRESS(name4 | (Rn) | *)
returns the start address of the element of task-lifetime storage referenced by the ADDRESS
parameter. The start address returned does not include the leading check zone.

ELEMENT_LENGTH(name4 | (Rn) | *)
returns the length of the element of task-lifetime storage referenced by the ADDRESS parameter. The
length returned does not include the leading or trailing check zones.

RESPONSE and REASON values for INQUIRE_ELEMENT_LENGTH
RESPONSE REASON

OK None

EXCEPTION INVALID_ADDRESS

DISASTER None

INVALID None

KERNERROR None

PURGED None

Chapter 14. Storage control XPI functions 99

The INQUIRE_SHORT_ON_STORAGE call
INQUIRE_SHORT_ON_STORAGE enables you to determine whether CICS is short on 64-bit (above-the-
bar) storage, short on storage above 16 MB but below 2 GB (above the line), or short on storage below 16
MB (below the line).

INQUIRE_SHORT_ON_STORAGE

DFHSMSRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_SHORT_ON_STORAGE),]
 [OUT,
 SOS_ABOVE_THE_BAR(NO|YES),
 SOS_ABOVE_THE_LINE(NO|YES),
 SOS_BELOW_THE_LINE(NO|YES),
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

SOS_ABOVE_THE_BAR(NO|YES),
Returns YES if CICS is currently short on 64-bit (above-the-bar) storage, and NO if not.

SOS_ABOVE_THE_LINE(NO|YES),
Returns YES if CICS is currently short on storage above 16 MB but below 2 GB, and NO if not.

SOS_BELOW_THE_LINE(NO|YES),
returns YES if CICS is currently short on storage below 16 MB, and NO if not.

RESPONSE and REASON values for INQUIRE_SHORT_ON_STORAGE
RESPONSE REASON

OK None

DISASTER None

KERNERROR None

The INQUIRE_TASK_STORAGE call
INQUIRE_TASK_STORAGE enables you to request details of all elements of task-lifetime storage
belonging to a task. You can specify the transaction number of the task explicitly on the call, or let it
default to the current task.

INQUIRE_TASK_STORAGE

DFHSMMCX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION (INQUIRE_TASK_STORAGE),
 [TRANSACTION_NUMBER(name4 | (Rn) | *),]
 ELEMENT_BUFFER(buffer-descriptor),
 LENGTH_BUFFER(buffer-descriptor),]
 [OUT,
 NUMBER_OF_ELEMENTS(name4 | (Rn) | *),
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

ELEMENT_BUFFER(buffer-descriptor)
defines the address and length of a buffer into which CICS returns a list of start addresses of all the
elements of task-lifetime storage belonging to either the specified task or, by default, the current task.

100 CICS TS for z/OS: XPI Function Reference

The start addresses returned do not include the leading check zone. For a description of a buffer
descriptor, see XPI syntax.

LENGTH_BUFFER(buffer-descriptor)
defines the address and length of a buffer into which CICS returns a list of the lengths of the elements
of task-lifetime storage belonging to either the specified task or, by default, the current task. The
lengths returned do not include the leading or trailing check zones.

For a description of a buffer descriptor, see XPI syntax.

NUMBER_OF_ELEMENTS(name4 | (Rn) | *)
returns the number of entries in each of the two buffers, ELEMENT_BUFFER and LENGTH_BUFFER, as
a full-word binary value.

TRANSACTION_NUMBER(name4 | (Rn) | *)
specifies, as a 4 byte packed decimal value, the transaction number of the task to whom the storage
belongs.

If you omit the transaction (task) number, CICS assumes the current task.

RESPONSE and REASON values for INQUIRE_TASK_STORAGE
RESPONSE REASON

OK None

EXCEPTION INSUFFICIENT_STORAGE

NO_TRANSACTION_ENVIRONMENT

DISASTER None

INVALID None

KERNERROR None

PURGED None

The SWITCH_SUBSPACE call
SWITCH_SUBSPACE causes CICS to switch from a subspace to base space, if the task is not already
executing in the base space. If the task is already in the base space, storage manager ignores the call.

This function can be used by global user exit programs that receive control in subspace and for some
reason need to switch into basespace.

SWITCH_SUBSPACE

DFHSMSRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(SWITCH_SUBSPACE),
 SPACE(BASESPACE),]
 [OUT,
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

SPACE(BASESPACE)
specifies that CICS is to switch the task issuing the call to the basespace, if it is currently executing
within a subspace. This enables the task to read and write to another task’s user-key task-lifetime
storage.

Chapter 14. Storage control XPI functions 101

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html

RESPONSE and REASON values for SWITCH_SUBSPACE
RESPONSE REASON

OK None

DISASTER None

KERNERROR None

102 CICS TS for z/OS: XPI Function Reference

Chapter 15. Trace control XPI function
The XPI provides one trace control function. This is the DFHTRPTX call TRACE_PUT.

Restriction: DFHTRPTX calls cannot be used in any exit program invoked from any global user exit point
in the following:

• Dispatcher domain
• Dump domain
• Monitor domain
• Statistics domain
• Transient data program.

The TRACE_PUT call
TRACE_PUT writes a trace entry to the active trace destinations.

Only make a TRACE_PUT call when UEPTRON indicates that tracing is active for the function containing
the exit program (see UEPTRON in DFHUEPAR). You might prefer to make exception trace entries, in case
of serious errors, without testing UEPTRON.

If you use TRACE_PUT to write exception trace entries, identify these so they are highlighted as exception
trace entries by the trace formatting utility program. To identify an exception trace entry, enter the literal
string ‘USEREXC' in the DATA1 block descriptor field on the DFHTRPTX call.

TRACE_PUT

DFHTRPTX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(TRACE_PUT),
 POINT_ID(literalconst | name2 | (Rn)),
 [DATA1(block-descriptor),]
 [DATA2(block-descriptor),]
 [DATA3(block-descriptor),]
 [DATA4(block-descriptor),]
 [DATA5(block-descriptor),]
 [DATA6(block-descriptor),]
 [DATA7(block-descriptor),]
 [RETURN_ADDR(expression | name4 | (Ra)),]]
 [OUT,
 RESPONSE(name1 | *)]

This command is threadsafe.

DATAn(block-descriptor)
Specifies up to seven areas to be included in the data section of the trace entry. For a description
of valid block-descriptors, see XPI syntax. If you specify any given DATAn, then DATA1 through
DATA(n-1) must be coded before DATAn. The specified DATA items are printed in the trace output in
the order specified, that is, in order of DATA1 through DATAn. A 2-byte length field is printed before
the data field itself. The maximum total length of the data that can be traced in one call is 4000 bytes.
The total length of all the data fields and all their 2-byte length fields must be within this limit.

POINT_ID(literalconst|name2|(Rn))
Specifies the trace entries made as a result of this request. Every TRACE_PUT call within a calling
domain should specify a unique POINT_ID. This enables you to locate the origin of a trace call when
examining a formatted trace. The POINT_IDs must be in the range decimal 256 through 511 (X'100'
through X'1FF'). This range is not used in CICS modules, but is reserved for user exits.
literalconst

A number in the form of a literal, containing the ID

© Copyright IBM Corp. 1974, 2023 103

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33v.html

name2
The name of a 2-byte field containing the ID

(Rn)
A register, the two low-order bytes of which contain the ID.

RETURN_ADDR(expression|name4|(Ra))
Specifies the value that appears in the return address field of the trace entry.
expression

A valid assembler-language expression that results in the address
name4

The name of a fullword containing the address
(Ra)

A register containing the address.

104 CICS TS for z/OS: XPI Function Reference

Chapter 16. Transaction management XPI functions
The XPI provides transaction management functions that you can use to inquire about transactions and
set certain transaction parameters.

The INQUIRE_CONTEXT call
INQUIRE_CONTEXT returns information about the environment in which a transaction is running.
Specifically, it provides information for transactions running in a bridge environment.

INQUIRE_CONTEXT
DFHBRIQX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_CONTEXT),]
 [OUT,
 [CONTEXT(byte1),]
 [BRIDGE_TRANSACTION_ID(name4),]
 [BRIDGE_EXIT_PROGRAM(name8),]
 [BFB_TOKEN(name4),]
 [BRXA_TOKEN(name4),]
 [FACILITYTOKEN(name8),]
 [START_TYPE(byte1),]
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

BFB_TOKEN(name4)
returns a pointer that contains the address of the bridge facility used by this task. Although the bridge
facility is not a real terminal, it is represented by a data structure that has the same format as a TCTTE
and can be mapped using the DSECT DFHTCTTE. If CONTEXT returns NORMAL, the contents of this
field are meaningless.

Note: In earlier releases of CICS, this field was called BRIDGE_FACILITY_TOKEN.

name4
The name of a 4-byte location to receive the token.

BRIDGE_EXIT_PROGRAM(name8)
returns the name of the bridge exit program used by this task. If CONTEXT returns NORMAL, the
contents of this field are meaningless.
name8

The name of an 8-byte location to receive the name of the bridge exit program.
BRIDGE_TRANSACTION_ID(name4)

returns the name of the bridge monitor transaction that issued a START BREXIT TRANSID command
to start this transaction. If CONTEXT returns NORMAL, the contents of this field are meaningless.
name4

The name of a 4-byte location to receive the name of the bridge monitor transaction.
BRXA_TOKEN(name4)

returns a token that contains the address of the bridge exit area (BRXA) used by this task. The BRXA
is not applicable to the Link3270 bridge (START_TYPE=BRIQ_LINK). The format of BRXA is defined by
the DFHBRARx copy books. If CONTEXT returns NORMAL, the contents of this field are meaningless.
name4

The name of a 4-byte location to receive the token.
CONTEXT(byte1)

returns, in a 1-byte location (byte1), the type of environment in which the transaction is running.

© Copyright IBM Corp. 1974, 2023 105

BRIDGE
A user transaction that was started using a bridge

BREXIT
A bridge exit program

NORMAL
A transaction that is not running in a bridge environment.

FACILITYTOKEN(name8)
returns the facilitytoken (an identifier associated with the bridge facility). If CONTEXT returns
NORMAL, the contents of this field are meaningless.
name8

The name of an 8-byte location to receive the facilitytoken.
START_TYPE(byte1)

returns, in a 1–byte location (byte1), an indication of how the 3270 bridge was started. If CONTEXT
returns NORMAL, the contents of this field are meaningless.
BRIQ_START

The bridge was started using START BREXIT.
BRIQ_LINK

The bridge was started using the Link3270 mechanism.

RESPONSE and REASON values for INQUIRE_CONTEXT
RESPONSE REASON

OK None

DISASTER ABEND

LOOP

INVALID None

EXCEPTION NO_TRANSACTION_ENVIRONMENT

KERNERROR None

The INQUIRE_DTRTRAN call
INQUIRE_DTRTRAN returns the name of the dynamic transaction routing (DTR) transaction definition.

The DTR transaction definition provides common attributes for transactions that are to be dynamically
routed and which do not have a specific transaction definition. It is specified on the DTRTRAN system
initialization parameter; the CICS-supplied default definition is CRTX.

INQUIRE_DTRTRAN

DFHXMSRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_DTRTRAN),]
 [OUT,
 DTRTRAN(name4),
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

DTRTRAN(name4)
returns the name of the DTR transaction definition to used for routing transactions that are not
defined by an explicit transaction resource definition.

106 CICS TS for z/OS: XPI Function Reference

name4
The name of a 4-byte location that is to receive the name of the DTR transaction definition. If 'NO'
was specified on the DTRTRAN system initialization parameter, 'NO' will be placed in this field.

RESPONSE and REASON values for INQUIRE_DTRTRAN
RESPONSE REASON

OK None

DISASTER ABEND

LOGIC_ERROR

LOOP

INVALID INVALID_FUNCTION

KERNERROR None

PURGED None

The INQUIRE_MXT call
The INQUIRE_MXT function is provided on the DFHXMSRX macro call. Its purpose is to provide current
value of the MXT parameter.

INQUIRE_MXT

DFHXMSRX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_MXT),]
 [OUT,
 CURRENT_ACTIVE(name4 | (Rn)),
 MXT_LIMIT(name4 | (Rn)),
 MXT_QUEUED(name4 | (Rn)),
 TCLASS_QUEUED(name4 | (Rn)),
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

CURRENT_ACTIVE(name4 | (Rn))
returns the current number of all active user tasks.
name4

The name of a 4-byte location that is to receive the current number of active user tasks, expressed
as a binary value.

(Rn)
A register to receive the current number of active user tasks, expressed as a binary value.

MXT_LIMIT(name4 | (Rn))
returns the current number of the MXT parameter.
name4

The name of a 4-byte location that is to receive the maximum number of all user tasks currently
allowed, expressed as a binary value.

(Rn)
A register to receive the maximum number of all tasks currently allowed, expressed as a binary
value.

MXT_QUEUED(name4 | (Rn))
returns the current number of user transactions that are queued as a result of the maximum tasks
(MXT) being reached.

Chapter 16. Transaction management XPI functions 107

name4
The name of a 4-byte location that is to receive the current number of queued user tasks,
expressed as a binary value.

(Rn)
A register to receive the current number of queued user tasks, expressed as a binary value.

TCLASS_QUEUED(name4 | (Rn))
returns the current number of all transactions that are queued for transaction class membership.
name4

The name of a 4-byte location that is to receive the current number of queued transaction class
members, expressed as a binary value.

(Rn)
A register to receive the current number of queued transaction class members, expressed as a
binary value.

RESPONSE and REASON values for INQUIRE_MXT
RESPONSE REASON

OK None

DISASTER LOGIC_ERROR

ABEND

LOOP

INVALID INVALID_FUNCTION

KERNERROR None

PURGED None

The INQUIRE_TCLASS call
The INQUIRE_TCLASS function is provided on the DFHXMCLX macro call. Its purpose is to provide current
information about the specified transaction class (TCLASS).

INQUIRE_TCLASS

DFHXMCLX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_TCLASS),
 INQ_TCLASS_NAME(name8 | string | ‘string’),]
 [OUT,
 [CURRENT_ACTIVE(name4 | (Rn)),]
 [CURRENT_QUEUED(name4 | (Rn)),]
 [MAX_ACTIVE(name4 | (Rn)),]
 [PURGE_THRESHOLD(name4 | (Rn)),]
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

CURRENT_ACTIVE(name4 | (Rn))
returns the current number of active user tasks in this transaction class.
name4

The name of a 4-byte location that is to receive the current number of active user tasks for this
transaction class, expressed as a binary value.

(Rn)
A register to receive the current number of active user tasks for this transaction class, expressed
as a binary value.

108 CICS TS for z/OS: XPI Function Reference

CURRENT_QUEUED(name4 | (Rn))
returns the current number of queued user tasks.
name4

The name of a 4-byte location that is to receive the current number of queued user tasks in this
transaction class, expressed as a binary value.

(Rn)
A register to receive the current number of queued user tasks, expressed as a binary value.

INQ_TCLASS_NAME(name8 | string | ‘string’)
specifies the name of the transaction class for this inquiry.
name8

The name of an 8-byte location that contains the name of the transaction class being inquired on.
string

A string of characters, without intervening blanks, naming the transaction class.
‘string’

A string of characters, within quotation marks, naming the transaction class. The string length is
set to 8 by padding with blanks within the quotation marks.

MAX_ACTIVE(name4 | (Rn))
returns the current maximum number of active tasks allowed for the transaction class.
name4

The name of a 4-byte location that is to receive the current maximum number of active tasks
currently allowed for this transaction class, expressed as a binary value.

(Rn)
A register to receive the current maximum number of active tasks currently allowed for this
transaction class, expressed as a binary value.

PURGE_THRESHOLD(name4 | (Rn))
returns the purge threshold limit for this transaction class.
name4

The name of a 4-byte location that is to receive the current purge threshold limit for this
transaction class, expressed as a binary value.

(Rn)
A register to receive the current purge threshold limit for this transaction class, expressed as a
binary value.

RESPONSE and REASON values for INQUIRE_TCLASS
RESPONSE REASON

OK None

DISASTER LOGIC_ERROR

INVALID None

EXCEPTION UNKNOWN_CLASS

The INQUIRE_TRANDEF call
The INQUIRE_TRANDEF function is provided on the DFHXMXDX macro call. Its purpose is to allow you to
obtain information about the specified transaction definition. In general, this function call is equivalent to
the EXEC CICS INQUIRE TRANSACTION command, with some differences.

INQUIRE_TRANDEF
DFHXMXDX [CALL,]
 [CLEAR,]

Chapter 16. Transaction management XPI functions 109

 [IN,
 FUNCTION(INQUIRE_TRANDEF),
 INQ_TRANSACTION_ID(name4 | string | ‘string'),]
 [OUT,
 [BREXIT(name8),]
 [CMDSEC(name1),]
 [DTIMEOUT(name4 | (Rn)),]
 [DUMP(name1),]
 [DYNAMIC(name1),]
 [INDOUBT(name1),]
 [INDOUBT_WAIT(name1),]
 [INDOUBT_WAIT_TIME(name4),]
 [INITIAL_PROGRAM(name8),]
 [ISOLATE(name1),]
 [LOCAL_QUEUING(name1),]
 [OTSTIMEOUT(name4 | (Rn)),]
 [PARTITIONSET(name1),]
 [PARTITIONSET_NAME(name8),]
 [PROFILE_NAME(name8),]
 [REMOTE(name1),]
 [REMOTE_NAME(name8),]
 [REMOTE_SYSTEM(name4),]
 [RESSEC(name1),]
 [RESTART(name1),]
 [ROUTABLE_STATUS(ROUTABLE|NOT_ROUTABLE),]
 [RUNAWAY_LIMIT(name4 | (Rn)),]
 [SHUTDOWN(name1),]
 [SPURGE(name1),]
 [STATUS(name1),]
 [STORAGE_CLEAR(name1),]
 [STORAGE_FREEZE(name1),]
 [SYSTEM_ATTACH(name1),]
 [SYSTEM_RUNAWAY(name1),]
 [TASKDATAKEY(name1),]
 [TASKDATALOC(name1),]
 [TCLASS(name1),[TCLASS_NAME(name8),]]
 [TPURGE(name1),]
 [TRACE(name1),]
 [TRAN_PRIORITY(name4 | (Rn)),]
 [TRAN_ROUTING_PROFILE(name8),]
 [TRANSACTION_ID(name4),]
 [TWASIZE(name4 | (Rn)),]
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

The following parameter descriptions explain briefly the possible values that can be returned on
an INQUIRE_TRANDEF call. For a more detailed explanation of some of these parameters, see the
corresponding parameter descriptions for the TRANSACTION resource definition in TRANSACTION
attributes.

BREXIT(name8)
returns the name of the default bridge exit program specified for the named transaction. If no bridge
exit is specified, blanks are returned.
name8

The name of an 8-byte location to receive the name of the bridge exit program.
CMDSEC(name1)

returns, in a 1-byte location (name1), an equated value indicating whether command security
checking is required for the transaction.
XMXD_YES

Command security checking is required.
XMXD_NO

Command security checking is not required.
DTIMEOUT(name4)

returns the deadlock timeout value for the transaction.
name4

The name of a 4-byte location that is to receive the deadlock timeout value, expressed as a binary
value.

110 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/transaction/dfha4_attributes.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/transaction/dfha4_attributes.html

(Rn)
A register to receive the deadlock timeout value, expressed as a binary value.

Note that a value of zero means that the transaction resource definition specifies DTIMOUT(NO).

DUMP(name1)
returns, in a 1-byte location (name1), an equated value indicating whether CICS is to take a
transaction dump if the transaction abends.
XMXD_YES

A transaction dump is required.
XMXD_NO

A transaction dump is not required.
DYNAMIC(name1)

returns, in a 1-byte location (name1), an equated value indicating whether the transaction is defined
for dynamic transaction routing.
XMXD_YES

The transaction is to be dynamically routed to a remote CICS.
XMXD_NO

The transaction is not to be dynamically routed.
INDOUBT(name1)

returns, in a 1-byte location (name1), an equated value indicating the action to be taken if the CICS
region fails or loses connectivity with its coordinator while a unit of work is in the indoubt period. (The
action is based on the ACTION attribute of the TRANSACTION resource definition.)

The action is dependent on the values returned in INDOUBT_WAIT and INDOUBT_WAIT_TIME;
if INDOUBT_WAIT returns XMXD_YES, the action is not taken until the time returned in
INDOUBT_WAIT_TIME expires.
XMXD_BACKOUT

Any changes made by the transaction to recoverable resources are to be backed out.
XMXD_COMMIT

Any changes made by the transaction to recoverable resources are to be committed.

INDOUBT_WAIT(name1)
returns, in a 1-byte location (name1), an equated value indicating how a unit of work (UOW) is to
respond if a failure occurs while it is in an indoubt state.
XMXD_NO

The UOW is not to wait, pending recovery from the failure. CICS is to take immediately whatever
action is specified on the ACTION attribute of the TRANSACTION definition.

XMXD_YES
The UOW is to wait, pending recovery from the failure, to determine whether recoverable
resources are to be backed out or committed.

INDOUBT_WAIT_TIME(name4)
returns the length of time, in minutes, after a failure during the indoubt period, before the transaction
is to take the action returned in the INDOUBT field. The returned value is valid only if the unit of work
is indoubt and INDOUBT_WAIT returns XMXD_YES.
name4

The name of a 4-byte location that is to receive the delay time, expressed as a binary value.

See also INDOUBT and INDOUBT_WAIT.

INITIAL_PROGRAM(name8)
returns the name of the initial program to be given control for the transaction.
name8

The name of an 8-byte location to receive the initial program name.

Chapter 16. Transaction management XPI functions 111

INQ_TRANSACTION_ID(name4 | string | ‘string')
specifies the transaction identifier for this transaction definition inquiry.
name4

The name of a 4-byte location that contains the name of the transaction identifier.
string

A string of characters, without intervening blanks, naming the transaction identifier.
‘string'

A string of characters, within quotation marks, naming the transaction identifier. The string length
is set to 4 by padding with blanks within the quotation marks.

ISOLATE(name1)
returns, in a 1-byte location (name1), an equated value indicating whether transaction isolation is
required for the transaction's task-lifetime user-key storage.
XMXD_NO

Transaction isolation is not required for task-lifetime user-key storage.
XMXD_YES

Transaction isolation is required for task-lifetime user-key storage.
LOCAL_QUEUING(name1)

returns, in a 1-byte location (name1), an equated value indicating whether a start request for this
transaction is eligible to queue locally if the transaction is to be started on another system, and the
remote system is not available.

XMXD_NO
The request is not to be queued locally.

XMXD_YES
The request can be queued locally.

OTSTIMEOUT(name4)
returns the default period in seconds that an Object Transaction Service (OTS) transaction created
in an Enterprise JavaBeans (EJB) environment and executing under this CICS transaction is allowed
to execute without the initiator of the OTS transaction taking a syncpoint (or rolling back the OTS
transaction).
name4

The name of a 4-byte location to receive the timeout setting, expressed as a binary value.
(Rn)

A register to receive the timeout setting, expressed as a binary value.

A value of zero means that the transaction resource definition specifies OTSTIMEOUT(NO).

PARTITIONSET(name1)
returns, in a 1-byte location (name1), an equated value indicating the partitionset specified on the
transaction definition.
XMXD_KEEP

The reserved name KEEP is specified for the partitionset, which means tasks running under
this transaction definition use the application partitionset for the terminal associated with the
transaction.

XMXD_NAMED
The partitionset is named specifically on the transaction definition. The name is returned on the
PARTITIONSET_NAME parameter.

XMXD_NONE
There is no partitionset specified for the transaction definition.

XMXD_OWN
The reserved name OWN is specified for the partitionset, which means tasks running under this
transaction definition perform their own partitionset management.

112 CICS TS for z/OS: XPI Function Reference

PARTITIONSET_NAME(name8)
returns the name of the partitionset defined on the transaction definition.
name8

The name of an 8-byte location that is to receive the name of the partitionset.
PROFILE_NAME(name8)

returns the name of the profile definition that is associated with the transaction definition.
name8

The name of an 8-byte location to receive the name of the profile definition associated with the
transaction definition.

REMOTE(name1)
returns, in a 1-byte location (name1), an equated value indicating whether the transaction is defined
as remote.
XMXD_NO

The transaction is not a remote transaction.
XMXD_YES

The transaction is a remote transaction.
REMOTE_NAME(name8)

returns the name by which the transaction is known in a remote system.
name8

The name of an 8-byte location to receive the transaction's remote name.
REMOTE_SYSTEM(name4)

returns the name of the remote system as specified on the transaction definition.

If the DYNAMIC parameter returns XMXD_YES, REMOTE_SYSTEM returns the default name, which can
be changed by the dynamic routing program.

If the DYNAMIC parameter returns XMXD_NO, this is the actual remote system to which the
transaction is to be routed.
name4

The name of a 4-byte location to receive the defined name of the remote system.

RESSEC(name1)
returns, in a 1-byte location (name1), an equated value indicating whether resource security checking
is required for the transaction.
XMXD_NO

Resource security checking is not required.
XMXD_YES

Resource security checking is required.
RESTART(name1)

returns, in a 1-byte location (name1), an equated value indicating whether the transaction is to be
considered for transaction restart.
XMXD_NO

The transaction cannot be restarted.
XMXD_YES

The transaction can be restarted.
ROUTABLE_STATUS(ROUTABLE|NOT_ROUTABLE)

returns a value indicating whether, if the transaction is the subject of an eligible EXEC CICS START
command, it will be routed using the enhanced routing method.
NOT_ROUTABLE

If the transaction is the subject of a START command, it will be routed using the “traditional”
method.

Chapter 16. Transaction management XPI functions 113

ROUTABLE
If the transaction is the subject of an eligible START command, it will be routed using the
enhanced method.

For details of the enhanced and “traditional” methods of routing transactions invoked by EXEC CICS
START commands, see CICS transaction routing.

RUNAWAY_LIMIT(name4 | (Rn))
returns the runaway-task time limit specified on the transaction definition. If SYSTEM_RUNAWAY is
XMXD_YES, the value returned is the value defined by the ICVR system initialization parameter.
name4

The name of a 4-byte location that is to receive the task runaway limit, expressed as a binary
value.

(Rn)
A register to receive the task runaway limit, expressed as a binary value.

SHUTDOWN(name1)
returns, in a 1-byte location (name1), an equated value indicating whether the transaction can be run
during CICS shutdown.
XMXD_DISABLED

The transaction is disabled from running during CICS shutdown.
XMXD_ENABLED

The transaction is enabled to run during CICS shutdown.
SPURGE(name1)

returns, in a 1-byte location (name1), an equated value indicating whether the transaction is defined
as system-purgeable.
XMXD_NO

The transaction is not system-purgeable.
XMXD_YES

The transaction is system-purgeable.
STATUS(name1)

returns, in a 1-byte location (name1), an equated value indicating the status of the transaction
definition.
XMXD_DISABLED

The transaction definition is disabled.
XMXD_ENABLED

The transaction definition is enabled.
STORAGE_CLEAR(name1)

returns, in a 1-byte location (name1), an equated value indicating whether task-lifetime storage, of
tasks associated with this transaction definition, is to be cleared before it is freed by a FREEMAIN
command.
XMXD_NO

Task-lifetime storage need not be cleared before it's freed.
XMXD_YES

Task-lifetime storage must be cleared before it's freed.
STORAGE_FREEZE(name1 | (Rn))

returns, in a 1-byte location (name1), an equated value indicating whether storage freeze is defined
for the transaction by means of the STGFRZ option on the CICS-supplied field engineering transaction,
CSFE.
XMXD_NO

Storage is freed normally during the running of the transaction.
XMXD_YES

Storage that is normally freed during the running of a transaction is frozen.

114 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/connections/dfht110.html

SYSTEM_ATTACH(name1)
returns, in a 1-byte location (name1), an equated value indicating whether the tasks attached with
this tranid are always to be attached as system tasks.
XMXD_NO

A user task is being attached for this transaction.
XMXD_YES

A system task is being attached for this transaction.
SYSTEM_RUNAWAY(name1)

returns, in a 1-byte location (name1), an equated value indicating whether the transaction definition
specifies the system default runaway-task time limit, which is specified on the ICVR system
initialization parameter.
XMXD_NO

The transaction is not governed by the system runaway limit.
XMXD_YES

The transaction definition specifies the system default runaway limit.
TASKDATAKEY(name1)

returns, in a 1-byte location (name1), an equated value indicating the storage key of task-lifetime
storage for tasks associated with this transaction definition.
XMXD_CICS

CICS key is specified for task-lifetime storage.
XMXD_USER

USER key is specified for task-lifetime storage.
TASKDATALOC(name1)

returns, in a 1-byte location (name1), an equated value indicating the data location of task-lifetime
storage for tasks associated with this transaction definition.
XMXD_ANY

Task-lifetime storage can be located above 16 MB in virtual storage.
XMXD_BELOW

Task-lifetime storage must be located below 16 MB in virtual storage.
TCLASS(name1)

returns, in a 1-byte location (name1), an equated value indicating whether the transaction belongs to
a transaction class.
XMXD_NO

The transaction is not a member of a transaction class.
XMXD_YES

The transaction is a member of the transaction class named in the TCLASS_NAME parameter.
TCLASS_NAME(name8)

returns the name of the transaction class to which the transaction belongs.
name8

The name of an 8-byte location to receive transaction class name to which the transaction
belongs.

TPURGE(name1)
returns, in a 1-byte location (name1), an equated value indicating whether the transaction is defined
as purgeable in the event of a z/OS Communications Server terminal error.
XMXD_NO

The transaction can not be purged if a terminal error occurs.
XMXD_YES

The transaction can be purged if a terminal error occurs.

Chapter 16. Transaction management XPI functions 115

TRACE(name1)
returns, in a 1-byte location (name1), an equated value indicating the level of tracing defined for the
transaction:
XMXD_SPECIAL

CICS special-level trace This is the result of special trace being set by means of an EXEC CICS SET
TRANSACTION command.

XMXD_STANDARD
CICS standard-level trace This equates to TRACE(YES) in the TRANSACTION resource definition.

XMXD_SUPPRESSED
Tracing is suppressed for the transaction This equates to TRACE(NO) in the TRANSACTION
resource definition.

TRAN_PRIORITY(name4 | (Rn))
returns the transaction priority specified on the transaction definition.
name4

The name of a 4-byte location to receive the transaction priority, expressed as a binary value.
(Rn)

A register to receive the transaction priority, expressed as a binary value.
TRAN_ROUTING_PROFILE(name8)

returns the name of the profile that CICS is to use to route the transaction to a remote system.
name8

The name of an 8-byte location to receive the transaction-routing profile.
TRANSACTION_ID(name4)

returns the primary transaction identifier for this transaction definition inquiry.
name4

The name of a 4-byte location that contains the name of the transaction identifier.
TWASIZE(name4 | (Rn))

returns the size of the transaction work area specified on the transaction definition.
name4

The name of a 4-byte location to receive the size of the transaction work area, expressed as a
binary value.

(Rn)
A register to receive the size of the transaction work area, expressed as a binary value.

RESPONSE and REASON values for INQUIRE_TRANDEF
RESPONSE REASON

OK None

EXCEPTION UNKNOWN_TRANSACTION_ID

INVALID None

DISASTER LOGIC_ERROR

PURGED None

116 CICS TS for z/OS: XPI Function Reference

The INQUIRE_TRANSACTION call
The INQUIRE_TRANSACTION function is provided on the DFHXMIQX macro call. Its purpose is to allow
you to obtain information about a transaction that is attached (task). In general, this call is equivalent to
the EXEC CICS INQUIRE TASK command, with some minor differences.

INQUIRE_TRANSACTION
DFHXMIQX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(INQUIRE_TRANSACTION),
 [TRANSACTION_TOKEN(name8),]]
 [OUT,
 [ATTACH_TIME(name8),]
 [CICS_UOW_ID(name8),]
 [DTIMEOUT(name4 | (Rn)),]
 [DYNAMIC(name1),]
 [FACILITY_NAME(name4),]
 [FACILITY_TYPE(name1),]
 [INITIAL_PROGRAM(name8),]
 [NETNAME(name8),]
 [ORIGINAL_TRANSACTION_ID(name4),]
 [OUT_TRANSACTION_TOKEN(name8),]
 [RE_ATTACHED_TRANSACTION(name1),]
 [REMOTE(name1),]
 [REMOTE_NAME(name8),]
 [REMOTE_SYSTEM(name4),]
 [RESOURCE_NAME(name16),]
 [RESOURCE_TYPE(name8),]
 [RESTART(name1),]
 [RESTART_COUNT(name2 | (Rn)),]
 [SPURGE(name1),]
 [START_CODE(name1),]
 [STATUS(name1),]
 [SUSPEND_TIME(name4 | (Rn)),]
 [SYSTEM_TRANSACTION(name1),]
 [TASK_PRIORITY(name1),]
 [TCLASS(name1),[TCLASS_NAME(name8),]]
 [TERMINATE_PROTECTED(name1),] [TPURGE(name1),]
 [TRANNUM(name4 | string | ‘string'),]
 [TRAN_PRIORITY(name1),]
 [TRAN_ROUTING_PROFILE(name8),]
 [TRANSACTION_ID(name4),]
 [USERID(name8),]
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

The descriptions of the following parameters are the same as the corresponding parameters on the
INQUIRE_TRANDEF function call.

DTIMEOUT
DYNAMIC
INITIAL_PROGRAM
REMOTE
REMOTE_NAME
REMOTE_SYSTEM
RESTART
SPURGE
STATUS
TCLASS
TRAN_ROUTING_PROFILE
TRANSACTION_ID

The parameter descriptions that follow explain briefly the possible values that can be returned
on an INQUIRE_TRANSACTION call. For a more detailed explanation of these parameters, see the
corresponding parameter descriptions for the TRANSACTION resource definition in TRANSACTION
attributes.

ATTACH_TIME(name8)
returns the time in milliseconds since the task was attached.

Chapter 16. Transaction management XPI functions 117

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/transaction/dfha4_attributes.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/transaction/dfha4_attributes.html

name8
The name of an 8-byte location to receive the time, in packed decimal ABSTIME format.

CICS_UOW_ID(name8)
returns the CICS unit of work identifier for the task.
name8

The name of an 8-byte location to receive the unit of work id.
FACILITY_NAME(name4)

returns the name of the principal facility associated with the task.
name4

The name of a 4-byte location to receive the name of the principal facility.
FACILITY_TYPE(name1)

returns, in a 1-byte location (name1), an equated value indicating the type of principal facility
associated with the task.
XMIQ_NONE

There is no principal facility.
XMIQ_START

The principal facility is an interval control element.
XMIQ_TD

The principal facility is a transient data queue.
XMIQ_TERMINAL

The principal facility is a terminal.
NETNAME(name8)

returns the network name of the principal facility associated with this task.
name8

The name of an 8-byte location to receive the network name.
ORIGINAL_TRANSACTION_ID(name4)

returns the transaction id that was used to attach the transaction. For example, if an alias was used at
a terminal, this field returns the alias.
name4

The name of a 4-byte location to receive the name of the original transaction identifier.
OUT_TRANSACTION_TOKEN(name8)

returns the token that represents the task.
name8

The name of an 8-byte location to receive the transaction token for the task.
RE_ATTACHED_TRANSACTION(name1)

returns, in a 1-byte location (name1), an equated value indicating whether the transaction has been
re-attached.
XMIQ_NO

The transaction has not been re-attached and the global user exit program is invoked in the same
environment as the original transaction-attach.

XMIQ_YES
The transaction has been re-attached and the global user exit program is invoked in a different
environment from the original transaction-attach.

RESOURCE_NAME(name16)
returns the name of a resource that the (suspended) transaction waiting for.
name16

The name of an 16-byte location to receive the name of the resource on which the transaction is
waiting.

118 CICS TS for z/OS: XPI Function Reference

RESOURCE_TYPE(name8)
returns the type of resource that the (suspended) transaction waiting for.
name8

The name of an 8-byte location to receive the type of resource on which the transaction is waiting.
RESTART_COUNT(name2 | (Rn))

returns the number of times this instance of the transaction has been restarted.
name2

The name of a 2-byte location to receive the number of times the transaction has been restarted,
expressed as a half-word binary value.

(Rn)
A register to receive the number of times the transaction has been restarted, expressed as a
half-word binary value.

START_CODE(name1)
returns, in a 1-byte location (name1), an equated value indicating how the task was started:
C

A CICS internal attach.
XMIQ_DF

The start code isn't yet known—to be set later.
XMIQ_QD

A transient data trigger level attach.
XMIQ_S

A START command without any data.
XMIQ_SD

A START command with data.
XMIQ_SZ

A front end programming interface (FEPI) attach.
XMIQ_T

A terminal input attach.
XMIQ_TT

A permanent transaction terminal attach.
SUSPEND_TIME(name4 | (Rn))

returns the length of time that the task has been in its current suspended state.
name4

The name of a 4-byte location to receive the number of seconds, rounded down, the task has been
suspended, expressed as a binary value.

(Rn)
A register to receive the number of seconds, rounded down, the task has been suspended,
expressed as a binary value.

SYSTEM_TRANSACTION(name1)
returns, in a 1-byte location (name1), an equated value indicating whether the task is CICS system
task.
XMIQ_NO

The task is not a CICS system task.
XMIQ_YES

The task is a CICS system task.
TASK_PRIORITY(name1)

returns the combined task priority, which is the sum of the priorities defined for the terminal,
transaction, and operator.
name1

The name of a 1-byte location to receive the task priority, expressed as a binary number.

Chapter 16. Transaction management XPI functions 119

TERMINATE_PROTECTED(name1)
returns, in a 1-byte location (name1), an equated value indicating whether the transaction can be
killed.
XMIQ_NO

The transaction can be killed.
XMIQ_YES

The transaction cannot be killed.
TRANNUM(name4)

returns the task number of the transaction.
name4

The name of a 4-byte location to receive the task number.
TRANSACTION_TOKEN(name8)

specifies the transaction token for the task being inquired upon. This parameter is optional, and if
omitted, the current task is assumed.

If you issue this call within an XXMATT global user exit program, the current task may be a CICS
system task. To inquire on the user task for which XXMATT is invoked, you must specify the
transaction token passed on the XXMATT exit-specific parameter list.
name8

The name of an 8-byte location that contains the transaction token.

USERID(name8)
returns the userid associated with this task.
name8

The name of an 8-byte location to receive the userid.

RESPONSE and REASON values for INQUIRE_TRANSACTION
RESPONSE REASON

OK None

DISASTER ABEND

LOOP

INVALID None

EXCEPTION NO_TRANSACTION_ENVIRONMENT

BUFFER_TOO_SMALL

INVALID_TRANSACTION_TOKEN

KERNERROR None

The SET_TRANSACTION call
The SET_TRANSACTION function is provided on the DFHXMIQX macro call. Its purpose is to allow you to
change the task priority and transaction class of the current task.

Note that you can use this call to change the TCLASS_NAME only when it is invoked from an XXMATT
global user exit program.

SET_TRANSACTION

DFHXMIQX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(SET_TRANSACTION),
 [TASK_PRIORITY(name4),]

120 CICS TS for z/OS: XPI Function Reference

 [TCLASS_NAME(name8),]
 [TRANSACTION_TOKEN(name8),]]
 [OUT,
 RESPONSE (name1 | *),
 REASON (name1 | *)]

This command is threadsafe.

TASK_PRIORITY(name4)
specifies the new task priority being set for the task identified by TRANSACTION_TOKEN.
name4

The name of a 4-byte location that contains the new task priority number, expressed as a binary
value.

TCLASS_NAME(name8)
specifies the new transaction class name that you want to associate this task with. To specify that the
task is not to be in any transaction class, specify the special default system name DFHTCL00.
name8

The name of an 8-byte location that contains the name of the new transaction class. Set this field
to DFHTCL00 for no transaction class.

TRANSACTION_TOKEN(name8)
specifies the transaction token that represents the task being modified. If you omit this parameter, the
call defaults to the current task.
name8

The name of an 8-byte location that contains the transaction token.

RESPONSE and REASON values for SET_TRANSACTION
RESPONSE REASON

OK None

EXCEPTION NO_TRANSACTION_ENVIRONMENT

UNKNOWN_TCLASS

INVALID_TRANSACTION_TOKEN

DISASTER ABEND

LOOP

INVALID None

KERNERROR None

Chapter 16. Transaction management XPI functions 121

122 CICS TS for z/OS: XPI Function Reference

Chapter 17. User journaling XPI function
The XPI provides one user journaling function, which is the DFHJCJCX call WRITE_JOURNAL_DATA.

Restriction: DFHJCJCX calls cannot be used in any exit program invoked from any global user exit point in
the:

• Statistics domain
• Monitor domain
• Dump domain
• Dispatcher domain
• Transient data program.

The WRITE_JOURNAL_DATA call
WRITE_JOURNAL_DATA writes a single journal record to the journal specified in the journal model
definition that matches the journal name (either a journal on an MVS system logger log stream, an SMF
data set, or no record is written where DUMMY is defined in the definition).

WRITE_JOURNAL DATA

DFHJCJCX [CALL,]
 [CLEAR,]
 [IN,
 FUNCTION(WRITE_JOURNAL_DATA),
 FROM(block-descriptor),
 JOURNALNAME(name8 | string | 'string') |
 JOURNAL_RECORD_ID(name2 | string | 'string'),
 WAIT(YES|NO),
 [RECORD_PREFIX(block-descriptor),]]
 [OUT,
 RESPONSE(name1 | *),
 REASON(name1 | *)]

This command is threadsafe.

Important
There is a restriction in using the XPI early during initialization. Do not start exit programs that use the
XPI functions TRANSACTION_DUMP, WRITE_JOURNAL_DATA, MONITOR, and INQUIRE_MONITOR_DATA
until the second phase of the PLTPI. For further information about the PLTPI, refer to Writing initialization
and shutdown programs .

FROM(block-descriptor)
specifies the address and the length of the journal record.

The block-descriptor comprises 8 bytes of data. The first 4 bytes hold the address of the data to
be written. The second 4 bytes hold the length of the data. The block-descriptor is moved by the
DFHJCJCX macro call to the location JCJC_FROM, which is mapped by the DFHJCJCY DSECT.

JOURNALNAME(name8 | string | "string")
specifies the name of the CICS journal or log to which the FROM data is to be written.

JOURNAL_RECORD_ID(name2 | string | "string")
specifies a 2-character value to be written to the journal record to identify its origin.
name2

The name of a 2-byte location

© Copyright IBM Corp. 1974, 2023 123

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha35h.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha35h.html

string
A character string that is limited to a length of 2 in the generated code

"string"
A character string enclosed in quotation marks, limited to a length of 2 in the generated code.

RECORD_PREFIX(block-descriptor)
specifies the optional user prefix.

WAIT(YES|NO)
specifies whether CICS is to wait until the record is written to the journal or log before returning
control to the exit program.

RESPONSE and REASON values for WRITE_JOURNAL_DATA
RESPONSE REASON

OK None

EXCEPTION IO_ERROR

JOURNAL_NOT_FOUND

JOURNAL_NOT_OPEN

LENGTH_ERROR

STATUS_ERROR

DISASTER None

INVALID None

KERNERROR None

PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in Making an XPI call.

124 CICS TS for z/OS: XPI Function Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33s.html

Chapter 18. Threadsafe XPI commands
Most, but not all, XPI commands are threadsafe. Issuing any of the non-threadsafe commands causes
CICS to use the QR TCB to ensure serialization.

The XPI commands that are threadsafe are indicated in the command syntax diagrams in with the
statement: "This command is threadsafe", and are listed here.

Threadsafe commands
• DFHAPIQX INQ_APPLICATION_DATA
• DFHBRIQX INQUIRE_CONTEXT
• DFHDDAPX BIND_LDAP
• DFHDDAPX END_BROWSE_RESULTS
• DFHDDAPX FLUSH_LDAP_CACHE
• DFHDDAPX FREE_SEARCH_RESULTS
• DFHDDAPX GET_ATTRIBUTE_VALUE
• DFHDDAPX GET_NEXT_ATTRIBUTE
• DFHDDAPX GET_NEXT_ENTRY
• DFHDDAPX SEARCH_LDAP
• DFHDDAPX START_BROWSE_RESULTS
• DFHDDAPX UNBIND_LDAP
• DFHDSATX CHANGE_PRIORITY
• DFHDSSRX ADD_SUSPEND
• DFHDSSRX DELETE_SUSPEND
• DFHDSSRX RESUME
• DFHDSSRX SUSPEND
• DFHDSSRX WAIT_MVS
• DFHDUDUX SYSTEM_DUMP
• DFHJCJCX WRITE_JOURNAL_DATA
• DFHKEDSX START_PURGE_PROTECTION
• DFHKEDSX STOP_PURGE_PROTECTION
• DFHLDLDX ACQUIRE_PROGRAM
• DFHLDLDX DEFINE_PROGRAM
• DFHLDLDX DELETE_PROGRAM
• DFHLDLDX IDENTIFY_PROGRAM
• DFHLDLDX RELEASE_PROGRAM
• DFHLGPAX INQUIRE_PARAMETERS
• DFHLGPAX SET_PARAMETERS
• DFHMNMNX INQUIRE_MONITORING_DATA
• DFHMNMNX MONITOR
• DFHNQEDX DEQUEUE
• DFHNQEDX ENQUEUE
• DFHPGAQX INQUIRE_AUTOINSTALL

© Copyright IBM Corp. 1974, 2023 125

• DFHPGAQX SET_AUTOINSTALL
• DFHPGISX END_BROWSE_PROGRAM
• DFHPGISX GET_NEXT_PROGRAM
• DFHPGISX INQUIRE_CURRENT_PROGRAM
• DFHPGISX INQUIRE_PROGRAM
• DFHPGISX SET_PROGRAM
• DFHPGISX START_BROWSE_PROGRAM
• DFHSAIQX INQUIRE_SYSTEM
• DFHSAIQX SET_SYSTEM
• DFHSMMCX GETMAIN
• DFHSMMCX FREEMAIN
• DFHSMMCX INQUIRE_ELEMENT_LENGTH
• DFHSMMCX INQUIRE_TASK_STORAGE
• DFHSMSRX INQUIRE_ACCESS
• DFHSMSRX INQUIRE_SHORT_ON_STORAGE
• DFHSMSRX SWITCH_SUBSPACE
• DFHTRPTX TRACE_PUT
• DFHXMCLX INQUIRE_TCLASS
• DFHXMIQX INQUIRE_TRANSACTION
• DFHXMIQX SET_TRANSACTION
• DFHXMSRX INQUIRE_DTRTRAN
• DFHXMSRX INQUIRE_MXT
• DFHXMXDX INQUIRE_TRANDEF

Non-threadsafe commands
• DFHDUDUX TRANSACTION_DUMP

126 CICS TS for z/OS: XPI Function Reference

Notices

This information was developed for products and services offered in the United States of America. This
material might be available from IBM in other languages. However, you may be required to own a copy of
the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119 Armonk,
NY 10504-1785
United States of America

© Copyright IBM Corp. 1974, 2023 127

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Client Relationship Agreement, IBM International Programming License
Agreement, or any equivalent agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions.
Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information
IBM CICS supplies some documentation that can be considered to be Programming Interfaces, and some
documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS
Transaction Server for z/OS, Version 5 Release 6 (CICS TS 5.6) are included in the following sections
of the online product documentation:

• Developing applications
• Developing system programs
• CICS TS security
• Developing for external interfaces
• Application development reference
• Reference: system programming
• Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS TS 5.6, but that might
be misconstrued as Programming Interfaces, is included in the following sections of the online product
documentation:

• Troubleshooting and support
• CICS TS diagnostics reference

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the
customer to write programs to obtain the services of CICS TS 5.6 are included in the following manuals:

• Application Programming Guide and Application Programming Reference
• Business Transaction Services

128 Notices

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/developing_sysprogs.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/security.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/interfaces/externalInterfaces.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/reference-programming.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/home/reference-systemprogramming.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-connectivity/reference-connections.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/troubleshooting.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/home/reference-diagnostics.html

• Customization Guide
• C++ OO Class Libraries
• Debugging Tools Interfaces Reference
• Distributed Transaction Programming Guide
• External Interfaces Guide
• Front End Programming Interface Guide
• IMS Database Control Guide
• Installation Guide
• Security Guide
• CICS Transactions
• CICSPlex System Manager (CICSPlex SM) Managing Workloads
• CICSPlex SM Managing Resource Usage
• CICSPlex SM Application Programming Guide and Application Programming Reference
• Java™ Applications in CICS

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to
be used as a Programming Interface of CICS TS 5.6, but that might be misconstrued as Programming
Interfaces, is included in the following manuals:

• Data Areas
• Diagnosis Reference
• Problem Determination Guide
• CICSPlex SM Problem Determination Guide

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Apache, Apache Axis2, Apache Maven, Apache Ivy, the Apache Software Foundation (ASF) logo, and the
ASF feather logo are trademarks of Apache Software Foundation.

Gradle and the Gradlephant logo are registered trademark of Gradle, Inc. and its subsidiaries in the United
States and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Red Hat®, and Hibernate® are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in
the United States and other countries.

Spring Boot is a trademark of Pivotal Software, Inc. in the United States and other countries.

Notices 129

https://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Zowe™, the Zowe logo and the Open Mainframe Project™ are trademarks of The Linux Foundation.

The Stack Exchange name and logos are trademarks of Stack Exchange Inc.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,
or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement
IBM Software products, including software as a service solutions, (Software Offerings) may use cookies or
other technologies to collect product usage information, to help improve the end user experience, to tailor
interactions with the end user or for other purposes. In many cases no personally identifiable information
(PII) is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect
PII. If this Software Offering uses cookies to collect PII, specific information about this offering’s use of
cookies is set forth below:

For the CICSPlex SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user’s user name and other PII for purposes of session management,
authentication, enhanced user usability, or other usage tracking or functional purposes. These cookies
cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect each user's user name and other PII for purposes of session management, authentication, or
other usage tracking or functional purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that do
not collect PII. These cookies cannot be disabled.

130 Notices

For CICS Explorer®:
Depending upon the configurations deployed, this Software Offering may use session and persistent
preferences that collect each user’s user name and password, for purposes of session management,
authentication, and single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the user's explicit action
to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect PII
from end users via cookies and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Privacy Policy and IBM Online Privacy Statement, the section entitled Cookies, Web Beacons and
Other Technologies and the IBM Software Products and Software-as-a-Service Privacy Statement.

Notices 131

https://www.ibm.com/privacy
https://www.ibm.com/privacy/details
https://www.ibm.com/software/info/product-privacy

132 CICS TS for z/OS: XPI Function Reference

Index

A
ACQUIRE PROGRAM function of the XPI 39
ADD SUSPEND function of the XPI 17
application context data 51

B
BIND_CHANNEL function of the XPI 84
BIND_LDAP function of the XPI 3
business application manager domain function of the XPI 1

C
CHANGE PRIORITY function of the XPI 18
COMMIT function of the XPI 61
COMMIT_ONE_PHASE function of the XPI 60

D
DEFINE PROGRAM function of the XPI 41
DELETE PROGRAM function of the XPI 44
DELETE SUSPEND function of the XPI 19
DEQUEUE function of the XPI 33
DFHAPIQX macro 85
DFHBABRX macro 1
DFHBRIQX macro 105
DFHDDAPX macro 3, 5–12
DFHDSATX macro 15
DFHDSSRX macro 15
DFHDUDUX macro 29
DFHJCJCX macro 123
DFHKEDSX macro 37
DFHLDLDX macro 39
DFHLGPAX macro 49
DFHMNMNX macro 51
DFHNQEDX macro 33
DFHOTCOX macro 63
DFHOTTRX macro 59–62
DFHPGAQX macro 67
DFHPGCHX macro 67
DFHPGISX macro 67
DFHSAIQX macro 87, 92
DFHSMMCX macro 95
DFHSMSRX macro 100
DFHTRPTX macro 103
DFHXMCLX macro 108
DFHXMIQX macro 117, 120
DFHXMSRX macro 106, 107
DFHXMXDX macro 109
directory domain functions of the XPI 3
dispatcher functions of the XPI 15
dump control functions of the XPI 29

E
END_BROWSE_PROGRAM function of the XPI 81
END_BROWSE_RESULTS function of the XPI 5
ENQUEUE 33
enqueue domain functions of the XPI 33

F
FLUSH_LDAP_CACHE function of the XPI 5
FREE_SEARCH_RESULTS function of the XPI 6
FREEMAIN function of the XPI 97

G
GET_ATTRIBUTE_VALUE function of the XPI 7
GET_NEXT_ATTRIBUTE function of the XPI 8
GET_NEXT_ENTRY function of the XPI 9
GET_NEXT_PROGRAM function of the XPI 80
GETMAIN function of the XPI 95

I
IDENTIFY_PROGRAM function of the XPI 45
IMPORT_TRAN function of the XPI 59
INQ_APPLICATION_DATA function of the XPI 85
INQUIRE APP CONTEXT function of the XPI 51
INQUIRE MONITORING DATA function of the XPI 52
INQUIRE_ACCESS function of the XPI 98
INQUIRE_ACTIVATION function of the XPI 1
INQUIRE_AUTOINSTALL function of the XPI 82
INQUIRE_CONTEXT function of the XPI 105
INQUIRE_CURRENT_PROGRAM function of the XPI 74
INQUIRE_DTRTRAN function of the XPI 106
INQUIRE_ELEMENT_LENGTH function of the XPI 99
INQUIRE_MXT function of the XPI 107
INQUIRE_PARAMETERS function of the XPI 49
INQUIRE_PROGRAM function of the XPI 67
INQUIRE_SHORT_ON_STORAGE function of the XPI 100
INQUIRE_SYSTEM function of the XPI 87
INQUIRE_TASK_STORAGE function of the XPI 100
INQUIRE_TCLASS function of the XPI 108
INQUIRE_TRANDEF function of the XPI 109
INQUIRE_TRANSACTION function of the XPI 117

K
kernel domain functions of the XPI 37

L
LIBRARYDSN option

INQUIRE_CURRENT PROGRAM command 76
loader functions of the XPI 39
log manager functions of the XPI 49

Index 133

M
MONITOR function of the XPI 53
monitoring

functions of the XPI 51

O
object transaction functions of the XPI 59

P
PREPARE function of the XPI 61
program management functions of the XPI 67

R
RELEASE PROGRAM function of the XPI 46
RENTPGM, system initialization parameter 41, 77
RESUME function of the XPI 19
ROLLBACK function of the XPI 62

S
SEARCH_LDAP function of the XPI 10
SET_AUTOINSTALL function of the XPI 83
SET_COORDINATOR function of the XPI 63
SET_PARAMETERS function of the XPI 49
SET_PROGRAM function of the XPI 76
SET_ROLLBACK_ONLY function of the XPI 62
SET_SYSTEM function of the XPI 92
SET_TRACKING_DATA function of the XPI 56
SET_TRANSACTION function of the XPI 120
START_BROWSE_RESULTS function of the XPI 11
START_PURGE_PROTECTION function of the XPI 37
state data access functions of the XPI 85
STOP_PURGE_PROTECTION function of the XPI 37
storage control functions of the XPI 95, 100
SUSPEND function of the XPI 20
SWITCH_SUBSPACE function of the XPI 101
SYSTEM DUMP function of the XPI 29
system initialization parameters

RENTPGM 41, 77

T
threadsafe XPI commands 125
trace control functions of the XPI 103
TRACE_PUT function of the XPI 103
TRANSACTION DUMP function of the XPI 30
transaction management functions of the XPI 105

U
UNBIND_LDAP function of the XPI 12
user journaling functions of the XPI 123

W
WRITE JOURNAL DATA function of the XPI 123

X
XPI (exit programming interface)

directory domain functions
BIND_LDAP 3
END_BROWSE_RESULTS 5
FLUSH_LDAP_CACHE 5
FREE_SEARCH_RESULTS 6
GET_ATTRIBUTE_VALUE 7
GET_NEXT_ATTRIBUTE 8
GET_NEXT_ENTRY 9
INQUIRE_ACTIVATION 1
SEARCH_LDAP 10
START_BROWSE_RESULTS 11
UNBIND_LDAP 12

dispatcher functions
ADD SUSPEND 17
CHANGE PRIORITY 18
DELETE SUSPEND 19
RESUME 19
SUSPEND 20
WAIT_MVS 24

dump control functions
SYSTEM DUMP 29
TRANSACTION DUMP 30

enqueue domain functions
DEQUEUE 33
ENQUEUE 33

journaling function
WRITE JOURNAL DATA 123

kernel domain functions
START_PURGE_PROTECTION 37
STOP_PURGE_PROTECTION 37

loader functions
ACQUIRE PROGRAM 39
DEFINE PROGRAM 41
DELETE PROGRAM 44
IDENTIFY_PROGRAM 45
RELEASE PROGRAM 46

log manager functions
INQUIRE_PARAMETERS 49
SET_PARAMETERS 49

monitoring functions
INQUIRE APP CONTEXT 51
INQUIRE MONITORING DATA 52
MONITOR 53
SET_TRACKING_DATA 56

program management functions
BIND_CHANNEL 84
END_BROWSE_PROGRAM 81
GET_NEXT_PROGRAM 80
INQUIRE_AUTOINSTALL 82
INQUIRE_CURRENT_PROGRAM 74
INQUIRE_PROGRAM 67
SET_AUTOINSTALL 83
SET_PROGRAM 76

state data access functions
INQ_APPLICATION_DATA 85
INQUIRE_SYSTEM 87
SET_SYSTEM 92

storage control functions
FREEMAIN 97
GETMAIN 95
INQUIRE_ACCESS 98

134 CICS TS for z/OS: XPI Function Reference

XPI (exit programming interface) (continued)
storage control functions (continued)

INQUIRE_ELEMENT_LENGTH 99
INQUIRE_SHORT_ON_STORAGE 100
INQUIRE_TASK_STORAGE 100
SWITCH_SUBSPACE 101

threadsafe commands 125
trace control function

TRACE_PUT 103
transaction management functions

COMMIT 61
COMMIT_ONE_PHASE 60
IMPORT_TRAN 59
INQUIRE_CONTEXT 105
INQUIRE_DTRTRAN 106
INQUIRE_MXT 107
INQUIRE_TCLASS 108
INQUIRE_TRANDEF 109
INQUIRE_TRANSACTION 117
PREPARE 61
ROLLBACK 62
SET_COORDINATOR 63
SET_ROLLBACK_ONLY 62
SET_TRANSACTION 120

Index 135

136 CICS TS for z/OS: XPI Function Reference

IBM®

	Contents
	About this PDF
	Chapter 1. Business application manager domain XPI function
	The INQUIRE_ACTIVATION call

	Chapter 2. Directory domain XPI functions
	The BIND_LDAP call
	The END_BROWSE_RESULTS call
	The FLUSH_LDAP_CACHE call
	The FREE_SEARCH_RESULTS call
	The GET_ATTRIBUTE_VALUE call
	The GET_NEXT_ATTRIBUTE call
	The GET_NEXT_ENTRY call
	The SEARCH_LDAP call
	The START_BROWSE_RESULTS call
	The UNBIND_LDAP call

	Chapter 3. Dispatcher XPI functions
	Synchronization protocols for SUSPEND and RESUME processing
	The normal synchronization protocol
	The synchronization protocol and task purge

	The ADD_SUSPEND call
	The CHANGE_PRIORITY call
	The DELETE_SUSPEND call
	The RESUME call
	The SUSPEND call
	The WAIT_MVS call

	Chapter 4. Dump control XPI functions
	The SYSTEM_DUMP call
	The TRANSACTION_DUMP call

	Chapter 5. Enqueue domain XPI functions
	The DEQUEUE function
	The ENQUEUE function

	Chapter 6. Kernel domain XPI functions
	The START_PURGE_PROTECTION function
	The STOP_PURGE_PROTECTION function
	Nesting purge protection calls

	Chapter 7. Loader XPI functions
	The ACQUIRE_PROGRAM call
	The DEFINE_PROGRAM call
	The DELETE_PROGRAM call
	The IDENTIFY_PROGRAM call
	The RELEASE_PROGRAM call

	Chapter 8. Log manager XPI functions
	The INQUIRE_PARAMETERS call
	The SET_PARAMETERS call

	Chapter 9. Monitoring XPI functions
	The INQUIRE_APP_CONTEXT call
	The INQUIRE_MONITORING_DATA call
	The MONITOR call
	The SET_TRACKING_DATA call

	Chapter 10. Object transaction XPI functions
	The IMPORT_TRAN call
	The COMMIT_ONE_PHASE call
	The PREPARE call
	The COMMIT call
	The ROLLBACK call
	The SET_ROLLBACK_ONLY call
	The SET_COORDINATOR call

	Chapter 11. Parameter domain XPI functions
	The INQUIRE_FEATUREKEY call

	Chapter 12. Program management XPI functions
	The INQUIRE_PROGRAM call
	The INQUIRE_CURRENT_PROGRAM call
	The SET_PROGRAM call
	The START_BROWSE_PROGRAM call
	The GET_NEXT_PROGRAM call
	The END_BROWSE_PROGRAM call
	The INQUIRE_AUTOINSTALL call
	The SET_AUTOINSTALL call
	The BIND_CHANNEL call

	Chapter 13. State data access XPI functions
	The INQ_APPLICATION_DATA call
	The INQUIRE_SYSTEM call
	The SET_SYSTEM call

	Chapter 14. Storage control XPI functions
	The GETMAIN call
	The FREEMAIN call
	The INQUIRE_ACCESS call
	The INQUIRE_ELEMENT_LENGTH call
	The INQUIRE_SHORT_ON_STORAGE call
	The INQUIRE_TASK_STORAGE call
	The SWITCH_SUBSPACE call

	Chapter 15. Trace control XPI function
	The TRACE_PUT call

	Chapter 16. Transaction management XPI functions
	The INQUIRE_CONTEXT call
	The INQUIRE_DTRTRAN call
	The INQUIRE_MXT call
	The INQUIRE_TCLASS call
	The INQUIRE_TRANDEF call
	The INQUIRE_TRANSACTION call
	The SET_TRANSACTION call

	Chapter 17. User journaling XPI function
	The WRITE_JOURNAL_DATA call

	Chapter 18. Threadsafe XPI commands
	Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	W
	X

