CICS Transaction Server for z/OS
5.6

Java Applications in CICS

.||I

Note

Before using this information and the product it supports, read the information in Product Legal Notices.

This edition applies to the IBM® CICS® Transaction Server for z/OS®, Version 5 Release 6 (product number 5655-
Y305655-BTA) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1974, 2023.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/docs/cics-ts/latest?topic=available-notices

Contents

AbouUt this PDF.......c.ccuiiiiiiiiiiiiiiieiiiiiiiiiiietiesietiestetscssssssssssesssssssssssassssssssssssnnse vii
Chapter 1. CICS and JaVa.....ccceteieiierieceiierataniecsstessecastesssssssessssessssassessssssssssssasssans 1
The OSGi SErVICE PLatfOrM..ciciiiciieieiiieiieeie ettt sttt sttt st e e e st e s sbe e sabe s beesanessbeessaessseensaesnsesnsaenns 3
JVM Server runtime ENVIFONMENT....ciiiiiiieerteeiteeseeesteestee st et eseessseesseesseesseesssessseessseensessssessseesssessseessaens 4
LY oY o] 11 L= U 6
STIUCEUIE OF @ JVM.uiiiiiiiiicie ettt ettt s e st e st e st e e ae e s be e s baesabe e baesabeesbaesaseesbaesssesnseenseesnseenseens 7
Classes and Class Paths IN JVMS ...t e s e e e ve e e s ba e e s tee s sbae e s baeesvaeeenes 7

Y Lo =Y (cl aT=T=T TR [TR AV F- S 8
Where JVMS are CONSIIUCTEM.c..uiiiiiiiiriieeieeeeeie ettt sre st e sie e st e sbeesbeebeesetesbaesasessseessnesnsasnsasnnns 8
CICS task and thread ManagEMENt.......cccciiiiciiieiciie ettt e et e e ete e e s tee e e te e eesteeseateeesnseeesnsaeesssaeanns 9
ShArEd ClaSS CACNE.....iiiiiiiiiie ettt st e s e st e e s ab e s be e s ae e sateesbaesaseesbeesaseebaesaseenses 11
Which JVM server to use: Liberty JVM or OSGi JVM? ...ttt ettt e tee e vee s evee et e 11
Java applications that comply With OSGi......ccccuuiiiiiiieiiiecieeeceeece e e sre e e ste e e ee e 13
Java applications in @ LIDEIrtY JVM SEIVETcccui ittt et ctee e e tee e s tee e e vae e e bae e s bee e e vaeeeareas 16
JAVA WED SEIVICES. . eiuiiitiiiieitieite st et e sttt st e sttt sbeesttesbeesbeesate e baesateenbeesaseesbeesaseebeesasesnseesssesnseenssesnsesnses 17
SPring BoOt SUPPOIt iN CICS....coiieeciieecceeeette et etee e etee e e te e e e e e e steeeebaeesbaeesasaeesnsasesnsaeesnseeeensaeessanennes 20
Chapter 2. CICS management client interface (CMCI).....ccccceuvieiieiieniecenceeceeneecnenes 23
HOW it WOTKS: CMCI REST APL....iiiiiiiiiteeieeteseesieeeestesseessessesseessesseessesssessesssessesssesssessessssssesseessesssessennns 25
How it WOrks: CMCI GraphQL APT.....o ettt ee e e rtee e e tee e s stee e e bae e e abee e eabaeesnbeeesnsaeennses 25
How it works: CICS bundle deploymeEnt APL.........cociiiieiiiieiee et eeteeeeteeeeteeeetee e aeeseteessstaessssaeenes 32
CMCI security features: How CMCI authenticates ClientS......cccueieciiecciiicceecceeece e e 35
Chapter 3. Developing Java applicationscccccieienieniiniiniieiienieiieiieiieniececeecsenes 37
Java runtime environNMENT iN CICScooiiiiiiiiienieiitente st erte sttt esbe s e e ste e beesaresbeesssessbeesssessseenseesssenne 37
Setting up your development ENVIFONMENT........cuii ittt eete e eete e eerae e s eareeeeaaeesereeessaeeeans 38
Developing applications using the IBM CICS SDKS......ccccuieeiiieeiiieeeiieeeiteeecreesireeessveessseesssseessssessssseenns 39
Setting Up the Target PLatform.. . ettt e st e s e te e e re e e a e e e abae e anaeans 40
Creating @ PLUG-IN PrOJECT.. ..ttt ettt e et e et e e s te e e e tee e e taeeebaeesasaeessseeeessaeeansesennseeens 41
Updating the plug-in project Manifest file......cuiiiiiiieece e 42
Creating a Java EE appliCatioN.....cccciii ettt et tee e vee e e te e s s e e e s e e e e e e e nreas 43
Adding a project to a CICS buNALE PrOJECT.....ciiciie ettt re e e e eree e e ree e e 44
Updating the project build Path...... ..o e e e s 46
Managing Java dependencies USing Gradle OF MAVEN......ccccuiiecieeiciee ettt eete e e te e eeate e e errae e 46
Declaring Java dependencies USING Gradle.......cccicceeieceeeeiiecciee et ee e vee e vee e vee e e e e 48
Declaring Java dependencCies USING MaVEN........cccuieeciieeeiieecieeeeteeeeteeesteeesteeesteesssaeesasaeeenseeesaseens 51
Manually importing JAVa LIDrari©S.....ccuee e cceee ettt et e et e et e s te e s ate e s ate e s sba e e nsaessseesnseean 54
Considerations for @ SNArEd VM. ...ciiiiiiriiceeeteee ettt sttt ettt sbe e sate e be e sabesbeesanesbeenanesnsean 55
Java development USING JCICS.... ...ttt e eette e e ttee s tte e s steesssteesesteesesteesaseaesnsseesnssessnssasannes 55
T EAS ¢ttt eteerte ettt ettt ettt e e et s e st e s bt e st e e be e st e e bee s e ae e be e s et e et e e ea b e e beenhee e be e bae e te e aeeeateebaenaes 57
DN =T a ol o 1 3= USSR 58
JCICS API SErviCes and EXAMPLES....ccccuiiieiiieeiieeeiieeerte e et e este e e ste e e ste e e abeeesateessabeeesnseeesnsaeennsaesnnseas 58
CICS exception handling in JCICS PrOSrams ...ccueeecieeeeieeeeieeeereeeeteeeeteeessseesssseessssesssssessssssssssessnnes 80
Java development USING JCICSX. ...t iiiiieiieeeiiee et e eiteeesre e e teeesbe e e aae e s abae e asaeesnsaeanssaeasssaeesnseeensseesnnses 87
JCICSX EXAMPLES..eeeitiieeitieeectee ettt e et e ecte e eette e e etteeseteeesabeeesesteesseeesseeesasaeessaeesnsaeesssaessaeesassassnseeasans 91
GUIANCE FOr USING OSGieiicuieiieiieieiieieieeeeieeeeteeeeteeee e e sete e e etteeeeatee s steesesteeesteeesseeenssessnssassnnsesessesensens 93
Developing Java applications to run in a Liberty JVM SErver.......ci e eccee et eete e et 95
] oY A £T= Y (U] T TS 95
Java EE and Liberty appliCatioNS.......ciiciii ittt te e et te e s eatee e nteesente e sentaeenns 116

Migrating Java EE applications to run in Liberty JVM SErverieiriieinieeeeieesee e ssee s 121

Linking to Java applications in a Liberty JVM server by using the @CICSProgram annotation......122
Java TranSACTION APT (JTA) ..uiicieeieeceeeie st eeee st e eesteesreeste e seesrte e beesseeenseesseeensessseesnsaasseesssesnseennes 130
JaVA PErSISTENCE APT (JPA) .. iiicieeieeete et et e e e et e s te s ste e srte s te e s e e ssaeesseesasa e seessseesseesseeensesseesssesses 131
Enterprise JAVaBEaANS (EJB).......ccccuiieeiiieeiiieeiieeecteeeciteeesteeeeteeesseeeesseeeesseessaseessssaeeensaseansessanseesanses 133
Java MESSAZE SEIVICE (TMS) ... iiiiiieieeite et erte et te et see et e e s e e steesbe e sate e beesaseenseesseeenteeseesnsesnsen 141
Java Management EXtENSIONS APT (JMX) ..ccuiiiuieiiiicieecieeseeste et e seeeteeseeeeteesaeeste e veesneeeseesseeeeeas 142
Java Authorization Contract for Containers (JACC).....ccueeceeeeeeceenieereeseeeeeeseeseeseeseeseeesseesneeas 143
Java Authentication Service Provider Interface for Containers (JASPIC).....ccccecveevveeeceeneeseeeveenne 144
Java EE Connector ArChiteCtUre (JCA) . i eeiieeieesttee e et esee s e e ee s teesreeese e seesaaeesseessaesnseesneenn 145
Developing microservices With MiCrOPIOfIle.......occiiiiiiiiiiiiiee ettt 157
Yol [aT=0=ToTo) a1 o] o] [Tor=1 1 o] - TSP 166
Liberty Web SEIrVEr PLUS=INM.....iiiiiiiciee ittt et e s saee e s sate e st e e ssateesssteesentaessnsaesaseaesnns 173
Context and Dependency INJE@CHION (CDI)....c..ciiciiieeiiieeeciee et et e teeee e e e e e e reeeebe e e e beeeeseeaenseeans 173
Accessing data from Java apPLliCAtIONS ...eccviiicieiiiiie ettt eee e seee e seree e sereeesereeesseeesreaesane 175
Interacting with structured data from Java......coiiiieiniee e s s 175
Developing Java applications to use the JZOS Toolkit API in an OSGi JVM Server.......cccvveeriveeriveenn. 176
Accessing IBM MQ from JaVa PrOSramSeeeeveeirrieeieiieessieessieessseeessssessssseessssesssssessssssessssesssssesssssasssnes 178
Using IBM MQ classes for IMS in a CICS Liberty JVM SErver ... ciieviiieriieeriieessieessieesseeesseeenns 179
Using IBM MQ classes for IMS in an OSGi JVM SEIVE.......ciieieiiivieiiiieeniieessieessieeessieeesseesssseeesneas 182
Using IBM MQ classes for Java in @an OSGi JVM SEIVET ...cccuiiveiieiiieeriieencieessieeseieeeseieeeseseesseneeesans 186
Connectivity from Java applications in CICScoiiiciiiiee ettt e e e e e e e e s e ebe e e e e e raneeeenas 187
[0 (o o= 1R = 0 I U] o] o o] F5 S 188
Packaging existing applications t0 run iN @ JVM SEIVET.......uiivciiiriieieiieeeiieeeite s esieeeseeeesreeesreeesveessnes 188
MoVing apPliCAtioNS 10 @ JVM SEIVET....cuiiiiiieieiie ettt sttt ettt e et e s s ee e s sbee s sbae s sbaesssaessasaeenns 188
Converting an existing Java project to a plug-in Project....cccccccvrieiriieiniienniesree e 189
Importing the contents of a JAR file into an OSGi plug-in Project......cccceeviciieriiieeriiieeniieessieesneeenn 191
Importing a binary JAR file into an OSGi plUg-iN ProjECT......coiciiiiiieeriieeeiieeete et eiee e seee e 193
Writing Java classes to redirect JVM stdout and stderr OUTPULcccveiviiiieiieeiiieececcee e 195
The output redir€CtioN INTEITACE.iii i e e e e e e e s e e ar e e e e e enaaeeeean 196
Possible destinations fOr QUIPUL......iiic i e e e be e e e e nre e e e e ennaeee e s 197
Handling output redirection errors and internal €rrorS.......covcveivcieeieier et 197

Chapter 4. Deploying applications to a JVM Server.....c.ccccvieeieecnecnecrecrennecseccaceees 199

Deploying OSGi buNdLeS iN @ JVM SEIVE.....uiiiciiiicieerciee ettt e ssrteeserteeseiteeseaeeeseseeessteesasaeessseessaseeesans 199
Deploying a Java EE application in a CICS bundle to a Liberty JVM Server......ccccovvervveeriveesiveessnneens 201
Deploying Java EE applications directly to a Liberty JVM SErver....cccceeirieeiniieeniiesseeeseeessee e 202
Deploying common libraries t0 a Liberty JVM SEIVET......cocciiieiiiiiiieicieeeieeseiee e sere e sseeesseeessaeeesans 204
Invoking a Java application iN @ JVM SEIVET.....cuuiiiiiieiiieeenite ettt sttt e s e s s e e s sbe e s saseeesbeessaneas 204
Deploying a CICS non-0SGi Java appliCatioN......ccceeecieeieieiiiiee ittt sieeesee e siee e saee s svee s sreeessneas 205
Chapter 5. Setting up Java SUPPOIt.....cccccieiiiiiiiienieirenieiiniincincncsecsessessessessesees 207
Setting the location fOr the JVM ProfileS.....uu ittt e 207
Setting the MemMOry LIMITS fOr JAVA. ..ottt e s e seate e s seeeseneaesanee 208
Giving CICS regions access to z/OS UNIX directories and fileS.......cccevrveeinieeinieeiniieeneecsee e 209
SETHNG UP @ JVM SEIVET et iuiieiiie ittt et e sttt s st e s te e s te e s steeseate e s sbeesstaesssteesaseaessnsaesanseesasseesnnes 211
Configuring an OSGi JVM SEIVE ...uuiiiiiiiieiee ettt ssie e ssteessteessateessaee s ssseeessstesssteessseeessseessnseessnseessnsens 212
Configuring @ LIDEITY JVM SEIVEN.....uuiiiiiiiiie ettt ettt ste e seaee e saee e seaee e seneeesseeesseeesneaesans 218
Configuring @ JVM SEIVEE fOF AXIS2..cieuiiieiiiieeiitieeiittesiteessiteessteessaeessseesssbeeessaeeessseaessseeesnseeesssenesnnens 235
Configuring a JVM server for a CICS Security TOKEN SEIVICE....cccciiiriiierriieinieireeesee e see e 237
JVM profile validation and PrOPEItiES.. .. it e eccttee et e e e e rrre e e e e b e e e s senbeaeeseesreeeesennns 238

Chapter 6. Updating OSGi bundles in @ JVM Server......ccccccervirnininecnecnecnecrennenesss 265

Updating OSGi bundles in an OSGi JVM SEIVET.....ccuiiirciiieiieieiieeeiteessiteesieesssreesssseesssaesssaessseesssseesnns 266
Using CICS bundle PHASEIN to dynamically update an OSGi bundle without updating CICS
S OUICES. . eteeeeuutteeeeeattteeeeaaurteeeeeuntteeesaaeeeeeaaus et e eeaauneaeeesannseteeaaasseeeeeenneeeeeeanneeaesaanseaeesaanneaeessanns 266

Phasing in an OSGi bundle with CICS resource Changes.......cccvvcieerceeriiieeniieenceeeseessseeessvee e e 267

Replacing OSGi bundles in @an OSGi JVM SEIVET......cccciiiiiiiieiieieieeeite e essee s ssieeesseeessseesssreeessnees 268
Updating bundles that contain common LIBraries. ...t 268
Updating OSGi middleware BUNALES.......coiciiiiiiiiiie ettt saee e seree e ssree e sneeesans 270

Chapter 7. Removing OSGi bundles from a JVM server.......ccccccereeirecrncnnninennnenna 271
Chapter 8. Updating Enterprise Java applications in a Liberty JVM server........... 273
Chapter 9. Managing the thread limit of JVM servers........ccccccereeireirniiniincinenns. 275

Chapter 10. Security for Java applications......ccccccccieireieiieinieniececiecncceciececeneecenean 277

Configuring security for OSGi apPliCATIONS.....uiiiiiiiiciee ettt see e sbee e s aees 277
Configuring security for @ LIDErTY JVM SEIVET.......iii ittt sttt e st e s e s ae s 277
The LiDErty angGel PrOCESS. ..cicuiiiiiie ittt sttt sttt st e st e s te e s sabe e s sabeessateesastaessnbaesanseesnsseens 280
Authenticating users in @ LIDErty JVM SEIVET......cciiivcieiiieeeieeete st saee s siee s s sbe e s s e e s 284
Authorizing users to run applications in a Liberty JVM SErver......ieirieeiniieinieesseesseessieeenn 286
Authorizing applications by USINg QAU 2.0....c.c.uiiiiiiiiiiieiiieeieeeee et e e ae e s 287
Authorization USing SAF role MaPPiNG. ... ueeiciieiiiieriiteriieeesrtessieessreessrtessbeessbeessreessbeessseessases 290
Configuring security for a Liberty JVM server with the Enterprise Java security APL.........ccccoeuuen. 291
Configuring security for a Liberty JVM server by using an LDAP registry.....ccccccveveeieveennvieennseeennnne 296
Configuring security for remote JCICSX API development.. ... vcieiicieiiciieeniieesciee e siee e 299
Configuring SSL (TLS) for a Liberty JVM server using a Java Keystore.......ccocveeeerveeeceeseescieesneennne. 304
Configuring SSL (TLS) for a Liberty JVM server USing RACF.........oicieiieeciereecceecee e svee e 305
Configuring SSL (TLS) for remote JCICSX API development......ccceeceeecieeniesieesee e 306
Setting up SSL (TLS) client certificate authentication in a Liberty JVM server........cccceeveevieerveennen. 309
Using the syncTOOSThread FUNCLIONiiiiciiiiciiecctecete ettt ee e s sbe e s sbe e s sraessnne 310
ENabling @ Java SECUNTY MaNAEET......iiiiiieiiiieiiiieeiite st e st e sseeessteessateessteessseesssseesssseesssseesssseesssseesns 311

Chapter 11. Improving Java performancCe......cccccccecreirecrenieniesaiscaecsecsessessessessess 313

Determining performance goals for your Java Workload.........cccceveveeriiieniiieniieeniieessieessieessveesseeeenn 313
Analyzing Java applications using IBM Health Center....ccccccvvviiiiiiiiiiiiienieestesee st 314
Garbage collection and heap EXPaNSION......ccvciiiiiieiiiie ettt see s s ae e s sbee s s bae s sabeesnans 315
IMproving JVM Server PEIfOIMANCE. ...occuiiiiiieeciteecie et esite et e sttt essbeeessareessseeesssaeessteesasseessssaessenenn 316
Examining processor USAZE DY JVM SEIVEIS.....cicciiiirieiriieesiieeesieeesteessiaeessieeessseeessseeessseeessassessnes 316
Calculating storage requiremMents fOr JVM SEIVEIS....ccccuiiieiiiieiieeirieessieeseieessieesseeesseeesseeessseeesans 317
Tuning JVM server heap and garbage COLLECTION......c.uiiiiiiiiiiieiecetecete et 321
Tuning the JVM server startup €NVIFONMENT.......ciiciiiiiieiriiee sttt see e sseeeessreeesbeeesreeesane 322
Language Environment enclave storage for JVMS......ui ittt s 322
Identifying Language Environment storage needs for JVM SErvers.....ccvieerieeencieesseeesseessnees 323
Modifying the enclave of a JVM server with DFHAXRO.....cc.iiiiviiiiiiiiiieeirieessiee e sseee e e sseee e 327
Tuning the z/OS shared LIDrary reZIiON......cuii ittt e s e s s e e s s be e s sbeessans 328
Chapter 12. Troubleshooting Java applications......cccccececiicreiiecrecienincnncinccnccneena. 331
BTt oy Aol (o g - 1Y VORI 334
Troubleshooting Liberty JVM servers and Java web appliCations........ccccvevveieiienniieiniiessieeesieeeseeens 335
Controlling the location for JVM output, logs, dumps and trace.......cceecueerrieeiriieerniieennieensieessieesseeeens 345
Using a DD statement to route JVM server output t0 JES.....c.coviiiiiiiiiiniieiieccec e 346
Redirecting the JVM stdout and STAeTr STreams......coocciiicieiiiiei et 347
Control of Java-related dUMP OPTIONS.....cii i et e e e e e s e ar e e e e e nreeeeean 349
CICS component traCing fOr JVM SEIVEIS......ciiciiiriiieiiitesiieessiee st e st e sssteesseeessseeesssseesssseesssseessnsaenas 349
Activating and managing traCcing fOor JVM SEIVEIS......ciucuiiiiiieriiieecieesciee st et ssreesseeessseeessaeeessseesas 349
Debugging @ Java apPliCatioN.....cuiiiciieiiiieieiieeriee sttt et e s st e s st e s s be e s s e e s ba e e s baeenabaeesraeas 350
The CICS JVM PLUZ-IN MECNANISIM . cc.uiiiiiiieiiieeerite sttt st ssre e s ete e ssteessbeessabeesssaeessseeesassaesassaessnseess 351

[\ 0] { o =Y - TR 1 - X 1

vi

About this PDF

This PDF tells you how to develop and use Java™ applications and enterprise beans in CICS. It is for
experienced Java application programmers with little experience of CICS, and no need to know more
about CICS than is necessary to develop and run Java programs. It is also for experienced CICS users and
system programmers, who need to know about CICS requirements for Java support.

For details of the terms and notation used, see Conventions and terminology used in CICS documentation
in IBM Documentation.

Date of this PDF
This PDF was created on 2025-12-02 (Year-Month-Date).

© Copyright IBM Corp. 1974, 2023 vii

https://www.ibm.com/docs/cics-ts/latest?topic=available-conventions-used-in-documentation

viii CICS TS for z/OS: Java Applications in CICS

Chapter 1. CICS and Java

CICS provides the tools and runtime environment to develop and run Java applications in a Java Virtual
Machine (JVM) that is under the control of a CICS region.

CICS provides a JVM server runtime environment for Java application development. You can develop,
build, and deploy applications using the IBM CICS SDK for Java, Gradle modules, or Maven modules.

If you are a Java developer, check out Get started with Java in CICS.

IBM Semeru Runtime Certified Edition for z/0S Java 11Java 17Java 21

Java on z/OS provides comprehensive support for running Java applications. CICS uses the IBM Semeru
Runtime Certified Edition for z/OS Version 11.0.17.0, Version 17.0.7.0 or Version 21.0.4.0 as the
minimum release level.

Some Liberty features require specific Java versions, and these are called out in Liberty features. In
addition, if any of your applications perform an RMI call, you must ensure you have the same Java level at
client and run time.

The Certified Edition contains a Java Runtime Environment that supports the full set of Java APIs and a
set of development tools. In Java 11, Java 17 and Java 21, the base JRE is different from the Java 8 JRE.
While your Java 8 bytecode might run in later Java versions, it is worth reviewing your applications.

To allow remote debug of a Java 11, Java 17 or Java 21 runtime (JVM) there is a change to the syntax.
The agentlib property now requires an explicit hostname: port. Specifying the port alone is no longer
enough to successfully connect to and debug a Java 11, Java 17 runtime or Java 21 runtime.

You need to download the Java 11, Java 17 or Java 21 version of the JZOS jar if your applications use it.
To download the file, and for more information, see JZOS JAR for IBM Semeru Runtime Certified Edition
for z/OS. To download and install the latest Explorer SDK, and for more information, see CICS Explorer
product documentation.

Java 21 In Java 21, the default character set for standard Java APIs is UTF-8, except for the console
input and output encoding. Earlier versions of Java use an EBCDIC default character set. Processing
of EBCDIC-based data is common in CICS Java applications so this change is significant. For more
information, see File encoding and UTF-8 as default charset.

IBM 64-bit SDK for z/0S, Java Technology Edition Java 8

Java on z/0S provides comprehensive support for running Java applications. CICS uses the IBM 64-bit
SDK for z/0S, Java Technology Edition, Version 8. Some Liberty features require specific Java versions,
and these are called out in Liberty features.

The SDK contains a Java Runtime Environment that supports the full set of Java APIs and a set of
development tools. To help increase general purpose processor productivity and contribute to lowering
the overall cost of computing for z/OS Java technology-based applications, special processors are
available in certain z Systems® hardware. The IBM zEnterprise® Application Assist Processor (zAAP) can
provide additional processor capacity to run eligible Java workloads, including Java workloads in CICS.

Find information about Java on the z/OS platform and download the 64-bit version of the SDK at Java
Standard Edition Products on z/OS.

JVM server

The JVM server is the runtime environment for Java applications in CICS. A JVM server can handle many
concurrent requests from different Java applications in a single JVM. Use of a JVM server reduces the
number of JVMs that are required to run Java applications in a CICS region. To use a JVM server, Java
applications must be threadsafe and must comply with the OSGi or Java EE specifications. JVM server
provides the following benefits:

© Copyright IBM Corp. 1974, 2023 1

http://www.ibm.com/support/knowledgecenter/SSGMCP_6.1.0/applications/developing/java/getting-started/get-started.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/liberty_features.html
https://www.ibm.com/support/pages/java-sdk-products-zos
https://www.ibm.com/support/pages/java-sdk-products-zos
https://www.ibm.com/docs/en/cics-explorer/5.5.0
https://www.ibm.com/docs/en/cics-explorer/5.5.0
https://www.ibm.com/docs/en/cics-ts/6.x?topic=applications-migrating-new-java-versions#java_version_considerations__check_encoding__title__1
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/liberty_features.html
https://developer.ibm.com/javasdk/support/zos/
https://developer.ibm.com/javasdk/support/zos/

- Eligible Java workloads can run on specialty engine processors, reducing the cost of transactions.
- Different types of work such as threadsafe Java programs and web services, can run in a JVM server.
 Application life cycle can be managed in the OSGi framework, without restarting the JVM server.

 Java applications that are packaged using OSGi can be ported more easily between CICS and other
platforms.

« Java EE applications can be deployed into the Liberty JVM server.

Note: OSGi applications in CICS can be installed in a Liberty JVM server but cannot use any of the
Liberty services or features as they are not supported.

IBM CICS SDK for Java

CICS Explorer® is a freely available download for Eclipse-based Integrated Development Environments
(IDEs). The IBM CICS SDK for Java that is included with CICS Explorer provides support for developing
and deploying applications that comply with the OSGi Service Platform specification.

The OSGi Service Platform provides a mechanism for developing applications using a component model
and deploying those applications into a framework as OSGi bundles. An OSGi bundle is the unit of
deployment for an application component and contains version control information, dependencies, and
application code. The main benefit of OSGi is that you can create applications from reusable components
that are accessed only though well-defined interfaces called OSGi services. You can also manage the life
cycle and dependencies of Java applications in a granular way.

The IBM CICS SDK for Java allows development of Java applications for any supported release of
CICS. The SDK includes the Java CICS library (JCICS) to access CICS services along with examples to
get started with developing applications for CICS. You can also use the tool to convert existing Java
applications to OSGi.

The IBM CICS SDK for Enterprise Java (Liberty) is included as an option with CICS Explorer and supports
packaging of Liberty applications into CICS bundles that can be deployed to CICS.

Gradle and Maven modules

As an alternative to the IBM CICS SDK for Java, you can define your projects as Maven or Gradle modules,
express dependencies by referencing the Maven Central artifacts, and then package and deploy your
application in a CICS bundle using the CICS-provided Gradle or Maven plug-in.

Why use Gradle or Maven for CICS development?

« Simplified dependency management with Maven Central artifacts: Java developers can easily
add dependencies on the Java CICS APIs and other CICS libraries with a few lines of configuration.

« More flexibility with the development environment: Gradle and Maven support is available in
most Java IDEs, such as Eclipse, IntelliJ IDEA, and Visual Studio Code. Java developers can write
application code in a familiar IDE.

« Bundle deployment with ease and confidence at development time with the Gradle and Maven
plug-ins (Requires the CICS bundle deployment API):

— Java developers can redeploy a bundle into a CICS region within seconds, without the need for a
zFS connection or to disable, discard, and reinstall the bundle manually.

— Java developers can integrate CICS bundle build and deployment into their toolchain, saving lots
of manual work.

— The API ensures controlled access both to the CICS system definition data set (CSD) for BUNDLE
definition installation and to the bundle directory on zFS, so that system programmers can allow
Java developers to deploy bundles without granting additional access.

What you can do with Gradle or Maven in CICS

- Resolving compilation dependencies from Maven Central

2 CICS TS for z/OS: Java Applications in CICS

https://maven.apache.org/index.html
https://docs.gradle.org/current/userguide/what_is_gradle.html
https://search.maven.org/search?q=g:com.ibm.cics
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html

A list of CICS Java APIs and other libraries are provided on Maven Central under the com.ibm.cics
group ID. Depending on your organization’s policy, you can either reference these artifacts directly
from Maven Central, or have them mirrored to your enterprise repository by using repository
managers such as Artifactory or Nexus.

- Building and deploying CICS bundles using Gradle or Maven plug-ins

The Gradle and Maven plug-ins are open source and provided on GitHub (cics-bundle-maven
and cics-bundle-gradle). You can use them to build CICS bundles and, when the CICS bundle
deployment API is configured, to deploy CICS bundles. A subset of CICS bundle parts, including
WAR files (.war), EAR files (.ear), and OSGi bundles (.jar), is supported.

For instructions on how to configure CICS for the CICS bundle deployment API, see Configuring the
CMCI JVM server for the CICS bundle deployment API.

The 0SGi Service Platform

The OSGi Service Platform provides a mechanism for developing applications by using a component
model and deploying those applications into an OSGi framework. The OSGi architecture is separated into
a number of layers that provide benefits to creating and managing Java applications.

The OSGi framework is at the core of the OSGi Service Platform specification. CICS uses the Equinox
implementation of the OSGi framework. The OSGi framework is initialized when a JVM server starts. Using
0OSGi for Java applications provides the following major benefits:

« New Java applications, and new versions of Java applications, can be deployed into a live production
system without having to restart the JVM, and without impacting the other Java applications deployed
in that JVM.

- Java applications are more portable, easier to re-engineer, and more adaptable to changing
requirements.

« You can follow the Plain Old Java Object (POJO) programming model, giving you the option of deploying
an application as a set of OSGi bundles with dynamic life cycles.

« You can more easily manage and administer application bundle dependencies and versions.
The OSGi architecture has the following layers:

« Modules layer
« Life cycle layer
 Services layer

Modules layer

The unit of deployment is an OSGi bundle. The modules layer is where the OSGi framework processes
the modular aspects of a bundle. The metadata that enables the OSGi framework to do this processing is
provided in a bundle manifest file.

One key advantage of OSGi is its class loader model, which uses the metadata in the manifest file. There
is no global class path in OSGi. When bundles are installed into the OSGi framework, their metadata

is processed by the module layer and their declared external dependencies are reconciled against the
exports and version information declared by other installed modules. The OSGi framework works out all
the dependencies and calculates the independent required class path for each bundle. This approach
resolves the shortcomings of plain Java class loading by ensuring that the following requirements are
met:

« Each bundle provides visibility only to Java packages that it explicitly exports.
- Each bundle declares its package dependencies explicitly.

« Packages can be exported at specific versions, and imported at specific versions or from a specific range
of versions.

 Multiple versions of a package can be available concurrently to different clients.

Chapter 1. CICS and Java 3

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
https://search.maven.org/search?q=g:com.ibm.cics
https://github.com/IBM/cics-bundle-maven
https://github.com/IBM/cics-bundle-gradle
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/cmci/config-bundle-api.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/cmci/config-bundle-api.html

Life cycle layer

The bundle life cycle management layer in OSGi enables bundles to be dynamically installed, started,
stopped, and uninstalled, independently from the life cycle of the JVM. The life cycle layer ensures
that bundles are started only if all their dependencies are resolved, reducing the occurrence of
ClassNotFoundException exceptions at run time. If there are unresolved dependencies, the OSGi
framework reports the problem and does not start the bundle.

Each bundle can provide a bundle activator class, which is identified in the bundle manifest, that the
framework calls as part of bundle start and stop events.

Services layer

The services layer in OSGi intrinsically supports a service-oriented architecture through its non-durable
service registry component. Bundles publish services to the service registry, and other bundles can
discover these services from the service registry. These services are the primary means of collaboration
between bundles. An OSGi service is a Plain Old Java Object (POJO0), published to the service registry
under one or more Java interface names, with optional metadata stored as custom properties (name/
value pairs). A discovering bundle can look up a service in the service registry by an interface name, and
can potentially filter the services that are being looked up based on the custom properties.

Services are fully dynamic and typically have the same life cycle as the bundle that provides them.

JVM server runtime environment

A JVM server is a runtime environment that can handle many concurrent requests for different Java
applications in a single JVM. You can use a JVM server to run threadsafe Java applications in an OSGi
framework, run web applications in Liberty, and process web service requests in the Axis2 web services
engine.

A JVM server is represented by the JVMSERVER resource. When you enable a JVMSERVER resource, CICS
requests storage from MVS, sets up a Language Environment® enclave, and launches the 64-bit JVM in
the enclave. CICS uses a JVM profile that is specified on the JVMSERVER resource to create the JVM with
the correct options. In this profile, you can specify JVM options and system properties, and add native
libraries; for example, you can add native libraries to access DB2° or IBM MQ from Java applications.

One of the advantages of using JVM servers is that you can run many requests for different applications
in the same JVM. In the following diagram, three applications are calling three Java programs in a CICS
region concurrently using different access methods. Each Java program runs in the same JVM server.

-~ -\-H\

i ™,
i N / CICS Region

EXEC CICS LINK |
App » PROGRAM1 l‘x

JVM server
LE enclave

\:(JVM

L

EXEC CICS START O ——
App » PROGRAM2

— /
HTTP reguest -1
App | + PROGRAMZ | .

Java applications

To run a Java application in a OSGi JVM server, it must be threadsafe and packaged as one or more OSGi
bundles in a CICS bundle. The JVM server implements an OSGi framework in which you can run OSGi

4 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/jvmserver/dfha4_summary.html

bundles and services. The OSGi framework registers the services and manages the dependencies and
versions between the bundles. OSGi handles all the class path management in the framework, so you can
add, update, and remove Java applications without stopping and restarting the JVM server.

The unit of deployment for a Java application that is packaged using OSGi is a CICS bundle. The BUNDLE
resource represents the application to CICS and you can use it to manage the lifecycle of the application.
The IBM CICS SDK for Java provides support for deploying OSGi bundles in a CICS bundle project to zFS.

To access the Java application from outside the OSGi framework, use a PROGRAM resource to identify the
JVM server in which the application is running and the name of the OSGi service. The OSGi service points
to the CICS main class.

For more information about using the OSGi framework in a JVM server, see Java applications that comply
with OSGi.

Java web applications

In addition to running Java applications in an OSGi framework, the JVM server also supports running
WebSphere® Application Server Liberty. Liberty is a lightweight application server for running web
applications. Web applications can use JCICS to access resources and services in CICS, and to access
data in DB2. Applications running in Liberty are accessed through the TCP/IP sockets layer in z/OS rather
than through web support in CICS.

HTTP
request
2/08 | TCP/IP Sockets Layer
JVM server
/" Liberty profile
server
Web application JCICS) ygam
T
DB2 —
middleware JOBG = DB2
bundie
CICS region

Java web applications can follow the Liberty model for deployment, where developers can deploy web
archive (WAR) files or enterprise application archive (EAR) files directly into the drop-in directory of
Liberty, or use the CICS application model of creating CICS bundles. CICS bundles provide lifecycle
management and can package an application that contains many components, including OSGi bundles
and WAR files, together.

To access OSGi bundles from a web application, you must deploy your application as an Enterprise
Bundle Archive (EBA) file. To develop EBAs, you can use Rational® Application Developer, or you can use a

Chapter 1. CICS and Java 5

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/bundle/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/program/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/java/planning_osgi.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/java/planning_osgi.html

combination of the Eclipse IDE, the IBM CICS SDK for Java, and WebSphere Application Server Developer
Tools for Eclipse. The latter set of tools is free to use but, apart from the IBM CICS SDK for Java, IBM
support is not available for them.

For more information about using Liberty, see Java applications in a Liberty JVM server.

Web services

You can use a JVM server to run the SOAP processing for web service requester and provider applications.
If a pipeline uses Axis2, a SOAP engine that is based on Java, the SOAP processing occurs in a JVM
server. The advantage of using a JVM server for web services is that you can offload the work to a zAAP
processor.

For more information about using a JVM server for web services, see Java web services.

JVM profiles

JVM profiles are text files that contain Java launcher options and system properties, which determine the
characteristics of JVMs. You can edit JVM profiles using any standard text editor.

When CICS receives a request to run a Java program, the name of the JVM profile is passed to the Java
launcher. The Java program runs in a JVM, which was created using the options in the JVM profile.

CICS uses JVM profiles that are in the z/OS UNIX System Services directory specified by the
JVMPROFILEDIR system initialization parameter. This directory must have the correct permissions for
CICS to read the JVM profiles.

Sample JVM profiles

CICS includes several sample JVM profiles to help you configure your Java environment. They are
customized during the CICS installation process. These files are used by CICS as defaults or for system
programs.

A JVM profile lists the options that are used by the CICS launcher for Java. Some of the options are
specific to CICS and others are standard for the JVM runtime environment. For example, the JVM profile
controls the initial size of the storage heap and how far it can expand. The profile can also define the
destinations for messages and dump output produced by the JVM. The JVM profile is named in the
JVMPROFILE attribute in a JVMSERVER resource definition.

You can copy the samples and customize them for your own applications. The sample JVM profiles
supplied with CICS are in the directory /usr/1pp/cicsts/cicsts56/IJVMProfiles on z/OS UNIX.

Note: If you are unable to find the sample JVM profiles in /usr/1pp/cicsts/cicstsb6/
JVMProfiles, or the directory does not exist, then it is likely you have not run the DFHIJVMS job

to populate the directories and create the JVM profiles. You can find this job in SDFHINST and it is
documented in the Program Directory for CICS Transaction Server for z/OS. See Program Directories for
more information.

Copy the samples from the installation directory to the directory that you specified in the
JVMPROFILEDIR system initialization parameter. The sample JVM profiles in the installation location are
overwritten if you apply an APAR that includes changes to these files. To avoid losing your modifications,
always copy the samples to a different location before adding your own application classes or changing
any options.

The following table summarizes the key characteristics of each sample JVM profile.

6 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/java/liberty_overview.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/java/java_webservices.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_jvmprofiledir.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/jvmserver/dfha4_attributes.html
https://www.ibm.com/support/knowledgecenter//installing/dfha1m8.html

Table 1. Sample JVM profiles supplied with CICS

JVM profile

Characteristics

DFHJVMAX.jvmprofile

The supplied sample profile for an Axis2 JVM server. The JVM profile is specified
on the JVMSERVER resource. CICS uses DFHIVMAX.jvmprofile to initialize the JVM
server.

DFHJVMST.jvmprofile

The supplied sample profile for a JVM server for a Security Token Service. The JVM
profile is specified on the JVMSERVER resource. CICS uses DFHIVMST.jvmprofile to
initialize the JVM server.

DFHOSGI.jvmprofile

The supplied sample profile for an OSGi JVM server. The JVM profile is specified
on the JVMSERVER resource. CICS uses DFHOSGI.jvmprofile to initialize the JVM
server.

DFHWLP.jvmprofile

The supplied sample profile for a Liberty JVM server. The JVM profile is specified
on the JVMSERVER resource. CICS uses DFHWLP.jvmprofile to initialize the Liberty
JVM server.

Structure of a JVM

JVMs that run under CICS use a set of classes and class paths that are defined in JVM profiles and use
64-bit storage. Each JVM runs in a Language Environment enclave that you can tune to make the most
efficient use of MVS storage.

Classes and class paths in JVMs

A JVM running under CICS can use different types of class or library files: primordial classes (system and
standard extension classes), native C DLL library files, and application classes.

The JVM recognizes the purpose of each of these components, determines how to load them, and
determines where to store them. The class paths for a JVM are defined by options in the JVM profile, and
(optionally) are referenced in JVM properties files.

» Primordial classes are the z/OS JVM code that provide the base services in the JVM. Primordial classes
can be categorized as system classes and standard extension classes.

« Native C dynamic link library (DLL) files have the extension . so in z/OS UNIX. Some libraries are
required for the JVM to run, and additional native libraries can be loaded by application code or
services. For example, the additional native libraries might include the DLL files to use the Db2° JDBC

drivers.

 Application classes are the classes for applications that run in the JVM, and include classes that belong
to user-written applications. Java application classes also include those supplied by IBM or by other
vendors, to provide services that access resources, such as the JCICS interfaces classes, JDBC and
JNDI, which are not included in the standard JVM setup for CICS. When Java application classes are
loaded into the class cache the are kept and can be reused by other applications running in the same

JVM.

The class paths on which classes or native libraries can be specified are the library path, and the standard

class path.

« The Library path specifies the native C dynamic link library (DLL) files that are used by the JVM,
including the files required to run the JVM and additional native libraries loaded by application code or
services. Only one copy of each DLL file is loaded, and all the JVMs share it, but each JVM has its own
copy of the static data area for the DLL.

The base library path for the JVM is built automatically using the directories specified by the USSHOME
system initialization parameter and the JAVA_HOME option in the JVM profile. The base library path
is not visible in the JVM profile. It includes all the DLL files required to run the JVM and the native

Chapter 1. CICS and Java 7

libraries used by CICS. You can extend the library path using the LIBPATH_SUFFIX option or the
LIBPATH_PREFIX option. LIBPATH_SUFFIX adds items to the end of the library path, after the IBM-
supplied libraries. LIBPATH_PREFIX adds items to the beginning, which are loaded in place of the
IBM-supplied libraries if they have the same name. You might have to do this for problem determination
purposes.

Compile and link with the LP64 option any DLL files that you include on the library path . The DLL files
supplied on the base library path and the DLL files used by services such as the Db2 JDBC drivers are
built with the LP64 option.

« The Standard class path must not be used for OSGi enabled JVM servers because the OSGi framework
automatically determines the class path for an application from information in the OSGi bundle that
contains the application. The standard class path is retained for use by JVM servers that are not
configured for OSGi (for example the Axis2 environment in CICS). For exceptional scenarios, such as
Axis2, in which the standard class path is used, you can use a wildcard suffix on the class path entries to
specify all JAR files in a particular directory.

CICS also builds a base class path automatically for the JVM using the /1ib subdirectories of the
directories specified by the USSHOME system initialization parameter. This class path contains the JAR
files supplied by CICS and by the JVM. It is not visible in the JVM profile.

You do not have to include the system classes and standard extension classes (the primordial classes) on
a class path, because they are already included on the boot class path in the JVM.

Storage heap in JVMs
The runtime JVM storage is managed by a single 64-bit storage heap.

The heap for each JVM is allocated from 64-bit storage in the Language Environment enclave for the JVM.
The size of each heap is determined by options in the JVM profile.

The single storage heap is known as the heap, or sometimes as the garbage-collected heap. Its initial
storage allocation is set by the =Xms option in a JVM profile, and its maximum size is set by the =Xmx
option.

You can tune the size of a heap to achieve optimum performance for your JVMs. See Tuning JVM server
heap and garbage collection.

Where JVMs are constructed

When a JVM is required, the CICS launcher program for JVMs requests storage from MVS, sets up a
Language Environment enclave, and launches the JVM in the Language Environment enclave. Each JVM
is constructed in its own Language Environment enclave, to ensure isolation between JVMs running in
parallel.

The Language Environment enclave is created using the Language Environment preinitialization module,
CELQPIPI, and the JVM runs as a z/OS UNIX process. The JVM therefore uses MVS Language Environment
services rather than CICS Language Environment services. The storage used for a JVM is MVS 64-bit
storage, obtained by calls to MVS Language Environment services. This storage resides in the CICS
address space, but is not included in the CICS dynamic storage areas (DSAs).

The Language Environment enclave for a JVM can expand, depending on the storage requirements of
the JVM. The Language Environment runtime options used by CICS for a Language Environment enclave
control the initial size of, and incremental additions to, the Language Environment enclave heap storage.

You can tune the runtime options that CICS uses for a Language Environment enclave, so that the amount
of storage CICS requests for the enclave is as close as possible to the amount of storage specified by your
JVM profiles. You can therefore make the most efficient use of MVS storage. For more information about
tuning storage, see Language Environment enclave storage for JVMs.

8 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/tuning_jvmserver_gc.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/tuning_jvmserver_gc.html
http://www.ibm.com/support/knowledgecenter//java/tuning/dfht3rr.html

CICS task and thread management

CICS uses the open transaction environment (OTE) to run JVM server work. Each task runs as a thread
in the JVM server and is attached by using a T8 TCB. A major benefit of using OSGi is that applications
in an OSGi framework can use an ExecutorService to create threads that run extra tasks in CICS
asynchronously. CICS takes special measures to deal with runaway tasks.

When CICS enables a JVM server, the JVM server runs on a Language Environment process thread. This
thread is a child of the TP TCB. Every CICS task is attached to a thread in the JVM by using a T8 TCB. You
can control how many T8 TCBs are available to the JVM server by setting the THREADLIMIT attribute on
the JVMSERVER resource.

The T8 TCBs that are created for the JVM server exist in a virtual pool and cannot be reused by another
JVM server that is running in the same CICS region. The maximum number of T8 TCBs that can exist in a
CICS region across all JVM servers is 2000 and the maximum for a specific JVM server is 256.

Multithreaded applications

Java applications that are running in an OSGi framework can also start CICS tasks asynchronously by
using an ExecutorService OSGi service. The JVM server registers the ExecutorService as an OSGi
service on startup. The ExecutorService automatically uses an implementation that is supplied by
CICS that creates threads that can use the JCICS API to access CICS services. This approach means the
application does not have to use specific JCICS API methods to create threads. However, an application
can also use the CICSExecutoxrSexrvice to run work on a separate CICS capable thread.

When the JVM server is enabled, it starts the CISL transaction to create a long-running task that is called
the JVM server listener. This listener waits for new thread requests from the application and runs the
CJSA transaction to create CICS tasks that are dispatched on a T8 TCB. This process is shown in the
following diagram:

CICS region

JVM server
/ 0SGI framework N
=
Application . JOBC
et + Java application H DB2
e —
Create threads JCICS o VSAM
3 f -/ "'\-_.r""f._\-‘ﬂ'

L 4

Thread Mewar
Listener

o
th
=
E

Chapter 1. CICS and Java 9

In advanced scenarios, an application can use the OSGi service to run many threads asynchronously.
These threads all have access to CICS services through JCICS and run under T8 TCBs.

Execution keys for JVM servers

A Java program must use a JVM that is running in the correct execution key. JVM servers run in CICS key.
To use a JVM server, the PROGRAM resource for the Java program must have the EXECKEY attribute set to
CICS. CICS uses a T8 TCB to run the JVM and obtains MVS storage in CICS key.

Runaway tasks

The CICS JVM server infrastructure supports use of the task runaway detection mechanism. Unlike
traditional CICS tasks, a task running Java on a T8 TCB cannot be terminated without consequences to
other workload in the same JVM. Language Environment and the JVM server run in a POSIX-compliant
environment, which mandates that if a TCB/Thread is terminated, the parent process is also terminated.
In turn, all child processes are terminated abruptly - and cause all tasks in the JVM to fail immediately.

A task running in a JVM server that exceeds the modified RUNAWAY interval experiences a more controlled
termination process. This differs from the traditional CICS behavior and you should evaluate whether you
want runaway intervals to apply to your Java tasks, or what value to set.

JVMSERVER controlled runaway processing

When a task running Java experiences a runaway interval condition, the JVMSERVER intercepts the
condition and triggers a DISABLE PHASEOUT. New work is prevented from entering the JVM and existing
work is left to drain. Subsequently, should the task complete its processing, the JVMSERVER re-enables
and becomes available for new requests. In many cases if a task running Java exceeds the runaway
interval value, it is likely to be a bad application, such as a tightly looping application and prevents
successful PHASEOUT /RECYCLE of the JVMSERVER. When an application is detected, the runaway

timer triggers again after another interval and the JVMSERVER DISABLE PHASEOUT is escalated to a
JVMSERVER DISABLE PURGE. Remaining tasks are subject to PURGE processing and in most cases

are terminated. If further runaway intervals are exceeded, the JVMSERVER DISABLE escalates to
FORCEPURGE and ultimately KILL - until all running tasks are forcefully terminated. The JVMSERVER
recycles back to the ENABLED state ready for new requests. If the JVMSERVER had to escalate as far as a
DISABLE KILL request, itis prudent to recycle CICS at the earliest opportunity.

Modified runaway interval value

A runaway condition for a task that is running in a JVM server can cause temporary availability problems
for the whole JVM server. For this reason, CICS modifies the runaway interval value that was configured,
by multiplying it by a factor of 10 (up to a maximum value of 45 minutes). This new value is the effective
runaway interval. This higher runaway interval reduces the possibility of a runaway condition being
detected for an inefficient (but otherwise working) application. For example, if the transaction definition
specifies RUNAWAY=SYSTEM, and the ICVR system initialization parameter indicates a default limit of
5000 milliseconds, then the effective runaway interval for that task when it runs in a JVM server is 50000
milliseconds.

Setting the runaway interval value

By default the CJSA transaction definition that is used for Liberty JVM servers and for work in an

0SGi JVM server started from the CICSExecutorService has runaway detection active and set to

the system interval. If you do not want runaway intervals to apply to these tasks, you can run work

under your own transaction definitions with the runaway interval set to 0, or another value of your
choice. Liberty workload is typically controlled by URIMAPs, while the CICSExecutorService provides
the CICSTransactionRunnable and CICSTransactionCallable interfaces to allow customized
transaction definitions to be used.

10 CICS TS for z/OS: Java Applications in CICS

Shared class cache

Using a Java shared class cache provides a means of improving JVM startup time, reducing overall storage
usage, and optimizing the compilation process. A class cache can be used with all JVM servers (0SGi,
Liberty, and classpath-based).

The IBM® SDK, Java Technology Edition on z/OS® supports a shared class cache. To enable a JVM
server to use the class cache, and set the size, you must use JVM command line parameters. Other
operational requirements, such as monitoring usage of the class cache and destroying class caches, are
also performed using options on the Java command.

For more information about Java class data sharing, see Class data sharing.

A shared class cache can contain the following elements:

- Java classes, including application classes, JVM server infrastructure, and Java bootstrap classes.
« Ahead-of-time (AOT) compiled code.

Enabling the class cache

To enable class cache, use a JVM command line parameter, for example:
-Xshareclasses:name=cics.<group>

Where <group> might be the JVM profile symbol &applid; if you want to share classes within the same
region only. Alternatively, you can select an arbitrary identifier that all JVM servers of a particular type
would connect to, with common classes. The granularity of sharing is user-specific depending on your
needs, the size of the class cache, and the number of shared applications. You can ensure a number of
JVM servers of common functions share a class cache name, and that the size of the class cache is large
enough to accommodate all uses.

Checking the class cache

You can check how full the class cache is by running the z/0S UNIX command JAVA_HOME /bin/java
-Xshareclasses:name=<named_cache>, printStats. This query returnsa Cache is nn% full
message.

Important: If your cache was created using a different compressedRefs setting than that currently in
effect within the JVM, you will receive a message indicating you should use the correct JVM level. In such
situations, you should check that the compressedRefs settings in effect when you created your cache,
are the same as those in effect when your JVM was created.

For more information, see Dealing with cache problems.

Setting or changing the class cache size

1. Modify the JVM profile to define the named cache size -Xscmx256M
2. Shutdown all JVM servers using the cache.

3. Remove the cache using JAVA_HOME /bin/java
-Xshareclasses:name=<named_cache>,destroy

4, Start the JVM servers.

As an alternative to steps 2 and 3 of this procedure, you can restart z/0OS.

Which JVM server to use: Liberty JVM or 0SGi JVM?

CICS provides a JVM server as the runtime environment to host Java applications in the CICS region. A
fundamental choice is which JVM server to use.

In CICS, the OSGi JVM server is a Java runtime that incorporates an OSGi framework. That same
technology is used for the Liberty JVM server. The key difference between the two is that the Liberty

Chapter 1. CICS and Java 11

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/shrc.html
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=sharing-diagnosing-problems#initialization-problems

JVM server embeds an instance of a Liberty server. See Design choices for Java in CICS for a high-level
view and the corresponding options for type of application, packaging, and deployment.

Choosing Liberty JVM

A Liberty JVM server is appropriate where web technology, Enterprise Java APIs, or both are required. For
example:

You want to modernize the presentation interfaces of your CICS application, replacing 3270 screens
with web browser and RESTful clients.

You want to use Java standards-based development tools to package, co-locate, and manage a web
client with other existing CICS applications.

You already use Liberty applications in WebSphere Application Server and want to port them to runin
CICS.

You already use Jetty or similar servlet engines in CICS and want to migrate to an application server that
is based on Liberty.

You want to use data source definitions to access Db2 databases from Java. See Defining the CICS Db2
connection.

You want to coordinate updates that are made to CICS recoverable resources with updates that
are made to a remote resource manager through a type 4 JDBC database driver, by using the Java
Transaction API (JTA).

You want to develop services that follow REpresentational State Transfer (REST) principles by using
JAX-RS.

You want to develop applications through support of a standard, annotation-based model by using
JAX-WS.

You want to develop Java EE applications that send and receive secure messages through JMS.

To work with a Liberty JVM server, see Developing Java applications to run in a Liberty JVM server.

Choosing OSGi

An OSGi JVM server is appropriate when Java SE APIs are required. An OSGi JVM server is a lighter option
that does not require the configuration of an angel process or the associated security, which makes it a
good choice in the following situations:

You want to create Java workloads that can run on a zAAP to reduce the cost of transactions.

You have experience of writing Java applications that use OSGi on other platforms and want to create
Java applications in CICS.

You want to provide Java applications as a set of modular components that can be reused and updated
independently, without affecting the availability of applications and the JVM in which they are running.

You can follow the Plain Old Java Object (POJO) programming model, giving you the option of deploying
an application as a set of OSGi bundles with dynamic lifecycles.

New Java applications, and new versions of Java applications, can be deployed into a live production
system without having to restart the JVM, and without impacting the other Java applications that are
deployed in that JVM.

There are some clashes of concepts between 0SGi and CICS, such as bundles, that can catch you out and
some capabilities, such as class loading, that have hidden depths. The OSGi Demystified articles in IBM
Developer offer tips to deal with these complexities.

To work with an OSGi server, see Guidance for using OSGi.

12 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_6.1.0/applications/developing/java/getting-started/design-choices.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_devjavaweb.html
https://developer.ibm.com/series/osgi-demystified-article-series/
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_osgiframework.html

Java applications that comply with OSGi

CICS includes the Equinox implementation of the OSGi framework to run Java applications that comply
with the OSGi specification in a JVM server.

The OSGi Service Platform specification, as described in “The OSGi Service Platform” on page 3, provides
a framework for running and managing modular and dynamic Java applications. The default configuration
of a JVM server includes the Equinox implementation of an OSGi framework. Java applications that are
deployed on the OSGi framework of a JVM server benefit from the advantages of using OSGi and the
qualities of service that are inherent in running applications in CICS.

You might want to use Java applications for any of the following reasons:

« You want to create Java workloads that can run on a zAAP to reduce the cost of transactions.

 You have experience of writing Java applications that use OSGi on other platforms and want to create
Java applications in CICS.

« You want to provide Java applications as a set of modular components that can be reused and updated
independently, without affecting the availability of applications and the JVM in which they are running.

To effectively develop, deploy, and manage Java applications that comply with OSGi, you must use the
IBM CICS SDK for Java and CICS Explorer:

« The IBM CICS SDK for Java enhances an existing Eclipse Integrated Development Environment (IDE) to
provide the tools and support to help Java developers create and deploy Java applications in CICS. Use
this tool to convert existing Java applications to OSGi bundles.

« CICS Explorer is an Eclipse-based systems management tool that provides system administrators with
views for OSGi bundles, OSGi services, and the JVM servers in which they run. Use this tool to enable
and disable Java applications, check the status of OSGi bundles and services in the framework, and get
some preliminary statistics on the performance of the JVM server.

Any Java developer or systems administrator who wants to work with OSGi requires access to these freely
available tools.

The following examples describe how you can run Java applications that use OSGi in CICS.

Run multiple Java applications in the same JVM server

The JVM server can handle multiple requests in the same JVM concurrently. Therefore, you can call the
same application multiple times concurrently or run more than one application in the same JVM server.

When you decide how to split your applications between JVM servers, you can plan how to use the

0SGi model to componentize your applications into a set of 0SGi bundles. You must also decide what
supporting OSGi bundles are required in the framework to provide services to your applications. The OSGi
framework can contain different types of OSGi bundle, as shown in the following diagram:

Chapter 1. CICS and Java 13

OSGi framework

(aVa) (aVa)
&> Bundle A &) Bundle A
CICS CICS
Service » main main <
class class

o Library

oo o Bundle C
&) Application bundles

~ JCICS —
@ System bundles

Service

14 CICS TS for z/OS: Java Applications in CICS

Application bundles
An application bundle is an OSGi bundle that contains application code. OSGi bundles can be
self-contained or have dependencies on other bundles in the framework. These dependencies are
managed by the framework, so that an OSGi bundle that has an unresolved dependency cannot runin
the framework. In order for the application to be accessible outside the framework in CICS, an OSGi
bundle must declare a CICS main class as its OSGi service. If a PROGRAM resource points to the CICS
main class, other applications outside the OSGi framework can access the Java application. If you
have an OSGi bundle that contains common libraries for one or more applications, a Java developer
might decide not to declare a CICS main class. This OSGi bundle is available only to other OSGi
bundles in the framework.

The deployment unit for a Java application is a CICS bundle. A CICS bundle can contain any number
of OSGi bundles and can be deployed on one or more JVM servers. You can add, update, and remove
application bundles independently from managing the JVM server.

Middleware bundles
A middleware bundle is an OSGi bundle that contains classes to implement system services, such as
connecting to WebSphere MQ. Another example might be an OSGi bundle that contains native code
and must be loaded only once in the OSGi framework. A middleware bundle is managed with the
lifecycle of the JVM server, rather than the applications that use its classes. Middleware bundles are
specified in the JVM profile of the JVM server and are loaded by CICS when the JVM server starts up.

System bundles
A system bundle is an OSGi bundle that manages the interaction between CICS and the OSGi
framework to provide key services to the applications. The primary example is the JCICS OSGi
bundles, which provide access to CICS services and resources.

To simplify the management of your Java applications, follow these best practices:

 Deploy tightly coupled OSGi bundles that comprise an application in the same CICS bundle. Tightly
coupled bundles export classes directly from each other without using OSGi services. Deploy these
OSGi bundles together in a CICS bundle to update and manage them together.

« Avoid creating dependencies between applications. Instead, create a common library in a separate
OSGi bundle and manage it in its own CICS bundle. You can update the library separately from the
applications.

- Follow OSGi best practices by using versions when you are creating dependencies between bundles.
Using a range of versions mean that an application can tolerate compatible updates to bundles that it
depends on.

« You should always explicitly declare the packages that your OSGi bundle uses, even if the tooling does
not indicate an error. You can do this by adding or updating the Import-Package bundle headerin
your OSGi bundle manifest. Tools such as Eclipse make assumptions about the availability of javax.*
packages that might not be correct for a runtime environment where an explicit Import is necessary.

« Set up a naming convention for the JVM servers and agree the convention between the system
programmers and Java developers.

« Avoid the use of singleton OSGi bundles. Discarding a singleton bundle that other bundles depend on
can cause the dependent bundles to fail.

Run multiple versions of the same Java application in a JVM server

The OSGi framework supports running multiple versions of an OSGi bundle in a framework, so you can
phase in updates to the application without interrupting its availability. While you can install multiple
implementations of the same OSGi service into the framework, the service with the highest version
property is used when that service is called. In CICS the version property is inferred from the underlying
OSGi bundle. So if you want to run multiple versions of the same Java application in a JVM server at the
same time and the different versions of the OSGi bundle have the same CICS main class, you must use an
alias on one definition of the CICS main class. The alias is specified with the declaration of the CICS main
class and registered in the OSGi framework as the OSGi service for a specific version of the application.
Specify the alias on another PROGRAM resource to make that version of the application available.

Chapter 1. CICS and Java 15

0SGI framework
Bundle A Bundle B
. S CICS CICS
» Service + ain T Alias <
y class class
1.0.1 1.0.2
| Library -
bundle C

Java applications in a Liberty JVM server

CICS provides a Java EE application server that can run lightweight Java servlets and JavaServer Pages.
Developers can use the rich features of the Liberty in CICS specifications to write Java EE applications for
CICS. The application server runs in a JVM server and is built on WebSphere Application Server Liberty.

Liberty is a lightweight application server for application development that starts quickly and can run on
different platforms. It is optimized for Java developers to quickly develop and test applications, requiring
a minimal amount of effort to configure and start the web server. Java developers package the application
and web server together for simple deployment by using Eclipse tools that are freely available. Web
services support available includes Java API for RESTful Web Services (JAX-RS) and Java API for XML
Web Services (JAX-WS). For more information about Liberty, see Liberty overview.

Liberty is installed with CICS to run as a application server in a JVM server. The Liberty JVM server
supports a subset of the features that are available in Liberty; you can run OSGi applications, Java
servlets, and JSP pages. For more information about what features are supported, see Liberty features.

You might want to use the Liberty JVM server and associated tools for any of the following reasons:

« You want to modernize the presentation interfaces of your CICS application, replacing 3270 screens
with web browser and RESTful clients.

« You want to use Java standards-based development tools to package, co-locate, and manage a web
client with other existing CICS applications.

« You already use Liberty applications in WebSphere Application Server and want to port them to run in
CICS.

« You already use Jetty or similar servlet engines in CICS and want to migrate to an application server that
is based on Liberty.

- You want to use data source definitions to access Db2 databases from Java. See Defining the CICS Db2
connection.

« You want to coordinate updates made to CICS recoverable resources with updates made to a remote
resource manager via a type 4 JDBC database driver, using the Java Transaction API (JTA).

« You want to develop services that follow REpresentational State Transfer (REST) principles using JAX-
RS.

« You want to develop applications through support of a standard, annotation-based model using JAX-
WS.

« You want to develop Java EE applications that send and receive secure messages via JMS.

CICS exception handling in Liberty applications

Liberty applications can use several different transactional APIs, including the JCICS API. Most Liberty
components (except for EIBs) require the explicit use of the Java Transactions API (JTA) to coordinate

16 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_about.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/liberty_features.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html

transactions across those APIs. For example, if you need JCICS and remote JDBC activity to rollback
following an Exception issued in application code, you must start a JTA transaction before interacting with
the JDBC connection.

CICS implements an automatic rollback-CICS-transactions-on-Exception policy for simple servlets hosted
in Liberty. This policy ensures that CICS transactions roll back if an Exception is thrown from an ordinary
servlet. This is sufficient to provide basic transactional integration for simple servlets that use the JCICS
API, but the policy does not address some of the more complicated scenarios you might encounter.

For example, the rollback-CICS-transactions-on-Exception policy doesn't integrate with other non-CICS
resource adapters such as remote JDBC and JCA connections. If you need to coordinate transactions
between CICS and other resource managers, you must use JTA to explicitly coordinate the transactions.
This causes Liberty, CICS, and the remote transaction managers, to jointly negotiate whether to commit or
rollback the transactions.

The rollback-CICS-transactions-on-Exception policy is available for simple servlets, but isn't available

to the entire range of extensibility points available in a Liberty environment. Advanced users who

exploit other plugin, callback, and extension points might not experience automated rollback of the CICS
transaction when throwing an Exception. If you need predictable transactionality for Exceptions thrown
from such components, use JTA to coordinate the transactions; an alternative option is to issue an explicit
JCICS Abend to force CICS to rollback the CICS transaction for application detected errors.

For more information, see CICS exception handling in JCICS programs.

CICS tasks for Liberty applications

In order for a Liberty application to use the JCICS API and other CICS resources, such as a JDBC
DataSource with type 2 connectivity, requests must run under a CICS task. CICS creates a task for an
application request at different times, dependent on the type of request. For HTTP requests, a task is
created before the Liberty application is invoked. For other types of requests, for example message-driven
beans (MDBs), inbound JCA, and remote EJBs, a task is created as required.

If the application does not interact with CICS, no CICS task is created for non-HTTP requests.
CICS performs the following actions when a CICS task is created:

« The CICS transaction security check occurs.

« CICS monitoring begins for the task.

« CICS trace for the task starts.

- The name of the Java thread is changed to include the CICS task number and transaction ID.

For non-HTTP applications, these actions occur the first time a JCICS API or a JDBC DataSource with type
2 connectivity is used. If the application does not interact with CICS, no CICS monitoring or transaction
security occurs.

CICS abend handling for uncaught Java exceptions does not apply unless there is a CICS task. If an
application throws an exception before the JCICS API or a JDBC DataSource with type 2 connectivity is
used, no AJO5 abend occurs.

Java web services

CICS includes the Axis2 technology to run Java web services. Axis2 is an open source web services
engine from the Apache foundation and is provided with CICS to process SOAP messages in a Java
environment.

Axis2 is a Java implementation of a web services SOAP engine that supports a number of the web
services specifications. It also provides a programming model that describes how to create Java
applications that can run in Axis2. Axis2 is provided with CICS to process web services in a Java
environment, and therefore supports offloading eligible Java processing to zAAP processors.

The JVM server supports running Axis2 to process inbound and outbound SOAP messages in a Java SOAP
pipeline, without changing any of your existing web services. However, you can also create a web service

Chapter 1. CICS and Java 17

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpjln.html
https://axis.apache.org/axis2/java/core/index.html

from a Java application and run it in the same JVM server. By deploying the application to the Axis2
repository of the JVM server, both the Java application and SOAP processing are eligible for running on a
zEnterprise Application Assist Processor (zAAP).

You might want to use Java web services for one of the following reasons:

« You have experience of Axis2 web services on other platforms and want to create web services in CICS.
« You want to use standard Java APIs to create Java data bindings that integrate with Axis2.

 You have complicated WSDL documents that are difficult to handle with the CICS web services
assistants.

The following examples describe how you can use Java with web services.

Process SOAP messages in a JVM server

Most SOAP processing that occurs in the web services pipeline is performed by the SOAP handler and
application handler. You can optionally run this SOAP processing in a JVM server and use zAAPs to run the
work. You can continue to use web service applications that are written in COBOL, C, C++, or PL/L.

If you have existing web services, you can update the configuration of your pipelines to use a JVM server.
You do not have to change the web services. If the pipeline uses a SOAP header processing program,

it is best to rewrite the program in Java by using the Axis2 programming model. The header processing
program can share the Java objects with Axis2 without doing any further data conversion. If you have a
header processing program in COBOL for example, the data must be converted from Java into COBOL and
back again, which can slow down the performance of the SOAP processing.

The scenario shown in the following diagram is an example of a COBOL application that is a web service
provider. The request is processed in a pipeline that is configured to support Java. The SOAP handler
and application handler are Java programs that are processed by Axis2 and run in a JVM server. The
application handler converts the data from XML to COBOL and links to the application.

CICS region AOR
JYM server
/’I;ipeline Fingrier \\
procassing
proQram
| Axis2

| HTTP : b LINK COBOL
Web service . s Tranzport || Service JAVA SOAP | | Application ~ * corvice
requester [* h:ndlﬂr handler handier handler A provider

I

When you are planning your environment, ensure that you use a set of dedicated regions for your JVM
servers. In this example, the COBOL application runs in an application-owning region (AOR) that is
separate from the CICS region where the JVM server runs. You can use workload management to balance
the workloads, for example on the EXEC CICS LINK from the application handler or on the inbound
request from the web service requester.

Write a Java application that uses output from the CICS web services assistant

You can write a Java application that interprets the language structures and uses the data bindings
generated by the CICS web services assistant. The web services assistant can produce language
structures from WSDL or WSDL from language structures. The assistant also produces a web service

18 CICS TS for z/OS: Java Applications in CICS

binding that describes how to convert the data between XML and the target language during SOAP
processing.

If you use the assistant to generate a language structure, you can use IBM Record Generator for Java or
the Rational J2C Tools to work with the language structures to generate Java classes. These tools provide
a way for Java developers to interact with other CICS applications. In this example, you can use these
tools to write a Java application that can handle an inbound SOAP message after CICS has converted the
data from XML. For more information, see Interacting with structured data from Java.

The scenario shown in the following diagram is an example of a Java application that is a web service
provider. The SOAP processing is handled by Axis2 in a JVM server. The application handler links to the
Java application, which is packaged and deployed as one or more OSGi bundles and runs in a JVM server.

CICS region
JVM server JVM server
/I;Ipeline Hnarar \,
processing
program OSGi
framework
Axis2
k4
- JMS - P LINK Java
Web service - o/ Transport | | Service JAVA SOAP | | Application | | - ST
requester * h:"dlﬂr handler handler handier | [° provider
N -
|

The advantage of this approach is that because the data bindings were generated by the web services
assistant, the web service is represented in CICS by the WEBSERVICE resource. You can use statistics,
resource management, and other facilities in CICS to manage the web service. The disadvantage is
that the Java developer must work with language structures for a programming language that might be
unfamiliar.

When you are planning your environment for this type of application, use a separate JVM server to run the
application:
« You can more effectively manage and tune the JVM servers for the different workloads.

 You can use workload management on the inbound requests and EXEC CICS LINK to balance
workloads and scale the environment.

= You can take advantage of the OSGi support in CICS to manage the Java application.

Write a Java application that uses Java data bindings

You can write a Java application that generates and parses the XML for SOAP messages. The Java API
provides standard Java libraries to work with XML; for example, you can use the Java Architecture for
XML Binding (JAXB) to create the Java data bindings, and the Java API for XML Web Services (JAX-WS)
libraries to generate and parse the XML. If you use these libraries, the application can run in Axis2 in the
same JVM server as the SOAP pipeline processing.

The scenario shown in the following diagram is an example of a Java application that is a web service
provider and is processed by the Axis2 SOAP engine in a JVM server.

Chapter 1. CICS and Java 19

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_strdata_java.html

CICS region

JVM server
'_,_-"
/" Pipeline Header
processing
program
. > Jcics
Web service | HTTP » Transport Sarvice JAVA SOAP & s:ﬂia “
requester [* hindler handler handler | arovider
\. ,/ e
I

The Java application uses Java data bindings and interacts with the Java SOAP handler, so there is no
application handler. In this example, the web service requester uses HTTP to connect to the CICS region,
but you can also use JMS. The Java application uses JCICS to access CICS services, in this example VSAM
files and a temporary storage queue.

The advantage of this approach is that the Java developer uses familiar technologies to create the
application. Also, the Java developer can work with complex WSDL documents that the web services
assistant cannot process to produce a binding. However, this approach has some limitations:

« You cannot use WS-Security for this type of application, so if you want to use security, use SSL to secure
the connection.

- No context switch for the user ID occurs in the pipeline processing. To change the user ID on the
request, use a URIMAP resource.

- Because you are not using the web service binding from the web services assistant, there is no
WEBSERVICE resource.

- If the application is a web service requester, the pipeline processing is bypassed. So you do not get the
qualities of service that are available in the pipeline.

If you implement workload management in your CICS regions, you must plan how to route this type of
workload. Because the Java application runs in the same JVM server as the SOAP processing, CICS does
not provide a routing opportunity. However, you can implement a distributed program link in the JAX-WS
application to another program if routing is required.

Spring Boot support in CICS

The CICS Liberty JVM server supports Spring Boot applications by using the Spring application
programming model. Spring Boot provides a simpler and faster way of configuring, building, and running
Spring applications. Spring was originally designed to simplify Java Enterprise Edition (EE), by using
plain old Java objects (POJOs) and dependency injection. It now extends and encompasses many
aspects of Java EE development. Spring Boot builds on Spring by adding components to avoid complex
configuration, reduce development time, and offer a simpler startup experience. Most Spring Boot
applications require little Spring configuration. For more information about Spring and Spring Boot, see
Spring Boot overview.

Spring Boot applications can run on CICS Liberty without modification by configuring the springBoot-1.5
or springBoot-2.0 features and deploying them as applications of 'type="spring"', as JAR files

with .spring extension in dropins, or as JAR files with .jar extension in dropins/spring. It alsois
possible to configure Spring Boot applications for integration with CICS transactions and security, and to
call the CICS API by using JCICS. For more information on integrations, see Spring Boot applications.

20 CICS TS for z/0OS: Java Applications in CICS

https://spring.io/projects/spring-boot
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/liberty_features.html#features__springboot-1.5
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/liberty_features.html#features__springboot-2.0
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_springboot.html

When built as a web application archive (WAR), a Spring Boot application can be deployed and managed
by using CICS bundles in the same way as can other CICS Liberty applications. A Spring Boot application
can use the annotation @CICSProgram to define a method as the target of a CICS program. This can be

linked from COBOL or other non-Java CICS programs by using the channel and container interface.

Chapter 1. CICS and Java 21

22 CICS TS for z/OS: Java Applications in CICS

Chapter 2. CICS management client interface (CMCI)

The CICS management client interface (CMCI) is a system management application programming
interface (API) for use by HTTP client applications such as IBM CICS Explorer. The CMCI provides the
CMCI REST API and the CMCI GraphQL API for clients to manage installed and definitional system
resources, and the CICS bundle deployment API to deploy bundles into single CICS development regions
with Maven and Gradle plug-ins. It also supports advanced client authentication, including multifactor
authentication (MFA).

Depending on your environment, you can set up the CMCI in either a CICSPlex® SM environment or in a
single CICS region that is not managed by any CICSPlex SM.

CMCI in a CICSPlex SM environment
Allows you to manage definitional resources, such as CSD and BAS resources, and operational
resources in all of the CICS regions managed by CICSPlex SM, with an HTTP client.

CMCI in a single CICS region
Allows you to manage only the CSD and operational resources associated with that region through an
HTTP client, and the context is specified as the application ID of that CICS region.

When a single CICS region is configured with the CMCI, it becomes a CICS System Management Single
Server (SMSS).

What is the CMCI JVM server?

The CMCI JVM server is a Liberty server. It is an optional, but highly recommended component of the
CMCI that enhances support for CMCI requests. In addition to the basic CMCI REST API, the CMCI JVM
server performs client authentication, including the support for multifactor authentication (MFA). It also
provides powerful capabilities of system management and application development, through the CMCI
GraphQL API and the CICS bundle deployment API.

Table 2 on page 23 compares functions that are available to the CMCI configured with the CMCI JVM
server with those available to the basic CMCI (that is, without the CMCI JVM server).

Table 2. Function availability in CMCI
Function CMCI with the CMCI JVM server | Basic CMCI
(default in CICSPlex SM)
Authentication support
User ID / password Vv Vv
Certificate Y v
PassTicket v
MFA v
API support
REST API Vv \
GraphQL API v
CICS bundle deployment API V' (Additional configuration
required)

The CMCI JVM server is used by default by the CMCI in a CICSPlex SM environment. For CICSPlex SM, the
enablement of the CMCI JVM server is controlled by feature toggle com.ibm.cics.cmci.jvmsexrver.
For an SMSS, it's controlled by the CPSMCONN system initialization parameter.

© Copyright IBM Corp. 1974, 2023 23

CMCI REST API versus CMCI GraphQL API: What is it? And what's the difference?

The CMCI REST API and the CMCI GraphQL API are both HTTP-based application programming interfaces
that can be used to develop HTTP client applications that manage installed and definitional CICS and
CICSPlex SM resources on CICS regions being managed by CICSPlex SM.

The CMCI REST API is designed based on Representational State Transfer (RESTful) principles, so you
need to retrieve data from multiple endpoints with fixed data structures. That means each client of
that API needs to be built with understanding of how to derive the relationships between resources.

In comparison, these relationships are a fundamental part of the GraphQL API, so this API can expose
only a single endpoint with more flexibility. This means that in a single query request, a client can query
many types of CICS resources across CICSplexes, and specify exactly what data it needs with explicitly
expressed relationships between the resources.

For example, the GraphQL query in Figure 1 on page 24 retrieves data about the local transactions and
associated programs, including use counts, in all regions in all connected CICSplexes. To achieve the
same effect with the CMCI REST API, you might first access an endpoint that returns the list of local
transactions available, and then an endpoint that returns all the programs. Then your client code must
be written to post-process these results to match up the local transactions and programs. With GraphQL,
relationships within the queried resources are also more explicitly shown through the CMCI GraphQL API
than through the CMCI REST APIL.

1
cicsplexes {
cicsResources §
loctran {
records §
name
to_program {
name
useCount

Figure 1. CMCI GraphQL API Query requesting programs associated with local transactions

CICS bundle deployment API: What is it?

Through the CICS bundle deployment API, the CMCI supports deploying CICS bundles into a single CICS
region.

This REST API receives a CICS bundle as a zip file over HTTP. The bundle will be unzipped, installed into,
and enabled in the appropriate CICS region automatically. If a CICS bundle with the same name already
exists, it will be disabled and discarded before the new bundle is installed.

The CICS bundle deployment API can increase Java developers' productivity by enabling them to see
their application changes reflected in a running CICS region within seconds. Developers can also use

the CICS-provided Gradle or Maven plug-in (cics-bundle-maven-pluginor com.ibm.cics.bundle)
that leverages the API, to integrate CICS bundle build and deployment into a toolchain.

The API also enables Java developers to deploy bundles whilst the system programmer retains control. A
functional ID or another user ID with sufficient access deals with the bundle lifecycle and interacts with
zFS on behalf of developers.

For more information about the API, see “How it works: CICS bundle deployment API” on page 32.
To configure CICS for the API, see Configuring the CMCI JVM server for the CICS bundle deployment API.

Related information
Setting up CMCI

24 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/cmci/config-bundle-api.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/cmci/clientapi_setup.html

How it works: CMCI REST API

The CICS management client interface (CMCI) provides a REST application programming interface (API)
for system management clients such as IBM CICS Explorer. The CMCI REST API can also be used in an
automated process, by leveraging the Ansible IBM z/0S CICS collection.

The CMCI REST API is supported through HTTP. The client initiates an HTTP request to the CMCIL. If the
interface determines that the request is valid, it constructs a CICSPlex SM API command or, in the case
of a stand-alone CICS region, a CICS system command. After running the command, the CMCI creates an
HTTP response. If the request is successful, this takes the form of an HTTP 200 (OK) response and an
XML feed containing a result set, which it passes back to the client. If the request is not successful, the
response consists of a non-OK HTTP response code with details of the failure.

The format for CMCI HTTP requests and responses is based on the HTTP/1.1 protocol. See The HTTP
protocol for more information about this protocol.

How to make CMCI HTTP requests

A CMCI request takes the form of an HTTP header followed by a URI (Universal Resource Identifier) and,
where appropriate, an XML body containing details of any changes to be made to CICS or CICSPlex SM
resources.

The header incorporates one of the following HTTP methods:

DELETE
Removes resources from the CICSPlex SM data repository, removes resources from the CICS system
definition data set (CSD), or discards installed resources.

GET
Retrieves information about resources in the CICSPlex SM data repository, retrieves information about
resources on the CSD, or retrieves information about installed resources.

POST
Creates resources on the CICSPlex SM data repository or resources in the CSD.

PUT
Updates existing resources in the CICSPlex SM data repository, updates existing resources in the
CSD, or sets attributes and performs actions on installed resources. Also performs actions on
CICSPlex SM and CSD resources.

The URI includes the name of a CICS or CICSPlex SM resource, and specifies a series of parameters that
refine the scope and nature of the query to identify one or more instances of the specified resource. In a
GET request, the URI also specifies whether the API retains or discards a set of results. If the API retains
the results, a new request can act on the retained results without having to repeat the retrieval operation.
You can also use subsequent requests to page through the retained results selecting one or more records
at a time.

POST and PUT requests include an XML body. In a PUT request the body contains either details of the
changes to be made to resource attributes, or the action to be performed on the targeted resources. In a
POST request, the body incorporates the attribute values you want to give to the new resource instance.

GET and DELETE requests do not require an XML body. If additional parameters are required for a DELETE
request, those parameters must be included in the URI and can optionally be added to the XML body.
Find out more

CMCI REST API reference gives your details on the DELETE, GET, POST, and PUT methods, CMCI resource
names, CMCI XML body elements, diagnostic aids, and so on.

How it works: CMCI GraphQL API

The CICS management client interface (CMCI) provides a GraphQL application programming interface
(API) for system management clients such as IBM CICS Explorer. The CMCI GraphQL API is supported

Chapter 2. CICS management client interface (CMCI) 25

https://galaxy.ansible.com/ibm/ibm_zos_cics
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/web/dfhtl29.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/web/dfhtl29.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/cmci/clientapi_overview.html

through HTTP. With the GraphQL API, a client can query many types of CICS resources across CICSplexes
or regions in a single request. In the single query request, the client can specify exactly what data it
needs about multiple CICS resources, with inherent relationships between the CICS resources explicitly
expressed. For more information about GraphQL, see Introduction to GraphQL.

Notes:
- The aggregation function in CICS Explorer is also supported by the CMCI GraphQL API in CICS TS. For
more information, see Configuring for CICS Explorer.

« The CMCI GraphQL API is supported in a CICSPlex SM environment as of CICS TS 5.5, and in a single
CICS region (SMSS) environment as of CICS TS 5.6 with APAR PH35122.

« To set up the CMCI GraphQL API in CICS, you need to configure a CMCI JVM server within the WUI
region of a CICSplex or a single CICS region. For instructions, see Setting up CMCI.

What is a GraphQL query?
A simple GraphQL query request looks like this:
1

cicsplexes {
name

5
Figure 2. Simple query requesting CICSplex names
At the root of the query is the cicsplexes field, which finds all the CICSplexes that the WUI server is
connected to. The name field nested in the cicsplexes field requests the name of each CICSplex.

Query responses are returned as JSON objects, with the requested data enclosed in the value of the data
field. The structure of the response follows that in the query.

"data": {
"cicsplexes": [

"name": "CICSPLX0O1"

’

Mt

"name": "CICSPLX02"
¥
]
3
¥

Figure 3. Response to simple query about CICSplex names
In an SMSS region, the structure of a GraphQL query is different and looks like this:

{
smssRegion §
name
%
&

Figure 4. Simple query requesting SMSS region name

The structure of the response is similar to the CICSplex, and looks like this:

"data": {
"smssRegion": {
"name": "IYCWENSS"
3
3
¥

Figure 5. Response to simple query about SMSS region name

26 CICS TS for z/OS: Java Applications in CICS

https://graphql.org/learn/
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/configure-cicsexplorer.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/cmci/clientapi_setup.html

In CICS TS, the GraphQL API has support for:

« Basic system topology (CICSplexes, Regions, System Groups)
« Querying regions for the resources installed in them

« Querying BAS repositories and CSD repositories for definitions
- Aggregating and grouping resources

« Navigating links between resources

To retrieve more information, add more fields to the query, including nested ones. See “Sample queries”
on page 29.

How to make GraphQL API requests
The GraphQL API endpoint is at:

https://host:port/graphql

where host and port are the host name and the port number of your CMCI JVM server.
The GraphQL API accepts GET and POST requests.
For GET requests:

A Content-Type: application/json header must be sent. The query is supplied by the query
query parameter. The operation is supplied by the optional operationName query parameter.

For example, the simple query in Figure 2 on page 26 can be sent by using the following URL:

https://host:port/graphql?query={cicsplexesinamet?

Likewise, for the simple query in Figure 4 on page 26, a GET request is similar, and can be sent by
using the following URL:

https://host:port/graphql?query={smssRegioninamet}

For POST requests:

A Content-Type: application/json header must be sent. The body of the request must be a
JSON-encoded object.

$
"quexry": "query_body",
"operationName": "operation_name"

¥

where only the quezy field is mandatory.

Alternatively, a Content-Type: application/graphql header can be sent on POST requests. In
this case, the body of the request must be the GraphQL query itself, and no operation name can be
specified.

See “Sample queries” on page 29 for sample code of GraphQL queries.

Example: the CICSplex Explorer view of CICS Explorer

The GraphQL API can provide a more responsive experience in user interfaces such as CICS Explorer.
Take the CICSplex Explorer view of CICS Explorer as an example, consider what information is needed in
CICS Explorer to build the CICSplex Explorer view:

Chapter 2. CICS management client interface (CMCI) 27

CICSplex Explorer '[! CICSplex Repositories
Server: EZCM
v ¥4, CICSEXCD (7/7)
» 24 Workload Management
v |*s] Systems
|*e] IYCWEZG1 (IYCWEZG1)
[*s YCWEZH1 (IYCWEZH1)
|*<| IYCWEZI1 (IYCWEZI1)
1*s IYCWEZJ1 (IYCWEZJ1)
|*] IYCWEZW1 (IYCWEZW1)
1*s YCWEZW2 (IYCWEZW2)
|*e| IYCWEZZ1 (IYCWEZZ1)
» (] System Groups
v 3 DUMMY907 (0/0)
" Workload Management
o] Systems
=1 System Groups

At its most basic, you need to know what CICSplexes are in the environment, and which CICS regions are
in those CICSplexes. With a REST API, you have to make multiple requests:

1. Ask for a list of CICSplexes in the environment.
2. For each CICSplex, ask for a list of the regions in that CICSplex.

Even this simple example demonstrates that the number of requests you have to make grows with the
complexity of the information you ask for. When you consider adding region groups into the mix, and
members of those region groups, even more information needs to be requested.

Here’s how to ask for the information you need to populate the CICSplex Explorer view in the GraphQL
API:

{
cicsplexes §
name
regions 1§
name

¥
¥

And here’s the response:

"data": {
"cicsplexes": [

"name": "DUMMY907",
"regions": []

’

1
“name": "CICSEXCD",
"regions": [

“name": "IYCWEZW2"

’

’

3
1
"name": "IYCWEZG1"
3
1

28 CICS TS for z/0OS: Java Applications in CICS

"name": "IYCWEZW1"

"name": "IYCWEZH1"

"name": "IYCWEZI1"

"name": "IYCWEZJ1"

"name": "IYCWEZZ1"

I N e T N S o P N RN Sy P

The GraphQL supplies all the data you require in a single request with explicitly shown relationships
between CICS resources. When enabled for the CMCI connection, it can drastically reduce the time you
need to retrieve information through CICS Explorer. It also powers the aggregation function in CICS
Explorer for Aqua 3.2 to provide aggregation and grouping of CICS resources.

Sample queries

You can use GraphiQL, an online GraphQL visualization editor, to test your GraphQL queries or the
samples. The URL to GraphiQL is:

https://host:port/graphiql

where host and port are the host name and the port number of your CMCI JVM server.
GraphiQL tips:

« GraphiQL provides auto-completion and a built-in documentation explorer for GraphQL schema
reference. You can display available field names by pressing Ctrl+Space.

« To easily differentiate queries in GraphiQL history, you can specify a unique query name by prefixing the
query with query QueryName.

The following example queries the count of local files of all regions in all the connected
CICSplexes, and the name of each CICSplex and region. It also has a query name
LocalFilesInRegionsInCICSplexes.

query LocalFilesInRegionsInCICSplexes {
cicsplexes {

name
regions {

name

cicsResources {

locfile {
count

}
¥
¥
}

You can add more attributes to be queried. This example queries all CICSplexes and all the regions in
each CICSplex. Within each region, it retrieves the name, useCount, and status fields of all the local
transactions.

1
cicsplexes §

name

regions 1§
name
cicsResources §

loctran $
records §

Chapter 2. CICS management client interface (CMCI) 29

name
useCount
status

You can specify which CICSplex or CICS region to be queried. This example queries Region AORRGN in
CICSplex PLEX1, retrieving the name, useCount, and status fields of all the local transactions in the
region.

cicsplex(name: "PLEX1") {
name
region(name: "AORRGN") 1§
name
cicsResources §
loctran {
records §
name
useCount
status

Removing the CICSplex and region specifications, this example queries all connected CICSplexes and the
name, useCount, and status fields of all the local transactions in those CICSplexes.

i
cicsplexes {
name
cicsResources §
loctran {
records §
name
useCount
status

¥
¥
¥
¥

This example is similar to the previous one, except that it uses a filter to retrieve only transactions starting
with CED.

1
cicsplexes §
name
cicsResources {
loctran(filter: fname: fvalue: "CED%x"%%) £
records {
name
useCount
status

You can also query CICS definitions. This request queries the name and update attributes for all file
definitions in the CICSplex data repository.

cicsplex(name: "PLEX1") {
drep $
cicsDefinitions §

30 CICS TS for z/OS: Java Applications in CICS

filedef §
records {

name
update

Similarly, this request queries the name for all pipeline definitions in the CSD for Region AORRGN in
CICSplex PLEX1.

cicsplex(name: "PLEX1") £
region(name: "AORRGN") $
csd §
cicsDefinitions §
pipedef {
records §
name

This query performs aggregation of all local files in each CICSplex, grouping them by common values
of the name attribute and retrieving the count of aggregated records within each aggregation group, the
name of each group, and the average, minimum, and maximum readCount within each group.

1
cicsplexes §
name
cicsResources {
locfile §
groupBy (attribute: "name") {
count
aggregateRecord {
name {
value

readCount {
average
min
max

The following example queries the current local transactions connected to the SMSS region. It retrieves
records and displaying name, priority, status, tracing, purgeability, and deadlock timeout under each
SMSS region name.

i
smssRegion {
name
cicsResourcess
loctrang
records{
name
priority
profile
status
tracing
purgeability
deadlockTimeout

Chapter 2. CICS management client interface (CMCI) 31

How it works: CICS bundle deployment API

The CICS management client interface (CMCI) supports deploying CICS bundles into a single region
through the CICS bundle deployment API. The API is supported by the CMCI JVM server that is configured
either in the WUI region of the target region's CICSplex, or in the target region itself if it's a CICS System
Management Single Server (SMSS).

Table of contents

“Overview” on page 32

“How the API works” on page 33

“Security model of the API” on page 34

“How to make CICS bundle deployment API requests” on page 34
“What's next” on page 35

Overview

The API is used at development time for Java developers to check their application changes in a running
CICS region within seconds. The API also supports the CICS-provided Maven and Gradle plug-ins that can
be used to integrate CICS bundle build and deployment into a developer's toolchain. For more information
about CICS support for Maven and Gradle, see Java support in CICS.

Note: CICS supports bundle installation from the CICS system definition data set (CSD) to a single region.

The CICS bundle deployment API enables Java developers to deploy bundles whilst the system
programmer retains control. This is achieved by removing the need for developers to write bundles to
zFS through FTP, or to install bundles from CSD. These actions are taken by the API, by using a functional
ID or another user ID with sufficient access.

The diagram shows a typical scenario where multiple application developers push bundles to the API,
which is configured in the WUI region of a CICSplex. For an SMSS environment, the API is configured in
the CMCI JVM server of the target region.

Install .
Hi [bundles Target region 1

Application
developer 1
Deploy . .
bundles 4’“ WUI region Target region 2 =] csD
Application
developer 2

F Target region 3

Figure 6. Multiple developers pushing bundles to API

This REST API receives a CICS bundle that contains the developer's application as a zip file over HTTP.
The bundle will be unzipped, installed into, and enabled in the appropriate CICS region automatically. If a
CICS bundle with the same name already exists, it will be disabled and discarded before the new bundle
is installed.

Typically, the system programmer provides the Java developer with necessary parameters, for example,
the CICSplex, CICS Region, CSD Group, and name of the BUNDLE definition. The system programmer then
creates the BUNDLE definition, configured with the correct bundle directory attribute for the application
that is being developed.

32 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/java/JVMsupport.html

How the API works

As described before, the API manages the bundle lifecycle and interacts with zFS on behalf of the
developer after receiving the bundle. Usually the API is driven by a client such as the CICS-provided
cics-bundle-maven-pluginorcom.ibm.cics.bundle.

The API is configured with a bundles directory. This is a location on zFS that should be dedicated for the
use of the API in managing bundles. Bundles pushed to the API are unzipped into the bundles directory
and accessed by the CICS target region. This is transparent to developers and managed by the system
programmer. Developers using this API do not need to interact with bundles on zFS.

For each application a developer is working on, the system programmer creates a BUNDLE definition

in the CSD. The BUNDLE definition's BUNDLEDIR attribute must be configured with a path to the right
version of the application uploaded to the bundles directory, for example, /u/path/to/bundles/dir/
ApplicationName_1.0.0. The system programmer provides the BUNDLE definition name and CSD
group for the developer to drive the API. Developers using this API do not need to install, disable, or
discard the CICS BUNDLE resource.

The diagram shows a bundle’s lifecycle from the time when it's published by an application developer
until it gets installed into a CICS region. It's handled by the API automatically without users' intervention.

= csD

D Bundle definition
Name: FOO
CSD group: DEMO
Bundle directory:
/bar/baz/my_bundle_1.0.0

X

Application developer’s client ﬂ WUI region DC,:_, CICSPlex MYPLEX
0 Deploy request M;e = CMIJVM server M;e CICS region
bunddef: FOO -~ bundles.dir=/bar/baz REGION1
csdgroup: DEMO
cicsplex: REGION1 || N
bundle: my_bundle.zip
=] 2IFS
:} :
D /oarlbazimy_bundle_1.0.0 | | G

Figure 7. Bundle's lifecycle in the API

The application developer publishes the application bundle through the CICS bundle deployment
APL.

Validate
The CMCI JVM server finds the BUNDLE definition in the target region's CSD and checks that
the BUNDLE definition's bundle directory (BUNDLEDIR) attribute value is within the API's configured
bundles directory.

Uninstall
The CMCI JVM server checks whether any previously installed bundle with the same name as the
BUNDLE definition specified exists in the target region. Such a bundle is disabled and discarded as
required.

Chapter 2. CICS management client interface (CMCI) 33

https://github.com/IBM/cics-bundle-maven
https://github.com/IBM/cics-bundle-gradle

4 The CMCI JVM server deletes any previous bundle with the same name and version from the
bundles directory on zFS. Then, it unpacks the published bundle to the bundles directory.

Install
The CMCI JVM server initiates a CSD install of the BUNDLE definition.

A The target region reads the bundle from zFS and installs it.

Security model of the API

A functional ID is introduced to ensure controlled access. As a result, application developers are able to
deploy bundles through specific access to the CICS bundle deployment API, and without general access
to manipulate bundles. Different users IDs are involved in the API's workflow as follows:

« The application developer is authenticated as normal, to make sure their user ID has access to the API.
 The task switches from the application developer's user ID to a configured deployment functional ID.

« The deployment functional ID writes the bundle to zFS and initiates a CSD install of the bundle to the
target region.

« The region user ID of the target region reads the bundle from zFS during installation.
The security mechanism of the API requires additional configurations for the API to work:

« The system programmer must configure SAF correctly to enable bundle deployment using the API.
- The API works only in regions configured as SEC=YES.

For instructions, see Configuring the CMCI JVM server for the CICS bundle deployment API.

How to make CICS bundle deployment API requests

CICS provides a Maven and a Gradle plug-in that uses this API to publish bundles to CICS. Java
developers can use it for bundle deployment at development time. For instructions, see cics-bundle-
maven. Alternatively, if you want to write your own tooling, the API can be invoked by using any standard
REST client.

The format of API requests is based on HTTP/1.1. The API uses the POST request only, and
accepts multipart form data. A Content-Type: multipart/form-data header must be sent. String
parameters and the zipped bundle file are accepted as form data parts in the payload.

The API returns an HTTP response code and a JSON description of the outcome of the request. A
response code of 4xx indicates that a user has incorrectly addressed the API. A response code of 5xx
indicates that the system is set up incorrectly.

The API endpoint is served alongside your standard CMCI interface. For example, if your CMCI
interface is available at mycicshost.comon port 4444, your API endpoint URL would be https://
mycicshost.com:4444/managedcicshundles.

Call the API with these parameters:

cicsplex
Required only for a CICSPlex SM environment. The name of the CICSplex that the target region
belongs to.

region
Required only for a CICSPlex SM environment. The name of the region that the bundle should be
installed into.

csdgroup
The name of the CSD group where the source BUNDLE definition exists.

bunddef
The name of the BUNDLE definition.

bundle
The zip file that contains the bundle contents, as content-type application/zip. The META-
INF directory should be in the root of the zip file.

34 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_sec.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/cmci/config-bundle-api.html
https://github.com/IBM/cics-bundle-maven
https://github.com/IBM/cics-bundle-maven

For example, to call the API from your local workstation using the command-line tool cURL, your
command line might look like this:

curl -i -X POST -u MYUSER -F cicsplex=MYPLEX -F region=MYREGION -F csdgroup=CSDGRP
-F bunddef=MYBUND -F bundle=@c:/path/to/bundle_0.0.1.zip https://mycicshost.com:4444/
managedcicsbundles

The CICS bundle deployment API unzips the content of the uploaded zip file without performing any
codepage conversion. Each file in the bundle must be encoded in the correct codepage prior to being
zipped.

What's next

Configure your CMCI JVM server to enable the API. See Configuring the CMCI JVM server for the CICS
bundle deployment API

Related information
Managing Java dependencies using Maven or Gradle

CMCI security features: How CMCI authenticates clients

When an HTTP system management client such as CICS Explorer attempts to sign on, the CMCI verifies
the user credentials. The user credentials can be a user ID and password, a PassTicket, an MFA token
or a certificate. If the CMCI JVM server is enabled, it handles the authentication process. Authentication
through a PassTicket or an MFA token is only available with the CMCI JVM server.

How the CMCI JVM server authenticates clients

Figure 8 on page 35 illustrates the client authentication workflow based on CICS Explorer.

WUI region

@ CICS Explorer CMCI JVM server

user credentials

v

LTPA token

Figure 8. CMCI HTTP client authentication workflow

1. When a user logs on from CICS Explorer, CICS Explorer passes the user credentials to the CMCI
JVM server. The user credentials can be a user ID and password, a PassTicket, an MFA token or a
certificate.

2. The CMCI JVM server validates the user credentials by using SAF interfaces to the external security
manager (ESM) and generates an LTPA token.

3. The CMCI JVM server replies to CICS Explorer with the response and the LTPA token.
In subsequent requests, CICS Explorer will use the LTPA token to authenticate the user.
Note:

« The LTPA token is a cookie; therefore, the HTTP client must accept cookies.

Chapter 2. CICS management client interface (CMCI) 35

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/cmci/config-bundle-api.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/cmci/config-bundle-api.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html

« Although a JVM server is used for the transport and authentication of the CMCI, most of the processing
still occurs in the CICS core; therefore, do not expect increased specialty engine offload from the CMCI
JVM server.

LTPA timeout

An LTPA token has a fixed lifetime. It cannot be extended or renewed, even if a user is active in a session.
Upon timeout, the user is logged out and must provide login credentials again to get a new token. The
expiration time of the LTPA token is configurable. For instructions, see Configuring LTPA in Liberty.

Sharing LTPA tokens

With the single sign-on (SSO) configuration support in Liberty, you can set up Liberty to allow the sharing
of LTPA tokens among multiple regions. HTTP client users can authenticate once and have access to other
regions that share the same LTPA keys. For more information, see Customizing SSO configuration using
LTPA cookies in Liberty.

How CMCI without the CMCI JVM server authenticates clients

If the CMCI JVM server is not used with the CMCI, the user is authenticated using a certificate or a basic
authenticator in the HTTP header.

One-time-use tokens (such as MFA tokens and PassTickets) are not supported.

Find out more

Authentication overview gives you an overview of the authentication process in Liberty and describes
LTPA and SSO in details.

Setting up CMCI gives you configuration instructions.

36 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_ltpa.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_sso.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_sso.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_authentication.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/cmci/clientapi_setup.html

Chapter 3. Developing Java applications

You can write Java applications that use CICS services and run under CICS control. CICS provides the
run time environment through a JVM server. You can connect to your Java programs through technologies
such as web services or z/OS Connect Enterprise Edition.

Using the IBM CICS SDK for Java or other Java IDEs, you can develop applications that use the CICS
Java APIs (JCICS and JCICSX) to access CICS resources and interact with programs that are written in
other languages. You can declare Java dependencies in a Maven or Gradle module and develop the Java
applications in the same way as you do for other platforms.

Check out Get started with Java in CICS for a summary of developing Java applications.

Java runtime environment in CICS

CICS provides the JVM server environment for running threadsafe Java applications. Applications that are
not threadsafe cannot use a JVM server.

The JVM server is a runtime environment that can run tasks in a single JVM. This environment reduces the
amount of virtual storage required for each Java task, and allows CICS to run many tasks concurrently.

CICS tasks run in parallel as threads in the same JVM server process. The JVM is shared by all CICS
tasks, which might be running multiple applications concurrently. All static data and static classes are
also shared. So to use a JVM server in CICS, a Java application must be threadsafe. Each thread runs
under a T8 TCB and can access CICS services by using the JCICS API.

Do not use the System.exit () method in your applications. This method causes both the JVM server
and CICS to shut down, affecting the state and availability of your applications.

Multithreaded applications

You can write application code to start a new thread or call a library that starts a thread. If you want

to create threads in your application, the preferred method is to use a generic ExecutorService from
the OSGi registry. The ExecutorService automatically uses CICSExecutorService to create CICS
threads when the application is running in a JVM server. This approach means the application is easier to
port to other environments and you do not have to use specific JCICS API methods.

However, if you are writing an application that is specific to CICS, you can choose to use the
CICSExecutorService class in the JCICS API to request new threads.

Whichever approach you choose, the newly created threads run as CICS tasks and can access CICS
services. When the JVM server is disabled, CICS waits for all CICS tasks running in the JVM to finish.
By using the ExecutorService or CICSExecutorService class, CICS is aware of the tasks that are
running and you can ensure that your application work completes before the JVM server shuts down.

You should only use JCICS objects in the task that created them. Any attempt to share the objects
between tasks can produce unpredictable results.

For further details on using the CICS ExecutorService refer to “Threads” on page 57.

JVM server startup and shutdown

Because static data is shared by all threads that are running in the JVM server, you can create OSGi
bundle activator classes to initialize static data and leave it in the correct state when the JVM shuts down.
A JVM server runs until disabled by an administrator, for example to change the configuration of the JVM
or to fix a problem. By providing bundle activator classes, you can ensure that the state is correctly set

for your applications. CICS has a timeout that specifies how long to wait for these classes to complete
before continuing to start or stop the JVM server. You cannot directly use JCICS in startup and termination
classes. However, a developer can start a new JCICS-enabled thread from an activator, by using the
CICSExecutorService.runAsCICS() API. Any JCICS commands will run under the authority of the

© Copyright IBM Corp. 1974, 2023 37

http://www.ibm.com/support/knowledgecenter/SSGMCP_6.1.0/applications/developing/java/getting-started/get-started.html

user id that issued the install command. Therefore it is prudent for an administrator to understand the
resources used in bundle activators before they install them.

Setting up your development environment

You can use the JCICS or JCICSX API to develop Java applications that can access CICS resources. Both
APIs are available in the IBM CICS SDK for Java, Maven Central, or in the USSHOME directory of your CICS
installation.

About this task

Both JCICS and JCICSX APIs provide you with the Java interface to access CICS services. The JCICS API
is the Java equivalent of the EXEC CICS API that is provided for other CICS supported languages, such as
COBOL. The JCICSX API supports a subset of JCICS functionality with new Java API classes that provide
developers with the capabilities of mocking and remote development. The JCICSX API classes can be
used together with the JCICS API, but only the commands using JCICSX can benefit from these enhanced
features. See “Java development using JCICSX” on page 87 for more information.

The table shows where the APIs are provided and what tools you can use to consume them.

Table 3. JCICS and JCICSX API locations

Java code authoring JCICS API JCICSX API classes

tool

CICS Explorer Yes, provided in the preinstalled IBM Yes, provided in the preinstalled
CICS SDK for Java, which resolves IBM CICS SDK for Java in IBM
dependencies automatically. CICS Explorer for Aqua 3.21 (Fix

Pack 5.5.0.9) or later, which resolves
dependencies automatically.

Apache Maven and Yes. You can declare the dependency Yes. You can declare the dependency
Gradle (to access using any Java IDE that supports using any Java IDE that supports
artifacts from Maven Gradle or Maven. Gradle or Maven.

Central)

Any other tool, to import Yes. You need to manually import the Yes. You need to manually import the
the API jars provided in dependency. dependency.

USSHOME

Note: If you want to develop Java EE applications for CICS, you must install the IBM CICS SDK for
Enterprise Java (Liberty) in CICS Explorer.

CICS Explorer provides the following tools for you to develop, package, and deploy Java applications that
are hosted in the CICS JVM server:

« The IBM CICS SDK for Java provides support for the JCICS API and JCICSX API classes.
« Eclipse and the Eclipse Web Tools Platform provide the tools to develop Java EE applications.

« The IBM CICS SDK for Enterprise Java (Liberty) provides the Java EE, Jakarta EE, MicroProfile and
Liberty APIs in the form of a Java build path library or OSGi target platform.

« CICS Explorer provides the tools to package, deploy, and manage Java applications within CICS
bundles.

« Explorer for z/OS provides the tools to work with files, data sets, and jobs on z/0S, including viewing
JVM server log files.

The SDKs can resolve dependencies automatically as long as you add the correct library to your build path
or select the correct OSGi target platform.

1 Aqua refers to IBM Explorer for z/0S Aqua.

38 CICS TS for z/0S: Java Applications in CICS

Consuming dependencies from Maven Central offers more flexibility in the choice of IDE and integrates
easily into popular build toolchains such as Gradle or Maven. The Maven Central artifacts contain the
JCICS, JCICSX, CICS annotation, CICS annotation processor libraries and a bill of material (BOM) for you
to declare dependencies and develop applications for CICS in your IDE of choice. The artifacts can be
obtained directly from Maven Central, or from locally hosted and allow-listed repositories using tools such
as JFrog Artifactory or Sonatype Nexus. You can then use the CICS-provided Maven and Gradle plug-ins
to package and deploy CICS bundles that contain your applications into a CICS region.

Procedure

« To use the SDKs in CICS Explorer:

a) The IBM CICS SDK for Java is preinstalled in CICS Explorer. If you want to develop Java EE
applications, install the IBM CICS SDK for Enterprise Java (Liberty) into your CICS Explorer as a
plug-in. For instructions, see Downloading and starting CICS Explorer in the CICS Explorer product
documentation and Installing the CICS SDK for Java EE, Jakarta EE and Liberty in the CICS Explorer
product documentation.

b) Restart your development environment.

¢) Add libraries to your build path or select your target platform, for the SDK to revolve dependencies
correctly for your projects. See Step 1 in “Creating a Dynamic Web Project” on page 116, “Creating
an OSGi Application Project ” on page 117, and “Creating an Enterprise Application Project” on
page 119.

« To use Gradle or Maven:
a) Ensure your environment fulfills either of the following prerequisites:

— If you want to use Gradle or Maven with the command line, you must install them on your
machine. See Downloading and Installing Maven and Installing Gradle.

— Your IDE must support Gradle or Maven. Such IDEs include Eclipse, IntelliJ IDEA, and Visual
Studio Code.

b) Create your project using Gradle or Maven and import dependencies based on the API you want
to use, as described in “Managing Java dependencies using Gradle or Maven” on page 46. You
might need to add extra Gradle or Maven configuration, depending on your project type. See Step 1
in “Creating a Dynamic Web Project” on page 116, “Creating an OSGi Application Project ” on page
117, and “Creating an Enterprise Application Project” on page 119.

« Touse the JAR files in the USSHOME directory, see “Manually importing Java libraries” on page 54.

Results

Your development environment is ready to develop Java applications for CICS.

What to do next

For JCICS users, you can refer to the JCICS Javadoc information. If you're using the IBM CICS SDK for
Java, you can use the examples that are provided with the IBM CICS SDK for Java to get started. For more
information, see Java samples: Servlet examples.

For JCICSX users, see JCICSX Javadoc for more information.

Developing applications using the IBM CICS SDKs

CICS Explorer includes the IBM CICS SDK for Java and optionally the IBM CICS SDK for Enterprise Java
(Liberty). These SDKs provide an environment for developing and deploying Java applications to CICS,
including support for OSGi and web projects.

If you want to develop Java applications without using an SDK, see “Managing Java dependencies using
Gradle or Maven” on page 46.

Chapter 3. Developing Java applications 39

https://github.com/IBM/cics-bundle-maven
https://github.com/IBM/cics-bundle-gradle
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/concepts/install_planning_client.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/concepts/install_planning_client.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_install_web_sdk.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_install_web_sdk.html
https://maven.apache.org/download.cgi
https://maven.apache.org/install.html
https://docs.gradle.org/current/userguide/installation.html
https://www.eclipse.org/downloads/
https://www.jetbrains.com/idea/download/
https://code.visualstudio.com/download
https://code.visualstudio.com/download
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/index.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-samples/java_samples_servlet.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcicsx-javadoc/index.html

You can use the IBM CICS SDK for Java to create new applications, or repackage existing Java
applications to comply with the OSGi specification. OSGi provides a mechanism for developing
applications by using a component model and deploying those applications to a framework as OSGi
bundles. An OSGi bundle is the unit of deployment for an application and contains version information,
dependencies, and application code. The main benefit of OSGi is that you can create applications from
reusable components that are accessed only through well-defined interfaces called Java packages .
You can then use OSGi services to access the Java packages. You can also manage the lifecycle and

dependencies of Java applications in a granular way. For information about developing applications with
0OSGi, see OSGi Alliance.

You can use the IBM CICS SDK for Java to develop a Java application to run in any supported release of
CICS. Different releases of CICS support different versions of Java, and the JCICS API is also extended in
later releases to support more features of CICS. For example, the JCICSX API classes are supported as of
CICS TS 5.6. To avoid use of the wrong classes, the IBM CICS SDK for Java provides a feature to set up a
target platform or project libraries. You can define which release of CICS you are developing for, and the
IBM CICS SDK for Java automatically hides the Java classes that you cannot use.

If you are using the Liberty JVM server, the IBM CICS SDK for Enterprise Java (Liberty) can help you

work with Dynamic Web Projects and OSGi Application Projects. You can create an application that has

a modern web layer and business logic that uses JCICS to access CICS services. If your web application
needs to access code from another OSGi bundle, it must be deployed as an OSGi Application Project (EBA
file). You must either include the other OSGi bundle in the application manifest, or install the other bundle
in the Liberty bundle_repository as a common library. The EBA file must include a web-enabled OSGi
bundle (WAB file) to provide the entry point to the application and to expose it as a URL to a web browser.

Prerequisite: Before you start developing applications using the IBM CICS SDKs, make sure you have set
up the development environment.

Setting up the Target Platform

You must set up and update the target platform of your Eclipse development environment as necessary
before developing or deploying OSGi-based Java applications.

About this task

You can use a template target platform as-is or update it with additional support. The CICS Explorer
Software Development Kit (SDK) only supplies Java classes necessary for the usage of the CICS or web
APIs. To add support for additional interfaces, you must add the OSGi plug-in that contains the third party
Java classes to the Eclipse Target Platform. This procedure makes the exported packages available to

all applications that use this target platform. If you need to add third party Java classes to your target
platform, ensure the JAR file that contains those classes is available as an OSGi plug-in and is copied to
the local workstation.

Procedure

1. In Eclipse, click Window > Preferences.
2. In the Preferences page, expand Plug-in Development and click Target Platform.
3. Create or update a target definition as needed:
« Ifyou need a new target definition, click Add to create a target definition in the wizard.

a) Select Template and select the target platform that matches your CICS version, for example, CICS
TS 5.6.

b) Click Next in the wizard and then click Finish.
- If your target definition is already in the list, proceed to the following steps.
To update the target definition with additional Java classes:

4. Optional: Select the target definition in the Target Platform dialog and click Edit, which opens the Edit
Target Definition dialog.

40 CICS TS for z/0S: Java Applications in CICS

https://www.osgi.org

5. Optional: Under the Locations tab, click Add. Browse the directory and add the OSGi plug-in that
contains the third party bundle JARs.
6. Optional: After the OSGi plug-in content is added, in the Edit Target Definition dialog, click Finish.

7. After creating or updating the target definition, return to the Preferences page and click Apply and
Close.

Results

You have successfully set up and updated the OSGi environment to include both the third party OSGi
bundles and the CICS OSGi bundles that are required for Java application development.

What to do next

Deploy the Java application into a CICS JVM server, and add the third party JARs as an OSGi middleware
bundle or to the Liberty shared bundle repository. For further details, see Updating OSGi middleware
bundles and Manually tailoring server.xml.

Creating a plug-in project

You create your CICS Java application as an Eclipse plug-in project that complies with the OSGi
specification. The OSGi Service Platform provides a mechanism for developing applications by using

a component model and deploying those applications into a framework as OSGi bundles. The plug-in
project is an OSGi bundle, and contains all the files and artifacts needed for the CICS Java application.
The plug-in project is then included in a CICS bundle project before being exported to the host system.

Before you begin

You need to set the Target Platform. For more information, see “Setting up the Target Platform” on page
40.

About this task

This task creates a new plug-in project. You can leave the settings on their default values unless
otherwise stated. When the project is created you must edit the manifest and add the JCICS API
dependencies.

Procedure

1. On the Eclipse menu bar click File > New > Project to open the New Project wizard.
2. Select Plug-in Project from the list provided, then click Next to open the New Plug-in Project wizard.

3. In the Project name field, enter a name for the project, for example

com.ibm.cics.example.accounting. In the Target Platform section, select an 0SGi framework
and select standard from the menu. Click Next.

The Content pane is displayed.
4. In the Version field remove the ".qualifier" from the end of the version number.

5. In the Execution Environment field select the Java level that matches the execution environment in
your CICS runtime target platform, for example JavaSE-1.7.

6. Uncheck the Generate an activator check box and click Finish.
The new plug-in project is created in the Package Explorer view.

7. You must now edit the plug-in manifest file and add the JCICS and com. ibm.recoxrd API

dependencies. If you do not perform these steps, you will be able to export and install the bundle,
but it will not run.

a) In the Package Explorer view, right-click the project name and click Plug-in Tools > Open Manifest.
The manifest file opens in the manifest editor.

b) Select the Dependencies tab and in the Imported Packages section, click Add.
The Package Selection dialog opens.

Chapter 3. Developing Java applications 41

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/java/updating_middlewareosgi.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/java/updating_middlewareosgi.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/serverxmljvm.html

¢) Select the package com.ibm.cics.server and click OK.
The package is displayed in the Imported Packages list.
d) Repeat the previous step to install the following package, if it is required for your application:

com.ibm.recoxd
The Java API for legacy programs that use IByteBuffer from the Java Record Framework that
came with VisualAge®. Previously in the dfjcics. jar file.

e) Select File > Save to save the manifest file.

Results

The new plug-in project is created containing the JCICS API dependencies.

What to do next

You can now create your CICS Java application. If you are new to developing Java applications for CICS,
you can use the JCICS samples provided with the IBM CICS SDK for Java to help you get started.

Note: After you have developed your application, you must add a CICS-MainClass declaration to the
manifest file and declare the classes used in the application. See the related link for more information.

For more information on plug-in development, see the section Plug-in development environment (PDE)
user guide in the Eclipse Help documentation.

When your Java application is finished, you must deploy it in a CICS bundle to zFS. CICS bundles can
contain one or more plug-ins and are the unit of deployment for your application in CICS.

Updating the plug-in project manifest file

When you develop a JCICS application, or package an existing application in a plug-in project, you must
update the project manifest file and include a CICS-MainClass header.

About this task

The CICS-MainClass header is used to declare the classes that can be called by a LINK, START or
RUN command, or a transaction initial program. Do not use lazy activation policies for OSGi bundles that
declare a CICS main class. CICS activates the OSGi bundles as soon as they are started in the OSGi
framework. You must add the declaration manually to the manifest file.

Procedure
1. If the manifest file is not already open in the editor, right-click the project name in the Package
Explorer view and click Plug-in Tools > Open Manifest.
The manifest file opens in the manifest editor.
2. Select the MANIFEST.MF tab. The content of the file is displayed.
3. Add the following declaration to the manifest file:
CICS-MainClass: packagename.classname where:
packagename
Is the fully qualified Java package name.

classname
Is the name of the class used in the application. If more than one class is used, repeat the
packagename.classname element, separated by a comma.

You can use aliases in the CICS-MainClass header; for example, the declaration CICS-MainClass:
examples.hello.HelloCICSWorld; alias=greeting assigns the alias greeting tothe CICS-
MainClass examples.hello.HelloCICSWoxrld. When you define the program to CICS, you use
the alias name, greeting, instead of the class name. An alias is useful if you have multiple versions

42 CICS TS for z/OS: Java Applications in CICS

of the same program, each with the same class name. By using aliases you can identify the different
versions.

The following example shows a manifest file with a CICS-MainClass header for the classes
HelloCICSWorld and HelloWorld.

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Hello Plug-in

Bundle-SymbolicName: com.ibm.cics.server.examples.hello

Bundle-Version 1.0.0

Bundle-RequiredExecutionEnvironment: JavaSE-1.7

Import-Package: com.ibm.cics.core.bundle,
com.ibm.cics.core.model.builders,
com.ibm.cics.server;version="[1.300.0,2.0.0)"

CICS-MainClass: examples.hello.HelloCICSWorld,
examples.hello.HelloWorld

4. When you have added all the class declarations, select File > Save to save the manifest file.

Results

You can now add the plug-in project to a CICS bundle and deploy it to zFS. CICS bundles can contain one
or more plug-ins and are the unit of deployment for your application in CICS.

What to do next
Create a CICS bundle project. See Creating a CICS bundle project in the CICS Explorer product
documentation.

Creating a Java EE application

The CICS Explorer help provides full details on how you can perform each of the following steps to
develop and deploy applications.

Procedure

1. Set up a target platform for your Java development.

The target platform ensures that you use only the Java classes that are appropriate for the target
release of CICS in your application development.

2. Create an OSGi Bundle Project or a plug-in project for your Java application development.

a) The default version of the projectis 1.0.0.qualifier. In the Version field either remove
the .qualifier from the end of the version number, if you do not wish to use one, or set it to
something meaningful, for example the date/time stamp.

Develop your Java application using best practices; for example, to organize the dependencies
between OSGi bundles, use Import-Package / Export-Package in preference to Require-Bundle.

3. If you are new to developing Java applications for CICS, you can use the examples that are provided
with the IBM CICS SDKs to get started.

To use JCICS in a OSGi Java application, you must import the com.ibm.cics.server package.

4. Optional: In Liberty, create a dynamic web application (WAR) or a web-enabled OSGi Bundle Project
(WAB) to develop your application presentation layer.

You can create servlets and JSP pages in a Dynamic Web Project. For a WAR file, you must also add
the Liberty libraries to your build path to give you access to the Liberty API bundles. For further details,
refer to “Setting up your development environment” on page 38.

5. Package your application for deployment:

a) If you are deploying a web-enabled OSGi Bundle Project (WAB), create an OSGi Application Project
(EBA).

Chapter 3. Developing Java applications 43

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/create_bundle.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/create_bundle.html

b) Create one or more CICS bundle projects to reference your EBA, your EAR file, or your web
application (WAR file).
CICS bundles are the unit of deployment for your application in CICS. Put the web applications that
you want to update and manage together in a CICS bundle project. You must know the name of the
JVMSERVER resource in which you want to deploy the application.

You can also add CICS resources to the CICS bundle project, such as PROGRAM, URIMAP, and
TRANSACTION resources. These resources are dynamically installed and managed with the Java
application.

c) Optional: If you want to deploy the application to a CICS platform, create an application project that
references your CICS bundles.

An application provides a single management point for deploying and managing the application
across a CICSplex in CICS. For more information, see How it works: applications.

d) You should always explicitly declare the packages that your OSGi bundle uses, even if the
tooling does not indicate an error. You can do this by adding or updating the Impoxt-Package
bundle header in your OSGi bundle manifest. Tools such as Eclipse make assumptions about the
availability of javax.* packages that might not be correct for a runtime environment where an
explicit Import is necessary.

6. Deploy your Java application to zFS by exporting the application project or CICS bundle projects.
Alternatively, you can save the projects in a source repository for deployment.

Results
You have successfully developed and exported your application by using the IBM CICS SDKs.

What to do next

Install the application in a JVM server. If you do not have authority to create resources in CICS, the
system programmer or administrator can create the application for you. You must tell the system
programmer or administrator where the exported bundle is located and the name of the target JVM
server.

Adding a project to a CICS bundle project

When you create a CICS bundle project a manifest file is created in the META-INF directory. You can
edit the manifest file to include one or more of the following types of projects; Dynamic Web Project,
Enterprise Application Project, OSGi Application Project, or OSGi Bundle Project. The included projects
can be source or pre-built. When you export the CICS bundle project, all included projects are contained
in the CICS bundle on zFS.

Before you begin
This task describes how to add details of a project to a CICS bundle. If you have not created a CICS
bundle project, see Creating a CICS bundle project in the CICS Explorer product documentation.

About this task

You can add details of a project to a CICS bundle by using one of the following wizards;

Dynamic Web Project Include, Enterprise Application Project Include, 0SGi Application Project
Include, or 0SGi Bundle Project Include. The wizards update the bundle manifest file to include
details of the project that is being added, and creates a resource file with a file extension

of .warbundle, .earbundle, .ebabundle, or .osgibundle that points to the project.

44 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cloud/cloud-applications.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/create_bundle.html

Note: To add OSGi bundles that are not included in an OSGi application project to a CICS bundle project,
you must have a build. properties file that includes the location of the output folder. For example, the
build.properties file might have the following content:

source.. = src/
output.. = bin/
bin.includes = META-INF/

Procedure

1. In CICS Explorer, open one of the wizards you need (Dynamic Web Project Include, Enterprise
Application Project Include, 0SGi Application Project Include, or 0SGi Bundle Project Include) in
either of the following ways:

= Using the right-click menu: In the Package Explorer view, right-click the bundle project that you
want to update, and click the wizard you want to open.

« Using the CICS bundle manifest editor:

a. In the Package Explorer view, expand the bundle project you want to update and double-click
the cics.xml file in the META-INF folder.

b. In the CICS bundle manifest editor that opens, click New in the Defined resources section of
the Overview page.
2. Optional: For an OSGi project, specify the version or version range to include:

« Select Use this version to include the specific version of the selected OSGi project, as shown in the
Version field.

« Select Use version range to include the highest version in a defined version range of the selected
OSGi project when you export that OSGi project. By default, the version range is from the version of
the selected OSGi project to the next highest major version. You can use the fields and the buttons
to specify a different range.

3. In the JVM server field, enter the name of the JVM server where the application component is going to
run.

4. Optional: The name of the resource file that is created is generated from the project name and is
displayed in the wizard. You can use the Back button to change the file name.

5. Click Finish.

Results
A project resource file is added to the bundle project and the manifest file is updated. You can repeat
these steps to add more projects to the CICS bundle project.

What to do next

You can add resources to the CICS bundle project for your application. For example, you can create a
program to make your Java application available to other applications in CICS.

You can deploy your CICS bundle to a z/OS UNIX file system, as described in Deploying a CICS bundle in
the CICS Explorer product documentation. When the CICS bundle project is exported to zFS, all the files
and artifacts needed for the application are compiled and exported.

Alternatively, you can package your CICS bundle project in a cloud-style application project for
deployment into a CICS platform. By using an application project, you can group together all the CICS
bundle projects that comprise your application and deploy and install them in a single step. For more
information, see Creating a CICS Application Binding project in the CICS Explorer product documentation.

Chapter 3. Developing Java applications 45

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_deploy_bundle_project.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_deploy_bundle_project.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_create_application_binding.html

Updating the project build path
How to update the project build path.

About this task

Using a Dynamic Web Project creates a WAR file archive for deployment. This does not use the OSGi

framework in Eclipse so you need to add third party JAR files to the project build path. This example uses
IBM MQ JAR files.

Procedure

1. In Eclipse select the web project and right-click Build Path > Configure Build Path. This will display
the Java Build Path window.

2. Add the CICS and Liberty libraries, click Add Library > Liberty JVM server > Next > Finish.

3. Click Add External JARs and navigate to the directory where the previously downloaded IBM MQ

JAR files are located. Select the following JAR files depending on which imports are used in the
applications:

« com.ibm.mgq.jar
« com.ibm.mgq.jmqgl.jar
« com.ibm.mq.headers.jar

Note: Step 3 is optional if you are using IBM MQ only.

Results

The build path of the project now has the correct interfaces for development of a web application using
both CICS and IBM MQ APIs.

Managing Java dependencies using Gradle or Maven

When writing your own build scripts for Java development, you can use build toolchains such as Gradle or
Maven to resolve Java dependencies. As an alternative to the IBM CICS SDK for Java, they can retrieve
libraries from a remote repository or allow-listed local repositories. After finishing coding, you can use

the CICS-provided Gradle and Maven plug-ins to build and deploy a CICS bundle that includes your Java
application.

Gradle and Maven are supported by most Java integrated development environments (IDEs) and
automation tools such as Jenkins and Travis CI. Therefore, you can integrate the compilation, building,
and deployment of applications into a pipeline more easily during development.

What artifacts are available

These artifacts are provided by CICS on Maven Central:

46 CICS TS for z/0S: Java Applications in CICS

https://docs.gradle.org/current/userguide/what_is_gradle.html
https://maven.apache.org/index.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_sdk.html
https://github.com/IBM/cics-bundle-gradle
https://github.com/IBM/cics-bundle-maven
https://search.maven.org/search?q=g:com.ibm.cics

Table 4. CICS-provided artifacts on Maven Central

Group ID Artifact ID Description

com.ibm.cics com.ibm.cics.ts.bom The bill of materials (BOM) that defines the
versions of all the artifacts to ensure they are
at the same CICS TS level.

Tip:

You're recommended to use the BOM to
control the version numbers of the other
CICS-provided dependencies and omit version
numbers from their declarations.

In Maven, the BOM also provides the

correct dependency scope to avoid clashes
with runtime-provided libraries. You're
recommended to use the BOM to control the
scope of dependencies and omit scopes from
their declarations.

See how to use with Gradle or use with Maven.

com.ibm.cics.server The CICS Java class library (JCICS), a Java
library that provides the EXEC CICS API
support for Java applications in CICS TS.

See how to use with Gradle or use with Maven.

com.ibm.cics.jcicsx The JCICSX API classes that support a subset
of CICS functions, available in CICS TS 5.6 or
later.

The classes can be run remotely and are easier
to mock and stub than the Java classes of
JCICS. The JCICSX API classes can be used
together with the JCICS API, but only the
commands that use JCICSX can benefit from
those enhanced features.

See how to use with Gradle or use with Maven.

com.ibm.cics.server.invoca cics annotations, a Java library that provides

tion.annotations the @CICSProgram annotation to enable CICS
programs to invoke Java applications in a
Liberty JVM server.

See how to use with Gradle or use with Maven.

com. ibm.cics.server.invoca The CICS annotation processor, a Java library

tion that is used during compilation to create
metadata that enables CICS programs to
invoke Java applications in a Liberty JVM
server.

See how to use with Gradle or use with Maven.

What's next

It is important that the correct Gradle configuration or Maven scope is used for each dependency you
reference. This can avoid runtime conflicts as well as keeping the size of the application smaller. To find

Chapter 3. Developing Java applications 47

out more, see “Declaring Java dependencies using Gradle” on page 48 or “Declaring Java dependencies
using Maven” on page 51.

Declaring Java dependencies using Gradle

When creating a Gradle build script, you need to refer to dependencies supplied by CICS. Use this guide to
understand how to reference each dependency.

For a complete list of all dependencies available, see “Managing Java dependencies using Gradle or
Maven” on page 46.

Prerequisites: Before developing Java applications for CICS with Gradle, you must make sure that:

 You already have Gradle support installed in your workstation or IDE.

« You have created a Gradle module to include your application, or that you have converted an existing
Java project to a Gradle module. Most Java IDEs support this function.

For instructions, see the Gradle related information in “Setting up your development environment” on
page 38.

How to declare dependencies

You declare dependencies in the Gradle module's build. gradle file. The following instructions include
snippets showing how to declare a dependency on each artifact. More recent versions might be available,
so check Maven Central for all available versions.

Note: The snippets shown on Maven Central are auto-generated and might not show the correct Gradle
configurations such as compileOnly. Follow the syntax in this topic instead to ensure the dependencies
are correctly declared.

You can declare dependencies on these CICS-supplied artifacts:

« The CICS bill of materials (BOM): com.ibm.cics.ts.bom
The CICS Java class library (JCICS): com.ibm.cics.server

The JCICSX API classes: com.ibm.cics.jcicsx

The CICS annotations: com.ibm.cics.server.invocation.annotations

« The CICS annotation processor: com.ibm.cics.server.invocation

The CICS bill of materials (BOM): com.ibm.cics.ts.bom

All versions are available at com.ibm.cics.ts.bom on Maven Central.

Note: You declare a dependency on a BOM file to manage versions of other libraries. The BOM itself
does not import any library. Therefore, you must also reference other libraries along with the BOM.

Refer to this library as follows:

repositories %
mavenCentral ()

dependencies %
compileOnly enforcedPlatform('com.ibm.cics:com.ibm.cics.ts.bom:5.6-20200609123739")

Figure 9. build.gradle

In Gradle, the BOM controls the version of any other CICS-provided dependency in the same module
or its child modules by using the enforcedPlatform keyword, which ensures that the versions
specified in the BOM overrides any other versions found in the dependency graph.

Note: enforcedPlatformis supported from Gradle 5.0.

Make sure that you specify a BOM version that provides support for the other dependencies of your
application, and that your target CICS system is at the same or later CICS TS release and APAR

48 CICS TS for z/0S: Java Applications in CICS

https://docs.gradle.org/current/userguide/what_is_gradle.html
https://search.maven.org/search?q=g:com.ibm.cics
https://search.maven.org/search?q=g:com.ibm.cics%20AND%20a:com.ibm.cics.ts.bom&core=gav

maintenance level. In the previous snippet, the enforcedPlatform tag specifies the BOM version,
consisting of:

« The CICS version (5. 6)
- the time stamp when the BOM is built (20200609123739)

« if relevant, the version of the CICS TS APAR that includes server-side updates to the libraries. For
example, PH25409 in a version number 5.5-20200519131930-PH25409.

The BOM only affects libraries that use the same Gradle scope configuration, such as compileOnly,
which ensures that the dependency is provided by the CICS TS runtime and not packaged with

the module. Therefore, you must specify the BOM for all the configurations that will use CICS
dependencies, with the same scope configuration. For example, if you are referencing the JCICS
library (com.ibm.cics.server) using the compileOnly configuration, you need to control its
version with the BOM as follows:

dependencies %
compileOnly enforcedPlatform('com.ibm.cics:com.ibm.cics.ts.bom:5.6-20200609123739")
compileOnly("com.ibm.cics:com.ibm.cics.server") //dependency on JCICS

%
Figure 10. build.gradle

Likewise, if you declare a dependency on the annotation processor
(com.ibm.cics.server.invocation), you need to define a BOM with the
annotationProcessor configuration. This is because the annotation processor dependency must
use the annotationProcessor configuration.

dependencies %
annotationProcessor
enforcedPlatform('com.ibm.cics:com.ibm.cics.ts.bom:5.6-20200609123739")
annotationProcessor ("com.ibm.cics:com.ibm.cics.server.invocation") //dependency on
annotation processor

Figure 11. build.gradle

The CICS Java class library (JCICS): com.ibm.cics.server

All versions are available at com.ibm.cics.server on Maven Central.

Refer to this library as follows:

repositories %
mavenCentral ()

dependencies %
compileOnly 'com.ibm.cics:com.ibm.cics.server'

Figure 12. build.gradle

The version number is omitted because they are inherited from the BOM. If you don't use a BOM,
reference this library as follows, where the version number includes the OSGi Bundle-Vexrsion, the
CICS release, and (if relevant) the APAR number.

repositories %
mavenCentral ()

dependencies %
compileOnly 'com.ibm.cics:com.ibm.cics.server:1.800.0-5.6'

Figure 13. build.gradle

Chapter 3. Developing Java applications 49

https://search.maven.org/search?q=g:com.ibm.cics%20AND%20a:com.ibm.cics.server&core=gav

The JCICSX API classes: com.ibm.cics.jcicsx

All versions are available at com.ibm.cics.jcicsx on Maven Central.

Refer to this library as follows:

repositories %
mavenCentral ()
%

dependencies %
compileOnly 'com.ibm.cics:com.ibm.cics.jcicsx'

Figure 14. build.gradle

The version number is omitted because it's inherited from the BOM. If you don't use a BOM, also
specify a version number for this dependency.

Its version number includes the OSGi Bundle-Version, the CICS release, and (if relevant) the APAR
number.

The CICS annotations: com.ibm.cics.sexver.invocation.annotations

All versions are available at com.ibm.cics.server.invocation.annotations on Maven Central.

Refer to this library as follows:

repositories %
mavenCentral ()
%

dependencies %
compileOnly ‘com.ibm.cics:com.ibm.cics.server.invocation.annotations'

Figure 15. build.gradle

The version number is omitted because it's inherited from the BOM. If you don't use a BOM, also
specify a version number for this dependency.

Its version number includes the CICS release and (if relevant) the CICS TS APAR number.
The CICS annotation processor: com.ibm.cics.server.invocation

All versions are available at com.ibm.cics.server.invocation on Maven Central.

You're recommended to use the separate processor path for annotation processors, rather
than adding them directly to the class path. For this reason, the configuration for
com.ibm.cics.server.invocation differs from the other artifacts.

Refer to this library as follows:

repositories %
mavenCentral ()

dependencies %
annotationProcessor 'com.ibm.cics:com.ibm.cics.server.invocation'

Figure 16. build.gradle

The version number is omitted because it's inherited from the BOM. Make sure that the BOM is
defined with the same annotationProcessor configuration. If you don't use a BOM, specify a
version number for this dependency.

Its version number includes the CICS release and (if relevant) the CICS TS APAR number.

50 CICS TS for z/OS: Java Applications in CICS

https://search.maven.org/artifact/com.ibm.cics/com.ibm.cics.jcicsx
https://search.maven.org/search?q=g:com.ibm.cics%20AND%20a:com.ibm.cics.server.invocation.annotations&core=gav
https://search.maven.org/search?q=g:com.ibm.cics%20AND%20a:com.ibm.cics.server.invocation&core=gav

What's next

Write an application using the CICS Java API
CICS provides two versions of Java API: JCICS and JCICSX. For their differences, see Explore the Java
APIs.

You can also find their API documentation at JCICS Javadoc information or JCICSX Javadoc.

Try some samples

CICS provides a series of samples for you to get started. See Try Java in your environment.

Build and deploy your application
After finishing the application code, you can build the application and integrate it into your build
toolchain in the same way as you build and deploy other Gradle modules. CICS provides a Gradle
plug-in for you to deploy your applications into CICS at development time.

This tutorial provides step-by-step instructions on how to build a CICS bundle from an existing
Gradle-built Java application. Use the sample provided therein to have a try.

Declaring Java dependencies using Maven

When creating a Maven build script, you will need to refer to dependencies supplied by CICS. Use this
guide to understand how to reference each dependency.

For a complete list of all dependencies available, see “Managing Java dependencies using Gradle or
Maven” on page 46.

Prerequisites: Before developing Java applications for CICS using Maven, you must make sure that:
« You already have Maven installed in your workstation or IDE.

 You have created a Maven module to include your application, or that you have converted an existing
Java project to a Maven module. Most Java IDEs support this function.

For instructions, see the Maven related information in “Setting up your development environment” on
page 38.

How to declare dependencies

You declare dependencies in the Maven module's pom. xml file. The following instructions include
snippets showing how to declare a dependency on each artifact. More recent versions might be available,
so check Maven Central for all available versions.

Note: The snippets shown on Maven Central are auto-generated and might not show the correct Maven
directives such as <scope>import</scope>. Follow the syntax in this topic instead to ensure the
dependencies are correctly declared.

You can declare dependencies on these CICS-supplied artifacts:

« The CICS bill of materials (BOM): com.ibm.cics.ts.bom
» The CICS Java class library (JCICS): com.ibm.cics.server

« The JCICSX API classes: com.ibm.cics.jcicsx

« The CICS annotations: com.ibm.cics.server.invocation.annotations

« The CICS annotation processor: com.ibm.cics.server.invocation
The CICS bill of materials (BOM): com.ibm.cics.ts.bom

All versions are available at com.ibm.cics.ts.bom on Maven Central.

Note: You declare a dependency on a BOM file to manage versions of other libraries. The BOM itself
does not import any library. Therefore, you must also reference other libraries along with the BOM.

Refer to this library as follows:

Chapter 3. Developing Java applications 51

http://www.ibm.com/support/knowledgecenter/SSGMCP_6.1.0/applications/developing/java/getting-started/java-explore-apis.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_6.1.0/applications/developing/java/getting-started/java-explore-apis.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/index.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcicsx-javadoc/index.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_6.1.0/applications/developing/java/getting-started/java-samples.html
https://github.com/IBM/cics-bundle-gradle
https://developer.ibm.com/tutorials/extending-an-existing-java-applications-build-to-produce-a-cics-bundle/
https://maven.apache.org/index.html
https://search.maven.org/search?q=g:com.ibm.cics
https://search.maven.org/search?q=g:com.ibm.cics%20AND%20a:com.ibm.cics.ts.bom&core=gav

<dependencyManagement>
<dependencies>
<dependency>
<groupId>com.ibm.cics</groupId>
<artifactId>com.ibm.cics.ts.bom</artifactId>
<version>5.6-20200609123739</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

Figure 17. pom.xml

In Maven, the BOM controls the configurations of the other dependencies as follows:

« The BOM controls the version of any other CICS dependency in the same module or its child
modules if the version of that dependency is not otherwise specified.

Make sure that you specify a BOM version that provides support for the other dependencies of your
application, and that your target CICS system is at the same or later CICS TS release and APAR
maintenance level. In the previous snippet, the version tag specifies the BOM version, consisting
of:

— The CICS version (5.6)
— the time stamp when the BOM is built (20200609123739)

— if relevant, the version of the CICS TS APAR that includes server-side updates to the libraries. For
example, PH25409 in a version number 5.5-20200519131930-PH254009.

« The BOM specifies that the other dependencies have a provided scope where relevant, so you
don't need to specify <scope>provided</scope> in those Maven dependencies. When this scope
is specified, the dependency will be provided by the eventual runtime and must not be packaged
as part of the module. It not only reduces the application size, but also avoids hard-to-diagnose
problems caused by inconsistent versions being used or classes being loaded from more than one
class loader.

If you do not use a BOM, you must specify <scope>provided</scope> when declaring those
dependencies in Maven.

The CICS Java class library (JCICS): com.ibm.cics.server

All versions are available at com.ibm.cics.server on Maven Central.

Refer to this library as follows:

<dependencies>
<dependency>
<groupId>com.ibm.cics</groupId>
<artifactId>com.ibm.cics.server</artifactId>
</dependency>
</dependencies>

Figure 18. pom.xml

The version number and the scope configuration are omitted because they are inherited from the
BOM. If you don't use a BOM, reference this library as follows, where the version number includes the
0SGi Bundle-Version, the CICS release, and (if relevant) the APAR number.

<dependencies>
<dependency>
<groupId>com.ibm.cics</groupId>
<artifactId>com.ibm.cics.server</artifactId>
<version>1.800.0-5.6</version>
<scope>provided</scope>
</dependency>
</dependencies>

Figure 19. pom.xml

52 CICS TS for z/OS: Java Applications in CICS

https://search.maven.org/search?q=g:com.ibm.cics%20AND%20a:com.ibm.cics.server&core=gav

The JCICSX API classes: com.ibm.cics.jcicsx

All versions are available at com.ibm.cics.jcicsx on Maven Central.

Refer to this library as follows:

<dependency>
<groupId>com.ibm.cics</groupId>
<artifactId>com.ibm.cics.jcicsx</artifactId>
</dependency>

Figure 20. pom.xml

The version number and scope configuration are omitted because they are inherited from the BOM.
If you don't use a BOM, also specify the version number and <scope>provided</scope> for this
dependency.

Its version number includes the OSGi Bundle-Version, the CICS release, and (if relevant) the APAR
number.

The CICS annotations: com.ibm.cics.sexver.invocation.annotations

All versions are available at com.ibm.cics.server.invocation.annotations on Maven Central.

Refer to this library as follows:

<dependencies>
<dependency>
<groupId>com.ibm.cics</groupId>
<artifactId>com.ibm.cics.server.invocation.annotations</artifactId>
</dependency>
</dependencies>

Figure 21. pom.xml

The version number and scope configuration are omitted because they are inherited from the BOM.
If you don't use a BOM, also specify the version number and <scope>provided</scope> for this
dependency.

Its version number includes the CICS release and (if relevant) the CICS TS APAR number.
The CICS annotation processor: com.ibm.cics.sexver.invocation

All versions are available at com.ibm.cics.server.invocation on Maven Central.

You're recommended to use the separate processor path for annotation processors, rather
than adding them directly to the class path. For this reason, the configuration for
com.ibm.cics.sexrver.invocation differs from the other artifacts.

Refer to this library as follows:

<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.1</version>
<configuration>
<annotationProcessorPaths>
<annotationProcessorPath>
<groupId>com.ibm.cics</groupId>
<artifactId>com.ibm.cics.server.invocation</artifactId>
<version>5.6</version>
</annotationProcessorPath>
</annotationProcessorPaths>
</configuration>
</plugin>
</plugins>
</build>

Figure 22. pom.xml

Note:

Chapter 3. Developing Java applications 53

https://search.maven.org/artifact/com.ibm.cics/com.ibm.cics.jcicsx
https://search.maven.org/search?q=g:com.ibm.cics%20AND%20a:com.ibm.cics.server.invocation.annotations&core=gav
https://search.maven.org/search?q=g:com.ibm.cics%20AND%20a:com.ibm.cics.server.invocation&core=gav

You need to specify the version number of this artifact even if you use a BOM.

Its version number includes the CICS release and (if relevant) the CICS TS APAR number.

What's next

Write an application using the CICS Java API
CICS provides two versions of Java API: JCICS and JCICSX. For their differences, see Explore the Java
APIs.

You can also find their API documentation at JCICS Javadoc information or JCICSX Javadoc.

Try some samples

CICS provides a series of samples for you to get started. See Try Java in your environment.

Build and deploy your application
After finishing the application code, you can build the application and integrate it into your build
toolchain in the same way as you build and deploy other Maven modules. CICS provides a Maven
plug-in for you to deploy your applications into CICS at development time.

This tutorial provides step-by-step instructions on how to build a CICS bundle from an existing
Maven-built Java application. Use the sample provided therein to have a try.

Manually importing Java libraries

When creating your own build scripts, if you want to manually import Java libraries to resolve
dependencies instead of using the IBM CICS SDK for Java or Maven Central artifacts, you can copy
the . jar files out of the CICS installation directories.

Note: Copying . jax files manually makes them prone to get out of sync with updates. You can use the
artifacts on Maven Central to ensure that you always have the correct version of libraries. Otherwise, you
must have a mechanism to refresh the copied . jaxz files. A full refresh is required when a new release of
CICS s installed.

The . jar files are located within the /1ib directory of the CICS USSHOME directory on zFS.

The application development . jax files are:

e com.ibm.cics.jcicsx. jar, which provides support for the JCICSX APL.

- com.ibm.cics.server.invocation. jar, which provides support for the CICS annotation
processor, a Java library that is used to create metadata that enables CICS programs to invoke Java
applications in a Liberty JVM server.

- com.ibm.cics.server.invocation.annotations. jar, which provides support for CICS
annotations, a Java library that provides the @CICSProgram annotation to enable CICS programs to
invoke Java applications in a Liberty JVM server.

e com.ibm.cics.sexrver. jar, which provides support for the JCICS API.

« com.ibm.record. jar, which contains the Java API for legacy programs that use IByteBuffer from the
Java Record Framework that came with VisualAge.

Related information
“Deploying applications to a JVM server” on page 199

54 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_6.1.0/applications/developing/java/getting-started/java-explore-apis.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_6.1.0/applications/developing/java/getting-started/java-explore-apis.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/index.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcicsx-javadoc/index.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_6.1.0/applications/developing/java/getting-started/java-samples.html
https://github.com/IBM/cics-bundle-maven
https://developer.ibm.com/tutorials/extending-an-existing-java-applications-build-to-produce-a-cics-bundle/

To deploy a Java application to a JVM server, the application must be packaged appropriately to install
and run successfully. You can use the IBM CICS SDKs, or the CICS-provided Gradle or Maven plug-in to
package and deploy the application.

Considerations for a shared JVM

When you are developing Java applications to run in CICS, be aware that changes to shared resources
within the JVM might be seen by all running applications and threads. Ensure that your applications do
not leave the JVM in an unexpected state that other applications might rely on.

The following points are important considerations to think about:

« If your application resets the default time zone, other applications that use the same JVM server will
use the new default time zone, which might be unexpected.

« Do not use System.exit () in your applications. Using System.exit () causes both the JVM server
and CICS to shut down.

« Ensure that your applications are Threadsafe. Static variables that are shared between applications
need careful review to ensure that there is no cross contamination between applications. A typical
pattern to ensure uniqueness, is to use ThreadLocal variables.

- If objects are referenced by static variables, they are not candidates for garbage collection. In a
JVM server, static state persists for all applications until the JVM server is disabled by the system
programmer.

- Itis possible to have multiple connections to Db2 from different applications. Therefore, when a task
finishes with Db2, it is best practice to close the connection even if that connection is later deleted
when the task completes.

« Sockets created using classes from the java.net package are not CICS domain sockets and cannot be
managed or monitored by CICS.

Java development using JCICS

You can write Java applications to access CICS services by using the Java APIs provided by CICS. The
JCICS API supports most of the CICS functions provided by the EXEC CICS API.

Contents

“Why use JCICS?” on page 55
“Restrictions of JCICS” on page 55
“JCICS usage and samples” on page 56
Troubleshooting

Why use JCICS?

« Javais one of the most popular programming languages for modern application development.
Compared to the EXEC CICS API, which is provided for other CICS supported languages such as
COBOL, the JCICS API allows you to write applications in Java and call into CICS services directly. This
makes it easier for Java developer to write CICS applications.

« Unlike other CICS high level languages, no translation step is necessary during compilation as the
underlying EXEC CICS calls are dynamically generated via the Java Native Interface (JNI).

« The JCICS API supports most of the functions of the EXEC CICS API and is tightly coupled with it.
Therefore, if you understand the EXEC CICS API and have some knowledge of Java, you can familiarize
yourself with JCICS quickly.

Restrictions of JCICS

The following restrictions apply to Java applications written in JCICS:

Chapter 3. Developing Java applications 55

« The classes in JCICS cannot be run remotely in development environments. If you need to link to a
remote CICS program from your workstation, consider using the JCICSX API classes.

« It's not as easy to mock using the JCICS API as using JCICSX.

« The syntax of JCICS resembles the EXEC CICS commands in design so might not be as natural as that
of other Java APIs. As an alternative, you can use the JCICSX API classes, which take advantage of
more recent Java constructors that might be more familiar to some Java programmers.

« Do not use the System.exit () method. Using this method when the application is running in a JVM
server will terminate the JVM server, quiesce CICS, and might lead to data inconsistency. You can use a
Java security policy, code scans, or other measures to prevent the System.exit () method from being
called.

« Do not share JCICS objects between threads. You can only call instance methods on JCICS objects from
the thread that created them.

Do not use finalizers in CICS Java programs.

If you are using JCICS in an OSGi environment, also see “Guidance for using OSGi” on page 93.

JCICS usage and samples

Resolving the JCICS dependency

You can get the JCICS API from any of the following places:

 The build path library supplied with the IBM CICS SDK for Java in CICS Explorer.

When using CICS Explorer to add a library to your project, JCICS will automatically be available as

an API in your client. See Step 1 in “Creating a Dynamic Web Project” on page 116 to configure your
Dynamic Web project to target CICS TS. If you haven't installed CICS Explorer, install it as described in
“Setting up your development environment” on page 38.

- The com.ibm.cics.sexrver artifact on Maven Central. If you haven't installed Gradle or Maven, install
either of them as described in “Setting up your development environment” on page 38.

If your enterprise uses locally hosted or allow-listed repositories, you can use tools such as JFrog
Artifactory or Sonatype Nexus to configure the artifact to be obtained from such repositories.

« The com.ibm.cics.server. jar file supplied with CICS in the USSHOME directory. For instructions,
see “Manually importing Java libraries” on page 54.

Note: If you are importing the JCICS package into an OSGi bundle, you need to specify the package
version. For more information, see “Guidance for using OSGi” on page 93.

Developing applications in JCICS

Use the classes from the JCICS library in the same way as Java classes. For explanation of each JCICS
class, see JCICS Javadoc information. For examples and full sample code, see “JCICS API services and
examples” on page 58 and Sample CICS Java applications in GitHub.

When developing for CICS, mind that CICS attempts to pass control to the method with a signature of
main(CommAreaHolder) in the class specified by the JVMCLASS attribute of the PROGRAM resource. If
this method is not found, CICS tries to invoke method main (Stxring[]).

Troubleshooting

You can use your Java IDE's debugger, console message, and error handling information to debug your
applications. In addition, you can use the CEDX transaction to test your application program in CICS.

If an error that relates to CICS occurs, for example the remote JVM server or the CICS transaction, a
response (RESP) code is returned. The system programmer can use the JVM server's traces and logs for
debugging. For more information, see Troubleshooting Java applications.

56 CICS TS for z/0OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/topics/dfhpj5u.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/index.html
https://github.com/cicsdev/cics-java-jcics-samples
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7os.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/java_troubleshooting.html

Threads

In a JVM server environment, an application that is running in an OSGi framework can use an
ExecutorService to create threads that run on CICS tasks asynchronously.

CICS provides an implementation of the Java ExecutorService interface. This implementation creates
threads that can use the JCICS API to access CICS services. The JVM server registers the CICS
ExecutorService as an OSGi service on startup. Use this service instead of the Java Thread class

to create tasks that can use JCICS.

The ExecutorService thatis provided by CICS is registered as high priority in the OSGi framework, so
that it can be used by applications to create threads. Typically, an application uses the highest priority
ExecutorService, unless it filters services to use a specific implementation.

If you want to create threads in your application, the preferred method is to use a generic
ExecutorService from the OSGi registry. The OSGi registry automatically uses the CICS
ExecutorService to create CICS threads when the application is running in a JVM server. This approach
means that the application is decoupled from the implementation, so you do not have to use the JCICS
API method to create threads.

However, if you are writing an application that is specific to CICS, you can choose to use a
CICSExecutorService class in the JCICS API to request new threads.

CICSExecutoxrService

This class implements the java.util.concurrent.ExecutorService interface. The
CICSExecutorService class provides a static method that is called runAsCICS () that you can use

to send a Runnable or Callable Java object for execution on a new JCICS enabled thread. The
runAsCICS () method is a utility method which performs the OSGi registry look-up to obtain an instance
of a CICSExecutorService for the application.

For work that is spawned from a parent CICS thread, a new CICS task is created, and runs under the task
user IDandtransaction ID inherited from the parent. If the work is spawned from a non- CICS
thread, the default CJSA transaction ID and default CICS user ID are used. If you wantto guarantee
the new task runs under a transaction ID of your choice, then your Runnable or Callable object
should implement the CICSTransactionRunnable or CICSTransactionRunnable interface.

CICSExecutorService.runAsCICS(Runnable runnable)

CICSExecutorService.runAsCICS(Callable callable)

Restrictions

For applications that are not running in an OSGi framework, for example an Axis2 Java program, you
can access JCICS only on the initial application thread as the ExecutorSexrvice is not available.
Additionally, you must ensure that all threads other than the initial thread finish before you take any
of the following actions:

e link methods in class com.ibm.cics.server.Program

» setNextTransaction(String) method in class
com.ibm.cics.server.TerminalPrincipalFacility

« setNextCOMMAREA (byte[]) method in class
com.ibm.cics.server.TerminalPrincipalFacility

« commit () methodinclass com.ibm.cics.server.Task
« rollback() methodinclass com.ibm.cics.server.Task
« Returning an AbendException exception from class com.ibm.cics.server

Chapter 3. Developing Java applications 57

Data encoding

The JVM can use a different code page from CICS for character encoding; CICS must always use an
EBCDIC code page, but the JVM can use another encoding such as ASCII. When you are developing an
application that uses the JCICS API, you must ensure that you use the correct encoding.

The JCICS API uses the code page that is specified in the CICS region and not the underlying JVM. So
if the JVM uses a different file encoding, your application must handle different code pages. To help you
determine which code page CICS is using, CICS provides several Java properties:

« The com.ibm.cics.jvmserver.supplied.ccsid property returns the code page that is specified
for the CICS region. By default, the JCICS API uses this code page for its character encoding. However,
this value can be overridden in the JVM server configuration.

e The com.ibm.cics.jvmserver.override.ccsid property returns the value of an override in the
JVM profile. The value is a code page that the JCICS API uses for its character encoding, instead of the
code page that is used by the CICS region.

« The com.ibm.cics.jvmsexver.local.ccsid property returns the code page that the JCICS APl is
using for character encoding in the JVM server.

You cannot set any of these properties in your Java application to change the encoding for JCICS. To
change the code page, you must ask a system administrator to update the JVM profile to add the JVM
system property ~-Dcom.ibm.cics.jvmserver.override.ccsid.

Encoding example

Any JCICS methods that accept java.lang.String parameters as input are automatically encoded
with the correct code page before the data passes to CICS . Similarly, any java.lang.String values
that are returned from the JCICS API are encoded in the correct code page. The JCICS API provides
helper methods in most classes; these helper methods work with strings and data to determine and set
the code page on behalf of the application.

If your application uses the String.getBytes () ornew String(byte[] bytes) methods, the
application must ensure it uses the correct encoding. If you want to use these methods in your
application, you can use the Java property to encode the data correctly:

String.getBytes(System.getProperty("com.ibm.cics.jvmserver.local.ccsid"))
String(bytes, System.getProperty("com.ibm.cics.jvmserver.local.ccsid"))

The following example shows how to use the JCICS encoding when the application reads a field from a
COMMAREA:

public static void main(CommAreaHolder ca)

//Convert first 8 bytes of ca into a String using JCICS encoding
String str=new String(ca.getValue(), 0, 8, System.getProperty("com.ibm.cics.jvmserver.local.ccsid"));

JCICS API services and examples

CICS supports a range of APIs and services for Java applications. Many of the services available to
non-Java programs through the EXEC CICS API are available to Java programs through the JCICS API
along with the standard Java SE APIs provided by the Java SDK.

These topics provide details on the JCICS services and the integration with Java exception handling.
Other JEE APIs are available in the Liberty JVM server; for further details, see “Developing Java
applications to run in a Liberty JVM server” on page 95.

A set of samples are also provided in GitHub to demonstrate how to use the JCICS API in an OSGi JVM
server environment.

58 CICS TS for z/0S: Java Applications in CICS

https://github.com/cicsdev/cics-java-jcics-samples

APPC mapped conversations

APPC unmapped conversation support is not available from the JCICS API.

APPC mapped conversations:

Methods JCICS class EXEC CICS Commands
initiate() AttachInitiator ALLOCATE, CONNECT PROCESS
converse () Conversation CONVERSE

getx () methods Conversation EXTRACT ATTRIBUTES

getx () methods Conversation EXTRACT PROCESS

free() Conversation FREE

issueAbend() Conversation ISSUE ABEND

issueConfirmation()

Conversation

ISSUE CONFIRMATION

issueError() Conversation ISSUE ERROR
issuePrepare() Conversation ISSUE PREPARE
issueSignal() Conversation ISSUE SIGNAL
receive() Conversation RECEIVE
send() Conversation SEND

flush() Conversation WAIT CONVID

Basic Mapping Support (BMS)

Basic mapping support (BMS) is an application programming interface between CICS programs and
terminal devices. JCICS provides support for some of the BMS application programming interface.

Methods JCICS class EXEC CICS Commands
sendControl() TerminalPrincipalFacility SEND CONTROL
sendText () TerminalPrincipalFacility SEND TEXT

Not supported SEND MAP, RECEIVE MAP

Channel and container examples

Containers are named blocks of data designed for passing information between programs. Containers are
grouped in sets called channels, which act as the interface between programs. Channels and containers
offer the advantage that more than 32KB of data can be passed, and both character and binary data can
be specified. Character data (or strings in Java terms) is automatically converted at the API level, whereas
binary data (or a byte array in Java terms) is flowed unconverted. By contrast, COMMAREAs are confined
to a 32KB limit and are unstructured byte arrays. Multiple containers can be passed between programs
within a channel, providing a high degree of flexibility about how to structure data.

For introductory information about channels and containers, and guidance about using channels in non-
Java applications, see Transferring data between programs using channels. For information about tools

that allow Java programs to access existing CICS application data, see “Interacting with structured data
from Java” on page 175.

Table 5 on page 60 lists the classes and methods that implement JCICS support for channels and
containers.

Chapter 3. Developing Java applications 59

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp3_ch_overview.html

Table 5. JCICS support for channels and containers

Methods JCICS class EXEC CICS Commands
containerIterator() Channel STARTBROWSE CONTAINER
createContainer() Channel

delete() Channel DELETE CHANNEL
deleteContainer() Channel DELETE CONTAINER CHANNEL
getContainexr () Channel

getContainerCount() Channel QUERY CHANNEL

getName () Channel

delete() Container DELETE CONTAINER CHANNEL
get() Container GET CONTAINER CHANNEL
getLength() Container GET CONTAINER CHANNEL NODATA
getDatatype() Container

getName () Container

put() Container PUT CONTAINER CHANNEL
getOwnexr () Containerlterator

hasNext () ContainerlIterator

next () ContainerIterator GETNEXT CONTAINER BROWSETOKEN
remove () ContainerIterator

link() Program LINK

setNextChannel () TerminalPrincipalFacility RETURN CHANNEL

issue() StartRequest START CHANNEL
createChannel () Task

getCurrentChannel () Task ASSIGN CHANNEL
containerIterator() Task STARTBROWSE CONTAINER

The CICS condition CHANNELERR results in a ChannelErrorException being thrown; the
CONTAINERERR CICS condition results in a ContainerErrorException ; the CCSIDERR CICS
condition results in a CCSIDErrorException.

Creating channels and containers in JCICS
To create a channel, use the createChannel () method of the Task class.

For example:

Task t=Task.getTask();
Channel custData = t.createChannel("Customer_Data");

The string supplied to the createChannel method is the name by which the Channel object is known to
CICS. (The name is padded with spaces to 16 characters, to conform to CICS naming conventions.)

To create a new container in the channel, use the Channel createContainer () method. For example:

Container custRec = custData.createContainer("Customer_Record");

60 CICS TS for z/OS: Java Applications in CICS

The string supplied to the createContainer () method is the name by which the Container
object is known to CICS. The name is padded with spaces to 16 characters, if necessary, to conform
to CICS naming conventions. If a container of the same name already exists in this channel, a
ContainerErrorExceptionis thrown.

Putting data into a container
To put data into a Container object, use the Containexr.put () method.

Data can be added to a container as a string. For example:

String custNo = "00054321";
byte[] custRecIn = custNo.getBytes();
custRec.put(custRecIn);

Or:

custRec.putString("00054321");

Passing a channel to another program or task
To pass a channel on a program-link use the 1ink () method of the Program class.

programX.link(custData);

To set the next channel on a program-return call, use the setNextChannel () method of the
TerminalPrincipalFacility class:

terminalPF.setNextChannel (custData) ;

To pass a channel on a START request, use the issue method of the StartRequest class:

startrequest.issue(custData);

Receiving the current channel
It is not necessary for a program to receive its current channel explicitly. However, a program can get its
current channel from the current task.

If a program gets the current channel from the current task, the task can extract containers by name:

Task t = Task.getTask();
Channel custData = t.getCurrentChannel();

if (custData != null) $

Container custRec = custData.getContainer("Customer_Record");
1t else §

System.out.println("There is no Current Channel");

Getting data from a container
Use the Container.get () method to read the data in a container into a byte array.

byte[] custInfo = custRec.get();

Browsing the current channel
A JCICS program that is passed a channel can access all of the Containexr objects without receiving the
channel explicitly.

To do this, it uses a ContainerIterator object. The ContainerIteratoxr class implements the
java.util.Iterator interface. When a Task object is instantiated from the current task, its
containerIterator () method returns an Iteratox for the current channel, or null if there is no
current channel. For example:

Task t = Task.getTask();
ContainerIterator ci = t.containerIterator();

Chapter 3. Developing Java applications 61

while (ci.hasNext()) {
Container custData = ci.next();
// Process the container...

Channel and containers examples

This example shows an excerpt of a Java class called Payroll that calls a COBOL server

program named PAYR. The Payroll class uses the JCICS com.ibm.cics.server.Channel and
com.ibm.cics.sexrver.Container classes to work with a channel and its containers.

public class Payroll
1

Task t=Task.getTask();

// create the payroll_2004 channel
Channel payroll_2004 = t.createChannel("payroll-2004");

// create the employee container
Container employee = payroll_2004.createContainer("employee");

// put the employee name into the container
employee.putString("John Doe");

// create the wage container
Container wage = payroll_2004.createContainer("wage");

// put the wage into the container
wage.putString("2000");

// Link to the PAYROLL program, passing the payroll_2004 channel
Program p = new Program();

p.setName ("PAYR");

p.link(payroll_2004);

// Get the status container which has been returned
Container status = payroll_2004.getContainer("status");

if (status != null)

// Get the status information
byte[] payrollStatus = status.get();

¥

Figure 23. Java class that uses the JCICS com. ibm.cics.server.Channel and
com.ibm.cics.server.Container classes to pass a channel to a COBOL server program

The following abbreviated code snippet shows how to use channels and containers to pass a character
string input container on a program link and then to retrieve and read both a character string and a binary
container. A full working example is available in the LinkProg3 sample and the corresponding back-end
program is available at LinkServEduchan.

62 CICS TS for z/OS: Java Applications in CICS

https://github.com/cicsdev/cics-java-jcics-samples/blob/master/projects/com.ibm.cicsdev.link/src/com/ibm/cicsdev/link/LinkProg3.java
https://github.com/cicsdev/cics-java-jcics-samples/blob/master/projects/com.ibm.cicsdev.link/src/com/ibm/cicsdev/link/LinkServEduchan.java

//Initialize constants to define program name, and container data and names
private static final String PROG_NAME = "EDUCHAN";

private static final String CHANNEL="EDUCHAN";

private static final String INPUT_CONTAINER="INPUTDATA";

private static final String DATE_CONTAINER="CICSTIME";

private static final String CICSRC_CONTAINER="CICSRC";

private static final String INPUTSTRING="Hello from Java";

Task task = Task.getTask();
Program prog = new Program();
prog.setName (PROG_NAME) ;

//Create a Channel object to be associated with the task
Channel testChannel = task.createChannel (CHANNEL);

Container inputContainer = testChannel.createContainer (INPUT_CONTAINER) ; EM
inputContainer.putString (INPUTSTRING) ; IEE

prog.link(testChannel) ; ER

Container charContainer = testChannel.getContainer (DATE_CONTAINER) ; IEH
if (charContainer!=null)

resultStr = charContainer.getString();

b 5 |

Container bitContainer = testChannel.getContainer (CICSRC_CONTAINER) ;KM
if (bitContainer!=null)

byte[] ba = bitContainer.get();
ByteBuffer bb = ByteBuffer.wrap(ba);
cicsrc = bb.getInt() ;KM

b

Figure 24. Passing and retrieving containers

Detailed explanation is as follows:

Creates the input container named INPUTDATA. And the createContainer () method signature
takes the String Hello from Java as input which will cause CICS to create a character based
container as opposed to a binary container. The encoding of this data will be stored internally in
UTF-16 when created in Java in order to handle the Unicode String data, and will be automatically
converted to the local EBCDIC encoding if read from a COBOL program.

Passes the channel as a reference on the Program.link () method. The invoked program EDUCHAN
will receive the INPUTDATA container, reverse the input data, and return the formatted time in a
character container along with an integer return code in a binary container.

-8
Creates a new container object charContainer and gets the character container defined as
CICSTIME from the channel. If it does not exist, this will return null rather than throw a
CICSConditionException, whichis the usual JCICS error model. Therefore the code tests for
null before reading the string data using the Container.getString () method.

[a-
Creates a new container object bitContainexr and gets the binary container defined as CICSRC from
the channel. Again this will return null if the container is not present, so the code tests for null. Then
you can create a byte array and get the data from the bitContainexr. The data is a 32-bit integer
from a CICS response code, so you need to wrap the data into a ByteBuffer and then read the
integer from it.

Chapter 3. Developing Java applications 63

https://github.com/cicsdev/cics-java-jcics-samples/blob/master/src/Cobol/EDUCHAN.cbl

Diagnostic services

The JCICS application programming interface has support for these CICS trace and dump commands.

Methods JCICS class EXEC CICS Commands
Not supported DUMP
enterTrace() EnterRequest ENTER

Document services

This section describes JCICS support for the commands in the DOCUMENT application programming
interface.

Class Document maps to the EXEC CICS DOCUMENT API.

The default no-argument constructor for class Document creates a new document in CICS. The
constructor Document (byte[] docToken) accepts a document token for an existing document that
has previously been created. For example, another program can create a document and pass its
document token to the Java application in a COMMAREA or container.

Constructors for class DocumentLocation map to the AT and TO keywords of the EXEC CICS
DOCUMENT API.

Setters and getters for class SymbolList map to the SYMBOLLIST, LENGTH, DELIMITER, and UNESCAPE
keywords of the EXEC CICS DOCUMENT API.

Methods JCICS class EXEC CICS Commands
createx() Document DOCUMENT CREATE
appendx () Document DOCUMENT INSERT
insert*() Document DOCUMENT INSERT
addSymbol () Document DOCUMENT SET
setSymbolList () Document DOCUMENT SET
retrievex() Document DOCUMENT RETRIEVE
getx() Document DOCUMENT

Environment services

CICS environment services provide access to CICS data areas, parameters, and resource attributes that
are relevant to an application program.

The EXEC CICS commands and options that have equivalent JCICS support are:

ADDRESS

« ASSIGN

INQUIRE SYSTEM

INQUIRE TASK

INQUIRE TERMINAL/NETNAME

ADDRESS
The following support is provided for the ADDRESS API command options.

For complete information about the EXEC CICS ADDRESS command, see ADDRESS.

64 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_address.html

ACEE
The Access Control Environment Element (ACEE) is created by an external security manager when a
CICS user signs on. This option not supported in JCICS.

COMMAREA
A COMMAREA contains user data that is passed with a command. The COMMAREA pointer is passed
automatically to the linked program by the CommAxreaHoldex argument.

CWA
The Common Work Area (CWA) contains global user data, sharable between tasks. A copy of the CWA
can be obtained using the getCWA () method of the Region class.

EIB
The EIB fields contains information about the CICS command last executed. Access to EIB values is
provided by methods on the appropriate objects. For example,

eibtrnid
is returned by the getTransactionName () method of the Task class.
eibaid
is returned by the getAIDbyte () method of the TerminalPrincipalFacility class.
eibcposn
is returned by the getRow () and getColumn () methods of the Cursox class.
TCTUA

The Terminal Control Table User Area (TCTUA) contains user data associated with the terminal
that is driving the CICS transaction (the principal facility). This area is used to pass information
between application programs, but only if the same terminal is associated with the application
programs involved. The contents of the TCTUA can be obtained using the getTCTUA () method of
the TerminalPrincipalFacility class.

TWA
The Transaction Work Area (TWA) contains user data that is associated with the CICS task. This area
is used to pass information between application programs, but only if they are in the same task. A
copy of the TWA can be obtained using the getTWA () method of the Task class.

ASSIGN
The following support is provided for the ASSIGN API command options.

For detailed information about this command, see ASSIGN.

Methods JCICS class

getABCODE () AbendException

getApplicationContext() Task

getAPPLID() Region

getCurrentChannel () Task

getCWA() Region

getName () TerminalPrincipalFacility or
ConversationPrincipalFacility

getFCI() Task

getNetName () TerminalPrincipalFacility or
ConversationPrincipalFacility

getPrinSysid() TerminalPrincipalFacility or
ConversationPrincipalFacility

getProgramName () Task

getQNAME () Task

Chapter 3. Developing Java applications 65

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-diagnostics/eib/dfhp4_eibfields.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_assign.html

Methods JCICS class

getSTARTCODE () Task

getSysid() Region

getTCTUA() TerminalPrincipalFacility

getTERMCODE () TerminalPrincipalFacility

getTWA () Task

getUSERID() , Task.getUSERID() Task, TerminalPrincipalFacility or
ConversationPrincipalFacility

No other ASSIGN options are supported.

INQUIRE SYSTEM

Support is provided for the INQUIRE SYSTEM SPI options.
Methods JCICS class
getAPPLID() Region
getSYSID() Region

No other INQUIRE SYSTEM options are supported.

INQUIRE TASK
The following support is provided for the INQUIRE TASK API command options.

Methods JCICS class
getSTARTCODE () Task
getTransactionName() Task
getUSERID() Task
FACILITY

You can find the name of the task's principal facility by calling the getName () method on the task's
principal facility, which can in turn be found by calling the getPrincipalFacility () method on
the current Task object.

FACILITYTYPE
You can determine the type of facility by using the Java instanceof operator to check the class of
the returned object reference.

No other INQUIRE TASK options are supported.

INQUIRE TERMINAL and INQUIRE NETNAME
The following support is provided for INQUIRE TERMINAL and INQUIRE NETNAME SPI options.

Methods JCICS class
getUSERID() Terminal, ConversationalPrincipalFacility
Terminal.getUser() Terminal, ConversationalPrincipalFacility

You can also find the USERID value by calling the getUSERID () method on the current Task object, or
on the object representing the task's principal facility.

No other INQUIRE TERMINAL or INQUIRE NETNAME options are supported.

66 CICS TS for z/OS: Java Applications in CICS

File services and examples

JCICS provides classes and methods that map to the EXEC CICS API commands for each type of CICS
file and index.

For information about tools that allow Java programs to access existing CICS application data, see
Interacting with structured data from Java.

CICS supports the following types of files:
« Key Sequenced Data Sets (KSDS)

« Entry Sequenced Data Sets (ESDS)

« Relative Record Data Sets (RRDS)

KSDS and ESDS files can have alternative (or secondary) indexes. CICS does not support access to
an RRDS file through a secondary index. Secondary indexes are treated by CICS as though they were
separate KSDS files in their own right, which means they have separate FD entries.

There are a few differences between accessing KSDS, ESDS (primary index), and ESDS (secondary index)
files, which means that you cannot always use a common interface.

Records can be read, updated, deleted, and browsed in all types of file, with the exception that records
cannot be deleted from an ESDS file.

See VSAM data sets: KSDS, ESDS, RRDS for more information about data sets.

Java commands that read data support only the equivalent of the SET option on EXEC CICS commands.
The data returned is automatically copied from CICS storage to a Java object.

Categories of Java interfaces relating to File Control

The Java interfaces relating to File Control are in five categories:
File
The superclass for the other file classes; contains methods common to all file classes.

KeyedFile
Contains the interfaces common to a KSDS file accessed using the primary index, a KSDS file accessed
using a secondary index, and an ESDS file accessed using a secondary index.

KSDS
Contains the interface specific to KSDS files.

ESDS
Contains the interface specific to ESDS files accessed through Relative Byte Address (RBA, its
primary index) or Extended Relative Byte Address (XRBA). To use XRBA instead of RBA, issue the
setXRBA (true) method.

RRDS
Contains the interface specific to RRDS files accessed through Relative Record Number (RRN, its
primary index).

File and FileBrowse objects
For each file, there are two objects that can be operated on; the File object and the FileBrowse object.

File objects
The File object represents the file itself and can be used with methods to perform the following API
operations:

- DELETE
- READ

- REWRITE
« UNLOCK

Chapter 3. Developing Java applications 67

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_strdata_java.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp3mk.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_delete.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_read.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_rewrite.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_unlock.html

« WRITE
« STARTBR

A File object is created by the user application explicitly starting the required file class. The
FileBrowse object represents a browse operation on a file. There can be more than one active
browse against a specific file at any time, each browse being distinguished by a REQID. Methods can
be instantiated for a FileBrowse object to perform the following API operations:

« ENDBR

« READNEXT
« READPREV
« RESETBR

FileBrowse objects

A FileBrowse object is not instantiated explicitly by the user application; it is created and returned
to the user class by the methods that perform the STARTBR operation.

Mapping from JCICS classes and methods to CICS API commands

The following tables show how the JCICS classes and methods map to the EXEC CICS API commands for
each type of CICS file and index. In these tables, the JCICS classes and methods are shown in the form
class.method (). For example, KeyedFile.read () references the read () method in the KeyedFile

class.

Classes and methods for keyed files

This table shows the classes and methods for keyed files.

Table 6. Classes and methods for keyed files

KSDS primary or secondary index
class and method

ESDS secondary index class and
method

CICS File API command

KeyedFile.read()

KeyedFile.read()

READ

KeyedFile.readForUpdate()

KeyedFile.readForUpdate ()

READ UPDATE

KeyedFile.readGeneric()

KeyedFile.readGeneric()

READ GENERIC

KeyedFile.rewrite() KeyedFile.rewrite() REWRITE
KSDS.write() KSDS.write() WRITE
KSDS.delete() DELETE

KSDS.deleteGeneric ()

DELETE GENERIC

KeyedFile.unlock()

KeyedFile.unlock()

UNLOCK

KeyedFile.startBrowse ()

KeyedFile.startBrowse ()

START BROWSE

KeyedFile.startGenericBrows

KeyedFile.startGenericBrows

START BROWSE

e() e() GENERIC
KeyedFileBrowse.next () KeyedFileBrowse.next () READNEXT
KeyedFileBrowse.previous() KeyedFileBrowse.previous() READPREV
KeyedFileBrowse.reset() KeyedFileBrowse.reset() RESET BROWSE
FileBrowse.end () FileBrowse.end () END BROWSE

68 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_write.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_startbr.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_endbr.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_readnext.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_readprev.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_resetbr.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KSDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KSDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KSDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KSDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFileBrowse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFileBrowse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFileBrowse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFileBrowse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFileBrowse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFileBrowse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/FileBrowse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/FileBrowse.html

Classes and methods for non-keyed files

This table shows the classes and methods for non-keyed files. ESDS and RRDS are accessed by their
primary indexes.

Table 7. Classes and methods for non-keyed files

ESDS primary index class and RRDS primary index class and CICS File API command
method method
ESDS.read() RRDS.zread() READ
ESDS.readForUpdate() RRDS.readForUpdate () READ UPDATE
ESDS.rewrite() RRDS.rewrite() REWRITE
ESDS.write() RRDS.write() WRITE
RRDS.delete() DELETE
KeyedFile.unlock() RRDS.unlock() UNLOCK
ESDS.startBrowse () RRDS.startBrowse() START BROWSE
ESDS_Browse.next () RRDS_Browse.next() READNEXT
ESDS_Browse.previous() RRDS_Browse.previous() READPREV
ESDS_Browse.reset() RRDS_Browse.reset() RESET BROWSE
FileBrowse.end () FileBrowse.end() END BROWSE
ESDS.setXRBA()

Writing and reading data
Data to be written to a file must be in a Java byte array.
Data is read from a file into a RecordHoldex object.

You do not need to specify the KEYLENGTH value on any File method; the length used is the actual
length of the key passed. When a FileBrowse object is created, it contains the length of the key
specified on the startBrowse method, and this length is passed to CICS on subsequent browse
requests against that object.

You do not need to provide a REQID for a browse operation; each browse object contains a unique REQID
which is automatically used for all subsequent browse requests against that browse object.

Samples

The following snippet shows how to use the KSDS class to read and write structured records to a VSAM
file. In this example a StockPaxrt record is used to represent the structured record, and was created
from a COBOL copybook structure using IBM Record Generator for Java .

private static final String FILE_NAME = "XMPLKSDS";
private final KSDS ksds;

public void addRecord(StockPart sp)
{

this.ksds = new KSDS();

this.ksds.setName (FILE_NAME) ;

//Get the byte structure from the generated record using the getByteBuffer() method on the
StockPark record

byte[] record = sp.getByteBuffer();

//Create a byte array containing the key for this record
byte[] key = StockPartHelper.getKey(sp);

Chapter 3. Developing Java applications 69

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS_Browse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS_Browse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS_Browse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS_Browse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS_Browse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS_Browse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/FileBrowse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/FileBrowse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_strdata_java.html

try

//Write the record into the VSAM file using the specified key
this.ksds.write(key, recoxd);

3

//Catch specific responses from the WRITE FILE commmand

catch (DuplicateRecordException dre)

i // Collision on the generated key
String strMsg = "Tried to insert duplicate key 0x%08X";
Task.getTask() .out.println(String.format(stxMsg, sp.getPartId()));
throw new RuntimeException(dre);

k
//Catch specific responses from the WRITE FILE commmand
catch (InvalidRequestException ire)

i
if (ire.getRESP2() == 20) // File not addable
1

String strMsg = "Add operations not permitted for file %s";
Task.getTask() .out.println(String.format(stxMsg, this.ksds.getName()));

// Throw an exception to rollback the current UoW
throw new RuntimeException(ire);

//Catch all other responses and throw an exception to abend the task
catch (CicsConditionException cce)

throw new RuntimeException(cce);
3
For full working samples, go to GitHub, where sample CICS Java programs are provided to

demonstrate how to use the JCICS API in an OSGi JVM server environment. In particular, use
com.ibm.cicsdev.vsam foraccessing KSDS, ESDS, and RRDS VSAM files.

HTTP and TCP/IP services

Getters in classes HttpHeadexr, NameValueData, and FormField return HTTP headers, name and
value pairs, and form field values for the appropriate API commands.

Methods JCICS class EXEC CICS Commands

getx() CertificateInfo EXTRACT CERTIFICATE / EXTRACT TCPIP
getx() HttpRequest EXTRACT WEB

getHeader() HttpRequest WEB READ HTTPHEADER
getFormField() HttpRequest WEB READ FORMFIELD
getContent () HttpRequest WEB RECEIVE

getQueryParm() HttpRequest WEB READ QUERYPARM
startBrowseHeader () HttpRequest WEB STARTBROWSE HTTPHEADER
getNextHeader () HttpRequest WEB READNEXT HTTPHEADER
endBrowseHeadexr () HttpRequest WEB ENDBROWSE HTTPHEADER
startBrowseFormField() HttpRequest WEB STARTBROWSE FORMFIELD
getNextFormField() HttpRequest WEB READNEXT FORMFIELD
endBrowseFormField() HttpRequest WEB ENDBROWSE FORMFIELD
startBrowseQueryParm() HttpRequest WEB STARTBROWSE QUERYPARM
getNextQueryParm() HttpRequest WEB READNEXT QUERYPARM
endBrowseQueryParm() HttpRequest WEB ENDBROWSE QUERYPARM
writeHeader () HttpResponse WEB WRITE

70 CICS TS for z/OS: Java Applications in CICS

https://github.com/cicsdev/cics-java-jcics-samples

Methods JCICS class EXEC CICS Commands
getDocument () HttpResponse WEB RETRIEVE
getCurrentDocument () HttpResponse WEB RETRIEVE
sendDocument () HttpResponse WEB SEND

Note: Use the method get HttpRequestInstance () to obtain the HttpRequest object.

Each incoming HTTP request processed by CICS Web support includes an HTTP header. If the request
uses the POST HTTP verb it also includes document data. Each response HTTP request generated by
CICS Web support includes an HTTP header and document data.

To process this JCICS provides the following Web and TCP/IP services:

HTTP Header
You can examine the HTTP header using the HttpRequest class. With HTTP in GET mode, if a client
has filled in an HTTP form and selected the submit button, the query string is submitted.

SSL
CICS Web support provides the TcpipRequest class, which is extended by HttpRequest to obtain
more information about which client submitted the request as well as basic information on the SSL
support. If an SSL certificate is provided, you can use the CertificateInfo class to examineitin
detail.

Documents
If a document is published to the server (HTTP POST), it is provided as a CICS document. You
can access it by calling the getDocument () method on the HttpRequest class. See “Document
services” on page 64 for more information about processing existing documents.

To serve the HTTP client web content resulting from a request, the server programmer needs to
create a CICS document using the Document Services API and call the sendDocument () method.

For more information on CICS Web support see CICS Web support. For more information on the JCICS
web classes see JCICS Javadoc information.

Program services and examples
JCICS supports the CICS program control commands; LINK, RETURN, and INVOKE APPLICATION.

For information about tools that allow Java programs to access existing CICS application data, see
Interacting with structured data from Java.

Table 8 on page 71 lists the methods and JCICS classes that map to CICS program control commands.

Table 8. Relationship between methods, JCICS classes, and CICS commands

EXEC CICS Commands JCICS class JCICS methods

LINK Program link()

RETURN TerminalPrincipalFacility setNextTransaction(),
setNextCOMMAREA(),
setNextChannel ()

INVOKE APPLICATION Application invoke ()

LINK

You can transfer control to another program that is defined to CICS by using the 1ink () method. The
target program can be in any language that is supported by CICS.

RETURN
Only the pseudoconversational aspects of this command are supported. It is not necessary to make
a CICS call to return; the application can terminate as normal. The pseudoconversational functions
are supported by methods in the TerminalPrincipalFacility class: setNextTransaction()

Chapter 3. Developing Java applications 71

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/web/dfhtl11.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/index.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_strdata_java.html

is equivalent to using the TRANSID option of RETURN; setNextCOMMAREA () is equivalent to using
the COMMAREA option; while setNextChannel () is equivalent to using the CHANNEL option . These
methods can be invoked at any time during the running of the program, and take effect when the
program terminates.

INVOKE
Allows invocation of an application by naming an operation that corresponds to one of its program
entry points, without having to know the name of the application entry point program and regardless
of whether the program is public or private.

Samples
Example 1

The following code snippet shows how to use Task and Program to link to another CICS program.

private static final String PROG_NAME = "ECO1"; M
private static final int CA_LEN = 18 ;

pub11c static void main(String[] args)EN
1

" Task task = Task.getTask() ;IEH
task.out.println("Hello world") ; IEM

Program prog = new Program() ;M
prog.setName (PROG_NAME) ;
prog.setSyncOnReturn(false);
byte[] ca = new byte[CA_LEN]; KA
prog.link(ca);

Detailed explanation is as follows:

Initializes constants including the name of the CICS program and the length of the COMMAREA input.

The main(String[] args) constructor signifies this as the entry point for this CICS program, which
allows this class to be named in the CICS-MainClass header in the OSGi bundle manifest.

Gets the Task object representing the CICS task that the current Java thread is using. This will drive
the underlying CICS ASSIGN command on first usage.

Sends output to the print writer. The output will be directed to either the user’s terminal or the
standard output (stdout) if there is no terminal.

Instantiates an instance of a Program, and then set properties such as the name and whether or not
the LINK command uses the SYNCONRETURN option.

Creates a byte array and then passes this as input on the Program.1link () method. This will drive
an EXEC CICS LINKcommand to the CICS program named in the prog.setName method. The
COMMAREA will be passed as a byte array, which is an unstructured array of bytes of the specified
length. Most CICS programs expect structured data as input. Therefore, if you need to build a Java
bean to map to this, you can use IBM Record Generator for Java or Rational J2C Tools to build
wrapper classes to map the records.

Note that there is no return type from the Program.link () method; instead the data is updated in the
original place within the referenced COMMAREA.

Example 2

72 CICS TS for z/OS: Java Applications in CICS

The program that is invoked by a LINK command can also be written in Java, and in this case it passes the
COMMAREA as a simple byte array. The following sample Java version of the ECO1 CICS COBOL program
shows how to use the CommAreaHoldex class to receive the byte array mapping to the COMMAREA.

public class LinkServECO1
{

//Initialize constants

private static final int CA_LEN = 18 ;

private static final String CA_LEN_ABCODE = "LEN";

private static final SimpleDateFormat dfTime = new SimpleDateFormat("dd/MM/yy HH:mm:ss");

//Get the local encoding of the CICS region, this defaults to EBCDIC

private static final String CCSID =
System.getProperty("com.ibm.cics.jvmserver.local.ccsid");

public static void main(CommAreaHolder cah)

Task task = Task.getTask();

//Check input array is long enough, and terminate the task using an abend if input is
too short
if (cah.getValue().length < CA_LEN)

task.abend (CA_LEN_ABCODE) ;

//Build time string for return to caller

Date timestamp = new Date();

byte ba[] = dfTime.format(timestamp).getBytes(CCSID);

//Create byte array from the time string using the CICS encoding and copy into the
CommAreaHolder for return to the calling program as the COMMAREA

System.arraycopy (ba, 0, cah.getValue(), 0, ba.length);

Learn more

For more samples on how to perform CICS LINK operations using both COMMAREAs, channels, and
containers, see the com.ibm.cicsdev.link sample at GitHub.

Scheduling services

JCICS provides support for the CICS scheduling services, which let you retrieve data stored for a task,
cancel interval control requests, and start a task at a specified time.

Methods JCICS class EXEC CICS Commands
cancel () StartRequest CANCEL

retrieve() Task RETRIEVE

issue() StartRequest START

To define what is to be retrieved by the Task.retrieve () method, use a java.util.BitSet object.
The com.ibm.cics.server.RetrieveBits class defines the bits which can be set in the BitSet
object; they are:

« RetrieveBits.DATA

« RetrieveBits.RTRANSID

« RetrieveBits.RTERMID

« RetrieveBits.QUEUE

These correspond to the options on the EXEC CICS RETRIEVE command.

The Task.retrieve () method retrieves up to four different pieces of information in a single invocation,
depending on the settings of the RetrieveBits. The DATA, RTRANSID, RTERMID and QUEUE data are

Chapter 3. Developing Java applications 73

https://github.com/cicsdev/cics-java-jcics-samples

placed in a RetrievedData object, which is held in a RetrievedDataHolder object. The following
example retrieves the data and transid:

BitSet bs = new BitSet();

bs.set(RetrieveBits.DATA, true);
bs.set(RetrieveBits.RTRANSID, true);
RetrievedDataHolder rdh = new RetrievedDataHolder();
t.retrieve(bs, rdh);

byte[] inData = rdh.value.data;

String transid = rdh.value.transId;

Serialization services

JCICS provides support for the CICS serialization services, which let you schedule the use of a resource

by a task.

Methods JCICS class EXEC CICS Commands
dequeue () SynchronizationResource DEQ

enqueue (), tryEnqueue () SynchronizationResource ENQ

Storage services

No support is provided for explicit storage management using CICS services (such as EXEC CICS
GETMAIN). You should find that the standard Java storage management facilities are sufficient to meet
the needs for task-private storage.

Sharing of data between tasks must be accomplished using CICS resources.

Names are generally represented as Java strings or byte arrays; you must ensure that these are of the
necessary length.

Temporary storage queue services and examples

A temporary storage (TS) queue is a set of data items that can be read and re-read in any sequence,
and TSQ resources can be dynamically created at runtime. JCICS supports the CICS temporary storage
commands: DELETEQ TS, READQ TS, and WRITEQ TS.

Interaction between JCICS methods and EXEC CICS commands

For information about tools that allow Java programs to access existing CICS application data, see
Interacting with structured data from Java.

Table 9 on page 74 lists the methods and JCICS classes that map to CICS temporary storage commands.

Table 9. Relationship between methods, JCICS classes and CICS commands

Methods JCICS class EXEC CICS Commands
delete() TSQ DELETEQ TS
readItem(), readNextItem() TSQ READQ TS
TSQ WRITEQ TS
writeItem(),
rewriteItem(),

writeItemConditional(),

rewriteItemConditional ()

74 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_strdata_java.html

DELETEQTS
You can delete a temporary storage queue (TSQ) using the delete () method in the TSQ class.

READQ TS
The CICS INTO option is not supported in Java programs. You can read a specific item from a TSQ
using the readItem() and readNextItem() methods in the TSQ class. These methods take an
ItemHolder object as one of their arguments, which will contain the data read in a byte array. The
storage for this byte array is created by CICS and is garbage-collected at the end of the program.

WRITEQ TS
You must provide data to be written to a temporary storage queue in a Java byte array. The
writeItem() and rewriteItem() methods suspend if a NOSPACE condition is detected, and
wait until space is available to write the data to the queue. The writeItemConditional() and
rewriteItemConditional () methods do not suspend in the case of a NOSPACE condition, but
return the condition immediately to the application as a NoSpaceException.

Examples

The following snippets show how to use the TSQ class to write string data to a TSQ and then read it back
using a JCICS holder. A full working example of this code is available in the TSQExample2 sample.

public class TSQExample2 extends TSQCommon

//Initialize constants

private static final String TSQ_NAME "MYTSQ";

private static final int DEPTH_COUNT 5;

private static final String CCSID =
System.getProperty("com.ibm.cics.jvmserver.local.ccsid");

public static void main(String[] args)
//Create TSQ object and set TSQ name and storage type as MAIN (in memozy)
TSQ tsq = new TSQ();
tsq.setName (TSQ_NAME) ;
tsq.setType(TSQType.MAIN) ;
//Loop around writing multiple records to the TSQ
for (int i = 1; i <= DEPTH_COUNT; i++)
1

String msg = MessageFormat.format("TSQ write from JCICS item {0%", i);
//Create byte array from the input string using the CICS encoding
byte[] data;
try
data = msg.getBytes(CCSID);
catch (UnsupportedEncodingException uee)
throw new RuntimeException(uee);
try {
//Write each item to the TSQ using the TSQ.writeItem() method
this.tsq.writeItem(data);
catch (CicsConditionException cce)

throw new RuntimeException(cce);

%
k)
The following method readFromQueue () shows how to use a JCICS ItemHolder to read bytes from a
TSO.
public void readFromQueue ()

//Create a JCICS ItemHolder to be used to read bytes from the TSQ
ItemHolder holder = new ItemHolder();

for (int i = 1; i <= DEPTH_COUNT; i++)
1

Chapter 3. Developing Java applications 75

https://github.com/cicsdev/cics-java-jcics-samples/blob/master/projects/com.ibm.cicsdev.tsq/src/com/ibm/cicsdev/tsq/TSQExample2.java

try

//Use the TSQ.readItem() method to loop around reading items from the TSQ into the

ItemHolder, starting from an index of 1 as this is the first record in a TS queue

this.tsq.readItem(i, holder);
catch (CicsConditionException cce)

throw new RuntimeException(cce);

//Extract the byte array from the item holder

byte[] data = holder.getValue();
String strData;
try

//Create a new string using the CICS encoding

strData = new String(data, CCSID);

catch (UnsupportedEncodingException uee)

throw new RuntimeException(uee);

Terminal services

JCICS provides support for these CICS terminal services commands.

Methods JCICS class EXEC CICS Commands
converse() TerminalPrincipalFacility CONVERSE

Not supported HANDLE AID
receive() TerminalPrincipalFacility RECEIVE
send() TerminalPrincipalFacility SEND

Not supported WAIT TERMINAL

If a task has a terminal allocated as a principal facility, CICS automatically creates two Java
PrintWriter components that can be used as standard output and standard error streams. These
components are mapped to the task terminal. The two streams, which have the names out and exr, are
public files in the Task object and can be used in the same way as System.out and System.err.

Data to be sent to a terminal must be provided in a Java byte array. Data is read from the terminal into
a DataHolder object. CICS provides the storage for the returned data which is deallocated when the
program ends.

Threads and tasks example

If your CICS Java application is running within an OSGi or Liberty environment, you can run work under a
separate thread on a separate CICS task/transaction by using the CICSExecutorSexrvice.

Submit a Java Runnable or Callable object to the Executor service and the submitted application

code will run on a separate thread under a new CICS task. Unlike normal threads created from Java,
Executor controlled threads have access to the JCICS API and CICS services. In a CICS OSGi or Liberty
environment you can use standard OSGi APIs to find the CICSExecutorService, or you can use the
JCICS API convenience method CICSExecutorService.runAsCICS(), which finds the service and
submits the Runnable or Callable object on your behalf.

Note: For non-HTTP requests in Liberty, a CICS task is created only when the first JCICS or JDBC
DataSource with type 2 connectivity call is made.

76 CICS TS for z/OS: Java Applications in CICS

The following example shows an excerpt of a Java class that submits a Runnable piece of application
code to the CICSExecutorService. The application code simply writes to a CICS TSQ.

public class ExecutorTest
public static void main(String[] args)

// Inline the new Runnable class
class CICSJob implements CICSTransactionRunnable

public void run()
// Create a temporary storage queue
TSQ test_tsq = new TSQ();
test_tsq.setType(TSQType.MAIN);

// Set the TSQ name
test_tsq.setName ("TSQWRITE");

// Write to the temporary storage queue

// Use the CICS region local CCSID so it is readable
String test_string = "Hello from a non CICS Thread - "+ threadIld;

try
{

test_tsq.writeItem(test_string.getBytes(System.getProperty("com.ibm.cics.jvmserver.local.ccsid")));

catch (Exception e)
e.printStackTrace();
3

@Override
public String getTranid()
$

// *** This transaction id should be installed and available #*xx

return "IJSA";

3
// Create and run the new CICSJob Runnable

Runnable task = new CICSJob();
CICSExecutorService.runAsCICS(task);

Transforming between data and XML

JCICS supports API commands to transform data to XML and vice versa. These commands provide
the equivalent functions to the EXEC CICS TRANSFORM DATATOXML and TRANSFORM XMLTODATA

commands.
Methods JCICS class EXEC CICS commands
SetName XmlTransform TRANSFORM DATATOXML,
TRANSFORM XMLTODATA
dataToXML Transform TRANSFORM DATATOXML
xmltoData Transform TRANSFORM XMLTODATA
setChannel TransformInput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA
setDataContainer TransformInput TRANSFORM DATATOXML
TRANSFORM XMLTODATA
setElementName TransformInput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA

Chapter 3. Developing Java applications 77

Methods JCICS class EXEC CICS commands

setElementNamespace TransformInput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA
setNsContainer TransformInput TRANSFORM XMLTODATA
setTypeName TransformInput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA
setTypeNamespace TransformInput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA
setXmlContainer TransformInput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA
setXmltransform TransformInput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA
getElementName TransformOutput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA
getElementNamespace TransformOutput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA
getTypeName TransformOutput TRANSFORM DATATOXML,

TRANSFORM XMLTODATA

getTypeNamespace TransformOQutput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA

Transient data queue services

JCICS supports the CICS transient data commands, DELETEQ TD, READQ TD, and WRITEQ TD. All options
are supported except the INTO option. For a set of examples on TDQ, see the com.ibm.cicsdev.tdg sample
project on GitHub.

Interaction between JCICS methods and EXEC CICS commands

For information about tools that allow Java programs to access existing CICS application data, see
Interacting with structured data from Java.

Table 10 on page 78 lists the methods and JCICS classes that map to CICS transient data commands.

Table 10. Relationship between methods, JCICS classes and CICS commands
Methods JCICS class EXEC CICS Commands
delete() TDQ DELETEQ TD
readData(), readDataConditional() TDQ READQ TD
writeData() TDQ WRITEQ TD
DELETEQ TD
You can delete a transient data queue (TDQ) using the delete () method in the TDQ class.
READQ TD

The CICS INTO option is not supported in Java programs. You can read from a TDQ using the
readData() orthe readDataConditional () method in the TDQ class. These methods take as
a parameter an instance of a DataHolder object that will contain the data read in a byte array. The
storage for this byte array is created by CICS and is garbage-collected at the end of the program.

The readDataConditional () method drives the CICS NOSUSPEND logic. If a QBUSY condition is
detected, it is returned to the application immediately as a QueueBusyException.

78 CICS TS for z/OS: Java Applications in CICS

https://github.com/cicsdev/cics-java-jcics-samples/tree/master/projects/com.ibm.cicsdev.tdq
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_strdata_java.html

The readData () method suspends if it attempts to access a record in use by another task and there
are no more committed records.

WRITEQ TD

You must provide data to be written to a TDQ in a Java byte array.
Unit of work (UOW) services
JCICS provides support for the CICS SYNCPOINT service.

Table 11. Relationship between JCICS and EXEC CICS commands for UOW services
Methods JCICS class EXEC CICS Commands
commit (), rollback() Task SYNCPOINT

In a Liberty JVM server, UOW syncpointing can be controlled by using the Java Transaction API (JTA). For
more information, see “Java Transaction API (JTA) ” on page 130.

Web services example

JCICS supports all API commands that are available for working with web services in an application.

Methods JCICS class EXEC CICS commands
invoke() WebService INVOKE WEBSERVICE
create() SoapFault SOAPFAULT CREATE
addFaultString() SoapFault SOAPFAULT ADD FAULTSTRING
addSubCode () SoapFault SOAPFAULT ADD SUBCODESTR
delete() SoapFault SOAPFAULT DELETE

create() WSAEpr WSAEPR CREATE

delete() WSAContext WSACONTEXT DELETE

set*() WSAContext WSACONTEXT BUILD

getx() WSAContext WSACONTEXT GET

The following example shows how you might use JCICS to create a web service request:

Channel requesterChannel = Task.getTask().createChannel("TestRequester");
Container appData = requesterChannel.createContainer("DFHWS-DATA");
byte[] exampleData = "ExampleData".getBytes();

appData.put(exampleData);

WebService requester = new WebService();
requester.setName("MyWebservice");
requester.invoke(requesterChannel, "myOperationName");

byte[] response = appData.get();

To handle the application data that is sent and received in a web service request, if you are working
with structured data, you can use a tool such as IBM Record Generator for Java to generate classes.
See “Interacting with structured data from Java” on page 175. You can also use Java to generate and
consume XML directly.

Chapter 3. Developing Java applications 79

CICS exception handling in JCICS programs

CICS conditions and exceptions are integrated into the Java exception-handling architecture to handle
problems that occur in CICS. You can use a set of Java exceptions and methods to handle CICS error
conditions, and abend or roll back CICS tasks.

Contents

“Class hierarchy of JCICS exceptions” on page 80
“Catching unchecked exceptions” on page 82
“Catching checked exceptions” on page 81
“Abending and rolling back CICS tasks” on page 83

Appendix: JCICS equivalents to EXEC CICS commands for error handling
Appendix: Mapping between CICS conditions and JCICS exceptions

Class hierarchy of JCICS exceptions

The JCICS API classes contain checked exceptions and unchecked exceptions. CICS checked exceptions
extend the CicsException class. They correspond to the response codes of error conditions returned
from the underlying EXEC CICS commands and need to be handled by your program. CICS unchecked
exceptions extend the CicsRuntimeException class and represent failures within CICS or ABENDs.

The following diagram shows the class hierarchy of some example exceptions in JCICS:

80 CICS TS for z/0OS: Java Applications in CICS

java.lang. Object

L—Throwable
Exror
L cicsError
Exception
— RuntimeException
|——Cit.:sRun‘timeExcep‘tion
— AbendException
unchecked exceptions — AbendCancelException
— CicsThreadingRuntimeException
— EndOfProgramException
—etc.
— CicsException
L CicsConditionException

— NoSpaceException

— DuplicateRecordException

checked exceptions — InvalidProgramIdException

— NotAuthorisedException

— etc.

'— CicsResponseConditionException
IOErrorException
LengthExrrorException
etc.

Figure 25. Class hierarchy of checked and unchecked exceptions in JCICS

For more information about each class, see JCICS Javadoc information.

Catching checked exceptions

In Java, checked exceptions are used when you want the user of your API to design how to handle the
exceptional situation. They must either be caught or declared as part of the method signature using the
throws keyword. Any Java code that calls a method declared as throwing a checked exception must
either provide logic to catch the checked exception, or add the exception to its own method signature,
in order to propagate the exception further up the stack. The constraints on checked exceptions are
enforced at compile time, and failure to adhere to the specification will result in a compilation error.

By contrast, in traditional high-level languages such as COBOL, when a CICS command returns an error
(such as unknown program on a link), it returns a response code (for example, PGMIDERR) to the
application using the data area supplied in the RESP parameter of the CICS command. This enables
the application to handle or ignore errors on a call-by-call basis.

EXEC CICS LINK PROGRAM('ECIPROG') RESP(RESP)
END-EXEC
IF RESP = DFHRESP (INVREQ)

In JCICS, things are similar because almost all JCICS commands can throw sub-classes of the checked
CICSConditionException, which represent error response codes from the underlying EXEC CICS

Chapter 3. Developing Java applications 81

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/index.html

commands. The full list of Java exception classes and the CICS error conditions they map to can be found
at “Mapping between CICS conditions and JCICS exceptions” on page 84.

For example, an INVREQ response code maps to an InvalidRequestException class. The class
hierarchy looks like this:

java.lang.Exception
com.ibm.cics.server.CicsException
com.ibm.cics.server.CicsConditionException
com.ibm.cics.server.CicsResponseConditionException
com.ibm.cics.server.InvalidRequestException

The following example shows how the InvalidRequestException class, which maps into the INVREQ
response code, can be used in a Program.link () call. Each sub-class of CicsConditionException,
including InvalidRequestException, can be individually caught so specific errors can be caught or
ignored.

Order is important, a compilation error is displayed if a catch clause for a more generic exception appears
before a catch clause for a more specific one (that is, for one of its sub-classes). This example logs a
message for the InvalidRequestException and carries on processing. This means the transaction will
continue normal processing and thus potentially commit any recoverable data, so make sure you don’t do
this for fatal errors. The example then catches all other CICS errors (catch(CicsConditionException
cce)) and throws them up the stack using a new RuntimeException class to drive subsequent error
handling, which by default will abend the CICS task and rollback the transaction.

task task = Task.getTask();

task.out.println("Hello world");

try

1
Program prog = new Program();
prog.setName (PROG_NAME) ;
prog.setSyncOnReturn(false);

byte[] ca = new byte[CA_LEN];
prog.link(ca);

catch (InvalidRequestException ire)
task.out.println("Invalid request on link - INVREQ");

catch (CicsConditionException cce)

throw new RuntimeException(cce);

¥

Catching unchecked exceptions

In Java, unexpected error conditions are represented by Java classes that extend the
RuntimeException class and are known as unchecked exceptions. Unchecked exceptions are not
subject to the compile time checking mandated for checked exceptions, although they can be caught if
required. In the JCICS API, all the unchecked exceptions extend the CICSRuntimeException class.

All of the unchecked exceptions that extend the CICSRuntimeException class represent conditions
within CICS that are generally not handled by an application, to avoid interrupting the Java applications.
They can include CICS ABENDs or some internal CICS events, such as program termination. Java code
running in CICS must not catch these exceptions without re-throwing them, either explicitly in a catch
block, or implicitly by catching a superclass of these exceptions such as Exception or Throwable as
follows:

try
]

catch (Exception e)

82 CICS TS for z/0OS: Java Applications in CICS

Instead, they need to be allowed to propagate out of the Java environment and back to CICS, where the
task will abend. Included in this list is the AbendException class, which represents an ABEND of a CICS
task. These ABENDs typically occur during sync point processing. The AbendException class must only
be caught if you want to develop your own Java abend handling routine and re-throw the exception. If a
Java exception such as a null pointer exception is allowed to propagate out of the Java code and back

to the JVM server runtime, this is generally surfaced as one of the CICS ABENDs prefixed with AJ. Most
commonly, an uncaught exception will result in an AJ04 abend, and the transaction will be rolled back.

Consideration for web applications: Any Java exception that is not handled by a web application will be
caught by the web container and drive the servlet exception handling process. As part of this processing
any uncommitted CICS units of work will be rolled back by CICS.

Important: Applications must not call Task.abend () after catching an AbendException. If
Task.abend () is called, CICS issues the message DFHSJ1007, and disables and restarts the
JVMSERVER.

Abending and rolling back CICS tasks

It is also possible for a Java application to abend or roll back the CICS task directly. This can be
achieved using the Task.abend () or Task.rollback() methods in the Task class, as shown in the
LinkServECO1 sample. Abending the CICS task is similar in concept to the throwing of Java exception
because it allows a CICS ABEND handler written in COBOL (or another language) to take control of error
processing.

The various forms of the Task.abend () method allow an application to optionally specify an abend code
or whether a dump is required. The forceAbend () methods provide the same options as the equivalent
abend methods, but are equivalent to specifying the CANCEL keyword on the EXEC CICS ABEND
command. Invoking a forceAbend () method always terminates the task abnormally, and overrides any
existing CICS abend handlers that have been established for the task.

Rolling back the transaction is equivalent to issuing an EXEC CICS SYNCPOINT ROLLBACK command,
and allows the task to continue but rolls back all the updates that have taken place so far in the

current unit-of-work. In JCICS this is achieved using the Task.rollback () method of the Task class as
follows:

try
{
Task.getTask().rollback();

catch (InvalidRequestException ire)

LinkServECO1 contains a full sample where Task.rollback() is used to roll back the CICS task.

Note that when accessing resources that are controlled by the Liberty transaction manager, such as a
remote Db2 database using JDBC type 4 connectivity, it is necessary to use the Java transaction API

(JTA) to create a Java transaction to control the global transaction scope, including the subordinate CICS
unit-of-work. In this case it is not possible to use the Task.rollback() method and instead the JTA API
needs to be used.

CICS error-handling commands

CICS condition handling is integrated into the Java exception-handling architecture, as described in CICS
exception handling in JCICS programs.

The Java equivalent to the EXEC CICS error handling commands are as follows:

HANDLE ABEND
To handle an ABEND generated by a program in any CICS supported language, use a Java try-catch
statement, with AbendException appearing in a catch clause.

Chapter 3. Developing Java applications 83

https://github.com/cicsdev/cics-java-jcics-samples/blob/master/projects/com.ibm.cicsdev.link/src/com/ibm/cicsdev/link/LinkServEC01.java
https://github.com/cicsdev/cics-java-jcics-samples/blob/master/projects/com.ibm.cicsdev.link/src/com/ibm/cicsdev/link/LinkServEC01.java
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jta.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jta.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpjln.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpjln.html

HANDLE CONDITION
To handle a specific condition, such as PGMIDERR, use a catch clause that names the appropriate
exception; in this case InvalidProgramException. Alternatively, use a catch clause that names
CicsConditionException, if all CICS conditions are to be caught.

IGNORE CONDITION
This command is not relevant in Java applications.

POP HANDLE and PUSH HANDLE
These commands are not relevant in Java applications. The Java exceptions that are used to
represent CICS ABENDs and conditions are caught by any catch block in scope.

Mapping between CICS conditions and JCICS exceptions

In JCICS, the response code of an error condition that is returned by a CICS command is mapped into a
Java exception.

Table 12. Java exception mapping
CICS condition Java exception in JCICS
ALLOCERR AllocationErrorException
CBIDERR InvalidControlBlockIdException
CCSIDERR CCSIDErrorException
CHANNELERR ChannelErrorException
CONTAINERERR ContainerErrorException
DISABLED FileDisabledException
ResourceDisabledException
DSIDERR FileNotFoundException
DSSTAT DestinationStatusChangeException
DUPKEY DuplicateKeyException
DUPREC DuplicateRecordException
END EndException
ENDDATA EndOfDataException
ENDFILE EndOfFileException
ENDINPT EndOfInputIndicatorException
ENQBUSY ResourceUnavailableException
ENVDEFERR InvalidRetrieveOptionException
EOC EndOfChainIndicatorException
EODS EndOfDataSetIndicatorException
EOF EndOfFileIndicatorException
ERROR ErrorException
EXPIRED TimeExpiredException
FILENOTFOUND FileNotFoundException
FUNCERR FunctionErrorException
IGREQID InvalidREQIDPrefixException

84 CICS TS for z/OS: Java Applications in CICS

Table 12. Java exception mapping (continued)

CICS condition

Java exception in JCICS

IGREQCD InvalidDirectionException
ILLOGIC LogicException
INBFMH InboundFMHException
INVERRTERM InvalidErrorTerminalException
INVEXITREQ InvalidExitRequestException
INVLDC InvalidLDCException
INVMPSZ InvalidMapSizeException
INVPARTNSET InvalidPartitionSetException
INVPARTN InvalidPartitionException
INVREQ InvalidRequestException
INVTSREQ InvalidTSRequestException
IOERR IOErrorException
ISCINVREQ ISCInvalidRequestException
ITEMERR ItemErrorException
JIDERR InvalidJournalldException
LENGERR LengthErrorException
MAPERROR MapErrorException
MAPFAIL MapFailureException
NAMEERROR NameErrorException
NODEIDERR InvalidNodeldException
NOJBUFSP NoJournalBufferSpaceException
NONVAL NotValidException
NOPASSBKRD NoPassbookReadException
NOPASSBKWR NoPassbookWriteException
NOSPACE NoSpaceException
NOSPOOL NoSpoolException
NOSTART StartFailedException
NOSTG NoStorageException
NOTALLOC NotAllocatedException
NOTAUTH NotAuthorisedException
NOTFINISHED NotFinishedException
NOTFND RecordNotFoundException
NotFoundException
NOTOPEN NotOpenException

Chapter 3. Developing Java applications 85

Table 12. Java exception mapping (continued)

CICS condition

Java exception in JCICS

OPENERR DumpOpenErrorException
OVERFLOW MapPageOverflowException
PARTNFAIL PartitionFailureException
PGMIDERR InvalidProgramIdException
QBUSY QueueBusyException
QIDERR InvalidQueueldException
QZERO QueueZeroException

RDATT ReadAttentionException
RETPAGE ReturnedPageException
ROLLEDBACK RolledBackException
RTEFAIL RouteFailedException
RTESOME RoutePartiallyFailedException
SELNERR DestinationSelectionErrorException
SESSBUSY SessionBusyException
SESSIONERR SessionErrorException
SIGNAL InboundSignalException
SPOLBUSY SpoolBusyException
SPOLERR SpoolErrorException
STRELERR STRELERRException
SUPPRESSED SuppressedException
SYMBOLERR SymbolErrorException
SYSBUSY SystemBusyException
SYSIDERR InvalidSystemIdException
TASKIDERR InvalidTaskIdException
TCIDERR TCIDERREXxception
TEMPLATERR TemplateErrorException
TERMERR TerminalException
TERMIDERR InvalidTerminalIdException
TOKENERR TokenErrorException
TRANSIDERR InvalidTransactionIdException
TSIOERR TSIOErrorException
UNEXPIN UnexpectedInformationException
USERIDERR InvalidUserIdException
WRBRK WriteBreakException

86 CICS TS for z/OS: Java Applications in CICS

Table 12. Java exception mapping (continued)

CICS condition Java exception in JCICS
WRONGSTAT WrongStatusException

Note: NonHttpDataException is thrown by getContent () if the CICS command WEB RECEIVE
indicates that the data received is a non-HTTP message (by setting TYPE=HTTPNO).

For more information about each Java exception class, see JCICS Javadoc information.

Java development using JCICSX

The JCICSX API classes allow you to access CICS services through a Java API. They support a subset of
CICS functionality, can be run remotely, and are easier to mock and stub than the Java classes of JCICS.
The JCICSX API classes can be used together with the JCICS API, but only the commands using JCICSX
can benefit from these enhanced features.

Table of contents

“Why use JCICSX?” on page 87

“Restrictions of JCICSX” on page 88

“Security model of JCICSX” on page 88

“Configuring the environment for JCICSX” on page 88

“JCICSX use cases and samples” on page 89

“Best practices” on page 90

“Troubleshooting” on page 90

Appendix 1. JCICSX API classes

Appendix 2. Mapping between JCICSX and EXEC CICS commands

Why use JCICSX?

The JCICSX API classes extend parts of the JCICS API with the capability of remote development and
mocking. They have the following benefits:

« The classes allow easy mocking and stubbing. The JCICSX API classes make it easier to apply inversion
of control and inject test doubles, so that you can mock the JCICSX method calls on your workstation
during unit testing, using frameworks such as Mockito, EasyMock, and PowerMock.

« The classes can be run remotely in development environments. You can link to programs or pass
data through channels and containers in a remote CICS region by executing CICS Java applications on
your local workstation, without having to repeatedly deploy the applications to CICS. In addition, no
modification is required to the application code regardless of whether it runs in CICS or on your local
workstation.

« The syntax is simplified and natural for Java developers who are more familiar with more recent Java
constructors.

« You can leverage capabilities of modern Java IDEs, such as content assist, debugging, smart navigation,
and hot-swapping. This is achieved through the support of mocking and remote development in a local
IDE, including IntelliJ and Eclipse.

« Code written using the JCICSX API classes can execute without change, both in remote development
mode and when deployed to run in CICS.

- It's compatible with the JCICS API. JCICSX API classes can be used alongside the JCICS API in the
same program, but only pure JCICSX programs can benefit from the enhanced features such as remote
development. For example, if you mix JCICS and JCICSX in the same program, you won't be able to run
it remotely in your development environment.

Chapter 3. Developing Java applications 87

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/index.html

Restrictions of JCICSX

The JCICSX API classes support only a subset of CICS functionality that addresses some of the most
common scenarios for using Java in CICS, focused on linking to CICS programs using channels and
containers. For more information, see “Appendixes” on page 90. If you need to use functions beyond
that scope, consider using the JCICS API.

Client-side tooling is available initially to enable Liberty users to use JCICSX to access CICS from a
servlet.

JCICSX API classes will not work correctly within worker threads that are dispatched as part of an
asynchronous servlet.

Security model of JCICSX

For remote development, JCICSX requires a Liberty JVM server to be set up in CICS to receive the
remote JCICSX requests. The JCICSX client-side tooling creates a new CICS Task with a call to the
server. Subsequent JCICSX requests from that client will run under the same task, and must be issued

by the same user. This is transparent when using the client-side tooling. The Liberty JVM server can be
configured to use authentication and authorization for JCICSX calls, and the communication between the
client and the remote server can be configured to use SSL. For more information, see Configuring security
for remote JCICSX API development and Configuring SSL (TLS) for remote JCICSX API development.

In other cases, for example when the applications are deployed to run in CICS, JCICSX adopts an
identical security model to that of JCICS.

Configuring the environment for JCICSX
Configure your environment for JCICSX as follows:

- If you want to use JCICSX for remote development, extra configuration is needed to set up supporting
infrastructure in CICS and on your local workstation. Note that the supporting infrastructure in CICS is
required only in development regions. The JCICSX API is available in all CICS JVM servers by default.

« Mandatory: Set up your compilation environment by importing the JCICSX dependency.

Required for remote development System programmers must configure a Liberty JVM server in CICS
TS with the JCICSX server feature (cicsts:jcicsxServer-1.0) enabled
Note that JCICSX supports remote development for Liberty servlets.

1. Set up a Liberty JVM server in a development CICS region that the application will remotely
execute against. You are advised to set up a JVM server solely for the purpose of remote
development so that the remoting JVM server and the actual application JVM servers can have
different configuration. Otherwise, the configuration might conflict. For more information, see Set
up a Liberty JVM server.

2. Addthe cicsts:jcicsxSexrver-1.0 Liberty feature to the Liberty JVM server's server.xml
file:
<featureManager>

<feature>cicsts:jcicsxServer-1.0</feature>
</featureManager>

3. Let the developer know the hostname and httpEndpoint port of this Liberty JVM server.

4. If needed, configure security for the remoting Liberty JVM server. See Configuring security for
remote JCICSX API development.

Required for remote development Developers configure the local development environment to run
Java code locally and to make remote calls for JCICSX

1. If you do not have a Liberty runtime on your local workstation, install one, for example, WebSphere
Liberty Web Profile. It must be at Liberty 19.0.0.3 or later. For more information, see WebSphere
Liberty for developers.

88 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security-jcicsx.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security-jcicsx.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl-jcicsx.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security-jcicsx.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security-jcicsx.html
https://www.ibm.com/support/pages/websphere-liberty-developers
https://www.ibm.com/support/pages/websphere-liberty-developers

2. Install the jcicsxClient-1.0 Liberty feature into the general Liberty runtime on your local
workstation. On a command line, navigate to the bin directory of your local Liberty server, and
enter the following installUtility command:

installUtility install jcicsxClient-1.0 jsonp-1.0

3. Create a local Liberty JVM server that uses the Liberty runtime on your workstation to run the Java
code.

4. Enable the jcicsxClient-1.0 feature in your local Liberty server by adding this to your
server.xml:

<featureManager>
<feature>usr:jcicsxClient-1.0</feature>
</featureManager>

5. Configure the sexrver. xml file in your local Liberty server with the hostname and port of
the remote Liberty JVM server that your system programmer created, which contains the
cicsts:jcicsxServer-1.0 feature:

<usr_jcicsxClient serverUri="http://hostname:port"/>

If the remote Liberty JVM server is configured to use authentication, you can encrypt the user
password by using the securityUtility command provided in the bin directory of the local Liberty
server. So your snippet might look like this:

<usr_jcicsxClient serverUri="http://hostname:port">

<basicAuthentication user="myUser"
password="{aestADwac72WXpSCr2YDUv3hHgj£0a®moXZDj626MmM4DbtT" />
</usr_jcicsxClient>

6. If the remote Liberty JVM server uses SSL connection for data encryption, your local Liberty server
needs to trust the certificate of the remote server. See instructions for application developers in
Configuring SSL (TLS) for remote JCICSX API development.

Required Developers resolve the JCICSX dependency
The JCICSX API classes are available in CICS TS alongside the JCICS API in CICS TS 5.6 or later. You
can import JCICSX API classes from any of the following places:

1. The build path library supplied with the IBM CICS SDK for Java in IBM CICS Explorer for Aqua 3.22
(Fix Pack 5.5.0.9) or later.

When using CICS Explorer to add a library to your project, JCICSX will automatically be available
as an API in your client. See Step 1 in “Creating a Dynamic Web Project” on page 116 to configure
your Dynamic Web project to target CICS TS. If you haven't installed CICS Explorer, install it as
described in “Setting up your development environment” on page 38.

2. The com.ibm.cics.jcicsx artifact on Maven Central. If you haven't installed Gradle or Maven,
install either of them as described in “Setting up your development environment” on page 38.

If your enterprise uses locally hosted or allow-listed repositories, you can use tools such as JFrog
Artifactory or Sonatype Nexus to configure the artifact to be obtained from such repositories.

3. The com.ibm.cics.jcicsx.jar file supplied with CICS in the USSHOME directory, which you
can copy to your compilation environment. For more information, see “Manually importing Java
libraries” on page 54.

JCICSX use cases and samples
After configuration is complete, you can start coding to the JCICSX API classes.

During unit testing, you can mock the JCICSX method calls on your workstation using familiar testing
frameworks.

2 Aqua refers to IBM Explorer for z/0S Aqua.

Chapter 3. Developing Java applications 89

https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_command_installutility.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_command_securityutil.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl-jcicsx.html

When the Liberty JVM server is enabled for remote development, you can run the application code in
your local Liberty server to check how your code will behave when running in CICS or explore what
information is returned on the API commands, by making remote calls into a CICS region. When you run
your application within the local Liberty server, any JCICSX calls will automatically be redirected to your
CICS region. When your application is deployed to a JVM server running in a real CICS region, the same
JCICSX calls will be made directly against CICS.

Typical use cases of JCICSX are shown in “JCICSX examples” on page 91. For details of all JCICSX API
classes, see JCICSX Javadoc.

Best practices

If you're developing using JCICSX, you are advised to run your code in a local Liberty server on your
workstation. This can reduce issues around different applications conflicting with each other when
running in a shared JVM server in a CICS development region.

If you're planning to deploy applications to a Liberty JVM server running in CICS TS, see “Considerations
for a shared JVM” on page 55 for best practices.

Troubleshooting

You can use your Java IDE's debugger, console message, and error handling information to debug your
applications. JCICSX also allows multiple clients to debug at the same time. In addition, you can use the
CEDX transaction to test your application program in CICS.

If an error that relates to CICS occurs, for example the remote JVM server or the CICS transaction, a
response (RESP) code is returned. The system programmer can use the JVM server's traces and logs for
debugging. For more information, see Troubleshooting Java applications.

Appendixes
Appendix 1. JCICSX API classes

The JCICSX API classes support a subset of the CICS functionality as follows. For details about each
class, see JCICSX Javadoc.

Table 13. JCICSX API classes

Classes Description

CICSContext The environment that the API is executing in. Entry
point to the JCICSX API.

Channel Create or delete a channel, or retrieve information

about the containers in it.

Container Create a container, retrieve information about a
container, get data from and put data into a
container, or delete a container.

ProgramLinker Link to a program.

Appendix 2. Mapping between JCICSX and EXEC CICS API commands

This table shows how JCICSX API methods map onto EXEC CICSAPI commands. Only methods that
have mapping relationships are listed.

90 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcicsx-javadoc/index.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7os.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/java_troubleshooting.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcicsx-javadoc/index.html

Table 14. Mapping between JCICSX and EXEC CICS API commands

Classes Methods EXEC CICS API commands
BITContainer append EXEC CICS PUT64 CONTAINER
CHARContainer APPEND
WritableBITContainer put EXEC CICS PUT64 CONTAINER
WritableCHARContainer
WritableContainer
Channel exists EXEC CICS QUERY CHANNEL
getContainerCount
delete EXEC CICS DELETE CHANNEL
Lterator EXEC CICS STARTBROWSE
CONTAINER
EXEC CICS GETNEXT
CONTAINER
EXEC CICS ENDBROWSE
CONTAINER
ChannelProgramLinker link EXEC CICS LINK PROGRAM
Container delete EXEC CICS DELETE
CONTAINER CHANNEL
getlLength EXEC CICS GET CONTAINER
CHANNEL NODATA
ProgramLinker 1ink EXEC CICS LINK PROGRAM
ReadableBITContainer get EXEC CICS GET64 CONTAINER
read EXEC CICS GET64 CONTAINER
ReadableCHARContainer get EXEC CICS GET64 CONTAINER
ReadableContainer
JCICSX examples

Examples using JCICSX API classes, as well as their JCICS equivalents, are provided to give a basic
understanding of how JCICSX can be used in typical use cases.

For more samples to play with, go to JCICSX samples in GitHub.

Setting up channels and containers

Example 1
The example shows how to set up a channel named XYZ with two containers:

« A CHAR container called CONT1 with the text scenariosinit.

« A BIT container called CONT2 with the content of the bytes byte array.

The JCICSX snippet shows the use of opinionated container types: the Java code is aware of the
difference between BIT and CHAR in containers, and different methods are available for each type.

Chapter 3. Developing Java applications 91

https://github.com/cicsdev/cics-java-jcicsx-samples

JCICSX

CICSContext task = CICSContext.getCICSContext();
Channel channel = task.getChannel("XYZ");
channel.getCHARContainexr ("CONT1") .put("scenarios");
channel.getBITContainer ("CONT2") .put(bytes);

JCICS

Task task = Task.getTask();

Channel channel = task.getChannel("XYZ");
channel.createContainer ("CONT1") .putString("scenarios");
channel.createContainexr ("CONT2") .put(bytes);

Linking to a program

Example 2
This example shows how to link to program ABC without passing any input.

JCICSX

CICSContext task = CICSContext.getCICSContext();
task.createProgramLinker ("ABC") .link();

JCICS

Task task = Task.getTask();

Program abcProgram = new Program();
abcProgram.setName ("ABC");
abcProgram.link();

Example 3
This example shows how to link to program ABC with a channel named XYZ, passing a CHAR container
named CONT-IN with the text scenarios init, then get the content of a CHAR container called
CONT-0UT and return it as a string.

The JCICSX snippet shows that JCICSX has convenient ways of calling common models: adding
containers, linking, and getting response data.

JCICSX

CICSContext task = CICSContext.getCICSContext();
return task
.createProgramLinkerWithChannel ("ABC", task.getChannel("XYZ"))
.setStringInput("CONT-IN", "scenarios")
.1link ()
.getOutputCHARContainer ("CONT-OUT")
-getQ);

JCICS

Task task = Task.getTask();
Channel channel = task.createChannel("XYZ");
channel.createContainexr ("CONT-IN") .putString("scenarios");

Program abcProgram = new Program();
abcProgram.setName("ABC") ;
abcProgram.link();

return channel.getContainer ("CONT-OUT").getString();

92 CICS TS for z/0S: Java Applications in CICS

Mocking

Example 4
The JCICSX API can be easily mockable. There are many mocking frameworks you can use; this
JCICSX example shows how to use Mockito to return some mocked contents of a container. Mocking
out the CICS calls enables you to independently unit test the logic of your application.

CICSContext task = Mockito.mock(CICSContext.class);

Channel channel = Mockito.mock(Channel.class);

CHARContainer container = Mockito.mock(CHARContainer.class);
Mockito.when(task.getChannel ("ABC")) .thenReturn(channel);
Mockito.when(channel.getCHARContainer("container")) .thenReturn(container);
Mockito.when(container.get()).thenReturn("the contents of my container");

Guidance for using OSGi

A number of considerations for developing OSGi applications.

Defining dependencies

When an OSGi bundle uses Java packages from another OSGi bundle, the interface between the two
bundles must be explicitly expressed. The bundle that uses the package must add the package to the
Import-Package statementinits manifest.mf. The bundle that provides the package must add the
package to the Expoxrt-Package statement in its manifest.mf. When both OSGi bundles are deployed
into the environment, the dependency can be resolved.

All packages that are used by an OSGi bundle, including JRE extensions such as javax.* must be
explicitly imported. This is the case even if the run time would otherwise find these packages through
other means such as bootdelegation. Assume that only the core java.* packages are available by
default.

Versioning of JCICS dependencies: The com.ibm.cics.sexrver package (JCICS) will increment in
version number when there are API additions, API removals, or bug-fixes during service or development
work. However, version increments are not guaranteed on a release boundary. Versions, and which CICS
release they apply to, are described in Package com.ibm.cics.server.

It is prudent to declare Imports as a compatible range, beginning at your applications minimum
supported level, up to (but not including), the next breaking API change. For example: Import-
Package: com.ibm.cics.server;version="[1.800.0,2.0.0)".

There are alternative ways of expressing dependencies - in particular the bundle header Require-
Bundle. However, Require-Bundle is more coarse-grained and ties the consumer to a specific bundle.
Using Require-Bundle also prevents architectural flexibility and restricts the ability to version packages
independently.

JCICS restrictions in 0SGi bundles

The JCICS API classes have these restrictions when used in OSGi bundles:
« JCICS API calls cannot be used in the activator classes of OSGi bundles.

Note: The Java thread that runs the OSGi bundle activator will not be JCICS-enabled.

A developer can start a new JCICS-enabled thread from an activator, by using the
CICSExecutorService.runAsCICS() method. Any JCICS commands will run under the authority of
the user ID that issued the install command. Therefore, it is prudent for an administrator to understand
the resources used in OSGi bundle activators before they install them. For more information on how to
use the runAsCICS () method, see “Threads and tasks example” on page 76.

« Start and stop methods used in OSGi bundle activators must return in a reasonable amount of time.

Chapter 3. Developing Java applications 93

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/package-summary.html

JRE class visibility, bootdelegation, and system.packages.extra

In OSGi, loading of core JRE packages/classes (java.x) is always delegated to the bootstrap classloader.
It is assumed that there is only one JRE in the system, and so explicit dependency statements

are not required. For that reason, it is never necessary to add a java.* dependency to a bundle
manifest. However, for other parts of the JRE, application bundles that require these packages must

code an Import-Package statement; for example vendor-specific extensions javax.#* com.sun.* and
com.ibm.* require an import. This is because they are not delegated to the bootstrap classloader and
instead treated as part of the OSGi system.

The OSGi framework provides a system bundle that exposes known extension packages to the system
automatically. The application bundle registers its dependency by including an Import statement, just as
for all other packages provided by OSGi bundles. The advantage of this approach is that extensions can be
replaced with newer implementations by installing an OSGi bundle that contains the new code.

An exception to this process is where a particular package is added to the bootdelegation list by

using a special OSGi property. Although convenient (as no Import statement is required to access

these packages), it restricts the flexibility of OSGi and is not considered best practice. Occasionally

there are vendor-specific extensions that aren't automatically added to the system bundle by the OSGi
implementation. For these cases, and assuming the package is genuinely available from the JRE, the
property -Dorg.osgi.framework.system.packages.extra can be used to add the packages to the
system bundle and allow application Imports to resolve.

Bundle activators

Bundle activators are classes within an OSGi bundle that implement the BundleActivatox interface.
To use an activator, an OSGi bundle must declare it using the Bundle-Activatox header in the bundle
manifest. The BundleActivator interface has start and stop methods that can be used to perform
initialization or termination work. A common pattern is to look up service dependencies for use within the
application. However, it is better to employ a component model, such as Declarative Services to activate
components and their service dependencies.

Singleton bundles

A singleton bundle is used to prevent any other version of a bundle being loaded in memory, there can
be only one resolved version in the run time at any point. The use of a singleton bundle can be desirable
where access to a single system resource is required from a set of applications.

0SGi bundle fragments

Fragments are OSGi bundles that are dynamically attached to host bundles by the OSGi framework. They
share the class loader for their host bundle, and do not participate in the lifecycle of the bundle - for that
reason they do not support bundle activators. Common use-cases for fragments are as bundle patches. A
fragment provided ahead of . on the Bundle-ClassPath allows classes to be preferentially loaded from
the fragment instead of the host.

OSGi service registry

The OSGi service registry enables a bundle to publish objects to a shared registry. A service is advertised
under a Java interface and made available to other bundles installed in the OSGi environment.

Microservices (uServices)

Microservices are a software architecture style in which complex applications are composed of small,
independent components which communicate with each other using language-agnostic APIs. These
services are small, highly decoupled, and focus on doing a small task, facilitating a modular approach to
system building. The use of uServices between OSGi components provides flexibility and dynamic update
capabilities that cannot be achieved by using bundle wiring alone. For this reason, the use of puServices is
encouraged over bundle-wiring.

94 CICS TS for z/0S: Java Applications in CICS

Bundle and package versioning

A favored approach to package versioning in OSGi is the semantic versioning model. Given a version
number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes
2. MINOR version when you add functionality that is compatible with an earlier version
3. PATCH version when you make bug fixes that are compatible with an earlier version

Execution environment

Execution environments (EEs) are symbolic representations of JREs, for example:
Bundle-RequiredExecutionEnvironment: JavaSE-1.7

You need to use the lowest version of EE that gives you all the features you require. When creating a new
OSGi bundle, the most recent actively maintained Java execution environment is usually adequate - only
if a specialized application requires a lower version would you set it at a lower level. When a particular
EE is chosen, it must be left alone unless there is a clear advantage to moving up. Increasing the version
of your EE can create more work with no real value, such as exposing your code to new warnings, and
deprecations.

Developing Java applications to run in a Liberty JVM server

Configure the Liberty JVM server to run a web container if you want to deploy Java EE applications that
use WebSphere Application Server Liberty.

Liberty features

CICS supports features from WebSphere Application Server Liberty, which enables Enterprise Java
applications to be deployed into a Liberty JVM server.

All features in Tables 2-14 relate to CICS integrated-mode Liberty. The features are also supported in
CICS standard-mode Liberty without any of the restrictions, unless noted otherwise. Table 15 provides a
set of CICS features to integrate Liberty features with the CICS qualities of service.

Many features from Java EE 6 and Java EE 7, and Java EE 7 and Java EE 8 must not be used concurrently.
For information about feature compatibility, see Supported Java EE 6 and 7 feature combinations and
Supported Java EE 7 and 8 feature combinations. For information about editing the server.xml, see
Server configuration.

List of tables
Table 1: Liberty features listed alphabetically

Table 2: Liberty features supported for Java EE 8 Full Platform and Jakarta EE 8 Platform

Table 3: Liberty features supported for Java EE 8 Web Profile

Table 4: Liberty features supported for Java EE 7 Full Platform

Table 5: Liberty features supported for Java EE 7 Web Profile

Table 6: Liberty features supported for Java EE 6 Technologies

Table 7: Liberty features supported for Java EE 6 Web Profile

Table 8: Liberty features supported for Enterprise OSGi

Table 9: Liberty features supported for Extended Programming Models

Table 10: Liberty features supported for MicroProfile

Table 11: Liberty features supported for Operations

Chapter 3. Developing Java applications 95

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_prog_model_supported_combos.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_prog_model_supported_combos_7_8.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_config.html

Table 12: Liberty features supported for Security

Table 13: Liberty features supported for Systems Management

Table 14: Liberty features supported for z/OS

Table 15: CICS Liberty features

Table 15. Liberty features alphabetically

Features A - EjbL

Features EjbP - Jpa-2.0

Features Jpa-2.1 - Mo

Features Mp - 2

adminCenter-1.0 ejbPersistentTimer-3.2 jpa-2.1 mpConfig-1.1
appClientSupport-1.0 ejbRemote-3.2 jpa-2.2 mpFaultTolerance-1.0
appSecurity-1.0 el-3.0 jsf-2.0 mpHealth-1.0
appSecurity-2.0 j2eeManagement-1.1 jsf-2.2 mpJwt-1.0
appSecurity-3.0 jacc-1.5 jsf-2.3 mpMetrics-1.0
batch-1.0 jakartaee-8.0 json-1.0 oauth-2.0
batchManagement-1.0 for | jaspic-1.1 jsonb-1.0 openidConnectClient-1.0
JEE7

beanValidation-1.0 for javaMail-1.5 jsonp-1.0 openidConnectServer-1.0
JEE6

beanValidation-1.0 for javaMail-1.6 jsonp-1.1 osgiConsole-1.0
JEE7

beanValidation-1.1 for javaee-7.0 jsp-2.2 osgi.jpa-1.0

JEE6

beanValidation-1.1 for javaee-8.0 jsp-2.3 restConnector-1.0
JEE7

blueprint-1.0 jaxb-2.2 for JEE7 jta-1.1 servlet-3.0

cdi-1.0 jaxb-2.2 for JEE6 jta-1.2 servlet-3.1

cdi-1.2 jaxrs-1.1 jwt-1.0 servlet-4.0
cicsts:core-1.0 jaxrs-2.0 ldapRegistry-3.0 sessionDatabase-1.0
cdi-2.0 jaxrs-2.1 localConnector-1.0 springBoot-1.5

cicsts:defaultApp-1.0

jaxrsClient-2.0

managedBeans-1.0

springBoot-2.0

cicsts:distributedIdentity- | jaxrsClient-2.1 mdb-3.1 ssl-1.0
1.0
cicsts:jcalocalEci-1.0 jaxws-2.2 for JEE7 mdb-3.2 wab-1.0

cicsts:jdbc-1.0

jaxws-2.2 for JEE6

microProfile-1.0

wasJdmsClient-1.1

cicsts:link-1.0

jca-1.6

microProfile-1.2

wasJdmsClient-2.0

cicsts:security-1.0

jca-1.7

microProfile-1.3

wasJmsSecurity-1.0

cicsts:standard-1.0

jcalnboundSecurity-1.0

microProfile-1.4

for JEE6

wasJmsServer-1.0

cicsts:zosConnect-1.0

jcalnboundSecurity-1.0

microProfile-2.0

for JEE7

webCache-1.0

cicsts:zosConnect-2.0

idbc-4.0

microProfile-2.1

webProfile-6.0

96 CICS TS for z/0S: Java Applications in CICS

Table 15. Liberty features alphabetically (continued)

Features A - EjbL Features EjbP - Jpa-2.0 | Features Jpa-2.1- Mo Features Mp - Z
concurrent-1.0 jdbc-4.1 microProfile-2.2 webProfile-7.0
distributedMap-1.0 jdbc-4.2 microProfile-3.0 webProfile-8.0
ejb-3.2 jms-1.1 microProfile-3.2 websocket-1.0
ejbHome-3.2 jms-2.0 microProfile-4.0 websocket-1.1
ejbLite-3.1 jmsMdb-3.1 microProfile-4.1 wmqgJdmsClient-2.0
ejbLite-3.2 jndi-1.0 mongodb-2.0 zosTransaction-1.0
jpa-2.0 monitor-1.0 zosSecurity-1.0

Table 16. Liberty features supported for Java EE 8 Full Platform and Jakarta EE 8 Platform.

Liberty feature

Liberty feature description

Using this feature in CICS

appClientSupport-1.0

Enables the Liberty server to
process client modules and support
remote client containers.

Tip: The Application Client module
runs in both the client and

the server. The client executes

the client specific logic of the
application. The other portion of
code runs in a client container on
the server and communicates data
from the business logic running

on the server to the client. For
more information, see Preparing
and running an application client.

batch-1.0

Enables support for the Java
Batch 1.0 API defined in JSR-352.
This feature does not support
Java batch applications that are
packaged in an Enterprise Bundle
Archive (EBA).

concurrent-1.0

Enables the creation of managed
executors that allow applications to
submit tasks to run concurrently,
with thread context that is
managed by the application server.
It also enables the creation

of managed thread factories to
create threads that run with the
threadcontext of the component
that looks up the managed thread
factory.

Restriction: The transaction
property ManagedTask.SUSPEND
is not supported by a Liberty JVM
server.

Restriction: The user ID that is
attached to the transaction of a
new thread is always the user
ID that is attached to the parent
transaction.

Restriction: Use of a
ManagedThreadFactory creates
standard Java threads, not CICS-
enabled Java threads.

Chapter 3. Developing Java applications 97

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_appClientSupport-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_prepareappclient.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_prepareappclient.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_batch-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_concurrent-1.0.html

Table 16. Liberty features supported for Java EE 8 Full Platform and Jakarta EE 8 Platform. (continued)

Liberty feature

Liberty feature description

Using this feature in CICS

ejb-3.2

Enables support for Enterprise
JavaBeans written to the EJB 3.2
specification.

Enterprise JavaBeans (EJB)

Important: When using EJB-
related features, the transaction
attribute NotSupportedis
respected by the JTA Liberty
transaction system but not the
CICS unit of work.

jacc-1.5

Enables support for Java
Authorization Contract for
Containers (JACC) version 1.5.

Developing a Java Authorization
Contract for Containers (JACC)
Authorization Provider

jakartaee-8.0

Combines the Liberty features
that support the Jakarta EE 8.0
Platform.

Jakarta EE 8 and Java EE 8 in
Liberty

Note:

Jakarta EE 8, which includes new
versions of features such as
servlet-4.0 cannot be used with the
wab-1.0 feature. To prevent CICS
automatically including wab-1.0,
and to take advantage of Jakarta EE
8 APIs, set the property
com.ibm.cics.jvmserver.wlp
.wab=false in the JVM profile.

javaee-8.0

Combines the Liberty features that
support the Java EE 8.0 Full
Platform.

Jakarta EE 8 and Java EE 8 in
Liberty

Note:

In Java EE 8, the jsonb-1.0
feature is enabled by jaxrs-2.1
as an alternative to the IBM
JSON4J support provided in
json-1.0.

Java EE 8, which includes new
versions of features such as
servlet-4.0 cannot be used with the
wab-1.0 feature. To prevent CICS
automatically including wab-1.0,
and to take advantage of Java EE 8
APIs, set the property
com.ibm.cics.jvmserver.wlp
.wab=false in the JVM profile.

javaMail-1.6

Allows applications to use the
JavaMail 1.6 API.

jaxws-2.2

Enables support for Java API

for XML-Based Web Services 2.2.
JAX-WS web services and clients
communicate using XML.

98 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ejb-3.2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/ejb_overview.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jacc-1.5.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_developing_jacc_auth_provider.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_developing_jacc_auth_provider.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_developing_jacc_auth_provider.html
https://www.ibm.com/support/knowledgecenter/no/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jakartaee-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_javaee8.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_javaee8.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaee-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_javaee8.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_javaee8.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaMail-1.6.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaxws-2.2.html

Table 16. Liberty features supported for Java EE 8 Full Platform and Jakarta EE 8 Platform. (continued)

Liberty feature Liberty feature description Using this feature in CICS
jca-1.7 Enables the configuration of “Java EE Connector Architecture
resource adapters to access (JCA)” on page 145

Enterprise Information Systems

(EIS) from applications Restriction: The use of JCICS API

and Db2 JDBC type 2 connectivity
capabilities is not supported in
threads that are created by the JCA
API
javax.resource.spi.Bootstr
apContext.createTimer (). For
the same effect, use the concurrent
APIs
(javax.enterprise.concurren
t.ManagedScheduledExecutor
Service).

jcalnboundSecurity-1.0 Enables security inflow for resource
adapters. Allows JCA inbound
resource adapters to flow security
contexts by extending the
javax.resource.spi.work.Se
curityContext abstract class.

jdbc-4.2 Enables the configuration of Creating a default CICS Db2
DataSources to access Databases | DataSource with type 2
from applications. connectivity for Liberty

Note: The jdbc-4.0, jdbc-4.1
and jdbc-4.2 implementations
reside in the same Db2 JCC driver
and are mutually exclusive.

j2eeManagement-1.1 Allows applications to utilize the
interfaces defined in the JSR77
specification.

servlet-4.0 Enables support for HTTP Servlets
written to the Java Servlet 4.0
specification, including support for
the HTTP/2 protocol.

jms-2.0 Enables the configuration of “Java Message Service (JMS)” on
resource adapters to access page 141

messaging systems using the Java
Message Service APL.

wasJmsClient-2.0 Provides applications with access | “Java Message Service (JMS)” on
to message queues hosted in page 141
Liberty through the JMS API.

wasJmsSecurity-1.0 Enables an embedded messaging | “Java Message Service (JMS)” on
server to authenticate and page 141

authorize access from JMS clients.

Chapter 3. Developing Java applications 99

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jca-1.7.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jcaInboundSecurity-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_j2eeManagement-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_servlet-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jms-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wasJmsClient-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wasJmsSecurity-1.0.html

Table 16. Liberty features supported for Java EE 8 Full Platform and Jakarta EE 8 Platform. (continued)

Liberty feature

Liberty feature description

Using this feature in CICS

wasJmsServer-1.0

Enables an embedded messaging
server that is IMS compliant.
Applications can send and
receive messages using the
wasJmsClient feature.

“Java Message Service (JMS)” on

page 141

webProfile-8.0

Combines the Liberty features that
support the Java EE 8.0 Web
Profile.

Note: Java EE 8, which includes
new versions of features such as
servlet-4.0 cannot be used with the
wab-1.0 feature. To prevent CICS
automatically including wab-1.0,
and to take advantage of Java EE 8
APIs, set the property
com.ibm.cics.jvmserver.wlp
.wab=false in the JVM profile.

Table 17. Liberty features supported for Java EE 8 Web Profile

Liberty feature

Liberty feature description

Using this feature in CICS

appSecurity-3.0

Enables support for securing the
server runtime environment and
applications using Security-1.0 as
defined in JSR-375.

Configuring security for a Liberty
JVM server with the Java EE
security AP1 1.0

beanValidation-2.0

Provides an annotation based
model for validating JavaBeans.

cdi-2.0

Provides a common mechanism to
inject component such as EJBs

or Managed Beans into other
components such as JSPs or other
EJBs.

ejbLite-3.2

Enables support for Enterprise
JavaBeans written to the EJB Lite
subset of the EJB 3.2 specification.

Using EJB-related features

el-3.0

Enables support for the Expression
Language (EL) 3.0 specification.

jaspic-1.1

Java Authentication SPI for
Containers (JASPIC) allows a Java
EE Application Server to use
custom authentication. JASPIC
providers are defined in JSR-196.
If a JASPIC provider and a TAI are
configured in the same server, then
the TAI has no effect. Therefore,
JASPIC is a standard Java EE
technology and a more portable
solution than a TAI for Java EE
applications.

jaxrs-2.1

Enables support for Java API for
RESTful Web Services v2.1.

100 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wasJmsServer-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_webProfile-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee.api.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee.api.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee.api.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_cdi-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ejbLite-3.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_el-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaspic-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrs-2.1.html

Table 17. Liberty features supported for Java EE 8 Web Profile (continued)

Liberty feature

Liberty feature description

Using this feature in CICS

jaxrsClient-2.1

Enables support for Java Client API
for JAX-RS 2.1.

idbc-4.0 , jdbc-4.1, jdbc-4.2

Enables the configuration of
DataSources to access Databases
from applications.

Creating a default CICS Db2

DataSource with type 2

connectivity for Liberty

Note: The jdbc-4.0, jdbc-4.1
and jdbc-4.2 implementations
reside in the same Db2 JCC driver
and are mutually exclusive.

indi-1.0

Enables the use of Java Naming
and Directory Interface (JNDI) to
access server configured resources
such as DataSources or JIMS
Connection Factories.

Enables support for applications
that use application-managed and
container-managed JPA written
to the Java Persistence API 2.2
specification.

jsf-2.3

Enables support for applications
that use application-managed and
container-managed JPA.

jsonb-1.0

Provides a standard for converting
between Java objects and
JavaScript Object Notation (JSON).

jsonp-1.1

Provides a standardized method for
constructing and manipulating data
to be rendered in JavaScript Object
Notation (JSON).

jsp-2.3

Enables support for Java Server
Pages (JSPs) that are written to the
JSP 2.3 specification.

“Java EE and Liberty applications”
on page 116

managedBeans-1.0

Enables support for the Managed
Beans 1.0 specification.

servlet-4.0

Enables support for HTTP Servlets
written to the Java Servlet 4.0
specification, including support for
the HTTP/2 protocol.

websocket-1.1

Enables a web browser or client
application and a web server
application to communicate by
using one full duplex connection.

webProfile-8.0

Provides a convenient combination
of the Liberty features that are
required to support the Java EE 8
Web Profile.

Chapter 3. Developing Java applications 101

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jndi-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jpa-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsf-2.3.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonb-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonp-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jsp-2.3.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_managedBeans-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_servlet-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_websocket-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_webProfile-8.0.html

Table 18. Liberty features supported for Java EE 7 Full Platform

Liberty feature

Liberty feature description

Using this feature in CICS

appClientSupport-1.0

Enables the Liberty server
to process client modules
and support remote client
containers.

Tip: The Application Client module runs in both the client
and the server. The client executes the client specific logic
of the application. The other portion of code runs in a client
container on the server and communicates data from the
business logic running on the server to the client. For more
information, see Preparing and running an application client.

batch-1.0

Enables support for the
Java Batch 1.0 API defined
in JSR-352. This feature
does not support Java
batch applications that are
packaged in an Enterprise
Bundle Archive (EBA).

beanValidation-1.0

Provides an annotation-
based model for validating
JavaBeans.

concurrent-1.0

Enables the creation of
managed executors that
allow applications to submit
tasks to run concurrently,
with thread context that is
managed by the application
server. It also enables

the creation of managed
thread factories to create
threads that run with

the threadcontext of the
component that looks up the
managed thread factory.

Restriction: The transaction property
ManagedTask.SUSPEND is not supported by a Liberty JVM
server.

Restriction: The user ID that is attached to the transaction
of a new thread is always the user ID that is attached to the
parent transaction.

Restriction: Use of a ManagedThreadFactory creates
standard Java threads, not CICS-enabled Java threads.

ejb-3.2 Enables support for Enterprise JavaBeans (EJB)
E;Eﬁ;péljsg gazviBgiir]l;;Eg;en Important: When using EJB-related features, the
<SP " | transaction attribute NotSuppoxted is respected by the
JTA Liberty transaction system but not the CICS unit of work.
ejbHome-3.2 Enables the use of home Using EJB-related features

interfaces in Enterprise
JavaBeans.

ejbPersistentTimer-3.2

Enables the use of persistent
timers in Enterprise
JavaBeans.

Using EJB-related features

Restriction: Db2 JDBC type 2 connectivity is not supported
for persisting EJB timers.

ejbRemote-3.2

Enables the use of remote
interfaces in Enterprise
JavaBeans.

Using EJB-related features

jacc-1.5

Enables support for Java
Authorization Contract for
Containers (JACC) version
1.5.

Developing a Java Authorization Contract for Containers
(JACC) Authorization Provider

102 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_appClientSupport-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_prepareappclient.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_batch-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_beanValidation-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_concurrent-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ejb-3.2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/ejb_overview.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ejbHome-3.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ejbPersistentTimer-3.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ejbRemote-3.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jacc-1.5.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_developing_jacc_auth_provider.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_developing_jacc_auth_provider.html

Table 18. Liberty features supported for Java EE 7 Full Platform (continued)

Liberty feature

Liberty feature description

Using this feature in CICS

jaspic-1.1

Java Authentication SPI for
Containers (JASPIC) allows a
Java EE Application Server to
use custom authentication.
JASPIC providers are defined
in JSR-196. If a JASPIC
provider and a TAI are
configured in the same
server, then the TAI has no
effect. Therefore, JASPIC is a
standard Java EE technology
and a more portable solution
than a TAI for Java EE
applications.

j2eeManagement-1.1

Allows applications to utilize
the interfaces defined in the
JSR77 specification.

javaMail-1.5

Allows applications to utilize
the JavaMail 1.5 API.

javaee-7.0

Combines the Liberty
features that support the
Java EE 7.0 Full Platform.

jaxb-2.2

Enables support for the

Java Architecture for XML
Binding 2.2 specification,
which provides easy mapping
of Java classes to XML
documents.

jaxws-2.2

Enables support for Java API
for XML-Based Web Services
2.2. JAX-WS web services
and clients communicate
using XML.

jca-1.7

Enables the configuration
of resource adapters

to access Enterprise
Information Systems (EIS)
from applications.

“Java EE Connector Architecture (JCA)” on page 145

Restriction: The use of JCICS API and Db2 JDBC type 2
connectivity capabilities is not supported in threads that are
created by the JCA API
javax.resource.spi.BootstrapContext.createTim
er (). For the same effect, use the concurrent APIs
(javax.enterprise.concurrent.ManagedScheduled
ExecutorService).

jcalnboundSecurity-1.0

Enables security inflow for
resource adapters. Allows
JCA inbound resource
adapters to flow security
contexts by extending the
javax.resource.spi.wor
k.SecurityContext
abstract class.

Chapter 3. Developing Java applications 103

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaspic-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_j2eeManagement-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_javaMail-1.5.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_javaee-7.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaxb-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaxws-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jca-1.7.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jcaInboundSecurity-1.0.html

Table 18. Liberty features supported for Java EE 7 Full Platform (continued)

Liberty feature

Liberty feature description

Using this feature in CICS

idbc-4.1jdbc-4.2

Enables the configuration

Creating a default CICS Db2 DataSource with type 2

of DataSources to access

connectivity for Liberty

Databases from applications.

mutually exclusive.

Note: The jdbc-4.0, jdbc-4.1 and jdbc-4.2
implementations reside in the same Db2 JCC driver and are

mdb-3.2

Enables the use of Message-
Driven Enterprise JavaBeans
written to the EJB 3.2
specification.

jms-2.0

Enables the configuration of

“Java Message Service (JMS)” on page 141

resource adapters to access
messaging systems using the
Java Message Service API.

servlet-3.1

Enables support for HTTP

“Java EE and Liberty applications” on page 116

Servlets written to the Java
Servlet specification.

wasJmsClient-2.0

Provides applications with

“Java Message Service (JMS)” on page 141

access to message queues
hosted in Liberty through the
JMS APL.

wasJImsSecurity-1.0

Enables an embedded

“Java Message Service (JMS)” on page 141

messaging server to
authenticate and authorize
access from IJMS clients.

wasJmsServer-1.0

Enables an embedded

“Java Message Service (JMS)” on page 141

messaging server that is JIMS
compliant. Applications can
send and receive messages
using the wasJImsClient
feature.

webProfile-7.0

Table 19. Liberty features supported for Java EE 7 Web Profile

Liberty feature

Liberty feature description

Using this feature in CICS

appSecurity-2.0

Provides support for securing the
server runtime environment and
applications. appSecurity-2.0
supersedes appSecurity-1.0.

Configuring security for a Liberty

JVM server

beanValidation-1.1

Provides an annotation-based
model for validating JavaBeans.

cdi-1.2

Provides a common mechanism to
inject component such as EJBs

or Managed Beans into other
components such as JSPs or other
EJBs.

ejbLite-3.2

Enables support for Enterprise
JavaBeans written to the EJB Lite
subset of the EJB 3.2 specification.

Using EJB-related features

104 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_mdb-3.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jms-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_servlet-3.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wasJmsClient-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wasJmsSecurity-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wasJmsServer-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_webProfile-7.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_appSecurity-2.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_beanValidation-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_cdi-1.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ejbLite-3.2.html

Table 19. Liberty features supported for Java EE 7 Web Profile (continued)

Liberty feature

Liberty feature description

Using this feature in CICS

el-3.0

Enables support for the Expression
Language (EL) 3.0 specification.

jaxrs-2.0

Provides support for the Java API
for RESTful Web Services (JAX-RS)
in Liberty.

jaxrsClient-2.0

Enables support for the Java Client
API for JAX-RS 2.0.

The jaxrsClient-2.0 feature is
enabled by jaxrs-2.0. Configuring
JAX-RS 2.0 client.

jdbc-4.0, jdbc-4.1, jdbc-4.2

Enables the configuration of
DataSources to access Databases
from applications.

Creating a default CICS Db2
DataSource with type 2
connectivity for Liberty

Note: The jdbc-4.0, jdbc-4.1
and jdbc-4.2 implementations
reside in the same Db2 JCC driver
and are mutually exclusive.

indi-1.0

Enables the use of Java Naming
and Directory Interface (JNDI) to
access server configured resources
such as DataSources or IMS
Connection Factories.

Enables support for applications
that use application-managed and
container-managed JPA.

Provides support for web
applications that use the
JavaServer Faces (JSF) framework.

jsonp-1.0

Provides a standardized method for
constructing and manipulating data
to be rendered in JavaScript Object
Notation (JSON).

jsp-2.3

Enables support for Java Server
Pages (JSPs) that are written to the
JSP 2.3 specification.

“Java EE and Liberty applications”
on page 116

managedBeans-1.0

Enables support for the Managed
Beans 1.0 specification.

servlet-3.1

Enables support for HTTP Servlets
written to the Java Servlet
specification.

“Java EE and Liberty applications”
on page 116

webProfile-7.0

Combines the Liberty features that
support the Java EE 7.0 Web Profile

websocket-1.0

Enables a web browser or client
application and a web server
application to communicate by
using one full duplex connection.

Chapter 3. Developing Java applications 105

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_el-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaxrs-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaxrsClient-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_jaxrs2.0_clientconfig.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_jaxrs2.0_clientconfig.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jndi-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jpa-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jsf-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jsonp-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jsp-2.3.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_managedBeans-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_servlet-3.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_webProfile-7.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_websocket-1.0.html

Table 19. Liberty features supported for Java EE 7 Web Profile (continued)

Liberty feature

Liberty feature description

Using this feature in CICS

websocket-1.1

Enables a web browser or client
application and a web server
application to communicate by
using one full duplex connection.

Table 20. Liberty features supported for Java EE 6 Technologies

Liberty feature

Liberty feature
description

Using this feature in CICS

jaxb-2.2

Provides support to map
between Java classes and
XML representations.

jaxrs-1.1

Enables support for the
Java Architecture for XML
Binding 2.2 specification,
which provides easy
mapping of Java classes
to XML documents.

jaxws-2.2

Provides support for SOAP
web services.

jca-1.6

Enables the configuration
of resource adapters

to access Enterprise
Information Systems (EIS)
from applications.

“Java EE Connector Architecture (JCA)” on page 145

Restriction: The use of JCICS API and Db2 JDBC type
2 connectivity capabilities are not supported within
threads that are created by the JCA API
javax.resource.spi.BootstrapContext.crea
teTimer (). Instead, for the same effect, use the
concurrent APIs
(javax.enterprise.concurrent.ManagedSched
uledExecutorService).

jcalnboundSecurity-1.0

Enables security inflow for
resource adapters. Allows
JCA inbound resource
adapters to flow security
contexts by extending the
javax.resource.spi.
work.SecurityContex
t abstract class.

jdbc-4.0, jdbc-4.1,
jdbc-4.2

Enables the configuration
of DataSources to

access Databases from
applications.

Creating a default CICS Db2 DataSource with type 2
connectivity for Liberty

Note: The jdbc-4.0, jdbc-4.1and jdbc-4.2
implementations reside in the same Db2 JCC driver
and are mutually exclusive.

Enables the configuration
of resource adapters

to access messaging
systems using the Java
Message Service APL.

“Java Message Service (JMS)” on page 141

106 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_websocket-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaxb-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaxrs-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaxws-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jca-1.6.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jcaInboundSecurity-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jms-1.1.html

Table 20. Liberty features supported for Java EE 6 Technologies (continued)

Liberty feature

Liberty feature
description

Using this feature in CICS

jmsMdb-3.1

Enables the use of

JMS Message-Driven
Enterprise JavaBeans.
MDBs allow asynchronous
processing of messages
within a Java EE
component.

mdb-3.1

Enables the use

of Message-Driven
Enterprise JavaBeans.
MDBs allow asynchronous
processing of messages
within a Java EE
component.

wasJdmsClient-1.1

Provides applications with
access to message
queues hosted in Liberty
through the JMS APL.

Java Message Service (JMS)

wasJmsSecurity-1.0

Enables an embedded
messaging server

to authenticate and
authorize access from

clients.

Java Message Service (JMS)

wasJmsServer-1.0

Enables an embedded
messaging server in the
server. Applications can
operate on messages by
using the wasJmsClient

feature.

Java Message Service (JMS)

Table 21. Liberty features supported for Java EE 6 Web Profile

Liberty feature

Liberty feature description

Using this feature in CICS

appSecurity-2.0

Provides support for securing the
server runtime environment and
applications. appSecurity-2.0
supersedes appSecurity-1.0.

Tip: The Application Client module
runs in both the client and

the server. The client executes

the client specific logic of the
application. The other portion of
code runs in a client container on
the server and communicates data
from the business logic running

on the server to the client. For
more information, see Preparing
and running an application client.

beanValidation-1.0

Provides an annotation-based
model for validating JavaBeans.

beanValidation-1.1

Provides an annotation-based
model for validating JavaBeans.

Chapter 3. Developing Java applications 107

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jmsMdb-3.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_mdb-3.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wasJmsClient-1.1.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jms.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wasJmsSecurity-1.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jms.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wasJmsServer-1.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jms.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_appSecurity-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_prepareappclient.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_prepareappclient.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_beanValidation-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_beanValidation-1.1.html

Table 21. Liberty features supported for Java EE 6 Web Profile (continued)

Liberty feature

Liberty feature description

Using this feature in CICS

cdi-1.0 Provides a mechanism to inject
components such as EJBs or
Managed Beans into other
components such as JSPs or EJBs.
ejbLite-3.1 Enables support for Enterprise Using EJB-related features

JavaBeans written to the EJB Lite
subset of the EJB specification.

idbc-4.0 jdbc-4.1jdbc-4.2

Enables the configuration of
DataSources to access Databases
from applications.

Creating a default CICS Db2

DataSource with type 2

connectivity for Liberty

Note: The jdbc-4.0, jdbc-4.1
and jdbc-4.2 implementations
reside in the same Db2 JCC driver
and are mutually exclusive.

indi-1.0

Provides support for a single Java
Naming and Directory Interface
(INDI) entry definition in the server
configuration of Liberty.

Enables support for applications
that use application-managed and
container-managed JPA.

Provides support for web
applications that use the
JavaServer Faces (JSF) framework.

Enables support for servlet
and JavaServer Pages (JSP)
applications.

y

“Java EE and Liberty applications’

on page 116

servlet-3.0

Provides support for HTTP Servlets
written to the Java Servlet
specification.

y

“Java EE and Liberty applications’

on page 116

managedBeans-1.0

Enables support for the Managed
Beans 1.0 specification.

webProfile-6.0

Provides a convenient combination
of the Liberty features that are
required to support the Java EE 6
Web Profile.

Table 22. Liberty features supported for Enterprise OSGi

Liberty feature

Liberty feature description

Using this feature in CICS

blueprint-1.0

Enables support for deploying OSGi
applications that use the OSGi
blueprint container specification.

Important: The transaction
attribute NotSupportedis
respected by the JTA Liberty
transaction system but not the
CICS unit of work.

108 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_cdi-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ejbLite-3.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2default_liberty.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jndi-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jpa-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jsf-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jsp-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_servlet-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_managedBeans-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_webProfile-6.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_blueprint-1.0.html

Table 22. Liberty features supported for Enterprise OSGi (continued)

Liberty feature Liberty feature description Using this feature in CICS

osgi.jpa-1.0 This feature is superseded by

the blueprint-1.0and jpa-2.0
features that both include OSGi
capability. When those features are
both added to the server, this
feature is added automatically.

wab-1.0 Provides support for web “Creating an OSGi Application
application bundles (WAB) that are [Project ” on page 117
inside enterprise bundles (EBA).

Note: This feature is automatically
added by CICS when the JVM
system property
com.ibm.cics.jvmserver.wlp
.wab=true.

Table 23. Liberty features supported for Extended Programming Models

Liberty feature Liberty feature description Using this feature in CICS

json-1.0 Provides access to the JavaScript
Object Notation (JSON43J) library
that provides a set of JSON
handling classes for Java
environments.

Note: If upgrading from jaxrs-2.0 to
jaxrs-2.1 the json-1.0 feature is no
longer enabled by default.

jta-1.1 Supports the Java Transaction API | “Java Transaction API (JTA) ” on
(dTA). page 130

Note: Java Transaction API is a
protected Liberty feature.

jta-1.2 Supports the Java Transaction API | “Java Transaction API (JTA) ” on
JTA). page 130

Note: Java Transaction API is a
protected Liberty feature.

mongodb-2.0 Provides support for the

MongoDB Java Driver and allows
remote database instances to

be configured in the server
configuration. Applications interact
with these databases through the
MongoDB APIs.

springBoot-1.5 Provides support for Spring Boot Spring Boot applications
applications using Spring Boot
version 1.5.x.

springBoot-2.0 Provides support for Spring Boot Spring Boot applications
applications using Spring Boot
version 2.0.x.

Chapter 3. Developing Java applications 109

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_osgi.jpa-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wab-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_json-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_mongodb-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_springBoot-1.5.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_springboot.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_springBoot-2.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_springboot.html

Table 24. Liberty features supported for MicroProfile

Liberty feature

Liberty feature description

Using this feature in CICS

microProfile-1.0

Combines the Liberty features
that support the MicroProfile for
enterprise Java.

microProfile-1.2

Combines the Liberty features
that support MicroProfile 1.2 for
enterprise Java.

microProfile-1.3

Combines the Liberty features
that support MicroProfile 1.3 for
enterprise Java.

microProfile-1.4

Combines the Liberty features
that support MicroProfile 1.4 for
enterprise Java.

microProfile-2.0

Combines the Liberty features
that support MicroProfile 2.0 for
enterprise Java.

microProfile-2.1

Combines the Liberty features
that support MicroProfile 2.1 for
enterprise Java.

microProfile-2.2

Combines the Liberty features
that support MicroProfile 2.2 for
enterprise Java.

microProfile-3.0

Combines the Liberty features
that support MicroProfile 3.0 for
enterprise Java.

microProfile-3.2

Combines the Liberty features
that support MicroProfile 3.2 for
enterprise Java.

These versions of MicroProfile are
for use with Java EE 6 and Java EE
7.

microProfile-4.0

Combines the Liberty features
that support MicroProfile 4.0 for
enterprise Java.

microProfile-4.1

Combines the Liberty features
that support MicroProfile 4.1 for
enterprise Java.

These versions of MicroProfile are
for use with Java EE 8 or Jakarta EE
8.

mpConfig-1.1

Provides a unified mechanism to
access configuration, providing a
single view of multiple sources.

mpFaultTolerance-1.0

Provides support for the
MicroProfile Fault Tolerance API for
enterprise Java.

Restriction: MicroProfile Fault
Tolerance 1.0 is not designed

to work with transactions

(UOW, JTA, etc.). Updates to
CICS resources should not be
made in methods annotated
@Bulkhead, @CircuitBreaker,
@Fallback, @Retry or @Timeout.

110 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_microProfile-1.0.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_microProfile-1.2.html
https://www.ibm.com/docs/en/was-liberty/zos?topic=features-microprofile-13
https://www.ibm.com/docs/en/was-liberty/zos?topic=features-microprofile-14
https://www.ibm.com/docs/en/was-liberty/zos?topic=features-microprofile-20
https://www.ibm.com/docs/en/was-liberty/zos?topic=features-microprofile-21
https://www.ibm.com/docs/en/was-liberty/zos?topic=features-microprofile-22
https://www.ibm.com/docs/en/was-liberty/zos?topic=features-microprofile-30
https://www.ibm.com/docs/en/was-liberty/zos?topic=features-microprofile-32
https://www.ibm.com/docs/en/was-liberty/zos?topic=features-microprofile-40
https://www.ibm.com/docs/en/was-liberty/zos?topic=features-microprofile-41
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_mpConfig-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_mpFaultTolerance-1.0.html

Table 24. Liberty features supported for MicroProfile (continued)

Liberty feature Liberty feature description Using this feature in CICS

mpHealth-1.0 Provides support for the
MicroProfile Health API for
enterprise Java.

mpJwt-1.0 Enables web applications or The default value for attribute
microservices to use JSON Web ignoreApplicationAuthMetho
Token (JWT) to authenticate users | s false. This indicates all
instead of, or in addition to, the requests received by Liberty need
configured user registry. to have a JWT token in the HTTP
header.

The default value for attribute
mapToUserRegistry is false. For
integration with CICS security set
this value to true.

mpMetrics-1.0 Provides support for the
MicroProfile Metrics API for
enterprise Java.

Table 25. Liberty features supported for Operations

Liberty feature Liberty feature description Using this feature in CICS

batchManagement-1.0 Provides managed batch support
for the Java batch container.

This includes the Batch REST
management interface, job logging
support, and a command line utility
for external scheduler integration.

distributedMap-1.0 Provides a local cache service,
which can be accessed through the
DistributedMap API.
localConnector-1.0 Allows the use of a local IMX “ Java Management Extensions API

connector that is built into the JVM [(JMX) ” on page 142
to access JMX resources in the
server.

monitor-1.0 Enables performance monitoring “ Java Management Extensions API
of Liberty runtime components by [(JMX) ” on page 142
using a JMX client.

osgiConsole-1.0 Enables an OSGi console to aid with | Troubleshooting Java applications
debug of the runtime.

restConnector-1.0 Enables remote access by JIMX “ Java Management Extensions API
clients through a REST-based (IMX) ” on page 142

connector and requires SSL and
user security configuration.

sessionDatabase-1.0 Enables persistence of HTTP
sessions to a datasource that uses
JDBC.

Chapter 3. Developing Java applications 111

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_mpHealth-1.0.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_mpJwt-1.0.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_mpMetrics-1.0.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_batchManagement-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_distributedMap-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_localConnector-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_monitor-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_osgiConsole-1.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/java_troubleshooting.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_restConnector-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_sessionDatabase-1.0.html

Table 25. Liberty features supported for Operations (continued)

Liberty feature

Liberty feature description

Using this feature in CICS

webCache-1.0

Enables local caching for web
responses. It includes the
distributedMap feature and
performs automatic caching of web
application responses to improve
response times and throughput.

wmgJmsClient-2.0

Provides applications with access
to message queues hosted on IBM
MQ through the JMS 2.0 APL.

Restriction: Only supported when
the JMS application connects to
IBM MQ using the client mode
transport. Requires V9.0.1 of the
IBM MQ Resource Adapter for
Liberty.

Important: This restriction also
applies to CICS standard-mode
Liberty.

Table 26. Liberty features supported for Security

Liberty feature

Liberty feature description

Using this feature in CICS

appSecurity-1.0

Provides support for securing the
server runtime environment and
applications. appSecurity-2.0
supercedes appSecurity-1.0.

Configuring security for a Liberty
JVM server

appSecurity-2.0

Provides support for securing the
server runtime environment and
applications. appSecurity-2.0
supersedes appSecurity-1.0.

Configuring security for a Liberty
JVM server

jwt-1.0

Allows runtime to create JWT
tokens.

ldapRegistry-3.0

Enables support for using an LDAP
server as a user registry. Any
server that supports LDAP Version
3.0 can be used. Multiple LDAP
registries can be configured, and
then federated to achieve a single
logical registry view.

Configuring security for a Liberty
JVM server by using distributed
identity mapping

oauth-2.0

Enables web applications to
integrate OAuth 2.0 for
authenticating and authorizing
users.

Authorization using OAuth 2.0

Configuring persistent OAuth 2.0
services

openidConnectClient-1.0

Enables web applications to
integrate OpenID Connect Client
1.0 for authenticating users instead
of, or in addition to, the configured
user registry.

112 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_webCache-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wmqJmsClient-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_appSecurity-1.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_appSecurity-2.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jwt-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ldapRegistry-3.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_oauth-2.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_oauth.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/config_oauth.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/config_oauth.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_openidConnectClient-1.0.html

Table 26. Liberty features supported for Security (continued)

Liberty feature

Liberty feature description

Using this feature in CICS

openidConnectServer-1.0

Enables web applications to
integrate OpenlD Connect Server
1.0 for authenticating users instead
of, or in addition to, the configured
user registry.

ssl-1.0

Provides support for Secure
Sockets Layer (SSL) connections
and SAF keyrings.

Configuring SSL (TLS) for a Liberty

JVM server using RACF

Setting up SSL (TLS) client

certificate authentication in a

Liberty JVM server

Configuring SSL (TLS) for a Liberty

JVM server using a Java keystore

transportSecurity-1.0

Enables support for Secure Sockets
Layer (SSL) connections.

Table 27. Liberty features supported for Systems Management

Liberty feature

Liberty feature description

Using this feature in CICS

adminCenter-1.0

Enables the Liberty Admin Center,
a web-based graphical interface
for deploying, monitoring and
managing Liberty servers in
standalone environments.

Configuring Admin Center

Restriction: Collectives are not
supported in CICS.

Table 28. Liberty features supported for z/0S

Liberty feature

Liberty feature description

Using this feature in CICS

zosSecurity-1.0

enables the server to use the

SAF Registry in the z/OS platform
for authenticating users and
authorizing access to applications

Restriction: zosSecurity-1.0 is
enabled by cicsts:security-1.0

zosTransaction-1.0

Enables Liberty to synchronize

and manage transactional activity
between the z/OS Resource
Recovery Services (RRS), the
transaction manager of the
application server, and the resource
manager.

Restriction:
zosTransaction-1.0is only
supported for JIMS applications
that connect to IBM MQ using
BINDINGS mode transport in CICS
standard-mode Liberty.

For more information about the function in these features, see the documentation for Liberty at Liberty
overview. For details of Liberty restrictions, see Runtime environment known restrictions.

CICS Liberty features

The following table provides a set of CICS features to integrate Liberty features with the CICS qualities of
service. The Liberty JVM server mode can be set by specifying CICS_WLP_MODE in the JVM profile.

Chapter 3. Developing Java applications 113

https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_openidConnectServer-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ssl-1.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty_racf.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty_racf.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/client_authentication.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/client_authentication.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/client_authentication.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_transportSecurity-1.0.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_adminCenter-1.0.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_admincenter.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_zosSecurity-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_zosTransaction-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_about.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_about.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_restrict.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_server_options.htmldfha2_jvmprofile_server_options__CICS_WLP_MODE

Table 29. CICS Liberty features

CICS Feature

CICS Liberty mode

Description

Using this CICS feature

cicsts:core-1.0

Integrated-mode

Provides core CICS
features, and Java
Transaction API (JTA) 1.0.

This feature is required
when using Integrated-
mode CICS Liberty.

Restriction: The JVM
server should be disabled
before adding or removing
this feature.

cicsts:defaultApp-1.0

Integrated-mode and
standard-mode

Verifies that the Liberty
server is running and
provides information on
the server configuration.
Browse the JVM Profile,
the JVM server logs, the
Liberty server.xml, and the
messages log by using the
FileViewer servlet.

Configuring the CICS
Default Web Application

cicsts:distributedIdentity-
1.0

Integrated-mode and
standard-mode

Provides support for
distributed identity

mapping.

Configuring security for
a Liberty JVM server by
using distributed identity

mapping

cicsts:jcalocalEci-1.0

Integrated-mode

Provides a locally
optimized JCA ECI
resource adapter for
calling CICS programs.

“Using the JCA local
ECI resource adapter” on

page 147

Restriction: The JVM
server should be disabled
before adding or removing
this feature.

cicsts:jcicsxServer-1.0

Integrated-mode

When enabled in a Liberty
JVM server in CICS,

the server can receive
remote requests from
Java applications using
JCICSX API classes.

“Configuring the
environment for JCICSX”
on page 88

cicsts:jdbc-1.0

Integrated-mode and
standard-mode

Provides support for
applications to access

a local CICS Dh2
database that uses JDBC.
This feature has been
superseded by jdbc-4.0
and jdbc-4.1, except
when used directly with
DriverManager.

Acquiring a connection to
a database

Restriction: The JVM
server should be disabled
before adding or removing
this feature.

114 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_defaultapp.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_defaultapp.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk4s.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk4s.html

Table 29. CICS Liberty features (continued)

CICS Feature

CICS Liberty mode

Description

Using this CICS feature

cicsts:link-1.0

Integrated-mode

Provides support to start
a Java EE application that
is running in a Liberty

JVM server either as the
initial program of a CICS
transaction or by using the
LINK, START, or START
CHANNEL commands from
any CICS program.

“Linking to Java

applications in a

Liberty JVM server by
using the @CICSProgram
annotation” on page 122

cicsts:security-1.0

Integrated-mode and
standard-mode

Provides integration of
Liberty security with
CICS security, including
propagation of thread
identity.

Configuring security for a
Liberty JVM server

Restriction: The JVM
server should be disabled
before adding or removing
this feature.

cicsts:standard-1.0

Standard-mode

Enables users to port

and deploy Liberty
applications from other
platforms to CICS without
changing your application.
Standard mode is ideal for
hosting applications that
are written for and rely on
the Java EE Full Platform,
but do not require full
integration with CICS.

CICS standard-mode
Liberty: Java EE 7 Full
Platform support without
full CICS integration

cicsts:zosConnect-1.0

Integrated-mode

Integrates z/OS Connect
with CICS Liberty JVM
server.

Note: This feature

is stabilized. You

can continue to use

the feature. However,
consider using the IBM
z/0S Connect Enterprise
Edition product.

Restriction: The JVM
server should be disabled
before adding or removing
this feature.

cicsts:zosConnect-2.0

Integrated-mode

Integrates z/OS Connect
with CICS Liberty JVM
server.

Note: This feature

is stabilized. You

can continue to use

the feature. However,
consider using the IBM
z/0S Connect Enterprise
Edition product.

Restriction: The JVM
server should be disabled
before adding or removing
this feature.

Chapter 3. Developing Java applications 115

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/cics_standard_mode_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/cics_standard_mode_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/cics_standard_mode_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/cics_standard_mode_liberty.html

Java EE and Liberty applications

To provide modern interfaces to CICS applications, you can develop a presentation layer that uses web
application technology. You can use the IBM CICS SDK for Java in CICS Explorer or the CICS-provided
artifacts on Maven Central to create, package, and build the applications. The IBM CICS SDK for
Enterprise Java (Liberty), which is optionally installed with CICS Explorer, also provides support to deploy
the application to run in CICS.

About this task
Three types of web application projects can be deployed on a Liberty server:

« Dynamic Web Project (WAR)
« OSGi Application Project (EBA)
« Enterprise Application Project (EAR)

A WAR can contain dynamic Java EE resources such as Liberty in CICS, filters, and associated metadata,
in addition to static resources such as images and HTML files.

An EBA is a Java archive file that can contain WABs and OSGi bundles. WABs are web-enabled OSGi
bundles that contain JSP servlets and files, filters, and associated metadata, in addition to static
resources such as images and HTML files.

An EAR is a way of organizing WAR and EJB modules into a single container in the same way as an EBA
organizes WABs and OSGi bundles.

Creating a Dynamic Web Project

To develop a web presentation layer for your Java application, you can create a Dynamic Web Project.

Before you begin

Ensure that you have set up the development environment.

A restriction added by Liberty, prevents access to OSGi bundles from servlets that are deployed in a WAR
file. The restriction includes access to OSGi bundles installed directly in a CICS bundle. To overcome this
restriction, you must deploy your application as a WAB, as part of an EBA (OSGi Application Project). An
EBA is a container in which web and OSGi components can interact.

About this task

If you are using the IBM CICS SDK for Java or IBM CICS SDK for Enterprise Java (Liberty) in CICS Explorer
(as shown in the following instructions) or IBM Developer for z/OS (IDz), you can refer to the CICS
Explorer help, which provides full details on how you can complete each of the following steps to develop
and package web applications.

If you are using a build toolchain such as Apache Maven or Gradle, you can use CICS-provided artifacts on
Maven Central to define Java dependencies.

Procedure
1. Create a web project for your application.

« CICS Explorer If you're using CICS Explorer, create a Dynamic Web Project and update your build
path to add the Liberty libraries.

a. Right-click the Dynamic Web Project, and click Build Path > Configure Build Path. The
properties dialog opens for the project.

b. In the Java Build Path, click the Libraries tab.
c. Click Add Library and select CICS with Enterprise Java and Liberty.
d. Click Next, select the CICS version, and then click Finish to complete adding the library.

116 CICS TS for z/OS: Java Applications in CICS

e. Click OK to save your changes.

- Gradle For Gradle users, create a Gradle project. In the build.gradle file, specify the following
and declare dependencies on CICS-provided artifacts.

plugins {
id 'war'
3

« Maven For Maven users, create a Maven project. In the pom. xml file, specify <packaging>war</
packaging> and declare dependencies on CICS-provided artifacts. If you are unfamiliar with
Maven, you can start with the maven-archetype-webapp archetype and modify it.

2. Develop your web application. You can use the JCICS API to access CICS services, JDBC to access
DB2 and JMS to access IBM MQ. The IBM CICS SDK for Enterprise Java (Liberty) includes examples of
web components that use JCICS and JDBC.

3. Optional: If you want to secure the application with CICS security, create a web . xml file in the
Dynamic Web Project to contain a CICS security constraint. The IBM CICS SDK for Enterprise
Java (Liberty) includes a template for this file that contains the correct information for CICS. See
Authenticating users in a Liberty JVM server for further information.

4. Create one or more CICS bundle projects to package your application. Add definitions and imports
for CICS resources. Each CICS bundle contains an ID and version so you can manage changes in a
granular way.

5. Optional: Add a URIMAP and TRANSACTION resource to a CICS bundle if you want to map inbound
web requests from a URI to run under a specific transaction. If you do not define these resources,
all work runs under a supplied transaction, which is called CJSA. These resources are installed
dynamically and managed as part of the bundle in CICS.

Results
You set up your development environment, created a web application from a Dynamic Web Project, and
packaged it for deployment.

What to do next

When you are ready to deploy your application, export the CICS bundle projects to zFS. The referenced
projects are built and included in the transfer to zFS. Alternatively, you can follow the Liberty deployment
model by exporting the application as a WAR and deploying it to the dropins directory of a running Liberty
JVM server.

Creating an OSGi Application Project

An OSGi Application Project (EBA) groups together a set of bundles. The application can consist of
different OSGi bundles types.

Before you begin

Ensure that you have set up the development environment.

Note: To develop and build an OSGi Application Project, you must install the IBM CICS SDK for

Enterprise Java (Liberty) and the Liberty Developer Tools (LDT) if you are using CICS Explorer on Eclipse
Marketplace. If you want to export the bundle without building it, you can add the built project to the root
of your CICS bundle directly. Otherwise, you might receive a validation or exporting failure error. See CICS
Explorer cannot export a bundle in Troubleshooting Liberty JVM servers and Java web applications.

About this task

If you are using the IBM CICS SDK for Java or IBM CICS SDK for Enterprise Java (Liberty) in CICS Explorer
(as shown in the following instructions) or IBM Developer for z/OS (IDz), you can refer to the CICS
Explorer help, which provides full details on how you can complete each of the following steps to develop
and package OSGi applications.

Chapter 3. Developing Java applications 117

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
https://search.maven.org/search?q=a:maven-archetype-webapp
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/troubleshooting_web_ref.html#troubleshooting_web_ref__bundle-export-missing-binary
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/troubleshooting_web_ref.html#troubleshooting_web_ref__bundle-export-missing-binary

If you are using a build toolchain such as Apache Maven or Gradle, you can use CICS-provided artifacts on
Maven Central to define Java dependencies.

Procedure

1. CICS Explorer If you're using CICS Explorer, set up a target platform for your Java development, using
the CICS TS 5.6 with Enterprise Java and Liberty template. You might get a warning that the target is
a newer version than the current Eclipse installation, but you can ignore this warning message.

2. Create an OSGi Bundle Project for your application.

« CICS Explorer If you're using CICS Explorer, the target platform effectively makes the packages
available, so you must include the appropriate Import statements in the bundle manifest. A web-
enabled OSGi Bundle Project is the bundle equivalent of a Dynamic Web Project. You can use a
web-enabled OSGi Bundle Project to deploy an application within an OSGi Application Project (an
Enterprise Bundle Archive, or EBA file). You can mix web-enabled OSGi Bundle Projects (WAB files)
and non-web-enabled OSGi Bundle Projects in your OSGi Application Project. A web-enabled OSGi
Bundle Project would typically implement the front end of the application, and interact with the
non-web OSGi bundles, which contain the business logic.

Restriction: EBA files are not supported in Java EE 8 and upwards.

« Gradle For Gradle users, create a Gradle-enabled OSGi project using the BND Gradle Plugins, and
then declare dependencies on CICS-provided artifacts.

« Maven For Maven users, create a Maven project. In the pom. xml file, specify
<packaging>bundle</packaging> and the following dependency:

<dependency>
<groupId>net.wasdev.maven.tools.targets</groupIld>
<artifactId>liberty-target</artifactId>
<version><your_liberty_version></version>
<type>pom</type>
<scope>provided</scope>

</dependency>

Instead of specifying the dependency above, you can start with an OSGi bundle archetype,
for example, the osgi-web31-liberty artifact, and modify it. Then declare dependencies on CICS-
provided artifacts.

3. Develop your web application. You can use the JCICS API to access CICS services and JDBC to
connect to Db2. The IBM CICS SDK for Java includes examples of web components and OSGi bundles
that use JCICS and Db2. Create OSGi bundles that use JCICS to separate the business from the
presentation logic. You can also use semantic versioning in OSGi bundles to manage updates to the
business logic of the application. For each WAB or OSGi bundle that uses Db2 through the JDBC
DriverManager interface, include an Import-Package header for com.ibm.db2. jcc in the bundle
manifest. Omitting this import will result in the error message java.sql.SQLException: No
suitable driver found for jdbc:default:connection. Theimportis not required when
using the JDBC DataSource interface.

4. Optional: If you want to authenticate users of the web application, create a web . xm1 file in the web
project to contain a security constraint. The IBM CICS SDK for Java includes a template for this file that
contains the correct information for CICS. See Authenticating users in a Liberty JVM server for further
information.

5. Create an OSGi Application Project that references your OSGi bundles.

6. Create a CICS bundle project that references the OSGi Application Project. You can also add definitions
and imports for CICS resources. Each CICS bundle contains an ID and version so you can manage
changes in a granular way.

7. Optional: Add a URIMAP and TRANSACTION resource to a CICS bundle if you want to map inbound
web requests from a URI to run under a specific transaction. If you do not define these resources,
all work runs under a supplied transaction, which is called CJSA. These resources are installed
dynamically and managed as part of the bundle in CICS.

118 CICS TS for z/OS: Java Applications in CICS

https://github.com/bndtools/bnd/blob/master/gradle-plugins/README.md
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
https://search.maven.org/search?q=a:osgi-web31-liberty
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html

Results
You set up your development environment, created a OSGi web application, and packaged it for
deployment.

What to do next

When you are ready to deploy your application, export the CICS bundle projects to zFS. The referenced
projects are built and included in the transfer to zFS. Alternatively, you can follow a development
deployment model by exporting the application as an EBA file and deploying it to the dropins directory
of a running Liberty JVM server. You should be aware that Security and other qualities of service are not
configurable using dropins.

Creating an Enterprise Application Project

To develop components such as an Enterprise Java Bean module (EJB module) or to group web projects,
EJBs, or both together, you can use an Enterprise Application Project.

Before you begin
Ensure that the web development tools are installed in your Eclipse IDE. For more information, see
“Setting up your development environment” on page 38.

About this task

If you are using the IBM CICS SDK for Java or IBM CICS SDK for Enterprise Java (Liberty) in CICS Explorer
(as shown in the following instructions) or IBM Developer for z/OS (IDz), you can refer to the CICS
Explorer help, which provides full details on how you can complete each of the following steps to develop
and package Enterprise Applications.

If you are using a build toolchain such as Apache Maven or Gradle, you can use CICS-provided artifacts on
Maven Central to define Java dependencies.

Procedure
1. Create a project for your application.

« CICS Explorer If you're using CICS Explorer, create an Enterprise Application Project.

« Maven For Maven users, create a Maven project. In the pom. xm1 file, specify <packaging>ear</
packaging> and declare dependencies on CICS-provided artifacts.

« Gradle For Gradle users, create a Gradle project. In the build. gradle file, specify the following
and declare dependencies on CICS-provided artifacts.

plugins {
id 'ear'
%

2. Develop the components of your application. These components are typically EJB modules and
Dynamic Web Projects. Add the components to your Enterprise Application Project.

For more information, see Creating an Enterprise JavaBeans (EJB) project.

3. Create one or more CICS bundle projects to package your Enterprise Application. Add definitions and
imports for CICS resources. Every CICS bundle contains an ID and version so you can manage changes
in a granular way.

4. Optional: Add a URIMAP and TRANSACTION resource to a CICS bundle if you want to map inbound
web requests from a URI to run under a specific transaction. If you do not define these resources,

all work runs under a supplied transaction, which is called CJSA. These resources are installed
dynamically and managed as part of the bundle in CICS.

Chapter 3. Developing Java applications 119

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_ejb.html

Results
You set up your development environment, created an Enterprise Application Project, and packaged it for
deployment.

What to do next

When you are ready to deploy your application, export the CICS bundle projects to zFS. The referenced
projects are built and included in the transfer to zFS. Alternatively, you can follow the Liberty deployment
model by exporting the application as a EAR and deploying it with an <application> element, or
placing it in the drop-ins directory of a running Liberty JVM server.

Creating a URI map and transaction

You can install applications resources through traditional methods such as CSD or BAS, or you can add
application resources to CICS bundles. CICS bundles provide a convenient and co-located technique

to group application code and CICS resources together. This is useful if, for example, you deploy an
Enterprise Java application in a CICS bundle. You might want to provide a URI map that maps the inbound
web requests to run under a specific application transaction.

Before you begin

To create the application resources, you must have a CICS bundle project in your Project Explorer. For
more information, see Creating a CICS bundle project in the CICS Explorer product documentation. You
use this CICS bundle project to package the application for deployment.

About this task

By default all Enterprise Java application requests use a transaction that is called CISA that is supplied by
CICS. However, you can map the application URI from an inbound request to a different transaction. You
might find this feature useful if you want to securely control access to the application because a security
administrator can configure CICS to control which transactions are accessed by users.

Procedure

1. Create a definition for the application transaction:

a) Switch to the Eclipse Resource perspective. Right-click the CICS bundle project and click New >
Transaction Definition.

The New Transaction Definition wizard opens.
b) Enter a 4-character name for the transaction.

Do not start the transaction name with C because this letter is reserved by CICS.
c) Enter the program name DFHSJTHP.

You must use this CICS program because it handles the security checking of inbound Enterprise
Java requests to the Liberty server.

d) Click Finish to create the definition in the CICS bundle project.

Do not set attributes to create a remote transaction because the application transaction must always
run in the CICS region where the Enterprise Java application is running.

2. Create a definition for the URI map:
a) Right-click the CICS bundle project and click New > URI Map Definition.
b) Enter an 8-character name for the URI map.
Do not start URI maps names with DFH because this prefix is reserved by CICS.
c) Enter the host name.

You can either use a * to match any host name, or specify the host name of the machine where your
application is going to run.

d) Enter the path for the application URI.

120 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/create_bundle.html

CICS matches the URI in the inbound request to the value in the URI map and runs the application
transaction.

e) In the Usage section, select JVM server and optionally enter the port number.
f) Click Finish to create the URI map.
3. Edit the URI map definition:

a) Edit the Scheme field to enter the scheme for the URI map. HTTP is the default, but you can set
HTTPS if you want to use SSL security to encrypt the request.

You can use basic authentication, where a user ID and password are supplied in the HTTP header,
on both HTTP and HTTPS requests.

b) Edit the Transaction field to enter the name of the application transaction.
¢) Optional: Edit the user ID field to enter a user ID to run the application request.

This value is ignored if basic authentication is enabled. If you do not supply a value and the HTTP
request does not include a user ID and password, CICS runs the request under the default user ID
of the CICS region.

Results

You created a URI map and a transaction in the CICS bundle project. When the bundle is deployed and
installed, these resources are created dynamically in the CICS region.

What to do next

You can create extra resources if you want to run different application operations under different
transactions, or if you want to support both HTTP and HTTPS schemes. If your application is ready to
deploy, see Deploying a CICS bundle in the CICS Explorer product documentation.

Migrating Java EE applications to run in Liberty JVM server

If you have a Java EE application running in a Liberty instance that accesses CICS over a network, you can
run the application in a Liberty JVM server to optimize performance.

About this task

CICS supports a subset of the features that are available in Liberty. For a list of supported features in CICS
integrated-mode Liberty, see “Liberty features” on page 95.

If your application uses security, you can continue to use Liberty security features however without
further action it is possible that the CICS task will run under transaction CJSA, URIMAP matching in CICS
will not be available and any resource access will be performed under the CICS default user ID. To better
integrate your security solution with CICS, allowing your CICS tasks to run under the same user ID as
determined by Liberty, see Authenticating users in a Liberty JVM server.

Procedure

1. Update the application to use the JCICS API to access CICS services directly, ensuring that the correct
JCICS encoding is used when the application passes data to and from CICS.

For more information about encoding, see “Data encoding” on page 58. This step only applies if you
are using CICS integrated-mode Liberty or CICS standard-mode Liberty with the runAsCICS() API.

2. If you want to use CICS security for basic authentication, update the security constraint in the
web . xml file of the Dynamic Web Project to use a CICS role for authentication. This step only applies if
you are using CICS integrated-mode Liberty or CICS standard-mode Liberty and submitting work to the
CICSExecutoxrService using the runAsCICS () method.

<auth-constraint>
<description>All authenticated users of my application</description>
<role-name>cicsAllAuthenticated</role-name>

</auth-constraint>

Chapter 3. Developing Java applications 121

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_deploy_bundle_project.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html

3. Package the application as a WAR (Dynamic Web Project), an EBA (OSGi Application Project) file or an
EAR (Enterprise Application Archive) file, in a CICS bundle.

Restriction: EBA files are not supported in Java EE 8 and upwards.

CICS bundles are a unit of deployment for an application. All CICS resources in the bundle are
dynamically installed and managed together. Create CICS bundle projects for application components
that you want to manage together.

4. Deploy the CICS bundle projects to zFS and install the CICS bundles in the Liberty JVM server.

Results
The application is running in a JVM server.

Linking to Java applications in a Liberty JVM server by using the
@CICSPxogram annotation

By adding the @CICSProgram annotation to your Java programs, you allow CICS programs to link

to Enterprise Java or Spring Boot applications running in a Liberty JVM server using the CICS LINK
command. The syntax also supports using the Java program as the initial program of a CICS 3270

transaction, or as the target of a START, or START CHANNEL or RUN TRANSID command.

To be linked to by a CICS program, an Enterprise Java application needs to be a plain Java object (POJO)
packaged in a Web ARchive (WAR) or Enterprise Application Archive (EAR). A Spring Boot application

can be packaged in a WAR or a Java Archive (JAR). You cannot link to an EJB, a CDI bean, or an OSGi
application (EBA). Dependency injection in the POJO is not supported, including injecting EJBs using
@EJB. Instead, you can use a JNDI lookup to obtain a reference to a resource such as an EJB. This
information applies to CICS integrated-mode Liberty only. In a Spring Boot application, injection using an
annotation such as @Autowizred is fully supported.

There are three main reasons for linking to a Java application from a CICS program:

« Java code is part of an existing web application and you want to link it to a CICS application. You only
need to maintain a single piece of logic and your code can access CICS resources by using JCICS APIs.

« You want to write a new piece of function in Java as part of your CICS application. For example, you
might want to use third party libraries or APIs that already exist in Java.

« You want to re-implement existing COBOL applications in Java. For example, you might want to reduce
the cost of maintenance and make the most of your Java skills, or you might want your applications to
be eligible to run on specialty engines rather than general processors.

When you link to a Java application from a CICS program, CICS sends a message to a JCA resource
adapter running inside Liberty. The JCA resource adapter links to the target Java application on the same
CICS task as the calling program. The Java application runs under the same unit-of-work (UOW) as the
calling program, so any updates made to recoverable CICS resources are committed or backed out when
the transaction ends. However, when the Java application is invoked, there is no JTA transaction context.
If the application starts a JTA transaction, a syncpoint is performed to commit the CICS UOW, and create
a new one. This also occurs if a JTA transaction is started by the container on behalf of the application, for
example if the application calls an EJB with the REQUIRED transaction attribute.

As best practice, the code that is linked by the CICS program must be part of your application's business
logic (rather than presentation logic). For example, it would not make sense to link a servlet from a CICS
program because no HTTP request is involved.

Configuring a Liberty JVM server to link from CICS programs to Enterprise Java or
Spring Boot applications

To configure your Liberty JVM server to support linking to Enterprise Java or Spring Boot applications, add
the cicsts:1link-1.0 feature to servexr.xml. Ensure that you add the feature before deploying the
Java applications.

122 CICS TS for z/OS: Java Applications in CICS

Security

When you link to an Enterprise Java or a Spring Boot application from a CICS program, the Java
application runs under the same CICS security context as the calling task. This means that the user

ID of the calling CICS task is used to authorize access to any resources accessed by using the JCICS API
from the application. Web security authentication mechanisms such as <auth-constraint> rules in the
web . xml do not apply in this situation.

In addition to the CICS task user ID, Liberty also creates a Java security Subject for the linked to
application. This Subject can be used for Java security role authorization on called components such as
EJB session beans by using the @RolesAllowed annotation. This Subject is set to the same user ID as
the CICS task user ID when the cicsts:security-1.0 feature is present in your server.xml. Liberty
does not authenticate the Subject user ID. Liberty checks that the user ID is present in the Liberty security
registry, and then asserts the CICS task user ID as the Subject user ID. For more information, see The
Java EE Tutorial.

If you exclude the cicsts:security-1.0 feature from your server. xml, the Java application is linked
to with the Liberty unauthenticated user ID, which by default is WSGUEST.

If you are not using a SAF registry for the Liberty server, but the task user ID is present in the non-SAF
Liberty registry, then the task user ID is still passed to the application. If the task user ID is not present in
the non-SAF Liberty registry, the Java application is linked to with the Liberty unauthenticated user ID.

If your Liberty server requires that the cicsts:security-1.0 is configured for Web application
security, but the linked to Java application does not perform Java security role authorization, setting

the Java system property com.ibm.cics.jvmserver.wlp.security.subject.create=falseis
recommended. This improves performance by ensuring that the assertion of the CICS task user ID as the
Java Subiject is not attempted.

When you link to Spring Boot applications from a CICS program, the CICS user ID is not passed to Spring
security by default. Spring Boot offers configuration and programmatic options to achieve this. For more
information, see Spring Boot Java applications for CICS, Part 2: Security, and Configuring security for a
Liberty JVM server.

Preparing Java applications in a Liberty JVM server to be called by a CICS
program

You can use the @CICSProgram annotation to enable a Java method to be called by a CICS application.
CICS creates the PROGRAM resource for you. The application runs in a Liberty JVM server. Spring Boot
applications can be deployed in a WAR or JAR. Enterprise Java applications can be deployed in a WAR or
EAR.

Before you begin

Identify which Java class and method you want to call. Then, while adhering to site standards and CICS
naming rules, determine a suitable CICS program name.

Ensure that the Liberty JVM server is configured to enable linking to the type of application that you
require. For more information, see Linking to Java applications in a Liberty JVM server by using the
@CICSProgram annotation.

Note: To avoid concurrency issues, JCICS fields should be defined within the link-target method, or a
subsequent prototype-scoped Bean, and not on the linked-to component class.

Procedure
1. Add the @CICSProgram annotation class to the classpath of your Web Project.

« CICS Explorer If you are using the preinstalled IBM CICS SDK for Java in CICS Explorer, the SDK
includes the Liberty JVM server libraries, which provide the @CICSProgram annotation. Add the
CICS with Enterprise Java and Liberty library to your Java project by right-clicking the project and
configuring the Build Path. This will also provide the CICS annotation processor dependency. For

Chapter 3. Developing Java applications 123

https://docs.oracle.com/javaee/7/tutorial/security-javaee002.htm#BNBYL
https://docs.oracle.com/javaee/7/tutorial/security-javaee002.htm#BNBYL
https://developer.ibm.com/tutorials/spring-boot-java-applications-for-cics-part-2-security/
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/link_2_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/link_2_liberty.html

detailed instructions on configuring the Build Path, see Step 1 in “Creating a Dynamic Web Project”
on page 116.

« GradleMaven If you're using your own build toolchain, you need to declare dependency on the
com.ibm.cics.server.invocation.annotations artifact that's available on Maven Central
or use the com.ibm.cics.server.invocation.annotations. jax file. For more information,
see “Managing Java dependencies using Gradle or Maven” on page 46 and “Manually importing
Java libraries” on page 54.

2. Create a class to contain the methods that CICS calls.

Creating a class is good practice because it keeps the CICS specific code separate from the rest of your
application.

3. Create a method for each CICS PROGRAM resource to be created.
4. Annotate each method with the @ ICSProgram annotation, giving it a parameter of the PROGRAM
name, such as @CICSProgram("PROGNAME").

CICS PROGRAM names:

« Must be 1 - 8 characters;
« Must match the pattern A-Z a-z 0-9 $ @ 4

Example of a simple class with a single method, annotated with the @CICSProgram annotation:

public class CustomerLinkTarget

@CICSProgram("CUSTGET")
public void getCustomex ()

// do work here
%
5. Enable annotation processing for the Web Project.
« CICS Explorer If you are using CICS Explorer, either:

— Hover over a @CICSProgram annotation with a warning underline and use the quick-fix to enable
annotation processing, or:

— Right-click the Web Project and select Properties. Search for the Annotation Processing page.
Check both Enable project-specific settings and Enable annotation processing.

« GradleMaven If you're using a build toolchain such as Gradle or Maven, configure the Java
compiler to use com.ibm.cics.server.invocation as an annotation processor, as described
in Managing Java dependencies using Maven or Gradle.

6. Validate the annotation is correctly specified.

e CICS Explorer If you are using CICS Explorer, validation happens automatically to ensure that your
annotation is correctly positioned and that the method that it annotates and the containing class
fulfills the following requirements.

- Maven If you're using Maven in Eclipse, you can use the m2e-apt plugin to get the annotation
processing configured in Eclipse based on the dependencies specified in your pom. xml file.

The annotation:

« Must be on a method;

« Must have a value attribute of a PROGRAM name.
The method:

« Must be concrete (not abstract);

« Must be public;

- Must have no arguments;

« Must be declared void.

124 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
https://marketplace.eclipse.org/content/m2e-apt

The class:

« Must have a constructor with no arguments (implicit or explicit), unless all annotated methods are
static;

« Must be top level (not nested or anonymous);

« Must not have more than one method that is annotated with the same PROGRAM name.

. Write the content of the annotated method. The content is likely to involve the following stages:

a) Obtain containers from the channel;

b) Obtain input data from containers in a channel,

c) Use data mapping code to convert the input data to Java objects;

d) Call the application business logic;

e) Use data mapping code to convert the resulting Java objects to output data;

f) Place the output data in containers in a channel.

Example of a class with a single method, annotated with the @CICSProgram annotation, and code to
take input data from a container and put output data to a container:

public class CustomerLinkTarget

@CICSProgram("CUSTGET")
public void getCustomex ()
1

Channel currentChannel = Task.getTask().getCurrentChannel();
Container dataContainer = currentChannel.getContainexr ("DATA");

// do work here

Container resultContainer = currentChannel.createContainer("RESULT");
byte[] results = null; // change this to be the result of the work
resultContainer.put(results);

%
. Build the application.

« CICS Explorer If you are in CICS Explorer, you can right-click the Web Project and select Export >
WAR file, or right-click a containing CICS Bundle Project and select Export Bundle to z/0S UNIX
file system.

- If you are using the CICS build toolkit, the annotation processor is invoked automatically.

- GradleMaven If you are building the Java code by using other tools, ensure that the dependency
on the CICS annotation and the annotation processor configuration are correctly specified
by using the artifacts on Maven Central. If you've done that in Steps “1” on page 123
and “5” on page 124, they are resolved automatically during build. Otherwise, you must
ensure the com.ibm.cics.server.invocation.annotations.jar JAR file (which defines
the @CICSProgram annotation) is on the classpath of the Java compiler. Also, ensure that the
com.ibm.cics.server.invocation.jar JAR file (containing the annotation processor) is on the
classpath of the Java compiler, or is otherwise specified in the ~processoxpath option. You can
find both JAR files in the usshome /1ib directory on z/OS UNIX, where usshome is the value of
the USSHOME system initialization parameter.

« If you are using tools other than Gradle or Maven, you must ensure that the
com.ibm.cics.server.invocation.annotations.jar JAR file (which defines the
@CICSProgram annotation) is on the classpath of the Java compiler. Ensure that the
com.ibm.cics.server.invocation.jar JAR file (containing the annotation processor) is on
the classpath of the Java compiler or is otherwise specified in the -processorpath option. You can
find both JAR files in the usshome/1ib directory on z/OS UNIX, where usshome is the value of the
USSHOME system initialization parameter.

« If the class is packaged in a library JAR inside the WEB-INF /1ib directory of a WAR file, export the
generated metadata when you are building the JAR. CICS Explorer In CICS Explorer, you can do
this by adding the library project to the deployment assembly of the Dynamic Web Project. From the
properties dialog for the Dynamic Web Project, choose the Deployment Assembly page, click the Add

Chapter 3. Developing Java applications 125

button, and select the library project. CICS does not support @ ICSProgram annotations on classes
that are packaged in a utility JAR within an EAR file.

Note: The CICS annotation processor generates additional classes and XML files within the
com.ibm.cics.sexrver package to represent your annotated resources, alongside your annotated
code.

9. Deploy the application.

Results

If the application is installed by a CICS bundle, PROGRAM resources are created as the CICS bundle
becomes ENABLED. If the application is installed directly from server.xml or from a file by using an
<application> element; PROGRAM resources are created as the application is installed.

You can now link to the Java program from another CICS program by using:

EXEC CICS LINK PROGRAM("CUSTGET") CHANNEL ()

Preparing a Spring Boot application to be called by a CICS program

With CICS TS APAR PH14856, you can use annotations to enable a Java method to be invoked by a CICS
application - CICS creates the PROGRAM resource for you. The Spring Boot application runs in a Liberty
JVM server, and can be deployed within a JAR or WAR.

Before you begin
First, identify which Java class and method you want to call. Then, adhering to site standards and CICS
naming rules, determine a suitable CICS program name.

Make sure that the Liberty JVM server is configured to enable linking to Spring Boot applications. For
more information, see Linking to Java applications in a Liberty JVM server by using the @CICSProgram
annotation.

Note: To avoid concurrency issues, JCICS fields should be defined within the link-target method, or a
subsequent prototype-scoped Bean, and not on the linked-to component class.

Procedure
1. Add the @CICSProgram annotation class to the classpath of your project.
« CICS Explorer If you are using the preinstalled IBM CICS SDK for Java in CICS Explorer, the SDK
includes the Liberty JVM server libraries, which provide the @CICSProgram annotation.

« GradleMaven If you're using your own build toolchain, you need to declare dependence on the
com.ibm.cics.server.invocation.annotations artifact that's available on Maven Central
or use the com.ibm.cics.server.invocation.annotations. jar JAR file as described in
Managing Java dependencies using Maven or Gradle.

2. Create a class to contain the methods that CICS calls. Creating a class keeps the CICS-specific code
separate from the rest of your application.

3. Create a method for each CICS PROGRAM resource to be created.

4. Annotate each method with the @CICSProgram annotation, giving it a parameter of the PROGRAM
name, such as @CICSProgram("CUSTGET").

CICS PROGRAM names:

« Must be 1 - 8 characters;
« Must match the pattern A-Z a-z 0-9 $ @ .

Example of a simple class with a single method, annotated with the @CICSProgram annotation:

@Component
public class CustomerLinkTarget

126 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/link_2_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/link_2_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html

@CICSProgram("CUSTGET")
public void getCustomex ()

// do work here

k

Add targetType = TargetType.SPRINGBEAN if your class does not contain @Service,
@Repository, @Controller, or @Component annotations.
public class CustomerLinkTarget

@CICSProgram(value ="CUSTGET", targetType = TargetType.SPRINGBEAN)
public void getCustomexr ()

// do work here
k
. Enable annotation processing for the project.
« CICS Explorer If you are using CICS Explorer, either:

— Hover over a @CICSProgram annotation with a warning underline and use the quick-fix to
enable annotation processing, or:

— Right-click the project and select Properties. Search for the Annotation Processing page.
Check both Enable project-specific settings and Enable annotation processing.

- GradleMaven If you're using a build toolchain such as Gradle or Maven, configure the Java
compiler to use com.ibm.cics.server.invocation as an annotation processor, as described
in Managing Java dependencies using Maven or Gradle.

. Validate the annotation is correctly specified.

« CICS Explorer If you are using CICS Explorer, validation happens automatically to ensure that your
annotation is correctly positioned and that the method that it annotates and the containing class
fulfills the following requirements.

- Maven If you're using Maven in Eclipse, you can use the m2e-apt plugin to get the annotation
processing configured in Eclipse based on the dependencies specified in your pom. xml file.

The annotation:

« Must be on a method.
« Must have a value attribute of a PROGRAM name.

The method:

« Must be concrete (not abstract).
» Must be public.
« Must have no arguments.

The class:

« Must be top level (not nested or anonymous).

« Must not have more than one method that is annotated with the same PROGRAM name.

. Write the content of the annotated method. The content is likely to involve the following stages:
a) Obtain containers from the channel.

b) Obtain input data from containers in a channel.

¢) Use data-mapping code to convert the input data to Java objects.

d) Call the application business logic.

e) Use data mapping code to convert the resulting Java objects to output data.

f) Place the output data in containers in a channel.

Chapter 3. Developing Java applications 127

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
https://marketplace.eclipse.org/content/m2e-apt

Example of a class with a single method, annotated with the @CICSProgram annotation, and code to
take input data from a container and put output data to a container:

@Component
public class CustomerLinkTarget

@CICSProgram("CUSTGET")
public void getCustomex ()

Channel currentChannel = Task.getTask().getCurrentChannel();
Container dataContainer = currentChannel.getContainer ("DATA");

// do work here

Container resultContainer = currentChannel.createContainer("RESULT");
byte[] results = null; // change this to be the result of the work
resultContainer.put(results);

3

8. Ensure that the generated CICS proxy class is scanned for annotations by Spring.

The CICS annotation processor generates a proxy class (a Spring bean) which needs to be scanned
for annotations by the Spring framework. If you use the @SpringBootApplication annotation within
the same package or a parent package, this happens automatically.

The annotation processor generates the proxy class in a sub-package within the same package as the
class in which you annotate with @CICSProgram. CICS Explorer You can check these in the Navigator
view in CICS Explorer.

In this example, the class with the @CICSProgram annotation is in the package
springboot.link.app.ui.cics, and the annotation processor generates the proxy class in
springboot.link.app.ui.cics.cics.proxy

v i link
v Esapp
v G Ui
> zcics
v (& CiCS
v 5 proxy
s LinkBean_f1d440d94
s CICSCallable.class

If you are not already using annotations, you must explicitly configure Spring to scan for annotations:
a) Add component scan to your Spring component class.

@ComponentScan(basePackages = "org.example.cics.proxy")

If you are using XML configuration, you can enable component scan with:
<context:component-scan base-package="org.example.cics.proxy"/>
9. Build the application.

 CICS Explorer If you are in CICS Explorer, you can right-click the project and select Export ->
WAR file, orright-click a containing CICS Bundle Project and select Export Bundle to z/0S UNIX
file system.

« If you are using the CICS build toolkit, the annotation processor is invoked automatically.

« GradleMaven If you are building the Java code by using other tools, ensure that the dependency
on the CICS annotation and the annotation processor configuration are correctly specified
by using the artifacts on Maven Central. If you've done that in Steps “1” on page 126

128 CICS TS for z/OS: Java Applications in CICS

and “5” on page 127, they are resolved automatically during build. Otherwise, you must

ensure the com.ibm.cics.server.invocation.annotations.jar JAR file (which defines
the @CICSProgram annotation) is on the classpath of the Java compiler. Also, ensure that the
com.ibm.cics.server.invocation. jar JAR file (containing the annotation processor) is on
the classpath of the Java compiler, or is otherwise specified in the -processoxpath option. You
can find both JAR files in the usshome /1ib directory on z/OS UNIX, where usshome is the value
of the USSHOME system initialization parameter.

« If the class is packaged in a library JAR inside the WEB-INF/1ib directory of a WAR file, export the
generated metadata when you are building the JAR. CICS Explorer In CICS Explorer, you can do
this by adding the library project to the deployment assembly of the Dynamic Web Project. From the
properties dialog for the Dynamic Web Project, choose the Deployment Assembly page, click the
Add button, and select the library project.

10. Deploy the application.

Results

If the application is installed by a CICS bundle, PROGRAM resources are created as the CICS bundle
becomes ENABLED. If the application is installed directly from servexr. xml or from a file by using an
<application> element, PROGRAM resources are created as the application is installed.

You can now link to the Spring Boot application from another CICS program by using:

EXEC CICS LINK PROGRAM("CUSTGET") CHANNEL ()

Program Lifecycle

When a Java EE application is installed into Liberty the cicsts:1ink-1.0 feature searches for methods
that are annotated with @CICSProgram. For each one, it dynamically installs a PROGRAM resource.

If a Java EE application is installed into Liberty by using a CICS bundle, the PROGRAM resources are
created when the bundle is enabled. Otherwise, PROGRAM resources are created when Liberty installs
the application.

When an application is removed, CICS deletes any dynamically installed PROGRAM resources that are
associated with that application. If the application was installed by using a CICS bundle, CICS deletes
the programs when the bundle is disabled. If an application is removed while tasks that invoke the
application are still in progress, errors might occur. Therefore, disable any PROGRAM resources that
are associated with a Java EE application and allow work to drain before you remove the application.
Otherwise, programs are deleted when Liberty uninstalls the application.

In most cases, you do not need to create your own PROGRAM definition. You might want to create your
own PROGRAM definition if you do not want CICS to create one for you automatically, or if you want to
specify particular attributes. To create a private program as part of a CICS application that is deployed on
a platform, you must define it in a CICS bundle that is installed as part of that application. You can create
a program definition in the CSD, BAS or in a CICS bundle, and install it yourself. When CICS finds a method
that is annotated with @CICSProgram and a matching PROGRAM resource is already installed, CICS does
not replace it.

When you are creating your program definition, you must specify the same classname as the class that
contains the method that is annotated with @CICSProgram. You can optionally specify the method name
as well. CICS validates this information when the program is invoked. The JVMCLASS attribute should
contain the classname and optionally the method name in the format wlp: classname#methodname,
for example:

wlp:com.example.CustomerLinkTargeti#getCustomer

Chapter 3. Developing Java applications 129

PROGRAMs

exist
— P ENABLING ¢
: ot ! P DISABLED [¢—— ENABLED
, INSTALLED |
L [—

L DISCARDING [« T DISABLING [«

Figure 26. The lifecycle of a CICS bundle, showing when PROGRAM resources for @CICSProgram
annotations exist

PROGRAMs
exist
I 1
NOT 3
L i i i i o

Figure 27. The lifecycle of a stand-alone web application, showing when PROGRAM resources for
@CICSProgram annotations exist

Java Transaction API (JTA)

The Java Transaction API (JTA) can be used to coordinate transactional updates to multiple resource
managers.

You can use the Java Transaction API (JTA) to coordinate transactional updates to CICS resources and
other third party resource managers, such as a type 4 database driver connection within a Liberty JVM
server. In this scenario, the Liberty transaction manager is the transaction coordinator and the CICS unit
of work is subordinate, as though the transaction had originated outside of the CICS system.

Note: If you have the JVM profile option com.ibm.cics.jvmserver.wlp.jta.integration=false
and use autoconfigure, or are manually configuring server . xml and include the <cicsts_jta
Integration="false"/> element, then the CICS unit of work will not participate in the JTA transaction
and is committed or rolled back separately.

A type 2 driver connection to a local Db2 database using a CICS data source is accessed using the CICS
Db2 attachment. It is not necessary to use JTA to coordinate with updates to other CICS resources.

130 CICS TS for z/0S: Java Applications in CICS

In JTA you create a UserTransaction object to encapsulate and coordinate updates to multiple resource
managers. The following code fragment shows how to create and use a User Transaction:

InitialContext ctx = new InitialContext();
UserTransaction tran = (UserTransaction)ctx.lookup("java:comp/UserTransaction");

DataSource ds = (DataSource)ctx.lookup("jdbc/SomeDB");
Connection con = ds.getConnection();

// Start the User Transaction
tran.begin();

// Perform updates to CICS resources via JCICS API and
// to database resources via JDBC/SQLJ APIs

if (allok) £
// Commit updates on both systems
tran.commit();

1t else §
// Backout updates on both systems
tran.rollback();

%

If you are using an OSGi application, ensure that you include the following entry in the MANIFEST.MF:

Import-Package: javax.transaction;version="[1.1,2)"

Your development environment might not highlight this dependency by default. It is advisable to explicitly
check and to ensure the minimum version of 1.1 is specified. If you allow the runtime environment to
resolve the dependency itself, it might resolve to the lower version of the package from the underlying
JRE, and conflict with the Liberty runtime.

Unlike a CICS unit of work, a UserTransaction must be explicitly started using the begin () method.
Invoking begin () causes CICS to commit any updates that may have been made prior to starting the
UserTransaction. The UserTransaction is terminated by invoking either of the commit () or rollback()
methods, or by the web container when the web application terminates. While the UserTransaction is
active, the program can not invoke the JCICS Task commit() or rollback() methods.

The JCICS methods Task.commit () and Task.rollback() will not be valid within a JTA transaction
context. If either is attempted, an InvalidRequestException will be thrown.

The Liberty default is to wait until the first UserTransaction is created before attempting to recover any
indoubt JTA transactions. However, CICS will initiate transaction recovery as soon as the Liberty JVM
server initialization is complete. If the JVM server is installed as disabled, recovery will run when it is set
to enabled.

If you are using EJBs, see Using JTA transactions in EJBs .

Java Persistence API (JPA)

The JPA can be used to create object oriented versions of relational database entities for developers to
make use of in their applications.

You can use the JPA to provide annotations and XML extensions which you can use to describe tables
in their database and their contents, including data types, keys and relationships between tables.
Developers can use the API to perform database operations instead of using SQL.

CICS supports jpa-2.0, jpa-2.1, and jpa-2.2. Forinformation on how the versions differ, see Java
Persistence API (JPA) feature overview.

- Entity objects are simple Java classes, and can be concrete or abstract. Each represents a row in a
database table, and properties and fields are used to maintain states. Each field is mapped to a column
in the table, and key information about that particular field is added in; for example, you can specify
primary keys, or fields that can't be null.

@Entity
@Table(name = "JPA")
public class Employee implements Serializable

Chapter 3. Developing Java applications 131

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_apps_ejb.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_jpa_feat_overview.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_jpa_feat_overview.html

@Id
@Column(name = "EMPNO")
private Long EMPNO;

@Column(name = "NAME", length = 8)
private String NAME;

private static final long serialVersionUID = 1L;
public Employee()

super () ;

public Long getEMPNO()
%

return this.EMPNO;

public void setEMPNO(Long EMPNO)
1
this.EMPNO = EMPNO;

public String getNAME()
]
return this.NAME;

public void setNAME(String NAME)
%
this.NAME = NAME;
¥

« The EntityManagerFactory is used to generate an EntityManagexr for the persistence unit.
EntityManager maintains the active collection of entity objects being used by an application.
You can use the EntityManager class to initialize the classes and create a transaction for managing
data integrity. Next, you interact with the data using the Entity class get and set methods, before
using the Entity transaction to commit the data.

The following example contains sample code to insert a record:

@WebServlet("/Create")
public class Create extends HttpServlet
1

private static final long serialVersionUID = 1L;

@PersistenceUnit(unitName = "com.ibm.cics.test.wlp.jpa.annotation.cics.datasource")
EntityManagerFactory emf;

InitialContext ctx;

/**

* @throws NamingException

* @see HttpServlet#HttpServlet()
*/

public Create() throws NamingException

super();
ctx = new InitialContext();

3

/**

* @see HttpServlet#doGet(HttpServletRequest request,

HttpServletResponse response)

*/

protected void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException

// Get the servlet parms
String id = request.getParameter("id");
String name = request.getParameter("name");

// Create a new employee object
Employee newEmp = new Employee();
newEmp.setEMPNO (Long.valueOf(id));
newEmp . setNAME (name) ;

132 CICS TS for z/OS: Java Applications in CICS

// Get the entity manager factory
EntityManager em = emf.createEntityManager();

// Get a user transaction
UsexrTransaction utx;

try

]
// Start a user transaction and join the entity manager to it
utx = (UserTransaction) ctx.lookup("java:comp/UserTransaction");

utx.begin();
em.joinTransaction();

// Persist the new employee
em.persist(newEmp);

// End the transaction
utx.commit();

catch(Exception e)

throw new ServletException(e);

response.getOutputStream() .println ("CREATE operation completed");
3

« @PersistenceUnit expresses a dependency on an EntityManagerFactoxry and its associated
persistence unit. The name of the persistence unit as defined in the persistence.xml file. To
connect the entities and tables to a database we then create a pexsistence. xml file in our
bundle. The persistence.xml file describes the database that these entities connect to. The file
includes important information such as the name of the provider, the entities themselves, the database
connection URL and drivers.

The following example contains a sample persistence.xml:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.0"
xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

<persistence-unit name="com.ibm.cics.test.wlp.jpa.annotation.cics.datasource">
<jta-data-source>jdbc/jpaDataSource</jta-data-source>

<class>com.ibm.cics.test.wlp.jpa.annotation.cics.datasource.entities.Employee</class>

<properties>
<property name="openjpa.LockTimeout" value="30000" />
<property name="openjpa.Log" value="none" />
<property name="openjpa.jdbc.UpdateManager" value="operation-order" />
</properties>
</persistence-unit>
</persistence>

Enterprise JavaBeans (EJB)

Enterprise JavaBeans (EJB) is a Java API, and a subset of the Java EE specification. EJBs contain the
business logic of an application, and are fully supported by CICS Liberty, including the Lite subset.

The Liberty features that provide the support for EJBs are:

Chapter 3. Developing Java applications 133

Table 30. Liberty features that provide support

Feature

Support

Java EE version

ejbLite-3.1

This feature enables the Lite
subset of the EJB technology as
defined in the EJB specification.
This subset includes support for
local session beans that are
written to the EJB 3.x APIs.

Java EE 6

mdb-3.1

This feature enables the
message-driven bean subset of
the EJB technology, which is
similar to the support that

the ejbLite feature enables for
session beans.

Java EE 6

ejbLite-3.2

This feature enables the Lite
subset of the EJB technology as
defined in the EJB specification.
This subset includes support

for local session beans that

are written to the EJB 3.x

APIs, non-persistent EJB timers,
and asynchronous local interface
methods.

Java EE 7

mdb-3.2

This feature enables the
message-driven bean subset of
the EJB technology, which is
similar to the support that

the ejbLite feature enables for
session beans.

Java EE 7

ejbHome-3.2

Enables support of the EJB 2.x
APIs, specifically, support for

the javax.ejb.EJBLocalHome
interface. The
javax.ejb.EJBHome interface
is also supported when combined
with the ejbRemote feature.

Java EE 7

ejbRemote-3.2

Enables support for remote EJB
interfaces

Java EE 7

ejbPersistentTimers-3.2

Enables support for persistent
EJB timers.

Java EE 7

ejb-3.2

Enables full EIB 3.2 support.
Covers all EJB 3.2 technology,
including remote EJB technology.

Java EE 7

Procedure

Enable the feature in the server. xml file. For example:

<featureManager>

<feature>ejbh-3.2</feature>

</featureManager>

For more information, see:

134 CICS TS for z/OS: Java Applications in CICS

- Developing EJB 3.x applications for information about developing EJB applications by using WebSphere
Developer Tools.

- Developing Enterprise bean (EJB) persistent timer applications for information about developing EJB
persistent timer applications.

« Using enterprise JavaBeans applications that call local EJB components in another application for
information on using enterprise JavaBeans applications that call local EJB components in another
application.

Creating an Enterprise JavaBeans (EJB) project

To develop EJIBs for your Java application, you can create an EJB project.

Before you begin
Ensure that the web development tools are installed in your Eclipse IDE. For more information, see
“Setting up your development environment” on page 38.

About this task
The CICS Explorer help provides full details on how you can complete each of the following steps to
develop and package EJB applications.

Procedure

1. Create an EJB project for your application.

2. Develop your EJB application. You can use the JCICS API to access CICS services, JDBC to access DB2
and JMS to access IBM MQ.

3. Optional: To secure the application, you can use security annotations, or you can specify security
constraints in an ejb-jar.xml file. For more information, see Enterprise application security.

4. Add your EJIB project to an Enterprise Application Project (EAR).

Results
Your development environment is set up, you created an EJB project, and packaged it for deployment.

Using JTA transactions in EJBs

How to use JTA transactions in Enterprise JavaBeans (EJBs) on Liberty.

About this task

EJBs are Java objects that are managed by the Liberty JVM server, allowing a modular architecture of
Java applications. The Liberty JVM server supports EJB Lite 3.1, EJB Lite 3.2, or EJB 3.2. EJBs are
deployed to a Liberty server using an Enterprise Application Archive (EAR) file created from an Enterprise
Application Project. Enterprise Application Projects can contain both EJB and Web projects.

EJB Lite is enabled by adding the relevant feature ejbLite-3.1 orejbLite-3.2 tothe server.xml
configuration file. EJB is enabled by adding ejb-3.2 to the server.xml configuration file. EJBs are
deployed into a container. This container works in the background ensuring that aspects like session
management, transactions and security are adhered to.

EJBs support two types of transaction management: container that is managed and bean managed.
Container managed transactions provide a transactional context for calls to bean methods, and are
defined using Java annotations or the deployment descriptor file ejb-jar.xml. Bean managed
transactions are controlled directly using the Java Transaction API (JTA) . In both cases, the CICS® unit of
work (UOW) remains subordinate to the outcome of the Liberty JTA transaction assuming that you have
not disabled CICS JTA integration using the <cicsts_jta Integration="false"/> server.xml
element.

There are six different transaction attributes that can be specified for container managed transactions:

Chapter 3. Developing Java applications 135

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wdt.doc/topics/tejb3.htm
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_ejb_perstimer.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_ejb_local.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wdt.doc/topics/cjavaeesecurity.htm

Mandatory

Required
« RequiresNew
e Supports

NotSupported
« Never

A JTA transaction is a distributed UOW as defined in the JEE specification. Setting of a method's
transaction attribute determines whether or not the CICS task, under which the method executes, runs
under its own UOW or is part of a wider, distributed JTA transaction.

Note: Although it is respected by the Liberty JTA transaction system, the transaction attribute
NotSupported does not integrate with and is not supported by the CICS UOW. This applies to EJBs
in general.

The following table describes the resulting transactional context of an invoked EJB method, depending
on the transaction attribute and whether or not the calling application already has a JTA transactional
context.

Important: Liberty does not support outbound or inbound transaction propagation. For more information,
see Using enterprise JavaBeans with remote interfaces on Liberty.

Table 31. EJB transaction support
Transaction No JTA transaction Pre-existing JTA transaction | Accessing a remote EJB with a pre-existing JTA transaction Exception
Attribute behavior
Mandatory Throws exception Inherits the existing JTA Throws exception Rollback
EJBTransactionRequiredException | transaction. com.ibm.websphere.csi.CSITransactionMandatoryException.
Required EJB container creates new JTA Inherits the existing JTA Throws exception Rollback
This is the transaction. transaction. com.ibm.websphere.csi.CSITransactionRequiredException.
default
transaction
attribute.
RequiresNew EJB container creates new JTA Throws exception EJB container creates a new JTA transaction that is managed by the Rollback
transaction. javax.ejb.EJBException. | remote server.
Supports Continues without a JTA transaction. Inherits the existing JTA Throws exception Rollback if
transaction. com.ibm.websphere.csi.CSITransactionSupportedException. called
from JTA
NotSupported Continues without a JTA transaction. Suspends the JTA transaction The remote server continues without a JTA transaction. No
but not the CICS UOW. rollback
Never Continues without a JTA transaction. Throws exception The remote server continues without a JTA transaction. No
javax.ejb.EJBException. rollback

Important: Calling a method marked as NotSuppoxrted will suspend the JTA transaction but not
suspend the CICS UOW. Any modification of CICS resources during this method call will still be
recoverable.

Note: If JTA integration is enabled, the transaction attribute RequiresNew is supported by a CICS Liberty
JVM server, with the restriction that the CICS UOW cannot be nested. Attempting to call a method that is
marked as RequiresNew when already in a JTA transaction causes an exception to be thrown.

If you call an EJB from a servlet or a POJO and do not explicitly configure the EJB transactional attribute,
then by default, container-managed transaction management applies, as does a default transaction
attribute of Required. This means each call to the EJB starts a new JTA transaction with a subordinate
CICS UOW and commits the JTA transaction after each call. If you do not require the use of JTA with EJBs
consider using the transaction attribute Never.

For information about additional Enterprise JavaBeans (EJB) feature restrictions, see Liberty: Runtime
environment known issues and restrictions.

136 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_ejb_remote.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_restrict.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_restrict.html

Enterprise Java Bean (EJB) methods with remote interfaces

EJB methods with remote interfaces can be remotely accessed or hosted by CICS Liberty by using
RMI-IIOP technologies. You can enable remote EJB support with the ejbRemote-3. 2 feature.

When you use remote EJB interfaces, there are considerations that you must be aware of. For more
information, see Using enterprise JavaBeans with remote interfaces on Liberty.

Accessing EJB methods with remote interfaces

1. To configure CICS Liberty to run an application that accesses EJB methods with remote interfaces, you
must enable the ejbRemote-3. 2 feature by adding the feature into the server. xml file, as follows:

<featureManager>
<feature>ejbRemote-3.2</feature>
</featureManager>

2. Configure your application binding files, for example ibm-*-bnd.xml, for remote EJB references that
are defined either in the deployment descriptor <ejb-ref>, or with source code annotations, for
example @EJB. A binding is not required for EJB references that provide a lookup name, either on the
annotation or in the deployment descriptor. In the binding file, the EJB reference can be bound by
using one of the java: names for an EJB or with one of the corbaname: names:

@EJB(name="TestBean")
TestRemoteInterface testBean;

The binding is defined:

<ejb-ref name="TestBean" binding-name=
"corbaname:rir:#ejb/global/TestApp/TestModule/TestBean!test.TestRemoteInterface" />

3. Configure your application client to include stub classes.

Hosting EIB methods with remote interfaces

1. To host EIBs in CICS Liberty so they can be called by other JVMs, you must enable the
ejbRemote-3.2 feature by adding the feature to the sexrver. xml file, as follows:

<featureManager>
<feature>ejbRemote-3.2</feature>
</featureManager>

2. Configure the IIOP server to customize ports and security settings. For more information, see
Configuring IIOP-RMI Transport for Remote EJBs.

3. Create an EJB application. For more information, see Creating an Enterprise JavaBeans (EJB) project.

4. Generate stub classes. In Eclipse, right-click the EJB project and select Java EE Tools > Create EJB
Client JAR.

5. Deploy the EJB application to CICS Liberty as part of an EAR. For more information, see Creating an
Enterprise Application project.

6. Check the Liberty messages. 1og file to ensure that the EJB is enabled and bound to a namespace.

You should see this message:
CNTRO167I: The server is binding the ejb.remote.ejb.view.MyBeanRemote
interface of the MyBean enterprise bean in the ejb.remote.ejb.jar module of the

ejb.remote application. The binding location is:
java:global/ejb.remote/ejb.remote.ejb/MyBean!remote.ejb.view.MyBeanRemote

Chapter 3. Developing Java applications 137

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_ejb_remote.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/config_iiop.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_ejb.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_ear.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_ear.html

Configuring IIOP-RMI transport for remote EJBs

Internet Inter-ORB Protocol Remote Method Invocation (IIOP-RMI) transport is used by CICS Liberty to
communicate with EJB methods that have remote interfaces. This communication can be secured by
using Common Secure Interoperability Protocol Version 2 (CSIv2).

IIOP-RMI is used by CICS Liberty as the technology for calling EJB methods with remote interfaces. Using
the ejbRemote-3. 2 feature supports both inbound and outbound IIOP-RMI calls.

Inbound calls allow CICS Liberty to listen as an object request broker (ORB) on a TCP/IP port for IIOP-
RMI requests and call the target EJB method. See “Configuring Inbound IIOP Communication” on page
138 for details.

Outbound calls are where CICS Liberty makes a request to an ORB to start an EJB method. Outbound
calls can be made to the same JVM server the call was made for, or any other Java virtual machine (JVM)
capable of acting as an ORB. See “Configuring Outbound IIOP Communication” on page 138 for details.

This communication can be secured by using CSIv2, a technology that satisfies the CORBA (Common
Object Request Broker Architecture) for authentication, delegation, and privileges. CSIv2 also supports
the use of transport layer security (TLS). See Configuring CSIv2 to secure IIOP Communication for details.

For more information, see Common Secure Interoperability version 2 (CSIv2).

Configuring Inbound IIOP Communication
Enable the ejbRemote-3. 2 feature by adding it to the sexver. xml file.

<featureManager>
<feature>ejbRemote-3.2</feature>
</featureManager>

Optionally, you can configure an IIOP endpoint in the server. xml file.
<iiopEndpoint id="defaultIiopEndpoint" host="host.example.com" iiopPort="2809" />

Important: By default the IIOP endpoint listens on localhost:2809. The default ORB references the
IIOP endpoint defaultIiopEndpoint. See Configuring CSIv2 to secure IIOP Communication for more
information on configuring ORBs for inbound security.

Configuring Outbound IIOP Communication
Enable the ejbRemote-3.2 feature by adding it to the server. xml file.

<featureManager>
<feature>ejbRemote-3.2</feature>
</featureManager>

Optionally you can configure an ORB with the name service of the remote server.

<orb id="defaultOrb" nameService="corbaname::host.example.com:2809" />

Important: By default the ORB references the local IIOP endpoint defaultIiopEndpoint. See
Configuring CSIv2 to secure IIOP Communication for more information on configuring ORBs for outbound
security.

Configuring CSIv2 to secure IIOP communication
The following information covers some of the general cases for configuring both inbound and outbound
CSIv2 security for IIOP communication.

Inbound calls allow CICS Liberty to listen as an object request broker (ORB) on a TCP/IP port for IIOP-
RMI requests and call the target EJB method.

Outbound calls are where CICS Liberty makes a request to an ORB to start an EJB method. Outbound
calls can be made to the same JVM server the call was made for, or any other Java virtual machine (JVM)
capable of acting as an ORB.

138 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/config_iiop_csiv2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_csiv2overview.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/config_iiop_csiv2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/config_iiop_csiv2.html

In the following example, the client is the JVM making the outbound request and the server is the JVM
receiving the inbound request. Either one, or both of these, can be the CICS Liberty JVM server. For more
information, see Configuring Common Secure Interoperability version 2 (CSIv2) in Liberty.

Configuring CSIv2 to use TLS

Inbound

« Create a keystore that contains the certificate for the server.
<keyStore id="iiopKeyStore" ... />

« Create an SSL repertoire (the SSL element) that references the keystore.
<ssl id="iiopSSL" keyStoreRef="iiopKeyStore" />

- Create an IIOP endpoint with an IIOPS port.

<iiopEndpoint id="defaultIiopEndpoint" host="host.example.com" iiopPort="2809">
<iiopsOptions iiopsPort="9402" sslRef="iiopSSL" />
</iiopEndpoint>

Important: By default the IIOPs options ss1Ref references the defaultSSLConfig SSL repertoire.
Outbound

« Create a keystore. You can include a key that allows the keystore to trust a root certificate, which trusts
all the certificates that are signed by that certificate.

<keystore id="iiopTrustStore" ... />

« Create an SSL repertoire (the SSL element) that references the keystore.
<ssl id="iiopSSL" trustStoreRef="iiopTrustStore" ... />

« Create an ORB with the CSIv2 client policy.

<orb id="defaultOrb" nameService="corbaname::host.example.com">
<clientPolicy.csiv2>
<layers>
<transportlLayer sslRef="iiopSSL" />
</layers>
</clientPolicy.csiv2>
</oxrb>

Configuring CSIv2 to allow propagation of the user ID from the client to the server
Inbound

« Create an ORB with the CSIv2 server policy.

<orb id="defaultOrb">
<serverPolicy.csiv2>
<layers>
<attributelayer identityAssertionEnabled="true" />
</layers>
</serverPolicy.csiv2>
</orb>

« Optionally, you can specify one or more identities to be trusted by the server.

<attributelayer identityAssertionEnabled="true" trustedIdentities="MYUSER" />

Outbound
« Create an ORB with the CSIv2 client policy.

Chapter 3. Developing Java applications 139

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_csiv2.html

<orb id="defaultOrb" nameService="corbaname::host.example.com:2809">
<clientPolicy.csiv2>
<layers>
<attributelayer identityAssertionEnabled="true" />
</layers>
</clientPolicy.csiv2>
</oxb>

« Optionally, you can provide a trusted identity to be authorized by the server.

<attributelayer identityAssertionEnabled="true" trustedIdentity="MYUSER"
trustedPassword="MYPASSWD" />

Important: The trusted user must exist in a user registry on the server. The trustedPasswoxrd can be
encoded by using the Liberty securityUtility tool.

Configuring CSIv2 to use TLS Client Authentication
Inbound

« Create a keystore. You can include a key that allows the keystore to trust a root certificate, which trusts
all the certificates that are signed by that certificate.

<keyStore id="iiopTrustStore" ... />

« Create an SSL repertoire (the SSL element) that references the keystore.
<ssl id="iiopSSL" trustStoreRef="iiopTrustStore" ... />

« Create an IIOP endpoint with an IIOPS endpoint.

<iiopEndpoint id="defaultIiopEndpoint" host="host.example.com" port="2809">
<iiopsOptions iiopsPort="9402" sslRef="iiopSSL" />
</iiopEndpoint>

« Create an ORB with the CSIv2 server policy.

<orb id="defaultOrb">
<serverPolicy.csiv2>
<layers>
<attributelLayer identityAssertionEnabled="true" ... />
<transportLayer sslRef="iiopSSL" />
</layers>
</serverPolicy.csiv2>
</orb>

Outbound

 Create a keystore that contains the clients certificate.
<keyStore id="iiopKeyStore" ... />

« Create an SSL repertoire (the SSL element) that references the keystore.
<ssl id="iiopSSL" keyStoreRef="iiopKeyStore" />

« Create an ORB with the CSIv2 client policy.

<orb id="defaultOrb">
<clientPolicy.csiv2>
<layers>
<attributelayer identityAssertionEnabled="true" />
<transportLayer sslRef="iiopSSL" />
</layers>
</clientPolicy.csiv2>
</oxrb>

140 CICS TS for z/0S: Java Applications in CICS

Java Message Service (JMS)

Java Message Service (JMS) is an API that allows application components based on Java EE to create,
send, receive, and read messages. JMS support in Liberty is supplied as a group of related features that
support the deployment of JIMS resource adapters.

JMS can run in a managed mode in which queues, topics, connections, and other resources are created
and managed through server configuration. This includes the configuration of JMS connection factories,
queues, topics, and activation specifications. Alternatively it can run in unmanaged mode where all
resources are manually configured as part of the application. The Liberty embedded JMS messaging
provider is managed, and therefore all resources are set up as part of the server.xml configuration.

JMS specifications

The JMS specification level supported in a Liberty JVM server is IMS 2.0 support. IMS 2.0 support
(jms-2.0) enables the configuration of resource adapters to access messaging systems using the Java
Message Service API at the 2.0 specification level.

JMS clients
Different JMS client providers are supported in the Liberty JVM server through the following Liberty
features:

« WebSphere MQ JMS 2.0 client (wmgJmsClient-2.0) - the WebSphere MQ IMS client feature that
allows JMS 2.0 or 1.1 client applications to send and receive messages from a remote MQ server.

« WebSphere Application Server IMS 2.0 client (wvasImsClient-2.0) - WebSphere Application Server
client feature that allow JMS 2.0 or 1.1 client applications to send and receive messages from the
messaging engine that is enabled through the wasJmsServer feature.

« Any other IJMS resource adapter that complies with the JCA 1.6 specification can also be used in Liberty
by using generic JCA resource adapters links, see Overview of JCA configuration elements.

JMS providers
Liberty in CICS TS supports usage of the:
« Liberty embedded JMS messaging provider.

— WebSphere messaging server (wvasJmsServer-1.0) - the JMS server feature enables the embedded
JMS messaging provider to be hosted within Liberty by using the server feature so that a separate
JMS server does not need to be installed or configured, see Enabling IMS messaging for a single
Liberty server . The server can also be hosted in a separate Liberty instance either inside CICS or in
a Liberty server hosted in z/OS or on a distributed platform, see Enabling JMS messaging between
two Liberty servers . The WebSphere JMS messaging client component can also be configured to talk
to JMS via SIBUS running in a WebSphere Application Server, see Enabling interoperability between
Liberty and WebSphere Application Server traditional.

— WebSphere messaging security (wasImsSecurity-1.0) - the IMS security feature provides security
support for the embedded JMS messaging provider client and server components. The JMS security
feature can be used with the cicsts:security-1.0 feature to specify which users from the
security registry are to be used by a connection factory when authenticating requests against the
embedded JMS messaging server. For information on authorization, see Authorizing users to connect
to the messaging engine.

« JMS access to IBM MQ in a CICS standard-mode Liberty JVM server when the JMS application connects
using either bindings or client mode transport.

« JMS access to IBM MQ in a CICS integrated-mode Liberty JVM server when the JMS application
connects using the client mode transport.

 Third-party JMS resource adapters that comply with the JCA 1.6 specification.

Chapter 3. Developing Java applications 141

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_jca_config_overview.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_msg_embedded.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_single.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_single.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_multi.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_multi.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_interop.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_interop.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_sec_authorize.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_sec_authorize.html

Java Management Extensions API (JMX)
The Java Management Extensions API (JMX) is used for resource monitoring and management.

JMXis a Java framework and API that provides a way of exposing application information by using a
widely accepted implementation. Various tools, such as JConsole can then be configured to read that
information. The information is exposed by using managed beans (MBeans) - non-static Java classes with
public constructors. Get and set methods of the bean are exposed as attributes , while all other methods
are exposed as operations.

You can connect to JMX in a Liberty JVM server to view the attributes and operations of MBeans,

both locally and from a remote machine. A local connection requires adding the 1localConnector-1.0
feature to your server. xml and allows you to connect from within the same JVM server. Adding the
restConnector-1.0 feature to your sexrver.xml allows you to connect by way of a RESTful interface,
which provides remote access to JMX.

Using WebSphere MBeans to monitor your applications

1. To begin, you must acquire a reference to your MBeanServer. This example looks for the JvmStats
MBean and uses the £findMBeanSexver method to check which server the MBean is registered to.
Then, referring to the correct MBeanServer object, you can obtain reference to your MBean and get
data back from the attributes that it exposes. This example looks for the UpTime attribute of the
JvmStats MBean.

// Create an ObjectName object for the MBean that we're looking for.
ObjectName beanObjName = null;
beanObjName = new ObjectName ("WebSphere:type=JvmStats");

// Obtain the full list of MBeanServers.
java.util.List servers = MBeanServerFactory.findMBeanServer(null);
MBeanServer mbs = null;

// Iterate through our list of MBeanServers and attempt to find the one we want.
for (int i = 0; i < servers.size(); i++)

// Check if the MBean domain matches what we're looking for.
mbs = (MBeanServer)servers.get(i);

if (mbs.isRegistered(beanObjName))
1

Object attributeObj = mbs.getAttribute(beanObjName, "UpTime");
System.out.println("UpTime of JVM is: " + attributeObj + ".");
b

Remote connectivity to JMX in Liberty

Remote connectivity to JIMX in a Liberty JVM server requires use of an SSL connection and Java Platform,
Enterprise Edition (JEE) role authorization. The client code then obtains a reference to the remote MBean
using a JMXSexrviceURL.

1. All the JIMX MBeans accessed through the REST connector are protected by a single JEE role nhamed
administratox. To provide access to this role edit the server.xml and add the authenticated user
to the administrator role.

<administrator-role>

<user>myuserid</user>
<group>groupl</group>
</administrator-role>

For more information on using JEE roles, see Authorization using SAF role mapping.

2. A remote RESTful JMX client must access the Liberty JVM server by using SSL. To configure SSL
support for a Liberty JVM server, refer to topic Configuring SSL (TLS) for a Liberty JVM server using
RACF. In addition, the JMX client requires access to the restConnector client-side JAR file and an SSL
client keystore containing the server's signing certificate. The restConnector. jar comes as part of
the CICS WLP installation, which is available at &USSHOME ; /wlp/clients.

142 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee_app_role.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty_racf.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty_racf.html

3. In the client-side code, you need to create a JMXServiceURL object. This allows you to obtain
a reference to the remote MBeanServerConnection object. See example where <host> and
<httpsPort> match those of your server:

JMXServiceURL url = new JIMXServiceURL("service:jmx:rest://<host>:<httpsPort>/IBMIMXConnectorREST");
JMXConnector jmxConnector = JMXConnectorFactory.connect(url, environment);
MBeanServerConnection mbsc = jmxConnector.getMBeanServerConnection();

4. When you successfully obtain the connection, the MBeanServerConnection object provides the same
capability and set of methods as a local connection from the MBeanServer object.

For more information about the MBeans that are provided by WebSphere, see WebSphere Liberty: List of
provided MBeans.

Java Authorization Contract for Containers (JACC)

Liberty supports authorization that is based on the Java Authorization Contract for Containers (JACC)
specification in addition to the default authorization. When security is enabled in Liberty, the default
authorization is used unless a JACC provider is specified.

About this task

JACC enables third-party security providers to manage authorization in the application server. The default
authorization does not require special setup, and the default authorization engine makes all of the
authorization decisions. However, if a JACC provider is configured and set up for Liberty to use, all of

the enterprise beans and web authorization decisions are delegated to the JACC provider. JACC defines
security contracts between the Application Server and authorization policy modules. These contracts
specify how the authorization providers are installed, configured, and used in access decisions. To add the
jacc-1.5 feature to your Liberty server, add a third-party JACC provider which is not a part of Liberty.

You can develop a JACC provider to have custom authorization decisions for Java EE applications
by implementing the com.ibm.wsspi.security.authorization.jacc.ProviderService
interface that is provided in the Liberty server. The JACC specification, JSR 115,

defines an interface for authorization providers. In the Liberty server, you must

package your JACC provider as a user feature. Your feature must implement the
com.ibm.wsspi.security.authorization.jacc.ProviderService interface.

Procedure

1. Create an OSGi Bundle Project to develop the Java class.

Your project might have compile errors. To fix these errors, you need to import two packages,
javax.security.jaccand com.ibm.wsspi.security.authorization.jacc.

Edit the file MANIFEST . MF to import the missing package:

Manifest-Version: 1.0

Service-Component: OSGI-INF/myjaccExampleComponent.xml,
Bundle-ManifestVersion: 2

Bundle-Name: com.example.myjaac.osgiBundle

Bundle-SymbolicName: com.example.myjaac.osgiBundle

Bundle-Version: 1.0.0

Bundle-RequiredExecutionEnvironment: JavaSE-1.7

Import-Package: com.ibm.wsspi.security.authorization.jacc;version="1.0.0",
javax.security.jacc;version="1.5.0"

An example of the service component XML, myjaccExampleComponent.xml:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" immediate="true"
name="TestPolicyServiceProvider">

<implementation class="com.example.myjaac.osgiBundle.TestPolicyServiceProvider"/>

<property name="javax.security.jacc.policy.provider" type="String" value=""/>

<property name="javax.security.jacc.PolicyConfigurationFactory.provider" type="String" value=""/>

<service>

<provide interface="com.ibm.wsspi.security.authorization.jacc.ProviderService"/>

Chapter 3. Developing Java applications 143

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_mbeans_list.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_mbeans_list.html

</service>
</scr:component>

2. Create a Liberty Feature Project to add the previous OSGi bundle into the user Liberty feature, under
Subsystem-Content in the feature manifest file.

3. Refine the feature manifest to add the necessary OSGi subsystem content:
com.ibm.ws.javaee.jacc.1l.5; version="[1,1.0.200)"; location:="dev/api/spec/".

Subsystem-ManifestVersion: 1.0

IBM-Feature-Version: 2

IBM-ShortName: jaccl5CICSLiberty-1.0

Subsystem-SymbolicName: com.example.myjaac.libertyFeature;visibility:=public
Subsystem-Version: 1.0.0

Subsystem-Type: osgi.subsystem.feature

Subsystem-Content: com.example.myjaac.osgiBundle;version="1.0.0",
com.ibm.ws.javaee.jacc.1.5;version="[1,1.0.200)";location:="dev/api/spec/"

Manifest-Version: 1.0

If you need to add one more Subsystem-Content, you must add at least one space before you type the
content. If you do not add a space, CICS returns java.lang.IllegalArgumentException.

4. Export the Liberty Feature Project as a Liberty Feature (ESA) file.
5. FTP the ESA file to zFS.
6. Use the installUtility command to install the ESA file.

./wlpenv installUtility install myFeature.esa

7. Add the jacc-1.5 feature and the ESA file containing the JACC provider as a user feature to
server.xml.

<feature>jacc-1.5</feature>
<feature>usr:jaccl5CICSLiberty-1.0</feature>

Java Authentication Service Provider Interface for Containers (JASPIC)

The Java Authentication Service Provider Interface for Containers (JASPIC) specification defines a service
provider interface (SPI). Authentication providers, that implement message authentication mechanisms,
can be integrated in client or server message processing containers or runtimes.

About this task

Authentication providers that are integrated through the JASPIC interface, operate on network messages
that are provided by their calling container. The providers transform outgoing messages so that the source
of the message can be authenticated by the receiving container, and the recipient of the message can be
authenticated by the message sender. Incoming messages are authenticated and returned to their calling
container, which is the identity that is established as a result of the message authentication.

JSR 196 defines a standard SPI, and standardizes how an authentication module is integrated into
Java EE containers. A message processing model and details of a number of interaction points on the
client and server are provided. A compatible web container uses the SPI at these points to delegate the
corresponding message security processing to a server authentication module (SAM).

Liberty supports the use of third-party authentication providers that are compliant with the servlet
container that is specified in jaspic-1.1. The servlet container defines interfaces that are used by the
security runtime environment in collaboration with the web container. These start authentication modules
before and after a web request is processed by an application. Authentication that uses JASPIC modules
is used only when JASPIC is enabled in the security configuration.

Procedure

1. Create an OSGi Bundle Project to develop the Java class.

Your project might have compile errors. To fix these errors, you need to import two packages,
javax.security.auth.message and com.ibm.wsspi.security.jaspi. The Target Platform

144 CICS TS for z/OS: Java Applications in CICS

must be edited to add the missing JARs into the lists com.ibm.ws.security.jaspic from
<cics_install>/wlp/1lib directory and com.ibm.ws.javaee.jaspic.<version_number>
from <cics_install>/wlp/dev/api/spec directory. FTP these to your development system and
add them to the build path.

Edit the file MANIFEST . MF to import the missing package.

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: com.example.myjaspic.osgiBundle
Bundle-SymbolicName: com.example.myjaspic.osgiBundle
Bundle-Version: 1.0.0
Bundle-RequiredExecutionEnvironment: JavaSE-1.7
Import-Package: com.ibm.wsspi.security.jaspi;version="1.0.13",
javax.security.auth.message;version="1.0.0",
javax.security.auth.message.callback;version="1.0.0",
javax.security.auth.message.config;version="1.0.0",
javax.security.auth.message.module;version="1.0.0",
javax.servlet;version="2.7.0",
javax.servlet.http;version="2.7.0"

Service-Component: myjaspicExampleComponent.xml

An example of the service component XML, myjaspicExampleComponent.xml:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" name="com.example.myjaspic.osgiBundle">
<implementation class="com.example.myjaspic.osgiBundle.TestJASPICProviderService"/>
<service>
<provide interface="com.ibm.wsspi.security.jaspi.ProviderService"/>
</service>
</scr:component>

2. Create a Liberty Feature Project to add the previous OSGi bundle into the user Liberty feature, under
Subsystem-Content in the feature manifest file.

3. Edit the feature manifest to add the necessary OSGi subsystem content:
com.ibm.websphere.appserver.jaspic-1.1; type="osgi.subsystem.feature".

Subsystem-ManifestVersion: 1.0

IBM-Feature-Version: 2

IBM-ShortName: jaspicll1CICSLiberty-1.0

Subsystem-SymbolicName: com.example.myjaspic.libertyFeature;visibility:=public

Subsystem-Version: 1.0.0.201611081617

Subsystem-Type: osgi.subsystem.feature

Subsystem-Content: com.example.myjaspic.osgiBundle;version="1.0.0",
com.ibm.websphere.appserver.jaspic-1.1;type="osgi.subsystem.feature",
com.ibm.websphere.appserver.servlet-3.0;ibm.tolerates:="3.1";type="0sgi.subsystem.feature"

Manifest-Version: 1.0

If you need to add one more Subsystem-Content, you must add at least one space before you type the
content. If you do not add a space, CICS returns java.lang.IllegalArgumentException.

4. Export the Liberty Feature Project as a Liberty Feature (ESA) file.
5. FTP the ESA file to zFS.
6. Use installUtility to install the ESA file.

./wlpenv installUtility install myFeature.esa

7. Add the jaspic-1.1 feature and the ESA file containing the JASPIC provider as a user feature to
server.xml.

<feature>jaspic-1.1</feature>
<feature>usr:jaspicl11CICSLiberty-1.0</feature>

Java EE Connector Architecture (JCA)

JCA connects enterprise information systems such as CICS, to the JEE platform.

JCA supports the qualities of service for security credential management, connection pooling and
transaction management, provided by the JEE application server. Using JCA ensures these qualities

Chapter 3. Developing Java applications 145

of service are managed by the JEE application server and not by the application. This means the
programmer is free to concentrate on writing business code and need not be concerned with quality

of service. For information about the provided qualities of service and configuration guidance see the
documentation for your JEE application server. JCA defines a programming interface called the Common
Client Interface (CCI). This interface can be used with minor changes to communicate with any enterprise
information system.

The programming interface model

Applications that use the CCI have a common structure for all enterprise information systems. JCA
connects the enterprise information systems (EIS) such as CICS, to the JEE platform. These connection
objects allow a JEE application server to manage the security, transaction context and connection pools
for the resource adapter. An application must start by accessing a connection factory from which a
connection can be acquired. The properties of the connection can be overridden by a ConnectionSpec
object. After a connection has been acquired, an interaction can be created from the connection to make
a particular request. The interaction, like the connection, can have custom properties that are set by the
InteractionSpec class. To perform the interaction, call the execute() method and use record objects to
hold the data. For example:

ConnectionFactory cf = <Lookup from JINDI namespace>
Connection ¢ = cf.getConnection(ConnectionSpec);
Interaction i = c.createInteraction();
InteractionSpec is = newInteractionSpec();
i.execute(spec, input, output);

i.close();

c.close();

The example shows the following sequence:

1. Use the ConnectionFactory object to create a connection object.

2. Use the Connection object to create an interaction object.

3. Use the Interaction object to run commands on the enterprise information system.
4. Close the interaction and the connection.

If you are using a JEE application server, you create the connection factory by configuring it using the
administration interface of the server. In the Liberty server this is defined through the server.xml
configuration. When you have created a connection factory, enterprise applications can access it by
looking it up in the JNDI (Java Naming Directory Interface). This type of environment is called a managed
environment, and allows a JEE application server to manage the qualities of service of the connections.
For more information about managed environments see your JEE application server documentation.

Record objects

Record objects are used to represent data passing to and from the EIS. It is advised that application
development tools are used to generate these Records. Rational Application Developer provides the J2C
tooling that allows you to build implementations of the Record interface from specific native language
structures such as COBOL copybooks, with in-built support for data marshalling between Java and non-
Java data types.

Resource adapter example

You can install a basic example resource adapter and configure instances of the resources it provides, see
Configuring and deploying a basic JCA Resource Adapter.

The Common Client Interface

The CCI provides a standard interface that allows developers to communicate with any number of
EISs through their respective resource adapters, using a generic programming style. The CCI is closely
modeled on the client interface used by Java Database Connectivity (JDBC), and is similar in its idea of
Connections and Interactions.

146 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_jca_config_dep.html

Using the JCA local ECI resource adapter

The JCA local ECI resource adapter is provided with CICS TS and invokes local CICS programs. This is
an optimized path to migrate applications using the CICS Transaction Gateway ECI resource adapter into
CICS Liberty. This section applies to integrated mode Liberty only.

The JCA local ECI resource adapter is used to connect to CICS programs, passing data in either
COMMAREAs or channels and containers. The resource adapter is provided by the CICS Liberty feature.

Note: The JCA local ECI resource adapter and the CICS Transaction Gateway ECI resource adapter cannot
be used in the same Liberty JVM server.

Table one shows the JCA objects corresponding to the CICS terms.

Table 32. CICS terms and corresponding JCA objects

CICS term JCA object: property

Abend code CICSTxnAbendException
COMMAREA Record

Channel ECIChannelRecord

Container with a data type of BIT bytel[]

Container with a data type of CHAR String

Program name ECIInteractionSpec:FunctionName
Transaction ECIInteractionSpec:TPNName

For further details see “JCA local ECI support” on page 188.

Configuring the JCA local ECI resource adapter
You can configure the JCA local ECI resource adapter using connection factories as defined in the JCA
specification.

To start using the JCA local ECI, add the feature cicsts:jcalocalEci-1.0 to the featureManager
element of the server.xml.

<featureManager>
<feature>cicsts:jcalocalEci-1.0</feature>
</featureManager>

The JCA local ECI provides a default connection factory defaultCICSConnectionFactoxy bound
to the INDI name eis/defaultCICSConnectionFactory . Optionally if a different INDI name is
required configure additional connection factories using the properties subelement as follows:

<connectionFactory id="localEci" jndiName="eis/ECI">
<properties.com.ibm.cics.wlp.jca.local.eci/>
</connectionFactory>

Tip: You do not need any attributes on the properties element.

Porting JCA ECI applications into a Liberty JVM server
JCA applications can be easily ported into a Liberty JVM server using the JCA local ECI resource adapter
support.

Porting

Porting existing JCA applications that use the CICS Transaction Gateway ECI resource adapter from a
stand-alone JEE application server into a CICS Liberty JVM server can be achieved through these steps:

1. Add the cicsts:jcalocalEci-1.0,and webProfile-6.0 features to the sexrver. xml file.

Chapter 3. Developing Java applications 147

For example:

<featureManager>

%féature>cicsts:jcaLocalEci-l.0</feature>
<feature>webProfile-6.0</feature>

%)featureManager>
2. You can either update the source so that the INDI name of the Connection

Factory is eis/defaultCICSConnectionFactoxry, or add a connectionFactory and
properties.com.ibm.cics.wlp.jca.local.ecitoserver.xml.

3. Deploy the application into CICS, see Deploying a Java EE application in a CICS bundle to a Liberty
JVM server.

If the application uses any restricted features of the ECI resource adapter, the code for the application will
have to be changed to remove these unsupported features. For more information, see Restrictions of the
JCA local ECI resource adapter.

Using the local ECI resource adapter to link to a program in CICS
Running a program in CICS using the JCA local ECI resource adapter is done by using the execute()
method of the ECIInteraction class.

About this task

This task shows an application developer how to use the JCA local ECI resource adapter to run a CICS
program passing in a COMMAREA using a JCA record. For further details on how to extend the Record
interface to represent a CICS COMMAREA, see Using the JCA local ECI resource adapter with COMMAREA
and for details on how to link to a CICS program that uses channels and containers, see Using the JCA
local ECI resource adapter with channels and containers.

Procedure

1. Use INDI to look up the ConnectionFactory object named eis/defaultCICSConnectionFactory.
. Get a Connection object from the ConnectionFactory.

. Get an Interaction object from the Connection.

. Create a new ECIInteractionSpec object.

o b~ W N

. Use the set methods on ECIInteractionSpec to set the properties of the execution, such as the
program name and COMMAREA length.

6. Create a record object to contain the input data (sese COMMAREA/Channel topics) and populate the
data.

7. Create a record object to contain the output data.
8. Call the execute method on the Interaction, passing the ECIInteractionSpec and two Record objects.
9. Read the data from the output record.

package com.ibm.cics.server.examples.wlp;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import javax.annotation.Resource;

import javax.resource.cci.Connection;

import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Interaction;

import javax.resource.cci.Recozxd;

import javax.resource.cci.Streamable;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

148 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_liberty_bundle.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_liberty_bundle.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jca_restrict.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jca_restrict.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jca_eci_commarea.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jca_eci_channel.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jca_eci_channel.html

import javax.servlet.http.HttpServletResponse;
import com.ibm.connector2.cics.ECIInteractionSpec;

/**
* Servlet implementation class JCAServlet

*/
@WebServlet("/JCAServlet")
public class JCAServlet extends HttpServlet

$
private static final long serialVersionUID = 4283052088313275418L;

// 1. Use INDI to look up the connection factory
@Resource (lookup = "eis/defaultCICSConnectionFactory")
private ConnectionFactory cf;

protected void doGet(HttpServletRequest request, HttpServletResponse
response)

throws ServletException, IOException

1

try

// 2. Get the connection object from the connection factory
Connection conn = cf.getConnection();

// 3. Get an interaction object from the connection
Interaction interaction = conn.createInteraction();

// 4. Create a new ECIInteractionSpec
ECIInteractionSpec is = new ECIInteractionSpec();

// 5. Use the set methods on ECIInteractionSpec

// to set the properties of execution.

// Change these properties to suit the target program
is.setCommarealength(20);

is.setFunctionName ("PROGNAME") ;
is.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE);

// 6. Create a record object to contain the input data and populate
data

// Change the contents to suit the data required by the program
RecordImpl in = new RecordImpl();

byte[] commarea = "COMMAREA contents".getBytes();
ByteArrayInputStream inStream = new ByteArrayInputStream(commarea);
in.read(inStream);

// 7. Create a record object to contain the output data
RecordImpl out = new RecordImpl();

// 8. Call the execute method on the interaction
interaction.execute(is, in, out);

// 9. Read the data from the output record
ByteArrayOutputStream outStream = new ByteArrayOutputStream();
out.write(outStream);

commarea = outStream.toByteArray();

catch (Exception e)

// Handle any exceptions by wrapping them into an IOException
throw new IOException(e);

%

// A simple class which extends Record and Streamable representing a
commarea.

public class RecordImpl implements Streamable, Record

{

private static final long serialVersionUID = -947604396867020977L;
private String contents = new String("");

@Override
public void read(InputStream is)

try

int total = is.available();
byte[] bytes = null;

if (total > 0)

i

bytes = new byte[total];

Chapter 3. Developing Java applications 149

is.read(bytes);

// Convert the bytes to a string.
contents = new String(bytes);

catch (Exception e)

{
// Log the exception
e.printStackTrace();
k

¥

@Override
public void write(OutputStream os)

try

1
// Output the string as bytes
os.write(contents.getBytes());

catch (Exception e)

// Log the exception
e.printStackTrace();
k
b

@Override
public String getRecoxrdName ()
1

// Required by Record, unused in this sample

return ;

@Override
public void setRecordName (String newName)

// Required by Record, unused in this sample

@Override
public void setRecordShortDescription(String newDesc)

// Required by Record, unused in this sample

@Override
public String getRecordShortDescription()

// Required by Record, unused in this sample
return "";

@Override
public Object clone() throws CloneNotSupportedException

// Required by Record, unused in this sample
return super.clone();

¥
¥

Results
You have successfully linked to a program in CICS using the ECI resource adapter.

Using the JCA local ECI resource adapter with channels and containers
To use channels and containers with the JCA local ECI resource adapter, the input and output records
must be instances of ECIChannelRecord.

When the ECIChannelRecord is passed to the execute() method of ECIInteraction, the method uses the
ECIChannelRecord itself to create a channel and converts the entries inside the ECIChannelRecord into
containers before passing them to CICS.

This example shows how to build an input and output record for use by the JCA local resource adapter
using the put() and get() methods on the ECI ChannelRecord.

ECIChannelRecord in = new
ECIChannelRecord ("CHANNELNAME") ;
byte[] bitData = "Container with BIT data".getBytes();
String charData = "Container with CHAR data";

150 CICS TS for z/OS: Java Applications in CICS

in.put("BITCONTAINER", bitData);
in.put ("CHARCONTAINER", charData);
ECIChannelRecord out = new ECIChannelRecord("CHANNELNAME");

interaction.execute(is, in, out);
bitData = (byte[]) out.get("BITCONTAINER");
charData = (String) out.get("CHARCONTAINER");

BIT and CHAR containers are created depending on the type of the entry:

« A BIT container is created when the entry data is of type byte[] or an object that implements the
Streamable interface. No code page conversion takes place.

« A CHAR container is created when the entry data is of type String. String data is encoded by Unicode
and is converted to the encoding of the container. Data read from this container by EXEC CICS GET
CONTAINER will be converted according to Using containers for code page conversion.

When creating the ECIChannelRecord, the name must be a valid CICS channel name. Once created

the getRecordName() method obtains the name of the channel. When adding containers to the
ECIChannelRecord, the container names must be valid CICS container names. Once created the KeySet()
method retrieves the names of all the containers.

Using the JCA local ECI resource adapter with COMMAREA

To use COMMAREA with the JCA local ECI resource adapter, the input and output

records must be instances of classes that implement javax.resource.cci.Record and
javax.resource.cci.Streamable.

This example shows how to build an input and output record for use by the local ECI resource adapter
using the read() and write() methods on the Streamable interface:

RecordImpl in = new RecordImpl();
byte[] commarea = "COMMAREA contents".getBytes();
ByteArrayInputStream inStream = new ByteArrayInputStream(commarea);
in.read(inStream) ;
RecordImpl out = new RecoxrdImpl();

interaction.execute(is, in, out);

ByteArrayOutputStream outStream = new ByteArrayOutputStream();
out.write(outStream);
commarea = outStream.toByteArray();

To retrieve a byte array from the output record, use the write method on the Streamable interface using a
java.io.ByteArrayOutputStream object. The toByteArray() method on ByteArrayOutputStream
provides the output data from the COMMAREA in the form of a byte array.

To provide more function for your specific JEE components, you can write implementations of the Record
interface that allow you to set the contents of the record using the constructor. In this way you avoid use
of the java.io.ByteArrayInputStxream used in the example.

Rational Application Developer provides the J2C tooling that allows you to build implementations of the
Record interface from specific native language structures such as COBOL copybooks, with in-built support
for data marshalling between Java and non-Java data types.

Unit of work management with JCA
Transaction Management, when using the CICS local ECI resource adapter, is provided by a CICS Liberty
JVM server.

Calls to other CICS programs using the CICS local ECI resource adapter are integrated with CICS unit of
work (UOW) management. This allows the UOW to be controlled through either syncpoint commands or a
JTA transaction.

Calls to a program in a remote CICS region result in a DPL call using a mirror transaction. This mirror
task UOW is coordinated by the calling UOW if a Java transaction context is being used, this means
the called program is unable to issue syncpoint calls as it is restricted to the DPL command subset.
If the calling program has no JTA transaction context then the mirror task UOW is invoked using the

Chapter 3. Developing Java applications 151

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp3_ch_concpconv.html

SYNCONRETURN option. In this scenario the called program is able to issue syncpoint commands as its
UOW is not coordinated by the calling program.

For more details refer to Programming considerations for distributed program link , “Unit of work (UOW)
services” on page 79 and “Java Transaction API (JTA) ” on page 130.

Enabling trace for the JCA local ECI resource adapter
A detailed trace mechanism is provided for the JCA local ECI resource adapter. Enabling trace can be
useful for problem solving in applications using the resource adapter.

« JCA local ECI resource adapter trace is enabled by SJ domain trace level 4 (SJ =4 or SJ = ALL).

 Trace from the resource adapter will be included in the JVM server trace output in zFS with the
component identifier com.ibm.cics.wlp.jca.local.eci.adapter.

Restrictions of the JCA local ECI resource adapter
Some API calls that are available on the CICS Transaction Gateway ECI resource adapter are not
supported by the CICS TS JCA local ECI resource adapter.

Restricted methods
These API calls are not supported by the JCA local ECI resource adapter

« ECIInteractionSpec class methods setExecuteTimeout(), getExecuteTimeout(), setReplyLength(),
getReplyLength(), setTranName(), getTranName()

« CICSConnectionSpec class methods setPassword(), getPassword(), setUserid(), getUserid(),
addPropertyChangelistener(), removePropertyChangelistener(), firePropertyChange

« ECIConnection class method getLocalTransaction()
« ECIChannelRecord class method values()
« CICSUserInputException

« The constructor ECIConnectionSpec(String username, String password). ECIConnectionSpec() has been
added as an alternative

« The constructor ECIInteractionSpec(int verb, int timeout, String prog, int commLen, int repLen).
ECIInteractionSpec(int verb, String prog, int commLen) has been added as an alternative

These calls are not supported when using the IBM CICS SDK for Java to develop web applications. In
order to allow portability of existing ECI JCA applications into a Liberty JVM server these methods will
continue to function but any settings of transaction, timeout, reply length and transaction name will have
no effect. Setting the transaction ID through ECIInteractionSpec.setTPNName() only uses the specified
transaction when linking to a remote program (DPL). Linking to a local program will continue to use the
current transaction.

Non-managed environments

JCA local ECI only supports managed connection factories (those created via the server.xml
configuration). Non-managed connections created using instances of a ManagedConnectionFactory, are
not supported.

Exception handling

Exception handling may differ slightly between the CICS Transaction Gateway ECI resource adapter and
the CICS TS JCA local ECI resource adapter. Any CICS errors will propagate to the ECI local resource
adapter as a CICSException, as they do with the JCICS API. The resource adapter will wrap these
exceptions in a ResourceException. To help identify the CICS fault, the CICSException will be set as the
cause of the Exception and can be accessed using the getCause() method of java.lang.Throwable.

152 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp3c00230.html

Asynchronous calls

Asynchronous calls are not fully asynchronous in the JCA local ECI resource adapter. A call using the
SYNC_SEND interaction verb will block until the program completes, then the results can be gathered via
a subsequent call using the SYNC_RECEIVE interaction verb, using the same EClIInteraction.

Unsupported CICS Transaction Gateway functions
These CICS Transaction Gateway functions are not supported in the CICS TS local ECI resource adapter.

« Remote connections to a CICS Transaction Gateway server

Identity propagation

Cross component trace (XCT)

Request monitoring user exits

 Trace from the resource adapter is controlled by CICS TS, use of the CICSLogTraceLevels is not
supported.

CICS remote development feature for Java

The CICS remote development feature for Java provides an ECI resource adapter for use in Liberty
running on a developers workstation. The feature enables developers to rapidly test and debug Java
applications that use JCA APIs to invoke programs in CICS TS. When ready, the application can be
deployed into Liberty running in CICS without any further changes to the application.

The feature connects to a CICS region by using an IP interconnectivity (IPIC) connection that is defined by
using the TCPIPSERVICE resource. The trace facility can be used to identify problems with the data sent
and received from the program in CICS TS.

Configuring the IPIC connection

Before you can test your Java application with a CICS region, an IPIC connection must be available.
Contact your CICS system programmer to request a TCP/IP service that accepts IPIC requests from a
Liberty profile by using the following details.

About this task
The following procedure guides the CICS system programmer through the steps to define a TCP/IP service
in CICS and install a sample user program for IPIC connections.

Procedure

1. Install IPIC support in CICS by defining a TCPIPSERVICE resource with the following attributes:
Table 33. Attributes for TCPIPSERVICE resource
TCPIPSERVICE resource attribute Value required
URM DFHISAIP
Porxt number n
Status OPEN
Protocol IPIC
Transaction CISS
Backlog 0
Socketclose No

2. Verify that the TCPIPSERVICE is in service by issuing the CEMT INQUIRE TCPIPSERVICE (JCA)
command.

Chapter 3. Developing Java applications 153

3. Install a sample program to test the IPIC connection.

a) If you do not already have a copy, download the CICS Transaction Gateway Software Development
Kit (SDK) and expand the archive file.

b) Locate and copy the cicsprograms/ecOl. cpp member to a COBOL source data set on z/OS.

¢) Compile the ECO1 sample program and copy the generated module into a load library that CICS can
access.

d) If the autoinstall program is not enabled, define and install a program definition for ECO1.
e) Test the ECO1 program by issuing the CECI LINK PROG(ECO1) COMMAREA(' ').
Check that the RESPONSE is NORMAL.

Results
IPIC support is now available for use in the CICS region.

Setting up your local Java test environment
Before you can test your Java application with a CICS region, you must check that the required tools are
installed and also configure your local work environment.

About this task

To create a local work environment where you can test your Java applications with a CICS region,
complete the following steps.

Procedure

1. Download and install the Eclipse IDE for Java EE Developers with WebSphere Developer Tools (WDT).
Then, install a local WebSphere Liberty server instance, create the Hello World JavaServer Pages (JSP)
and test by deploying the Hello World web application on the server.

For more information, see Get Started available at Open Liberty.

2. Install the JCA remote ECI resource adapter from the Liberty Repository. You can install a feature from
the repository by using the installUtility command:

<liberty_install>/bin/installUtility install
--acceptlLicense jcaRemoteEci-1.0

3. Add the usr:jcaRemoteEci-1.0, localConnector-1.0, and webProfile-6.0 features to the
server.xml file.
For example, in Eclipse expand the WebSphere Liberty project and then expand servers . Double-
click defaultServer to edit server.xml . Click the source tab and add the following features:

<featureManager>

%féature>usr:jcaRemoteEci-l.0</feature>
<feature>localConnector-1.0</feature>
<feature>webProfile-6.0</feature>

</featureManager>

4. Add a connectionFactory and propexrties.com.ibm.cics.wlp.jca.remote.ecito
server.xml.

The connectionFactory jndiName is used by the application to create a connection. The
properties.com.ibm.cics.wlp.jca.remote.eci is used to configure the JCA remote ECI
resource adapter and at a minimum must specify sexrvexrName with the host name and port number of
the IPIC connection defined by the TCPIPSERVICE resource.

Note: You might need to specify extra parameters. For example, to use Secure Sockets Layer (SSL) and
a user ID and password. Table 1 lists the available parameters. Table 2 lists the ECI resource adapter
deployment parameters that are not supported by the JCA remote ECI resource adapter. For more
information, see ECI resource adapter deployment parameters.

154 CICS TS for z/0S: Java Applications in CICS

https://developer.ibm.com/cics/2016/03/11/cics-tg-sdks/
https://developer.ibm.com/cics/2016/03/11/cics-tg-sdks/
https://openliberty.io/
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_repository.html
https://www.ibm.com/support/knowledgecenter/SSZHJ2_9.2.0/com.ibm.cics.tg.zos.doc/deploying/topics/ccla206.html?lang=en

<server>

;éénnectionFactory id="com.ibm.cics.wlp.jca.local.eci" jndiName="eis/ECI">
<properties.com.ibm.cics.wlp.jca.remote.eci serverName="tcp://

hostname

bort”/>

</connectionFactory>

</server>

Table 1 shows the JCA remote ECI resource adapter properties that are supported.

Table 34. Supported JCA remote ECI resource adapter properties

JCA object: property Notes

applid

applidQualifier This property is required
ciphexSuites

ipicHeartbeatInterval

ipicSendSessions

This property default is 5.

keyRingClass

keyRingPassword

passwoxd

socketConnectTimeout

serverName

This property is required.

tracelLevel

traceRequest

usexName

Table 2 shows CICS Transaction Gateway ECI resource adapter deployment parameters that are not
supported by the JCA remote ECI resource adapter.

Table 35. JCA remote ECI resource adapter properties that are not supported

JCA object: property

interceptPlugin

poxrtNumbex

tPNName

tranName

Testing the example Java EE JCAServlet application
Add the example Java EE JCAServlet application and then verify that the Java EE application can call a

sample program in CICS.

About this task

Complete the following steps to add the Java EE JCAServlet application. Then, verify that the Java EE
JCAServlet application can call the ECO1 sample program in CICS.

Chapter 3. Developing Java applications 155

Procedure

1. Create a JCAServlet class in the Hello World web application.
Expand the Hello World project and then expand Java Resource . Right-click New and select Servlet.

- For Java package, enter com.ibm.ctg.samples.liberty
- For Class name, enter JCAServlet

Then, click Finish.

2. Edit JCASexvlet.java and replace all of the code with the CICS example JCAServlet. java from
GitHub.

For more information, see JCAServlet.java.

3. Expand the Hello World project and then expand Java Resources > src >
com.ibm.ctg.samples.liberty . Right-click the JCAServlet.java application and select Run As > Run
on server.

4. The Liberty server is started and a message is displayed on the Liberty server console that indicates
the URL, which you can click to run the Java EE application. The following is an example of a message,
which might be displayed.

[AUDIT] CWWKTOO16I: Web application available
(default_host):
http://localhost:9080/GenappCustomerSearchiWeb/

Results

You can now test and debug the Java EE application in your local Liberty server.

Configuring the trace function in your local Liberty profile
Before you can trace your Java web application in your local Liberty profile, you must configure your local
work environment.

About this task
Complete the following steps to configure the trace function in your local Liberty profile.

Procedure

Add the traceRequests="0N" parameter to the connection factory in your sexrver. xml file to enable
tracing.

With traceRequests="0N" specified, when you send another application request, the Eclipse console
shows the request and the response that your application sends and receives from CICS.

The following example shows a request that is sent to CICS and the response received from CICS.

Starting DataFlowsMonitor log stream at

Thu Apr 07 14:21:54 BST 2016[00000000001] :
com.ibm.ctg.monitoring.DataFlowsMonitor:eventFired called with
event = RequestEntry

FlowType = EciSynconreturn Fully qualified APPLID = No APPLID
CtgCorrelator =

1Program = ECQ1Server =
TCP://WINMVS2C.HURSLEY.IBM.COM:27723PayLoad = COMMAREA is 20

bytes00000000 000000 CEOOONOOE OOOOOEEO 0OEEOEOOO
1292222222222222222272 "

[00000000001] :

com.ibm.ctg.monitoring.DataFlowsMonitor:eventFired called with

event = ResponseExit

FlowType = EciSynconreturn Fully qualified APPLID = No APPLID
CtgCorrelator =

10riginData - Transaction Group ID = 1B114040

40404040 40402EFO FOFOFOFO FOFOF2DO 8F53F115 220100Program = ECO1Server =
TCP://WINMVS2C.HURSLEY.IBM.COM:27723PayLoad = COMMAREA is 20

156 CICS TS for z/0S: Java Applications in CICS

https://github.com/cicsdev/cicstg-jca-liberty-sample/tree/main/com/ibm/ctg/samples/liberty

bytesFOF761F0 F461F1F6 40F1F47A F2F17AF5 F4000000
'??a??a??@??z??2z????? " 'CtgReturnCode = OCicsReturnCode = 0

Results
You can now trace your application to help identify any problems.

Configuring a secure SSL connection
You can secure the IPIC connection from the JCA remote ECI resource adapter to CICS by using SSL.

About this task
Complete the following steps to configure a secure SSL connection.

Completing this setup provides SSL with trusted Certificates exported from both MVS and the local client.
An MVS user ID and password are also required for authentication.

Procedure

1. Set up a CICS RACF® environment.
For more information, see Configuring SSL server authentication on the CICS server .
2. Set up the client security.
For more information, see Configuring SSL server authentication on the client.
3. Configure the client authentication.
For more information, see Configuring SSL client authentication.
4. Configure the IPIC connection on CICS.
For more information, see Configuring the IPIC connection on CICS.

5. Modify your sexver. xml to use the local KeyRingClass that was created in Step 2 and send your
user ID and password.

<connectionFactory id="com.ibm.cics.wlp.jca.local.eci"
jndiName="eis/ECI">
<properties.com.ibm.cics.wlp.jca.remote.eci
serverName="ssl://hostname:port"
keyRingClass="C:\Users\IBM_ADMIN\Documents\CICS\JCA\ctgclientkeyring.jks"
keyRingPassword="password"

userName="user_ID"

password=" xxxkskk*"

applid="JCASSL"

applidQualifier="ABCDEFGH"

/>

</connectionFactory>

Results

The JCA remote ECI resource adapter secures requests to CICS by using SSL and the key ring, user ID,
and password that are specified in server.xml.

Developing microservices with MicroProfile

Eclipse MicroProfile defines a programming model for developing microservice applications in an
Enterprise Java environment. It is an open source project under The Eclipse Foundation to bring
microservices to the Enterprise Java community. MicroProfile is supported by Liberty.

MicroProfile defines a number of specifications for building microservices that are resilient, secure and
easy to monitor.

Chapter 3. Developing Java applications 157

https://www.ibm.com/support/knowledgecenter/SSZHFX_9.2.0/com.ibm.cics.tg.doc/scenarios/topics/sc07_conf_serv1.html
https://www.ibm.com/support/knowledgecenter/SSZHFX_9.2.0/com.ibm.cics.tg.doc/scenarios/topics/sc07_conf_serv2.html
https://www.ibm.com/support/knowledgecenter/SSZHFX_9.2.0/com.ibm.cics.tg.doc/scenarios/topics/sc07_conf_client.html
https://www.ibm.com/support/knowledgecenter/SSZHFX_9.2.0/com.ibm.cics.tg.doc/scenarios/topics/sc07_conf_ipic.html

Table 36. Included in Eclipse MicroProfile 1.2

Specification

Description

JSR 346: Contexts and Dependency Injection for
JavaEE 1.1

CDI defines a set of services that manage the
injection and lifecycle of objects in an Enterprise
Java runtime.

JSR 339: JAX-RS 2.0: The Java API for RESTful
Web Services

JAX-RS is a Java API for RESTful Web Services.

JSR 353: Java API for JSON Processing

JSON-P is a Java API for processing JSON.

Eclipse MicroProfile Config 1.1

Config is a Java API and SPI for managing
application configuration.

Eclipse MicroProfile Fault Tolerance 1.0

Fault Tolerance provides strategies for coping with
failures when calling external services.

Eclipse MicroProfile Health Check 1.0

Health Check allows components to report their
liveliness to the wider system.

Eclipse MicroProfile Health Metrics 1.0

Health Metrics provide a unified way for
applications to expose monitoring data.

Eclipse MicroProfile JWT Propagation 1.0

JWT Propagation allows JSON Web Token (JWT) to
be used for authentication and authorization with
Java EE role-based access control (RBAC).

Restrictions

« CDI is used extensively in the MicroProfile APIs, however Liberty does not support CDI in OSGi web
applications that are packaged in enterprise bundle archives (EBAs). Instead, package applications that
use MicroProfile in web application archives (WARs) or enterprise application archives (EARs).

« MicroProfile Fault Tolerance 1.0 is designed to manage calls that are made to other services. It is not
designed to manage updates to resources in a transactional context. CICS resources should not be
updated in methods annotated @Bulkhead, @CircuitBreaker, @Fallback, @Timeout or @Retzry.
CICS cannot guarantee that these updates will be recovered when exceptions occur, even when JTA is

used.

« When the feature mpJwt-1.0 is enabled in the server. xml of a Liberty JVM server, all authentications
must be done by using JWT bearer tokens. To use any other form of authentication, a separate Liberty

JVM server must be used.

Service architectures in CICS Liberty JVM servers

Monolithic architecture

Monolithic architecture implements the application in a single unit. Internally the logic can be modular,
but externally the application is either entirely available, or not available at all. Monoliths perform well
compared to microservices and are less complex when managing security and transaction context.
Scaling monoliths involves adding instances of the entire application, individual parts cannot be scaled.

158 CICS TS for z/OS: Java Applications in CICS

https://jcp.org/en/jsr/detail?id=346
https://jcp.org/en/jsr/detail?id=346
https://jcp.org/en/jsr/detail?id=339
https://jcp.org/en/jsr/detail?id=339
https://jcp.org/en/jsr/detail?id=353
https://projects.eclipse.org/projects/technology.microprofile/releases/config-1.1
https://projects.eclipse.org/projects/technology.microprofile/releases/fault-tolerance-1.0
https://projects.eclipse.org/projects/technology.microprofile/releases/health-check-1.0
https://projects.eclipse.org/projects/technology.microprofile/releases/health-metrics-1.0
https://projects.eclipse.org/projects/technology.microprofile/releases/jwt-propagation-1.0

— Q «——— E‘Application — Database
N

Internet

Figure 28. Monolithic architecture

Chapter 3. Developing Java applications 159

Backing services

Backing services allow the back end data and programs to be decoupled from the main application.
By making the data and programs into separate applications, they are called using a platform agnostic
communication method, for example HTTP, socket, message queues, and so on. Instead of the main
application holding all the logic for communicating with these sources, some responsibility is given to
these services.

In CICS, z/OS Connect is used to expose CICS programs as backing services through a REST API. In the
example, the application uses JDBC to communicate with a database. SMTP is used to send emails and
HTTP is used to call a CICS program through z/OS Connect.

160 CICS TS for z/OS: Java Applications in CICS

—> :EZD z/0OS Connect EE

¥
O‘ -— @ Application < - Database
N\
Internet
L5 Mail service

Figure 29. Backing services

Chapter 3. Developing Java applications 161

Hosted services

Services are hosted in CICS to further decouple the main application from the various components.
Similar to backing services, more function is exposed in CICS through CICS Web Services, or in CICS
Liberty with applications using technologies including servlets, JAX-RS and JAX-WS.

JAX-RS is a popular technology for creating RESTful web services, JAX-WS is used to create remote
procedure call (RPC) oriented web services.

162 CICS TS for z/OS: Java Applications in CICS

— Q0 «—— Application +———
é:n‘ 3

Internet

—

—

Figure 30. Hosted services

L

Service A

Service B —

— @ Database

Service C D

Chapter 3. Developing Java applications 163

Note: Both REST and RPC are equally valid options for communication in microservices. REST focuses on
resource management. RPC focuses on actions. A microservice architecture does not mandate REST,RPC,
or any other technology.

Microservices

A full microservice architecture is an interconnected web of isolated services with no single central point,
though there can be dedicated entry points. Services can communicate with one another as required.
Scaling microservices involves adding instances of the parts that require scaling. Microservices are more
resilient to failures than monoliths.

164 CICS TS for z/0S: Java Applications in CICS

—> Service A 4—‘

— Website «— I — @ Database

—O Service B

Internet L @ API Gateway «—— I

L Service C

Figure 31. Microservices

Chapter 3. Developing Java applications 165

Scaling services in CICS

Services can be scaled in several ways in CICS, depending on region topology and setup. Microservices
are typically isolated into a single container. In CICS, a service or set of services could be isolated within a
region or JVM server. Scaling can be achieved by running multiple CICS regions hosting the same service
or set of services. You can also scale the JVM server by increasing the number of threads.

Securing microservices

Where possible, microservices should be kept off public networks. API gateways can be used to provide
controlled access to microservices. MicroProfile offers a method for using Open ID Connect (OIDC) based
JSON Web Tokens (JWT) for role based access control (RBAC) of microservice endpoints. Security tokens
offer lightweight and interoperable propagation of user identities across different services.

MicroProfileJWT Authentication 1.0 provides functionality to authenticate and authorize users based

on a JWT bearer token. The token can be injected into the service code and used to propagate the
identity across the microservice network. Propagation of the JWT can be done manually by including
the JWT as a bearer token in the Authorization HTTP header on the outbound request. Alternatively,
Liberty can automatically propagate the JWT by configuring a webTarget elementin servexr.xml with
an authnToken configured, for example:

<webTarget uri="http://microservice.example.ibm.com/protected/*" authnToken="mpjwt" />

Important: JWT identities are not automatically mapped to a user registry and will not be propagated
into the CICS task user ID. To enable identity mapping, add mapToUserRegistry="true” configuration
attribute to the <mpJwt> elementin sexrver.xml.

For more information on configuring MicroProfile JWT Authentication in Liberty see Configuring the
MicroProfile JSON Web Token.

Data consistency in microservices

Microservices cannot easily make use of distributed transactions. Instead, alternative transaction
strategies are used, such as the saga pattern, where events are published after an updated in a service.
For example, if service A and service B have updates that should both happen, the following sequence
occurs:

1. A updates into a pending state
2. A sends a message to B

3. B updates into a complete state
4. B sends a message to A

5. A updates into a complete state

When to use microservices

Microservices are best applied where an application can be deconstructed into smaller, isolated,
services. A microservice allows for controlled scaling, independent deployment, and more autonomous
development. The architecture of microservices can create extra complexity, particularlyin deployment
and data consistency. Communicating over protocols such as HTTP produces a larger performance cost
compared to calling in memory. Components can be made more resilient to failure by allowing them to
scale individually. Monitoring solutions become more important to aid diagnosis of unhealthy services
when managing a microservice architecture.

Spring Boot applications

You can develop Spring Boot applications for use with CICS. There are two approaches to developing
Spring Boot applications. The approach that you choose depends upon whether you want to integrate
your Spring Boot application with aspects of Java EE such as Security, Transactions, DataSources and

166 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_json.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_json.html

Java Message Service (JMS), or whether you prefer to use standard Spring configuration and templates
with little or no integration with Java EE.

If you build and deploy your Spring Boot application as a JAR, then you can only integrate with JCICS.
To achieve greater integration with Java EE and Liberty, build and deploy your Spring Boot application as
a WAR file and follow the best practices that are described in topic Building and deploying Spring Boot
applications. Each subtopic describes an important aspect of integration and how to ensure Spring Boot
integrates with Java EE, Liberty, and CICS capabilities.

JCICS and JCICSX in Spring Boot applications

You can use JCICS or JCICSX in both Spring Boot WAR and Spring Boot JAR applications to call CICS
services.

This is contrary to other integration aspects of Java EE and Liberty that are only available when the Spring
Boot application is deployed as a WAR. Although you can resolve your Spring Boot dependencies against
JCICS or JCICSX by using only the com.ibm.cics.server or com.ibm.cics.jcicsx artifact on Maven Central,

a more consistent approach is to use the bill of materials (BOM) file. This ensures you resolve against
consistent versions of a range of CICS artifacts as shown in the examples below.

Note: The following instructions use the JCICS library as an example but also apply to JCICSX.
Avoid binding the JCICS library into your application as this is provided by the CICS runtime.

If you are using Maven, you can achieve this by compiling against the JCICS library or by using
<scope>provided</scope>. Or, if you are using the CICS TS BOM, the <scope>import</scope>
on the <dependency> element automatically defers the scope value to the CICS BOM. The CICS BOM
applies the provided scope, which ensures JCICS is only included at build time. It is not embedded in
your application where it might potentially conflict with the version that is used by the CICS runtime. For
example,

<dependencyManagement>
<dependencies>
<dependency>
<groupId>com.ibm.cics</groupId>
<artifactId>com.ibm.cics.ts.bom</artifactId>
<version>5.6-20200609123739</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

If you are using Gradle, you can take advantage of the CICS TS BOM by coding a compileOnly

directive with the enforcedPlatform qualifier. Doing so infers version information from the BOM and
ensures that references to the contained artifacts are consistent and compatible. Thereafter, to declare a
dependency on the JCICS library (com.ibm.cics.sexrver) or any other CICS artifact from the BOM, a
version qualifier is not required, simply code the appropriate dependency statement.

For example,

dependencies §
compileOnly enforcedPlatform('com.ibm.cics:com.ibm.cics.ts.bom:5.6-20200609123739")
compileOnly ("com.ibm.cics:com.ibm.cics.server") //dependency on JCICS

Note: See Maven Central for the latest version number for appropriate for your release of CICS.

For more CICS-provided dependencies you can resolve with Maven and Gradle, see “Managing Java
dependencies using Gradle or Maven” on page 46.

Chapter 3. Developing Java applications 167

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/spring-boot-building.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/spring-boot-building.html
https://search.maven.org/search?q=g:com.ibm.cics%20AND%20a:com.ibm.cics.server&core=gav
https://search.maven.org/artifact/com.ibm.cics/com.ibm.cics.jcicsx
https://search.maven.org/search?q=g:com.ibm.cics

JPA in Spring Boot applications

Developers can use the Java Persistence API (JPA) to create object-oriented versions of relational
database entities to use in their applications.

To use JPA in your Spring Boot application, first add a JPA artifact to your dependencies in your Spring
Boot application. For example:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

Java EE’s implementation of JPA and Spring data’s implementation of JPA both require configuration to
define the connection to the database repository that is used by the application.

Just like using JDBC you can use the spring.datasource. jndi-name property that is defined in
application.properties to configure the connection to the datasource being used and this will be
used dynamically by the JPA EntityManager. Alternatively the data source can also be defined in an
@Bean annotated dataSource() method, by performing a INDI lookup of a data source defined in Liberty.

Security in Spring Boot applications
You have three options when you are using Spring Boot security in CICS.

1. You can use Spring Boot security without integrating with Liberty or CICS security. This option is useful
if you are taking an existing Spring Boot application and deploying it unchanged in CICS.

2. You can use Java EE security to authenticate web requests by using any of the Liberty-supported
registry types. You can configure it in the standard Java EE method by using a <security-
constraint>and <login-config> in the application's web. xml. This option is useful if you want to
authenticate users by using any of the supported Liberty registry types, and then control transaction
authorization by using CICS security. For more information, see Authenticating users in a Liberty JVM
server

Note: You must ensure that web . xml is stored in src/main/webapp/WEB-INF/

3. You can integrate Spring Boot security with Java EE security by using Java EE container pre-
authentication. It allows you to authenticate users via an external system in order to provide a
validated user ID and set of roles to Spring Boot security. To do this, you need to modify the application
and create an @Configuration annotated class that extends WebSecurityConfigurerAdapter in order
to name the roles to be propagated into Spring security. In addition, you then need to configure
the standard Java EE security settings in the applications web . xml and <application-bnd> or
EJBROLE profiles if you are using SAF authorization. Use this option if you want to authenticate users
by using any of the supported Liberty registry types, and you want to authorize requests by using Java
EE role-based access to individual methods

Transactional integration and Spring Boot applications

You can achieve transactional integration when you are developing Spring Boot applications for use with
CICS Liberty. The effect of transactional integration between Spring Boot and CICS is to ensure that the
CICS Unit of Work (UOW) is coordinated by Liberty's transaction manager. Using the Java Transaction API
(JTA) you can coordinate CICS, Liberty, and third-party resource managers, such as a type 4 database
driver connection, together as one global transaction. For more information about JTA support in CICS,
see Java Transaction API (JTA).

JTA is available for use in a Spring Boot WAR application in various ways:

 Spring Boot's @Transactional annotation: This annotation, which is specified at the class or method
level denotes the code segment to be contained within a single global transaction.

« Spring templates: The Spring framework provides two templates for use with programmatic transaction
management: the TransactionTemplate and the PlatformTransactionManager interface.

168 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jta.html

 UserTransaction: It is also possible to use the JTA UserTransaction interface within a Spring Boot
application by obtaining the UserTransaction initial context of the hosting Application server (Liberty)
through a INDI lookup. For example, ctx.lookup("java:comp/UserTransaction");.The
developer can employ a Bean-managed approach to transactions by explicitly coding UserTransaction
'start' and 'end' calls around the resources to be managed.

Threading and Concurrency in Spring Boot applications

The Spring Framework provides abstractions for asynchronous execution of tasks by using the
TaskExecutor interface. Executors are the Java SE name for the concept of thread pools. Spring’s
TaskExecutor interface is identical to the java.util.concurrent.Executor interface. The TaskExecutor

was originally created to give other Spring components an abstraction for thread pooling where
needed. Spring includes a number of pre-built implementations of TaskExecutor but it is the
DefaultManagedTaskExecutor that is most useful for integration with CICS as it looks up the application
server's defaultExecutor - which in CICS Liberty is designed to provide CICS enabled threads.

About this task

To run asynchronous tasks in your Spring Boot application by using CICS enabled threads, there are two
options. You can either set an Asynchronous Executor for the whole application, or you can choose to
specify an AsyncExecutor on a per method basis. If all the tasks you spawn asynchronously require CICS
services, then setting the Asynchronous Executor for the whole application is the simplest approach.
Otherwise, you need to specify the Asynchronous Executor to use for each and every method where you
require asynchronous capability. Here, we demonstrate the whole application approach.

Procedure

1. On your main Spring Boot Application class add the @EnableAsync annotation, implement the
interface AsyncConfigurer, and override the getAsyncExecutor() and AsyncUncaughtExceptionHandler
methods. Ensure you return an instance of the DefaultManagedTaskExecutor in the
getAsyncExecutor() method as this obtains new threads from Liberty's defaultExecutor, which in turn
is configured to return CICS enabled threads. For more information about the AsyncConfigurer, see
the AsyncConfigurer in the Spring Boot documentation. For usage examples, see EnableAsync in the
Spring Boot documentation.

@SpringBootApplication
@EnableAsync
public class MyApplication implements AsyncConfigurer
public static void main(String[] args)
SpringApplication.run(MyApplication.class, args);
@Override
@Bean(name = "CICSEnabledTaskExecutor")
public Executor getAsyncExecutor()
return new DefaultManagedTaskExecutor();
@Override

public AsyncUncaughtExceptionHandler getAsyncUncaughtExceptionHandlex ()
{

return new CustomAsyncExceptionHandlexr();

%

public class CustomAsyncExceptionHandler implements AsyncUncaughtExceptionHandler
@Override
public void handleUncaughtException(Throwable throwable, Method method, Object... obj)
$

System.out.println("Exception Cause - + throwable.getMessage());
System.out.println("Method name - " + method.getName());

for (Object param : obj)

1

Chapter 3. Developing Java applications 169

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#scheduling-task-executor-types
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/scheduling/annotation/AsyncConfigurer.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/aop/interceptor/AsyncUncaughtExceptionHandler.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/scheduling/annotation/AsyncConfigurer.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/scheduling/annotation/EnableAsync.html

System.out.println("Parameter value - + param);

¥
¥

2. Add the @Async annotation to either: a class in your application if you wish to run all methods
on that class asynchronously, or to individual methods that you wish to run asynchronously.
i.e.@Async ("CICSEnabledTaskExecutor")

3. Add the concurrent-1.0 feature to server.xml

JDBC in Spring Boot applications

You can use Spring Data JDBC to implement JDBC based repositories. It allows you to access DB2 and
other data sources from your Spring Boot application.

Spring Data JDBC is conceptually simpler than JPA, for more information on how it differs from JPA, see:
Reference documentation in the Spring Boot documentation. To use JDBC in your Spring Boot application,
add a JDBC artifact to your dependencies in your Spring Boot application to make the necessary Java
libraries available. For example, in Maven:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jdbc</artifactId>
</dependency>

Orin Gradle, (implementation"org.springframework.boot:spring-boot-starter-data-jdbc")

To use JDBC in a Spring Boot application, you can define a Liberty dataSource in the sexrver.xml just as
you would if using JDBC in a Java EE application. This data source can then be located by using a JINDI
lookup that references the jndiName attribute on the dataSource element, and then used by the Spring
Boot JdbcTemplate object by using one of the following methods:

1. Performing a INDI lookup of the data source in an @Bean annotated dataSource() method and
returning the data source.

2. Naming the data source in the spring.datasouxrce. jndi-name in the Spring application
properties. Spring Boot creates the JdbcTemplate using the data source that is named in
application.properties.

Note: In option 2, it is also possible to configure all the data source attributes necessary to connect

a Spring application to the required data source from within the application.properties file. The
attributes are all defined in Common application properties in the Spring Boot documentation. However,
this ties the application directly the data source and using JINDI is a more flexible approach.

JMS in Spring Boot applications

You can use JMS in Spring Boot applications to send and receive messages by using reliable,
asynchronous communication by using messaging providers such as IBM MQ.

To use JMS in your Spring Boot application, add a JMS artifact to your dependencies in your Spring Boot
application to make the necessary Java libraries available. For example, in Maven,

<dependency>
<groupId>org.springframework.integration</groupId>
<artifactId>spring-integration-jms</artifactId>

</dependency>

<dependency>
<groupId>javax.jms</groupId>
<artifactId>javax.jms-api</artifactId>
<scope>provided</scope>

</dependency>

or in Gradle,

implementation("org.springframework.integration:spring-integration-jms")
compileOnly ("javax.jms:javax.jms-api")

170 CICS TS for z/OS: Java Applications in CICS

https://docs.spring.io/spring-data/jdbc/docs/current/reference/html/#reference
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html

To send and receive messages by using a IMS messaging provider, you can define a JMS connection
factory in the Liberty server. xml as you would if you were using JMS in a Java EE application.
This connection factory can then be used to reference a remote IBM MQ queue manager by using a
JmsTemplate object and either:

1. Performing a INDI lookup of the connection factory in an @Bean annotated connectionFactory()
method and returning the connection factory.

2. Naming the connection factory in the spring.jms.jndi-name in the Spring application properties.
Spring Boot then creates the JImsTemplate by using the connection factory that is named in the
application.properties.

Note: In option 2, it is also possible to configure all the connection factory attributes necessary to connect
a Spring application to the required queue manager from within the application.propexrties file. The
attributes are all defined in Common application properties. However, this ties the application directly the
gueue manager and by using INDI is a more flexible approach.

A message driven POJO (MDP) is used to handle incoming messages in Spring Boot. An @EnableIms
annotation is used in the Spring Boot Configuration class to enable discovery of methods annotated
@JImsListener. The @IMSListener annotation marks a method to be the target of a IMS message listener
that receives incoming messages.

If you want these MDPs to be able to use the JCICS API, then you need to bind the Liberty TaskExecutor
to the JmsListenerContainerFactory. This can be achieved as follows:

@Bean
public TaskExecutor taskExecutor()

return new DefaultManagedTaskExecutor();

¥

@Bean
public JImsListenerContainerFactory<?> myFactory(ConnectionFactory connectionFactory)

DefaultImsListenerContainerFactory factory = new DefaultImsListenerContainerFactory();
factory.setConnectionFactory(connectionFactory);
factory.setTaskExecutor(taskExecutor());

return factory;

¥

Note: This requires the use of the jndi-1.0 and concurrent-1.0 Liberty features.

The Spring Boot @Transactional annotation can also be used on the @JMSListener annotated method to
signify that the receiving of the message from the queue and the CICS UOW are to be coordinated by
using the same container-managed JTA global transaction.

Building and deploying Spring Boot applications

You can build your Spring Boot applications for use in CICS with Maven or with Gradle.

Building Spring Boot applications as WAR or JAR files

You can build Spring Boot applications as a web application archive (WAR) or a Java Archive (JAR) file.
Build your Spring boot application as a WAR if you are looking to integrate Spring Framework transactional
management or Spring Boot Security in CICS. See Table 37 on page 172. When built as a WAR, a Spring
Boot application can be deployed and managed by using CICS bundles in the same way as other CICS
Liberty applications. When built as a JAR the springBoot-1.5 or springBoot-2.0 feature must be installed
and the JAR must be deployed by using either a Liberty application element with the type="spring"
attribute or by using the dropins directory. However, if you have an existing application that you simply
want to deploy into CICS without using CICS integration, you can package it as a JAR. Only one JAR file
can be deployed into a Liberty JVM server at a time but multiple WAR files can be co-hosted.

Chapter 3. Developing Java applications 171

https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/Configuration.html

Table 37. Spring Boot integration

Capability Spring Boot applications built into:
WAR JAR
CICS JCICS API Yes Yes
CICS link to Spring Bean Yes Yes
Java Persistance API (JPA) Yes No
Spring security integration with CICS Yes No
Spring transaction integration with CICS Yes No
Java Database Connectivity (JDBC) Yes No
Threading and concurrency Yes No
Java Message Service (JMS) Yes No

The following diagram displays the different options that you can take to run your Spring Boot application

on CICS.
% Spning application
|
Build into
Build into : .
CICS bundle -« Spring WAR Spring JAR
A Add file type ‘ .
Copy into .spring and Copy into Copy into
copy into | |
} ! I 1
CICS bundle Liberty dropins ﬂ:l : Liberty dropins/
directory directory Directory spring directory
Define and install Liberty scans for Add server.xml element Liberty scans for,
BUNDLE resource and installs <application ... type="spring"> thins, and installs
in CICS or <springBootApplication>
to install
v r l R

e
Liberty JVM server

172 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/spring-boot-jcics.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/link_2_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/spring-boot-jpa.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/spring-boot-security.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/spring-boot-transactions.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/spring-boot-jdbc.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/spring-boot-threading.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/spring-boot-jms.diat

Additional notes for building WARs

Before building, you must set the packaging type of your Spring Boot application as a deployable WAR.
Your main application class must extend the SpringBootServletInitializer and override the configure
method. You must also declare the Spring Boot embedded web container (typically Tomcat) as a provided
dependency in your build script so that it can be replaced with Liberty's web-container at run time. In
this example a main method is provided so that the application can also be built as a stand-alone JAR if
required.

@SpringBootApplication
public class MyApplication extends SpringBootServletInitializer

@Override
protected SpringApplicationBuilder configure(SpringApplicationBuilder application)
1

return application.sources(MyApplication.class);

b
public static void main(String[] args)
SpringApplication.run(MyApplication.class, args);
b

For detailed information about creating a deployable WAR file with Gradle or Maven, see Create a
deployable WAR file in the Spring Boot documentation.

For more information about building applications with Maven and Gradle, see Managing Java
dependencies using Maven or Gradle

Liberty web server plug-in

The web server plug-in allows the forwarding of HTTP requests from a supported web server, on to one or
more Liberty application servers.

There are three main reasons why you would want to use the web server plug-in.

- It provides integration with a web server for the serving of static content.
- It allows termination of the SSL endpoint in the web server when using HTTPS.
« It enables load balancing and failover of HTTP requests across a group of Liberty servers.

The web server plug-in is configured by generating a plugin-cfg.xml file on the Liberty server that

is copied to the machine hosting the web server. The plug-in takes inbound requests and checks them
against the configuration data contained within this file and forwards incoming HTTP requests to the URI
and host of the configured Liberty servers.

The procedure for generating plugin-cfg.xml with a Liberty profile

server uses the generatePluginConfig operation, that is exposed by the
com.ibm.ws.jmx.mbeans.generatePluginConfig MBean provided by Liberty. This IMX MBean can
either be invoked remotely using the JConsole utility supplied with the IBM Java SDK in combination with
the Liberty server restConnector-1.0 feature or by developing a custom JMX application to invoke the
required operation on the MBean. For further details on using JMX in a CICS Liberty server see “ Java
Management Extensions API (JMX) ” on page 142.

Further detailed information on setting up a web server plug-in can be found in the WAS Knowledge
Center, see Adding a plug-in configuration to a web server.

Context and Dependency Injection (CDI)

Context and Dependency Injection (CDI) provides a common mechanism to inject component such as
Enterprise JavaBeans (EJBs) or managed beans into other components such as JavaServer Pages (JSPs)
or other EJBs.

CDI support is provided by Liberty, and is configured in the Liberty server configuration files (server.xml
and included files) through the features that are described in Table 38 on page 174.

Chapter 3. Developing Java applications 173

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#howto-create-a-deployable-war-file
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#howto-create-a-deployable-war-file
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_admin_webserver_plugin.html

Table 38. Liberty features that provide CDI support

Feature Name CDI Specification Level Specification Levels

cdi-1.0 CDI1.0 « Java EE 6.0 - Web Profile

Note: CDI 1.0 support in Liberty is
stabilized. For more information, see
Stabilized Liberty features and feature

capabilities.
cdi-1.2 CDI1.2 « Java EE 7.0 - Web Profile
» Java EE 7.0 - Full Profile
« Eclipse MicroProfile 1.0
« Eclipse MicroProfile 1.2
cdi-2.0 CDI2.0

Java EE 8.0 - Web Profile
Java EE 8.0 - Full Profile
Eclipse MicroProfile 1.2

Eclipse MicroProfile 3.0
Eclipse MicroProfile 4.1

CDI beans can be packaged in any of the following archive types: JARs, EJB JARs, or WARs. Any location
on the application class path can contain CDI beans. For CDI beans to be registered into the container, the
archive they are contained in must be declared as a bean archive. In CDI 1.0, only explicit bean archives
are supported. CDI 1.1 introduces support for two types of bean archives, explicit bean archives and
implicit bean archives.

Explicit bean archives must contain a beans. xml file, which must be at:

« META-INF/beans.xml for JAR types
« WEB-INF/beans.xml, or WEB-INF/classes/META-INF/beans.xml for WAR types.

The beans.xml file can be empty, or can contain XML data that is described by either the CDI 1.0 or CDI
1.1 schemas.

Note: CDI versions 1.2 and 2.0 use the version 1.1 schema.

Implicit bean archives must contain one or more bean classes with a bean defining annotation, or session
bean.

Liberty provides a configuration option on whether implicit bean archives are enabled. In the CICS default
server.xml template file, implicit bean archives are disabled. If implicit bean archives are enabled in
Liberty, every application is scanned for the presence of CDI beans, causing unnecessary CPU usage. On
a platform where CPU is chargeable, a more efficient approach is to disable implicit bean archives, and
define applications that contain CDI beans as explicit bean archives by adding a beans . xml file.

Implicit bean archives can be enabled through the following configuration:
<cdil2 enableImplicitBeanArchives="true" />

Related information

https://www.cdi-spec.org/

Contexts and Dependency Injection behavior changes between releases
Administering Contexts and Dependency Injection applications on Liberty

174 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/docs/en/was-liberty/zos?topic=liberty-stabilized-features-feature-capabilities
https://www.ibm.com/docs/en/was-liberty/zos?topic=liberty-stabilized-features-feature-capabilities
https://java.sun.com/xml/ns/javaee/beans_1_0.xsd
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd
https://www.cdi-spec.org/
https://www.ibm.com/support/knowledgecenter/no/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_javaee8.html
https://www.ibm.com/docs/en/was-liberty/zos?topic=SS7K4U_liberty/com.ibm.websphere.wlp.doc/ae/twlp_admin_cdi.html
https://java.sun.com/xml/ns/javaee/beans_1_0.xsd
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd

Accessing data from Java applications

You can write Java applications that can access and update data in Db2 and VSAM. Alternatively, you can
link to programs in other languages to access Db2, VSAM, and IMS.

You can use any of the following techniques when writing a Java application to access data in CICS. The
CICS recovery manager maintains data integrity.

Accessing relational data
You can write a Java application to access relational data in Db2 by using any of the following methods:

« A JCICS LINK command to link to a program that uses Structured Query Language (SQL) commands to
access the data.

« Where a suitable driver is available, use Java Data Base Connectivity (JDBC) or Structured Query
Language for Java (SQLJ) calls to access the data directly. Suitable JDBC drivers are available for Db2.
For more information about using JDBC and SQLJ application programming interfaces, see Using JDBC
and SQLJ to access Db2 data from Java programs .

« JavaBeans that use JDBC or SQLJ as the underlying access mechanism. You can use any suitable Java
integrated development environment (IDE) to develop such JavaBeans.

Accessing DL/I data

To access DL/I data in IMS, your Java application must use a JCICS LINK command to link to an
intermediate program that issues EXEC DLI commands to access the data.

Accessing VSAM data
To access VSAM data, a Java application can use either of the following methods:

« The JCICS file control classes to access VSAM directly.
« A JCICS LINK command to link to a program that issues CICS file control commands to access the data.

Interacting with structured data from Java

CICS Java programs often interact with data that was originally designed for use with other programming
languages. For example, a Java program might link to a COBOL program by using a COMMAREA defined
in a COBOL copybook, or read a record from a VSAM file where the data is defined by using an assembler
language DSECT.

Importing structured data into Java

You can use an importer to generate Java classes that facilitate the interaction with structured record
data from other languages. The importers map the data types that are contained in the language structure
source so that your Java application can easily set and get individual fields in the underlying record
structure.

You can use IBM Record Generator for Java or the Rational Java EE Connector (J2C) Tools to interact with
data to produce a Java class so that you can pass data between Java and other programs in CICS.

IBM Record Generator for Java V3.0.0

IBM Record Generator for Java is a stand-alone utility that generates Java helper classes based on the
associated-data (ADATA) files that are produced from compiling COBOL copybooks or assembler DSECTs.
These Java helper classes can then be used in a Java application to marshal data to and from the
COBOL-specific or assembler language-specific record structures.

For more information, see IBM Record Generator for Java V3.0.0.

Chapter 3. Developing Java applications 175

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk6j.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk6j.html
https://www.ibm.com/support/knowledgecenter/SSMQ4D_3.0.0/documentation/welcome.html

Rational J2C Tools

The Rational J2C Tools, resource adapters, and file importers enable you to create J2C artifacts that you
can use to create enterprise applications that connect to enterprise information systems such as CICS. To
use the Rational J2C Tools, you require Rational Application Developer for WebSphere Software or IBM
Developer for z Systems.

The J2C Tools CICS/IMS Data Binding wizard generates Java classes that map to COBOL, PL/I, or

C application program data structures, by using a customizable Eclipse based wizard. These helper
classes can then be used in a Java application to marshal data to and from the language-specific record
structures.

For more information, see Connecting to enterprise information systems in Rational Application Developer
for WebSphere Software product documentation.

Related information
IBM Redbooks: IBM CICS and the JVM server: Developing and Deploying Java Applications
Building Java records from COBOL with the IBM Record Generator for Java

COBOL Importer overview in Rational Application Developer for WebSphere Software product
documentation

Generating Java Records from COBOL with Rational J2C Tools

Developing Java applications to use the JZOS Toolkit API in an
0SGi JVM server

The IBM JZOS Toolkit consists of classes in package com.ibm. jzos, which is distributed with the IBM
Java SDKs for z/OS in a single JAR file ibmjzos. jar.

These classes give Java applications on z/OS direct access to traditional z/OS data sets and files and
access to z/0OS system services and converter classes for mapping byte array fields into Java data types.

Before you begin

If the JZOS Toolkit API is not downloaded to your workstation, then transfer the ibmjzos. jaz file from
the relevant version of the IBM Java SDK on z/0S to your workstation.

Important: If you are using IBM CICS Explorer or an Eclipse-based IDE running version 2022-03 or later,
your default compiler compliance level must match the Java version of the target runtime to which the
application or sample is deployed to avoid issues. You can change this setting in IBM CICS Explorer by
selecting Preferences, then Java, and then Compiler.

Procedure

1. Set the Target platform. To prepare to use the JCICS API in your development environment, set the
Eclipse Target Platform to ensure it can resolve locally. In an OSGi development environment Target
Platform definitions are used to define the plug-ins that applications in the workspace is built against.
For CICS Explorer use the Eclipse menu, Windows > Preferences > Plug-in Development > Target
Platform. Click Add, and from the supplied templates select the CICS TS release for your runtime
environment. Don't forget to apply the target platform to your workspace.

2. Create an OSGi wrapper bundle for the JZ0OS Toolkit. If you have the IBM CICS SDK for Enterprise
Java (Liberty) plug-in, then select File > Import > Java Archive into an 0SGi bundle to create a
new OSGi Bundle Project. Ensure that the newly created bundle exports all the available JZOS Toolkit
packages that are required by the Java application such as com.ibm.jzos, com.ibm.jzos.fields,
or com.ibm.jzos.wlm. This ensures that these packages are available to be imported by other OSGi
projects in the Eclipse workspace.

For example

176 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSRTLW_9.7.0/com.ibm.j2c.doc/topics/cresadapoverv.html
https://www.ibm.com/support/knowledgecenter/SSRTLW_9.7.0/com.ibm.j2c.doc/topics/cresadapoverv.html
https://www.redbooks.ibm.com/abstracts/sg248038.html?Open
https://developer.ibm.com/cics/2016/05/12/java-cics-using-ibmjzos
https://www.ibm.com/support/knowledgecenter/SSRTLW_9.7.0/com.ibm.j2c.doc/topics/ccobolimporteroverview.html
https://www.ibm.com/support/knowledgecenter/SSRTLW_9.7.0/com.ibm.j2c.doc/topics/ccobolimporteroverview.html
https://developer.ibm.com/cics/2016/06/29/java-cics-using-rational-j2c/

Export-Package: com.ibm.jzos,
com.ibm.jzos.fields

3. Create a CICS Java application.
a) Create an OSGi Bundle Project in Eclipse by using the wizard File > New > Other Plug-in Project.
b) Create a Java package com.ibm.cicsdev.jzos.sample and add a class ZFilePrint.

¢) Copy in the following code example, which opens an MVS data set pointed to by the //INPUT DD
and writes the output to a CICS temporary storage queue.

package com.ibm.cicsdev.jzos.sample;

import com.ibm.jzos.ZFile;
import com.ibm.jzos.zZUtil;
import com.ibm.cics.server.TSQ;

public class ZFilePrint
1
public static void main(String[] args) throws Exception

ZFile zFile = new ZFile("//DD:INPUT", "rb,type=record,noseek");
TSQ tsqQ = new TSQ();
tsqgQ.setName ("JZ0OSTSQ") ;

try
1
byte[] recBuf = new byte[zFile.getlLrecl()];
int nRead;
String encoding = ZUtil.getDefaultPlatformEncoding();

while ((nRead = zFile.read(recBuf)) >= 0)
]

String line = new String(recBuf, 0, nRead, encoding);
tsqQ.writeString(line);

3
finally
1

zFile.close();

%

4. Add the following Import-Package statements to the bundle manifest for the JCICS and
JZOS packages. The JCICS import should follow best practice to specify a range of
versions the application operates with. Typically this range will go up to, but not include,
the next API breaking change. For JCICS that would be version 2.0.0, so the range
com.ibm.cics.server;version="[1.401.0,2.0.0)" isused in the example as this is the
minimum level that is required to support the JCICS TSQ.writeString () method. The JZ0OS
package is not taken from a versioned bundle. It is displayed to the runtime from the underlying
JAR file with no version, and so com.ibm. jzos can be listed without a referenced version, which
allows any available version (including 0.0.0) to be chosen.

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: com.ibm.cicsdev.jzos.sample

Bundle-SymbolicName: com.ibm.cicsdev.jzos.sample
Bundle-Version: 1.0.0

Bundle-RequiredExecutionEnvironment: JavaSE-1.7
Import-Package: com.ibm.cics.server;version="[1.401.0,2.0.0)",
com.ibm.jzos

5. Add a CICS-MainClass: definition to the bundle manifest to register a MainClass service for your
com.ibm.cicsdev.jzos.sample.ZFilePrint class.
This allows the Java class to be linked to using a CICS program definition. Your manifest now looks
similar to the following example:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: com.ibm.cicsdev.jzos.sample

Chapter 3. Developing Java applications 177

Bundle-SymbolicName: com.ibm.cicsdev.jzos.sample
Bundle-Version: 1.0.0

Bundle-RequiredExecutionEnvironment: JavaSE-1.7
Import-Package: com.ibm.cics.server;version="[1.401.0,2.0.0)",
com.ibm.jzos

CICS-MainClass: com.ibm.cicsdev.jzos.sample.ZFilePrint

Results

The application is now ready to be tested, and can be deployed into a CICS OSGi JVM server by using a
CICS Bundle Project as follows:

1. Create a CICS Bundle Project in Eclipse and add the OSGi Bundle Project by using the menu New OSGi
Bundle Project Include.

2. Deploy to zFS by using the menu Export Bundle Project to z/OS UNIX file system.
3. Create a CICS BUNDLE definition that references this zFS location and install it.

4. Create a CICS PROGRAM definition that names the CICS-MainClass:
com.ibm.cicsdev.jzos.sample.ZFilePrint inthe JVMClass attribute and install it.

5. Before you run the application, you need to define an MVS DD in the CICS JCL referencing a valid MVS
data set and then restart your CICS region. For instance

//INPUT DD DISP=SHR,DSN=CICS.USER.INPUT

6. If you need to run the application from a 3270 console, create a TRANSACTION definition that
references the PROGRAM defined in step 4.

When started, your Java class ZFilePrint reads the defined MVS data set by using the JZOS Toolkit API
and then write the contents to a CICS temporary storage queue using the JCICS APL.

Accessing IBM MQ from Java programs

Java programs that run in CICS can use either the IBM MQ classes for Java, or the IBM MQ classes
for IMS, to access IBM MQ. IBM MQ classes for JMS are the preferred interfaces to IBM MQ from a
Java application that runs in CICS. (The IBM MQ classes for Java continue to be supported but newer
applications should use IBM classes for JMS.

For an overview of how CICS works with IBM MQ, see CICS and IBM MQ.

IBM MQ classes for Java encapsulate the Message Queue Interface (MQI), the native IBM MQ APL. The
classes use a similar object model to the C++ and .NET interfaces to IBM MQ. In addition, you can exploit
the full range of features of IBM MQ beyond the features that are available through JMS. IBM MQ classes
for IMS implement the JMS interfaces for IBM MQ as the messaging system.

Three different JVM server environments in CICS support access to the IBM MQ classes:

« A CICS integrated-mode Liberty JVM server. This JVM server supports IBM MQ classes for JMS. It
provides managed JMS connection factories and MDB support, and integrated CICS transactions and
security. IBM MQ classes for Java are not supported.

« A CICS standard-mode Liberty JVM server. This JVM server supports IBM MQ classes for JIMS. It
provides managed JMS connection factories and MDB support but without integrated CICS transactions.
IBM MQ classes for Java are not supported.

« An OSGi JVM server. This JVM server supports IBM MQ classes for JMS. It supports non-managed JMS
connection factories with integrated CICS transactions and security. IBM MQ classes for Java are also
supported, in bindings-mode only.

In addition, there are three different ways of connecting to IBM MQ from CICS:

« MQ client mode: a TCP/IP network connection to an IBM MQ queue manager

« MQ bindings mode: a local cross memory interface to the queue manager, using the IBM MQ RRS
adapter

178 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/mq/cics-mq-overview.html

« CICS-MQ adapter and MQCONN: a local cross memory interface to the queue manager, using the
CICS-MQ adapter

Table 39 on page 179 shows which JVM servers support which IBM MQ classes, and through which

connectivity options.

Table 39. Summary of CICS support for access to IBM MQ from a Java application
MQ CICS standard-mode CICS integrated-mode 0SGi JVM server
connectivity |Liberty JVM server Liberty JVM server
Client mode |. 1M MQ classes for IMS: |+ IBM MQ classes for JMS: | Not supported
JMS 1.1 and IJMS 2.0 JMS 1.1 and JMS 2.0
« IBM MQ classes for Java: |+ IBM MQ classes for Java:
not supported not supported
For more information, see For more information, see
“Using IBM MQ classes for | “Using IBM MQ classes for
JMS in a CICS Liberty JVM JMS in a CICS Liberty JVM
server” on page 179 server” on page 179
Bindings . IBM MO classes for IMS: | Not supported - IBM MQ classes for IMS:
mode JMS 1.1 and IMS 2.0 not supported
- IBM MQ classes for Java: - IBM MQ classes for Java:
not supported supported
For more information, see For imore nformation, see
“Using IBM MQ classes for “Using IBM MQ classes
JMS in a CICS Liberty JVM for Java in an OSGi JVM
server” on page 179 server ” on page 186
CICS-MQ Not applicable Not applicable . IBM MQ classes for JMS:
ﬁddagge’\zﬁnd IMS 1.1 and IMS 2.0
Q » IBM MQ classes for Java:
not supported
For information, see “Using
IBM MQ classes for IMS
in an OSGi JVM server” on
page 182

Using IBM MQ classes for JMS in a CICS Liberty JVM server

Java programs running in a CICS Liberty JVM server can use JMS to access IBM MQ. When the IBM MQ
JMS feature is installed in a CICS Liberty JVM server, JMS requests are processed by the MQ messaging
provider. Support for the JMS 2.0 feature gives access to the classic (JMS 1.1) and simplified (JMS 2.0)
interfaces. CICS must be connected to a level of IBM MQ queue manager that supports the appropriate

level of JMS and is using a suitable version of the IBM MQ classes for JMS.

For an introduction, see How it works: IBM MQ classes for JMS. For information about how IBM MQ
implements JMS, see Using IBM MQ classes for JMS in the IBM MQ documentation, including IBM
MQ classes for JMS JavaDoc and information about messages, application functions, and accessing MQ

features in Writing IBM MQ classes for JMS applications. To compare levels of JMS specification, see Java

Message Service Specification.

In a CICS Liberty environment, the IBM MQ messaging provider supports JMS connections to be made to
an IBM MQ queue manager as follows:

- Ina CICS integrated-mode Liberty JVM server, JMS applications can only connect to a queue manager
using MQ client mode transport. The use of MQ bindings mode is not supported. This type of CICS
Liberty JVM server provides JMS support, with integrated CICS transactions and security.

Chapter 3. Developing Java applications 179

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/mq/mq-classes-planning.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q031500_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.javadoc.doc/WMQJMSClasses/index.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.javadoc.doc/WMQJMSClasses/index.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q031950_.html
https://javaee.github.io/jms-spec/
https://javaee.github.io/jms-spec/

 In a CICS standard-mode Liberty JVM server, JMS applications can connect to a queue manager using
either MQ bindings mode or client mode transports. This type of CICS Liberty JVM server provides JMS
support, without integrated CICS transactions.

Your Java application communicates with IBM MQ in one of two ways:

« Through message-driven beans (MDBs)
« Through a servlet that uses a JMS connection factory

2 z/os

[FJ CICS region

& Liberty JVM server

Web application MDB

Connection Factory ActivationSpec

F_

wmgqJmsClient-2.0 feature

MQ client mode
TCP/IP

(i

MQ Queue Manager

Figure 32. Applications connecting to IBM MQ using JMS and running in a CICS Liberty JVM server

Things to check
 Your intended connection to IBM MQ is supported by your version of the CICS Liberty JVM server. See
Table 39 on page 179 in “ Accessing IBM MQ from Java programs ” on page 178.

« The level of JMS that is supported by the IBM MQ queue manager that CICS connects to. IBM MQ for
z/0S Version 7.1 only supports JMS 1.1. IBM MQ Version 8.0 and above support both JIMS 1.1 and IJMS
2.0.

« If you use bindings mode transport (supported only by CICS standard-mode Liberty) :

— JMS applications that connect to an IBM MQ queue manager using bindings mode must specify a
different queue manager to the queue manager that is specified on any CICS MQCONN resource
installed in the same CICS region.

— Both Liberty and IBM MQ are deployed on the same server.

« Any CICS tasks started using the CICSExecutorService must connect to a queue manager using client
mode transport.

« There are some programming restrictions, described in “JMS programming considerations (Liberty JVM
server)” on page 182.

Where next?

To use JMS in an application, you must:

180 CICS TS for z/0S: Java Applications in CICS

« Ensure that you have access to the IBM MQ classes for JMS in your development environment, either as
a component of IBM MQ product or as a JAR file from FixCentral (see Using IBM MQ classes for JMS for
information on how to do this.)

« Develop your application to use either managed JMS connection factory or message-driven beans
(MDBs). For more information, see “Programming with IBM MQ classes for JMS with a Liberty JVM
server ” on page 181.

« Add your application to a CICS bundle project, export to zFS, and install it into the Liberty JVM server.

« Configure the CICS Liberty JVM server environment. In addition to configuring the server.xml, you
must set up the IBM MQ resource adapter, which is needed to connect to IBM MQ from Liberty. For
more information, see Configuring a Liberty JVM server to support JMS.

Programming with IBM MQ classes for JMS with a Liberty JVM server

To use IJMS in your CICS Java application to exchange messages with IBM MQ, you have two options. You
can either use a message-driven bean (MDB) that receives incoming messages from an IBM MQ queue
manager or a servlet that uses a JMS connection factory to send and receive JMS messages.

Using a JMS connection factory

For a tutorial that shows how to develop this type of application, see CICS Developer Center: Developing
an MQ JMS application for CICS Liberty. It includes links to a sample servlet and supporting code that you
can download.

CICS region z/0S
Liberty JVM server MQ
pen— JMS 2.0 Queue Manager
A T e | ——
I.,_x ﬁ“’lhﬂ“m /'II be————
N Pt -
gl receive Message -

Figure 33. Accessing IBM MQ through a Java application that uses IMS connection factory

Using message-driven beans (MDBs)

In this form of programming, the onMessage () method in the MDB is invoked when a message arrives
on the queue that is associated with the MDB. A javax.jms.Message object is then passed as input
to the MDB for further processing. An MDB is a type of EJB, so it can use either container-managed or
bean-managed Java transactions

CICS Developer Center: Developing an MQ JMS application for CICS Liberty in the CICS developerCenter
is a tutorial of how to develop this kind of application. It includes links to a sample servlet and supporting
code that you can download.

Chapter 3. Developing Java applications 181

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q031500_.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfhpj_webspheremq_jmsliberty_configure.html
https://github.com/cicsdev/cics-java-liberty-mq-jms/blob/master/blog.md
https://github.com/cicsdev/cics-java-liberty-mq-jms/blob/master/blog.md
https://github.com/cicsdev/cics-java-liberty-mq-jms/blob/master/blog.md

CICS region z/O0S

Liberty JVM server Ma
I, IMS 2.0 Queue Manager
f Message P I
.\\H. n Bean / -— ; Message
JCICS | qmmmm .

TSQ

Figure 34. Accessing IBM MQ through a Java application that uses MDBs

JMS programming considerations (Liberty JVM server)

« Any work submitted to the CICSExecutorService using the runAsCICS () method that work must
not include any JMS requests.

« The CICS transaction ID under which the MDB request runs defaults to CIJSU, which is the JVM
server unclassified request processor. This can be modified per JVM server using the system property
com.ibm.cics.jvmserver.unclassified.tranid.

« When you use JMS in a Liberty JVM server, messages sent and received by the IBM MQ classes for
JMS are coordinated using the Liberty Transaction Manager. For updates to recoverable resources that
are managed by CICS to be coordinated in the same unit-of-work, the application must use the Java
Transaction API (JTA), either explicitly through the UsexTransaction.begin () method or implicitly
using an EJB container-managed transaction. To complete a UOW, use the UsexTransaction
commit () or rollback() methods. Using the EXEC CICS SYNCPOINT command (in a mixed-language
application), or the commit () and rollback () methods on the following objects to commit or roll
back the UOW is not supported:

— javax.jms.Session (JMS 1.1 API)
— javax.jms.JmsContext (JMS 2.0 API)
— com.ibm.cics.server.Task

For more information about JTA, see Java Transaction API (JTA).

Using IBM MQ classes for JMS in an 0SGi JVM server

Java programs running in an OSGi JVM server can use JMS to access IBM MQ. When a CICS Java
application makes JMS requests, the requests are processed by the MQ messaging provider. Support

is provided for using the classic (JMS 1.1) and simplified (JMS 2.0) interfaces, provided that CICS is
connected to a level of IBM MQ queue manager that supports the appropriate level of IMS and is using a
suitable version of the IBM MQ classes for IMS.

For an introduction, see How it works: IBM MQ classes for JMS. For information about how IBM MQ
implements JMS, see Using IBM MQ classes for JMS in the IBM MQ documentation, including IBM
MQ classes for JMS JavaDoc and information about messages, application functions, and accessing MQ

182 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jta.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/mq/mq-classes-planning.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q031500_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.javadoc.doc/WMQJMSClasses/index.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.javadoc.doc/WMQJMSClasses/index.html

features in Writing IBM MQ classes for JMS applications. To compare levels of JMS specification, see Java
Message Service Specification

In a CICS environment, the IBM MQ classes for JMS allow connections to be made through an OSGi

JVM server. This supports non-managed JMS connection factories, with integrated CICS transactions and
security. If you want to use managed JMS connection factories or MDBs in your application, use a CICS
Liberty JVM server instead.

= 2z/0s

CICS region

=

=< 0SGi JVM server

Equinox (OSGi) framework

MYOSGIBUNDLE

MQ JMS MQ bindings mode

(il

MQ Queue Manager

Figure 35. Applications connecting to IBM MQ using JMS and running in a CICS OSGi server

Things to check
« The connection to IBM MQ. With an OSGi JVM server, only bindings mode connections to a local queue
manager are supported.

« The level of JMS that is supported by the IBM MQ queue manager that CICS connects to. IBM MQ for
z/0S Version 7.1 only supports JMS 1.1. IBM MQ Version 8.0 and above support both IMS 1.1 and JMS
2.0.

« You have defined a CICS MQCONN resource.

« There are some programming restrictions, described in “Programming with IBM MQ classes for JIMS
with an OSGi JVM server” on page 184.

Where next?
To use JMS in an application, you must:

« Ensure that you have access to the IBM MQ classes for IMS in your development environment, either as
a component of IBM MQ product or as a JAR file from FixCentral (see Using IBM MQ classes for IMS in
the IBM MQ documentation for information on how to do this.)

« Develop your application to use non-managed JMS connection factory. For more information, see
“Programming with IBM MQ classes for JMS with an OSGi JVM server” on page 184.

« Add your application to a CICS bundle project, export to zFS, and install it into the OSGi JVM server.

« Configure the CICS-MQ adapter. to connect to IBM MQ. For more information, see Setting up the
CICS-MQ adapter.

Chapter 3. Developing Java applications 183

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q031950_.html
https://javaee.github.io/jms-spec/
https://javaee.github.io/jms-spec/
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q031500_.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/mq/zs11290_.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/mq/zs11290_.html

« Configure the CICS OSGi server environment. For more information, see Configuring an OSGi JVM server
to support JMS.

Programming with IBM MQ classes for JMS with an 0SGi JVM server

To use IJMS in your CICS Java application to exchange messages with IBM MQ, you use a JMS connection
factory.

for a tutorial that shows how to develop this type of application, see CICS Developer Center: Using MQ
JMS in a CICS 0OSGi JVM server.

JMS programming considerations (0SGi JVM server)
 Use of any of the XA connection factories, for example com.ibm.mq. jms.MQXAConnectionFactozry,
is not supported.

« Messages sent and received by the IBM® MQ classes for IMS in a JVM server environment are always
associated with the CICS® unit of work (UOW) that is active on the current thread. That UOW can
only be completed by calling the commit or rollback methods on the com.ibm.cics.server.Task
object, or by the CICS task ending normally in which case the UOW is implicitly committed. (There
is one exception to this, described in the next item in this list.) The values of the transacted and
acknowledgeMode arguments are ignored when calling any of the Connection.createSession,
or ConnectionFactory.createContext methods. Additionally, the following methods are not
supported and calling them results inan I1legalStateException in the session case:

— javax.jms.Session.commit()
— javax.jms.Session.recover()
— javax.jms.Session.rollback()

andan IllegalStateRuntimeSession in the JMS context case:

— javax.jms.JMSContext.commit ()
— javax.jms.JMSContext.recover()
— javax.jms.JMSContext.rollback()

« The exception to the transactionality described above is this: if a session or JMS context is created using
one of the following mechanisms:

— Connection.createSession(false, Session.AUTO_ACKNOWLEDGE)
— Connection.createSession(Session.AUTO_ACKNOWLEDGE)
— ConnectionFactory.createContext (IMSContext.AUTO_ACKNOWLEDGE)

then the behavior of that session, or IMS context, is as follows:

— Any messages that are sent are transferred outside of the CICS UOW. That is, they are available on
the target destination immediately, or when the provided delivery delay interval has completed.

— Any non-persistent messages are received outside of the CICS UOW, unless the syncPointAllGets
property is specified on the connection factory that created the session or IMS context.

— Persistent messages are always received inside the CICS UOW.

In a mixed-language application, an EXEC CICS SYNCPOINT command issued from a non-Java™
program will commit the whole unit of work, including the updates made to IBM MQ by a Java program.

« JMS provides support for a number of different listener interfaces such as
javax.jms.Messagelistener, javax.jms.ExceptionListener and, if using IMS 2, the
javax.jms.CompletionListener. All of these interfaces result in MQ JMS using multiple threads
which is not supported in a CICS environment. Attempting to register one of these listeners results in
either a IMSException or a JIMSRuntimeException.

« MQ JMS builds on the native support for IBM MQ in CICS so it makes use of the existing IBM MQ
security support which is described in Security considerations for using IBM MQ with CICS . As a result,

184 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfhpj_webspheremq_jmsosgi_configure.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfhpj_webspheremq_jmsosgi_configure.html
https://github.com/cicsdev/blog-cics-java-mq-jms-osgi/blob/master/blog.md
https://github.com/cicsdev/blog-cics-java-mq-jms-osgi/blob/master/blog.md
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.sec.doc/q012170_.htm

any attempt to create either a connection or JMS context object while specifying a user id or password
results in either a IMSException or JMSRuntimeException.

« A CICS MQCONN resource must be defined. The name of the queue manager, or queue sharing group, to
which MQ IMS connects is taken from this MQCONN definition. Attempting to programmatically specify
a queue manager, or queue sharing group has no effect.

« The following approaches can be used to create and configure the IBM MQ implementations of
connection factories and destinations:
— Using IJNDI to retrieve administered objects
— Using the IBM JMS extensions
— Using the IBM MQ JMS extensions
Most users of JIMS use a INDI repository to locate a pre-configured set of connection factories and

destinations. CICS does not provide a INDI implementation, and the use of LDAP is not possible in an
OSGi environment.

For details of the available options, and an example of how to register an initial context factory and
the IBM MQ object factories with OSGi using the start method of a bundle adapter, see Creating and
configuring connection factories and destinations.

The connection between CICS and a IBM MQ queue manager is policed using the user ID of the CICS
address space. Resource access to a queue is authorized by the transaction user ID. Specifying a user
ID and password with a connection factory is therefore not supported.

« Any applications that make use of MQ JMS in CICS should make sure that all IMS resources are
recreated from an MQConnectionFactory each time the application is run. I.e. application code should
not store instances of sessions, message consumers, or any other MQ JMS objects in static variables so
that they can be shared between runs of the application. This restriction exists because the CICS-MQ
adapter tidies up any resources such as queue input handles when r the transaction that created them
completes. Trying to use one of these resources in another run of the same, or any other, transaction
results in JIMS exceptions.

« From a JMS specification perspective, the IBM MQ classes for JMS treat a JVM server as a Java EE and
Jakarta EE compliant application server, that always has a JTA transaction in progress. For example,
you can never call javax.jms.Session.commit () in CICS, because the JMS specification states that
you cannot call it in a JEE EJB, or Web container, while a JTA transaction is in progress. This results in
restrictions to the JMS API in CICS.

The following restrictions apply to the classic IMS API (JMS 1.1):

« javax.jms.Connection.createConnectionConsumer(javax.jms.Destination, String,
javax.jms.ServerSessionPool, int) always throws a JMSException

- javax.jms.Connection.createDurableConnectionConsumer(javax.jms.Topic, String,
String, javax.jms.ServerSessionPool, int) always throws a JMSException.

« Allthree variants of javax.jms.Connection.createSession always throw a JMSException if the
connection already has an existing session active.

« javax.jms.Connection.createSharedConnectionConsumer(javax.jms.Topic, String,
String, javax.jms.ServerSessionPool, int) always throws a JMSException.

- javax.jms.Connection.createSharedDurableConnectionConsumer(javax.jms.Topic,
String, String, javax.jms.ServerSessionPool, int) always throws a JMSException.

« javax.jms.Connection.setClientID() always throws a JMSException.

« javax.jms.Connection.setExceptionListener(javax.jms.ExceptionListener) always
throws a JMSException.

- javax.jms.Connection.stop() always throws a IMSException.

« javax.jms.MessageConsumer.setMessagelListener(javax.jms.MessagelListener) always
throws a JMSException.

« javax.jms.MessageConsumer.getMessagelistenexr () always throws a IMSException.

Chapter 3. Developing Java applications 185

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q032160_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q032160_.htm

« javax.jms.MessageProducer.send(javax.jms.Destination,
javax.jms.Message, javax.jms.CompletionListener) always throws a IMSException.

« javax.jms.MessageProducer.send(javax.jms.Destination, javax.jms.Message, int,
int, long, javax.jms.CompletionListener) always throws a JMSException.

« javax.jms.MessageProducer.send(javax.jms.Message, int, int, long,
javax.jms.CompletionlListener) always throws a JIMSException.

« javax.jms.MessageProducer.send(javax.jms.Message, javax.jms.CompletionListener
) always throws a JMSException.

« javax.jms.Session.run() always throws a IMSRuntimeException.

« javax.jms.Session.setMessagelistener(javax.jms.MessagelListener) always throws a
JMSException.

« javax.jms.Session.getMessagelistener () always throws a IMSException.
The following restrictions apply to the simplified IMS API (JMS 2.0):

« — javax.jms.JIMSContext.createContext(int) always throws a IMSRuntimeException.
— javax.jms.JIMSContext.setClientID(String) always throws a IMSRuntimeException.

— javax.jms.JIMSContext.setExceptionListener(javax.jms.ExceptionListener) always
throws a IMSRuntimeException.

— javax.jms.JIMSContext.stop() always throws a IMSRuntimeException.

— javax.jms.JMSProducer.setAsync(javax.jms.CompletionListenexr) always throws a
JMSRuntimeException.

— javax.jms.JIMSConsumer.getMessagelistenexr () always throws a IMSRuntimeException.

— javax.jms.JIMSConsumer.setMessagelistener(javax.jms.Messagelistener) always
throws a IMSRuntimeException.

CICS abends during the processing of JMS requests

The use of IBM MQ classes for JMS and the bindings mode transport results in the issuing of IBM MQ
MQI commands. CICS abends issued during processing of the MQI command are not converted into Java
exceptions, and therefore are not catchable by a CICS Java application.

In this situation, the CICS transaction abends and rolls back to the last syncpoint.

Using IBM MQ classes for Java in an 0SGi JVM server

Java programs running in an OSGi JVM server can use the IBM MQ classes for Java, provided by IBM MQ,
to access IBM MQ. The IBM MQ classes for Java provide a Java variant of the Message Queue Interface
(MQI) that allows a CICS application to put and get messages to queues, using the MQ connection that is
maintained by CICS. Support for use of IBM MQ classes for Java in CICS applications is provided from IBM
MQ for z/OS 7.1.

In a CICS environment, the classes supplied by IBM MQ allow only connections to MQ in bindings mode.
Any attempt to use connections to a remote queue manager in client mode results in an exception. In
bindings mode, the call request is transformed into an IBM MQ MQI call, and is processed as normal

by the existing CICS-MQ adapter. The converted requests flow into the CICS-MQ adapter in exactly the
same way as MQI requests from any other program (for example, a COBOL program). So there are no
operational differences between Java programs and other programs accessing IBM MQ.

To use the IBM MQ classes for Java in your application, you must:

« Ensure that you have access to the MQ classes for Java in your development environment. Unless you
have IBM MQ installed on your workstation, get these from IBM MQ SupportPacs which entitle you to
download the IBM MQ clients free of charge.

« Add your application to a CICS bundle project, export to zFS, and install it into the JVM server.

186 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/pages/uid/swg24031412

« Configure the CICS JVM server environment with the correct levels of the IBM MQ Java and native
libraries. These must match the level of IBM MQ libraries that are specified in the CICS STEPLIB. For
more information, see Configuring an OSGi JVM server to support IBM MQ classes for Java.

For information about the IBM MQ classes for Java, see Using IBM MQ classes for Java in the IBM MQ
documentation. A list of the classes is in IBM MQ classes for JMS JavaDoc in the IBM MQ documentation.
For a tutorial, see CICS Developer Center: Using MQ JMS in a CICS OSGi JVM server.

Committing a unit of work involving WebSphere MQ requests

Messages sent and received by the IBM MQ classes for Java in a CICS JVM server environment are always
associated with the CICS unit of work (UOW).

The UOW can only be completed by calling the commit or rollback methods on the
com.ibm.cics.sexrver.Task object, or by the CICS task ending normally, in which case the UOW
is implicitly committed. Use of the transaction control methods on MQQueueManager is not supported.

For a mixed language application, an EXEC CICS SYNCPOINT command issued from a non- Java
program will commit the whole unit of work, including the updates made to IBM MQ by a Java program.

CICS abends during the processing of IBM MQ requests

The use of IBM MQ classes for Java results in the issuing of a IBM MQ MQI command. CICS abends issued
during processing of the MQI command are not converted into Java exceptions, and therefore are not
catchable by a CICS Java application.

In this situation, the CICS transaction will abend and roll back to the last syncpoint.

Connectivity from Java applications in CICS

Java programs in the CICS environment can open TCP/IP sockets and communicate with external
processes. You can use Java programs as a gateway to connect to other enterprise applications that
might not be available to CICS programs in other languages. For example, you can write a Java program to
communicate with a remote servlet or database.

In some cases, this connectivity is integrated with CICS to provide enterprise qualities of service, such
as distributed transactions and identity propagation. In other cases, you can use connectivity without
distributed transactions and other services provided by CICS. Depending on the type of connectivity
you require, third party vendor products might be available which enable connectivity with enterprise
applications that are not natively supported by CICS.

Generally, JVMs in the CICS environment are similar in capability to batch mode JVMs. A batch mode

JVM runs as a stand-alone process outside the CICS environment, and is typically started from a UNIX
System Services command line or with a JCL job. Most applications that can work in a batch mode JVM
can also run in a JVM in CICS to the same extent. For example, if you write a batch mode Java application
to communicate with a non-IBM database using a third-party JDBC driver, then the same application is
likely to work in a JVM in CICS. If you want to use vendor supplied code such as non-IBM JDBC drivers in
aJVMin CICS, consult with your vendor to determine whether they support their code running in a JVMiin
CICs.

For more information about Java application behavior in CICS, see “ Java runtime environment in CICS ”
on page 37.

Batch mode applications that run in a JVM in the CICS environment do not usually exploit the capabilities
of CICS. For example, if a Java program in CICS updates records in a non-IBM database using a third-
party JDBC driver, CICS is not aware of this activity, and does not attempt to include the updates in the
current CICS transaction.

Chapter 3. Developing Java applications 187

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfhpj_webspheremq_javaosgi_configure.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q030520_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.javadoc.doc/WMQJMSClasses/index.html
https://github.com/cicsdev/blog-cics-java-mq-jms-osgi/blob/master/blog.md

JCA local ECI support

You can deploy JCA ECI applications into a Liberty JVM server that is configured to use the JCA local ECI
resource adapter. This topic applies to CICS integrated-mode Liberty only.

For information on developing applications refer to “Java EE Connector Architecture (JCA)” on page 145.
To find out more about porting existing CICS Transaction Gateway applications, refer to “Porting JCA ECI
applications into a Liberty JVM server” on page 147. For information on configuring JCA, see “Configuring
the JCA local ECI resource adapter” on page 147.

The JCA ECI programming interfaces provided by the CICS TS JCA local ECI resource adapter are
documented in Javadoc that is generated from the class definitions. The Javadoc is available at JCA
local ECI Javadoc information.

The libraries and OSGi bundle required for application development are provided by the IBM CICS SDK for
Java.

Packaging existing applications to run in a JVM server

If you are running Java applications in pooled JVMs, you can move them to run in a JVM server. Because
a JVM server can handle multiple requests for Java applications in the same JVM, you can reduce the
number of JVMs that are required to run the same workload. You must package the Java application as
one or more OSGi bundles. You can use one of three methods to package the application:

Moving applications to a JVM server

If you are running Java applications in pooled JVMs, you can move them to run in a JVM server. Because
a JVM server can handle multiple requests for Java applications in the same JVM, you can reduce the
number of JVMs that are required to run the same workload.

Before you begin
Ensure that the application is threadsafe and is packaged as one or more OSGi bundles. The OSGi bundles
must be deployed in a CICS bundle to zFS and specify the correct target JVMSERVER resource.

The Java developer can use the CICS SDK for Java that is included with CICS Explorer to repackage a Java
application using OSGi. For more information on how to migrate applications that use third party JARs,
see Upgrading the Java environment .

About this task

You can either use an existing JVM server or create a JVM server for your application. Do not move
an application to a JVM server where the thread limit and usage are already high, because you might
introduce locking contentions in the JVM server.

Procedure
1. Create or update a JVM server:

- Ifyoudecide to create a JVM server, see Configuring a Liberty JVM server . Many of the settings in
a JVM profile for a pooled JVM do not apply to JVM servers. The only option that you might want to
copy from the pooled JVM profile to the DFHOSGI profile is the LIBPATH_SUFFIX option.

- Ifyou use an existing JVM server, you might have to increase the THREADLIMIT attribute on the
JVMSERVER resource to handle the additional application or update the options in the JVM server
profile. If you change the JVM profile, restart the JVM server to pick up the changes.

2. Create a BUNDLE resource that points to the deployed bundle in zFS.

When you install the BUNDLE resource, CICS loads the OSGi bundles into the OSGi framework in the
JVM server. The OSGi framework resolves the OSGi bundles and registers the OSGi services.

188 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/j2ee-javadoc/index.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/j2ee-javadoc/index.html
https://www.ibm.com/docs/SSJL4D_6.x/upgrading/process/upgrade_java.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/bundle/dfha4_summary.html

Use CICS Explorer to check that the BUNDLE resource is enabled. You can also use the OSGi Bundles
and OSGi Services views to check the state of the OSGi bundles and services.

3. Update the PROGRAM resource for the application:
a) Ensure that the EXECKEY attribute is set to CICS.
AllL IVM server work runs in CICS key.
b) Remove the JVM profile name and enter the name of the JVMSERVER resource.
c) Ensure that the JVMCLASS attribute matches the OSGi service of the Java application.
d) Reinstall the PROGRAM resource for the application.

The PROGRAM resource uses the OSGi service to make an OSGi bundle available to other CICS
applications outside the JVM server.

Results
When the Java application is called, it runs in the JVM server.

What to do next
You can use the JVM server view in CICS Explorer and CICS statistics to monitor the JVM server. If the
performance is not optimal, adjust the thread limit.

Converting an existing Java project to a plug-in project

If you have an existing Java project, you can convert it to an OSGi plug-in project. The OSGi bundle can
run in a pooled JVM environment and a JVM server.

About this task

This task assumes that you have an existing Java project in your workspace, and you want to convert it to
an OSGi plug-in project.

Procedure

1. In the Package Explorer view, right-click the Java project that you want to convert to a plug-in project,
and click Configure > Convert to Plug-in Projects.

The Convert Existing Projects dialog is displayed.

Chapter 3. Developing Java applications 189

& Convert Existing Projects |Z|@@

Convert Existing Projects

"=l
Select existing projects ko add PDE capability, d “J /

Awailable projects

[] ==cics. application. bundle Select Al

[] == com.ibm. cics. server. bundle
[== com.ibm.cics server, examples Dieselect Al

[=Fjava.project

1 of 4 selected,

N
'M?,' Finish l [Cancel

The dialog contains a list of all the Java projects in your workspace. The one you chose to convert is
selected. You can change your selection, or select more than one Java project to convert to a plug-in
project.

2. Click Finish.
The Java project is converted to a plug-in project. The project name does not change, but the project
now includes a manifest file and a build properties file.

3. Required: You must now edit the plug-in manifest file and add the JCICS API dependencies. If you do
not perform these steps, you will be able to export and install the bundle, but it will not run.

Note: In CICS versions before CICS TS version 4.2 you had to add the Java class library,

dfjcics.jar, to the Java build path. With CICS TS version 4.2, 0SGi manages the build path

for you. Before you perform the following steps you must edit the current build path and remove

any references to dfhjcics. jar. If you do not remove all references to dfhjcics. jar, a

NoSuchMethodException error occurs at run time.

a) In the Package Explorer view, right-click the project name and click Plug-in Tools > Open Manifest.
The manifest file opens in the manifest editor.

b) Important: In CICS versions before CICS TS version 4.2, the Java class library, known as
JCICS, is supplied in the dfjcics. jar JAR file. In CICS TS version 4.2 the library is supplied
inthe com.ibm.cics.sexrver. jar file. If your project manifest contains the declaration:
Import-Package: dfhjcics.jar; you must remove the declaration before continuing with
the remaining steps.

c¢) Select the Dependencies tab and in the Imported Packages section, click ADD.
The Package Selection dialog opens.

d) Select the package com.ibm.cics.server and click OK.
The package is displayed in the Imported Packages list.

e) Optional: Repeat the previous step to install the following package, if it is required for your
application:

190 CICS TS for z/0S: Java Applications in CICS

com.ibm.xrecoxd

The Java API for legacy programs that use IByteBuffer from the Java Record Framework that
came with VisualAge. Previously in the dfjcics. jar file.

f) Select File > Save to save the manifest file.

Results

You have successfully converted your existing Java project to a plug-in project.

What to do next

You must now update the manifest file to add a CICS-MainClass declaration. For more information, see
the related link.

Importing the contents of a JAR file into an OSGi plug-in project

You can create a plug-in project from an existing JAR file. This method is useful when the application is

already threadsafe and no refactoring or recompiling is required. The OSGi bundle can run in a pooled
JVM environment and a JVM server.

About this task

This task creates a new OSGi plug-in project from an existing JAR file. The JAR file must be on your local
file system.

Procedure

1. On the Eclipse menu bar, click File > New > Project to open the New wizard.
2. Expand the Plug-in Development folder and click Plug-in from Existing JAR Archives. Click Next.
The JAR selection dialog opens.

3. Locate the JAR file to convert. If the file is in your Eclipse workspace, click Add. If the file is in a folder
on your computer, click Add External and browse to the JAR file. Select the required file and click
Open to add it in the Jar selection dialog. Click Next.

The Plug-in Project Properties dialog opens.

Chapter 3. Developing Java applications 191

& Mew Plug-in from Existing JAR Archives

Plug-in Project Properties =ﬁ1]2
Enter the data required to generate the plug-in, | tﬁ.

Project name: | com.ibm,cics.jar . table_application |

IUse defaulk location

Plug-in Properties

Plug-in IC: | com.ibm.cics, jar. kable_application |
Plug-in Version; | 1.0.0 |
Plug-in Mame: | Table_application |

Plug-in Provider: |

[] analyze library contents and add dependencies

Execution Environmment: |JavaSE-1.E~ b | [Envirnnments...]

Target Platform
This plug-in is targeted ko run with:

() Eclipse version:

(%) an 035G Framewark:

Unzip the 18R archives inkto the project
[]Update references ko the JAR files

Wiorking sets

[]add project to waorking sets

® Finish] [Cancel

4. In the Project name field, enter the name of the project that you want to create. A project name is
mandatory.

5. Complete the following fields in the Plug-in Properties section as required:
Plug-in ID
The plug-in ID is automatically generated from the project name; however, you can change the ID if
you want to.

Plug-in Name
The plug-in name is automatically generated from the project name; however, you can change the
name if you want to.

192 CICS TS for z/0S: Java Applications in CICS

Execution Environment

This field specifies the minimum level of JRE required for the plug-in to run. Select the Java level
that matches the execution environment in your CICS runtime target platform.

6. In the Target Platform section, select an OSGI framework and select standard from the menu.
7. Ensure that Unzip the JAR archives into the project is selected and click Finish.
Eclipse creates the plug-in project in the workspace.

8. Required: You must now edit the plug-in manifest file and add the JCICS API dependencies. If you do
not perform these steps, you will be able to export and install the bundle, but it will not run.

a) In the Package Explorer view, right-click the project name and click Plug-in Tools > Open Manifest.
The manifest file opens in the manifest editor.

b) Select the Dependencies tab and in the Imported Packages section, click ADD.
The Package Selection dialog opens.

c¢) Select the package com.ibm.cics.server and click OK.
The package is displayed in the Imported Packages list.

d) Optional: Repeat the previous step to install the following package, if it is required for your
application:

com.ibm.xrecoxd

The Java API for legacy programs that use IByteBuffer from the Java Record Framework that
came with VisualAge. Previously in the dfjcics. jar file.

e) Select File > Save to save the manifest file.

Results

You have created an OSGi plug-in project from an existing JAR file.

What to do next

You must now update the manifest file to add a CICS-MainClass declaration. For more information, see
the related link.

Importing a binary JAR file into an OSGi plug-in project

You can create a plug-in project from an existing binary JAR file. This method is useful in situations where
there are licensing restrictions or where the binary file cannot be extracted. However, an OSGi bundle that
contains a JAR file is not supported in a pooled JVM environment.

About this task

This task creates a new OSGi plug-in project from an existing binary JAR file. The JAR file must be on your
local file system.

Procedure

1. On the Eclipse menu bar click File > New > Project to open the New wizard.
2. Expand the Plug-in Development folder and click Plug-in from Existing JAR Archives. Click Next.
The JAR selection dialog opens.

3. Locate the JAR file to convert. If the file is in your Eclipse workspace, click Add. If the file is in a folder
on your computer, click Add External and browse to the JAR file. Select the required file and click
Open to add it in the Jar selection dialog. Click Next.

The Plug-in Project Properties dialog opens.

Chapter 3. Developing Java applications 193

& New Plug-in from Existing JAR Archives

Plug+x Project Properties =ﬁ1]2
Enter the data required to generate the plug-in, | tﬁ.

Project name: | com.ibm,cics.jar, skatement_application |

IUse defaulk location

Plug-in Properties

Plug-in IC: | com.ibrm.cics, jar, stakement_application |
Plug-in Version; | 1.0.0 |
Plug-in Mame: | Skatement_application |

Plug-in Provider: |

[] analyze library contents and add dependencies

Execution Environmment: |JavaSE-1.E~ b | [Envirnnments...]

Target Platform
This plug-in is targeted ko run with:

() Eclipse version:

(%) an 035G Framewark:

[]Unzip the JaR archives into the project
[]Update references ko the JAR files

Wiorking sets

[]add project to waorking sets

® Finish] [Cancel

4. In the Project name field, enter the name of the project that you want to create. A project name is
mandatory.

5. Complete the following fields in the Plug-in Properties section as required:
Plug-in ID
The plug-in ID is automatically generated from the project name; however, you can change the ID if
you want to.

Plug-in Name
The plug-in name is automatically generated from the project name; however, you can change the
name if you want to.

194 CICS TS for z/0S: Java Applications in CICS

Execution Environment
This field specifies the minimum level of JRE required for the plug-in to run. Select the Java level
that matches the execution environment in your CICS runtime target platform.

6. In the Target Platform section, select an OSGI framework and select standard from the menu.
7. Ensure that Unzip the JAR archives into the project is not selected and click Finish.

Eclipse creates the plug-in project in the workspace. The project contains the binary JAR file but the
project is not supported in a pooled JVM environment.

8. Required: You must now edit the plug-in manifest file and add the JCICS API dependencies. If you do
not perform these steps, you will be able to export and install the bundle, but it will not run.

a) In the Package Explorer view, right-click the project name and click Plug-in Tools > Open Manifest.
The manifest file opens in the manifest editor.

b) Select the Dependencies tab and in the Imported Packages section, click ADD.
The Package Selection dialog opens.

¢) Select the package com.ibm.cics.server and click OK.
The package is displayed in the Imported Packages list.

d) Optional: Repeat the previous step to install the following package, if it is required for your
application:

com.ibm.recoxd
The Java API for legacy programs that use IByteBuffer from the Java Record Framework that
came with VisualAge. Previously in the dfjcics. jar file.

e) Select File > Save to save the manifest file.

Results

You have successfully created the plug-in project in the workspace.

What to do next

You must now update the manifest file to add a CICS-MainClass declaration. For more information, see
the related link.

Writing Java classes to redirect JVM stdout and stderr output

Use the USEROUTPUTCLASS option in a JVM profile to name a Java class that intercepts the stdout
stream and stdexrxr stream from the JVM. You can update this class to specify your choice of time stamps
and record headers, and to redirect the output.

CICS supplies sample Java classes, com.ibm.cics.samples.SIMergedStreamand
com.ibm.cics.samples.SJTaskStream, that you can use for this purpose. Sample source

is provided for both these classes in the directory /usr/lpp/cicsts/cicstsb6/samples/
com.ibm.cics.samples. The /usr/lpp/cicsts/cicsts56 directory is the installation directory for
CICS files on z/OS UNIX. This directory is specified by the USSDIR parameter in the DFHISTAR installation
job. The sample classes are also shipped as a class file, com.ibm.cics.samples. jar, whichisin the
directory /usxr/lpp/cicsts/cicsts56/1ib. You can modify these classes, or write your own classes
based on the samples.

Controlling the location for JVM output, logs, dumps and trace has information about:

« The types of output from JVMs that are and are not intercepted by the class that is named by the
USEROUTPUTCLASS option. The class that you use must be able to deal with all the types of output that
it might intercept.

« The behavior of the supplied sample classes. The com.ibm.cics.samples.SIMergedStream class
creates two merged log files for JVM output and for error messages, with a header on each record that
contains applid, date, time, transaction ID, task number, and program name. The log files are created by
using transient data queues, if they are available; or z/OS UNIX files, if the transient data queues are not

Chapter 3. Developing Java applications 195

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/dfhpjcv.html

available, or cannot be used by the Java application. The com.ibm.cics.samples.SJTaskStream
class directs the output from a single task to z/OS UNIX files, adding time stamps and headers, to
provide output streams that are specific to a single task.

For a JVM server to use an output redirection class, you must create an OSGi bundle

that contains your output redirection class. You must ensure that the bundle activator

registers an instance of your class as a service in the framework and sets the

property com.ibm.cics.server.outputredirectionplugin.name=class_name. You can use the
constant com.ibm.cics.server.Constants.CICS_USER_OUTPUT_CLASSNAME_PROPERTY to get
the property name. The following code excerpt shows how you might register your service in the bundle
activator:

Properties serviceProperties = new Properties();
serviceProperties.put(Constants.CICS_USER_OUTPUT_CLASSNAME_PROPERTY,
MyOwnStreamPlugin.class.getName());
context.registerService (OutputRedirectionPlugin.class.getName(), new MyOwnStreamPlugin(),
serviceProperties);

You can either add the OSGi bundle to the 0SGI_BUNDLES option in the JVM profile, or ensure that the
bundle is installed in the framework when the first task is run. Whichever method you use, you must still
specify the class in the USEROUTPUTCLASS option.

If you decide to write your own classes, you need to know about:

e The OutputRedirectionPlugin interface
« Possible destinations for output
- Handling output redirection errors and internal errors

The output redirection interface

CICS supplies an interface called com.ibm.cics.server.OutputRedirectionPluginin
com.ibm.cics.server. jar, which can be implemented by classes that intercept the stdout and stderr
output from the JVM. The supplied samples implement this interface.

The following sample classes are provided:

« Asuperclass com.ibm.cics.samples.SJStream that implements this interface

« The subclasses com.ibm.cics.samples.SIMergedStreamand
com.ibm.cics.samples.SJTaskStream, which are the classes named in the JVM profile

Like the sample classes, ensure that your class implements the interface OutputRedirectionPlugin
directly, or extends a class that implements the interface. You can either inherit from the superclass
com.ibm.cics.samples.SJStream, orimplement a class structure with the same interface. Using
either method, your class must extend java.io.OutputStream.

The initRedirect () method receives a set of parameters that are used by the output redirection class
or classes. The following code shows the interface:

package com.ibm.cics.server;
import java.io.x;
public interface OutputRedirectionPlugin {

public boolean initRedirect(String inDest,
PrintStream inPS,
String inApplid,
String inProgramName,
Integer inTaskNumber,
String inTransid

’

)
The superclass com.ibm.cics.samples.SJStream contains the common components of

com.ibm.cics.samples.SIMergedStreamand com.ibm.cics.samples.SJTaskStream. It
contains an initRedirect () method that returns false, which effectively disables output redirection

196 CICS TS for z/OS: Java Applications in CICS

unless this method is overridden by another method in a subclass. It does not implement a
writeRecord () method, and such a method must be provided by any subclass to control the output
redirection process. You can use this method in your own class structure. The initialization of output
redirection can also be performed using a constructor, rather than the initRedirect () method.

The inPS parameter contains either the original System. out print stream or the original System.err
print stream of the JVM. You can write logging to either of these underlying logging destinations. You must
not call the close () method on either of these print streams because they remain closed permanently
and are not available for further use.

Possible destinations for output

The CICS-supplied sample classes direct output from JVMs to a directory that is specific to a CICS region;
the directory name is created using the applid associated with the CICS region. When you write your own
classes, if you prefer, you can send output from several CICS regions to the same z/OS UNIX directory or
file.

For example, you might want to create a single file containing the output associated with a particular
application that runs in several different CICS regions.

Threads that are started programmatically using Thread.start() are not able to make CICS requests.

For these applications, the output from the JVM is intercepted by the class you have specified for
USEROUTPUTCLASS, but it cannot be redirected using CICS facilities (such as transient data queues). You
can direct output from these applications to z/OS UNIX files, as the supplied sample classes do.

Handling output redirection errors and internal errors

If your classes use CICS facilities to redirect output, they should include appropriate exception handling
to deal with errors in using these facilities.

For example, if you are writing to the transient data queues CSJO and CSJE, and using the CICS-supplied
definitions for these queues, the following exceptions might be thrown by TDQ.writeData:

 IOErrorException

« LengthErrorException
» NoSpaceException

« NotOpenException

If your classes direct output to z/OS UNIX files, they should include appropriate exception handling to
deal with errors that occur when writing to z/OS UNIX. The most common cause of these errors is a
security exception.

The Java programs that will run in JVMs that name your classes on the USEROUTPUTCLASS options
should include appropriate exception handling to deal with any exceptions that might be thrown by your
classes. The CICS-supplied sample classes handle exceptions internally, by using a Try/Catch block to
catch all throwable exceptions, and then writing one or more error messages to report the problem.
When an error is detected while redirecting an output message, these error messages are written to
System. err, making them available for redirection. However, if an error is found while redirecting an
error message, then the messages which report this problem are written to the file indicated by the
STDERR option in the JVM profile used by the JVM that is servicing the request. Because the sample
classes trap all errors in this way, this means that the calling programs do not need to handle any
exceptions thrown by the output redirection class. You can use this method to avoid making changes
to your calling programs. Be careful that you do not send the output redirection class into a loop by
attempting to redirect the error message issued by the class to the destination which has failed.

Chapter 3. Developing Java applications 197

198 CICS TS for z/0S: Java Applications in CICS

Chapter 4. Deploying applications to a JVM server

To deploy a Java application to a JVM server, the application must be packaged appropriately to install
and run successfully. You can use the IBM CICS SDKs, or the CICS-provided Gradle or Maven plug-in to
package and deploy the application.

You have a number of options for deploying Java applications:

« Deploy one or more CICS bundles that include the OSGi bundles for the application into a JVM server
that is running an OSGi framework.

« Deploy one or more CICS bundles that include one or more WAR files into a Liberty JVM server.

« Deploy one or more CICS bundles that include Enterprise Bundle Archive (EBA) files into a Liberty JVM
server.

« Deploy one or more CICS bundles that include EAR files into a Liberty JVM server.

« Deploy an application bundle that comprises the CICS bundles and OSGi bundles into a platform.
CICS provides two ways for you to deploy applications in CICS bundles:

« The IBM CICS SDK for Java and the IBM CICS SDK for Enterprise Java (Liberty) in CICS Explorer
- The Gradle or Maven plug-in that deploys bundles through the CICS bundle deployment API

For a complete list of deployment methods that CICS supports for different application and packaging
types, see Design choices for Java in CICS.

Deploying OSGi bundles in a JVM server

To deploy a Java application in a JVM server, you must install the OSGi bundles for the application in the
0OSGi framework of the target JVM server.

Before you begin

The CICS bundle that contains the OSGi bundles for the application must be deployed to zFS. The target
JVM server must be enabled in the CICS region.

About this task

A CICS bundle can contain one or more OSGi bundles. Because the CICS bundle is the unit of deployment,
all the OSGi bundles are managed together as part of the BUNDLE resource. The OSGi framework also
manages the lifecycle of the OSGi bundles, including the management of dependencies and versioning.

Ensure that all OSGi bundles that comprise a Java application component are deployed in the same CICS
bundle. If there are dependencies between OSGi bundles, deploy them in the same CICS bundle. When
you install the CICS BUNDLE resource, CICS ensures that all the dependencies between the OSGi bundles
are resolved.

If you have dependencies on an OSGi bundle that contains a library of common code, create a separate
CICS bundle for the library. In this case, it is important to install the CICS BUNDLE resource that contains
the library first. If you install the Java application before the CICS bundles that it depends on, the OSGi
framework is unable to resolve the dependencies of the Java application.

Do not attempt to install a CICS bundle that contains an OSGi bundle into a Liberty JVM server, as

this configuration is not supported. Instead, you can either package the OSGi bundle together with your
web application in an enterprise bundle archive (EBA), or you can use the WebSphere Liberty bundle
repository to make the OSGi bundle available to all web applications in the Liberty JVM server.

If you're using CICS Explorer: You can use the IBM CICS SDK for Enterprise Java (Liberty) in CICS
Explorer to deploy bundles by following instructions in this topic.

© Copyright IBM Corp. 1974, 2023 199

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_6.1.0/applications/developing/java/getting-started/design-choices.html

If you're using Gradle or Maven: You can package and deploy applications in CICS bundles by using
the CICS-provided Gradle or Maven plug-in, provided the CMCI JVM server is configured to use the CICS
bundle deployment API.

This tutorial provides step-by-step instructions on how to build a CICS bundle from an existing Java
application that is already built by Gradle or Maven.

Procedure

1. Create a BUNDLE resource that specifies the directory of the bundle in zFS:

a) In the CICS SM perspective, click Definitions > Bundle Definitions in the CICS Explorer menu bar
to open the Bundles Definitions view.

b) Right-click anywhere in the view and click New to open the New Bundle Definition wizard.
Enter the details for the BUNDLE resource in the wizard fields.
c) Install the BUNDLE resource.
You can either install the resource in an enabled or disabled state:
- If youinstall the resource in a DISABLED state, CICS installs the OSGi bundles in the framework
and resolves the dependencies, but does not attempt to start the bundles.

« If you install the resource in an ENABLED state, CICS installs the OSGi bundles, resolves the
dependencies, and starts the OSGi bundles. If the OSGi bundle contains a lazy bundle activator,
the OSGi framework does not attempt to start the bundle until it is first called by another OSGi
bundle.

2. Optional: Enable the BUNDLE resource to start the OSGi bundles in the framework if the resource is
not already in an ENABLED state.

3. Click Operations > Bundles in the CICS Explorer menu bar to open the Bundles view. Check the state
of the BUNDLE resource.

« Ifthe BUNDLE resource is in an ENABLED state, CICS was able to install all the resources in the
bundle successfully.

« Ifthe BUNDLE resource is in a DISABLED state, CICS was unable to install one or more resources in
the bundle.

If the BUNDLE resource failed to install in the enabled state, check the bundle parts for the BUNDLE
resource. If any of the bundle parts are in the UNUSABLE state, CICS was unable to create the OSGi
bundles. Typically, this state indicates that there is a problem with the CICS bundle in zFS. You must
discard the BUNDLE resource, fix the problem, and then install the BUNDLE resource again.

4. Click Operations > Java > 0SGi Bundles in the CICS Explorer menu bar to open the OSGi Bundles
view. Check the state of the installed OSGi bundles and services in the OSGi framework.

« If the OSGi bundle is in the STARTING state, the bundle activator has been called but not yet
returned. If the OSGi bundle has a lazy activation policy, the bundle remains in this state until it is
called in the OSGi framework.

« If the OSGi bundles and OSGi services are active, the Java application is ready.

- If the OSGi service is inactive it is possible that CICS detected an OSGi service with that name
already exists in the OSGi framework.

« If you disable the BUNDLE resource, the OSGi bundle moves to the RESOLVED state.

« If the OSGi bundle is in the INSTALLED state, either it has not started or it failed to start because the
dependencies in the OSGi bundle could not be resolved.

5. “Invoking a Java application in a JVM server” on page 204

Results
The BUNDLE is enabled, the OSGi bundles are successfully installed in the OSGi framework, and any OSGi
services are active. The OSGi bundles are available to other bundles in the framework.

200 CICS TS for z/0S: Java Applications in CICS

https://github.com/IBM/cics-bundle-gradle
https://github.com/IBM/cics-bundle-maven
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html
https://developer.ibm.com/tutorials/extending-an-existing-java-applications-build-to-produce-a-cics-bundle/

What to do next

You can make the Java application available to other CICS applications outside the OSGi framework, as
described in “Invoking a Java application in a JVM server” on page 204.

Deploying a Java EE application in a CICS bundle to a Liberty JVM
server

You can deploy a Java EE application that is packaged as a CICS bundle in a Liberty JVM server.

Before you begin

The Java EE application, either in the form of WAR files, EAR files or an EBA file, must be deployed as a
CICS bundle in zFS. The target JVM server must be enabled in the CICS region.

For general information about creating Java applications, see “Developing applications using the IBM
CICS SDKs” on page 39 or “Managing Java dependencies using Gradle or Maven” on page 46.

If you have dependencies on an OSGi bundle that contains a library of common code, install the bundle
into the Liberty bundle repository, see “Deploying OSGi bundles in a JVM server” on page 199.

About this task

The CICS application model is to package Java application components in CICS bundles and deploy them
to zFS. By installing the CICS bundles, you can manage the lifecycle of the application components.

A Java EE application can contain:

= One or more WAR files that provide the presentation layer and business logic of the application

« An OSGi Application Project, exported to an EBA file, which contains a web-enabled OSGi Bundle
Project to provide the presentation layer and a set of further OSGi bundles that provide the business
logic

« An Enterprise Application Archive (EAR) file containing one or more WAR files that provide the
presentation layer and business logic

If you're using CICS Explorer: You can use the IBM CICS SDK for Enterprise Java (Liberty) in CICS
Explorer to deploy bundles by following instructions in this topic.

If you're using Gradle or Maven: You can package and deploy applications in CICS bundles by using
the CICS-provided Gradle or Maven plug-in, provided the CMCI JVM server is configured to use the CICS
bundle deployment API.

This tutorial provides step-by-step instructions on how to build a CICS bundle from an existing Java
application that is already built by Gradle or Maven.

Procedure

1. Create a BUNDLE resource that specifies the directory of the bundle in zFS:

a) In the CICS SM perspective in CICS Explorer, click Definitions > Bundle Definitions in the CICS
Explorer menu bar to open the Bundles Definitions view.

b) Right-click anywhere in the view and click New to open the New Bundle Definition wizard.
Enter the details for the BUNDLE resource in the wizard fields.

c) Install the BUNDLE resource.
You can install the resource in an enabled or disabled state:

« If youinstall the resource in a DISABLED state, CICS does not attempt to install the Java EE
applications into the Liberty server.

« If youinstall the resource in an ENABLED state, CICS installs the Java EE applications (WAR,
EAR, EBA files) in the ${server.output.dir}/installedApps directory and adds an
<application>entryinto $$server.output.dir}/installedApps.xml.

Chapter 4. Deploying applications to a JVM server 201

https://github.com/IBM/cics-bundle-gradle
https://github.com/IBM/cics-bundle-maven
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html
https://developer.ibm.com/tutorials/extending-an-existing-java-applications-build-to-produce-a-cics-bundle/

2. Optional: Enable the BUNDLE resource to start the Java EE applications in the Liberty server, if the
resource is not already in an ENABLED state.

3. Click Operations > Bundles in the CICS Explorer menu bar to open the Bundles view. Check the state
of the BUNDLE resource.

« Ifthe BUNDLE resource is in an ENABLED state, CICS installed all the resources in the bundle
successfully and all Liberty applications included in the bundle have started.

- Ifthe BUNDLE resource is in an ENABLING state, CICS is currently installing all the resources in the
bundle or one or more Liberty application included in the bundle are still installing or starting.

- Ifthe BUNDLE resource is in a DISABLED state, CICS was unable to install one or more resources
in the bundle. This might happen if a Liberty application included in the bundle failed to start, or
the application did not install in Liberty before the timeout. The timeout is configured by the JVM
system property com.ibm.cics.jvmserver.wlp.bundlepart.timeout.

If the BUNDLE resource failed to install in the enabled state, check the bundle parts for the BUNDLE
resource. If any of the bundle parts are in the UNUSABLE state, a message is issued to explain the
cause of the problem. For example, this state can indicate that there is a problem with the CICS
bundle in zFS, or the associated JVMSERVER resource is not available. You must discard the BUNDLE
resource, resolve the reported issue, and then install the BUNDLE resource again.

4. Optional: To run Java EE application requests on an application transaction, you can create URIMAP
and TRANSACTION resources.
Defining a URI map is useful if you want to control security to the application, because you can map
the URI to a specific transaction and use transaction security. Typically, these resources are created
as part of the CICS bundle and are managed with the application. However, you can choose to define
these resources separately if preferred.

a) Create a TRANSACTION resource for the application that sets the PROGRAM attribute to
DFHSJTHP.
This CICS program handles the security checking of inbound Java EE requests to the Liberty JVM
server. If you set any remote attributes, they are ignored by CICS because the transaction must
always attach in the local CICS region.

b) Create a URIMAP resource that has a USAGE type of JVMSERVER. Set the TRANSACTION attribute
to the name of the application transaction and set the SCHEME attribute to HTTP or HTTPS.
You can also use the USERID attribute to set a user ID. This value is ignored if the application
security authentication mechanisms are used. If no authentication occurs and no user ID is set on
the URI map, the work runs under CICS default user ID.

Results
The CICS resources are enabled, and the Java EE applications are successfully installed into the Liberty
JVM server.

What to do next
You can test that the Java application is available through a web client. To update or remove the
application, see Administering Java applications.

Deploying Java EE applications directly to a Liberty JVM server

You can deploy Java EE applications by defining the application elementin servexr.xml, or by
copying the application into a previously defined dropins directory.

Before you begin
The JVM server must be configured to use Liberty technology.

202 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/transaction/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/urimap/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/dfhpjuj.html

About this task

Java EE applications can be packaged as a Web Archive (WAR), a Enterprise Bundle Archive (EBA), or a
Enterprise Application Archive (EAR).

Liberty provides two methods to install Java EE applications:

« You can add an application elementin server.xml.

« Alternatively you can copy the application into the dropins directory of the Liberty JVM server. If
you use dropins, CICS is will always run under the transaction CJSA and will not benefit from extra
qualities of service such as CICS security.

Note:

« Do not use both techniques to deploy the same application into the same JVM server.

« If you accept the defaults that are provided by CICS autoconfigure, the dropins directory is not
automatically created.

Procedure
- To deploy an application by adding it to the server configuration file:

You must configure the following attributes for the application element in the server. xml:

id - Must be unique and is used internally by the server.
— name - Must be unique.

type - Specifies the type of application. The supported types are WAR, EBA, and EAR.

location - Specifies the location of the application. The location can be an absolute path or a URL.

For example:

<application
id="com.ibm.cics.server.examples.wlp.tsq.app"
name="com.ibm.cics.server.examples.wlp.tsq.app"
type="eba"
location="${server.output.dir}/path_to_app"/>

« To create the dxopins directory and deploy applications to it:

a) To enable dropins, you need to add configuration that is similar to the following example to your
server.xml:

<applicationMonitor dropins="dropins" dropinsEnabled="true" pollingRate="5s"
updateTrigger="disabled"/>

For more information, see Controlling dynamic updates.

b) Use FTP to transfer the exported file in binary mode to the dropins directory. The directory path
isWLP_USER_DIR/servers/server_name/dropins, where server_name is the value of the
com.ibm.cics.jvmserver.wlp.server.name property. If the property is not set, the property
isdefaultServer.

Results
The Liberty JVM server installs the application.

What to do next

Access the Java EE application from a web browser to ensure that it is running correctly. To remove the
application file, delete the WAR, EBA or EAR file from the dropins directory. If it was deployed with an
application element, remove that element from server.xml.

Chapter 4. Deploying applications to a JVM server 203

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_dyn_upd.html

Deploying common libraries to a Liberty JVM server

Deploy the common libraries according to whether it is supplied as DLL files, JAR files or OSGi bundles.

Procedure

« For common libraries supplied as DLL files, copy the files to a directory that is referred to by the
LIBPATH_SUFFIX option of the JVM profile.

For more information about LIBPATH_PREFIX and LIBPATH_SUFFIX, see Symbols used in the JVM
profile.

« For common libraries supplied as OSGi bundle JAR files, copy the JAR files to a directory that is
referred to in a bundleRepository definition in the server. xml file.

For more information, see Bundle repository in Manually tailoring server.xml.

« For common libraries supplied as JAR files but not OSGi bundles, copy the JAR files to a directory that
is referred to in a global library definition in the server. xml file.

For more information, see Global/shared library in Manually tailoring server.xml.

Invoking a Java application in a JVM server

There are many ways to call a Java application that is running in a JVM server. The method used will
depend upon the characteristics of the JVM server.

About this task

You can invoke a web application running in a Liberty JVM server by using a HTTP request with a specific
URL. Web applications cannot be driven directly from EXEC CICS LINK or EXEC CICS START. If you
have Enterprise Java applications that are implemented as Plain Old Java Objects (POJOs) and packaged
in a WAR or an EAR, you can invoke their business logic components by using EXEC CICS LINK or EXEC
CICS START.

To invoke a Java application that is running in an OSGi JVM server, you can either issue EXEC CICS LINK
to a PROGRAM defined by Java, or EXEC CICS START a TRANSACTION that has a target PROGRAM defined
by Java. The PROGRAM definition specifies a JVMSERVER, and the name of a CICS generated OSGi service
you want to invoke. Such linkable OSGi services are created by CICS when you install an OSGi bundle that
includes a CICS-MainClass header in its manifest. The CICS-MainClass header identifies the main
method of the Java class in the OSGi bundle that you want to act as an entry-point to the application.

An OSGi service is a well-defined interface that is registered in the OSGi framework. OSGi bundles and
remote applications use the OSGi service to call application code that is packaged in an OSGi bundle. An
OSGi bundle can export more than one OSGi service. For more information, see Updating OSGi bundles in
an OSGi JVM server.

Invoking Java function in a classpath based JVM server is usually performed as part of a specific
capability of a JVM server, such as Batch, Axis2 and SAML. For these capabilities the DFHSJJI vendor
interface is provided.

Procedure

« Foraweb application developed as a web archive (WAR) file, as an enterprise application archive
(EAR) file, or as an enterprise bundle archive (EBA) file containing web application bundle (WAB) files
and running in a Liberty JVM server, invoke the application from the client browser by using a URL.

For more information about invoking business logic components of Java EE applications, see
“Preparing Java applications in a Liberty JVM server to be called by a CICS program” on page 123.

« For OSGi bundles that are deployed in an OSGi JVM server, follow these steps:

a) Determine the symbolic name of the active OSGi service that you want to use in the OSGi
framework.

204 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_symbols.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_symbols.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/serverxmljvm.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/serverxmljvm.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/java/updating_osgi.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/java/updating_osgi.html

Click Operations > Java > OSGi Services in CICS Explorer to list the OSGi services that are active.
b) Create a PROGRAM resource to represent the OSGi service to other CICS applications:
— In the JVM attribute, specify YES to indicate that the program is a Java program.

— Inthe JVMCLASS attribute, specify the symbolic name of the OSGi service. This value is case
sensitive.

— Inthe JVMSERVER attribute, specify the name of the JVMSERVER resource in which the OSGi
service is running.

¢) You can call the Java application in either of two ways:

— Usea 3270 or EXEC CICS START request that specifies a transaction identifier. Create a
TRANSACTION resource that defines the PROGRAM resource for the OSGi service.

— Use an EXEC CICS LINK request, an ECI call, or an EXCI call. Name the PROGRAM resource for
the OSGi service when coding the request.

« For Axis2 or SAML function, see Configuring a JVM server for Axis2 and Configuring CICS for SAML.

Results

You have created the definition to make your Java application available to other components. When CICS
receives the request in the target JVM server, it invokes the specified Java class or Web application on a

new CICS Java thread. If the associated OSGi service or Web application is not registered or is inactive, an
error is returned to the calling program.

Deploying a CICS non-0SGi Java application

The Java applications are included in a CICS bundle and can be deployed to a z/OS UNIX System Services
(z/0OS UNIX) file system using CICS Explorer, or using the CICS provided Gradle or Maven plug-in.

About this task

This task outlines the steps to deploy a non-0SGi Java application. The process is the same as for an OSGi
application; the only difference is that CICS uses the application JAR file instead of the bundle.

If you're using CICS Explorer: You can use the IBM CICS SDK for Java and the IBM CICS SDK for
Enterprise Java (Liberty) in CICS Explorer to deploy bundles by following instructions in this topic. When
you are not authorized to deploy the bundle directly to a z/OS file system, you can export the bundle as a

compressed file. For more information, see Exporting a CICS bundle project to your local file system in the
CICS Explorer product documentation

If you're using Gradle or Maven: You can package and deploy applications in CICS bundles by using

the CICS-provided Gradle or Maven plug-in, provided the CMCI JVM server is configured to use the CICS
bundle deployment API.

This tutorial provides step-by-step instructions on how to build a CICS bundle from an existing Java
application that is already built by Gradle or Maven.

Procedure

1. Convert the Java application to a plug-in project.

Follow the instructions in “Converting an existing Java project to a plug-in project” on page 189.
2. Add the plug-in project to a CICS bundle.

Follow the instructions in “Adding a project to a CICS bundle project” on page 44.
3. Deploy the bundle project to a z/OS Unix file system.

Follow the instructions in Deploying a CICS bundle in the CICS Explorer product documentation.

Results
The Java application is exported to z/OS UNIX. The exported bundle includes the application JAR files.

Chapter 4. Deploying applications to a JVM server 205

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/program/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/transaction/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_axis2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/saml/deploy_saml.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_export_to_local.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_export_to_local.html
https://github.com/IBM/cics-bundle-gradle
https://github.com/IBM/cics-bundle-maven
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html
https://developer.ibm.com/tutorials/extending-an-existing-java-applications-build-to-produce-a-cics-bundle/
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_deploy_bundle_project.html

206 CICS TS for z/0S: Java Applications in CICS

Chapter 5. Setting up Java support

Perform the basic setup tasks to support Java in your CICS region and configure a JVM server to run Java
applications.

Before you begin
The Java components that are required for CICS are set up during the installation of the product. You
must ensure that the Java components are installed correctly.

About this task

CICS uses files in z/OS UNIX to start the JVM. You must ensure that your CICS region is configured to use
the correct zFS directories, and that those directories have the correct permissions. After you configure
CICS and set up zFS, you can configure a JVM server to run Java applications.

Procedure

1. Set the JVMPROFILEDIR system initialization parameter to a suitable directory in z/OS UNIX where
you want to store the JVM profiles that are used by the CICS region.
For more information, see “Setting the location for the JVM profiles” on page 207.

2. Ensure that your CICS region has enough memory to run Java applications.
For more information, see “Setting the memory limits for Java” on page 208.

3. Give your CICS region permission to access the resources that are held in z/OS UNIX, including your
JVM profiles, directories, and files that are required to create JVMs.

For more information, see “Giving CICS regions access to z/OS UNIX directories and files” on page
209.

4. Set up a JVM server.

You can configure a JVM server to run different workloads. For more information, see “Setting up a
JVM server” on page 211.

5. Optional: Enable a Java security manager to protect a Java application from performing potentially
unsafe actions.

For more information, see Enabling a Java security manager.

6. Set the JAVA_DUMP_TDUMP_PATTERN unformatted storage dump parameter.
The dump is written to a sequential MVS data set, which can be changed by specifying a value for the
environment variable JAVA_DUMP_TDUMP_PATTERN. Ensure that the CICS region user ID has UPDATE

access to data sets matching this pattern, otherwise diagnostic data is lost. For more information, see
Using dump agents on z/0S.

Results
You set up your CICS region to support Java and created a JVM server to run Java applications.

What to do next
If you are upgrading existing Java applications, follow the guidance in Upgrading. To start running Java
applications in a JVM server, see Deploying applications to a JVM server.

Setting the location for the JVM profiles

CICS loads the JVM profiles from the z/OS UNIX directory that is specified by the JVUMPROFILEDIR
system initialization parameter. You must change the value of the JVMPROFILEDIR parameter to a new

© Copyright IBM Corp. 1974, 2023 207

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_jvmprofiledir.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/topics/dfhpj5u.html
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=options-xdump
https://www.ibm.com/docs/SSJL4D_6.x/upgrading/upgrading.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/dfhpj69.html

location and copy the supplied sample JVM profiles into this directory so that you can use them to verify
your installation.

Before you begin
The USSHOME system initialization parameter must specify the root directory for CICS files on z/OS UNIX.

About this task

The CICS-supplied sample JVM profiles are customized for your system during the CICS installation
process, so you can use them immediately to verify your installation. You can customize copies of these
files for your own Java applications.

The settings that are suitable for use in JVM profiles can change from one CICS release to another, so
for ease of problem determination, use the CICS-supplied samples as the basis for all profiles. Check the
upgrading information to find out what options are new or changed in the JVM profiles.

Procedure

1. Set the JVMPROFILEDIR system initialization parameter to the location on z/OS UNIX where you want
to store the JVM profiles used by the CICS region.

The value that you specify can be up to 240 characters long.

The supplied setting for the JVMPROFILEDIR system initialization parameteris /usr/lpp/cicsts/
cicsts56/JVMProfiles, which is the installation location for the sample JVM profiles. This
directory is not a safe place to store your customized JVM profiles, because you risk losing your
changes if the sample JVM profiles are overwritten when program maintenance is applied. So you must
always change JVMPROFILEDIR to specify a different z/OS UNIX directory where you can store your
JVM profiles. Choose a directory where you can give appropriate permissions to the users who must
customize the JVM profiles.

2. Copy the supplied sample JVM profiles from their installation location to the z/OS UNIX directory.

When you install CICS, the sample JVM profiles are placed in a zFS directory. This directory is
specified by the USSDIR parameter in the DFHISTAR installation job. The default installation directory
is /usr/lpp/cicsts/cicsts56/IVMProfiles.

Results
You have copied the sample JVM profiles to a zFS directory and configured CICS to use that directory. The
sample JVM profiles contain default values so that you can use them immediately to set up a JVM server.

What to do next

Ensure that CICS and Java have enough memory to run Java applications, as described in “Setting the
memory limits for Java” on page 208. You must also ensure that the CICS region has access to the z/OS
UNIX directories where Java is installed and the Java applications are deployed. For more information,
see “Giving CICS regions access to z/OS UNIX directories and files” on page 209.

Setting the memory limits for Java

Java applications require more memory than programs written in other languages. You must ensure that
CICS and Java have enough storage and memory available to run Java applications.

About this task

Java uses 24-bit (below-the-line) storage, 31-bit (above-the-line) storage, and 64-bit (above-the-bar)
storage. The storage required for the JVM heap comes from the CICS region storage in MVS, and not the
CICS DSAs.

208 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_usshome.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_jvmprofiledir.html

Procedure

1. Ensure that the z/OS MEMLIMIT parameter is set to a suitable value.

This parameter limits the amount of 64-bit storage that the CICS address space can use. CICS uses the
64-bit version of Java and you must ensure that MEMLIMIT is set to a large enough value for both this
and other use of 64-bit storage in the CICS region.

See the following topics:

« Calculating storage requirements for JVM servers

« Estimating, checking, and setting MEMLIMIT in Improving performance
2. Ensure that the REGION parameter on the startup job stream is large enough for Java to run.

Each JVM require some storage below the 16 MB line (24-bit storage) to run applications, including
just-in-time compiled code, and working storage to pass parameters to CICS.

For more instructions on estimating and setting the REGION parameter, see Estimating and setting
REGION.

Giving CICS regions access to z/0S UNIX directories and files

CICS requires access to directories and files in z/OS UNIX. During installation, each of your CICS regions is
assigned a z/OS UNIX user identifier (UID). The regions are connected to an ESM group that is assigned a
z/OS UNIX group identifier (GID). Use the UID and GID to grant permission for the CICS region to access
the directories and files in z/OS UNIX.

Before you begin

Ensure that you are either a superuser on z/OS UNIX, or the owner of the directories and files. The owner
of directories and files is initially set as the UID of the system programmer who installs the product. The
owner of the directories and files must be connected to the ESM group that was assigned a GID during
installation. The owner can have that ESM group as their default group (DFLTGRP) or can be connected to
it as one of their supplementary groups.

About this task

z/OS UNIX System Services treats each CICS region as a UNIX user. You can grant user permissions to
access z/0OS UNIX directories and files in different ways. For example, you can give the appropriate group
permissions for the directory or file to the ESM group to which your CICS regions connect. This option
might be best for a production environment and is explained in the following steps.

Procedure
1. Identify the directories and files in z/OS UNIX to which your CICS regions require access.
JVM server options Default directories Permission |Description
JAVA_HOME /usr/1lpp/java/l8.0_64 |read and IBM 64-bit SDK for z/0OS, Java
execute Technology Edition directories
USSHOME Jusr/lpp/cicsts/ read and The installation directory for CICS
cicstsb6 execute files on z/OS UNIX. Files in this
directory include sample profiles and
CICS-supplied JAR files.
WORK_DIR /u/CICS region userid |read, write, [The working directory for the CICS
and execute [region. This directory contains input,
output, and messages from the JVMs.

Chapter 5. Setting up Java support 209

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/jvmserver_storage.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht3_dsa_memlimit.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht3_dsa_region.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht3_dsa_region.html

JVM server options Default directories Permission |Description

JVMPROFILEDIR USSHOME /JVMProfiles/ |[readand Directory that contains the JVM profiles
execute for the CICS region, as specified in the
JVMPROFILEDIR system initialization
parameter.
WLP_USER_DIR WORK_DIR/APPLID/ read, write, | Specifies the directory that contains

JVMSERVER/wlp/usr/ and execute [the configuration files for the Liberty
JVM server. WLP_USER_DIR needs
additional x permissions (read, write,
execute) if Liberty JVM server
autoconfigure is used as CICS must be
able to write to server.xml.

WLP_OUTPUT_DIR WLP_USER_DIR/servers |read, write, |Specifiesthe output directory for the

and execute | Liberty JVM server.

2. List the directories and files to show the permissions.

Go to the directory where you want to start, and issue the following UNIX command:
1s -la

If this command is issued in the z/OS UNIX System Services shell environment when the current
directory is the home directory of CICSHT1F, you might see a list such as the following example:

/u/cicshtiHE:>1s -1la

total 256

drwxr-xr-x 2 CICSHT4#HF CICSTS56 8192 Mar 15 2008 .

drwx------ 4 CICSHT4HF CICSTS56 8192 Jul 4 16:14 ..
-IW------- 1 CICSHTi#HF CICSTS56 2976 Dec 5 2010 Snap@eOl1.trc
-YW-TY--I-- 1 CICSHT4#HF CICSTS56 1626 Jul 16 11:15 dfhjvmerr
-IW-TY--T-- 1 CICSHT#HF CICSTS56 0 Mar 15 2010 dfhjvmin
-IW-Y--Tr-- 1 CICSHTi#HF CICSTS56 458 Oct 9 14:28 dfhjvmout

Ju/cicshtiHE: >

3. If you are using the group permissions to give access, check that the group permissions for each of the

directories and files give the level of access that CICS requires for the resource.

Permissions are indicated, in three sets, by the characters r, w, xand -. These characters represent
read, write, execute, and none, and are shown in the left column of the command line, starting with the
second character. The first set are the owner permissions, the second set are the group permissions,
and the third set are other permissions.

In the previous example, the owner has read and write permissions to dfhjvmezrzr, dfhjvmin, and
dfhjvmout, but the group and all others have only read permissions.

. If you want to change the group permissions for a resource, use the UNIX command chmod.
The following example sets the group permissions for the named directory and its subdirectories and
files to read, write, and execute. -R applies permissions recursively to all subdirectories and files:

chmod -R g=rwx directory

The following example sets the group permissions for the named file to read and execute:
chmod g+rx filename

The following example turns off the write permission for the group on two named files:
chmod g-w filename filename

In all these examples, g designates group permissions. If you want to correct other permissions, u
designates user (owner) permissions, and o designates other permissions.

. Assign the group permissions for each resource to the ESM group that you chose for your CICS regions

to access z/OS UNIX. You must assign group permissions for each directory and its subdirectories, and
for the files in them.

210 CICS TS for z/0S: Java Applications in CICS

Enter the following UNIX command:
chgrp -R GID directory

GID is the numeric GID of the ESM group and directory is the full path of a directory to which you want
to assign the CICS regions permissions.

For example, to assign the group permissions for the /usr/lpp/cicsts/cicsts56 directory, use
the following command:

chgrp -R GID /usx/lpp/cicsts/cicsts56

Because your CICS region user IDs are connected to the ESM group, the CICS regions have the
appropriate permissions for all these directories and files.

Results
You have ensured that CICS has the appropriate permissions to access the directories and files in z/OS
UNIX to run Java applications.

When you change the CICS facility that you are setting up, such as moving files or creating new files,
remember to repeat this procedure to ensure that your CICS regions have permission to access the new
or moved files.

What to do next
Verify that your Java support is set up correctly using the sample programs and profiles.

Setting up a JVM server

To run Java applications, web applications, Axis2, or a CICS Security Token Service in a JVM server, you
must set up the CICS resources and create a JVM profile that passes options to the JVM.

If you are configuring a CMCI JVM server, see Setting up CMCI for instructions instead. The CMCI JVM
server is a special type of Liberty JVM server that provides support for the CMCI APIs. It is not used for
hosting applications.

About this task

A JVM server can handle multiple concurrent requests for different Java applications in a single JVM.

The JVMSERVER resource represents the JVM server in CICS. The resource defines the JVM profile

that specifies configuration options for the JVM, the program that provides values to the Language
Environment enclave, and the thread limit. A JVM server can run different types of workload. A JVM profile
is supplied for each different use of the JVM server:

« To run applications that are packaged as OSGi bundles, configure the JVM server with the
DFHOSGI.jvmprofile. This profile contains the options to run an OSGi framework in the JVM server.

« To run applications that include Liberty in CICS, configure the JVM server with the
DFHWLP.jvmprofile. This profile contains the options to run a web container that is based on Liberty
technology. The web container also includes an OSGi framework and can therefore run applications that
are packaged as OSGi bundles.

« To run SOAP processing for web services with the Axis2 SOAP engine, configure the JVM server with the
DFHJVMAX. jvmprofile. This profile contains the options to run Axis2 in the JVM server.

« To run a CICS Security Token Service (STS), configure the JVM server with the DFHIVMST . jvmprofile.
This profile contains the options to run an STS.

Any changes that you make to the profiles apply to all JVM servers that use it. When you customize each
profile, make sure that the changes are suitable for all the Java applications that use the JVM server.

You can either configure JVM servers and JVM profiles with CICS online resource definition, or you can
use the CICS Explorer to define and package JVMSERVER resources and JVM profiles in CICS bundles. For
more information, see Working with bundles in the CICS Explorer product documentation.

Chapter 5. Setting up Java support 211

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/cmci/clientapi_setup.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html

Results
The JVM server is configured and ready to run a Java workload.

What to do next

Configure the security for your Java environment. Give appropriate access to application developers
to deploy and install Java applications, and authorize application users to run Java programs and
transactions in CICS.

Configuring an 0SGi JVM server

Configure the JVM server to run an OSGi framework if you want to deploy Java applications that are
packaged in OSGi bundles.

About this task

The JVM server contains an OSGi framework that handles the class loading automatically, so you cannot

add standard class path options to the JVM profile. The supplied sample, DFHOSGI.jvmprofile, is suitable
for an OSGi JVM server. This task shows you how to define a JVM server for an OSGi application from this
sample profile.

You can define the JVM server either with CICS online resource definition or in a CICS bundle in CICS
Explorer.

Procedure

1. Create a JVMSERVER resource for the JVM server.
a) Specify a name for the JVM profile for the JVM server.

On the JVMPROFILE attribute of JVMSERVER, specify a 1 - 8 character name. This name is used
for the prefix of the JVM profile, which is the file that holds the configuration options for the JVM
server. You do not need to specify the suffix, .jvmprofile, here.

b) Specify the thread limit for the JVM server.

On the THREADLIMIT attribute of JVMSERVER, specify the maximum number of threads that are
allowed in the Language Environment enclave for the JVM server. The number of threads depends
on the workload that you want to run in the JVM server. To start with, you can accept the default
value and tune the environment later. You can set up to 256 threads in a JVM server.

2. Create the JVM profile to define the configuration options for the JVM server.

You can use the sample profile, DFHOSGI.jvmprofile, as a basis. This profile contains a subset of
options that are suitable for starting the JVM server. All options and values for the JVM profile are
described in “JVM profile validation and properties” on page 238. Follow the coding rules, including
those for the profile name, in “Rules for coding profiles” on page 238.

a) Set the location for the JVM profile.

The JVM profile must be in the directory that you specify on the system initialization parameter,
JVMPROFILEDIR. For more information, see “Setting the location for the JVM profiles” on page
207.

b) Make the following changes to the sample profile:
« Set JAVA_HOME to the location of your installed IBM Java SDK.

- Set WORK_DIR to your choice of destination directory for messages, trace, and output from the
JVM server.

« Set TZ to specify the timezone for timestamps on messages from the JVM server. An example for
the United Kingdom is TZ=GMTOBST,M3.5.0,M10.4.0.

¢) Save your changes to the JVM profile.
The JVM profile must be saved as EBCDIC on the z/OS UNIX System Services file system.
3. Install and enable the JVMSERVER resource.

212 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/jvmserver/dfha4_summary.html

Results

CICS creates a Language Environment enclave and passes the options from the JVM profile to the JVM
server. The JVM server starts up and the OSGi framework resolves any OSGi middleware bundles. When
the JVM server completes startup successfully, the IVMSERVER resource installs in the ENABLED state.

If an error occurs, for example CICS is unable to find or read the JVM profile, the JVM server fails to start.
The JVMSERVER resource installs in the DISABLED state, and CICS issues error messages to the system

log.
What to do next

- Configure the location for JVM logs as described in Controlling the location for JVM output, logs, dumps
and trace.

« Install OSGi bundles for the application in the OSGi framework of the JVM server, as described in
Deploying OSGi bundles in a JVM server.

« Specify any directories that contain native C dynamic link library (DLL) files, such as Db2 or IBM MQ. You
specify these directories on the LIBPATH_SUFFIX option in the JVM profile.

« Specify middleware bundles that you want to run in the OSGi framework. Middleware bundles are a type
of OSGi bundle that contains Java classes to implement shared services, such as connecting to IBM MQ
and Db2. You specify these bundles on the OSGI_BUNDLES option in the JVM profile.

JVM profile example

Example JVM profile for an OSGi application.

The following excerpt shows an example JVM profile that is configured to start an OSGi framework that
uses DB2 Version 11 and the JDBC 4.0 OSGi middleware bundle:

i

Required parameters

e

i

When using a JVM server, the set of CICS options that are supported
JAVA_HOME=/usr/lpp/java/l8.0_64

WORK_DIR=.

LIBPATH_SUFFIX=/usr/lpp/db2v11/jdbc/1ib

Fhk ok ook ook ook koo ok ok ok ok ok ek ok ok ok ok ok ek ok ok ok

3

i JVM server specific parameters

T

i

O0SGI_BUNDLES=/usxr/lpp/db2vil/jdbc/classes/db2jcc4.jar,\
/usr/1lpp/db2v1l/jdbc/classes/db2jcc_license_cisuz.jar

0SGI_FRAMEWORK_TIMEOUT=60

i

Tk dekok ok deok kK kok ok kok ok ok ok sk kok ok k ok ok kok ok ok ok sk okok ok ok ok ok ok ok ok ok ok ok ok k ok ook ok k ok ok ok ok k ok ok ok

3

i JVM options

e

The following option sets the Garbage collection Policy.

i

-Xgcpolicy:gencon

3

i

i

Setting user JVM system properties

L T TR

i

-Dcom.ibm.cics.some.property=some_value

i

Tk dekok sk kk kK kok ok kok ok Kk ok ok kok ok ok ok ko ok ok ok ok ok k ok ok ok ok ok ok ok ok ok ok ok k ok ok ok k ok ok k ok k ok ok ok

i

i Unix System Services Environment Variables

T

3

JAVA_DUMP_OPTS="0ONANYSIGNAL (JAVADUMP,SYSDUMP) ,ONINTERRUPT (NONE)"

Chapter 5. Setting up Java support 213

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/dfhpjcv.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/dfhpjcv.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_osgibundle.html

1
#

Configuring 0SGi package imports in CICS Java applications

The OSGi framework provides a comprehensive set of features for both application developers and JVM
runtimes to control application modularity and declaration of dependencies.

Java applications that are deployed into CICS JVM servers need to be packaged as OSGi bundles. In

the OSGi JVM server environment Java class loading is controlled by the embedded OSGi framework.

For this reason, Java classes are not loaded by the traditional CLASSPATH configuration, instead, each
OSGi bundle has its own class loader and is used in combination with the OSGi framework to resolve any
dependencies. Dependencies are typically provided by other OSGi bundles, or from the underlying JRE by
virtue of the OSGi system bundle.

Code that requires access to a Java package that is not included within its own OSGi bundle must
explicitly import the package as part of the OSGi bundle definition. Imported packages are specified as

a comma-separated list on the Import-Package statement in the OSGi manifest. Conversely, a bundle
that is the provider of these required packages must explicitly export the package from its own OSGi
bundle definition. Exported packages are listed on the Export-Package statement in the provider OSGi
bundle manifest. When both OSGi bundles are deployed into the environment, the dependency can be
resolved by the OSGi framework at runtime.

Where are classes loaded from?
In an OSGi environment classes are loaded from the following locations, in search order:

1. The core JRE, or java.* packages

. The parent class loader from the JVM boot class path (boot delegated packages)

. Imported packages from other OSGi bundles, or from the OSGi framework system bundle
. Required bundles (though best practice dictates Required bundles should be avoided)

. The current OSGi bundle's class loader (including anything on the Bundle-classpath)

. Bundle fragments

N o o A WON

. Dynamic Imports

The JVM boot class path

Any java.* packages must be loaded by the JVM itself due to security restrictions in Java. Therefore,
an OSGi bundle must not declare imports or exports for java.* packages - doing so is an error and
installation of the bundle will fail. Class loading of java.* packages is implemented by delegation to the
parent class loader of the JVM (referred to as boot delegation). Conversely, all other required packages
such as com. ibm. * or Java SE components such as javax.* or org.xml.sax must be explicitly
imported in the OSGi bundle manifest by using the relevant Import-Package statements.

The 0SGi framework

The system bundle is a special bundle that represents the OSGi framework and is used to export

a variety of system components. Export definitions from the system bundle are treated like regular
bundle exports - they can have version numbers and are used to resolve import definitions as

part of the normal bundle resolution process. The advantage of this approach is that other bundles
can provide alternative (newer) implementations of the same packages should it be necessary.

By default, all javax.* packages are exported by the system bundle and so must be imported

by using Import-Package statements in the application's bundle manifest. In addition, the CICS
JVM server extends the list of exported system bundles by ensuring that key packages from the
z/0S Java runtime are added to the default list exported by the system bundle. Examples of
classes in this category are com.ibm. jzos.fields.ByteArrayField which is part of IBMJZOS
and javax.resource.cci.Record which is part of JCA (Java Connector Architecture). Exports
from the system bundle can be extended by adding additional packages to the system property

214 CICS TS for z/0S: Java Applications in CICS

org.osgi.framework.system.packages.extra. Note, all additional packages must already be
available from the JRE classpath before they can be exposed by the OSGi system bundle.

If you need to determine what is exported from the system bundle, this can be queried by configuring the
0OSGi console using the following JVM server profile options, where port is a free TCP/IP port.

0SGI_CONSOLE=true
-Dosgi.console=port
-Dfile.encoding=IS0-8859-1

After restarting the JVM server, you can connect to this port using telnet and query the system bundle
with the bundle © command, which produces a detailed listing:

>bundle 0

Exported packages
org.eclipse.core.runtime.adaptor; version="0.0.0"[exported]
org.eclipse.core.runtime.internal.adaptor; version="0.0.0"[exported]
org.eclipse.equinox.log; version="1.0.0"[exported]

OSGi framework

LI

A

rl System bundle class loader
OSGi bundle A OSGi bundle B
JAR #I Bundle class loader
— ‘ Bundle class loader #I Parent class loader
v
‘ Fragment JVM boot class loader

Figure 36. OSGi package imports and class loaders

Imports from other bundles

OSGi bundles that are installed into the OSGi framework can export packages for import by any other
installed bundle. In the CICS JVM server environment, the com.ibm.cics.server bundle is installed by
CICS and provides the JCICS classes which wrapper the CICS API. In addition, if a third-party component
is available as an OSGi bundle, it can also be installed as either:

« A middleware bundle using the JVM server OSGI_BUNDLES option. This is the usual approach for
shared middleware components that do not need to be versioned without restarting the JVM server.

« An OSGi bundle deployed within a CICS bundle. This option is useful for a modularized application with
separately versioned components that do not need to be shared between applications. This is because
the same version of an OSGi bundle cannot be installed more than once into the OSGi framework and it

Chapter 5. Setting up Java support 215

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_server_options.html#dfha2_jvmprofile_server_options__OSGI_BUNDLES

is usual for Java applications to be deployed in a single CICS bundle package to simplify deployment. If
multiple CICS bundles contain duplicates of the same version of an OSGi bundle, then some of the CICS
bundles will fail to install.

Note: If your application needs to import packages from a JAR that is not an OSGi bundle, then you can
use the wrapping or injection techniques to create an OSGi bundle from the JAR, and export the required
packages. You can then use either option in the list above to use this new OSGi bundle in your application.
For more details on wrapping and injection refer to section 10.4 in IBM Redbook CICS and the JVM server
— Developing and Deploying Java applications.

Imports from the current bundle

All packages in the same OSGI bundle as the application are available to the bundle class loader. If your
application requires access to classes from a JAR that is not OSGi enabled then this can be added to

the bundle classpath using the Bundle-ClassPath: statement in the OSGI bundle manifest. This limits
class loading of a JAR to the deployed bundle, and prevents sharing the JAR outside of the scope of the
OSGi bundle.

Note: Since CICS TS V5.3, the OSGi framework defaults to using a last resort boot delegation

strategy for packages not found through any of the above OSGi bundle dependency resolution
mechanisms. This means that packages other than java.* can also be loaded from the JVM boot
classpath once all other bundle class loaders have been searched. This behavior is controlled via the
osgi.compatibility.bootdelegation system property and allows the OSGi runtime to be more
tolerant if explicit dependencies were overlooked at development time. For strict 0SGi compliance set
this option to false and ensure all the packages used in your OSGi bundles are explicitly declared in the
bundle manifest. For further details refer to JVM system properties.

Configuring an 0SGi JVM server to support IMS

You can configure an OSGi JVM server to support applications that use JMS.

About this task

This task sets up the configuration for the OSGi JVM server to support applications that connect to IBM
MQ using JMS. You configure CICS to connect to IBM MQ through the CICS-MQ adapter. The JMS bundles
must be added to the set of middleware bundles that run in the OSGi framework within the JVM server.
The framework must also have access to the associated set of IBM MQ native libraries.

Before you start, make sure that you review the considerations in Using IBM MQ classes for JMS in a CICS
Liberty JVM server.

Procedure

1. Set up the CICS-MQ adapter, as described in Setting up the CICS-MQ adapter.
2. Add the IBM MQ classes for IMS to the JVM server as an OSGi middleware bundle.
Do this by including the following lines in the JVM profile of the JVM server:

0SGI_BUNDLES=MQ_ROOT/0SGi/com.ibm.mq.osgi.allclientprereqs_VERSION.jar,\
MQ_ROOT/0SGi/com.ibm.mq.osgi.allclient_VERSION.jar

where MQ_ROOT is the java/lib/ directory of the IBM MQ for z/OS® Unix System Services
installation, for example, /usr/lpp/V8ROMO/java/1lib and VERSION is the version of the IBM MQ
classes for JMS used, for example, 8.0.0.0.

3. Add the directory containing the IBM MQ classes for JMS native libraries to the LIBPATH_SUFFIXin
the JVM profile of the JVM server.

For example: LIBPATH_SUFFIX=MQ_ROOT.
4. Stop and restart the JVM server.

216 CICS TS for z/OS: Java Applications in CICS

https://www.redbooks.ibm.com/abstracts/sg248038.html?Open
https://www.redbooks.ibm.com/abstracts/sg248038.html?Open
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_webspheremq_jmsliberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_webspheremq_jmsliberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/mq/zs11290_.html

Configuring an 0SGi JVM server to support IBM MQ classes for Java

A JVM server is the runtime environment for Java applications. You can configure an OSGi JVM server to
support applications that use IBM MQ classes for Java.

About this task

To enable the OSGi JVM server to support applications that use IBM MQ classes for Java, IBM MQ for Java
bundles need to be added to the set of middleware bundles that run in the OSGi framework within the
JVM server. The framework must also have access to the associated set of native libraries.

Procedure

1. Add the IBM MQ classes for Java to the JVM server as an OSGi middleware bundle.

To add the classes, from IBM MQ Version 8.0, include the following lines in the JVM profile for the OSGi
JVM server:

0SGI_BUNDLES=<MQ_ROOT>/0SGi/com.ibm.mqg.osgi.allclientprereqs_<VERSION>.jar,\
<MQ_ROOT>/0SGi/com.ibm.mq.osgi.allclient_<VERSION>.jar

For WebSphere MQ for z/OS Version 7.1, include the following line:

0SGI_BUNDLES=<MQ_ROOT>/0SGi/com.ibm.mq.osgi.java_<VERSION>.jar

where:

« MQ_ROOT is the java/1ib/ directory of the IBM MQ for z/OS Unix System Services installation, for
example, /usr/1pp/VBROMO/java/lib.

« VERSION is the version of the IBM MQ classes for Java that you are using, for example, 8.0.0.0.

2. Add the directory containing the IBM MQ classes for Java native libraries to the LIBPATH_SUFFIX
option in the JVM profile for the OSGi JVM server.

For example:
LIBPATH_SUFFIX=<MQ_ROOT>

where MQ_ROOT is the java/1ib/ directory of the IBM MOQ for z/OS Unix System Services installation,
for example, /usr/1pp/VBROMO/java/lib.

Using Rational J2C data bindings in an 0SGi JVM server

The J2C tooling in Rational Application Developer for WebSphere (RAD) can create CICS/IMS Java data
bindings for accessing structured record data such as COBOL copybooks. J2C data bindings are created
offline in the RAD environment, and then can be used in any Java runtime such as a CICS JVM server or
WebSphere Application Server.

When used in CICS this scenario is an example of using OSGi enabled interfaces in the development
environment that need to be added to the CICS JVM server environment. This is because the J2C tooling
has a runtime dependency on the marshall. jar plug-in that is supplied with RAD. Perform the following
steps to use the J2C data bindings in an OSGi JVM server.

1. Create the J2C data bindings using the wizard File > New > J2C > CICS/IMS Java Data Binding in
RAD.

2. Import the required packages into your application by using the necessary OSGi
Import-Package statements, for example: Import-Package: com.ibm.etools.marshall,
com.ibm.etools.marshall.util, javax.resource.cci.

3. Locate the redistributable marshall. jar from your RAD installation. It is usually located in the
SDPShared\plugins\com.ibm.ccl.commonj.connector.metadata_nnn\zruntime folder.

4. Either wrapper the marshall. jar as an OSGi bundle and deploy to CICS as a middleware bundle, or
add aBundle-ClassPath: statement to the OSGI bundle manifest to make the packages in this JAR
available to your application, as it is not provided by CICS or the z/OS Java SDK.

Chapter 5. Setting up Java support 217

Note: The Streamable and Record interfaces from javax.resource.cci that are required by J2C are
exported from the system bundle within the CICS JVM server environment. They do not need to be added
in the same manner as used here for marshall. jar.

For more information, see Building Java Records from COBOL with Rational J2C tooling.

Configuring a Liberty JVM server

Configure the Liberty JVM server if you want to deploy Java EE applications such as EJBs, JSP, JSF and
servlets.

If you are configuring a CMCI JVM server, see Setting up CMCI for instructions instead. The CMCI JVM
server is a special type of Liberty JVM server that provides support for the CMCI APIs. It is not used for
hosting applications.

About this task

You have two ways of configuring a Liberty JVM server:

Autoconfigure
CICS automatically creates and updates the configuration file for Liberty, servezr. xml, from
templates that are supplied in the CICS installation directory. Autoconfigure gets you started
quickly with a minimal set of configuration values in Liberty. To enable autoconfigure, set the JVM
system property, =Dcom.ibm.cics.jvmsexrver.wlp.autoconfigure property to true. If you are
defining the JVM server in a CICS bundle, set this option.

Manually configuring
This is the default setting. You supply the configuration files and all values. Manually configuring is
appropriate where you want to remain in full control of the Liberty server configuration.

To define the JVM server, see Ways of defining CICS resources.

Procedure

1. Create a JVMSERVER resource. If you want to create a JVMSERVER resource within a CICS bundle, see
Artifacts that can be deployed in bundles.

a) Specify a name for the JVM profile for the JVM server.

On the JVMPROFILE attribute of JVMSERVER, specify a 1 - 8 character name. This name is used for
the file name of the JVM profile, which is the file that holds the configuration options for the JVM
server. You do not need to specify the file type, . jvmprofile, here.

b) Specify the thread limit for the JVM server.

On the THREADLIMIT attribute of the JVMSERVER, specify the maximum number of threads you
want to allocate. The actual number of threads that are used depends on the workload that you run
in the JVM server. To start with, you can accept the default value and tune the environment later.
You can set up to 256 threads in a JVM server.

c¢) Set the location for the JVM profile.

The JVM profile must be in the directory that you specify on the system initialization parameter,
JVMPROFILEDIR. For more information, see “Setting the location for the JVM profiles” on page
207.

2. Create the JVM profile to define the configuration options for the JVM server.

You can use the sample profile, DFHWLP . jvmprofile, as a basis. This profile contains a subset of
options that are suitable for starting the JVM server. All options and values for the JVM profile are
described in “JVM profile validation and properties” on page 238. Follow the coding rules, including
those for the profile name, in “Rules for coding profiles” on page 238.

a) Make the following changes to the sample profile:
« Set JAVA_HOME to the location of your installed IBM Java SDK.

218 CICS TS for z/OS: Java Applications in CICS

https://developer.ibm.com/cics/2016/06/29/java-cics-using-rational-j2c/
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/cmci/clientapi_setup.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/system/dfha4fn.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/jvmserver/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/resources/app_types.html

Set WORK_DIR to your choice of destination directory for messages, trace, and output from the
JVM server.

» Set WLP_INSTALL_DIR to &USSHOME; /wlp

« Set TZ to specify the timezone for time stamps on messages from the JVM server. An example for
the United Kingdom is TZ=GMTOBST,M3.5.0,M10.4.0

« Set -Dfile.encoding to ISO-8859-1, for example -Dfile.encoding=I1S0-8859-1.
« (Optional) Set CICS_WLP_MODE to choose the level of integration between CICS and Liberty.

See Symbols used in the JVM profile for more information about JVM server options.

b) Save your changes to the JVM profile.

The JVM profile must be saved in EBCDIC file encoding on UNIX System Services and the file type
must be . jvmprofile.

3. Create the Liberty server configuration.
Manually creating JVM servers is appropriate when the configuration files need to be carefully

controlled. For more information, see “Manually creating a Liberty server” on page 222 and Manually
tailoring server.xml.

Important: You should use autoconfigure if you are defining the JVM server in a CICS bundle, as the
server.xml configuration file cannot be included with the JVM profile in a CICS bundle.

4. Install and enable the JVMSERVER resource.

Results

The JVMSERVER reads the JVM profile and initializes itself based on the provided settings. If
autoconfigure is enabled and a Liberty server configuration does not exist, it will be created. If
autoconfigure is not enabled and there is no configuration, or the configuration is incorrect, the
JVMSERVER will become DISABLED and report an appropriate failure. On subsequent start up, the
JVMSERVER will use the existing configuration and launch the Liberty server instance. When the
JVMSERVER completes startup successfully, the IVMSERVER resource installs in the ENABLED state.

If an error occurs, for example, CICS is unable to find or read the JVM profile, the JVM server fails to
initialize. The JVM server is installed in the DISABLED state and CICS issues error messages to the system
log. See Troubleshooting Liberty JVM servers and Java web applications for help. To confirm that Liberty
successfully started within your JVM server, consult the messages. log file in the WLP_USER_DIR output
directory on zFS.

CAUTION: Do not use the Liberty bin/server script to start or stop a Liberty server that is running in
a JVM server.

Note: In CICS integrated-mode Liberty, the current number of threads indicated by the JVM server will
return a positive value and can fluctuate even when no workload is running. This is because threads are
pooled within Liberty for efficiency.

What to do next

« Run the CICS Liberty default web application to verify the Liberty JVM server is running by using the
following URL: http://server:port/com.ibm.cics.wlp.defaultapp/. For more information,
see Configuring the CICS Default Web Application.

« Specify any directories that contain native C dynamic link library (DLL) files, such as IBM MQ.
Middleware and tools that are supplied by IBM or by vendors might require DLL files to be added to
the library path.

- Add support for security. See Configuring security for a Liberty JVM server.

« Install the Java EE applications (EAR files, WAR files, and EBA files), as described in Deploying a Java EE
application in a CICS bundle to a Liberty JVM server.

- Liberty bootstrap properties can be placed in the JVM profile to achieve the same effect as using a
Liberty bootstrap.properties file.

Chapter 5. Setting up Java support 219

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_symbols.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/troubleshooting_web_ref.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_defaultapp.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_liberty_bundle.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_liberty_bundle.html

« By default, Liberty and OSGi caches are not cleared on start-up of the JVM server. If CICS maintenance
has been applied since the JVM server last restarted, then the --clean option is used internally as
a one-time operation to ensure caches are cleaned. If you subsequently encounter caching issues, or
receive guidance from the IBM Service team to clean your server, this can be achieved by using one of
two approaches:

— Add -Dcom.ibm.cics.jvmserver.wlp.args=--clean to your JVM profile.
— Add -Dorg.osgi.framework.storage.clean=onFirstInit to your JVM profile.

In both cases, remove the option once the server has started to ensure subsequent restarts are not
performance impacted.

- Be aware that by default, when Liberty is configured, two defaulted settings are applied but are not
visible in sexrver.xml. See CICS Liberty defaulted settings for more information.

- For more information on general Liberty set up see this overview on Liberty, Liberty overview.

CICS standard-mode Liberty: Java EE Full Platform support without full CICS
integration

Use the CICS embedded Liberty JVM server in standard mode to port and deploy Liberty applications
from other platforms to CICS without changing your application. Standard mode is ideal for hosting
applications that are written for and rely on the Java Enterprise Edition (Java EE) Full Platform, but
do not require full integration with CICS. Applications running on CICS standard-mode Liberty can
take advantage of Liberty services, management, and security, and benefit from the performance and
capabilities of Java on z/0S, the z Systems platform, and close proximity to data in Db2 and IBM MQ.

CICS standard-mode Liberty is based on the Java EE 7 and Java EE 8 certified IBM WebSphere
Application Server Liberty. Java EE extends the core Java SE by providing the APIs and environment
for running multi-tiered, scalable, and secure network applications. Java EE includes the Web Profile,
Enterprise JavaBeans, and Batch Applications for the Java Platform.

Manage the creation, life-cycle and configuration of CICS standard-mode Liberty using CICS JVM server
technology. Applications running on CICS standard-mode Liberty do not have access to CICS resources
by default, but can submit work to the CICSExecutoxrService using the runAsCICS () method.
Work submitted to the CICSExecutorService has full access to the JCICS API, runs in a CICS
unit-of-work under a CICS task, and is committed on completion of the thread. Work submitted to the
CICSExecutorService does not have access to the Java EE APIs.

Comparing CICS standard-mode Liberty and CICS integrated-mode Liberty

The two modes under which Liberty can run inside a JVM server are CICS standard-mode Liberty and
CICS integrated-mode Liberty.

Both modes are configured by a single JVM profile option. See JVM server option CICS_WLP_MODE for
details.

CICS integrated-mode Liberty
In CICS integrated-mode Liberty, all web requests:

« Are fulfilled by CICS-enabled threads.
« Run under a CICS task.
 Provide access to CICS resources from Java web applications.

CICS standard-mode Liberty

CICS standard-mode Liberty provides a Liberty server without automatic CICS integration. For example,
this mode lacks the optimized performance of a dedicated CICS thread-pool. However, the following
capabilities are retained:

« Life-cycle and administrative control over the Liberty server instance.

220 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/server_defaulted_settings.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_about.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_server_options.htmldfha2_jvmprofile_server_options__CICS_WLP_MODE

« CICS bundle application deployment.
« Programmatic opt-in to CICS-enabled threads, which provides access to CICS resources, CICS security,

and native Db2 drivers.

Side-by-side comparison

As the table highlights, it is more straightforward to migrate an application into CICS standard-mode
Liberty than to CICS integrated-mode Liberty. This reflects the operation of Liberty outside of CICS,
where there are no CICS-specific restrictions, or configurations. CICS standard-mode Liberty also offers
increased zIIP-eligibility because native CICS-integration code does not run. Additionally, the reduction
in CP cycles per request available in CICS standard-mode Liberty is because the native code is not
bootstrapping into a CICS task environment for each request.

Capability

CICS integrated-mode Liberty

CICS standard-mode Liberty

Supported feature set

Java EE 8 / Jakarta EE 8 Full
Platform

Java EE 8 / Jakarta EE 8 Web
Profile

Java EE 7 Full Platform
Java EE 7 Web Profile
Java EE 6 Web Profile

Java EE 8 / Jakarta EE 8 Full
Platform

Java EE 8 / Jakarta EE 8 Web
Profile

Java EE 7 Full Platform
Java EE 7 Web Profile
Java EE 6 Web Profile

Java CICS API (JCICS) Yes Yes under runAsCICS () API
only
Native driver for Db2 Yes Yes under runAsCICS () API
only
Ease of application migration to Moderate Easy
CICS Liberty
Asynchronous operations and Some restrictions Yes
nested transactions
CICS bundle deployment of Yes Yes
application
CICS Liberty autoconfiguration Yes Yes
available
JVM server creates and controls Yes Yes
the Liberty server?
ZIIP eligibility Up to 90% Up to 99%
CP Integration overhead Minimal overhead

CICS thread-pool optimizations

Yes

No

As applications look to use CICS resources and integrate with CICS capabilities (for example, JDBC type
2), CICS standard-mode Liberty requires you to programmatically opt in to a CICS-enabled environment
by using the CICSExecutorService.runAsCICS() API. As with CICS integrated-mode Liberty, more
overhead and zIIP-eligibility reduction are the tradeoffs for running under CICS tasks. CICS standard-
mode Liberty requires that your CICS resource work is isolated in discrete operations that can be run
through the runAsCICS () API. You get the most out of CICS standard-mode Liberty by minimizing
access to CICS and limiting that access to specific application components.

As the level of CICS integration increases, the cost of running in CICS standard-mode Liberty compared
to CICS integrated-mode Liberty rises. Although both environments can put your workload into a CICS-

Chapter 5. Setting up Java support 221

enabled environment, CICS integrated-mode Liberty uses an internal thread-pool and other scalability
optimizations compared to the one-shot CICS-enabled threads of CICS standard-mode Liberty. There is
also one other important distinction - the one-shot threads used to satisfy runAsCICS () requests are
not Enterprise Java capable. You cannot mix JCICS with Enterprise Java. Conversely, requests running in
CICS integrated-mode Liberty (using the optimized thread-pool technology) can happily mix Enterprise
Java APIs and JCICS APIs.

JVM profile example

Example JVM profile for Liberty server.

The following excerpt shows an example JVM profile that is configured to automatically create the
required configuration files and directory structure. It uses DB2 Version 11:

r

JVM profile: DFHWLP

3

JAVA_HOME=/java/java81_64/38.1_64

WORK_DIR=.

F R R R R R R B B B B B S S e e =3
JVM server parameters

3

r

Liberty JVM server

3

-Dcom.ibm.ws.logging.console.log.level=INFO
-Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true
-Dcom.ibm.cics.jvmserver.wlp.server.http.port=12345
-Dcom.ibm.cics.jvmserver.wlp.server.host=x*
-Dcom.ibm.cics.jvmserver.wlp.jdbc.driver.location=/usxr/1lpp/db2v11/jdbc
-Dfile.encoding=IS0-8859-1

WLP_INSTALL_DIR=&USSHOME; /wlp

WLP_USER_DIR=. /&APPLID; /&JVMSERVER;

F R R R R R R B B B B B S e 23
JVM options

-Xgcpolicy:gencon

-Xms128M

-Xmx256M

-Xms0128K

F R R R R R R R B R B B B S S e =3
Unix System Services Environment Variables
TZ=CET-1CEST,M3.5.0,M10.5.0

Manually creating a Liberty server

Manually creating a Liberty server in zFS for the JVM server.

Procedure

1. Create the Liberty server directory structure in zFS for the JVM server.

The JVM server expects configuration files to be in the WLP_USER_DIR/sexrvers/server_name
directory, where WLP_USER_DIR is the value of the WLP_USER_DIR option and server_name is the
value of the com.ibm.cics.jvmserver.wlp.sexrver.name property. The server_name property is
always prefixed with -D. For more information on these server options, see JVM server options.

2. Create the Liberty server configuration in the server_name directory.
As a minimum, you must create the server.xml file. You can base it on the template that is supplied
aswlp/templates/servers/defaultServer/server.xml inthe installation directory of Liberty.
This file must be saved in the ASCII file encoding of ISO-8859-1 and tagged with this encoding using
the UNIX command chtag -c IS08859-1 -t <file>.

3. Edit the servexr.xml file for your installation.

Update the <httpEndpoint> with the host name and port number. For information about configuring
server.xml in a JVM server, see “Manually tailoring server.xml” on page 224. If you want to use
security, see Configuring security for a Liberty JVM server.

222 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html

Attention: The server. xml file configures a single Liberty JVM server. Do not attempt to share
a server.xml file among two or more Liberty JVM servers.

Configuring the CICS Default Web Application

The CICS Liberty Default Web Application can be used to verify that the Liberty server is running and
view the server configuration. You can use it to view the JVM profile and server logs, and the Liberty
server.xml and messages.log files.

Before you begin

Without application security enabled, full access to the Default Web Application is available to all users.
If you have autoconfigure enabled and run with CICS security (sec=yes), or you have manually configured
your server.xml by adding the cicsts:security-1.0 feature, your user ID requires additional
permissions to run the application. For access to the Default servlet and basic information, you need

to be in the Usex role. For access to the FileViewer servlet, you need to be in the Administratox role.

Procedure

1. If you are using SAF authorization, and your server.xml contains the <safAuthorization .../>
element, you need to create these profiles:

a) To access the Default servlet, use the following example:

RDEFINE EJBROLE BBGZDFLT.com.ibm.cics.wlp.defaultapp.Usexr UACC(NONE)
PERMIT BBGZDFLT.com.ibm.cics.wlp.defaultapp.User CLASS(EJBROLE) ID(WLPSVRS) ACCESS(READ)
SETROPTS RACLIST(EJBROLE) REFRESH

b) To access the FileViewer servlet, use the following example:

RDEFINE EJBROLE BBGZDFLT.com.ibm.cics.wlp.defaultapp.Administrator UACC(NONE)
PERMIT BBGZDFLT.com.ibm.cics.wlp.defaultapp.Administrator CLASS(EJBROLE) ID(WLPSVRS) ACCESS (READ)
SETROPTS RACLIST(EJBROLE) REFRESH

2. Alternatively, if you do not have SAF authorization configured, then the default JEE role-based access
is used.

CICS provides a default authorization definition as shown in the following configuration.

Access to the Default servlet is granted through the Usex role to the special subject
ALL_AUTHENTICATED_USERS, which means all users are authenticated. By default CICS does not
provide access to the FileViewer servlet.

<authorization-roles id="com.ibm.cics.wlp.defaultapp">
<security-role name="User">
<special-subject type="ALL_AUTHENTICATED_USERS"/>
</security-role>
</authorization-roles>

However, the default JEE role information can be customized in sexrver.xml by adding an
authorization element in the example that follows. This example extends the default configuration
by adding user2 into the Administrator role and giving access to the FileViewer servlet.

<authorization-roles id="com.ibm.cics.wlp.defaultapp">
<security-role name="User">
<user name="userl"/>
<user name="user2"/>
</security-role>
<security-role name="Administrator">
<user name="user2"/>
</security-role>
</authorization-roles>

In this case, userl can access the Default servlet but not the FileViewer servlet and usexr?2 can
access the Default servlet and the FileViewer servlet.

Chapter 5. Setting up Java support 223

Results
You have successfully configured the CICS Default Web Application.

Manually tailoring server.xml

If you want to make manual changes to your server. xml, there are some basic configurations you can
apply. Your CICS region user ID needs to have both read and write access to the server. xml file.

Rules for server configuration

Liberty allows customization of your sexrver. xml. For details of the rules, see Server configuration.

Configuring the HTTP endpoint

If you want web access to your application, update the httpEndpoint attribute with the host name and
port numbers you require. For example:

<httpEndpoint host="winmvs2c.example.com" httpPort="28216" httpsPort="28217"
id="defaultHttpEndpoint"/>

Use a port number that can be opened by the CICS region, either exclusively or as a shared port.

HTTPS is available only if SSL is configured as described in Configuring SSL (TLS) for a Liberty JVM server
using a Java keystore.

For more information, see Liberty overview.

Using environment variables in sexver.xml

Within server.xml, you can access and reference existing environment variables. See Using variables in
configuration files.

These can include custom environment variables that you have already set up in a JVM profile. See
Options for JVMs in a CICS environment.

Adding features
Add the following features in the <featureManager> list of features.

« CICS feature cicsts:core-1.0. This feature installs the CICS system OSGi bundles into the Liberty
framework. This feature is required to start a CICS integrated-mode Liberty JVM server. You can also
define a SAF or other type of registry.

« CICS feature cicsts:standard-1.0. This feature is required to start a CICS standard-mode Liberty
JVM server. The cicsts:standard-1.0 feature does not have access to CICS resources by default.
For more information see “CICS standard-mode Liberty: Java EE Full Platform support without full CICS
integration” on page 220.

Note: Specify either the cicsts:core-1.0orcicsts:standard-1.0 feature. You cannot specify
both features in server.xml.

« CICS security feature cicsts:security-1.0. This feature installs the CICS system OSGi bundles that
are required for CICS Liberty security into the Liberty framework. This feature is required when CICS
external security is enabled (SEC=YES in the SIT) and you want security in the Liberty server. To use
the cicsts:security-1.0 feature, you must also configure a user registry. For more information, see
“User registry” on page 226.

« jsp-2.3. This feature enables support for servlet and JavaServer Pages (JSP) applications. This
feature is required by Dynamic Web Projects (WAR files) and OSGi Application Projects that contain
OSGi Bundle Projects with Web Support that are installed as CICS bundles.

e cicsts:jdbc-1.0. This feature enables applications to access Db2 through the JDBC DriverManager
or DataSource interfaces.

224 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_config.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_about.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_vars.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_vars.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_options.html

Example:

<featureManager>
<feature>cicsts:core-1.0</feature>
<feature>cicsts:security-1.0</feature>
<feature>jsp-2.3</feature>
<feature>cicsts:jdbc-1.0</feature>
</featureManager>

For more information, see Liberty features.

CICS bundle deployed applications

If you want to deploy Liberty applications that use CICS bundles, the server. xml file must include the
entry:

<include location="$iserver.output.dir?/installedApps.xml"/>

The included file is used to define CICS bundle deployed applications.

Bundle repository

Share common OSGi bundles by placing them in a directory and referring to that directory in a
bundleRepository element. For example:

<bundleRepository>
<fileset dir="directory_path" include="x.jar"/>
</bundleRepository>

Global/shared library

Share common JAR files between web applications by placing them in a directory and referring to that
directory in a global/shared library definition.

<library id="global">
<fileset dir="directory_path" include="x.jar"/>
</library>

The global/shared libraries cannot be used by OSGi applications in an EBA, which must use a bundle
repository. For more information, see Providing global libraries for all Java EE applications or Shared
libraries.

Liberty server application and configuration update monitoring

The Liberty JVM server scans the server.xml file for updates. By default, it scans every 500
milliseconds. To vary this value, add an entry such as:

<config monitorInterval="5s" updateTrigger="polled"/>

It also scans the dropins directory to detect the addition, update, or removal of applications. If you
install your web applications in CICS bundles, disable the dropins directory as follows:

<applicationMonitor updateTrigger="disabled" dropins="dropins"
dropinsEnabled="false" pollingRate="5s"/>

For more information, see Controlling dynamic updates.

Chapter 5. Setting up Java support 225

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/liberty_features.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_classloader_global_libs.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_sharedlibrary.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_sharedlibrary.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_dyn_upd.html

JTA transaction log

When the Java Transaction API (JTA) is used, the Liberty transaction manager stores its recoverable
log files in the zFS filing system. The default location for the transaction logs is $$WLP_USER_DIR%/
tranlog/. This location can be overridden by adding a transaction element to server.xml such as

<transaction transactionLogDirectory="/u/cics/CICSPRD/DFHWLP/tranlog/"/>

CICS default web application

The CICS default web application CICSDefaultApp is a configuration service that validates the

Liberty JVM server has started. To make the application available, add the JVM profile option
com.ibm.cics.jvmserver.wlp.defaultapp=true to your JVM profile, or if you are not using
autoconfigure, add the cicsts:defaultApp-1.0 feature to server.xml. Run the application by using
the URL http://<server>:<port>/com.ibm.cics.wlp.defaultapp/.

<featureManager>
<feature>cicsts:defaultApp-1.0</feature>
</featureManager>

User registry

Unless you are using distributed identity mapping, you must define a SAF registry to use the CICS security
feature:

<safRegistry enableFailover="false" id="saf"/>

For more information, see Configuring security for a Liberty JVM server by using distributed identity
mapping or Java Database Connectivity 4.1.

CICS JTA integration

If an XA transaction is used by Liberty, the CICS unit-of-work becomes subordinate to the XA transaction
by default. You can opt out of this automatic integration of CICS with JTA by setting the JVM profile option
com.ibm.cics.jvmserver.wlp.jta.integration=false. Alternatively you can manually set the
cicsts_jtaelementdirectly in your server.xml.

<cicsts_jta integration="false"/>

Modifying Lightweight Third-Party Authentication (LTPA) support

LTPA is configured by default when security is enabled for Liberty servers. LTPA enables web users to
re-use their logged-in credentials across different applications or servers, using tokens signed by keys
owned by the Liberty server. In secure deployment scenarios, you should modify the default password for
the LTPA keys file to protect server security. You can also modify the expiry interval of the tokens, and
change the default file location, which is required if sharing keys between multiple Liberty servers.

Configuring Admin Center

The adminCenter-1.0 feature enables the Liberty Admin Center, a web-based graphical interface for
deploying, monitoring, and managing Liberty servers. After creating a Liberty JVM server, configure the
server.xml file.

About this task

These steps outline how to set up Admin Center.

226 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_feature_jdbc-4.1.html

Procedure

1. Open an editor on the server. xml file of the Liberty server, and configure the server for Admin
Center. Add the adminCenter-1.0 feature to the feature manager.

<featureManager>
<feature>adminCenter-1.0</feature>
<feature>websocket-1.1</feature>
</featureManager>

WebSocket provides a live view of the topology. Without the WebSocket feature, Admin Center web
client periodically and frequently polls for changes.

2. Add the userid of all users of the Admin Center (SAF userid if registry), or add the RACF group, to the
built-in administrator role.

<administrator-role>
<user>username</user>
</administrator-role>

For more information about the built-in administrator role, see Mapping the administrator role for
Liberty on z/0OS

3. Optionally, give Admin Center access to write to server.xml by adding the following to server.xml:

<remoteFileAccess>
<writeDir>${server.config.dir}</writeDir>
</remoteFileAccess>

In the Admin Center you can see and edit server.xml, as well as any include files such as the CICS
installedApps.xml file.

The design view lists and describes many other attributes of each element, providing a good way to
understand the options available.

Note:

Some CICS augmented elements are not understood by a Liberty server and so those must be
manually edited in the source view.

Do not remove any of the essential CICS features, such as core-1.0. This disconnects the Liberty
instance and the containing JVMSERVER resource.

Results

Admin Center is now set up and ready to use. When you are using Admin Center, you should be aware that
it is possible to STOP the server and applications. Any synchronization of resources should be seen as a
convenience and not as a primary mechanism of control. The following behavior applies:

« Asignal is sent to CICS when the Liberty server is stopped. This quiesces all of your JVM server
workload with a DISABLE(PHASEOUT) of the JVMSERVER. There is no option in the Admin Center to use
FORCE or PURGE commands.

- When stopping an application deployed as a CICS bundle, the parent CICS bundle is notified of the
application STOP and moves to the corresponding DISABLED state.

Auto-configuring a Db2 type 2 connection

Create a CICS-aware Db2 data source with type 2 connectivity by using the auto-configure property. This

uses the jdbc-4.0, jdbc-4.1, jdbc-4.2, or jdbc-4. 3 feature.

Before you begin

Configure your CICS region to connect to Db2. For more information, see Defining the CICS Db2
connection.

Chapter 5. Setting up Java support 227

https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_mapadmin_zos.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_mapadmin_zos.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html

About this task

You can create a Db2 DataSource with type 2 connectivity in the Liberty server.xml, which operates
through the CICS DB2CONN, by using the JVM profile auto-configure property. The INDI name is jdbc/
defaultCICSDataSouzrce.

If there is already a Db2 DataSource with type 2 connectivity with id="defaultCICSDataSource", you
are not able to use auto-configure to create a new one. For more information on creating one manually,
see Manually configuring a Db2 DataSource with type 2 connectivity through CICS using the jdbc-4.0,
jdbc-4.1 or jdbc-4.2 feature.

Procedure

1. Enable auto-configure by setting -Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true in the
JVM profile.

2. Set the com.ibm.cics.jvmserver.wlp.jdbhc.driver.location in the JVM profile to the
location of the Db2 JDBC library.
For example: -Dcom.ibm.cics.jvmserver.wlp.jdbc.driver.location=/usr/lpp/db2vil/
jdbc

3. If the default schema is not the current userid, set the db2.jcc.currentSchema in the JVM profile
to the name of the schema.
For example: -Ddb2.jcc.currentSchema=CICSDB2

4. Install and enable the JVMSERVER resource.

Results

A Db2 DataSource with type 2 connectivity is added to the Liberty server configuration file, server. xml.

<featureManager>

éféature>jdbc—4.2</feature>
</featureManager>

<dataSource id="defaultCICSDataSource" jndiName="jdbc/defaultCICSDataSource" transactional="false">
<jdbcDriver libraryRef="defaultCICSDb2Library"/>
<properties.db2.jcc driverType="2"/>
<connectionManager agedTimeout="0"/>

</dataSouzrce>

<library id="defaultCICSDb2Library">
<fileset dir="/usr/lpp/db2v1l/jdbc/classes" includes="db2jcc4.jar db2jcc_license_cisuz.jar"/>

<fileset dir="/usr/lpp/db2vil/jdbc/1lib" includes="1libdb2jcct2zos4_64.s0"/>
</library>

Manually configuring a Db2 type 2 connection with the Liberty JDBC features

A CICS Liberty JVM server can be configured to use a JDBC DataSource with type 2 connectivity through
CICS to access Db2 databases from Java applications.

Before you begin

You should configure your CICS region to connect to Db2. For more information, see Defining the CICS
Db2 connection.

About this task

This task explains how to define the elements that are required in server.xml to enable JDBC type 2
driver connectivity to a local Db2 database.

Java 17Java 21 To enable Db2 type 2 connectivity when you are running Java 17 or Java 21, add
LIBPATH_SUFFIX=/usr/lpp/db2v12/jdbc/1ib to the JVM profile.

228 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2datasource_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2datasource_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html

Procedure
1. Add the jdbc-4.0, jdbc-4.1, jdbc-4.2, or jdbc-4. 3 feature to the server. xml file.

<featureManager>
<feature>jdhc-4.2</feature>
</featureManager>

2. Add a library element to the server. xml file to specify the location on zFS of the JDBC driver.

<library id="defaultCICSDb2Library">
<fileset dir="/usr/lpp/db2vil/jdbc/classes" includes="db2jcc4.jar db2jcc_license_cisuz.jar"/>
<fileset dir="/usr/lpp/db2v11l/jdbc/1lib" includes="1libdb2jcct2zos4_64.s0"/>

</library>

3. To access Db2 through a DataSource definition, a dataSouxce element is required. The jndiName
attribute is required to define the INDI name that is referenced by your application.

Note: As of JDBC 4.3, the default dataSouxce typeis javax.sql.XADataSouzrce,

which is not supported by the Db2 type 2 JDBC driver. The type must be set to
javax.sql.ConnectionPooledDataSource or javax.sql.DataSource for Db2 type 2 data
sources.

You can set attributes for the dataSouxce by using a properties.db2. jcc element. The following
example shows how to do this:

<dataSource id="defaultCICSDataSource" jndiName="jdbc/defaultCICSDataSource" transactional="false">
<jdbcDriver libraryRef="defaultCICSDb2Library"/>
<properties.db2.jcc driverType="2"/>
<connectionManager agedTimeout="0"/>

</dataSouzrce>

transactional="false" is required to allow CICS to manage the transactions.
driverType="2"is required to use the type 2 connectivity to Db2.

agedTimeout="0" is required to disable Liberty connection pooling. Liberty connection pooling is not
required as the DB2CONN resource provides Db2 connection pooling.

Results

The Liberty server is configured to allow access to Db2 databases by using JDBC type 2 connectivity
through a CICS DB2CONN resource.

Manually configuring a Db2 type 4 connection

A CICS Liberty JVM server can be configured to use a JDBC DataSource with type 4 connectivity to access
Db2 databases from Java applications.

Before you begin

The Liberty Db2 DataSource with type 4 connectivity does not use the CICS Db2 connection resource.
However, if you do not have APARs PI18798 and P118799 applied, you need to add the Db2 SDSNLOAD
and SDSNLOD2 libraries to the CICS STEPLIB concatenation.

About this task

This task explains how to manually define the elements that are required in the server.xml
configuration file to enable JDBC type 4 driver connectivity to a local or remote Db2 database. Updates
that are made to a Db2 database that uses type 4 connectivity do not use the CICS Db2 connection
resource. They are not part of a two-phase commit transaction unless the DataSource connection

is of type javax.sql.XADataSouzxce, and they are made within a JTA user transaction. For more
information, see Acquiring a connection to a database.

Chapter 5. Setting up Java support 229

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk4s.html

Procedure

1. Add the jdbc-4.0, jdbc-4.1, jdbc-4.2, or jdbc-4. 3 feature to the featureManager element.
This enables use of the dataSource and jdbcDxriver elements that are used later in the
server.xmlfile.

<featureManager>
<feature>jdhc-4.2</feature>
</featureManager>

2. Add dataSourxce and jdbcDriver elements. The dataSource element must refer to a library
definition that specifies the library from which the JDBC driver components (the Db2 JDBC jar and
native DLL files) are to be loaded. Typical definitions might look like this:

<dataSource jndiName="jdbc/defaultCICSDataSource">
<jdbcDriver libraryRef="db2Lib"/>
<properties.db2.jcc driverType="4"
serverName="winmvs2c.hursley.ibm.com"
portNumber="41100"
databaseName="DSNV11P2"
user="DBUSER"
password="{xor$Lz4sLCgwLTs="/>
</dataSouzrce>

<library id="db2Lib">
<fileset dir="/usr/lpp/db2vil/jdbc/classes" includes="db2jcc4.jar

db2jcc_license_cisuz.jar" />
</library>

If you do not have APARs P118798 and P118799 applied, you need to add a fileset entry for the Db2
native library to the library configuration, for example:

<fileset dir="/usr/lpp/db2v1l/jdbc/1lib" />

The dataSource specifies the jndiName attribute that is referenced by your application program
when you are establishing a connection to that data source. The required properties are set in the
properties.db2.jcc element as follows:

driverType
Description: Database driver type, must be set to 4 to use the pure Java driver.

Default value: 4
Required: false
Data type: int

serverName
Description: The host name of server where the database is running. This is the SQL DOMAIN value
of the Db2 DISPLAY DDF command.

Default value: localhost
Required: false
Data type: string

portNumber
Description: Port on which to obtain database connections. This is the TCPPORT value of the Db2
DISPLAY DDF command.

Default value: 50000
Required: false
Data type: int

databaseName
Description: specifies the name for the data source. This is the LOCATION value of the Db2
DISPLAY DDF command.

Required: true
Data type: string

230 CICS TS for z/0S: Java Applications in CICS

user
Description: The user ID used to connect to the database.

Required: true
Data type: string

password
Description: The password of the user ID used to connect to the database. The value can be stored
in clear text or encoded form. It is recommended that you encode the password. To do so, use the
securityUtility tool with the encode option, see securityUtility command.

Required: true
Data type: string

Results

The Liberty server, when started, is configured to allow access to Db2 databases through a JDBC type 4
connectivity. For more information, see Java Database Connectivity 4.1.

Manually configuring a Db2 DataSource or the DriverManager interface with
type 2 connectivity through CICS using the cicsts:jdbc-1.0 feature

A CICS Liberty JVM server can be configured to use JDBC type 2 connectivity through CICS, providing
Java applications with either a javax.sql.DataSouxce or a java.sql.DxrivexrManager interface to
access Db2 databases.

Before you begin

Configure your CICS region to connect to Db2. For more information, see Defining the CICS Db2
connection.

About this task

Although you can configure CICS Liberty to access Db2 with type 2 connectivity using the
cicsts:jdbc-1.0 feature, the preferred method is to use the Liberty jdbc-4. x features. For more
information, see Manually configuring a Db2 DataSource with type 2 connectivity through CICS using the
jdbc-4.0, jdbc-4.1 or jdbc-4.2 feature. However, if you want to use the DriverManager interface, you must
use the cicsts:jdbc-1.0 feature as described in the following procedure.

Procedure

1. Add the cicsts:jdbc-1.0 feature to the featureManager element.

This enables use of the cicsts_jdbcDriver and cicsts_dataSouxce elements, used later in the
server.xml file.

<featureManager>
<feature>cicsts:jdbc-1.0</feature>
</featureManager>

2. Add a cicsts_jdbcDriver element. This enables JDBC type 2 connectivity with the
java.sql.DriverManager or javax.sql.DataSouxce interface.

The cicsts_jdbcDriver element must refer to a library definition that specifies the library from
which the JDBC driver components (the Db2 JDBC jar and native dll files) are to be loaded. Typical
definitions might look like this:

<cicsts_jdbcDriver libraryRef="defaultCICSDb2Library"/>

<library id="defaultCICSDb2Library">
<fileset dir="/usr/lpp/db2v1l/jdbc/classes" includes="db2jcc4.jar db2jcc_license_cisuz.jar"/>
<fileset dir="/usr/lpp/db2vil/jdbc/1lib" includes="1libdb2jcct2zos4_64.s0"/>

</library>

Chapter 5. Setting up Java support 231

https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_command_securityutil.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2datasource_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2datasource_liberty.html

Note: Only one cicsts_jdbcDriver element is required. If more than one is specified, only the last
cicsts_jdbcDriver elementin the server.xml file is used and the others are ignored.

If you require only java.sql.DriverManagex support, the preceding steps are sufficient.

3. To access Db2 using the DataSource interface, a cicsts_dataSource element is required, but the
preferred method for DataSource access is to use the Liberty jdbc-4. x features, as described in
Manually configuring a Db2 DataSource with type 2 connectivity through CICS using the jdbc-4.0,
jdbc-4.1 or jdbc-4.2 feature. A cicsts_dataSource requires a jndiName attribute to define the
JNDI name that is referenced by your application. A definition might look like this:

<cicsts_dataSource id="defaultCICSDataSource" jndiName="jdbc/defaultCICSDataSource"/>

Tip: The DataSource class that is used is com.ibm.db2.jcc.DB2SimpleDataSouzxce, which
implements javax.sql.DataSouxce.

4. Optional: You can set attributes for the cicsts_dataSouxce by using a properties.db2.jcc
element. The following example shows how to do this:

<cicsts_dataSource id="defaultCICSDataSource" jndiName="jdbc/defaultCICSDataSource">
<properties.db2.jcc currentSchema="DB2USER" fullyMaterializelobData="true" />
</cicsts_dataSource>

Some of the attributes, which can be specified on the properties.db2. jcc element are not valid for
DataSources with type 2 connectivity. If these invalid attributes are specified, they are ignored and a
warning message is issued. The following attributes are not valid:

« driverType

« serverName

« portNumber

. user

« password

- databaseName

Results

The Liberty JVM server can connect to Db2 databases with JDBC type 2 connectivity through a CICS
DB2CONN resource.

Note: Dynamic updates of the cicsts_dataSource and its components are not supported. Updating
the configuration while the Liberty server is running can result in Db2 application failures. You should
recycle the server to activate any changes.

Configuring a Liberty JVM server to support JIMS

You configure a CICS Liberty JVM server to support applications that use JMS. The Liberty JVM server can
be either CICS standard-mode Liberty or CICS integrated-mode Liberty but there are differences in the
configuration, depending on which you use and the type of connection that you use to IBM MQ.

About this task

This task sets up the server.xml for the CICS Liberty JVM server to support applications that connect to
IBM MQ through the IBM MQ classes for JMS. To connect to IBM MQ from Liberty, you need the IBM MQ
resource adapter at Version 9.0.1 or later. Liberty does not contain the IBM MQ resource adapter so you
must get it from Fix Central (see Installing the resource adapter in Liberty). The Liberty features that are
referenced in the configuration steps are described in detail in Liberty features.

Before you start, make sure that you review the considerations in Using IBM MQ classes for JMS in a CICS
Liberty JVM server.

232 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2datasource_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2datasource_liberty.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.dev.doc/q128160_.htm?view=kc#q128160_
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/liberty_features.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_webspheremq_jmsliberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_webspheremq_jmsliberty.html

Procedure

1. Add the wmgJImsClient-2.0 feature to the server. xml file.

Adding the wmgJmsClient-2.0 feature enables the Liberty server to load the necessary IBM
MQ bundles that let you define the IMS resources, such as the connection factory and activation
specification properties.

If you want to perform a JNDI lookup, then you must also add the jndi-1.0 feature.

<featureManager>
<feature>wmgJImsClient-2.0</feature>
<feature>jndi-1.0</feature>
</featureManager>

2. If you want to configure JMS applications to connect to IBM MQ in bindings mode (supported only in
CICS standard-mode Liberty), add the zosTransaction-1.0 feature:

<featureManager>
<feature>zosTransaction-1.0</feature>
</featureManager>

3. Specify the location in zFS of the IBM MQ resource adapter on the variable element of the
server.xml file:

<variable name="wmgJdmsClient.rar.location" value="/path/to/wmq/rar/wmq.jmsra.rar"/>

On the value attribute, specify the absolute path to the IBM MQ resource adapter file,
wmq.jmsra.rar.

4. If you are using a JMS connection factory to connect to the IBM MQ queue manager, add the
connection factory definitions to the sexrver. xml file.

You must have information about the IBM MQ system: the name of the queue manager, the host
name of its system, the port that the queue manager is listening on, and the channel to the queue
manager. The connection factory is not applicable if your application communicates with IBM MQ
through message-driven beans.

For more information about the IBM MQ properties, see the Configuring JMS connection factories in
the Liberty documentation.

e Foraclient mode connection to IBM MQ, add the following elements:

<jmsConnectionFactory jndiName="jms/wmqCF" connectionManagerRef="ConMgr6">
<properties.wmgdms transportType="CLIENT"
hostName="localhost" port="1414"
channel="SYSTEM.DEF.SVRCONN" queueManager="QM1"/>
</jmsConnectionFactory>

<connectionManager id="ConMgré6" maxPoolSize="10"/>
The value of 10 on maxPoolSize is used as an example only. Set maxPoolSize to the maximum
number of concurrent users of the connection factory.
« For a bindings mode connection to IBM MQ (supported only in CICS standard-mode Liberty), add
the following elements:

<jmsConnectionFactory jndiName="jms/gml" connectionManagerRef="ConMgr6">
<properties.wmqgJms transportType="BINDINGS" queueManager="QM1"/>
</jmsConnectionFactory>

<connectionManager id="ConMgré6" maxPoolSize="10"/>

The value of “10” on maxPoolSize is used as an example only. Set maxPoolSize to the maximum
number of concurrent users of the connection factory.

5. Add the queue definitions to the servexr.xml that are referenced by the jmsConnectionFactory or
jmsActivationSpec:

Chapter 5. Setting up Java support 233

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_jms_config_confact.html

<jmsQueue id="jms/queuel" jndiName="jms/queuel">
<properties.wmgJdms baseQueueName="QUEUE1" baseQueueManagerName="QM1"/>
</jmsQueue>

6. If you are configuring JMS applications to connect in bindings mode, use the wmgJmsClient element
in the server. xml file to specify the location of the IBM MQ native libraries.

<wmgJmsClient nativelLibraryPath="/opt/mgm/java/lib64"/>

7. If you use message-driven beans, add the mdb-3.2 feature to server.xml. This feature is not
applicable if you use a connection factory.

<featureManager>
<feature>mdb-3.2</feature>
</featureManager>

Then define a jmsActivationSpec in the Liberty servexr.xml that references the jmsQueue
element, the IBM MQ channel, queue manager, host, port, and transport type. For more information
about the IBM MQ properties, see the Configuring JMS connection factories in the Liberty
documentation.

« Foraclient mode connection, add a jmsActivationSpec element as follows:

<jmsActivationSpec id="MQ.JIMS.mdb.app/MQ.JIMS.mdbEJB/MessageDrivenBean">
<properties.wmgdms transportType="CLIENT"
destinationRef="jms/queuel" destinationType="javax.jms.Queue"
hostName="localhost" port="1414"
channel="SYSTEM.DEF.SVRCONN" queueManager="QM1"/>
</jmsActivationSpec>

The jmsActivationSpec id attribute must be in the format of application name/module name/bean
name.

« For a bindings mode connection (supported only in CICS standard-mode Liberty), add a
jmsActivationSpec element as follows:

<jmsActivationSpec id="MQ.JIMS.mdb.app/MQ.JIMS.mdbEJB/MessageDrivenBean">
<properties.wmqgJms transportType="BINDINGS"
destinationRef="jms/queuel" destinationType="javax.jms.Queue"
gqueueManager="QM1" />
</jmsActivationSpec>

The jmsActivationSpec id attribute must be in the format of application name/module name/bean
name.

Results
You have configured a CICS Liberty JVM server to support applications that use JMS.

CICS Liberty defaulted settings

When Liberty is configured, by default, two configuration settings are applied but are not visible in
server.xml.

Defaulted configuration settings

If you wish to use different settings than the two non-visible defaulted settings, you can specify them in
server.xml. The two settings are:

- <applicationManager autoExpand="true" /> This setting causes application file archives to be
automatically expanded into the ${server.config.dir?/apps directory on first use. This avoids
expansion of file archives into the Liberty work area on server startup, reducing zFS file I/O and making
more efficient use of the Java shared class cache. If you wish to override this setting and switch it off,
then you should place the XML element: <applicationManager autoExpand="false"/>inyour
server.xml file.

234 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_jms_config_confact.html

- <transaction recoverOnStartup="true" waitForRecovery="true" /> These settings
specify that following a server failure, transaction recovery should occur at server startup, and
the server should wait for recovery to complete before permitting further transactional work. See
Configuring the transaction service startup for more information.

Configuring a JVM server for Axis2

Configure the JVM server to run Axis2 if you want to run Java web services or process SOAP requests in a
pipeline.

About this task

Axis2 is a Java SOAP engine that can process web service requests in provider and requester pipelines.
When you configure a JVM server to run Axis2, CICS automatically adds the required JAR files to the class
path.

You can define the JVM server either with CICS online resource definition or in a CICS bundle.

Procedure

1. Create a JVMSERVER resource for the JVM server.
a) Specify a name for the JVM profile for the JVM server.

On the JVMPROFILE attribute of JVMSERVER, specify a 1 - 8 character name. This name is used
for the prefix of the JVM profile, which is the file that holds the configuration options for the JVM
server. You do not need to specify the suffix, .jvmprofile, here.

b) Specify the thread limit for the JVM server.

On the THREADLIMIT attribute of JVMSERVER, specify the maximum number of threads that are
allowed in the Language Environment enclave for the JVM server. The number of threads that are
required depend on the workload that you want to run in the JVM server. To start with, you can
accept the default value and then tune the environment. You can set up to 256 threads in a JVM
server.

2. Create the JVM profile to define the configuration options for the JVM server.

You can use the sample profile, DFHIVMAX.jvmprofile, as a basis. This profile contains a subset of
options that are suitable for starting the JVM server. All options and values for the JVM profile are
described in “JVM profile validation and properties” on page 238. Follow the coding rules, including
those for the profile name, in “Rules for coding profiles” on page 238.

a) Set the location for the JVM profile.

The JVM profile must be in the directory that you specify on the system initialization parameter,
JVMPROFILEDIR. For more information, see “Setting the location for the JVM profiles” on page
207.

b) Make the following changes to the sample profile:
» Set JAVA_HOME to the location of your installed IBM Java SDK.
« Set JAVA_PIPELINE to run Axis2.

« Set CLASSPATH_SUFFIX to specify classes for Axis2 applications and SOAP handlers that are
written in Java.

- Set WORK_DIR to your choice of destination directory for messages, trace, and output from the
JVM server.

« Set TZ to specify the timezone for timestamps on messages from the JVM server.An example for
the United Kingdom is TZ=GMTOBST,M3.5.0,M10.4.0.

¢) Save your changes to the JVM profile.
The JVM profile must be saved as EBCDIC on the z/OS UNIX System Services file system.
3. Install and enable the JVMSERVER resource.

Chapter 5. Setting up Java support 235

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_config_ts_startup.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/jvmserver/dfha4_summary.html

Results

CICS creates a Language Environment enclave and passes the options from the JVM profile to the JVM
server. The JVM server starts up and loads the Axis2 JAR files. When the JVM server completes startup
successfully, the JVMSERVER resource installs in the ENABLED state.

If an error occurs, for example CICS is unable to find or read the JVM profile, the JVM server fails to start.
The JVMSERVER resource installs in the DISABLED state and CICS issues error messages to the system

log.

What to do next

« Specify any directories that contain native C dynamic link library (DLL) files, such as Db2 or IBM MQ. You
specify these directories on the LIBPATH_SUFFIX option in the JVM profile.

 Configure CICS to run web service requests in the JVM server, as described in Using Java with web
services.

JVM profile example
Example JVM profile configured to start Axis2.

The following excerpt shows an example JVM profile that is configured to start Axis2:

#
Required parameters

e

#

When using a JVM server, the set of CICS options that are supported
JAVA_HOME=/usr/1lpp/java/l8.0_64

WORK_DIR=.

LIBPATH_SUFFIX=/usr/lpp/db2910/1ib

##
3

i JVM server specific parameters

e

3

JAVA_PIPELINE=YES

#

E R R R R R R R R B R B B B e =3
i

T JVM options

$#® _ _ ccccescsses

The following option sets the Garbage collection Policy.

#

-Xgcpolicy:gencon

i

#
3

i Setting user JVM system properties

$F e

3

-Dcom.ibm.cics.some.property=some_value

#

E R R R R R R R R B B R B B B B e e =3
i

Unix System Services Environment Variables

=== ocococccoccscscocscsoscocssoscoossoosoossoos

i

JAVA_DUMP_OPTS="ONANYSIGNAL (JAVADUMP,SYSDUMP) ,ONINTERRUPT (NONE) "

3

i

236 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_using_java_with_web_services.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_using_java_with_web_services.html

Configuring a JVM server for a CICS Security Token Service

Configure the JVM server to run a CICS Security Token Service if you want to validate and process SAML
tokens.

About this task

The supplied sample DFHIVMST.jvmprofile is suitable for a JVM server that runs a CICS Security Token
Service.

You can define the JVM server either with CICS online resource definition or in a CICS bundle. For more
help with using the CICS Explorer to create and edit resources in CICS bundles, see Working with bundles
in the CICS Explorer product documentation.

Java 11Java 17Java 21 Running a SAML JVM server with Java 11, Java 17 or Java 21 is not supported.

Procedure

Create a JVMSERVER resource for the JVM server.

a) Specify a name for the JVM profile for the JVM server.
On the JVMPROFILE attribute, specify a 1 - 8 character name. This name is used for the prefix of the
JVM profile, which is the file that holds the configuration options for the JVM server. You do not need to
specify the suffix .jvmprofile.

b) Specify the thread limit for the JVM server.

The number of threads depends on the workload that you want to run in the JVM server. To start with,
you can accept the default value and then tune the environment later. You can set up to 256 threads in
a JVM server.

c) Create the JVM profile to define the configuration options for the JVM server.

The JVM profile must be in the directory that you specify on the system initialization parameter,
JVMPROFILEDIR. You can use the sample profile, DFHJVMST.jvmprofile, as a basis. This profile
contains a subset of options that are suitable for starting the JVM server. You can either

copy DFHIVMST.jvmprofile from the installation directory into the directory that you specify on
JVMPROFILEDIR, or select it in CICS Explorer and save to the target directory.

All options and values for the JVM profile are described in “JVM profile validation and properties” on
page 238. Follow the coding rules in “Rules for coding profiles” on page 238.

Make the following changes to the sample profile:

« Set JAVA_HOME to the location of your installed IBM Java SDK.

- Set WORK_DIR to your choice of destination directory for messages, trace, and output from the JVM
server.

« Set SECURITY_TOKEN_SERVICE to YES.
« Set TZ to specify the timezone for timestamps on messages from the JVM server. An example for the
United Kingdom is TZ=GMTOBST,M3.5.0,M10.4.0.
d) Save your changes to the JVM profile
The JVM profile must be saved as EBCDIC on the USS file system.

Results

When you install and enable the JVMSERVER resource, CICS creates a Language Environment enclave
and passes the options from the JVM profile to the JVM server. The JVM starts up and the OSGi
framework resolves any OSGi middleware bundles. When the JVM server completes startup successfully,
the JVMSERVER resource installs in the ENABLED state.

If an error occurs, for example CICS is unable to find or read the JVM profile, the JVM server fails to
initialize. The JVMSERVER resource installs in the DISABLED state and CICS issues error message.

Chapter 5. Setting up Java support 237

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/jvmserver/dfha4_summary.html

What to do next
You can further customize the JVM server, for example:

« Specify any directories that contain native C dynamic link library (DLL) files, such as Db2 or IBM MQ. You
specify these directories on the LIBPATH_SUFFIX option.

« For more information see Configuring the CICS Security Token Service.

JVM profile validation and properties

JVM profiles contain a set of options and system properties that are passed to the JVM when it starts.
Some JVM profile options are specific to the CICS environment and are not used for JVMs in other
environments. CICS validates that the JVM profile is coded correctly when you start the JVM server.

The JVM options are described in “Options for JVMs in a CICS environment” on page 240. CICS provides
sample profiles for each JVM server configuration that is supported by CICS. These sample profiles have
default values for the most common JVM options. The sample profiles are stored in zFSin /usxr/1pp/
cicsts/cicsts56/JIVMProfiles/.

You can also specify z/OS UNIX System Services environment variables in a JVM profile. For more
information see Symbols used in the JVM profile. Name and value pairs that are not valid JVM options
are treated as z/OS UNIX System Services environment variables, and are exported. z/OS UNIX System
Services environment variables specified in a JVM profile apply only to JVMs created with that profile.

Examples of environment variables include the WLP_INSTALL_DIR variable for the Liberty profile, and
the TZ variable for changing the time zone of the JVM.

The Java class libraries include other system properties that you can set in a JVM profile. For example,
applications might also have their own system properties. The IBM Java documentation is the primary
source of Java information. For more information about the JVM system properties, see Using system
property command-line options.

Rules for coding profiles

JVM profiles are text files encoded in EBCDIC when stored on the USS file system. When JVM profiles
are created in a CICS bundle, they can be edited on a workstation using any text editor. They must

be converted to EBCDIC when they are transferred to USS. CICS Explorer performs this conversion
automatically when exporting a CICS bundle project to USS.

Case sensitivity

All parameter keywords and operands are case-sensitive, and must be specified exactly as shown in
Options for JVMs in a CICS environment, JVM system properties, or Node.js profile and command line
options.

Comments

To add comments or to comment out an option instead of deleting it, begin each line of the comment
with a # symbol. Comment lines are ignored when the file is read by the launcher.

Blank lines are also ignored. You can use blank lines as a separator between options or groups of
options.

The profile parsing code removes inline comments. An inline comment is defined as follows:

« The comment starts with a # symbol
« It is preceded with one or more spaces (or tabs)
« Itis not contained in quoted text

Table 40. Inline comment examples

Code Result
MYVAR=myValue # Comment MYVAR=myValue

238 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/saml/saml_config_sts.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_symbols.html
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=options-using-system-properties
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=options-using-system-properties
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_options.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_sysprops.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/node/node-options.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/node/node-options.html

Table 40. Inline comment examples (continued)

Code Result

MYVAR=#fmyValue # Comment MYVAR=#myValue

MYVAR=myValue "# Quoted comment" # MYVAR=myValue "# Quoted comment"
Comment

Continuation

For options the value is delimited by the end of the line in the text file. If a value that you are entering
or editing is too long for an editor window, you can break the line to avoid scrolling. To continue on the
next line, terminate the current line with the backslash character and a blank continuation character,
as in this example:

STDERR=/example/a/long/path/which/you/would/like\
/to/break/over/a/line

Do not put more than one option on the same line.
Including files

Use %INCLUDE=<file_path> toinclude afile in your profile. The file can contain common system-
wide configuration that can be maintained separate to the profile. This enables configuration that is
common to several profiles to be shared, giving more control and providing easier maintenance for
profiles.

The following rules apply:
« <file_path> must be a fully qualified file in zFS.

— Avoid use of relative directories at the start of <file_path>suchas . and ... Theyare
interpreted by UNIX System Services as relative to the Language Environment current working
directory, which can change in processing.

— If<file_path> does not exist, or if the CICS region user ID does not have read access to
<file_path> message DFHSJ1308 is issued.

« <file_path> can contain symbols, for example &USSCONFIG;.

— Symbols &DATE; and &TIME; are not allowed due to the formatting for these being set via the
time zone option (TZ) that can be before or after the ¥INCLUDE directive.

» The contents of <file_path> replace the %INCLUDE directive.
« A profile can contain any number of %INCLUDE directives.

« Cyclic references result in message Skipping duplicate. For example, Profile-A can include
Profile-B, and Profile-B include Profile-C; but if Profile-B includes Profile-A the directive is ignored.

Multiple instances of options

If more than one instance of the same option is included in a profile, the value for the last option
found is used, and previous values are ignored.

UNIX System Services directory paths

Do not use quotation marks when specifying values for zFS files or directories in a profile.

Rules specific to JVM profiles

Appending values
Use the + character before a variable to append the value specified to the existing value of that
variable using a comma separator, for example:

LIBERTY_INCLUDE_XML=/path/filel
+LIBERTY_INCLUDE_XML=/path/file2

Chapter 5. Setting up Java support 239

This is the equivalent to:
LIBERTY_INCLUDE_XML=/path/filel,/path/file2

CEDA

The CEDA panels accept mixed case input for the JVMPROFILE field irrespective of your terminal
UCTRAN setting. However, you must enter the name of a JVM profile in mixed case when you

use CEDA from the command line or when you use another CICS transaction. Ensure that your
terminal is correctly configured with uppercase translation suppressed. You can use the supplied
CEOT transaction to alter the uppercase translation status (UCTRAN) for your own terminal, for the
current session only.

Class path separator character

Use the : (colon) character to separate the directory paths that you specify on a class path option,
such as CLASSPATH_SUFFIX.

Name of a profile

« The name of a JVM profile can be up to eight characters in length.

« JVM profiles on the file system must have the file extension . jvmprofile. The file extension is set
to lowercase and must not be changed (only applies to JVM profiles).

« The name can be any name that is valid for a file in z/OS UNIX System Services. Do not use a name
beginning with DFH, because these characters are reserved for use by CICS.

« Because profiles are UNIX files, case is important. When you specify the name in CICS, you must
enter it using the same combination of uppercase and lowercase characters that is present in the
z/0S UNIX file name.

Referencing environment variables

Environment variables can be referenced in other variables in the JVM profile using the symbol
notation syntax. For more information, see Symbols used in the JVM profile.

Storage sizes

When specifying storage-related options in a JVM profile, specify storage sizes in multiples of 1024
bytes. Use the letter K to indicate KB, the letter M to indicate MB, and the letter G to indicate GB. For
example, to specify 6 291 456 bytes as the initial size of the heap, code =Xms in one of the following
ways:

-Xms6144K

-Xms6M

Options for JVMs in a CICS environment

The options in a JVM profile are used by CICS to start JVM servers. Some options are specific to CICS, but
you can also specify environment variables and Java system properties.

Coding rules

When you specify JVM options, make sure that you follow the coding rules. For more information, see
“Rules for coding profiles” on page 238.

Format
The format of options can vary:

« Options in a JVM profile either take the form of a keyword and value, separated by an equal sign (=), for
example JAVA_PIPELINE=TRUE, or they begin with a hyphen, for example -Xmx16M.

« Keyword value pairs are either CICS variables such as JAVA_PIPELINE=TRUE, or if not recognized as
CICS options, they are treated as z/OS UNIX System Services environment variables, and are exported.

240 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_symbols.html

« Options that begin with -D in a JVM profile are JVM system properties. Options that begin with -X are
treated as JVM command-line options. Any option that begins with - is passed to the JVM after any
substitution symbols have been expanded. For more information, see “JVM system properties” on page
253.

Symbols used in the JVM profile

You can use built-in substitution symbols in any variable or JVM server property specified in the JVM
profile. The values of these symbols are determined at JVM server startup, so you can use a common
profile for many JVM servers and CICS regions.

Note:

Environment variables that have been previously defined in the profile can also be used as substitution
variables using the syntax &myvar;

The following symbols are supported:

&APPLID;
When you use this symbol, the APPLID of the CICS region is substituted at run time. In this way, you
can use the same profile for all regions, and still have region-specific working directories or output
destinations. The APPLID is always in uppercase.

&BUNDLE;
When you use this symbol, the symbol is replaced with the name of the CICS bundle from which the
JVM server is being installed.

&BUNDLEID;
When you use this symbol, the symbol is replaced with the ID of the CICS bundle from which the JVM
server is being installed.

&CONFIGROOT;
When you use this symbol, the absolute path of the directory where the JVM profile is located is
substituted at run time. For JVM servers that are defined in CICS bundles, the JVM profiles are
by default located in the root directory for the bundle. For JVM servers that are defined by other
methods, the JVM profiles are in the directory that is specified by the JVMPROFILEDIR system
initialization parameter.

&DATE;
When you use this symbol, the symbol is replaced with the current date in the format Dyymmdd at run
time.

&JVMSERVER;
When you use this symbol, the name of the JVMSERVER resource is substituted at run time. Use this
symbol to create unique output or dump files for each JVM server.

&TIME;
When you use this symbol, the symbol is replaced with the JVM start time in the format Thhmmss at
run time.

&USSCONFIG;
When you use this symbol, the symbol is replaced with the value of the USSCONFIG system
initialization parameter that is the directory for CICS configuration files.

&USSHOME;
When you use this symbol, the symbol is replaced with the value of the USSHOME system initialization
parameter. You can specify this symbol to automatically pick up the home directory for z/OS UNIX
where CICS supplies its libraries for Java and the Liberty profile.

Built-in symbols are only substituted during the parsing phase of a JVM profile, they are not available to
your applications directly. If you wish to set them as environment variables you can assign them in your
JVM profile like this: e.g. APPLID=&APPLID;.

Chapter 5. Setting up Java support 241

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_ussconfig.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_usshome.html

Custom variables

Environment variables that have been previously defined in the profile, e.g. MYVAR=HELLO, can also be
used as substitution variables e.g. MYVAR2=&MYVAR;

JVM server profile options
JVM server options, how they apply to different uses of a JVM server, and their descriptions are listed.

How options apply to different uses of a JVM server

The following table indicates whether an option is required, optional, or not supported for a particular use

of a JVM server.

Table 41. JVM server options and how they apply to different uses of a JVM server

Option 0SGi Liberty Axis2 STS
_DFH_UMASK Optional Optional Optional Optional
CICS_WLP_MODE Not supported Optional Not supported Not supported
CLASSPATH_PREFIX Not supported Not supported Optional Optional
CLASSPATH_SUFFIX Not supported Not supported Optional Optional
DIAGS_ARCHIVE_DIR Optional Optional Optional Optional
DIAGS_TEMP_DIR Optional Optional Optional Optional
DISPLAY_JAVA_VERSION Optional Optional Optional Optional
IDENTITY_PREFIX Optional Optional Optional Optional
JAF_REGISTRATION Optional Not supported Optional Optional
JAVA_DUMP_TDUMP_PATTERN | Optional Optional Optional Optional
JAVA_HOME Required Required Required Required
JAVA_PIPELINE Not supported Not supported Required Not supported
JAXB_REGISTRATION Required Not supported Optional Optional
JNDI_REGISTRATION Optional Not supported Optional Optional
JVMLOG Optional Optional Optional Optional
JVMTRACE Optional Optional Optional Optional
LIBERTY_INCLUDE_XML Not supported Optional Not supported Not supported
LIBERTY_PRODUCT_EXTENSION | Not supported Optional Not supported Not supported

S

LIBPATH_PREFIX

Optional - use
only under the
guidance of IBM
service

Optional - use
only under the
guidance of IBM
service

Optional - use
only under the
guidance of IBM
service personnel

Optional - use
only under the
guidance of IBM
service

personnel. personnel. personnel.
LIBPATH_SUFFIX Optional Optional Optional Optional
LOG_FILES_MAX Optional Optional Optional Optional
LOG_LEVEL Optional Optional Optional Optional
LOG_PATH_COMPATIBILITY Optional Optional Optional Optional

242 CICS TS for z/0S: Java Applications in CICS

Table 41. JVM server options and how they apply to different uses of a JVM server (continued)

Option 0SGi Liberty Axis2 STS
OSGI_BUNDLES Optional Not supported Not supported Not supported
OSGI_CONSOLE Optional Not supported Not supported Not supported
OSGI_FRAMEWORK_TIMEOUT | Optional Optional Not supported Not supported
PRINT_JVM_OPTIONS Optional Optional Optional Optional
PRINT_PROFILE Optional Optional Optional Optional
PURGE_ESCALATION_TIMEOUT [Optional Optional Optional Optional
SCRIPT_TIMEOUT_SECS Optional Optional Optional Optional
SECURITY_TOKEN_SERVICE Not supported Not supported Not supported Required
STDERR Optional Optional Optional Optional
STDIN Optional Optional Optional Optional
STDOUT Optional Optional Optional Optional
USEROUTPUTCLASS Optional Not supported Optional Optional
WLP_INSTALL_DIR Not supported Required Not supported Not supported
WLP_LINK_TIMEOUT Not supported Optional Not supported Not supported
WLP_OUTPUT_DIR Not supported Optional Not supported Not supported
WLP_USER_DIR Not supported Optional Not supported Not supported
WORK_DIR Optional Optional Optional Optional
WSDL_VALIDATOR Optional Not supported Optional Optional
ZCEE_INSTALL_DIR Not supported Optional Not supported Not supported

JVM server options and descriptions

Default values, where applicable, are the values that CICS uses when the option is not specified. The
sample JVM profiles might specify a value that is different from the default value.

Note: You can still use options that are previously documented as YES|NO but TRUE|FALSE is the
preferred syntax. TRUE|FALSE is case-insensitive.

_DFH_UMASK={007|number}

Sets the UNIX System Services process UMASK that applies when JVMSERVER files are created. This
value is a three digit octal. For example, the default value of 007 allows the intended read/write/
execute permissions of owner and group to be respected, while preventing read/write/execute
being given to othexr when afile is created. The supplied value must fall within the range of 000 (least
restrictive) to 777 (most restrictive). UMASK applies for the lifetime of the JVM.

For security, it is best practice to allocate z/OS user IDs to groups. Permissions can be applied at a
group level, rather than on an individual basis.

CICS_WLP_MODE={INTEGRATED|STANDARD}
For a Liberty JVM server, choose the level of integration between CICS and Liberty.

Specify the INTEGRATED mode to use CICS integrated-mode Liberty. The Liberty JVM server runs
with CICS enabled threads, respects CICS security, integrates with a CICS unit of work, and makes
the Java class library for CICS (JCICS) API available for your Java web applications. If this option is
omitted or not valid, the default of INTEGRATED is used.

Chapter 5. Setting up Java support 243

Specify the STANDARD mode to use CICS standard-mode Liberty. The Liberty JVM server runs in a
mode that is more standard to all Liberty supported platforms. This mode allows you to port and
deploy your Liberty applications from other platforms to CICS without change. The JVM server retains
control of the Liberty server and manages the server creation, lifecycle, and configuration. However,
threads are not CICS enabled by default and do not run within a CICS transaction context. CICS unit
of work integration, CICS security integration, and the JCICS API are not directly available from your
Java application.

CLASSPATH_PREFIX, CLASSPATH_SUFFIX=classpathnames

Use these options to specify directory paths, Java archive files, and compressed files to be searched
by a JVM that is not OSGi enabled. For example, it is used for Java web services. Do not set a class
path if you want to use an OSGi framework because the OSGi framework handles the class loading
for you. If you use these options to specify the standard class path for Axis2, you must also specify
JAVA_PIPELINE=TRUE to start the Axis2 engine.

CLASSPATH_PREFIX adds class path entries to the beginning of the standard class path, and
CLASSPATH_SUFFIX adds them to the end of the standard class path. You can specify entries on
separate lines by using a \ (backslash) at the end of each line that is to be continued.

Use the CLASSPATH_PREFIX option with care. Classes in CLASSPATH_PREFIX take precedence over
classes of the same name that are supplied by CICS and the Java run time and the wrong classes
might be loaded.

CICS builds a base class path for a JVM by using the /1ib subdirectories of the directories that

are specified by the USSHOME system initialization parameter and the JAVA_HOME option in the JVM
profile. This base class path contains the Java archive files that are supplied by CICS and by the JVM.
Itis not visible in the JVM profile. You do not specify these files again in the class paths in the JVM
profile.

Use a colon (;) not a comma to separate multiple items that you specify by using the
CLASSPATH_PREFIX or CLASSPATH_SUFFIX options.

DIAGS_ARCHIVE_DIR=pathname

Specifies where the diagnostics archive tar file is stored when the the PERFORM JVMSERVER
(jvmserver-name) JVM GATHER DIAGNOSTICS command completes. See Using the PERFORM
JVMSERVER SPI to gather JVM diagnostics. Defaults to $$WORKDIRY /diagnostics/archives.

DIAGS_TEMP_DIR=pathname

Specifies where the diagnostics archive tar file is initially created and where trace information is
stored as the PERFORM JVMSERVER (jvmserver-name) JVM GATHER DIAGNOSTICS command runs.
See Using the PERFORM JVMSERVER SPI to gather JVM diagnostics. Defaults to /tmp.

DISPLAY_JAVA_VERSION={TRUE|FALSE}

If this option is set to TRUE, when a JVM is started by an application, CICS writes message
DFHSJ0901 to the MSGUSER log, showing the version and build of the IBM Software Developer Kit for
z/0S, Java Technology Edition that is in use.

IDENTITY_PREFIX={TRUE|FALSE}

To establish the origin of JVM server output, all STDOUT, and STDERR entries that are routed to JES
are written with a prefix string of the JVM server name, which is useful if multiple JVM servers are
sharing a JES destination. This behavior can be disabled by setting IDENTITY_PREFIX=FALSE, which
disables use of the prefix string.

JAF_REGISTRATION={TRUE|FALSE}
Specifies that the Jakarta Activation framework (JAF) registration JAR files are automatically added to
the JVM runtime environment to support the usage of JAF by Java applications. This option is ignored
for Liberty JVM servers. It is possible to opt out of the automatic addition of these files by setting
JAF_REGISTRATION=FALSE. If this function is not required, opting out can prevent potential clashes
with newer JAR files, can keep the JVM footprint smaller, and avoids unnecessary class loading.
Before Java 11, this technology is included as part of the JRE.

244 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/commands-spi/dfha8_performjvmserver.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/jvm-servers/gathering_diagnostics.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/jvm-servers/gathering_diagnostics.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/commands-spi/dfha8_performjvmserver.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/jvm-servers/gathering_diagnostics.html

JAVA_DUMP_TDUMP_PATTERN=

A z/OS UNIX System Services environment variable that specifies the file name pattern to be used for
transaction dumps (TDUMPs) from the JVM. Java TDUMPs are written to a data set destination in the
event of a JVM abend.

JAVA_HOME=/usx/1pp/java/javadir/

Specifies the installation location for IBM 64-bit SDK for z/0OS, Java Technology Edition in z/OS UNIX.
This location contains subdirectories and Java archive files that are required for Java support.

The supplied sample JVM profiles contain a path that was generated by the JAVADIR parameter in the
DFHISTAR CICS installation job. The default for the JAVADIR parameteris java/J8.0_64/, which is
the default installation location for the IBM 64-bit SDK for z/OS, Java Technology Edition. This value
produces a JAVA_HOME setting in the JVM profiles of /usx/1lpp/java/38.0_64/.

JAVA_PIPELINE={TRUE|FALSE}

Adds the required Java archive files to the class path so that a JVM server can support web services
processing in Java standard SOAP pipelines. The default value is FALSE. If you set this value, the JVM
server is configured to support Axis2 instead of OSGi. You can add more JAR files to the class path by
using the CLASSPATH options.

Note: The options JAVA_PIPELINE=TRUE and SECURITY_TOKEN_SERVICE=TRUE are not compatible.

JAXB_REGISTRATION={TRUE|FALSE}
Specifies that the Jakarta XML Binding API (JAXB) registration JAR files are automatically added
to the JVM runtime environment to support the usage of JAXB by Java applications. This option is
ignored for Liberty JVM servers. It is possible to opt out of the automatic addition of these files by
setting JAXB_REGISTRATION=FALSE. If this function is not required, opting out can prevent potential
clashes with newer JAR files, can keep the JVM footprint smaller, and avoids unnecessary class
loading. Before Java 11, this technology is included as part of the JRE.

JNDI_REGISTRATION={TRUE|FALSE}

Specifies that the JNDI registration JAR files are automatically added to the JVM runtime
environment to support the usage of the INDI by Java applications. This option is ignored for

Liberty JVM servers. It is possible to opt out of the automatic addition of these files by setting
JINDI_REGISTRATION=FALSE. If this function is not required, opting out can prevent potential clashes
with newer JAR files, can keep the JVM footprint smaller, and avoids unnecessary class loading.

JVMLOG={{&APPLID; . &JVMSERVER; . :Dyyyymmdd . Thhmmss .dfhjvmlog|filename|JOBLOG]|//
DD:data_definition}

Specifies the name of the z/OS UNIX file or JES DD to which JVM server logging is written during
operation of a JVM server. If you do not set a value for this option, CICS automatically creates unique
log files for each JVM server.

If JVMLOG is left to default or is a relative file name, the output location depends on the
LOG_PATH_COMPATIBILITY option. If LOG_PATH_COMPATIBILITY=FALSE, the files are placed in
the WORK_DIR/applid/jvmserver directory. If LOG_PATH_COMPATIBILITY=TRUE, the files are
placed in the WORK_DIR directory.

If an absolute file name is specified for JVMLOG, CICS creates any directories within the path that do
not exist.

If the file exists, output is appended to the end of the file. To create unique output files for each JVM
server, use the JVMSERVER and APPLID symbols in your file name, as demonstrated in the sample
JVM profiles. If JVMLOG is left to default, CICS uses the APPLID and JVMSERVER symbols, and the
date and timestamp when the JVM server started to create unique output files.

To route to a JES DD, specify the data definition name from JES by using the syntax //
DD:data_definition.

If this option is set to JOBLOG, JVMLOG is routed to the current stdout location.

Chapter 5. Setting up Java support 245

JVMTRACE={{&APPLID; .&JVMSERVER; . :Dyyyymmdd. Thhmmss . dfhjvmtxc|filename|JOBLOG|//
DD:data_definition}

Specifies the name of the z/OS UNIX file or JES DD to which JVM server tracing is written during
operation of a JVM server. If you do not set a value for this option, CICS automatically creates unique
trace files for each JVM server.

If JVMTRACE is left to default or is a relative file name, the output location depends on the
LOG_PATH_COMPATIBILITY option. If LOG_PATH_COMPATIBILITY=FALSE, the files are placed in
the WORK_DIR/applid/jvmserver directory. If LOG_PATH_COMPATIBILITY=TRUE, the files are
placed in the WORK_DIR directory.

If an absolute file name is specified for JVMTRACE, CICS creates any directories within the path that
do not exist.

If the file exists, output is appended to the end of the file. To create unique output files for each JVM
server, use the JVMSERVER and APPLID symbols in your file name, as demonstrated in the sample
JVM profiles. If JVMTRACE is left to default, CICS uses the APPLID and JVMSERVER symbols, and the
date and timestamp when the JVM server started to create unique output files.

To route to a JES DD, specify the data definition name from JES by using the syntax //
DD:data_definition.

If this option is set to JOBLOG, JVMTRACE is routed to the current stdout location.

LIBERTY_INCLUDE_XML=filenames
Specifies a file, or a comma-separated list of files, to be added to the server.xml as <include>
elements.

Use the + character before a variable to append a comma and the value that is specified to the
existing value of that variable, for example:

LIBERTY_INCLUDE_XML=/path/filel
+LIBERTY_INCLUDE_XML=/path/file2

This is the equivalent to:
LIBERTY_INCLUDE_XML=/path/filel, /path/file2
LIBERTY_PRODUCT_EXTENSIONS=name;location

Allows installation of a users own product extension into a Liberty server.

The name is a unique name for the product extension. It is used also as the feature prefix. The
location is the absolute location of the directory on zFS where the product extension is located and
maintained.

You can add multiple product extensions by using a comma to separate them. Alternatively, you can
use an append syntax.

LIBERTY_PRODUCT_EXTENSIONS=productl;/u/productl, product2;/u/product2

OR

LIBERTY_PRODUCT_EXTENSIONS=productl;/u/productl
+LIBERTY_PRODUCT_EXTENSIONS=product2;/u/product2

Warning: Do not name your product extension cicsts because it clashes with core JVM
server support and gives unpredictable results.

Do not name your product extension ust because Liberty looks for the extensions in the
$$wlp.usr.dirt/extension directory instead of your own directory.

LIBPATH_PREFIX, LIBPATH_SUFFIX=pathnames

Specifies directory paths to be searched for native C dynamic link library (DLL) files that are used by
the JVM, and that have the extension . so in z/OS UNIX. This includes files that are required to run the
JVM and extra native libraries that are loaded by application code or services.

246 CICS TS for z/0S: Java Applications in CICS

The base library path for the JVM is built automatically by using the directories that are specified by
the USSHOME system initialization parameter and the JAVA_HOME option in the JVM profile. The base
library path is not visible in the JVM profile. It includes all the DLL files that are required to run the
JVM and the native libraries that are used by CICS.

You can extend the library path by using the LIBPATH_SUFFIX option. This option adds directories
to the end of the library path after the base library path. Use this option to specify directories that
contain any additional native libraries that are used by your applications. Also, use this option to
specify directories that are used by any services that are not included in the standard JVM setup for
CICS. For example, the additional native libraries might include the DLL files that are required to use
the Db2 JDBC drivers.

The LIBPATH_PREFIX option adds directories to the beginning of the library path before the base
library path. Use this option with care. If DLL files in the specified directories have the same name as
DLL files on the base library path, they are loaded instead of the supplied files.

Use a colon, not a comma, to separate multiple items that you specify by using the LIBPATH_PREFIX
or LIBPATH_SUFFIX option.

DLL files that are on the library path for use by your applications must be compiled and linked with the
XPLink option. Compiling and linking with the XPLink option provides optimum performance. The
DLL files that are supplied on the base library path and the DLL files that are used by services such as
the Db2 JDBC drivers are built with the XPLink option.

LOG_FILES_MAX={0 | number}

Specifies the number of old log files that are kept on the system. A default setting of O ensures that
all old versions of the log file are retained. You can change this value to specify how many old log files
you want to remain on the file system.

If LOG_PATH_COMPATIBILITY=TRUE, LOG_FILES_MAX s ignored.

If STDOUT, STDERR, JVMLOG, and JVMTRACE use the default scheme, or if customized, they
include the &DATE; .&TIME; pattern, then only the newest number of each log type is kept

on the system. If your customization does not include any variables, which make the output
unique, then the files are appended to, and there is no requirement for deletion. Only files with
the .dfhjvmtzc, .dfhjvmlog, .dfhjvmout or .dfhjvmerr will be deleted.

The clean-up does not apply if the output variables are customized to route output to DD:// or
JOBLOG.

LOG_LEVEL={INFO|WARNING|ERROR|NONE}
Provides control over the logged information that is returned in the dfhjvmlog file. A value of NONE
suppresses all output and the file is empty. Any other value indicates the lowest log type that is
written to the dfhjvmlog file. For example, selecting WARNING gives log entries of WARNING level and
above.

LOG_PATH_COMPATIBILITY={TRUE|FALSE}

The default value for this behavior is LOG_PATH_COMPATIBILITY=FALSE, which provides a
consolidated log output behavior. The new behavior places the JVMSERVER log files in the same
output directory structure as used by existing subcomponents of the JUMSERVER, for example:

the OSGi framework, and the Liberty server. To revert to behavior from previous releases, set the
parameter to LOG_PATH_COMPATIBILITY=TRUE, and the JVMSERVER log directories are created in
the original location.

OSGI_BUNDLES=pathnames

Specifies the directory path for middleware bundles that are enabled in the OSGi framework of
an OSGi JVM server. These OSGi bundles contain classes to implement system functions in the
framework, such as connecting to IBM MQ or Db2. If you specify more than one OSGi bundle, use
commas to separate them.

Chapter 5. Setting up Java support 247

OSGI_CONSOLE={TRUE|FALSE}

Adds the required OSGi bundles to the OSGi framework to enable the OSGi console. You

must also set the following properties in the JVM profile: -Dosgi.console=host:port and
-Dosgi.file.encoding={IS0-8859-1|US-ASCII|ASCII?. The default valueis FALSE. If you
want to look at the state of OSGi bundles and services, see Troubleshooting Java applications.

OSGI_FRAMEWORK_TIMEOUT={60 | number}

Specifies the number of seconds that CICS waits for the OSGi framework to initialize or shut down
before it times out. You can set a value in the range 1 - 60000 seconds. The default value is 60
seconds. If the OSGi framework takes longer to start than the specified number of seconds, the JVM
server fails to initialize, and a DFHSJ0215 message is issued by CICS. Error messages are also written
to the JVM server log files in zFS. If the OSGi framework takes longer to shut down than the specified
number of seconds, the JVM server fails to shut down normally.

PRINT_JVM_OPTIONS={TRUE|FALSE}

If this option is set to TRUE, whenever a JVM starts, the options that are passed to the JVM at start
are also printed to SYSPRINT. The output is produced every time a JVM starts with this option in its
profile. You can use this option to check the contents of the class paths for a particular JVM profile,
including the base library path and the base class path that are built by CICS, which are not visible in
the JVM profile.

PRINT_PROFILE={TRUE|FALSE}

If this option is set to TRUE, the options, system properties, and environment variables from the
profile that are passed to the JVM server and application are output to SYSPRINT.

PURGE_ESCALATION_TIMEOUT={15 | time}
Specifies the interval in seconds between the disable actions that CICS performs when a JVM server
encounters a TCB failure or a runaway task. After each timeout, CICS escalates to the next disable
action (for example, from phaseout to purge), until the JVM server has been recycled.

CICS performs the following steps in sequence:

1. CICS disables the JVMSERVER resource with the PHASEOUT option to allow existing work in the
JVM to complete where possible and prevent new work from using the JVM.

2. If the PHASEOQOUT operation fails to disable the JVMSERVER within the interval specified by the
PURGE_ESCALATION_TIMEOUT JVM server option, CICS escalates to the next disable action
PURGE until the JVMSERVER is disabled.

For a Liberty JVM server, there is a minimum of 60-second timeout from phaseout to purge.

3. If the PURGE operation fails to disable the JVMSERVER within the interval, CICS escalates to the
next disable action FORCEPURGE.

4. If the FORCEPURGE operation fails to disable the JVMSERVER within the interval, CICS escalates
to KILL.

5. After the JVMSERVER is successfully disabled, message DFHSJ1008 is issued.
6. CICS attempts to re-enable the resource to create a new JVM.
SCRIPT_TIMEOUT_SECS={300 | number}

Specifies the number of seconds that the PERFORM JVMSERVER (jvmserver-name) JVM GATHER
DIAGNOSTICS command is permitted to run before it is considered to have malfunctioned, after
which execution is abandoned. See Using the PERFORM JVMSERVER SPI to gather JVM diagnostics.
Defaults to 300 seconds.

SECURITY_TOKEN_SERVICE={TRUE|FALSE}

If this option is set to TRUE, the JVM server can use security tokens. If this option is set to FALSE,
Security Token Service support is disabled for the JVM server.

Note: The options SECURITY_TOKEN_SERVICE=TRUE and JAVA_PIPELINE=TRUE are not compatible.

248 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/java_troubleshooting.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/commands-spi/dfha8_performjvmserver.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/jvm-servers/gathering_diagnostics.html

STDERR={{&APPLID; .&JVMSERVER; . :Dyyyymmdd.Thhmmss .dfhjvmerzx|filename|JOBLOG|//
DD:data_definition}

Specifies the name of the z/OS UNIX file or JES DD to which the stderr stream is redirected. If you
do not set a value for this option, CICS automatically creates unique trace files for each JVM server.

If STDERR is left to default or is a relative file name, the output location depends on the
LOG_PATH_COMPATIBILITY option. If LOG_PATH_COMPATIBILITY=FALSE, the files are placed in
the WORK_DIR/applid/jvmserver directory. If LOG_PATH_COMPATIBILITY=TRUE, the files are
placed in the WORK_DIR directory.

If an absolute file name is specified for STDERR, CICS creates any directories within the path that do
not exist.

If the file exists, output is appended to the end of the file. To create unique output files for each JVM
server, use the JVMSERVER and APPLID symbols in your file name, as demonstrated in the sample
JVM profiles. If STDERR is left to default, CICS uses the APPLID and JVMSERVER symbols, and the
date and timestamp when the JVM server started to create unique output files.

To route to a JES DD, specify the data definition name from JES by using the syntax //
DD:data_definition.

If this option is set to JOBLOG, STDERR is routed to SYSOUT if defined, or to a dynamic SYSnnn if not.

If you specify the USEROUTPUTCLASS option on a JVM profile, the Java class that is named on
that option handles the System. exr requests instead. The z/OS UNIX file that is named by the
STDERR option might still be used if the class named by the USEROUTPUTCLASS option cannot
write data to its intended destination; for example, when you use the supplied sample class
com.ibm.cics.samples.SIMergedStream. You can also use the file if output is directed to it
for any other reason by a class that is named by the USEROUTPUTCLASS option.

STDIN=filename

Specifies the name of the z/OS UNIX file from which the stdin stream is read. CICS does not create
this file unless you specify a value for this option.

STDOUT={{&APPLID; . &JVMSERVER; . :Dyyyymmdd.Thhmmss .dfhjvmout|filename|JOBLOG|//
DD:data_definition}

Specifies the name of the z/OS UNIX file or JES DD to which the stdout stream is redirected. If you
do not set a value for this option, CICS automatically creates unique trace files for each JVM server.

If STDOUT is left to default or is a relative file name, the output location depends on the
LOG_PATH_COMPATIBILITY option. If LOG_PATH_COMPATIBILITY=FALSE, the files are placed in
the WORK_DIR/applid/jvmserver directory. If LOG_PATH_COMPATIBILITY=TRUE, the files are
placed in the WORK_DIR directory.

If an absolute file name is specified for STDOUT, CICS creates any directories within the path that do
not exist.

If the file exists, output is appended to the end of the file. To create unique output files for each JVM
server, use the JVMSERVER and APPLID symbols in your file name, as demonstrated in the sample
JVM profiles. If STDOUT is left to default, CICS uses the APPLID and JVMSERVER symbols, and the
date and timestamp when the JVM server started to create unique output files.

To route to a JES DD, specify the data definition name from JES by using the syntax //
DD:data_definition.

If this option is set to JOBLOG, STDOUT is routed to SYSPRINT if defined, or to a dynamic SYSnnn if
not.

If you specify the USEROUTPUTCLASS option on a JVM profile, the Java class that is named on
that option handles the System. out requests instead. The z/OS UNIX file that is named by the
STDOUT option might still be used if the class named by the USEROUTPUTCLASS option cannot
write data to its intended destination; for example, when you use the supplied sample class

Chapter 5. Setting up Java support 249

com.ibm.cics.samples.SIMergedStream. You can also use the file if output is directed to it
for any other reason by a class that is named by the USEROUTPUTCLASS option.

USEROUTPUTCLASS=classname

Specifies the fully qualified name of a Java class that intercepts the output from the JVM and
messages from JVM internals. You can use this Java class to redirect the output and messages from
your JVMs, and you can add timestamps and headers to the output records. This is not supported for
Liberty. If the Java class cannot write data to its intended destination, the files that are named in the
STDOUT and STDERR options might still be used.

Specifying the USEROUTPUTCLASS option has a negative effect on the performance of JVMs. For
best performance in a production environment, do not use this option. However, this option can be
useful to application developers who are using the same CICS region because the JVM output can be
directed to an identifiable destination.

For more information about this class and the supplied samples, see Controlling the location for JVM
output, logs, dumps and trace.

WLP_INSTALL_DIR={&USSHOME ; /wlp|directory_path}

Specifies the Liberty installation directory. The default location for Liberty is the z/OS UNIX home
directory for CICS in a subdirectory called wlp. The default installation directory is /usr/1pp/
cicsts/cicsts56/wlp.

To set the correct file path, you can either:

» Use the &USSHOME; symbol to set the default file path and append the wlp directory.

« Specify the installation directory of an alternative Liberty version. In this case, CICS verifies the level
of Liberty requested by:

— Enforcing a minimum version of Liberty. If you attempt to launch a version of Liberty that is below
the minimum level that CICS supports, an exception is thrown and the Liberty JVM server does
not start. The exception message - written to JVMLOG and STDERR - indicates the version of
Liberty being launched and the minimum version accepted: Liberty version XX.X.X.X not
supported. Minimum version is YY.Y.Y.Y.

— Issuing a warning if the version of Liberty being launched is greater than the maximum version
of Liberty supported by CICS. The warning is written to JVMLOG and Liberty continues to launch.
This might happen if CICS does not yet offer support for this level of Liberty or if you have not
applied the companion CICS service APAR. If you encounter this warning, it is prudent to confine
your use of such versions to test, prototype, or development systems.

The minimum and maximum supported Liberty versions are reassessed regularly and are changed,
if appropriate, by the quarterly CICS Liberty fixpack APAR.

In addition to the &USSHOME; environment variable, you can also supply other environment variables
and system properties to configure the Liberty JVM server. The environment variables are prefixed
with WLP, and the system properties are described in “JVM system properties” on page 253.

WLP_LINK_TIMEOUT={30000 | number}

Specifies the number of milliseconds that CICS waits to dispatch a request to invoke an application in
the Liberty JVM server before it times out. If you specify 0, CICS waits indefinitely. The default value
is 30000 milliseconds. If the task has no been dispatched to the Liberty JVM server after the specified
number of milliseconds, the EXEC CICS LINK command fails and CICS issues DFHSJ1006 message.

WLP_OUTPUT_DIR=$WLP_USER_DIR/servers

Specifies the directory that contains output files for the Liberty profile. By default, the Liberty profile
stores logs, the work area, configuration files, and applications, for the server in a directory that is
named after the server.

This environment variable is optional. If you do not specify it, CICS defaults to $WORK_DIR/
&APPLID; /&IVMSERVER; /wlp/usr/sexvezrs, replacing the symbols with runtime values.

250 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/dfhpjcv.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/dfhpjcv.html

If this environment variable is set, the output logs and work area are stored in $WLP_OUTPUT_DIR/
server_name.

WLP_USER_DIR={&APPLID; /&JVMSERVER; /wlp/usx/|directory_path}

Specifies the directory that contains the configuration files for the Liberty JVM server.

This environment variable is optional. If you do not specify it, CICS uses RAPPLID; /
&JVMSERVER; /wlp/usz/ in the working directory, replacing the symbols with runtime values.
Configuration files are written to sexrvers/server_name.

WORK_DIR={.| /tmp|directory_name}

Specifies the working directory on z/OS UNIX that the CICS region uses for activities that are related
to JVMSERVER. The CICS JVMSERVER uses this directory as the route of configuration and output. A
period () is defined in the supplied JVM profiles, indicating that the home directory of the CICS region
user ID is to be used as the working directory. This directory can be created during CICS installation. If
the directory does not exist or if WORK_DIR is omitted, /tmp is used as the z/OS UNIX directory name.

You can specify an absolute path or relative path to the working directory. A relative working directory
is relative to the home directory of the CICS region user ID. If you do not want to use the home
directory as the working directory for activities that are related to Java, or if your CICS regions are
sharing the z/OS user identifier (UID) and so have the same home directory, you can create a different
working directory for each CICS region.

If you specify a directory name that uses the &APPLID; symbol (whereby CICS substitutes the actual
CICS region APPLID), you can have a unique working directory for each region, even if all the CICS
regions share the set of JVM profiles. For example, if you specify:

WORK_DIR=/u/&APPLID; /javaoutput

each CICS region that uses that JVM profile has its own working directory. Ensure that the relevant
directories are created on z/OS UNIX, and that the CICS regions are given read, write, and run access
to them.

You can also specify a fixed name for the working directory. In this situation, you must also ensure
that the relevant directory is created on z/OS UNIX, and access permissions are given to the correct
CICS regions. If you use a fixed name for the working directory, the output files from all the JVM
servers in the CICS regions that share the JVM profile are created in that directory. If you use fixed file
names for your output files, the output from all the JVM servers in those CICS regions is appended to
the same z/0OS UNIX files. To avoid appending to the same files, use the JVMSERVER symbol and the
APPLID symbols to produce unique output and dump files for each JVM server.

Do not define your working directories in the CICS installation directory on z/OS UNIX, which is the
home directory for CICS files as defined by the USSHOME system initialization parameter.

WSDL_VALIDATOR={TRUE|FALSE}

Enables validation for SOAP requests and responses against their definition and schema. This option
is ignored for Liberty JVM servers. For more information, see Validating SOAP messages. It is possible
to turn off this option by setting WSDL_VALIDATOR=FALSE. Opting out can prevent potential clashes
with newer JAR files, wasted storage, and slower start.

ZCEE_INSTALL_DIR={directory_name}
Provides the location of the z/OS Connect Enterprise Edition feature installation. For z/OS Connect
Enterprise Edition V2.0, the default is /usx/1pp/IBM/zosconnect/v2x0/runtime. For z/OS
Connect Enterprise Edition V3.0, the default is /usx/1pp/IBM/zosconnect/v3x0/xruntime.

JVM command-line options
JVM command-line options, with descriptions.

List of command-line options

Note: This list is not exhaustive. It is a list of useful IBM® JVM options. Options that include -X are specific
to the IBM JVM.

Chapter 5. Setting up Java support 251

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_validation.html

-agentlib
Specifies whether debugging support is enabled in the JVM.

For more information, see Debugging a Java application. For more information about the Java
Platform Debugger Architecture (JPDA), see Oracle Technology Network Java website.

-Xcompressedrefs

Java 1.7.1 sets compressed references by default. This setting instructs the virtual machine (VM) to
store all references to objects, classes, threads, and monitors as 32-bit values, rather than 64-bit
values. The use of compressed references improves the performance of many applications because
objects are smaller, resulting in less frequent garbage collection, and improved memory cache usage.
However, this is at the expense of a large initial allocation of 31-bit storage.

Before Java 1.7.1, the use of compressed references was optional. To balance the use of
-Xcompressedrefs in a JVM server, and to offset the large initial 31-bit storage allocation, a

JVM server automatically sets the -XXnosuballoc32bitmem option. The effect of this option is

to avoid a large initial allocation in favor of incremental allocations as required. For many applications,
this behavior is an adequate balance between performance and storage use. For applications that

use many references, reducing the available 31-bit storage (or if operating within a 31-bit storage
constrained environment) then the use of -Xnocompressedrefs might be preferable - consider
using this option if you are constrained on 31-bit storage.

-Xnocompressedrefs
The use of -Xnocompressedrefs might be preferable for applications that use many references that
reduce the available 31-bit storage (or if operating within a 31-bit storage constrained environment).

-Xms
Specifies the initial size of the heap. Specify storage sizes in multiples of 1024 bytes. Use the letter
K to indicate KB, the letter M to indicate MB, and the letter G to indicate GB. For example, to specify
6,291,456 bytes as the initial size of the heap, code -Xms in one of the following ways:

-Xms6144K
-Xms6M

Specify size as a number of KB or MB. For information, see JVM command-line options in IBM SDK.

-Xmso
Sets the initial stack size for operating system threads.

For more information about the -Xmso JVM option and the default value, see -Xmso.

-Xmx
Specifies the maximum size of the heap. This fixed amount of storage is allocated by the JVM during
JVM initialization.

Specify size as a number of KB or MB.

-Xscmx
Specifies the size of the shared class cache. The minimum size is 4 KB: the maximum and default
sizes are platform-dependent.

Specify size as a number of KB or MB. For information, see JVM command-line options in IBM SDK.

-Xshareclasses
Specify this option to enable class data sharing in a shared class cache. The JVM connects to an
existing cache or creates a cache if one does not exist. You can have multiple caches and you
can specify the correct cache by adding a suboption to the -Xshareclasses option. For more
information, see Class data sharing between JVMs in IBM SDK.

-XX:[+]|-]EnableCPUMonitor

This defaults to -XX: -EnableCPUMonitox when running in a JVM server, however, if you want to
use the enhanced JMX CPU-monitoring capabilities, it should be set to -XX: +EnableCPUMonitor.
Enabling this option will incur an increased CPU usage.

252 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/dfhpj94.html
https://www.oracle.com/technetwork/java/
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=options-using-x
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=options-xmso
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=options-using-x
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=reference-class-data-sharing

JVM system properties

JVM system properties provide configuration information specific to the JVM and its runtime environment.
You provide JVM system properties by adding them to the JVM profile. At run time, CICS reads the
properties from the JVM profile, and passes them to the JVM.

Property prefix

System properties must be set by using a -D prefix. For example, the correct syntax for com.ibm.cics is
-Dcom.ibm.cics.

com.ibm.cics indicates that the property is specific to the IBM JVM in a CICS environment.
com. ibm indicates a general JVM property that is used more widely.
java.ibm also indicates a general JVM property that is used more widely.

For information about general properties, see “JVM profile validation and properties” on page 238.

Property coding rules

Properties must be specified according to a set of coding rules. For more information about the rules, see
“Rules for coding profiles” on page 238.

Applicability of properties to different uses of JVM server

For a generic JVM server, three types are available: OSGi, Liberty, and Classpath. Classpath JVM servers
can be further refined to Axis2-capable, Security Token Server (STS)-capable, Batch-capable, and Mobile-
capable. The following table shows the options that apply to each specific capability. The table also
indicates whether a property is supported for a particular use of a JVM server. Some properties are
read-only. Changing a read-only property might result in runtime environment failure. For details about
these properties, see “Read-only properties” on page 256.

Table 42. Options by JVM server use

System property 0SGi Liberty Classpath
com.ibm.cics.json.enableAxis2Handlers Not Not Supported
supported | supported
com.ibm.cics.jvmserver.applid Supported | Supported | Supported
com.ibm.cics.jvmserver.cics.product.name Not Supported | Not
supported supported
com.ibm.cics.jvmserver.cics.product.version Not Supported | Not
supported supported
com.ibm.cics.jvmserver.configroot Supported |[Supported |Supported
com.ibm.cics.jvmserver.controller.timeout Supported |Supported | Not
supported
com.ibm.cics.jvmserver.local.ccsid Supported | Supported | Supported
com.ibm.cics.jvmserver.name Supported | Supported | Supported
com.ibm.cics.jvmserver.override.ccsid Supported | Supported |Supported
com.ibm.cics.jvmserver.supplied.ccsid Supported | Supported | Supported
com.ibm.cics.jvmserver.threadjoin.timeout Supported | Supported | Not
supported
com.ibm.cics.jvmserver.trace.filename Supported | Supported | Supported
com.ibm.cics.jvmserver.trace.format Supported | Supported | Supported

Chapter 5. Setting up Java support 253

Table 42. Options by JVM server use (continued)

System property 0SGi Liberty Classpath
com.ibm.cics.jvmserver.trace.specification Supported | Supported | Supported

com.ibm.cics.jvmserver.trigger.timeout Supported | Supported |Not
supported

com.ibm.cics.jvmserver.unclassified.tranid Supported |Supported |Not
supported

com.ibm.cics.jvmserver.unclassified.userid Supported |Supported | Not
supported

com.ibm.cics.jvmserver.wlp.args Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.autoconfigure Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.bundlepart.timeout Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.defaultapp Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.executor.corethreads Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.install.dir Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.jdbc.driver.location Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.jta.integration Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.latebinding Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.optimize.static.resources Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.optimize.static.resources.extra Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.security.subject.create Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.server.config.dir Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.server.host Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.reserve.thread.percentage Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.server.http.port Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.server.https.port Not Supported | Not
supported supported

254 CICS TS for z/0S: Java Applications in CICS

Table 42. Options by JVM server use (continued)

System property 0SGi Liberty Classpath

com.ibm.cics.jvmserver.wlp.server.keystore.location Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.server.keystore.type Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.server.name Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.server.output.dir Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.wab Not Supported | Not
supported supported

com.ibm.cics.jvmserver.wlp.xml.format Not Supported [Not
supported supported
com.ibm.cics.sts.config Not Not Supported
supported |[supported | (STS only)

com.ibm.ws.logging.console.log.level Not Supported | Not
supported supported

com.ibm.ws.zos.core.angelName Not Supported | Not
supported supported

com.ibm.ws.zos.core.angelRequired Not Supported | Not
supported supported

com.ibm.ws.zos.core.angelRequiredServices Not Supported | Not
supported supported
console.encoding Supported | Supported |Supported
file.encoding Supported | Supported | Supported
java.security.manager Supported | Not Supported

supported
java.security.policy Supported | Not Supported
supported

org.osgi.framework.storage.clean Supported |Supported |Not
supported

org.osgi.framework.system.packages.extra Supported [Supported | Not
supported

osgi.compatibility.bootdelegation Supported |Supported | Not
supported

Properties applicable to CMCI JVM server only

The CMCI JVM server is a Liberty server that can be configured either in the WUI region of a CICSPlex SM
environment or a single CICS region for an SMSS environment. It is an optional component of the CICS
management client interface (CMCI), a system management API for use by HTTP client applications such
as IBM® CICS Explorer®. The CMCI JVM server provides enhanced support for CMCI requests, such as
the GraphQL API and the CICS bundle deployment API and is highly recommended for the CICSPlex SM
environment.

Chapter 5. Setting up Java support 255

Table 43. Options by CMCI JVM server use

System property

com.ibm.cics.jvmserver.cmci.bundles.dir

com.ibm.cics.jvmserver.cmci.deploy.timeout

com.ibm.cics.jvmserver.cmci.max.file.size

com.ibm.cics.jvmserver.cmci.max.request.size

com.ibm.cics.jvmserver.cmci.user.agent.allow.list

com.ibm.cics.jvmserver.cmci.user.agent.allow.list.monitor.interval

com.ibm.cics.jvmserver.cmci.user.agent.allow.list.reject.text

com.ibm.cics.jvmserver.wlp.saf.profilePrefix

Read-only properties

com.ibm.cics.json.enableAxis2Handlers
Indicates that a JVM requires the ability to run Axis2 handler programs when processing JSON data.
This property is only relevant to a JVM that has JAVA_PIPELINE=YES specified and is configured to
support JSON pipelines. This option is not relevant to z/OS Connect in CICS, and should be enabled
only if the capability is required. Enabling this option ensures that Axis2 Handler programs can run
during a JSON workload but there is likely to be a performance penalty and some of the capabilities of
mapping level 4.2 and later WSBind files will not be available for use.

com.ibm.cics.jvmserver.applid
Specifies the CICS region application identifier (APPLID). This is a read-only property. You can use this
property in an application but you should not change it.

com.ibm.cics.jvmserver.cics.product.name
Specifies the name of the CICS product under which Liberty is running. This is a read-only property.
You can use this property in an application but you should not change it.

com.ibm.cics.jvmserver.cics.product.version
Specifies the version of the CICS product under which Liberty is running. This is a read-only property.
You can use this property in an application but you should not change it.

com.ibm.cics.jvmserver.configroot
Specifies the location where configuration files, such as the JVM profile of a JVM server, can be found.
This is a read-only property. You can use this property in an application but you should not change it.

com.ibm.cics.jvmserver.local.ccsid
Specifies the code page for file encoding when the JCICS API is used. This is a read-only property. You
can use this property in an application but you should not change it.

com.ibm.cics.jvmserver.name
Specifies the name of the JVM server. This is a read-only property. You can use this property in an
application but you should not change it.

com.ibm.cics.jvmserver.supplied.ccsid
Specifies the default CCSID for the local CICS region. This is a read-only property. You can use this
property in an application but you should not change it.

com.ibm.cics.jvmserver.trace.filename
Specifies the name of the JVM server trace file. This is a read-only property. You can use this property
in an application but you should not change it.

com.ibm.cics.jvmserver.wlp.install.dir
Specifies the location of the Liberty installation. This is a read-only property. You can use this property
in an application but you should not change it.

256 CICS TS for z/0S: Java Applications in CICS

com.ibm.cics.jvmserver.wlp.server.config.dir
Specifies the location of the Liberty configuration directory. This is a read-only property. You can use
this property in an application but you should not change it.

com.ibm.cics.jvmserver.wlp.server.output.dir
Specifies the location of the Liberty output directory where you can find Liberty logs. This is a
read-only property. You can use this property in an application but you should not change it.

Properties that can be changed
com.ibm.cics.jvmserver.cmci.bundles.dir=<bundles_directory>
Note: This property is intended only for the CICS bundle deployment APL.

Specifies the bundles directory on zFS that stores the CICS bundles pushed to the API.
com.ibm.cics.jvmserver.cmci.deploy.timeout={120000|timeout_limit}

Note: This property is intended only for the CICS bundle deployment APL.

Specifies the timeout limit for deploying a CICS bundle, in milliseconds. This includes the time for all
bundle lifecycle actions, including disable, discard, install and enable. Use only numeric characters
when you change this value.

com.ibm.cics.jvmserver.cmci.max.file.size={52428800|max_file_size}
Note: This property is intended only for the CICS bundle deployment API.

Specifies the maximum size allowed for the uploaded CICS bundle, in bytes.
com.ibm.cics.jvmserver.cmci.max.request.size={104857600|max_request_size}

Note: This property is intended only for the CICS bundle deployment APL.

Specifies the maximum size allowed for a multipart or form-data request, in bytes.
com.ibm.cics.jvmserver.cmci.user.agent.allow.list={file_path}

Note: This property is intended only for the CMCI JVM server

Specifies the location of the client allowlist file and enables allowlist processing in the CMCI JVM
server.

com.ibm.cics.jvmserver.cmci.user.agent.allow.list. monitor.interval={time|10s}
Note: This property is intended only for the CMCI JVM server

Specifies the interval of Liberty cache file monitoring checks performed by the CMCI JVM server to
refresh the cache of user-agent allowlist values obtained from the client allowlist file.

com.ibm.cics.jvmserver.cmci.user.agent.allow.list.reject.text={text}
Note: This property is intended only for the CMCI JVM server

Specifies a custom response message to return to the user when a request to connect to the CMCI is
rejected because the system management client that is used is not in the client allowlist.

com.ibm.cics.jvmserver.controller.timeout={time|90000ms}

This value should be greater than the Liberty bundlepart timeout value, otherwise bundleparts can
incorrectly time out. Use only numeric characters when you change this value.

c Warning: This property is subject to change at any time.

com.ibm.cics.jvmserver.override.ccsid=

c Warning: This property is intended for advanced users.

It overrides the code page for file encoding when the JCICS API is used. By default, JCICS uses
the value of the LOCALCCSID system initialization parameter as the file encoding. If you choose

Chapter 5. Setting up Java support 257

to override this value, set the code page in this property. Use an EBCDIC code page. You must
ensure that your applications are consistent with the new code page, or errors might occur. For more
information about valid CCSIDs, see LOCALCCSID system initialization parameter.

com.ibm.cics.jvmserver.threadjoin.timeout={time| 30000ms}
Controls the timeout value when requests that are waiting for threads are queuing for service. Use
only numeric characters when you change this value.

com.ibm.cics.jvmserver.trace.format={FULL|SHORT|ABBREV}
Controls the format of the trace, which can be varied for your own purposes. You must set it to SHORT
when you send diagnostic information to IBM service.

com.ibm.cics.jvmserver.trace.specification={filtex_text}

Warning: Use this property only under IBM service guidance. This property is subject to
change at any time.

Specifies a JVM server trace filter string that allows finer-grained control over package and class
trace from the JVM server. {filter_text} is a colon separated string of clauses that sets the trace
level of one or more specified components. If not specified, the default value is equivalent to
com.ibm.cics.*=ALL.

The SJ domain trace flag remains the main switch, but this trace specification allows for extra filtering
of specific components.

For any class or package, the most specific filter clause applies. Each filter clause can be set to one of
the following levels:

{ALL, DEBUG, ENTRYEXIT, EVENT, INFO, WARNING, ERROR, NONE}

Example 1:
com.ibm.cics.jvmserver.trace.specification=com.ibm.cics.*=NONE

A single filter clause that suppresses all output.

Example 2:
com.ibm.cics.jvmserver.trace.specification=com.ibm.cics.*=NONE:com.ibm.cics.wlp.*=ALL

This example has two filter clauses. The first filter clause suppresses all trace. The second filter clause
is more specific for all packages under the com.ibm.cics.wlp component and ensures that all of
their trace output is written.

Example 3:

com.ibm.cics.jvmserver.trace.specification=com.ibm.cics.wlp.impl.CICSTaskWrapper=NONE:com.ib
m.cics.wlp.impl.CICSTaskInterceptor=NONE

This example has two filter clauses. All trace is written, except trace that is produced from the specific
CICSTaskWrapper and CICSTaskInterceptor classes of the com.ibm.cics.wlp.impl package.

com.ibm.cics.jvmserver.trigger.timeout={time|500ms}
Use only numeric characters when you change this value.

Warning: Use this property only under IBM service guidance. This property is subject to
change at any time.

com.ibm.cics.jvmserver.unclassified.tranid={transaction_id}
Specifies the default transaction that is used for unclassified work that is run in a JVM server.

« Ina Liberty JVM server, unclassified work runs under transaction CISU, unless you specify the
com.ibm.cics.jvmserver.unclassified.tranid property.

« In an OSGI JVM server, unclassified work runs under transaction CJSA, unless you specify the
com.ibm.cics.jvmserver.unclassified.tranid property.

258 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_localccsid.html

The user must ensure that the transaction ID specified is defined to CICS, by duplicating the CJSA or
CJSU transaction.

com.ibm.cics.jvmserver.unclassified.userid={user_id}
Allows users to change the default user ID under which unclassified work is run as a CICS task in a
JVM server. If not specified, the CICS default user ID is used. The user ID specified must be defined to
RACF® and have the necessary permissions to run the work.

Unclassified work is any request that is not identified by the HTTP classification component of Liberty;
for example, IMS, inbound JCA, EJB requests, and so on.

com.ibm.cics.jvmserver.wlp.args=

Provides a way to set Liberty server options during start-up. For a list of server options, see the
'options' section in Server command options.

The --clean option is used to clear the Liberty and OSGi caches. By default, the - -clean option
is not set. If CICS maintenance was applied since the JVM server last restarted, then the --clean
option is used internally as a one-time operation to ensure caches are cleaned.

Q Warning: This property is typically used under IBM service guidance.

com.ibm.cics.jvmserver.wlp.autoconfigure={false|true}
Specifies whether CICS creates the necessary Liberty directories, server.xml and other
configuration files within WLP_USER_DIR if they do not exist.

com.ibm.cics.jvmserver.wlp.bundlepart.timeout={time|60000ms}
Controls the timeout value that is used by CICS Liberty during bundlepart installation. If the operation
times out, the bundlepart - and by association, the bundle - is moved to the disabled state.

When Liberty acknowledges the installation phase, the bundlepart stays in an enabling state until
Liberty fully starts the application. The timeout does not affect bundleparts that reach this state. Use
only numeric characters when you change this value.

Important: This value should be greater than the Liberty configuration monitor interval, otherwise
bundleparts can incorrectly time out.

com.ibm.cics.jvmserver.wlp.defaultapp={false|tzrue}

Instructs CICS to add the defaultApp-1.0 feature to server.xml, which installs the default CICS
web application that can be used to verify that the Liberty server is installed and started correctly.

Tip: This property is used only when com.ibm.cics.jvmsexrver.wlp.autoconfigure=true.

com.ibm.cics.jvmserver.wlp.executor.corethreads={thread_number|wlp}
Set thread_number to an integer between 4 and 256 to override the value of coreThreads for the
Liberty <executor> elementin servexr.xml. By default, the CICS capped algorithm is used if the
property is omitted.

Alternatively, set com.ibm.cics.jvmserver.wlp.executor.corethreads=wlp to use Liberty's
default coreThreads algorithm.

Warning: Use this property only under IBM Support guidance. This property is subject to
change at any time.

com.ibm.cics.jvmserver.wlp.jdbc.driver.location={file_path}
Specifies the location of the directory that contains the Db2 JDBC drivers. The location must
contain the Db2 JDBC driver classes and 1ib directories. If the autoconfigure property
com.ibm.cics.jvmserver.wlp.autoconfigure=true, when the JVM server is enabled, the
existing example configuration in server. xml is replaced with the default configuration and any
user updates are lost.

com.ibm.cics.jvmserver.wlp.jta.integration={false|txue}
Enables CICS integration with the Java Transaction API (JTA). When transactions that are created
through the JTA interface are in effect, the CICS unit of work is subordinate to the Java Transaction
Manager.

Chapter 5. Setting up Java support 259

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_command_server.html

Tip: This property is used only when com.ibm.cics.jvmsexrver.wlp.autoconfigure=true.
com.ibm.cics.jvmserver.wlp.latebinding={NONHTTP|COMPATIBILITY}

Warning: Use this property only under IBM service guidance. This property is subject to
change at any time.

com.ibm.cics.jvmserver.wlp.optimize.static.resources={false|true}

Enables requests for static content to be processed on a non-CICS thread. The following types of file
are recognized as static: .css .gif .ico .jpg .jpeg .js and .png.

com.ibm.cics.jvmserver.wlp.reserve.thread.percentage={pexrcent|10}

Reserves a percentage of the threadlimit of the Liberty JVM server for use by OSGi Applications. The
value can be between 1% and 50%.

com.ibm.cics.jvmserver.wlp.optimize.static.resources.extra=

Specifies a custom list of extra static resources for optimization. Items must be comma-separated,
and begin with a period, for example: .css, .gif, .ico.

Tip: This value is only respected when
com.ibm.cics.jvmsexrver.wlp.optimize.static.resources=true.

com.ibm.cics.jvmserver.wlp.saf.profilePrefix={my_prefix}
Specify the prefix for SAF profiles in the EJBROLE class. The default value is the APPLID of the region
that contains the CMCI JVM server.

Note: This property is intended only for the CMCI JVM server

com.ibm.cics.jvmserver.wlp.security.subject.create={txue|false}
Allows the user to turn off Java Subject creation when performing a LINK to Liberty.

If your application does not perform security role checking, setting
com.ibm.cics.jvmserver.wlp.security.subject.create=false gives a performance
boost. The value of this setting is specific to each JVMSERVER that you LINK to.

RunAs role behavior is unchanged.

com.ibm.cics.jvmserver.wlp.server.host={x|hostname|IP_address}
Specifies the name or IP address in IPv4 or IPv6 format of the host for HTTP requests to access the
web application. The Liberty JVM server uses * as the default value. This value is not appropriate for
running a web application in CICS, so either use this property to provide a different value or update
the server. xml file.

Tip: This property is used only when com.ibm.cics.jvmsexrver.wlp.autoconfigure=true.

com.ibm.cics.jvmserver.wlp.server.http.port={9080|port_number}
Specifies a port to accept HTTP requests for a Java web application. CICS uses the default value that
is supplied by Liberty. The Liberty JVM server does not use a TCPIPSERVICE resource. Ensure that the
port number is free or shared on the z/OS system.

Tip: This property is used only when com.ibm.cics.jvmsexrver.wlp.autoconfigure=true.

com.ibm.cics.jvmserver.wlp.server.https.port={9443|port_number}
Specifies a port to accept HTTPS requests for a Java web application. CICS uses the default value that
is supplied by Liberty. The Liberty JVM server does not use a TCPIPSERVICE resource, so ensure that
the port number is free or shared on the z/0S system.

Tip: This property is used only when com.ibm.cics.jvmsexrver.wlp.autoconfigure=true.

com.ibm.cics.jvmserver.wlp.server.keystore.location={zFS | location_url}
CICS generates a default Liberty keystore element with the ID of defaultKeyStore. The location of the
default keystore is in zFS for Liberty and in SAF for CMCI. Use this property to explicitly request either
a zFS based keystore, a SAF-based keystore, and to override the user ID and key ring values.

260 CICS TS for z/0S: Java Applications in CICS

ZFS

Specifies that Liberty creates the default zFS based Java keystore. zFS is the default except for the
CMCI JVM server, which updates the zFS keystore location to SAF.

location_url
A SAF-based keystore is configured by using a location_url value with the following format.
scheme: / /userid/keyring

The scheme can be one of the following values: safkeyring, safkeyringhw, or
safkeyringhybrid. For more information about SAF key ring formats, see the System
Authorization Facility (SAF) security guide in the IBM Semeru Runtime® Certified Edition for z/0S
documentation.

Examples:

« safkeyring:///KEYRING.CICS1 specifies that CICS accesses the RACF key ring
KEYRING.CICS1 by using the CICS region user ID.

» safkeyring://USER1/KEYRING.CICS1 specifies that CICS accesses the RACF key ring
KEYRING.CICS1 by using the user ID USER1.

« safkeyring or safkeyring:/// specifies that the values from KEYRING SIT parameter are
used to create the keystore.

Java 11 Use safkeyringjce, safkeyringjcecca, or safkeyringjcehybrid for the scheme
when running Java 11.

This property is used only when com.ibm.cics.jvmsexrver.wlp.autoconfigure=true.
com.ibm.cics.jvmserver.wlp.server.keystore.type=keystore_type

This property overrides the keystore type that is configured by CICS. By default, the keystore type
is inferred from the com.ibm.cics.jvmserver.wlp.server.keystore.location property and
only needs to be configured if you don't want to accept the default.

Some examples of valid keystore types are JCERACFKS, JCECCARACFKS, JCEHYBRIDRACFKS, or
PKCS12.

For more information about keystore types, see Keystores in the IBM WebSphere Application Server
for z/OS Liberty documentation.

This property is used only when com.ibm.cics.jvmsexrver.wlp.autoconfigure=true.

com.ibm.cics.jvmserver.wlp.server.name={defaultSexvex|server_name}
Specifies the name of the Liberty server. You should not need to specify this property as it affects the
location of the Liberty server configuration and output files and directories.

com.ibm.cics.jvmserver.wlp.wab={false|txue}

Controls the Liberty feature wab-1.0 in server.xml. If you want to use Java EE 8 in standard or
integrated-mode Liberty, you must set this option to com.ibm.cics.jvmserver.wlp.wab=false,
and then add the required Java EE 8 features.

If you want to use EBA files, you must set this option to
com.ibm.cics.jvmserver.wlp.wab=true.

com.ibm.cics.jvmserver.wlp.xml.format={false|txue}
Enables CICS to format the white space in server.xml for improved readability.

com.ibm.cics.sts.config=path
Specifies the location and name of the STS configuration file.

com.ibm.ws.logging.console.log.level={INFO | AUDIT | WARNING | ERROR | OFF}
Controls which messages Liberty writes to the JVM server stdout file. Liberty console messages are
also written to the Liberty messages. log file independent of the setting of this property.

Chapter 5. Setting up Java support 261

https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=guide-saf
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=guide-saf
https://www.ibm.com/docs/was-liberty/zos?topic=liberty-keystores

com.ibm.ws.zos.core.angelName=named_angel
Specifies a named angel process for the Liberty JVM server to connect to. If you do not specify
com.ibm.ws.zos.core.angelName, when required, the default angel process is used for Liberty
JVM server startup.

com.ibm.ws.zos.core.angelRequired={false|true}
Indicates whether an angel process is required for Liberty JVM server startup.

com.ibm.ws.zos.core.angelRequiredServices=zos_authorized_services
The value for this property must be a comma-separated list of valid angel process services. All service
names must be 8 characters or less and symbols are not valid. This property must be specified with
com.ibm.ws.zos.core.angelRequired property set to true. See Enabling z/OS authorized services on
Liberty for z/OS for a description of the z/OS authorized services that a Liberty Server can use.

A Warning: If this property is used, all of the services that are specified must be available.
If any of the services that are listed are not available, message CWWKBO0133E is written
to messages.log and Liberty terminates. An authorized service is not available if its RACF
profile is not created or, if it is created, the CICS region user ID is not granted READ access to
that profile. See Enabling z/OS authorized services on Liberty for z/OS for a description of the
RACF profiles that must be created.

console.encoding=
Specifies the encoding for JVM server output files.

file.encoding=

Specifies the code page for reading and writing characters by the JVM. By default, a JVM on z/0S uses
the EBCDIC code page IBM1047 (or cpl1047).

« In a profile that is configured for OSGi, you can specify any code page that is supported by the
JVM. CICS tolerates any code page because JCICS uses the local CCSID of the CICS region for its
character encoding.

- Ina profile that is configured for the Liberty JVM server, the supplied default value is ISO-8859-1.
You can also use UTF-8. Any other code page is not supported.

« In a profile that is configured for Axis2, you must specify an EBCDIC code page.

java.security.manager={default| "" | |other_security_manager}
Specifies the Java security manager to be enabled for the JVM. To enable the default Java security
manager, include this system property in one of the following formats:

e java.security.manager=default

- java.security.manager=
« java.security.manager=

All these statements enable the default security manager. If you do not include the
java.security.managex system property in your JVM profile, the JVM runs with Java security
disabled.

java.security.policy=
Describes the location of extra policy files that you want the security manager to use to determine
the security policy for the JVM. A default policy file is provided with the J3VM in /usx/1lpp/java/
J8.0_64/1ib/security/java.policy, where the java/J8.0_64 subdirectory names are the
default values when you install the IBM 64-bit SDK for z/0S, Java Technology Edition. The default
security manager always uses this default policy file to determine the security policy for the JVM, and
you can use the java.security.policy system property to specify any policy files that you want
the security manager to take into account, in addition to the default policy file.

To enable CICS Java applications to run successfully when Java security is active, specify, as a
minimum, an extra policy file that gives CICS the permissions it requires to run the application.

For information about enabling Java security, see Enabling a Java security manager.

262 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_config_security_zos.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_config_security_zos.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_config_security_zos.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/topics/dfhpj5u.html

org.osgi.framework.storage.clean={onFirstInit}
This option is specific to OSGi-enabled JVM servers, including Liberty. It specifies whether and when
the storage area for the OSGi framework should be cleaned. If no value is specified, the framework
storage area is not cleaned. onFirstInit flushes the bundle cache when the framework instance is
first initialized: that is, when the JVM server is enabled. Framework storage cleaning is not necessary
under normal operations.

org.osgi.framework.system.packages.extra=
This option is specific to OSGi-enabled JVM servers, including Liberty, which allows extensions of the
JRE and custom Java packages to be exposed through the OSGi framework for subsequent bundle
import resolution. JVM vendors might provide different extensions in the JRE. In an IBM JVM server,
the option is augmented to include the set of packages which CICS chooses to expose from the IBM
JRE. You can set this property to define additional packages, if required. For further information, see
OSGi Alliance Specifications.

osgi.compatibility.bootdelegation={false|true}
This option is specific to the Equinox implementation of OSGi. It applies to OSGi-enabled JVM servers,
including Liberty. When set to true, the OSGi framework employs a last resort boot delegation strategy
for packages that are not found through the normal OSGi bundle dependency resolution mechanism.
This option allows the OSGi run time to be more tolerant if explicit dependencies were overlooked at
development time. As a last resort algorithm, a small amount of overhead is incurred compared to
direct resolution (where the package is explicitly listed in the Import-Package bundle header).

For strict OSGi compliance, increased portability, and optimum performance, set this option to false
and ensure all the packages that are used in your OSGi bundles are explicitly declared in the bundle
MANFEST . MF.

Setting the time zone for a JVM server

The TZ environment variable specifies the "local" time of a system. You can set this for a JVM server by
adding it to the JVM profile. If you do not set the TZ variable, the system defaults to UTC. Once the TZ
variable is set, a JVM automatically transitions to and from daylight savings time as required, without a
restart or further intervention.

When setting the time zone for a JVM server or Node.js application, you should be aware of the following
issues:

« The TZ variable in your JVM or Node.js profile should match your local MVS system offset from GMT. For
more information on how to display and set your local MVS system offset, see TIMEZONE statement in
z/0S Communications Server: IP Configuration Reference and Adjusting local time in a sysplex in z/OS
MVS Setting Up a Sysplex.

« Customized time zones are not supported and will result in failover to UTC or a mixed time zone output
in the JVMTRACE file (for JVM servers) or TRACE file (for Node.js applications).

- If you see LOCALTIME as the time zone string, there is an inconsistency in your configuration. This can
be between your local MVS time and the TZ you are setting, or between your local MVS time and your
default setting in the JVM or Node.js profile. The output will be in mixed time zones although each entry
will be correct.

Using the POSIX time zone format
The POSIX time zone format has a short form and a long form. You can use either to set the TZ
environment variable, but using the short form reduces the chance of input errors.

Long form examples with daylight saving (Greenwich Mean Time, Central European Time, Eastern
Standard Time):

TZ=GMTOBST,M3.5.0,M10.4.0
TZ=CET-1CEST,M3.5.0,M10.5.0
TZ=EST5EDT,M3.2.0,M11.1.0

Short form examples with daylight saving (Greenwich Mean Time, Central European Time, Eastern
Standard Time):

Chapter 5. Setting up Java support 263

https://docs.osgi.org/specification/
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.halz001/timezonestatementsmtp.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.halz001/timezonestatementsmtp.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.ieaf100/adjtod.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.ieaf100/adjtod.htm

TZ=GMTOBST
TZ=CET-1CEST
TZ=EST5EDT

Examples with no daylight saving (Malaysian Time, China Standard Time, Singapore Time):

TZ=MYT-8
TZ=CST-8
TZ=SGT-8

To find out what time zone your system is running on, log on to USS and enter echo $TZ. The result is the
long form of the value your TZ environment variable should be set to.

/u/user:>echo $TZ
GMTOBST,M3.5.0,M10.4.0

For a more detailed breakdown of the POSIX time zone format, see POSIX and Olson time zone formats
on the IBM developerWorks® site.

264 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/developerworks/aix/library/au-aix-posix/

Chapter 6. Updating OSGi bundles in a JVM server

© Copyright IBM Corp. 1974, 2023

The process for updating OSGi bundles in the OSGi framework depends on the type of bundle and its
dependencies. You can update OSGi bundles for applications without restarting the JVM server. However,
updating a middleware bundle requires a restart of the JVM server.

About this task
In a typical JVM server, the OSGi framework contains a mixture of OSGi bundles as shown in the following
diagram.

0SGI framework
Bundle A Bundle B
Y
CICS CICS
\3 Service = main main /{Sar\rica K
e / class class
AR -
Library
Bundle C
Application bundles
WebSphere | _ |
MQ
Middleware bundles
JCICS
Systam bundies

Bundle A and Bundle B are separate Java applications that are packaged as OSGi bundles in separate
CICS bundles. Both applications have a dependency on a common library that is packaged in Bundle C.
Bundle C is separately managed and updated. In addition, Bundle B has a dependency on an IBM MQ
middleware bundle and the JCICS system bundle.

Bundle A and B can both be independently updated without affecting any of the other bundles in the
framework. However, updating Bundle C can affect both the bundles that depend on it. Any exported
packages in Bundle C remain in memory in the OSGi framework, so to pick up changes in Bundle C,
Bundles A and B also have to be updated in the framework.

Middleware bundles contain framework services and are managed with the life cycle of the JVM server.
For example, you might have native code that you want to load once in the framework or you might want
to add a driver to access another product such as IBM MQ.

System bundles are provided by CICS to manage the interaction with the OSGi framework. These
bundles are serviced by IBM as part of the product. An example of a system bundle is the
com.ibm.cics.sexver. jar file, which provides most of the JCICS API to access CICS services.

265

Updating OSGi bundles in an OSGi JVM server

If a Java developer provides an updated version of an OSGi bundle, you can either replace the CICS
bundle that refers to it completely, or phase in a new version of the OSGi bundle.

About this task
The update method to use depends on the following factors:

« Whether service outages can be tolerated during the update.
« Whether CICS resource changes can be tolerated during the update.

Using CICS bundle PHASEIN to dynamically update an 0SGi bundle without
updating CICS resources

Use this update method to phase in a new version of an OSGi bundle when service outages and CICS
resource changes cannot be tolerated during the update.

Before you begin

The new version of the JAR file for the OSGi bundle must be present in the same zFS directory as the

old version of the OSGi bundle, that is, the same directory as the associated osgibundle bundlepart
file. By default, this directory is the directory that is named in the BUNDLE resource definition. This new
version of the OSGi bundle must have a higher version than the one that is currently installed in the
0OSGi framework, and the version must be in the version range that was defined when the OSGi bundle
reference was added to the CICS bundle project.

Procedure

To phase in a new version of an OSGi bundle in an OSGi JVM server, use the following steps.

1. In the Bundles view in CICS Explorer, right-click the CICS bundle that contains the OSGi bundle, click
Phase In, then click OK. The new version of the OSGi bundle is phased in, new versions of any services
that are implemented by the new version of the OSGi bundle are installed into the OSGi framework,
and any old versions of the services are removed from the OSGi framework.

2. In the OSGi Services view in CICS Explorer check that all OSGi services for the new version of the
OSGi bundle are all in the active state.

3. In the OSGi Bundles view in CICS Explorer check that the new version of the OSGi bundle is listed and
is in the active state.

Results

The new version of the OSGi bundle is used for all new service requests. Existing requests continue to
use the old version. The symbolic version of the OSGi bundle increases, indicating that the Java code is

updated.

What to do next

If you are satisfied that the new version of the OSGi service is working well, there is no more to do.
Optionally, you can delete the old version of the OSGi JAR file from zFS, but it is not compulsory. It might
also be useful to retain the OSGi JAR file so that you can restore that version if problems arise with the
new version.

If you are not satisfied with the new version of the OSGi service and want to restore the old version, use
the following steps.

1. Delete the new version of the OSGi bundle JAR from zFS.

266 CICS TS for z/0S: Java Applications in CICS

2. In the Bundles view of CICS Explorer, right-click the CICS bundle that contains the OSGi bundle, click
Phase In, then click OK. Because the old version of the OSGi bundle is now the one with the highest
version on zFS, it is reinstalled into the OSGi framework and the defective new version removed.

3. In the OSGi Services view in CICS Explorer, check that only the OSGi services for the old version of the
OSGi bundle are listed, and are all in the active state.

4. In the OSGi Bundles view in CICS Explorer, check that only the old version of the OSGi bundle is listed
and is in the active state.

If there is a CICS cold, warm, or emergency restart, the new version of the OSGi bundle is automatically
restored. You do not need to change any CICS resource definitions to ensure that this happens.

Phasing in an 0SGi bundle with CICS resource changes

Use this update method to phase in a new version of an OSGi bundle when service outages cannot be
tolerated during the update process. New CICS resources are created during the update.

Before you begin

A CICS bundle that contains the new version of an OSGi bundle is already defined and exported to zFS.
The new version of the OSGi bundle must have a higher version specified in the OSGi bundle manifest
than the version that is currently installed in the OSGi framework. You can have both OSGi bundles
running in the framework at the same time.

Procedure

To phase in a new version of an OSGi bundle in an OSGi JVM server, use the following steps.

1. In the Bundle Definitions view in CICS Explorer, right-click anywhere and click New to create a
BUNDLE resource to pick up the new CICS bundle project on zFS.

2. In the Bundle Definitions view in CICS Explorer, right-click the BUNDLE resource that you created in
the previous step and click Install. Select the install target, then click OK to install the OSGi bundles
and services in the CICS bundle into the OSGi framework.

3. Check the status of the OSGi bundles in the 0SGi Bundles view in CICS Explorer. Two versions of the
OSGi bundle are listed with a state of active.

4. In the OSGi Services view in CICS Explorer, check the OSGi services that are implemented by both
versions of the OSGi bundle are all in the active state. The OSGi services that reference the OSGi
bundle with the highest semantic version are used for any new service invocations.

Results

The updated OSGi bundle is available in the OSGi framework along with the old version of the OSGi
bundle.

The new version of the OSGi bundle is used for all new service requests. Existing requests continue to use
the old version.

What to do next

When you are satisfied that the new version of the OSGi service is working well, use the following steps to
remove the old version from the OSGi framework:

1. Disable the BUNDLE resource that points to the old version of the OSGi bundle. In the Bundles view
in CICS Explorer, right-click the old BUNDLE, click Disable, then click OK. The old version of any
services that are implemented by the OSGi bundle are removed from the OSGi framework; only the
new versions of the services are now listed in the OSGi Services view. In the 0SGi Bundles view, the
old OSGi bundle state is now in resolved.

2. Discard the BUNDLE resource that points to the old version of the OSGi bundle. In the Bundles view
in CICS Explorer, right-click the old BUNDLE, click Discard, then click OK. In the 0SGi Bundles view,

Chapter 6. Updating OSGi bundles in a JVM server 267

the OSGi bundle from the OSGi framework is removed, and only the new version of the OSGi bundle is
listed.

To ensure that the new version of the OSGi bundle is installed if there is a cold start of a CICS region,
make sure that you update any CICS group lists (GRPLIST system initialization parameter) that reference
the CSD groups that contain the BUNDLE definition for the old version, to reference the CSD groups that
contain the new BUNDLE definition that you created in Step 1 of the procedure.

If you want to restore the old version of the OSGi bundle, use the previous two steps to disable and
discard the BUNDLE resource that points at the new version of the OSGi bundle. The old version of the
service is listed in the OSGi Services view in CICS Explorer, and it is used for any new service invocations.

Replacing OSGi bundles in an OSGi JVM server

Use this update method when service outages can be tolerated during the update process. No new CICS
resources are created, but you might need to update the existing BUNDLE resource definition.

Before you begin

To replace the CICS bundle completely, an updated CICS bundle that contains the new version of the
OSGi bundle must be present in zFS.

Procedure

To replace an existing OSGi bundle in an OSGi JVM server with a new version of the OSGi bundle, use the

following steps.

1. In the Bundles view in CICS Explorer, disable and discard the BUNDLE resource for the CICS bundle
that you want to update. The OSGi services that are part of that CICS bundle are removed from the
OSGi framework and are not listed in the 0SGi Services view of CICS Explorer.

Note: No services that are implemented by the OSGi bundle are available in the OSGi framework from
this point until the completion of step 3, so any users of these services suffer a service outage.

2. Optional: Edit the BUNDLE resource definition if the updated CICS bundle is deployed in a different
directory in zFS.

3. In the Bundles view in CICS Explorer, install the BUNDLE resource definition to pick up the changed
0OSGi bundle. The OSGi bundles and services in the CICS bundle are installed in the OSGi framework.

4. Check the status of the OSGi bundle in the 0SGi Bundles view in CICS Explorer. The new version of the
OSGi bundle is listed with a state of active.

5. In the OSGi Services view in CICS Explorer, check that the new version of all the OSGi services that
are implemented by the new version of the OSGi bundle are in the active state.

Results

The new version of the OSGi bundle is used for all new service requests. Existing requests continue to
use the old version. The symbolic version of the OSGi bundle increases, indicating that the Java code is
updated.

Updating bundles that contain common libraries

OSGi bundles that contain common libraries for use by other OSGi bundles must be updated in a specific
order.

Before you begin

An updated CICS bundle that contains the new version of the OSGi bundle must be present in zFS. If
you manage common libraries in a separate CICS bundle, you can manage the lifecycle of these libraries
separately from the applications that depend on them.

268 CICS TS for z/0S: Java Applications in CICS

About this task

Typically, an OSGi bundle specifies a range of supported versions in a dependency on another OSGi
bundle. Using a range provides more flexibility to make compatible changes in the framework. When

you are updating bundles that contain common libraries, the version number of the OSGi bundle
increases. However, the running applications are already using a version of the bundle that satisfies the
dependencies. To obtain the most recent version of the library, you must refresh the OSGi bundles for the
applications. It is therefore possible to update specific applications to use different versions of the library,
and leave other applications to run on an older version.

When you update an OSGi bundle that contains common libraries, you can completely replace the CICS
BUNDLE resource. However, if classes are not loaded in the library, the dependent bundles might receive
errors. Alternatively, you can install a new version of the library and run it in the framework alongside the
original version. If the OSGi bundles have different version numbers, the OSGi framework can run both
bundles concurrently.

Procedure

To replace an existing OSGi bundle in an OSGi JVM server:

1. Define and install a CICS BUNDLE resource that points to the new version of the CICS bundle, which
contains the OSGi bundle that defines the common libraries. CICS defines the new version of the OSGi
bundle in the OSGi framework. The existing OSGi bundles continue to use the previous version of the
library.

2. Check the status of the OSGi bundles in the 0SGi Bundles view in CICS Explorer (Operations > Java
> 0SGi Bundles). The list shows two entries for the same 0SGi bundle symbolic name with different
versions that are running in the framework.

3. To obtain the new version of the library in a dependent Java application, use one of the following
methods:

+ Replace the CICS bundle for the Java application.

a. Disable and discard the CICS BUNDLE resource for the Java application.
b. Reinstall the CICS BUNDLE resource for the Java application.
« Phase in a new version of the Java application.

a. Ask the Java developer to update the version information for the OSGi bundle. The new version
of the OSGi bundle must have a higher version specified in the OSGi bundle manifest and be
within the version range specified when the OSGi Bundle Project was added to the CICS bundle.
Optionally, the new version of the OSGi bundle could also have its dependencies modified to
specifically require the new version of the OSGi bundle that defines the common libraries.

b. Copy the JAR for the new version of OSGi bundle to the root directory of the CICS BUNDLE
resource.

c. In the Operations > Bundles view in CICS Explorer, right-click the CICS bundle that contains the
OSGi bundle, click Phase In, then click OK to phase in the new version of the OSGi bundle.

When the OSGi bundle is loaded in the framework, it obtains the latest version of the common
libraries.

4. Check the status of the CICS BUNDLE resource in the Bundles view in CICS Explorer (Operations >
Bundles).

Results

You have updated an OSGi bundle that contains common libraries and updated a Java application to use
the latest version of the libraries.

Chapter 6. Updating OSGi bundles in a JVM server 269

Updating 0SGi middleware bundles

To update the middleware bundles that are running in an OSGi framework, you must stop and restart the
JVM server.

About this task

0OSGi middleware bundles are installed in the OSGi framework during the initialization of the JVM server.
If you want to update a middleware bundle, for example to apply a patch or use a new version, you must
stop and restart the JVM server to pick up the changed bundle.

You can manage the lifecycle of the JVM server and edit the JVM profile by using CICS Explorer.

Procedure
1. Ensure that the new version of the middleware bundle is in a directory on zFS to which CICS has read
and execute access. CICS also requires read access to the files.

2. If the zFS directory or file name is different from the values that are specified in the JVM profile, edit
the OSGI_BUNDLES option in the JVM profile for the JVM server.

a) Open the JVM Servers view in CICS Explorer to find out the name and location of the JVM profile in
ZFS.

You must be connected with a region or CICSplex selected to see the JVMSERVER resources.
b) Open the z/0S UNIX Files view and browse to the directory that contains the JVM profile.
c) Edit the JVM profile to update the 0SGI_BUNDLES option.
3. Disable the JVMSERVER resource to shut down the JVM server.

Disabling the JVMSERVER also disables any BUNDLE resources that contain OSGi bundles that are
installed in that JVM server.

4. Enable the JVMSERVER resource to start the JVM server with the updated JVM profile.

The JVM server starts up and installs the new version of the middleware bundle in the OSGi
framework. CICS also enables the BUNDLE resources that were disabled and installs the OSGi bundles
and services in the updated framework.

Results

The OSGi framework contains the updated middleware bundles and the OSGi bundles and services for
Java applications that were installed before you shut down the JVM server.

270 CICS TS for z/OS: Java Applications in CICS

Chapter 7. Removing 0SGi bundles from a JVM server

If you want to remove OSGi bundles from the JVM server, use the CICS Explorer to disable and discard the
BUNDLE resource.

About this task

The BUNDLE resource provides life-cycle management for the collection of OSGi bundles and OSGi
services that are defined in the CICS bundle. Removing OSGi bundles from the OSGi framework does not
automatically affect the state of other installed OSGi bundles and services. If you remove a bundle that is
a prerequisite for another bundle, the state of the dependent bundle does not generally change until you
explicitly refresh that bundle. An exception is in the use of singleton bundles. If you uninstall a singleton
bundle that other bundles depend on, the dependent bundles cannot use the services of the uninstalled
bundle. The reported status of the CICS BUNDLE resource might not accurately reflect the status of the
OSGi bundle.

Procedure

1. Click Operations > Java > 0SGi Bundles to find out which BUNDLE resource contains the OSGi
bundle.

2. Click Operations > Bundles to disable the BUNDLE resource.

CICS disables each resource that is defined in the CICS bundle. For OSGi bundles and services, CICS
sends a request to the OSGi framework in the JVM server to unregister any OSGi services and moves
the OSGi bundles into a resolved state. Any in-flight transactions complete, but any new links to the
0OSGi service from CICS applications return with an error.

3. Discard the BUNDLE resource.
CICS sends a request to the OSGi framework to remove the OSGi bundles from the JVM server.

Results
You have removed the OSGi bundles and services from the OSGi framework.

What to do next
If you have PROGRAM resources pointing to OSGi services that are no longer in the OSGi framework, you
might want to disable and discard the PROGRAM resources.

© Copyright IBM Corp. 1974, 2023 271

272 CICS TS for z/OS: Java Applications in CICS

Chapter 8. Updating Enterprise Java applications in a
Liberty JVM server

There are three methods to update Enterprise Java applications in a Liberty JVM server: refresh the CICS
bundles, update the applications in the drop-ins folder, and use <application> elements.

About this task

The process to update Enterprise Java applications in a Liberty server depends on how the applications
are deployed:

« Applications deployed in CICS bundles

In this scenario, the application must be added as a bundle part to a CICS bundle project using CICS
Explorer and then exported to z/OS File System (zFS). It is then installed into CICS using a BUNDLE
definition that refers to the exported project.

« Applications deployed directly to the Liberty drop-ins folder

In this scenario, the Java archive is copied directly to a previously defined drop-ins directory.
« Applications deployed in an <application> elementinto server.xml

In this scenario, a reference to the application is added into server. xml, together with further
application attributes and descriptive elements.

Procedure

Applications deployed in CICS bundles

« To refresh the CICS bundle, a bundle that contains the Enterprise Java application must already be
installed and enabled in the CICS region. For more information, see Deploying a Java EE application in
a CICS bundle to a Liberty JVM server.

a) In the Bundles view in CICS Explorer, disable the BUNDLE resource for the CICS bundle that you
want to update.

Note: The applications that are part of that CICS bundle are removed from the Liberty server run
time and are not available from this point until the last step completes. Any users of these services
suffer a service outage.

b) Export the new version of the CICS bundle that contains the Enterprise Java application to the
same zFS location as the old version.

¢) In the Bundles view in CICS Explorer, enable the BUNDLE resource definition to pick up the
Enterprise Java application. The applications are reinstalled into the Liberty server.

d) Check the status of the CICS bundle in CICS Explorer. The CICS bundle is listed with a state of
active.

When the new version of the Enterprise Java application becomes active, it is used for all new
requests.

Applications deployed directly to the Liberty drop-ins folder
« Touse the drop-ins directory with a Liberty server, the sexrver.xml configuration must be updated

to enable this function. For more information, see Deploying Java EE applications directly to a Liberty
JVM server.

a) Export the new version of the archive (WAR, EAR, or EBA) from your Eclipse environment.

Note: The applications that are part of that CICS bundle are removed from the Liberty server run
time. Any users of these services suffer a service outage.

b) Copy this new archive into the drop-ins directory, replacing the original version.

© Copyright IBM Corp. 1974, 2023 273

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_liberty_bundle.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_liberty_bundle.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_libertyapp.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_libertyapp.html

The Liberty server scans the directory, uninstalls the previous version, and installs the new version.

When the new version of the Enterprise Java application becomes active, it is used for all new
requests.

Applications deployed in an <application> elementinto server.xml
« To allow applications to be dynamically updated, the updateTrigger attribute of the

<applicationMonitor> element must be set to polled. For more information, see Controlling
dynamic updates.

a) Export the new version of the archive (WAR, EAR, or EBA) from your Eclipse environment.

Note: The applications that are part of that CICS bundle are removed from the Liberty server run
time. Any users of these services suffer a service outage.

b) Copy this new archive into the location specified in your <application> element.

The Liberty server scans the file for modification and if a change is detected, it uninstalls the
previous version and installs the new version.

When the new version of the Enterprise Java application becomes active, it is used for all new
requests.

274 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_dyn_upd.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_dyn_upd.html

Chapter 9. Managing the thread limit of JVM servers

JVM servers are limited in the number of threads that they can use to run Java applications. The CICS
region also has a limit on the number of threads, because each thread uses a T8 TCB. You can adjust
the thread limit using CICS statistics to balance the number of JVM servers in the region against the
performance of the applications running in each JVM server.

About this task

Each JVM server can have a maximum of 256 threads to run Java applications. In a CICS region you can
have a maximum of 2000 threads. If you have many JVM servers running in the CICS region (for example,
more than seven), you cannot set the maximum value for every JVM server. You can adjust the thread limit
of each JVM server to balance the number of JVM servers in the CICS region against the performance of
the Java applications.

The thread limit is set on the JVMSERVER resource, so set an initial value and use CICS statistics to adjust
the number of threads when you test your Java workloads.

Procedure

1. Enable the JVMSERVER resources and run your Java application workload.
2. Collect JVMSERVER resource statistics using an appropriate statistics interval.

You can use the Operations > Java > JVM Servers view in CICS Explorer, or you can use the
DFHOSTAT statistics program.

3. Check how many times and how long a task waited for a thread.

The "JVMSERVER thread limit waits" and "JVMSERVER thread limit wait time" fields contain this
information.

« If the values in these fields are high and many tasks are suspended with the JVMTHRD wait, the JVM
server does not have enough threads available. Increasing the number of threads can increase the
processor usage, so check you have enough MVS resource available.

« If the values in these fields are low and the peak number of tasks is below the maximum number of
threads available, you can free up threads for other JVM servers by reducing the thread limit.
4. To check the availability of MVS resource, use the dispatcher TCB pool and TCB mode statistics to
assess the T8 TCB usage across the CICS region.

Each thread in a JVM server uses a T8 TCB and you are limited to 2000 in a region. T8 TCBs cannot be
shared between JVM servers, although all TCBs are in a THRD TCB pool. If the number of waiting TCBs
and processor usage is low, it indicates that there is enough MVS resource available.

5. To adjust the number of threads that can run in the JVM server, change the THREADLIMIT value on the
JVMSERVER resource.

6. Run the Java application workload again and use the statistics to check that the number of waiting
tasks has reduced.

What to do next
To tune the performance of your JVM servers, see Improving JVM server performance.

© Copyright IBM Corp. 1974, 2023 275

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/tuning_jvmserver.html

276 CICS TS for z/OS: Java Applications in CICS

Chapter 10. Security for Java applications

You can secure Java applications to ensure that only authorized users can deploy and install applications,
and access those applications from the web or through CICS. You can also use a Java security manager to
protect the Java application from performing potentially unsafe actions.

You can add security at different points in the Java application lifecycle:

- Implement security checking for defining and installing Java application resources. Java applications
are packaged in CICS bundles, so you must ensure that users who are allowed to install applications in
the JVM server can install this type of resource.

- Implement security checking for application users to ensure that only authorized users can access an
application.

- Implement security checking for CICS Java tasks that are started using the CICSExecutorService. All
such CICS tasks run under the CJSA transaction and the default user ID.

« Implement security restrictions on the Java API by using a Java security manager.
Java applications can run in an OSGi framework or a Liberty server. Liberty is designed to host web

applications and includes an OSGi framework. The security configuration for a Liberty server is different,
because Liberty has its own security model.

To configure security for OSGi applications, use CICS resource security to authorize which users can
manage the lifecycle of the JVMSERVER and the Java applications. Use CICS transaction security to
determine who can access the application.

Configuring security for OSGi applications

Use CICS resource security to authorize which users can manage the lifecycle of the JVMSERVER and the
Java applications. Use CICS transaction security to determine who can access the application.

Procedure

« Authorize application developers and system administrators to create, view, update, and remove
JVMSERVER and BUNDLE resources as appropriate. The JVMSERVER resource controls the availability
of the JVM server. The BUNDLE resource is a unit of deployment for the Java application and controls
the availability of the application.

« Authorize users to run the application by ensuring the relevant user ID is allowed to attach the
transaction under which the application will run.

Results
You have successfully configured security for Java applications that run in an OSGi framework.

Configuring security for a Liberty JVM server

You can use the CICS Liberty security feature to authenticate users and authorize access to web
applications through Java Platform, Enterprise Edition roles (Java EE roles), providing integration with
CICS transaction and resource security. You can also use CICS resource security to authorize the
appropriate users to manage the lifecycle of both the JVMSERVER resource and Java web applications
that are deployed in a CICS BUNDLE resource. In this topic, authentication verifies the identity of a given
user, typically by requiring the user to enter a username and password. Authorization then grants access
control permissions based on the identity of the authenticated user.

© Copyright IBM Corp. 1974, 2023 277

Before you begin

1. Ensure that the CICS region is configured to use SAF security and is defined with SEC=YES as a system
initialization parameter. If CICS security is turned off (SEC=NO), you can still use Liberty security by
manually configuring the server.xml file as described in “6” on page 279.

2. Authorize application developers and system administrators to create, view, update, and remove
JVMSERVER and BUNDLE resources to deploy web applications into a Liberty JVM server.

The JVMSERVER resource controls the availability of the JVM server, and the BUNDLE resource is a unit
of deployment for the Java applications and controls the availability of the applications. The default
behavior of the CICS TS security feature, cicsts:security-1.0, is to use the SAF registry. If you
use an LDAP registry, a SAF registry is not created. For more information, see Configuring security for a
Liberty JVM server by using distributed identity mapping. The basic user registry (which is also used by
gquickStartSecuxrity) is only suitable for simple security testing. Be aware that if you configure and
run with basic user registry and you need to switch to cicsts:security-1.0, you need to delete the
session tokens.

About this task

This task explains how to configure security for a Liberty JVM server and integrate Liberty security with
CICS security. For information about how to configure security for Link to Liberty, see Linking to Java
applications in a Liberty JVM server by using the @CICSProgram annotation. For guidance on configuring
security for the JCICSX remoting server, see “Configuring security for remote JCICSX API development”
on page 299.

The default transaction ID for running web requests is CJSA. However, you can configure CICS to run web
requests under a different transaction ID by using a URIMAP of type JVMSERVER. Typically, you might
specify a URIMAP to match the generic context root (URI) of a web application to scope the transaction
ID to the set of servlets that make up the application. Or you might choose to run each individual servlet
under a different transaction with a more precise URI.

Calls to the JCICSX Liberty JVM server are run under transaction CIXA.

The default user ID for running web requests is the CICS default user ID. If a URIMAP is available and
contains a static user ID, it is used in preference to the default user ID. If the web request contains a user
ID in its security header, it takes precedence over all other mechanisms.

Tasks starting from Liberty that are not classified as web requests run under the CJSU

transaction by default. Although there is no URIMAP style mechanism for these types of

tasks, you can override the default transaction ID by using the JVM profile property of
com.ibm.cics.jvmserver.unclassified.tranid and the default user ID by using the JVM profile
property com.ibm.cics.jvmserver.unclassified.userid.

Note: The user ID requires permission to attach the specified transaction. For more information, see
Transaction security.

Procedure

1. Configure the Liberty angel process to provide authentication and authorization services to the Liberty
JVM server, see The Liberty server angel process.

Tip: If you have a named angel process, you need to configure your Liberty JVM server to connect to it
by adding the following line to your JVM profile.

-Dcom.ibm.ws.zos.core.angelName=<named_angel>

2. Optional: Enforce the requirement to connect to the Liberty angel process when the Liberty JVM server
is being enabled by adding the following line to your JVM profile:

-Dcom.ibm.ws.zos.core.angelRequired=true

This option prevents the Liberty JVM server from starting if the angel process is unavailable.

278 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/link_2_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/link_2_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht535.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_angel.html

It instructs CICS to call the Liberty angel check API to verify whether an angel process is available for
Liberty JVM server startup.

If the angel process is unavailable, CICS reacts as follows:
- If the Liberty JVM server is being enabled through the CEMT transaction, a message is issued, and
the Liberty JVM server is disabled.

« If the Liberty JVM server is being enabled by the SET JVMSERVER SPI command or by using the
CMCI through the CICS Explorer, a message is issued, and the Liberty JVM server is disabled.

« If the Liberty JVM server is being enabled by the CICS CREATE SPI, by BAS, or from GRPLIST, a
message is issued, and CICS will wait 30 seconds before retrying the Liberty angel check API call. If
the angel process is unavailable on the fifth attempt, a WTOR message is issued, giving the operator
the option to continue waiting or to disable the JVMSERVER resource.

3. Add the cicsts:security-1.0 feature to the featureManager list in the server.xml,

<featureManager>

éféature>cicsts:security-1.0</feature>
</featureManager>

4. Add the System Authorization Facility (SAF) registry to server.xml by using the following example:
<safRegistry id="saf" enableFailover="false"/>

5. Save the changes to server.xml.

6. Optional: Alternatively, if you are autoconfiguring the Liberty JVM server and the SEC system
initialization parameter is set to YES in the CICS region, the Liberty JVM server is dynamically
configured to support Liberty JVM security when the JVM server is restarted. For more information, see
Configuring a Liberty JVM server.

If the SEC system initialization parameter is set to NO, you can still use Liberty security for
authentication or SSL support. If CICS security is turned off, and you want to use a Liberty security, you
must configure the sexrver.xml file manually:

a. Add the appSecurity-2.0 feature to the featuremanager list.

b. Add a user registry to authenticate users. Liberty security supports SAF, LDAP, and basic user
registries. For more information, see Configuring a user registry in Liberty.

c. Add security-role definitions to authorize access to application resources, see “Authorizing users to
run applications in a Liberty JVM server” on page 286.

Results

The web container is automatically configured to use the z/OS Security feature of Liberty. A SAF registry

is used for authentication, and Java EE roles are respected for authorization. Authorization constraints
and security roles govern who can access the application. These are usually defined in the deployment
descriptor (web. xml) of the application, but might also be defined as security annotations in the source-
code. Typically, users and groups are mapped to roles by the applications <application-bnd> element in
server.xml. Alternatively, if the<safAuthorization> element is configured in sexrver.xml, the mappings
are held in SAF (as EJBROLEs in RACF).

What to do next

Note: You can also delegate authentication to another identity by configuring the RunAs specification for
Liberty, see Configuring RunAs authentication in Liberty.

 Configure Liberty application security authentication rules; see “Authenticating users in a Liberty JVM
server” on page 284.

- Define authorization rules for web applications; see “Authorizing users to run applications in a Liberty
JVM server” on page 286 and “Authorization using SAF role mapping” on page 290.

- Modify the Liberty authentication cache.

Chapter 10. Security for Java applications 279

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_liberty.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_registries.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_runas.html

For more information about using Secure Sockets Layer (SSL), see “Configuring SSL (TLS) for a Liberty
JVM server using a Java keystore” on page 304.

The Liberty angel process

The Liberty angel process is a started task that allows Liberty servers to use z/OS authorized
services. It's long-lived and can be shared among your multiple Liberty servers. When you include
the cicsts:security-1.0 feature, the CICS Liberty JVM server uses the angel process to call z/0S
authorized services such as System Authorization Facility (SAF).

Named angels

A Liberty server can only connect to one angel process at server startup. However, all Liberty servers that
are running on a z/OS image can share a single angel process. This is regardless of the level of code that
the servers are running or whether they are running in a CICS JVM server. To achieve this, you need to use
named angels.

If an angel process is not given a name, it becomes the default angel process. You can have only one
default angel process. If you try to create another, it fails to start.

Optionally, you can name an angel process. Named angels allow multiple uniquely named angel processes
to run on a single z/0S system, in addition to the default unnamed angel process.

A named angel has the same function as the default angel process, but it can be used for a selected
group of Liberty servers. This provides the ability to isolate servers from one another, so that they can run
different service levels or be managed independently.

For more information about named angel processes, see Named angel.

Angel version interoperability

All Liberty servers that are running on a z/OS image can share a single angel process, regardless of the
level of Liberty code that the servers are using. It's recommended that the angel process be upgraded
before the Liberty servers that use its services, because it provides back-level support for earlier versions
of Liberty servers. This ensures support is available for all authorized services potentially required by the
Liberty servers.

Important: Install the latest version of the angel process, regardless of which product it is bundled with.
The latest version might be bundled with other IBM software, and might supersede the version that is
bundled with CICS.

You can identify the version of Liberty for the angel process and the Liberty JVM server that's running in
CICS as shown in “Examples of identifying Liberty versions” on page 283.

Running the angel process started task

1. Locate the JCL procedure for the started task in the USSHOME directory, for example: /usx/1pp/
cicsts56/wlp/templates/zos/procs/bbgzangl.jcl

2. Modify and copy the JCL procedure to a JES procedure library. You can set ROOT to the value of
USSHOME /w1p, for example: ROOT=/usr/lpp/cicsts56/wlp

3. Start the angel process. In the following examples, [. identifier] indicates an optional identifier
that can be up to 8 characters.

a. To start the angel process without naming it, use the following command:

START BBGZANGL[.identifier]

b. To start the angel process as a named angel process, code the NAME parameter on the operator
START command. For example:

START BBGZANGL[.identifier],NAME=<named_angel>

280 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_named_angel.html

The angel process name is 1 - 54 characters inclusive, and must use only the following characters:
A-Z0-9 ! #$+-/:<>=2@[]1" " _" " 1% |"°

Note: A Liberty server can use its own named angel process. One benefit of this isolation is that the
angel process can be serviced without affecting any other Liberty server instances on the LPAR. The
angel process must be running before the Liberty JVM server starts.

4. Start the Liberty JVM server. By default, the server connects to the unnamed angel process if one
is available. To connect to a specific angel process, set the com.ibm.ws.zos.core.angelName
property in the JVM server profile, for example:

-Dcom.ibm.ws.zos.core.angelName=named_angel

5. You can specify that CICS checks for the presence of a running angel process before enabling, by
setting the com.ibm.ws.zos.core.angelRequired property in the JVM server profile to true. For
example:

-Dcom.ibm.ws.zos.core.angelRequired=true

The server fails if the angel process is not available during startup. Use of this property allows a
quicker and cleaner failure.

Interacting with the angel process started task

In the following examples, [.identifier] indicates an optional identifier that can be up to eight
characters.

- Display the Liberty JVM servers that are connected to the angel process use the following console
command:

MODIFY BBGZANGL[.identifier],DISPLAY,SERVERS,PID
A list of job names and process identifiers (PID) are displayed:

15.48.45 STC82204 CWWKBOO67I ANGEL DISPLAY OF ACTIVE SERVERS
15.48.45 STC82204 CWWKBOO8OI ACTIVE SERVER ASID 5c JOBNAME IYK3ZNA1 PID 83953428
15.48.45 STC82204 CWWKBOO8OI ACTIVE SERVER ASID 5c JOBNAME IYK3ZNA1 PID 33621002

Each Liberty JVM server runs under a unique PID, and is returned by the CICS command INQUIRE
JVMSERVER.

« Stop the angel process.

STOP BBGZANGL[.identifier]

Note: The Liberty JVM server must be stopped before restarting or applying maintenance to the angel
process.

SAF profiles used by the angel process

This section describes the SAF profiles to which access is required for CICS processing. For information
on the full set of SAF profiles defined by Liberty, refer to Enabling z/OS authorized services on Liberty for
z/0S.

« The Liberty JVM server runs under the authority of the CICS region user ID. This user ID must be able to
connect to the angel process to use authorized services. The user ID that the angel process runs under
needs access to the SAF STARTED profile, for example:

RDEFINE STARTED BBGZANGL.x UACC(NONE) STDATA(USER(WLPUSER))
SETROPTS RACLIST(STARTED) REFRESH

Chapter 10. Security for Java applications 281

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_config_security_zos.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_config_security_zos.html

« For the Liberty JVM server to connect to an angel process, create a profile for the angel (BBG.ANGEL,
or BBG.ANGEL . <namedAngelName> if you are using a named angel process) in the SERVER class. Give
the CICS region user ID (cics_region_user) authority to access it, for example, in RACF:

RDEFINE SERVER BBG.ANGEL UACC(NONE)
PERMIT BBG.ANGEL CLASS(SERVER) ACCESS(READ) ID(cics_region_user)

« Fora Liberty server to use the z/OS authorized services, create a SERVER profile for the authorized
module BBGZSAFM and give the CICS region user ID (cics_region_user) to the profile:

RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM UACC (NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM CLASS(SERVER) ACCESS(READ) ID(cics_region_user)

« Give the Liberty JVM server, under the authority of the CICS region user ID (cics_region_user), access
to the SAF user registry and SAF authorization services (SAFCRED) in the SERVER class. For example, in
RACF:

RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.SAFCRED UACC(NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM.SAFCRED CLASS(SERVER) ACCESS(READ) ID(cics_region_user)

« Create a SERVER profile for the IFAUSAGE services (PRODMGR) and allow the CICS region user ID access
to it. This allows the Liberty JVM server to register and unregister from IFAUSAGE when the CICS JVM
server is enabled and disabled:

RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.PRODMGR UACC (NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM.PRODMGR CLASS(SERVER) ACCESS(READ) ID(cics_region_user)

« Refresh the SERVER resource:

SETROPTS RACLIST(SERVER) REFRESH

The following table summarizes the SAF security profiles that are used by a Liberty server running in a
CICS JVM server.

Table 44. SAF profile table for CICS Liberty security

Class

Profile

Required for

CICS region
user ID

Unauthenticat
eduser IDH]

Authenticated
user ID EJ

SERVER | BBG

.ANGEL

Angel process
registration at
Liberty server
startup

READ

SERVER | BBG

.ANGEL . <namedAngelName

Angel process
registration at
Liberty server
startup

READ

SERVER | BBG

.AUTHMOD . BBGZSAFM

Angel process
registration at
Liberty server
startup

READ

SERVER | BBG

RED

.AUTHMOD . BBGZSAFM. SAFC

Angel process
registration at
Liberty server
startup

READ

SERVER | BBG

MGR

.AUTHMOD . BBGZSAFM.PROD

Angel process
registration at
Liberty server
startup

READ

282 CICS TS for z/0S: Java Applications in CICS

Table 44. SAF profile table for CICS Liberty security (continued)

Class Profile Required for CICS region | Unauthenticat | Authenticated
user ID eduserID] |userIDE]
SERVER |BBG.SECPFX.BBGZDFLT I} Authentication |READ
or authorization
APPL BBGZDFLT I Authentication READ READ
or authorization
EJBROL |BBGZDFLT.<resource>.<role | Authentication READ
E >H or authorization

1. User ID that is associated with the CICS job or started task.

2. User ID used for unauthenticated requests in Liberty. The value is controlled by using the
unauthenticatedUser attribute of the <safCredentials> element. This value defaults to
WSGUEST.

3. User ID authenticated by the Liberty server.

4. BBGZDFLT is the default value for the security profile prefix that is set by using the
profilePrefix attribute of the <safCredentials> element, for example: <safCredentials
profilePrefix="BBGZDFLT"/>.

5. EJBROLE profiles are required if the <safAuthorization> element is configured. The default
pattern for the profile is controlled by the SAF role mapper element, which defaults to
<safRoleMapper profilePattern="%profilePrefix%.%resource®%.%role%"/>.

For more information, see Process types on z/0OS.

Examples of identifying Liberty versions
Example: Identifying the angel Liberty version from the started task system log

If the Liberty angel process is running Liberty 18.0.0.2 or above, the started task system log contains a
message that indicates the Liberty version:

CWWKBOO79I THE ANGEL BUILD LEVEL IS 18.0.0.2 20180619-0654 2018.7.0.0 20180619-0654
Example: Identifying the version of a Liberty JVM server running in CICS from message DFHSJ1405

The version of a Liberty running in a CICS JVM server is available in the following message:

DFHSJ1405I 08/22/2018 17:04:39 IYK3ZDRI JVMSERVER EYUCMCIJ is running WebSphere Application Server
Version 18.0.0.2 Liberty - (18.0.0.2-cl1180220180619-0403) process ID
67174497 .

Example: Identifying both Liberty versions by running scripts

Suppose that the angel JCL specifies the following ROOT parameter:

// SET ROOT='/usx/lpp/zosmf/wlp'

To find out what the version of Liberty for the angel process is, run the following script:

/usr/lpp/zosmf/wlp/bin/productInfo version --verbose

For a Liberty JVM server running in CICS, run the following script:

/usr/lpp/cicsts56/wlp/bin/productInfo version --verbose

Chapter 10. Security for Java applications 283

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_zos_runtime_proc.html

WebSphereApplicationServer.properties:
com.ibm.websphere.productId=com.ibm.websphere.appserver
com.ibm.websphere.productOwner=IBM
com.ibm.websphere.productVersion=16.0.0.3
com.ibm.websphere.productName=WebSphere Application Server
com.ibm.websphere.productInstallType=Archive
com.ibm.websphere.productEdition=z0S
com.ibm.websphere.productlLicenseType=IPLA

WebSphereApplicationServerZ0S.properties:
com.ibm.websphere.productId=com.ibm.websphere.appserver.zos
com.ibm.websphere.productOwner=IBM CORP
com.ibm.websphere.productVersion=16.0.0.3 <== Liberty Version
com.ibm.websphere.productName=WAS FOR Z/0S
com.ibm.websphere.productPID=5655-WAS
com.ibm.websphere.productQualifier=WAS Z/0S
com.ibm.websphere.productReplaces=com.ibm.websphere.appserver
com.ibm.websphere.productEdition=
com.ibm.websphere.gssp=true

zOSMF . properties:
com.ibm.websphere.productId=com.ibm.zoszmf
com.ibm.websphere.productOwner=IBM
com.ibm.websphere.productVersion=2.2.0
com.ibm.websphere.productName=z/0SMF
com.ibm.websphere.productPID=5650-Z0S
com.ibm.websphere.productQualifier=z/0SMF
com.ibm.websphere.productReplaces=com.ibm.websphere.appserver.zos
com.ibm.websphere.productEdition=N/A

Figure 37. Example output

Authenticating users in a Liberty JVM server

Although you can configure CICS security for all web applications that run in a Liberty JVM server, the
web application will only authenticate users if it includes a security constraint. The security constraint is
defined by an application developer in the deployment descriptor (web.xml) of the Dynamic Web Project
or OSGi Application Project. The security constraint defines what is to be protected (URL) and by which
roles.

A<login-config> element defines the way a user gains access to web container and the method
used for authentication. The supported methods are either HTTP basic authentication, form based
authentication or SSL client authentication. For further details on how to define application security for
CICS see SSL security for Explorer connections in the CICS Explorer product documentation. Here is an
example of those elements in web.xml:

<!-- Secure the application -->
<security-constraint>
<display-name>com.ibm.cics.server.examples.wlp.tsq.web_SecurityConstraint</display-name>
<web-resource-name>com.ibm.cics.server.examples.wlp.tsq.web</web-resource-name>
<description>Protection area for com.ibm.cics.server.examples.wlp.tsq.web</description>
<url-pattern>/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<description>0Only SuperUser can access this application</description>
<role-name>SuperUser</role-name>
</auth-constraint>
<user-data-constraint>
<!-- Force the use of SSL -->
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>
</security-constraint>

<!-- Declare the roles referenced in this deployment descriptor -->
<security-role>
<description>The SuperUser role</description>
<role-name>SuperUser</role-name>
</security-role>

<!--Determine the authentication method -->

<login-config>
<auth-method>BASIC</auth-method>

284 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/concepts/SSL_intro.html

</login-config>

Note: If you use RequestDispatcher.forward() methods to forward requests from one servlet to another,
the security check occurs only on the first servlet that is requested from the client.

Tasks that are authenticated in CICS using Liberty security can use the user ID derived from any of the
Liberty application security mechanisms to authorize transaction and resource security checks in CICS.
The CICS user ID is determined according to the following criteria:

1. Liberty application security authentication.

Integration with the SAF user registry is part of the CICS Liberty security feature, unless distributed
identity mapping is used. Any of the application security mechanisms supported by Liberty are
supported in CICS, this includes HTTP basic authentication, form login, SSL client certificate
authentication, identity assertion using a custom login module, JACC, JASPIC, or a Trust Association
Interceptor (TAI). All SAF user IDs authenticated by Liberty must be granted read access to the Liberty
JVM server APPL class profile. The name of this is determined by the profilePrefix setting in the
safCredentials element in the Liberty server configuration file server.xml.

<safCredentials profilePrefix="BBGZDFLT"/>

The APPL class is also used by CICS terminal users to control access to specific CICS regions and
your Liberty JVM server can use the same profile as the CICS APPLID depending upon your security
requirements. If you do not specify this element, then the default profilePrefix of BBGZDFLT is used.

You must define the APPLID and users must have access to the it. To configure and activate the
BBGZDFLT profile in the APPL class:

RDEFINE APPL BBGZDFLT UACC(NONE)
SETROPTS CLASSACT (APPL)

The users must be given read access to the BBGZDFLT profile in the APPL class in order to
authenticate. To allow user AUSER to authenticate against the BBGZDFLT APPL class profile:

PERMIT BBGZDFLT CLASS(APPL) ACCESS(READ) ID(AUSER)

The Liberty SAF unauthenticated user id must be given read access to the APPL class profile. The
SAF unauthenticated user id can be specified in the safCredentials element in the Liberty server
configuration file server.xml.

<safCredentials unauthenticatedUser="WSGUEST"/>

If you do not specify the element, then the default unauthenticatedUser is WSGUEST. To allow the SAF
unauthenticated user id WSGUEST read access to the BBGZDFLT profile in the APPL class:

PERMIT BBGZDFLT CLASS(APPL) ACCESS(READ) ID(WSGUEST)

If you use WSGUEST, then you should follow the steps to configure the SAF user registry as described
in Setting up the System Authorization Facility (SAF) unauthenticated user.

The WLP z/0OS System Security Access Domain (WZSSAD) refers to the permissions granted to

the Liberty server. These permissions control which System Authorization Facility (SAF) application
domains and resource profiles the server is permitted to query when authenticating and authorizing
users. The CICS region user ID must be granted permission within the WZSSAD domain to make
authentication calls. To grant permission to authenticate, the CICS region ID must be granted READ
access to the BBG.SECPFX.<APPL> profile in the SERVER class:

RDEFINE SERVER BBG.SECPFX.BBGZDFLT UACC(NONE)
PERMIT BBG.SECPFX.BBGZDFLT CLASS(SERVER) ACCESS(READ) ID(cics_region_user)

For more details refer to Accessing z/OS security resources using WZSSAD.

Chapter 10. Security for Java applications 285

https://ibmdocs-test.dcs.ibm.com/docs/en/was-liberty/zos?topic=SS7K4U_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_config_security_saf.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_WZSSAD_zos.html

2. If an unauthenticated subject is supplied from Liberty, then the USERID defined in the URIMAP will be
used.

3. If no USERID is defined in the URIMAP the request will run under the CICS default user ID.
Note: Be aware that Liberty caches authenticated user IDs and, unlike CICS, does not check for an

expired user ID within the cache period. You can configure the cache timeout by using the standard
Liberty configuration process. Please see Configuring the authentication cache in Liberty.

Authorizing users to run applications in a Liberty JVM server

You can use Enterprise Java application security roles to authorize access to Enterprise Java applications.
Additionally, in a Liberty JVM server you can further restrict access to transactions (run as part of the
application) by using CICS transaction and resource security.

About this task

Your application is secured by providing an authorization constraint, the <auth_constraint> element,
in the deployment descriptor (web . xml). If present, this ensures that access to your application is
achieved only by a user that is a member of an authorized role. User or group membership to an
Enterprise Java role is determined in one of two ways:

« Use an <application-bnd> elementinthe <application> element of your server.xml to
describe the user/group to role mappings directly in XML.

« Use <safAuthorization> inyour sexver.xml to allow users/groups role membership to be mapped
by SAF (typically using EJBROLES).

For more information, see Authorization using SAF role mapping.

Using CICS security allows you to re-use existing security procedures but requires that individual web
applications are accessed from different URIMAPs. Using role-based security allows you to use existing
standard Enterprise Java security definitions from another Enterprise Java application server. For more
information, see “Authenticating users in a Liberty JVM server” on page 284.

If you want to use CICS transaction and resource authorization exclusively, or prefer to use finer-grained
annotation-based role checking in code, you can defer the authorization decision to those components by
using the special subject ALL_AUTHENTICATED_USERS role, as shown in the following example. If you
deploy a Liberty application in a CICS bundle, CICS automatically configures this for you.

Note: Access checks are performed for the declarative security annotations and CICS transaction and
resource security only after the configured constraints (web.xml) are verified

<application id="com.ibm.cics.server.examples.wlp.tsq.app"”
name="com.ibm.cics.server.examples.wlp.tsq.app" type="eba"
location="${server.output.dir?/installedApps/com.ibm.cics.server.examples.wlp.tsq.app.eba">
<application-bnd>
<security-role name="cicsAllAuthenticated">
<special-subject type="ALL_AUTHENTICATED_USERS"/>
</security-role>
</application-bnd>
</application>

Using this special subject, and giving the cicsAllAuthenticated role access to all URLs in your

web applications deployment descriptor (web . xml), allows access to the web application using any
authenticated user ID and authorization to the transaction must be controlled using CICS transaction
security. If you deploy your application directly to the dropins directory, it is not configured to use CICS
security as dropins does not support security.

If you are using safAuthorization then the <application-bnd> no longer acts as the source of user ID
to role mapping. Instead, EJBROLEs in SAF determine which SAF users are in which roles (EJBROLEs).
With safAuthorization the <application-bnd> is ignored. To achieve the same effect and allow all

286 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_cache.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee_app_role.html

authenticated users to be authorized to run your application, the <auth-constraint> in web.xml must
use the special role **, for example:

<auth-constraint>
<description>special role for all authenticated users</description>
<role-name>**</role-name>

</auth-constraint>

« The special role name ** is a shorthand for any authenticated user independent of role.
« The special role name * is a shorthand for all role names defined in the deployment descriptor.

When the special role name *x appears in an authorization constraint, it indicates that any authenticated
user, independent of role, is authorized to perform the constrained requests. Special roles do not need an
additional <security-role> declaration in web.xml.

To use CICS transaction or resource security you should follow the following steps:

Procedure

1. Define a URIMAP of type JVMSERVER for each web application. Typically, you might specify a URIMAP
to match the generic context root (URI) of a web application to scope the transaction ID to the set
of servlets that make up the application. Or you may choose to run each individual servlet under a
different transaction with a more precise URL.

2. Authorize all users of the web application to use the transaction specified in the URIMAP using CICS
transaction or resource security profiles.

Authorizing applications by using OAuth 2.0

OAuth 2.0 is an open standard for delegated authorization. The OAuth authorization framework enables
a user to grant a third-party application access to information that is stored with another HTTP service
without sharing their access permissions or the full extent of their data.

WebSphere Liberty supports OAuth 2.0, and can be used as an OAuth service provider endpoint and an
OAuth protected resource enforcement endpoint. Liberty supports persistent OAuth 2.0 services. See
Configuring persistent OAuth 2.0 services. Clients can be defined locally with the localStore and client
elements. The following procedure uses local clients to enable OAuth 2.0 authorization.

Before you begin
SAF security is a common use-case in CICS, and this procedure uses SAF in the examples.

Ensure that the CICS region is configured to use SAF security and is defined with SEC=YES as a system
initialization parameter.

Optionally, you can grant an administrator user access to the SAF EJBROLE
BBGZDFLT.com.ibm.ws.security.oauth20.clientManager. The security role clientManager
controls access to the management interfaces, allowing local clients to be queried, and persistent local
clients to be created. The administrator user controls OAuth 2.0 local clients.

Configure the Liberty angel process to provide authentication and authorization services to the Liberty
JVM server. See The Liberty server angel process.

For more information about OAuth, see oauth-2.0.

About this task
The following procedure covers how to:

Create an OAuth 2.0 service provided in a Liberty JVM server.

Create a locally configured client.

Use this local client to grant an OAuth 2.0 token to a relying party application, also known as a
third-party web application.

Use this token to access protected resources in an application.

Chapter 10. Security for Java applications 287

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/config_oauth.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_angel.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_oauth-2.0.html

Restriction: Db2 JDBC type 2 connectivity is not supported for persistent OAuth 2.0 services.

Procedure

1. Configure an OAuth 2.0 service provider.

a) Add the oauth-2.0 and the cicsts:security-1.0 features to the featureManager element
inserver.xml.

<featureManager>

%féature>oauth-2.0</feature>
<feature>cicsts:security-1.0</feature>
</featureManager>

b) Configure an OAuth 2.0 provider in server.xml.

<oauthProvider id="myProvider">
</oauthProvider>

2. Configure a local client for the relying party application. Local clients define the details of the relying
party application, including the name, secret password, and redirect URI of the application.

a) Define a meaningful local client name and create a secret password that is used by the server for
authorization. The local client application listens on a URI, and the server supplies authorization
codes.

b) Configure an OAuth 2.0 local client in the oauthProvider element of server.xml, supplying the
local client ID, secret password, and the redirect URI.

<oauthProvider id="myProvider">
<localStore>
<client id="myClient" redirect="https://client.example.ibm.com/webApp/redirect"
secret="mySecret" />
</localStore>
</oauthProvider>

Important:

Although it is not shown in this example, it is important to encode passwords and limit access to
server.xml configuration. Passwords can be encoded by using the Liberty securityUtility,
found in USS_HOME /wlp/bin/securityUtility. For more information, see securityUtility
command.

Note: More than one local client can be configured in the localStore element.

3. When the relying party application requires access to protected resources on the server, the user must
authorize access to these resources first.

a) The relying party application requires the user to authenticate with the server, and select the type
of access for the relying party application by linking or redirecting the user to the authorization
endpoint:

https://hostname:port/oauth2/endpoint/provider_name/authorize
or
https://hostname:port/oauth2/declarativeEndpoint/provider_name/authorize

Additional parameters are required in the query parameters of the URL. For the local client that was
configured in step 2, the following GET request is required (all one line):

https://zos.example.ibm.com/oauth2/endpoint/myProvider/authorize?response_type=code
&client_id=myClient&client_secret=mySecret&redirect_uri=https://client.example.ibm.com/webApp/redirect

288 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_command_securityutil.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_command_securityutil.html

After the user selects the access for the relying party application, they are redirected back to the
relying party application using the redirect URI:

https://client.example.ibm.com/webApp/redirect?code=access_code

The relying party application must store this access code to request an OAuth token.

Note: For local clients, the user must exist in a user register in the Liberty JVM server. For more
information about authenticating users in Liberty JVM servers, see Authenticating users in a Liberty
JVM server.

b) The relying party application requests an OAuth 2.0 token by sending a POST request to the server:

https://hostname:port/oauth2/endpoint/provider_name/token

The relying party application sends the authorization code that is received from the authorization
endpoint, the local client ID, and the secret password in the POST data (grant_type is all one
line):

POST https://zos.example.ibm.com/oauth2/endpoint/myProvider/token HTTP/1.1
Content-Type: application/www-form-urlencoded
grant_type=authorization_code&code=code&client_id=myClient
&client_secret=mySecret&redirect_url=https://client.example.ibm.com/webApp/redirect
This returns a JSON document that contains the token.
4. Use the token to access protected resources.
a) Add the token to the Authorization header on the HTTP request.
Authorization: Bearer <token>

Results

Users are able to authorize third-party applications to access their protected resources in a Liberty JVM
server through OAuth 2.0 authorizations flows. The Liberty JVM server can configure the provider of these
tokens and create locally configured clients.

Several methods to grant tokens are available. For more information, see OAuth 2.0 service invocation.

Configuring persistent OAuth 2.0 services

WebSphere Liberty supports persisting OAuth 2.0 local clients and tokens to a database. With persistent
OAuth 2.0, an authorized local client can continue to access OAuth 2.0 services after a restart.

Before you begin
SAF security is a common use-case in CICS, and this procedure uses SAF in the examples.

« Gain the necessary access to create tables and read/write to these tables in a database and configure it
in the Liberty server.xml.

« Grant access to the SAF EJBROLE BBGZDFLT.com.ibm.ws.security.oauth20.clientManager to
an administrator user to control OAuth 2.0 local clients.

 Create an OAuth 2.0 provider in the Liberty servexr . xml. For more information, see Authorization using
OAuth 2.0.

About this task

The following steps create a persistent OAuth 2.0 local client. This local client is used to grant OAuth 2.0
tokens.

Restriction: Db2 JDBC type 2 connectivity is not supported for persistent OAuth 2.0 services.

Chapter 10. Security for Java applications 289

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_oauth_invoking.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_oauth.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_oauth.html

Procedure

1. Create the necessary tables using IBM Db2 for persistent OAuth services as a guide.
2. Create a persistent local client by sending a POST request to the URL:

https://hostname:port/oauth2/endpoint/provider_name/registration

Use the JSON document which is described in the first table in Configuring an OpenID Connect
Provider to accept client registration requests; for example:

{
"client_id": "client_id",
"client_secret": "client_secret",
"grant_types": ["authorization_code", "refresh_token"],
"redirect_uris": ["https://client.example.ibm.com/webApp/redirect"]
%
Results

A persistent OAuth 2.0 local client is created. When this local client is used to produce tokens, the tokens
are persisted to the database. If the server restarts, the persistent local client and tokens remain valid.

Authorization using SAF role mapping

Mapping Java EE roles to users and groups can be achieved in different ways. In distributed systems,

a basic registry or LDAP registry would typically be used in conjunction with an application specific
<application-bnd> element, to map users from those registries into roles. The deployment descriptor
of the application determines which roles can access which parts of the application.

About this task

On z/0S, there is an additional registry type, the System Authorization Facility (SAF) registry. A Liberty
JVM server implicitly uses this type for authentication when the cicsts:security-1.0 featureis
installed unless configured to use LDAP. You can choose to make use of SAF authorization. When using
SAF authorization, user to role mappings are used to map roles to EJBROLE resource profiles using the
SAF role mapper. The server queries SAF to determine if the user has the required READ access to the
EJBROLE resource profile.

In a Liberty JVM server, if you want to use Java EE roles without SAF authorization, you cannot use CICS
bundles to install your applications. This is because a CICS bundle installed application automatically
creates an <application-bnd> element and uses the ALL_AUTHENTICATED_USERS special-subject,
which prevents you from defining the element yourself. Instead, you must create an <application>
element in sexrvexr. xml directly and configure the <application-bnd> with the roles and users you
require.

If, however, you choose to use Java EE roles and SAF authorization, you can continue to use CICS bundles
to lifecycle your web applications. The <application-bnd> is ignored by Liberty in favor of using

the role mappings determined by the SAF registry. Role mappings are determined by virtue of a user
belonging to an EJB role.

Tip: When SAF authorization is enabled, EJB roles in RACF are used for role mapping instead of the roles
in sexver.xml. Therefore, special subjects such as ALL_AUTHENTICATED_USERS and EVERYONE, or
users can not be defined in server.xml in this case.

Tip: It is advisable to create or update your EJB roles before starting the CICS region. Liberty issues a
RACROUTE REQUEST=LIST with GLOBAL=NO in order to support a minimum version of z/0S. The address
space will not see updates until it is restarted (or started).

Procedure

1. Add the <safAuthorization id="saf"/> elementto your sexrver.xml. If you are using the
cicsts:distributedIdentity-1.0 feature, this is defined for you.

290 CICS TS for z/0S: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_oauth_db2.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_client_registration.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_client_registration.html

2. Optional: You can add racRoutelLog="ASIS" to the element in the previous step.
This allows you to see the RACF EJBROLE logging from Liberty.

3. Create the EJIB roles in RACF, with reference to the prefix scheme described.

4. Add users to those EJB roles.

By default, if SAF authorization is used, the application uses the pattern
<profile_prefix>.<resource>.<role> to determineifauserisinarole. The profile_prefix
defaults to BBGZDFLT but can be modified using the <safCredentials> element. For example,

you can set it to the APPL_ID of a region. If you want multiple regions to share identical security
configuration, you can set <profile_prefix> to the same value for those regions. For more
information, see Accessing z/OS security resources using WZSSAD.

The role mapping preferences can be modified using the <safRoleMapper> element in the
server.xml, for example:

<safRoleMapper profilePattern="myprofile.%resource¥%.%role%" toUpperCase="true"/>

Users can then be authorized to a particular EJB role using the following RACF commands, where
WEBUSER is the authenticated user ID.

RDEFINE EJBROLE BBGZDFLT.MYAPP.ROLE UACC(NONE)
PERMIT BBGZDFLT.MYAPP.ROLE CLASS(EJBROLE) ACCESS(READ) ID(WEBUSER)

5. Optional: If you are deploying the CICS servlet examples and want to use the Java EE role security
with SAF authorization, create a SAF EJBROLE for each servlet that you have deployed. For example,
if you use the default APPL class of BBGZDFLT, define the following EJBROLE security definitions using
RACF commands:

RDEFINE EJBROLE BBGZDFLT.com.ibm.cics.server.examples.wlp.hello.war.cicsAllAuthenticated UACC (NONE)
RDEFINE EJBROLE BBGZDFLT.com.ibm.cics.server.examples.wlp.tsq.app.cicsAllAuthenticated UACC(NONE)
RDEFINE EJBROLE BBGZDFLT.com.ibm.cics.server.examples.wlp.jdbc.app.cicsAllAuthenticated UACC (NONE)
SETROPTS RACLIST(EJBROLE) REFRESH

Give read access to the defined roles for each web user ID that requires authorization:

PERMIT BBGZDFLT.com.ibm.cics.server.examples.wlp.hello.war.cicsAllAuthenticated
CLASS(EJBROLE) ID(user) ACCESS(READ)

PERMIT BBGZDFLT.com.ibm.cics.server.examples.wlp.tsq.app.cicsAllAuthenticated
CLASS(EJBROLE) ID(user) ACCESS(READ)

PERMIT BBGZDFLT.com.ibm.cics.sexrver.examples.wlp.jdbc.app.cicsAllAuthenticated
CLASS(EJBROLE) ID(user) ACCESS(READ)

SETROPTS RACLIST(EJBROLE) REFRESH

Results
You can authorize access to web applications using CICS Security, Java EE role security, or both by
defining the roles and the users in the roles.

Configuring security for a Liberty JVM server with the Enterprise Java
security API

Java EE 8 introduces a portable, flexible, and standardized security model with the Java EE security
API 1.0. A Liberty JVM server can be configured to respect the new security configuration through the
inclusion of the Liberty appSecurity-3.0 feature.

The Java EE security API 1.0 specification covers three principles:

1. Authentication mechanism: provided by the HttpAuthenticationMechanism interface for the servlet
container

2. Identity store: an attempt to standardize the JAAS LoginModule
3. Security context: an access point for programmatic security

Chapter 10. Security for Java applications 291

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_WZSSAD_zos.html

Authentication mechanism

An authentication mechanism is a way that is used to obtain a username and password from the user to
be processed later by the Java Security API. There are two standard options for authentication, both take
advantage of the annotations that are introduced by the Java EE security 1.0 API.

HTTP basic authentication

Basic authentication displays the browser's native login dialog before the user can access the
protected resource.

@BasicAuthenticationMechanismDefinition(realmName="user-realm")
@WebServlet (" /home") @DeclareRoles({"user"t})
@ServletSecurity(@HttpConstraint(rolesAllowed = "user"))

public class HomeServlet extends HttpServlet {

k)

Form-based authentication
You can use form-based authentication to replace the browser’s built-in dialog with your own custom
HTML form. You can create an application config class with annotations as follows:

@FormAuthenticationMechanismDefinition(
loginToContinue = @LoginToContinue(
loginPage = "/login",

errorPage "/error"
)
@ApplicationScoped
public class ApplicationConfig {
}
Identity store

A component acts as a DAO (Data Access Object) for accessing user information, including their
usernames, passwords, and associated roles. A number of identity store types are introduced by the
Java EE security API 1.0, including:

Database identity store
A database identity store is used to retrieve user information from a relation database.

@DatabaseIdentityStoreDefinition(
dataSourcelLookup = "jdbc/sec",
callerQuery = "#§'select password from USR where USERNAME = ?'%",
groupsQuery = "#{'select ugroup from USR where USERNAME = ?'%",
hashAlgorithm = Pbkdf2PasswordHash.class,
priorityExpression = "#{100%",
hashAlgorithmParameters = {
"Pbkdf2PasswordHash.Iterations=3072",
"Pbkdf2PasswordHash.Algorithm=PBKDF2WithHmacSHA512",
"Pbkdf2PasswordHash.SaltSizeBytes=64"

)

Lightweight Directory Access Protocol (LDAP) identity store

LDAP is a common way of organizing a user's access to different systems across a single organization.
LDAP realizes the idea of Single-Sign On, where a user has a single username and password, and
then uses it across all different systems that are used to perform the everyday business of a specific
organization.

@WebServlet("/home")
@ServletSecurity(@HttpConstraint(rolesAllowed = "user"))
@LdapIdentityStoreDefinition(

url = "ldap://localhost:33389/",

callerBaseDn = "ou=user,dc=jsr375,dc=net",

groupSearchBase = "ou=group,dc=jsr375,dc=net"

public class HomeServlet extends HttpServleti

292 CICS TS for z/0S: Java Applications in CICS

k

URL: The URL of the LDAP server to use for authentication.
callerBaseDn: Base distinguished name for callers in the LDAP store.
groupSearchBase: Search base for looking up groups.

Custom identity store

In addition to the built-in identity stores found in Java EE security API 1.0, a user can implement
their own identity store and control exactly where to obtain user information. This can be achieved by
creating a custom identity store class, then creating an HTTP authentication mechanism associated
with this custom identity store.

Security context

The security context object is used to programmatically check a user's authority to access a specific
resource. This is useful when you need to perform custom behavior. In this example, the user is forwarded
to another page only if they have access to it:

@WebServlet("/home")
public class HomeServlet extends HttpServlet §
@Inject
private SecurityContext securityContext;
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

if (securityContext.hasAccessToWebResource("/anotherServlet", "GET")) £
req.getRequestDispatchexr (" /anotherServlet").forward(req, res);
% else {

req.getRequestDispatcher("/logout") .forward(req, res);

¥

For more information about the Java EE 8 security API, see Java EE Security API in the Liberty
documentation.

Authenticating by using a database identity store

You can use the @DatabaseldentityStoreDefinition interface to retrieve user credentials from a database
for authentication.

About this task

Follow these steps to authenticate by using a database identity store.

Procedure

1. Add the appSecurity-3.0 feature to sexrver.xml before you start the server.
2. Ensure that CDI annotation file scanning is enabled. CICS disables it by default in server. xml.

You can ensure CDI annotation file scanning is enabled by checking the following line is not present in
server.xml: <cdil2 enableImplicitBeanArchives="false"/>.

3. Create a table in the database and set up server.xml.
For example, to create a Db2 table using SQL:

CREATE TABLE PXX.USR (

USERNAME VARCHAR (256) NOT NULL,
PASSWORD VARCHAR (256) NOT NULL,
UGROUP VARCHAR (256) NOT NULL

) IN SECU.TSSE;
CREATE UNIQUE INDEX INDXUSRS ON PXX.USR (USERNAME);

Chapter 10. Security for Java applications 293

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_sec_jee_api.html

The password in the database must be encrypted. An example of inserting an encrypted password into
a database can be found here: Database Setup

a) Add the jdbc-4.2 feature in sexrver.xml:
<feature>jdbc-4.2</feature>
b) Set jndiName in server.xml, for example:

<dataSource id="DefaultDataSource" jndiName="jdbc/sec">
<jdbcDriver libraryRef=<xxx>"/>

</da£ééource>

4, Determine whether to use SAF for the CICS task user ID.

a) If you do not want to push the database identity onto the CICS task, you can remove the default
safRegistry setting in servexr. xml. This makes the CICS task run under the default CICS user ID.

b) If you want CICS tasks to run under specific SAF users mapped from your database identity store,
you need to take the following steps:

i) Configure SAF in server.xml by setting the following SAF elements.

<safCredentials mapDistributedIdentities="true" profilePrefix=<xxx>"/;
<safAuthorization id="saf"/>
<safRoleMapperprofilePattern="<xxx>.%resource%.%role%" toUpperCase="false;

ii) Issue the RACMAP command. The general RACMAP command of mapping a distributed user ID
to a SAF user ID is in the format of:

RACMAP ID(userid)

MAP

WITHLABEL ('label-name')
USERDIDFILTER(NAME('distributed-identity-user-name'))
REGISTRY (NAME ('distributed-identity-registry-name'))

Use defaultRealmin REGISTRY (NAME (<nnn>)), and use <username_in_DBIS> in
USERDIDFILTER(NAME (<nnn>)), for example:

RACMAP ID(JATM12) MAP WITHLABEL ('authorisedUsexr:JATM12')
USERDIDFILTER(NAME('authorisedUser')) REGISTRY (NAME('defaultRealm'))

Note: If you deploy the application in a CICS bundle, the security role "cicsAllAuthenticated"
is automatically set in the installedApps.xml as follows:

<application ...>
<application-bnd>
<security-role name="cicsAllAuthenticated">
<special-subject type="ALL_AUTHENTICATED_USERS"/>
</security-role>
</application-bnd>
</application>

The security role "cicsAllAuthenticated" takes precedence over the group name that is
stored in the database identity store and an HTTP 403 error occurs. There are two options you take:

i) Deploy your database identity store application with a direct <application> elementin
server.xml.

ii) Deploy within a CICS bundle, but use safAuthorization to bypass the CICS-generated
<application-bnd> which overrides the group information stored in the Custom Identity
Store.

Results
You have successfully configured the database identity store.

294 CICS TS for z/0S: Java Applications in CICS

https://github.com/eclipse-ee4j/soteria/blob/master/test/app-db/src/main/java/org/glassfish/soteria/test/DatabaseSetup.java

Authenticating by using a custom identity store

You can use a custom identity store to implement your own identity store and control exactly where to
obtain user information.

About this task

Follow these steps to authenticate by using a custom identity store.

Procedure

1. Add the appSecurity-3.0 feature to server.xml before you start the server.
2. Ensure that CDI annotation file scanning is enabled. CICS disables it by default in servexr.xml.

You can ensure that CDI annotation file scanning is enabled by checking the following line is not
present in server.xml: <cdil2 enableImplicitBeanArchives="false"/>.

3. Create Java classes to process the custom identity store logic and build them into a WAR file.

a) Create a custom identity store object, by creating a class that implements the IdentityStore
interface, as shown in the following example:

@ApplicationScoped
public class MyIdentityStore implements IdentityStore {
public CredentialValidationResult validate(UsernamePasswordCredential userCredential)

if (userCredential.compareTo("authorisedUser", "tomtom")) {
return new CredentialValidationResult("authorisedUser",
new HashSet<String>(asList("user")));

I
return INVALID_RESULT;
I

b) Create an HTTP authentication mechanism associated with this identity store, which is used with
the identity store class that is created in the previous step:

@ApplicationScoped
public class MyAuthMechanism implements HttpAuthenticationMechanism §

@Inject
private IdentityStoreHandler idStoreHandler;

public AuthenticationStatus validateRequest(HttpServletRequest req,
HttpServletResponse res, HttpMessageContext context) {
CredentialValidationResult result = idStoreHandler.validate(
new UsernamePasswordCredential (
req.getParameter ("name"),
req.getParameter ("password")));
if (result.getStatus() == CredentialValidationResult.Status.VALID) {

return context.notifyContainerAboutLogin(result);
t else §

return context.responseUnauthorized();
E

¥
c) Create a servlet.

@WebServlet (" /home")

@ServletSecurity(@HttpConstraint(rolesAllowed = "user"))
public class Servlet extends HttpServlet {...%

4. Determine whether to use SAF for the CICS task userid.

a) If you do not want to push the custom identity onto the CICS task, you can remove the default
safRegistry setting in server.xml. This makes the CICS task run under the default CICS userid.

b) If you want CICS tasks to run under specific SAF users mapped from your custom identity store,
you need to take the following steps:

Chapter 10. Security for Java applications 295

i) Configure SAF in sexrver.xml by setting the following SAF elements.

<safCredentials mapDistributedIdentities="true" profilePrefix="<xxx>"/>
<safAuthorization id="saf"/>
<safRoleMapperprofilePattern="<xxx>.%resource%.%role%" toUpperCase="false"/>

ii) Issue the RACMAP command. The general RACMAP command of mapping a distributed userid to
a SAF userid is in the format of:

RACMAP ID(userid)

MAP

WITHLABEL('label-name')
USERDIDFILTER(NAME('distributed-identity-user-name'))
REGISTRY (NAME ('distributed-identity-registry-name'))

Use “defaultRealm” in REGISTRY (NAME (‘<nnn>")), and use “<username_in_CIS>"in
USERDIDFILTER(NAME('<nnn>")), for example:

RACMAP ID(JATM12) MAP WITHLABEL ('authorisedUsexr:JATM12')
USERDIDFILTER(NAME('authorisedUser')) REGISTRY (NAME('defaultRealm'))

Note: If you deploy the application within a CICS bundle, the security role
"cicsAllAuthenticated" is automatically set in installedApps.xml as follows:

<application ...>
<application-bnd>
<security-role name="cicsAllAuthenticated">
<special-subject type="ALL_AUTHENTICATED_USERS"/>
</security-role>
</application-bnd>
</application>

It takes precedence over the group name that is stored in the custom identity store and an HTTP
403 error occurs. There are two options you can take:

i) Deploy your custom identity store application with a direct <application> elementin
server.xml.

i) Deploy within a CICS bundle, but use safAuthorization to bypass the CICS-generated
<application-bnd> which overrides the group information stored in the custom identity
store.

Results
You have successfully configured the custom identity store.

Configuring security for a Liberty JVM server by using an LDAP registry

Liberty uses a user registry to authenticate a user and retrieve information about users and groups

to perform security-related operations, including authentication and authorization. Default CICS Liberty
security uses the SAF registry. However, many transactions that run on CICS are initiated by users

who authenticate their identities on distributed application servers, so CICS also supports the use of a
Lightweight Directory Access Protocol (LDAP) registry in Liberty. To use LDAP, it is necessary to manually
configure the server.xml.

Before you begin

« Ensure that the CICS region is configured to use SAF security and is defined with SEC=YES as a system
initialization parameter.

« Authorize application developers and system administrators to create, view, update, and remove
JVMSERVER and BUNDLE resources to deploy web applications into a Liberty JVM server. The
JVMSERVER resource controls the availability of the JVM server, and the BUNDLE resource is a unit
of deployment for the Java applications and controls the availability of the applications.

296 CICS TS for z/OS: Java Applications in CICS

About this task

This task explains how to configure LDAP security for a Liberty JVM server, and integrate Liberty security
with CICS security. Distributed identity mapping can be used to associate a SAF user ID with a distributed
identity. You can use the CICS distributed identity mapping feature to set up distributed identity mapping.
A user can then log on to a CICS web application with their distributed identity, as authenticated by an
LDAP server. Filters that are defined in the z/OS security product (RACMAP) determine the mapping of
this identity to a SAF user ID. This SAF user ID can then be used to authorize access to web applications
through JEE application role security, providing integration with CICS transaction and resource security.
You can map a SAF user ID to one or more distributed identities.

The default transaction ID for running any web request is CJSA. You can configure CICS to run web
requests under a different transaction ID by using a URIMAP of type JVMSERVER. You can specify a
URIMAP to match the generic context root (URI) of a web application to scope the transaction ID to the
set of servlets that make up the application. Or you can choose to run each individual servlet under a
different transaction with a more precise URI.

There are three scenarios for this task:

« Scenario 1 — Distributed identity mapping with SAF authorization

 Scenario 2 — Distributed identity mapping without SAF authorization

« Scenario 3 — LDAP for authentication and authorization

Procedure
1. Distributed identity mapping with SAF authorization

You can use the CICS distributed identity mapping feature, cicsts:distributedIdentity-1.0to
enable LDAP distributed identities to be mapped to SAF user IDs. When used with the CICS security
feature cicsts:security-1.0, Liberty LDAP security is used for authentication and JEE application
role security from EJB role mappings are respected for authorization. CICS transactions run under the
mapped SAF user ID providing integration with CICS transaction and resource security.

a. Configure the WebSphere Liberty angel process to provide authentication and authorization
services to the Liberty JVM server, for more information see The Liberty server angel process.

b. Add the cicsts:security-1.0andthe cicsts:distributedIdentity-1.0 feature to the
featureManager list in the servexr. xml.

<featureManager>

éféature>cicsts:security—1.0</feature>
<feature>cicsts:distributedIdentity-1.0</feature>
</featureManager>

c. Configure Liberty to use LDAP authentication by defining the LDAP server in the server.xml, for
example:

<ldapRegistry id="ldap"
host="host.domain.com" port="389"
ldapType="IBM Tivoli Directory Server"
baseDN="ou=users,dc=domain,dc=com"
ignoreCase="true">

</ldapRegistry>

Full details on configuring LDAP user registries with Liberty are available in Configuring LDAP user
registries in Liberty.

d. Remove the safRegistry element, if present. Save the changes to the server.xml.

e. Make the necessary RACF definitions, including setting up the RACMAPs to map distributed
identities to SAF user IDs as which are described in Configuring LDAP user registries in
Liberty and providing access for these user IDs to the appropriate EJBROLEs as described in
“Authorization using SAF role mapping” on page 290. CICS configures SAF authorization and the
mapDistributedIdentities attributes in the safCredentials configuration element for you.

Chapter 10. Security for Java applications 297

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_angel.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_ldap.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_ldap.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_sec_ldap.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_sec_ldap.html

When the cicsts:distributedIdentity-1.0 featureis used with the cicsts:security-1.0
feature, Liberty LDAP security is used for authentication, and JEE application role security from EJB
role mappings are respected for authorization. CICS transactions run under the RACMAP mapped user
ID providing integration with CICS transaction and resource security.

What to do next

Back to top
2. Distributed identity mapping without SAF authorization

It is possible to allow CICS transactions to run under a RACMAP mapped user ID while respecting

the roles configured in the application’s <application-bnd> element. This might be useful when
migrating work from distributed Liberty to CICS Liberty. Be aware that if CICS bundles are used, a
user-defined <application-bnd> is overwritten by the CICS-generated <application-bnd>. SAF
authorization using role mapping is preferred, for more information see “Authorization using SAF role
mapping” on page 290 for more details.

a. Configure the WebSphere Liberty angel process to provide authentication and authorization
services to the Liberty JVM server, for more information, see The Liberty server angel process.

b. Add the cicsts:security-1.0and the 1dapRegistry-3.0 feature to the featureManager list
inthe server.xml.

<featureManager>

%féature>cicsts:security-1.0</feature>
<feature>ldapRegistry-3.0</feature>
</featureManager>

c. Configure Liberty to use LDAP authentication by defining the LDAP server in the sexver.xml, for
example:

<ldapRegistry id="ldap"
host="host.domain.com" port="389"
ldapType="IBM Tivoli Directory Server"
baseDN="ou=users,dc=domain,dc=com"
ignoreCase="true">

</ldapRegistry>

Full details on configuring LDAP user registries with the Liberty are available in Configuring LDAP
user registries in Liberty.

d. Configure Liberty to use distributed identity filters to map the distributed identities to SAF user
IDs by setting the mapDistributedIdentities attribute in the safCredentials configuration
element to true in the server. xml.

e. Remove the safRegistry element, if present. Save the changes to the server.xml.

f. Make the necessary RACF definitions, including setting up the RACMAPs to map distributed
identities to SAF user IDs as which are described in Configuring LDAP user registries in Liberty.

g. If JEE application role security from EJB roles is required for authorization then refer to the topic
“Authorization using SAF role mapping” on page 290.

Applications use Liberty LDAP security for authentication, and JEE application role security in an
<application-bnd> element are respected for authorization of the distributed identity. In CICS,
transactions run under the RACMAP mapped user ID, providing integration with CICS transaction and
resource security.

What to do next

Back to top
3. LDAP for authentication and authorization

LDAP security can be used in a CICS Liberty JVM server for both authentication and authorization using
JEE application role security. URIMAP definitions can then be used to set the user ID under which
transactions run. The mapDistributedIdentities attribute is not set in this scenario.

298 CICS TS for z/0S: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_angel.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_ldap.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_ldap.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_sec_ldap.html

This scenario might be useful if migrating a distributed application into a CICS Liberty JVM server,
without requiring any significant security resource changes.

a. Add the cicsts:security-1.0 andthe ldapRegistry-3.0 feature to the featureManager list
inthe server.xml.

<featureManager>

éféature>cicsts:security-1.0</feature>
<feature>ldapRegistry-3.0</feature>
</featureManager>

b. Configure Liberty to use LDAP authentication by defining the LDAP server in the sexver.xml, for
example:

<ldapRegistry id="ldap"
host="host.domain.com" port="389"
ldapType="IBM Tivoli Directory Server"
baseDN="ou=users,dc=domain,dc=com"
ignoreCase="true">

</ldapRegistry>

Full details on configuring LDAP user registries with Liberty are available in Configuring LDAP user
registries in Liberty.

c. Remove the safRegistry element, if present. Save the changes to the server.xml.

d. If JEE application role security from EJB roles is required for authorization then refer to the topic
“Authorization using SAF role mapping” on page 290.

Applications use Liberty LDAP security for authentication, and JEE application role security in an
<application-bnd>element are respected for authorization. In CICS transactions run under the
URIMAP or CICS DFLTUSER user ID as appropriate.

What to do next
Back to top

What to do next
This applies to all three scenarios:

- Modify the Liberty authentication cache.

« Set up URIMAP definitions to map web application URIs to transaction IDs.

This applies to scenarios 1 and 2:

« Set up CICS transaction security definitions to authorize access to URIs based on the mapped user ID.

Back to top

Configuring security for remote JCICSX API development

The JCICSX server is a remote Liberty JVM server in a CICS region. With the JCICSX API, it allows
developers to run Java applications on their local workstation as if they were run in CICS, without
deploying the applications to CICS. When remote connection is established from a JCICSX development
client in the developer's local JVM to a JCICSX server, the remote server can authenticate users and
authorize them with access based on their identities to ensure security. It also prevents users from
interfering with remote tasks started by other users.

Table of contents
“What authentication and authorization options are available?” on page 300

“What options to choose?” on page 301
“Typical scenarios and procedures” on page 302

Chapter 10. Security for Java applications 299

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_ldap.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_ldap.html

What authentication and authorization options are available?

The JCICSX server authenticates users to verify their identity. When planning how to authenticate JCICSX
users, you have a few options to consider. First, you need to decide which user registry is used to

store the user identity information. This topic covers the configuration of two registry options: using

user identities from SAF (safRegistry) and embedding user identities directly in your sexver.xml
(basicRegistry).

After configuring where the server is to find user identities, those users can be authorized to use the
JCICSX server application. By default, the JCICSX server allows all users who are able to be authenticated
with the server to access its services. However, this is customizable. The JCICSX server defines the
Enterprise Java role JCICSXUSER, which can be used to customize access. This is achieved by mapping a
role, which provides access to the application, to a group of users. Also, this role mapping can either be
recorded in SAF (safAuthorization) or embedded directly in your server.xml.

Note: You must have a SAF registry to use SAF authorization.

Therefore, as shown in Figure 38 on page 301, the following authentication and authorization options are
available for your remote JCICSX server:

 Using a basic user registry for authentication and server. xml for role mapping.
« Using a SAF registry for authentication and server. xml for role mapping.
« Using a SAF registry for authentication and SAF authorization for role mapping.

300 CICS TS for z/OS: Java Applications in CICS

Basic user registry
(server.xml)
SAF registry
=] q """"""""""""""""""""""""
Developer's JVM ; ; CICS region (development)

.........................

Java EE roles
(server.xml)

EJBROLE
(SAF authorization)

Figure 38. Authentication and authorization of remote JCICSX server

What options to choose?

From a logistical standpoint, it's simple to configure authentication and authorization directly in your
server.xml. Therefore, it can be a convenient option if you are setting up the JCICSX server in a private
development region. However, it has limitations at larger scales because the server.xml configuration
is difficult to share. While it's more complicated to set up SAF for authentication and authorization, which
involves the creation of EJB roles (EJBROLEs) in RACF, you can take advantage of existing information

in your SAF database if you already have one. For example, you can authorize existing groups that are
defined in SAF to use JCICSX, without having to specify them again. You can also share that information
across multiple instances of JCICSX server running in different CICS regions, without having to configure
each region independently.

Note: Any security configuration that you specify in the JCICSX server's server.xml must co-exist
with the security requirements of other applications you have deployed into that server. For example,
if you have an application that requires SAF authorization be enabled, you cannot specifically disable

it for the JCICSX server and enable SAF authorization in the same Liberty server. In this case, you can
create another JVM server that's dedicated to running the JCICSX server in your CICS region to work
around this. If you don't create a separate server for JCICSX, you must follow instructions in “Scenario
3: Set up security in all my CICS regions, granting access to specific people” on page 303 to set up SAF
authorization for the server.

Chapter 10. Security for Java applications 301

In addition, when the client starts a session with the JCICSX server, a new CICS task is created to run
under transaction CIXA and URI map DFHJXSU. Subsequent JCICSX requests for that session will run
under the same task, and must be issued by the same user. Transaction CIJXA is a category 2 transaction.
If you have transaction attach security turned on, you also need to permit users to run transaction CIXA.

See “Typical scenarios and procedures” on page 302 for a discussion on how you might configure
authentication and authorization for a number of typical scenarios.

Typical scenarios and procedures
Three scenarios are provided to cover the options described before.

« “Scenario 1: Allow all users to try it out in a single region with no authentication” on page 302

« “Scenario 2: Allow users to sign on using SAF identities, granting access to authenticated or specific
users” on page 303

« “Scenario 3: Set up security in all my CICS regions, granting access to specific people” on page 303

Scenario 1: Allow all users to try it out in a single region with no authentication

To allow developers to test applications quickly in a development region, you can configure the remote
JCICSX server to use no authentication. This task configures all security settings in server. xml.

Before you begin

Ensure that you have set up a Liberty JVM server to serve as the JCICSX server, by adding the JCICSX
server feature (cicsts:jcicsxServer-1.0) to the server.xml file of your Liberty JVM server:

<featureManager>
<feature>cicsts:jcicsxServer-1.0</feature>
</featureManager>

For more information, see Java development using JCICSX.

Procedure

1. If your server is not configured with the appSecurity-2.0 feature to use Liberty security, no further
configuration is needed. Any user can access the server with no credentials provided. For more
information about appSecuzrity, see “Configuring security for a Liberty JVM server” on page 277.

2. If your server is configured with the appSecurity-2.0 feature to use Liberty security:

a. By default, the server only accepts authentication with a valid certificate. To allow users to be
authenticated with a username and password, add the following line to the server. xml file:

<webAppSecurity allowFailOverToBasicAuth="true"/>

Otherwise, users get a 403 error when they access the server with a username and password.

b. Create a basic user registry to authenticate users in servexr.xml. For instructions, see Configuring
a basic user registry for Liberty.

c. By default, the server allows all the authenticated users defined in your user registry to access
the servlet. Override the default setting to allow all users by adding the following snippet to
server.xml:

<authorization-roles id="com.ibm.cics.wlp.jcicsxserver">
<security-role name="JCICSXUSER">
<special-subject type="EVERYONE"/>
</security-role>
</authorization-roles>

It changes the special-subject type from ALL_AUTHENTICATED_USERS to EVERYONE so that
any user can access the servlet no matter what usernames or passwords they provide. If you don't
specify the EVERYONE special subject, unauthenticated users who access the server get a 401
error.

302 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/jcicsx-api.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_basic_registry.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_basic_registry.html

3. If you are using transaction attach security, grant the CICS default user ID access to run the CIXA
transaction.

Result

You have now configured remote JCICSX server to use no authentication for a CICS region.

Scenario 2: Allow users to sign on using SAF identities, granting access to
authenticated or specific users

This is convenient if you already have a SAF registry to manage user identities. In this scenario, you use
the SAF registry for authentication and configure role mapping in server.xml so that you don't need to
configure new SAF EJBROLEs.

Before you begin
Ensure that you have set up a Liberty JVM server to serve as the JCICSX server, by adding the JCICSX
server feature (cicsts:jcicsxServer-1.0) to the server.xml file of your Liberty JVM server:

<featureManager>
<feature>cicsts:jcicsxServer-1.0</feature>
</featureManager>

For more information, see Java development using JCICSX.

Procedure

1. Enable CICS security, which integrates Liberty security, for the JCICSX server and configure it to use
the SAF registry. For instructions, see “Configuring security for a Liberty JVM server” on page 277.

2. By default, the server only accepts authentication with a valid certificate. To allow users to be
authenticated with a username and password, add the following line to the servexr. xml file:

<webAppSecurity allowFailOverToBasicAuth="true"/>

Otherwise, users get a 403 error when they access the server with a username and password.

3. After users are authenticated, all the authenticated users are allowed to use the application by default.
If you want to restrict the application to specific users, bind users to the JCICSXUSER security role in
server.xml:

<authorization-roles id="com.ibm.cics.wlp.jcicsxserver">
<security-role name="JCICSXUSER">
<user name="USER"/>
</security-role>
</authorization-roles>

4. If you are using transaction attach security, grant the CICS default user ID access to run the CIXA
transaction.

Result

You now have configured the remote JCICSX server to authenticate users using the SAF registry and to
authorize them access to the service using role mapping in Enterprise Java.

Scenario 3: Set up security in all my CICS regions, granting access to specific people

In this scenario, you configure the JCICSX servers in all CICS regions that run under the default profile
prefix to use SAF for authentication and authorization to grant specific user or user groups access. This

is because SAF authorization makes it easy to share security settings across multiple CICS regions. When
using SAF authorization, user to role mappings are used to map roles to EJBROLE resource profiles using
the SAF role mapper. The server queries SAF to determine if the user has the required READ access to the
EJBROLE resource profile. It's also convenient in that you can authorize an existing user group to use the
JCICSX server by creating an EJBROLE.

Before you begin

Chapter 10. Security for Java applications 303

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/jcicsx-api.html

Ensure that you have set up a Liberty JVM server to serve as the JCICSX server, by adding the JCICSX
server feature (cicsts:jcicsxServer-1.0) to the server.xml file of your Liberty JVM server:

<featureManager>
<feature>cicsts:jcicsxServer-1.0</feature>
</featureManager>

For more information, see Java development using JCICSX.

Procedure

1. Enable CICS security, which integrates Liberty security, for the JCICSX server and configure it to use
the SAF registry. For instructions, see “Configuring security for a Liberty JVM server” on page 277.

2. By default, the server only accepts authentication with a valid certificate. To allow users to be
authenticated with a username and password, add the following line to the server. xml file:

<webAppSecurity allowFailOverToBasicAuth="true"/>
Otherwise, users get a 403 error when they access the server with a username and password.
3. Add the<safAuthorization> element to server.xml, to use SAF authorization for role mapping:
<safAuthorization id="saf"/>

4. Create the EJBROLE in RACF using the following RACF command:

RDEFINE EJBROLE BBGZDFLT.com.ibm.cics.wlp.jcicsxserver.JCICSXUSER UACC (NONE)

where BBGZDFLT is the default profile prefix, so this security configuration applies to all CICS regions
that run under the default profile prefix. The profile prefix can be modified, making it easy for regions
with the same profile prefix to share security settings. For more information, see “Authorization using
SAF role mapping” on page 290.

5. Grant users READ access to those EJBROLE:

PERMIT BBGZDFLT.com.ibm.cics.wlp.jcicsxserver.JCICSXUSER CLASS(EJBROLE) ACCESS (READ)
ID(<user|group>)

6. If you are using transaction attach security, grant the CICS default user ID access to run the CIXA
transaction.

Result

You have configured the remote JCICSX servers in all CICS regions running under the default profile prefix
to authenticate users using the SAF registry and to authorize specific users or user groups with access to
the services.

Configuring SSL (TLS) for a Liberty JVM server using a Java keystore

You can configure a Liberty JVM server to use SSL for data encryption, and optionally authenticate with
the server by using a client certificate. Certificates can be stored in a Java keystore or in a SAF key ring
such as in RACF.

About this task

Enabling SSL in a Liberty JVM server requires adding the transpoxrtSecuxrity-1.0 Liberty feature,
a keystore, and an HTTPS port. CICS automatically creates and updates the servexr. xml file.
Autoconfiguring always results in the creation of a Java keystore.

It is important to understand that any web request to a Liberty JVM server uses the JVM support for
TCP/IP sockets and SSL processing, not CICS sockets domain.

304 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/jcicsx-api.html

Procedure

- To use autoconfigure to configure SSL, complete the following steps:

a) Ensure autoconfigure is enabled in the JVM profile by using the JVM system property
-Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true.

b) Set the SSL port by setting the JVM system property
-Dcom.ibm.cics.jvmserver.wlp.sexver.https.port inthe JVM profile.

¢) Restart the JVM server to add the necessary configuration elements to server. xml.

Results
SSL for a Liberty JVM server is successfully configured.

Configuring SSL (TLS) for a Liberty JVM server using RACF

You can configure a Liberty JVM server to use SSL for data encryption, and optionally authenticate with
the server by using a client certificate. Certificates can be stored in a Java keystore or in a SAF key ring
such as a RACF keyring.

About this task

Enabling SSL in a Liberty JVM server requires adding the transportSecurity-1.0 Liberty feature, a
keystore, and an HTTPS port. You edit the server. xml file to add the required elements and values. You
must follow the manual procedure if you want to use a RACF key ring.

It is important to understand that any web request to a Liberty JVM server uses the JVM support for
TCP/IP sockets and SSL processing, not CICS sockets domain.

Procedure

- To manually configure SSL, you need to create a signing certificate. Use this signing certificate to
create a server certificate. Then, export the signing certificate to the client web browser where it is
used to authenticate the server certificate.

a) Create a certificate authority (CA) certificate (signing certificate). An example, using RACF
commands, follows:

RACDCERT GENCERT
CERTAUTH
SUBJECTSDN(CN('CICS Sample Certification Authority')
0('IBM')
ou('CICcS'))
SIZE(2048)
WITHLABEL ('CICS-Sample-Certification')

The SIZE of the certificate should be a minimum of 2048 bits. For more information, see the RACF
RACDCERT GENCERT (Generate certificate) command.

b) Create a server certificate that uses the signing certificate from step 2, where <userid> is the
CICS region user ID. The hostname is the host name of the server that the Liberty server HTTPS
port is configured to use.

RACDCERT ID(<userid>)
GENCERT
SUBJECTSDN(CN('<hostname>"')
0('IBM')
ou('CIcs'))
SIZE(2048)
SIGNWITH (CERTAUTH LABEL('CICS-Sample-Certification'))
WITHLABEL ('<userid>-Liberty-Server')

The SIZE of the certificate should be a minimum of 2048 bits. For more information, see the RACF
RACDCERT GENCERT (Generate certificate) command.

¢) Connect the signing certificate and server certificate to a RACF key ring.

Chapter 10. Security for Java applications 305

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.icha400/le-gencert.html
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.icha400/le-gencert.html
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.icha400/le-gencert.html
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.icha400/le-gencert.html

You can use RACF with the following command, and replace the value of <keyring> with the name
of the key ring you want to use. Replace the value of <userid> with the CICS region user ID.

RACDCERT ID(<userid>) CONNECT (RING(<keyring>)
LABEL ('CICS-Sample-Certification')
CERTAUTH)

RACDCERT ID(<userid>) CONNECT (RING(<keyring>)
LABEL ('<userid>-Liberty-Sexrver'))

Export the signing certificate to a CER file:

RACDCERT CERTAUTH EXPORT (LABEL ('CICS-Sample-Certification'))
DSN('<userid>.CERT.LIBCERT")
FORMAT (CERTDER)
PASSWORD (' password')

FTP the exported certificate in binary to your workstation, and import it into your browser as a
certificate authority certificate.

d) Edit the server. xml file and add the SSL feature, and the keystore. Set the HTTPS port (value is
9443 in the following example) and restart your CICS region. The SAF key ring must be specified in
the URL form safkeyring://<userid>/<keyring>.

If you are running Java 11, the location must be location="safkeyringjce://<userid>/
<keyring>".

The <userid> value must be set to the CICS region user ID and the <keyring> value must be set
to the name of the key ring. The password field is not used for accessing the SAF key ring and must
be set to password.

<featureManager>

<feature>transportSecurity-1.0</feature>
</featureManager>

<httpEndpoint host="+" httpPort="9080" httpsPort="9443"
id="defaultHttpEndpoint" />

<keyStore filebased="false" id="racfKeyStore"
location="safkeyring://<userid>/<keyring>"
password="password"
readOnly="true"
type="JCERACFKS" />
<ssl id="defaultSSLConfig" keyStoreRef="racfKeyStore"
sslProtocol="SSL_TLS"
serverKeyAlias="<userid>-Liberty-Server" />

Results
SSL for a Liberty JVM server is successfully configured.

Configuring SSL (TLS) for remote JCICSX API development

When configuring a Liberty JVM server in CICS for remote JCICSX API development, you can configure it
to use SSL for data encryption.

About this task

To enable the remote development functionality of the JCICSX API, a Liberty JVM server is required in
CICS to receive requests from the developer's local Liberty JVM server. To enable SSL communication
between the remote Liberty JVM server in CICS and the local Liberty JVM server on the developer's
machine, the remote server must be configured to use SSL and its certificate must be trusted by the local
Liberty server.

306 CICS TS for z/OS: Java Applications in CICS

Before you begin

 Configure the remote Liberty JVM server for user authentication and authorization. For instructions, see

“Configuring security for remote JCICSX API development” on page 299

« Enable SSL in the Liberty JVM server in CICS. For instructions, see “Configuring SSL (TLS) for a Liberty

JVM server using a Java keystore” on page 304.

« Ensure that a local Liberty JVM server is configured to make remote JCICSX requests. This is usually

done by the application developer on their local machine. For instructions, see Extra configuration for
remote development (local workstation) in Java development using JCICSX.

Procedure

For system programmers, configure the remote Liberty JVM server as follows:

As a system programmer, you need to generate a certificate for the remote Liberty JVM server with its
host name registered.

a) Register the host name of the remote server in the sexver. xml file.

By default the host name of the Liberty serveris localhost. In this case your SSL connection
will fail because the certificate will be registered to localhost while your client will be trying to
connect to the host name of your CICS region. To override the default localhost host nhame, add
the defaultHostName variable to your sexver. xml file:

<variable name="defaultHostName" value="your-hostname"/>

where your-hostname is the host name of the remote Liberty JVM server. For more information, see
Setting the default host name of a Liberty server.

b) Generate a new copy of the remote Liberty JVM server's public certificate.
After setting the default host name of your server, you must regenerate the certificate for it.

a. Stop the Liberty JVM server.

b. Delete the Java keystore that stores the certificates. It is the key . p12 file located in
iserver.config.dir}/resources/security.

c. Start the liberty server.
d. Verify that a new key . p12 file is regenerated.
c) Verify that the host name is correct in the certificate using OpenSSL or the Java keytool utility:

— If you're using OpenSSL, input this command to show the certificates of the remote Liberty JVM
server:

$ openssl s_client -showcerts -connect remotejcicsxserver.com:portNo

— If you're using the Java keytool utility:

a. Navigate to the folder of the keystore on the remote Liberty server at:
iserver.config.dir}/resources/security.

b. If the local Liberty serveris at 19.0.0.3 or later, which is the minimum version required to use
the client-side tooling of remote JCICSX development, and that autoconfigure is enabled for
the remote Liberty server to use SSL, the remote Liberty server will have created a keystore
using default values. In this case, use this command to show the certificates stored in the
auto-created Java keystore:

keytool -list -keystore key.pl2 -storepass defaultPassword -storetype PKCS12 -v

Otherwise, substitute values in for storepass and storetype according to your custom
configuration.

c. In the output, verify that CN = your-hostname shows the host name of the remote JVM
server, instead of the default localhost value. Otherwise, repeat Step “2” on page 307.

Chapter 10. Security for Java applications 307

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/jcicsx-api.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/tagt_wlp_set_defaulthostname.html

- For application developers, configure the local Liberty JVM server to trust the remote server's
public certificate as follows:

By default, the local Liberty JVM server might refuse to connect to the remote Liberty JVM server
because it does not trust the public certificate that the remote Liberty provides during the SSL
handshake. Therefore, the application developer must download a copy of the certificate from the
remote Liberty server and add it to the truststore used by the local Liberty server.

a) Download a copy of the public certificate from the remote Liberty JVM server:
To use OpenSSL:

a. Run the following command to show the certificates of the remote server, where your-
hostname and your-port are the host name and port number of your remote Liberty JVM
server:

openssl s_client -showcerts -connect your-hostname:your-port

b. From the output, copy the first certificate. Include the following lines and the information
between these lines:

Holololo- BEGIN CERTIFICATE----- !
Yoosoo END CERTIFICATE----- !

c. Paste the certificate into a new file with a . cex extension, for example, publicKey.cer.

Note: Note: Be sure not to include additional lines in this file; otherwise the certificate won't
be added to you local Liberty truststore successfully.

If you have access to the remote Liberty server, you can also use the Java keytool utility to
download the certificate:

a. Navigate to the keystore on your remote Liberty JVM server. The file path is
iserver.config.dir}/resources/security/key.pl2.

b. Use the Java keytool utility to create a public certificate:

keytool -rfc -export -keystore key.pl2 -alias default -file /your/save/location/
public-remote.cer -v -storepass yourKeyStorePassword -storeType yourType

where yourType is the keystore type, which defaults to PKCS12. For more information, see
Liberty default keystore type changed to PKCS12.

b) Navigate to the folder of the keystore on the local Liberty JVM server: $server.config.dir}/
resources/security.

¢) Import the public certificate that the system programmer downloaded into the truststore of the
local Liberty, using the following command:

keytool -importcert -file /cert/location/public-remote.cer -keystore key.pl2 -storepass
localPassword -storetype yourType -trustcacerts -v

where yourType is the keystore type, which defaults to PKCS12. For more information, see Liberty
default keystore type changed to PKCS12.

d) Restart the local Liberty JVM server to pick up the new certificate.

What to do next

The application developer can add a JCICSX resource to the local Liberty JVM server to check whether the
connection is working. Samples can be found at JCICSX samples in GitHub.

308 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_liberty_keystore_default.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_liberty_keystore_default.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_liberty_keystore_default.html
https://github.com/cicsdev/cics-java-jcicsx-samples

Setting up SSL (TLS) client certificate authentication in a Liberty JVM server

SSL client certificate authentication allows the client and server to provide certificates to the opposite
party for mutual verification. It is often used in situations where an extra level of authentication is
required because of security concerns.

Before you begin

You must complete the task Configuring SSL (TLS) for a Liberty JVM server using RACF. If you do not
already have your CICS Liberty security set up, you must complete Configuring security for a Liberty JVM
server before proceeding.

About this task

The following setup information assumes that you are using RACF keystores to store your certificates for
SSL client certificate authentication.

Procedure

1. Create a personal certificate using a signing certificate and associate the personal certificate with a
RACF user ID.

Then, export the personal certificate to a data set in CER format and then FTP in binary to your

work station. Import the personal certificate to the web browser as a personal certificate. When the
certificate is imported into the web browser, it can supply an SSL client certificate and connect to the
HTTPS port in the Liberty server. Use the following RACF command, where <clientuserid> is the
RACF user ID and <hostname> is the host name of the client computer.

RACDCERT ID(<clientuserid>)
GENCERT
SUBJECTSDN(CN('<hostname>")
0('IBM')
ou('cIcs'))
SIZE(2048)
SIGNWITH (CERTAUTH LABEL('CICS-Sample-Certification'))
WITHLABEL ('<clientuserid>-certificate')

Export the personal certificate as you have done earlier in this step.

RACDCERT ID(<clientuserid>)
EXPORT (LABEL ('<clientuserid>-certificate'))
DSN('USERID.CERT.CLICERT")
FORMAT (PKCS12DER)
PASSWORD (' passwoxd')

Update the server.xml SSL element to support SSL client certificate authentication:

<ssl id="defaultSSLConfig" keyStoreRef="racfKeyStore"
sslProtocol="SSL_TLS"
serverKeyAlias="<userid>-Liberty-Server"
clientAuthenticationSupported="true"/>

Additionally, if you want to ensure all clients must supply a valid SSL client certificate, add the
clientAuthentication attribute to the SSL element as follows:

<ssl id="defaultSSLConfig" keyStoreRef="racfKeyStore"
sslProtocol="SSL_TLS"
serverKeyAlias="<userid>-Liberty-Server"
clientAuthenticationSupported="true"
clientAuthentication="txue"/>

2. You can authenticate a web request in CICS under the identity of the client user ID in step 2. Then,
deploy the web application with a login-config element for CLIENT-CERT in the web.xml. The
web . xml file can be found inside the source files for the web application that you are deploying.

Chapter 10. Security for Java applications 309

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty_racf.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html

<login-config>
<auth-method>CLIENT-CERT</auth-method>
</login-config

Instead, if you want to allow failover to HTTP basic authentication if SSL client certificate
authentication is not configured, add the webAppSecurity element to server.xml.

<webAppSecurity allowFailOverToBasicAuth="true" />

3. Finally, set up CICS transaction security to authorize access to the CICS transaction based on the
authenticated client user ID.

For further information, see “Authorizing users to run applications in a Liberty JVM server” on page
286.

Using the syncToOSThread function

You can use the syncToOSThread function of Liberty in a CICS Liberty JVM server. SyncToOSThread
enables a Java subject, authenticated by Liberty, to be synchronized with the operating system (0S)
thread identity. Without syncToOSThread, the operating system thread identity defaults to be the CICS
region user ID, this is the identity used to authorize access to resources outside of CICS control such

as zFS files. With syncToOSThread in effect, the user's subject is used to access these operating system
resources.

About this task

Enabling syncToOSThread requires the Liberty appSecurity-1.0 and zosSecurity-1.0 features. These
features are included with the cicsts:security-1.0 feature. You must also define the syncToOSThread
configuration element in the Liberty server.xml and add a special <env-entry/> to the application's
deployment descriptor (web.xml). In addition, the SAF registry must be used for authentication, the
angel process must be up and running, and the server must be connected to the angel process. For more
information about the angel process, see Process types on z/0S.

Procedure

1. Configure the syncToOSThread configuration element in the Liberty server.xml and add the required
<env-entry/> to each web application's deployment descriptor by following steps 1 and 2 in
Enabling syncToOSThread for applications

2. Grant the Liberty server permission to perform syncToOSThread operations by configuring SAF with
either of the following profiles:

« Grant the CICS region user ID CONTROL access to the BBG.SYNC.<profilePrefix> profile in the
FACILITY class, where <profilePrefix> is specified on the <safCredentials /> element.
This allows the Liberty server to synchronize any Java subject with the OS thread identity:

PERMIT BBG.SYNC.<profilePrefix> ID(<serverUserId>) ACCESS(CONTROL) CLASS(FACILITY)

« Grant the CICS region user ID READ access to the BBG.SYNC.<profilePrefix> profilein
the FACILITY class. Additionally, grant the CICS region user ID READ access to one or more
BBG.SYNC.<AuthUserid/> profiles in the SURROGATE class, one for each authenticated user ID
to be synchronized with the OS identity:

PERMIT BBG.SYNC.<profilePrefix> ID(<serverUserId>) ACCESS(READ) CLASS(FACILITY)
PERMIT BBG.SYNC.<AuthUserid> ID(<serverUserId>) ACCESS(READ) CLASS(SURROGAT)

Restriction: A servlet configured as the welcome page in web . xml, does not support the
syncToOSThread function.

310 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_zos_runtime_proc.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_synctoosthread.html

Enabling a Java security manager

By default, Java applications have no security restrictions placed on activities requested of the Java API.
To use Java security to protect a Java application from performing potentially unsafe actions, you can
enable a security manager for the JVM in which the application runs.

About this task

The security manager enforces a security policy, which is a set of permissions (system access privileges)
that are assigned to code sources. A default policy file is supplied with the Java platform. However, to
enable Java applications to run successfully in CICS when Java security is active, you must specify an
additional policy file that gives CICS the permissions it requires to run the application.

You must specify this additional policy file for each kind of JVM that has a security manager enabled. CICS
provides some examples that you can use to create your own policies.

Notes: Enabling a Java security manager is not supported in a Liberty JVM server.

- The OSGi security agent example creates an OSGi middleware bundle called
com.ibm.cics.server.examples.security inyour project that contains a security profile. This
profile applies to all OSGi bundles in the framework in which it is installed.

- The example.permissions file contains permissions that are specific to running applications in a
JVM server, including a check to ensure that applications do not use the System.exit () method.

« CICS must have read and execute access to the directory in zFS where you deploy the OSGi bundle.

For applications that run in the OSGi framework of a JVM server:

Procedure
1. Create a plug-in project in the IBM CICS SDK for Java and select the supplied OSGi security agent
example.
2. In the project, select the example.permissions file to edit the permissions for your security policy.
a) Validate that the CICS zFS and Db2 installation directories are correctly specified.
b) Add other permissions as necessary.
3. Deploy the OSGi bundle to a suitable directory in zFS such as /u/bundles.
4. Edit the JVM profile for the JVM server to add the OSGi bundle to the 0SGI_BUNDLES option before
any other bundles:
OSGI_BUNDLES=/u/bundles/com.ibm.cics.server.examples.security_1.0.0.jar
5. Add the following Java property to the JVM profile to enable security.
-Djava.security.policy=all.policy

6. Add the following Java environment variable to the JVM profile to enable security in the OSGi
framework:

org.osgi.framework.security=osgi
7. To allow the OSGi framework to start with Java 2 security, add the following policy:

grant { permission java.security.AllPermission; }%;

8. Save your changes and enable the JVMSERVER resource to install the middleware bundle in the JVM
server.

9. Optional: Activate Java 2 security.

a) To activate a Java 2 security policy mechanism, add it to the appropriate JVM profile. You must also
edit your Java 2 security policy to grant appropriate permissions.

b) To use IDBC or SQLJ from a Java application with a Java 2 security policy mechanism active, use
the IBM Data Server Driver for JDBC and SQLJ.

c¢) To activate a Java 2 security policy mechanism, edit the JVM profile.

Chapter 10. Security for Java applications 311

d) Edit the Java 2 security policy to grant permissions to the JDBC driver, by adding the lines that are
shown in Example 1. In place of db2xxx, specify a directory below which all your Db2 libraries are

located. The permissions are applied to all the directories and files below this level. This enables
you to use JDBC and SQLJ.

e) Edit the Java 2 security policy to grant read permissions, by adding the lines that are
shown in Example 2. If you do not add read permission, running a Java program produces

AccessControlExceptions and unpredictable results. You can use JDBC and SQLJ with a Java 2
security policy.

Example 1:

grant codeBase "file:/usr/lpp/db2xxx/-" 3
permission java.security.AllPermission;

’

Example 2:

grant {

// allows anyone to read properties
permission java.util.PropertyPermission "x", "read";

iH

Results

When the Java application is called, the JVM determines the code source for the class and consults the
security policy before granting the class the appropriate permissions.

312 CICS TS for z/OS: Java Applications in CICS

Chapter 11. Improving Java performance

You can take various actions to improve the performance of Java applications and the JVMs in which they
run.

About this task

In addition to fine-tuning CICS itself, you can further improve the performance of Java applications in the
following ways:

« Ensuring that the Java applications are well written

« Tuning the Java Runtime Environment (JVM)

« Tuning the language in which the JVM runs

Procedure

1. Determine the performance goals for your Java workload.

Some of the most common goals include minimizing processor usage or application response times.
After you decide on the goal, you can tune the Java environment.

2. Analyze your Java applications to ensure that they are running efficiently and do not generate too
much garbage.

IBM has tools that can help you to analyze Java applications to improve the efficiency and
performance of particular methods and the application as a whole.

3. Tune the JVM server.
You can use statistics and IBM tools to analyze the storage settings, garbage collection, task waits, and
other information to tune the performance of the JVM.

4. Tune the Language Environment enclave in which a JVM runs.
JVMs use MVS storage, obtained by calls to MVS Language Environment services. You can modify the
runtime options for Language Environment to tune the storage that is allocated by MVS.

5. Optional: If you use the z/OS shared library region to share DLLs between JVMs in different CICS
regions, you can tune the storage settings.

Determining performance goals for your Java workload

Tuning CICS JVMs to achieve the best overall performance for a given application workload involves
several different factors. You must decide what the preferred performance characteristics of your Java
workload are. When you establish these characteristics, you can determine what parameters to change
and how to change them.

The following performance goals for Java workloads are most common:

Minimum overall processor usage
This goal prioritizes the most efficient use of the available processor resource. If a workload is
tuned to achieve this goal, the total use of the processor across the entire workload is minimized,
but individual tasks might experience high processor consumption. Tuning for the minimum overall
processor usage involves specifying large storage heap sizes for your JVMs to minimize the number of
garbage collections.

Minimum application response times
This goal prioritizes ensuring that an application task returns to the caller as rapidly as possible. This
goal might be especially relevant if there are Service Level Agreements to be achieved. If a workload
is tuned to achieve this goal, applications respond consistently and quickly, though a higher processor
usage might occur for garbage collections. Tuning for minimum application response times involves
keeping the heap size small and possibly using the gencon garbage collection policy.

© Copyright IBM Corp. 1974, 2023 313

Minimum JVM storage heap size

This goal prioritizes reducing the amount of storage used by JVMs. You can reduce the amount of
storage that is used in the JVM, by reducing the JVM heap size.

Note: Reducing the JVM heap size might result in more frequent garbage collection events.

Other factors can affect the response times of your applications. The most significant of these is the Just
In Time (JIT) compiler. The JIT compiler optimizes your application code dynamically at run time and
provides many benefits, but it requires a certain amount of processor resource to do this.

Analyzing Java applications using IBM Health Center

To improve the performance of a Java application, you can use IBM Health Center to analyze the
application. This tool provides recommendations to help you improve the performance and efficiency
of your application.

About this task

IBM Health Center is available in the IBM Support Assistant Workbench. These free tools are available
to download from IBM as described in the Getting Started guide for IBM Health Center. Try to run the
application in a JVM on its own. If you are running a mixed workload in a JVM server, it might be more
difficult to analyze a particular application.

Procedure

1. Add the required connection options to the JVM profile of the JVM server.

The IBM Health Center documentation describes what options you must add to connect to the JVM
from the tool.

2. Start IBM Health Center and connect it to your running JVM.
IBM Health Center reports JVM activity in real time so wait a few moments for it to monitor the JVM.
3. Select the Profiling link to profile the application.
You can check the time spent in different methods. Check the methods with the highest usage to look
for any potential problems.
Tip: The Analysis and Recommendations tab can identify particular methods that might be good
candidates for optimization.
4. Select the Locking link to check for locking contentions in the application.

If the Java workload is unable to use all the available processor, locking might be the cause. Locking in
the application can reduce the amount of parallel threads that can run.

5. Select the Garbage Collection link to check the heap usage and garbage collection.

The Garbage Collection tab can tell you how much heap is being used and how often the JVM pauses
to perform garbage collection.

a) Check the proportion of time spent in garbage collection.

This information is presented in the Summary section. If the time spent in garbage collection is
more than 2%, you might need to adjust your garbage collection.

b) Check the pause time for garbage collection.

If the pause time is more than 10 milliseconds, the garbage collection might be having an effect on
application response times.

c¢) Divide the rate of garbage collection by the number of transactions to find out approximately how
much garbage is produced by each transaction.

If the amount of garbage seems high for the application, you might have to investigate the
application further.

What to do next
After you have analyzed the application, you can tune the Java environment for your Java workloads.

314 CICS TS for z/OS: Java Applications in CICS

https://developer.ibm.com/javasdk/tools/
https://developer.ibm.com/javasdk/tools/

Garbage collection and heap expansion

Garbage collection and heap expansion are an essential part of the operation of a JVM. The frequency of
garbage collection in a JVM is affected by the amount of garbage, or objects, created by the applications
that run in the JVM.

Allocation failures

When a JVM runs out of space in the storage heap and is unable to allocate any more objects (an
allocation failure), a garbage collection is triggered. The Garbage Collector cleans up objects in the
storage heap that are no longer being referenced by applications and frees some of the space. Garbage
collection stops all other processes from running in the JVM for the duration of the garbage collection
cycle, so time spent on garbage collection is time that is not being used to run applications. For a detailed
explanation of the JVM garbage collection process, see Generational Concurrent Garbage Collector.

When a garbage collection is triggered by an allocation failure, but the garbage collection does not free
enough space, the Garbage Collector expands the storage heap. During heap expansion, the Garbage
Collector takes storage from the maximum amount of storage reserved for the heap (the amount specified
by the -Xmx option), and adds it to the active part of the heap (which began as the size specified by the
-Xms option). Heap expansion does not increase the amount of storage required for the JVM, because

the maximum amount of storage specified by the -Xmx option has already been allocated to the JVM at
startup. If the value of the -Xms option provides sufficient storage in the active part of the heap for your
applications, the Garbage Collector does not have to carry out heap expansion at all.

At some point during the lifetime of the JVM, the Garbage Collector stops expanding the storage heap,
because the heap has reached a state where the Garbage Collector is satisfied with the frequency of
garbage collection and the amount of space freed by the process. The Garbage Collector does not aim to
eliminate allocation failures, so some garbage collection can still be triggered by allocation failures after
the Garbage Collector has stopped expanding the storage heap. Depending on your performance goals,
you might consider this frequency of garbage collection to be excessive.

Garbage collection options

You can use different policies for garbage collection that make trade-offs between throughput of the
application and the overall system, and the pause times that are caused by garbage collection. Garbage
collection is controlled by the -Xgcpolicy option:

-Xgcpolicy:optthruput
This policy delivers high throughput to applications but at the cost of occasional pauses, when
garbage collection occurs.

-Xgcpolicy:gencon
This policy helps to minimize the time that is spent in any garbage collection pause. Use this garbage
collection policy with JVM servers. You can check which policy is being used by the JVM server
by inquiring on the JVMSERVER resource. The JVM server statistics have fields that tell you how
many major and minor garbage collection events occur and what processor time is spent on garbage
collection.

When you use this policy, it is also worth considering the -Xgc:concurrentScavenge setting -
which is not a default setting - if your system has a large heap and is response-time sensitive. In

these situations it can help to reduce garbage collection pause times. For more information, see

-Xgc:concurrentScavenge.

-XX:+HeapManagementMXBeanCompatibility
This policy is set by default if you are using Java 8 SR5 and above. The policy ensures
consistent garbage collection statistics with previous levels of Java. For more information, see -XX:
[+|-]HeapManagementMXBeanCompatibility.

-XX: -HeapManagementMXBeanCompatibility
You can choose to opt in to using this policy. The policy enables the default heap changes in
Java 8 SR5 and above, however in some cases, the garbage collection statistics might indicate

Chapter 11. Improving Java performance 315

https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=management-gc-policies
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=options-xgc#concurrentscavenge
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=options-xx-heapmanagementmxbeancompatibility
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=options-xx-heapmanagementmxbeancompatibility

the heap usage to be greater than the maximum heap size. For more information, see -XX:
[+]|-]HeapManagementMXBeanCompatibility.

You can change the garbage collection policy by updating the JVM profile. For details of all the garbage
collection options, see Specifying garbage collection policy in IBM SDK.

Improving JVM server performance

To improve the performance of applications that run in a JVM server, you can tune different parts of the
environment, including the garbage collection and the size of the heap.

About this task

CICS provides statistics reports on the JVM server, which include details of how long tasks wait for
threads, heap sizes, frequency of garbage collection, and processor usage. You can also use additional
IBM tools that monitor and analyze the JVM directly to tune JVM servers and help with problem diagnosis.
You can use the statistics to check that the JVM is performing efficiently, particularly that the heap sizes
are appropriate and garbage collection is optimized.

Procedure

1. Check the amount of processor time that is used by the JVM server.

Dispatcher statistics can tell you how much processor time the T8 TCBs are using. JVM server
statistics tell you how long the JVM is spending in garbage collection and how many garbage

collections occurred. Application response times and processor usage can be adversely affected by
the JVM garbage collection.

2. Ensure that there is enough available storage capacity in the CICS address space. The CICS address
space contains the Language Environment heap size that is required by the JVM server.

3. Tune the garbage collection and heap in the JVM.

A small heap can lead to very frequent garbage collections, but too large a heap can lead to inefficient

use of MVS storage. You can use IBM Health Center to visualize and tune garbage collection and adjust
the heap accordingly.

What to do next

For more detailed analysis of memory usage and heap sizes, you can use the Memory Analyzer tool in IBM

Support Assistant to analyze Java heap memory using system dump or heap dump snapshots of a Java
process.

To start one or more JVM servers in a CICS region, you must ensure that enough storage capacity is
available for the JVM to use, excluding any storage capacity that is allocated to CICS.

Examining processor usage by JVM servers

You can use the CICS monitoring facility to monitor the processor time that is used by transactions
running in a JVM server. CICS-enabled threads in a JVM server run on T8 TCBs.

About this task

You can use the DFH$MOLS utility to print the SMF records or use a tool such as CICS Performance
Analyzer to analyze the SMF records.

Procedure

1. Turn on monitoring in the CICS region to collect the performance class of monitoring data.
2. Check the performance data group DFHTASK.
In particular, you can look at the following fields:

316 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=options-xx-heapmanagementmxbeancompatibility
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=options-xx-heapmanagementmxbeancompatibility
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=management-gc-policies

Field ID Field name Description

283 MAXTTDLY The elapsed time for which the user task waited to obtain a

T8 TCB, because the CICS region reached the limit of available
threads. The thread limit is 2000 for each CICS region and each
JVM server can have up to 256 threads.

400 T8CPUT The processor time during which the user task was dispatched
by the CICS dispatcher domain on a CICS T8 mode TCB.

When a thread is allocated a T8 TCB, that same TCB remains
associated with the thread until the processing completes.

401 JVMTHDWT The elapsed time that the user task waited to obtain a JVM
server thread because the CICS system had reached the thread
limit for a JVM server in the CICS region. This does not apply to
Liberty JVM servers.

3. To improve processor usage, reduce or eliminate the use of tracing where possible.

a) In a production environment, consider running your CICS region with the CICS main system trace
flag set off.
Having this flag on significantly increases the processor cost of running a Java program. You can set
the flag off by initializing CICS with SYSTR=OFF, or by using the CETR transaction.

b) Ensure that you activate JVM trace only for special transactions.

JVM tracing can produce large amounts of output in a very short time, and increases the processor
cost. For more information about controlling JVM tracing, see Diagnostics for Java.

4. Do not use the USEROUTPUTCLASS option in JVM profiles in a production environment.

Specifying this option has a negative effect on the performance of JVMs. The USEROUTPUTCLASS
option enables developers using the same CICS region to separate JVM output, and direct it to a
suitable destination, but it involves the building and invocation of additional class instances.

Calculating storage requirements for JVM servers

To run a JVM server successfully in a CICS region, you must ensure that enough free MVS storage is
available for both the JVM and its deployed applications to use.

About this task

The storage that is required for a JVM server, and the Java applications in it, does not come from
CICS-managed storage areas such as the DSA, EDSA, or GDSA. Some storage areas are managed by the
Language Environment handling requests, such as malloc () issued by C code. The remaining storage
areas are managed directly by the JVM, by using z/0S storage management requests such as IARV64.
Both of these storage area management types use storage from the available MVS private areas. It is
important to ensure that sufficient non-allocated private area region storage is available in the 24-bit,
31-bit, and 64-bit addressing areas. CICS cannot use its short-on-storage mechanism when private area
region storage is running low.

The major Java components that allocate MVS storage areas are as follows:
« Java heap

- Loading of Java classes

« JIT compilation caches

- Native stack

« Java monitors

« Java threads

= UNIX shared libraries

Chapter 11. Improving Java performance 317

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/dfhpjei.html

The Java heap is a contiguous pre-allocated block of 64-bit storage that is used to store the runtime data
area for all objects and arrays. It is managed by the JVM garbage collection process, and its size can only
be modified if the JVM is restarted. The other JVM storage areas are more dynamic in size and their size
can vary depending on usage. In addition, on top of the storage areas that are allocated by the JVM, you
must also consider other components that use MVS private area and interact with the JVM such as JDBC
type 2 drivers, IBM MQ Java adapter, or third-party tools.

To estimate the amount of storage used by the JVM in the different MVS private storage areas, you can
use the following procedure:

Procedure
1. Calculate your 24-bit storage.

Each JVM thread requires 4 KB of 24-bit storage. A single JVM server can start more than 50
background daemon threads; this number does not include the number of CICS-managed JVM server
threads defined by the JVMSERVER THREADLIMIT attribute. If you are using a Liberty JVM server, the
number of daemon threads can be 100 or greater.

UNIX System Services temporarily requires 256 KB of contiguous 24-bit storage during the process of
creating a new thread. The minimum 24-bit requirement is calculated as follows:

256KB + (4KB * number_of_threads)
2. Calculate your 31-bit storage.

Multiple JVM components can allocate storage from the 31-bit MVS private area that includes loading
of Java classes, CICS control blocks, Java thread stack, the JIT compiler, and the USS dynamic link
library (DLL) files used by the JVM.

a) Java class loading

By default, CICS JVM servers with -Xmx (heap) values of 57GB or less use Java compressed
references. Compressed references instruct the JVM to create smaller objects, and having smaller
objects can improve performance. Using compressed references causes the Java objects, classes,
threads, and monitors to be loaded into the LE HEAP31 storage area in 31-bit storage. If you have
insufficient space in 31-bit storage, class loading fails, causing termination of the JVM. Setting the
JVM command line option -Xnocompressedrefs disables the use of compressed references and
instead loads the Java classes into 64-bit storage.

b) JIT Compiler

The JIT compiler is responsible for continuous optimization, by compiling Java byte code.
Executable code is stored in the JIT code cache, and static data is stored in the JIT data cache.
Prior to z/OS, Version 2 Release 3 and Java 8 SR5 the code cache is stored in 31-bit storage,
whereas the data cache is stored in 64-bit storage. Depending on the number of Java applications,
and the amount of JIT activity, the 31-bit JIT code cache can expand dynamically to a maximum
size determined by the JVM setting -Xcodecachetotal. This defaults to 128 MB. If the cache
becomes full, the JIT process stops but the JVM continues to operate with reduced potential
performance. If you are using z/0S, Version 2 Release 3, you can free up more space in the 31-bit
private area by upgrading to Java 8 SR5, which supports residency mode for 64-bit applications
(RMODE®64) for the JIT code cache. This stores the compiled JIT code in the 64-bit private area.

c) UNIX shared libraries

The shared library region is a z/OS® feature that enables address spaces to improve the
performance of the loading of UNIX System Services dynamic link library (DLL) files, and to share
the associated real storage. The shared library function is disabled by default in CICS JVM servers,
but is supported by the IBM Java SDK. When the first JVM process that uses shared libraries is
started in the region, the shared library region reserves storage in the 31-bit high private area. For
more information, see Tuning the z/OS shared library region.

Note:

318 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=options-xcodecachetotal
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/dfht3gl.html

As an approximate guideline if using Java 8 SR5 and a single application, the first JVM server to
start within a CICS region can allocate anywhere between 51M to 115M of 31-bit MVS private area
depending on configuration and workload.

The subsequent JVM servers have a lower footprint and can allocate anywhere between 8M and
73M, as the JVM DLL files need to only be loaded once.

These figures do not include the UNIX shared library region, the value of which must also be added
to the 31-bit storage if enabled.

3. Calculate your 64-bit storage.

Multiple JVM components can allocate storage from the 64-bit MVS private area that includes the Java
heap, native thread stack, Java classes, JIT compiler output, and Java monitors. The amount of 64-bit
storage that is required can be estimated as a minimum of 2 GB, with additional storage required for
larger workloads or more complex configurations.

To more accurately estimate 64-bit storage, you need to consider:

« The maximum Java heap value, set by using - Xmx

« The maximum number of all threads in the JVM. Each thread requires a minimum of 3 MB of
Language Environment stack storage, including 1 MB of stack. This accounts for the minimum 1 MB
native stack storage, 1 MB of reserve storage and the 1 MB Language Environment control block that
is required to support each thread. See Identifying Language Environment storage needs for JVM
servers

 Storage for the Java classes, JIT caches, and Language Environment 64-bit heaps. You can add a
best guess of 300 MB - 500 MB depending on workload and configuration

Note:

The Java shared class cache uses UNIX shared memory which does not count towards the CICS
region's address space MEMLIMIT.

The resulting figure needs to be rounded up to the next GB to account for the way that CICS GDSA
expansion views guarded storage.

4. Run the sample statistics program DFHOSTAT to provide values used to estimate MVS storage.

View the MVS user region and extended user region storage report for information about the use of
24-bit and 31-bit MVS storage.

View the Storage above 2 GB report for information about the use of 64-bit MVS storage.

» Note the values for [Current Unallocated Total, which indicate the current amount of
unallocated 24-bit (user region) and 31-bit (extended user region) storage.

» Note the value for I MEMLIMIT minus Current Address Space active, which indicates the
current amount of 64-bit storage available to the CICS region.

Chapter 11. Improving Java performance 319

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/dfhpj_le_dfhaxro.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/dfhpj_le_dfhaxro.html

MVS User Region and Extended User Region

User Region Extended User
Region

Last Monitor Sample Time : 03/11/2022 16:22:13 03/11/2022
16:22:13
State. L. 0.0 .. Normal
Normal
Current Unallocated Total. : 5,956K
392,956K 1
LWM Unallocated Total. : 5,956K
392,956K
Current Unallocated Largest Contiguous Area. . : 5,956K
392,168K
LWM Unallocated Largest Contiguous Area. . . . : 5,956K
392,168K
Last date and time SOS
Current Tasks Waiting Because SOS
(0] (0]
Peak Tasks Waiting Because SOS .
0 (0]
Total Waits Because SOS.
0

0
Time Tasks Waited Because SOS. : 00:00:00.00000
00:00:00.00000

Storage ABOVE 2GB

MEMLIMIT Size. : 15,3606M
MEMLIMIT Set By. : JCL

Current Address Space active (bytes) : 1,143,996,416
Current Address Space active . . . : 1,091M
Peak Address Space active. : 1,091M

MEMLIMIT minus Current Address Space active. . . A 14,269M
MEMLIMIT minus allocated to Private Memory Ob]ects .. : 13,144M
MEMLIMIT minus bytes usable within Private Memory Ob]ects: 14,269M
Number of Private Memory Objects . . . : 33
.minus Current GDSA extents . . e e e e e 32
Bytes allocated to Private Memory Ob]ects e e e e e e 2,216M =
2,323,644,416
. ..minus Current GDSA allocated : 1,192M =
1,249,902,592
Bytes hidden within Private Memory Objects : 1,125M =
1,179,648,000
....minus Current GDSA hidden. : 1,124M =
1,178,599,424
....minus CICS Internal Trace Table hidden : 130M
Bytes usable within Private Memory Objects : 1,091M =
1,143,996,416
Peak bytes usable within Private Memory Objects : 1,806M =
1,893,728,256
Current GDSA Allocated: 1,024M =
1,073,741,824
Peak GDSA Allocated. 1,024M

5. Start the JVM server and run a representative Java workload.

Observe how the values for each private storage area available change, and make sure that the private
storage areas are not constrained.

What to do next

Set your Java memory limits based on the estimate you got. For instructions, see Setting the memory
limits for Java.

320 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfhpjbz.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfhpjbz.html

Tuning JVM server heap and garbage collection

Garbage collection in a JVM server is handled by the JVM automatically. You can tune the garbage
collection process and heap size to ensure that application response times and processor usage are
optimal.

About this task

The garbage collection process affects application response times and processor usage. Garbage
collection temporarily stops all work in the JVM and can therefore affect application response times.

If you set a small heap size, you can save on memory, but it can lead to more frequent garbage collections
and more processor time spent in garbage collection. If you set a heap size that is too large, the JVM
makes inefficient use of MVS storage and this can potentially lead to data cache misses and even paging.
CICS provides statistics that you can use to analyze the JVM server. You can also use IBM Health Center,
which provides the advantage of analyzing the data for you and recommending tuning options.

Procedure

1. Collect JVM server and dispatcher statistics over an appropriate interval. The JVM server statistics
can tell you how many major and minor garbage collections take place and the amount of time that
elapsed performing garbage collection. The dispatcher statistics can tell you about processor usage for
T8 TCBs across the CICS region.

2. Use the dispatcher TCB mode statistics for T8 TCBs to find out how much processor time is spent on
JVM server threads.

The "Accum CPU Time / TCB" field shows the accumulated processor time taken for all the TCBs that
are, or have been, attached in this TCB mode. The "TCB attaches" field shows the number of T8 TCBs
that have been used in the statistics interval. Use these numbers to work out approximately how much
processor time each T8 TCB has used.

3. Use the JVM server statistics to find the percentage of time that is spent in garbage collection.

Divide the time of the statistics interval by how much elapsed time is spent in garbage collection. Aim
for less than 2% of processor usage in garbage collection. If the percentage is higher, you can increase
the size of the heap so that garbage collection occurs less frequently.

4. Divide the heap freed value by the number of transactions that have run in the interval to find out how
much garbage per transaction is being collected.

You can find out how many transactions have run by looking at the dispatcher statistics for T8 TCBs.
Each thread in a JVM server uses a T8 TCB.

5. Optional: Write the verbosegc log data to a file, which can be done with the parameter
-Xverbosegclog:path_to_file. This data can be analyzed by another ISA tool - Garbage Collection
and Memory Visualizer.

The JVM writes garbage collection messages in XML to the file that is specified in the STDERR option in
the JVM profile. For examples and explanations of the messages, see Troubleshooting and support.

Tip: You can use the file in the Memory Analyzer tool to perform more detailed analysis.

Results

The outcome of your tuning can vary depending on your Java workload, the maintenance level of CICS
and of the IBM SDK for z/0S, and other factors. For more detailed information about the storage and
garbage collection settings and the tuning possibilities for JVMs, see Troubleshooting and support.

IBM Health Center and Memory Analyzer are two IBM monitoring and diagnostic tools for Java that are
supplied by the IBM Support Assistant workbench. You can download these tools free of charge from the
IBM Support Assistant web site.

Chapter 11. Improving Java performance 321

https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=guide-troubleshooting-support
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=guide-troubleshooting-support
https://www.ibm.com/support/home/product/C100515X13178X21/other_software/ibm_support_assistant

Tuning the JVM server startup environment

If you are running multiple JVM servers, you can improve performance by tuning the JVM startup

environment.

About this task

When a JVM server starts, the server has to load a set of libraries in the /usr/1pp/cicsts/
cicsts56/1ib directory. If you start a large number of JVM servers at the same time, the time taken to
load the required libraries might cause some JVM servers to time out, or some JVM servers might take
an excessively long time to start. To reduce JVM server startup time, you should tune the JVM startup

environment.

Procedure

1. Create a shared class cache for the JVM servers to load the libraries a single time.

To use a shared class cache, add the -Xshareclasses option to the JVM profile of each JVM server.
For more information see Class data sharing between JVMs in IBM SDK.

2. Increase the timeout value for the OSGi framework.

The DFHOSGI.jvmprofile contains the 0SGI_FRAMEWORK_TIMEOUT option that specifies how long
CICS waits for the JVM server to start and shut down. If the value is exceeded, the JVM server fails to
initialize or shut down correctly. The default value is 60 seconds, so you should increase this value for

your own environment.

Language Environment enclave storage for JVMs

A JVM server has both static and dynamic storage requirements, primarily in 64-bit storage. It may use a

significant amount of 31-bit storage.

Note: The amount of 31-bit storage used will depend on several factors:

« The configuration parameters

« The design and use of other products

« The design of the JVM
« The Java workload.

For example, the use of =Xcompressedrefs might improve performance, but requires 31-bit storage
and should always be used with =XXnosuballoc32bitmem to ensure that the JVM dynamically allocates
31-bit storage for compressed references based on demand. For more information about of these
options, see Default settings for the JVM in IBM SDK. Just-in-time compilation (JIT) also requires 31-bit

storage for the compiled class code.

A JVM runs as a z/OS UNIX System Services process in a Language Environment enclave that is created
using the Language Environment preinitialization module, CELQPIPI.

JVM storage requests are handled by Language Environment, which in turn allocates z/OS storage based

on the defined runtime options.

The Language Environment runtime options are set by DFHAXRO. The default values provided by these
programs for a JVM enclave are shown in Table 45 on page 322:

Table 45. Language Environment runtime options used by CICS for the JVM enclave

Language Environment runtime options

Example JVM server values

Heap storage

HEAP64 (256M,4M, KEEP, 4M, 1M, FREE, 1K, 1K, KEEP)

Library heap storage

LIBHEAP64 (5M, 3M)

322 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=reference-class-data-sharing
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=reference-default-settings

Table 45. Language Environment runtime options used by CICS for the JVM enclave (continued)

Language Environment runtime options | Example JVM server values

Library routine stack frames that can reside

. STACK64 (1M, 1M, 16M)
anywhere in storage

Optional heap storage management for

multithreaded applications (64 bit) HEAPPOOLS64 (ALIGN)

Optional heap storage management for

multithreaded applications (31 bit) WEHFPOLILS)

Amount of storage reserved for the out-of-
storage condition and the initial content of
storage when allocated and freed

STORAGE (NONE, NONE, NONE)

Note: For current JVM server values, refer to the DFHAXRO member in Library SDFHSAMP.

Language Environment runtime options, such as HEAP64, work on the principle of an initial value for that
type of storage: for example, 256 MB 64-bit. When HEAP64 cannot contain a new request, an increment
is allocated of the specified size (4 MB above) or of the request size plus control information, whichever
is larger. Extra increments are allocated as required to meet demand. When an increment is empty,
Language Environment will either KEEP or FREE the z/OS storage based on the runtime value.

For full information about Language Environment runtime options, see z/OS Language Environment
Customization.

Where possible, the 31-bit and 64-bit initial size should cover the total 31-bit and 64-bit storage
requirements, although a few increments is acceptable. This reduces both overall z/OS storage
requirements and CPU time, compared to when there are many increments.

The HEAP64 31-bit increment size should not be set to less than 1M and the FREE option should be used.
In the previous example, the 31-bit parameters were set to 4M, 1M, and FREE.

Language Environment 31-bit and 64-bit HEAP usage can be seen by activating the RPTO(ON) and
RPTS(ON) options in DFHAXRO. An Language Environment storage report is produced when the JVM
server is stopped.

You can override the Language Environment runtime options by modifying and recompiling the sample
program DFHAXRO, which is described in “Modifying the enclave of a JVM server with DFHAXRO” on page
327. This program is set on the JVMSERVER resource, so you can use different names, which is why there
are different options for individual JVM servers, if required.

The amounts of storage required for a JVM in a Language Environment enclave might require changes to
installation exits, IEALIMIT or IEFUSI, which you use to limit the REGION and MEMLIMIT sizes. A possible
approach is to have a Java owning region (JOR), to which all Java program requests are routed. Such a
region runs only Java workloads, minimizing the amount of CICS DSA storage required and allowing the
maximum amount of MVS storage to be allocated to JVMs.

Identifying Language Environment storage needs for JVM servers

After identifying the actual storage needs, it is possible to determine whether the supplied DFHAXRO
options need to be modified or not. This allows values to be chosen that either avoid the need for
incremental storage allocations, or reduce the number to an acceptable level.

About this task

The HEAP64 runtime option in DFHAXRO controls the heap size of the Language Environment enclave for
a JVM server. This option includes settings for 64-bit, 31-bit, and 24-bit storage. You can use your own
program instead of DFHAXRO if preferred. The program must be specified on the JVMSERVER resource.

Chapter 11. Improving Java performance 323

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceea500/abstract.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceea500/abstract.htm

Procedure

1. Set the RPTO(ON) and RPTS (ON) options in DFHAXRO.

These options are in comments in the supplied source of DFHAXRO. Specifying these options causes
Language Environment to report on the storage options and to write a storage report showing the
actual storage used.

2. Disable the JVMSERVER resource.
The JVM server shuts down and the Language Environment enclave is removed.
3. Enable the JVMSERVER resource.

CICS uses the Language Environment runtime options in DFHAXRO to create the enclave for the JVM
server. The JVM also starts up.

4. Run your Java workloads in the JVM server to collect data about the storage that is used by the
Language Environment enclave.

5. Remove the RPTO(ON) and RPTS (ON) options from DFHAXRO.
6. Disable the JVMSERVER resource to generate the storage reports.

The storage reports include a suggestion for the initial Language Environment enclave heap storage.
The entry “Suggested initial size” in the 64-bit user heap statistics contains the suggested value and
is equal to the total amount of Language Environment enclave heap storage that was used by the JVM
server.

Results

The storage reports are saved in an stdexr file in z/OS UNIX, or can also go to your CICS JES output

if you are using the JOBLOG or DD: // routing syntax. The directory depends on whether you have
redirected output for the JVM in the JVM profile. If no redirection exists, the file is saved in the working
directory for the JVM. If no value is set for WORK_DIR in the profile, the file is saved in the /tmp directory.

Use the information in the storage reports to select a suitable value for the Language Environment
enclave heap storage in the DFHAXRO HEAP64 option. Storage requirements might change from one
CICS execution to the next, and are typically not the same for different CICS systems that share the one
DFHAXRO, thus requiring a compromise.

The normal aim is to set the HEAP64 initial allocations to the suggested sizes to avoid or reduce the
number of increments. The more increments that are used, the more likely that the ratio of z/OS storage
compared to actively used Language Environment storage increases. Many increments can also cause an
increase in the amount of CPU time that is used by Language Environment to manage the HEAP64 storage
requests. Java allocates the JVM Heap as a Memory Object via IARV64 and not through a Language
Environment storage request. If a Java migration is performed with an initial allocation that includes
=Xmx, it normally doubles the storage that is used for the Java Heap, and might result in MEMLIMIT being
too small.

Allocating many increments might produce the effect of a Storage Leak, which manifests as a continual
increase in z/0S storage over time. In practice, this is more likely to be Storage Creep, which is
characterized by an increase in both z/0OS allocated storage and Language Environment free storage.

A Storage Leak shows a continual increase in both z/OS and Language Environment used storage. 31-bit
HEAP64 storage is allocated in z/OS subpool 1 whereas JIT storage is allocated in z/OS subpool 2 in 2MB
increments.

The effect of the revised options should be evaluated at least one time and adjusted as required. Tuning
should also be repeated at suitable intervals to assess the effect of any changes to storage usage due
to application changes and other changes. Tuning should also be repeated whenever the CICS or Java
release changes as storage usage patterns might change.

Note: If you increase the 31 bit HEAP64 initial size, you must also change HEAPP to avoid over-allocating
HEAPPOOLS 31-bit storage. In the example below, the HEAPPOOLS percentage values should be reduced
from 10% to 1%.

HEAPPOOLS and HEAPPOOLS64 are active in the default DFHAXRO and can be effective when configured,
but the correct values are dependent on the workload and hence precise tuning might be difficult.

324 CICS TS for z/OS: Java Applications in CICS

STACK64 should be checked to ensure that the maximum storage used is not close to the defined limit,
which is typically 16 MB. Exceeding the limit will results in runtime errors.

What is not obvious from LE RPTSTG output is that, while using STACK64(1M,1M,16M) provides a safe
value for JVM thread stack expansion, it can result in a large MEMLIMIT being required to avoid CICS SOS
Above the Bar during GDSA expansion. With the 16M maximum, 20 MB is allocated per JVM thread in
three Memory Objects - one of 16+1 MB, one of 2 MB and one of 1 MB. Only 3 MB is initially usable, and of
out this 1MB is allocated for the native stack, 1MB for the LE control block and 1MB for the reserve stack,
leaving 16MB as guarded stack storage and another 1MB as guarded reserve stack storage. Only the 3MB
of usable allocated storage is counted towards the z/OS IARV64 MEMLIMIT check. However, CICS counts
all 20 MB to decide whether it can expand the GDSA by a multiple of GB without exceeding MEMLIMIT.

A single JVM server can legitimately use more than 200 threads, and 200 threads equates to 4,000MB
towards the CICS MEMLIMIT check. Therefore, reducing the STACK64 maximum to a lower value that still
permits some expansion can help towards reducing the MEMLIMIT size and the possibility of SOS Above

the Bar.

Example

The following example is RPTOPTS output based on these DFHAXRO options:

HEAPPOOLS(ALIGN,8,10,32,10,128,10,256,10,1024,10,2048,10,0,10,0,10,0,10,0,10,0,10,0,10)
HEAPPOOLS64 (ALIGN,8,4000,32,2000,128,700,256,350,1024,100,2048,50,3072,50,4096,50,8192,

25,16384,10,32768,5,65536,5)

HEAP64 (256M,4M,KEEP,4194304,1048576,KEEP,1024,1024, KEEP)
LIBHEAP64 (3M,3M, FREE,16384,8192, FREE,8192,4096, FREE)

STACK64 (1M, 1M, 16M)
THREADSTACK64 (OFF, 1M, 1M, 128M)

The following example is partial RPTSTG output:

STACK64 statistics:

Initial size: M
Increment size: 1M
Maximum used by all concurrent threads: M

Largest used by any thread:
Number of increments allocated:
THREADSTACK64 statistics:

1M - no change required
0

Initial size: M

Increment size: M

Maximum used by all concurrent threads: oM

Largest used by any thread: OM - not used
Number of increments allocated: 0]

64bit User HEAP statistics:

Initial size: 256M
Increment size: 4M

Total heap storage used: 730857472
Suggested initial size: 697M - use this
Successful Get Heap requests: 783546
Successful Free Heap requests: 780785

Number of segments allocated:
Number of segments freed:
31bit User HEAP statistics:

135 - too many increments
0

Initial size: 4194304
Increment size: 1048576
Totalheap storage used (suggested initial size): 137165672 - use this
Successful Get Heap requests: 1345332
Successful Free Heap requests: 1345260

Number of segments allocated:
Number of segments freed:
64bit Library HEAP statistics:

125 - too many increments
0]

Initial size: 3M
Increment size: 3M
Total heap storage used: 4640032
Suggested initial size: 5M
Successful Get Heap requests: 113381
Successful Free Heap requests: 112860

Number of segments allocated:
Number of segments freed:
31bit Library HEAP statistics:

1 - low, so no change required
0

Initial size: 16384
Increment size: 8192
Total heap storage used (suggested initial size): 520
Successful Get Heap requests: 33725
Successful Free Heap requests: 33725

Chapter 11. Improving Java performance 325

Number of segments allocated: 1 - low, so no change required
Number of segments freed: 0

Suggested Percentages for current CellSizes:

HEAPP (ALIGN,8,1,32,1,128,1,256,1,1024,1,2048,1,0)
When reviewing RPTSTG output, remember that the HEAP64 increment sizes are for the minimum amount
of storage that Language Environment allocates, and any increment could be substantially bigger than
that value. Hence it is not possible to accurately determine how much z/0S storage was used when 1 or
more increments have been allocated. The actual number of increments is reported for 64bit HEAP (that
is, 135), for 31bit HEAP the actual number of increments is one less than is shown (that is, 124 not 125).

Because of the way that Language Environment's storage management works when increments are used,
the amount of 31-bit and 64-bit z/OS storage allocated may be significantly higher than shown in RPTSTG
"maximum used".

The suggested DFHAXRO changes are:

* Heap storage

DC C'HEAP64 (700M, ' Initial 64bit heap - change (Note 1)

DC Cc'am,’ 64bit Heap increment

DC C'KEEP, ' 64bit Increments kept

DC c'128M," Initial 31bit heap - change (Note 2)

DC c'2Mm,' 31bit Heap increment - change (Note 3)

DC C'FREE, "' 31bit Increments freed - change (Note 4)

DC C'1K, ' Initial 24bit heap

DC C'1K, ' 24bit Heap increment

DC C'KEEP) ' 24bit Increments kept

* Heap pools

DC C'HP64(ALIGN) '

DC C'HEAPP(ALIGN,8,1,32,1,128,1,256,1,1024,1,2048,1,0) ' - change (Note 5)
* Library Heap storage

DC C'LIBHEAP64(3M,3M) ' Initial 64bit heap - do not change (Note 6)
* 64bit stack storage

DC C'STACK64(1M,1M,16M) ' - consider a change (Note 7)

Note:

1. As shown by RPTSTG output 64bit "Suggested initial size" plus a small increase.

2. As shown by RPTSTG output 31bit "Suggested initial size" but with a small reduction as we are using
FREE.

3. The 31-bit HEAP increment may be better as a value of 2M instead of 1M.

4. Optionally, using 31-bit HEAP FREE may result in less z/OS storage being allocated to map the "Total
heap storage used" than with KEEP.

5. As recommended by RPTSTG output after the HEAPPOOLS statistics, but may benefit from further
optimization. The default of 10% of the 31-bit Heap initial size of 128MB is likely to result in an
excessive amount of storage being allocated. A minimum of 6 pools each of 10% of the initial heap
size of 128MB causes 77MB to be allocated. This will be included in the "Total heap storage used"
value (because the HEAPPOOLS storage extents are allocated there), irrespective of what percentage
of the pool s is productively used. Using HEAPPOOLS cell sizes greater than 256 bytes might result in
inefficient use of Language Environment HEAP storage.

6. Only one increment was required, which is not a problem.

7. The largest used was 1MB. Reducing the maximum of 16M to a value such as 8 MB or even lower
would significantly reduce the amount of STACK64 storage that CICS counts towards MEMLIMIT when
checking to see whether it can allocate a new GDSA extent. STACK64 changes should be tested
thoroughly before migrating them into a production environment.

This is an example of using 31-bit HEAP FREE on another run of the same JVM server. The "Number of
segments" shows the number of GETMAINs and FREEMAINs performed, which was low for the time that
the JVM server was active. The difference of 2 shows that the enclave terminated with only the initial
allocation plus one increment, which is likely to be less than the "Total heap storage" and shows the
effectiveness of FREE. "Total heap storage used" was higher, but any total often changes from one run

326 CICS TS for z/OS: Java Applications in CICS

of a JVM server to another, hence basing changes on only one set of RPTSTG may not provide the best
possible settings.

31bit User HEAP statistics:

Initial size: 134217728

Increment size: 2097152

Total heap storage used (suggested initial size): 154056664

Successful Get Heap requests: 3253239

Successful Free Heap requests: 3253176

Number of segments allocated: 149

Number of segments freed: 147

It is important to read the Language Environment Debugging Guide in order to correctly interpret RPTSTG

output.

Modifying the enclave of a JVM server with DFHAXRO

DFHAXRO is a sample program that provides a default set of runtime options for the Language
Environment® enclave in which a JVM server runs. For example, it defines storage allocation parameters
for the heap and stack. It is not possible to provide default runtime options that are optimized for all
workloads. Consider identifying actual storage usage, and override the defaults as required, to optimize
the ratio of used storage to allocated storage.

About this task

You can update the sample program to tune the Language Environment enclave or you can base your
own program on the sample. The program is defined on the JVMSERVER resource and is called during the
CELQPIPI preinitialization phase of the Language Environment enclave that is created for a JVM server.

You must write the program in assembly language and it must not be translated with the CICS® translator.
The options are specified as character strings, comprising a 2-byte string length followed by the runtime
option. The maximum length for all Language Environment runtime options is 255 bytes, so use the
abbreviated version of each option and restrict your changes to a total of under 200 bytes (allowing space
for the mandatory options imposed by the JVMSERVER).

Procedure
1. Copy the DFHAXRO program to a new location to edit the runtime options, and rename the module if
required.

If maintenance is applied to your CICS region, you might want to reflect the changes in your program.
The source for DFHAXRO is in the CICSTS56.CICS.SDFHSAMP library.

2. Edit the runtime options, using the abbreviation for each option.
The z/0OS Language Environment Programming Guide has complete information about Language
Environment runtime options.

- Use the HEAP64 option to specify the initial heap allocation for the 64-bit, 31-bit and 24-bit storage
Language Environment heap areas.

For example the following HEAP64 settings

HEAP64 (256M,4M,KEEP, 4M, 1M, FREE, 1K, 1K, KEEP) sets the initial 64-bit heap to 256 MB with
further storage getmained in 4 MB increments, the initial 31-bit storage heap to 4 MB with 1 MB
increments, and the initial 24-bit storage heap to 1 KB with 1 KB increments.

« The POSIX option is forced on by CICS.

3. Use the RPTO(ON) and RPTS(ON) values to report on the LE options and LE storage usage.
The output that is produced is written to the Enclave stdexrr stream at Enclave termination.
Tip:

It is possible to see the Language Environment storage growing over time as application workload
increases. While this growth might look like a storage leak, in most instances, the growth and the

total amount of storage can be corrected by tuning the Language Environment HEAP64 runtime option
64-bit and 31-bit parameters based on the following procedure.

Chapter 11. Improving Java performance 327

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceea200/abstract.htm

4. Use the DFHASMVS procedure to compile the program, deploy into the RPL and restart the JVM server.

5. Analyze the LE storage report produced to see if any of the LE user heaps show allocation using a high
number of increments.

Using many increments typically increases the amount of CPU time for storage requests. The more
segments that are allocated, the more likely it is that storage fragmentation occurs.

6. If any of the user heap statistics show more than 20 segments have been allocated, increase the initial
size or the increment size in the relevant LE runtime option.

7. When tuning is complete, edit the runtime options and disable the reporting of the LE options and LE
storage report. Compile the program, deploy into the RPL and restart the JVM server.

Example LE storage report for LE user heap statistics:

64bit User HEAP statistics:

Initial size: 256M
Increment size: aMm
Total heap storage used: 47842496
Suggested initial size: 46M
Successful Get Heap requests: 8214
Successful Free Heap requests: 8052
Number of segments allocated: 0
Number of segments freed: (0]
31bit User HEAP statistics:
Initial size: 4194304
Increment size: 1048576
Total heap storage used (sugg. initial size): 8583912
Successful Get Heap requests: 338
Successful Free Heap requests: 69
Number of segments allocated: 6
Number of segments freed: 0
24bit User HEAP statistics:
Initial size: 1024
Increment size: 1024

Total heap storage used (sugg. initial size):
Successful Get Heap requests:

Successful Free Heap requests:

Number of segments allocated:

Number of segments freed:

[c¥oNoNoNo)

Results

When you enable the JVMSERVER resource, CICS creates the Language Environment enclave by using
the runtime options that you specified in the DFHAXRO program. CICS checks the length of the runtime
options before it passes them to Language Environment. If the length is greater than 255 bytes, CICS
does not attempt to start the JVM server and writes error messages to CSMT. The values that you specify
are not checked by CICS before they are passed to Language Environment.

Tuning the z/0S shared library region

The shared library region is a z/OS feature designed to improve performance when loading UNIX System
Services dynamic link library (.so) files. The primary exploiter of this feature is the Java SDK for z/0S, but
it can be used by any product that sets the shared library bit on their shared object (.so) files.

CICS JVM servers and Node.js applications disable the shared library region by default. Doing so usually
increases the available MVS 31-bit private area virtual storage within the CICS region. To enable the
shared library region, you must explicitly set the variable _BPXK_DISABLE_SHLIB=NO in the JVM profile
or Node.js profile.

Enabling the shared library region across multiple CICS regions can provide a performance benefit related
to the one-time allocation of the associated real storage, compared to each region loading each library
individually. However, if your z/OS image has many different JVM versions in use, all using the shared
library region, a larger amount of virtual storage is needed in all regions to hold the different versions of
the shared libraries. That increase is significant because each address space must reserve an equivalent
amount of MVS high private area storage onto which it maps the shared library region. Thus, a region's
private storage allocation is usually larger than if it was loading only the specific libraries required.

For more information about private storage, see High private area.

328 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht3c00465.html

Additionally, executable code in the shared library region is allocated on a megabyte boundary, allowing a
single-page table to be shared, similar to LPA. A tradeoff is that the coarse-grained allocation consumes
more storage than direct loading of libraries.

Individual address spaces allocate their private storage when the first process using shared libraries is
started in the region. Take care that all processes within your address space opt in or opt out of the
shared library region consistently. If you choose to use the shared library region, the amount of storage
that is allocated is controlled by the SHRLIBRGNSIZE parameter in z/OS, which is in the BPXPRMxx
member of SYS1.PARMLIB. The minimum is 16 MB, and the z/OS default is 64 MB. To determine the
amount of storage that is allocated, bring up your normal workload on the z/OS system, then issue

the command D OMVS, L todisplay the library statistics. Adjust the SHRLIBRGNSIZE parameter large
enough to accommodate all the libraries, but not so large that excessive storage is reserved.

Note: Native libraries are loaded once per address space. Running multiple JVM servers and Node.js
applications within the same CICS region will not incur additional load costs regardless of the shared
library region setting, providing they use the same version of the IBM SDK, Java Technology Edition and
IBM SDK for Node.js - z/OS respectively.

Chapter 11. Improving Java performance 329

330 CICS TS for z/OS: Java Applications in CICS

Chapter 12. Troubleshooting Java applications

If you have a problem with a Java application, you can use the diagnostics that are provided by CICS and
the JVM to determine the cause of the problem.

About this task

CICS provides some statistics, messages, and tracing to help you diagnose problems that are related
to Java. The diagnostic tools and interfaces that are provided with Java can give you more detailed
information about what is happening in the JVM than CICS because CICS is unaware of many of the
activities in a JVM.

You can use freely available tools that perform real-time and offline analysis of a JVM, for example IBM
Health Center. For full details, see IBM Monitoring and Diagnostic Tools for Java - Health Center.

For troubleshooting web applications that are running in a Liberty JVM server, see “Troubleshooting
Liberty JVM servers and Java web applications” on page 335. For information about where to find log files
see “Controlling the location for JVM output, logs, dumps and trace” on page 345.

Procedure

1. If you are unable to start a JVM server, check that the setup of your Java installation is correct.

Use the CICS messages and any errors in the stdexrr file for the JVM to determine what might be
causing the problem.

a) Check that the correct version of the Java SDK is installed and that CICS has access to it in z/OS
UNIX.

For a list of supported SDKs, see Changes to CICS support for application programming languages.
b) Check that the USSHOME system initialization parameter is set in the CICS region.
This parameter specifies the home for files on z/OS UNIX.

¢) Check that the JVMPROFILEDIR system initialization parameter is set correctly in the CICS region.
This parameter specifies the location of the JVM profiles on z/OS UNIX.

d) Check that the CICS region has read and run access to the z/OS UNIX directories that contain the
JVM profiles.

e) Check that the CICS region has write access to the working directory of the JVM.
This directory is specified in the WORK_DIR option in the JVM profile.

f) Check that the JAVA_HOME option in the JVM profiles points to the directory that contains the Java
SDK.

g) If you are using IBM MQ or Db2 DLL files, check that the 64-bit versions of these files are available
to CICS.

h) If you modify DFHAXRO to configure the Language Environment enclave, ensure that the runtime
options do not exceed 200 bytes and that the options are valid.
CICS does not validate the options that you specify before it passes them to Language
Environment. Check SYSOUT for any error messages from Language Environment.
2. If your setup is correct, gather diagnostic information to determine what is happening to the
application and the JVM.

a) To obtain the diagnostics, you must use PRINT_JVM_OPTIONS=TRUE. The default for this option
is PRINT_JVM_OPTIONS=FALSE, so if it is left to default no options for diagnostics are presented.
When you specify PRINT_JVM_OPTIONS=TRUE, all the options that are passed to the JVM at
startup, including the contents of the class paths, are printed to SYSPRINT. The information is
produced every time a JVM is started with this option in its profile.

b) Check the dfhjvmout and dfhjvmexx files for information and error messages from the JVM.

© Copyright IBM Corp. 1974, 2023 331

https://developer.ibm.com/javasdk/tools/
https://www.ibm.com/docs/SSJL4D_6.x/upgrading/changes/compiler_changes.html

These files are in the directory that is specified by the WORK_DIR/applid/jvmserver option in
the JVM profile. The files might have different names if the STDOUT and STDERR options were
changed in the JVM profile.

3. If the application is failing or performing poorly, debug the application.

- Ifyoureceive java.lang.ClassNotFoundException errors and the transaction abends with
the AJO5 code, the application might not be able to access IBM or vendor classes in the
OSGi framework. For more information about how to fix this problem, see Upgrading the Java
environment.

« Use the CEDX transaction to debug the application transaction. For a Liberty JVM server, if you are
using a URI map to match the inbound application request to an application transaction, debug that
transaction. If you use the default transaction CISA, you must set the MAXACTIVE attribute to 1
on the DFHEDFTC transaction class (or DFHEDFTO transaction class if you use CEDY). This setting
is required because a number of CISA tasks might be running and you might debug the wrong
transaction. Do not use CEDX on the CJSA transaction in a production environment.

« Touse a debugger with the JVM server, you must set some options in the JVM profile. For more
information, see “Debugging a Java application” on page 350.

- If you want to determine the status of OSGi bundles and services, use the OSGi console.
Set the following properties in the JVM profile: -Dosgi.file.encoding=I50-8859-1, and
-Dosgi.console=host:port where host is the host name of the system the JVM server is
running on, and port is a free port on the same system. While the osgi.console.encoding
property was designed to allow the OSGi console to use a preferred encoding without putting the
whole JVM into that encoding, an outstanding bug in the Equinox OSGi framework prevents its use,
instead you must set the file.encoding value to an ASCII based encoding. If you are using an
OSGi JVM server, add 0SGI_CONSOLE=TRUE to the JVM profile. If you are using a Liberty JVM
server, add the osgiConsole-1.0 feature to the server.xml. Connect to the OSGi console by using
a Telnet session with the host and port properties you specified in the JVM profile.

Note: If you type the exit command into the OSGi console, it will issue a system.exit(0) call to

the environment that the JVMSERVER runs in. The command to disconnect your terminal from the
0OSGi console is disconnect. system.exit(0) is an abrupt stop of all threads and workload, and if
left to continue processing, can leave the JVM and CICS in an indeterminate state. CICS is designed
to perform an immediate shutdown in this eventuality to avoid subsequent complications. For this
reason, it is important to control write access to both the JVM profile, and server. xml. A Liberty
JVM server offers further protection by requiring inclusion of the osgiConsole-1.0 feature before the
OSGi console is able to run. The OSGi console is primarily a development and debug aid, and is not
expected to run in a production environment.

4. If you are getting out-of-memory errors, it might indicate that the JVM or CICS address space was
not allocated enough storage, the application might have a memory leak, or the heap size might be
insufficient.

a) Use CICS statistics or a tool such as IBM Health Center to monitor the JVM. If the application has a
memory leak, the amount of live data that remains after garbage collection gradually increases over
time until the heap is exhausted.

The JVM server statistics report the size of the heap after the last garbage collection and the
maximum and peak size of the heap. For more information, see Analyzing Java applications using
IBM Health Center.

b) Run the storage reports for Language Environment to find out whether the amount of storage is
sufficient.

For more information, see Language Environment enclave storage for JVMs.
5. If you are getting encoding errors when you install or run a Java application, maybe you set up
conflicting or an unsupported combination of code pages.

« Java 21 With Java 21, JVMs on z/0S typically use UTF-8 for file encoding, but the JVM can use other
code pages for file encoding if required.

332 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/docs/SSJL4D_6.x/upgrading/process/upgrade_java.html
https://www.ibm.com/docs/SSJL4D_6.x/upgrading/process/upgrade_java.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_osgi_console.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/analyzing_apps.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/analyzing_apps.html
http://www.ibm.com/support/knowledgecenter//java/tuning/dfht3rr.html

« Java 8Java 11Java 17 With Java 8, Java 11 and Java 17, JVMs on z/0S typically use an EBCDIC code
page for file encoding; the default for non-Liberty JVM servers is IBM1047 (or cp1047), but the JVM
can use other code pages for file encoding if required.

CICS requires an EBCDIC code page to handle character data and all JCICS calls must use an EBCDIC
code page. The code page is set in the LOCALCCSID system initialization parameter for the CICS
region.

a) Check the JVM server logs to see whether any warning messages were issued relating to the value
of LOCALCCSID.
If this parameter is set to a non-EBCDIC code page, a code page that is not supported by the JVM,
or an EBCDIC code page that is not supported (such as 930), the JVM server uses cp1047.

b) JCICS calls use the code page that is specified in the LOCALCCSID system initialization parameter.

If your application expects a different code page, you get encoding errors. To use a different
code page for JCICS, set the -Dcom.cics.jvmsexrver.override.ccsid= parameterin the JVM
profile.

c¢) If you are using the -Dcom.cics.jvmserver.override.ccsid= parameter in the JVM profile,
ensure that the CCSID is an EBCDIC code page.

The application must use EBCDIC when it uses JCICS calls.

d) If you are running SOAP processing in an Axis2 JVM server, ensure that the -Dfile.encoding
JVM property specifies an EBCDIC property.
If you specify a non-EBCDIC code page, such a UTF-8, the web service request fails and the
response contains corrupted data.

6. If you experience startup timeouts or timeouts under workload, there are various parameters that you
can tune to help resolve the issue. The following give an indication of values you can tune:

« Modify your -Dcom.ibm.cics.jvmserver.threadjoin.timeout setting to control how long
an HTTP request waits to obtain a JVM server thread.

« Increase the THREADLIMIT value on the JVMSERVER resource.

« If THREADLIMIT is already set to the maximum permitted value, then you might be attempting
to run more work than a single JVM server can handle. Consider balancing the workload between
multiple JVM servers or multiple regions.

Alternatively, your CICS system might be unresponsive because of other constraints. Follow the
standard procedures to diagnose performance problems. See Improving the performance of a CICS
system.

7. If your JVM server hangs in a disabling state after issuing DISABLED PHASEOUT then:

« Review the JVMLOG to see if CICS is reporting any non-daemon threads which are still running.
A PHASEOUT will not complete until all non-daemon threads have finished to allow work to drain
from the JVM server. If non-daemon threads are still running, ensure your applications terminate
them once they are no longer needed or set them as daemon when they are not performing an
important function.

« You can issue the SET JVMSERVER DISABLED command with PURGE, FORCEPURGE, or KILL
options to disable the JVM server. These options may cause abends or CICS to terminate
abnormally, so should be used cautiously.

What to do next

If you cannot fix the cause of the problem, contact IBM support. Make sure that you provide the required
information, as listed in the Collecting CICS troubleshooting data (CICS MustGather) for IBM Support for
reporting Java problems.

Chapter 12. Troubleshooting Java applications 333

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht330.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht330.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/mustgather.html

Diagnostics for Java

Many of the usual sources of CICS diagnostic information contain information that applies to Java
applications. In addition to the information supplied by CICS, there are a number of interfaces specific to
the JVM that you can use for problem determination.

CICS diagnostic tools for Java

CICS has statistics and monitoring data that you can collect on running Java applications. When errors
occur, transactions abend and messages are written to the appropriate log. See CICS messages for a
list of the abends and messages that apply to the JVM (SJ) domain. Messages related to Java are in the
format DFHSJIxxxx.

You can also turn on tracing to produce additional diagnostic information. The trace points for the JVM
domain are listed in JVM and Node.js runtime domain trace points.

When the first JVM is started in a CICS region after initialization, CICS issues message DFHSJ0207,
showing the version of Java that is being used.

The Java SDK provides diagnostic tools and interfaces that give you more detailed information about what
is happening in the JVM. Messages and diagnostic information from the JVM are written to the stderr
log file for the JVM. If you encounter a Java problem, always consult this file. For example, if CICS issues
a message to indicate that the JVM has abended, the stderr log file is the primary source of diagnostic
information. “Controlling the location for JVM output, logs, dumps and trace” on page 345 tells you how
to control the location of output from the JVM, and how to redirect messages from JVM internals and
output from Java applications running in a JVM.

When you develop Java applications for CICS, it is important to consider the requirements for thread
safety and transaction isolation in CICS. If a Java application works correctly on its first use, but does not
behave correctly on subsequent uses, then the problem is likely to be due to isolation issues.

0SGi diagnostic files

The OSGi framework produces diagnostic files in zFS that you can use to help troubleshoot problems with
OSGi bundles and services in a JVM server:

0SGi cache
The 0SGi cache is in the $WORK_DIR/applid/jvmserver/configuration/org.eclipse.osgi
directory of the JVM server. $WORK_DIR is the working directory of the JVM server, applid is the CICS
APPLID, and jvmserver is the name of the JVMSERVER resource. The OSGi cache contains framework
metadata and other information that is required to run the framework. The cache is replaced when the
JVM server starts up.

0SGi logs
If an error occurs in the OSGi framework, an OSGi log is created in the $WORK_DIR/applid/
jumserver/configuration/ directory of the JVM server. The file extensionis . log.

JVM diagnostic tools
The CICS documentation provides information about some of the Java diagnostic tools and interfaces:

 “Activating and managing tracing for JVM servers” on page 349 describes how you can use the
component tracing provided by the CETR transaction to trace the life cycle of the JVM server and the
tasks running inside it. JVM servers do not use auxiliary or GTF tracing. Instead, the tracing is written to
a file on zFS that is uniquely named for each JVM server.

» “Debugging a Java application” on page 350 describes how you can use a remote debugger to step
through the application code for a Java application that is running in a JVM. CICS also provides a set
of interception points (or plug-in) in the CICS Java middleware, which allows additional Java programs
to be inserted immediately before and after the application Java code is run, for debugging, logging, or
other purposes. For more information, see “The CICS JVM plug-in mechanism” on page 351.

334 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-messages/cics-messages/DFHmessages.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-diagnostics/trace/dfhs6_sj.html

Many more diagnostic tools and interfaces are available for the JVM. See Troubleshooting and support for
information about further facilities that can be used for problem determination for JVMs. The following
facilities provide useful diagnostic information:

- The internal trace facility of the JVM can be used directly, without going through the interfaces provided
by CICS. For information about the system properties that you can use to control the internal trace
facility and to output JVM trace information to various destinations, see Using CICS trace. You can use
these system properties to output trace from any method or class within the JVM, and to find the value
of any parameters and return types on the method call.

« If you experience memory leaks in the JVM, you can request a heap dump from the JVM. A heap dump
generates a dump of all the live objects (objects still in use) that are in the heap of the JVM. You can
also analyze memory leaks using the IBM Health Center and Memory Analyzer tools, which are both
available with IBM Support Assistant. For more information about Java tools, see IBM Monitoring and
Diagnostic Tools for Java - Health Center.

« The HPROF profiler, that is shipped with the IBM 64-bit SDK for z/OS, Java Technology Edition, provides
performance information for applications that run in the JVM, so you can see which parts of a program
are using the most memory or processor time.

« The JVM provides interfaces for monitoring, profiling, and RAS (Reliability, Availability, and
Serviceability).

With all interfaces, options, or system properties available for the IBM JVM that are not specific to the
CICS environment, use the IBM JVM documentation as the primary source of information.

Troubleshooting Liberty JVM servers and Java web applications

If you have a problem with a Java web application, you can use the diagnostics that are provided by CICS
and Liberty to determine the cause of the problem.

CICS provides statistics, messages, and tracing to help you diagnose problems that are related to running
Java web applications in a Liberty JVM server. Liberty also produces diagnostics that are available in zFS.
For general setup errors and application problems, see Troubleshooting and support.

Avoiding problems

CICS uses the values of the region APPLID and the JVMSERVER resource name to create unique zFS

file and directory names. Some of the acceptable characters have special meanings in the UNIX System
Services shell. For example, the dollar sign ($) means the start of an environment variable name. Some
of these characters can cause an Exception in the Equinox OSGi framework and prevent the JVM server
from starting. Avoid using non-alphanumeric characters in the region APPLID and JVM server name. If
you do use these characters, you might need to use the backslash (\) as an escape character in the UNIX
System Services shell. For example, if you called your JVM server MY$JVMS and wanted to read the JVM
system out file:

cat CICSPRD.MY\$JVMS.D20140319.T124122.dfhjvmout

Unable to start Liberty JVM server

1. If you are unable to start a Liberty JVM server, check that your setup is correct; see Configuring a
Liberty JVM server for more information. Use the messages in the CICS system log and the Liberty
messages.log file that is located after WLP_OUTPUT_DIR to determine what might be causing the
problem.

2. Check that the -Dfile.encoding JVM property in the JVM profile specifies either ISO-8859-1 or
UTF-8. These are the two code pages that are supported by Liberty. If you set any other value, the JVM
server fails to start.

Chapter 12. Troubleshooting Java applications 335

https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=guide-troubleshooting-support
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/dfhs13p.html
https://developer.ibm.com/javasdk/tools/
https://developer.ibm.com/javasdk/tools/
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/troubleshooting.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_liberty.html

Local Liberty JVM server cannot connect to the remote Liberty JVM server for
JCICSX when SSL is enabled (SRVEO777E)

You might receive this error after configuring your Liberty JVM server to use SSL for remote JCICSX API
development:

Application Error

SRVEQ777E: Exception thrown by application class
‘com.ibm.cics.jcicsx.http.CICSContextProviderImpl.initialise:112"'
com.ibm.cics.jcicsx.http.JCICSXException: Failed to retrieve server info

at com.ibm.cics.jcicsx.http.CICSContextProviderImpl.initialise(CICSContextProviderImpl.java:112)
at

com.ibm.cics.jcicsx.http.CICSContextProviderImpl.getCICSContext (CICSContextProviderImpl.java:85)
at com.ibm.cics.harness.TaskProducer.produceTask(TaskProducer.java:26)

at com.ibm.cics.harness.HarnessServletFilter.doFilter(HarnessServletFilter.java:36)

at com.ibm.ws.webcontainer.filter.FilterInstanceWrapper.doFilter(FilterInstanceWrapper.java:201)
at [internal classes]

Caused by: javax.ws.rs.ProcessingException: java.io.IOException: IOException invoking https://
remotejcicsxserver.com:portNum/jcicsxServer/info: HTTPS hostname wrong: should be
<remotejcicsxserver.com>

at org.apache.cxf.jaxrs.client.AbstractClient.checkClientException(AbstractClient.java:643)

at [internal classes]

at com.sun.proxy.$Proxy34.getInfo

at com.ibm.cics.jcicsx.http.CICSContextProviderImpl.initialise(CICSContextProviderImpl.java:101)
. 5 more

Caused by: java.io.IOException: IOException invoking https://remotejcicsxserver.com:portNum/
jcicsxServer/info: HTTPS hostname wrong: should be <remotejcicsxserver.com>

at sun.reflect.NativeConstructorAccessorImpl.newInstance@(NativeConstructorAccessorImpl.java:-2)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)

at

sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:4

5)

at java.lang.reflect.Constructor.newInstance(Constructor.java:423)

at

org.apache.cxf.transport.http.HTTPConduit$WrappedOutputStream.mapException (HTTPConduit.java:1447)
. 8 more

Caused by: java.io.IOException: HTTPS hostname wrong: should be <remotejcicsxserver.com>
at sun.net.www.protocol.https.HttpsClient.checkURLSpoofing(HttpsClient.java:649)
at sun.net.www.protocol.https.HttpsClient.afterConnect(HttpsClient.java:573)
at
sun.net.www.protocol.https.AbstractDelegateHttpsURLConnection.connect(AbstractDelegateHttpsURLConn
ection.java:185)
at sun.net.www.protocol.http.HttpURLConnection.getInputStream®(HttpURLConnection.java:1564)
at sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1492)
at java.net.HttpURLConnection.getResponseCode (HttpURLConnection.java:480)
at
sun.net.www.protocol.https.HttpsURLConnectionImpl.getResponseCode (HttpsURLConnectionImpl.java:347)
at
org.apache.cxf.transport.http.URLConnectionHTTPConduit$URLConnectionWrappedOutputStream$2.run (URLC
onnectionHTTPConduit.java:427)

. 8 more

Explanation
This error is returned when a host name is not specified for the Liberty JVM server running
in CICS. If not specified, the host name on the remote Liberty server defaults to localhost.
However, the server expects the host name to be that of the remote CICS region, in this case
remotejcicsxserver.com. This is the correct host name your local Liberty server should have
passed to the remote Liberty server through the certificate but localhost was passed instead.

User action
To identify the problem, find the current host name registered in the remote Liberty JVM server's
certificates, in either of the following ways:

« Use the OpenSSL command to show the certificates of the remote Liberty JVM server:
$ openssl s_client -showcerts -connect remotejcicsxserver.com:portNo

The output might be like this:

336 CICS TS for z/OS: Java Applications in CICS

CONNECTED (00000005)

depth=0 C = us, 0 = ibm, OU = defaultServer, CN = localhost
verify error:num=18:self signed certificate

verify return:1

depth=0 C = us, 0 = ibm, OU = defaultServer, CN = localhost
verify return:1

The CN value returned in the header of the result is the certificate name and host name
(localhost) on the server.

« To use the Java keytool utility:

1. Navigate to the folder of the keystore on the remote Liberty server at: {server.config.dir}/
resources/security.

2. If the local Liberty server is at 19.0.0.3 or later, which is the minimum version required to use
the client-side tooling of remote JCICSX development, and that autoconfigure is enabled for the
remote Liberty server to use SSL, the remote Liberty server will have created a keystore using
default values. In this case, use this command to show the certificates stored in the auto-created
Java keystore:

keytool -list -keystore key.pl2 -storepass defaultPassword -storetype PKCS12 -v

Otherwise, substitute values in for storepass and storetype according to your custom
configuration.

You might get output like this, which shows 1localhost as the host name:

Keystore type: PKCS12
Keystore provider: IBMJCE

Your keystore contains 1 entry

Alias name: default

Creation date: Jun 1, 2020

Entry type: keyEntry

Certificate chain length: 1

Certificate[1]:

Owner: CN=localhost, OU=defaultServer, O=ibm, C=us

Issuer: CN=localhost, OU=defaultServer, O=ibm, C=us

Serial number: dd89aa9

Valid from: 6/1/20 5:41 PM until: 6/1/21 5:41 PM

Certificate fingerprints:
MD5: AB:05:27:5E:55:3B:44:73:CA:65:61:11:D3:08:21:AC
SHALl: 16:8E:73:61:49:A3:0E:C4:46:7D:77:87:F0:81:DD:C9:EB:28:92:CF

SHA256:
E7:68:BB:CC:6C:00:33:67:CF:A6:DA:9A:56:25:D5:05:8F:69:33:0C:3D:CE:1C:E4:03:E6:13:30:FD:EO:
9F:E9

Signature algorithm name: SHA256withRSA

Version: 3
Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false

SubjectKeyIdentifier [

KeyIdentifier [

0000: e3 4f e5 04 ff 71 e7 64 1a da 06 2b cb e® ec 35 .0...q.d....... 5
?010: 18 6f 2d 94 .0..

]

#2: ObjectId: 2.5.29.17 Criticality=false
SubjectAlternativeName [
[DNSName: localhost]]

The host name being 1ocalhost in the certificate returned means no host name is specified on
the remote Liberty JVM server. Follow instructions in Configuring SSL (TLS) for remote JCICSX API
development to configure SSL correctly for the remote Liberty JVM server.

Chapter 12. Troubleshooting Java applications 337

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl-jcicsx.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl-jcicsx.html

Unable to authenticate a user when trying to access a protected web application in
a CICS Liberty JVM server

CICS JESMSGLG log contains the message:

ICH420I PROGRAM DFHSIP FROM LIBRARY hlq.SDFHAUTH CAUSED THE
ENVIRONMENT TO BECOME UNCONTROLLED
BPXPO14I ENVIRONMENT MUST BE CONTROLLED FOR DAEMON (BPX.DAEMON) PROCESSING.

The Liberty messages.log contains the message:

CWWKS1100A: Authentication did not succeed for user ID user.

An invalid user ID or password was specified.

The CICS Liberty JVM server security implementation uses the Liberty angel process to perform
authorized security checks. If Liberty is unable to connect to the angel process, it fails over to using
UNIX System Services security, which requires all members in the STEPLIB and DFHRPL concatenations
to be program controlled.

Attention: The Liberty server connects only to the angel process at server startup. The JVM server
needs to be restarted to complete authentication.

Unable to authenticate a user with user ID and password, cannot access APPL-ID
when trying to access a protected web application in a CICS Liberty JVM server

Liberty messages.log contains the message:

com.ibm.ws.security.saf.SAFServiceResult E CWWKS2909E:

A SAF authentication or authorization attempt was rejected because the server

is not authorized to access the following SAF resource:

APPL-ID APPL-ID. Internal error code 0x03008108.

The CICS Liberty JVM server security requires access to SAF security profiles in classes APPL and
SERVER. If access is not granted, then Liberty is not able to authenticate the user ID and password.

Details of how to configure this can be found here Authenticating users in a Liberty JVM server.

Web application is not available after it is deployed to the dxropins directory

If you receive a CWWKO0221E error message in dfhjvmerz, check that you set the right values for the
host name and port number in the JVM profile and server.xml. The port might be in use by another
process and port sharing disabled. The host name might not be resolvable by the client.

CICS CPU use increased after a Liberty JVM server is enabled

Liberty can be configured to regularly check for updates to both configuration and installed applications
using the <config> and <applicationMonitor> elements in server.xml. If the configuration polling rate or
application monitor interval is set too frequently it can cause excessive use of CPU and I/0.

For <config> you can reduce the frequency using the monitorInterval attribute. Do not set the
updateTrigger attribute to disabled because CICS requires Liberty to pick up configuration changes within
a few seconds.

For <applicationMonitor> you can reduce the frequency using the pollingRate attribute, change the
updateTrigger attribute to mbean, or disable it.

For more information, see Controlling dynamic updates.

Application not available

You copy a WAR file into the dropins directory but your application is not available. Check the Liberty
messages.log file for error messages. If you receive the CWWKZ0013E error message, you already have
a web application running in the Liberty JVM server with the same name. To fix this problem, change the
name of the web application and deploy to the dropins directory.

338 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_dyn_upd.html

Web application returns Context Root Not Found

You enabled your Liberty JVM server and deployed your web application. The JVM server reports it

is enabled, but when you are accessing your application, you receive Context Root Not Found.
Accessing the web application a short time later results in success. This is a known timing window in
which the server reports it is enabled while applications are still starting in the background. You are

more likely to experience this condition in a multi-region environment that uses Sysplex Distributor

or port sharing. You are also likely to experience this condition if you use automation to access the
application triggered from the enabled status. If you are using Sysplex Distributor or port sharing, TCP/IP
automation can be used to silence a port and then resume the port once the web application is available.
Workarounds might involve the addition of a pause in automation scripts, or the application writing a flag
to a known location when it is available.

Web application is not requesting authentication
You configured security, but the web application is not requesting authentication.

1. Although you can configure CICS security for web applications, the web application uses security only
if it includes a security restraint in the WAR file. Check that a security restraint was defined by the
application developer in the web . xml file in the Dynamic Web Project.

2. Check that the sexrver. xml file contains the correct security information. Any configuration errors are
reported in dfhjvmexrx and might provide some useful information. If you are using CICS security,
check that the feature cicsts:security-1.0 is specified in server.xml. If CICS security is
switched off, check that you specified a basic user registry to authenticate application users.

3. Check that server.xml is configured either for <safAuthorization> to take advantage of
EJBRoles, or for a local role mapping in an <application-bnd> element. The <application-bnd>
element is found with in the <application> elementin server.xml or installedApps.xml. The
default security-role added by CICS for a local role mapping is cicsAllAuthenticated.

Web application is returning an HTTP 403 error code

The web application is returning an HTTP 403 error code in the web browser because either your user ID
is revoked or you are not authorized to run the application transaction.

1. Check the CICS message log for the error message ICH408I to see what type of authorization failure
occurred. To fix the problem, make sure that the user ID has a valid password and is authorized to run
the transaction.

2. If no ICH408I message is found check the messages. log file.

« For the following message:

CWWKS3005E: A configuration exception has occurred.

No UserRegistry implementation service is available. A

Ensure that you have a user registry configured.

You must ensure that you have configured a SAF registry in servexr. xml. For more information, see

Manually tailoring server.xml.

« For the following message, when distributed identity is in use:

CWWKS9104A:A Authorization failed for user alidist:defaultRealm

while invoking LdapTests on /basic.

The user is not granted access to any of the required roles: [testing].

IfA server.xml is configured for <safAuthorization> orincludes the
cicsts:distributedIdentity-1.0 feature, then ensure the appropriate EJBRoles for the
RACMAPped user ID have been defined. For more information, see Authorization using SAF role
mapping. If server.xml is not configured for <safAuthoxrization> and does not include the
cicsts:distributedIdentity-1.0 feature, then ensure that the appropriate distributed user
ID is defined to have access to the appropriate role in an <application-bnd> element. For more
information, see Authorizing users to run applications in a Liberty JVM server.

3. If the application is retuning an exception for the class
com.ibm.ws.webcontainer.util.Base64Decode, check dfhjvmerr for error messages. If you

Chapter 12. Troubleshooting Java applications 339

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/serverxmljvm.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee_app_role.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee_app_role.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_app_liberty.html

see configuration error messages, for example CWWKS4106E or CWWKS4000E, the server is trying to
access configuration files that were created in a different encoding. This type of configuration error can
occur when you change the £file.encoding value and restart the JVM server. To fix the problem, you
can either revert to the previous encoding and restart the JVM server, or delete the configuration files.

The JVM server re-creates the files in the correct file encoding when it starts.

Web application is returning an HTTP 500 error code

The web application is returning an HTTP 500 error in the web browser. If you receive an HTTP 500 error,
a configuration error occurred.

1. Check the CICS message log for DFHSJ messages, which might give you more information about the
specific cause of the error.

2. If you are using a URIMAP to run application requests on a specific transaction, make sure that the
URIMAP specifies the correct transaction ID.

3. Make sure that the SCHEME and USAGE attributes are set correctly. The SCHEME must match the
application request, either HTTP or HTTPS. The USAGE attribute must be set to JVMSERVER.

Web application is returning an HTTP 503 error code

The web application is returning an HTTP 503 error in the web browser. If you receive an HTTP 503 error,
the application is not available.

1. Check the CICS message log for DFHSJ messages for additional information.

2. Make sure that the TRANSACTION and URIMAP resources for the application are enabled. If these
resources are packaged as part of the application in a CICS bundle, check the status of the BUNDLE
resource.

3. The request might have been purged before it completed. The error messages in the log describe why
the request was purged.

Unable to access your web application by using distributed identity mapping

If you are using distributed identity mapping and see the following message in the messages. log file:
FFDC1015I: An FFDC Incident has been created: "com.ibm.ws.security.saf.SAFException:

CWWKS2905E: SAF service IRRSIAOO_CREATE did not succeed because
user null was not found in the SAF registry.
SAF return code Ox00000008. RACF return code Ox00000008. RACF reason code 0Ox00000010.

FFDC1015I: An FFDC Incident has been created:

"javax.security.auth.login.CredentialException: could not create SAF credential

for <distid> DistId

Check the CICS message log for the error message ICH408I to see what type of authorization failure
occurred. If itis ICH408I USER(<userid>) GROUP(TSOUSER) NAME(<name>) DISTRIBUTED
IDENTITY IS NOT DEFINED: 776 cn= <distid> DistId,ou=users,dc=domain,dc=com
LdapRegistry you need to create the appropriate RACMAP for the distributed identity being used to
access the application. The RACMAP QUERY command is useful for debugging. For example:

RACMAP QUERY USERDIDFILTER(NAME('ou=users,dc=domain,dc=com')) REGISTRY (NAME('LdapRegistry'))

The web application is returning exceptions

The web application is returning exceptions in the web browser; for example, the application is retuning
an exception for the class com.ibm.ws.webcontainer.util.Base64Decode.
1. Check dfhjvmexrz for error messages.

2. If you see configuration error messages, for example CWWKS4106E or CWWKS4000E, the server is
trying to access configuration files that were created in a different encoding. This type of configuration
error can occur when you change the file.encoding value and restart the JVM server. To fix the

340 CICS TS for z/OS: Java Applications in CICS

problem, you can either revert to the previous encoding and restart the JVM server, or delete the
configuration files. The JVM server re-creates the files in the correct file encoding when it starts.

Error message WTRNOO78E An attempt by the transaction manager to
call start on a transactional resource has resulted in an error.

The error code was XAER_PROTO. If you experience this error, the most likely scenario is that you have
the default JTA integration in operation on your Liberty server, and your application uses a bean method
declared as REQUIRES_NEW. For example, the use of REQUIRES_NEW inside an XA transaction is not
supported by CICS: @Transactional (value = TxType.REQUIRES_NEW) void yourMethodi}
You must alter the application before it will run.

Error message DFHSJ1004 in MSGUSER, but no corresponding STDERR exception

A symptom of running out of zFS file system space could be a DFHSJ1004 with no corresponding STDERR
exception. The message is sent because of the lack of space, but there is no exception in STDERR because
there is no space to write a message to the files.

You can plan and monitor the size of your file system using the techniques detailed in Managing file
systems in z/OS UNIX System Services Planning.

Using the productInfo script to verify integrity of Liberty

You can verify the integrity of the Liberty installation after you install CICS or applying service, by using
the productInfo script.

1. Change directory to the CICS USSHOME directory.
2. As productInfo uses Java, you must ensure that Java is included in your PATH. Alternatively, set the
JAVA_HOME environment variable to the value of JAVA_HOME in your JVM profile, for example:
export JAVA_HOME=/usr/lpp/java/l8.0_64

3. Run the productInfo script, supplying the validate option wlp/bin/productInfo validate.No
errors should be reported. For more information about the Liberty productInfo script, see Verifying
the integrity of Liberty profile installation.

Using the wlpenv script to run Liberty commands

You might be asked by IBM service to run one or more of the Liberty supplied commands, such as
productInfo or sexver dump. To run these commands, you can use the wlpenv script as a wrapper
to set the required environment. The script is created and updated every time that you enable a Liberty
JVM server after the JVM profile has been successfully parsed. Because the script is unique for each JVM
server in each CICS region, it is created in the WORK_DIR/APPLID/IVMSERVER as specified by default in
the JVM profile and is called wlpenv. APPLID is the value of the CICS region APPLID and JVMSERVER is
the name of the JVMSERVER resource.

To run the wlpenv script in the UNIX System Services shell, change directory to the WORK_DIR as
specified in the JVM profile and run the script with the Liberty command as an argument, for example:

./wlpenv productInfo version

./wlpenv server dump --archive=package_file_name.dump.pax --include=heap

For the sexver dump command, you do not supply the server name because it is set by the wlpenv
script to the value set the last time the JVM server was enabled.

For more information about Liberty commands, see productInfo command and Generating a Liberty
server dump from the command line.

Chapter 12. Troubleshooting Java applications 341

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxb200/dasman.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxb200/dasman.htm
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_inst_integrity.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_inst_integrity.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_command_productinfo.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_dump_server.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_dump_server.html

Troubleshooting invoking an Enterprise Java application
EXEC CICS LINKcommand fails with RESP = PGMIDERR, RESP2 =1
1. Check the application to determine whether the correct artifacts have been generated.

a. Check that annotation processing is enabled on the source project.

Properties for com.ilNpn.cics.server.examples.wip.link.jcics
|| 4 Annotation Ptfa‘;essing -
> Resource 7| | ¥ Enable project specific settings
Builders))
Heploymentilsssrmbiy ¥ Enable annotation processing
Jeva. Biiild Path ¥ Enable processing in editor
b Java Code Style Generated source directory:

|.apt_generated

= Java Compiler

0 n Pr] Processor options (-Akey=value):

Building Key Value . New...
Errors/Warnings
Javadoc
Task Tags

b Java Editor

Javadoc Location

Note: options such as "-classpath” and "-sourcepath” are automatically

b JavaScript passed to all processors, with values corresponding to the project's Java
JSP Fragment settings.
Project Facets 'Restore Defaults | | Apply |
Drniart Rafaranrac E‘ = = =
@ | Cancel . OK |

Figure 39. Check annotation processing is enabled
b. Check if an @CICSProgram has been added to a Java method and that it compiles correctly.

c. If your project contains a web . xml, check the version of the servlet specification it specifies. It
must be at least version 2.5.

d. Export the application and check for generated code in the
com.ibm.cics.sexver.invocation.proxy package. For example, on a workstation, open
the WAR or EAR file using an archive manager, or on z/OS use the jar -tfcommand, to
examine the contents of the WAR or EAR file. If code has not been generated, check you have
the latest version of the CICS Explorer, CICS build toolkit, or the annotation processor.

2. Review the CICS message log for messages similar to:

« DFHSJ1204: A linkable service has been registered for class examples.TSQ.ClassOne method
anotherMethod with program name LINKJCIN in JVMSERVER LINKJVM

« DFHPGO0101: Resource definition for LINKJCIN has been added.
If these messages don't appear then:

a. Ensure you have a Liberty JVM server in the enabled state.

b. Ensure you have the cicsts:1ink-1.0 feature configured in your server.xml.
If it is configured you will see message J2CA70011: Resource adapter
com.ibm.cics.wlp.program.link.connectorinstalledin messages.log.

c. If you are deploying your application using a CICS bundle, ensure the bundle is installed and
enabled.

d. Ensure the application is installed in Liberty, if it is, in the messages. log you will
get a message including the name of the user's application. For example: CWWKZ00011 :
Application com.ibm.cics.test.javalink started.

342 CICS TS for z/OS: Java Applications in CICS

EXEC CICS LINKcommand fails with RESP = PGMIDERR, RESP = 27
This indicates that CICS tried to invoke an Enterprise Java application in Liberty but a timeout
occurred before the application was successful. The most common cause for this issue is that there
was no thread available in the JVM server. To resolve this, increase the JVM server thread limit or
increase the value of WLP_LINK_TIMEOUT to allow the tasks to wait longer to acquire a thread. For
more information see WLP_LINK_TIMEOUT in Symbols used in the JVM profile and Managing the
thread limit of JVM servers.

JCICS API call throws a CICSRuntimeException

com.ibm.cics.server.CicsRuntimeException:
DTCTSQ_READNEXT: No JCICS context is associated with the current thread.

The most likely cause of this exception is that you created a JCICS object on one thread and tried
to call its instance methods from a different thread. Change your application to construct the JCICS
object on the same thread that calls its methods.

Patterns that lead to inadvertently using an object on a different thread include:

 Constructing a JCICS object in constructor of a java.lang.Runnable or
java.util.concurrent.Callable. Construct the object in the run () method instead.

« Assigned JCICS objects to static variables. Use instance variables instead.

» Passing a JCICS object as a parameter to a method that is executed by another thread. The thread
should construct JCICS object itself.

Transaction abends AJ05 when using invoking an Enterprise Java application
The following exceptions will be logged to the dfhvijmerx file:

com.ibm.cics.server.InvalidRequestException: CICS INVREQ Condition (RESP=INVREQ, RESP2=200)
java.lang.RuntimeException:

javax.transaction.RollbackException:

XAResource start association error:XAER_PROTO

Using JTA with Link to Liberty is only supported with CICS JTA integration disabled. Configure this by
using <cicsts_jta integration="false"/>in server.xml.

Java stack overflows

The Java error message java.lang.StackOverflowError: operating system stack
overflow is typically seen when the thread exceeds the initial stack size for operating system threads.
The size is set by the JVM option -Xmso in the JVM profile. This value might need to be increased if Java
Platform Debugger Architecture (JPDA) is enabled.

Unexpected ICH408I messages in log

These are standard audit messages. For more information, see Classes that control auditing for z/OS
UNIX System Services in z/OS Security Server RACF Auditor's Guide.

You can prevent them from being issued by executing one of the following RACF commands

« SETROPTS LOGOPTIONS(NEVER(IPCOBJ))
- SETROPTS LOGOPTION(DEFAULT(IPCOBJ))

IPCOBJ is defined only for auditing z/OS UNIX security events, it is not used for authorization checking.

Liberty Bundlepart hits timeout
In the JVM log or STDERR file, you see the message:

The application installed by bundlepart <symbolic-name> was not started

after 30000 milliseconds. Either a problem exists with the application, or the system is busy.
This timeout can be controlled by the System Property
‘com.ibm.cics.jvmserver.wlp.bundlepart.timeout=n"

where n is the value of milliseconds to wait.

Chapter 12. Troubleshooting Java applications 343

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_symbols.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/java/threadlimit_jvmserver.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/java/threadlimit_jvmserver.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r2.icha800/audcls.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r2.icha800/audcls.htm

Check the Liberty messages.log for CWWKZ messages. CWWKZ messages might provide information on
why the application has not started. If there are no CWWKZ messages for the application, make sure the
<config> element is configured to use polling and has a monitor interval lower the timeout, for example:

<config updateTrigger="polled" monitorInterval="10s" />

If the monitor interval is less than the bundlepart timeout, you need to increase
the timeout value. The timeout value is controlled by the JVM system property
com.ibm.cics.jvmserver.wlp.bundlepart.timeout.

CICS Explorer cannot export a bundle or find a project with error Unable to find
a built {project_type} with symbolic name {symbolic_name}.

You might see the following validation errors when adding a project to your CICS bundle:

The bundle cannot be exported because CICS Explorer cannot find a built {project_type} with
symbolic name {symbolic_name}.

To resolve this, either install the IBM CICS SDK for Java EE, Jakarta EE and Liberty to build
the project or import the built {file_extension} project directly.

Unable to find a built 0SGi Application Project with symbolic name {symbolic_name}.
To resolve this, either install LDT to find and validate projects in your workspace or add the
built EBA project into the root of the CICS bundle project.

Unable to find a {project_type} with symbolic name {symbolic_name}.
To resolve this, either import the {project_type} into your workspace or add the built
ifile_extension} project into the root of the CICS bundle project.

Or this error when exporting a CICS bundle:

isymbolic_namet} cannot be exported. Install the Liberty Developer Tools (LDT) from Eclipse
Marketplace.

The WAR, EAR or EBA cannot be exported. Install the IBM CICS SDK for Java EE, Jakarta EE and
Liberty.

Why did it happen?
For a project in the CICS bundle, CICS Explorer either finds the corresponding project in your
workspace or validates whether a corresponding built binary file with the matching symbolic name
exists so that the project can be exported with the bundle. One of the previous errors is returned if
CICS Explorer fails to find such a built project.

Where:

{project_type}
Is the project type of the missing built project. It can be an OSGi Application Project or an
Enterprise Application Project.

{symbolic_name}
Is the name of the missing built project, which is specified in the cics.xml file.

{file_extension}
Is the file format of the missing built project. It can be EBA or EAR.

How to resolve the error?

For an OSGi Application Project (EBA), follow instructions in the error messages to either install the
IBM CICS SDK for Enterprise Java (Liberty), the Liberty Developer Tools (LDT), or both to validate and
build the project, or add the corresponding built project to the root of your CICS bundle.

For an Enterprise Application Project (EAR) or a Dynamic Web Project (WAR), follow instructions in the
error messages to install the IBM CICS SDK for Enterprise Java (Liberty), import the corresponding
Enterprise Application Project or Dynamic Web Project into your workspace, or add the built EAR or
WAR project to the root of your CICS bundle project.

344 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_sysprops.html#dfha2bk__com.ibm.cics.jvmserver.wlp.bundlepart.timeout

EBA application fails to install with a CWWKZ0005E or CWWKZ0021E messages

If Liberty fails to install an EBA, it produces either the CWWKZOOOS5E or CWWKZOO21E messages. This
might be caused when the wab-1.0 feature is not installed. Ensure that the wab-1.0 feature is correctly
installed.

Due to the stabilization of Liberty's OSGi support, WABs are not compatible with Java EE 8 features. The
wab-1.0 feature can automatically be uninstalled if Java EE 8 features are also installed in the same
Liberty server, causing any EBAs to be removed from the server with the above message. The JVM profile
property com.ibm.cics.jvmserver.wlp.wab can be used to control whether the wab-1.0 feature is
added to server.xml.

Error message CWWKC2262E The sexrver is unable to process the 4.0
version and the http://xmlns.jcp.oxg/xml/ns/javaee namespace

If the server is unable to process the 4.0 version and the http://xmlns.jcp.oxrg/xml/ns/
javaee namespace, this typically means that an application server, such as Tomcat has

not been excluded from the build script. In Gradle, ensure that you have specified
providedRuntime("org.springframework.boot:spring-boot-starter-tomcat"), whilein
Maven you have used the scope 'provided’, for example:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-tomcat</artifactId>
<scope>provided</scope>

</dependency>

Controlling the location for JVM output, logs, dumps and trace

Output from Java applications that are running in a JVM server can be written to the z/OS UNIX files. The
z/0S UNIX files are named by the STDOUT, STDERR, JVMLOG, and JVMTRACE options in the JVM profile
or routed to the JES log. In a Liberty JVM server, Liberty server output can be found in messages.log
relative to the configured log directory.

Logs and Traces

By default, the output from Java applications that are running in a JVM server is written to the z/0S

UNIX file system. The z/OS UNIX file system follows the file name convention DATE . TIME. <dfhjvmxxx>
within the directory structure of $WORK_DIR/APPLID/JVMSERVER. Additional overrides can be used to
route the output to the JES log. For more information, see Using a DD statement to route JVM server
output to JES.

If you want to override the defaults, you can specify a zFS file name for the STDOUT, STDERR, JVMLOG,
and JVMTRACE options. However, if you use a fixed file name, the output from all the JVMs that were
created with that JVM profile is appended to the same file. The output from different JVMs is interleaved
with no record headers. This situation is not helpful for problem determination.

If you customize these values, a better choice is to specify a variable file name for the STDOUT, STDERR,
JVMLOG, and JVMTRACE options. The files can then be made unique to each individual JVM during the
lifetime of the CICS region.

You can include the CICS region APPLID in the file name by using the APPLID symbol.

You can also include extra identifying information in file names. Other identifying information includes the
DATE and TIME symbols.

DATE is replaced by the date the profile parses on JVM server start, in the form Dyymmdd.
TIME is replaced by the time the profile parses on JVM server start, in the format Thhmmess.
JVMSERVER is replaced by the name of the JVMSERVER resource.

Further customization can be achieved at the programmatic level that uses the USEROUTPUTCLASS
option, which does not work with Liberty. The USEROUTPUTCLASS option, which is specified in the JVM

Chapter 12. Troubleshooting Java applications 345

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_sysprops.html#dfha2bk__com.ibm.cics.jvmserver.wlp.wab

profile, names a Java class. A Java class intercepts and redirects the output from the JVM to a custom
location such as a CICS transient data queue. You can add time stamps and headers to the output
records, and identify the output from individual transactions that are running in the JVM. CICS supplies
sample classes that perform these tasks.

Dumps

The location for the javacore (also known as a Java dump), heap and snaptrace outputs from the JVM

is the working directory on z/OS UNIX named by the JVMSERVER's WORK_DIR option in the JVM profile.
These files are uniquely identified by a time stamp in their names. To override the default locations

and names, you can use -Xdump :directoxry=<path> to specify a location for all dump types to be
written to, and =Xdump: £ile=<filename> to specify the dump file names. For details about -Xdump,
see -Xdump.

The more detailed Java system dumps are written to the data set named by the
JAVA_DUMP_TDUMP_PATTERN option. You can use the APPLID, DATE, and TIME, and JVMSERVER symbols
in this value to make the name unique to the individual JVM, as shown in the sample JVM profiles
included with CICS. You can also use MVS symbols as supported by the IEATDUMP macro or dump

agent tokens as supported by the JRE. For details about dump agent tokens see -Xdump and for details
about MVS system symbols see What are system symbols?. You should ensure that the generated data
set names are valid and can be allocated by the CICS region user ID otherwise first failure diagnostic
information may be lost in the event of a system error.

Note: The terms system dump and TDUMP are occasionally used interchangeably. For clarification,
TDUMP is a type of MVS system dump generated via IEATDUMP, producing an MVS transaction dump.
Care should be taken to avoid confusing such MVS transaction dumps with CICS transaction dumps.

The JVM writes information to the stdexr stream when it generates a javacore output or a system dump.
For more information about the contents of javacore outputs and system dump files, see Troubleshooting
and support.

Using a DD statement to route JVM server output to JES
You can update the JVM server to redirect output to a specific location.

JVM server STDOUT, STDERR, JVMLOG, JVMTRACE, and messages.log output can be routed to the JES
log. This allows JVM server log file output to be managed together with other CICS logs such as the
MSGUSR.

Using the JOBLOG parameter results in STDOUT, JVMLOG and JVMTRACE being routed to SYSPRINT if

defined or to a dynamic SYSnnn if not. If only JVMTRACE=JOBLOG is specified, JVMTRACE is routed to
the current stdout location. STDERR is routed to SYSOUT if defined or to a dynamic SYSnnn if not, for
example:

STDOUT=JOBLOG
STDERR=JOBLOG
JVMTRACE=JOBLOG
JVMLOG=J0BLOG

Output can also be routed to any MVS data definition (DD) defined to JES, for example if the CICS region
JCL specifies the DD statements JVMOUT, JVMERR, and MSGLOG.

//3IVMOUT DD SYSOUT=«
//3IVMERR DD SYSOUT=%
//MSGLOG DD SYSOUT=x <--- redirects Liberty messages.log

If the DD statements configured in Liberty are not defined in CICS runtime JCL, these logs are
automatically redirected to the specified DD output and are listed in CICS job output when Liberty is
started.

The following JVM profile options can then be used in the JVM profile to route stdout and stderr
streams to the JVMOUT and JVMERR destinations. If omitted, the JVM server will automatically create

346 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=options-xdump
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=options-xdump
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieag300/comdesc.htm
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=guide-troubleshooting-support
https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=guide-troubleshooting-support

those destinations. A MSGLOG statement automatically redirects messages.log to JES without the need
for any JVM profile configuration.

STDOUT=//DD:JVMOUT
STDERR=//DD:JVMERR

To establish the origin of the JVM server output, all stdout, and stdexr entries that are routed to JES
are written with a prefix string of the JVM server name, which is useful if multiple JVM servers are sharing
a destination. This behavior can be disabled by using the JVM profile option IDENTITY_PREFIX, which if
set to FALSE disables use of the prefix string.

It is not possible to route IBM Health Center messages to the CICS job log. Consider using zFS as the
primary output location if you wish to see detailed IBM Health Center output.

If you choose not to specify a destination, the output will redirect to the zFS default file, however you can
set it to send to specific zFS files. See “Controlling the location for JVM output, logs, dumps and trace” on
page 345.

Redirecting the JVM stdout and stdexr streams

During application development, the USEROUTPUTCLASS option can be used by developers to separate
out their own stdout and stderzr entries in a CICS region, and direct them to an identifiable destination
of their choice. You can use a Java class to redirect the output, and you can add time stamps and headers
to the output records. Dump output cannot be intercepted by this method.

Specifying the USEROUTPUTCLASS option has a negative effect on the performance of JVMs. For best
performance in a production environment, do not use this option.

Output that is written to System.out () or System.exrx (), either by an application or by system code,
can be redirected by the output redirection class. The z/OS UNIX files that are named by the STDOUT and
STDERR options in the JVM profile are still used for some messages that are issued by the JVM, or if the
class named by the USEROUTPUTCLASS option is unable to write data to its intended destination. You
must therefore still specify appropriate file names for these files.

To use the USEROUTPUTCLASS option, specify USEROUTPUTCLASS=[java class] in

a JVM profile, naming the Java class of your choice. The class extends

java.io.OutputStxream. The supplied sample JVM profiles contain the commented-out option
USEROUTPUTCLASS=com.ibm.cics.samples.SIMergedStream, which names the supplied sample
class. Uncomment this option to use the com.ibm.cics.samples.SIMergedStream class to

handle output from JVMs with that profile. CICS also supplies an alternative sample Java class,
com.ibm.cics.samples.SJTaskStream.

For JVM servers, you package your output redirection class as an OSGi bundle to run the class in the OSGi
framework. For more information, see Writing Java classes to redirect JVM stdout and stderr output.

Note: Output redirection samples function in OSGi and classpath JVM servers and not in a Liberty JVM
server.

The sample classes com.ibm.cics.samples.SJMexgedStream and
com.ibm.cics.samples.SJTaskStxream

For Java application threads that can make CICS requests, you can intercept the output from the JVM and
write it to a transient data queue. A log is created that correlates JVM activity with CICS activity.

You can add time stamps, task and transaction identifiers, and program names when the output
is intercepted. You can therefore create a merged log file that contains the output from multiple
JVMs. You can use this log file to correlate JVM activity with CICS activity. The sample class,
com.ibm.cics.samples.SIMergedStreanm, is set up to create merged log files.

The com.ibm.cics.samples.SIMergedStream class directs output from the JVM to the transient
data queues CSJO (for the stdout stream), and CSJE (for the stdexrx stream and internal messages).
These transient data queues are supplied in group DFHDCTG, and they are redirected to CSSL, but you
can redefine them if required.

Chapter 12. Troubleshooting Java applications 347

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfha3sc.html

By redirecting the output, the class adds a header to each record that contains the date, time, APPLID,
TRANSID, task number, and program name. The result is two merged log files for JVM output and for error
messages, in which the source of the output and messages can easily be identified.

The classes are shipped in the file com.ibm.cics.samples. jar, which is in the directory /usr/1pp/
cicsts/cicsts56/1ib, where /usr/lpp/cicsts/cicsts56 is the installation directory for CICS
files on z/OS UNIX. The source for the classes is also provided as samples, so you can modify the classes
as you want, or write your own classes based on the samples. The classes are packaged as an OSGi
bundle JAR. These classes can either be deployed into a CLASSPATH JVM server or as a middleware
bundle that uses the OSGI_BUNDLES JVM server option in an OSGi JVM server. For more information, see
Writing Java classes to redirect JVM stdout and stderr output.

Java applications that run on threads other than the ones that are attached by CICS are not able

to make CICS requests. The output from the JVM cannot be redirected by using CICS facilities. The
com.ibm.cics.samples.SIMergedStream class still intercepts the output and adds a header to
each record. The output is written to the z/OS UNIX files /work_dir/applid/stdout/CSJ0 and /
work_dir/applid/stderr/CSIE as referred to previously. If these files are unavailable, the output is
written to the z/OS UNIX files named by the STDOUT and STDERR options in the JVM profile.

As an alternative to creating merged log files for your JVM output, you can direct the output

from a single task to z/OS UNIX files. You can also add time stamps and headers, to provide

output streams that are specific to a single task. The sample class that is supplied with CICS,
com.ibm.cics.samples.SJTaskStreamis set up for this purpose. The class directs the output
for each task to two z/OS UNIX files. One is for the stdout stream and one is for the stderr

stream. The output entries within the streams are uniquely named by using a task number (in the
format YYYYMMDD. task. tasknumber). The z/OS UNIX files are stored in directories called STDOUT
and STDERR respectively. The process is the same for Java applications which run on threads that are
attached by CICS, and Java applications that are running on other threads.

Error handling

The length of messages that are given by the JVM can vary. The maximum record length for the CSSL
queue (133 bytes) might not be sufficient to contain some of the messages you receive. If you receive
more messages than the maximum record length for the queue, the sample output redirection class
issues an error message. The text of the message might be affected.

If you find that you are receiving messages longer than 133 bytes from the JVM, redefine CSJO and CSJE
as separate transient data queues. Make them extrapartition destinations, and increase the record length
for the queue. You can allocate the queue to a physical data set or to a system output data set. You

might find a system output data set more convenient in this case, because you do not then need to close
the queue to view the output. For information about how to define transient data queues, see TDQUEUE
resources. If you redefine CSJO and CSJE, ensure that they are installed as soon as possible during a cold
start, in the same way as for transient data queues that are defined in group DFHDCTG.

If the transient data queues CSJO and CSJE cannot be accessed, output is written to the z/OS UNIX

files /work_dir/applid/stdout/CSJ0and /work_dir/applid/stderr/CSIE, where work_diris
the directory that is specified on the WORK_DIR option in the JVM profile, and applid is the APPLID
identifier that is associated with the CICS region. If these files are unavailable, the output is written to the
z/OS UNIX files named by the STDOUT and STDERR options in the JVM profile.

When an error is encountered by the sample output redirection classes, one or more error messages are
given. If the error occurred while you processed an output message, then the error messages are directed
to System.err, and are eligible for redirection. However, if the error occurred while you processed an
error message, then the new error messages are sent to the file named by the STDERR option in the JVM
profile, avoiding a recursive loop in the Java class. The classes do not return exceptions to the calling Java
program.

348 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfha3sc.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/tdqueue/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/tdqueue/dfha4_summary.html

Control of Java-related dump options
The -Xdump option can be used in a JVM profile to specify dump options to the JVM.

Information about Java-related dump options can be found in Troubleshooting and support.

CICS component tracing for JVM servers

In addition to the logging produced by Java, CICS provides some standard trace points in the SJ (JVM)
and AP domains for 0, 1, and 2 trace levels. These trace points trace the actions that CICS takes in setting
up and managing JVM servers.

You can activate the SJ and AP domain trace points at levels 0, 1, and 2 using the CETR transaction.
For details of all the standard trace points in the SJ domain, see JVM and Node.js runtime domain trace
points.

SJ and AP component tracing

The SJ component traces exceptions and processing in SJ domain to the internal trace table. The AP
component traces the installation of OSGi bundles in the OSGi framework. SJ level 3, 4, and 5 tracing
produce Java logging that is written to a trace file in zFS. The name and location of the trace file is
determined by the JVMTRACE option in the JVM profile.

SJ level 4 and 5 tracing produces verbose logging information in the trace file. If you want to use this trace
level, you must ensure that there is enough space in zFS for the file. For more information about activating
and managing trace, see “Activating and managing tracing for JVM servers” on page 349.

Activating and managing tracing for JVM servers

You can activate JVM server tracing by turning on SJ and AP component tracing. Small amounts of trace
are written to the internal trace table, but Java also writes out logging information to a unique file in zFS
for each JVM server. This file does not wrap so you must manage its size in zFS.

About this task

JVM server tracing does not use auxiliary or GTF tracing. CICS writes some information to the internal
trace table. However, most diagnostic information is logged by Java and written to a file in zFS. This file is
uniquely named for each JVM server. The default file name has the format &DATE; .&TIME; .dfhjvmtzc
and is created by CICS in the $WORK_DIR/&APPLID; /&JVMSERVER; directory when you enable the
JVMSERVER resource. You can change the name and location of the trace file in the JVM profile. If you
delete or rename the trace file when the JVM server is running, CICS does not re-create the file and the
logging information is not written to another file.

Procedure

1. Use the CETR transaction to activate tracing for the JVM server.
You can use two components to produce tracing and logging information for a JVM server:
« Select the SJ component to trace the actions taken by CICS to start and stop the JVM server. The
JVM logs diagnostic information in the zFS file.
« Select the AP component to trace the installation of OSGi bundles.
2. Set the tracing level for the SJ and AP components:
« SJlevel 0 produces tracing for exceptions only, such as errors during the initialization of the JVM

server or problems in the OSGi framework. SJ level 1 and level 2 produces more CICS tracing from
the SJ domain. This tracing is written to the internal trace table.

« SJlevel 3 produces additional logging from the JVM, such as warning and information messages in
the OSGi framework. This information is written to the trace file in zFS.

Chapter 12. Troubleshooting Java applications 349

https://www.ibm.com/docs/en/semeru-runtime-ce-z/17?topic=guide-troubleshooting-support
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-diagnostics/trace/dfhs6_sj.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-diagnostics/trace/dfhs6_sj.html

« SJlevel 4, 5and AP level 2 produce debug information from CICS and the JVM, which provides
much more detailed information about the JVM server processing. This information is written to the
trace file in zFS.

3. Each trace entry has a date and time stamp. You can change the name and the location of this trace file
by using the JVMTRACE profile option.

4. If you are using the default JVMTRACE settings, when you enable the JVMSERVER resource CICS
creates a new unique trace file for the life of the JVM.

If you disable the JVMSERVER resource, you can delete the trace file or rename the file if you want to
retain the information separately.

5. To manage the number of files you can set the LOG_FILES_MAX option to control the number of old
trace files that are retained on the JVM server startup.

Debugging a Java application

The JVM in CICS supports the Java Platform Debugger Architecture (JPDA), which is the standard
debugging mechanism provided in the Java Platform.

About this task

You can use any tool that supports JDPA to debug a Java application running in CICS. For example, you
can use the Java Debugger (JDB) that is included with the Java SDK on z/0S. To attach a JPDA remote
debugger, you must set some options in the JVM profile.

Note: The use of JPDA might require a larger stack size for operating system threads. The stack size for
operating threads can be configured in the JVM profile with option -Xmso. You should review your existing
profiles for artificially constrained lower values. The default stack size is now 1M, which matches the
stack size of the 64bit JVM.

IBM provides monitoring and diagnostic tools for Java, including Health Center. IBM Health Center is
available in the IBM Support Assistant Workbench. These free tools are available to download from IBM
as described in the Getting Started guide for IBM Health Center.

Procedure
1. Add the debugging option to the JVM profile to start the JVM in debug mode:

-agentlib:jdwp=transport=dt_socket, server=y,address=port, suspend=n

Select a free port to connect to the debugger remotely.
If the JVM profile is shared by more than one JVM server, you can use a different JVM profile for
debugging.

Note: The default value for suspend is y. This value suspends the JVM and waits for the remote client
debugger to attach before processing continues. Specifying a value of n will prevent the JVM server
from suspending.

2. Add these properties to the JVM profile when debugging a Liberty JVM server to avoid hot-swap
complications with Liberty trace. This will also indicate to Liberty that it should operate in a debug
cognizant mode:

-Dwas.debug.mode=true
-Dcom.ibm.websphere.ras.inject.at.transform=true

3. Attach the debugger to the JVM.

If an error occurs during the connection, for example the port value is incorrect, messages are written
to the JVM standard output and standard error streams.

4. Using the debugger, check the initial state of the JVM. For example, check the identity of threads that
are started and system classes that are loaded.

350 CICS TS for z/OS: Java Applications in CICS

https://developer.ibm.com/javasdk/tools/
https://developer.ibm.com/javasdk/tools/

5. Set a breakpoint at a suitable point in the Java application by specifying the full Java class name and
source code line number. If the debugger indicates that activation of this breakpoint is deferred, it is
because the class might not yet have loaded.

Let the JVM run through the CICS middleware code to the application breakpoint, at which point it
suspends execution again.

6. Examine the source code of the loaded classes and variables and set further breakpoints to step
through the code as required.

7. End the debug session. You can let the application run to completion, at which point the connection
between the debugger and the CICS JVM closes. Some debuggers support forced termination of the
JVM, which results in an abend and error messages on the CICS system console.

The CICS JVM plug-in mechanism

In addition to the standard JPDA debug interfaces in the JVM, CICS provides a set of interception points
(plug-ins) in the CICS Java middleware, which can be useful for debugging applications. You can use
these plug-ins to insert additional Java programs immediately before and after the application Java code
is run.

Information about the application, for example, class nhame and method name, is made available to

the plug-ins. The plug-ins can also use the JCICS API to obtain information about the application, and
can also be used in conjunction with the standard JPDA interfaces to provide additional debug facilities
specifically for CICS. The plug-ins can also be used for purposes other than debugging, in a similar way to
CICS user exits.

The Java exit is a CICS Java wrapper plug-in that provides methods that are called immediately before
and after a Java program is invoked.

To deploy a plug-in, you package the plug-in as an OSGi bundle. For more information see Deploying OSGi
bundles in a JVM server.

Two Java programming interfaces are provided.
Both interfaces are supplied in com.ibm.cics.server. jar, and are documented in the Javadoc.
The Java programming interfaces are:

« DebugControl: com.ibm.cics.server.debug.DebugControl. This programming interface defines
the method calls that can be made to an implementation supplied by the user.

 Plugin: com.ibm.cics.server.debug.Plugin. Thisis a general purpose programming interface
that you use for registering the plug-in implementation.

Here is an example of the DebugControl interface:

public interface DebugControl

// called before an application object method or program main is invoked
public void startDebug(java.lang.String className,java.lang.String methodName);

// called after an application object method or program main is invoked
public void stopDebug(java.lang.String className,java.lang.String methodName);

// called before an application object is deleted
public void exitDebug();

public interface Plugin

// initaliser, called when plug-in is registered
public void init();

Here is an example implementation of the DebugControl and Plugin interfaces:

import com.ibm.cics.server.debug.x;

public class SampleCICSDebugPlugin

Chapter 12. Troubleshooting Java applications 351

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_osgibundle.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_osgibundle.html

implements Plugin, DebugControl

{

// Implementation of the plug-in initialiser

public void init()

{
// This method is called when the CICS Java middleware loads and
// registers the plug-in. It can be used to perform any initialization
// required for the debug control implementation.

%

// Implementations of the debug control methods

public void startDebug(java.lang.String className,java.lang.String methodName)
// This method is called immediately before the application method is

/ invoked. It can be used to start operation of a debugging tool. JCICS

// calls such as Task.getTask can be used here to obtain further
// information about the application.

%

public void stopDebug(java.lang.String className,java.lang.String methodName)
// This method is called immediately after the application method is
// invoked. It can be used to suspend operation of a debugging tool.

%

public void exitDebug()

1
// This method is called immediately before an application object is
// deleted. It can be used to terminate operation of a debugging tool.

public static void main(com.ibm.cics.server.CommAreaHolder ca)

1

b

b

352 CICS TS for z/OS: Java Applications in CICS

Notices

This information was developed for products and services offered in the United States of America. This
material might be available from IBM in other languages. However, you may be required to own a copy of
the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119 Armonk,
NY 10504-1785

United States of America

© Copyright IBM Corp. 1974, 2023 353

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Client Relationship Agreement, IBM International Programming License
Agreement, or any equivalent agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions.
Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform

for which the sample programs are written. These examples have not been thoroughly tested under

all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information

IBM CICS supplies some documentation that can be considered to be Programming Interfaces, and some
documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS
Transaction Server for z/OS, Version 5 Release 6 (CICS TS 5.6) are included in the following sections
of the online product documentation:

- Developing applications

 Developing system programs
« CICS TS security
- Developing for external interfaces

« Application development reference

- Reference: system programming

- Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS TS 5.6, but that might
be misconstrued as Programming Interfaces, is included in the following sections of the online product
documentation:

« Troubleshooting and support

« CICS TS diagnostics reference

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the
customer to write programs to obtain the services of CICS TS 5.6 are included in the following manuals:

 Application Programming Guide and Application Programming Reference
« Business Transaction Services

354 Notices

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/developing_sysprogs.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/security.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/interfaces/externalInterfaces.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/reference-programming.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/home/reference-systemprogramming.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-connectivity/reference-connections.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/troubleshooting.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/home/reference-diagnostics.html

« Customization Guide

e C++ 00 Class Libraries

- Debugging Tools Interfaces Reference

- Distributed Transaction Programming Guide

« External Interfaces Guide

 Front End Programming Interface Guide

- IMS Database Control Guide

« Installation Guide

« Security Guide

 CICS Transactions

« CICSPlex System Manager (CICSPlex SM) Managing Workloads
« CICSPlex SM Managing Resource Usage

« CICSPlex SM Application Programming Guide and Application Programming Reference
« Java Applications in CICS

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to
be used as a Programming Interface of CICS TS 5.6, but that might be misconstrued as Programming
Interfaces, is included in the following manuals:

« Data Areas

- Diagnosis Reference

« Problem Determination Guide

CICSPlex SM Problem Determination Guide

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Apache, Apache Axis2, Apache Maven, Apache Ivy, the Apache Software Foundation (ASF) logo, and the
ASF feather logo are trademarks of Apache Software Foundation.

Gradle and the Gradlephant logo are registered trademark of Gradle, Inc. and its subsidiaries in the United
States and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Red Hat®, and Hibernate® are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in
the United States and other countries.

Spring Boot is a trademark of Pivotal Software, Inc. in the United States and other countries.

Notices 355

https://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.
Zowe", the Zowe logo and the Open Mainframe Project™ are trademarks of The Linux Foundation.

The Stack Exchange name and logos are trademarks of Stack Exchange Inc.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,
or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement

IBM Software products, including software as a service solutions, (Software Offerings) may use cookies or
other technologies to collect product usage information, to help improve the end user experience, to tailor
interactions with the end user or for other purposes. In many cases no personally identifiable information
(PII) is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect
PII. If this Software Offering uses cookies to collect PII, specific information about this offering’s use of
cookies is set forth below:

For the CICSPlex SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user’s user name and other PII for purposes of session management,
authentication, enhanced user usability, or other usage tracking or functional purposes. These cookies
cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect each user's user name and other PII for purposes of session management, authentication, or
other usage tracking or functional purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that do
not collect PII. These cookies cannot be disabled.

356 Notices

For CICS Explorer:
Depending upon the configurations deployed, this Software Offering may use session and persistent
preferences that collect each user’s user name and password, for purposes of session management,
authentication, and single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the user's explicit action
to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect PII
from end users via cookies and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Privacy Policy and IBM Online Privacy Statement, the section entitled Cookies, Web Beacons and
Other Technologies and the IBM Software Products and Software-as-a-Service Privacy Statement.

Notices 357

https://www.ibm.com/privacy
https://www.ibm.com/privacy/details
https://www.ibm.com/software/info/product-privacy

358 CICS TS for z/OS: Java Applications in CICS

Index

Special Characters

-Xinitsh 8
-Xms 8
-Xmx 8

A

access control lists (ACLs) 209
accessing databases 175
Adding the CICS-MainClass declaration to the manifest 42
aggregation

group 25
allocation failure 321
application programs, Java 55
applications

0SGi 13

updating 265
applying a security policy 311
Axis2

configuring 235

batch mode JVM 187

best practices
developing 55, 93

bundle 40

byte array handling 58

c

CEEPIPI Language Environment preinitialization module 8
channels

creating 60

JCICS support 59
channels as large COMMAREAs 59
CICS bundle 40
CICS Explorer SDK

developing Java application 40
CICS tasks in Java 9
class paths for JVM 7
class types in JVM 7
code page 58
com.ibm.cics 222
com.ibm.cics.jvmserver 222
com.ibm.cics.samples.SIJMergedStream 347
com.ibm.cics.samples.SJTaskStream 347
COMMAREAs > 32 K59
common libraries

deploying

Liberty 204

configuring

Axis2 235

CICS Security Token Service 237

Liberty JVM server 231

configuring (continued)
OSGi framework 212
configuring Db2 access 211
connectivity for Java applications 187
container plug-in, for debugging Java applications 351
containers
creating 60
JCICS support 59
controlling access to Java EE applications 120
Converting an existing Java project to a plug-in project 189
creating a JVM server 211
Creating a plug-in project 41
Creating an OSGi plug-in project from an existing binary JAR
file 193
Creating an OSGi plug-in project from an existing JAR file
191
CSJE transient data queue 347
CSJO transient data queue 347
customizing
JVM profiles 211

D

data source 231
DebugControl interface, for debugging Java applications 351
Default Web Application

Liberty 223
deploying

applications to a JVM server 199

common libraries

Liberty 204

Deploying a CICS non-0OSGi Java project 205
deploying Java applications 40
deploying OSGi bundles 199
deploying WAR file 202
developing

best practices 55, 93
developing Java applications 40
development environment 38
DFHAXRO 322, 323
DFHIVMAX JVM profile 7
DFHJVMAX profile 211
DFHJIVMCD JVM profile 207
DFHJIVMPR JVM profile 207
DFHJIVMST JVM profile 7
DFHOSGI JVM profile 7
DFHOSGI profile 211
DFHWLP JVM profile 7
DFHWLP profile 211

E

EAR file 202

ECI 148

enabling a security policy 311
enclave storage 323
encoding 58

Index 359

examples
channel and containers 62

G

garbage collection
JVM server 321
GID 209
Gradle 199
graphql
api 25
group identifier (GID) 209

H

heap expansion 321

I

IBM Health Center 314
installing developer tools 38
IPIC connection 153-155

J

Java
performance 313

Java development
CICS Explorer SDK 40

Java development using JCICS
introduction 55

Java Message Service 141

Java options
symbols 241

Java programming in CICS
accessing databases 175
using JCICS

JCICS command reference 58
threads 57

Java security manager 311

Java tools 314

java.security.policy 311

javadoc 188

JCA
CCI145, 147, 151-153
Channels 150
ECI 147, 150-152
resource adapter 147,152,153
trace 152

JCAServlet 154, 155

JCICS
ABEND handling 80
ADDRESS 64
APPC 59
BMS 59
browsing the current channel 61
CANCEL command 73
channels and containers 59
command reference 58
creating channels 60
creating containers 60
DEQ command 74
diagnostic services 64

360 CICS TS for z/0OS: Java Applications in CICS

JCICS (continued)
DOCUMENT services 64
ENQ command 74
example program 62
exception handling 80
exception mapping 84
file control 67
getting data from a container 61
HANDLE commands 83
HTTP services 70
INQUIRE SYSTEM 66
INQUIRE TASK 66
INQUIRE TERMINAL or NETNAME 66
program control 71
receiving the current channel 61
RETRIEVE command 73
START command 73
storage services 74
temporary storage 74
terminal control 76
threads and tasks 76
transform
data to XML 77
XML to data 77
UOWs 79,131, 142
using threads 57
web services 79
JCICS encoding 58
JDBC 211
IMS 141
JMS Client 141
JVM
class paths
library path 7
standard (CLASSPATH_PREFIX,
CLASSPATH_SUFFIX) 7
classes
application 7
system or primordial 7
debugging 334
DFHAXRO 322
heap 8
installation 6
JVM profiles 6, 207

JVMPROFILEDIR system initialization parameter 207

Language Environment enclave 8, 322

native libraries 7

output redirection
samples 347

plug-ins, for debugging Java applications 351

problem determination 334
setting up 207
storage heaps 8
structure 7
tracing 334
tuning 321, 322
JVM profile
DFHJVMAX 211
DFHOSGI 211
DFHWLP 211
options 238
properties 238
validation 238
JVM profile directory 207

JVM profile options

USEROUTPUTCLASS, output redirection 347
JVM profiles

case considerations 207

choosing 6

DFHIVMAX 7

DFHJIVMCD 207

DFHJIVMPR 207

DFHJVMST 7

DFHOSGI 7

DFHWLP 7

JVMPROFILEDIR 207

locating 207

samples supplied by CICS 6
JVM properties files 6
JVM server

allocation failure 321

best practices 55, 93

configuring Axis2 235

configuring CICS Security Token Service 237

configuring Liberty 231

configuring OSGi 212

deploy WAR file 202

deploying to 199

Enterprise Java applications 273

garbage collection 321

heap expansion 321

installing OSGi bundles 199

Language Environment enclave 323

moving from pooled 188

new OSGi bundles 266, 267

OSGi service 204

performance 316

removing OSGI bundles 271

settingup 211

threads 275

updating middleware bundles 270

updating OSGi bundles 266, 268
JVM system properties 6
JVMPROFILEDIR system initialization parameter 207
jvmserver 222

L

Language Environment 323
Language Environment enclave for JVMs 322
large COMMAREAs 59
Liberty

JVM server 273
Liberty Default App

security 223
Liberty JVM server

configuring 231
Liberty profile 211
Limiting JVM server threads 275
linking

OSGi service 204

M

managing threads 9
mapping 55
maven 55

Maven 199
memory 208
middleware bundles
updating 270
MOM 141
moving from pooled JVM to JVM server 188
multiple threads 57

N
new 266, 267

o

0SGi 93
OSGi bundle 40
OSGi bundles
installing 199
phasing in 266, 267
removing 271
updating 266, 268
0SGi framework
configuring 212
OSGi security 311
OSGi service
calling 204
OSGi Service Platform 3
output redirection

samples 347
overview
0SGi 3
P
performance
analyzing application 314
Java 313
JVM server 316
planning 13
plug-ins
in CICS JVM

container plug-in 351
DebugControl interface 351
introduction 351
Plugin interface 351
wrapper plug-in 351
Plugin interface, for debugging Java applications 351
plugin-cfg 173
plus 32 K COMMAREAs 59
POJO 3
pooled JVM
moving to JVM server 188
problem determination for JVMs 334
profiling an application 314
programming in Java 55

R

redirecting output from JVMs
samples 347
resource adaptor 148

Index 361

S

SAML
configuring 237
sample JVM profiles 6
security
CICS Default Web Application 223
security manager
applying a security policy 311
enabling a security policy 311
setting up a JVM server 211
shared class cache
defining 6
SQLJ 211
SSL 157
storage 208
system initialization parameters for JVMs
JVMPROFILEDIR 207

T

Target Platform 40
task management 9
TCPIPSERVICE 153
thread management 9
threads

JVM server 275
threads and tasks

JCICS support 76
Time zone

symbols 263
timezone 263
tools 314
trace 156
traceRequests 156
tracing for JVMs 334
transient data queues CSJO and CSJE 347
tuning

Java 313

JVM server 316
TZ 263

U

UID 209
UNIX file access 209
UNIX System Services access 209
updating
OSGi bundles 265
updating Enterprise Java applications 273
user identifier (UID) 209
USEROUTPUTCLASS JVM profile option 347

w

WAR file

installing 202
web server 173
web server plug-in 173
WebSphere Developer Tools 154, 155
WebSphere MQ classes for Java

0SGi JVM server

committing UOWs 187

362 CICS TS for z/OS: Java Applications in CICS

WebSphere MQ classes for Java (continued)
OSGi JVM server (continued)
configuring 217
WebSphere MQ classes for IMS
0SGi JVM server
configuring 216
programming 184
wrapper plug-in, for debugging Java applications 351

	Contents
	About this PDF
	Chapter 1. CICS and Java
	The OSGi Service Platform
	JVM server runtime environment
	JVM profiles
	Structure of a JVM
	Classes and class paths in JVMs
	Storage heap in JVMs
	Where JVMs are constructed

	CICS task and thread management
	Shared class cache
	Which JVM server to use: Liberty JVM or OSGi JVM?
	Java applications that comply with OSGi
	Java applications in a Liberty JVM server
	Java web services
	Spring Boot support in CICS

	Chapter 2. CICS management client interface (CMCI)
	How it works: CMCI REST API
	How it works: CMCI GraphQL API
	How it works: CICS bundle deployment API
	CMCI security features: How CMCI authenticates clients

	Chapter 3. Developing Java applications
	Java runtime environment in CICS
	Setting up your development environment
	Developing applications using the IBM CICS SDKs
	Setting up the Target Platform
	Creating a plug-in project
	Updating the plug-in project manifest file
	Creating a Java EE application
	Adding a project to a CICS bundle project
	Updating the project build path

	Managing Java dependencies using Gradle or Maven
	Declaring Java dependencies using Gradle
	Declaring Java dependencies using Maven

	Manually importing Java libraries
	Considerations for a shared JVM
	Java development using JCICS
	Threads
	Data encoding
	JCICS API services and examples
	APPC mapped conversations
	Basic Mapping Support (BMS)
	Channel and container examples
	Creating channels and containers in JCICS
	Putting data into a container
	Passing a channel to another program or task
	Receiving the current channel
	Getting data from a container
	Browsing the current channel
	Channel and containers examples

	Diagnostic services
	Document services
	Environment services
	ADDRESS
	ASSIGN
	INQUIRE SYSTEM
	INQUIRE TASK
	INQUIRE TERMINAL and INQUIRE NETNAME

	File services and examples
	HTTP and TCP/IP services
	Program services and examples
	Scheduling services
	Serialization services
	Storage services
	Temporary storage queue services and examples
	Terminal services
	Threads and tasks example
	Transforming between data and XML
	Transient data queue services
	Unit of work (UOW) services
	Web services example

	CICS exception handling in JCICS programs
	CICS error-handling commands
	Mapping between CICS conditions and JCICS exceptions

	Java development using JCICSX
	JCICSX examples

	Guidance for using OSGi
	Developing Java applications to run in a Liberty JVM server
	Liberty features
	Java EE and Liberty applications
	Creating a Dynamic Web Project
	Creating an OSGi Application Project
	Creating an Enterprise Application Project
	Creating a URI map and transaction

	Migrating Java EE applications to run in Liberty JVM server
	Linking to Java applications in a Liberty JVM server by using the @CICSProgram annotation
	Preparing Java applications in a Liberty JVM server to be called by a CICS program
	Preparing a Spring Boot application to be called by a CICS program
	Program Lifecycle

	Java Transaction API (JTA)
	Java Persistence API (JPA)
	Enterprise JavaBeans (EJB)
	Creating an Enterprise JavaBeans (EJB) project
	Using JTA transactions in EJBs
	Enterprise Java Bean (EJB) methods with remote interfaces
	Configuring IIOP-RMI transport for remote EJBs
	Configuring CSIv2 to secure IIOP communication

	Java Message Service (JMS)
	Java Management Extensions API (JMX)
	Java Authorization Contract for Containers (JACC)
	Java Authentication Service Provider Interface for Containers (JASPIC)
	Java EE Connector Architecture (JCA)
	Using the JCA local ECI resource adapter
	Configuring the JCA local ECI resource adapter
	Porting JCA ECI applications into a Liberty JVM server
	Using the local ECI resource adapter to link to a program in CICS
	Using the JCA local ECI resource adapter with channels and containers
	Using the JCA local ECI resource adapter with COMMAREA

	Unit of work management with JCA
	Enabling trace for the JCA local ECI resource adapter
	Restrictions of the JCA local ECI resource adapter

	CICS remote development feature for Java
	Configuring the IPIC connection
	Setting up your local Java test environment
	Testing the example Java EE JCAServlet application
	Configuring the trace function in your local Liberty profile
	Configuring a secure SSL connection

	Developing microservices with MicroProfile
	Spring Boot applications
	JCICS and JCICSX in Spring Boot applications
	JPA in Spring Boot applications
	Security in Spring Boot applications
	Transactional integration and Spring Boot applications
	Threading and Concurrency in Spring Boot applications
	JDBC in Spring Boot applications
	JMS in Spring Boot applications
	Building and deploying Spring Boot applications

	Liberty web server plug-in
	Context and Dependency Injection (CDI)

	Accessing data from Java applications
	Interacting with structured data from Java
	Developing Java applications to use the JZOS Toolkit API in an OSGi JVM server
	Accessing IBM MQ from Java programs
	Using IBM MQ classes for JMS in a CICS Liberty JVM server
	Programming with IBM MQ classes for JMS with a Liberty JVM server

	Using IBM MQ classes for JMS in an OSGi JVM server
	Programming with IBM MQ classes for JMS with an OSGi JVM server
	CICS abends during the processing of JMS requests

	Using IBM MQ classes for Java in an OSGi JVM server
	Committing a unit of work involving WebSphere MQ requests
	CICS abends during the processing of IBM MQ requests

	Connectivity from Java applications in CICS
	JCA local ECI support
	Packaging existing applications to run in a JVM server
	Moving applications to a JVM server
	Converting an existing Java project to a plug-in project
	Importing the contents of a JAR file into an OSGi plug-in project
	Importing a binary JAR file into an OSGi plug-in project

	Writing Java classes to redirect JVM stdout and stderr output
	The output redirection interface
	Possible destinations for output
	Handling output redirection errors and internal errors

	Chapter 4. Deploying applications to a JVM server
	Deploying OSGi bundles in a JVM server
	Deploying a Java EE application in a CICS bundle to a Liberty JVM server
	Deploying Java EE applications directly to a Liberty JVM server
	Deploying common libraries to a Liberty JVM server
	Invoking a Java application in a JVM server
	Deploying a CICS non-OSGi Java application

	Chapter 5. Setting up Java support
	Setting the location for the JVM profiles
	Setting the memory limits for Java
	Giving CICS regions access to z/OS UNIX directories and files
	Setting up a JVM server
	Configuring an OSGi JVM server
	JVM profile example
	Configuring OSGi package imports in CICS Java applications
	Configuring an OSGi JVM server to support JMS
	Configuring an OSGi JVM server to support IBM MQ classes for Java
	Using Rational J2C data bindings in an OSGi JVM server

	Configuring a Liberty JVM server
	CICS standard-mode Liberty: Java EE Full Platform support without full CICS integration
	Comparing CICS standard-mode Liberty and CICS integrated-mode Liberty
	JVM profile example
	Manually creating a Liberty server
	Configuring the CICS Default Web Application
	Manually tailoring server.xml
	Configuring Admin Center
	Auto-configuring a Db2 type 2 connection
	Manually configuring a Db2 type 2 connection with the Liberty JDBC features
	Manually configuring a Db2 type 4 connection
	Manually configuring a Db2 DataSource or the DriverManager interface with type 2 connectivity through CICS using the cicsts:jdbc-1.0 feature
	Configuring a Liberty JVM server to support JMS
	CICS Liberty defaulted settings

	Configuring a JVM server for Axis2
	JVM profile example

	Configuring a JVM server for a CICS Security Token Service
	JVM profile validation and properties
	Rules for coding profiles
	Options for JVMs in a CICS environment
	Symbols used in the JVM profile
	JVM server profile options
	JVM command-line options
	JVM system properties
	Setting the time zone for a JVM server

	Chapter 6. Updating OSGi bundles in a JVM server
	Updating OSGi bundles in an OSGi JVM server
	Using CICS bundle PHASEIN to dynamically update an OSGi bundle without updating CICS resources
	Phasing in an OSGi bundle with CICS resource changes
	Replacing OSGi bundles in an OSGi JVM server

	Updating bundles that contain common libraries
	Updating OSGi middleware bundles

	Chapter 7. Removing OSGi bundles from a JVM server
	Chapter 8. Updating Enterprise Java applications in a Liberty JVM server
	Chapter 9. Managing the thread limit of JVM servers
	Chapter 10. Security for Java applications
	Configuring security for OSGi applications
	Configuring security for a Liberty JVM server
	The Liberty angel process
	Authenticating users in a Liberty JVM server
	Authorizing users to run applications in a Liberty JVM server
	Authorizing applications by using OAuth 2.0
	Configuring persistent OAuth 2.0 services

	Authorization using SAF role mapping
	Configuring security for a Liberty JVM server with the Enterprise Java security API
	Authenticating by using a database identity store
	Authenticating by using a custom identity store

	Configuring security for a Liberty JVM server by using an LDAP registry
	Configuring security for remote JCICSX API development
	Configuring SSL (TLS) for a Liberty JVM server using a Java keystore
	Configuring SSL (TLS) for a Liberty JVM server using RACF
	Configuring SSL (TLS) for remote JCICSX API development
	Setting up SSL (TLS) client certificate authentication in a Liberty JVM server
	Using the syncToOSThread function

	Enabling a Java security manager

	Chapter 11. Improving Java performance
	Determining performance goals for your Java workload
	Analyzing Java applications using IBM Health Center
	Garbage collection and heap expansion
	Improving JVM server performance
	Examining processor usage by JVM servers
	Calculating storage requirements for JVM servers
	Tuning JVM server heap and garbage collection
	Tuning the JVM server startup environment

	Language Environment enclave storage for JVMs
	Identifying Language Environment storage needs for JVM servers
	Modifying the enclave of a JVM server with DFHAXRO

	Tuning the z/OS shared library region

	Chapter 12. Troubleshooting Java applications
	Diagnostics for Java
	Troubleshooting Liberty JVM servers and Java web applications
	Controlling the location for JVM output, logs, dumps and trace
	Using a DD statement to route JVM server output to JES
	Redirecting the JVM stdout and stderr streams
	The sample classes com.ibm.cics.samples.SJMergedStream and com.ibm.cics.samples.SJTaskStream

	Control of Java-related dump options

	CICS component tracing for JVM servers
	Activating and managing tracing for JVM servers
	Debugging a Java application
	The CICS JVM plug-in mechanism

	Notices
	Index
	Special Characters
	A
	B
	C
	D
	E
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

