
CICS Transaction Server for z/OS
5.6

IMS Database Control Guide

IBM

Note

Before using this information and the product it supports, read the information in Product Legal Notices.

This edition applies to the IBM® CICS® Transaction Server for z/OS®, Version 5 Release 6 (product number 5655-
Y305655-BTA) and to all subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1974, 2023.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/docs/cics-ts/latest?topic=available-notices

Contents

About this PDF...vii

Chapter 1. Overview of Database Control (DBCTL).. 1
Connecting to DBCTL... 2
CICS-IMS DBCTL environment.. 2

CICS-DBCTL interface control components in CICS address space...3
Components of DBCTL in IMS address spaces..5

Coordinator control subsystem (CCTL)..7
Resources you can access from a CICS environment that includes DBCTL...8
System service requests..9
Access to data entry databases (DEDBs).. 9
Online image copy utility... 11
Online change utility.. 11
Online reorganization for DEDBs... 11

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources............13
Installing and generating DBCTL...13
Defining CICS system resources for DBCTL.. 14

System initialization parameters... 14
PSB directories (PDIRs)... 16
DD statements..16
CICS-supplied groups within CICS system definition... 17
Log management..18
Monitoring control table (MCT).. 18
Program list table (PLT)..18
Transient data queues..18

Generating DBCTL..18
Defining the DBCTL subsystem..19
IMS logging... 23
IMS dynamic allocation macro (DFSMDA)...25
Database buffer specifications and option parameters..25
Overriding DBCTL generation parameters at execution time... 25

Starting DBCTL, DLISAS, and DBRC.. 26
Defining the IMS DRA startup parameter table.. 26

Example JCL to generate a DRA startup table...28
Customizing DBCTL..30

DFHDBUEX... 30
Global user exits XDLIPRE and XDLIPOST.. 30
Global user exits XRMIIN and XRMIOUT...31

Illustration of DBCTL startup parameter creation and selection... 31

Chapter 3. Administering DBCTL.. 33
Connecting to DBCTL: overview.. 33
Connecting DBCTL to CICS automatically...33
Connection, disconnection, and inquiry transactions for the CICS DBCTL interface.............................. 34

CDBC transaction for connect and disconnect..35
What happens when you have requested connection to DBCTL.. 37
Deciding whether to use orderly or immediate disconnection... 38
CDBI transaction for inquiry...38

Operator communication with DBCTL: overview.. 39

 iii

DBCTL operator commands...40
Format of DBCTL operator commands.. 40
Multisegment DBCTL operator commands..40

Summary of DBCTL operator commands..41
CDBM operator transaction... 43

DFHDBFK - The CDBM GROUP command file .. 46
The MAINTENANCE panel for DFHDBFK .. 47
Input fields... 47

Issuing DBRC commands.. 49
IMS password security.. 50
Controlling tracing of DBCTL events..50
Finding out current status of DBCTL activities..50
Specifying messages to be logged on IMS log..51
Changing DBCTL resources online.. 51
Preventing programs and transactions from updating DBCTL databases... 52
Switching to a new OLDS... 52
Entering external subsystem commands from DBCTL... 53
Making DBCTL resources available... 53
Preventing scheduling of PSBs and use of DBCTL databases.. 53
Purging a transaction that is using DBCTL.. 54
Stopping DBCTL normally..56
Stopping DBCTL abnormally..56
Dealing with messages from DBCTL and CICS... 56
Recovery and restart operations for DBCTL..57

Overview of CICS and IMS recovery and restart... 57
Commit protocols and units of recovery for DBCTL.. 61
IMS database utilities...65
IMS log utilities...66
Component failures in the CICS DBCTL environment... 67

Chapter 4. Application programming for DBCTL.. 71
Programming languages and environments for DL/I..71

Issue IMS AIB call format ... 71
Enabling CICS IMS applications to use the open transaction environment (OTE) through

threadsafe programming..73
Facilities available with DBCTL..75

Application program access to DEDBs.. 76
Additional EXEC DLI keywords.. 76
EXEC DLI keywords and corresponding DL/I CALL command codes... 77
POS command and call.. 79
Addressing and residency mode..79
Enhanced scheduling... 79
Obtaining information about database availability... 80
Accepting database availability status codes..81
Status codes and backout..82
Batch message processing programs (BMPs)... 82
System service requests.. 84
Comparing EXEC DLI commands and DL/I calls... 88
DL/I requests supported..89

Summary of DBCTL abends and return codes.. 90

Chapter 5. Security for DBCTL.. 93
PSB authorization checking by CICS... 93

Chapter 6. Troubleshooting DBCTL... 95
Interactions between CICS and DBCTL.. 95
Correlating activity in DBCTL and CICS...95

iv

Determining whether a problem is occurring in CICS or in DBCTL.. 96
DBCTL error scenarios... 96

Connection to DBCTL has failed to complete.. 96
Disconnection from DBCTL failed to complete..97
Failures during PSB scheduling..97
Failures during DL/I request processing..98

Trace for CICS DBCTL.. 98
Trace entries produced by CICS.. 98
Trace entries produced by DBCTL... 107

Dumps for CICS DBCTL... 110
CICS transaction dump.. 111
Using CICS system dumps in DBCTL diagnosis...111
DRA snap data set..111
Dumps produced by the DRA...112
Dumps produced by DBCTL... 112

Messages for CICS DBCTL...113
Return codes in DBCTL.. 113
PAPL request and return codes... 118

Using CICS EDF to debug application programs in DBCTL...119

Chapter 7. Monitoring DBCTL... 121
Data available for a CICS-DBCTL system..121

DBCTL statistics... 123
Monitoring DBCTL: transaction level data...124

DBCTL monitoring data returned to CICS..124
IMS monitor reports with DBCTL...126
Data contained in relevant IMS monitor reports...127
Regions and jobname report..127
Region summary and transaction queuing report...128
DBCTL data returned to IMS log.. 129
DL/I trace..130
Trace facilities.. 130
Additional performance tools.. 131

Chapter 8. Improving DBCTL performance..133
Performance parameters in CICS..133
Performance parameters in IMS... 133

Response time: assigning job dispatching priorities...133
Specifying numbers of threads..134
DEDB performance and tuning considerations... 136
Exploiting Open Transaction Environment (OTE)..137

Using DEDBs.. 138
High speed sequential processing (HSSP).. 138

IMS asynchronous database buffer purge facility.. 139
Virtual storage usage...139
Improved throughput on multiprocessors..139

Notices..141

Index.. 147

 v

vi

About this PDF

This PDF gives introductory and guidance information on evaluating, installing, and using the CICS-IMS
Database Control interface (DBCTL). It is intended for anyone who uses DBCTL.

It describes:

• Intended Programming Interfaces that allow the customer to write programs to obtain the services of
IBM CICS Transaction Server for z/OS, Version 5 Release 6 .

• How to evaluate, install, and use DBCTL.
• How to migrate from local DL/I.

This manual is intended to be used in conjunction with existing manuals in the CICS and IMS libraries, to
which it refers where appropriate.

For details of the terms and notation used, see Conventions and terminology used in CICS documentation
in IBM Documentation.

Date of this PDF
This PDF was created on 2024-04-22 (Year-Month-Date).

© Copyright IBM Corp. 1974, 2023 vii

https://www.ibm.com/docs/cics-ts/latest?topic=available-conventions-used-in-documentation

viii CICS TS for z/OS: IMS Database Control Guide

Chapter 1. Overview of Database Control (DBCTL)
CICS can access DL/I databases with the CICS-DBCTL interface or by using remote DL/I.

Using DBCTL
This is when DBCTL satisfies the DL/I request issued from the CICS system with the CICS-DBCTL
interface.
Installing and using DBCTL are introduced in this information (but you also must refer to other CICS
and IMS information).

Using remote DL/I
Remote DL/I is done with CICS function shipping a DL/I request to another CICS system, in which the
DL/I support can be remote DL/I or DBCTL. For more information about function shipping, see CICS
function shipping. For information about adding remote DL/I support, see Defining DL/I support.

Note:

1. Although these methods to access DL/I databases can coexist, a program specification block (PSB)
can only contain databases that are controlled by one of the methods.

2. CICS Transaction Server does not support local DL/I.

CICS can also access DL/I databases in an IMS Database Manager/Transaction Manager (IMS DM/TM)
system using the CICS-DBCTL interface. This means that you can have access to DL/I databases
controlled by IMS DM/TM without needing to use IMS data sharing, if CICS and IMS DM/TM are in the
same MVS™ image.

Figure 1 on page 1 illustrates the three kinds of DL/I request.

Figure 1. DL/I request handling within CICS

Note:

1. Request #1 is a DBCTL request from CICS A to DBCTL A for a database controlled by DBCTL A. See
“CICS-DL/I router (DFHDLI)” on page 4 for a description of request processing.

© Copyright IBM Corp. 1974, 2023 1

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/connections/dfht10p.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/connections/dfht10p.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/installing/dfha1na.html

2. Requests #2a and #2b are two separate remote (function shipped) DL/I requests to databases
controlled by, or connected to, other CICS systems (which can be in the same MVS image or a different
one). There are two ways of issuing such requests:

• Request #2a from CICS A to CICS B for a database controlled by CICS B.
• Request #2b from CICS A to CICS B for a database controlled by DBCTL B. The most likely reason for

using request #2b is if CICS A and CICS B are in different MVS images.

Connecting to DBCTL
You can connect to, and disconnect from, DBCTL using the CICS-supplied transaction CDBC.

When you have connected to DBCTL by means of CDBC, you can issue DL/I requests from your application
programs. There is another CICS-supplied transaction, CDBI, which you can use to inquire on the status
of the connection to DBCTL from CICS. See Connecting to DBCTL:overview for information on using CDBC
and CDBI.

CICS-IMS DBCTL environment
This figure summarizes the components of a CICS-DBCTL interface.

Figure 2 on page 3 gives an overview of a CICS-DBCTL interface. Each box represents an address space
running within a single MVS system. The marked area between the second CICS and the first BMP is the
point at which CICS components end and IMS components begin.

2 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht41v.html

Figure 2. CICS-DBCTL interface

CICS-IMS DBCTL environment: description of components
The following topics give detailed information about each of the major components of the CICS-IMS
DBCTL interface. See “Summary of DBCTL components in CICS and IMS” on page 5 for an illustration of
these components.

CICS-DBCTL interface control components in CICS address space
The components of the CICS-DBCTL interface in the CICS address space are: the CICS-DL/I router
(DFHDLI), the CICS database adapter transformer (DFHDBAT), and the database resource adapter (DRA).

Chapter 1. Overview of Database Control (DBCTL) 3

CICS-DL/I router (DFHDLI)
The CICS-DL/I router, DFHDLI, forms the interface between your application programs and the DL/I
call processor. DFHDLI accepts requests for remote or DBCTL database processing. If the request is
for DBCTL, DFHDLI passes the request to the CICS-DL/I DBCTL processor, DFHDLIDP. The request then
goes to the task-related user exit interface and the CICS database adapter transformer, DFHDBAT. The
task-related user exit interface is also referred to as the resource manager interface (RMI). For more
information about the task-related user exit interface, see Task-related user exit programs.

CICS database adapter transformer (DFHDBAT)
The main responsibility of the CICS database adapter transformer, DFHDBAT (also referred to in IMS
publications as the adapter, or adapter/transformer) is to communicate with the database resource
adapter (DRA). DFHDBAT constructs parameter lists for the DRA. These parameter lists enable CICS
to connect to and disconnect from DBCTL, and enable DL/I requests to be processed. To summarize,
DFHDBAT performs the following tasks:

• Tells the DRA that it must initialize the interface to DBCTL in response to a request from the connection
program (DFHDBCON).

• Tells the DRA when it must issue PSB schedule requests, DL/I requests, and sync point requests in
response to a request from the CICS-DBCTL processor (DFHDLIDP).

• Tells the DRA that it must terminate the interface to DBCTL in response to a request from the
disconnection program (DFHDBDSC). If an orderly disconnection has been requested, DFHDBAT
ensures that all current CICS tasks that use DBCTL complete before telling the DRA to terminate the
interface. If an immediate disconnection has been requested, DFHDBAT ensures that only the current
CICS-DL/I requests that use DBCTL can complete before telling the DRA to terminate the interface.

CICS main terminal operators can use the CICS-supplied transaction CDBC to connect to and
disconnect from DBCTL. They can also automate connection to DBCTL, as described in Connecting to
DBCTL:overview.

If the DRA startup table DFSPZPxx specifies OPENTHRD=CCTL which allows IMS exploitation of Open
Transaction Environment (OTE), when CICS connects to DBCTL it will enable DFHDBAT with the OPENAPI
option. This means DFHDBAT will run on an L8 TCB. Its calls the DRA on an L8 TCB, and the DRA will
invoke IMS services on an L8 TCB. If OPENTHRD=DISABLE is specified, DFHDBAT is enabled with the
QUASIRENT option. This means DFHDBAT will run on the QR TCB and will call the DRA on QR TCB. The
DRA will switch TCBs onto a DRA thread TCB on which to invoke IMS services. On return from IMS, the
DRA will switch back to QR TCB before returning to CICS.

Database resource adapter (DRA)
The database resource adapter (DRA) performs the following tasks:

• Requests connection to, and disconnection from, DBCTL.
• Tells CICS when a shutdown of DBCTL has been requested, or if DBCTL has failed.
• Manages threads. A CICS application thread provides a two-way link between an application and

DBCTL. When a CICS transaction issues a DL/I request to DBCTL, the thread represents that CICS
transaction in DBCTL. It identifies the existence of the transaction, traces its progress, sets aside the
resources it needs to be processed, and delimits its accessibility to other resources.

• Establishes contact with the DBCTL address space and loads the DRA startup parameter table. The DRA
startup parameter table provides the parameters needed to define the interface to a DBCTL subsystem.
(See Defining the IMS DRA startup parameter table, for a list of DRA startup table parameters.)

4 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33b.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht41v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht41v.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/database/dfht41p.html

Components of DBCTL in IMS address spaces
The components of DBCTL that reside in IMS address spaces are: the DBCTL subsystem, the DL/I
separate address space (DLISAS), the Database Recovery Control (DBRC) facility, and the internal
resource lock manager (IRLM).

DBCTL
The DBCTL subsystem contains support and features required to process full function DL/I databases
and DEDBs. Full function supports HSAM, SHSAM, HISAM, SHISAM, HDAM, and HIDAM databases. Each
DBCTL subsystem is made up of three address spaces: DBCTL, DLISAS, and DBRC. A single DBCTL can
service multiple CICS systems, but a CICS system can connect to only one DBCTL at a time. A CICS
system can connect to one DBCTL, disconnect from it, and then connect to a different DBCTL.

DL/I separate address space (DLISAS)
DL/I separate address space (DLISAS), which is required with DBCTL, is a separate address space that
contains DL/I code, control blocks, buffers for DL/I databases.

Database Recovery Control (DBRC)
Database Recovery Control (DBRC) is an IMS facility that supports log management, recovery control, and
database sharing by providing the necessary information to subsystems, batch programs, and utilities.
DBRC is required with DBCTL for log control and can optionally be used for database recovery control
and data sharing. See Database recovery control (DBRC) for information about DBRC and logging, and
Operations and automation in IMS product documentation for more general information about using
DBRC.

Internal resource lock manager (IRLM)
The internal resource lock manager (IRLM) is a global lock manager that is a feature of IMS and resides in
its own address space.

IRLM is the preferred lock manager for DBCTL. For more information about locking using IRLM, see
System administration in IMS product documentation.

Summary of DBCTL components in CICS and IMS
These are the major components in a simple CICS-IMS DBCTL environment. Each separate box
represents an address space. All the components shown are mandatory, except for the IRLM.

Chapter 1. Overview of Database Control (DBCTL) 5

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht42l.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm

CICS

Shipped with CICS Shipped with IMS

CICS address space IMS address spaces

IMS
LOG

CICS
LOG

D
F

H
D

L
I

D
F

H
D

L
I

D
P

R
M

I
D

F
H

D
B

A
T

D
R

A

D
B

C
T

L

D
L

I
S

A
S

P
I

D
B

R
C

I
R

L
M

Figure 3. Major components of a simple CICS-IMS DBCTL environment

6 CICS TS for z/OS: IMS Database Control Guide

Coordinator control subsystem (CCTL)
The coordinator control subsystem (CCTL) is the transaction management subsystem that communicates
with the DRA, which in turn communicates with DBCTL.

In a CICS-DBCTL environment, the CCTL is CICS. The term CCTL is used in a number of DBCTL operator
commands and in the IMS manuals. CICS users of DBCTL should take the term CCTL to mean a CICS
system that is attached to IMS by means of DBCTL.

Chapter 1. Overview of Database Control (DBCTL) 7

Resources you can access from a CICS environment that includes
DBCTL

This diagram shows you the resources you can access from a CICS environment that includes DBCTL.

Figure 4. Resources you can access from a CICS environment that includes DBCTL

A single CICS task can use Db2® tables, IMS databases (using DBCTL or remote DL/I), and CICS-managed
local or remote resources (for example, VSAM files).

The CICS-Db2 and the CICS-DBCTL interfaces are similar in that they both use the task-related user
exit interface, and have a two-phase commit process. However, they differ in a number of respects. For
example, CICS supports DBCTL and remote DL/I, and must determine at PSB schedule time which of
them is being used.

8 CICS TS for z/OS: IMS Database Control Guide

System service requests
Your CICS application programs can use these IMS system service requests in addition to those related to
data availability.

• DEQ (in its command or call format) releases segments that were retrieved using the LOCKCLASS
keyword or the Q command code. LOCKCLASS and Q enable an application program to reserve
segments for its use.

• LOG (in its command or call format) can be used to write a record from an application program to the
IMS log. You may prefer to use this instead of EXEC CICS journal commands so that all your DBCTL
information is on the IMS log instead of the CICS log.

See Application programming for DBCTL for more information on using these requests.

Access to data entry databases (DEDBs)
Data entry databases (DEDBs) provide the same features as HDAM databases (with the exception of
logical relationships).

They also have a number of advantages. Using DEDBs enables you to have very large databases with
high availability. DEDBs are designed to provide efficient storage and fast online gathering, retrieval, and
update of data, using VSAM entry sequenced data sets (ESDSs).

DEDBs are hierarchic databases that can contain up to 127 segment types. One of these segments is
always a root segment. The remaining 126 segments can either be direct dependent (DDEP) segments, or
125 DDEP segments and one sequential dependent (SDEP) segment. A DEDB structure can have as many
as 15 hierarchical levels.

DEDBs are made up of database records stored in a set of up to 240 areas. Each area contains a range
of database records (which you can specify using the DEDB randomizing routine) that contain the entire
logical structure for a set of root segments and their dependent segments. Areas are independent of each
other, are individually recognized, can be accessed by multiple programs and DEDB utilities, are the basis
for recovery procedures, and are largely transparent to application programs.

Advantages of DEDBs
DEDBs provide the following advantages:
Large databases

Areas can be as large as 4 gigabytes, and because you can have up to 240 areas in a single database,
you can use very large databases, which you would have to partition if you were not using DEDBs.

Flexible design

• Each area can be designed to meet your storage, availability, performance, and application needs.
Areas can be separately reorganized and reacquired.

• You use the DEDB direct reorganization utility to physically reorganize DEDBs to reduce ESDS
fragmentation without taking them offline.

Increased data availability

• If a DEDB area is not available, a PSB requiring that database can still be scheduled provided the
area it requires is not the one that is unavailable and, of course, the database itself is available. A
PSB that requires an unavailable area is still scheduled, and receives a status code indicating the
condition. You can therefore delay recovery until it is convenient to take the area offline.

• You can have up to seven copies of the same area. Each copy is called an area data set (ADS) and
all are automatically maintained in synchronization. This is called multiple area data set (MADS)
support. Write operations are done to each ADS, but read operations are done from only one ADS.
With MADS, read and write errors are much less common because, if data cannot be read from, or
written to, the first copy, the next copy will automatically be used. Read errors are transparent to

Chapter 1. Overview of Database Control (DBCTL) 9

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht42x.html

application programs (except in the rare instance where a read operation is unsuccessful with all
ADSs).

• You can use DEDB utilities, which are run on an area basis and can be run online concurrently with
online update. This helps to reduce the time for which areas have to be taken offline. For example,
you can avoid using offline database recovery by using the DEDB area data set create utility. This
online utility makes a new corrected copy of an area from existing copies of that area. It creates one
or more copies from multiple DEDB ADSs during online transaction processing, enabling application
programs to continue while the utility is running.

• You use the DEDB initialization utility to initialize one or more data sets or one or more areas of a
DEDB offline.

• You can use the DEDB area data set compare utility if you suspect you may have problems with
compatibility of data. It compares control intervals (CIs) of different copies of an area, and lists all
the CIs that do not have equal content. In the case of unequal comparison, full dumps of up to ten
unmatched CIs are printed out on the device you have specified.

Efficient data retrieval and entry

• DEDB attempts to physically write DDEP segments hierarchically in the same CI as the parent
segment, which can make retrieval faster.

• The SDEP segment (located at the end of the ADS) is designed especially for fast, online, mass insert
in applications such as data collection, auditing, and journaling. This is because SDEP segments for
an area are stored rapidly, regardless of the root on which they are dependent. For example, in a
banking application, transaction data can be collected during the day and inserted as SDEPs in an
account database. At the end of the day, these transactions can be reprocessed by first retrieving
them using the sequential dependent scan utility. This online utility retrieves SDEP segments in
mass and copies them to a sequential data set. You can then process this data set offline using your
own programs; for example, for a statistical analysis. The area involved remains available while the
utility is running.

• You can delete SDEPs using the DEDB sequential dependent delete utility, which deletes SDEP
segments within a specified limit of a DEDB area.

• The ability to use high speed sequential processing (HSSP). HSSP is useful with applications that do
large scale sequential updates to DEDBs. HSSP can reduce DEDB processing time, enables an image
copy to be taken during a sequential update job, and minimizes the amount of log data written to the
IMS log. For further guidance, see High speed sequential processing (HSSP).

Improved performance

• Pathlength is reduced because DEDBs use the MVS Data Facility Product (MVS/DFP) Media Manager
offering.

• You can improve speed of access, or concurrent access, to DEDBs by tuning DEDB buffer pool
specifications. (See High speed sequential processing (HSSP).)

• Logging overhead is reduced because only after-images are logged and because logging is done
during syncpoint processing only.

• The amount of I/O needed for each SDEP segment inserted can be very low, because SDEPs are
gathered from various transactions, stored in last-in first-out order in one buffer, and are written out
only when that buffer is full. This means that many transactions "share the cost" of SDEP writes.

• Most DEDB processing is done in parallel to allow multithreading. Writes to the database are done
by a number you specify (up to 255) of parallel processes called output threads. Furthermore, the
DEDBs are not updated during application program processing, but the updates are kept in buffers
until a syncpoint occurs. (See When updates are written to databases.) This means that waiting
applications can be processed sooner and improves throughput on multiprocessors.

• DEDBs have their own resource manager and normally need to interact very infrequently with
program isolation or the IRLM (unless you are using block level sharing). DEDBs maintain their own
buffer pool.

• You can use subset pointers in your application programs to speed up processing. A major problem
in some applications is the need to process long twin chains of segments. Occasionally database

10 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/database/dfht44v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/database/dfht44v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht42o.html

design must be modified because some database records have excessively long twin chains. Subset
pointers give direct access to subsets of long twin chains of segments, which can speed up
application processing because segments located in front of the subset do not have to be searched.
Each pointer points to the first occurrence of a subset in a range of direct dependent segments. See
Command codes to manage subset pointers in DEDBs and EXEC DLI keywords and corresponding
DL/I CALL command codes for information about using subset pointers in application programs.
(See Database administration in IMS product documentation for guidance on database structure.)

Online image copy utility
The online image copy utility is used to create an as-is copy of your database while it is being updated.
The copy can then be used for recovery purposes. This utility is used for HISAM, HDAM, and HIDAM
databases only.

Online change utility
In many installations, it is important for the online system to be is available to users for most of the day.

The online change utility enables you to update ACBLIBs, which contain PSBs and data management
blocks (DMBs), and security information belonging to full function databases, without bringing down the
system. For guidance information on this utility, see System administration in IMS product documentation
and Database utilities in IMS product documentation.

Online reorganization for DEDBs
The data entry database (DEDB) direct reorganization utility enables you to reorganize DEDBs without
taking them offline.

For more information see “Access to data entry databases (DEDBs)” on page 9.

Chapter 1. Overview of Database Control (DBCTL) 11

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht42z.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht430.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht430.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/dag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm

12 CICS TS for z/OS: IMS Database Control Guide

Chapter 2. Installing DBCTL, and defining CICS and
IMS system resources

This section describes how to install DBCTL and define CICS and IMS system resources.

For information on release compatibility for CICS and IMS, see Release planning for IMS in IMS product
documentation.

Installing and generating DBCTL
Install DBCTL, verify the installation, and connect CICS to DBCTL.

Before you begin
Before installing and generating DBCTL you must have CICS Transaction Server for z/OS, Version 5
Release 6 and IMS installed. Check the program directory for any PTFs or APARs that need installing.
Develop your own procedures for installing DBCTL, depending on the DBCTL facilities you want to
use. For more information about IMS installation and system definition, see Installation in IMS product
documentation and System definition in IMS product documentation.

About this task
Follow these steps to install DBCTL, verify the installation, and connect CICS to DBCTL.

Procedure
1. Prepare a PDIR that does not specify PSBs.

For more information, see “PSB directories (PDIRs)” on page 16.
2. Update system procedure libraries; for example, SYS1.PROCLIB, with the startup procedures for

DBCTL, DLISAS, DBRC, and the IRLM if you are using it.
These startup procedures can be found in the IMS.PROCLIB library.

3. Use the CICS supplied DBCTL-installation verification procedure, DFHIVPDB, to check that: DBCTL
has been fully installed, CICS has integrated with MVS, and that all required online data sets have
been allocated and initialized.
For more information, see Verifying the CICS-DBCTL interface.

4. You must use ACB generation to create members of the IMS.ACBLIB. Failure to carry out this step can
cause user errors.

5. If you plan to use dynamic allocation, create DFSMDA members.
For more information, see “IMS dynamic allocation macro (DFSMDA)” on page 25.

6. Start DBCTL; DBCTL then issues a start command for DLISAS and DBRC.
7. Verify that DBCTL recognizes the PSBs and DBDs you defined in the DBCTL generation, you can check

this using the DBCTL operator command /DISPLAY.
For more information, see Finding out current status of DBCTL activities.

8. Check that your log archiving setup works before doing any more testing. If your log archiving is not
set up it is possible for the logs to fill and stall your system.
For more information about setting your log archive setting, see “Log control with DBRC” on page
23.

9. Assemble a database resource adapter (DRA) to connect CICS to DBCTL.
For more information, see “Defining the IMS DRA startup parameter table” on page 26.

10. Start CICS and test the connection to DBCTL, using the CDBC transaction.
For more information, see CDBC transaction for connect and disconnect.

© Copyright IBM Corp. 1974, 2023 13

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc/ims_planhome.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc/ims_planhome.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ins/ins.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ins/ins.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/installing/dfha107.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht426.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht41y.html

11. Generate an initialization PLT, so that CICS can connect to DBCTL automatically at startup time.
For more information, see Connecting DBCTL to CICS automatically.

12. Test the applications that you defined to DBCTL.
13. Set up and test recovery and restart of CICS and DBCTL, and database recovery.

For more information, see Recovery and restart operations for DBCTL.

Defining CICS system resources for DBCTL
Use this information to help you define system resources for DBCTL.

System initialization parameters
The CICS system initialization parameters contain information needed to initialize and control system
functions and the initialization process.

It also contains module suffixes to enable you to choose between different versions of CICS modules and
tables. You can generate several SITs and select the one that best meets your current requirements at
initialization time. If you have more than one CICS system, each can use a different SIT.

Specifying DL/I support in system initialization parameters
In CICS Transaction Server for z/OS, Version 5 Release 6 , there is no DLI system initialization parameter.
Support for DBCTL is always present. Support for remote DL/I is included if the PDIR system initialization
parameter is specified.

Note: The default is PDIR=NO, meaning that by default support for remote DL/I is not included.

Reviewing CICS system initialization parameters
With DBCTL, many CICS system initialization parameters are replaced by DBCTL generation parameters.
You must change what you specify for others, because DL/I code has been removed from the CICS
address space.

Table 1 on page 14 lists the CICS system initialization parameters relevant to DL/I. It states whether
each parameter applies to DBCTL or remote DL/I (in the D and R columns, respectively). Where
applicable, it lists the corresponding IMS startup parameter that applies to DBCTL. Finally, it mentions
special considerations for DBCTL.

See “Generating DBCTL” on page 18 for more information about the IMS and DBCTL parameters
mentioned in this table. See “Defining the IMS DRA startup parameter table” on page 26 for information
about DRA startup table parameters.

Table 1. CICS system initialization parameters and DBCTL

System initialization
parameter

D R IMS/DBCTL startup
parameter

Comments

APPLID Y Y N/A The generic z/OS Communications Server
application identifier for this CICS system.
For more information, see APPLID system
initialization parameter.

14 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht41w.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht43d.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_applid.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_applid.html

Table 1. CICS system initialization parameters and DBCTL (continued)

System initialization
parameter

D R IMS/DBCTL startup
parameter

Comments

DBCTLCON Y N N/A YES specifies that you want CICS to connect
to a DBCTL subsystem automatically during
CICS initialization. This causes CICS to invoke
the DBCTL attach program, DFHDBCON. The
other information CICS needs for starting the
attachment, such as the DRA startup table suffix
or the DBCTL subsystem name, is taken from an
INITPARM system initialization parameter.

Specifying DBCTLCON=YES means you do not
have to define the DBCTL attach program in the
CICS post-initialization program list table (PLT),
as described in “Program list table (PLT)” on
page 18. For more information, see DBCTLCON
system initialization parameter.

DSALIM Y Y N/A Upper limit of the total amount of storage
within which CICS can allocate the individual
dynamic storage areas (DSAs) below the 16 MB
line. For information about specifying DSALIM,
see DSALIM system initialization parameter.
See System administration in IMS product
documentation for guidance on DBCTL storage
estimates.

EDSALIM Y Y N/A Upper limit of the total amount of storage
within which CICS can allocate the individual
dynamic storage areas (EDSAs) above the 16
MB line. For more information, see EDSALIM
system initialization parameter. See System
administration in IMS product documentation for
guidance on DBCTL storage estimates.

INITPARM Y N N/A Used to pass parameters to programs (for
example, PLT programs) during CICS startup.
With DBCTL, you can use it to specify DRA
startup parameter table suffix and DBCTL
identifier to automate connection to a particular
DBCTL. INITPARM applies to COLD, INITIAL,
WARM, or EMERGENCY starts of CICS. For more
information, see INITPARM system initialization
parameter.

PDIR N Y N/A: use APPLCTN Suffix of the PDIR. With DBCTL, the PDIR is
generated during DBCTL generation using the
APPLCTN macro. For more information, see PDIR
system initialization parameter.

PSBCHK Y Y N/A Requests PSB authorization checking of a remote
terminal initiating a transaction using transaction
routing. To obtain the check, you must also
specify YES or name on the XPSB system
initialization parameter. For more information, see
PSBCHK system initialization parameter.

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 15

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_dbctlcon.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_dbctlcon.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_dsalim.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_edsalim.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_edsalim.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_initparm.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_initparm.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_pdir.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_pdir.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_psbchk.html

Table 1. CICS system initialization parameters and DBCTL (continued)

System initialization
parameter

D R IMS/DBCTL startup
parameter

Comments

XPSB Y Y N/A Security class name by which PSBs are defined
to RACF®. For DBCTL, you specify the RACF
resource class to be used to security check PSBs.
For more information, see CICS resource class
system initialization parameters.

PSB directories (PDIRs)
PSB directories (PDIRs) contain entries defining each PSB to be accessed using remote DL/I.

If you are using DBCTL exclusively, you do not need to generate a PDIR for CICS. Instead you must define
PSBs and DMBs using the IMS macros APPLCTN and DATABASE respectively. (For information on the
APPLCTN and DATABASE macros, see “Generating DBCTL” on page 18.)

If you want to function ship requests to a CICS system, at which the database manager may be DBCTL or
remote DL/I (function shipping), you will need to generate a PDIR.

CICS routes DL/I requests to remote DL/I or DBCTL according to the PSB that is named. If the PSB
appears in the CICS PDIR, the request is routed to remote DL/I (that is, function shipped to another CICS
system). If the PSB does not appear in the CICS PDIR, and CICS is connected to DBCTL, CICS routes the
request to DBCTL. In addition, if the PSB appears in the PDIR and specifies a SYSID that matches the
local SYSID, the request is routed to DBCTL.

DD statements
You must put these two modules, which appear in the IMS.RESLIB library, in the CICS STEPLIB data set
concatenation.

• The DRA startup parameter table: DFSPZPxx (where xx is the user-defined suffix)
• The DRA startup router program: DFSPRRC0.

You can do this by placing a DD statement for IMS.RESLIB in the CICS STEPLIB concatenation (which
must be APF-authorized). For example:

//STEPLIB DD DSN=CICSTS56.CICS.SDFHAUTH,DISP=SHR
// DD DSN=IMS.RESLIB,DISP=SHR

IMS.RESLIB (which must also be APF-authorized) contains a default DRA startup table, in which the suffix
is set to 00. You can generate your own versions into this library. If you decide to use a different library for
your own versions, make sure it is APF-authorized, and is included in the CICS STEPLIB concatenation.

The DRA will dynamically allocate the IMS.RESLIB library using the DD name CCTLDD and the data set
name IMS.RESLIB, unless either has been overridden in the DRA startup parameter table.

DD statements removed from CICS JCL in a DBCTL-exclusive environment
The following DD statements are not required in a DBCTL environment.

DFSCTL
For DBCTL, DFSCTL is not required. DBCTL owns the OSAM buffer pools, which are specified in DBCTL
startup JCL and in the DRA startup parameter table. See “Database buffer specifications and option
parameters” on page 25 and “Defining the IMS DRA startup parameter table” on page 26.

16 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht52t.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht52t.html

DFSRESLB
For DBCTL, DFSRESLB is not required. DFSRESLB is replaced by the DRA dynamically allocating
IMS.RESLIB as described in “DD statements” on page 16.

IEFRDER
Used to define DL/I batch logging. For DBCTL, DL/I logging is to the IMS log. See “Defining IMS
logging parameters” on page 24.

IMSMON
With DBCTL, you can start and stop the IMS monitor dynamically. See Using the IMS monitor.

IMSACB
For DBCTL, IMSACB is in the DBC procedure and the DLS procedure. There are additional DD
statements: IMSACBA and IMSACBB. One is the active library and the other is available for the IMS
online change utility.

DFSVSAMP
For DBCTL, DFSVSAMP is not used. The information it contains, for example, VSAM buffer parameters
and performance and trace options, is in the DFSVSMxx member of IMS.PROCLIB in the PROCLIB
DD statement of the DBCTL startup procedure (DBC). The DFSVSMxx member must be available to
DLISAS, which means that you must add a data set with member DFSVSMxx to the DLISAS address
space. The last two characters of the DFSVSM member are a suffix, which you specify in the VSPEC
parameter of the DBCTL startup procedure (DBC).

RECON data sets
RECON data sets are generally specified in DFSMDA IMS dynamic allocation members in the
IMS.RESLIB library. See “IMS dynamic allocation macro (DFSMDA)” on page 25. For DBCTL, RECON
data sets can be specified in the DBRC procedure.

JCLPDS
For DBCTL, JCLPDS is in the DBRC procedure.

JCLOUT
For DBCTL, JCLOUT is in the DBRC procedure.

Database DD statements
Generally, you specify database DD statements in DFSMDA IMS dynamic allocation members in the
IMS.RESLIB library. For DBCTL, they can be specified in the DLS address space for DL/I databases, or
in the DBC address space for DEDBs.

CICS-supplied groups within CICS system definition
Program, transaction, and mapset entries for the CICS system definition file (CSD) to provide DBCTL
support are supplied in the group DFHDBCTL.

This includes the DBCTL connection and disconnection transaction, CDBC, the inquiry transaction, CDBI,
and the operator transaction, CDBM. DFHDBCTL is in DFHLIST, which contains the CICS resource
definitions needed to run IBM supplied transactions that must be installed in your system. Also
in DFHLIST is the DFHEDP group, which provides the program definition required to run EXEC DLI
applications. The group DFHEDP must always be installed in the CICS system. If you need further
information about DFHLIST, see Supplied resource definitions, groups, and lists.

You might also want to specify the following options of the TRANSACTION definition for transactions
using DBCTL:

• RESTART

This option defines whether CICS will attempt to restart a transaction that has been backed out after a
failure. (See Deadlocks and interactions with automatic restart.)

• SPURGE

Specify SPURGE(YES) so that the transaction can be purged using CEMT. Purging a transaction that is
using DBCTL tells you how to use CEMT in this way.

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 17

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/monitoring/dfht45c.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/dfha46y.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht42w.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht42a.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht42a.html

Log management
All DBCTL-related information is sent to the IMS log, not the CICS system log.

This method of logging uses the IMS log utilities and the online log data sets (OLDS) and write-ahead data
sets (WADS). Because database change records are written to the IMS log, you do not need to retain the
CICS system log for use by IMS database recovery utilities in a DBCTL-exclusive environment. IMS logging
operations are described in “IMS logging” on page 23.

Monitoring control table (MCT)
If you were using local DL/I when converting to DBCTL, you can remove the entries for the DL/I event
monitoring points (EMPs) from the monitoring control table (MCT).

However, you will need additional monitoring control table (MCT) entries if you want to provide support for
the monitoring information returned from DBCTL. These MCT entries are in CICSTS56.CICS.SDFHSAMP in
the copy member DFH$MCTD.

Program list table (PLT)
To connect CICS to DBCTL at CICS startup time, you can invoke it in the second stage of program list table
postinitialization (PLTPI) processing (that is, the third stage of CICS initialization).

You do this by including an entry for DFHDBCON (the DBCTL connection program) using the DFHPLT
macro. Including an entry for DFHDBCON in the PLT enables you to connect automatically to the
same DBCTL as when the system was last shut down, or to a different one. For more information, see
Connecting DBCTL to CICS automatically.

As an alternative, you can use the DBCTLCON system initialization parameter to make the automatic
connection. For more information, see Table 1 on page 14.

Transient data queues
You need a definition for the CDBC transient data queue. The CDBC transient data queue is used for
messages issued by the CICS-DBCTL interface.

You can suppress or reroute messages sent to transient data queues such as CDBC. You can reroute
from CDBC to a list of consoles, or from CDBC to a different transient data queue, or reroute console
messages to CDBC. For programming information about coding the CICS-supplied user exit used to
reroute messages, and on the example user exit provided to help you do so, see Global user exit points.

Generating DBCTL
You generate the appropriate IMS control blocks and resource definitions for a DBCTL subsystem by
performing an IMS system definition.

About this task
IMS system definition is a two-stage process with an optional preprocessor. Stage 1 checks your input
specifications (appropriate JCL and macro statements) and generates a series of MVS job steps for
stage 2. Stage 2 builds IMS system libraries, execution procedures, and the DBCTL control program. The
optional preprocessor is a convenient tool that checks for duplicate names and checks the length and
format of the names used as input for stage 1.

18 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht41w.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/user-exits/dfha331.html

Defining the DBCTL subsystem
IMS uses macro statements for system definition. These macro statements define the operating systems,
operating system interfaces, storage pools, PSBs, and databases. From some of these macro statements,
DBCTL constructs a set of control blocks with which to execute.

About this task
To define the environment in which DBCTL operates, you use DBCTL startup parameters and control
information in a number of IMS system data sets. You then use the appropriate suffixes to specify the
information to be used for a particular DBCTL run. This is like selecting CICS tables by specifying their
suffixes in the SIT or in SIT overrides.

The IMS system generation macros you need are listed in “IMS system generation macros used by
DBCTL” on page 19. See System definition in IMS product documentation for guidance on the syntax
of these macros. “Illustration of DBCTL startup parameter creation and selection” on page 31 shows
how DBCTL startup parameters are created and selected during startup. If you are new to IMS system
definition, you might find it helpful to look at this illustration while reading the information about
generating DBCTL.

IMS system generation macros used by DBCTL
DBCTL uses the IMSCTRL, MAXREGN, APPLCTN, BUFPOOLS, DATABASE, FPCTRL, IMSCTF, SECURITY,
and IMSGEN macros.

• IMSCTRL

The first macro in a DBCTL system generation is IMSCTRL. It is always required and there can be only
one in each IMS system definition. IMSCTRL describes the MVS system under which IMS executes,
the type of IMS system, the type of generation to be performed, and the components of the IMS
environment, for example, IRLM and DBRC. Because DBRC is mandatory for DBCTL, you do not need to
specify the IMSCTRL parameter, DBRC=YES. (If you do specify this parameter, it is ignored.) You can use
IMSCTRL to cause the IMS nucleus and the DDIR and PDIR to be regenerated.

• MAXREGN

MAXREGN is the number of regions (threads) that DBCTL allocates at startup. MAXREGN takes a value 1
- 999. It can increase dynamically to a maximum of 999. Each BMP needs one region. Each connected
CICS needs from MINTHRD to MAXTHRD regions. See also MINTHRD and MAXTHRD, which are used
to specify the minimum and maximum numbers of threads for a particular CICS system, as described
in “Defining the IMS DRA startup parameter table” on page 26. For information about how these
parameters interact, see Specifying numbers of threads. (MAXREGN is not the only parameter you need
in IMSCTRL, but is mentioned here to contrast it with MINTHRD and MAXTHRD.)

• APPLCTN

You use the APPLCTN macro to name PSBs (one macro for each PSB) that application programs use to
access databases through DBCTL.

If multiple CICS transactions or BMPs are to schedule a PSB concurrently, the APPLCTN macro for
that PSB must specify SCHDTYP=PARALLEL. If you do not specify SCHDTYP=PARALLEL, only one
transaction at a time can schedule a PSB. You can change the SCHDTYP of a PSB using the online
change process and the /MODIFY command, which you enter at the DBCTL console. See Changing
DBCTL resources online for more information about the online change process and the /MODIFY
command.

In DBCTL, PSBs used by CICS transactions can be defined with either the TP option or the BATCH
option. In the example in “Example of JCL required to generate a basic DBCTL subsystem” on page
21, the BATCH option is used. This example also includes an example of defining a PSB for the CDBM
operator transaction.

• BUFPOOLS

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 19

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/database/dfht44s.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht427.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht427.html

You use the BUFPOOLS macro to specify default main storage buffer pool sizes for DBCTL, including the
size of the DMB and PSB pools. You can override these values at startup using the CSAPSB=, DLIPSB=,
and DMB= parameters.

• DATABASE

You use DATABASE macro statements to define the databases that DBCTL accesses (one macro for
each database). Each physical database must be referenced on a DATABASE macro statement. You can
change this resource through the online change process using the /MODIFY command, which you enter
at the DBCTL console. See Changing DBCTL resources online for more information about the /MODIFY
command.

• FPCTRL

The FPCTRL macro statement defines the fast path options when DEDBs are used. You must use this
macro only if you want DEDB support.

Note: For DBCTL users, fast path support refers only to DEDBs. Parameters that begin with FP refer to
DEDBs in a DBCTL-exclusive environment.

• IMSCTF

The IMSCTF macro statement includes parameters to define the SVCs to be used by DBCTL, logging
options, and the device type for DBCTL's restart data set.

• SECURITY

The SECURITY macro statement enables you to specify optional security features to be in effect during
IMS execution, unless they are overridden during system initialization.

If you are implementing IMS security use the Resource Access Control Facility (RACF), see System
administration in IMS product documentation. For more information about security with DBCTL, see
Security checking with DBCTL.

• IMSGEN

The IMSGEN macro statement must be the last system definition macro in the Stage 1 input. It specifies
the assembler and linkage editor data sets and options, and the system definition output options and
features. It specifies the suffix character for the IMS nucleus (DFSVNUCx in IMS.RESLIB) and for the
DDIR (DFSDDIRx) and PDIR (DFSPDIRx) in IMS.MODBLKS. You must specify the MACLIB parameter of
the IMSGEN macro as MACLIB=ALL when using DBCTL for the first time.

Implementing CICS-supplied transaction CDBM
CICS provides a transaction, CDBM, that enables DBCTL operator commands to be input from a CICS
terminal. The CICS terminal must be a BMS supported device.

About this task
CDBM operator transaction has more information about CDBM. To use CDBM, you must have a DBCTL
system running IMS.

CDBM uses the AOI commands that can be issued across the DRA interface between CICS and DBCTL.
For more information about these commands, see Issue IMS AIB call format.

Choose either of these methods to implement CDBM:

Procedure
1. Use PSBGEN to generate, and add to the DBCTL system, a PSB named DFHDBMP.

a) Specify parallel scheduling for DFHDBMP, so that multiple CDBM transactions can be active at the
same time.

b) DFHDBMP does not need to have any associated PCBs.
c) The IOASIZE parameter must be large enough to cope with the largest AOI command issued.

20 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht427.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/database/dfht44n.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht40a.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht402.html

Large AOI commands can result from using wild cards. For example, issuing CDBM /START
DATABASE D* results in a start command being issued for all database names beginning with D. See
System utilities in IMS product documentation for information on defining IOASIZE.

Example input for PSBGEN is:

PSBGEN LANG=ASSEM,PSBNAME=DFHDBMP,IOASIZE=1000

2. Alternatively, with IMS V10, you can use the batch SPOC (Single Point of Control) interface to create
DFHDBMP. Specify the following command in the batch SPOC:

CREATE PGM NAME(DFHDBMP) SET(BMPTYPE(Y) DOPT(N) +
FP(N) GPSB(Y) LANG(ASSEM) RESIDENT(N) +
SCHDTYPE(PARALLEL) TRANSTAT(N))

Modifying IMS system data sets using online change
You can modify the IMS system data sets MODBLKS, MATRIX, and ACBLIB using online change.

About this task
Each of IMS system data sets must be present in the following copies:

• A staging library, which is identified by an unsuffixed DD statement (MODBLKS, MATRIX, ACBLIB), and is
used offline only to prepare changes to the active library.

• An active and an inactive library, which are used in flip-flop mode and are identified by suffixed DD
statements (MODBLKSA and MODBLKSB, and so on). The same parameter (MODBLKSx, where x= A or
B) controls the active library for both MODBLKS and MATRIX. While the active library (either ...A or ...B)
is being used online by DBCTL, you can use the online change utility to copy the contents of the staging
library to the inactive library. You use a series of /MODIFY commands to perform the actual switch from
the active library to the updated inactive library.

The IMS.MODSTAT data set, which is created during the IMS system generation and updated
automatically, indicates which of the suffixed data sets is currently active. For guidance on using online
change, see Changing DBCTL resources online and System administration in IMS product documentation.

Example of JCL required to generate a basic DBCTL subsystem
You can copy and modify this JCL example to generate a DBCTL subsystem.

The minimum generation required to generate DBCTL is ON-LINE,DBCTL. (You must perform an online
generation to change the SVC numbers.) You must include the dash (-) in the ON-LINE parameter. If you
do not, you get the following messages when you try to generate DBCTL:

** ASMA254I *** MNOTE *** 76+ 4,G002 FOLLOWING OPERAND(S) OMITTED OR INVALID:
** ASMA254I *** MNOTE *** 77+ 4, SYSTEM

You use an ACB generation to create members of the IMS.ACBLIB. See Database utilities in IMS product
documentation for further guidance on doing this.

Figure 5 on page 22 shows an example DBCTL generation that you can copy and modify to generate
a DBCTL subsystem. This example includes only the parameters needed to get a "basic" system up and
running. This example does not include optional parameters, such as those for DEDB support, and it
assumes that you want to tune other parameters (such as the number of threads) later, when you have
had an opportunity to see how the subsystem runs.

Note: You can, instead, use the IMS INSTALL/IVP dialog to generate stage 1 macros for DBCTL. For
details, see Installation in IMS product documentation.

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 21

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sur/sur.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht427.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ins/ins.htm

//DBCGEN JOB 1,PGMERID,
// MSGCLASS=A,MSGLEVEL=(1,1),
// CLASS=A,NOTIFY=PGMERID
//ASM EXEC PGM=ASMA90,
// PARM='DECK,NOOBJECT',
// REGION=4096K
//SYSLIB DD DSN=IMS.OPTIONS,DISP=SHR
// DD DSN=IMS.SDFSMAC,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//*
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSUT2 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSUT3 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSPRINT DD SYSOUT=*
//SYSPUNCH DD DSN=IMS.STAGE2,DISP=SHR
//SYSIN DD *
* *
* *
* SAMPLE DBCTL SYSTEM DEFINITION STAGE 1 INPUT SPECIFICATIONS *
* *
* *
 IMSCTRL SYSTEM=(VS/2,(ON-LINE,DBCTL),3.1), X
 MAXREGN=(20,52K,A,A), X
 MCS=(2,7),DESC=7,MAXCLAS=1,IMSID=IMSA
*
 IMSCTF SVCNO=(,203,202), X
 LOG=(DUAL,MONITOR), X
 RDS=(3380,4096), X
 CPLOG=1000,CORE=(,50,1)
*
* DEFINE SYSTEM BUFFERS
*
 BUFPOOLS PSBW=60000,DMB=10000,SASPSB=(20000,80000)
*
* DEFINE DL/I DATABASES
*
 DATABASE RESIDENT,DBD=DI21PART

Figure 5. Example JCL to generate DBCTL 1/2

* DEFINE SAMPLE APPLICATIONS
*
 APPLCTN PSB=DFHSAM04,PGMTYPE=BATCH,SCHDTYP=PARALLEL
 APPLCTN PSB=DFHSAM05,PGMTYPE=BATCH,SCHDTYP=PARALLEL
 APPLCTN PSB=DFHSAM14,PGMTYPE=BATCH,SCHDTYP=PARALLEL
 APPLCTN PSB=DFHSAM15,PGMTYPE=BATCH,SCHDTYP=PARALLEL
 APPLCTN PSB=DFHSAM24,PGMTYPE=BATCH,SCHDTYP=PARALLEL
 APPLCTN PSB=DFHSAM25,PGMTYPE=BATCH,SCHDTYP=PARALLEL
 APPLCTN PSB=DFHDBMP,PGMTYPE=BATCH,SCHDTYP=PARALLEL
*
 IMSGEN ASM=(H,SYSLIN), X
 ASMPRT=ON, X
 LKPRT=(XREF,LIST), X
 LKSIZE=(880K,64K), X
 LKRGN=4096K, X
 SUFFIX=1, X
 SURVEY=NO, X
 SYSMSG=TIMESTAMP, X
 MACLIB=ALL, X
 OBJDSET=IMS.OBJDSET, X
 USERLIB=IMS.LOADLIB, X
 PROCLIB=(YES,), X
 NODE=(IMS,IMS,IMS), X
 JCL=(GENJOB, X
 (1), X
 PGMERID, X
 A, X
 (TIME=5,CLASS=K,NOTIFY=PGMERID)), X
 SCL=(99)
 END

Figure 6. Example JCL to generate DBCTL 2/2

For more detailed system definition examples and further guidance on selecting the appropriate system
definitions, and for IMS system definition examples, see System definition in IMS product documentation.

22 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm

IMS logging
IMS logging uses two types of data set: online log data sets (OLDS) and write ahead data sets (WADS).

These data sets are described fully in individual subtopics. For further guidance on using the OLDS and
the WADS, see Operations and automation in IMS product documentation.

IMS online log data set (OLDS)
IMS writes log records to a DASD data set called the online log data set (OLDS).

The OLDS is made up of multiple data sets written in wraparound form. Using more than one OLDS
enables IMS to continue logging when the first OLDS is full. Also, if an I/O error occurs while writing to
an OLDS, IMS can continue logging by isolating the OLDS where the problem occurred and switching to
another one.

IMS can write committed log records to the write-ahead data set (WADS) so that these records are
externalized to avoid the need to write partially filled and padded log blocks to the OLDS. The WADS is
described in “IMS write-ahead data set (WADS)” on page 23.

When the OLDS is full, it is archived to the system log data set (SLDS). How frequently the OLDS is
archived depends on whether you specified automatic archiving using the ARC=parameter in the DBC JCL.
You can specify ARC=1 through ARC=99. Automatic archiving takes place only when the number of OLDS
you specified is full. The system reuses the OLDS after it has been archived. An SLDS can be on DASD or
on tape. The contents are used as input to the database recovery process.

IMS archives the OLDS using the log archive utility (DFSUARC0). During archiving, IMS can write a subset
of the log records it writes to the SLDS to the recovery log data set (RLDS). This subset consists only of the
log records required to perform a database recovery.

During logging, IMS writes system checkpoint ID information (including OLDS positioning information)
to the restart data set (RDS). IMS uses the RDS during the restart process to determine from which
checkpoint to begin a restart. (See Operations and automation in IMS product documentation for further
guidance about the RDS.)

IMS write-ahead data set (WADS)
The main purpose of the write-ahead data set (WADS) is to contain a copy of committed log records that
are in the OLDS buffers, but have not yet been written to the OLDS because the OLDS buffer is not yet full.

IMS uses the WADS to avoid the need to write partially filled and padded blocks to the OLDS. WADS
space is continually reused after the appropriate log data has been written to the OLDS. If there is a
system failure, IMS uses the log data in the WADS to complete the content of the OLDS in use, and then
closes the OLDS as part of an emergency restart. This is also an option of the IMS log recovery utility
(DFSULTR0). (The OLDS must be closed before database recovery can take place.) You can change the
following specifications for the WADS at any restart:

• Number of WADSs
• Sequence of WADSs
• WADSs data set names
• Use of single or dual WADSs.

Log control with DBRC
Database Recovery Control (DBRC) assists you in controlling DBCTL logs and in managing recovery of
databases. With DBCTL, you must use DBRC to control DBCTL logs, and you may optionally use it to
control batch logs and database recovery.

DBRC places the information it uses to control recovery in the RECON data sets, which are required with
DBCTL. These data sets include information about the OLDS; for example, it indicates whether an OLDS is
available for use or contains data that must be archived.

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 23

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm

Define three RECON data sets when you install DBRC. Two of the RECON data sets are active; the third is a
spare. For most purposes, you can think of the two active RECON data sets as a single RECON data set, or
the RECON.

DBCTL requires DBRC to be at SHARECTL level; if it is not, DBCTL will not start. To initialize the RECON
specify (or let it default to) INIT.RECON SHARECTL. Figure 7 on page 24 shows some example JCL you
can copy to initialize the RECON.

//INITREC JOB 1,PGMERID,CLASS=Q,MSGCLASS=A
//*
//RECON EXEC PGM=DSPURX00,REGION=1000K
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR
//DFSRESLB DD DSN=IMS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//RECON1 DD DSN=IMS.RECON1,DISP=SHR
//RECON2 DD DSN=IMS.RECON2,DISP=SHR
//SYSIN DD *
 INIT.RECON SSID(IMSA)
/*

Figure 7. Example JCL to initialize the RECON

If you already have a RECON, specify (or let it default to) CHANGE.RECON SHARECTL. When the OLDS
is full, DBRC starts a log archive job. Skeleton JCL statements are edited by DBRC before the job is
submitted. The skeleton JCL is member ARCHJCL of the library specified in the JCLPDS DD statement
in the DBRC JCL. You do not have to wait for the OLDS to fill in order to test the automatic log
archive. Instead, you can cause the OLDS to switch using the DBCTL operator command /SWITCH
OLDS. Alternatively, you can use the /DBRECOVERY without the NOFEOV keyword. For guidance on the
syntax of the /SWITCH and /DBRECOVERY commands, see Operations and automation in IMS product
documentation. (See also Operator communication with DBCTL: overview for information on using DBCTL
operator commands.)

For detailed guidance on automatic log archiving and DBRC skeleton JCL, see Database utilities in IMS
product documentation. For further guidance on using DBRC, see Operations and automation in IMS
product documentation.

Defining IMS logging parameters
You define IMS logging parameters in member DFSVSMxx in the IMS.PROCLIB, identified by DD name
PROCLIB in the DBC and DLISAS JCL.

About this task
You specify the suffix xx for DFSVSMxx in the DBCTL startup parameter VSPEC. For an illustration of the
parameters involved, see “Illustration of DBCTL startup parameter creation and selection” on page 31.
The logging parameters in DFSVSMxx include:

• Number of OLDS
• Number of OLDS buffers
• Selection of single or dual OLDS
• Number of WADS.

A further logging parameter, used to specify single or dual copies of the WADS is in the DBCTL startup
parameters. See “Starting DBCTL, DLISAS, and DBRC” on page 26 for information about the DBCTL
startup procedure.

You must preallocate the OLDS and WADS data sets and specify the block size when the data set is
allocated. For details, see Installation in IMS product documentation.

Provide dynamic allocation members for all OLDS and WADS data sets. See “IMS dynamic allocation
macro (DFSMDA)” on page 25.

24 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht422.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ins/ins.htm

Archiving
DBRC automatically submits a job to archive the OLDS when:

• IMS terminates
• The OLDS fills and logging switches to an empty OLDS
• You issue a /DBRECOVERY command without the NOFEOV keyword
• You switch the OLDS manually.

See Operations and automation in IMS product documentation and Database utilities in IMS product
documentation for guidance on implementing automatic archiving, and Operations and automation in
IMS product documentation for the syntax of the /DBRECOVERY command. (You can also use the /
DBRECOVERY command without the NOFEOV keyword to test your implementation.)

IMS dynamic allocation macro (DFSMDA)
Use the IMS dynamic allocation macro (DFSMDA) in all production databases.

Use DFSMDA in all production databases for the following reasons:

• Allocation is controlled from a central point.
• You do not have to change DBCTL JCL or batch job JCL to change a data set name.
• It avoids possible confusion over which DBCTL address space requires the DD statement for a database,

because the library with the DFSMDA members can be concatenated in the STEPLIB DD statement.
• If you do not use DFSMDA, DL/I database DD statements must be in the DLISAS (DLS) address space,

and DEDB DD statements must be in the DBCTL (DBC) address space.

To use dynamic allocation, you need one member per database in the IMS.RESLIB library (or an
authorized STEPLIB library), using the IMSDALOC procedure to assemble and link-edit the appropriate
DFSMDA macros. See System administration in IMS product documentation for general guidance on
dynamic allocation and Database utilities in IMS product documentation for guidance on using the
DFSMDA macro.

Database buffer specifications and option parameters
You define the VSAM and OSAM database buffer pool specifications and IMS performance and trace
options in the DFSVSMxx member of the IMS.PROCLIB data set, which is pointed to by the PROCLIB DD
statement of the DBCTL startup procedure (DBC).

The last two characters of the DFSVSMxx member are a suffix. You specify this suffix in the VSPEC
parameter of the DBCTL startup procedure. See System definition in IMS product documentation for
guidance on the syntax of these parameters and Database administration in IMS product documentation
for guidance on specifying the database buffer pool parameters. For an illustration of the parameters
involved in DBCTL startup, see “Illustration of DBCTL startup parameter creation and selection” on page
31.

Overriding DBCTL generation parameters at execution time

About this task
You can change many IMS system definition values at DBCTL startup using parameters on the DBC
procedure. You can specify these override parameters on the PARM of the EXEC statement. However,
there is a 100-character limit to the length of the PARM field you can specify on a JCL EXEC statement,
which means that you cannot override all possible DBC parameters in the JCL. A better approach is to
use member DFSPBDBC, which allows you to specify DBCTL control region execution parameters that
override those specified in the stage 1 macros.You can place several DFSPBDBC members in PROCLIB
by replacing the member name DFSPBDBC with DFSPBxxx, where xxxmust be three alphanumeric
characters. The RGSUF= keyword in the DBC procedure specifies the xxx suffix to be used during startup

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 25

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/dag.htm

of the DBCTL control region. For more information about DFSPBDBC, see System definition in IMS product
documentation.

Naming convention
The DBCTL display commands (for example, /DISPLAY ACTIVE and /DISPLAY CCTL). and the DRA startup
table USERID parameter, all use what is known in IMS and DBCTL as the CCTL ID to identify the
transaction management subsystem. In the case of CICS, the CCTL is CICS and the ID is the CICS APPLID.

However, many IMS messages use the jobname of the CICS system instead. An example of this sort
of message is DFS554, which notifies you that a BMP region, or a thread from a CICS transaction, has
terminated abnormally. If the DFS554 message was caused by an abnormal termination of a thread that
originated from CICS, the message text contains the CICS job name or CICS startup procedure name. You
will therefore need a naming convention that enables operators to immediately identify a corresponding
CICS APPLID and CICS JOBNAME. For example, if you use the APPLID DBDCCICA, your job name could
also contain the characters CICA.

Starting DBCTL, DLISAS, and DBRC
You use the procedure library member DBC that is supplied with DBCTL to start the DBCTL subsystem.

About this task
The procedure is generated during IMS system definition and must be modified to fit your system's needs.

Also generated during system definition are procedures for DBRC and DLISAS, which are used to generate
the DBRC and DLISAS address spaces. The DBRC and DLISAS procedures are started automatically by
DBCTL during DBCTL startup.

The region types specified for each one are:

PARM='DBC'
for DBCTL PARM='DRC' for DBRC PARM='DLS' for DLISAS

All three procedures use positional parameters on the EXEC statement:

PARM='region type,parm1,parm2,parm3,...'

Many of the positional parameter defaults are specified during system generation, but you can override
them with parameters you specify at execution time.

When all three address spaces have been started successfully, DBCTL issues the following message
indicating it is ready to accept an appropriate restart command:

DFS989I IMS (DBCTL) READY (CRC=x) xxxx

where x is the command recognition character (CRC), as explained in Operator communication with
DBCTL: overview, and xxxx is the DBCTL sysid, as specified in the IMSID= parameter of the DBCTL startup
JCL.

See System definition in IMS product documentation for guidance on DBCTL procedures, including JCL
and descriptions of parameters.

Defining the IMS DRA startup parameter table
The DRA startup parameter table provides the parameters needed to define the interface to the DBCTL
subsystem.

About this task
You create the DRA startup parameter table by assembling the DFSPRP macro and link-editing it into the
IMS.RESLIB library (or another APF-authorized library) as DFSPZPxx, where xx=00, for the default, or any

26 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht422.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht422.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm

other alphanumeric characters. Unless your IMS RESLIB uses the default name IMS.RESLIB, supplied in
DFSPZP00, you must specify the name you have chosen in your version of the DRA. In “Example JCL to
generate a DRA startup table” on page 28, the name IMS.RESLIB is used.

Note: The macro used is DFSPRP, but the name of the module you must link edit is DFSPZPxx. You must
also link edit the DRA into an authorized library that is part of the CICS STEPLIB concatenation.

The DFSPRP macro has the following parameters:

• DSECT=NO

A DSECT statement for PZP is not generated. You must specify this option in order to create a CSECT,
which is required in order to assemble the module DFSPZPxx.

• FUNCLV=

The CCTL (in this case, CICS) functional level. The default (and the only valid value) is 1.
• DDNAME=

A 1- to 8-character ddname to be used with dynamic allocation of the DRA RESLIB. The default is
CCTLDD.

• DSNAME=

A 1- to 44-character data set name of the DRA RESLIB. The default is IMS.RESLIB.
• DBCTLID=xxxx

The 1- to 4-character name of the DBCTL address space. The default is SYS1. This parameter must be
the same as the IMSID in the DBCTL startup procedure for the DBCTL to which you want this CICS to
connect. You can connect multiple CICS systems to the same DBCTL, but a CICS system can connect to
only one DBCTL at a time.

• USERID=xxxxxxxx

CICS users do not specify this parameter; it is supplied by CICS itself. If you do specify anything, CICS
overrides it. USERID is the 1- to 8-character name of the CICS address space (or CCTLID). The value
CICS supplies when it connects to DBCTL is the CICS APPLID.

• MINTHRD=xxx

This parameter specifies the number of threads for this CICS system that, once initialized, remain
created while the DRA is active. These threads remain allocated until this CICS system is disconnected
from DBCTL, except if a thread is stopped by a /STOP command or by a thread failure. Additional
threads are created, up to the number specified in MAXTHRD, or the number specified in MAXREGN,
or the maximum of 999, whichever of these values is the lowest. These additional threads (not the
MINTHRDs) are released when there is not enough system activity to require them. The maximum value
you can specify for MINTHRD is 999, and the default is 1. For information about specifying values for
MINTHRD, see Specifying numbers of threads. See also MAXREGN in “IMS system generation macros
used by DBCTL” on page 19.

• MAXTHRD=xxx

This parameter specifies the maximum number of transactions for which this CICS system can have
PSBs scheduled in DBCTL. Any schedule requests that are over this limit are queued in the DRA. You
can balance the load sent to a single DBCTL from multiple CICS systems by specifying appropriate
values for MAXTHRD in each CICS.

The maximum value you can specify for MAXTHRD is 999 (but it should not exceed the value specified
for MAXREGN) and the default is 1, or the value you specified in MINTHRD. For information about
specifying values for MAXTHRD, see Specifying numbers of threads. See also MAXREGN in “IMS system
generation macros used by DBCTL” on page 19.

• TIMER=xx

The frequency, in seconds, with which CICS is to repeat attempts to connect to DBCTL when connection
has failed and the console operator has requested that CICS wait for connection in reply to a DFS690

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 27

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/database/dfht44s.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/database/dfht44s.html

message (rather than canceling the connection attempt). You can specify any value from 0 through 99.
However, note that if you specify 0, the default value is used. The default is 60.

• CNBA=xxx

The total number of DEDB buffers that are allocated for this CICS system. The default is 0.
• FPBUF=xxx

The number of DEDB buffers to be allocated and fixed per thread. The default is 0. See DEDB
performance and tuning considerations for information about defining DEDB buffer pools.

• FPBOF=xxx

The number of DEDB overflow buffers to be allocated per thread. The default is 0. See DEDB
performance and tuning considerations for information defining DEDB buffer pools.

Notes:

1. For DBCTL users, fast path support refers only to DEDBs. Parameters that begin with FP refer to
DEDBs in the DRA startup table.

2. You do not need the parameters CNBA, FPBUF, and FPBOF if you are not using DEDBs.
3. For detailed guidance on specifying DEDB buffers, see System administration in IMS product

documentation .
• TIMEOUT=xxx

The amount of time, in seconds, that CICS should wait for a DRA TERM request to complete. The
maximum value is 999, and the default is 60. For guidance on what to specify, see TIMEOUT in CICS
failure.

• SOD=x

The output class to be used for a snap memory dump of abnormal thread terminations. The default is A.
See Dumps produced by the DRA for more information about these memory dumps.

• AGN=xxxxxxxx

The 1- to 8-character application group name (AGN). You must use this parameter only if you have
specified AGN security checking for DBCTL. There is no default. See Security checking with DBCTL for
more information.

• OPENTHRD={CCTL | DISABLE}

This parameter specifies whether DRA Open Thread support processing is enabled. CCTL is the default,
and when this is specified, the DRA uses CICS TCBs for processing instead of dedicated IMS DRA TCBs,
enabling increased parallelism. To disable DRA Open Thread support processing, specify DISABLE

Example JCL to generate a DRA startup table
Some example JCL you can copy to generate a DRA.

28 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/database/dfht44t.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/database/dfht44t.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/database/dfht44t.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/database/dfht44t.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht42u.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht42u.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/dfht44h.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/database/dfht44n.html

//DRAJOB JOB 1,PGMERID,MSGCLASS=A,MSGLEVEL=(1,1),
// CLASS=A,NOTIFY=PGMERID
//ASM EXEC PGM=ASMA90,
// PARM='DECK,NOOBJECT,LIST,XREF(SHORT),ALIGN',
// REGION=4096K
//SYSLIB DD DSN=IMS.OPTIONS,DISP=SHR
// DD DSN=IMS.SDFSMAC,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//*
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSUT2 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSUT3 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSPUNCH DD DSN=&&OBJMOD,
// DISP=(,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),
// SPACE=(400,(100,100))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
PZP TITLE 'DATABASE RESOURCE ADAPTER STARTUP PARAMETER TABLE'
DFSPZP00 CSECT
**
* MODULE NAME: DFSPZP00 *
* *
* DESCRIPTIVE NAME: DATABASE RESOURCE ADAPTER (DRA) *
* STARTUP PARAMETER TABLE. *
* *
* FUNCTION: TO PROVIDE THE VARIOUS DEFINITIONAL PARAMETERS *
* FOR THE COORDINATOR CONTROL REGION. THIS *
* MODULE MAY BE ASSEMBLED BY A USER SPECIFYING *
* THEIR PARTICULAR NAMES, ETC. AND LINKEDITED *
* INTO THE USER RESLIB AS DFSPZPXX. WHERE XX *
* IS EITHER 00 FOR THE DEFAULT, OR ANY OTHER ALPHA- *
* NUMERIC CHARACTERS. *
* *
**
 EJECT
 DFSPRP DSECT=NO, X
 DBCTLID=IMSA, X
 DDNAME=CCTLDD, X
 DSNAME=IMS.SDFSRESL, X
 MAXTHRD=99, X
 MINTHRD=10, X
 TIMER=60, X
 USERID=, X
 CNBA=10, X
 FPBUF=, X
 FPBOF=, X
 TIMEOUT=60, X
 SOD=A, X
 AGN=
 END
/*
//LNKEDT EXEC PGM=IEWL,
// PARM='LIST,XREF,LET,NCAL'
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(100,50))
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSLIN DD DISP=(OLD,DELETE),DSN=&&OBJMOD
// DD DDNAME=SYSIN
//SYSIN DD *
 NAME DFSPZP00(R)
/*

Figure 8. Example JCL to generate a DRA startup table

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 29

Customizing DBCTL
CICS provides several global user exits and a user-replaceable program to help you customize DBCTL
processing.

DFHDBUEX
DFHDBUEX is an IBM-supplied user-replaceable program that is invoked each time CICS connects to, and
disconnects from, DBCTL.

You can use DFHDBUEX to enable or disable CICS-DBCTL transactions at DBCTL connection and
disconnection time. The transactions are available to be run if that DBCTL is connected. Users who
attempt to enter one of these transactions when DBCTL is not connected are notified immediately that the
transaction is unavailable. This means that users will not be able to start one of these transactions, only to
find that it fails because the database is unavailable.

To summarize, DFHDBUEX is invoked when:

• CICS has successfully connected to DBCTL.
• CICS is disconnecting from DBCTL, and has been notified that:

– DBCTL has been terminated normally (using a /CHECKPOINT FREEZE or /CHECKPOINT PURGE
command, as described in Stopping DBCTL normally).

– The DRA has terminated abnormally.
– DBCTL has terminated abnormally.
– The menu transaction CDBC has been used to request disconnection from DBCTL.

See Writing a CICS–DBCTL interface status program for programming information on DFHDBUEX.

Global user exits XDLIPRE and XDLIPOST
The two global user exits XDLIPRE and XDLIPOST are available to all DL/I users, both remote users and
DBCTL users. Use these global user exits to intercept any Call level or EXEC level DL/I request on entry to
and exit from DL/I.

XDLIPRE is invoked before the DL/I request is processed. XDLIPOST is invoked after the DL/I request is
processed. If you are using function shipping, the exits are invoked from the application owning region
(AOR), and the database owning region (DOR). However, there are restrictions on what actions can be
performed by an exit program running at exit point XDLIPRE or XDLIPOST in a DOR. For programming
information about these exits, see Naming, testing, and debugging your autoinstall control program and
CICS action on return from the control program .

Programs running in these exits must be coded to threadsafe standards and defined to CICS as
threadsafe.

Uses of the XDLIPRE and XDLIPOST global user exits
Use XDLIPRE to change the PSB name that the application program has scheduled at execution time. An
example of XDLIPRE that you can modify is shown in Example use of global user exit XDLIPRE.

Use the XDLIPRE exit to change the identity of the SYSID during CICS execution. You might want to
change the identity of the SYSID if the one you are currently using becomes unavailable.

Use the XDLIPOST exit with DBCTL to ensure that all the required resources are available before an
application starts. The enhanced scheduling feature in DBCTL allows a PSB to be scheduled when one or
more databases are unavailable, you can use XDLIPOST to prevent this from happening. Use XDLIPOST
to scan the list of PCBs and update the status of any unavailable databases to a response code of 0805.
Setting the status of unavailable databases to 0805 means that CALLDLI programs return a value of 0805,
EXEC DLI programs abend with code DHTE, and DBCTL does not raise any new schedule requests before
the PSB is stopped.

30 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht43a.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha38k.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha388.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha387.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/user-exits/dfht454.html

Global user exits XRMIIN and XRMIOUT
The global user exits XRMIIN and XRMIOUT enable you to monitor activity across the resource manager
interface (RMI).

XRMIIN is invoked just before control is passed from the RMI to a task-related user exit, and XRMIOUT
is invoked just after control is returned to the RMI. You can use these exits to monitor DL/I activity; for
example, control being passed to and from DFHDBAT for DBCTL requests, or DFHEDP for EXEC DLI.

For programming information on using these exits, see Naming, testing, and debugging your autoinstall
control program and CICS action on return from the control program .

Illustration of DBCTL startup parameter creation and selection
This illustration shows you how the DBCTL startup parameters are created and selected during startup.

If you are new to IMS system definition, use this figure while reading “Generating DBCTL” on page 18.

Note: "OCU" in Figure 9 on page 32 refers to the IMS online change utility.

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 31

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha388.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha388.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha387.html

Figure 9. Creating and selecting DBCTL startup parameters

32 CICS TS for z/OS: IMS Database Control Guide

Chapter 3. Administering DBCTL
This information shows you how to connect to DBCTL and issue operator commands.

Connecting to DBCTL: overview
You can perform CICS and DBCTL startup from a TSO terminal or an MVS console.

About this task
Before DBCTL can begin accepting transactions, several things must happen, as shown in Figure 10 on
page 33. The numbers in the figure and corresponding step numbers indicate the sequence of events.

Figure 10. Connecting to DBCTL

1. CICS is started by submitting a job or starting a procedure, as described in CICS actions on an initial
start.

2. DBCTL is started by submitting a job or starting a procedure, as described in Starting DBCTL, DLISAS,
and DBRC.

3. After receiving a DBCTL READY message, indicating that startup is complete, the IMS console operator
enters a start command, as follows:

• If starting DBCTL for the first time, use /NRESTART CHECKPOINT 0 FORMAT ALL. This command
performs a cold start of DBCTL and formats the write ahead data set (WADS) and the restart data set
(RDS).

• /NRESTART for a warm start.
• /ERESTART for an emergency restart after a failure.

The / used in these commands is explained in “Operator communication with DBCTL: overview” on
page 39. See “Restarting DBCTL” on page 58 for information about restart options.

When the start has completed, the following message is issued:

DFS994I rtype START COMPLETED

where rtype is the type of start requested (COLD, WARM, or EMERGENCY).
4. The CICS operator requests connection to DBCTL using the CDBC transaction.

Step 1 can be done before, during, or after steps 2 and 3. Steps 2 and 3 must be done in the sequence
described, and all three steps must be completed successfully before step 4 can begin.

The previous steps show you how to manually start IMS. IMS can also be started and restarted
automatically; for more details, see System administration in IMS product documentation.

Connecting DBCTL to CICS automatically
You can specify that CICS is connected automatically to either the same or a different DBCTL.

If you want to connect automatically to the DBCTL that was being used when CICS was last shutdown,
use the DBCTLCON system initialization parameter, or add an entry for DFHDBCON to the PLTPI so that it
is invoked in the second stage of PLTPI processing (that is, the third stage of CICS initialization).

© Copyright IBM Corp. 1974, 2023 33

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/cics/dfha635.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/cics/dfha635.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfht41o.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfht41o.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm

If you want to connect automatically to a specific DBCTL, or to connect CICS to DBCTL when it was not
connected at shutdown, use the CICS INITPARM system initialization parameter, in addition to specifying
DFHDBCON in the PLTPI. INITPARM enables DFHDBCON to have access to the DRA startup parameter
table suffix you want to use. Specify:

INITPARM=(DFHDBCON='xx[,yyyy]')

where xx is a 1-to 2-character DRA startup table suffix, which you must enter, and yyyy is an optional
1-to 4-character DBCTL identifier. The DBCTL identifier specified in INITPARM overrides the DRA startup
parameter DBCTLID.

Using INITPARM avoids the need to use the CRLP or DASD sequential terminal as your means of
automating connection to a specific DBCTL. Use the following code if you prefer to use a CRLP or DASD
sequential terminal:

//DDIN DD *
 CDBC CONNECT SUFFIX(xx) DBCTLID(yyyy)\

where xx is the 1- to 2-character DRA startup table suffix and yyyy is the 1- to 4-character DBCTL
identifier, both of which are optional. Specifying a DBCTL identifier here overrides the one specified in the
DRA startup table parameter DBCTLID. \ is the end-of-line character. (See DFHLIST definitions and Using
sequential terminal support for guidance on using sequential terminal support.)

What happens at startup depends on the type of CICS start being used, whether you specified INITPARM,
and whether DBCTL was connected to CICS when CICS was last shutdown.

Connecting to DBCTL after a CICS WARM or EMERGENCY start
If CICS startup is WARM or EMERGENCY:

• If you used INITPARM, the DRA startup table suffix and DBCTL identifier specified there are used to
determine which DBCTL to connect to, whether CICS and DBCTL were connected when CICS was last
shutdown.

• If you did not use INITPARM:

– If CICS and DBCTL were connected when CICS was last shutdown, CICS is reconnected to the same
DBCTL. DFHDBCON uses the DRA startup parameter table suffix and DBCTL identifier override (which
might be blanks) from the catalog.

– If CICS and DBCTL were not connected when CICS was last shutdown CICS issues message
DFHDB8117 and does not attempt to connect to DBCTL.

Connecting to DBCTL after a CICS COLD or INITIAL start
If CICS startup is COLD or INITIAL:

• If you used INITPARM, CICS attempts to connect to DBCTL, using the suffix and DBCTL identifier (if any)
you specified.

• If you did not use INITPARM, CICS attempts to connect to DBCTL using the default DRA startup
table suffix (00) and no DBCTL identifier override, whether DBCTL was connected when CICS was last
shutdown.

Connection, disconnection, and inquiry transactions for the CICS
DBCTL interface

There are two CICS transactions that you can use to connect to, disconnect from, and inquire on the
status of the CICS-DBCTL interface.

They are:

• CDBC, which enables users (for example, CICS operators and network controllers) to display a menu to
connect to and disconnect from DBCTL.

34 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/dfha46k.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp38g.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp38g.html

– For connection, CDBC issues a DBCTL connection request to DFHDBAT, which issues a DRA INIT
request internally to the DRA.

CDBC also enables you to override the DRA startup parameter table suffix and DBCTL identifier
when you are connecting CICS to DBCTL. (See Defining the IMS DRA startup parameter table for
information on the contents of the DRA startup table.)

– For disconnection, CDBC can issue an orderly or an immediate disconnection request to DFHDBAT,
which issues a DRA TERM request internally to the DRA.

(See “CDBC transaction for connect and disconnect” on page 35 for more information on using
CDBC.)

• CDBI, which enables users to inquire on the status of the CICS-DBCTL interface. See “CDBI transaction
for inquiry” on page 38 for more information.

You can enter CDBC and CDBI from either a CICS terminal or an MVS console. You can restrict access
to these transactions using transaction security. Messages from CDBC can be sent to the transient data
destination CDBC.

CDBC transaction for connect and disconnect
Typing CDBC on a 3270-type terminal displays a menu for connecting CICS to, and disconnecting it from,
DBCTL.

Figure 11 on page 35 shows an example of the menu.

To connect to DBCTL, enter option number 1 after:

Option Selection ==>

 CDBC CICS-DBCTL CONNECTION/DISCONNECTION 93.259
 13:39:20

 Select one of the following:

 1 Connection
 2 ORDERLY disconnection
 3 IMMEDIATE disconnection

 Option Selection ==> 2
 Startup Table Suffix ==> 00
 DBCTL ID Override ==>

 DFHDB8209D DBCTL orderly disconnection requested. Press PF5 to confirm.

 Status of the Interface: DFHDB8293I DBCTL connected and ready.
 CICS APPLID: IYAHZCD2
 DBCTL ID: SYS2
 Startup Table Suffix: 00

 PF1 = Help 2 = Refresh 3 = End

Figure 11. CDBC transaction menu screen

If you want to specify a DRA startup table suffix, you can enter it after:

Startup Table Suffix ==>

If you do not specify a suffix, CICS uses the one that was used when it was last connected to DBCTL. If
this is the first time you have connected CICS to DBCTL, and you do not specify a suffix, CICS uses the
default suffix, which is 00.

If you want to specify a DBCTL identifier, you can enter it after:

Chapter 3. Administering DBCTL 35

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/database/dfht41p.html

DBCTL ID Override ==>

If you do not specify a DBCTL identifier, the DRA uses the DBCTL identifier specified on the DBCTLID
parameter in the DRA startup table.

When you have pressed ENTER, you should get the message:

DFHDB8209 I DBCTL orderly disconnection requested. Press PF5 to confirm.

as shown on the example screen in Figure 11 on page 35.

The CDBC menu screen displays the following additional information:

• Status of the CICS-DBCTL interface; in this case, DBCTL is connected and ready
• The APPLID of the CICS system; in this case, DBDCCICS
• The identifier of the DBCTL system; in this case, SYS2
• The DRA startup parameter table suffix for this connection; in this case, 00.

The DBCTL identifier and the DRA startup parameter table suffix are only displayed when CICS has been
connected to DBCTL. You can refresh any of the information on the CDBC menu screen by pressing PF2.

You can obtain a help screen for the CDBC menu by pressing PF1. As you can see in Figure 12 on page
36, the CDBC help screen reminds you which number to specify for which option, what the options
mean, and summarizes the CICS-DBCTL interface information displayed on the CDBC menu screen.

 HELP : CICS-DBCTL CONNECTION/DISCONNECTION

 To CONNECT to DBCTL, select option 1. You can also specify a startup
 table suffix, or accept the existing suffix. The id of the DBCTL system is
 obtained from the startup table, but can be optionally overridden.

 To DISCONNECT from DBCTL, select option 2 or option 3.

 Select option 2 for ORDERLY disconnection: this allows all CICS-DBCTL
 transactions from this CICS to complete before disconnecting from DBCTL.

 Select option 3 for IMMEDIATE disconnection: this allows all CICS-DBCTL
 requests from this CICS to complete before disconnecting from DBCTL.
 --
 Displayed information (press PF2 to refresh the information):
 STATUS OF THE INTERFACE The current status of the connection to DBCTL.
 CICS APPLID The application identifier for this CICS system.

 Displayed when available:
 DBCTL ID Identifier of the DBCTL system with which this
 CICS system is communicating.
 STARTUP TABLE SUFFIX Suffix used when CICS was connected to DBCTL.

 PRESS ENTER TO RETURN TO SELECTION SCREEN

Figure 12. CDBC transaction menu help screen

Using CDBC without the menu screen

About this task
The menu screen is displayed if you use CDBC from a 3270-type terminal, However, if you issue CDBC
from a CRLP or DASD sequential terminal or operating system console, the menu screen is not displayed.
For example, if you specify:

CDBC CONnect

DBCTL is connected using the default suffix, 00.

If you specify a suffix:

CDBC CONnect SUFfix(12)

36 CICS TS for z/OS: IMS Database Control Guide

and DBCTL is connected using suffix 12.

You can also type a DBCTL identifier, in addition to the suffix, or on its own. For example, if you enter:

CDBC CONnect DBCtlid(DBC1)

CICS is connected to the DBCTL named DBC1.

You can also enter:

CDBC CONnect DBCtlid(DBC2) SUFfix(11)

or

CDBC CONnect SUFfix(11) DBCtlid(DBC2)

in either case, CICS is connected to DBCTL DBC2, using suffix 11.

See “What happens when you have requested connection to DBCTL” on page 37 for details of the
system’s response to your connection request.

If you disconnect CICS from DBCTL using a BSAM CRLP-type terminal, the menu screen is not displayed.

For orderly disconnection, specify:

CDBC DISconnect

For immediate disconnection, enter:

CDBC DISconnect IMMediate

See “Deciding whether to use orderly or immediate disconnection” on page 38 for information on the
two types of disconnection request.

What happens when you have requested connection to DBCTL
When you have requested connection to DBCTL, you get messages confirming that connection is taking
place.

If you have used the CDBC menu, the following messages are displayed on the terminal:

Status of the Interface: DFHDB8292I DBCTL CONNECT PHASE 2 IN PROGRESS.
Status of the Interface: DFHDB8293I DBCTL CONNECTED AND READY.

If you have not used the CDBC menu, the following messages are displayed on the MVS console:

+DFHDB8210D CONNECTION TO DBCTL IS PROCEEDING. CHECK CDBC TD QUEUE.
+DFHDB8225I DBDCCICS THE DBCTL ID IS SYS1. THE DRA STARTUP TABLE SUFFIX IS 00.

CICS-DBCTLDFHDBnnnn messages that are issued when you are using CDBC.

If DBCTL is not yet available, the main CICS-supplied IMS control exit, DFHDBCTX, is invoked. DFHDBCTX
in turn calls DFHDXAX. For more information about the IMS control exit routines, see the appropriate Exit
routines in IMS product documentation.

For a DBCTL restart, the control exit is invoked as for any DBCTL connection attempt. However, instead of
returning control directly to the DRA, the control transaction invokes the DFHDXAX module. This control
exit routine checks to see if it is being invoked for a failing connection:

• If it is not being invoked for a failing connection, it does not attempt to connect and passes back control.
• If it is being invoked for a failing connection, it checks the input arguments to determine whether:

– An IDENTIFY attempt failed, and
– CICS is not in the process of terminating

Chapter 3. Administering DBCTL 37

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.err/err.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.err/err.htm

If an IDENTIFY failed, and CICS is not terminating, DFHDXAX selects the current DBCTL ID, and initiates
repeated attempts to reconnect to the current DBCTL, thus avoiding operator intervention.

Retries are made every five seconds for a ten minute period, and message DFHDB8297 is issued
periodically. If reconnection is still not successful after ten minutes, DFHDXAX abandons the attempt,
and requests IMS to issue message DFS0690A, which requires operator intervention. IMS messages and
codes in IMS product documentation contains guidance on interpreting the messages that are displayed
when you are using CDBC. If you reply CANCEL, the connection attempt is abandoned. It you reply WAIT,
the DRA attempts to connect again after the number of seconds specified in the TIMER parameter in
the DRA startup parameter table. If the connection attempt fails again, the DRA continues to attempt to
connect after the same number of seconds. You can stop these repeated connection attempts by using
the CDBC transaction to disconnect from DBCTL. You can use either the same instance of CDBC or run the
transaction on a different terminal. Disconnection takes effect when the DRA next tries to reconnect to
DBCTL.

Deciding whether to use orderly or immediate disconnection
Use immediate disconnection only if necessary. For example, you may need to use it if you have already
issued an orderly disconnection request which has not taken place, and you need disconnection to take
place soon.

Orderly disconnection allows all existing CICS-DBCTL tasks to complete before CICS is disconnected from
DBCTL. Tasks not currently using DBCTL are prevented from issuing further PSB schedule requests. This
means that there should not be any indoubt logical units of work (UOWs), and database records are
available to other CICS systems connected to that DBCTL.

Immediate disconnection allows only current DL/I requests to DBCTL from this CICS system to complete
before CICS is disconnected from DBCTL. Any new DL/I or PSB schedule requests are prevented. This can
cause indoubt UOWs for the task involved and leave database records unavailable for other CICS systems
connected to that DBCTL until it is reconnected. What happens depends on the type of request issued to
DBCTL after the immediate disconnection request:

• If it is a PSB schedule request, a DHTJ abend (for a command-level program) or a DLINA condition (for a
call-level program) is issued.

• If it is a DL/I request, the UOW is backed out and an ADCA abend is issued.
• If it is a PREPARE request, the UOW is backed out and an ASP7 abend is issued.

In all these cases, database records are available to other applications.
• If it is a COMMIT request, the task remains indoubt and DBCTL records are unavailable. The in-doubts

will not be resolved until DBCTL is reconnected to CICS. An abend is issued when the next PSB schedule
is received, as described for PSB schedule request.

See “Two-phase commit for DBCTL” on page 61 for information on PREPARE and COMMIT requests.

So, use immediate disconnection only if necessary. For example, you may need to use it if you have
already issued an orderly disconnection request which has not taken place, and you need disconnection
to take place soon. Orderly disconnection may be delayed by a task that is issuing many DL/I requests,
or by a conversational task that is awaiting input from an unattended terminal. If you think the problem
is being caused by such a task, you may prefer to identify it using CEMT INQ TASK, and then use CEMT
SET TASK(n) PURGE, where "n" is the task identifier to purge it. You can then use orderly disconnection.
However, if the problem is being caused by many tasks or by a single task that you cannot identify, you
may have to use immediate disconnection.

CDBI transaction for inquiry
You can use the CDBI transaction to inquire on the status of the DBCTL connection.

Typing CDBI displays a screen like the one shown in Figure 13 on page 39. The CDBI screen shows the
status of the CICS-DBCTL interface (in this example, DBCTL is connected and ready), plus the APPLID
of the CICS system (DBDCCICS) and the DBCTL identifier (SYS1). You can refresh the information by
pressing PF2.

38 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm

 CDBI CICS-DBCTL INTERFACE INQUIRY 93.194
 11:23:50
 Status : DFHDB8293 I DBCTL connected and ready.
 CICS APPLID: DBDCCICS
 DBCTL ID : SYS1

 PF1 = Help 2 = Refresh 3 = End

Figure 13. CDBI transaction screen

You can obtain a help screen for CDBI by pressing PF1. Figure 14 on page 39 shows an example of such
a panel. The CDBI help screen tells you how to refresh the information on the CDBI screen, and explains
that information. It includes a list of the CICS messages describing the status of the CICS-DBCTL interface
that can appear on the CDBI screen.

 HELP : CICS-DBCTL INTERFACE INQUIRY
 The CICS-DBCTL interface inquiry screen shows:
 STATUS OF THE INTERFACE The status can be:
 DFHDB8290I DBCTL NOT CONNECTED TO CICS.
 DFHDB8291I DBCTL CONNECT PHASE 1 IN PROGRESS.
 DFHDB8292I DBCTL CONNECT PHASE 2 IN PROGRESS.
 DFHDB8293I DBCTL CONNECTED AND READY.
 DFHDB8294I DBCTL ORDERLY DISCONNECT IN PROGRESS.
 DFHDB8295I DBCTL IMMEDIATE DISCONNECT IN PROGRESS.
 DFHDB8296I DBCTL CANNOT BE CONNECTED TO CICS.
 CICS APPLID The application identifier of this CICS system.
 Displayed when available:
 DBCTL ID The identifier of the DBCTL system with which this CICS
 is communicating
 You can press PF2 to update (refresh) the information shown on the screen

 PRESS ENTER TO RETURN TO INQUIRY SCREEN

Figure 14. CDBI transaction help screen

Operator communication with DBCTL: overview
IMS operations can be done from an IMS main terminal operator console, which is usually the primary
MVS console.

This can be the primary MVS console, but it is advisable to have a secondary MVS console that is
dedicated to DBCTL. This dedicated console is called the DBCTL console.

You can issue operator commands to DBCTL from a CICS terminal by using a CICS-supplied transaction,
CDBM, as described in “CDBM operator transaction” on page 43.

Use the Resource Access Control Facility (RACF) to control access to IMS resources. For further
information about using RACF see System administration in IMS product documentation.

Chapter 3. Administering DBCTL 39

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm

DBCTL operator commands
The operator commands you can use to communicate with DBCTL are a subset of IMS operator
commands.

This book summarizes the ways in which you can use these commands with DBCTL. For guidance on
syntax, see Operations and automation in IMS product documentation. See also “Summary of DBCTL
operator commands” on page 41 for a list of DBCTL operator commands and their corresponding CICS
commands, and a list of valid keywords for DBCTL users.

Format of DBCTL operator commands
The format of DBCTL operator commands is to being with a command recognition character (CRC),
followed by a verb, a password (if required), a keyword or keywords, and optional comments.

DBCTL commands begin with a command recognition character (CRC). A CRC of / is the default. (The
examples of DBCTL commands in this manual use the default CRC.) You can override it on the DBCTL job,
but remember that each DBCTL subsystem in a single MVS image must have a different CRC. This CRC
must also be different from every other subsystem in the processor (or multiprocessor), not just DBCTL
subsystems. The same applies to any test systems you might be using. You can, if you prefer, use the
subsystem ID (for example, SYS1) of the DBCTL you are using instead of a CRC.

There must be no space between the CRC and the verb. Usually there is a space between parameters,
except as noted for specific parameters in Operations and automation in IMS product documentation.
Many verbs and keywords have abbreviations. Guidance on using them is in Operations and automation in
IMS product documentation.

Multisegment DBCTL operator commands
The DBCTL operator commands /CHANGE, /ERESTART, /RMxxxxxx, and /SSR can be entered in multiple
segments.

The format of multisegment commands varies according to the environment you are using. For
multisegment commands in a DBCTL environment, each segment preceding the last segment requires an
end-of-segment (EOS) indicator, which is the CRC followed by the ENTER key. The last (or only) segment
requires an end-of-message (EOM) indicator, which is the ENTER key. In addition, each segment must
begin with the CRC.

Figure 15 on page 41 is an example of a multisegment command that has two segments. The CRC is a
slash (/), and appears at the beginning and end of the first segment. The EOS of the first segment is the
CRC (/) followed by the ENTER key, which does not appear because it is not displayable. The EOM of the
second (and last) segment is the ENTER key, so this segment begins with the CRC, but does not end with
it.

DBCTL can handle single-segment commands from an unlimited number of consoles concurrently, but
the number of consoles that can concurrently issue multisegment commands is limited to eight. A single
multisegment command is limited to 241 bytes. If either of these limits is exceeded, a message is sent to
the issuing console.

40 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm

 /RMI DBRC='ic dbd(dedbdd01) area(dd01ar0) icdsn(fvt31.dedbdd01.dd01ar0
 .ic.dummy1) icdsn2/
 /(FVT31.DEDBDD01.DD01AR0.IC2.DUMMY1) HSSP'
 DFS000I MESSAGE(S) FROM ID=SYS1 490
 INIT.IC DBD(DEDBDD01) AREA(DD01AR0) -
 ICDSN(FVT31.DEDBDD01.DD01AR0.IC.DUMMY1) -
 ICDSN2(FVT31.DEDBDD01.DD01AR0.IC2.DUMMY1) HSSP
 DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
 DSP0220I COMMAND COMPLETION TIME 89.045 16:24:58.7
 DSP0211I COMMAND PROCESSING COMPLETE
 DSP0211I HIGHEST CONDITION CODE = 00
 DSP0058I RMI COMMAND COMPLETED
 /RMI DBRC='ic dbd(dedbdd01) area(dd01ar0) icdsn(fvt31.dedbdd01.dd01ar0
 .ic.dummy2) /
 /ICDSN2(FVT31.DEDBDD01.DD01AR0.IC2.DUMMY2) HSSP'
 DFS000I MESSAGE(S) FROM ID=SYS1 514
 INIT.IC DBD(DEDBDD01) AREA(DD01AR0) -
 ICDSN(FVT31.DEDBDD01.DD01AR0.IC.DUMMY2) -
 ICDSN2(FVT31.DEDBDD01.DD01AR0.IC2.DUMMY2) HSSP
 DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
 DSP0220I COMMAND COMPLETION TIME 89.045 16:28:10.3
 DSP0211I COMMAND PROCESSING COMPLETE
 DSP0211I HIGHEST CONDITION CODE = 00
 DSP0058I RMI COMMAND COMPLETED

Figure 15. Example of using multisegment commands in a DBCTL environment

For further guidance on multisegment operator commands, see Operations and automation in IMS
product documentation.

You can use null words (for example, FOR, and TO) within the operator commands to help clarify the
syntax without affecting the command itself. Because null words are reserved, you must not use them
to name system resources. For further guidance on null words, see Operations and automation in IMS
product documentation.

You might need to use a password depending on the security facility used. See Security checking with
DBCTL for information about security considerations with DBCTL.

Summary of DBCTL operator commands
The following tables show you the CICS operator commands, corresponding DBCTL operator commands,
and which DBCTL commands can be issued using the CICS-supplied transaction CDBM. Also shown are
the IMS operator commands and keywords valid with DBCTL.

Chapter 3, “Administering DBCTL,” on page 33 and “Recovery and restart operations for DBCTL” on page
57 contain information about using operator commands with DBCTL. For further guidance on the syntax
of DBCTL operator commands, see Operations and automation in IMS product documentation.

Note: The / used in these commands is the default command recognition character (CRC). For
information about the usage of CRCs, see “Operator communication with DBCTL: overview” on page
39.

Table 2. DBCTL operator commands and CICS equivalents

DBCTL operator command CICS equivalent Valid with
CDBM

/CHANGE None Yes

/CHECKPOINT (simple form) ACTIVITY KEYPOINT Yes

/CHECKPOINT FREEZE or /CHECKPOINT
PURGE

CEMT PERFORM SHUTDOWN No

/CHECKPOINT STATISTICS CEMT PERFORM STATISTICS RECORD Yes

/DBDUMP None Yes

/DBRECOVERY None Yes

Chapter 3. Administering DBCTL 41

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/database/dfht44n.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/database/dfht44n.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm

Table 2. DBCTL operator commands and CICS equivalents (continued)

DBCTL operator command CICS equivalent Valid with
CDBM

/DELETE None Yes

/DEQUEUE None Yes

/DISPLAY ACTIVE or /DISPLAY CCTL CEMT INQUIRE TASK Yes

/DISPLAY DATABASE None Yes

/DISPLAY DBD, /DISPLAY POOL, and /
DISPLAY PSB

None Yes

/ERESTART SIT with START=AUTO resulting in EMER
restart

No

/LOCK None Yes

/LOG None Yes

/MODIFY None No

/NRESTART CHECKPOINT 0 SIT START=INITIAL No

/NRESTART (without CHECKPOINT 0) SIT with START=AUTO resulting in WARM start No

/PSTOP None Yes

/RMCHANGE None Yes

/RMDELETE None Yes

/RMGENJCL None Yes

/RMINIT None Yes

/RMLIST None Yes

/RMNOTIFY None Yes

/SSR None No

/START DATABASE None Yes

/STOP DATABASE None Yes

/STOP THREAD CEMT SET TASK PURGE Yes

/SWITCH OLDS None Yes

/TRACE SET PI None Yes

/UNLOCK None Yes

/VUNLOAD None Yes

MVS MODIFY jobname,RECONNECT CEMT PERFORM RECONNECT N/A: MVS
command

MVS MODIFY jobname,STOP|DUMP CEMT PERFORM SHUTDOWN IMMEDIATE N/A: MVS
command

42 CICS TS for z/OS: IMS Database Control Guide

Table 3. DBCTL operator commands and keywords

DBCTL operator
command

Keyword(s)

/CHANGE CCTL, PASSWORD, SUBSYS

/CHECKPOINT FREEZE, PURGE, ABDUMP, SNAPQ

/DBDUMP DATABASE

/DBRECOVERY AREA, DATABASE

/DELETE DATABASE, PASSWORD, PROGRAM

/DISPLAY ACTIVE, AREA, CCTL, DATABASE, DBD, INDOUBT, MODIFY, OASN SUBSYS, OLDS, POOL,
PROGRAM, PSB, SHUTDOWN STATUS, STATUS, TRACE

/ERESTART CHECKPOINT, COLDBASE, COLDCOMM, COLDSYS, FORMAT, NOBMP

/LOCK DATABASE, PROGRAM

/LOG None

/MODIFY ABORT, COMMIT, PREPARE

/NRESTART CHECKPOINT 0, FORMAT, NOPASSWORD, PASSWORD

/PSTOP REGION

/RMCHANGE DBRC modifier

/RMDELETE DBRC modifier

/RMGENJCL DBRC modifier

/RMINIT DBRC modifier

/RMLIST DBRC modifier

/RMNOTIFY DBRC modifier

/SSR Commands and keywords from appropriate subsystem (for example, DB2)

/START AREA, AUTOARCH, DATABASE, OLDS, PROGRAM, REGION|THREAD1, WADS

/STOP ADS, AREA, AUTOARCH, DATABASE, OLDS, PROGRAM, REGION|THREAD1, WADS

/SWITCH OLDS

/TRACE SET, MONITOR, PI, PSB, TABLE

/UNLOCK DATABASE, PROGRAM

/VUNLOAD AREA

Note: THREAD is a synonym for REGION.

CDBM operator transaction
You can use CDBM to issue most of the IMS operator commands that are valid for DBCTL across the DRA
interface to DBCTL to display and change the state of selected resources.

CDBM also provides a means of maintaining a command file which stores commands. You can store
commands for any reason, most likely because you want to reuse them. These stored commands can
include more databases than the operator transaction panel has space for.

Chapter 3. Administering DBCTL 43

When dealing with databases, you can use an asterisk (*) to refer to generic groups; for example DB21*
refers to all databases starting with the characters DB21. You can also use a plus (+) sign in place of a
single character; for example, DB+2 displays databases DB12, DB22, DB32, and so on.

You can issue DBCTL commands via a menu panel, as shown in Figure 16 on page 44. This panel is
obtained by starting the CDBM transaction.

 CDBM CICS-DBCTL Operator Transaction 98.135
 13:24:20

 Type IMS command.
 __
 __
 __
 __

 For /DBDUMP or /DBRECOVER commands

 Choose one. 1 1. Do not force end of volume
 2. Force end of volume

 Press enter to display responses.

 CICS APPLID DBDCCICS
 DBCTL ID SYS3

 F1=Help F2=Maintenance F3=Exit F5=Refresh F12=Cancel

Figure 16. CDBM CICS-DBCTL operator transaction panel

On this panel you can enter a DBCTL command, for example:

/DISPLAY DB ALL

or a group command, for example:

/GROUP SAMPLE STA

There is also a help screen, as shown in Figure 17 on page 44.

 CDBM Help: CICS-DBCTL Operator Transaction

 CDBM Use the transaction to send an IMS command to a DBCTL system.

 Command Type the command recognition character / followed by an IMS
 command and press enter to display responses.

 Responses Use the PF keys to page IMS responses.

 Wildcards * or + can be used within one database name.

 End of volume For /DBDUMP or /DBRECOVER commands only
 Choose one.
 1. Do not force end of volume
 2. Force end of volume
 CICS APPLID
 These are shown for information.
 DBCTL ID
 Enter the group common maintenance screen.

 Example /DIS DB DEPT* displays the status of several databases.

 F3=Exit F12=Cancel

Figure 17. CDBM CICS-DBCTL operator transaction help panel

44 CICS TS for z/OS: IMS Database Control Guide

An example of the use of a /GROUP command from the CICS-DBCTL Operator Transaction screen is
shown in Figure 18 on page 45.

 CDBM CICS-DBCTL Operator Transaction 98.135
 13:24:20
 Type IMS command.
 /GROUP SAMPLE STA__
 __
 __
 __

For /DBDUMP or /DBRECOVER commands

Choose one. 1 1. Do not force end of volume
 2. Force end of volume

 Press enter to display responses.

 CICS APPLID DBDCCICS
 DBCTL ID SYS3

F1=Help F2=Maintenance F3=Exit F5=Refresh F12=Cancel

Figure 18. CICS-DBCTL operator transaction panel showing a GROUP command

Responses to commands issued from the CDBM screen are returned on a screen like the one in Figure 19
on page 45, which shows the first of a number of screens resulting from a /DISPLAY DB ALL command.

 CDBM CICS-DBCTL IMS Responses Screen 1
 Responses 1 to 18
 More: +
 DATABASE TYPE TOTAL UNUSED TOTAL UNUSED ACC CONDITIONS
 ACCOUNDB UP STOPPED, NOTOPEN, NOTINIT
 ADMIDX1 UP STOPPED, NOTOPEN, NOTINIT
 ADMOBJ1 UP STOPPED, NOTOPEN, NOTINIT
 ADMOBJ2 UP STOPPED, NOTOPEN, NOTINIT
 ADMOBJ3 UP STOPPED, NOTOPEN, NOTINIT
 ADMSYSDF UP STOPPED, NOTOPEN, NOTINIT
 BE1CHKPT DL/I UP NOTOPEN
 BE1PARTA UP STOPPED, NOTOPEN, NOTINIT
 BE1PARTB UP STOPPED, NOTOPEN, NOTINIT
 BE1PARTC UP STOPPED, NOTOPEN, NOTINIT
 BE1PARTS UP STOPPED, NOTOPEN, NOTINIT
 BE2ORDER DL/I UP NOTOPEN
 BE2ORDRX DL/I UP NOTOPEN
 BE2PARTS DL/I UP NOTOPEN
 BE2PCUST DL/I UP NOTOPEN
 BE3ORDER DL/I UP NOTOPEN
 BE3ORDRX DL/I UP NOTOPEN
 More...

 F1=Help F3=Exit F4=Top F6=Bottom F7=Bkwd F8=Fwd F9=Retrieve F12=Cancel

Figure 19. CDBM CICS-DBCTL IMS responses panel

Alternatively, you can issue CDBM and the DBCTL command directly, as follows:

CDBM /xxxxxxxx

where / is the default CRC and xxxxxxxx is an IMS operator command that is valid for use with DBCTL and
CDBM.

Note: IMS requires that each command is prefixed with the default CRC. The CRC is present only for
syntax checking; it does not determine to which DBCTL the command is sent. You cannot use a CRC value
to route a command to a particular DBCTL system through CDBM. It can be sent only to the one currently
connected to CICS. This DBCTL can have its own CRC value which is different from the default one of '/'.

Chapter 3. Administering DBCTL 45

However, this does not matter to CDBM, because the '/' character is used only for syntax checking, and
the command is presented to the connected DBCTL without a CRC, using the AIB interface.

The /GROUP can also be entered in this way, for example:

CDBM /GROUP SAMPLE DIS.

The following IMS operator commands are valid with CDBM:

• /CHANGE
• /CHECKPOINT (simple form) and /CHECKPOINT STATISTICS
• /DBDUMP
• /DBRECOVERY
• /DELETE
• /DEQUEUE
• /DISPLAY
• /LOCK
• /LOG
• /PSTOP
• /RMCHANGE
• /RMDELETE
• /RMGENJCL
• /RMINIT
• /RMLIST
• /RMNOTIFY
• /START
• /STOP
• /SWITCH OLDS
• /TRACE SET PI
• /UNLOCK
• /VUNLOAD

The following IMS operator commands are not valid with CDBM and must be issued via the MVS console:

• /CHECKPOINT FREEZE and /CHECKPOINT PURGE
• /MODIFY
• /ERESTART
• /NRESTART
• /SSR

DFHDBFK - The CDBM GROUP command file
Before you can use the /GROUP command CDBM requires a file in which all your predefined commands
can be stored. This file, DFHDBFK, is the CDBM GROUP command file. It is a VSAM KSDS.

Note: The DFHDBFK file must be defined as a local file to each region that uses the CDBM transaction. It
cannot be shared by multiple regions. If the file is remote, the CDBM transaction receives an error when it
attempts to open the file.

The DFHDBFK file is not required until you first attempt to use the /GROUP command.

46 CICS TS for z/OS: IMS Database Control Guide

Table 4. Record layout in the CDBM GROUP command file

Field Length Content Description

1 12 Group A 12-character field containing your chosen name for this
group. The acceptable characters are A-Z 0-9 $ @ and #.
Leading or embedded blanks are not allowed, but trailing
blanks are acceptable.

2 10 IMS Command A 10-character field containing any of the IMS command verbs
that are valid for CDBM (see Commands valid with CDBM for
details). Leading or embedded blanks are not allowed, but
trailing blanks are acceptable.

Note: The validity of the IMS command verb is not checked
by CDBM. Invalid values will be reported by IMS when the
command is attempted.

3 1406 IMS Command
parameters

Up to 1406 characters of parameters appropriate to the
chosen IMS command verb. (This will often consist of lists of
databases.)

Note: Wildcard characters may not be used in the parameters
stored in the CDBM Group command file. This is unlike the
other functions of the CDBM transaction which permit the use
of wildcard characters to describe multiple similarly named
databases.

Record layout in the CDBM GROUP command file
Each record in the DFHDBFK file contains one field which can be up to 1428 characters long.

The MAINTENANCE panel for DFHDBFK
If you press the Maintenance key (PF2) on the main CDBM panel, you get the panel shown in Figure 20 on
page 47.

 CDBM CICS/DBCTL COMMAND GROUP MAINTENANCE
 _ ACTION A add B browse D delete R read U update
 ____________ GROUP __________ IMS COMMAND
 > <
 > <
 > <
 > <
 > <
 > <
 > <
 > <
 > <
 > <
 > <
 > <
 > <
 > <
 > <
 > <
 > <
 > <
 > <
 F1=Help F3=Exit F12=Cancel

Figure 20. CICS-DBCTL Group Maintenance Panel

Input fields
The input fields are:

Chapter 3. Administering DBCTL 47

• Action
• Group
• IMS Command
• IMS Command parameters

(between the > < marks).

Group, IMS Command and IMS Command parameters are described in “Record layout in the CDBM
GROUP command file ” on page 47

The Action field will accept one of the following:
A

Add

Add a new record to the DFHDBFK file. If the key already exists, the Add fails.

Note: To Add a record that is very similar to an existing record, but which has a different key, you may
find it helpful to Read the existing record, modify the displayed fields, and then Add this new record.

B
Browse

Displays the contents of the command file, record by record. Specify any key (or none) to indicate
where you want the browse to start. Each time you press ENTER, Browse moves on to the next record.
At the end of the file you will be prompted to wrap around to the start of the file. You can accept this or
not as you prefer. Incomplete keys, and unknown keys are also acceptable as start points. If no key is
provided, the browse starts at the first record in the file.

If you have used Browse to locate a specific record for deletion or for update, remember to use Read
before either Delete or Update.

D
Delete

Delete a record from the DFHDBFK file. A Delete must be immediately preceded by a Read to lock the
required record.

R
Read

Read displays a specific record. Unlike Browse it does not operate on partial, or absent keys, and does
not present the next record when you press ENTER.

Read is required before those actions (Delete and Update) which change an existing record. It locks
that record against the possibility of being changed by another operator. This action also serves to
help you confirm that the correct record has been selected.

A lock is released by ending CDBM, or by your next CDBM Maintenance action (whether that is the
Update or Delete you had contemplated, or something different entirely).

U
Update

Update a record in the DFHDBFK file. An Update must be immediately preceded by a Read to lock the
required record.

You cannot update the key fields (GROUP and IMS COMMAND).

Reminder:: Use Add to create a new key.

Note: In these descriptions, Key refers to the 22 characters at the beginning of each record in the
DFHDBFK file (namely the GROUP and IMS COMMAND).

If you press the help key (PF1) from the CICS-DBCTL Maintenance panel, you get the panel shown in
Figure 21 on page 49.

48 CICS TS for z/OS: IMS Database Control Guide

 CDBM Help: CICS-DBCTL Operator Transaction

 Maintenance Store commands for issuing from the CDBM screen.

 GROUP Enter the group you want to store a command in.

 IMS COMMAND Enter a valid IMS command to execute with the supplied data

 ACTION A - Add a command to the command file.
 B - Browse the contents of the command file.
 D - Delete a command, only after it has been read.
 R - Read a command from the file.
 U - Update a command, only after it has been read.

 Issue commands from the main screen in the format
 /GROUP group command.

 Example /GROUP SAMPLE DIS shows information for the databases in

 F3=Exit F12=Cancel

Figure 21. CICS-DBCTL Maintenance help panel

Issuing DBRC commands
With DBCTL, you must issue DBRC commands by using DBCTL console commands (/RMxxxxxx) because
DBRC runs outside the CICS address space. You can issue the /RMxxxxxx commands by using the CICS-
supplied transaction CDBM.

You can use the following /RMxxxxxx commands online:

• /RMCHANGE: to change or modify information in the RECON
• /RMDELETE: to delete information from the RECON
• /RMGENJCL: to generate JCL for a specified utility
• /RMINIT: to create records in the RECON
• /RMLIST: to list the contents of the RECON
• /RMNOTIFY: to add information to the RECON.

For example:

/RMINIT DBRC='DB DBD(IVPDB2) SHARELVL(3)'.

See Operations and automation in IMS product documentation for further guidance on the syntax of these
commands.

You can also enter DBRC commands in batch, but the syntax is slightly different, as shown in Figure 22 on
page 49.

//INITDB JOB 1,PGMERID,CLASS=Q,MSGCLASS=A
//*
//RECON EXEC PGM=DSPURX00,REGION=1000K
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR
//DFSRESLB DD DSN=IMS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//RECON1 DD DSN=IMS.RECON1,DISP=SHR
//RECON2 DD DSN=IMS.RECON2,DISP=SHR
//SYSIN DD *
 INIT.DB DBD(IVPDB2) SHARELVL(3)
/*

Figure 22. Example JCL to register a database with DBRC

Chapter 3. Administering DBCTL 49

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm

IMS password security
Use the Resource Access Control Facility (RACF) to protect your databases and program specification
blocks (PSBs).

RACF is part of the z/OS Security Server and can be used to control access to IMS resources. RACF has
superseded the IMS Security Maintenance Utility (SMU), which was last supported in IMS version 9. For
further information about password security, see System administration in IMS product documentation.

Controlling tracing of DBCTL events
To start and stop tracing of internal DBCTL events dynamically, and define activities to be monitored by
the IMS monitor, use the /TRACE command.

About this task
• The PI keyword specifies that program isolation (PI) trace data be written to a trace table. PI trace

entries contain information about program isolation ENQ/DEQ calls and DL/I calls.
• The PSB keyword requests a trace of all DL/I calls issued for a specified PSB.
• The TABLE keyword specifies that online tracing into the specified trace tables be started or stopped.

Use the CICS-supplied transaction CETR to trace DL/I activity. For DBCTL, CETR traces a DL/I request
until it leaves DFHDBAT.

See Trace entries produced by DBCTL for information on obtaining DBCTL trace entries. See Operations
and automation in IMS product documentation for guidance on the syntax of /TRACE commands and
keywords, and System administration in IMS product documentation for guidance on the effects using /
TRACE commands can have on your system.

Finding out current status of DBCTL activities
To find out the status of particular DBCTL activities, use the /DISPLAY command.

About this task

• The /DISPLAY command with the ACTIVE keyword gives you an overview of activity in the entire DBCTL
subsystem including processing for BMPs and for threads processing scheduled CICS transactions. For
each thread that is currently active (has a PSB scheduled) from a CICS transaction, there is an entry
"DBT" in the column headed "TYPE", as shown in the /DISPLAY command examples in Operations and
automation in IMS product documentation . (The TYPE column shows the thread type and DBT stands
for DBCTL thread.) The display may show fewer DBT threads than the number specified by MINTHRD in
the DRA startup parameter table.

• The /DISPLAY command with the CCTL keyword displays all (or specified) CICS systems currently
connected to DBCTL. To specify a CICS system, add a CCTLNAME, which is the APPLID of the connected
CICS system. The /DISPLAY command with the CCTL keyword also displays the following items for all or
specified CICS systems:

– All in-doubts for a given CICS or for all CICS systems (when you enter /DISPLAY CCTL INDOUBT).
– Pseudo recovery token (only when status is INDOUBT). See “Resolving indoubt CICS DBCTL units

of work manually” on page 64 for information on using the pseudo recovery token in a /CHANGE
command.

– Recovery token.
– Thread number (displayed as REGID) for all threads.
– PSB name.
– Status of thread(s).

50 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/dfht44b.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm

– All threads for a given CICS or all CICS systems.

Note: The /DISPLAY command uses the CCTL ID (which, in the case of a CICS system, is the APPLID).
However, many IMS messages use the jobname of the CICS system. Therefore, it is advisable to have
a naming convention that enables operators to immediately identify a corresponding CICS APPLID and
CICS JOBNAME. For example, if you use the APPLID DBDCICA, your job name could also contain the
characters CICA.

• The /DISPLAY command with the OLDS keyword displays the system logging status. You can use it to
determine how many OLDS data sets are available for use or require archiving.

• The /DISPLAY command with the POOL keyword displays main storage utilization statistics for IMS
storage pools.

• The /DISPLAY command with the AREA keyword displays the status of DEDB data sets in an area.
• The /DISPLAY command with the DATABASE keyword displays the status (for example, NOTOPEN or

STOPPED) of specified databases. If the database you specify is a DEDB, the associated DEDB areas are
also displayed.

• The /DISPLAY command with the DBD keyword displays, for databases that are being accessed, their
type, the PSBs accessing them, and the type of access. (You can use the DBD keyword only if you have
DEDB support installed.)

• The /DISPLAY command with the MODIFY keyword displays the status of resources to be deleted
or changed using the /MODIFY command. See “Changing DBCTL resources online” on page 51 for
information on the /MODIFY command.

• The /DISPLAY command with the PSB keyword displays the status of PSBs, the databases being
accessed, and the type of access. (You can use the PSB keyword only if you have DEDB support
installed.)

• The /DISPLAY command with the PROGRAM keyword displays the status of PSBs; for example,
NOTINIT or STOPPED.

• The /DISPLAY command with the SHUTDOWN STATUS keywords displays system activity during a
shutdown type of checkpoint; for example, the number of regions still active.

• The /DISPLAY command with the STATUS keyword displays the status of DBCTL resources, such as
databases and PSBs.

• The /DISPLAY command with the TRACE keyword displays status and options for IMS traces and the
IMS monitor, and whether restart should occur without backout of BMP updates. (You can restart
without using backout or recovery of databases: see the description of the COLDBASE keyword of the /
ERESTART command in “Emergency restart” on page 59.)

Specifying messages to be logged on IMS log
Use the /LOG command to specify any alphanumeric character message to be logged on the IMS log.

Changing DBCTL resources online
The /MODIFY command is a part of the online change process used to control the modification of DBCTL
resources online.

About this task
An online change for DBCTL is different from CICS resource definition online (RDO). You first use the
offline process for doing a generation (whether it is an ACBGEN, or a partial MODBLKS generation for
the DATABASE and APPLCTN macros). Guidance information about doing these generations is in System
definition in IMS product documentation and Database utilities in IMS product documentation. To bring
the new libraries online, use the /MODIFY command. First use the /MODIFY command with the PREPARE
keyword to indicate the type of system definitions that must be replaced. Depending on the parameters
entered, the system initiates quiescing of the appropriate resources. Then use the /MODIFY command
with the COMMIT keyword to bring all newly defined resources online, update the changed resources, and

Chapter 3. Administering DBCTL 51

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm

invalidate the deleted resources. If the /MODIFY command deletes a database, the database is closed
and made unavailable to programs. You cannot use the /MODIFY command on DEDBs.

If a failure occurs before a COMMIT completes, the changes defined by the /MODIFY command with the
PREPARE keyword are not recovered across an emergency restart and you must reenter them. When a
commit is successful, changes persist across all DBCTL restarts.

You can use the /MODIFY command with the ABORT keyword to reset the status that was set by the /
MODIFY command with the PREPARE keyword. You can also use the /MODIFY command with the ABORT
keyword if you have previously used the /MODIFY command with the COMMIT keyword, but it was not
successful and you decide not to continue with the change. See also “Finding out current status of DBCTL
activities” on page 50 for details of using the /DISPLAY command with the MODIFY keyword.

Preventing programs and transactions from updating DBCTL
databases

You can use the /DBDUMP command with the DATABASE keyword to prevent programs from updating
DL/I full function databases.

About this task
You can use the /DBRECOVERY command to prevent transactions or programs from accessing a database
(with the DATABASE keyword) or a DEDB area (with the AREA keyword, which is valid with DEDBs only).
The command closes and deallocates the database(s) or area(s), so that they are not authorized to DBRC.

If a specified database is being used when you enter either /DBDUMP or /DBRECOVERY, the thread
currently using the database is allowed to complete, but no further PSB schedules are allowed.

If a database specified in either of these commands is being used by a BMP, an error message is issued,
and the command is ignored for that database. You reenter the /DBDUMP or /DBRECOVERY command
when the database is no longer being used by a BMP. If you need to recover the database immediately,
use the /STOP command with the THREAD keyword (or its synonym, REGION) to terminate any BMPs
using the database before you reenter the /DBDUMP or /DBRECOVERY command.

For a whole DEDB, the PSB is not scheduled. For a DEDB area, programs are not allowed access to data in
that area. For a DL/I database, programs are not allowed access to the database.

Note: Issuing the /DBRECOVERY and /DBDUMP commands causes the OLDS to switch; an archive job
may be generated to archive the previous OLDS. (This is controlled by the ARC=xx startup parameter.) Use
the NOFEOV keyword to prevent the OLDS switching when you issue these commands.

The /START command reverses the effects of a /DBDUMP or /DBRECOVERY command. The /START
command allocates the database or area. A database is authorized on the first schedule request it
receives, and is opened at the first DL/I request. An area is authorized and opened on receipt of the first
DL/I request.

Switching to a new OLDS
Specifying /SWITCH OLDS causes the IMS log to switch to the next OLDS. This switch to the next OLDS
is marked as a recovery point for log archiving purposes. If you also specify the (optional) CHECKPOINT
keyword, IMS issues a simple checkpoint after the active log data set has been switched to the next
OLDS.

About this task
This switch capability is identical to that provided with the DBRECOVERY command, as described in
“Preventing programs and transactions from updating DBCTL databases” on page 52 and Log control with
DBRC.

52 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfht42j.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfht42j.html

Entering external subsystem commands from DBCTL
If you are using DBCTL to access Db2 databases via BMPs, you can use certain DBCTL operator
commands to enter external subsystem commands (where Db2 is the external subsystem).

To display the status of all or specified external subsystems, use the /DISPLAY command with the
SUBSYS keyword. (This is similar to using the /DISPLAY command with the CCTL keyword to display
the status of CICS systems connected to DBCTL.)

To display the status of origin application schedule numbers (OASNs), which are IMS recovery elements
in a Db2 subsystem, use the /DISPLAY command with the OASN and SUBSYS keywords. If you then need
to purge any incomplete UOWs in the external subsystem, use the /CHANGE command with the SUBSYS,
OASN, and RESET keywords.

To enter an external subsystem command from the DBCTL console or a program authorized do so, use
the /SSR command. For example:

/SSR -DISPLAY THREAD

displays information about Db2 threads. The command is processed in Db2 and the response is sent back
to the terminal from which you issued the /SSR command.

Making DBCTL resources available
To make DBCTL resources available to refer to and use, enter the /START command.

About this task

• Specify that the stopped status of particular DEDB areas be reset (AREA keyword).
• Change the automatic archiving option selected at system initialization or specified in a previous /STOP

command (AUTOARCH keyword).
• Specify databases to be started so that they can be referenced by PSB schedule commands (DATABASE

keyword).

Add the NOBACKOUT keyword to the DATABASE keyword for databases that are not registered in DBRC
and were backed out using standard batch backout. If your databases are registered with DBRC, the /
START process inquires with DBRC whether backout needs to be done before starting a database.

• Specify that a previously stopped online log data set (OLDS) is to be started or that DBCTL is to add a
new OLDS (OLDS keyword). (See IMS online log data set (OLDS) for more information on this data set.)

• Specify a PSB to be started (PROGRAM keyword). DBCTL stops a PSB after most pseudo abend codes
that can occur. If this happens, you must use a /START PROGRAM command before that PSB can be
scheduled again.

• Start BMPs from a JCL partitioned data set (REGION keyword). Using /START REGION in this way
enables you to keep all your BMP JCL in one place.

• Specify that a write-ahead data set (WADS) is to be added to the pool of WADS (WADS keyword).

Preventing scheduling of PSBs and use of DBCTL databases
You can use the /STOP command to stop the scheduling of specific PSBs and the use of a given database.

About this task
The /STOP command works as follows:

• The ADS keyword specifies that a DEDB area data set (ADS) is to be stopped and deallocated. Note
that this command stops only the ADS, not the entire area. The area is stopped only if there is no ADS
allocated. This command is rejected if the ADS you specified is the last data set available in the area

Chapter 3. Administering DBCTL 53

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfht42h.html

because ADSs are invalidated when they are stopped. ADSs are reestablished by running the DEDB area
data set create utility.

• The AREA keyword specifies that all the data sets associated with an area are to be stopped and
deallocated. The status of this area is set to STOP, as displayed with a /DISPLAY DATABASE command.
(See “Finding out current status of DBCTL activities” on page 50.) If the area is already stopped, the /
STOP command just deallocates the data sets.

• The AUTOARCH keyword specifies that automatic archiving is to be stopped.
• The DATABASE keyword stops the use of the specified database.
• The OLDS keyword specifies that DBCTL is to stop using an OLDS.
• The PROGRAM keyword specifies that a PSB is to be stopped.
• The REGION or THREAD keywords specify a region or thread that is to be stopped. This can be a region

or thread shown by the /DISPLAY CCTL command. (See “Finding out current status of DBCTL activities”
on page 50.)

• The WADS keyword indicates that a WADS is to be removed from the pool of WADS.

Purging a transaction that is using DBCTL
You can query and purge tasks that use DBCTL using the CICS CEMT transaction as for any CICS task.
However, if a transaction has "hung" in DBCTL, and you need to purge it, you must use the DBCTL
command /STOP THREAD.

Procedure
To find out what is happening to a task:
1. Issue CEMT INQ TASK to find out what tasks are active.
2. Expand the information on individual tasks by typing a ? to the left of the task you want to see.

You will get a display like the one in Figure 23 on page 54.

 I TA
 SYNTAX OF SET COMMAND
 Tas(0000110) Tra(DLID) Fac(D2D3) Sus Ter Iso Pri(001)
 Hty(DBCTL) Hva(DLSUSPND) Hti(000007) Sta(TO)
 Use(CICSUSER) Rec(X'9EDA1F61E11CFA02')
 CEMT Set TAsk() | < All >
 < PRiority() >
 < PUrge | FOrcepurge >

 SYSID=CIC1 APPLID=DBDCCICS

 PF 1 HELP 3 END 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 23. CEMT INQ TASK (expanded)

Figure 23 on page 54 includes the following useful information:

• Tas(0000110): task identifier
• Tra(DLID): transaction name of the task
• Fac(D2D3): identifier of the terminal or queue that initiated the task
• Sus: the task is suspended

54 CICS TS for z/OS: IMS Database Control Guide

• Ter: the task was initiated from a terminal
• Pri(001): the task is running with a priority of 1
• Hty(DBCTL): the task is currently issuing a DL/I request to DBCTL
• Hva(DLSUSPND): the task is suspended in DBCTL
• Hti(000007): how long, in seconds, the task has been suspended
• Sta(TO): how the task was started; TO means from a terminal by an operator entering a transaction
• Use(CICSUSER): is the userid of the user who initiated the task
• Rec(X'9EDA1F61E11CFA02'): shows the recovery token associated with the task
• The screen also contains a reminder of the syntax of the CEMT SET TASK command, which you may

need to use; for example, if you want to purge the suspended task.
• SYSID=CIC1: CICS system identifier, as specified in the system initialization parameter SYSIDNT.
• APPLID=DBDCCICS: APPLID for the CICS system.

3. Issue CEMT INQ TASK again.

• If the response indicates that the task is no longer suspended in DBCTL, you can purge it using CEMT
SET TASK(n) PURGE as for any CICS task. The purge takes place after the DL/I request to DBCTL
has completed.

• If the response indicates that the task is still suspended in DBCTL, the task has "hung" in DBCTL, and
you must use DBCTL operator commands to purge it.

To purge a transaction that has "hung" in DBCTL:
4. From the CEMT INQ TASK display, make a note of the CICS APPLID and the 16-digit recovery token.

You can use a recovery token to find the thread number of a CICS task in DBCTL. For a fuller definition,
see “CICS DBCTL recovery tokens” on page 64.

5. At the DBCTL console, enter /DISPLAY CCTL cctlname, where cctlname is the CICS APPLID (in this
example, it is DBDCCICS).
This causes the current status of DL/I activity to be displayed, as shown in Figure 24 on page 55.

0080 /DIS CCTL DBDCCICS
0080 DFS000I MESSAGE(S) FROM ID=SYS1 047
0080 CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS
0080 DBDCCICS ATTACHED
0080 9EDA1F61E11CFA02 6 PC3COCHD ACTIVE
0080 9EDA1F4E9B571B02 5 PC3COCHD ACTIVE
0080 *88204/101241*

Figure 24. Output from /DISPLAY CCTL cctlname
6. Find the recovery token (9EDA1F61E11CFA02 in this example) that matches the one you noted from

the CEMT INQ TASK display, and then note the thread number that is next to it in the REGID column
(6 in this example).

7. Issue the command:

/STOP THREAD n ABDUMP

where n is the thread number.

This causes the thread and transaction to terminate when it has finished processing the current
request, and causes a dump to be taken.

If the thread does not stop, use the following command:

/STOP THREAD n CANCEL

Warning: Do not use /STOP THREAD CANCEL if you do not need to, because it may cause
DBCTL to terminate with a U113 abend.

Chapter 3. Administering DBCTL 55

Stopping DBCTL normally
To stop DBCTL normally and disconnect it from CICS, use the /CHECKPOINT command with the FREEZE
or PURGE keywords.

About this task
Active threads are terminated, CICS threads are terminated when they reach a sync point, and BMPs are
processed until they reach a checkpoint, a SYNC call, or the end of a program. Shutdown then completes
and the system status is saved in a system checkpoint on the log, and in the checkpoint ID table on the
restart data set.

The difference between the FREEZE and PURGE keywords applies to BMPs. FREEZE stops them after the
next checkpoint, or at program completion, whichever is the sooner, and PURGE allows them to complete.

When you have stopped DBCTL using /CHECKPOINT FREEZE or /CHECKPOINT PURGE, you can warm
start it using /NRESTART, as described in “Warm start” on page 58.

Stopping DBCTL abnormally
There is no equivalent of a CICS immediate shutdown in DBCTL. If you need to force termination of
DBCTL, the MVS console operator has to issue an MVS MODIFY jobname STOP command.

About this task
This causes an abnormal termination without a dump. If you want a dump to be taken, use an MVS
MODIFY jobname DUMP command. For guidance on using MVS commands with IMS, see Operations and
automation in IMS product documentation.

Dealing with messages from DBCTL and CICS
Messages from DBCTL (in the form DFSnnnn) are sent to one or more consoles as specified in the MCS
parameter of the IMSCTRL macro in the IMS generation. These messages include notification of change in
status and of abnormal events.

About this task
There are many additional messages in the DBCTL environment. You can direct them to the console from
which DBCTL commands are entered. However, if the volume of messages is such that it is impractical to
view them "live" at the console, you can direct them to the console log and process them with the tool
that your installation uses to review console output.

The DFS554 message is a notification of the abnormal termination of a BMP region or a thread from
a CICS transaction. If this message is caused by an abnormal termination of a thread that originated
from CICS, the message text contains the CICS job name or CICS started procedure name. The text also
contains the abend code in the form SSS, UUU where SSS is a system abend code and UUU is an IMS
user abend code. See Return codes in DBCTL. The message might contain the characters PSB. If it does,
the PSB contained in the message has been stopped. All attempts to schedule that PSB will fail until
a /START PROGRAM command is issued for that PSB. For guidance on interpreting DFSnnnn messages,
see IMS messages and codes in IMS product documentation .

Messages from CICS that relate to DBCTL (for example, those relating to the CDBC transaction) are sent
to the transient data destination CDBC so that they are located in one place. You can reroute these
messages from CDBC, as you can with CSMT.

You can suppress or reroute messages sent to transient data queues such as CDBC. You can reroute from
CDBC to a list of consoles, from CDBC to a different transient data queue, or reroute console messages
from their transient data queues to CDBC. For programming information about coding the CICS-supplied
user exit used to reroute messages and the example user exit provided to help you do so, see Global user
exit points (by function).

56 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/dfht44k.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/user-exits/dfha3_glues_function.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/user-exits/dfha3_glues_function.html

Messages DFHDB8103 and DFHDB8104 are issued if there is a failure to connect to DBCTL. They contain
the DBCTL reason codes for the connection failure.

Message DFHDB8109 is issued in the following situations:

• A schedule request has failed.
• DBCTL has abnormally terminated a thread and, as a result, CICS abnormally terminates the

transaction.

Message DFHDB8109 is not issued when an error type status code is returned to the application program.

You can use message DFHDB8109 to identify the IMS reason for which this CICS transaction has failed.
For guidance on interpreting the IMS abend and reason codes, see IMS messages and codes in IMS
product documentation.

Recovery and restart operations for DBCTL
Covers recovery and restart, commit protocols and resolving indoubt units of work.

Overview of CICS and IMS recovery and restart
CICS and IMS perform similar recovery functions, but there are differences in terminology and in
implementation.

See Operations and automation in IMS product documentation for background information on recovery in
IMS. If you are familiar with CICS or IMS, but not both, read this overview and then read the manual for
the product that you are not familiar with.

CICS startup and shutdown
CICS has different types of startup and shutdown and these affect the DBCTL connection.

CICS has the following types of initialization or restart depending on the START system initialization
parameter and on how CICS was last terminated:

• Initial start
• Cold start
• Warm start
• Emergency restart.

You cannot specify warm start or emergency restart explicitly. Instead, you specify the START=AUTO
system initialization parameter, and CICS determines which of these two kinds of start to use.

If CICS performs a warm start or an emergency restart on a system to which DBCTL was connected and
DBCTLCON=YES is specified as a system initialization parameter, the same DRA startup table suffix is
automatically used when DBCTL is reconnected. The suffix might change if you have used the INITPARM
system initialization parameter, as described in Reviewing CICS system initialization parameters, to
override the suffix previously used. For information on methods of connecting to the same, or a different,
DBCTL see “Connecting DBCTL to CICS automatically” on page 33.

CICS initialization begins when the job is submitted and, in almost all cases, continues until completion
of the specified type of restart. Error conditions might require operator replies or might cause abnormal
termination.

CICS has three types of termination:

• Normal
• Immediate
• Abnormal, due to abend or an MVS CANCEL

The CICS main terminal command to shut down CICS has two options: normal and immediate. A normal
shutdown allows transactions to complete before shutting down and saves the system status in the CICS

Chapter 3. Administering DBCTL 57

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_start.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfht41a.html

catalog. You can do a warm start after a normal shutdown. An immediate shutdown does not allow
transactions to complete. It is equivalent to an abnormal termination, and you must restart CICS using
emergency restart.

There are special considerations for canceling CICS when it is connected to DBCTL. See the information
on causing an abnormal termination of CICS, in “CICS failure” on page 67.

Restarting DBCTL
DBCTL has three types of (re)start:

• Cold (/NRESTART CHECKPOINT 0)
• Warm (/NRESTART)
• Emergency (/ERESTART)

The startup process has two distinct phases: initialization and restart. You can use AUTO restart to do
either a warm start or an emergency restart.

With an AUTO restart, (DBCTL startup parameter AUTO=Y), DBCTL decides whether warm start or
emergency restart is required, based on the contents of the IMS restart data set (RDS), and proceeds
with the restart without your needing to enter any further restart command.

If you need to enter your own restart command (for example, to perform a cold start), use a non-AUTO
restart (DBCTL startup parameter AUTO=N). Non-AUTO restart stops after initialization, at which point you
must manually enter a restart command.

AUTO=N will have been specified, or defaulted to, for the first startup of DBCTL. For subsequent
restarts, use warm start or emergency restart, which means that you will need to change the parameter
to AUTO=Y. For guidance on specifying AUTO=Y and AUTO=N, see System definition in IMS product
documentation.

During restart processing, the log and RECON are opened.

The sections that follow state how you use these types of (re)start with DBCTL.

Cold start
With this type of start, DBCTL is brought up in the state it was in at system generation.

Do not use cold start after a DBCTL failure. Instead, use an emergency restart. See “Emergency restart”
on page 59 for more information.

To request a cold start of DBCTL, use the /NRESTART command with the CHECKPOINT 0 keyword.
Additional keywords with /NRESTART CHECKPOINT 0 enable you to:

• Specify whether you want the RDS, or the WADS (or both) formatted as part of restart process (the RDS,
WADS, or ALL keywords). Format the RDS and the WADS if there has been a data set I/O error, if you
need to reallocate a data set or change its size, or if you are starting DBCTL for the first time.

• Specify whether the IMS system definition password security option is to be in effect: provided your
system definition enables operators to change password security (the PASSWORD keyword).

Before you do a cold start, you must ensure that the IMS you intend to start does not have a subsystem
record in the RECON. This will be the case if it is a new subsystem, if it was shut down normally the last
time it was used, or if it was not shut down normally but the appropriate DBRC commands (including
DELETE.SUBSYS) and other actions needed to ensure database integrity were performed.

Warm start
With this type of start, DBCTL is brought up in the environment it was in when it terminated normally using
a /CHECKPOINT FREEZE or /CHECKPOINT PURGE command.

This is described in “Stopping DBCTL normally” on page 56. After a warm start, resources are in the same
state they were in at the time the system was shut down.

The difference between the FREEZE and PURGE keywords applies to BMPs. FREEZE stops them after the
next checkpoint, or at program completion, whichever is the sooner, and PURGE allows them to complete.

58 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm

See Operations and automation in IMS product documentation for a list giving guidance on the differences
between these options.

To request a warm start of DBCTL, use the /NRESTART command without CHECKPOINT 0.

Any indoubt UOWs are re-created for this type of start. (An indoubt UOW is a piece of work that is pending
during commit processing. If commit processing fails between DBCTL’s response to CICS’s request to
prepare for commit and CICS’s decision to execute the commit, recovery processing must resolve the
status of any work that is indoubt.) See “Resolving indoubt CICS DBCTL units of work manually” on page
64 for information on using operator commands to resolve indoubt UOWs.

You can use the following optional keywords on /NRESTART:

• If the WADSs have been reallocated, specify whether you want them to be formatted as part of the
restart process. Format the RDS and the WADS if there has been a data set I/O error or if you need to
reallocate a data set or change its size.

• Specify whether the IMS system definition password security option is to be in effect: provided your
system definition enables operators to override password security.

Emergency restart
With this type of start, DBCTL is restarted in the environment it was in before a DBCTL failure.

To perform an emergency restart of DBCTL, use the /ERESTART command. DL/I in-flight UOWs (that is,
those that were still being processed when the failure occurred) are backed out. Committed but unwritten
DEDB changes are applied to the database. Units of work that were indoubt are retained and are resolved
automatically when CICS and DBCTL are reconnected. For further guidance on how this is done, see
Operations and automation in IMS product documentation. If the UOWs fail to be resolved automatically,
you can use DBCTL operator commands to do so, as described in “Resolving indoubt CICS DBCTL units of
work manually” on page 64.

If a failure in emergency restart prevents backout being completed, instead of using a COLD start, you
can reattempt the emergency restart using the COLDBASE keyword on the emergency restart command.
Full function DL/I databases and DEDB areas that have indoubt data or that need backout or recovery are
identified and stopped. Database backout and committed DEDB updates are not done. You must then use
the appropriate IMS utilities to backout or forward recover these databases. (See Database utilities in IMS
product documentation for guidance on using the utilities.)

You can also specify whether the restart or write ahead data sets should be formatted as part of the
restart process. Format the RDS and the WADS if there has been a data set I/O error or if you need to
reallocate a data set or change its size.

CICS keypoints and IMS checkpoints
This section discusses system-level keypoint and checkpoint information. Both CICS and IMS also have
task or program (thread) level synchronization information.

CICS keypoints and IMS checkpoints both contain system status information that is modified during
online operation. The concepts are basically the same, but they are implemented differently.

A CICS warm start uses a warm keypoint that was written to the CICS catalog by the previous normal
CICS shutdown.

A CICS emergency restart reads the CICS system log backwards until it has located an activity keypoint.
The keypoint contains a record of incomplete UOW chains which CICS reads directly. These chains can
reside on the primary and secondary system logs.

An IMS warm start reads the checkpoint ID table on the RDS to find the shutdown checkpoint on the
log. The RDS is a data set that IMS uses to record system checkpoint ID information during the logging
process. IMS finds the information it needs and uses it automatically. If the RDS is not available at restart,
you can obtain the checkpoint information needed from the log, but this may lengthen the restart process.
Generally, you do not need to know the content of the RDS. However, if you are faced with a particularly
complex recovery problem, you may need to examine the RDS. You can find guidance on its contents in
Operations and automation in IMS product documentation.

Chapter 3. Administering DBCTL 59

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm

An IMS emergency restart reads the checkpoint ID table on the RDS and selects the checkpoint that
precedes the last synchronization point of each program that was active at the time of the failure. It then
reads the IMS log forward from the selected checkpoint.

To take a simple checkpoint of DBCTL, use the /CHECKPOINT command.

Backing out uncommitted updates after a failure
The meaning of the term dynamic backout differs slightly between CICS and IMS.

In CICS, dynamic backout means backout as a result of a transaction (or application program) failure. The
term transaction backout is used for backout done during CICS emergency restart.

In IMS, dynamic backout means backout as a result of a program failure. In a DBCTL environment,
program failures include CICS transaction abends and BMP failures. The IMS /ERESTART command
also performs emergency restart backout. IMS provides a batch backout utility, DFSBBO00, which
you can use if dynamic backout or emergency restart fails. See Operations and automation in IMS
product documentation for guidance on when to run this utility, and Database utilities in IMS product
documentation for guidance on how to run it.

Because IMS does the backing out of database updates in a DBCTL environment, we concentrate on IMS
backout in this section.

For IMS full function databases, database changes are placed in the log buffers and the database buffers
as they are made. Depending on system activity, they may be written before they are committed and
so, after a program failure or an IMS system failure, databases may require backout. The IMS log data
sets (OLDS) are used for dynamic backout. (See IMS online log data set (OLDS) for more information.)
Additionally, if dynamic backout or /ERESTART backout fails, for a database, that database is stopped. The
backout is automatically reattempted when the database is restarted.

For DEDBs, no changes are placed in the log buffers until syncpoint processing begins, and no changes are
written to the database until a commit has been received. This means that they do not need backout if
there is a failure during phase 1 of the syncpoint process. The system can undo the changes by releasing
the database buffers that have been modified but not yet written.

Log records
The IMS log is a record of activities and database changes. Among the log records written to the IMS log
are those that record both phases of the commit for each unit of work.

These log records contain the information necessary for database recovery and system restart. For a list
of the types of log records and how to obtain a listing of these DSECTs, see Diagnosis in IMS product
documentation. Database utilities in IMS product documentation gives guidance on using the file select
and formatting print utility, DFSERA10, to print the IMS log records.

Database recovery control (DBRC)
Database recovery control (DBRC) assists you in controlling DBCTL logs, and in managing recovery of
databases.

With DBCTL, you must use DBRC to control your logs, and you may optionally use it to control batch logs
and database recovery. DBCTL requires DBRC to be at SHARECTL level; if it is not, DBCTL will not start.

You may optionally use DBRC to control the data sharing environment by allowing (or preventing) access
to databases by various subsystems sharing those databases.

If you use DBRC to control database recovery, you must register your databases with DBRC, so that it can
record the relevant information in the RECON, and then use that information to control the recovery of
your databases. See Operations and automation in IMS product documentation for general guidance on
registering databases. You can register your databases using either of the following:

• The recovery control utility, DSPURX00. See Database utilities in IMS product documentation for
guidance on using DSPURX00.

60 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfht42h.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dgr/dgr.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dgr/dgr.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm

• The /RMINIT.db and /RMINIT.dbds commands. See Operations and automation in IMS product
documentation for guidance on the syntax of these commands.

To recover a database that is registered with DBRC, use the /RMGENJCL.RECOV command. DBRC
recovers the database using a combination of available input; for example, image copy data set, change
accumulation data sets, log data sets, and archived log data sets.

Recovery control (RECON) data sets
DBRC automatically records information in dual recovery control (RECON) data sets. Both data sets
contain identical information, and so are usually referred to as one: the RECON. The information from the
RECON is needed during warm and emergency restarts. DBRC selects the correct data sets to be used by
a recovery utility when you enter a GENJCL command. For a restart, the RECON shows which data set,
the OLDS or the SLDS, contains the most recent log data for each database data set (DBDS) you have
registered with DBRC. For the OLDS, the RECON shows whether the OLDS has been closed and whether
it has been archived. The RECON contains timestamp information for each log data set and volume. IMS
uses this information to determine which data set and volume contain the checkpoint information needed
to restart DBCTL.

Commit protocols and units of recovery for DBCTL
This section describes what happens when a transaction has updated DBCTL databases, and is issuing a
syncpoint, or a TERM request, or is terminating. If a failure occurs at any of these stages, DBCTL might
not be able to determine whether CICS intended these updates to be backed out or committed and must
request this information from CICS when it has been reconnected.

Two-phase commit for DBCTL
DBCTL uses a two-phase commit to record a syncpoint. At the completion of a two-phase commit, the
requested processing is committed and if a failure occurs, DBCTL does not ABORT committed changes.

Two-phase commit consists of the PREPARE and COMMIT phases. Within the PREPARE phase, CICS
issues a PREPARE request to DBCTL. DBCTL writes to the log and issues its response to the PREPARE
request to CICS. Within the COMMIT phase, there are two possible actions: COMMIT and ABORT. The
ABORT action for data belonging to full function DL/I databases is backout. There is no backout for data
belonging to DEDBs because it is not written to the database before the COMMIT phase. The effect of an
ABORT for DEDBs is also referred to as undo. Because a CICS thread may be accessing data belonging to
both full function DL/I databases and DEDBs, we use the term ABORT to refer to both backout and undo.

When updates are written to databases
The DEDB terms UNDO and REDO are analogous to the DL/I full function terms BACKOUT and COMMIT
respectively. However, although the processes that these terms refer to have the similar end results, the
processes themselves differ.

The difference is in the stage at which updates are written to the database. This is shown in Figure 25 on
page 61.

Figure 25. When updates are written to databases

This difference in timing of writing updates dictates the action taken during the second phase of two-
phase commit.

Chapter 3. Administering DBCTL 61

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm

For full function DL/I databases:

• If the phase 2 action is COMMIT, no action is needed to commit updates because DL/I wrote them to
the database during phase 1.

• If phase 2 action is ABORT, a BACKOUT of the updates is required because DL/I wrote them to the
database during phase 1.

For DEDBs:

• If phase 2 action is COMMIT, the changes must be REDOne to the database because they have
only been made in main storage. (They are written (committed) to the database on DASD by the
output threads, which are generated by the IMS system generation parameter OTHREADS. See System
definition in IMS product documentation for guidance on this parameter.)

• If phase 2 action is ABORT, no changes have to be made to the database, because the changes are still
in main storage, and can be UNDOne from there.

REDO is also used to refer to the action required for committed DEDBs during emergency restart of
IMS. IMS can determine from the log that a COMMIT was initiated, but that phase 2 is not indicated as
complete. In this case, DEDB updates must be REDOne. The two phases are:

1. Phase 1, in which CICS directs syncpoint preparation and asks whether or not the updates to DBCTL
databases can be committed.

2. Phase 2, in which CICS tells DBCTL that it must either COMMIT or ABORT the resources. (CICS can
request an ABORT without first issuing a PREPARE request. That is, CICS can bypass the first phase of
two-phase commit when an update is being backed out.)

Figure 26 on page 62 shows two-phase commit and describes the activities taking place.

Figure 26. Two-phase commit

62 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm

Note:

1. The syncpoint request can be EXEC CICS SYNCPOINT, a DL/I TERM call, or a CICS task termination.
2. If DBCTL indicates that it cannot commit the updates, CICS aborts the unit of recovery and the rest of

the Figure 26 on page 62 does not apply.
3. If CICS tells DBCTL to commit the updates, DBCTL must commit.
4. At this stage, units of recovery are in-flight and, if DBCTL fails, all database updates are aborted.
5. At this stage, from the time that DBCTL issues its response to the PREPARE request to the time

it receives a COMMIT request from CICS, units of recovery are indoubt. DBCTL retains the indoubt
information. When DBCTL is restarted after a failure, it inquires with CICS about the status of the
in-doubts. This is part of resynchronization.

UOWs and resources belonging to multiple resource managers
The two-phase commit process also applies if a UOW is updating resources that belong to more than one
resource manager; for example, any of the following: DBCTL databases (DL/I full function or DEDBs, or
both), local VSAM files, and Db2 databases.

CICS is the coordinator of the two-phase commit process; DBCTL is a participant. CICS must ensure that
all the resource managers, including DBCTL, are in synchronization. To do this, at phase 1 of two-phase
commit, it issues a PREPARE request to all the resource managers involved to find out if a COMMIT can
be done. This is as shown in Figure 26 on page 62, in which CICS is communicating with DBCTL only. If
all the other resource managers indicate that a COMMIT is possible, CICS tells them all to COMMIT. If
not, CICS tells them all to ABORT. The COMMIT or ABORT must now be carried out in all the resource
managers. For this reason, CICS considers the COMMIT or ABORT to be completed at this stage, even if it
is slightly delayed.

DBCTL unit of recovery
A DBCTL unit of recovery is created for each processing request when the first schedule request is
made by the transaction, and is kept until the two-phase commit is complete. As described in “Resolving
indoubt CICS DBCTL units of work manually” on page 64, commands are available to display the units of
recovery and take appropriate actions for committing or ending them.

In-flight unit of recovery
If DBCTL fails and is subsequently restarted, all in-flight units of recovery are backed out.

Indoubt unit of recovery
When a failure occurs, a recoverable indoubt structure (RIS) is constructed for each indoubt unit of
recovery and is also written to the IMS log. The RIS contains:

• Residual recovery element (RRE), which contains the recovery token.
• Indoubt extended error queue element (IEEQE), which contains the changed data records.
• Buffer extended error queue element (BEEQE), which indicates a data block that cannot be accessed

because of unresolved in-doubts.
• Extended error queue element link (EEQEL), which links the basic portion of the RIS (the RRE) with the

IEEQE and the BEEQE, which are used to protect indoubt data.

The IMS batch backout utility, DFSBBO00, and the IMS database recovery utility, DFSURDB0, process the
indoubt units of recovery.

CICS units of work (UOWs)
CICS UOWs and DBCTL units of recovery are more or less synonymous, except that from CICS’s point of
view, a UOW begins at the beginning of a task, and a unit of recovery begins when that task issues its first
DL/I request. For simplicity, in the rest of this book, we use the CICS term UOW to refer to both. The IMS
publications use the term "unit of recovery".

Chapter 3. Administering DBCTL 63

CICS DBCTL recovery tokens
Recovery tokens are created by CICS and passed to DBCTL. They are unique identifiers for each UOW. The
lifetime of a recovery token is the same as for a UOW.

You can use them to correlate work done between CICS and DBCTL in the same UOW. Each recovery
token is 16 bytes long; the first 8 bytes are the CICS APPLID (passed to DBCTL when CICS is first
connected) and the second 8 bytes are a UOW identifier. CICS creates an identifier like this for every UOW.
DBCTL validates the recovery token to protect against duplication of UOWs. You can use the recovery
token in certain operator commands. For example, you can display it as part of the output of the /DISP
CCTL and CEMT INQ TASK commands, and you can enter it in /CHANGE commands, in the form of
a pseudo recovery token. The recovery token is included in certain messages (for example, the CICS
message DFHDB8109, which is issued when a DL/I request has failed). Recovery tokens can be useful in
problem determination, because they are displayed in dumps produced by CICS and DBCTL and in trace
entries produced by CICS. See Troubleshooting DBCTL for more information.

The pseudo recovery token is an 8-character decimal token, which can be used in place of the 8-byte
hexadecimal recovery token and is displayed when the status of a thread is indoubt. It is made shorter
than the recovery token so that it is easier to make note of (for example, from /DISPLAY commands) and
enter (for example, in /CHANGE commands).

Figure 27 on page 64 shows a pseudo recovery token (00010040 in the column headed PSEUDO-RTKN)
and a recovery token (F0F58879641002C2) for thread number 4 (in the column headed REGID) for
PSBNAME PC3COCHD, whose STATUS is INDOUBT.

0080 /DIS CCTL DBDCCICS
0080 DFS000I MESSAGE(S) FROM ID=SYS1 047
0080 CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS
0080 DBDCCICS ATTACHED
0080 9EDA1F61E11CFA02 6 PC3COCHD ACTIVE
0080 9EDA1F4E9B571B02 5 PC3COCHD ACTIVE
0080 00010040 F0F58879641002C2 4 PC3COCHD INDOUBT

Figure 27. /DISPLAY CCTL cctlname command showing pseudo recovery token

Resolving indoubt CICS DBCTL units of work manually
Normally, an emergency restart of DBCTL followed by reconnection of CICS and DBCTL after a failure
should resolve in-doubts automatically.

About this task
However, you may sometimes need to do this yourself. For example, if a CICS system using DBCTL
disconnects abnormally from DBCTL (for instance, if CICS or DBCTL abends, or CDBC DISCONNECT
IMMEDIATE is issued), there may be some incomplete updates about which DBCTL is in doubt. Even if
CICS then needs to perform a cold start for some reason, it normally recovers enough information to
resolve indoubts automatically. However, if CICS is started with the START=INITIAL system initialization
parameter, it loses its record of the indoubt updates and they must be resolved manually. You are
strongly advised not to start CICS with START=INITIAL specified when there are indoubt units of work
outstanding.

The DFS2283I message, issued during the resynchronization process, indicates that there are UOWs that
have not received a COMMIT or ABORT request, and are therefore indoubt.

In this situation you must use DBCTL operator commands (described in “Using DBCTL operator
commands to resolve in-doubts” on page 65) to resolve the in-doubts.

64 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/dfht43x.html

Using DBCTL operator commands to resolve in-doubts
Use the following DBCTL operator commands to commit or backout a unit of work.

1. Use /DISPLAY CCTL cctlname INDOUBT, as shown in Figure 28 on page 65 to obtain the pseudo
recovery token that identifies the indoubt work. (Pseudo recovery tokens are defined in “CICS DBCTL
recovery tokens” on page 64.)

0080 /DIS CCTL DBDCCICS INDOUBT
0080 DFS000I MESSAGE(S) FROM ID=SYS1 047
0080 CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS
0080 DBDCCICS ATTACHED
0080 00010040 F0F58879641002C2 4 PC3COCHD INDOUBT

Figure 28. /DISPLAY CCTL cctlname command showing indoubt
2. Use /CHANGE CCTL cctlname PRTKN token command to abort or commit the indoubt. The cctlname

is the APPLID of the CICS system. The PRTKN keyword specifies the pseudo recovery token of the
element to be processed. The command is either:

• ABORT to backout changes for a unit of recovery, or COMMIT to commit changes for recovery. For
example:

/CHANGE CCTL DBDCCICS PRTKN 00010040 COMMIT

would commit the indoubt shown in Figure 28 on page 65.

When the action you specified has been completed, the recoverable indoubt structure (RIS) for the
indoubt UOW is removed.

IMS database utilities
DBCTL enables you to use utilities that IMS provides to help with the backup and recovery of your
databases.

Note: Because database change records are written to the IMS log, you do not need to retain the CICS
system log for use by IMS database recovery utilities in a DBCTL-exclusive environment.

The IMS utilities that you can use are as follows:

• Database image copy utility, DFSUDMP0

The database image copy utility, DFSUDMP0 is a batch utility that creates a copy of data sets within
a database. For DEDBs, you can copy an area concurrently with DBCTL activity. You can also use
concurrent image copy for full function DL/I databases.

If the databases are updated while the utility is running, all logs including the one that was being used
when DFSUDMP0 was started, are needed for use with DFSURDB0. You need both the log and the image
copy to give a complete "picture" of the database for recovery purposes.

If you have not created an image copy, the data set to be recovered is used as input to DFSURDB0.
• Online database image copy utility, DFSUICP0

The online database image copy utility, DFSUICP0, is a BMP that creates an output copy of a data set
within a full function DL/I database while the database is allocated and being used by DBCTL.

If the databases are updated while the utility is running, all logs including the one that was being used
when DFSUICP0 was started, are needed for use with DFSURDB0. You need both the log and the image
copy to give a complete "picture" of the database for recovery purposes.

If you have not created an image copy, the data set to be recovered is used as input to DFSURDB0.
• Database change accumulation utility, DFSUCUM0

If system availability is a major concern for your installation, you will probably want to use this utility.
It collects the changes from the other log data sets onto a single log, thus helping to speed recovery.

Chapter 3. Administering DBCTL 65

Balance the benefits of using it against the overhead it incurs, and the fact that you may not need to use
its output.

• Database recovery utility, DFSURDB0

The database recovery utility uses a backup copy of your database together with either (or both) the
change accumulation utility or the logs, and reapplies changes made since the backup copy to create a
new, reconstructed, database.

The database recovery utility performs recovery at the data set level, or at the track level. Often, only a
single data set of the database requires recovery. However, if more than one data set has been lost or
damaged, you need to recover each one separately. If an I/O error caused the problem, you might need
to recover only a single track instead of reconstructing the entire data set.

You can use these utilities together to perform recovery by updating a copy of the database with
the changes logged since the copy was made, as shown in . See Database utilities in IMS product
documentation and Operations and automation in IMS product documentation for further guidance on
using the utilities, including any restrictions that might apply.

Note: Input from the image copy and change accumulation utilities is optional.

IMS log utilities
DBCTL enables you to use the following IMS log utilities: the log archive utility, the log recovery utility, and
the file select and formatting print utility.

The IMS log utilities are as follows:

The log archive utility, DFSUARC0
This utility produces a system log data set (SLDS) from a filled OLDS. DBCTL can automatically invoke
DFSUARC0 to archive the OLDS when an OLDS switch occurs.

You use the ARC= parameter in the DBC procedure to control automatic archiving. See System
definition in IMS product documentation for further guidance on specifying ARC, and Database
utilities in IMS product documentation for guidance on setting up the skeleton JCL needed.

Alternatively, you can use the DBRC command GENJCL.ARCHIVE to initiate manually an archive if
you did not specify the automatic archive option, or if an automatic archive fails. See Operations and
automation in IMS product documentation for further guidance about automatic archiving.

The log archive utility runs as a batch job, and you can run multiple log archive jobs concurrently. The
SLDS it creates can be on DASD, MSS, or tape. DFSUARC0 is the preferred utility for archiving logs in a
CICS-IMS environment.

The log recovery utility, DFSULTR0
This utility produces a usable log data set from one that contains read errors or could not be closed
properly. You can recover both system log data sets (SLDSs) and online log data sets (OLDSs) with this
utility.

The file select and formatting print utility, DFSERA10
This utility enables you to display and examine data from the IMS log data set in the following ways:

• Print or copy a whole log data set.
• Print or copy from multiple log data sets based on control statement input.
• Select and print log records according to their sequential position in the data set.
• Select and print log records based upon data contained within the record itself, such as the contents

of a time, date or identification field.
• Enable your exit routines to do special processing on selected log records.

See Database utilities in IMS product documentation for further guidance on using these utilities.

66 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm

Component failures in the CICS DBCTL environment
This section discusses the impact of failures of different components of a CICS-DBCTL environment and
of transaction and thread failures.

CICS failure
If CICS fails, DBCTL retains locks on database records updated by indoubt UOWs. These records remain
unavailable until in-doubts are resolved. CICS records information about the disposition of UOWs on its
log.

A CICS warm start or emergency restart reconstructs information describing UOWs that may be indoubt.
When CICS reconnects to DBCTL, DBCTL returns a list of any indoubt UOWs. CICS notifies DBCTL of the
resolution of all in-doubts, so DBCTL can commit or backout as appropriate.

If CICS fails, or if you need to cause an immediate shutdown, CICS attempts to disconnect from DBCTL.
At this time, CICS gives the requests in progress time to complete before shutdown occurs. The time is
specified in the DRA startup table parameter, TIMEOUT. (For information on this parameter, see Defining
the IMS DRA startup parameter table.) If TIMEOUT is exceeded and CICS terminates while threads are
still active in DBCTL, a U113 abend of DBCTL will occur. If this happens, you will have to restart DBCTL
(IMS).

Choosing a value for TIMEOUT involves a trade-off between the length of restart process, which might be
delayed if the value you specify is too high, and the risk of causing U113 abends, which might increase
if you specify to low a value. One possible solution is to specify a TIMEOUT value that is about equal
to the average length of time between BMP checkpoints. If a BMP checkpoint has been taken, there
is less likelihood that CICS resources are waiting. This lessens the likelihood of U113 abends without
lengthening the restart process too much.

If you want an abnormal termination of CICS and CICS does not respond to an immediate shutdown,
use an MVS CANCEL command. This command, and CICS abends with different causes, should not result
in an IMS U113 abend because DBCTL "traps" the CANCEL and an MVS system abend code of 08E is
issued instead. Changing the effect of an MVS CANCEL from a U113 abend to an MVS system abend of
08E makes the effects of a CANCEL more like the effects of a CICS immediate shutdown. If you have
been obliged to cancel CICS in this way, do not start CICS with the START=INITIAL system initialization
parameter unless absolutely necessary, especially if there is a possibility of indoubt units of work for
DBCTL, because CICS will lose its record of the indoubt units of work.

For further information on the effects of a CICS failure in a DBCTL environment, see the section on CCTL
termination in the appropriate Exit routines in IMS product documentation.

Database resource adapter (DRA) failure
If the DRA fails:

• DBCTL notifies CICS that the DRA is terminating abnormally, and message DFHDB8106 is issued.
• CICS cleans up the storage associated with the CICS-DBCTL interface and disconnects from DBCTL.
• When it has done this, CICS issues message DFHDB8102.
• You must then reconnect DBCTL using the CDBC CONNECT command.

DBCTL failure
A termination of DBCTL should not cause CICS to terminate, it leaves CICS without DBCTL services. The
DRA remains partially initialized to help reduce the restart time.

If any of the DBCTL address spaces (DBC, DBRC, or DLISAS) fails, all of these address spaces are
terminated and you must restart the system using an /ERESTART command.

If you are using the IRLM as your lock manager, and it has failed as well as DBCTL, you must restart it
before restarting DBCTL. See “IRLM failure” on page 68.

Chapter 3. Administering DBCTL 67

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/database/dfht41p.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/database/dfht41p.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.err/err.htm

Normally, you terminate DBCTL with a /CHECKPOINT FREEZE or a /CHECKPOINT PURGE command, but
an MVS MODIFY command can be used to force the termination of DBCTL. The STOP option used with
the MODIFY command forces termination without a dump and the DUMP option forces termination with a
dump. The DBCTL address space terminates with a U0020 abend. The messages received at the system
console are:

DFS628I ABNORMAL TERMINATION SCHEDULED DFS629I IMS DBC REGION ABEND
jobname 0020

If DL/I is processing a request and the thread that is doing the processing abends is active in DL/I or is
waiting on a lock, DBCTL abends with a U113 after the following message has been sent to the system
console:

DFS613I DBC RCN U113 DUE TO Sxxx Uyyyy DURING DL/I CALL IN CCTL
 zzzzzzzz dddd

where:
xxx

is the system abend code. This is S000 if it is a user abend.
yyyy

is the user abend code. This is U0000 if it is a system abend.
zzzzzzzz

is the job name of the abending CICS system or BMP.
dddd

is the DBCTL system identifier.
For example, for a user abend:

DFS613I DBC RCN U113 DUE TO S000 U0474 DURING DL/I CALL IN CCTL
 DBDCCICS IMSA

CICS is isolated from such abends because, in DBCTL, each thread TCB has its own extended subtask
ABEND exit (ESTAE).

The threads are then terminated and the DRA attempts to reconnect to DBCTL. Any requests made
by the subsystem during this period result in a return code of 40, which indicates that no active
communications exist with DBCTL, or a return code 28, which indicates that the specified thread does
not exist. These return codes are included in messages DFHDB8104, DFHDB8109, DFHDB8111, and
DFHDB8130. Guidance on interpreting them is in the DBCTL DRA return codes section of IMS messages
and codes in IMS product documentation.

The DRA attempts to reconnect to DBCTL. After the first failing attempt, you are given the opportunity
to reply to message DFS690A. You can reply either WAIT, in which case the DRA continues trying to
reconnect, or CANCEL, in which case the DRA stops trying to reconnect. If you reply CANCEL, you must
use the CDBC transaction to reconnect DBCTL.

If you reply WAIT, the time interval between each attempt to reconnect is as specified in the DRA startup
parameter TIMER (described in Defining the IMS DRA startup parameter table).

If you reply WAIT and later want to prevent further attempts to reconnect, use the CDBC DISCONNECT
transaction. (See “Deciding whether to use orderly or immediate disconnection” on page 38.)

IRLM failure
When the IRLM fails, DBCTL subsystems using it cannot continue normal operations.

DBCTL terminates active programs that are using the IRLM with a U3303 abend and forces any PSB
schedule requests to wait until it has been reconnected to the IRLM. You reconnect DBCTL to the IRLM by
first restarting the IRLM using an MVS START command, and then issuing an MVS MODIFY RECONNECT
command to DBCTL. For guidance on using MVS commands with the IRLM and DBCTL, see Operations
and automation in IMS product documentation.

68 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/database/dfht41p.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm

Transaction and thread failures
If a transaction fails in DBCTL, the CICS transaction is abended.

If a transaction fails in CICS when a DL/I request it has issued is being processed in DBCTL, the error is
passed to the DBCTL thread. When a transaction terminates, the thread allocated to it is released and a
record is written to the IMS log. If there is an error, a return code is returned to the application in the usual
form:

• For command level requests, this is to the DL/I interface block (DIB) as a status code, or transaction
abend. (Definitive Programming Interface and Associated Guidance Information on what is returned to
the DIB is in IMS messages and codes in IMS product documentation.)

• For call level requests, it is to the user interface block (UIB) as a PCB status code or a transaction
abend. (Definitive Programming Interface and Associated Guidance Information on what is returned to
the UIB is in DL/I calls reference in IMS product documentation.)

(Response codes for a DBCTL environment are in Summary of DBCTL abends and return codes.)

Where the transaction has been abended, the thread is also terminated, and all recoverable resources,
including DL/I, are backed out. (DL/I backout is assumed on all thread and transaction failures.)

In some cases, other resources may not have been backed out, but DL/I backout has taken place. In
these cases, one of the following status codes will be returned: BB, FD, FR, FS. You can also receive the
FD status code on a call to a full function database if the PSB for the program (BMP) has a DEDB PCB. See
Status codes and backout for actions you should take if this happens.

Deadlocks and interactions with automatic restart
DBCTL detects transaction deadlocks, which can occur when two transactions are waiting for the same
two resources to become available; that is, both resources are needed by both transactions.

For a description of transaction deadlocks, see Possibility of transaction deadlock.

Figure 29. Transaction deadlock

In Figure 29 on page 69, transaction A requests and gets a lock on DBCTL resource D. Then transaction
B requests and gets a lock on CICS resource C. Transaction A needs CICS resource C and requests it, but
must wait because transaction B has a lock on it. Transaction B needs DBCTL resource D and requests
it, but must wait because transaction A has a lock on it. At the end of the sequence, both transactions
are waiting for the other to free up a resource, so neither transaction can complete. This situation is
transaction deadlock.

Chapter 3. Administering DBCTL 69

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_container_dlicallsreference.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht43m.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht438.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/recovery/dfht23k.html

If the resources involved in a transaction deadlock are a DBCTL database and a CICS resource, the task
that is waiting for the CICS resource is abended after its DTIMOUT period elapses, if you have specified
a DTMOUT period. In the example in Figure 29 on page 69, transaction A is waiting in an enqueue
until transaction B frees the lock held for CICS resource C, so it is transaction A that is abended when
DTIMOUT expires.

If you do not specify DTIMOUT for the task that is using the CICS resource, both tasks remain suspended
indefinitely, unless one of them is canceled by the CICS main terminal operator (as described in “Purging
a transaction that is using DBCTL” on page 54).

If the resources involved in a transaction deadlock are both DBCTL databases, DBCTL detects the
potential deadlock when the database requests that create the deadlocks are attempted. DBCTL then
causes the task with less update activity to be abended. The abend (ADCD) causes all resources to be
backed out. If a deadlock is detected when you are using DEDBs, an FD status code is issued instead of an
ADCD abend. See Status codes and backout for details.

For DL/I full function databases and DEDBs, if you have specified automatic restart, the task can be
restarted at this point. See Automatic restart management. However, this can take place only if the
transaction abended in the first (or only) UOW, and there has been no terminal input or output since the
initial terminal input was read.

BMP failures
If a BMP fails, DBCTL backs out any changes made by that BMP following the latest successful syncpoint.
You must restart BMPs, because DBCTL does not restart them automatically.

The JCL used to restart BMPs depends on whether the checkpoint for the BMP is still on an OLDS
available to DBCTL. If the BMP’s last checkpoint records are not in the OLDS, they will be in the SLDS, and
you must add an IMSLOGR DD statement for the SLDS(s) containing the log records required to the BMP
JCL. Guidance on the JCL needed to do this is in Database utilities in IMS product documentation.

There is an option to defer changes made to databases by backout of BMPs at emergency restart. If you
specify NOBMP on the /ERESTART command, changes made to databases by BMPs are not backed out
and all PSBs affected are stopped. Databases that were being updated by BMPs when the failure occurred
are also stopped. You must then do batch backout for the databases that are stopped. (Batch backout will
also backout the databases that were affected.) Be aware that using NOBMP may mean that the online
DBCTL is restarted sooner, but it also delays data availability for the databases that were stopped by the
BMP failure.

MVS, processor, or power failures
If an MVS, processor, or power failure occurs, DBRC is unable to mark the subsystem (SSYS) records
in the RECON as having terminated abnormally. This means that you cannot use automatic restart.
Instead, you must use the /ERESTART command with the OVERRIDE keyword to override the RECON
subsystem record. Alternatively, use the DBRC command CHANGE.SUBSYS to mark the subsystem record
as abnormally terminated. You will need to do this if you want to run any utilities (such as database
recovery or log utilities). This is because these utilities will fail if the subsystem record is still marked as
active. For information on doing this, see Database utilities in IMS product documentation. Backout of
in-flight updates should then occur. You can then restart CICS with an AUTO (emergency) restart. When
CICS has reconnected to DBCTL, CICS decides whether any indoubt UOWs exist, and resolves them in the
same way as for other failures.

70 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht438.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/recovery/dfht2kj.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm

Chapter 4. Application programming for DBCTL
Application programming considerations in a DBCTL environment include: facilities available to
application programmers with DBCTL, and abends and return codes that might be issued with DBCTL.

Programming information on DL/I requests is in Application programming for EXEC DLI in IMS product
documentation and DL/I calls reference in IMS product documentation.

In most cases, existing DL/I application programs do not need any changes to access databases
controlled by DBCTL. However, consider the following:

• Your application programs must deal with a number of abend and response codes that might be issued
with DBCTL. See “Summary of DBCTL abends and return codes” on page 90.

• Enhanced scheduling with DBCTL enables a PSB to be scheduled even if some of the full function
databases or DEDB areas it requires are not available. See “Enhanced scheduling” on page 79.

• You can use the DL/I LOG request instead of the EXEC CICS WRITE JOURNALNAME command so that all
DBCTL logging information is on the IMS log instead of the CICS system log. (See “LOG command and
call” on page 87.

CICS provides the following sample programs in the SDFHSAMP library to show you how to use the CALL
DL/I and EXEC DLI interfaces:

Table 5. Sample programs for DL/I

Language CALL DL/I EXEC DLI PSBs used

Assembler DFH$DLAC DFH$DLAE DFHSAM04, DFHSAM05

COBOL DFH0DLCC DFH0DLCE DFHSAM24, DFHSAM25

PL/I DFH$DLPC DFH$DLPE DFHSAM14, DFHSAM15

Other product information
The information given about IMS commands is intended to help you understand the facilities available to
your CICS system when you use DBCTL. The information is not part of the CICS Programming Interface
and Associated Guidance Information.

Programming languages and environments for DL/I
You can write your programs in COBOL, C, PL/I, or assembler. The examples of DL/I requests in this
section are in COBOL.

You have a choice of two interfaces: the command level interface (EXEC DLI) and the call level interface
(using DL/I CALLs). For guidance about comparing the two interfaces, see Application programming
design in IMS product documentation. For programming information about the functions of EXEC DLI
commands and DL/I CALLs, see Application programming for EXEC DLI in IMS product documentation
and DL/I calls reference in IMS product documentation, respectively.

Issue IMS AIB call format
CICS supports IMS requests with the AIBTDLI interface and the PCB format. In addition, IMS supports
application interface block (AIB) format for issuing GMSG, ICMD, and RCMD calls.

GMSG, ICMD, and RCMD calls enable DBCTL operator commands to be sent in a CICS transaction, CDBM.
See CDBM operator transaction.

The following calls are supported:

• DELETE

© Copyright IBM Corp. 1974, 2023 71

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_appexecdli.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_appexecdli.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_container_dlicallsreference.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_newapplicationprogrammingdesign.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_newapplicationprogrammingdesign.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_appexecdli.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_container_dlicallsreference.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht40a.html

• DEQUEUE
• GET UNIQUE/GET NEXT/GET NEXT IN PARENT
• GET HOLD UNIQUE/GET HOLD NEXT/GET HOLD NEXT IN PARENT
• GETMESSAGE
• ICOMMAND
• INIT
• INQY
• INSERT
• LOG
• POSITION
• RCOMMAND
• REPLACE
• ROLS
• SETS
• STAT

CICS has the following restrictions when function shipping AIB requests:

• The AIB length must be defined as 128 to 256 bytes. IMS suggests 128, but CICS enforces this range by
abend code AXF7.

• Only CICS Transaction Server systems can be in a function-shipping chain if AIB requests are being
issued.

• Do not specify LIST=NO on the PCB statement in the PSB if you intend to function ship AIB requests for
that PCBNAME.

• When using the AIBTDLI interface with the INQY function and the FIND sub-function, an IOPCB must be
specified on the PSB schedule request. Failing to do this will result in an ADLG abend.

See Application programming for EXEC DLI in IMS product documentation for programming interface
information about these calls, plus information about defining AIB format instead of PCB format, and on
the AIBTDLI entry point for link edit.

The following table compares the AIB and PCB formats for EXEC DLI calls.

Table 6. Comparison of AIB and PCB formats for EXEC DLI calls

AIB format PCB format

EXEC DLI GU AIB(aibname) EXEC DLI GU USING PCB(n)

EXEC DLI GN AIB(aibname) EXEC DLI GN USING PCB(n)

EXEC DLI GNP AIB(aibname) EXEC DLI GNP USING PCB(n)

EXEC DLI ISRT AIB(aibname) EXEC DLI ISRT USING PCB(n)

EXEC DLI DLET AIB(aibname) EXEC DLI DLET USING PCB(n)

EXEC DLI REPL AIB(aibname) EXEC DLI REPL USING PCB(n)

EXEC DLI POS AIB(aibname) EXEC DLI POS USING PCB(n)

EXEC DLI STAT AIB(aibname) EXEC DLI STAT USING PCB(n)

EXEC DLI QUERY AIB(aibname) EXEC DLI QUERY USING PCB(n)

EXEC DLI DEQ AIB(aibname) EXEC DLI DEQ 1

EXEC DLI LOG AIB(aibname) EXEC DLI LOG 1

72 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_appexecdli.htm

Table 6. Comparison of AIB and PCB formats for EXEC DLI calls (continued)

AIB format PCB format

EXEC DLI REFRESH AIB(aibname) EXEC DLI REFRESH 1

EXEC DLI ACCEPT AIB(aibname) EXEC DLI ACCEPT 1

EXEC DLI SETS AIB(aibname) EXEC DLI SETS 1

EXEC DLI ROLS AIB(aibname) EXEC DLI ROLS 1

EXEC DLI GMSG AIB(aibname) ---

EXEC DLI ICMD AIB(aibname) ---

EXEC DLI RCMD AIB(aibname) ---

Note:

1. USING PCB is not required because these commands assume the IOPCB.
2. You cannot use both the AIB and the PCB in a single EXEC DLI command, but you can choose either of

them for each EXEC DLI command in an application program.

For more information about these commands, see DL/I calls reference in IMS product documentation.

Enabling CICS IMS applications to use the open transaction
environment (OTE) through threadsafe programming

The CICS IMS attachment facility includes a CICS IMS database adapter, DFHDBAT, that is invoked when
an application program makes an IMS request. It manages the process of acquiring a thread connection
into IMS, and of returning control to the application program when the IMS processing is complete.

About this task
The CICS IMS attachment facility uses the OTE to enable the CICS IMS task-related user exit (TRUE)
to invoke and return from IMS without switching TCBs. In the OTE, the CICS IMS TRUE operates as a
threadsafe and open API TRUE program—it is automatically enabled using the OPENAPI option on the
ENABLE PROGRAM command during connection processing. This enables it to receive control on an open
L8 mode TCB. Requests to IMS are also issued on the L8 TCB, so it acts as the thread TCB, and no switch
to a subtask TCB is needed.

In the OTE, if the user application program that invoked the TRUE conforms to threadsafe coding
conventions and is defined to CICS as threadsafe, it can also run on the L8 TCB. Before its first IMS
request, the application program runs on the CICS main TCB, the QR TCB. When it makes an IMS request
and invokes the TRUE, control passes to the L8 TCB, and IMS processing is carried out. On return from
IMS , if the application program is threadsafe, it now continues to run on the L8 TCB.

Programs defined with CONCURRENCY(REQUIRED) run on an open TCB from the start of the program.
For CICSAPI programs, CICS uses an L8 open TCB regardless of the execution key of the program. For
OPENAPI programs, CICS uses an L9 TCB if EXECKEY(USER) is set and an L8 TCB if EXECKEY(CICS) is
set.

Where the correct conditions are met, the use of open TCBs for CICS IMS applications decreases usage of
the QR TCB, and avoids TCB switching. An ideal CICS IMS application program for the OTE is a threadsafe
program, containing only threadsafe EXEC CICS commands, and using only threadsafe user exit programs.
An application like this moves to an L8 TCB when it makes its first IMS request, and then continues to
run on the L8 TCB through any amount of IMS requests and application code, requiring no TCB. This
situation produces a significant performance improvement where an application program issues multiple
IMS calls. If the application program does not issue many IMS calls, the performance benefits might not
be as significant.

Chapter 4. Application programming for DBCTL 73

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_container_dlicallsreference.htm

If the execution of the program involves any actions that are not threadsafe, CICS switches back to the
QR TCB at that point. Such actions are non-threadsafe CICS requests issued by the program, the use of
non-threadsafe TRUEs, and the involvement of non-threadsafe global user exits (GLUEs). Switching back
and forth between the open TCB and the QR TCB is detrimental to the performance of the application.

In order to gain the performance benefits of the OTE for CICS IMS applications, you must meet the
following conditions:

• CICS must be connected to IMS Version 12 or later.
• The system initialization parameter FORCEQR must not be set to YES. FORCEQR forces programs that

are defined as threadsafe to run on the QR TCB, and it might be set to YES as a temporary measure
while problems that are connected with threadsafe-defined programs are investigated and resolved.

• The CICS IMS application must have threadsafe application logic (that is, the native language code in
between the EXEC CICS commands must be threadsafe), use only threadsafe EXEC CICS commands,
and be defined to CICS as threadsafe. Only code that has been identified as threadsafe is permitted
to execute on open TCBs. If your CICS IMS application is not defined as threadsafe, or if it uses EXEC
CICS commands that are not threadsafe, TCB switching takes place and some or all of the performance
benefits of OTE exploitation are lost.

• Any GLUEs on the execution path used by the application must be coded to threadsafe standards
and defined to CICS as threadsafe (for CICS IMS applications. In particular the GLUEs XRMIIN and
XRMIOUT).

• Any other TRUEs used by the application must be defined to CICS as threadsafe, or as OPENAPI.

See Threadsafe programs for information about how to make application programs and user exit
programs threadsafe. By defining a program to CICS as threadsafe, you are only specifying that the
application logic is threadsafe, not that all the EXEC CICS commands included in the program are
threadsafe. CICS can ensure that EXEC CICS commands are processed safely by switching to the QR
TCB for those commands not yet converted that still rely on quasi-reentrancy. In order to permit your
program to run on an open TCB, CICS needs you to guarantee that your application logic is threadsafe.

The EXEC CICS commands that are threadsafe, and so do not involve TCB switching, are indicated in the
command syntax diagrams in the description of the API and SPI commands.

If a user application program in the OTE is not defined as threadsafe, the CICS IMS TRUE still runs on
an L8 TCB, but the application program runs on the QR TCB throughout the task. Every time the program
makes an IMS request, CICS switches from the QR TCB to the L8 TCB and back again, so the performance
benefits of the OTE are negated. The maximum TCB switching for a CICS IMS application would occur if
your program used a non-threadsafe user exit program and a non-threadsafe EXEC CICS command after
every IMS request. In particular, the use of a non-threadsafe exit program on the CICS-IMS mainline path
(for example, a program that is enabled at XRMIIN or XRMIOUT) causes more TCB switching than the
level that is experienced when CICS is connected to earlier versions of IMS.

The table shows what happens when application programs with different concurrency attributes invoke
the CICS IMS TRUE when CICS is connected to different versions of IMS.

Table 7. Combinations of application programs and the CICS IMS TRUE

Program's concurrency
attribute

CICS IMS TRUE operation Effect

QUASIRENT Threadsafe and open API Application program runs under the CICS QR
TCB. TRUE runs under an L8 TCB, and IMS
requests are executed under the L8 TCB. CICS
switches to and from the CICS QR TCB and the
L8 TCB for each IMS request.

74 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp3_concepts_threadsafe.html

Table 7. Combinations of application programs and the CICS IMS TRUE (continued)

Program's concurrency
attribute

CICS IMS TRUE operation Effect

THREADSAFE Threadsafe and open API OTE exploitation. TRUE runs under an L8 TCB,
and IMS requests are executed under the L8
TCB. The application program also runs on the
L8 TCB when control is returned to it. No TCB
switches are needed until the task terminates,
or if it issues a non-threadsafe CICS request
which forces a switch back to the QR TCB.

REQUIRED with
API(CICSAPI)

Threadsafe and open API OTE exploitation. TRUE runs under an L8 TCB,
and IMS requests are executed under the L8
TCB. The application program runs on the L8
TCB from the start. The program always uses
an L8 irrespective of the execution key of the
program. No TCB switches are needed until the
task terminates, or if it issues a non-threadsafe
CICS request which forces a switch back to the
QR TCB and then a switch back afterward to
the L8 TCB.

REQUIRED with
API(OPENAPI)

Threadsafe and open API OTE exploitation. Not preferred for user key
CICS-IMS applications (and when storage
protection is active), as it causes switching
from the L9 TCB to the L8 TCB and back again
for every IMS request.

In summary, to gain the performance benefits of the OTE:

• CICS must be connected to IMS Version 12 or later.
• FORCEQR must not be set to YES.
• The CICS IMS application must have threadsafe application logic (that is, the native language code in

between the EXEC CICS commands must be threadsafe). If the application logic is not threadsafe, the
program must be defined as CONCURRENCY(QUASIRENT), and so must operate on the CICS QR TCB. In
this case TCB switching occurs for every IMS request, even if the TRUE is running on an open TCB.

• A threadsafe application can be defined to CICS as CONCURRENCY(THREADSAFE) API(CICSAPI)
or CONCURRENCY(REQUIRED) API(CICSAPI). The setting to use depends on how many non-
threadsafe EXEC commands the program uses. If there are many non-threadsafe CICS commands
the program is best defined as CONCURRENCY(THREADSAFE). If the program has few or no non-
threadsafe CICS commands, then CONCURRENCY(REQUIRED) can be used. Programs defined with
CONCURRENCY(REQUIRED) have the benefit of starting on an L8 open TCB, but every non-threadsafe
CICS command results in two TCB switches.

• The CICS IMS application must use only threadsafe TRUEs or GLUEs. If any non-threadsafe exits are
used, this forces a switch back to the QR TCB.

If all these conditions are met, you can gain the performance benefits of the OTE.

Facilities available with DBCTL
Facilities available with DBCTL include application program access to DEDBs, additional commands, calls,
and keywords, increased data availability, and the ability to use BMPs.

Chapter 4. Application programming for DBCTL 75

Application program access to DEDBs
With DBCTL, your EXEC DLI and CALL DL/I application programs can access DEDBs. For an overview of
the benefits of using DEDBs (including subset pointers), see Access to data entry databases (DEDBs) .

For programming information on using subset pointers and EXEC DL/I keywords, see Application
programming for EXEC DLI in IMS product documentation and DL/I calls reference in IMS product
documentation.

Command codes to manage subset pointers in DEDBs
With DEDBs, you can set and use up to eight subset pointers for each direct dependent segment type in
the database description (DBD).

You must also define in the PSB, using the SENSEG statement, which subset pointers your program
will use. You can then use subset pointers from within the application program together with certain
command codes. “EXEC DLI keywords and corresponding DL/I CALL command codes” on page 77 tells
you which subset pointers you can use with which command codes.

Additional EXEC DLI keywords
You can use a number of additional EXEC DLI keywords in a CICS-DBCTL environment; they are described
in the headings that follow. Each of these keywords has a corresponding CALL DL/I command code. These
are shown in “EXEC DLI keywords and corresponding DL/I CALL command codes” on page 77.

LOCKCLASS
The LOCKED keyword corresponds to the Q command code. You use either of these to reserve a segment
so that other programs cannot update until after you have finished with it. You can associate the Q
command code with a 1-character field, from A through J, but the LOCKED keyword cannot take an
argument. The LOCKCLASS keyword enables you to make full use of the DEQ command.

You use the LOCKCLASS keyword, with retrieve requests only, in the same situations that the LOCKED
keyword can be used. However, the LOCKCLASS keyword can take a 1-character argument, in the range B
to J inclusive. You cannot use LOCKED and LOCKCLASS for the same segment.

MOVENEXT
The MOVENEXT keyword sets the subset pointer to the segment following the current segment. You can
only use it with a DEDB that uses subset pointers. You can use it when retrieving, inserting, or replacing a
segment. You cannot use it with a SETZERO keyword for which you have specified subset pointer values,
or with the LOCKED or LOCKCLASS keywords.

MOVENEXT, which corresponds to the M command code, can take an argument, which can be a constant
of up to 8 bytes or a variable of exactly 8 bytes. Each byte indicates a subset pointer and should be a
single number from 1 through 8. If you use a variable that is longer than the number of subset pointers
to be referenced, you should justify the data to the left and set the rest of the variable to blanks (for
example, X'F1F3404040').

GETFIRST
The GETFIRST keyword, which corresponds to the R command code, causes the first segment in a subset
to be retrieved or inserted. You can only use it when retrieving or inserting a segment in a DEDB that uses
subset pointers. You can only use one GETFIRST keyword with each parent or object segment. You cannot
use the GETFIRST keyword with the FIRST, LOCKED, or LOCKCLASS keywords.

GETFIRST can take a single argument, which can be a constant or a 1-byte variable. The value of the
argument must be a number from 1 through 8, in character form, that indicates a subset pointer.

76 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/databases/dfht40y.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_appexecdli.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_appexecdli.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_container_dlicallsreference.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_container_dlicallsreference.htm

SET
The SET keyword, which corresponds to the S command code, causes the appropriate subset pointer to
be set unconditionally to the current position, in a DEDB with subset pointers. Use the SET keyword when
retrieving, inserting or replacing a segment. You cannot use it with a SETZERO keyword that has the same
subset pointer value, or with the LOCKED or LOCKCLASS keywords.

SET can take an argument, which can be a constant of up to 8 bytes, or a variable of exactly 8 bytes. Each
byte indicates a subset pointer and must be a single integer, in character form, from 1 through 8. If you
use a variable that is longer than the number of subset pointers to be referenced, you should justify the
data to the left and set the rest of the variable to blanks (for example, X'F1F3404040').

SETCOND
The SETCOND keyword, which corresponds to the W command code, causes the appropriate subset
pointer to be set only if it is not already set to a segment. You can only use it when processing a DEDB
with subset pointers. You can use SETCOND when retrieving, inserting, or replacing a segment. You
cannot use it with the SETZERO keyword that has the same subset pointer value, or with the LOCKED or
LOCKCLASS keywords.

SETCOND can take an argument, which can be a constant of up to 8 bytes or a variable of exactly 8 bytes.
Each byte indicates a subset pointer and must be a single number, in character form, from 1 through 8. If
you use a variable that is longer than the number of subset pointers to be referenced, you should justify
the data to the left and set the rest of the variable to blanks (for example, X'F1F3404040').

SETZERO
The SETZERO keyword, which corresponds to the Z command code, causes the appropriate segment
subset pointer to be set to zero. You can only use it with DEDBs that use subset pointers. You can
use SETZERO when retrieving, inserting, replacing, or deleting a segment. You cannot use it with SET,
SETCOND, or MOVENEXT keywords that have the same subset pointer values. You cannot use it with the
LOCKED or LOCKCLASS keywords.

SETZERO can take an argument, which can be a constant of up to 8 bytes or a variable of exactly 8 bytes.
Each byte indicates a subset pointer and must be a single number, in character form, from 1 through 8. If
you use a variable that is longer than the number of subset pointers to be referenced, you should justify
the data to the left, and set the rest of the variable to blanks (for example, X'F1F3404040').

System service (SYSSERVE)
If your application program issues a system service request in an EXEC DLI environment, you do not need
to specify the PCB number, because the IOPCB is assumed for this type of request. However, if you are
using one of the following EXEC DLI system service requests:

• LOG command
• REFRESH command
• ACCEPT command
• SETS command
• ROLS command (without the USING PCB(1) option)

first issue a PSB schedule command specifying the SYSSERVE keyword. See “PSB schedule command and
call” on page 86 for the format of the schedule request.

EXEC DLI keywords and corresponding DL/I CALL command codes
Table 8 on page 78 lists EXEC DLI keywords and corresponding DL/I CALL command codes that are valid
in a DBCTL environment.

Chapter 4. Application programming for DBCTL 77

Table 8. Keywords and corresponding command codes

EXEC DLI keyword DL/I CALL command
code

Purpose

KEYS C Using the concatenated key of a segment to identify
the segment.

INTO or FROM specified
on segment level to be
retrieved or inserted

D Retrieving or inserting a sequence of segments in a
hierarchic path using only one request, instead of
having to use a separate request for each segment
(path call or command).

FIRST F Backing up to the first occurrence of a segment under
its parent when searching for a particular segment
occurrence. Disregarded for a root segment.

LAST L Retrieving the last occurrence of a segment under its
parent.

MOVENEXT 1 M 1 Moving a subset pointer to the next segment
occurrence after your current position.

Leaving out the SEGMENT
option for segments you
do not want replaced

N Designating segments you do not want replaced, when
replacing segments after a get hold request. Used
when replacing part of a path of segments.

SETPARENT P Setting parentage at a higher level than usual. (It is
usually the lowest SSA level of the call.)

LOCKED 2 LOCKCLASS 2 Q 2 Reserving a segment so that other programs will not
be able to update it until after you have finished
processing and updating it.

GETFIRST 1 R 1 Starting search with the first segment occurrence in a
subset.

SET 1 S 1 Unconditionally setting a subset pointer to the current
position.

No EXEC equivalent U Limiting the search for a segment to the dependents
of the segment occurrence on which position is
established.

CURRENT V Using the current position at this hierarchic level and
above as qualification for the segment.

SETCOND 1 W 1 Setting a subset pointer to your current position, if the
subset pointer is not already set.

SETZERO 1 Z 1 Setting a subset pointer to zero.

Note:

1. DEDB subset pointer operations only. These command codes are new for CICS users who are new to
DBCTL.

2. Cannot be used with DEDBs.

78 CICS TS for z/OS: IMS Database Control Guide

POS command and call
With DEDBs, you can use the position (POS) command and call to retrieve the location of a specific
sequential dependent segment or the location of the last inserted sequential dependent segment. The
POS command and call also provides information about unused space.

You can specify only one SSA with the POS request; that is, either the root segment, or a sequential
dependent segment. You can use POS to locate a specific sequential dependent segment when you
already have a valid position of a root segment. If you do not already have one, you must first issue a
separate POS request, or other request, to establish the position of a root segment.

See “EXEC DLI keywords and corresponding DL/I CALL command codes” on page 77 and “Comparing
EXEC DLI commands and DL/I calls” on page 88 for brief comparisons of commands and calls. For
further guidance on the differences between commands and calls, see Application programming design in
IMS product documentation.

Format of POS command
The format of the POS command is:

EXEC DLI POS|POSITION
USING PCB(n)
INTO(data-area)
[KEYFEEDBACK(area)[FEEDBACKLEN(expression)]]
[SEGMENT(name)|SEGMENT((area))]
[WHERE(qualification_statement)[FIELDLENGTH(expression)]]

Figure 30. EXEC DLI POS command

Format of POS call
The format of the POS call is:

CALL 'CBLTDLI' USING POS,dedb_pcb,i/o_area[,ssa]

Addressing and residency mode
Addressing mode (AMODE) refers to the address length that a program is prepared to handle: 24-bit
addresses, 31-bit addresses, or both (ANY). Programs with an addressing mode of ANY (AMODE ANY)
must have been designed to receive control in either 24-bit or 31-bit addressing mode. Residency mode
(RMODE) specifies where a program is expected to reside in virtual storage. RMODE 24 indicates that a
program is coded to reside in virtual storage below 16 MB. RMODE ANY indicates that a program is coded
to reside in 24-bit virtual storage (below 16 MB) or 31-bit virtual storage (above 16 MB but below 2 GB).

For more information about AMODE and RMODE, see z/OS MVS Programming: Extended Addressability
Guide. See also the appropriate programming guides for COBOL and PL/I for guidance about placing
parameters above or below the 16 MB line.

With remote DL/I and DBCTL, programs can be AMODE(31) RMODE(ANY) with parameters above the 16
MB line, for both DL/I call and command level.

Enhanced scheduling
DBCTL supports enhanced scheduling. That is, PSB scheduling completes successfully, even if some of
the full function databases or DEDB areas it requires are not available.

Full function databases that have been stopped or locked by the commands /STOP, /DBRECOVERY, or /
LOCK, or that are unavailable for update because a /DBDUMP command has been issued, do not cause
scheduling failures. Instead, the application program is prevented from accessing only the unavailable
database(s) or area(s). Application programs can have read access to databases that have been made
unavailable for update by the /DBDUMP command. If a program issues a call to an unavailable database
or area, a transaction abend is issued. To avoid this happening, you can issue requests, after a PSB has

Chapter 4. Application programming for DBCTL 79

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_newapplicationprogrammingdesign.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_newapplicationprogrammingdesign.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.ieaa500/abstract.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.ieaa500/abstract.htm

been scheduled, to obtain information regarding the availability of each database and to indicate that your
program will handle data availability status codes. These requests are described in “Obtaining information
about database availability” on page 80 and “Accepting database availability status codes” on page 81.

Obtaining information about database availability
A PSB scheduling request places data availability status codes in each of the DB PCBs.

About this task
You can use DL/I requests to obtain and refresh this information.

QUERY and REFRESH DBQUERY commands
In a command-level environment, issue the following command after a PSB schedule request for each
PCB:

EXEC DLI QUERY PCB(n)

where n is the number of a PCB.

This obtains the status code and other information in the DL/I interface block (DIB). You should get one of
the following values in the DIB:

• TH, which means that a PSB has not yet been scheduled and results in a DHTH abend.
• NA, which means that at least one of the databases that can be accessed using this PCB is unavailable,

but does not result in an abend.
• NU, which means that at least one of the databases that can be updated using this PCB is unavailable

and does not result in an abend.
• (blanks), mean that the data accessible using this PCB is available for all functions that the PCB

sensitivity allows.

DIBDBORG, which is returned when DIBSTAT has been set to NA, NU or ␢␢ (blanks). DIBDBORG contains
one of the following values describing the database organization:

• DEDB
• GSAM
• HDAM
• HIDAM
• HISAM
• INDEX
• HSAM
• SHISAM
• SHSAM.

DIBDBDNM, which is returned when DIBSTAT has been set to NA, NU or blanks, and contains the
DBDNAME. You can refresh these status codes using the command:

EXEC DLI REFRESH DBQUERY

INIT call: format for refreshing status code information
Application programs using the DL/I CALL interface can access the PCB status codes directly.

You can refresh these status codes using the INIT call as follows:

CALL 'CBLTDLI' USING INIT,i/o pcb,i/o_area

80 CICS TS for z/OS: IMS Database Control Guide

where i/o_area contains a string in the format LLZZcharacter_string.

• LL is a halfword containing the length of the character_string including LLZZ.
• ZZ contains binary zeros
• character_string contains DBQUERY.

The data availability status codes used in this context are:

• (blanks), which means that all of the databases are available.
• NA, which means that at least one of the databases that can be accessed using this PCB is unavailable.
• NU, which means that at least one of the databases that can be updated using this PCB is unavailable

for update.

Accepting database availability status codes
You can use DL/I requests to indicate that your application program is prepared to accept and handle
database availability status codes for DL/I calls. These status codes may have been issued because PSB
scheduling has completed without all of the referenced databases being available.

ACCEPT STATUSGROUP command
For command level application programs, use the following command:

EXEC DLI ACCEPT STATUSGROUP('A')

INIT call: format for accepting status codes
For call level application programs, use the following command:

CALL 'CBLTDLI' USING INIT,i/o pcb,i/o_area

where i/o_area contains a string in the format LLZZcharacter_string.

• LL is a halfword containing the length of the character_string including LLZZ.
• ZZ contains binary zeros.
• Character_string contains STATUSGROUPA.

Status codes
If you have used ACCEPT STATUSGROUP and a DL/I request tries to access a database or a DEDB area
that is not available after PSB schedule, DBCTL returns a status code instead of abending the transaction.
If you have not used ACCEPT STATUSGROUP, the transaction will be abnormally terminated with ADCI if
it tries to access unavailable data. (See “Summary of DBCTL abends and return codes” on page 90 for
details of accompanying return codes.)

The status codes used are as follows:

(blanks)
The request completed successfully.

BA
The request could not be completed because a database was not available. In this case, only the
updates done for the current DL/I call are backed out.

BB
The request could not be completed because a database was not available. In this case, all DL/I
updates are backed out to the last commit point.

BC
The request could not be completed because of a deadlock.

Chapter 4. Application programming for DBCTL 81

Note: Only DL/I resources are backed out because the transaction has not abended. Therefore, ensure
that you keep DL/I and other resources in synchronization.

See Application programming for EXEC DLI in IMS product documentation or DL/I calls reference in IMS
product documentation for programming information on status codes.

Accessing GSAM or MSDB databases
Although a PSB can contain PCBs for GSAM and MSDB databases, and the PSB can be scheduled,
programs using DBCTL (or any other kind of CICS-DL/I program) cannot access those GSAM or MSDB
databases online from CICS. Access to such databases is by means of batch and BMPs only. See “I/O
PCB” on page 84 for information on the option SCHD, which you can use to state whether you require an
input/output PCB (I/O PCB).

Status codes and backout
The following DEDB status codes are returned when DL/I backout has taken place: BB, FD, FR, FS.

If you receive one of these status codes, it is as if any update requests you issued to full function
databases or to DEDBs in the same UOW had not taken place.

If you are using EXEC DLI, these status codes are, as usual, accompanied by a DHBB, DHFD, DHFR, or
DHFS abend.

If you are using CALL DL/I and if you want any other resources you may have been updating in the same
UOW to be backed out, issue an EXEC CICS ABEND request or a SYNCPOINT ROLLBACK command.

Batch message processing programs (BMPs)
Batch message processing programs (BMPs) are application programs that perform batch type processing
online and can access databases controlled by DBCTL.

You can run the same program as a BMP or as a batch program. Figure 31 on page 83 shows the kind of
data BMPs can access. For further guidance on using BMPs, see Application programming design in IMS
product documentation.

82 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_appexecdli.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_container_dlicallsreference.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_container_dlicallsreference.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_newapplicationprogrammingdesign.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_newapplicationprogrammingdesign.htm

Db2

DEDBs DL/I full
function

BMP

DBCTL

GSAM filesMVS files

Figure 31. BMP access

Chapter 4. Application programming for DBCTL 83

System service requests

I/O PCB
A PSB used in a DBCTL environment can contain any of these PCB types.

• I/O PCB . In a CICS-DBCTL environment, an input/output PCB (I/O PCB) is needed to issue DBCTL
service requests. Unlike other types of PCB, it is not defined with PSB generation. If the application
program is using an I/O PCB, this has to be indicated in the PSB scheduling request, as explained in
“Format of a PSB” on page 84.

• Alternate TP PCB(s). An alternate TP PCB defines a logical terminal and can be used instead of the I/O
PCB when it is necessary to direct a response to a terminal. Alternate TP PCBs appear in PSBs used in a
CICS-DBCTL environment, but are used only in an IMS/VS DC or IMS TM environment. CICS applications
using DBCTL cannot successfully issue requests that specify an alternate TP PCB, an MSDB PCB, or
a GSAM PCB, but PSBs that contain this kind of PCB can be scheduled successfully in a CICS-DBCTL
environment. Alternate PCBs are included in the PCB address list returned to a call level application
program. The existence of alternate PCBs in the PSB can affect the PCB number used in the PCB
keyword in an EXEC DLI application program, depending on whether you are using CICS online, batch
programs, or BMPs. For more information, see “PCB summary” on page 85.

• DB PCB(s). A database PCB (DB PCB) is the PCB that defines an application program’s interface to a
database. One DB PCB is needed for each database view used by the application program. It can be a
full function PCB, or a DEDB PCB.

• GSAM PCB(s). A GSAM PCB defines an application program’s interface for GSAM operations.

With DBCTL, a CICS online application program receives, by default, a DB PCB as the first PCB in the
parameter list passed to it after scheduling.

With the EXEC DLI interface, in order to use system service requests, you specify the SYSSERVE keyword
on the SCHD command to indicate that your application program can handle an I/O PCB. In an EXEC DLI
environment, the SYSSERVE keyword does not change the PCB numbering, which means that your first
PCB is still the DB PCB, and you do not need to specify a PCB number when you issue a system service
request.

With the DL/I CALL interface, in order to use system service requests, you use the IOPCB parameter on
the PCB to indicate that your application program can handle an I/O PCB. The I/O PCB will then be the
first PCB in the parameter address list passed back to your application program.

Format of a PSB
PSBs used in a DBCTL environment will be of the following form:

 [IOPCB]
[Alternate TP PCB ... Alternate TP PCB]
[DBPCB ... DBPCB]
[GSAMPCB ... GSAMPCB]

Figure 32. General format of a PSB in a DBCTL environment

Each PSB must contain at least one PCB. A DB PCB can be a full function PCB, or a DEDB PCB.

84 CICS TS for z/OS: IMS Database Control Guide

PCB summary
This section summarizes information concerning I/O PCBs and alternate PCBs in the supported
environments. Read it if you intend to issue system service requests.

CICS online programs
EXEC DLI

The first PCB in your PCB address list always refers to the first database PCB (DB PCB) whether or not
you specify the SYSSERVE keyword.

CALL DL/I
If you specify the IOPCB option on the PCB call, the first PCB in your PCB address list will be the I/O
PCB, followed by any alternate PCBs, followed by the DB PCBs.

If you do not specify the IOPCB option, the first PCB in your PCB address list will be the first DB PCB.

BMPs
EXEC DLI and CALL DL/I

The PCB list always contains the address of the I/O PCB, followed by the addresses of any alternate
PCBs, followed by the addresses of the DB PCBs.

Batch programs
Alternate PCBs are always returned to batch programs irrespective of whether you have specified
CMPAT=Y. The I/O PCB is returned depending on the CMPAT option, as follows:

EXEC DLI and CALL DL/I
If you specify CMPAT=Y, the PCB list contains the address of the I/O PCB, followed by any alternate
PCBs, and then the DB PCBs.
If you do not specify CMPAT=Y, the PCB list contains the addresses of any alternate PCBs followed by
the addresses of the DB PCBs.

Table 9 on page 85 summarizes the I/O PCB and alternate PCB information.

Table 9. PCB summary

Environment EXEC DLI:
I/O PCB

count
included in

PCB(n)

EXEC DLI:
Alternate
PCB count
included in

PCB(n)

CALL DLI:
I/O PCB
address
returned

CALL DLI:
Alternate

PCB
address
returned

CICS DBCTL: SCHD request issued without the
IOPCB or SYSSERVE option

No No No No

CICS DBCTL: SCHD request issued with the IOPCB
or SYSSERVE for a CICS DBCTL request or for a
function shipped request which is satisfied by a
CICS system using DBCTL

No No Yes Yes

BMP Yes Yes Yes Yes

Batch: CMPAT=N specified No Yes No Yes

Batch: CMPAT=Y specified Yes Yes Yes Yes

Chapter 4. Application programming for DBCTL 85

PSB schedule command and call
The format of the schedule command is:

EXEC DLI SCHD PSB(name)[SYSSERVE]

Specifying SYSSERVE does not affect the PCB number you specify in the USING PCB keyword because
PCB(1) will always refer to the first DB PCB. The application program must establish addressability to the
I/O PCB. For details, see Application programming design in IMS product documentation.

The format of the schedule call is:

CALL 'CBLTDLI' USING PCB␢,psbname,uibptr[,sysserve]

where sysserve is an optional 8-byte variable, set to either IOPCB or NOIOPCB.

Almost all the new DL/I calls supported in the CICS-DBCTL environment require an I/O PCB. The two
exceptions are the ROLS call, which can use a DB PCB, and the POS call, which uses a DEDB PCB.

Preventing DHxx abends after EXEC DLI SCHD PSB failure
When a PSB schedule request fails (for example, because a database is unavailable), CICS abends the
transaction with a DHxx abend code.

In a production system, PSB schedule request failures are more likely to be caused by unavailability of a
database than by application coding errors, which means that users may see DHxx abends unnecessarily.

To prevent this happening, you can use the EXEC DLI SCHD PSB keyword, NODHABEND, which specifies
that no DHxx abends are issued for that PSB schedule request. Instead, the xx value is returned to the
application program in DIBSTAT, enabling the application to deal with the situation in a more user-friendly
way, and avoiding the need to code global HANDLE ABENDs (EXEC DLI does not support HANDLE
CONDITION). When you use this keyword, CICS also informs z/OS Workload Manager that the request
has failed, in order to avoid the storm drain effect. For more information, see Avoiding the storm drain
effect.

DEQ command and call
The DEQ (dequeue) request releases segments that were retrieved using the LOCKCLASS keyword or the
Q command code.

The LOCKED keyword cannot take an argument, and cannot be used with DEQ. (Segments locked using
the LOCKED keyword are released when a SYNCPOINT is taken.) Instead, you use LOCKCLASS with DEQ,
which can take a 1-character argument in the range B to J inclusive. (These keywords correspond to the
Q command code, which you can associate with a 1-character field in the range A to J.) You cannot use
LOCKED and LOCKCLASS for the same segment. Using LOCKCLASS or Q on retrieval requests enables
you to reserve segments for exclusive use by your transaction. No other transaction is allowed to update
these reserved segments until your transaction reaches a syncpoint, or the DEQ request has been issued,
when the reserved segments are released. This means that your application can leave these segments
and retrieve them later without them being changed in the meantime.

Format of DEQ command
The format of the DEQ command is:

EXEC DLI DEQ LOCKCLASS(data_value)

where data_value is a 1-byte alphabetic character in the range B to J.

Format of DEQ call
The format of the DEQ call is:

CALL 'CBLTDLI' USING function,i/o pcb,i/o_area

86 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_newapplicationprogrammingdesign.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp3_stormdrain.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp3_stormdrain.html

where function is the address of a 4-byte area that contains the value of the DEQb function, i/o pcb is the
name of the I/O PCB (mandatory), and i/o_area is a 1-byte alphabetic character in the range A to J.

LOG command and call
You can use the LOG request online when you want a record to be written from an application program to
the IMS log.

Your program can specify whatever information you want to be on the log. You may prefer to use it instead
of EXEC CICS journal commands so that all your DBCTL information will be on the IMS log instead of the
CICS log. IMS uses different log codes to distinguish different types of log record. All user log records
in the IMS log have the same code. Records logged using the LOG request will not be backed out if
synchronization fails and the UOW is canceled.

The format of the LOG command is:

EXEC DLI LOG FROM(area) LENGTH(expression)

The format of the LOG call is:

CALL 'CBLTDLI' USING LOG␢,i/o-pcb,data-area

where LOG␢ is the address of a 4-byte area that contains the value of the LOG␢ function.

Defining intermediate backout points for DBCTL resources
The SETS and ROLS requests enable you to define multiple points at which to preserve the state of DL/I
full function databases and to return to these points later. The backout points are not CICS syncpoints,
they are intermediate backout points that apply only to DBCTL resources. For example, you can use them
to allow your program to handle the consequences of PSB scheduling having completed without all of the
referenced DL/I databases being available.

About this task
The SETS and ROLS requests apply to DL/I full function databases only. If an UOW is updating recoverable
resources other than full function databases, for example, DEDBs and VSAM files, the SETS and ROLS
requests have no effect on the non-DL/I resources. Therefore, take steps to ensure the consistency of
other resources involved, if any. See “Summary of DBCTL abends and return codes” on page 90 for
explanations of relevant return codes.

SETS command and call
You can use a SETS request to define points in your application at which to preserve the state of DL/I
databases before initiating a set of DL/I calls to perform a function. Your application can issue a ROLS
request later if it cannot complete that function.

The format of the SETS command is:

 EXEC DLI SETS [TOKEN(mytoken) AREA(data-area)]

where mytoken is a 4-byte token associated with the current processing point.

data-area is an area to be restored to the program when a ROLS request is issued. The first two bytes of
the data-area field contain the length of the data-area, including the length itself. The second two bytes
must be set to X'0000'.

The format of the SETS call is:

 CALL 'CBLTDLI' USING SETS,i/o_pcb[,i/o_area,token]

Chapter 4. Application programming for DBCTL 87

TOKEN(mytoken) AREA(data-area) in the command version and i/o_area,token in the call version are
optional, but if you do omit them, this cancels any intermediate backout points set in previous SETS
requests and ROLS backs out to the last commit point.

ROLS command and call
You can use the ROLS request to backout to the state all full function databases were in before: (a) a
specific SETS request or (b) the most recent commit point.

The format of the ROLS command is:

 EXEC DLI ROLS [TOKEN(mytoken) AREA(data-area)]

The format of the ROLS call is:

 CALL 'CBLTDLI' USING ROLS,pcb[,i/o_area,token]

i/o_area and token on the call, and TOKEN(mytoken) AREA(data-area) on the command are optional. If
you include them, ROLS backs out to the SETS you specified . If you omit them, ROLS backs out to the
most recent SETS.

The ROLS command has a second format, the purpose of which is to backout to before an ACCEPT
STATUSGROUPA request:

 EXEC DLI ROLS [USING(PCB(n)]

where n is the name of a database PCB that has received a "data" unavailable status code. This
causes the same action to take place that would have occurred had the program not issued an ACCEPT
STATUSGROUPA request. (See “Accepting database availability status codes” on page 81 .)

Comparing EXEC DLI commands and DL/I calls
Use the following table to compare corresponding EXEC DLI and CALL DL/I requests and their functions.

These commands and calls are threadsafe.

Table 10. EXEC commands and DL/I calls

EXEC DLI CALL DL/I Function

GU, GN, and GNP GU, GN, and GNP Retrieving segments from the database

GU, GN, and GNP GHU, GHN, and GHNP Retrieving segments from database for
updating

DLET DLET Deleting segments from a database

REPL REPL Replacing segments in a database

ISRT ISRT Adding segments to a database

LOAD ISRT Initially loading a database

SCHD PCB Scheduling a PSB

TERM TERM Terminating a PSB

CHKP CHKP (basic) Issuing a basic checkpoint

SYMCHKP CHKP (extended) Issuing a symbolic checkpoint

88 CICS TS for z/OS: IMS Database Control Guide

Table 10. EXEC commands and DL/I calls (continued)

EXEC DLI CALL DL/I Function

XRST RETRIEVE XRST Issuing an extended restart

----- 1 SYNC Requesting sync point processing

DEQ DEQ Releasing segments retrieved using Q
command code

----- 1 GSCD Retrieving system addresses

LOG LOG Writing a message to the system log

ROLL or ROLB ROLL or ROLB Dynamically backing out changes

STAT STAT Obtaining system and buffer pool statistics
(see also Table 11 on page 89)

REFRESH ACCEPT QUERY 2 INIT Refreshing, accepting, and querying data
availability status codes

SETS SETS Setting a backout point

ROLS ROLS Backing out to a previously set backout point

----- 1 GSAM Issuing requests to GSAM databases

POS POS Retrieving positioning or space usage
information in a DEDB area

Note:

1. No EXEC DLI equivalent. Use a DL/I CALL, but note that you cannot mix EXEC and CALL in the same
UOW.

2. Status codes are available directly to CALL DL/I applications. EXEC DLI QUERY corresponds to code in
the CALL DL/I program instructing it to examine the PCB.

DL/I requests supported
This table summarizes the DL/I requests you can use and the environments in which they apply.

Table 11. DL/I requests supported

Request type CICS and DBCTL 1 Batch BMP

Get commands and calls (GU, GHU, GN,
GHN, GNP, GHNP)

Yes Yes Yes

DLET command and call Yes Yes Yes

REPL command and call Yes Yes Yes

ISRT command and call Yes Yes Yes

ISRT call (initial load) No Yes No

LOAD command No Yes No

PCB call Yes No No

SCHD command Yes No No

TERM command and call Yes No No

Chapter 4. Application programming for DBCTL 89

Table 11. DL/I requests supported (continued)

Request type CICS and DBCTL 1 Batch BMP

CHKP command and call (basic) No Yes Yes

CHKP call (extended) No Yes Yes

SYMCHKP command No Yes Yes

XRST command and call No Yes Yes

RETRIEVE command No Yes Yes

SYNC call No No Yes

DEQ command and call Yes Yes Yes

GSCD call No Yes No

LOG call Yes Yes Yes

LOG command Yes Yes Yes

ROLL call No Yes Yes

ROLL command No Yes Yes

ROLB command and call No Yes Yes

STAT command and call Yes 2 Yes 2 Yes 2

INIT call Yes Yes Yes

REFRESH command Yes Yes Yes

ACCEPT command Yes Yes Yes

QUERY command Yes Yes Yes

SETS command and call Yes Yes Yes

ROLS command and call Yes Yes Yes

GSAM calls No Yes Yes

POS command and call Yes No Yes

Note:

1. Requests are also supported with function shipping to a remote CICS that uses DBCTL .
2. For programming information on keywords used to request the enhanced statistics, see DL/I calls

reference in IMS product documentation.

Summary of DBCTL abends and return codes
The schedule failure codes and abends in a DBCTL environment are listed, together with the conditions
that can arise on a PSB schedule request because DBCTL is not available or the PSB cannot be found.

With DBCTL, your program specification block (PSB) scheduling request might fail either because DBCTL
is not available, or because the PSB cannot be found. However, after a successful PSB schedule, CICS
might be disconnected from DBCTL for some reason, and subsequent DBCTL requests will fail. This
situation, which is unique to a DBCTL environment, causes an ADCJ abend to be issued. Table 12 on page
91 summarizes the schedule failure codes and abends in a DBCTL environment, and the conditions that
can arise on a PSB schedule request because DBCTL is not available or the PSB cannot be found.

90 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_container_dlicallsreference.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_container_dlicallsreference.htm

Table 12. Summary of abends and return codes

Request EXEC
abend

CALL UIBDLTR CALL UIBFCTR CALL
abend

Explanation

PSB schedule or
DL/I request

ADCA ---- ---- ADCA Error detected in DBCTL.

DL/I request ADCB ---- ---- ADCB PSB not scheduled.

PSB schedule
request

ADCC ---- ---- ADCC PSB already scheduled
detected in DBCTL.

DL/I request ADCD ---- ---- ADCD Deadlock detected.

PSB schedule or
DL/I request

ADCE ---- ---- ADCE Bad response code has been
returned from DFHDBAT.

DL/I request ADCI ---- ---- ADCI Lock outstanding.

DL/I request ADCJ ---- ---- ADCJ DBCTL not available on DL/I
request 1.

PSB schedule or
DL/I request

ADCN ---- ---- ADCN FORCEPURGE issued while
running in DBCTL.

PSB schedule
request

ADCP ---- ---- ADCP The user is not authorized to
use the PSB.

PSB schedule
request

ADCQ ---- ---- ADCQ The SYSSERVE keyword or
the I/O PCB option was not
specified, and the PSB does
not contain any DB PCBs.

DL/I request ADCR ---- ---- ADCR DL/I request (other than
PSB schedule) issued when
DBCTL not connected.

PSB schedule
request

ADDA ---- ---- ADDA An error response from the
storage domain.

PSB schedule or
DL/I request

ADDK ---- ---- ADDK CICS Lock manager call
failed.

Terminate request ASPR ---- ---- ASPR Single-phase commit
request issued but CICS
unable to report outcome.
IMS updates are either
backed out, or committed.
IMS is not indoubt about the
UOW.

Terminate request ASP7 ---- ---- ASP7 Single-phase commit
request failed. IMS backed
out any updates in the UOW.

PSB schedule
request

DHTA X'01' (PSBNF) X'08' (INVREQ) ---- PSB not found 2.

PSB schedule
request

DHTC X'03' (PSBSCH) X'08' (INVREQ) ---- PSB already scheduled
detected in CICS.

PSB schedule
request

DHTE X'05' (PSBFAIL) X'08' (INVREQ) ---- PSB initialization failed.

Chapter 4. Application programming for DBCTL 91

Table 12. Summary of abends and return codes (continued)

Request EXEC
abend

CALL UIBDLTR CALL UIBFCTR CALL
abend

Explanation

Terminate request DHTG X'07' (TERMNS) X'08' (INVREQ) ---- PSB not scheduled.

DL/I request DHTH X'08' (FUNCNS) X'08' (INVREQ) ---- PSB not scheduled, detected
by CICS.

PSB schedule
request

DHTJ X'FF' (DLINA) X'08' (INVREQ) ---- DBCTL not available on PSB
scheduling 3.

PSB schedule,
DL/I, and
terminate
requests

DHxx ---- ---- ---- Many reasons. xx is the
PCB status code. (See also
“Preventing DHxx abends
after EXEC DLI SCHD PSB
failure” on page 86 .)

PSB schedule or
DL/I request

---- X'00' (INVARG) X'08' (INVREQ) ---- Invalid argument.

PSB schedule or
DL/I request

---- TR
status
code in
DIB-
STAT

X'14' (NOTDONE) X'08' (INVREQ) ---- Global user exit XDLIPRE
indicates that DL/I request
should not be run.

Note:

1. DBCTL is in use, and a PSB has been scheduled. However, the connection between CICS and DBCTL
has since been broken.

2. The PSB was not found in PDIR and DBCTL was not ready. Alternatively, the PSB was not found in PDIR
and DBCTL was ready but the PSB was not found in DBCTL APPLCTN.

3. DBCTL was not ready at the time of the DL/I request.

If you use remote DL/I with DBCTL, you might also receive Axxx and DHxx abends that are not listed here.

For details of DL/I status codes, and information about DH xx abends (where xx indicates the DL/I status
code), see IMS messages and codes in IMS product documentation.

92 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm

Chapter 5. Security for DBCTL
When you use CICS with DBCTL, several security facilities are available.

You can use one or more of the following optional security facilities:

• “PSB authorization checking by CICS” on page 93
• Resource access security checking by DBCTL
• DBCTL password security checking

For details about resource access security checking by DBCTL and DBCTL password security checking,
see System administration in IMS product documentation.

Of the resources you can protect by using IMS security, you only need to be concerned about only with
PSBs, databases, and commands.

PSB authorization checking by CICS
At PSB scheduling time, CICS invokes security checking to determine whether the terminal user is
authorized to access the PSB. The actual check is carried out by an external security manager, which can
be RACF or your own security program.

Although PSB scheduling requests are sent to DBCTL for processing, CICS does PSB authorization
checking. For programming information about writing your own security program, see Invoking an
external security manager.

© Copyright IBM Corp. 1974, 2023 93

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfha378.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfha378.html

94 CICS TS for z/OS: IMS Database Control Guide

Chapter 6. Troubleshooting DBCTL
In a CICS-DBCTL environment, you need to correlate information produced by the CICS system with
information produced by the DBCTL system. This information includes trace entries produced by CICS and
DBCTL, dumps produced by CICS, the DRA, and DBCTL, and messages produced by CICS, the DRA, and
DBCTL.

The link between CICS and DBCTL in all these cases is the recovery token. It appears in trace entries, in
dumps (including the dump header), and in messages issued by CICS and DBCTL.

For detailed component descriptions of DBCTL, which can be useful in debugging, see CICS TS
diagnostics reference. For similar guidance on messages and abend codes issued by the DRA and by
DBCTL, see IMS messages and codes in IMS product documentation.

Interactions between CICS and DBCTL
Errors can occur during interactions between CICS and DBCTL at the interface level or during interactions
between CICS and DBCTL caused by requests.

Interactions between CICS and DBCTL at the interface level
• Connection to DBCTL.

See “Connection to DBCTL has failed to complete” on page 96.
• Disconnection from DBCTL. (This includes intentional operator-requested disconnection, and

unintentional disconnections caused by failures of the system, or parts of the CICS-DBCTL interface.)

See “Disconnection from DBCTL failed to complete” on page 97.

Interactions between CICS and DBCTL caused by requests
• Requests that are issued by applications:

– Waits or failures during PSB scheduling.

See “Failures during PSB scheduling” on page 97.
– Waits or failures during the processing of a DL/I request.

See “Failures during DL/I request processing” on page 98.
• Requests that are issued as a result of task termination, including syncpoint processing:

– Failures during PREPARE processing
– Failures during COMMIT processing (TERM call or task termination)
– Failures during resynchronization of UOWs

In all these cases, see “Thread termination” on page 106.

Correlating activity in DBCTL and CICS
Using the /DISPLAY command to display DBCTL activity and the CEMT INQ TASK to display CICS activity
are useful means of correlating what is happening on each side of the interface.

Check to see that the recovery token matches in CICS and DBCTL. If it does not, this may indicate a
thread hanging. /DISPLAY CCTL ALL displays all the threads associated with CICS tasks in DBCTL. If you
enter /DISPLAY ACTIVE ALL, region and DC activity is also displayed, enabling you to find out if a BMP is
waiting in DBCTL.

© Copyright IBM Corp. 1974, 2023 95

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/home/reference-diagnostics.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/home/reference-diagnostics.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm

Determining whether a problem is occurring in CICS or in DBCTL
To help you determine whether a problem is occurring in DBCTL or in CICS, examine the CICS transaction
or system dump. These dumps include indications of the point at which DFHDBAT passes control to
DBCTL and the point at which DBCTL returns control to DFHDBAT. Correlating this with the time at which
the problem occurred should tell you whether it was in CICS or DBCTL.

Each page of auxiliary trace output also includes a timestamp, as mentioned in “Connection to DBCTL” on
page 99. These timestamps should also help you correlate events in CICS with events in DBCTL.

DBCTL error scenarios
DBCTL errors can occur in a variety of ways, such as during connection to DBCTL, or during PSB
scheduling. Use dumps and trace messages to help diagnose the error for fixing.

Connection to DBCTL has failed to complete
In this situation, the DRA may be in a wait state because you attempted to connect CICS to DBCTL using
the CDBC transaction, but the connection process failed to complete.

Connection to DBCTL using the CICS-supplied transaction CDBC takes place in two phases. In phase 1,
CDBC passes the request for connection to IMS and returns. In phase 2, IMS processes the request
asynchronously and returns to CICS when connection is complete. To discover where the problem
occurred, try to find out how far the connection attempt has progressed by taking either of the following
actions:

• Press PF2 on the CDBC menu panel to refresh this display, as described in CDBC transaction for connect
and disconnect

• Use the CDBI inquiry panel, as described in CDBI transaction for inquiry.

If phase 1 fails to complete
If connection is in phase 1, the following message is issued:

DFHDB8291 I DBCTL CONNECT PHASE 1 IN PROGRESS

It is very unlikely that a wait will occur during this phase, unless there is a problem with the CICS
transaction.

If phase 2 fails to complete
If connection is in phase 2, the following message is issued:

DFHDB8292 I DBCTL CONNECT PHASE 2 IN PROGRESS

If phase 2 fails to complete, the failure is associated with IMS. Here are some possible causes of this
failure:

• The DRA startup table is pointing to the wrong system because the DBCTL subsystem ID is incorrect. If
this is so, CICS issues a WTO message saying:

SUBSYSTEM xxxx NOT ACTIVE. REPLY WAIT OR CANCEL

where xxxx is the subsystem ID indicated on the CDBC panel.

See Defining the IMS DRA startup parameter table for information on specifying the DBCTL subsystem
ID.

• DBCTL has been initialized, but no restart command has been issued. Remember that DBCTL needs a
restart command unless you are using AUTO start. See Connecting to DBCTL:overview and Restarting
DBCTL for information on restarting DBCTL and on the implications of different restart options.

96 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht41y.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht41y.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht421.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/database/dfht41p.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht41v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht43e.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht43e.html

If neither situation applies
If neither of these situations applies, the problem is in IMS; see Diagnosis in IMS product documentation
for further guidance.

Learn more
For an example of the trace entries produced by CICS for a successful connection to DBCTL, see
“Connection to DBCTL” on page 99.

Disconnection from DBCTL failed to complete
The DRA might be in a wait state because you attempted to disconnect CICS from DBCTL using the CDBC
transaction, but the disconnection process failed to complete.

For an example of the trace entries produced by CICS for a successful disconnection from DBCTL, see
“Disconnection from DBCTL” on page 102.

When you use CDBC to disconnect from DBCTL, it invokes another CICS transaction, CDBT. CDBT makes
the disconnection request to DBCTL, and is suspended by CICS while DBCTL services the request
asynchronously.

If disconnection fails to complete, you can inquire on CDBT by using CEMT INQ TASK to see how far
disconnection has progressed. You might find that CDBT is waiting on resource name DLSUSPND and
resource type DBCTL, which means the request is being processed by DBCTL. For an illustrated example,
see the description of CEMT INQ TASK in Purging a transaction that is using DBCTL.

• If CDBT is waiting on DLSUSPND, the next step depends on whether the disconnection requested was
orderly or immediate. To find out, you can use the CDBI inquiry panel, as described in CDBI transaction
for inquiry.

– If you requested orderly disconnection, DBCTL is probably waiting for a task that is issuing many
DL/I requests, or for a conversational task, perhaps one that is waiting for input from an unattended
terminal.

If necessary, you can override an orderly disconnection by requesting immediate disconnection, in
which case the process should conclude at once. However, be aware that immediate disconnection
can cause indoubt UOWs, and leave database records unavailable to other CICS systems using
that DBCTL until it is reconnected, as described in Deciding whether to use orderly or immediate
disconnection.

– If you requested immediate disconnection, and it has not taken place, an unexpected wait in IMS has
probably occurred. For further guidance, see Diagnosis in IMS product documentation.

• If CDBT is not waiting on DLSUSPND, this indicates a problem in CICS.

Failures during PSB scheduling
Use the DBCTL operator command /DISPLAY to investigate failures during PSB scheduling.

• Use /DISPLAY PROGRAM psbname to check that the ACB is valid. A status of "invalid" means that the
PSB was not defined during IMS system generation. A status of "notinit" means that the ACB is not in
the ACBLIB. A status of "stopped" means an error has caused DBCTL to stop the PSB, or that a /STOP
command has been issued for the PSB. Investigate the cause of this error. When resolved, use /START
PROGRAM psbname to start the PSB again.

• Use /DISPLAY DATABASE dbname to check that the databases are valid.

Learn more
For examples of trace entries produced by CICS during PSB scheduling (both successful and failed), see
“PSB schedule” on page 104 and “PSB scheduling failure” on page 105.

Chapter 6. Troubleshooting DBCTL 97

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dgr/dgr.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht42a.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht421.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht421.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht420.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht420.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dgr/dgr.htm

Failures during DL/I request processing
The DRA might enter a wait state because you have a CICS task in a wait state.

If a task appears to hang, query it using CEMT INQ TASK, as for any CICS task. If a task is waiting on a
resource name of DLSUSPND and resource type DBCTL, the task has made a DL/I request and has been
suspended in CICS while DBCTL services that request. If repeated use of CEMT INQ TASK shows the
task still waiting on DLSUSPND, it has hung in DBCTL. If you want to purge the task, you must use DBCTL
operator commands to do so. See Purging a transaction that is using DBCTL for an illustrated example of
using CEMT INQ TASK and the relevant DBCTL operator commands in this way.

If the task is not waiting on DLSUSPND, this might indicate a problem in CICS.

Learn more
For an example of the trace entries produced by CICS during DL/I request processing, see “CICS task
issuing DL/I requests to be processed by DBCTL” on page 105. For an example of the trace entries
produced by DBCTL during DL/I request processing, see “Trace entries produced by DBCTL” on page 107.

Trace for CICS DBCTL
When examining traces entries produced by CICS and DBCTL, you must relate them according to whether
they are produced at the same time in CICS and in DBCTL, or at different times. You must also know how
to find the relevant parts of each trace and use them to correlate what is happening in CICS and in DBCTL.

Trace entries produced by CICS
Use the CICS-supplied transaction CETR to trace DBCTL activity. CETR traces DL/I requests until they
leave DFHDBAT.

The following information gives examples of CICS trace entries produced at the following points:

• “Connection to DBCTL” on page 99
• “Disconnection from DBCTL” on page 102
• “PSB schedule” on page 104
• “PSB scheduling failure” on page 105
• “CICS task issuing DL/I requests to be processed by DBCTL” on page 105
• “Thread termination” on page 106

For details of the general format of CICS trace entries, how to select trace options for component and task
tracing, whether to use "standard" or "special" tracing, and how to start and stop tracing selectively, see
Using CICS trace. For information about formatting and printing trace entries, including a sample job you
can use to do this, see Sample monitoring data print program (DFH$MOLS).

In the example traces, numbers in the margin indicate things that might be useful to correlate CICS and
DBCTL activity. These additional numbers are not part of the trace output. Also, some trace entries are
omitted for brevity, as indicated by the following symbol:

 .
 .

98 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht42a.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/dfhs13p.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/utilities/dfha61u.html

Connection to DBCTL
An example of the CICS trace entries produced when CICS connects to DBCTL.

1 .
 .
2 00028 1 AP 00E1 EIP ENTRY LINK 0004,07301464,08000E02
 00028 1 PG 1101 PGLE ENTRY LINK_EXEC DFHDBCON,07301088 , 00000014
 00028 1 DD 0301 DDLO ENTRY LOCATE 06D08F80,07301698,PPT,DFHDBCON
 00028 1 DD 0302 DDLO EXIT LOCATE/OK D7D7E3C5 , 06D89858
 00028 1 LD 0001 LDLD ENTRY ACQUIRE_PROGRAM 06D8BF50
 .
 .
3 00028 1 XM 1101 XMAT ENTRY ATTACH CDBO,07302E38 , 00000004,0,NONE,C,NO,YES,NO,0
 00028 1 XM 0401 XMLD ENTRY LOCATE_AND_LOCK_TRANDEF CDBO
 00028 1 DD 0301 DDLO ENTRY LOCATE 06D00040,07303314,TXD,CDBO
 00028 1 DD 0302 DDLO EXIT LOCATE/OK 06D86B78 , D7000000
 .
 .
4 00028 1 LD 0001 LDLD ENTRY ACQUIRE_PROGRAM DFHDBSPX,YES
 00028 1 LD 0002 LDLD EXIT ACQUIRE_PROGRAM/OK 870A0020,070A0000
 .
 .
5 00028 1 AP 00E1 EIP ENTRY ENABLE 0004,07302AD4 ...M,08002202
 .
6 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.7144860002
 .
7 00028 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
 00028 1 AP 0310 DBAT ENTRY APPLICATION REQUEST
8 00028 1 AP 0314 DBAT EVENT DRA-ROUTER-LOAD , LOAD-RESPONSE-CODE (00000000)
9 00028 1 AP 0315 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR INTERFACE REQUEST , 0100
10 00028 1 AP 0316 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR INTERFACE REQUEST , 00000000
 00028 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000000)
11 00028 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)
 00028 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)
12 00028 1 ME 0301 MEME ENTRY SEND_MESSAGE 1FB4,073D642C , 00000004,073D5060 , 00000002,DB
 00028 1 ME 0501 MEIN ENTRY INQUIRE_MESSAGE_DATA 86BB5AE0,DFHMET1E,1FB4,073039CD , 00000000 , 0000001C,07303967 , 00000000
 00028 1 KE 0101 KETI ENTRY INQ_LOCAL_DATETIME_DECIMAL
 00028 1 KE 0102 KETI EXIT INQ_LOCAL_DATETIME_DECIMAL/OK 07201995,095757,097993,MMDDYYYY
 00028 1 KE 0401 KEGD ENTRY INQUIRE_KERNEL
 00028 1 KE 0402 KEGD EXIT INQUIRE_KERNEL/OK CICSKPG1,CIA1
 00028 1 ME 0502 MEIN EXIT INQUIRE_MESSAGE_DATA/OK 06BB5D7C,06BC5E07,06BC5E1D,06BC5E7C,,I,095757,20071995,M,CIA1,CICSKPG1
 00028 1 ME 0312 MEME EVENT ISSUE-MVS-GETMAIN
 00028 1 ME 0313 MEME EVENT MVS-GETMAIN-COMPLETE
13 00028 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8116
 00028 1 DU 0600 DUTM ENTRY INQUIRE_SYSTEM_DUMPCODE DB8116
 00028 1 DU 0601 DUTM EXIT INQUIRE_SYSTEM_DUMPCODE/EXCEPTION DUMPCODE_NOT_FOUND,0,0,,,,
 00028 1 DU 0501 DUDT EXIT INQUIRE_SYSTEM_DUMPCODE/EXCEPTION DUMPCODE_NOT_FOUND,0,0,,,,
 00028 1 ME 0401 MEBU ENTRY BUILD_MESSAGE 06BC5E07,06BB5D7C,20071995,M,095757,CIA1,CICSKPG1,0730369D , 00000009,073
 00028 1 ME 0402 MEBU EXIT BUILD_MESSAGE/OK 0
 00028 1 ME FF35 MEFO ENTRY -FUNCTION(FORMAT_MESSAGE) 0698B390 , 0000006F,1,78,073039EB , 00000001,YES
 00028 1 ME FF36 MEFO EXIT -FUNCTION(FORMAT_MESSAGE) OK
14 00028 1 AP F600 TDA ENTRY WRITE_TRANSIENT_DATA CDBC,073039FB , 00000001,NO
 .
 .
15 00028 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8210
 .
 .
16 00028 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8292
 .
17 .
 00038 1 DS 0005 DSSR EXIT WAIT_MVS/OK
18 00038 1 AP 0306 DBCT EVENT POSTED FOR CONNECTION COMPLETE
19 00038 1 ME 0301 MEME ENTRY SEND_MESSAGE 1FA5,0698B240 , 00000004,073D5060 , 00000002,DB
 .
 .
 00038 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8101
 .
 .
20 00038 1 GC 2010 CCCC ENTRY WRITE 00108194 , 00000008,DBCTL,STATUS
 .
 .
 00038 1 GC 2050 CCCC EXIT WRITE/OK
21 00038 1 PG 0A01 PGLU ENTRY LINK_URM DFHDBUEX,001081F0 , 0000000B,NO
 00038 1 DD 0301 DDLO ENTRY LOCATE 06D08F80,00108220,PPT,DFHDBUEX
 00038 1 DD 0302 DDLO EXIT LOCATE/OK D7D7E3C5 , 06D89A50
 .
 .
22 00038 1 AP 0064 USER EVENT APPLICATION-PROGRAM-ENTRY CONNECT DBCTL HAS JUST BEEN CONNECTED
 .
 .
 00038 1 AP 1941 APLI EXIT START_PROGRAM/OK ,DFHDBUEX
 00038 1 LD 0001 LDLD ENTRY RELEASE_PROGRAM 0732B450,86D5B028
 00038 1 LD 0002 LDLD EXIT RELEASE_PROGRAM/OK 06D5B000,3A8,ECDSA
 00038 1 PG 0A02 PGLU EXIT LINK_URM/OK
 00038 1 AP 00E1 EIP ENTRY RESYNC 0004,001087C4 ..gD,08001604

Figure 33. CICS trace entries produced during connection to DBCTL 1 of 2

Chapter 6. Troubleshooting DBCTL 99

22 00038 1 AP 0064 USER EVENT APPLICATION-PROGRAM-ENTRY CONNECT DBCTL HAS JUST BEEN CONNECTED
 .
 .
 00038 1 AP 1941 APLI EXIT START_PROGRAM/OK ,DFHDBUEX
 00038 1 LD 0001 LDLD ENTRY RELEASE_PROGRAM 0732B450,86D5B028
 00038 1 LD 0002 LDLD EXIT RELEASE_PROGRAM/OK 06D5B000,3A8,ECDSA
 00038 1 PG 0A02 PGLU EXIT LINK_URM/OK
 00038 1 AP 00E1 EIP ENTRY RESYNC 0004,001087C4 ..gD,08001604
 .
 .
23 00038 1 AP E161 EXEC EXIT RESYNC 'DBCTL ' AT X'0713F062','JB1A ' AT X'8698B270',AT X'00000000',0 AT X
 00038 1 AP E111 EISR EXIT TRACE_EXIT/OK
 00038 1 AP 00E1 EIP EXIT RESYNC OK 00F4,00000000,00001604
 00038 1 AP 00E1 EIP ENTRY SYNCPOINT 0004,001087C4 ..gD,08001602
 .
 .
 00038 1 AP E161 EXEC EXIT SYNCPOINT 0,0,ASM,09490000
 .
 .
24 00028 1 ME 0301 MEME ENTRY RETRIEVE_MESSAGE 2065,000550A7 , 00000000 , 00000033,E,DB
 00028 1 ME 0501 MEIN ENTRY INQUIRE_MESSAGE_DATA 86BB5AE0,DFHMET1E,2065,07301F95 , 00000000 , 0000001C,07301F2F , 00000000
 .
 .
 00028 1 ME 0502 MEIN EXIT INQUIRE_MESSAGE_DATA/OK 06BB5D7C,06BC7416,06BC742C,06BC744D,I,,095759,20071995,M,CIA1,CICSKPG1
 00028 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8293

Figure 34. CICS trace entries produced during connection to DBCTL 2 of 2

Note:

1. Phase 1 of connection begins.
2. Locating DFHDBCON and loading if not already loaded. (In this example, CICS and DBCTL have

already been connected during this CICS session, so DFHDBCON has already been loaded.)
3. The control transaction, CDBO, is attached. CDBO enables the DRA to pass information from itself

and DBCTL independently of CICS. It is invoked whenever the DRA needs to determine whether to
continue processing, which is when:

• The DRA has successfully connected to DBCTL
• DBCTL has been terminated normally using /CHECKPOINT FREEZE or /CHECKPOINT PURGE
• Connection to DBCTL has failed
• A CICS request to connect to DBCTL has been canceled
• The DRA fails
• DBCTL fails

4. Loading programs needed: DFHDBSPX (shown in example), plus DFHDBCX, DFHDBMOX, DFHDBREX,
DFHDBSTX, DFHDBSSX, DFHDBTOX, and DFHDBAT.

5. DFHDBCON enables DFHDBAT.
6. A timestamp is included in the header line of every page of CICS abbreviated auxiliary trace output to

help you match trace entries with external events.
7. DFHERM invokes DFHDBAT for connection request.
8. DRA router module DFSPRRC0 loaded.
9. DRA is invoked for interface request. The type of interface request is indicated by request type from

the PAPL: 0100 is a CONNECT request. (See “PAPL request and return codes” on page 118.)
10. DBCTL return code (00000000). See “Return codes in DBCTL” on page 113.
11. Control is passed back to DFHERM.
12. Phase 1 of connection has ended at this point. Message DFHDB8116 is issued confirming that

connection is proceeding. The message includes the DBCTL identifier and the DRA suffix used.
13. When a message has been issued, the CICS dump domain checks to see if the user has requested any

action for that message (using the CEMT SET SYDUMPCODE, or the EXEC CICS SET SYSDUMPCODE
commands, (In this case, no dump has been requested, as indicated by DUMPCODE_NOT_FOUND.)
However, when you are using abbreviated trace, entries such as INQUIRE_SYSTEM_DUMPCODE
DB8116 (in which the system dump code is the message number without the characters "DFH") are
useful in indicating which messages have been issued. (Complete message numbers are included in
full trace.)

14. Message DFHDB8116 is sent to transient data destination CDBC.
15. Message DFHDB8210 is issued confirming that connection to DBCTL is proceeding.

100 CICS TS for z/OS: IMS Database Control Guide

16. Message DFHDB8292 is issued indicating that CICS is in phase 2 of connecting to DBCTL.
17. At this point, DBCTL exits are loaded, which causes I/O activity. The task is suspended, and the

control transaction, CDBO, starts. This is indicated by the task number changing (from 00031 to
00032). Control transaction enters a series of waits. CDBO invokes the CICS-DBCTL interface control
program (DFHDBCT).

18. DBCTL notifies CICS that CICS-DBCTL connection is complete.
19. Message DFHDB8101 is issued.
20. A record is written to the global catalog, indicating which DBCTL should be reconnected to if there is a

CICS failure. (See Program list table (PLT) and Connecting DBCTL to CICS automatically.)
21. DFHDBUEX, the CICS-supplied user replaceable program for use with DBCTL, is linked. Trace entries

following invocation of DFHDBUEX depend on what you have coded in your own version. (See
DFHDBUEX.)

22. In this example, the user has coded DFHDBUEX to issue a trace entry stating that DBCTL has just
been connected.

23. CICS issues an EXEC CICS RESYNC command to resynchronize any outstanding DBCTL indoubt
UOWs. (See Recovery and restart operations for DBCTL.)

24. Control transaction waits have ended: task number changes back again (from 00032 to 00031).
Message DFHDB8293 is issued confirming that DBCTL is connected and ready.

Chapter 6. Troubleshooting DBCTL 101

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfht42d.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht41w.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfht41s.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht43d.html

Disconnection from DBCTL
An example of CICS trace entries produced at disconnection from DBCTL.

1 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.7144860002
 .
2 .
 00047 1 AP 00E1 EIP ENTRY START 0004,07301464,08001008
3 00047 1 XM 0401 XMLD ENTRY LOCATE_AND_LOCK_TRANDEF CDBT
 00047 1 DD 0301 DDLO ENTRY LOCATE 06D00040,07301820,TXD,CDBT
 00047 1 DD 0302 DDLO EXIT LOCATE/OK 06D86C10 , D7000000
 .
 .
4 00047 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8211
 .
 .
5 00047 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8294
 .
 .
6 00048 1 PG 0901 PGPG ENTRY INITIAL_LINK DFHDBDSC
 .
 .
7 00048 1 AP 00E1 EIP ENTRY ADDRESS 0004,0005B010,08000202
 .
 .
8 00048 1 PG 0A01 PGLU ENTRY LINK_URM DFHDBUEX,0005B0C4 , 0000000B,NO
 00048 1 DD 0301 DDLO ENTRY LOCATE 06D08F80,0005B3A4,PPT,DFHDBUEX
 00048 1 DD 0302 DDLO EXIT LOCATE/OK D7D7E3C5 , 06D89A50
 00048 1 LD 0001 LDLD ENTRY ACQUIRE_PROGRAM 0732B450
 00048 1 LD 0002 LDLD EXIT ACQUIRE_PROGRAM/OK 86D5B028,06D5B000,3A8,0,REUSABLE,ECDSA,OLD_COPY
9 00048 1 AP 1940 APLI ENTRY START_PROGRAM DFHDBUEX,NOCEDF,FULLAPI,URM,NO,07309828,0005B0C4 , 0000000B,2
 .
 .
 00048 1 AP 0065 USER EVENT APPLICATION-PROGRAM-ENTRY DISCONN DBCTL HAS JUST BEEN DISCONNECTED
 .
 .
10 00048 1 LD 0001 LDLD ENTRY RELEASE_PROGRAM 0732B450,86D5B028
 00048 1 LD 0002 LDLD EXIT RELEASE_PROGRAM/OK 06D5B000,3A8,ECDSA
 00048 1 PG 0A02 PGLU EXIT LINK_URM/OK
 00048 1 AP 2520 ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)
 .
 .
 00048 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
 00048 1 AP 0310 DBAT ENTRY APPLICATION REQUEST
11 00048 1 AP 0315 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR INTERFACE REQUEST , 0400
12 00048 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR DISCONNECTION REQUEST
 00048 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0005B444,NO,OTHER_PRODUCT
 00048 1 DS 0005 DSSR EXIT WAIT_MVS/OK
 00048 1 AP 0305 DBSPX EVENT POSTED FOR DISCONNECTION REQUEST
13 00048 1 AP 0316 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR INTERFACE REQUEST , 00000000
 .
 .
14 00048 1 ST 0003 STST ENTRY RECORD_STATISTICS 072F7618 , 00000054,USS
 .
 .
 00048 1 ST 0004 STST EXIT RECORD_STATISTICS/OK
 00048 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000000)
 00048 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)
 00048 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)
15 00048 1 GC 2010 CCCC ENTRY WRITE 0005B0BC , 00000008,DBCTL,STATUS
16 .
 .
 00048 1 DS 0004 DSSR ENTRY WAIT_MVS ASYNRESP,CCVSAMWT,06C8D5C0,NO,IO
 00038 1 DS 0005 DSSR EXIT WAIT_MVS/OK
17 00038 1 AP 0306 DBCT *EXC* EVENT POSTED FOR DFHDBCT SHOULD TERMINATE
 00038 1 AP 00E1 EIP ENTRY START 0004,001087C4 ..gD,08001008
 .
 .
 00038 1 XM 0401 XMLD ENTRY LOCATE_AND_LOCK_TRANDEF CDBD
 00038 1 DD 0301 DDLO ENTRY LOCATE 06D00040,0730C078,TXD,CDBD
 00038 1 DD 0302 DDLO EXIT LOCATE/OK 06D86918 , D7000000
 .
 .
 00038 1 AP 00F3 ICP ENTRY INITIATE CDBD
4003,0000000C,00000000,CDBD
 .
 .
18 00049 1 LD 0001 LDLD ENTRY RELEASE_PROGRAM DFHDBSSX,8711A910
 00049 1 LD 0002 LDLD EXIT RELEASE_PROGRAM/OK
 .
 .
 00049 1 ME 0502 MEIN EXIT INQUIRE_MESSAGE_DATA/OK
06BB5D7C,06BC56B8,06BC56CE,06BC5710,,I,100011,20071995,M,CIA1,CICSKPG1
19 00049 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8102

Figure 35. CICS trace entries produced during disconnection from DBCTL

Note:

1. Timestamp, as mentioned in “Connection to DBCTL” on page 99.
2. Phase 1 of disconnection begins at this stage.
3. The CICS-DBCTL interface disconnection transaction, CDBT, is attached.

102 CICS TS for z/OS: IMS Database Control Guide

4. Message DFHDB8211 is issued to confirm that orderly disconnection is proceeding. This message is
issued in response to the user pressing PF5 on the CDBC screen. (For an immediate disconnection,
message DFHDB8212 is issued.)

5. Message DFHDB8294 is issued confirming that orderly disconnection is in progress. (If immediate
disconnection had been requested, message DFHDB8295 would have been issued.)

6. CDBT invokes CICS-DBCTL interface disconnection program, DFHDBDSC. A wait is entered (task
number changes, from 00034 to 00035).

7. The EXEC interface program, DFHEIP, links to the CICS-DBCTL user-replaceable program,
DFHDBUEX.

8. DFHDBUEX is loaded.
9. Trace entries at this point depend on what, if anything, you have coded in your own version of

DFHDBUEX. (See DFHDBUEX.) In this example, DFHDBUEX has been coded to issue a trace entry
stating that DBCTL has just been disconnected.

10. DFHDBUEX is released and control is passed back to DFHDBDSC.
11. The DRA is invoked for an interface request. (PAPL request type 0400 indicates the request is a

DISCONNECT. See “PAPL request and return codes” on page 118.)

If there is DL/I activity at the time of the disconnect, and the disconnect is orderly (not immediate)
DFHDBAT links to DFHDBSPX (the CICS-DBCTL suspend exit) to wait for all DL/I activity to complete.
In this example, there was no DL/I activity at the time the disconnect was issued.

12. The DRA links to DFHDBSPX to cause the CICS task to wait while the DRA processes the disconnect
request.

13. DBCTL return code (00000000). (See “Return codes in DBCTL” on page 113.)
14. Statistics for this session are recorded. (See DBCTL statistics.)
15. DFHDBDSC writes a record to the CICS global catalog, to indicate that CICS is no longer connected to

DBCTL.
16. Phase 2 of disconnection begins.
17. DFHDBDI’s associated transaction, CDBD, runs and disables DFHDBAT to make it unavailable. (The

transaction number changes from 00035 to 00032.)
18. Programs loaded at startup are disabled. This example shows DFHDBSPX. A complete trace should

also include similar entries for other programs loaded at startup, as listed in “Connection to DBCTL”
on page 99.

19. Message DFHDB8102 is issued confirming that disconnection from DBCTL is complete.

Chapter 6. Troubleshooting DBCTL 103

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfht41s.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/monitoring/dfht459.html

PSB schedule
An example of some CICS trace entries produced at PSB schedule time.

 .
 .
1 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.7144860002
 .
 .
 00039 1 AP 00E1 EIP ENTRY CALLDLI 0004,00182718,00004000 .. .
2,3 00039 1 AP 0328 DLI ENTRY FUNCTION_CODE(PCB) 000C7526,TDLRA1
 .
 .
 00039 1 AP 0330 DLIDP ENTRY DBCTL
 .
 .
 00039 1 AP 2520 ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)
 .
 .
 00039 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
 00039 1 AP 0310 DBAT ENTRY APPLICATION REQUEST
4,5 00039 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,0301
6 00039 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST
 00039 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0732001C,NO,OTHER_PRODUCT
 00039 1 DS 0005 DSSR EXIT WAIT_MVS/OK
 00039 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST
4,7 00039 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,00000000
 00039 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000000)
 00039 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)
 .
 .
 00039 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)
 00039 1 AP 0331 DLIDP EXIT DBCTL
 00039 1 AP 0329 DLI EXIT IMS_PCB_FORMAT 0000,0000,PCB
8 00039 1 AP 00E1 EIP EXIT CALLDLI OK 00F4,00000000,00004000 .. .

Figure 36. CICS trace entries produced for successful PSB schedule

Note:

1. Timestamp, as mentioned in “Connection to DBCTL” on page 99.
2. DL/I command or call type: PCB indicates a schedule request using the DL/I call interface.
3. PSB name (TDLRA1).
4. Recovery token (C3C9C3E2D2D7C7F1AB6538123994CA01).
5. The DRA is invoked for a thread request: 0301 is a PSB schedule request. (See “PAPL request and

return codes” on page 118.)
6. DFHDBAT must wait, because the request has entered IMS code.
7. The DFHDBAT wait ends and DBCTL return code (00000000) is issued. The DBCTL return code is

00000000 because the PSB was successfully scheduled. See Figure 37 on page 105 for an example of
the DBCTL return code in the case of a PSB scheduling failure. See “Return codes in DBCTL” on page
113 for an explanation of DBCTL return codes.

8. 00 in the UIBFCTR, and 00 in the UIBDLTR (underscored in this example) indicate that the PSB was
scheduled successfully. See “PSB scheduling failure” on page 105 for an example of the contents of
these fields, PSB scheduling fails. See Summary of DBCTL abends and return codes for information on
the UIBFCTR and UIBDLTR.

104 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht43m.html

PSB scheduling failure
An example of the trace entries produced if PSB scheduling fails.

1 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.7144860002
 .
 .
 00064 1 AP 00E1 EIP ENTRY CALLDLI 0004,00182718,00004000 .. .
2,3 00064 1 AP 0328 DLI ENTRY FUNCTION_CODE(PCB) 000C8946,TXLRA1
 .
 .
 00064 1 AP 0330 DLIDP ENTRY DBCTL
 .
 .
 00064 1 AP 2520 ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)
 .
 .
 00064 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
 00064 1 AP 0310 DBAT ENTRY APPLICATION REQUEST
4,5 00064 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB654BD5E4F07E04,0301
6 00064 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST
 00064 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0732001C,NO,OTHER_PRODUCT
 00064 1 DS 0005 DSSR EXIT WAIT_MVS/OK
 00064 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST
 00064 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB654BD5E4F07E04,880001AC
 00064 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000000)
 00064 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)
 00064 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)
 00064 1 ME 0301 MEME ENTRY SEND_MESSAGE 1FAD,00051230 , 00000004,0011F5D0 , 00000005,0011F5D5 , 00000008,0011F3CC
 00064 1 ME 0501 MEIN ENTRY INQUIRE_MESSAGE_DATA 86BB5AE0,DFHMET1E,1FAD,073017ED , 00000000 , 0000001C,07301787 , 00000000
 .
 .
7 00064 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8109
 .
 .
 00064 1 AP 0331 DLIDP EXIT DBCTL
8 00064 1 AP 0329 DLI EXIT IMS_PCB_FORMAT 0805,0000,PCB
 00064 1 AP 00E1 EIP EXIT CALLDLI OK 00F4,00000000,00004000 .. .

Figure 37. CICS trace entries produced for failed PSB schedule

Note:

1. Timestamp, as explained in “Connection to DBCTL” on page 99.
2. DL/I command or call: PCB indicates a schedule request using the DL/I call interface.
3. PSB name (TXLRA1).
4. Recovery token (C3C9C3E2D2D7C7F1AB654BD5E4F07E04).
5. The DRA is invoked for a thread request: 0301 is a PSB schedule request. (See “PAPL request and

return codes” on page 118.)
6. The reason for the PSB scheduling failure is in the DBCTL return code (880001AC). In this case, it is

X'1AC', indicating an IMS user abend U0428 (decimal), which was issued because the PSB was not
defined to DBCTL.

7. Message DFHDB8109 is issued. It contains the IMS user abend, the recovery token, and the DBCTL ID.
(For an example and explanation of how messages are displayed in abbreviated trace, see “Connection
to DBCTL” on page 99.)

8. 0805 (underscored in this example) indicates that a PSB scheduling failure has occurred. 08 is in the
UIBFCTR, and 05 in the UIBDLTR. (See Summary of DBCTL abends and return codes for information on
the UIBFCTR and UIBDLTR.)

CICS task issuing DL/I requests to be processed by DBCTL
An example of CICS trace entries produced when a DL/I request is issued.

For an example of trace entries produced by DBCTL for processing of a DL/I request, see “Trace entries
produced by DBCTL” on page 107.

Chapter 6. Troubleshooting DBCTL 105

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht43m.html

1 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.7144860002
 00040 1 AP 00E1 EIP ENTRY CALLDLI 0004,00183718,00004000 .. .
2,3 00040 1 AP 0328 DLI ENTRY FUNCTION_CODE(GU) 0001A8AC,DLIDBDR
 00040 1 AP 0330 DLIDP ENTRY DBCTL
 00040 1 AP 2520 ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)
 00040 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
 00040 1 AP 0310 DBAT ENTRY APPLICATION REQUEST
4,5 00040 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB653817A31F9000,0303
 00040 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST
 00040 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0739501C,NO,OTHER_PRODUCT
 00041 1 DS 0005 DSSR EXIT WAIT_MVS/OK
 00041 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST
4,6 00041 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB653817A6C96600,00000000
 00041 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000000)
 00041 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)
 00041 1 RM 0301 RMLN ENTRY SET_LINK 01050000,073D69D4 , 00000000 , 00000008,NECESSARY,
 00041 1 RM 0302 RMLN EXIT SET_LINK/OK
 00041 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)
 00041 1 AP 0331 DLIDP EXIT DBCTL
7 00041 1 AP 0329 DLI EXIT IMS_PCB_FORMAT 0000,0000,PCB
 00041 1 AP 00E1 EIP EXIT CALLDLI OK 00F4,00000000,0 0004000 .. .

Figure 38. CICS trace entries produced for a DL/I request

Note:

1. Timestamp, as mentioned in “Connection to DBCTL” on page 99.
2. DL/I command or call: GU indicates a GET UNIQUE request. (See Comparing EXEC DLI commands and

DL/I calls and DL/I requests supported.)
3. DBD name (DLIDBDR).
4. Recovery token (C3C9C3E2D2D7C7F1AB653817A31F9000). 3
5. The DRA is invoked for a thread request: 0303 is a DL/I request. (See “PAPL request and return codes”

on page 118.)
6. DBCTL return code (00000000). (See “Return codes in DBCTL” on page 113.)
7. Status code in the DIBSTAT (underscored in this example) is 0000, indicating that the request was

successful. See Summary of DBCTL abends and return codes for the contents of DIBSTAT in the case
of an unsuccessful request.

Thread termination
Example trace entries produced during PREPARE, COMMIT, and TERMINATE request processing.

See Two-phase commit for DBCTL for a description of PREPARE and COMMIT request processing.

106 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht43t.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht43t.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht43u.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht43m.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht42n.html

 .
 .
1 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 09:59:09.1299476250
2 00039 1 AP 2520 ERM ENTRY SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)
 00039 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
 00039 1 AP 0310 DBAT ENTRY SYNCPOINT-MANAGER REQUEST
3,4 00039 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,0304
 00039 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST
 00039 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0732001C,NO,OTHER_PRODUCT
 00039 1 DS 0005 DSSR EXIT WAIT_MVS/OK
 00039 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST
3,5 00039 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST ,
C3C9C3E2D2D7C7F1AB6538123994CA01,00000000
 00039 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000004)
 00039 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)
 00039 1 AP 2521 ERM EXIT SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)
 .
 .
 00039 1 AP 2520 ERM ENTRY SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)
 00039 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
 00039 1 AP 0310 DBAT ENTRY SYNCPOINT-MANAGER REQUEST
3,6 00039 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,0307
 00039 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST
 00039 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0732001C,NO,OTHER_PRODUCT
 .
 .
 00039 1 DS 0005 DSSR EXIT WAIT_MVS/OK
 00039 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST
3,5 00039 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST ,
C3C9C3E2D2D7C7F1AB6538123994CA01,00000000
 00039 1 MN 0201 MNMN ENTRY MONITOR 1,DBCTL,7320090,100
 00039 1 MN 0202 MNMN EXIT MONITOR/OK
3,7 00039 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,030F
 00039 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST
 00039 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0732001C,NO,OTHER_PRODUCT
 .
 .
 00039 1 DS 0005 DSSR EXIT WAIT_MVS/OK
 00039 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST
3,5 00039 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST ,
C3C9C3E2D2D7C7F1AB6538123994CA01,00000000
 00039 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)
8 00039 1 AP 2521 ERM EXIT SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)

Figure 39. CICS trace entries produced during thread termination after DL/I request

Note:

1. Timestamp, as mentioned in “Connection to DBCTL” on page 99.
2. Enters syncpoint manager.
3. Recovery token (C3C9C3E2D2D7C7F1AB6538123994CA01).
4. The DRA is invoked for a thread request: 0304 is a PREPARE request. See “PAPL request and return

codes” on page 118.
5. DBCTL return code (00000000), one for each of the requests PREPARE, COMMIT, and TERMINATE

THREAD.
6. The DRA is invoked for a thread request: 0307 is a COMMIT request. See “PAPL request and return

codes” on page 118.
7. The DRA is invoked for a thread request: 030F is a TERMINATE THREAD request. See “PAPL request

and return codes” on page 118.
8. Leaves syncpoint manager. (See “Return codes in DBCTL” on page 113.)

Trace entries produced by DBCTL
In DBCTL, tracing is started by specifying an option in member DFSVSMxx in the IMS.PROCLIB (where xx
is the suffix specified by VSPEC= in the DBCTL startup JCL).

See System definition in IMS product documentation for guidance on the DFSVSMxx member.
Alternatively, you can start tracing dynamically with the /TRACE command. (See Operations and
automation in IMS product documentation for guidance on the /TRACE command and its keywords.)

In DBCTL, you can start PI tracing in the DFSVSMxx member of the IMS.PROCLIB, as explained here.
Alternatively, you can start PI tracing in DBCTL by issuing the command:

/TRACE SET ON PI

Chapter 6. Troubleshooting DBCTL 107

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm

DBCTL produces an external trace when DL/I requests are issued to be processed by DBCTL. This trace
corresponds to the CICS trace for a DL/I request being processed by DBCTL, as shown in Figure 38
on page 106. (DBCTL does not produce any external traces that correspond with the other CICS trace
examples given.)

Figure 40 on page 109 shows an example of the trace records produced when you use the DL/I
trace table. To start the DL/I trace table, DLI=ON must have been specified in the DFSVSMxx member
of IMS.PROCLIB. Specifying DLI=ON also enables program isolation and lock trace. For guidance on
specifying DLI=ON, see System definition in IMS product documentation. Alternatively, you can start DL/I
tracing dynamically using the /TRACE command, as follows:

/TRACE SET ON TABLE DL/I

For a more detailed example, see Operations and automation in IMS product documentation, example 8.

108 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm

Not used

AC070E87 D9E3D2D5 00000000 00000000 C3C9C3E2 E6D2D8F1 A031BB3E D5863000

Recovery token

Eyecatcher RTKN

Trace sequence number

PST number

x ‘AC’ database call analyzer entry

Figure 40. X'AC' trace entry

Chapter 6. Troubleshooting DBCTL 109

The DBCTL trace entry shown in Figure 40 on page 109 includes:

• X'AC': the database call analyzer entry, which is only present for DBCTL.
• The partition specification table (PST) number. The PST number is equivalent to a particular DL/I thread

number, as displayed using the /DISPLAY command, and can be used to find all DBCTL trace records for
a particular thread. (For an example of a thread number being displayed, see Purging a transaction that
is using DBCTL.)

• The trace sequence number.
• An "eyecatcher" recovery token. This is the actual characters "RTKN", used to draw attention to the

recovery token in the same line, and is the same in every X'AC' entry.
• The recovery token that is passed from CICS via DFHDBAT.

You can print and format this data using the IMS file select and formatting print utility, DFSERA10. You
would typically print and format several log types, plus the X'AC' records to enable you to correlate the
DBCTL activity with your CICS trace for a DL/I request.

Printing and formatting IMS X'67FA' log records

About this task
Figure 41 on page 110 shows an example of JCL and DD statements that you can use to print and format
IMS X'67FA' log records. For further examples, see Database utilities in IMS product documentation.

//LOGPRINT JOB 1,PGMERID,MSGCLASS=A,MSGLEVEL=(1,1),
// CLASS=A
//ERA10 EXEC PGM=DFSERA10,REGION=4096K
//STEPLIB DD DISP=SHR,DSN=IMS.RESLIB
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//LOGIN DD DISP=SHR,DSN=IMS.SLDS.OLDS00
//SYSIN DD *
CONTROL CNTL DDNAME=LOGIN
OPTION PRINT OFFSET=5,FLDLEN=2,VALUE=67FA,COND=E,EXITR=DFSERA60
END
/*
//

Figure 41. Example JCL to print and format IMS '67FA' log records

The output should contain the following:

• The request type.
• The recovery token, plus an eyecatcher (GRTKN) to indicate presence of the recovery token, which

includes the CICS APPLID.
• The database name.

See Database utilities in IMS product documentation for examples of formatted DL/I trace tables.

Dumps for CICS DBCTL
CICS, DBCTL, and the database resource adapter (DRA), produce a variety of dumps. Examining these
dumps, particularly the CICS transaction or system dump, can help you determine whether a problem
occurred in CICS or in DBCTL.

What is provided in a CICS dump
When a transaction abends or requests a dump, the following areas are written to one or more CICS dump
data sets:

• The TCA representing the task.
• The CSA and CSA optional feature list (CSAOPFL) table. The CSAOPFL points to DFHDLPDS, the CICS-

DL/I interface parameter block.

110 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht42a.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht42a.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm

• The internal trace table, if CICS trace was active.
• Any areas acquired.

How to determine whether a problem is occurring in CICS or in DBCTL
To help you determine whether a problem is occurring in DBCTL or in CICS, examine the CICS transaction
or system dump. These dumps include indications of the point at which DFHDBAT passes control to
DBCTL and the point at which DBCTL returns control to DFHDBAT. Correlating this with the time at which
the problem occurred should tell you whether it was in CICS or DBCTL.

Each page of auxiliary trace output also includes a timestamp, as mentioned in “Connection to DBCTL” on
page 99. These timestamps should also help you correlate events in CICS with events in DBCTL.

CICS transaction dumps for the CICS-DBCTL task
A CICS transaction dump is produced whenever a CICS task terminates abnormally. For a CICS-DBCTL
task, that is, a task that issued a DFHRMCAL request to DFHDBAT, this dump includes the following:

• The CICS-DBCTL global and task local areas
• The global and task local areas for DFHDBAT
• PCBs

The recovery token for the task at the point of abnormal termination appears in the TCA (TCARTKN).

The EXEC CICS SET TRANDUMPCODE command and its equivalent CEMT SET TRANDUMPCODE enable
you to change some of the values recorded in entries in the transaction dump code table, to add new
entries to the table, and to remove existing entries from the table. For example, you can specify an action
for a particular CICS message, as mentioned in Figure 33 on page 99 in “Connection to DBCTL” on page
99.

For information about transaction dump codes and interpreting CICS dumps, see Using dumps in problem
determination.

Using CICS system dumps in DBCTL diagnosis
This dump is produced when a CEMT PERFORM DUMP|SNAP or when a PERFORM DUMP command is
issued, or when CICS abends.

CICS specifies all options when issuing this type of dump, for example, CSA and NUC. All z/OS control
blocks appear in this type of dump, including those corresponding to any subordinate TCBs. You can
format and analyze this type of dump using the interactive problem control system (IPCS). For guidance
on using IPCS, see z/OS MVS IPCS User's Guide.

The EXEC CICS SET SYSDUMPCODE command and its equivalent CEMT SET SYSDUMPCODE enable you
to change some of the values recorded in entries in the transaction dump code table, to add new entries
to the table, and to remove existing entries from the table. For example, you can specify an action for a
particular CICS message, as mentioned in Figure 33 on page 99 in “Connection to DBCTL” on page 99.

For information about system dump codes, and interpreting CICS dumps, see Using dumps in problem
determination.

DRA snap data set
The DRA’s snap data set is dynamically allocated to the CICS address space when DBCTL is connected.

The SYSOUT class used is determined by a parameter in the DRA startup table. The DRA dumps its control
blocks (those associated with its own work unit and that of DBCTL) to this data set whenever a high order
bit is set in PAPLRETC. (The participant adapter parameter list (PAPL) is a part of the DRA. For guidance
on the PAPL and its contents, see the appropriate Exit routines in IMS product documentation.) The high
order bit is set on if a thread is terminating. It then closes the snap file. The recovery token appears in the
dump produced.

Chapter 6. Troubleshooting DBCTL 111

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/dfhs148.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/dfhs148.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.ieac600/abstract.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/dfhs148.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/dfhs148.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.err/err.htm

Dumps produced by the DRA
The DRA produces an SDUMP in these situations.

DBCTL creates an SDUMP containing diagnostic information for a DL/I request failure from CICS using the
system dump data sets from the CICS job.

• If the DRA fails
• If a thread fails
• If DL/I set a high order bit in PAPLRETC for a thread request

However, the DRA does not always take a dump if DL/I sets the high order bit in PAPLRETC. If it does
not, it sets the second high order bit on to indicate this. For example:

– If PAPLRETC is 1000 0000 3 2 4 0 0 0, a dump was taken
– If PAPLRETC is 1000 1000 3 2 4 0 0 0, a dump was not taken

(See “Return codes in DBCTL” on page 113, “Using return codes to find out what kind of dump
is produced” on page 118 and “PAPL request and return codes” on page 118 for information on
interpreting these return codes.)

An SDUMP is created in a terminate address space request or a terminate thread request while running in
DBCTL and under the DRA TCB.

An SDUMP contains:

• DBCTL address space
• DLISAS address space
• A storage list for the DRA area on the request
• Key 0 CSA storage for the request processing
• MVS storage blocks: address space control block (ASCB), TCB, and RBS for the failing DRA TCB
• The local system queue area (LSQA)

If the SDUMP request fails, a SNAP dump (which contains a subset of the information in an SDUMP) is
produced instead. (See “Return codes in DBCTL” on page 113.) The SNAP contains the following subset of
the information produced in an SDUMP:

• MVS storage blocks: address space control block (ASCB), TCB, and RBS for the failing DRA TCB
• A storage list for the DRA area on the request

Because the DRA runs in problem state, it cannot access other storage areas, such as CSA or DBCTL
storage. This may mean that the SNAP does not contain enough information, and you may have to
re-create the failure and use the DBCTL address space dump.

See Diagnosis in IMS product documentation for a further comparison of the information produced in
SDUMPs and SNAP dumps, which you may find useful in diagnosis. This information also includes details
about the IMS offline dump formatter (ODF), which you can use to show the layout of IMS blocks referred
to in these dumps.

Dumps produced by DBCTL
The formatted dump feature of IMS is available with DBCTL. This feature formats the system, database,
and data communication areas of IMS. It formats the control blocks and data areas in an IMS region.

See Diagnosis in IMS product documentation for guidance information on the areas that are dumped.

Control blocks generated by DBCTL have an "eyecatcher" for visual identification. For example:

• **SCD : system contents directory area
• **SSA : SAP and save area
• **DSP : dispatcher area.

112 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dgr/dgr.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dgr/dgr.htm

The recovery token is included in dumps produced by DBCTL. Output is to the IMS log.

Messages for CICS DBCTL
DBCTL-related messages fall into these categories.

• Messages issued by the CDBC transaction and displayed on your screen. These messages relate to
the user's interaction with the transaction and they do not appear on CSMT. Any CDBC type messages
issued from the initialization transaction, when it is running from the PLT during CICS startup, are issued
as writes-to-operator (WTOs).

• Messages that appear on the status line of the CDBC and CDBI transaction screens.

CICS and IMS messages relating to CICS tasks that issue DL/I requests include the recovery token. See
also Summary of DBCTL abends and return codes.

CICS messages relating to DBCTL begin with DFHDB81 or DFHDB82.

All DBCTL-related messages are routed to a separate destination called CDBC. If you prefer, you can
direct them elsewhere (for example to CSMT).

You can suppress or reroute messages sent to transient data queues such as CDBC. You can reroute from
CDBC to a list of consoles, from CDBC to a different transient data queue, or reroute console messages to
CDBC. For programming information on coding the CICS-supplied user exit used to reroute messages and
on the sample user exit provided to help you do so, see Global user exit points.

Messages produced with DBCTL dumps and traces are sent to the DBCTL main terminal operator. IMS
messages begin with DFS. See IMS messages and codes in IMS product documentation for guidance on
interpreting and responding to IMS messages.

Return codes in DBCTL
When DBCTL responds to CICS with a return code, this can be an MVS system abend code, an IMS user
abend code, or a DBCTL return code.

The return code includes an indicator to help you determine what kind of abend it is. The DBCTL return
code (also known as the PAPLRETC) displayed in the CICS trace can contain:

• An MVS system abend code
• A user abend code (also known as a pseudo abend code)
• A DBCTL return code (also known as a DBCTL DRA return code)

The return code is 4 bytes long and is in the following form:

Chapter 6. Troubleshooting DBCTL 113

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht43m.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/user-exits/dfha331.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm

S SH H S U U U

If the top bit (bit 0 of the HH byte) is set:

• either SSS is a nonzero hexadecimal return code, for example:

114 CICS TS for z/OS: IMS Database Control Guide

1000 0000 3 2 4 0 0 0 324 (hex) system abend return code = 804 (decimal)
MVS system abend

which indicates an MVS system abend code (as explained in z/OS MVS System Codes),

• or UUU is a nonzero hexadecimal, for example:

Chapter 6. Troubleshooting DBCTL 115

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.ieah700/abstract.htm

1000 0000 0 0 0 3 4 D 34D (hex) IMS user abend code = 845 (decimal)
IMS user abend

which indicates a user abend code (as explained, for guidance, in the section on user abend codes in IMS
messages and codes in IMS product documentation).

116 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm

If the top bit (bit 0 of the HH byte) is not set, and the DBCTL return code in the CICS trace is nonzero, then
UUU is a DBCTL nonzero return code, for example:

0000 0000 0 0 0 0 3 0 30 (hex) DBCTL return code = 48 (decimal)
DBCTL return code

Chapter 6. Troubleshooting DBCTL 117

as explained, for guidance, in the DBCTL return codes section of IMS messages and codes in IMS product
documentation .

Using return codes to find out what kind of dump is produced
The top byte of the return codes indicates whether a dump is produced and, if so, whether it is an SDUMP
or a SNAP dump.

• X'80' means that an SDUMP or SNAP dump is produced. (A SNAP dump is produced if the SDUMP
request fails.)

• X'84' means that a SNAP dump only is produced.
• X'88' and X'00' both mean that neither an SDUMP nor a SNAP dump is produced.

See IMS messages and codes in IMS product documentation for guidance on interpreting IMS return
codes and DBCTL return codes (also known as DRA return codes). Messages issued by CICS also
distinguish the kind of return code you are receiving.

PAPL request and return codes
The trace examples given contain a number of 4-digit hexadecimal request codes issued by the
participant adapter parameter list (PAPL). These request codes are a concatenation of a 2-digit PAPL
function code and a 2-digit PAPL subfunction code. For further guidance on the contents of the PAPL, see
the appropriate Exit routines in IMS product documentation.

Table 13 on page 118 summarizes the PAPL request codes that are sent from CICS to the DRA, and are
displayed in CICS trace output as 4-digit request codes. See “Trace entries produced by CICS” on page 98
for examples of traces containing these request codes.

Table 13. PAPL request codes

Event Request
code

Connection 0100

Disconnection 0400

Disconnection due to CICS failure 0404

PSB schedule 0301

DL/I request 0303

COMMIT request 0307

PREPARE request 0304

Single-phase SYNCPOINT request 030A

ABORT request 030D

Terminate thread 030F

COMMIT request during resynchronization 0201

ABORT request during resynchronization 0202

Lost because CICS was initial started before resynchronization 0203

DBCTL should not be indoubt 0204

Table 14 on page 119 summarizes the PAPL return codes that are sent from the DRA to CICS. CICS
intercepts these return codes and displays them as explanatory text in trace output.

118 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/common/mc.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.err/err.htm

Table 14. PAPL return codes

Event Return code

Connection complete 0500

Identify failure 0501

Connection request (DRA INIT) canceled in reply to DFS690 message 0502

DBCTL has terminated abnormally 0503

The DRA has terminated abnormally 0504

/CHECKPOINT FREEZE or /CHECKPOINT PURGE command was issued to terminate
DBCTL normally

0505

Using CICS EDF to debug application programs in DBCTL
You can use the CICS execution (command-level) diagnostic facility (EDF), with local and remote
application programs that access databases controlled by DBCTL.

EDF supports the additional EXEC DLI commands and keywords that you can use with DBCTL, and the
additions to the DL/I interface block (DIB) mentioned in QUERY and REFRESH DBQUERY commands.

However, a number of storage areas that resided in the CICS address space with local DL/I are outside the
CICS address space with DBCTL. These areas include the PDIR, DDIR, the PSB pool, and the DMB pool.
You cannot access these areas using the WORKING STORAGE option of the CEDF transaction that invokes
EDF. Instead, you use the DBCTL operator command /DISPLAY (with the keywords PSB, DBD, or POOL) to
display the corresponding DBCTL information.

For information on using EDF, see Execution diagnostic facility (EDF).

Chapter 6. Troubleshooting DBCTL 119

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfht433.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/debugging/dfhp399.html

120 CICS TS for z/OS: IMS Database Control Guide

Chapter 7. Monitoring DBCTL
As with your CICS or IMS system, observing the performance of DBCTL involves collecting and
interpreting data gathered by various CICS and IMS performance tools.

In CICS and IMS, the term statistics refers to data that is produced concerning timing and resources used
by the system as a whole over a specified period. Additionally, in CICS, monitoring refers to data that is
produced concerning timing and resources used by a task or a logical unit of work (UOW).

IMS does not make this distinction: all data returned is referred to as statistics. In this information, the
terms statistics and monitoring are used in the CICS sense.

For information about CICS statistics and monitoring, see Introduction to CICS statistics and Measuring,
tuning, and monitoring: the basics.

For information about IMS performance and tuning, see System administration in IMS product
documentation.

Data available for a CICS-DBCTL system
As with your CICS or IMS system, observing the performance of DBCTL involves collecting and
interpreting data gathered by various CICS and IMS performance tools.

The difference with DBCTL is that you need to keep an eye on events taking place in separate address
spaces. Figure 42 on page 122 gives an overview of where DBCTL monitoring and statistics data is sent to
and the tools you can use to produce output from this data. The data and tools mentioned are described
in the sections that follow.

© Copyright IBM Corp. 1974, 2023 121

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/monitoring/dfht3_stats_intro.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht32a.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht32a.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm

CICS

MVS

SMF

SLR
output

IMS
monitor
output

DFSUTR20
utility

RMF
reports

CICS
statistical

reports

CICS
monitoring

facility
reports

SLRRMFDFHSTUPDFH$MOLS

DFHMNDUP

DRA DBCTL

IMS log
X’07’ record
X’08’ record
X’45’ record

IMS
monitor
data set

Figure 42. Overview of DBCTL statistics and monitoring data

122 CICS TS for z/OS: IMS Database Control Guide

DBCTL statistics
DBCTL supplies CICS with statistics information when CICS disconnects from DBCTL. These statistics
are known as unsolicited statistics, because they are not produced as part of normal internal processing,
but are produced as a z/OS UNIX System Services statistics record. The statistics are written to SMF
regardless of the status of statistics recording.

CICS-DBCTL statistics are collected whenever DBCTL is disconnected as a result of:

• An orderly or immediate disconnection of DBCTL
• An orderly termination of CICS

CICS-DBCTL statistics are not collected if there is an immediate shutdown or abend of CICS.

When statistics are collected, the following actions occur:

1. The DRA returns statistics for the CICS-DBCTL session that has ended to DFHDBAT.
2. DFHDBAT invokes the CICS statistics exit for DBCTL statistics (DFHDBSTX).
3. DFHDBSTX invokes the CICS statistics domain.
4. The CICS statistics domain writes the statistics to the SMF data set.

CICS-DBCTL session statistics are contained in the DFHDBUDS DSECT, which you can generate from the
copybook DFHDBUDS. DFHDBUDS includes the following information, which is returned from the DRA for
that CICS session:

• DBCTL identifier for the CICS-DBCTL session (STATDBID).
• DBCTL recoverable service element (RSE) name (STARSEN). For more information about RSEs, see

Recovery and restart operations for DBCTL.
• Time CICS connected to DBCTL (STACTIME).
• Time CICS disconnected from DBCTL (STADTIME).
• Minimum number of threads specified in the DRA startup table (STAMITHD).
• Maximum number of threads specified in the DRA startup table (STAMATHD).
• Number of times that the CICS-DBCTL session "collapsed" threads down to the minimum thread value
specified in the DRA startup table (STANOMITHD).

• Number of times that the CICS-DBCTL session reached the maximum thread value specified in the DRA
startup table (STANOMATHD).

• Elapsed time, expressed in hours, minutes, and seconds, for which the CICS-DBCTL session ran at the
maximum thread value (STAELMAX).

• Peak number (also known as the "high-water mark") of thread TCBs created throughout the CICS-
DBCTL session (STAHIWAT).

• Total number of times this CICS-DBCTL session successfully scheduled a PSB (STAPSBSU).

For information about DBCTL statistics, see DBCTL session termination statistics.

To extract and print a report from these statistics, run the CICS-supplied statistics utility program
(DFHSTUP), specifying the specific APPLID of the relevant CICS system. The output includes CICS-DBCTL
session statistics provided DBCTL was connected to CICS when the statistics were collected. For
information about other parameters needed to run DFHSTUP, and a sample job stream you can use,
see Statistics utility program (DFHSTUP). Figure 43 on page 124 shows an example of a report produced
by running DFHSTUP.

Chapter 7. Monitoring DBCTL 123

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht43d.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/statistics/dfht3_stats_dbctl.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/utilities/dfha62i.html

Unsolicited Statistics Report Collection Date-Time 09/16/93-15:16:18 Last Reset 15:06:46
--
DBCTL SESSION TERMINATION STATISTICS

 CICS DBCTL Session Number : 2
 DBCTL identifier : SYS2
 DBCTL RSE name : DBCTLSY2
 Time CICS connected to DBCTL : 15:14:02.8506
 Time CICS disconnected from DBCTL : 15:16:18.3689
 Minimum number of threads : 1
 Maximum number of threads : 3
 Times minimum threads hit : 1
 Times maximum threads hit : 1
 Elapsed time at maximum threads : 00:00:09.4371
 Peak number of thread TCBs : 3
 Successful PSB schedules : 9

Figure 43. Example of CICS-DBCTL session statistics output

Note: The statistics report produced by running DFHSTUP (shown in Figure 43 on page 124) displays the
times when CICS connected to and disconnected from DBCTL in hours, minutes, and seconds (hhmmss)
format in local time. The DBCTL z/OS UNIX System Services record that is mapped by the DFHDBUDS
DSECT contains the connect and disconnect times as four 8-byte store clock (STCK) values. These values
are as follows:

• Connect and disconnect time expressed in local time.
• Connect and disconnect time expressed in Greenwich Mean Time (GMT).

CICS statistics that contain the number of DL/I requests by type that are issued against each DL/I
database are not produced by CICS in the DBCTL environment. Instead, DBCTL produces this type
of information. You can obtain DBCTL buffer pool utilization information from the DBCTL /DISPLAY
command, or from the IMS log records of type X'45'.

Monitoring DBCTL: transaction level data
Monitoring data for DBCTL is passed to CICS and IMS components.

For information about switching monitoring on, and on printing and formatting the data, see Monitoring
dictionary utility program (DFHMNDUP).

DBCTL monitoring data returned to CICS
Monitoring data at the transaction level is passed back to CICS by DBCTL whenever a TERM request
occurs, either explicitly, or implicitly at the end of task termination. The data is appended to the CICS
monitoring facility performance record of the issuing task.

The data returned is as follows:

• PSB name.
• Elapsed wait time for pool space. In a PSB schedule, when the pool space is insufficient for PSB/DMB

blocks, the schedule request is put on a wait queue. The total wait time for it is in this field.
• Elapsed wait time for intent conflict. In a PSB schedule, when an intent conflict is detected, the

schedule request is put on a wait queue. The total wait time for it is in this field.
• Elapsed time for the schedule request.
• Elapsed wait time for database I/O.
• Elapsed wait time for locking. The total wait time to get the PI locks which are local segment level locks.
• Total number of database I/O counts.
• Number of DL/I requests for each of the following:

– Get unique
– Get next
– Get next within parent

124 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/utilities/dfha61r.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/utilities/dfha61r.html

– Get hold unique
– Get hold next
– Get hold next within parent
– Insert requests
– Delete requests
– Replace requests

• Total number of DL/I database requests.
• Number of test enqueues.
• Number of times requesting the PI locks on segments.
• Number of waits on test enqueues.
• Number of times requesting the PI locks on segments.
• Number of dequeues.
• Number of times PI locks are released.
• Number of update enqueues.
• Number of times the update locks are not available for a request and requires a wait.
• Number of update dequeues.
• Number of times requesting the exclusive lock.
• Number of waits on exclusive enqueues.
• Number of times the exclusive locks are released.
• Number of exclusive dequeues.
• Number of times the exclusive locks are released.
• DEDB statistics:

– Number of DEDB requests
– Number of DEDB I/Os
– Number of overflow buffers used
– Number of waits for DEDB buffer
– Number of unit of work contentions

• Date of schedule start.
• Time of schedule start.
• Date of schedule end.
• Time of schedule end.
• Elapsed UOW CPUTIME for DRA thread (see note).

Note: The elapsed CPUTIME field was introduced by IMS APAR PL83370. The CPUTIME represents the
time spent in the DRA Thread TCB from the time the PSB is scheduled, to the time the PSB is terminated.
CICS always terminates the PSB at the end of the Unit of work (UOW). The CPUTIME does not include any
time spent in the DBCTL region.

Calculating CICS and IMS processor times for IMS Version 12 or later
When CICS is connected to IMS Version 12 or later, and is using the open transaction environment (OTE),
the CICS-DBCTL database adapter transformer DFHDBAT, uses CICS-managed L8 open TCBs rather than
CICS IMS subtask TCBs. This means that the CICS monitoring facility can measure activity that was
previously only reported in the IMS data that was returned whenever a TERM request occurred. For
example, CICS can now measure the processor time consumed on the IMS thread. When CICS is using
L8 open TCBs, the CPU time reported for these TCBs by the CICS monitoring facility includes the IMS
elapsed UOW CPUTIME for the DRA thread.

Chapter 7. Monitoring DBCTL 125

When CICS is connected to IMS Version 12 or later, do not add the processor time from the CICS records
(SMF type 110 records) and the IMS elapsed UOW CPUTIME when calculating the total processor time for
a single transaction, because the IMS processor time would then be included twice. The total processor
time for a single transaction is recorded in the USRCPUT field in the CICS records (performance class data
field 008 from group DFHTASK). This field includes all processor time used by the transaction when it was
executing on any TCB managed by the CICS dispatcher. CICS-managed TCBs include the QR, RO, CO, and
L8 mode TCBs.

Note: The DRA startup table (DFSPZP) option TIMETHREADCPU=NO can be specified so that the IMS
elapsed UOW CPUTIME for the DRA thread is not calculated and hence returns zero to avoid counting the
IMS processor time twice.

In the OTE, the CICS L8 task processor time can also include the cost of creating an IMS DRA thread.

Also take the capture ratio for CICS and IMS into account. Capture ratio is the ratio of reported CPU time
to total used CPU time. For more information, see z/OS Resource Measurement Facility (RMF) Report
Analysis.

Obtaining DBCTL monitoring data sent to CICS
DBCTL supplies CICS with monitoring data, which can then be output to the CICS monitoring domain.

Monitoring data is output to the CICS monitoring domain in the following situations:

• When CICS receives the response to a PSB schedule request from DBCTL, it checks whether this task
has already been scheduled successfully to DBCTL. If it has, CICS forces the monitoring data from the
previous PSB schedule out; that is, it writes the performance class record for the task and resumes
monitoring that task. If it has not been scheduled before, no monitoring processing is done.

• When CICS receives a response from the DBCTL as a result of a COMMIT or ABORT request, CICS
outputs the monitoring data, but does not write it.

• In the case of the final PSB schedule for a task, the monitoring data is automatically written at the end
of a task.

To obtain the monitoring data that DBCTL returns to CICS, code two additional event monitoring
points (EMPs) in your CICS monitoring control table (MCT). DBCTL EMPs can be found in
CICSTS56.CICS.SDFHSAMP member DFH$MCTD.

For programming information on EMPs and CICS monitoring, see Introduction to CICS monitoring.

After you obtain the monitoring data, you can use monitoring tools such as the CICS monitoring
facilitywith the data supplied to tune your CICS-DBCTL environment.

IMS monitor reports with DBCTL
A summary of the DBCTL-related data in IMS monitor reports. This information also applies if your CICS
system is connected to an IMS DM/TM system to obtain DBCTL support.

IMS monitor reports that apply to DBCTL
• Call summary
• Program I/O
• DB buffer pool
• VSAM buffer pool
• Program summary

Note: In a DBCTL environment, interpret the terms "program" and "transaction" in these reports as "PSB"
and "PSB scheduling", respectively.

IMS monitor reports that apply partially to DBCTL
• Region summary

126 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.erbb500/abstract.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.erbb500/abstract.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/monitoring/dfht3_mon_oview.html

• Region IWAIT

(An IWAIT occurs when a DBCTL request causes I/O activity. IWAIT time denotes the time DBCTL
spends waiting for IMS resources, in addition to the number of I/Os.)

• Any other region-based reports.

Note: In a DBCTL environment, interpret the term "region" in these reports as the representation of a
CICS thread or a BMP region in DBCTL, but beware that a DBCTL region can represent different CICS
threads or BMP regions during a monitor run.

IMS monitor reports that do not apply to DBCTL
The following reports, related to transaction management and communication, do not apply to DBCTL,
and either do not appear, or are shown as headings without any data:

• Communication wait
• Communication summary
• Line functions
• Message format buffer pool
• Message queue pool
• MSC queuing summary
• MSC summaries
• MSC traffic

Data contained in relevant IMS monitor reports
This topic shows you what data you can find in the IMS monitor reports that apply to DBCTL.

General wait time events
All threads built for a CICS system have the same job name as that CICS system. They are shown in the
jobnames for regions in the "General reports".

General reports
The "general reports" include the "Regions and jobname" report and the "Region summary report".

Regions and jobname report
Within a trace interval, a thread can be assigned to multiple CICS systems but it can only be assigned to
one CICS at any one time.

Depending on the number of CICS systems connected to DBCTL, the regions and jobname report can
show:

• One region with only one jobname.
• One region with multiple jobnames.
• Multiple regions with multiple jobnames where some regions have the same jobname, and some have

multiple jobnames.
• Multiple regions with only one jobname.

Any monitor report for a region is a summary for all connected CICS systems that a thread has served
during the trace interval. For example, the elapsed time of schedule end to first call means the sum of this
elapsed time for all CICS systems that a thread has been assigned to during the trace interval.

Depending on the workload of a CICS system, a trace interval may be a relatively short period of time, and
thread switching between depending regions may not occur very often. However, the more the workload
fluctuates, the more frequently threads are likely to be assigned among connected CICS systems.

Chapter 7. Monitoring DBCTL 127

Region summary and transaction queuing report
A region summary report and a transaction queuing report can be used to show you the information about
DBCTL.

Region summary report
A region summary report can include the following information about DBCTL: scheduling and termination,
schedule to first call, elapsed execution, region occupancy, and DL/I calls.

• Scheduling and termination, including:

– The time from PSB schedule request being received by DBCTL to when the request is completed by
DBCTL. This includes the time spent by DBCTL allocating IMS resources and does not include any
schedule time spent in CICS or being processed by the DRA.

– The time from when a PSB unschedule request is received by DBCTL to when the request is
completed by DBCTL. This request could be an unschedule PSB request, or a request embedded
in any synchronization type terminate request, or a terminate thread request.

• Schedule to first call is the time from when DBCTL completed the PSB schedule to when DBCTL
received the first DL/I request. This time includes all time spent processing in CICS, including
application program, CICS itself, and DRA processing. (Because CICS is the transaction manager, how
and when its own applications are loaded or scheduled cannot be interpreted by DBCTL in the IMS
monitor reports.)

• Elapsed execution is the time between the completion of the DBCTL PSB schedule request and when
DBCTL receives the PSB unschedule request. It indicates the amount of time IMS resources were
allocated to a CICS thread.

• Region occupancy is the ratio of the elapsed time when a thread is active (that is, with IMS resources
allocated) to the trace interval.

• DL/I calls is the time between DBCTL receiving the DL/I request and the request being completed in
DBCTL.

Program summary
DBCTL does not process any messages. For the purpose of using the DC monitor report, it counts each
PSB schedule as one message dequeued. Because DBCTL is not the transaction manager, it must assume
a one-to-one relation between a CICS transaction and a PSB schedule. This relationship is shown in
program summary, where the number of transactions dequeued is the same as the number of scheduled
requests. "Per transaction" means requests per schedule, and "elapsed time per transaction" means
elapsed time per schedule.

Run profile
In run profile, the number of messages dequeued means the number of scheduled PSBs and transactions
per second means PSB schedules per second.

Transaction queuing report
The transaction queuing report can include a list of transactions for DBCTL. Each transaction name is an
8-byte transaction ID specified by CICS on the schedule request. A transaction ID from CICS consists of
a 4 byte CICS transaction name, plus a 4 byte CICS identifier. If CICS does not specify a transaction ID,
DBCTL takes the CICS region ID, obtained at connection time. In this report, for DBCTL, the transaction
"number dequeued" means number of PSB schedules. The "on queue when scheduled" in this report is
always zero because the IMS message queues do not apply to DBCTL.

For examples of IMS monitor reports and detailed guidance on interpreting their contents, see Database
utilities in IMS product documentation.

128 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm

Using the IMS monitor
DBCTL enables CICS users who do not have an IMS/VS DB/DC or IMS/DM/TM system to use the IMS
monitor online. The IMS monitor is the main tool provided by IMS for monitoring. It collects data from
the system while it is running. It formats and records significant events during execution, and is useful in
tuning constrained systems.

Monitoring data is written to a separate data set or tape defined by the IMSMON DD statement in the
DBCTL JCL. To define this data set or tape and to run the IMS monitor with DBCTL, add an IMSMON DD
statement to your DBCTL JCL. For further guidance, see System definition in IMS product documentation.

To allocate an IMSMON data set, use the IEFBR14 utility to allocate a data set without any DCB
parameters; for example:

//ALLOC EXEC PGM IEFBR14
//IMSMON DD DISP=(NEW,CATLG),UNIT=3380,VOL=SER=xxxxxx,SPACE=(CYL,(5,5))

You can start and stop the IMS monitor dynamically using the /TRACE command with the MON keyword.
For example:

/TRACE SET ON MON ALL

gives you all the activity that the monitor collects. For guidance on using the /TRACE command and its
keywords more selectively, see Operations and automation in IMS product documentation.

The IMS monitor has two phases:

• During the first phase, the monitor programs collect the data and store it on either disk or tape.
• During the second, the data is retrieved from the data set, and is organized and printed.

The data collected by the monitor (also known as DFSMNTR0) is organized and printed by the IMS
monitor report print program, DFSUTR20. See Database utilities in IMS product documentation for
guidance on using the IMS monitor report print utility, DFSUTR20, and for information about using the
IMS monitor to identify constraints.

DBCTL data returned to IMS log
In addition to the information returned to the monitor, IMS writes monitoring information to the log
records. This information is always recorded; you do not have to request it.

For further information about the data returned to the monitor see “IMS monitor reports with DBCTL” on
page 126.

IMS appends the following information to the X'08' log records during scheduling.

• Total elapsed wait time due to intent conflict
• Total elapsed wait time due to pool space not being available
• Total elapsed time for a schedule request

IMS appends the following information to the X'07' log records at PSB termination:

• Total number of databases used involved in I/O
• Total number of DL/I database requests
• Total elapsed wait time due to databases involved in I/O
• Total elapsed wait time due to locking
• Total number of gets
• Total number of inserts
• Total number of replace
• Total number of deletes

Chapter 7. Monitoring DBCTL 129

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_sdg.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm

Program isolation trace
For full function DL/I databases, you can use the program isolation (PI) trace to get records that indicate
queueing activity taking place for program isolation. The PI trace records are written to the IMS log. You
can then print them using the IMS file select and formatting utility. See System administration in IMS
product documentation for further guidance on using PI trace.

DL/I trace
For full function databases, you can use DL/I trace with DBCTL by enabling the DL/I trace table in the
DFSVSMxx member or by issuing the /TRACE command.

The /TRACE command is described in Controlling tracing of DBCTL events. Using the /TRACE command
enables you to turn DL/I trace on and off while the system is running. Output is to the IMS log as
type X'67FA' records. See Diagnosis in IMS product documentation for guidance on using DL/I trace for
diagnosis, Operations and automation in IMS product documentation for guidance on the commands
needed to invoke it, and Database utilities in IMS product documentation for guidance on printing its
output.

Using the IMS log statistics utilities
You can use these IMS log statistics utilities to process the information from the IMS log. See “DBCTL
data returned to IMS log” on page 129 for a list of the data returned to the IMS log.

• File select and formatting print utility, DFSERA10, formats, and prints selected records from the IMS log
data set. The active OLDS must have been archived before you can access the log data. You normally
specify the SLDS to DFSERA10. You can also use DFSERA10 with the program isolation trace record
format and print module, DFSERA40, to format PI trace.

• DEDB log analysis utility, DBFULTA0, prepares statistical reports for DEDBs based on data recorded on
the IMS system log.

• IMS program isolation trace report utility, DFSPIRP0. If you use program isolation (PI), you can use
DFSPIRP0 with the IMS log to obtain information about deadlocked tasks. DFSPIRP0 prints a report
that shows only those enqueue requests that required a wait because the resource was not immediately
available.

See Database utilities in IMS product documentation for guidance on using these utilities.

Trace facilities
CICS trace facilities are intended primarily as debugging tools. However, because they record all requests
for CICS, you can use them to analyze the performance of individual transactions.

For information about trace entries produced in a DBCTL environment see Troubleshooting DBCTL. For
information about specifying CICS trace parameters, see Using CICS trace.

CICS auxiliary trace facility
You can use the CICS auxiliary trace facility to record trace entries on a separate data set to be analyzed
later. Trace entries are time-stamped and they can provide detailed information for analyzing constraints
or other problems that can occur while CICS is running. For examples of CICS auxiliary trace output, see
Trace entries produced by CICS.

However, consider carefully how often you use CICS auxiliary trace because it generates a large volume
of entries, which means that there might be a considerable overhead if you run it all the time. Also, you
might find it difficult to use too large a volume of such data effectively.

130 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfht425.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dgr/dgr.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/oag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dur/dur.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/dfht43x.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/dfhs13p.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/dfht444.html

Additional performance tools
The generalized trace facility (GTF) and the Resource Measurement Facility (RMF) are additional
performance tools that you may want to consider using with DBCTL if you already have them or are
considering adding them to your system.

Generalized trace facility (GTF)
If you use the IRLM as your locking manager, you can use the generalized trace facility (GTF) to provide
a trace of its activity. It traces request handler request completions, the PTB input/output buffers, and
statistical data relevant to the IRLM.

You can print the records GTF produces offline. Output is collected in a data set specified by its user in the
GTF job. For guidance on using GTF, which you may find of use in debugging, see Diagnosis in IMS product
documentation.

Resource Measurement Facility (RMF)
The Resource Measurement Facility (RMF) is a measurement tool designed to meet the needs of
performance management in the large systems environment that MVS supports.

Its primary purpose is to reduce the amount of system programmer time and expertise required to
identify and to diagnose system tuning problems. It is designed to monitor selected areas of system
activity and present the data collected in the form of SMF records or formatted reports. Display reports
are also available for some system activities. For more details, see Resource measurement facility and
z/OS Resource Measurement Facility (RMF) User's Guide.

Chapter 7. Monitoring DBCTL 131

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dgr/dgr.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dgr/dgr.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht31p.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.erbb200/abstract.htm

132 CICS TS for z/OS: IMS Database Control Guide

Chapter 8. Improving DBCTL performance
You can tune your CICS-DBCTL setup to make efficient use of resources to help you reach performance
objectives.

Performance parameters in CICS
System design considerations for CICS with DBCTL are similar to the design considerations that applied to
local DL/I. For example, do not allow excessive database accesses or updates in a single UOW. However,
some system design considerations are specific to CICS with DBCTL.

The fact that DBCTL is structured to have one TCB per thread is an additional consideration for CICS.
This allows more concurrent processing, but you need to specify minimum and maximum numbers of
threads that are consistent with the needs of your system. For more information, see “Specifying numbers
of threads” on page 134.

The storage specified in CICS system initialization parameters DSALIM and EDSALIM is used for different
resources in a CICS-DBCTL environment.

• DSALIM is used to specify the upper limit of the total amount of storage within which CICS can allocate
the individual DSAs below the 16 MB line.

• EDSALIM is used to specify the upper limit of the total amount of storage within which CICS can allocate
the individual EDSAs above 16 MB but below 2 GB.

Local uses DSA storage for PSB and DMB pools, but with DBCTL, these blocks are stored outside CICS.
Instead, you need to allow for the storage DBCTL needs in CICS for DRA code when specifying DSALIM
and EDSALIM. This storage is allocated in the CICS region, but not from DSA or EDSA storage. For
information about specifying DSALIM and EDSALIM, see CICS dynamic storage areas..

Using single-phase commit
CICS can use single-phase commit instead of two-phase commit when, for a specific UOW, DBCTL is
the only recoverable resource used. Using single-phase commit in these circumstances improves CICS
performance with DBCTL by eliminating unnecessary logging, cutting restart time, decreasing transaction
cost, and improving response time in both CICS and DBCTL. For information on using single-phase
commit, see Increasing efficiency: single-update and read-only protocols.

Performance parameters in IMS
From an IMS point of view, tuning DBCTL is much like tuning an IMS system.

Additional considerations are DRA threads, described in “Specifying numbers of threads” on page 134,
and DEDBs, described in “DEDB performance and tuning considerations” on page 136.

Response time: assigning job dispatching priorities
To minimize response times, assign a higher dispatching priority to the CICS address space than to the
DBCTL address spaces (DBCTL, DLISAS, and DBRC).

Although CICS can be regarded as a "front end" to DBCTL, you must be aware that CICS must also
manage the network and the application environment for non-DLI transactions such as Db2 or VSAM. This
means that CICS has different CPU requirements from other front ends to DBCTL, such as a BMP or an
MPP. For example, when a CICS transaction is waiting for a response to a DBCTL request, CICS dispatches
other CICS transactions.

If IRLM is assigned a priority of n, CICS should have a priority of n-1, DBRC a priority of n-2, and DBCTL
and DLISAS a priority of n-3.

© Copyright IBM Corp. 1974, 2023 133

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht367.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/cics/dfha33l.html

For further guidance on assigning priorities, see System administration in IMS product documentation.

Specifying numbers of threads
The DRA startup parameters, MINTHRD and MAXTHRD, specify the minimum and maximum numbers of
threads that can process DBCTL DL/I or DEDB requests. The MINTHRD and MAXTHRD parameters are
specified in the DRA startup table (DFSPZP).

See Defining the IMS DRA startup parameter table for more information on DRA startup parameters.

The IMS system generation parameter, MAXREGN, specifies the number of regions (or threads), to be
allocated at startup, that DBCTL can handle for all connected CICS systems and BMPs. The number can
increase dynamically, to a limit of 999, as required.

The number you specify for MAXREGN should be no less than the sum of the MINTHRD parameters
specified for active CICS systems, and for BMPs.

In Figure 44 on page 135, the following threads are in use: one from BMPA, one from BMPB, five from
CICSA and three from CICSB, making a total of 10 threads. A MAXREGN of 10 has therefore been
specified for DBCTLA.

134 CICS TS for z/OS: IMS Database Control Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/database/dfht41p.html

1CICSA
MINTHRD=5
MAXTHRD=10

2 1
3
4
5

1
CICSB
MINTHRD=3
MAXTHRD=10

2
3

DBCTLA
MAXREGN=10

BMPA

1 BMPB

Figure 44. Interaction of MAXREGN, MINTHRD, and MAXTHRD

Chapter 8. Improving DBCTL performance 135

MAXTHRD can be used in DBCTL systems to ensure that, at peak loads, additional threads can be built
in addition to those already allocated as a result of MINTHRD, thus avoiding waiting for threads. The
maximum number of threads you can specify in DBCTL is 999. The default is 1 or the number defined
by MINTHRD, whichever is the highest. MAXTHRD controls the maximum number of tasks for which this
CICS system can have PSBs scheduled in DBCTL. Any requests to schedule a PSB when the MAXTHRD
limit is reached is queued by the DRA. One thread is equivalent to one MVS TCB, thus giving more
concurrency on multiprocessors. There is a storage allocation of about 9 KB per thread in the local system
queue area (LSQA) below the 16 MB line. Because these threads are available for the duration of the
DBCTL connection, there is no pathlength overhead for collapsing and reallocating thread related storage,
and throughput should, therefore, be faster. The number of threads that you specify must be large enough
for your system's needs, but if you specify a number that exceeds those needs, this will have an adverse
effect on the performance of the DRA. If you specify a minimum thread value that is higher than your
system's actual minimum activity, this will tie up threads unnecessarily, preventing DBCTL from allocating
them to other CICS systems or BMPs. If you specify a minimum thread value that is too low, this can
also affect performance; if the level of thread activity falls, this could cause the DRA to release threads
down to the minimum value. These threads would then have to be reestablished if the thread requests
increased again.

The number you specify for MAXTHRD should reflect what you consider to be the peak load of DBCTL
threads needed. The number of threads you specify will affect performance. The larger the number you
have preallocated, the more storage is needed. However, if threads are preallocated, the time needed
to allocate them on demand is saved, thus improving response time and throughput. So, if your system
is storage constrained, specify a lower value for MINTHRD, and use MAXTHRD as a "safety valve". If
response time and throughput are more important than storage requirements, specify a higher number for
MINTHRD so that more threads are ready to be used.

After the MINTHRD limit is exceeded, threads continue to be built up to the MAXTHRD limit but, because
each thread's control blocks are allocated during PSB scheduling, the pathlength is greater for the tasks
running after the MINTHRD limit has been reached.

Also bear DBCTL thread activity in mind when specifying the MXT system initialization parameter. You
use MXT to specify the maximum number of tasks that CICS will allow to exist at any time. With DBCTL,
MXT should be enough to allow for the number specified in MINTHRD, plus the number you need for
"standard" CICS tasks. With Db2, there is no minimum number of threads. See Setting the maximum task
specification (MXT) for general help on MXT.

To help you decide on the optimum values for minimum and maximum numbers of DBCTL threads,
monitor thread usage and IMS task throughput (to see if tasks are being delayed), and IMS I/O rates.
For details of thread statistics produced, including maximum and minimum thread usage, see DBCTL
statistics. See DBCTL data returned to IMS log for details of data produced for monitoring IMS I/O rates.
You can also use CICS auxiliary trace to check for queueing for threads and PSBs.

DEDB performance and tuning considerations
If you use DEDBs, you must define the characteristics and usage of the IMS DEDB buffer pool. You do
this by specifying parameters both in the CICS region and the IMS (DBCTL) region. The DBCTL DEDB
parameters are useful when tuning a CICS/DBCTL DEDB fastpath environment. DBBF and DBFX are
parameters defined during DBCTL system generation or at DBCTL initialization. CNBA, FPBUF, and FPBOF
are defined in the DRA startup table (DFSPZP).

All parameters that you need to during IMS system definition or execution, including DRA startup
parameters, are described in Defining the IMS DRA startup parameter table) .

The main concerns in defining DEDB buffer pools are the total number of buffers in the IMS region, and
how they are shared by CICS threads. You use the following IMS FPCTRL parameters to define the number
of buffers:

• DBBF: total number of buffers
• DBFX: number of buffers used exclusively by the DEDB system.

136 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht34u.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht34u.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/monitoring/dfht459.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/monitoring/dfht459.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/monitoring/dfht45d.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/database/dfht41p.html

The number remaining when you subtract the value specified for DBFX from the value specified for DBBF
is the number of buffers available for the needs of CICS threads; for this example, It is a fixed number is
assumed for DBFX. DBBF must, therefore, be large enough to accommodate all batch message processing
programs (BMPs) and CICS systems that you want to connect to this DBCTL system.

When a CICS thread connects to IMS, its DEDB buffer requirements are specified using a normal buffer
allocation (NBA) parameter. For a CICS system, there are two NBA parameters in the DRA startup table:

1. CNBA buffers needed for the CICS system. This is taken from the total specified in DBBF.
2. FPBUF buffers to be given to each CICS thread. This is taken from the number specified in CNBA.

FPBUF is used for each thread that requests DEDB resources, and so should be large enough to handle
the requirements of any application that can run in the CICS system.

A CICS system might fail to connect to DBCTL if its CNBA value is more than that available from DBBF. An
application might receive schedule failure if the FPBUF value is more than that available from CNBA. The
FPBUF value is used when an application tries to schedule a PSB that contains DEDBs.

When a CICS system has successfully connected to DBCTL, and the application has successfully
scheduled a PSB containing DEDBs, the DRA startup parameter FPBOF becomes relevant. FPBOF
specifies the number of overflow buffers each thread will get if it exceeds FPBUF. These buffers are
not taken from CNBA. Instead, they are buffers that are serially shared by all CICS applications or other
dependent regions that are currently exceeding their NBA allocation.

Because overflow buffer allocation (OBA) usage is serialized, thread performance can be affected by NBA
and OBA specifications. If FPBUF is too small, more applications need to use OBA, which may cause
delays due to contention. If both NBA and OBA are too small, the application fails. If FPBUF is too
large, this affects the number of threads that can concurrently access DEDB resources, and increases the
number of schedule failures.

In a CICS-DBCTL environment, the main performance concern is the trade-off between speed and
concurrent access. The size of this trade-off is dictated by the kind of applications you are running in the
CICS system. If the applications have approximately the same NBA requirements, there is no trade-off.
You can specify a FPBUF large enough to never need OBA. This speeds access and there is no waste of
buffers in CNBA, thus enabling a larger number of concurrent threads using DEDBs. The more the buffer
requirements of your applications vary, the greater the trade-off. If you want to maintain speed of access
(because OBAs are not being used) but decrease concurrent access, you should increase the value of
FPBUF. If you prefer to maintain concurrent access, do not increase the value of FPBUF. However, speed
of access will decrease because this and possibly other threads will need to use the OBA function.

For information on specifying the parameters CNBA, FPBOF, and FPBUF, see Defining the IMS DRA startup
parameter table. For further guidance on DEDB buffer specification and tuning, see sections on DEDBs
in Database administration in IMS product documentation and System administration in IMS product
documentation.

Monitoring data at the transaction level is returned to CICS by DBCTL at schedule end and transaction
termination. This data includes DEDB statistics. To obtain the monitoring data, two event monitoring
points (EMPs) must be added to your CICS monitoring control table (MCT).

Exploiting Open Transaction Environment (OTE)
The CICS-DBCTL interface can be defined as threadsafe and CICS can run the CICS-DBCTL task-related
user exit (TRUE) on an L8 open task control block (open TCB).

The open transaction environment (OTE) is supported in IMS version 12 with PTFs for APAR PM29194
applied and in IMS version 13 with PTFs for APAR PM29195 applied. Later releases of IMS require no
PTFs. To activate IMS to use OTE, parameter OPENTHRD=CCTL needs to be specified in the DRA startup
table (DFSPZP). If specified, then during connect processing CICS enables the CICS-DBCTL TRUE as an
OPENAPI TRUE.

An open API TRUE is run on an L8 open TCB, which is dedicated for use by the calling CICS task. Running
an application on an open TCB improves throughput and performance by reducing the use of the QR TCB.
Threadsafe CICS applications that run on an L8 open TCB and use threadsafe CICS-DBCTL commands

Chapter 8. Improving DBCTL performance 137

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/database/dfht41p.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/database/dfht41p.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/dag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm

now avoid up to four TCB switches for each call to IMS. For more information about CICS IMS applications
and the OTE, see Enabling CICS IMS applications to use the open transaction environment (OTE) through
threadsafe programming.

If you do not specify OPENTHRD=CCTL, then CICS runs the CICS-DBCTL TRUE on the QR TCB and
IMSDRA TCBs will be utilised.

When using IMS Version 12 or later with OPENTHRD=CCTL, you must change the way you calculate CICS
and IMSprocessor times, for more information see, DBCTL monitoring data returned to CICS.

Using DEDBs
Using DEDBs can provide performance improvements in a number of areas, including a reduction in path
length, parallel processing capability, less I/O processing, and a reduced logging overhead.

• Reduced path length

– DEDBs use Media Manager for more efficient control interval (CI) processing, which can reduce
pathlength.

– DEDBs have their own resource manager, which means:

- Less interaction with whichever lock manager you are using (PI or the IRLM), provided you are not
using block level sharing.

- Simplified buffer handling (and reduced pathlength) because DEDBs have their own buffer pool.
• Parallel processing

DEDB writes are not done during the life of the transactions but are kept in buffers. Actual update
operations are delayed until a synchronization point and are done by asynchronous processing using
output threads in the control region. The output thread runs as a service request block (SRB): a separate
dispatchable MVS task. You can specify up to 255 output threads. This means that:

– The CICS task can be freed earlier
– Parallel processing is increased and throughput on multiprocessors is improved.

• Less I/O

The cost of I/O per SDEP segment inserted can be very low because SDEP segments are gathered in one
buffer and are written out only when it is full. This means that many transactions can "share the cost" of
SDEP CI writes to a DEDB. SDEPs should have larger CIs to reduce I/Os.

• Reduced logging overhead

DEDB log buffers are written to OLDS only when they are full. This means less I/O than would be needed
with full function databases.

High speed sequential processing (HSSP)
Using DBCTL enables you to use high speed sequential processing (HSSP). HSSP is useful with
applications that do large scale sequential updates to DEDBs, which may require an image copy after
the DEDBs are updated. Using HSSP provides the following major benefits:

• DEDB processing time can be improved by using the IBM 3990 Storage Control Model 3 Fast Write
capability and the IBM 3990 Storage Control Model 3 Sequential Mode for both READs and WRITEs.

• You can take an HSSP image copy during a sequential update job. This avoids having to make a
subsequent sequential pass through the DEDB areas to take an image copy.

• HSSP reduces elapsed DEDB processing time by using private buffer pools and optimizing locking.
• Only a minimum amount of log data is written to the IMS system log when you request an HSSP image

copy. This reduces the large amount of logging that such large scale sequential runs usually involve.

For further guidance on HSSP, see Database administration in IMS product documentation.

138 CICS TS for z/OS: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/enable_IMS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/enable_IMS.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/monitoring/dfht4a6.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/dag.htm

IMS asynchronous database buffer purge facility
IMS includes the asynchronous database buffer purge facility.

At syncpoint time, when database buffers are to be flushed, buffers that are to be written to different
devices are written concurrently, rather than serially, as in earlier releases of IMS. For further guidance,
see System administration in IMS product documentation.

The asynchronous database buffer purge facility should improve response time for transactions that
update databases on multiple devices in a single UOW.

Virtual storage usage
CICS regions that previously used local DL/I can obtain considerable virtual storage constraint relief
because the following storage areas reside in the DBCTL address spaces: all DL/I and DBRC code and
control blocks, OSAM and VSAM buffer pools and related control blocks, PSB, DMB, and ENQ pools.

However, DBCTL requires some MVS CSA storage, which can lower the maximum available region size in
the MVS system. See System administration in IMS product documentation for details of CSA and other
DBCTL storage requirements.

Improved throughput on multiprocessors
You can obtain throughput improvements on multiprocessors when using IMS Version 12 or later by using
the CICS open transaction environment (OTE), providing that the application code is threadsafe.

You can obtain further performance improvements by using DEDBs instead of full-function databases.

Chapter 8. Improving DBCTL performance 139

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm

140 CICS TS for z/OS: IMS Database Control Guide

Notices

This information was developed for products and services offered in the United States of America. This
material might be available from IBM in other languages. However, you may be required to own a copy of
the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119 Armonk,
NY 10504-1785
United States of America

© Copyright IBM Corp. 1974, 2023 141

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Client Relationship Agreement, IBM International Programming License
Agreement, or any equivalent agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions.
Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information
IBM CICS supplies some documentation that can be considered to be Programming Interfaces, and some
documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS
Transaction Server for z/OS, Version 5 Release 6 (CICS TS 5.6) are included in the following sections
of the online product documentation:

• Developing applications
• Developing system programs
• CICS TS security
• Developing for external interfaces
• Application development reference
• Reference: system programming
• Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS TS 5.6, but that might
be misconstrued as Programming Interfaces, is included in the following sections of the online product
documentation:

• Troubleshooting and support
• CICS TS diagnostics reference

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the
customer to write programs to obtain the services of CICS TS 5.6 are included in the following manuals:

• Application Programming Guide and Application Programming Reference
• Business Transaction Services

142 Notices

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/developing_sysprogs.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/security.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/interfaces/externalInterfaces.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/reference-programming.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/home/reference-systemprogramming.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-connectivity/reference-connections.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/troubleshooting.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/home/reference-diagnostics.html

• Customization Guide
• C++ OO Class Libraries
• Debugging Tools Interfaces Reference
• Distributed Transaction Programming Guide
• External Interfaces Guide
• Front End Programming Interface Guide
• IMS Database Control Guide
• Installation Guide
• Security Guide
• CICS Transactions
• CICSPlex® System Manager (CICSPlex SM) Managing Workloads
• CICSPlex SM Managing Resource Usage
• CICSPlex SM Application Programming Guide and Application Programming Reference
• Java™ Applications in CICS

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to
be used as a Programming Interface of CICS TS 5.6, but that might be misconstrued as Programming
Interfaces, is included in the following manuals:

• Data Areas
• Diagnosis Reference
• Problem Determination Guide
• CICSPlex SM Problem Determination Guide

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Apache, Apache Axis2, Apache Maven, Apache Ivy, the Apache Software Foundation (ASF) logo, and the
ASF feather logo are trademarks of Apache Software Foundation.

Gradle and the Gradlephant logo are registered trademark of Gradle, Inc. and its subsidiaries in the United
States and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Red Hat®, and Hibernate® are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in
the United States and other countries.

Spring Boot is a trademark of Pivotal Software, Inc. in the United States and other countries.

Notices 143

https://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Zowe™, the Zowe logo and the Open Mainframe Project™ are trademarks of The Linux Foundation.

The Stack Exchange name and logos are trademarks of Stack Exchange Inc.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,
or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement
IBM Software products, including software as a service solutions, (Software Offerings) may use cookies or
other technologies to collect product usage information, to help improve the end user experience, to tailor
interactions with the end user or for other purposes. In many cases no personally identifiable information
(PII) is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect
PII. If this Software Offering uses cookies to collect PII, specific information about this offering’s use of
cookies is set forth below:

For the CICSPlex SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user’s user name and other PII for purposes of session management,
authentication, enhanced user usability, or other usage tracking or functional purposes. These cookies
cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect each user's user name and other PII for purposes of session management, authentication, or
other usage tracking or functional purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that do
not collect PII. These cookies cannot be disabled.

144 Notices

For CICS Explorer®:
Depending upon the configurations deployed, this Software Offering may use session and persistent
preferences that collect each user’s user name and password, for purposes of session management,
authentication, and single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the user's explicit action
to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect PII
from end users via cookies and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Privacy Policy and IBM Online Privacy Statement, the section entitled Cookies, Web Beacons and
Other Technologies and the IBM Software Products and Software-as-a-Service Privacy Statement.

Notices 145

https://www.ibm.com/privacy
https://www.ibm.com/privacy/details
https://www.ibm.com/software/info/product-privacy

146 CICS TS for z/OS: IMS Database Control Guide

Index

Special Characters
/CHANGE CCTL, DBCTL operator command 64
/CHECKPOINT command, DBCTL operator command 67
/CHECKPOINT FREEZE, DBCTL operator command 56
/CHECKPOINT PURGE, DBCTL operator command 56
/CHECKPOINT, DBCTL operator command 60
/DBDUMP, DBCTL operator command 52
/DBRECOVERY, DBCTL operator command 52
/DISPLAY, DBCTL operator command 50
/ERESTART, DBCTL operator command 59
/LOG, DBCTL operator command 51
/MODIFY, DBCTL operator command 51
/NRESTART, DBCTL operator command 58
/RMINIT.dbds, DBCTL operator command 60
/RMxxxxxx, DBCTL operator commands, for DBRC 49
/SSR, DBCTL operator command 53
/START, DBCTL operator command 53
/STOP, DBCTL operator command 53
/SWITCH OLDS, DBCTL operator command 24, 52
/TRACE, DBCTL operator command 50, 128–130

Numerics
24-bit addressing 79
31-bit addressing 79

A
abend U113, IMS 68
abends, DL/I CALL

ADCA 90
ADCB 90
ADCC 90
ADCD 90
ADCE 90
ADCI 90
ADCJ 90
ADCN 90
ADCP 90
ADCQ 90
ADCR 90
ADDA 90
ADDK 90
UIB (user interface block) 69
UIBDLTR 90
UIBFCTR 90

abends, EXEC DLI
ADCA 90
ADCB 90
ADCC 90
ADCD 90
ADCE 90
ADCI 90
ADCJ 90
ADCN 90
ADCP 90

abends, EXEC DLI (continued)
ADCQ 90
ADCR 90
ADDA 90
ADDK 90
ASP7 90
ASPR 90
DHTA 90
DHTC 90
DHTE 90
DHTG 90
DHTH 90
DHTJ 90
DHxx 90
DL/I interface block (DIB) 69
preventing after PSB schedule failure 86
UIBDLTR 90

abnormal termination of DBCTL 68
ACCEPT STATUSGROUP command 81
ACTIVE keyword 50
address spaces 5
addressing mode (AMODE) 79
addressing, 24-bit 79
addressing, 31-bit 79
AGN, DRA startup parameter 26
AIB (application interface block) 71
alternate PCB, summary 85
alternate TP PCB 84
AMODE (addressing mode) 79
APPLCTN macro 15, 19
application design

making application programs threadsafe 73
application interface block (AIB) 71
application programming, DL/I

access to DEDBs 76
additional facilities with DBCTL 75
comparison, command codes and keywords 77
I/O PCB 84
return codes and abends 90
subset pointers 76
system service requests 84
with BMPs 82

APPLID, system initialization parameter 14
archiving an OLDS 25
asynchronous database buffer purge facility, IMS 139
automating connection to DBCTL 33

B
backout, status codes 82
batch backout for indoubt units of recovery 63
BEEQE (buffer extended error queue element) 63
benefits of DBCTL

access to DEDBs 9
system service requests 9

BMP (batch message processing program) 82
buffer extended error queue element (BEEQE) 63

Index 147

BUFPOOLS macro 19

C
CALL DL/I application programming interface

calls supported 89
comparison, commands and calls 88
DBCTL support 71
DEQ 9, 86
IMS AIB call format 71
INIT 80, 81
LOG 9, 87
ROLS 88
schedule PSB 86
SETS 87
subset pointers 76
UIB (user interface block) 69

CANCEL command, response to DFS690A 68
CBRC transaction 49
CCTL (coordinator control subsystem) 7
CCTL keyword with /DISPLAY command 50
CCTLDD, DD name 16
CDBC transaction

functions 34
help screen 36
immediate disconnection 38
menu screen 35
orderly disconnection 38
to connect to DBCTL 33
using 35

CDBC, transient data queue 18
CDBI transaction

help screen 39
inquiring on status of interface 38
inquiry screen 38
using 35

CDBM Group command
DFHBFK file 46
maintenance panel for DFHBFK file 47
record layout 47

CDBM transaction
example help screen 44
example screen 43
implementing 20
issuing IMS operator commands 43

CDBT transaction 97
CEMT INQ TASK command 38, 54, 97
CEMT PERFORM DUMP|SNAP command 111
CEMT SET TASK purge command 38
CICS system definition file (CSD) 17
CNBA, DRA startup parameter 26
cold starting DBCTL 58
command codes, DL/I CALL 77
command recognition character (CRC) 40
COMMIT request, trace 106
communicating with DBCTL 39
components of DBCTL

adapter 3
CCTL (coordinator control subsystem) 7
CICS 3
DBCTL 5
DBRC 5
DFHDBAT 3
DFHDLI 3

components of DBCTL (continued)
DLISAS 5
DRA 3
DRA startup parameter table 3, 26
IRLM 5
major components 5
PI (program isolation) 5
resources DBCTL can access 8
task-related user exit interface 3

connection to DBCTL
after CICS COLD start 33
after CICS INITIAL start 33
after CICS WARM or EMERGENCY start 33
automating 18, 33
CDBC transaction 34
connection fails 96
DBCTL not available 37
INIT request 35
INITPARM and DBCTLID 33
introduction 2
messages issued 37
requesting 33
trace 99
using CDBC from CRLP-type terminal 36
using CDBC menu 35
using CDBC without menu 36

console, DBCTL 39
control information for startup 19
coordinator control subsystem (CCTL) 7
CRC (command recognition character) 40
CSAPSB, IMS system generation parameter 19
CSD (CICS system definition) file 17
customizing DBCTL 30

D
data set level recovery 66
database change accumulation utility, DFSUCUM0 65
DATABASE macro 19
database PCB (DB PCB) 84
database recovery utility, DFSURDB0

to process indoubt units of recovery 63
DB PCB (database PCB) 84
DBC procedure library member 26
DBCTLCON, system initialization parameter 15
DBCTLID, DRA startup parameter 26
DBFULTA0, DEDB log analysis utility 130
DBRC (Database Recovery Control)

/RMxxxxxx commands 49
archiving 25
CBRC transaction 49
commands used to register databases 60
functions 5
log control 23, 60
procedure 26
RECON 60

DD statements in CICS
for DBCTL 16
removed with DBCTL 16

DDNAME, DRA startup parameter 26
DEDB (data entry database)

application program access to 76
area data set compare utility 10
area data set create utility 10

148 CICS TS for z/OS: IMS Database Control Guide

DEDB (data entry database) (continued)
benefits 9
direct reorganization utility 9
FPCTRL macro 19
HSSP (high speed sequential processing) 138
initialization utility 10
log analysis utility 130
parameters, tuning 136
performance 138
POS command 79
sequential dependent delete utility 10
sequential dependent scan utility 10
subset pointers 10, 76
using command codes 78

defining DBCTL 19
DEQ call 9, 86
DEQ command 9, 86
DFHDBAT (database adapter/transformer)

DRA parameter lists 3
functions 3

DFHDBCON program, DBCTL connection 18
DFHDBFK

CDBM Group command 46
DFHDBnnnn messages 37
DFHDBnnnn, CICS 37
DFHDBSTX exit, DBCTL statistics 123
DFHDBUEX, user-replaceable program for DBCTL 30
DFHDLI, CICS-DL/I router 3
DFHDLPSB macro 16
DFHDXAX 37
DFHSTUP, statistics utility program 123
DFS989I message 26
DFSERA10, file select and formatting print utility 60, 66,
110, 129, 130
DFSMDA, IMS dynamic allocation macro 25
DFSPBDBC member 25
DFSPIRP0, program isolation trace report utility 130
DFSPRP macro

AGN 26
CNBA 26
DBCTLID 26
DDNAME 26
DSECT 26
DSNAME 26
FPBOF 26
FPBUF 26
FUNCLV 26
MAXTHRD 26
MINTHRD 26
SOD 26
TIMEOUT 26
TIMER 26
USERID 26

DFSPRRC0, DRA startup router program 16
DFSPZPxx, DRA startup parameter table module 16
DFSUARC0, log archive utility 66
DFSUCUM0, database change accumulation utility 65
DFSULTR0, log recovery utility 66
DFSURDB0 database recovery utility 66
DFSUTR20, IMS monitor report print program 128, 129
DFSVSMxx member

contents 16
for DL/I trace 130
starting DBCTL trace 107

DIB (DL/I interface block)
contents for successful DL/I request 106
status after PSB schedule 80
TR status code in 90

disconnecting DBCTL
CDBC transaction 34
disconnection fails 97
immediate 35, 38
long running tasks 38
orderly 35, 38
reconnection attempts 68
trace 102
using CDBC 38

DL/I (Data Language/I)
CALL abends 90
comparison, keywords and command codes 77
contents of DIBSTAT for successful DL/I request 106
interface block (DIB) 69, 80
procedure 26
request handling 1
requests supported 89
specifying in CICS system initialization parameters 14
support available 1
trace of DL/I request 105

DLIPSB, IMS system generation parameter 19
DLISAS (DL/I separate address space)

contents 5
DMB (data management block)

IMS macros to define 16
DRA (database resource adapter)

CCTLDD 16
creating 26
DD statements 16
DFSPRP macro 26
DFSPRRC0, startup router program 16
DFSPZPxx module 26
DFSPZPxx, startup parameter table 16
DRA startup router program, DFSPRRC0 16
example JCL to generate 28
failure 67
functions 3
INIT request 35
parameter lists 3
recovery 67
snap data set 111
specification of number of threads 134
startup table parameters 26
TERM request 35

DSALIM, system initialization parameter 15
DSECT, DRA startup parameter 26
DSNAME, DRA startup parameter 26
dumps, CICS

problem occurring in CICS or DBCTL 96
system 111
transaction 111

dumps, DBCTL
description 112
produced by DBCTL 112

dumps, DRA
return codes 118
SDUMP, contents 112
SDUMP, when produced 112
snap data set 111
SNAP, contents 112

Index 149

dumps, DRA (continued)
when produced 112

dynamic backout
meaning in CICS 60
meaning in IMS 60

E
EDF (execution diagnostic facility) with DBCTL 119
EDSALIM, system initialization parameter 15
EEQEL (extended error queue element link) 63
emergency restart, DBCTL

description 59
status of in-flight UOWs 59

enhanced scheduling
accepting status codes 81
increased 79
obtaining information about 80
QUERY command 80
REFRESH command 80
refreshing PCB status codes 80

environment of DBCTL 2
error scenarios, DBCTL

connection fails 96
connection to DBCTL not complete 96
disconnection fails 97
DLSUSPND 98
immediate disconnection 97
orderly disconnection 97
PSB scheduling failures 97
trace of COMMIT request 106
trace of connection to DBCTL 99
trace of disconnection from DBCTL 102
trace of DL/I request 105
trace of failed PSB schedule 105
trace of PREPARE request 106
trace of successful PSB schedule 104
trace of TERMINATE thread request 106
waits 95

EXEC CICS DUMP SYSTEM command 111
EXEC DLI application programming interface

abends 90
ACCEPT command 81
additional keywords 76
commands supported 89
comparison, commands and calls 88
comparison, keywords and command codes 77
DBCTL support 71
DEQ 9, 86
DHxx abends 86
DIB (DL/I interface block) 69
GETFIRST keyword 76
LOCKCLASS keyword 76
LOG 9, 87
MOVENEXT keyword 76
NODHABEND keyword 86
obtaining information in DIB 80
QUERY command 80
REFRESH command 80
ROLS command 88
SCHD PSB 86
SCHD PSB failure 86
SET keyword 77
SETCOND keyword 77

EXEC DLI application programming interface (continued)
SETS and ROLS commands 87
SETS command 87
SETZERO keyword 77
subset pointers 76
SYSSERVE keyword 77

execution diagnostic facility (EDF) with DBCTL 119
extended error queue element link (EEQEL) 63
external subsystem commands 53

F
file select and formatting print utility, DFSERA10 60, 66,
110, 129, 130
FPBOF, DRA startup parameter 26
FPBUF, DRA startup parameter 26
FPCTRL macro 19
FUNCLV, DRA startup parameter 26
function shipping AIB requests 71

G
generalized trace facility (GTF) 131
generating DBCTL

checklist 13
database buffers 25
example JCL 21
IMS INSTALL/IVP 21
introduction 18
naming convention 26
overriding DBCTL generation parameters 25

GETFIRST keyword 76
global user exits

XDLIPOST 30
XDLIPRE

function 30
XRMIIN 31
XRMIOUT 31

GSAM PCB 84
GTF (generalized trace facility) 131

H
high speed sequential processing (HSSP) 138
HSSP (high speed sequential processing) 138

I
I/O PCB (input/output

PCB)
summary 85

IEEQE (indoubt extended error queue element) 63
IMS dynamic allocation macro, DFSMDA 25
IMS INSTALL/IVP 21
IMS log statistics 130
IMS logging 23
IMS monitor

allocating IMSMON data set 128, 129
first phase 128, 129
general reports 127
general wait time events 127
program summary 128
region summary report 128

150 CICS TS for z/OS: IMS Database Control Guide

IMS monitor (continued)
regions and jobname report 127
report print program, DFSUTR20 128, 129
reports not used with DBCTL 126
reports used with DBCTL 126
run profile 128
running 128, 129
second phase 128, 129
starting and stopping dynamically 128, 129
transaction queuing report 128

IMS system data sets, modifying 21
IMS.RESLIB library 16
IMSCTF macro 19
IMSCTRL macro 19
IMSGEN macro 19
indoubt extended error queue element (IEEQE) 63
INIT call

accept status codes 81
refresh PCB status codes 80

INIT request 35
INITPARM, system initialization parameter 15, 33
inquiring on status of DBCTL interface 38
inquiry transaction, CDBI 35, 38
installing DBCTL

checklist 13
DBC procedure library member 26
DBRC procedure 26
DLI procedure 26

IRLM (internal resource lock manager)
functions 5
tracing activity with GTF 131

J
JCL example to generate DBCTL 21

K
keywords, EXEC DLI 77

L
L8 mode open TCB 73
local DL/I

AMODE/RMODE support 79
APPLID parameter 14
DBCTLCON parameter 15
definition 1
directory lists 16
DSALIM parameter 15
EDSALIM parameter 15
partial system generation 13

LOCKCLASS keyword 9, 76
log analysis utility, DEDB 130
log archive utility, DFSUARC0 66
LOG call 9, 87
LOG command 9, 87
log management

CICS system log not needed with DBCTL 18
with DBCTL 18

log records
X'07' 129
X'08' 129

log recovery utility, DFSULTR0 66
log, IMS

defined by IMSCTF 19
IMS statistics 130
log records written during two-phase commit 60
PI trace records 129

logging with DBCTL
/SWITCH OLDS command
24
archiving 25
DBRC 23
defining IMS parameters 24
OLDS 23
single-phase commit 133
switching OLDS 52
WADS 23

M
macros, IMS system generation

APPLCTN 15, 19
BUFPOOLS 19
creating control information for startup 19
DATABASE 19
DFHDLPSB 16
FPCTRL 19
IMSCTF 19
IMSCTRL

MAXREGN 19
IMSGEN 19
SECURITY 19

main storage buffer pool sizes 19
MAXREGN parameter, IMSCTRL system generation macro

in system definition 19
tuning 134

MAXTHRD, DRA startup table parameter
in DRA startup table 26
tuning 134

MCT (monitoring control table)
additional entries DBCTL 18
DFH$MCTD 18

messages, CICS-DBCTL
categories 113
dealing with 56
DFHDB8101 101
DFHDB8102 67, 103
DFHDB8103 56
DFHDB8104 56, 68
DFHDB8106 67
DFHDB8109 56, 64, 68, 105
DFHDB8111 68
DFHDB8116 100
DFHDB8117 33
DFHDB8130 68
DFHDB8209 35, 36
DFHDB8210 37
DFHDB8211 103
DFHDB8212 103
DFHDB8225 37
DFHDB8290 39
DFHDB8291 39, 96
DFHDB8292 37, 39, 96
DFHDB8293 35, 39, 101
DFHDB8294 39

Index 151

messages, CICS-DBCTL (continued)
DFHDB8295 39
DFHDB8296 39
on menu and inquiry screens 113
rerouting 113
routed to CDBC 113
suppressing 113
user interaction 113

messages, DBCTL
categories 113
dealing with 56
DFS613I 68
DFS628I 68
DFS629I 68
DFS690A 68
DFS989I 26
DFS994I 33
user interaction 113

MINTHRD, DRA startup table parameter
tuning 134

MODIFY command, MVS
STOP option 67

monitoring, DBCTL data
obtaining 126
program isolation trace 129
returned to CICS 124
returned to IMS log 129
statistics 123

MOVENEXT keyword 76
MTO (main terminal operator)

CDBC transaction 3, 33, 34
CDBI transaction 35
connection to DBCTL 3
disconnection from DBCTL 3

multisegment operator commands, DBCTL 40
MVS console, for DBCTL operations 39
MVS MODIFY command

DFSnnnn messages 56

N
NODHABEND keyword 86
null words in DBCTL operator commands 40

O
OLDS (online log data set)

recovery with log recovery utility 66
online change utility 11
online change, to modify IMS system data sets 21
online image copy utility 11
online reorganization 11
open TCBs

application programs on 73
open transaction environment (OTE)

and application programs 73
CICS IMS task-related user exit 73
threadsafe applications 73

operations, DBCTL
CDBM 20
command summary 41
using MVS console 39

operator commands, DBCTL

operator commands, DBCTL (continued)
/CHANGE CCTL 64
/CHECKPOINT 60
/CHECKPOINT command 60, 67
/DISPLAY 50
/ERESTART 59
/LOG 51
/NRESTART 58
/RMINIT.db 60
/RMxxxxxx, for DBRC 49
/SWITCH OLDS 24
/TRACE 50, 128–130
CICS and DBCTL, comparison 41
CRC 40
DBCTL commands valid with CDBM 41
DBCTL operator, summary 41
DBRC 49
external subsystem 53
format of 40
multisegment 40
null words 40
passwords with 40
status of RIS 65
to start CICS 33
to start DBCTL 33
to start IMS 33
used for termination of DBCTL 67

operator commands, MVS
F jobname,RECONNECT 68
F jobname,STOP|DUMP 56
MODIFY 19
MVS MODIFY 56, 68
used for termination of DBCTL 67

operator communication with DBCTL 39

P
PAPL (participant adapter parameter list)

description of request codes 118
description of return codes 118
PAPLRETC 111
return codes from CICS to DRA 118
return codes from DRA to CICS 118

passwords with operator commands 40
PCB (program control block)

alternate TP PCB 84
batch programs 85
BMPs 85
CICS online programs 85
comparison with AIB for EXEC DLI calls 71
DB PCB 84
GSAM PCB 84
I/O PCB 84
summary 85

PDIR, system initialization parameter 15
performance tools, DBCTL

CICS auxiliary trace facility 130
GTF (generalized trace facility) 131
Resource Measurement Facility 131

performance, DBCTL
asynchronous database buffer purge 139
auxiliary trace 130
DEDB parameters, tuning 136
DEDBs 138

152 CICS TS for z/OS: IMS Database Control Guide

performance, DBCTL (continued)
exploiting open transaction environment (OTE) 137
HSSP (high speed sequential processing) 138
job dispatching priorities 133
monitoring 121
multiprocessor throughput 139
numbers of threads 134
parameters in CICS 133
parameters in IMS 133
single-phase commit 133
statistics 121, 123
tuning 133
virtual storage 139

PI (program isolation)
functions 5
trace 129
trace report utility, DFSPIRP0 130

PLT (program list table) 18
PLTPI, connecting to DBCTL at CICS startup 18
POS command and call with DEDBs 79
PREPARE request, trace 106
problem determination

CICS trace entries 98
connection fails 96
connection to DBCTL not complete 96
correlating activity in DBCTL and CICS 95
DBCTL dumps 112
DBCTL error scenarios 96
DBCTL return codes 113
disconnection fails 97
DLSUSPND 97, 98
immediate disconnection 97
IMS X'67FA' log records 110
interactions at interface level 95
interactions at request level 95
interactions between CICS and DBCTL 95
kind of dump produced 118
orderly disconnection 97
PAPL request codes 118
PAPL return codes 118
problem occurring in CICS or DBCTL 96
PSB scheduling failures 97
starting tracing in DBCTL 107
trace 98
trace of COMMIT request 106
trace of connection to DBCTL 99
trace of disconnection from DBCTL 102
trace of DL/I request 105
trace of failed PSB schedule 105
trace of PREPARE request 106
trace of successful PSB schedule 104
trace of TERMINATE thread request 106
waits 95

procedure library member DBC 26
program list table (PLT) 18
PSB (program specification block)

containing PCBs for GSAM and MSDB 81
defining when generating DBCTL 19
enhanced scheduling 79
format 84
IMS macros to define 16
in APPLCTN macro statement 19
PDIR list 15
preventing abends after schedule failure 86

PSB (program specification block) (continued)
schedule failed, contents of UIBDLTR 105
schedule failed, contents of UIBFCTR 105
schedule requests during disconnect 38
schedule successful, contents of UIBDLTR 104
schedule successful, contents of UIBFCTR 104
status in DIB 80
trace of schedule failure 105
trace of successful schedule 104
XPSB parameter 16

pseudo recovery tokens 64
purging a transaction 54

Q
Q command code 9
QUERY command 80

R
RACF 50
RACF (resource access control facility)

definition of PSBs 16
RECON (recovery control data sets)

DBCTL operator commands 49
example JCL to initialize 24
information 61
information included 23
specified in DFSMDA 16

reconnecting DBCTL, with MVS MODIFY command 68
reconnecting to DBCTL 37
recovery and restart with DBCTL

/CHECKPOINT command 60
/CHECKPOINT FREEZE 58
/CHECKPOINT PURGE 58
/ERESTART command 59
/SWITCH OLDS command 24
ABORT 61
archiving 25
backing out uncommitted updates 60
backout 61
BEEQE 63
BMP failure 70
CICS failure 67
CICS keypoints 59
CICS units of work (UOWs) 63
cold start 58
COMMIT 61
commit protocols 61
data set level 66
database change accumulation utility 65
database recovery utility 66
database utilities 65
DBCTL failure 67
DBCTL unit of recovery 63
DBRC 23
deadlocks and automatic restart 69
DEDB UNDO 61
defining IMS logging parameters 24
description of CICS initialization 57
description of CICS termination 57
DRA failure 67
EEQEL 63

Index 153

recovery and restart with DBCTL (continued)
emergency restart 59
IEEQE 63
IMS checkpoints 59
IMS logging 23
in-flight unit of recovery 63
indoubt units of recovery 63
IRLM failure 68
log archive utility 66
log records 60
log recovery utility 66
log utilities 66
multiple resource managers 63
MVS failure 70
OLDS 23
online log data set (see OLDS) 23
overview of CICS procedures 57
overview of IMS procedures 57
power failure 70
PREPARE 61
processor failure 70
pseudo recovery tokens 64
RECON 61
recovery tokens 64
restarting DBCTL 58
RIS 63
RRE 63
switching OLDS 52
thread failure 69
TIMEOUT 67
track level 66
transaction failure 69
two-phase commit 61
units of recovery 61
WADS 23
warm start 58
when updates are written to databases 61
write-ahead data set (see WADS) 23

recovery tokens 64, 107
REFRESH command 80
remote DL/I

AMODE/RMODE support 79
APPLID parameter 14
DBCTLCON parameter 15
DSALIM parameter 15
EDSALIM parameter 15
partial system generation 13
PDIR list 15
support available 1

request handling 1
residency mode (RMODE) 79
residual recovery element (RRE) 63
resource definition, DBCTL 14
Resource Measurement Facility 131
resources accessed in DBCTL 8
restarting DBCTL 58
return codes for programs 90
return codes, DBCTL

PAPL 118
to indicate type of dump 118

RGSUF= keyword 25
RIS (recoverable indoubt structure)

contents of 63
status with emergency restart 59

RMODE (residency mode) 79
ROLS call 88
ROLS command 88
RRE (residual recovery element) 63

S
SCHD PSB command 86
schedule PSB call 86
security class name 16
SECURITY macro 19
security, DBCTL

PSB authorization checking by CICS 93
SET keyword 77
SETCOND keyword 77
SETS call 87
SETS command 87
SETZERO keyword 77
single-phase commit 133
SLDS (system log data set) 66
SOD, DRA startup parameter 26
startup parameters 19
startup parameters, illustration 31
statistics

DEDB 137
statistics utility program, DFHSTUP 123
statistics, unsolicited 123
status codes

accepting 81
BA 81
BB 81
BC 81
DL/I interface block (DIB) 69
UIB (user interface block) 69
with backout 82

stopping DBCTL
abnormally 56
normally 56

subordinate TCBs 111
subset pointers 10, 76
SYSSERVE keyword 77
system definition parameters

APPLID 14
CICS system initialization parameters, reviewing 14
CSAPSB 19
DBCTL startup 19
DBCTLCON 15
DLIPSB 19
DSALIM 15
EDSALIM 15
for DBCTL startup, illustration 31
INITPARM 15, 33
PDIR 15
PSBCHK 15
system initialization 14
XPSB 16

system definition, IMS
stage 1 18
stage 2 18
using to define DBCTL 19

system dumps, CICS 111
system initialization parameters

APPLID 14
DBCTLCON 15

154 CICS TS for z/OS: IMS Database Control Guide

system initialization parameters (continued)
DSALIM 15
EDSALIM 15
INITPARM 15, 33
parameters 14
PDIR 15
PSBCHK 15
specifying DL/I support 14
XPSB 16

system log data set (SLDS) 66
system service requests 9, 84

T
TERM request 35
TERMINATE thread request, trace 106
terminating DBCTL

DUMP option 67
with /CHECKPOINT command
60
with MVS MODIFY command 56

termination, abnormal 68
threads

definition 3
specification in DRA startup table 134
trace of termination 106

TIMEOUT parameter 67
TIMEOUT, DRA startup parameter 26
TIMER, DRA startup parameter 26
trace, CICS-DBCTL

as debugging tool 98
auxiliary 130
connection to DBCTL 99
contents of UIBDLTR 104
contents of UIBFCTR 104
disconnection from DBCTL 102
DL/I request 105
entries produced 98
PSB schedule, successful 104
PSB scheduling failure 105
thread termination 106

trace, DBCTL
as debugging tool 98
DL/I trace 130
entries produced 107
IMS X'67FA' log records 110
starting 107
using /TRACE command 50

track level recovery 66
transaction dumps, CICS 111
transaction level monitoring data 124
transaction using DBCTL, purging 54
transactions for DBCTL

CDBC 35
CDBI 35

transient data queues, entry for CDBC 18
tuning, CICS-DBCTL 133
two-phase commit, DBCTL

ABORT 61
COMMIT 61
DEDB REDO 61
log records 60
phase 1 62
phase 2 62

two-phase commit, DBCTL (continued)
PREPARE 61
unit of recovery 63
when updates are written to databases 61

U
U113, IMS abend 68
UIB (user interface block)

description 69
UIBDLTR, after PSB schedule 105
UIBDLTR, contents 90
UIBFCTR, after PSB schedule 105
UIBFCTR, contents 90

unit of recovery
during two-phase commit 63
in-flight 63
indoubt 63
status with emergency restart 59

unsolicited statistics 123
UOW (unit of work)

definition 63
in-flight during two-phase commit 63
indoubt during two-phase commit 63
indoubt, resolving manually 64

user-replaceable programs
DFHDBUEX 30

USERID, DRA startup parameter 26
utilities, IMS

batch backout 63
database change accumulation 65
database recovery 63, 66
DEDB area data set compare utility 10
DEDB area data set create utility 10
DEDB direct reorganization utility 9
DEDB initialization utility 10
DEDB log analysis utility 130
DEDB sequential dependent delete utility 10
DEDB sequential dependent scan utility 10
file select and formatting print 66, 129
file select and formatting print utility, DFSERA10 60,
130
IMS monitor 128, 129
log archive 66
log recovery 66
online change utility 11
online image copy utility 11
online reorganization for DEDBs 11
program isolation trace report 130
security maintenance 40

utility programs, CICS
DFHSTUP 123

V
VSCR (virtual storage constraint relief)

tuning a DBCTL system 139

W
WADS (write-ahead data set) 23
WAIT command, response to DFS690A 68
waits, DBCTL 95

Index 155

warm restart, DBCTL
after /CHECKPOINT FREEZE
58
after /CHECKPOINT PURGE 58
state of resources 58

write-ahead data set (WADS) 23

X
XDLIPOST, global user exit 30
XDLIPRE, global user exit

function 30
XPSB, system initialization parameter 16
XRMIIN, global user exit 31
XRMIOUT, global user exit 31

156 CICS TS for z/OS: IMS Database Control Guide

IBM®

	Contents
	About this PDF
	Chapter 1. Overview of Database Control (DBCTL)
	Connecting to DBCTL
	CICS-IMS DBCTL environment
	CICS-DBCTL interface control components in CICS address space
	Components of DBCTL in IMS address spaces

	Coordinator control subsystem (CCTL)
	Resources you can access from a CICS environment that includes DBCTL
	System service requests
	Access to data entry databases (DEDBs)
	Online image copy utility
	Online change utility
	Online reorganization for DEDBs

	Chapter 2. Installing DBCTL, and defining CICS and IMS system resources
	Installing and generating DBCTL
	Defining CICS system resources for DBCTL
	System initialization parameters
	Specifying DL/I support in system initialization parameters
	Reviewing CICS system initialization parameters

	PSB directories (PDIRs)
	DD statements
	DD statements removed from CICS JCL in a DBCTL-exclusive environment

	CICS-supplied groups within CICS system definition
	Log management
	Monitoring control table (MCT)
	Program list table (PLT)
	Transient data queues

	Generating DBCTL
	Defining the DBCTL subsystem
	IMS system generation macros used by DBCTL
	Implementing CICS-supplied transaction CDBM
	Modifying IMS system data sets using online change
	Example of JCL required to generate a basic DBCTL subsystem

	IMS logging
	IMS online log data set (OLDS)
	IMS write-ahead data set (WADS)
	Log control with DBRC
	Defining IMS logging parameters
	Archiving

	IMS dynamic allocation macro (DFSMDA)
	Database buffer specifications and option parameters
	Overriding DBCTL generation parameters at execution time
	Naming convention

	Starting DBCTL, DLISAS, and DBRC
	Defining the IMS DRA startup parameter table
	Example JCL to generate a DRA startup table

	Customizing DBCTL
	DFHDBUEX
	Global user exits XDLIPRE and XDLIPOST
	Global user exits XRMIIN and XRMIOUT

	Illustration of DBCTL startup parameter creation and selection

	Chapter 3. Administering DBCTL
	Connecting to DBCTL: overview
	Connecting DBCTL to CICS automatically
	Connection, disconnection, and inquiry transactions for the CICS DBCTL interface
	CDBC transaction for connect and disconnect
	Using CDBC without the menu screen

	What happens when you have requested connection to DBCTL
	Deciding whether to use orderly or immediate disconnection
	CDBI transaction for inquiry

	Operator communication with DBCTL: overview
	DBCTL operator commands
	Format of DBCTL operator commands
	Multisegment DBCTL operator commands

	Summary of DBCTL operator commands
	CDBM operator transaction
	DFHDBFK - The CDBM GROUP command file
	Record layout in the CDBM GROUP command file

	The MAINTENANCE panel for DFHDBFK
	Input fields

	Issuing DBRC commands
	IMS password security
	Controlling tracing of DBCTL events
	Finding out current status of DBCTL activities
	Specifying messages to be logged on IMS log
	Changing DBCTL resources online
	Preventing programs and transactions from updating DBCTL databases
	Switching to a new OLDS
	Entering external subsystem commands from DBCTL
	Making DBCTL resources available
	Preventing scheduling of PSBs and use of DBCTL databases
	Purging a transaction that is using DBCTL
	Stopping DBCTL normally
	Stopping DBCTL abnormally
	Dealing with messages from DBCTL and CICS
	Recovery and restart operations for DBCTL
	Overview of CICS and IMS recovery and restart
	CICS startup and shutdown
	Restarting DBCTL
	Cold start
	Warm start
	Emergency restart

	CICS keypoints and IMS checkpoints
	Backing out uncommitted updates after a failure

	Log records
	Database recovery control (DBRC)
	Recovery control (RECON) data sets

	Commit protocols and units of recovery for DBCTL
	Two-phase commit for DBCTL
	When updates are written to databases
	UOWs and resources belonging to multiple resource managers

	DBCTL unit of recovery
	In-flight unit of recovery
	Indoubt unit of recovery
	CICS units of work (UOWs)

	CICS DBCTL recovery tokens
	Resolving indoubt CICS DBCTL units of work manually
	Using DBCTL operator commands to resolve in-doubts

	IMS database utilities
	IMS log utilities
	Component failures in the CICS DBCTL environment
	CICS failure
	Database resource adapter (DRA) failure
	DBCTL failure
	IRLM failure
	Transaction and thread failures
	Deadlocks and interactions with automatic restart

	BMP failures
	MVS, processor, or power failures

	Chapter 4. Application programming for DBCTL
	Programming languages and environments for DL/I
	Issue IMS AIB call format

	Enabling CICS IMS applications to use the open transaction environment (OTE) through threadsafe programming
	Facilities available with DBCTL
	Application program access to DEDBs
	Command codes to manage subset pointers in DEDBs

	Additional EXEC DLI keywords
	LOCKCLASS
	MOVENEXT
	GETFIRST
	SET
	SETCOND
	SETZERO
	System service (SYSSERVE)

	EXEC DLI keywords and corresponding DL/I CALL command codes
	POS command and call
	Addressing and residency mode
	Enhanced scheduling
	Obtaining information about database availability
	QUERY and REFRESH DBQUERY commands
	INIT call: format for refreshing status code information

	Accepting database availability status codes
	Status codes and backout
	Batch message processing programs (BMPs)
	System service requests
	I/O PCB
	Format of a PSB
	PCB summary
	PSB schedule command and call
	Preventing DHxx abends after EXEC DLI SCHD PSB failure

	DEQ command and call
	LOG command and call
	Defining intermediate backout points for DBCTL resources
	SETS command and call
	ROLS command and call

	Comparing EXEC DLI commands and DL/I calls
	DL/I requests supported

	Summary of DBCTL abends and return codes

	Chapter 5. Security for DBCTL
	PSB authorization checking by CICS

	Chapter 6. Troubleshooting DBCTL
	Interactions between CICS and DBCTL
	Correlating activity in DBCTL and CICS
	Determining whether a problem is occurring in CICS or in DBCTL
	DBCTL error scenarios
	Connection to DBCTL has failed to complete
	Disconnection from DBCTL failed to complete
	Failures during PSB scheduling
	Failures during DL/I request processing

	Trace for CICS DBCTL
	Trace entries produced by CICS
	Connection to DBCTL
	Disconnection from DBCTL
	PSB schedule
	PSB scheduling failure
	CICS task issuing DL/I requests to be processed by DBCTL
	Thread termination

	Trace entries produced by DBCTL
	Printing and formatting IMS X'67FA' log records

	Dumps for CICS DBCTL
	CICS transaction dump
	Using CICS system dumps in DBCTL diagnosis
	DRA snap data set
	Dumps produced by the DRA
	Dumps produced by DBCTL

	Messages for CICS DBCTL
	Return codes in DBCTL
	Using return codes to find out what kind of dump is produced

	PAPL request and return codes

	Using CICS EDF to debug application programs in DBCTL

	Chapter 7. Monitoring DBCTL
	Data available for a CICS-DBCTL system
	DBCTL statistics

	Monitoring DBCTL: transaction level data
	DBCTL monitoring data returned to CICS
	Obtaining DBCTL monitoring data sent to CICS

	IMS monitor reports with DBCTL
	Data contained in relevant IMS monitor reports
	Regions and jobname report
	Region summary and transaction queuing report
	Using the IMS monitor

	DBCTL data returned to IMS log
	DL/I trace
	Trace facilities
	Additional performance tools

	Chapter 8. Improving DBCTL performance
	Performance parameters in CICS
	Performance parameters in IMS
	Response time: assigning job dispatching priorities
	Specifying numbers of threads
	DEDB performance and tuning considerations
	Exploiting Open Transaction Environment (OTE)

	Using DEDBs
	High speed sequential processing (HSSP)

	IMS asynchronous database buffer purge facility
	Virtual storage usage
	Improved throughput on multiprocessors

	Notices
	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

