CICS Transaction Server for z/OS
5.5

Using Web Services with CICS

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
631.

This edition applies to the IBM® CICS® Transaction Server for z/OS® Version 5 Release 5 (product number 5655-Y04) and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1974, 2023.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

ADOUL thisS PDF.....c.ciuiieieiirieietereereseseacesessesessssesessssesessssessssssessssssessssasessssesessssesasses Vi

Chapter 1. CICS and Web ServiCes......cccceiiuiiniiniieiieiieieieiiecneciesiesiesiessessscsscssssnnss 1

CICS aNd SOAP WED SEIVICES ..uviiruieriiiniieiieentesiteesieestessteesaeesteessaessseesasessseesseesssessseesssesssessssesssessssesssesnsns 3
Message handlers and PIPELINES.....ccuve ittt e ee e e ae e e ate e s rae e e aeeeenateesnaeeenees 4
SOAP NOUES....iiiteiiiiiteete ettt ettt st s e e st e e s bt e st e e beesabeesbaesase e beesaseesbeessseeseesssesnseenssesnseensaeans 12
SOAP messages and the application data StrUCtUre.......cueeeciieiciie e 12
WSDL and the application data StrUCTUIE......cicciie ittt e rae e e ree e 15
WSDL and message eXChange PatternS......c.uiicuieiciieeeiie et eete e e ete e ee e e srae e eaee e s bee e e rae e e naeesnnes 16
The web Service BiNAING file.....couii et are e e bee e s ree e s aee e eaneas 17
SOAP architecture and Message fOrMat.......ccccuie e e e e e saa e e e eaaee s 18
Planning t0 USE SOAP WED SEIVICES....ccccuiiieiieieiie ettt eeee et e tee e te e e e e e steeeeateessataesenaaeenntaeenees 26

CICS aNd JSON WED SEIVICES...cccutirrerieiriiritientessieestesreestesreesteesaseesbeesssessseesssesssaesssessessssessesnsasssseenses 27
ConNCEPtS Of JISON WED SEIVICES....ciiiiiieciieeciieecteeeeteeeetee et e e ete e e e rtee e staeesteeessaeesstaeesnsaeeensasesnsaeanns 28
Concepts Of RESTIUL JSON WED SEIVICES.....ciccuiieeciieeciieecteeecteeecteeecteeseteeesaeesssseessssaesssseesnsseesnaseean 30
Planning t0 USE JSON WED SEIVICES....ccuiiiiiieiciiiecite ettt cetee e tee e te e s te e e s tae s eate e s s aaee e sataeesnsaeenneeas 31

(08 (O T= 1o Lo B4 L O 1S3 00c] 1 1 [o1 HR RPN 33
Capabilities of Z/OS CoNNECE FOr CICS.....ciiiiiiiciie ettt e e ere e e te e e ate e e erte e e ate e seraeesneeeennes 37

Chapter 2. Configuring web services in CICS.........ccoieiieiieiininncinninniesiesieciecasceecess 39

Configuring your CICS system for WED SEIVICES......uiiiiiiiiiieecie ettt et ae e e vae e 39
CICS reSOUICES fOr WED SEIVICES....iiciiiiiiiieirieerteereeete et estesteesieesteesieesbeesbeesaseesbeesasessbeesssesaseensaens 39
Configuring CICS to use the IBM MQ tranSPOrt....cccueeicieeicieeccieecieecciteeceteeeeteeeetee e saee e vaeesvaeesaeeas 42
Interoperability between the web services assistant and WSRR..........cccoeeeiiiiciieeccieeceeeciee e, 49

Creating the Web Services iNfrastrUCTUIE.......ci it e be e e re e s 50
The Web ServiCes INFrasStrUCTUIE. .. .ivciiiciieieeteete ettt ettt sbe e st e beesaaessbesnaeesaneens 50
Creating the CICS infrastructure for a SOAP SEervice provider........ccceecieeeeieeeeieeecieeeeeeeecreeeeeee s 59
Creating the CICS infrastructure for a SOAP SErvice reqUESTEr......cuveieciieeecieeeeiee et 61
Creating the CICS infrastructure for a JISON Service provider......cccceecieeicieeecieeeceeeecee e 62
Creating the CICS infrastructure for a non-Java JSON Service provider........ccccueeeeeeeecieeeineesineennns 63
Configuring z/OS CoNNECT FOr CICS.....oiiiiieieieeeciee et et ee e eeree e e e eete e seateessatae e steesssseesessaeenssessnes 64
Pipeling CoNfIgUIration fIlES.......ciciii it s e e e e e s e bee e e bee e e abaeeeaes 79
APPLCALION NANALEIS ... it rre e eette e e et e e s ette e sbee e s baeessteesseeesseeesnseeennns 125
LY VLN T T o | (=TSRSS 127
The SOAP MESSAZE NANULEIS....ciiciiieciieecee ettt ee e e rre e e tae e e ae e e e rae e s sae e e nbee e saaesnees 134
Containers used in the PIPELINE.......coc i s e e e e e e aee e aaeas 138
Runtime proCessing fOr WED SEIVICES. ...ttt ere e e ae e et e e e aaee e eaaeas 163
Support for Web Services tranSaCtionS........iccuiecciieiiiiecciie ettt ree s vee s e bee e e bee s e vae e eaes 171
Support for MTOM/XOP optimization of binary data........cccceeeeveiieiieccie e 178
Support for Web Services AdAreSSING. . ..o ueiiciee e ieieeeeiee et et e eeteeeete e eerte e s ae e s steessaeeeeeseaeenes 186
SUPPOIE FOF SAMLiiiiiiectee ettt e e e e et te e e e e e bt e e s bt e e s btee e saeeesseessaeeesseessseeensseeansnenn 204

Chapter 3. Developing web Services......cccccceiieiiniiniiniieiieiieiiececncienieciescececeees 205

Creating @ JSON WED SEIVICE. ...ttt ettt e et e e e te e e tee e e te e e eataeesnsee e ssaeesnsasennsaeennsaeas 205
The CICS JSON @SSISTANT .eiviieieiriieeieesieerie et este st eseesteesteesteesbeesaressbeesasessbeesasesaseenseessseensaesssesnses 205
Creating a JSON service provider appliCatioN.......cccueeiciieieiee e 241
JSON WED SEIVICE FESIIICHIONS. .civiieiieiieeiieeree ettt sttt e e saeesbe e ste s beesanesbeessaesateenseesasesnsens 254

Mapping and transforming application data and XML........cccueeeciieeiiieccieeccee e e e 256
The CICS XML @SSISTANT ..eicveirieiiieiieiiieente st et e st et e steeste e ses e sbeesaae s teesaaessseessaessteesaesssesnsassnsesnsens 256
Generating mappings from langUage StrUCTUIES........iicciiiieiieecee ettt ete e e tee e bee e eree e 364

Generating mappings from an XML SChEMA....ccociiiiriiiiiiieiiecicsee st bee s s 366

Transforming application data t0 XML.....ciiiiiiiiiiiiieiieecriee sttt et see e s see e s ssreessneaesnns 367
Transforming XML to appliCation data.......ccceeieieeiniiiiiiiieieiee sttt sste et ssee e sseeesseeessneeesnns 368
Mapping and transforming application data and JSON.......cccccciiriiiiniieiniieenee e 369
The CICS JSON @SSISTANT ...viiieiiiiiiieiiiee ettt sete e sree e ssee e sree e sbee e sbee s sbeessbeessaneeesaseessseessseessnses 370
Generating mappings from language StrUCTUIE.......civviiiiiieiiiecete et 440
Generating mappings from a JSON SCHEMA.....cciiiiiiiiiiiieeeee e ee e s 441
Transforming application data to JSON by linking to DFHISON.....c.ccccevriiiiiiiiiiiiieiieeceee e, 443
Transforming application data to JSON by using the TRANSFORM DATATOJSON API command...444
Transforming JSON to application data by linking to DFHISON.......cccceeriiiiiiiiiiniieeieecee e, 444
Transforming JSON to application data by using the TRANSFORM JSONTODATA API command...445
Creating a JSON web service client appliCation.......ciiciiiirciiiiriieieieeceee et see e see e 446
Creating @ SOAP WED SEIVICE. ...ciiuiiiiiieiiiteerite et e sttt e s e e st e s s sbe e e s bee e sbeeesbeeessbeeessseeesnseeesnens 447
The CICS Web SErviCes aSSISTANT .iiiciiiiiiiiiiieiiteeree sttt e s e s s be e s s e e s be e s baessasaeeas 448
Creating a web service provider Using the assiStant........ccccvveieiiriieinieiee e 532
Creating a service provider application from a web service description.....cccoccceveveeinveeinvieennsieennnne 533
Creating a service provider application from a data StruCtureccocceeveieeniieinnieeneceec e, 535
Creating a channel description dOCUMENT.......ciiiciiiiiieieie ettt e s sae e s 537
Customizing generated web service description dOCUMENTS......cocciiiiiieiiiieiniieerte e 539
SENAING 8 SOAP TAULL....eiiiiiiiicte ettt sttt e st e s te e s s te e s sabe e s sabeessseeessseeesnaeaesnnes 540
Creating a web service requester Using the assiStant........ccveieviiieriieiriecece e 542
Creating a Web ServiCe USING tOOLING.....cciciiiiiieiiiieeiiee sttt ste s sree e siee e sbee e sbee s sbeeesbeessabaessaseas 544
Creating your own XML-aware web service appliCationS......ccccecuieriiieiniiiennieenneeesee e eseeesee e 544
Creating an XML-aware service provider appliCation.......ccucveeiiieeriiienniieniieesreessieessreesseeesseeeens 545
Creating an XML-aware service requester appliCation.......ccccvevveeirvieeieiiieiniieeenieeseiee e ssieesseeesns 546
USING Java WIth WED SEIVICES ...iiiuiiiiiieeiciie ettt sttt ste e s see e s see e s aee e s sbee e sbee e sbee e sbeeesaseeesnnens 548
Deploying a Java provider-mode web service in an AXiS2 JVM SEIVEN.....c.cevvveiirvieeiniieeinieeeneee e 548
Creating a web service that generates and Parses XML....occcuiivcviiriieiniieeniiecniecssee s esee s 550
Creating a web service that has a COBOL iNterfaCe......ocuiiviiiiiiiieiniieeieeeiee e 550
Deploying a requester-mode JAX-WS WED SEIVICE......uiiiiiiiiieirieieteceee et 550
Deploying a Java provider-mode web service in a Liberty JVM SErverccevveveveeinveeinsieensieeennnne 551
Validating SOAP MESSAEES. .. .utiiiiieiiiieriitereiteeeitessieessteesasteessseessseessseesssseesssseessssaesssseesssseesssseesssseees 551
Handling invalid and uninitialized application-supplied data........cccoceiiriiieiiiieiniieceeceeeee e 552
Example 1: toleration of deCimal fleldS.. ... e e e e 553

Chapter 4. Support for securing web services......ccccceeviieinincnecreciennecresieciacances. 357

Prerequisites for Web SEIVICES SECUITY....uiii e cciiee e eecttee e eecttee e erre e e eecree e e s esbe e e e s e e saee e e e e nseneeeeanes 557
Planning t0 SECUIe SOAP WED SEIVICES...ccccuiiiiciiiiiiiee ittt ettt e sete e ssree s sbee e ssbeessbeeessbaeesseeesseassans 558
Options fOr SECUNNG SOAP MESSAZES. . ccievutiiririeiriteeiriieeisrieeesiteesssteesseeessseeesssessssessssssessssesssssasssesssssens 559
Authentication using a Security TOKEN SEIVICE....c.uii ittt ettt bee s sbee e 560
The TruST ClIENT INTEITACE. ittt s te e s s be e s s be e s s baesssbeessasaeean 561
SIZNING OF SOAP MESSAEES. ccuutitiiuiieriiieriitteesitessitessttessbeesssatessbeesssbaeesbeeesbeesasseessseesssseesssseesssseessnsens 562
SIBNATUNE AlBOTTNMIS . ettt s e e s bee e s bee e sbee e sbbeessaeeessseesnseaesnneaas 562
Example of 2 Signed SOAP MESSAZE....ccuctiiriiiieiieieiiee st e st e st e s et essieeessseeessaeeessseeessaseessseeesnsenas 562
CICS support for encrypted SOAP MESSAZES. ...ccivvuitirriieiriiieieirieeeieeesiteeessseesssreesssseesssseesssseesssseesssseessnes 563
ENCryption @l8OrTNMS. ..ciiiiei ettt ee s s bee e s e e s e e s e e s be e e s bee e sbeeenans 564
Example of an encrypted SOAP MESSAZE......civiiiiriiiiiiiieriitessieessreesseeessreesseeessseeesssseesssseesssseesas 564
Configuring RACF for WEeb ServiCeS SECUITY...ccuiiiiiiiiiiieiniieesiee sttt ssreessreessteessseessseessseessssaesssaesas 565
Configuring provider mode web services for identity propagation.........ccecveeveceerrieennieessieessieessseeenns 567
Configuring the pipeline for Web Services SECUNTY......iiiiiiiiiiiiiiieiiteeieeete st 569
Writing @ cUStOM SECUNTY NANALET..cciuiiiiiieeieeeee et s e e s be e s bee s sans 572
Invoking the Trust client from a message NaNdLer......c.uiiiiiiriiiiiieceecee e 573
Y=ToL) AV (o] i @ N3 60 Y =Y ot AR 574
Configuring permissions for SErvices and APIS........covciiiiiiiiiiiieniieeete et eriee e see s ssreesssveeessraeesane 574

Chapter 5. Troubleshooting web services.......ccccceivieeiiciireciecieniecincincceceecaecneess 377
Troubleshooting SOAP WED SEIVICES.....cicciiiiciiirie ettt e sae e s see e s sae e s sbe e s see e ssaeessaeeesnaeas 577

DiagnosSing dePlOYMENT EITOIS....iiiiiiiiciee ittt e ecte e sete e seee e s see e sebee s sbee s sbeeesbeessbaeesssaeesaseessaseessnses 577

Diagnosing service pProvider FUNTIME EITOIS.....iviiiiieireeeeteeeieeesieeesireessteesssreeesssaessbaeessseessseeeas 579
Diagnosing service reqUESTEr FUNTIME EITOIS...c.uiiiiiiiriieeriieereiieeseteeseeeeserreesereeessseeessseessaseeesaseessans 580
DiagnoSiNg MTOM/XOP EITOIS...cciicieiriieieiteieitteesitessseeeesireesssaeessseeesssseessseesssseesssseesssnesssseesssseessnens 582
Diagnosing data CONVEISION EITOIS. . .uiiiiiierrieeriieerereesseeessteessteesssseesssseesssseesssseesssseesssseesssseesssseesas 583
Troubleshooting JSON WED SEIVICES.....ccciiiiiiiiriie ettt ettt et sre e s ste e s s be e s s be e s sbeessaraessaeeas 585
101\ e [T o] L)Y a =T o)l o] o] 0] (=3 s -SSR 585
JSON aSSISTANT PrODLEMS .. e rtee e e e et ee e e e e e bte e e s senteee e senraeeesennsteeeasannrenes 586
Troubleshooting problems With JISON reqUESTS.....c.uiiiiiiiiiiienieeriee sttt e s e e s seeeeas 587
JSON error responses returned t0 the ClIENT......coii i e e 588
JSON aSSIStANT FETUIN COUBS .. uuiiiiiiiiiiiieecie ettt ettt sre e sbee e st e e ssbee e ssbee e sbaeesbeeesseeessaeesane 589

Appendix A. JSON transformer linkable interface containers.........c.ccccevenienneee.. 591

DFHISON-JSON CONTAINET . .uuuttiiiiiiiieeieieieeiiiirrrreeeeeeeeeeeeeesssssarrereeeeeeeesessassssssasssseseeseesesssssssrsssessseeeessenns 591
DFHISON-DATA CONTAINET .. uuttetiieieieeeeieieeciirrreeee e et et e eeeeessbaraeereeeeeeeeseessssssseaserseeeesseessasssssrsssreeseesessensnns 591
DFHISON-TRANSFRM CONtAINE cciiiiiiiiiieccirtrieieeeeeeeeeeeeeciratreeeeeeeeesesesssssssesreeseeeeeseessssssssrsesseeseesesnnnsnns 591
DFHISON-JVMSERVR CONTAINE ..utttiiiiiiiiiiiicciirrteeeeeeeeeeeeeeeeiassreeeeeseeeeeesesessssssssseeseesesseesesssssrssssssseeeeses 592
DFHISON-ERROR CONTAINET....utttiiiiiiiiiieiecciirrtteeeeeeeeeeeeeeeibarreeeeeeeeeeesesesssssasserseeeeeseessssssssssssseeseeeessennnns 592
DFHISON-ERRORMSG CONtAINE cciiiiiiiiiiieceiittterieeeeeeeeeeeeeastreeeeeeeeeeeeseesssssssssesseseessesesssssssssssseseeesessenns 593

Appendix B. Web services Samples.....ccccceieieiienieieiienicentensntestecessecscessecsssessecesss 395

The CICS catalog manager example appliCatioN......cc.ceiiiieiriieiniienrteesee et esee st ree e ee s sbee e svees 595
I AR o= L= I=T o7] L ToF=1 o o VUSSRt 595
Installing and setting up the base appliCation......ccccvvcieiriiiiiiiiieree e e 598
Running the example application with the BMS interface........cccocvevriieiniieiniieiniiecneecsee e 603
Web service support for the example appliCatioNcc.veeeieeciiiee e e e e 605
Configuring the WED CLIENT...cii ittt e s ee e s ae e s sabe e s saaeessaeas 614
Running the web service enabled appliCation ... 615
Deploying the example appliCatioN......ccuiiciieicieiiciee ettt sree e ssee e ssaee e seaeeesreeesane 615
Components of the base apPLiCATION.....cccccciiiei it e e e e e b e e e e rraeeeeeas 620
File structures and defiNiTioNS.......cii ittt st e st e st e e ssaeeesssaeessseesnraess 627

10V R=T= T a1 o] LSRR 630
Example HTTP GET request USING @ QUETY STIING.....ciicieiiiieiiiieerieeesieeessieeessieessseesssneessseessveessans 630
Example HTTP request With @ JSON DOAY...cccccuiiieiieiiiee ettt e e te e e e s vae e e e enree e e 630

[\ 0] oL =Y - TR . . |

L =) Y .). &/

About this PDF

This PDF describes how to use web services in CICS. It is aimed at system programmers who are
responsible for configuring CICS to support web services, and application developers who are responsible

for applications that will be deployed in a web services environment. Before CICS TS V5.4, this PDF was
called the "Web Services Guide".

For details of the terms and notation used in this book, see Conventions and terminology used in the CICS
documentation in IBM Knowledge Center.

Date of this PDF
This PDF was created on 2024-04-22 (Year-Month-Date).

© Copyright IBM Corp. 1974, 2023 vii

https://www.ibm.com/docs/en/cics-ts/latest?topic=available-conventions-used-in-documentation
https://www.ibm.com/docs/en/cics-ts/latest?topic=available-conventions-used-in-documentation

viii CICS TS for z/OS: Using Web Services with CICS

Chapter 1. CICS and web services

CICS provides support for web services.

What is a web service?

A web service has an interface, which hides the implementation details so that it can be used
independently of the hardware or software platform on which it is implemented, and independently

of the programming language in which it is written. This independence encourages web service

based applications to be loosely coupled, component-oriented, cross-technology implementations. Web
services can be used alone or with other web services to carry out a complex aggregation or a business
transaction.

Web services supported by CICS

CICS supports two distinct web service protocols, the SOAP and the JavaScript Object Notation (JSON)
protocols. These two protocols have distinct characteristics and advantages.

External standards supported by CICS

CICS support for web services conforms to a number of industry standards and specifications. The
supported industry standards and specifications are listed in Supported standards.

Web services terminology

Extensible Markup Language (XML)
A standard for document markup, which uses a generic syntax to mark up data with simple, human-
readable tags. The standard is endorsed by the World Wide Web Consortium (W3C).

Initial SOAP sender
The SOAP sender that originates a SOAP message at the starting point of a SOAP message path.

JavaScript Object Notation (JSON)
A lightweight data-interchange format that is based on the object-literal notation of JavaScript. JSON
is programming-language neutral but uses conventions from languages that include C, C++, C#,
Java™, JavaScript, Perl, Python.

JSON schema
A JavaScript Object Notation document that describes the structure and constrains the contents of
other JSON documents.

RESTful
Pertaining to applications and services that conform to Representational State Transfer (REST)
constraints.

Service provider
The collection of software that provides a web service.

Service provider application
An application that is used in a service provider. Typically, a service provider application provides the
business logic component of a service provider.

Service requester
The collection of software that is responsible for requesting a web service from a service provider.

Service requester application
An application that is used in a service requester. Typically, a service requester application provides
the business logic component of a service requester.

Simple Object Access Protocol
See SOAP.

© Copyright IBM Corp. 1974, 2023

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/standards/supportedStandards.html
http://www.w3.org

SOAP
Formerly an acronym for Simple Object Access Protocol. A lightweight protocol for exchange of
information in a decentralized, distributed environment. It is an XML-based protocol that consists
of three parts:
- An envelope that defines a framework for describing what is in a message and how to process it
« A set of encoding rules for expressing instances of application-defined data types

- A convention for representing remote procedure calls and responses

SOAP can be used with other protocols, such as HTTP.

The specification for SOAP 1.1 is published at Simple Object Access Protocol (SOAP) 1.1.
The specification for SOAP 1.2 is published here:

SOAP Version 1.2 Part O: Primer
SOAP Version 1.2 Part 1: Messaging Framework
SOAP Version 1.2 Part 2: Adjuncts

SOAP intermediary
A SOAP node that is both a SOAP receiver and a SOAP sender and is targetable from within a SOAP
message. It processes the SOAP header blocks targeted at it and forwards a SOAP message toward an
ultimate SOAP receiver.

SOAP message path
The set of SOAP nodes through which a single SOAP message passes. These nodes include the initial
SOAP sender, zero or more SOAP intermediaries, and an ultimate SOAP receiver.

SOAP node
Processing logic that operates on a SOAP message.

SOAP receiver
A SOAP node that accepts a SOAP message.

SOAP sender
A SOAP node that transmits a SOAP message.

Ultimate SOAP receiver
The SOAP receiver that is a final destination of a SOAP message. It is responsible for processing the
contents of the SOAP body and any SOAP header blocks targeted at it.

UDDI
See Universal Description, Discovery and Integration.

Universal Description, Discovery and Integration
Universal Description, Discovery and Integration (UDDI) is a specification for distributed web-based
information registries of web services. UDDI is also a publicly accessible set of implementations of the
specification that allow businesses to register information about the web services that they offer, so
that other businesses can find them. The specification is published by OASIS.

Web service
A software system designed to support interoperable machine-to-machine interaction over a network.
It has an interface described in a machine-processable format (specifically, Web Service Description
Language, or WSDL).

Web Services Addressing
Web Services Addressing (WS-Addressing) provides a transport-neutral mechanism to address web
services and messages.

The specifications for WS-Addressing are published here:
« Web Services Addressing 1.0 - Core

« Web Services Addressing 1.0 - SOAP Binding

« Web Services Addressing 1.0 - Metadata

« Web Services Addressing- Submission

2 CICS TS for z/OS: Using Web Services with CICS

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2
https://www.oasis-open.org
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-soap/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/Submission/ws-addressing/

Web Services Atomic Transaction
A specification that provides the definition of an atomic transaction coordination type used to
coordinate activities having an "all or nothing" property.

The specification is published by OASIS at Web Services Atomic Transaction.

Web service binding file
A file, associated with a WEBSERVICE resource, that contains information that CICS uses to map data
between input and output messages, and application data structures.

Web service description
An XML document by which a service provider communicates the specifications for invoking a web
service to a service requester. Web service descriptions are written in Web Service Description
Language (WSDL).

Web Service Description Language
An XML application for describing web services. It is designed to separate the descriptions of the
abstract functions offered by a service and the concrete details of a service, such as how and where
that function is offered.

The specification is published at Web Services Description Language (WSDL).

Web Services Security
A set of enhancements to SOAP messaging that provides message integrity and confidentiality.
The specification is published by OASIS at Web Services Security: SOAP Message Security 1.0 (WS-
Security 2004).

WS-Atomic Transaction
See Web Services Atomic Transaction.

WS-I Basic Profile
A set of nonproprietary web services specifications, with clarifications and amendments to those
specifications, which, taken together, promote interoperability between different implementations of
web services. The profile is defined by the Web Services Interoperability Organization (WS-I) and
version 1.0 is available at Web Services Interoperability Organization (WS-I) Basic Profile 1.0.

WSDL
See Web Service Description Language.

WSS
See Web Services Security.

XML
Extensible Markup Language.

The specifications for XML are published here:

SOAP Version 1.2 Part 0: Primer
SOAP Version 1.2 Part 1: Messaging Framework
SOAP Version 1.2 Part 2: Adjuncts

XML namespace
A collection of names, identified by a URI reference, that are used in XML documents as element
types and attribute names.

XML schema
An XML document that describes the structure and constrains the contents of other XML documents.

XML schema definition language
An XML syntax for writing XML schemas, recommended by the World Wide Web Consortium (W3C).

CICS and SOAP web services

CICS supports two different approaches to the deployment of your CICS applications in a web services
environment. One approach enables rapid deployment, with the least amount of programming effort;
the other approach gives you complete flexibility and control over your web service applications, using
code that you write to suit your particular needs. Both approaches are underpinned by an infrastructure

Chapter 1. CICS and web services 3

https://www.oasis-open.org
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://www.w3.org/TR/wsdl
https://www.oasis-open.org
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2
http://www.w3.org

consisting of one or more pipelines and message handler programs that operate on web service requests
and responses.

When you deploy your CICS applications in a web services environment you can choose from the
following options:

« Use the CICS web services assistant to help you deploy an application with the least amount of
programming effort.

For example, if you want to expose an existing application as a web service, you can start with a
high-level language data structure and generate the web services description. Alternatively, if you
want to communicate with an existing web service, you can start with its web service description and
generate a high-level language structure that you can use in your program.

The CICS web services assistant also generates the CICS resources that you need to deploy your
application. And when your application runs, CICS transforms your application data into a SOAP
message on output and transforms the SOAP message back to application data on input.

« Take complete control over the processing of your data by writing your own code to map between your
application data and the message that flows between the service requester and provider.

For example, if you want to use non-SOAP messages within the web service infrastructure, you can
write your own code to transform between the message format and the format used by your application.

Whichever approach you follow, you can use your own message handlers to perform additional processing
on your request and response messages, or use CICS-supplied message handlers that are designed
especially to help you process SOAP messages.

Message handlers and pipelines

A message handler is a program in which you can perform your own processing of web service requests
and responses. A pipeline is a set of message handlers that are executed in sequence.

Phases in the operation of a pipeline
There are two distinct phases in the operation of a pipeline:

Request phase
During the request phase, CICS invokes each handler in the pipeline in turn. Each message handler
can process the request before returning control to CICS.

Response phase
Following the request phase is the response phase, during which CICS again invokes each handler in
turn, but with the sequence reversed. That is, the message handler that is invoked first in the request
phase, is invoked last in the response phase. Each message handler can process the response during
this phase.

Not every request is succeeded by a response; some applications use a one-way message flow from
service requester to provider. In this case, although there is no message to be processed, each
handler is invoked in turn during the response phase.

Figure 1 on page 5 shows a pipeline of three message handlers:

4 CICS TS for z/OS: Using Web Services with CICS

provider

pipeling
cics_mtom_
| handler
I
dihmtom_
configuration
—{ transport
default_ default_http_ | | default_meq_ named_
transport_ transport_ tranzport_ transpart_
handler_list handler_list handler_list antry
transport_
handlar handler handler narme handler_
list
Ll cervice handler
[|
sarvice_ terminal_
handler_ handler
list
| | |
cics cics
- — WSs8
handler spap 1.1_ soap_1.2_ handler
handler handler
—t apphandler]
cics cics_ cics_ cics_
handiar soap_1.1_ soap 1.2 soap 1.1 soap_ 1.2
service_ harndlar handler handler_java handler_java
parametar_
list

Figure 1. Example: A generic CICS pipeline

In this example, the handlers are executed in the following sequence:
In the request phase

1. Handler 1
2. Handler 2
3. Handler 3

Chapter 1. CICS and web services 5

In the response phase

1. Handler 3
2. Handler 2
3. Handler 1

Transition between the phases

In a service provider, the transition between the phases normally occurs in the last handler in the
pipeline (known as the terminal handler) which absorbs the request, and generates a response; in a
service requester, the transition occurs when the request is processed in the service provider. However, a
message handler in the request phase can force an immediate transition to the response phase, and an
immediate transition can also occur if CICS detects an error.

A message handler can modify the message, or can leave it unchanged. For example:

« A message handler that performs encryption and decryption will receive an encrypted message on
input, and pass the decrypted message to the next handler. On output, it will do the opposite: receive a
plain text message, and pass an encrypted version to the following handler.

- A message handler that performs logging will examine a message, and copy the relevant information
from that message to the log. The message that is passed to the next handler is unchanged.

Important: If you are familiar with the SOAP feature for CICS TS, you should be aware that the structure
of the pipeline in this release of CICS is not the same as that used in the feature.

Interrupting the flow

During processing of a request, a message handler can decide not to pass a message to the next handler,
but can, instead, generate a response. Normal processing of the message is interrupted, and some
handlers in the pipeline are not invoked.

Figure 2 on page 6 shows an example pipeline that contains three handlers, handler 1, handler 2 and
handler 3. Suppose that handler 2 is responsible for performing security checks.

1 2 3

-—

Request
" HandlerI: Handler Handler
Responsa

Figure 2. Example: Interrupting the pipeline flow

If the request does not bear the correct security credentials, then, instead of passing the request to
handler 3, handler 2 suppresses the request and constructs a suitable response. The pipeline is now in
the response phase, and when handler 2 returns control to CICS, the next handler invoked is handler 1,
and handler 3 is bypassed altogether.

A handler that interrupts the normal message flow in this way must only do so if the originator of the
message expects a response; for example, a handler should not generate a response when an application
uses a one-way message flow from service requester to provider.

Transport-related handlers

CICS supports the use of two transport mechanisms between the web service requester and the provider.
In some cases, you might require different message handlers to be invoked, depending upon which
transport mechanism is in use.

For example, you might want to include message handlers that perform encryption of parts of your
messages when you are using the HTTP transport to communicate on an external network. But encryption
might not be required when you are using the MQ transport on a secure internal network.

6 CICS TS for z/OS: Using Web Services with CICS

To support this, you can configure your pipeline to specify handlers that are invoked only when a
particular transport (HTTP or MQ) is in use. For a service provider, you can be even more specific, and
specify handlers that are invoked only when a particular named resource (a TCPIPSERVICE for the HTTP
transport, a QUEUE for the MQ transport) is in use. This is illustrated in Figure 3 on page 7.

Request
—* Handler [~
WebSphere MQ 1 R
- | “H"\-\. "‘*-\-__H
I N - .
Fesponse . _w Handlar '| Handler
] 4 I 5
Request -~ A ‘
— - -
HTTP Handlar Handler -~
- 2 7 3 ..r"x
Response

Figure 3. Example: A pipeline with transport-related handlers

In this example, which applies to a service provider:

- Handler 1 is invoked for messages that use the MQ transport.

- Handlers 2 and 3 are invoked for messages that use the HTTP transport.
- Handlers 4 and 5 are invoked for all messages.

- Handler 5 is the terminal handler.

A service provider pipeline

In a service provider pipeline, CICS receives a request, which is passed through a pipeline to the target
application program. The response from the application is returned to the service requester through the
same pipeline.

When CICS is in the role of service provider, it performs the following operations:

1. Receive the request from the service requester.

2. Examine the request, and extract the contents that are relevant to the target application program.
3. Invoke the application program, passing data extracted from the request.

4. When the application program returns control, construct a response, using data returned by the
application program.

5. Send a response to the service requester.

Figure 4 on page 8 illustrates a pipeline of three message handlers in a service provider setting;:

Chapter 1. CICS and web services 7

Service
requester

CICS Transaction Server

CICS Web services
Request R R
> > > . CICS
Harlldler Hanzdler Han3dler < > @ Application
< - - program
Response
non-terminal terminal
handlers handler

Figure 4. A service provider pipeline

8 CICS TS for z/OS: Using Web Services with CICS

1. CICS receives a request from the service requester. It passes the request to message handler 1.

2. Message handler 1 performs some processing, and passes the request to handler 2 (To be precise, it
returns control to CICS, which manages the pipeline. CICS then passes control to the next message
handler).

3. Message handler 2 receives the request from handler 1, performs some processing, and passes the
request to handler 3.

4. Message handler 3 is the terminal handler of the pipeline. It uses the information in the request to
invoke the application program. It then uses the output from the application program to generate a
response, which it passes back to handler 2.

5. Message handler 2 receives the response from handler 3, performs some processing, and passes it to
handler 1.

6. Message handler 1 receives the response from handler 2, performs some processing, and returns the
response to the service requester.

A service requester pipeline

In a service requester pipeline, an application program creates a request, which is passed through a
pipeline to the service provider. The response from the service provider is returned to the application
program through the same pipeline.

When CICS is in the role of service requester, it performs the following operations:

1. Use data provided by the application program to construct a request.

2. Send the request to the service provider.

3. Receive a response from the service provider.

4. Examine the response, and extract the contents that are relevant to the original application program.
5. Return control to the application program.

Figure 5 on page 10 illustrates a pipeline of three message handlers in a service requester setting:

Chapter 1. CICS and web services 9

CICS Transaction Server

v

CICs
Application

program

CICS Web services
- - Request R
Handler Handler Handler
1 2 3
< <+ <
Response

non-terminal terminal
handlers handler

Figure 5. A service requester pipeline

10 CICS TS for z/OS: Using Web Services with CICS

Service
provider

1. An application program creates a request.

2. Message handler 1 receives the request from the application program, performs some processing, and
passes the request to handler 2 (To be precise, it returns control to CICS, which manages the pipeline.
CICS then passes control to the next message handler).

3. Message handler 2 receives the request from handler 1, performs some processing, and passes the
request to handler 3.

4. Message handler 3 receives the request from handler 2, performs some processing, and passes the
request to the service provider.

5. Message handler 3 receives the response from the service provider, performs some processing, and
passes it to handler 2.

6. Message handler 2 receives the response from handler 3, performs some processing, and passes it to
handler 1.

7. Message handler 1 receives the response from handler 2, performs some processing, and returns the
response to the application program.

CICS pipelines and SOAP

The pipeline which CICS uses to process web service requests and responses is generic, in that there
are few restrictions on what processing can be performed in each message handler. However, many web
service applications use SOAP messages, and any processing of those messages should comply with the
SOAP specification. Therefore, CICS provides special SOAP message handler programs that can help you
to configure your pipeline as a SOAP node.

« A pipeline can be configured for use in a service requester, or in a service provider:

— Aservice requester pipeline is the initial SOAP sender for the request, and the ultimate SOAP receiver
for the response

— Asservice provider pipeline is the ultimate SOAP receiver for the request, and the initial SOAP sender
for the response

You cannot configure a CICS pipeline to function as a SOAP intermediary.

- A service requester pipeline can be configured to support SOAP 1.1 or SOAP 1.2, but not both. However,
a service provider pipeline can be configured to support both SOAP 1.1 and SOAP 1.2. Within your CICS
system, you can have many pipelines, some of which support SOAP 1.1 or SOAP 1.2 and some of which
support both.

« You can configure a CICS pipeline to have more than one SOAP message handler.

« The CICS-provided SOAP message handlers can be configured to invoke one or more user-written
header-handling routines.

« The CICS-provided SOAP message handlers can be configured to enforce some aspects of compliance
with the WS-I Basic Profile Version 1.1, and to enforce the presence of particular headers in the SOAP
message.

The SOAP message handlers, and their header handling routines are specified in the pipeline
configuration file.

The SOAP message path

The SOAP message path is the set of SOAP nodes through which a single SOAP message passes, including
the initial SOAP sender, zero or more SOAP intermediaries, and an ultimate SOAP receiver

In the simplest case, a SOAP message is transmitted between two nodes; that is, from a SOAP sender
to a SOAP receiver. However, in more complex cases, messages can be processed by SOAP intermediary
nodes, which receive a SOAP message and then send it to the next node. Figure 6 on page 12 shows an
example of a SOAP message path, in which a SOAP message is transmitted from the initial SOAP sender
node to the ultimate SOAP receiver node, passing through two SOAP intermediary nodes on its route.

Chapter 1. CICS and web services 11

e

TN / \
/ SOAP / Ultimate
||inlermediar1.r| | SD{"'P J|
\ | receiver
e > T ,/

xh_- ™, i

A &
SOAP SOAP SOAP
massage massage message

5

_ ™ -.//
- =, # A ",

"'/ Initial \"'.I I."'r SOAP 1"'.I

| SOAP | |intermediary |
sender s, /

Figure 6. An example of a SOAP message path

A SOAP intermediary is both a SOAP receiver and a SOAP sender. It can, and in some cases must, process
the header blocks in the SOAP message, and it forwards the SOAP message toward its ultimate receiver.

The ultimate SOAP receiver is the final destination of a SOAP message. As well as processing the header
blocks, it processes the SOAP body. In some circumstances, a SOAP message might not reach an ultimate
SOAP receiver; for example, because of a problem at a SOAP intermediary.

SOAP nodes

A SOAP node is the processing logic that operates on a SOAP message.
A SOAP node can perform these operations:

« Transmit a SOAP message
« Receive a SOAP message
« Process a SOAP message
 Relay a SOAP message

A SOAP node can be one of these types:

SOAP sender
A SOAP node that transmits a SOAP message.

SOAP receiver
A SOAP node that accepts a SOAP message.

Initial SOAP sender
The SOAP sender that originates a SOAP message at the starting point of a SOAP message path.

SOAP intermediary
A SOAP intermediary is both a SOAP receiver and a SOAP sender, targetable from within a SOAP
message. It processes the SOAP header blocks targeted at it and acts to forward a SOAP message
toward an ultimate SOAP receiver.

Ultimate SOAP receiver
The SOAP receiver that is a final destination of a SOAP message. It processes the contents of
the SOAP body and any SOAP header blocks targeted at it. In some circumstances, a SOAP
message might not reach an ultimate SOAP receiver; for example, because of a problem at a SOAP
intermediary.

SOAP messages and the application data structure

In many cases, the CICS web services assistant can generate the code to transform the data between a
high-level data structure used in an application program, and the contents of the <Body> element of a

12 CICS TS for z/OS: Using Web Services with CICS

SOAP message. In these cases, when you write your application program, you do not need to parse or
construct the SOAP body; CICS will do this for you.

In order to transform the data, CICS needs information, at run time, about the application data structure,
and about the format of the SOAP messages. This information is held in two files:

The web service binding file

This file is generated by the CICS web services assistant from an application language data structure,
using utility program DFHLS2WS, or from a web service description, using utility program DFHWS2LS.
CICS uses the binding file to generate the resources used by the web service application, and to
perform the mapping between the application's data structure and the SOAP messages.

The web service description

This may be an existing web service description, or it may be generated from an application language
data structure, using utility program DFHLS2WS. CICS uses the web service description to perform full
validation of SOAP messages.

Figure 7 on page 13 shows where these files are used in a service provider.

Service
requester

HLL data structure interface

CICS

¥ Application

program

S0OAP envelope
!
§
l"‘-.'l CICS Transaction Server
l"l.\
H CICS Web services
§
Request ﬁ(i
" — M * Data i
! Pipeline) mapper fF—1
Response © "% J]
-
r Web Wab
rd SErVice sanvice
// description| | binding
7
A

SOAP body interface

Figure 7. Mapping the SOAP body to the application data structure in a service provider

A message handler in the pipeline (typically, a CICS-supplied SOAP message handler) removes the SOAP
envelope from an inbound request, and passes the SOAP body to the data mapper function. This uses
the web service binding file to map the contents of the SOAP body to the application's data structure. If
full validation of the SOAP message is active, then the SOAP body is validated against the web service
description. If there is an outbound response, the process is reversed.

Figure 8 on page 14 shows where these files are used in a service requester.

Chapter 1. CICS and web services 13

EXEC CICS INVOKE WEBSERVICE
with HLL data structure interface

/

CICS Transaction Server ;’I

;

.-'I-rl'
/

CICS
Application

-

-I’ Data
"1 T mappear [,
program] op 1

.--"f ‘K‘H

M L

f;" CICS Web services

Pipeline

Web Wab
service senvice
description| | binding N

SOAP envelope

/
Request

" Service
provider
I Responze

S0OAP body intarface

Figure 8. Mapping the SOAP body to the application data structure in a service requester

For an outbound request, the data mapper function constructs a SOAP body from the application's data
structure, using information from the web service binding file. A message handler in the pipeline (typically,
a CICS-supplied SOAP message handler) adds the SOAP envelope. If there is an inbound response, the
process is reversed. If full validation of the SOAP message is active, then the inbound SOAP body is
validated against the web service description.

In both cases, the execution environment that allows a particular CICS application program to operate in
a web services setting is defined by three objects. These are the pipeline, the web service binding file,
and the web service description. The three objects are defined to CICS as attributes of the WEBSERVICE
resource definition.

There are some situations in which, even though you are using SOAP messages, you cannot use the
transformation that the CICS web services assistant generates:

« When the same data cannot be represented in the SOAP message and in the high-level language.

All the high-level languages that CICS supports, and XML Schema, support a variety of different data
types. However, there is not a one-to-one correspondence between the data types used in the high-
level languages, and those used in XML Schema, and there are cases where data can be represented in
one, but not in the other. In this situations, you should consider one of the following:

— Change your application data structure. This may not be feasible, as it might entail changes to the
application program itself.

— Construct a wrapper program, which transforms the application data into a form that CICS can
then transform into a SOAP message body. If you do this, you can leave your application program
unchanged. In this case CICS web service support interacts directly with the wrapper program, and
only indirectly with the application program.

« When your application program is in a language which is not supported by the CICS web services
assistant.

In this situation, you should consider one of the following:

— Construct a wrapper program that is written in one of the languages that the CICS web services
assistant does support (COBOL, PL/I, C or C++).

— Instead of using the CICS web services assistant, write your own program to perform the mapping
between the SOAP messages and the application program's data structure.

14 CICS TS for z/OS: Using Web Services with CICS

WSDL and the application data structure

A web service description contains abstract representations of the input and output messages used by
the service. CICS uses the web service description to construct the data structures used by application
programs. At run time, CICS performs the mapping between the application data structures and the
messages.

The description of a web service contains, among other things:

« One or more operations
« For each operation, an input message and an optional output message

- For each message, the message structure, defined in terms of XML data types. Complex data types used
in the messages are defined in an XML schema which is contained in the <types> element within the
web service description. Simple messages can be described without using the <types> element.

WSDL contains an abstract definition of an operation, and the associated messages; it cannot be used
directly in an application program. To implement the operation, a service provider must do the following:

« It must parse the WSDL, in order to understand the structure of the messages

« It must parse each input message, and construct the output message

- It must perform the mappings between the contents of the input and output messages, and the data
structures used in the application program

A service requester must do the same in order to invoke the operation.

When you use the the CICS web services assistant, much of this is done for you, and you can write
your application program without detailed understanding of WSDL, or of the way the input and output
messages are constructed.

The CICS web services assistant consists of two utility programs:

DFHWS2LS
This utility program takes a web service description as a starting point. It uses the descriptions of
the messages, and the data types used in those messages, to construct high-level language data
structures that you can use in your application programs.

DFHLS2WS
This utility program takes a high-level language data structure as a starting point. It uses the structure
to construct a web services description that contains descriptions of messages, and the data types
used in those messages derived from the language structure.

Both utility programs generate a web services binding file that CICS uses at run time to perform the
mapping between the application program's data structures and the SOAP messages.

An example of COBOL to WSDL mapping

This example shows how the data structure used in a COBOL program is represented in the web services
description that is generated by the CICS web services assistant.

Figure 9 on page 15 shows a simple COBOL data structure:

* Catalogue COMMAREA structure

03 CA-REQUEST-ID PIC X(6).

03 CA-RETURN-CODE PIC 9(2).

03 CA-RESPONSE-MESSAGE PIC X(79).

* Fields used in Place Oxder

03 CA-ORDER-REQUEST.
05 CA-USERID PIC X(8).
05 CA-CHARGE-DEPT PIC X(8).
05 CA-ITEM-REF-NUMBER PIC 9(4).
05 CA-QUANTITY-REQ PIC 9(3).
05 FILLER PIC X(888).

Figure 9. COBOL record definition of an input message defined in WSDL

Chapter 1. CICS and web services 15

The key elements in the corresponding fragment of the web services description are shown in Figure 10

on page 16:

<xsd:sequence>
<xsd:element name="CA-REQUEST-ID" nillable="false">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="6"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="CA-RETURN-CODE" nillable="false">
<xsd:simpleType>
<xsd:restriction base="xsd:short">
<xsd:maxInclusive value="99"/>
<xsd:minInclusive value="0"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="CA-RESPONSE-MESSAGE" nillable="false">

</xsd:element>
<xsd:element name="CA-ORDER-REQUEST" nillable="false">
<xsd:complexType mixed="false">
<xsd:sequence>
<xsd:element name="CA-USERID" nillable="false">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="8"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="CA-CHARGE-DEPT" nillable="false">

</xs&;é1ement>
<xsd:element name="CA-ITEM-REF-NUMBER" nillable="false">

</xs&;é1ement>
<xsd:element name="CA-QUANTITY-REQ" nillable="false">

</xs&;é1ement>
<xsd:element name="FILLER" nillable="false">

</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>

Figure 10. WSDL fragment derived from a COBOL data structure

WSDL and message exchange patterns

A WSDL 2.0 document contains a message exchange pattern (MEP) that defines the way that SOAP 1.2
messages are exchanged between the web service requester and web service provider.

CICS supports four out of the eight message exchange patterns that are defined in the WSDL 2.0 Part 2:
Adjuncts specification and the WSDL 2.0 Part 2: Additional MEPs specification for both service provider
and service requester applications. The following MEPs are supported:

In-Only

A request message is sent to the web service provider, but the provider is not allowed to send any
type of response to the web service requester.

 In provider mode, when CICS receives a request message from a web service that uses the In-Only
MEP, it does not return a response message. The DFHNORESPONSE container is put in the SOAP
handler channel to indicate that the pipeline must not send a response message.

« In requester mode, CICS sends the request message to the web service provider and does not wait
for a response.

16 CICS TS for z/OS: Using Web Services with CICS

In-Out
A request message is sent to the web service provider, and a response message is returned to the web
service requester. The response message could be a normal SOAP message or a SOAP fault.

 In provider mode, when CICS receives a request message from a web service that uses the In-Out
MEP, it returns a response message to the requester.

« In requester mode, CICS sends a request message and waits for a response. This response is either
a normal response message or a SOAP fault message. The length of time that CICS waits for a
response is configured in the pipeline and applies to all web services using that pipeline. If the
request times out before CICS receives a response, an error is returned to the service requester
application.

In-Optional-Out
A request message is sent to the web service provider, and a response message is optionally returned
to the web service requester. If there is a response, it could be either a normal SOAP message or a
SOAP fault.

« In provider mode, the decision about whether to return a SOAP response message, a SOAP fault,
or no response, happens at run time and is dependant on the service provider application logic. If
CICS does not send a response to the web service requester, the DFHNORESPONSE container is put
in the SOAP handler channel to indicate that the pipeline must not send a response message. If no
message is sent, the service provider application must delete the DFHWS-DATA container from the
channel.

« In requester mode, CICS sends a request message and waits for a response from the web service
requester. If the request times out before a response is received, CICS assumes that the message
was received successfully and that the provider did not need to send a response. The length of time
that CICS waits for a response is configured in the pipeline and applies to all web services using that
pipeline.

Robust In-Only
A request message is sent to the web service provider, and a response message is only returned to
the web service requester if an error occurs. If there is an error, a SOAP fault message is sent to the
requester.

« In provider mode, if the pipeline successfully passes the request message to the application, a
DFHNORESPONSE container is put in the SOAP handler channel to indicate that the pipeline must
not send a response message. If an error occurs in the pipeline, a SOAP fault message is returned to
the requester.

 Inrequester mode, CICS sends the request message to the web service provider and waits for a
specified period before timing out. The length of time that CICS waits for a response is configured in
the pipeline and applies to all web services using that pipeline. If there is a timeout, CICS assumes
that the request message was received successfully.

For more information on message exchange patterns in WSDL 2.0, see the following W3C specifications:

« WSDL 2.0 Part 2: Adjuncts: .
« WSDL 2.0 Part 2: Additional MEPs: .

The web service binding file

The web service binding file contains information that CICS uses to map data between input and output
messages, and application data structures.

A web service description contains abstract representations of the input and output messages used by
the service. When a service provider or service requester application executes, CICS needs information
about how the contents of the messages maps to the data structures used by the application. This
information is held in a web service binding file.

Web service binding files are created:

« By utility program DFHWS2LS when language structures are generated from WSDL.

Chapter 1. CICS and web services 17

« By utility program DFHLS2WS when WSDL is generated from a language structure.

At run time, CICS uses information in the web service binding file to perform the mapping between
application data structures and SOAP messages. Web service binding files are defined to CICS in the
WSBIND attribute of the WEBSERVICE resource.

SOAP architecture and message format

SOAP is a protocol for the exchange of information in a distributed environment. SOAP messages are
encoded as XML documents and can be exchanged using various underlying protocols.

Formerly an acronym for Simple Object Access Protocol, SOAP is developed by the World Wide Web
Consortium (W3C), and is defined in the following documents issued by W3C. Consult these documents
for complete, and authoritative, information about SOAP.

Simple Object Access Protocol (SOAP) 1.1 (W3C note)

SOAP Version 1.2 Part 0: Primer (W3C recommendation)

SOAP Version 1.2 Part 1: Messaging Framework (W3C recommendation)
SOAP Version 1.2 Part 2: Adjuncts (W3C recommendation)

The SOAP specifications describe a distributed processing model in which a SOAP message is passed
between SOAP nodes. The message originates at a SOAP sender and is sent to a SOAP receiver. Between
the sender and the receiver, the message might be processed by one or more SOAP intermediaries.

A SOAP message is a one-way transmission between SOAP nodes, from a SOAP sender to a SOAP
receiver, but messages can be combined to construct more complex interactions, such as request and
response, and peer-to-peer conversations.

The specification also includes this information:

« A set of encoding rules for expressing instances of application-defined data types.
« A convention for representing remote procedure calls and responses.

SOAP web services architecture

The SOAP web services architecture is based on interactions between three components: a service
provider, a service requester, and an optional service registry.

The service provider
The collection of software that provides a web service.

« The application program
e The middleware
« The platform on which they run

The service requester
The collection of software that is responsible for requesting a web service from a service provider.

« The application program
- The middleware
« The platform on which they run

The service registry
The service registry is a central location where service providers can publish their service descriptions
and where service requesters can find those service descriptions.

The registry is an optional component of the web services architecture because service requesters
and providers can communicate without it in many situations. For example, the organization that
provides a service can distribute the service description directly to the users of the service in a
number of ways, including offering the service as a download from an FTP site.

Using a service registry offers a number of advantages to both the requester and provider; for
example, using the IBM WebSphere® Service Registry and Repository (WSRR) can help the requester

18 CICS TS for z/OS: Using Web Services with CICS

http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/soap11
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2

to find services more quickly and can help the provider to enforce version control of the services being
offered.

CICS provides direct support for implementing service requester and service provider components.
However, you need additional software to deploy a service registry in CICS. If you use the IBM WebSphere
Service Registry and Repository (WSRR), CICS provides support for WSRR through the web services
assistant. Alternatively, you can deploy a service registry on another platform.

Interactions between a service provider, a service requester, and, a service registry

The interactions between the service provider, service requester, and service registry involve the following
operations:

Publish
When a service registry is used, a service provider publishes its service description in a service
registry for the service requester to find.

Find
When a service registry is used, a service requester finds the service description in the registry.

Bind
The service requester uses the service description to bind with the service provider and interact with
the web service implementation.

. : .,
re “ Ve
f - k! ! ¢ 4
II Service | Bind -I' Service |
| Requester | | Provider |
\, F h, A
'\._._\-- __,." ‘-".\-\._ - -
_— Fro—
Y Fi
LY r
Find Publish
\ /
h s
1 K
'\._\ o \E_.l'
e ™,
i . 3
|' Service "|
| Registry |
t_\ /.-'
s .-'/

Figure 11. web services components and interactions

Web service description

A web service description is a document by which the service provider communicates the specifications
for starting the web service to the service requester. Web service descriptions are expressed in the XML
application known as Web Service Description Language (WSDL).

The service description describes the web service in such a way as to minimize the amount of shared
knowledge and customized programming that is needed to ensure communication between the service
provider and the service requester. For example, neither the requester nor the provider needs to be aware
of the platform on which the other runs, nor of the programming language in which the other is written.

A service description can conform to either the WSDL 1.1 or WSDL 2.0 specification. Each has differences
in both the terminology and major elements that can be included in the service description. The following
information uses WSDL 1.1 terminology and elements to explain the purpose of the service description.

The structure of WSDL allows a service description to be partitioned into two definitions:

- An abstract service interface definition that describes the interfaces of the service and makes it possible
to write programs that implement and start the service.

Chapter 1. CICS and web services 19

= A concrete service implementation definition that describes the location on the network (or endpoint)
of the web service of the provider and other implementation-specific details. It enables a service
requester to connect to the service provider.

See Figure 12 on page 20.

A WSDL 1.1 document uses the following major elements in the definition of network services:

<types>
A container for data type definitions using some type system (such as XML Schema). Defines the data
types used within the message. The <types> element is not required when all messages consist of
simple data types.

<message>
Specifies which XML data types are used to define the input and output parameters of an operation.

<portType>
Defines the set of operations supported by one or more endpoints. Within a <portType> element, each
operation is described by an <operation> element.

<operation>
Specifies which XML messages can appear in the input and output data flows. An operation is
comparable with a method signature in a programming language.

<binding>
Describes the protocol, data format, security, and other attributes for a particular <portType>
element.

<port>
Specifies the network address of an endpoint and associates it with a <binding> element.

<service>
Defines the web service as a collection of related endpoints. A <service> element contains one or
more <port> elements.

| =typas:=
| <Messane:
Sarvice
interface <portType=
definition -
Web <pperation:
sarvice
description :
| =hinding=
Service <Services=
implementation
P ort
definition <port |

Figure 12. Structure of a web service description

Because you can partition the web service description, you can divide responsibility for creating a
complete service description. As an illustration, consider a service that is defined by a standards body for
use across an industry and is implemented by individual companies in that industry:

- The standards body provides a service interface definition, containing the following elements:

<types>
<message>

20 CICS TS for z/OS: Using Web Services with CICS

<portType>
<binding
« A service provider wanting to offer an implementation of the service provides a service implementation
definition, containing the following elements:

<port>
<service>

Service publication

You can publish a service description using a number of different mechanisms. Each mechanism is
suitable for use in different situations. CICS supports the use of the IBM WebSphere Service Registry
and Repository (WSRR) for publishing service descriptions. Alternatively, you can use other methods to
publish a service description.

WSSR
CICS supports the use of WSRR for publishing service descriptions. For more information about the
support that CICS provides for WSSR, see the "Interoperability between the web services assistant
and WSRR" topic in the Information Center.

Any of the following mechanisms, none of which is directly supported by CICS, can be used with CICS to
publish service descriptions:

Direct publishing
This mechanism is the most straightforward for publishing service descriptions; the service provider
sends the service description directly to the service requester, using an e-mail attachment, an FTP
site, or a CD ROM distribution.

DISCO
These proprietary protocols provide a dynamic publication mechanism. The service requester uses a
simple HTTP GET mechanism to retrieve a web service description from a network location that is
specified by the service provider and identified with a URL.

Universal Description, Discovery and Integration (UDDI)
A specification for distributed web-based information registries of web services. UDDI is also a
publicly accessible set of implementations of the specification that allow businesses to register
information about the web services that they offer so that other businesses can find them.

A service description can be published in more than one form if required.

Structure of a SOAP message

A SOAP message is encoded as an XML document, consisting of an <Envelope> element, which contains
an optional <Header> element, and a mandatory <Body> element. The <Fault> element, contained in the
<Body>, is used for reporting errors.

The SOAP envelope
The SOAP <Envelope> is the root element in every SOAP message. It contains two child elements, an
optional <Header>, and a mandatory <Body>.

The SOAP header
The SOAP <Header> is an optional subelement of the SOAP envelope. It is used to pass application-
related information that is to be processed by SOAP nodes along the message path.

The SOAP body
The SOAP <Body> is a mandatory subelement of the SOAP envelope. It contains information intended
for the ultimate recipient of the message.

The SOAP fault
The SOAP <Fault> is a subelement of the SOAP body, which is used for reporting errors.

With the exception of the <Fault> element, which is contained in the <Body> of a SOAP message, XML
elements in the <Header> and the <Body> are defined by the applications that make use of them.
However, the SOAP specification imposes some constraints on their structure.

Figure 13 on page 22 shows the main elements of a SOAP message.

Chapter 1. CICS and web services 21

SOAP envelope
SOAP header
[Header block

| Header block

SOAP body
|Eouysubmcmem

|Eoﬂysubmcmem

Figure 13. The structure of a SOAP message

Figure 14 on page 22 is an example of a SOAP message that contains header blocks (the
<m:reservation> and <n:passenger> elements) and a body (containing the <p:itinerary> and
<g:lodging> elements).

<?xml version='1.0"' ?>
<env:Envelope xmlns:env="http://www.w3.0rg/2003/05/soap-envelope">
<env:Header>
<m:reservation xmlns:m="http://travelcompany.example.org/reservation"
env:role="http://www.w3.0rg/2003/05/soap-envelope/role/next"
env:mustUnderstand="true">
<m:reference>uuid:093a2dal-q345-739r-ba5d-pqff98fe8j7d</m: reference>
<m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>
</m:reservation>
<n:passenger xmlns:n="http://mycompany.example.com/employees"
env:role="http://www.w3.0rg/2003/05/soap-envelope/role/next"
env:mustUnderstand="true">
<n:name>Ake Jogvan @yvind</n:name>
</n:passenger>
</env:Header>
<env:Body>
<p:itinerary
xmlns:p="http://travelcompany.example.org/reservation/travel">
<p:departure>
<p:departing>New York</p:departing>
<p:arriving>Los Angeles</p:arriving>
<p:departureDate>2001-12-14</p:departureDate>
<p:departureTime>late afternoon</p:departureTime>
<p:seatPreference>aisle</p:seatPreference>
</p:departure>
<p:return>
<p:departing>Los Angeles</p:departing>
<p:arriving>New York</p:arriving>
<p:departureDate>2001-12-20</p:departureDate>
<p:departureTime>mid-morning</p:departureTime>
<p:seatPreference/>
</p:return>
</p:itinerary>
<g:lodging
xmlns:q="http://travelcompany.example.org/reservation/hotels">
<q:preference>none</q:preference>
</q:lodging>
</env:Body>
</env:Envelope>

Figure 14. An example of a SOAP 1.2 message

The SOAP header

The SOAP <Header> is an optional element in a SOAP message. It is used to pass application-related
information that is to be processed by SOAP nodes along the message path.

The immediate child elements of the <Header> element are called header blocks. A header block is an
application-defined XML element It represents a logical grouping of data that can be targeted at SOAP
nodes that might be encountered in the path of a message from a sender to an ultimate receiver.

22 CICS TS for z/OS: Using Web Services with CICS

SOAP header blocks can be processed by SOAP intermediary nodes and by the ultimate SOAP receiver
node. However, in a real application, not every node processes every header block. Rather, each node is
typically designed to process particular header blocks, and, conversely, each header block is intended to
be processed by particular nodes.

The SOAP header allows features to be added to a SOAP message in a decentralized manner without
prior agreement between the communicating parties. SOAP defines a few attributes that can be used to
indicate what will deal with a feature and whether it is optional or mandatory. Such "control" information
includes, for example, passing directives or contextual information related to the processing of the
message. In this way, a SOAP message can be extended in an application-specific manner.

Although the header blocks are application-defined, SOAP-defined attributes on the header blocks
indicate how the header blocks are to be processed by the SOAP nodes. Note these important attributes:

encodingStyle
Indicates the rules used to encode the parts of a SOAP message. SOAP defines a narrower set of rules
for encoding data than the very flexible encoding that XML allows.

role (SOAP 1.2)
actor (SOAP 1.1)

In SOAP 1.2, the role attribute specifies whether a particular node operates on a message. If the

role specified for the node matches the role attribute of the header block, the node processes the
header. If the roles do not match, the node does not process the header block. In SOAP 1.1, the actor
attribute has the same function.

Roles can be defined by the application, and are designated by a URI. For example, http://
example.com/Log might designate the role of a node that performs logging. Header blocks that
are to be processed by this node specify env:role="http://example.com/Log", where the
namespace prefix env is associated with the SOAP namespace name of http://www.w3.0rg/
2003/05/soap-envelope.

The SOAP 1.2 specification defines three standard roles in addition to the ones that are defined by the
application:

http://www.w3.0xrg/2003/05/soap-envelope/none
None of the SOAP nodes on the message path will process the header block directly. Header
blocks with this role can be used to carry data that is required for processing of other SOAP header
blocks.

http://www.w3.0xrg/2003/05/soap-envelope/next
AlL SOAP nodes on the message path are expected to examine the header block, provided that the
header has not been removed by a node earlier in the message path.

http://www.w3.0xg/2003/05/soap-envelope/ultimateReceiver
Only the ultimate receiver node is expected to examine the header block.

mustUndexrstand
This attribute is used to ensure that SOAP nodes do not ignore header blocks that are important to the
overall purpose of the application. If a SOAP node determines, using the role or actor attribute, that it
will process a header block, and the mustUnderstand attribute has a value of "true", the node must
either process the header block in a manner consistent with its specification or not at all (and throw a
fault). But if the attribute has a value of "false", the node is not obliged to process the header block.

In effect, the mustUnderstand attribute indicates whether processing of the header block is
mandatory or optional.

The mustUnderstand attribute has these values:

true (SOAP 1.2)

1 (SOAP 1.1)
The node must either process the header block in a manner consistent with its specification, or
not at all (and throw a fault).

Chapter 1. CICS and web services 23

false (SOAP 1.2)
0 (SOAP 1.1)
The node is not obliged to process the header block.

relay (SOAP 1.2 only)
When a SOAP intermediary node processes a header block, it removes it from the SOAP message. By
default, it also removes any header blocks that it ignored, because the mustUnderstand attribute had
avalue of "false". However, when the relay attribute is specified with a value of "true", the node
retains the unprocessed header block in the message.

The SOAP body

The <Body> is the mandatory element in the SOAP envelope, in which the main end-to-end information
conveyed in a SOAP message is carried.

The <Body> element and its associated child elements are used to exchange information between the
initial SOAP sender and the ultimate SOAP receiver. SOAP defines one child element for the <Body>: the
<Fault> element, which is used for reporting errors. Other elements in the <Body> are defined by the web
service that uses them.

The SOAP fault
The SOAP <Fault> element carries error and status information in the SOAP message.

If an error occurs in a web service, a fault message is returned to the client. The basic structure of the
fault message is defined in the SOAP specifications. Each fault message can include XML that describes
the specific error condition. For example, if an application abend occurs in a CICS web service, a fault
message is returned to the client reporting the abend.

CICS can send different types of fault message:

« Standard SOAP fault messages are defined by the SOAP specifications or one of the web service
specifications that are supported in CICS. The faults report common error conditions, such as
malformed SOAP envelopes.

« Application SOAP fault messages are generated using the EXEC CICS SOAPFAULT API commands in
response to conditions that are detected or handled by the application. The structure of these fault
messages is known to the application, but not to CICS.

« SOAP handler fault messages are generated by the SOAP handler programs in response to general error
handling in CICS. For example, the SOAP handler programs send SOAP faults for abends, XML parsing
failures, and other common errors.

 Application handler fault messages are generated by CICS SOAP application handlers in response to
finding errors when processing the body of a SOAP message. These faults occur during the process of
transforming the XML into binary application data or when generating the response.

If an error occurs, the SOAP <Fault> element must be a body entry and must not be present more than
once in a <Body> element. The XML elements inside the SOAP <Fault> element are different in SOAP
1.1 and SOAP 1.2.

SOAP 1.1
In SOAP 1.1, the SOAP <Fault> element contains the following elements:

<faultcode>
The <faultcode> element is a mandatory element in the <Fault> element. It provides information
about the fault in a form that can be processed by software. SOAP defines a small set of SOAP fault
codes covering basic SOAP faults, and this set can be extended by applications.

<faultstring>
The <faultstring> elementis a mandatory element in the <Fault> element. It provides
information about the fault in a form intended for a human reader.

24 CICS TS for z/OS: Using Web Services with CICS

<faultactor>
The <faultactor> element contains the URI of the SOAP node that generated the fault. A SOAP
node that is not the ultimate SOAP receiver must include the <faultactor> element when it creates
a fault. An ultimate SOAP receiver is not obliged to include this element, but may do so.

<detail>
The <detail> element carries application-specific error information related to the <Body> element.
It must be present if the contents of the <Body> element were not successfully processed. It must
not be used to carry information about error information belonging to header entries. Detailed error
information belonging to header entries must be carried in header entries.

SOAP 1.2
In SOAP 1.2, the SOAP <Fault> element contains the following elements:

<Code>
The <Code> element is a mandatory element in the <Fault> element. It provides information about
the fault in a form that can be processed by software. It contains a <Value> element and an optional
<Subcode> element.

<Reason>
The <Reason> element is a mandatory element in the <Fault> element. The <Reason> element
contains one or more <Text> elements, each of which contains information about the fault in a
different native language.

<Node>
The <Node> element contains the URI of the SOAP node that generated the fault. A SOAP node that is
not the ultimate SOAP receiver must include the <Node> element when it creates a fault. An ultimate
SOAP receiver is not obliged to include this element, but may do so.

<Role>
The <Role> element contains a URI that identifies the role in which the node was operating at the
point the fault occurred.

<Detail>
The <Detail> element is an optional element, which contains application-specific error information
related to the SOAP fault codes describing the fault. The presence of the <Detail> element has no
significance regarding which parts of the faulty SOAP message were processed.

SOAP fault example and schemas

The following example shows a SOAP fault message that is generated by the application handler,
DFHPITP, when processing the body of a SOAP message.

<SOAP-ENV:Fault xmlns="">
<faultcode>S0AP-ENV:Server</faultcode>
<faultstring>Conversion to SOAP failed</faultstring>
<detail>
<CICSFault xmlns="http://www.ibm.com/software/htp/cics/WSFault">
DFHPI1008 25/01/2010 14:16:50 IYCWZCFU 00340 XML
generation failed because of incorrect input
(CONTAINER_NOT_FOUND container name) for WEBSERVICE
servicename.
</CICSFault>
</detail>
</SOAP-ENV:Fault>

Most of the content in this example is common to all fault messages. The <Detail> element contains
the unique information that describes the problem that was encountered by the application handler. This
specific fault message contains a copy of an error message that is written to the CICS message logs. If
you want to parse application handler SOAP faults programmatically, use the following XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.ibm.com/software/htp/cics/WSFault"
xmlns:tns="http://www.ibm.com/software/htp/cics/WSFault"
elementFormDefault="qualified">

Chapter 1. CICS and web services 25

<element name="CICSFault" type="string">
<annotation>
<documentation>
The value of this element is a text string that describes a
problem encountered during the processing of the Body of a
SOAP message.
</documentation>
</annotation>
</element>
</schema>

The general purpose fault messages are more complicated because the <Detail> section can be
structured in several different ways. If you want to parse SOAP handler faults programmatically, use

the XML schema that is supplied in usshome/schemas/soapfault/soapfault.xsd, where usshome
is the value of the USSHOME system initialization parameter.

Planning to use SOAP web services

Before you can plan to use SOAP web services in CICS, you need to consider these questions for each
application.

Before you begin
Do you plan to deploy your CICS application in the role of a service provider or a service requester?

You may have a pair of applications that you want to connect using CICS support for web services. In
this case, one application will be the service provider; the other will be the service requester.

Do you plan to use your existing application programs, or write new ones?
If your existing applications are designed with a well defined interface to the business logic, you
will probably be able to use them in a web services setting, either as a service provider or a service
requester. However, in most cases, you will need to write a wrapper program that connects your
business logic to the web services logic.

If you plan to write new applications, you should aim to keep your business logic separated from
your web services logic, and, once again, you will need to write a wrapper program to provide this
separation. However, if your application is designed with web services in mind, the wrapper might be
simpler to write.

Do you intend to use SOAP messages?
SOAP is fundamental to the web services architecture, and much of the support that is provided in
CICS assumes that you will use SOAP. However, there may be situations where you want to use other
message formats. For example, you might have developed your own message formats that you want
to deploy with the CICS web services infrastructure. You can do this with CICS, but you will not be
able to use some of the functions that CICS provides, such as the web services assistant, and the
SOAP message handlers.

If you decide not to use SOAP, your application programs will be responsible for parsing inbound
messages, and constructing outbound messages.

Do you intend to use the CICS web services assistant to generate the mappings between your data
structures and SOAP messages?
The assistant provides a rapid deployment of many applications into a web services setting with
little or no additional programming. And when additional programming is required, it is usually
straightforward, and can be done without changing existing business logic.

However, there are cases which are better handled without using the web services assistant. For
example, if you have existing code that maps data structures to SOAP messages, there is no
advantage in reengineering your application with the web services assistant.

Although the CICS web services assistant supports the most common data types and structures, there
are some that are not supported. In this situation, you should check the list of unsupported data types
and structures for the language in question, and consider providing a program layer that maps your
application data to a format that the assistant can support. If this is not possible, you will need to

26 CICS TS for z/OS: Using Web Services with CICS

parse the message yourself. For details on what the assistant can and cannot support, see High-level
language and XML schema mapping.

If you decide not to use the CICS web services assistant, you can use a tool such as IBM Developer
for Z to create the necessary artifacts, and you can then provide your own code for parsing inbound
messages, and constructing outbound messages. You can also use the provided vendor interface APL.

Do you intend to use an existing service description, or create a new one?
In some situations, you will be obliged to use an existing service description as a starting point. For
example:

 Your application is a service requester, and it is designed to invoke an existing web service.

 Your application is a service provider, and you want it to conform to an existing industry-standard
service description.

In other situations, you may need to create a new service description for your application.
What to do next

CICS and JSON web services

There are several ways to get started with JISON web services in CICS. The most appropriate way for you
depends on how much you already know and how advanced your plans are for using web services.

About this task

CICS supports several different technologies for exposing resources as JSON based Services. This section
relates to an older technology called "JSON web service". For the equivalent information about z/OS
Connect for CICS 1.0, see “CICS and z/OS Connect” on page 33.

JSON web services is a technology for enabling CICS programs as JSON services. These may be RESTful
services, or request-response remote-procedure-call style services. The technology is derived from that
used for SOAP web services and uses JCL procedures called DFHLS2JS and DFHJS2LS that are used

to generate WSBind files. These WSBInd files are deployed into CICS as WEBSERVICE resources. The
WEBSERVICE resources facilitate automatic conversions between JSON and application binary data
formats.

IBM's premiere technology for JISON involves a product called z/OS Connect Enterprise Edition, which
is broadly compatible with CICS JSON web services, but offers many additional integration options and
capabilities.

See Getting started with z/OS Connect for more information on this option. Here are some starting points
for JSON web services in CICS:

Procedure

« Install the example application.

CICS provides an example of a catalog management application, that you can enable as a JSON web
service provider. To do this, use DFHLS2JS to generate a web service from the language structures
provided. You could use a web browser or third party client application to test the JSON web service.
For more information, see Creating a service provider application from a data structure.

Use the example application if you want a hands-on way to learn about web services in CICS. The
example application is described in The CICS catalog manager example application.

« Plan for the deployment of an application as a service provider.

You might already know enough about how you will use web services in CICS to start planning your
applications and the related infrastructure.

« Another option for JISON web services involves using z/OS Connect. See Getting started with z/0OS
Connect for more information on this option.

Chapter 1. CICS and web services 27

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_hllxmlmapping.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_hllxmlmapping.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/web-services/zos_connect_overview.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_deployProviderFromHll_json.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/web-services/dfhxa_t100.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/web-services/zos_connect_overview.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/web-services/zos_connect_overview.html

Concepts of JISON web services

Read this topic to understand the concepts behind JSON web services.

Web services

A web service is a generic term for a software function that is hosted at a network addressable location. In
this general sense it can imply a Cloud based service, a Utility service or even a departmental application.
The term web service can also be used in a more specific sense, such as a hosted service using SOAP
which is described using a WSDL document. It is this more specific meaning that is usually implied by the
term web services in CICS. However, the more general term is often used by the JSON community when
describing JSON based services. JSON web services uses the term in its generic sense.

There are some important differences between SOAP and JSON:

« The content of a SOAP message is XML data, whereas a JSON message contains JSON data. JSON
and XML are different encoding mechanisms for describing structured data. JSON tends to be a more
efficient encoding mechanism, so a typical JISON message will be smaller than the equivalent XML
message.

- JSON is easy to integrate in JavaScript applications, but XML isn't. This makes JSON a preferred data
format with many mobile application developers.

« SOAP provides a mechanism to add Headers to a message, and a family of specifications for qualities
of service (such as security configuration, and distributed transactions). JSON does not provide this
mechanism, it instead relies on the services of the underlying HTTP network protocol. This results in
fewer options for securing and configuring a workload.

« SOAP web services are described using WSDL documents. JSON web services are structured less
formally; they tend to be loosely coupled and prefer documentation by example.

« SOAP web services have an explicit error format involving SOAP Fault messages. There's no equivalent
for JSON.

There are also many similarities between JSON and SOAP:

« The CICS implementation of JSON is derived from the SOAP architecture, and shares many of the
concepts and artifacts.

- Both involve offline utility programs that assist with mapping application data to and from the external
data representation. For SOAP there is DFHLS2WS and DFHWS2LS, for JSON there is DFHLS23JS and
DFHJS2LS.

« The deployment mechanism for both technologies involve a PIPELINE resource, a WEBSERVICE
resource, and a URIMAP resource.

JSON schema

One disadvantage of JSON compared to SOAP is the difficulty in documenting the structure of a JSON
interface. SOAP web services have the advantage of WSDL documents, together with XML schemas. A
WSDL document may not be easy to understand, but there are many tools available to work with WSDL
documents.

The nearest equivalent for JSON is the JSON Schema specification available at http://json-schema.org/.
At the time of writing this is a draft specification which is making its way through the IETF standardization
process. The CICS JSON assistant (DFHLS23JS and DFHJIS2LS) supplies a partial implementation of draft
4 of this emerging specification. DFHLS2JS can be used to generate JSON schema, and DFHJS2LS can be
used to process them.

You can use the JSON schema to understand the valid syntax and content model for a JSON web service
that has been implemented in CICS. The JSON schema specification doesn't have the same tooling
ecosystem as the XML schema specification, but a new generation of JSON tools might emerge to use this
data format.

28 CICS TS for z/0S: Using Web Services with CICS

https://json-schema.org/

CICS implementation of JSON based web services

CICS supports three modes of JISON web service, z/OS Connect, Request-Response and RESTful. CICS
also supports a programmatic scenario in which applications can transform JSON data to and from COBOL
style data formats themselves.

z/0S Connect
z/0S Connect enables CICS programs to be called with a JavaScript Object Notation (JSON) interface.
z/0S Connect for CICS was first introduced as an alternative to the JSON capabilities of the java
pipelines that were provided in the CICS TS Feature Pack for Mobile Extensions and integrated
into CICS TS Version 5.2. Since then, z/OS Connect has grown into a separate product, called z/OS
Connect Enterprise Edition, with additional capabilities.

z/0OS Connect is IBM's premiere technology for implementing JSON Services and APIs in CICS. It is
available in three versions, and supports several deployment options. z/OS Connect for CICS is the
entry level edition and a low-cost option, but lacks the enhancements of the other versions. z/0OS
Connect EE version 2.0 and 3.0 offer a further range of integration options.

z/0S Connect EE is a separately-orderable IBM product. It builds on the capabilities of z/OS Connect
for CICS, which included support for JSON services. z/OS Connect EE enables API developers to
construct JSON APIs from JSON services. The APIs are constructed and packaged with the Eclipse-
based API Editor that is provided with z/OS Connect EE, then deployed to the z/OS Connect runtime.
The API package includes Swagger 2.0 definitions to make it easier for developers to incorporate the
APIs into their applications. Key z/OS Connect capabilities, such as authorization security checking
for service invocation, creation of System Management Facility (SMF) records, and logging of RESTful
service requests also apply to the APIs.

Request-Response

The Request-Response JSON pattern is very similar to that of SOAP based web services in CICS. The
web service is implemented using a PROGRAM in CICS. The PROGRAM has input and output data
formats, described using language structures (such as COBOL copybooks), and CICS is responsible
for transforming incoming JSON messages into application data, and linking to the application. The
application returns output data back to CICS, and CICS transforms this into JSON data to return to the
client.

In this scenario the JSON client must connect to CICS using the HTTP POST method.

A Request-Response mode JSON web service can be developed in either bottom-up mode or top-
down mode. In bottom-up mode an existing CICS PROGRAM is exposed as a JSON web service using
the DFHLS2JS JSON Assistant. In top-down mode a new JSON web service can be developed to
implement an interface described using existing JISON schemas. In top-down mode, the DFHIS2LS
JSON Assistant is used to generate new language structures, and an application must be created to
use them.

The Request-Response pattern may be used to build JISON Web Services that target either
COMMAREA or channel-attached CICS PROGRAMs. A Request-Response JSON web service can be
used only in provider mode (where CICS acts as the server).

RESTful

This scenario is different to that of SOAP web services. The concept of a RESTful JSON web service is
described more completely in Concepts of RESTful JSON web services. A RESTful JISON web service
implements the architectural principles of the REpresentational State Transfer (REST) design pattern.
This design pattern is unlikely to be relevant for existing CICS applications, so is available only in
top-down mode.

A JSON schema can be processed by DFHJIS2LS in RESTful mode. An application must be written to
implement the service and it will have to behave differently depending on the HTTP method that was
used for the incoming request.

CICS implements a pure style of RESTful application, where the data format for POST (create) GET
(inquire) and PUT (replace) are the same.

Chapter 1. CICS and web services 29

RESTful JSON web service applications must use a channel based program interface; COMMAREAs
are not supported. A RESTful JISON web service can be used only in provider mode (where CICS acts
as the server).

Programmatic mode

In this scenario an application can LINK to a CICS supplied program, DFHJSON, and ask it to
transform application data into JSON data, or JSON data into application data. For example, an
application might use this facility in order to generate JSON data to send to a remote JSON web
service. To do this, it must contact the remote JSON web service using the CICS WEB APL.

CICS has no built-in support for requester mode JSON web services, but an application can call a
remote JSON web service by exploiting the programmatic mode.

Concepts of RESTful JISON web services

Read this topic to understand the concepts behind RESTful web services.

RESTful web services

REpresentational State Transfer, or REST, is a design pattern for interacting with resources stored in a
server. Each resource has an identity, a data type, and supports a set of actions.

The RESTful design pattern is normally used in combination with HTTP, the language of the internet. In
this context the resource's identity is its URI, the data type is its Media Type, and the actions are made up
of the standard HTTP methods (GET, PUT, POST, and DELETE).

This style of service differs from Request-Response style web services:

« Request-Response services start interaction with an Application, whereas RESTful services typically
interact with data (referred to as 'resources').

» Request-Response services involve application defined 'operations', but RESTful services avoid
application specific concepts.

- Request-Response services have different data formats for each message, but RESTful service typically
share a data format across different HTTP methods.

The four major HTTP methods define the four operations that are commonly implemented by RESTful
Services. The HTTP POST method is used for creating a resource, GET is used to query it, PUT is used

to change it, and DELETE is used to destroy it. The most common RESTful architecture involves a shared
data model that is used across these four operations. This data model defines the input to the POST
method (create), the output for the GET method (inquire) and the input to the PUT method (replace).
This simple design pattern is popular within the RESTful community, but it's not the only RESTful design
pattern. The HTTP status code is used to indicate success or failure of the operation. Some RESTful APIs
are designed in other ways.

A fifth HTTP method called 'HEAD' is sometimes supported by RESTful web services. This method is
equivalent to GET, except that it returns only HTTP Headers, and no Body data. It's sometimes used to
test the Existence of a resource. Not all RESTful APIs support use of the HEAD method.

Traditional CICS applications are unlikely to match the RESTful architectural pattern. Typical CICS
applications implement multiple operations, each of which will have data models for input and output
formats. These existing operations are unlikely to map directly to the four HTTP methods. For this reason
the RESTful architectural pattern is primarily aimed at new applications in CICS. To expose existing CICS
applications as RESTful Services you may need to wrap them with a new interface that conforms to the
RESTful principles.

The URI

The identity of a RESTful service is indicated by its URI. A URI can be made up of several components,
including the host name, port number, the path, and an optional query string. The domain name and

port number together target a TCPIPSERVICE resource in CICS. For more information, see TCPIPSERVICE
resources . The URI path is a qualifier, and might be sufficient to uniquely identify the service. However,

30 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/tcpipservice/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/tcpipservice/dfha4_summary.html

many RESTful web services use an additional query string to identify the precise resource. Consider the
following examples:

e http://www.example.org:10000/JSONSexrvices/AccountService
e https://www.example.org:10000/JSONServices?Service=Account

In the first example the URI path is JSONServices/AccountService. In the second example the path
is JSONServices and there is an additional query string of Service=Account. Both styles of URI are
considered to be acceptable for JISON. This is an important difference compared to SOAP. Under SOAP the
first style of URI is preferred.

CICS JSON services can be converted into RESTful services using z/OS Connect Enterprise Edition. A
Graphical User Interface is used to map URI fragments and HTTP headers into fields of an existing
copybook, and different programs can potentially act as the target for each HTTP method. The ability to
construct RESTful services from existing application assets is one of the main advantages ofz/OS Connect
over the other JSON technologies in CICS.

CICS also has an older technology for implementing a limited form of RESTful service. A URIMAP resource
can be used to identify the appropriate WEBSERVICE and PIPELINE to use when processing an inbound
message. The URIMAP can map a URI to a specific PIPELINE or WEBSERVICE, potentially including the
query string of the URI in that mapping

CICS uses a URIMAP resource to identify the appropriate WEBSERVICE and PIPELINE to use when
processing an inbound message. The URIMAP supports use of a query string as part of the path attribute.
Therefore the URIMAP is suitable for use with both types of URL.

Planning to use JSON web services

Before you can plan to use JSON web services in CICS, you need to consider these questions for each
application.

Before you begin

Do you plan to use your existing application programs, or write new ones?
If your existing applications are designed with a well defined interface to the business logic, you
will probably be able to use them in a web services setting, either as a service provider or a service
requester. However, in most cases, you will need to write a wrapper program that connects your
business logic to the web services logic.

If you plan to write new applications, you should aim to keep your business logic separated from
your web services logic, and, once again, you will need to write a wrapper program to provide this
separation. However, if your application is designed with web services in mind, the wrapper might be
simpler to write.

Do you intend to use the CICS assistant to generate the mappings between your data structures and
JSON schemas?
The assistant provides a rapid deployment of many applications into a JSON web services setting
with little or no additional programming. And when additional programming is required, it is usually
straightforward, and can be done without changing existing business logic.

However, there are cases which are better handled without using the JSON assistant. For example,
if you have existing code that maps data structures to JSON messages, there is no advantage in
reengineering your application with the JSON assistant.

Although the CICS assistant supports the most common data types and structures, there are some
that are not supported. In this situation, you should check the list of unsupported data types and
structures for the language in question, and consider providing a program layer that maps your
application data to a format that the assistant can support. If this is not possible, you will need to
parse the message yourself. For details on what the assistant can and cannot support, see High-level
language and JSON schema mapping.

Chapter 1. CICS and web services 31

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_hlljsonmapping.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_hlljsonmapping.html

Planning a JSON service provider application

In general, CICS applications should be structured to ensure separation of business logic and
communications logic. Following this practice will help you to deploy new and existing applications in

a web service provider in a straightforward way. You will, in some situations, need to interpose a simple
wrapper program between your application program and CICS web service support.

Figure 15 on page 32 shows a typical application which is partitioned to ensure a separation between
communication logic and business logic.

CICS Transaction Server

ol Communications EXEC CICS o Business
logic LIME logic

T

Client

Figure 15. Application partitioned into communications and business logic

In many cases, you can deploy the business logic directly as a service provider application. This is
illustrated in Figure 16 on page 32.

CICS Transaction Server

CICS)
Client = » Web service Bulzlnizss
support G

Figure 16. Simple deployment of CICS application as a web service provider

To use this simple model, the following conditions apply:

When using z/0S Connect to generate the mapping between a JSON schema or Swagger document
and application data structures:
z/0S Connect Enterprise Edition supports a broader range of application copybook structures than are
supported by the CICS assistant. In most cases those copybooks will be supported unchanged. If not,
you might interpose a wrapper program between the z/OS Connect service and your business logic.

When you are using the CICS assistant to generate the mapping between JSON schema and
application data structures:
The data types used in the interface to the business logic must be supported by the CICS assistant.
If this is not the case, you must interpose a wrapper program between CICS web service support and
your business logic.

You will also need a wrapper program when you deploy an existing program to provide a service that
conforms to an existing web service description: if you process the web service description using the
assistant, the resulting data structures are very unlikely to match the interface to your business logic.

When you are not using the CICS assistant:
Message handlers in your service provider pipeline must interact directly with your business logic.

Using a wrapper program

Use a wrapper program when the CICS assistant cannot generate code to interact directly with the
business logic. For example, the interface to the business logic might use a data structure which the CICS
assistant cannot map directly into a JSON message. In this situation, you can use a wrapper program to
provide any additional data manipulation that is required:

32 CICS TS for z/OS: Using Web Services with CICS

CICS Transaction Server
' cics ' -
) wrapper EXEC CICS Business
Web sarvice r "
Client [+ . Support program LINK logic

Figure 17. Deployment of CICS application as a web service provider using a wrapper program

You will need to design a second data structure that the assistant can support, and use this as the
interface to your wrapper program. The wrapper program then has two simple functions to perform:

- move data between the two data structures
« invoke the business logic using its existing interface

Error handling

If you are planning to use the CICS assistant, you should also consider how to handle rolling back
changes when errors occur. When a JSON request message is received from a service requester, the JSON
message is transformed by CICS just before it is passed to your application program. If an error occurs
during this transformation, CICS does not automatically roll back any work that has been performed on
the message. For example, if you plan to add some additional processing on the JSON message using
handlers in the pipeline, you need to decide if they should roll back any recoverable changes that they
have already performed.

On outbound JSON messages, for example when your service provider application program is sending a
response message to a service requester, if CICS encounters an error when generating the response JSON
message, all of the recoverable changes made by the application program are automatically backed out.
You should consider whether adding synchronization points is appropriate for your application program.

Planning a JSON service requester application

CICS does not provide built in support for requester mode JSON web services. Those services are
provided by z/OS Connect Enterprise Edition V3.0.

For more information about z/OS Connect, see “CICS and z/0S Connect” on page 33. To invoke a remote
JSON web service from a CICS application without using z/OS Connect, use the EXEC CICS WEB API
commands. For more information, see Creating a JSON web service client application

CICS and z/0S Connect

z/0OS Connect enables CICS programs to be called with a JavaScript Object Notation (JSON) interface.

z/0OS Connect for CICS 1.0 was first introduced as an alternative to the JSON capabilities of the

Java Pipelines for JSON that were provided in the CICS TS Feature Pack for Mobile Extensions and
integrated into CICS TS Version 5.2. Since then, z/OS Connect has grown into a separate product, called
z/OS Connect Enterprise Edition, with additional capabilities. This information describes the differences
between the alternative offerings and the steps towards implementation.

z/0S Connect is IBM's premier technology for implementing JSON services and APIs in CICS. It is
available in three versions, and supports several deployment options. z/OS Connect for CICS 1.0 is the
entry level edition and a low-cost option, but lacks the enhancements of the other versions. z/OS Connect
Enterprise Edition version 2.0 and 3.0 offer a further range of integration options.

For an overview of JSON services, see CICS as a service provider for JSON requests.

Maintenance considerations for z/0OS Connect Enterprise Edition

Because z/0S Connect Enterprise Edition can run standalone or in Liberty embedded in CICS, the two
environments must be described uniquely. You can run both environments concurrently, but they are not

Chapter 1. CICS and web services 33

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/creating_service_requester_application.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_serviceProviderInfrastructure_json.html

mutually exclusive, so care is needed when applying maintenance to the WebSphere Liberty Profile (WLP)
client libraries that contain the BBOA* modules.

For more information, see Keeping CICS TS 5.3 and z/OS Connect EE 2.0 maintenance in sync.

z/0S Connect Enterprise Edition

z/OS Connect Enterprise Edition is a separately-orderable IBM product. It builds on the capabilities of
z/0OS Connect for CICS 1.0, which included support for JSON services. z/OS Connect Enterprise Edition
enables API developers to construct JSON APIs from JSON services. The APIs are constructed and
packaged with the Eclipse-based API Editor that is provided with z/OS Connect Enterprise Edition, then
deployed to the z/OS Connect runtime. The API package includes Swagger 2.0 definitions to make it
easier for developers to incorporate the APIs into their applications. Key z/OS Connect capabilities, such
as authorization security checking for service invocation, creation of System Management Facility (SMF)
records, and logging of RESTful service requests also apply to the APIs.

z/0OS Connect Enterprise Edition can be configured to run in a Liberty JVM server in CICS. A z/OS Connect
Enterprise Edition server running in a Liberty JVM server in CICS uses a service provider to connect to
the CICS application programs. With z/OS Connect Enterprise Edition V3.0, you can choose which CICS
service provider you use for your configuration:

« If you use z/OS Connect Enterprise Edition V2.0, use the CICS service provider that is supplied with
CICS TS and feature cicsts:zosConnect-2.0. This configuration enables local high-performance
connectivity to CICS programs. This is the only supported service provider for z/OS Connect Enterprise
Edition V2.0.

- If you use z/OS Connect Enterprise Edition V3.0 to connect to a local CICS region, use the
CICS service provider that is supplied with z/OS Connect Enterprise Edition V3.0 and feature
zosconnect:cicsService-1.0. This configuration uses a local optimized connection to the local
CICS region.

« If you use z/OS Connect Enterprise Edition V3.0 to connect to a remote CICS region, use the
CICS service provider that is supplied with z/OS Connect Enterprise Edition V3.0 and feature
zosconnect:cicsService-1.0. This configuration uses an IP interconnectivity (IPIC) connection
to a remote CICS region.

JSON services that were developed for use with z/OS Connect for CICS 1.0, and most of the JSON
services that were developed for use with the Java Pipelines for JSON, can be hosted in z/OS Connect
Enterprise Edition. See “z/0S Connect for CICS 1.0” on page 34 for more details. However, users of the
API Editor that is supplied with z/OS Connect Enterprise Edition should be aware of some restrictions. For
details, see Using APIs from z/OS Connect Enterprise Edition.

For more information, see z/OS Connect Enterprise Edition V3.0 product documentation.

z/0S Connect for CICS 1.0

z/OS Connect for CICS 1.0 is a no-charge feature provided in CICS TS from Version 5.2. It is broadly
equivalent to the Java Pipelines for JSON and most JSON web services can be redeployed from one
environment to the other without changes to applications or WSBind files. However, the URI and security
configuration can be different in each environment. JSON web services that are deployed to z/OS Connect
for CICS 1.0 can also be deployed to z/OS Connect Enterprise Edition.

The version of z/OS Connect that is embedded in CICS TS shares much of the function of z/OS Connect in
WebSphere Liberty for z/OS, but it is optimized for local access to CICS and uses standard CICS services.
If you are familiar with z/OS Connect in WebSphere Liberty for z/OS, the main differences between this
and z/0S Connect for CICS 1.0 are as follows:

« z/0S Connect for CICS 1.0 supports only the deployment of JISON web services for CICS. It cannot be
used to target other z/OS subsystems such as IMS or Batch.

« z/OS Connect for CICS 1.0 integrates with CICS resources. JSON web services are deployed using
WEBSERVICE and URIMAP resources.

34 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/pages/keeping-cics-ts-53-and-zos-connect-ee-20-maintenance-sync
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/zos_connect_api.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html

« JSON service-enablement techniques from the Java Pipelines for JSON are supported with z/OS
Connect for CICS 1.0, including those that are not normally available in z/OS Connect.

« JSON services can be developed by using both bottom-up and top-down development strategies.

« JSON web services generated for Java Pipelines for JISON can be redeployed to z/OS Connect for CICS
1.0.

For more information about z/OS Connect in WebSphere Liberty for z/OS, see IBM z/0OS Connect overview.

Earlier technologies

Other JSON technologies for CICS precede z/OS Connect, including the "Feature Pack for Mobile
Extensions" and "JSON services". The Feature Pack for Mobile Extensions V1.0 applied to CICS TS for
z/OS V4.2 and V5.1. This Feature Pack provided the capability to expose CICS applications as RESTful
web services with JSON payloads, call existing JSON applications, and convert JSON to and from
application data. In CICS TS V5.2 and later, this capability was integrated into CICS TS. Services deployed
for the older technologies are usually compatible with z/OS Connect. However, z/OS Connect Enterprise
Edition provides the best experience for new services and APIs.

Deployment options for z/OS Connect Enterprise Edition

There are three major deployment options for z/OS Connect Enterprise Edition:

Standalone z/0S Connect Enterprise Edition
Connectivity to CICS is achieved by using either IPIC or WOLA connections from an external address
space. For further information, see Configuring in z/OS Connect Enterprise Edition V3.0 product
documentation.

z/0S Connect Enterprise Edition V3 in a CICS JVMSERVER hosting z/0S Connect administered
services and APIs
z/0S Connect Enterprise Edition V3.0 is hosted within a Liberty JVM server in CICS, and
communication is achieved over a locally optimized IPIC connection. Services are created using rich
UI driven tooling, and deployed using SAR and AAR files. This configuration option is similar to the
standalone z/OS Connect Enterprise Edition option, except that it is hosted in the CICS address space.

z/0S Connect Enterprise Edition in a CICS JVMSERVER hosting CICS administered services

(compatibility mode)
This option is available for any version of z/OS Connect. It offers a hybrid mode in which services
that were formerly deployed for CICS JSON services technology are aggregated into z/OS Connect.
WSBInd files are created using the DFHLS2JS or DFHJS2LS JCL procedures, deployed to CICS as
WEBSERVICE resources, but installed into z/OS Connect by CICS. This configuration option brings
many of the advantages of z/OS Connect Enterprise Edition to the older style of JSON services,
although some limitations and differences in capability will be experienced.

Comparing z/0S Connect capabilities

This section compares the capabilities of z/OS Connect Enterprise Edition and z/OS Connect for CICS 1.0.
A comparison for the Java Pipelines for JSON (or the Feature Pack for Mobile Extensions) is also included
because it preceded z/OS Connect for CICS 1.0.

Table 1. Comparing the capabilities of z/OS Connect Enterprise Edition, z/OS Connect for CICS 1.0, and
the Feature Pack for Mobile Extensions.

Capability z/0S Connect z/0S Connect for CICS [Java Pipelines for
Enterprise Edition 1.0 JSON (or the Feature
Pack for Mobile
Extensions)

Support for standard Yes. Service Discovery Yes. Service Discovery No
z/0S Connect requires extra requires extra
capabilities configuration. configuration.

Chapter 1. CICS and web services 35

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_zconnect_overview.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/configuring/configuring.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/configuring/configuring.html

Table 1. Comparing the capabilities of z/OS Connect Enterprise Edition, z/OS Connect for CICS 1.0, and

the Feature Pack for Mobile Extensions. (continued)

Capability z/0S Connect z/0S Connect for CICS [Java Pipelines for
Enterprise Edition 1.0 JSON (or the Feature

Pack for Mobile
Extensions)

Enable CICS programs | Yes Yes Yes

as JSON web services

Support for RESTful Yes Yes Yes

JSON services

Support for RESTful Yes No No

APIs

Support for starting
remote JSON services

V3:Yes; V2: No, Use
DFHJSON

No. Use DFHJSON.

No (use DFHISON)

Support for CICS data Yes. See Note 1. Yes Yes
transformation that uses

the DFHLS23JS and

DFHJS2LS assistants

Support for SAR based | V3: Optional; V2: No No No

Service deployment

Support for JISON
schema specification

Yes (draft-04)

Yes (draft-04)

Yes (draft-04)

Choice of parser Yes Yes No
technologies for JSON

transformation

Support for PIPELINE No No Yes

handler programs

Support for interceptor
programs

Yes, by using z/0S
Connect Interceptors

Yes, by using z/0OS
Connect Interceptors

Yes, by using Axis2
handlers

Application access to Yes Yes Yes
CICS control containers

WSBind deployment V3: Optional; V2: Yes. Yes Yes
through a CICS See Note 2

PIPELINE resource

Configuration with V3: Optional; V2: Yes. Yes Yes

URIMAP and
WEBSERVICE resources

See Note 3

Network configuration

Using WebSphere

Using WebSphere

Using a TCPIPSERVICE

Liberty Liberty resource
Security configuration Using WebSphere Using WebSphere Using CICS
Liberty and CICS Liberty and CICS
security security
Support for Transport Yes Yes Yes

Layer Security (TLS)

36 CICS TS for z/OS: Using Web Services with CICS

Table 1. Comparing the capabilities of z/OS Connect Enterprise Edition, z/OS Connect for CICS 1.0, and

the Feature Pack for Mobile Extensions. (continued)

Capability

z/0S Connect
Enterprise Edition

z/0S Connect for CICS
1.0

Java Pipelines for
JSON (or the Feature
Pack for Mobile
Extensions)

Statistics, monitoring,
user exits, and

other diagnostics
infrastructure

Consistent with
WebSphere Liberty in
CICS

Consistent with
WebSphere Liberty in
CICS

Consistent with
pipelines in CICS

JVM environment

A Liberty JVM server
that is preferably
isolated for sole use by
z/0S Connect

A Liberty JVM server
that is preferably
isolated for sole use by
z/0S Connect

A non-0SGi JVM
server configured with
JAVA_PIPELINE=YES,
preferably isolated for

sole use by the Java
Pipelines for JSON

Note:

Capa

1. If you use the CICS service provider that is supplied with CICS TS, this capability is supported for
services. For APIs, use the assistants that are supplied by z/OS Connect Enterprise Edition.

If you use the CICS service provider that is supplied with z/OS Connect Enterprise Edition V3.0, this
capability is not supported. Use the z/OS Connect Enterprise Edition API Toolkit, or use the build
toolkit to create services and then the API toolkit to create APIs.

2. If you use the CICS service provider that is supplied with CICS TS, this capability is supported for
services, but deploying APIs involves additional artifacts. For more information, see z/OS Connect
Enterprise Edition V3.0 product documentation.

If you use the CICS service provider that is supplied with z/OS Connect Enterprise Edition V3.0, this
capability is not supported for services. Use the z/OS Connect Enterprise Edition services directory.
Deploying APIs involves additional artifacts. For more information, see z/OS Connect Enterprise
Edition V3.0 product documentation.

3. This capability is supported for services, only if you use the CICS service provider that is supplied
with CICS TS. The CICS service provider that is supplied with z/OS Connect Enterprise Edition V3.0
supports the manual creation of URIMAPs. You can use a URIMAP, for example, to override the default
CICS transaction (CISA).

bilities of z/0OS Connect for CICS

The integrated z/OS Connect capability in CICS has differences from z/OS Connect in other environments.
z/OS Connect for CICS is optimized for local access to CICS, and uses standard CICS services.

z/0OS Connect for CICS has the same features and functions as z/OS Connect in WebSphere Liberty for
z/0S, but there are some differences.

WSBInd files can be generated by using the CICS-supplied DFHLS23JS and DFHJS2LS tools.

WSBInd files are deployed to the z/OS Connect for CICSinfrastructure by using WEBSERVICE and
URIMAP resources. This makes the operational management of z/OS Connect for CICS similar to other
CICS web services.

JSON services that are hosted in CICS can interact with CICS programs through an optimized local
connection.

JSON services can be developed by using both bottom-up and top-down development strategies.
The RESTful style of JSON services can be housed in CICS.

The integrated z/OS Connect for CICS cannot be used to directly interact with assets from other z/0OS
subsystems, such as IMS or Batch.

Chapter 1. CICS and web services 37

https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html

- If the PIPELINE scan command is used to install services, per-service configuration changes are
not required for CICS in the WebSphere Liberty Profile's sexrver. xml file. However, per-service
configuration in server. xml is supported.

« Both z/OS Connect and z/OS Connect for CICS acquire the root context for URIs. You are encouraged to
deploy z/0OS Connect for CICS into its own Liberty JVM server environment.

Related information

Configuring z/OS Connect for CICS

Security for z/OS Connect for CICS

38 CICS TS for z/0OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/zos_connect_configuring.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/web-services/zos_connect_security.html

Chapter 2. Configuring web services in CICS

You can configure CICS to support web services, where CICS applications can become web service
requesters or service providers. CICS supports different web service specifications, including binary
attachments and web services addressing. You can also configure CICS to accept web service requests
from WebSphere MQ or HTTP, and retrieve WSDL files from WSRR.

Configuring your CICS system for web services

Before you can use web services, your CICS system must be correctly configured.

Procedure

1. Ensure that you have installed Language Environment® support for PL/I.
For more information, see Installing Language Environment support.
2. Activate z/OS Support for Unicode.

You must enable the z/OS conversion services and install a conversion image that specifies the data
conversions that you want CICS to perform between SOAP messages and an application program. For
more information, see z/OS Unicode Services User's Guide and Reference.

CICS resources for web services
PIPELINE, WEBSERVICE, URIMAP and TCPIPSERVICE resources support web services in CICS.

PIPELINE
A PIPELINE resource definition is required for every web service. It provides information about the
message handler programs that act on a service request and on the response. Typically, a single
PIPELINE resource definition defines an infrastructure that can be used by many applications. The
information about the message handlers is supplied indirectly: the PIPELINE resource definition
specifies the name of a z/OS UNIX file that contains an XML description of the handlers and their
configuration.

A PIPELINE resource that is created for a service requester cannot be used for a service provider, and
vice versa. The two sorts of PIPELINE definitions are distinguished by the contents of the pipeline
configuration file that is specified in the CONFIGFILE attribute: for a service provider, the top-level
element is <provider_pipeline>; for a service requester, it is <requester_pipeline>.

WEBSERVICE
A WEBSERVICE resource definition is required only when the mapping between application data
structure and SOAP messages has been generated using the CICS web services assistant. It defines
aspects of the runtime environment for a CICS application program deployed in a web services
setting.

Although CICS provides the usual resource definition mechanisms for WEBSERVICE resources, they
are typically created automatically from a web service binding file when the pickup directory for the
PIPELINE resource definition is scanned. This can occur when the PIPELINE resource is installed

or as a result of a PERFORM PIPELINE SCAN command. The attributes applied to the WEBSERVICE
resource in this case come from a web services binding file, which is created by the web services
assistant; information in the binding file comes from the web service description, or is supplied as a
parameter of the web services assistant.

A WEBSERVICE resource that is created for a service requester cannot be used for a service provider,
and vice versa. The two sorts of WEBSERVICE resource are distinguished by the PROGRAM attribute in
the resource definition: for a service provider, the attribute must be specified; for a service requester,
it must be omitted.

© Copyright IBM Corp. 1974, 2023 39

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.cunu100/toc.htm

URIMAP

A URIMAP definition is required in a service provider when it contains information that maps the
URI of an inbound web service request to the other resources (such as the PIPELINE resource)

that will service the request. This URIMAP definition is also required if you are using HTTP basic
authentication, because the URIMAP resource definition specifies that the service requester user ID
information is passed in an HTTP authorization header to the service provider.

A second optional URIMAP definition can exist in a service provider for WSDL discovery. This URIMAP
resource definition contains information that maps the URI of an inbound request for the WSDL
document or documents associated with the web service.

For service providers deployed using the CICS web services assistant, although CICS provides the
usual resource definition mechanisms, the URIMAP resources are typically created automatically
when the pick directory is scanned. This scan occurs when the PIPELINE resource is installed or as
aresult of a PERFORM PIPELINE SCAN command. The URIMAP resource that provides CICS with
the information to associate the WEBSERVICE resource with a specific URI is a required resource.
The attributes for this resource are specified by a web service binding file in the pickup directory.
The URIMAP resource that provides CICS with the information to associate the WSDL archive file or
WSDL document with a specific URI is an optional resource and is created if either a WSDL file or
WSDL archive file are present in the pickup directory. For more information about creating URIMAP
resources for web service providers, see Creating a web service provider by using the web services

assistant.

For service requesters, CICS does not create any URIMAP resources automatically when the
PIPELINE resource is installed or as a result of a PERFORM PIPELINE SCAN command. Service
requesters are not required to use URIMAP resources when they make requests; they can specify the
URI of the outbound request directly in the application program. However, if you create a URIMAP
resource for the client request, and your service requesters use the URIMAP resource to provide the
URI, you gain these advantages:

- System administrators can manage any changes to the endpoint of the connection, so you do not
need to recompile your applications if the URI of a service provider changes.

 You can choose to make CICS keep the connections that were opened with the URIMAP resource
open after use, and place them in a pool for reuse by the application for subsequent requests,
or by another application that calls the same service. Connection pooling is only available when
you specify a URIMAP resource that has the SOCKETCLOSE attribute set. For more information
about the performance benefits of connection pooling, see Connection pooling for HTTP client
performance.

Configuring URIMAP resource attributes in a certain way might enable inbound requests being
processed by directly attached user transactions, and bypassing the web attach task. For more
information, see HTTP requests are processed by directly attached user transactions.

TCPIPSERVICE
A TCPIPSERVICE definition is required in a service provider that uses the HTTP transport. It contains
information about the port on which inbound requests are received.

The resources that are required to support a particular application program depend on the following

criteria:

« Whether the application program is a service provider or a service requester.

« Whether the application is deployed with the CICS web services assistant.

CICS web
Service services
requester or | assistant WEBSERVICE TCPIPSERVICE
provider used PIPELINE required required URIMAP required required
Provider Yes Yes Yes (but see note 1) Yes (but see note 1) See note 2
Provider No Yes No Yes See note 2
Requester Yes Yes Yes See note 3 No

40 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_deployProviderWithTools.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_deployProviderWithTools.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/web/dfht3_connpool.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/web/dfht3_connpool.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/web/csol_bypass_cwxn.html

CICS web
Service services
requester or | assistant WEBSERVICE TCPIPSERVICE
provider used PIPELINE required URIMAP required required
Requester No Yes 3 No
Notes:

1. When the CICS web services assistant is used to deploy an application program, the WEBSERVICE and

two URIMAP resources can be created automatically when the pickup directory of the PIPELINE is
scanned. The first URIMAP resource is required and provides CICS with the information to associate
the WEBSERVICE resource with a specific URIL. The second URIMAP resource is optional and provides
CICS with the information to associate the WSDL archive file or WSDL document with a specific URI

so that external requesters can use the URI to discover the WSDL archive file or WSDL document. The
pickup directory of the PIPELINE scan occurs when the PIPELINE resource is installed or as a result of
a PERFORM PIPELINE SCAN command.

. ATCPIPSERVICE resource is required when the HTTP transport is used. When the WebSphere MQ
transport is used, a TCPIPSERVICE resource is not required.

. A URIMAP resource is optional for a service requester, and the CICS web services assistant does not
generate one automatically. When you define your own URIMAP resources for service requesters to
use, you can implement connection pooling, and manage changes to the URIs for service providers.

Configuring TCPIP resource attributes in a certain way might enable inbound requests being processed by
directly attached user transactions, and bypassing the web attach task. For more information, see HTTP
requests are processed by directly attached user transactions.

Typically, when you deploy many web services applications in a CICS system, you have more than one
of each type of resource. In this case, you can share some resources between applications. Each web
services file or resource is associated with one or more CICS resources of other types.

Table 2. Other CICS resources that are associated with each web services file and resource

Web services file or resource

Associated resources

Pipeline configuration file

« More than one PIPELINE resource that refers to

the file.

PIPELINE

« More than one URIMAP resource that refers to

the PIPELINE resource.

More than one WEBSERVICE resource that refers
to the PIPELINE resource.

More than one web service binding file in the
pickup directory of the PIPELINE resource.

Web service binding file

One URIMAP resource that is automatically
generated from the binding file. You can define
further URIMAP resources for a service provider,
and you can define URIMAP resources for a
service requester.

One WEBSERVICE resource that is automatically
generated from the binding file. You can define
further WEBSERVICE resources if you need to.

Chapter 2. Configuring web services in CICS 41

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/web/csol_bypass_cwxn.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/web/csol_bypass_cwxn.html

Table 2. Other CICS resources that are associated with each web services file and resource (continued)

Web services file or resource Associated resources

WEBSERVICE « More than one URIMAP resource. If

the WEBSERVICE resource is automatically
generated from the binding file for a service
provider, CICS generates one corresponding
URIMAP resource. You can define further
URIMAP resources for a service provider, and
you can define URIMAP resources for a service
requester.

URIMAP « Just one TCPIPSERVICE resource when it is
explicitly named in the URIMAP resource.

TCPIPSERVICE + Many URIMAP resources.

Web services discovery
WSDL documents associated with a Provider mode web service are automatically published to the Web.

A convention exists among web service hosting environments that allows the WSDL for a web service to
be queried by a remote client (typically an Application Developer using a web browser) using the URI for
the web service suffixed with ?wsd1. This convention can make it easier to distribute WSDL to interested
parties without the need for a formal WSDL repository. This convention is implemented in CICS.

For example, you might have a web service hosted in CICS and published under the following URI:

http://www.example.org:1234/example/WebService

The associated WSDL document could be recovered by requesting the following URI using a web browser:

http://www.example.org:1234/example/WebService?wsdl

WSDL documents for service providers can be published for discovery using URIMAP resources. When
you install each PIPELINE resource, CICS scans the directory specified in the WSDIR attribute of the
PIPELINE resource (the pickup directory). If this directory contains either a WSDL archive file or WSDL
document, a second URIMAP resource is installed. This new URIMAP resource provides CICS with the
information to associate the WSDL archive file or a WSDL document with a specific URI so that external
requesters can use the URI to discover the WSDL archive file or WSDL document. This URI has the same
path as the URI associated with the WEBSERVICE with the suffix ?wsd1 appended.

The WSDL archive file can contain one or more WSDL documents. If the pickup directory contains a
WSDL archive file and a WSDL document, the URI returns only the WSDL archive. The archive file format
that is supported is the .zip file type. It is also possible to discover the WSDL archive file or WSDL
document using SPI and CEMT. The WSDL document in a WSDL archive file can be used for SOAP
message validation.

Configuring CICS to use the IBM MQ transport

To use the IBM MQ transport with SOAP web services in CICS, you must configure your CICS region
accordingly.

About this task

Note: You cannot use the IBM MQ transport for JISON web services.

42 CICS TS for z/OS: Using Web Services with CICS

Procedure

1.

Include the IBM MQ library thlqual .SCSQAUTH in the STEPLIB concatenation in your CICS
procedure. Include the library after the CICS libraries to ensure that the correct code is used.

thlqual is the high-level qualifier for the IBM MQ libraries.

. Include the following IBM MQ libraries in the DFHRPL concatenation in your CICS procedure. Include

the libraries after the CICS libraries to ensure that the correct code is used.

thlqual .SCSQCICS
thlqual.SCSQLOAD
thlqual.SCSQAUTH

thlqual is the high-level qualifier for the IBM MQ libraries.

If you are using the CICS-MQ API-crossing exit (CSQCAPX), also add the name of the library that
contains the load module for the program.

The SCSQCICS library is required only if you want to run IBM MQ supplied samples. Otherwise it can
be removed from the CICS procedure.

. Define and install an MQCONN resource for the CICS region.

The MQCONN resource specifies the attributes of the connection between CICS and IBM MQ, including
the name of the default IBM MQ queue manager or queue-sharing group for the connection. For
instructions, see Defining and installing an MQCONN resource.

. Specify the CICS system initialization parameter MQCONN=YES to start the CICS-MQ connection

automatically at CICS initialization. For details, see MQCONN system initialization parameter.

. If you are using the CICS-MQ adapter in a CICS system that has interregion communication (IRC) to

remote CICS systems, ensure that the IRC facility is OPEN before you start the adapter, by specifying
the CICS system initialization parameter IRCSTRT=YES.

The IRC facility must be OPEN if the IRC access method is defined as cross-memory; that is,
ACCESSMETHOD(XM).

. Ensure that the coded character set identifiers (CCSIDs) used by your queue manager and by CICS,

and the UTF-8 and UTF-16 code pages are configured to z/OS conversion services.
The CICS code page is specified in the LOCALCCSID system initialization parameter.

. Update your CICS CSD as follows:

a) If you do not share your CSD with earlier releases of CICS, remove the groups CSQCAT1 and
CSQCKB, and any copies of those groups or of items from those groups, from your CSD. You must
also delete the CKQQ TDQUEUE from group CSQCAT1.

The definition for CKQQ is now supplied in the CICS CSD group DFHDCTG.

b) If you do share your CSD with earlier CICS releases, ensure that CSQCAT1 and CSQCKB, and any
copies of those groups or of their content, are not installed for CICS TS 4.1 or CICS TS 3.2. You must
also delete the CKQQ TDQUEUE from group CSQCAT1.

The definition for CKQQ is now supplied in the CICS CSD group DFHDCTG.

For CICS TS releases earlier than CICS TS 3.2, install the CSQCAT1 and CSQCKB groups as part of
a group list, after installing DFHLIST, to override group DFHMQ and correctly install the required
definitions.

. Update the IBM MQ definitions for the dead-letter queue, default transmission queue, and CICS-MQ

adapter objects.

You can use the sample CSQ4INYG, but you might need to change the initiation queue name to match
the default initiation queue name in the MQINI resource definition for your CICS region. You can

use this member in the CSQINP2 DD concatenation of the queue manager startup procedure, or you
can use it as input to the COMMAND function of the CSQUTIL utility to issue the required DEFINE
commands. Using the CSQUTIL utility is preferable because you do not then have to redefine these
objects each time that you restart IBM MQ.

Chapter 2. Configuring web services in CICS 43

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/mq/mqconn_setup.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_mqconn2.html

The IBM MQ transport

CICS can receive and send SOAP messages to IBM MQ using the IBM MQ transport, both in the role of
service provider and service requester.

As a service provider, CICS uses IBM MQ triggering to process SOAP messages from an application
gueue. Triggering works by using an initiation queue and local queues. A local (application) queue
definition includes the following information:

« The criteria for when a trigger message is generated. For example, when the first message arrives on the
local queue, or for every message that arrives on the local queue. For CICS SOAP processing, specify
that triggering occurs when the first message arrives on the local queue.

The local queue definition can also specify that trigger data is passed to the target application, and in
the case of CICS SOAP processing (transaction CPIL), this specifies the default target URL to be used if
this is not passed with the inbound message.

« The process name that identifies the process definition. The process definition describes how the
message is processed. In the case of CICS SOAP processing, specify the CPIL transaction.

« The name of the initiation queue that the trigger message should be sent to.

When a message arrives on the local queue, the Queue Manager generates and sends a trigger

message to the specified initiation queue. The trigger message includes the information from the process
definition. The trigger monitor retrieves the trigger message from the initiation queue and schedules

the CPIL transaction to start processing the messages on the local queue. For more information about
triggering, see Task initiator or trigger monitor (CKTI).

You can configure CICS, so that when a message arrives on a local queue, the trigger monitor (provided by
IBM MQ) schedules the CPIL transaction to process the messages on the local queue and drive the CICS
SOAP pipeline to process the SOAP messages on the queue.

When CICS constructs a response to a SOAP message that is received from IBM MQ, the

correlation ID field is populated with the message ID of the input message, unless the report option
MQRO_PASS_CORREL_ID has been set. If this report option has been set, the correlation ID is propagated
from the input message to the response.

As a service requester, on outbound requests you can specify that the responses for the target web
service is returned on a particular reply queue.

In both cases, CICS and IBM MQ require configuration to define the required resources and queues.

Defining local queues in a service provider

To use the WebSphere MQ transport in a service provider, you must define one or more local queues
that store request messages until they are processed, and one trigger process that specifies the CICS
transaction that will process the request messages.

Procedure

1. Define an initiation queue.
Use the following command:
DEFINE

QLOCAL('initiation_queue')
DESCR('description')

where initiation_queue is the same as the value specified for the QNAME attribute of the installed
MQMONITOR resource definition for the CICS region, or the value specified for the INITQNAME
attribute of the installed MQCONN resource definition.

2. For each local request queue, define a QLOCAL object.
Use the following command:

44 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/mq/zc12120_.html

DEFINE

QLOCAL ('gueuename')
DESCR('description')

PROCESS (processname)
INITQ('initiation_queue')

TRIGGER

TRIGTYPE (FIRST)
TRIGDATA('default_target_service')
BOTHRESH (nnn)
BOQNAME (' requeuename ')

where:

- queuename is the local queue name.

« processname is the name of the process instance that identifies the application started by the
gueue manager when a trigger event occurs. Specify the same name on each QLOCAL object.

- initiation_queue is the name of the initiation queue to be used; for example, the initiation queue

specified in the QNAME attribute of the installed MOMONITOR resource definition for the CICS
region.

- default_target_service is the default target service to be used if a service is not specified on
the request. The target service is of the form '/string' and is used to match the path of a URIMAP
definition; for example, '/SOAP/test/test1l". The first character must be '/*.

« nnn is the number of retries that are attempted.

« requeuename is the name of the queue to which failed messages are sent.
3. Define a PROCESS object that specifies the trigger process.

Use the following command:

DEFINE

PROCESS (processname)

APPLTYPE(CICS)
APPLICID(CPIL)

where:

processname is the name of the process, and must be the same as the name that is used when
defining the request queues.

Defining local queues in a service requester

When you use the WebSphere MQ transport for outbound requests in a service requester, you can specify
in the URI for the target web service that your responses should be returned on a predefined reply queue.
If you do so, you must define each reply queue with a QLOCAL object.

About this task

If the URI associated with a request does not specify a reply queue, CICS will use a dynamic queue for the

reply.

Procedure

Optional: To define each QLOCAL object that specifies a predefined reply queue, use the following
command.

DEFINE
QLOCAL('reply_queue')
DESCR('description')
BOTHRESH (nnn)

where:

Chapter 2. Configuring web services in CICS 45

reply_queue is the local queue name.
nnn is the number of retries that will be attempted.

The URI for the IBM MQ transport

When communication between the service requester and service provider uses IBM MQ, the URI of the
target is in a form that identifies the target as a queue and includes information to specify how the request
and response should be handled by IBM MQ.

Syntax

»— jms:/queue? L— destination= queuvename

M persistence= message_persistence —————

J.

L)

L @queuemanagername J

priority= message_priority

M replyDestination= reply_queue ——
M SOAPJMS_targetService= sting ———

timeout= timeout

timeTolive= expiry_time

- targetService= string J

Options

CICS uses the following options; other web service providers might use further options that are not
described here. The entire URI is passed to the service provider, but CICS ignores any options that it does
not support and that are coded in the URI. CICS is not sensitive to the case of the option names. However,
some other implementations that support this style of URI are case-sensitive.

destination=queuename [@queuemanagername]

queuename is the name of the input queue in the target queue manager
queuemanagername is the name of the target queue manager

pexrsistence=message_persistence
Specify one of the following options:

0

Persistence is defined by the default queue persistence.
1

Messages are not persistent.
2

Messages are persistent.
If the option is not specified or is specified incorrectly, the default queue persistence is used.

priority=message_priority
Specifies the message priority. CICS supports integer values in the range 0 - 9 for message priorities,
where 9 is assigned to the highest priority messages and 0 is assigned to the lowest priority
messages. Alternatively, specify =1 to use the default priority that is defined for the target queue.

replyDestination=reply _queue
Specifies the queue to be used for the response message. If this option is not specified, CICS uses a
dynamic queue for the response message. You must define the reply queue in a QLOCAL object before
using this option.

46 CICS TS for z/OS: Using Web Services with CICS

SOAPJMS_targetService=string
Identifies the target service. If CICS is the service provider, the target service should be of the form
'/string', as CICS uses this as the path when attempting to match with URIMAP. If this option is
not specified, the value that is specified in TRIGDATA on the input queue at the service provider is
used.

timeout=timeout
The timeout in milliseconds for which the service requester waits for a response. If a value of zero is
specified, or if this option is omitted, the request will not time out.

timeTolLive=expiry-time
Specifies the expiry time for the request in milliseconds. If the option is not specified or is specified
incorrectly, the request will not expire.

targetService=string
Identifies the target service. If CICS is the service provider, then the target service should be of the
form '/string', as CICS uses this as the path when attempting to match with URIMAP. If this option
is not specified, the value that is specified in TRIGDATA on the input queue at the service provider is
used.

Example
This example shows a URI for the IBM MQ transport:
jms:/queue?destination=queue0l@cicsO07&timeToLive=10&replyDestination=rqueue05&targetService=/myservice

For information about "connectionFactory" and "initialContextFactozry", see the IBM MQ
product documentation.

Configuring CICS to support persistent messages

CICS provides support for sending persistent messages using the WebSphere MQ transport protocol to a
web service provider application that is deployed in a CICS region.

About this task

CICS uses Business Transaction Services (BTS) to ensure that persistent messages are recovered in the
event of a CICS system failure. For this to work correctly, follows these steps:

Procedure

1. Use IDCAMS to define the local request queue and repository file to MVS™,

You must specify a suitable value for STRINGS for the file definition. The default value of 1 is unlikely
to be sufficient, and you are recommended to use 10 instead.

2. Define the local request queue and repository file to CICS.

Details of how to define the local request queue to CICS are described in “Defining local queues in a
service provider” on page 44. You must specify a suitable value for STRINGS in the file definition. The
default value of 1 is unlikely to be sufficient, and it is recommended that you use 10 instead.

3. Define a PROCESSTYPE resource with the name DFHMQSOA, using the repository file name as the
value for the FILE option.

4. Ensure that during the processing of a persistent message, a program issues an EXEC CICS
SYNCPOINT command before the first implicit syncpoint is requested; for example, using an SPI
command such as EXEC CICS CREATE TDQUEUE implicitly takes a syncpoint.

Issuing an EXEC CICS SYNCPOINT command confirms that the persistent message has been
processed successfully. If a program does not explicitly request a syncpoint before trying to implicitly
take a syncpoint, an ASP7 abend is issued.

Results

Chapter 2. Configuring web services in CICS 47

https://www.ibm.com/support/knowledgecenter/SSFKSJ/
https://www.ibm.com/support/knowledgecenter/SSFKSJ/

What to do next
For one way request messages, if the web service abends or backs out, sufficient information is retained
to allow a transaction or program to retry the failing request, or to report the failure appropriately. You

need to provide this recovery transaction or program. See “Persistent message processing” on page 48
for details.

Persistent message processing

When a web service request is received in a WebSphere MQ persistent message, CICS creates a unique
BTS process with the process type DFHMQSOA. Data relating to the inbound request is captured in BTS
data-containers that are associated with the process.

The process is then scheduled to run asynchronously. If the web service completes successfully and
commits, CICS deletes the BTS process. This includes the case when a SOAP fault is generated and
returned to the web service requester.

Error processing

If an error occurs when creating the required BTS process, the web service transaction abends, and the
inbound web service request is not processed. If BTS is not usable, message DFHPI0117 is issued, and
CICS continues without BTS, using the existing channel-based container mechanism.

If a CICS failure occurs before the web service starts or completes processing, BTS recovery ensures that
the process is rescheduled when CICS is restarted.

If the web service ends abnormally and backs out, the BTS process is marked complete with an ABENDED
status. For request messages that require a response, a SOAP fault is returned to the web service
requester. The BTS process is canceled, and CICS retains no information about the failed request. CICS
issues message DFHBA0104 on transient data queue CSBA, and message DFHPI0117 on transient data
queue CPIO.

For one way messages, there is no way to return information about the failure to the requester so the BTS
process is retained in a COMPLETE ABENDED state. CICS issues message DFHBA0104 on transient data
queue CSBA, and DFHPI0116 on transient data queue CPIO.

You can use the CBAM transaction to display any COMPLETE ABENDED processes, or you can supply
a recovery transaction to check for COMPLETE ABENDED processes of the DFHMQSOA and take
appropriate action.

For example, your recovery transaction could:

1. Reset the BTS process using the RESET ACQPROCESS command.

2. Issue the RUN ASYNC command to retry the failing web service. It could keep a retry count in another
data-container on the process, to avoid repeated failure.

3. Use information in the associated data-containers to report on the problem:
The DFHMQORIGINALMSG data-container contains the message received from WebSphere MQ,
which might contain RFH2 headers.

The DFHMQMSG data-container contains the WebSphere MQ message with any RFH2 headers
removed.

The DFHMQDLQ data-container contains the name of the dead letter queue associated with the
original message.

The DFHMQCONT data-container contains the WebSphere MQ MQMD control block relating to the
MQ GET for the original message.

48 CICS TS for z/0OS: Using Web Services with CICS

Interoperability between the web services assistant and WSRR

The CICS web services assistant can interoperate with the IBM WebSphere Service Registry and
Repository (WSRR). Use WSRR to find web services that you are requesting more quickly and enforce
version control of the web services that you are providing.

Both DFHLS2WS and DFHWS2LS include parameters to interoperate with WSRR. DFHLS2WS also
includes an optional parameter so that you can add your own customized metadata to the WSDL
document in WSRR.

If you want the web services assistant to communicate securely with WSRR, you can use secure socket
level (SSL) encryption. Both DFHLS2WS and DFHWS2LS include parameters for using SSL encryption.

To use SSL with the web services assistant and WSRR, see “Example of how to use SSL with the web
services assistant and WSRR” on page 49.

Example of how to use SSL with the web services assistant and WSRR

You can interoperate securely between the web services assistant and an IBM WebSphere Service
Registry and Repository (WSRR) server by using secure socket layer (SSL) encryption. To use SSL
encryption you need a key store and a trust store; you must also specify certain parameters on the
web services assistant.

About this task

Complete the following steps to use SSL encryption for interactions between the web services assistant
and WSRR.

Procedure

1. Create a key store for your private keys and public key certificates (PKC).

a) You can create a key store using a key configuration program such as the IBM Key Management
Utility (iKkeyman).

b) Specify the SSL-KEYSTORE parameter in DFHWS2LS or DFHLS2WS with the fully qualified name of
the key store that you have created.

¢) Optional: Specify the SSL-KEYPWD parameter in DFHWS2LS or DFHLS2WS with the password of
the key store that you have created.

2. Create a trust store for all your trusted root certificate authority (CA) certificates. These certificates are
used to establish the trust of any inbound public key certificates.

a) You can create a trust store using a key configuration program such as the IBM Key Management
Utility (iKeyman).

b) Specify the SSL-TRUSTSTORE parameter in DFHWS2LS or DFHLS2WS with the fully qualified name
of the trust store that you have created.

c¢) Optional: Specify the SSL-TRUSTPWD parameter in DFHWS2LS or DFHLS2WS with the password of
the trust store that you have created.

3. Test that the web services assistant is able to communicate with WSRR using SSL encryption.

a) You can use the sample files provided by IBM WebSphere Application Server to test the web
services assistant with WSRR.

« The sample key stores provided by WebSphere Application Server are
DummyClientKeyFile.jks and DummyServerKeyFile. jks.

« The sample trust stores provided by WebSphere Application Server are
DummyClientTrustFile.jks and DummyServerTrustFile. jks.

b) Replace the keys in the sample key and trust store files.
These keys are shipped with WebSphere Application Server and must be replaced for security.

Chapter 2. Configuring web services in CICS 49

Results
The web services assistant can now use SSL encryption to communicate securely with WSRR across a
network.

Creating the web services infrastructure

To deploy a web service to CICS, you must create the necessary transport infrastructure and define one or
more pipelines that will process your web services requests. Typically, one pipeline can process requests
for many different web services, and, when you deploy a new web service in your CICS system, you can
choose to use an existing pipeline.

The web services infrastructure

CICS applications in a CICS region can either provide a service to, or request a service from, applications
that are external to that region by using a web services pipeline. When CICS is a service provider, the CICS
application supplies a service to the external application. When CICS is a service requester, the external
application supplies a service to the CICS application. Web services pipelines can be configured to use
zEnterprise® Application Assist Processor (zAAP) where available.

CICS as a service provider

For CICS to provide a service to an external service requester, it must receive the service request and pass
it through a pipeline to the target application program. The response from the application is returned to
the service requester through the same pipeline.

Figure 18 on page 50 shows an example configuration of the architecture and resources that are
required to process a request from an external service requester when CICS is a service provider using a
Java pipeline.

o T

f CICS Region A

CPIH

transaction
request

message

Service > Pipeline

Requestar

TCP/P Port

response message
message handler

il

message
handler

RESOURCES T

message
TCPIPSERVICE e =

til
URIMAP application
handler

PIFELIME cics
application

program
.

‘-\‘ ’ JVM server /

WERBSERVICE

Figure 18. The architecture and resources for a service provider

To process a request, CICS must perform the following operations:

50 CICS TS for z/OS: Using Web Services with CICS

1. Receive the request from the service requester.

The TCPIPSERVICE resource specifies a port for incoming requests. This port is monitored by the
CICS-supplied sockets listener transaction (CSOL).

2. Examine the request, and extract the contents that are relevant to the target application program.

When the request message is received on the appropriate port, the URIMAP resource definitions are
scanned for a URIMAP definition that has its USAGE attribute set to PIPELINE and its PATH attribute
set to the URI found in the request. If an appropriate URIMAP definition is found, the PIPELINE and
WEBSERVICE definitions from the PIPELINE and WEBSERVICE attributes of the URIMAP definition are
used. The TRANSACTION attribute of the URIMAP definition determines the name of the transaction
that should be attached to process the pipeline. By default the CPIH transaction is used. The URIMAP
definition also identifies the PIPELINE and WEBSERVICE resources to use. These resources control the
processing that CICS performs.

3. Invoke the application program, passing data extracted from the request.

The message handlers in the pipeline and the application handler convert the request message into
application language structure that the service provider application program expects. The program
processes this input and returns a response to the application handler.

4. Construct a response using data returned by the application program, and send a response to the
service requester.

The application handler and message handlers convert the response message received from the
service provider application into a message in the format of the original request. This message is sent
back to the service requester.

Some of the processing within the pipeline can be performed using the zEnterprise Application Assist
Processor (zAAP) if the pipeline is configured appropriately. For more information, see “Java-based SOAP
pipelines” on page 52.

CICS as a service requester

For CICS to invoke an external service, an application program sends a request that is passed through a
pipeline to a target service. The response from the service is returned to the application program through
the same pipeline.

Figure 19 on page 52 shows an example configuration of the architecture and resources that are
required to process a request from a CICS application program for data from a service provider that is
external to the CICS region, using a Java pipeline.

Chapter 2. Configuring web services in CICS 51

/ A

/" cICS Region

User transaction RESOURCES
Pipeline
ast
i WEBSERVICE
CICS application g
DIOGrAM [—
message PIPELINE
handler
Mmessa
handler request
T l | message
message > Service
handler |4 Provider
response
message

)

N

i -

Figure 19. The architecture and resources for a service requester

To process a request, CICS must perform the following operations:
1. Build a request using data provided by the application program.

When the CICS application program initiates a request to a service provider that is external to the
CICS region, the requestor application calls the EXEC CICS INVOKE SERVICE command. The EXEC
CICS INVOKE SERVICE command invokes the pipeline. The pipeline converts the application language
structure into a language that the service provider can process, for example a SOAP message.

2. Send the request to the service provider.

CICS sends the request message to the remote service provider by using either HTTP or WebSphere
MQ.

3. Receive a response from the service provider.
When the service provider response message is received, CICS passes the message back to the
pipeline.

4. Examine the response, and extract the contents that are relevant to the original application program.

The pipeline converts the service provider response message into the application language structure,
which is passed to the application program. Control is then returned to the application program.

Some of the processing within the pipeline can be performed using the zEnterprise Application Assist
Processor (zAAP) if the pipeline is configured appropriately. For more information, see “Java-based SOAP
pipelines” on page 52.

Java-based SOAP pipelines

CICS supports using the Axis2 Java-based SOAP engine to process web service requests in provider
and requester pipelines. Because Axis2 uses Java, the SOAP processing is eligible for offloading to the
zEnterprise Application Assist Processor (zAAP).

Axis2 is an open source web services engine from the Apache foundation and is provided with CICS to
process SOAP messages in a Java environment. You can opt to use Axis2 by adding a Java SOAP handler
to your pipeline configuration file and creating a JVM server to handle the Axis2 processing.

52 CICS TS for z/OS: Using Web Services with CICS

http://ws.apache.org/axis2/

Enabling Axis2 does not require regenerating the binding files for any existing web services that use the
pipeline. The response times might be slower when using Axis2, but you can offload the SOAP processing
to zAAP. For more information about offloading to zZAAP, see Java support in CICS.

When CICS is a service provider, the Java-based terminal handler uses Axis2 to parse the SOAP envelope
for a request message. You can use header processing programs to process any SOAP headers associated
with the SOAP message. Axis2 also constructs the SOAP response message. This process is shown in the

following diagram:

= ,
fff Header H_
CICS pipeline pracessing \
program
Request Transport Service
handler handler . ¥
HH"\\.
Java SOAP | Sarvica
P handlar provider
B application
- -ff
_RAesponse Transport Service | Axis2
N handler handler
\ JVM server |
!
e .-"/‘.

When CICS is a service requester, the Java-based initial handler in the pipeline uses Axis2 to generate
the SOAP envelope for a request message. You can use header processing programs to process any SOAP
headers associated with the SOAP message. Axis2 also parses the SOAP response message.

Web service applications and Java

For provider-mode SOAP pipelines, request and response messages are passed between the terminal
handler of the pipeline and the web service application by using an application handler. The application
handler processes the body of a SOAP request so that the request can be used by the application.

The application handler also generates a response by using the returned data from the application. If
the terminal handler of your pipeline is a Java-based message handler, you can specify the supplied
Axis2 application handler in the pipeline configuration file, as opposed to specifying the supplied
DFHPITP application handler. The application handler processing can then be offloaded to zZAAP. For
more information about application handlers, see “Application handlers” on page 88.

For requester-mode SOAP pipelines, the web service application invokes the pipeline by using the EXEC
CICS INVOKE SERVICE command. The request and response messages are then passed between the
web service application and the initial handler in the pipeline. If you specify a Java-based handler as the
initial handler in the pipeline, then the EXEC CICS INVOKE SERVICE command is processed by Axis2,
making it possible to offload this process to zAAP. If the first handler is not a Java-based handler, then the
EXEC CICS INVOKE SERVICE command is processed by CICS.

Axis2 processing in a JVM server

Axis2 requires a JVM server, which is represented by a JVMSERVER resource in CICS. The JVM server

is a runtime environment that can handle multiple concurrent requests from different Java programs

in a single JVM. The class path for the JVM server must include the Axis2 Java archive files. You can
automatically add all of the required JAR files to the class path by specifying the JAVA_PIPELINE option
in the JVM profile. The pipeline configuration file must also point to the JVMSERVER resource that is
configured to support Axis2.

For more information about JVM servers, see Java support in CICS.

Chapter 2. Configuring web services in CICS 53

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/java/JVMsupport.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/java/JVMsupport.html

Axis2 header handlers

Although you can use existing header processing programs, it is more efficient to write Axis2 handlers
in Java to process the SOAP headers. These handlers can also run in the JVM server and are therefore
eligible for offloading. For more information about creating Axis2 handlers, see Writing Your Own Axis2
Module.

A header handler program can use Axis2 APIs to modify or interact with the Axis2 environment, SOAP
messages, and individual web services. Do not use these APIs to customize Axis2, as you might change
Axis2 in a way that means CICS cannot run the engine correctly. Axis2 handlers are supported only if they
interact with the Axis2 environment in a way that is compatible with how CICS uses Axis2.

Axis2 repository

Axis2 uses a repository to store all of its configuration files, services, and modules. CICS provides
a default repository in the usshome/1ib/pipeline/repository directory on z/OS UNIX, where
usshome is the value of the USSHOME system initialization parameter.

The default repository contains the configuration file, axis2.xml, which is required by CICS to use Axis2.
This file is in the /conf subdirectory in the repository. If you create your own repository, you must copy
this file to your repository for CICS to work with Axis2.

Do not edit the axis2.xml file, unless you are registering handler programs. This file is managed as an
internal part of CICS, so you must not make any other changes to this file unless requested to do so by
IBM support.

Data formatting for Web Services

Different CICS technologies can generate JSON and XML data that is equally specification compliant, but
physically different. They might also report errors that are found in an input message in different ways, as
a result of the order in which they apply checks to validate the data.

CICS uses several different technologies for automatically transforming JSON and XML data. These
include z/0S Connect for CICS (both the Java and non-Java variants), Axis2, and PIPELINE resources.
These technologies generate JSON and XML data in an external format as dictated by the relevant
specifications.

There can be multiple ways to represent data, that are equally specification-compliant, but physically
different. The CICS technologies always generate data that is compliant, but there might be physical
differences between them. For example, if you switch between the Java and non-Java z/OS Connect for
CICS options for JSON, you might detect minor differences in the generated JSON.

Such differences might include different error messages being reported under failure conditions,
differences in how white-space characters are inserted, alternative (but equivalent) representations for
numeric data, and variations in how special characters are escaped. Further changes of this nature can be
introduced as a result of applying corrective maintenance to CICS, or with new releases of CICS.

Partner systems, such as a JSON client, should be written to tolerate specification-compliant variations
of this nature. Partners often exploit widely used cross-industry libraries and technologies for interacting
with JSON and XML; such libraries automatically handle such minor formatting differences. However,

it is possible for less-compliant partner systems to detect and respond differently to the formatting
differences in the various CICS technologies, care might therefore be required if you are writing
applications that work directly with the JISON or XML without the benefit of a standards-based parser.

CICS as a service provider for JSON requests

For CICS to provide a service to an external JSON client, it must receive the request and pass it through
a pipeline to the target application program. The response from the application is returned to the JSON
client through the same pipeline.

There are several ways of configuring CICS as a service provider for JSON requests:
« Using z/OS Connect for CICS.

54 CICS TS for z/OS: Using Web Services with CICS

http://axis.apache.org/axis2/java/core/docs/modules.html
http://axis.apache.org/axis2/java/core/docs/modules.html

z/0S Connect for CICS is a technology for accessing z/OS assets, such as CICS programs, by using
JSON. For more information about z/OS Connect for z/OS, and some of the differences between z/0S
Connect for CICS and CICS Java pipelines, see Getting started with z/OS Connect.

« Using CICS Java pipelines.

CICS Java pipelines are the technology that is provided in previous versions of CICS to allow access to
CICS programs by using JSON. For more information about CICS Java pipelines, see Java-based SOAP
pipelines.

« Using the JAX-RS and JSON features of the CICS Liberty JVM server directly.
 Using the CICS-supplied terminal handler DFHPIJT.

You can configure a provider pipeline with terminal handler DFHPIJT. This enables the pipeline to
process JSON requests without the necessity of installing a JVM server. The following restrictions apply:

Restriction:

— RESTful JSON web services are not supported.
— Context switch in the pipeline is not supported.

— Itis not possible to use SOAP and JSON web services in a JSON pipeline. DFHPIJT only handles
JSON messages. Receipt of a SOAP message results in an error response.

CICS receives JSON data and transforms it into structured application data that is understood by the CICS
application program. The responses from the CICS application are transformed into a JSON payload for
the outbound response. The transformations require parsing of the messages. If you use z/OS Connect for
CICS, you have the option of using a Java-based JSON parser or a non-Java equivalent. The configuration
option is specified in the z/OS Connect for CICS pipeline configuration file. For more information about
configuring z/OS Connect for CICS, see Configuring z/OS Connect for CICS. If you use CICS Java pipelines,
the parsing is only ever performed by using Java within the JVM server. The implications of the different
configuration decisions are:

« If you parse JSON by using Java, the processing is eligible for offloading to a zEnterprise Application
Assist Processor (zAAP) if it is available. Offloading the processing might have cost benefits.

« If you use the z/OS Connect for CICS non-Java parser, some workloads might get performance and
throughput benefits. For more information about which workloads might benefit, see the performance
material that is made available with this release. Even if you use the non-Java parser, most of the z/0OS
Connect for CICS infrastructure processing is eligible for offloading onto zAAP.

« If you use the CICS-supplied terminal handler DFHPIJT, some workloads might get performance and
throughput benefits. When you use this method of processing JSON requests, none of the processing is
eligible for offloading onto zAAP.

CICS as a service provider for JSON requests using z/0S Connect for CICS

For CICS to provide a service to an external JSON client, it must receive the request into a z/OS Connect
for CICS, transform the JSON message, and pass it to the target application program. The response from
the application is returned to the JSON client through the same mechanism.

Figure 20 on page 56 shows an example configuration of the architecture and resources that are
required to process a request from an external JSON client when CICS is a service provider that uses z/0OS
Connect for CICS.

Chapter 2. Configuring web services in CICS 55

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/web-services/zos_connect_overview.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_pipelinejava.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_pipelinejava.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/zos_connect_configuring.html

/ CICSTS \
JYM Server
)] Liberty Resources
Service | HTTP message
Requester |with JSON body ﬂ:ﬂsr'éfggem Al
Mobile App
CICSEndpoint + PIPELINE
WEBSERVICE
J
Java transform
JSON generator
-
.
Mon-Java transform
¥ o
User
application
\ /
\"'\-\._ _:-//

Figure 20. The architecture and resources for a JSON service provider that uses z/OS Connect for CICS

Processing a JSON request with z/0S Connect for CICS
To process a request, CICS completes the following operations:
1. Receive the request from the service requester.

WebSphere Liberty receives the request and passes it to z/OS Connect for CICS.

2. CICS resolves the URIMAP resource for the request, by scanning the URIMAP definitions with a USAGE
attribute set to JVMSERVER. The URIMAP identifies the WEBSERVICE resource that is used. A new
CICS task is started to process the request by using the transaction ID from the URIMAP. By default,
the CPIH transaction is used.

The WEBSERVICE resource controls the processing that CICS performs. In particular, the WSBind file
pointed to by the WEBSERVICE resource is used for data transformation between JSON and structured
application data. WSBind files for JSON web services are generated by using utilities DFHLS2JS and
DFHJS2LS.

Note: Runtime validation of JSON data against schema is not supported. The value of the VALIDATION
attribute of a WEBSERVICE resource that is used with a JSON payload is ignored.

For information about any restrictions that apply, see JISON web service restrictions.

3. z/0OS Connect for CICS processes the request according to how it is configured. If z/OS Connect for
CICS is configured to use global interceptors, the interceptors run during this processing.

4. The CICSEndpoint receives control. The JSON payload is transformed to structured application data
according to the configuration option specified in the pipeline configuration file. There are two options
for how the transformation is performed:

« Java transformation is performed within the JVM server. This processing is eligible for offload to a
zAAP processor if one is available.

56 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/jsonwebservice_restrictions.html

« Non-Java transformation is performed outside of the JVM server and might provide performance
and throughput benefits for certain workloads. For more information about which workloads might
benefit, see the performance material that is made available with this release.

The mapping is performed according to the information in the WSBind file. The output from the
transform is equivalent in both cases.

5. CICS links to the application program and passes the transformed data. The program processes this
input and returns a response to the JSON generator.

6. The JSON generator generates a JSON response message by using the output from step 5. This
message is sent back to the service requester via z/OS Connect for CICS.

z/0S Connect for CICS also provides a RESTful interface that supports the standard RESTful methods:

POST
PUT
GET
DELETE
HEAD

Where appropriate, this interface uses the transform and generator that the pipeline is configured for, in
the same way as do normal JSON requests. For more information about RESTful JSON web services, see
Concepts of RESTful JSON web services.

Most of the z/OS Connect for CICS infrastructure processing is eligible for offloading onto a zEnterprise
Application Assist Processor (zAAP).

CICS as a service provider for JISON requests using CICS Java pipelines

For CICS to provide a service to an external JSON client, it must receive the request and pass it through
a pipeline to the target application program. The response from the application is returned to the JSON

client through the same pipeline. The JSON transform is performed by using Java within the JVM server.

Figure 21 on page 58 shows an example configuration of the architecture and resources that are
required to process a request from an external JSON client when CICS is a service provider that uses
a Java pipeline. The pipeline processing for a JSON request is similar to the way that CICS processes a
SOAP request in a Java pipeline. For more information, see Java-based SOAP pipelines.

Chapter 2. Configuring web services in CICS 57

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/web-services/concepts_restful.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_pipelinejava.html

/ CICSTS ™
Pipeline
HTTP message . >
Service with JSSOM body | £ JVM server
Requester o le
Mobile App é JS(;H tzrlminal
andler
— Application
RESOURCES handler
TCPIPSERVICE 4
LIRIMAP
PIPELINE
Y
User
WEBSERVICE application
Il"‘ JII
e i

Figure 21. The architecture and resources for a JSON service provider that uses a CICS Java pipeline

Processing a JSON request
To process a request, CICS completes the following operations:
1. Receive the request from the service requester.

The TCPIPSERVICE resource specifies a port for incoming requests. This port is monitored by the
CICS-supplied sockets listener task (CSOL).

2. Examine the request, and extract the contents that are relevant to the target application program.

When the request message is received on the appropriate port, the URIMAP resource definitions are
scanned for a URIMAP definition that has its USAGE attribute set to PIPELINE and its PATH attribute
set to the URI found in the request. If an appropriate URIMAP definition is found, the PIPELINE and
WEBSERVICE definitions from the PIPELINE and WEBSERVICE attributes of the URIMAP definition are
used. The TRANSACTION attribute of the URIMAP definition determines the name of the transaction
that should be attached to process the pipeline. By default the CPIH transaction is used. The URIMAP
definition also identifies the PIPELINE and WEBSERVICE resources to use.

These PIPELINE and WEBSERVICE resources control the processing that CICS performs. In particular,
the WSBind file pointed to by the WEBSERVICE resource is used for data transformation between
JSON and language structures. WSBind files for JSON web services are generated by using utilities
DFHLS23JS and DFHJS2LS.

Note: Runtime validation of JSON data against schema is not supported. The value of the VALIDATION
attribute of a WEBSERVICE resource that is used with a JSON payload is ignored.

For information about any restrictions that apply, see JISON web service restrictions.

3. Pipeline processing begins and the request flows through any handlers that are defined. It is not
expected that any of the handlers that are currently provided by CICS for SOAP web services will be
relevant to JSON web services.

58 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/jsonwebservice_restrictions.html

4. At the end of the pipeline, the JSON terminal handler is called. This terminal handler is a Java program
that interfaces with the Axis2 pipeline. The terminal handler performs the necessary setup of the
Axis2 configuration and then starts the Axis2 engine with the HTTP request body. Within the Axis2
pipeline, the JSON body (if present) is parsed and a Java object model that represents the contents is
constructed. CICS then calls the application handler. The main role of the application handler is to map
the Java object model representation of the request into application data. This mapping is performed
by using the description of the language structure in the WSBind file.

5. Call the application program, passing data that is extracted from the request.

Then the application handler links to the application program. The program processes this input and
returns a response to the application handler.

6. Construct a response by using data returned by the application program, and send a response to the
service requester.

The application handler and message handlers convert the response message received from the
service provider application into a message in the format of the original request. This message is sent
back to the service requester.

Some of the processing within the pipeline is eligible for offloading onto a zEnterprise Application Assist
Processor (zAAP).

Creating the CICS infrastructure for a SOAP service provider

To create the CICS infrastructure for a SOAP service provider, you must create a pipeline configuration file
and create a number of CICS resources.

Before you begin

If you want to use a Java pipeline, ensure that a JVMSERVER resource exists with the
JAVA_PIPELINE=YES option specified in the JVM Profile.

A JVM server can handle SOAP processing for many Java pipelines.

About this task

You can define the PIPELINE resource in a local CICS region using CICS or CICSPlex® SM functions, or
you can use the CICS Explorer® to define the PIPELINE resource either in a local CICS region or in a

CICS bundle. When you use the CICS Explorer to define a PIPELINE resource in a CICS bundle, you also
create the pipeline configuration file and package it in the CICS bundle, so you do not have to manage this
file separately. PROGRAM resources and WEBSERVICE resources can also be defined in CICS bundles.
When you define a WEBSERVICE resource in a CICS bundle, you can import a web service binding file

and a WSDL document or WSDL archive file and include these in the bundle. You can also create URIMAP
definitions to support the web service and package these in a bundle. For more help with using the CICS
Explorer to create and edit resources in CICS bundles, see Working with bundles in the CICS Explorer
product documentation.

Procedure

1. Define the transport infrastructure.

a) If you are using the WebSphere MQ transport, you must define one or more local queues that
store input messages until they are processed, and one trigger process that specifies the CICS
transaction that will process the input messages.

i) See Configuring CICS to use the WebSphere MQ transport for details.

b) If you are using the HTTP transport, you must define a TCPIPSERVICE resource that defines the
port on which inbound requests are received.

i) See CICS resources for web services for details.
2. Optional: Repeat this step for each different transport configuration you need.

Chapter 2. Configuring web services in CICS 59

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/jvmserver/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_configureMQ.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_resources.html

3. Define the message handlers and header processing programs that you want to include in the
pipeline configuration file to process inbound web service requests, and their responses.

CICS provides the following handlers and header processing programs:
a. SOAP message handlers, to process SOAP 1.1 or 1.2 messages. You can support only one level of
SOAP in a service provider pipeline.

b. MTOM handler, to process MIME Multipart/Related messages that conform to the MTOM/XOP
specifications.

c. Support for securing web services, to process secure web service messages.

d. Support for Web Services Transactions, to process atomic transaction messages.

4. Optional: If you want to perform your own processing in the pipeline, you must create a message
handler or header processing program. See Message handlers for details. If you decide to create
custom message handler programs, to optimize performance you must make them threadsafe.

5. Create an XML pipeline configuration file containing your message handlers, header processing
programs, and application handler.

a. CICS provides two basic provider mode pipeline configuration file samples,
basicsoapllprovider.xml and basicsoaplljavaprovider.xml.

b. You can edit these samples, or add additional message handlers as appropriate. The
samples are provided in the library /usr/l1pp/cicsts/cicsts55/samples/pipelines
(where /usr/1pp/cicsts/cicstsbh5 is the default install directory for CICS files on z/0S
UNIX).

c. For more information about options available in the pipeline configuration file, see Pipeline
configuration files

. Copy the pipeline configuration file to a suitable directory in z/OS UNIX.

. Change the pipeline configuration file permissions to allow the CICS region to read the file.
. Repeat steps 5 through 7 for each different pipeline configuration that you require.

. Create a PIPELINE resource.

O 00 N O

a. The PIPELINE resource defines the location of the pipeline configuration file. It also specifies a
pickup directory, which is the z/OS UNIX directory that contains the web service binding files and
optionally the WSDL.

b. Repeat this step for each different pipeline configuration.
a. When you create a PIPELINE resource, CICS reads any files in the specified pickup directory, and
creates the WEBSERVICE resource and URIMAP resource dynamically.

10. Unless you use autoinstalled PROGRAM definitions, create a PROGRAM resource for each program
that runs in the pipeline. These include the target application program, which normally runs under
transaction CPIH. The transaction is defined with the attribute TASKDATALOC (ANY). Therefore, when
you link-edit the program, you must specify the AMODE (31) option.

Results
Your CICS system now contains the infrastructure needed for each service provider.

What to do next
You can extend the configuration when you need to do so, either to define additional transport
infrastructure, or to create additional pipelines.

60 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_soapnodes.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_attachments_overview.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/web-services/dfhws_WSSecurity.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_wsat_overview.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_nodeinterface.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_pipelineconfig.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_pipelineconfig.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/pipeline/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/webservice/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/urimap/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/program/dfha4_summary.html

Creating the CICS infrastructure for a SOAP service requester

To create the CICS infrastructure for a SOAP service requester, you must create a pipeline configuration
file and create a number of CICS resources.

Before you begin

If you want to use a Java pipeline, ensure that a JVMSERVER resource exists with the
JAVA_PIPELINE=YES option specified in the JVM Profile. See JVMSERVER resources.

A JVM server can handle SOAP processing for many Java pipelines.

About this task

You can define the PIPELINE resource in a local CICS region using CICS or CICSPlex SM functions, or

you can use the CICS Explorer to define the PIPELINE resource either in a local CICS region or in a CICS
bundle. When you use the CICS Explorer to define a PIPELINE resource in a CICS bundle, you also create
the pipeline configuration file and package it in the CICS bundle, so you do not have to manage this file
separately. PROGRAM, WEBSERVICE and URIMAP resources can also be defined in CICS bundles. When
you define a WEBSERVICE resource in a CICS bundle, you can import a web service binding file and a
WSDL document or WSDL archive file and package these in the bundle, and for a service provider you

can choose to include a PROGRAM definition. You can also create URIMAP definitions to support the web
service and package these in a bundle. For more help with using the CICS Explorer to create and edit
resources in CICS bundles, see Working with bundles in the CICS Explorer product documentation.

Procedure
1. Define the message handlers and header processing programs that you want to include in the pipeline
configuration file to process inbound web service requests, and their responses.
CICS provides the following handlers and header processing programs:
a) SOAP message handlers, to process SOAP 1.1 or 1.2 messages.
You can only support one level of SOAP in a service requester pipeline.

b) MTOM handler, to process MIME Multipart/Related messages that conform to the MTOM/XOP
specifications.

¢) Security handler, to process secure web service messages.
d) WS-AT header processing program, to process atomic transaction messages.

2. Optional: If you want to perform your own processing in the pipeline, you must create a message
handler or header processing program. See “Message handlers” on page 127 for details. If you
decide to create custom message handler programs, to optimize performance you must make them
threadsafe.
3. Create an XML pipeline configuration file containing your message handlers and header processing
programs.
CICS provides two basic requester mode pipeline configuration file samples,
basicsoapllrequester.xml and basicsoaplljavarequester.xml, which you can copy and
edit as appropriate. These samples are provided in the library /usr/lpp/cicsts/cicsts55/
samples/pipelines (where /usr/1lpp/cicsts/cicsts55 is the default install directory for CICS
files on z/OS UNIX). For more information about options available in the pipeline configuration file, see
“Pipeline configuration files” on page 79
. Copy the pipeline configuration file to a suitable directory in z/OS UNIX.
. Change the pipeline configuration file permissions to allow the CICS region to read the file.
. Repeat steps 3 to 5 for each different pipeline configuration that you require.
. Create a PIPELINE resource. See PIPELINE resources.

The PIPELINE resource defines the location of the pipeline configuration file. It also specifies a pickup
directory, which is the z/OS UNIX directory that contains the web service binding files and optionally

N o o b

Chapter 2. Configuring web services in CICS 61

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/jvmserver/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/web-services/dfhws_WSSecurity.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/pipeline/dfha4_summary.html

the WSDL. You can also specify a timeout in seconds, which determines how long CICS waits for a
response from web service providers. Repeat this step for each pipeline configuration file.

When you create a PIPELINE resource, CICS reads any files in the specified pickup directory and
creates the WEBSERVICE resources dynamically (see WEBSERVICE resources).

8. Unless you use autoinstall PROGRAM definitions, create a PROGRAM resource for each program that
runs in the pipeline. See PROGRAM resources.

These programs include the service requester application program, which normally runs under
transaction CPIH. The transaction is defined with the attribute TASKDATALOC (ANY). Therefore, when
you link edit the program, you must specify the AMODE (31) option.

9. Optional: Create a URIMAP resource (see URIMAP resources) for client requests to each URI that your
service requesters use to make requests, following the instructions in Creating a URIMAP resource for
CICS as a HTTP client.

You can specify the URI directly on the INVOKE SERVICE command in your programs, instead

of using a URIMAP resource. However, using a URIMAP resource means that you do not need to
recompile your applications if the URI of a service provider changes. With a URIMAP resource you can
also choose to implement connection pooling, where CICS keeps the client connection open after use,
so that it can be reused by the application for subsequent requests, or by another application that calls
the same service.

CICS attempts to locate a matching client URIMAP if one was not specified on the INVOKE SERVICE
command. CICS searches for a matching URIMAP based on the host, port and path of the current
request. This allows system programmers to add capabilities from a URIMAP such as using specific
certificates and ciphers without the need to update application code.

Results
Your CICS system now contains the infrastructure needed for each service requester.

What to do next
You can extend the configuration when you need to do so, to create additional pipelines.

Creating the CICS infrastructure for a JSON service provider

To create the CICS infrastructure for a JSON service provider, you must create a pipeline configuration file
and create a number of CICS resources.

Before you begin
Several different technologies exist for implementing JSON services in CICS. The most feature-rich option
is z/OS Connect. This task describes the alternative options.

If you do not want to use z/OS Connect, use CICS as a service provider for JSON requests, or use the
linkable interface to transform JSON. To use these methods, define and install a JVMSERVER resource
with a JVM profile that specifies the JAVA_PIPELINE=YES option. An example JVMSERVER resource
definition called DFHAXIS is provided in group DFH$AXIS.

Note: The infrastructure described here assumes that you are not using z/OS Connect for CICS to connect
to your JSON service provider, and consequently it uses Java parsing within the JVM server to parse

the JSON messages. If you want to use non-Java JSON parsing, you must use z/OS Connect for CICS

to connect to the JSON web service. For more information about setting up z/OS Connect for CICS, see
Configuring z/OS Connect for CICS.

Procedure
1. Define the transport infrastructure.

Define a TCPIPSERVICE resource that defines the port on which inbound requests are received. See
CICS resources for web services for details.

62 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/webservice/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/program/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/urimap/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web/dfhtl_urioutbound.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web/dfhtl_urioutbound.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/zos_connect_configuring.html

2. Define the message handlers that you want to include in the pipeline configuration file to process
inbound web service requests, and their responses.

If you want to perform your own processing in the pipeline, you must create a message handler. See
Message handlers for details. If you decide to create custom message handler programs, to optimize
performance you must make them threadsafe.

3. Create an XML pipeline configuration file containing your message handlers, header processing
programs, and application handler.

CICS provides a basic provider mode pipeline configuration file sample, jsonjavaprovider.xml.
You can edit this sample to add additional message handlers as appropriate. This sample is provided
in the directory /usr/lpp/cicsts/cicsts55/samples/pipelines, where /usr/lpp/cicsts/
cicstsh5is the default install directory for CICS files on z/OS UNIX). For more information about
options available in the pipeline configuration file, see “Elements used in service provider and service
requester pipelines” on page 94.

4. Copy the pipeline configuration file to a suitable directory in z/OS UNIX.

. Change the pipeline configuration file permissions to allow the CICS region to read the file.

6. Create a PIPELINE resource.

The PIPELINE resource defines the location of the pipeline configuration file. It also specifies a pickup
directory, which is the z/OS UNIX directory that contains the web service binding files. Repeat this step
for each different pipeline configuration.

When you install a PIPELINE resource or perform a PIPELINE SCAN, CICS reads the .wsbind

files in the specified pickup directory, and creates appropriate WEBSERVICE and URIMAP resources
dynamically.

7. Unless you use autoinstalled PROGRAM definitions, create a PROGRAM resource for each program
that runs in the pipeline. These include the target application program, which normally runs under
transaction CPIH. The transaction is defined with the attribute TASKDATALOC (ANY). Therefore, when
you link-edit the program, you must specify the AMODE (31) option.

o1

Results
You have created the infrastructure needed for each service provider and you can now install these
resources on your CICS system.

What to do next
Install the resources. You can extend the configuration when you need to do so, either to define additional
transport infrastructure, or to create additional pipelines.

Creating the CICS infrastructure for a non-Java JSON service provider

You can set up a non-Java environment for processing JSON requests by configuring a provider pipeline
with terminal handler DFHPIJT. To create the CICS infrastructure for a non-Java JSON service provider,
you must create a pipeline configuration file and create a number of CICS resources.

Restriction: If you use this non-Java JSON pipeline to process JSON requests, the following restrictions
apply:

« RESTful JSON web services are not supported.

« Context switch in the pipeline is not supported.

« Itis not possible to use SOAP and JSON web services in a JSON pipeline. DFHPIJT only handles JSON
messages. Receipt of a SOAP message results in an error response.

Procedure
1. Define the transport infrastructure.

Define a TCPIPSERVICE resource that defines the port on which inbound requests are received. See
CICS resources for web services for details.

Chapter 2. Configuring web services in CICS 63

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/pipeline/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/webservice/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/urimap/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/program/dfha4_summary.html

2. Define the message handlers that you want to include in the pipeline configuration file to process
inbound web service requests, and their responses.

If you want to perform your own processing in the pipeline, you must create a message handler. See
Message handlers for details. If you decide to create custom message handler programs, to optimize
performance you must make them threadsafe.

3. Create an XML pipeline configuration file that contains your message handlers.

In the configuration file, you must specify terminal handler program DFHPIJT in a
<terminal_handlexr> element as shown in Figure 22 on page 64. DFHPIJT is the CICS-supplied
JSON handler program that enables non-Java processing of JSON messages.

<service>
<terminal_handler>
<handler>
<program>DFHPIJT</program><handler_parameter_list/>
</handler>
</terminal_handler>
</service>

Figure 22. Specifying terminal handler DFHPIJT for non-Java processing of JISON messages

Note: When you use DFHPIJT as the terminal handler, do not define an application handler in the
pipeline configuration file, that is, the pipeline configuration file should not contain an <apphandlexr>
element. If an application handler is specified, it is not invoked.

For more information about options available in the pipeline configuration file, see “Elements used in
service provider and service requester pipelines” on page 94.

4. Copy the pipeline configuration file to a suitable directory in z/OS UNIX.

. Change the pipeline configuration file permissions to allow the CICS region to read the file.

6. Create a PIPELINE resource.

The PIPELINE resource defines the location of the pipeline configuration file. It also specifies a pickup
directory, which is the z/OS UNIX directory that contains the web service binding files. Repeat this step
for each different pipeline configuration.

When you install a PIPELINE resource or perform a PIPELINE SCAN, CICS reads the .wsbind

files in the specified pickup directory, and creates appropriate WEBSERVICE and URIMAP resources
dynamically.

7. Unless you use autoinstalled PROGRAM definitions, create a PROGRAM resource for each program
that runs in the pipeline. These include the target application program, which normally runs under
transaction CPIH. The transaction is defined with the attribute TASKDATALOC (ANY). Therefore, when
you link-edit the program, you must specify the AMODE (31) option.

o1

Results
You have created the infrastructure needed for each service provider and you can now install these
resources on your CICS system.

What to do next
Install the resources. You can extend the configuration when you need to do so, either to define additional
transport infrastructure, or to create additional pipelines.

Configuring z/0S Connect for CICS

Configuring z/0S Connect in CICS
z/0OS Connect is IBM's premier technology for implementing JSON Services and APIs for CICS.

z/0OS Connect can be configured in a stand-alone configuration, or be hosted in a Liberty JVM server in
CICS. For more information about the stand-alone configuration, see z/OS Connect Enterprise Edition
V3.0 product documentation.

64 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/pipeline/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/webservice/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/urimap/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/program/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html

This information describes how to configure z/OS Connect in a CICS address space.

There are two major versions of z/OS Connect, z/OS Connect for CICS 1.0, and the more advanced z/0S
Connect Enterprise Edition.

Choose the task that matches your requirements.

Configuring z/0S Connect for CICS 1.0

z/0S Connect for CICS 1.0 is distributed as part of CICS Transaction Server. You must configure a JVM
server and set up the pipeline configuration and resources for z/OS Connect, before you can deploy JSON
services. This initial configuration is a one-time activity.

Before you begin

Do you already have a WebSphere Liberty JVM server that is configured in CICS? Although it is possible
to host z/OS Connect and other unrelated services in the same WebSphere Liberty environment, it is good
practice to configure a separate JVM server for the sole use of z/OS Connect.

You can host z/OS Connect for CICS 1.0 in its own CICS region, or group of CICS regions, and use the
Distributed Program Link mechanism to call CICS programs in the application-owning CICS regions.

Procedure

1. Create a JVMSERVER and configure it to support the WebSphere Liberty. For more information about
creating a WebSphere Liberty JVMSERVER, see Configuring a Liberty JVM server.

2. Configure WebSphere Liberty for your security requirements. By default, WebSphere Liberty expects
the use of client-certified SSL certificates. To enable HTTP Basic Authentication, add the following
configuration option to the sexrver. xml file:

<!-- Allow fail-over to HTTP Basic Authentication -->
<webAppSecurity allowFailOverToBasicAuth="true"/>

You must also give users of z/OS Connect the zosConnectAccess security role. For more information
about WebSphere Liberty security, see Configuring security for a Liberty JVM server, and for z/OS
Connect security, see Security for z/OS Connect.

3. Update the <featureManager> list in the sexver. xml file for the WebSphere Liberty environment
toinclude a <feature>cicsts:zosConnect-1.0</feature> feature, as shown in the following
example:

<featureManager>
<feature>cicsts:core-1.0</feature>
<feature>transportSecurity-1.0</feature>
<feature>cicsts:zosConnect-1.0</feature>
</featureManager>

4. Define the z/OS Connect for CICS 1.0 Service Controller by adding the following statement to the
server.xml file:

<com.ibm.cics.wlp.zosconnect.CICSEndpoint
id="com.ibm.cics.wlp.zosconnect.CICSEndpointService"/>

5. Install the JVMSERVER. Check the generated messages. 1og file for error or warning messages. This
log contains the messages that are generated by WebSphere Liberty Server, including messages that
are returned by z/OS Connect for CICS 1.0, such as the following:

SRVE0169I: Loading Web Module: z/0S Connect.
SRVE0250I: Web Module z/0S Connect has been bound to default_host.

6. Create an XML pipeline configuration file. Sample pipeline configuration file
jsonzosconnectprovider.xml is provided in the directory /usr/lpp/cicsts/cicstsb5/
samples/pipelines/ (where /usr/lpp/cicsts/cicsts55 is the default installation directory
for CICS files on z/OS UNIX). You must decide whether you want to parse the JSON by using Java in
the Liberty JVM server (which is the default), or to use the non-Java JSON parser:

Chapter 2. Configuring web services in CICS 65

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/java/config_jvmserver_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/java/security_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/web-services/zos_connect_security.html

« To parse the JSON by using Java in the Liberty JVM server, you can use the sample pipeline
configuration file, but replace DFHWLP in the <jvmserver> element with the name of your
JVMSERVER from Step 1.

« To parse the JSON by using the non-Java parser, modify the sample configuration file to append the
java_parser="no" attribute to the <provider_pipeline_json> element as in the following
example:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline_json java_parser="no"
xmlns="http://www.ibm.com/software/htp/cics/pipeline">
<jvmserver>DFHWLP</jvmserver>
</provider_pipeline_json>

Replace DFHWLP with the name of the JVMSERVER that you created at the start of this procedure.

7. Copy the pipeline configuration file to a suitable directory in zFS and ensure that the file permissions
allow the CICS region to read the file.

For information, see Pipeline configuration files.
8. Create a PIPELINE resource.

The PIPELINE resource defines the location of the pipeline configuration file in the CONFIGFILE
attribute.

9. Optional: Create a default URIMAP resource for z/OS Connect.

URIMAP resources are used to associate a TRANSACTION and default user ID with z/OS Connect
work. One or more URIMAP resources can be used to configure a default policy for z/OS Connect.

For an example URIMAP configuration and more information on configuration options, see Configuring
permissions for z/OS Connect Services and APIs:

Note:

z/0S Connect performs extra authentication for individual HTTP requests, so the application tasks that
run in CICS are typically associated with a more specific user ID than the initial user ID from the
URIMAP. The initial user ID is only in effect until user-specific authentication happens in z/OS Connect.

Results

Your z/OS Connect for CICS 1.0 instance is configured. You can test the basic configuration by typing this
URL into a web browser: https://hostname:portnumber/zosConnect/services, where hostname
is the IP address or host name of the system on which the CICS region that is hosting z/OS Connect for
CICS 1.0 is running, and portnumber is the httpsPoxrt that is specified in the <httpEndpoint> element
of the server.xml file. The web browser displays a list of installed services; because no services are yet
installed, the list is empty.

If you receive an HTTP 403 AuthorizationFailed response rather than the expected Service list,
review the Security configuration from Step 2. It is likely that the authenticated user is not authorized to
use z/0S Connect.

What to do next
You are now ready to deploy JSON web services into z/OS Connect for CICS 1.0.

Configuring z/OS Connect for CICS for a CICS JSON web service

After initially configuring z/OS Connect for CICS, you can configure it for a CICS JSON web service.
JSON web services are deployed to z/OS Connect for CICS in a similar way as to other CICS PIPELINE
environments.

Before you begin

You must complete the basic configuration of z/OS Connect before you start this task. For z/OS Connect
for CICS 1.0, see “Configuring z/OS Connect for CICS 1.0” on page 65. For z/OS Connect Enterprise
Edition, see “Configuring z/OS Connect Enterprise Edition” on page 70. You also require a JSON WSBind
file for each service you want to deploy; these binding files can be generated by using the CICS JSON

66 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_pipelineconfig.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/pipeline/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/web-services/zos_connect_authentication_for_services.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/web-services/zos_connect_authentication_for_services.html

assistant (the DFHLS2J3Sand DFHJIS2LS utility programs). For more information on these utility programs,
see The CICS JSON assistant.

About this task

Services can be deployed to z/OS Connect as z/OS Connect managed services, or as CICS managed
services. This topic discusses deploying these services as CICS managed services. By deploying
services as CICS managed services, WEBSERVICE resources will exist for each service. This deployment
mechanism is compatible with older JSON web services technology in CICS where services are deployed
to z/OS Connect similar to other CICS PIPELINE environments including SOAP web services.

If you have z/OS Connect Enterprise Edition V3, you might have better results by deploying the services
as z/0S Connect managed resources, as described in the z/OS Connect Enterprise Edition V3.0 product
documentation.

Note: This task applies when you use z/OS Connect Enterprise Edition V1.0 or the CICS service provider
supplied with CICS TS. If you use the CICS service provider supplied with z/OS Connect Enterprise Edition
v3.0, see Automated service archive management in z/OS Connect Enterprise Edition V3.0 product
documentation.

Procedure

« Install a WEBSERVICE resource that associates the WSBind file with the appropriate PIPELINE
resource.
Select a meaningful name for the WEBSERVICE, as this name is also used as the name of the
Service in z/OS Connect. Optionally, you can use the PERFORM PIPELINE SCAN command to install
WEBSERVICE resources. Whichever method you choose to use, ensure that you consider the following
information about URIMAPSs:

The URI at which the Service is available in z/OS Connect is taken from one of the following locations:

— The default naming convention that z/OS Connect uses.

— The URI stored in the WSBind file, when the associated WEBSERVICE resource is installed by using
the PERFORM PIPELINE SCANcommand.

— The Service specific configuration in the Liberty server . xml file, if the invokeURI configuration
parameter is used.

— z/0S Connect Enterprise Edition only: The Application Archive File (. aax file) for an API that
encapsulates the Service.

If you rely on the default naming convention, the Service is typically exposed through the following
URI:

https://<hostname>:<port>/zosConnect/services/<Service Name>?action=invoke

In this example, <Service Name> refers to the name of the Service (more specifically, the name of
the WEBSERVICE resource), and <hostname> and <port> are taken from the configuration of the
Liberty server.

« Optional: Install a URIMAP resource for the z/OS Connect Service.

A URIMAP resource is used by CICS to associate the work for the Service with a specific transaction ID
in CICS, and an initial User ID.

You can use a single URIMAP to configure one or many Services. You might also define a default
URIMAP resource when you configure CICS for z/OS Connect. If no URIMAP exists to match the URI
for a z/OS Connect Service, the application's tasks run under transaction CJSA, and the CICS default
user ID (typically CICSUSER) is used as the initial user ID. For more information about the role of the
initial User ID, see Configuring permissions for z/OS Connect Services and APIs.

If you choose to create a URIMAP resource, ensure that the associated user ID has authority to run the
specified transaction.

Chapter 2. Configuring web services in CICS 67

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/cics_json_assistants.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/administering/auto_sar_mgmnt.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/administering/auto_sar_mgmnt.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/web-services/zos_connect_authentication_for_services.html

You might also choose to use a URIMAP to associate the URI with a specific WEBSERVICE resource.
If a URIMAP is tightly bound to a WEBSERVICE, the target WEBSERVICE is used for all HTTP requests
that are matched by the URIMAP. If a WEBSERVICE is not specified, the WEBSERVICE is selected
based on the name of the z/OS Connect Service. If the WEBSERVICE attribute of the URIMAP is left
blank, z/OS Connect performs the mapping itself, which allows z/OS Connect Enterprise Edition to
associate different Services with different HTTP methods within an API.

« Optional: Update the server. xml file

Some usage patterns might require changes in the Liberty server configuration file, server.xml. It
is usually not necessary to make Service-specific changes in the server. xml file, unless you require
special-case processing for a Service. For example, you might choose to associate a specific set of
z/OS Connect interceptors with a Service in the server.xml file, or expose a Service by using a URI
that does not match the z/OS Connect default naming convention.

Use these steps to define a Service in the server.xml file:

1. Ensure that the intended Service name does not match the name of a WEBSERVICE resource
in CICS. CICS automatically injects configuration information into z/OS Connect, and if an
explicitly defined Service and a CICS WEBSERVICE have the same name, the resultant behavior
is unpredictable.

2. Set a suitable value for the invokeURI attribute in the server. xml file that matches the URI used
in the URIMAP.

3. Bind the Service to the CICSEndpointService serviceRef element.

4. Ensure that a URIMAP exists to match the URI for the Service to the precise WEBSERVICE that
is to be used. If an invokeURI attribute was set in Step 2, the URIMAP must match that URI.
Otherwise, the URIMAP must assume the z/OS Connect default URI naming convention.

The following example shows an explicit z/OS Connect for CICS 1.0 Service declaration in the
server.xml file:

<zosConnectService invokeURI="/json/myCustomService"
serviceName="CICSServicel"
serviceRef="com.ibm.cics.wlp.zosconnect.CICSEndpointService"/>

The following example shows the equivalent declaration for z/OS Connect Enterprise Edition in the
server.xml file:

<zosconnect_zosConnectService invokeURI="/json/myCustomService"
serviceName="CICSServicel"
serviceRef="com.ibm.cics.wlp.zosconnect.CICSEndpointService"/>

In both examples, the "/json/myCustomService" URI is associated with the z/OS Connect for CICS
receiver program, CICSServicel.

Results

You can test the configuration for z/OS Connect for CICS by typing this URL into a web browser:
https://hostname:portnumber/zosConnect/sexrvices. The hostname is the IP address or name
of the CICS region that hosts z/OS Connect for CICS. The portnumber is the httpsPoxt that is configured
in the <httpEndpoint> section of the server.xml configuration file. The web browser displays a list of
the installed services.

The service is now ready to be called from a JSON client that uses the same hostname and portnumber.
Each installed Service has an entry in the zosConnect/services list, for example:

1

"id": "EXAMPLE",

"name" : "EXAMPLE",

"url":"https://hostname:portnumber/zosConnect/services/EXAMPLE",

"protocol":"REST",
"description":"CICS Service"

68 CICS TS for z/OS: Using Web Services with CICS

In this example, the associated WEBSERVICE resource was named "EXAMPLE", and this Service
definition was created dynamically by CICS when the EXAMPLE WEBSERVICE resource was installed. You
can use a web browser to visit https://hostname: portnumber/zosConnect/services/EXAMPLE
that returns a document with more details about the Service, similar to the following:

{

"id":"EXAMPLE",
"name" : "EXAMPLE",
"protocol":"REST",
"description":"CICS Service",
"restEndpoints": [

"name" : "EXAMPLE",
"address":"hostname:portnumber/jsonTests/myExampleService"
b
]
%

In this example, the "address" is the URI at which the Service is exposed. This URI might be derived
from information in a WSBind file, from an invokeURI attribute, or from the default z/OS Connect naming
convention.

When a request arrives in the Liberty JVM server, it is associated with the z/OS Connect for CICS receiver
that uses the information from the server.xml configuration file. A new CICS task starts to perform
this work, and it is associated with a specific WEBSERVICE resource that uses the information from the
URIMAP resource. The data transformation process occurs in the Liberty JVM server, and the target CICS
program is attached, as named in the WSBind file.

Migrating from JSON web services to z/OS Connect

JSON Services can be re-deployed to z/OS Connect from older JSON web services technology in CICS,
and also from the even older Feature Pack for Mobile Extensions. Such re-deployment requires z/0S
Connect to be configured in compatibility mode. This mode is available in both z/OS Connect for CICS 1.0
and z/0S Connect Enterprise Edition.

About this task
In this task, z/0S Connect refers to both z/OS Connect for CICS 1.0 and z/OS Connect Enterprise Edition.

Redeploying a JISON web service from a Java Pipelines for JSON (as used with the CICS Transaction
Server Feature Pack for Mobile Extensions V1.0) to z/OS Connect is a straightforward process. The
WSBInd files that are used for the Java Pipelines for JISON and for z/OS Connect are produced by using the
same tools (DFHLS23JS and DFHJS2LS), and are fully compatible with each other. If you are exploring this
capability in CICS, you can find examples of JISON web services in the IBM Redbooks: Implementing IBM
CICS JSON Web Services for Mobile Applications.

The z/OS Connect environment encourages the use of SSL between the client application and CICS. If
your existing Java Pipelines for JSON environment does not use SSL, the conversion to z/OS Connect
involves an extra step.

Procedure

1. Create the necessary z/OS Connect infrastructure by using the instructions from Configuring z/0S
Connect for CICS. For part of this configuration, you select an SSL TCP/IP port number at which the
Liberty JVM server listens for incoming connections. You have two options to consider:

a) Select a different port number from the port number that is used by the TCPIPSERVICE for the
Java Pipelines for JSON. This option has the advantage of ensuring that both environments can be
installed concurrently on different TCP/IP ports. It means that client programs need updating to
target the new JSON Service. If the old environment didn't use SSL, the conversion to z/OS Connect
requires changes to the URI, so this option is more suitable.

b) Select the same port number as that used by the TCPIPSERVICE for the Java Pipelines for JSON.
The port numbers in the URIs used by the client programs do not need to be changed, but the two

Chapter 2. Configuring web services in CICS 69

https://www.redbooks.ibm.com/abstracts/sg248161.html?Open
https://www.redbooks.ibm.com/abstracts/sg248161.html?Open
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/zos_connect_configuring.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/zos_connect_configuring.html

environments cannot be installed concurrently. The URI might need changing for other reasons,
such as switching from HTTP to HTTPS when you enable SSL.
2. Deploy the WSBind files to z/OS Connect. Your existing WSBind files are entirely compatible with
z/OS Connect. Follow the steps to deploy a new JSON web service to z/OS Connect as described
in Configuring z/OS Connect for a CICS JSON web service. CICS does not allow two WEBSERVICE
resources with the same name to both be installed. You therefore have two options:

a) Discard the original WEBSERVICE to allow the new one to install with the same name as was
previously used.

b) Rename the new WEBSERVICE to avoid a clash.
3. If you customized the processing of the Java Pipelines for JSON through use of PIPELINE Handler
programs, consider whether that customization is still needed. If it is needed, create z/OS Connect

Interceptor programs with equivalent functions, and deploy them as global interceptors. For more
information about z/OS Connect interceptors, see Defining z/OS Connect interceptors.

Results

You are now ready to test your new z/OS Connect JSON web services. If you deployed the services by
using the same port number as used in the Java Pipelines for JSON, no changes are needed in the client
(unless the security configuration has changed, such as when enabling SSL). If you changed the port
number or URI for the service, the client needs changing.

Configuring z/0S Connect Enterprise Edition

z/OS Connect Enterprise Edition is a separately-orderable product; it is not supplied as part of CICS TS. It
extends the basic services of z/OS Connect for CICS 1.0 with extra capabilities and can be used to host
CICS' older JSON web services-based services, and also the standard z/OS Connect deployment artifacts
such as SAR and AAR files. You must configure a JVMSERVER resource before you can deploy JSON
services, and can also configure a PIPELINE resource. This initial configuration is required only once.

Before you begin

Install the z/OS Connect Enterprise Edition run time. Follow the instructions in the z/OS Connect
Enterprise Edition V3.0 product documentation. If you are preparing z/OS Connect Enterprise Edition

to run embedded in CICS, you do not need to create a separate Liberty server instance. You must ensure
that the file system components are available on zFS. Installation of the API Toolkit that is supplied with
z/0S Connect Enterprise Edition is not part of this task.

About this task

If you installed z/OS Connect for CICS 1.0 previously, you might have a suitable configuration already and
can omit some steps in the following task. The steps that you can omit are indicated in the procedure.

Procedure

1. Create a JVMSERVER resource and configure it to support a WebSphere Liberty server. For more
information about creating a WebSphere Liberty JVMSERVER, see Configuring a Liberty JVM server.

If you installed z/OS Connect for CICS 1.0 previously, you can omit this step.

2. Add ZCEE_INSTALL_DIR to your JVM server options.

For more information about the option and an example, see JVM server profile options.

3. If you are using z/OS Connect Enterprise Edition version 3.0.24.0 or later, add the
<installation_directory>/runtime/lib/native/zos directory to the JVM server option
LIBPATH_SUFFIX, where <installation_directory> is the z/OS Connect Enterprise Edition installation
directory.

For example:

LIBPATH_SUFFIX=/usxr/lpp/IBM/zosconnect/v3x0/runtime/lib/native/zos

70 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/zos_connect_configuring_json.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_zconnect_interceptor.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/java/config_jvmserver_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/java/dfha2_jvmprofile_server_options.html

For more information about setting LIBPATH_SUFFIX, see JVM server profile options.

4. Configure WebSphere Liberty for your security requirements. By default, it expects the use of client-
certified SSL certificates. To enable HTTP Basic Authentication, add the following configuration option
to the server.xml file:

<!-- Allow fail-over to HTTP Basic Authentication -->
<webAppSecurity allowFailOverToBasicAuth="txue"/>

You must also give users of z/OS Connect the zosConnectAccess security role. For more information
about WebSphere Liberty security, see Configuring security for a Liberty JVM server, and for z/OS
Connect security, see Security for z/OS Connect.

If you installed z/OS Connect for CICS 1.0 previously, you can omit this step.

What to do next
Follow the steps for your specific version of z/OS Connect Enterprise Edition as described in the following
tasks.

Configuring z/OS Connect for CICS for a CICS JSON web service

After initially configuring z/OS Connect for CICS, you can configure it for a CICS JSON web service.
JSON web services are deployed to z/OS Connect for CICS in a similar way as to other CICS PIPELINE
environments.

Before you begin

You must complete the basic configuration of z/OS Connect before you start this task. For z/OS Connect
for CICS 1.0, see “Configuring z/OS Connect for CICS 1.0” on page 65. For z/OS Connect Enterprise
Edition, see “Configuring z/OS Connect Enterprise Edition” on page 70. You also require a JSON WSBind
file for each service you want to deploy; these binding files can be generated by using the CICS JSON
assistant (the DFHLS2JSand DFHJS2LS utility programs). For more information on these utility programs,
see The CICS JSON assistant.

About this task

Services can be deployed to z/OS Connect as z/OS Connect managed services, or as CICS managed
services. This topic discusses deploying these services as CICS managed services. By deploying
services as CICS managed services, WEBSERVICE resources will exist for each service. This deployment
mechanism is compatible with older JSON web services technology in CICS where services are deployed
to z/OS Connect similar to other CICS PIPELINE environments including SOAP web services.

If you have z/OS Connect Enterprise Edition V3, you might have better results by deploying the services
as z/0S Connect managed resources, as described in the z/OS Connect Enterprise Edition V3.0 product
documentation.

Note: This task applies when you use z/OS Connect Enterprise Edition V1.0 or the CICS service provider
supplied with CICS TS. If you use the CICS service provider supplied with z/OS Connect Enterprise Edition
v3.0, see Automated service archive management in z/OS Connect Enterprise Edition V3.0 product
documentation.

Procedure

« Install a WEBSERVICE resource that associates the WSBind file with the appropriate PIPELINE
resource.

Select a meaningful name for the WEBSERVICE, as this name is also used as the name of the

Service in z/OS Connect. Optionally, you can use the PERFORM PIPELINE SCAN command to install
WEBSERVICE resources. Whichever method you choose to use, ensure that you consider the following
information about URIMAPSs:

The URI at which the Service is available in z/OS Connect is taken from one of the following locations:

— The default naming convention that z/OS Connect uses.

Chapter 2. Configuring web services in CICS 71

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/java/dfha2_jvmprofile_server_options.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/java/security_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/web-services/zos_connect_security.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/cics_json_assistants.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/administering/auto_sar_mgmnt.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/administering/auto_sar_mgmnt.html

— The URI stored in the WSBind file, when the associated WEBSERVICE resource is installed by using
the PERFORM PIPELINE SCANcommand.

— The Service specific configuration in the Liberty server. xml file, if the invokeURI configuration
parameter is used.

— z/0S Connect Enterprise Edition only: The Application Archive File (. aax file) for an API that
encapsulates the Service.

If you rely on the default naming convention, the Service is typically exposed through the following
URI:

https://<hostname>:<port>/zosConnect/services/<Service Name>?action=invoke

In this example, <Service Name> refers to the name of the Service (more specifically, the name of
the WEBSERVICE resource), and <hostname> and <port> are taken from the configuration of the
Liberty server.

« Optional: Install a URIMAP resource for the z/OS Connect Service.

A URIMAP resource is used by CICS to associate the work for the Service with a specific transaction ID
in CICS, and an initial User ID.

You can use a single URIMAP to configure one or many Services. You might also define a default
URIMAP resource when you configure CICS for z/OS Connect. If no URIMAP exists to match the URI
for a z/OS Connect Service, the application's tasks run under transaction CISA, and the CICS default
user ID (typically CICSUSER) is used as the initial user ID. For more information about the role of the
initial User ID, see Configuring permissions for z/OS Connect Services and APIs.

If you choose to create a URIMAP resource, ensure that the associated user ID has authority to run the
specified transaction.

You might also choose to use a URIMAP to associate the URI with a specific WEBSERVICE resource.
If a URIMAP is tightly bound to a WEBSERVICE, the target WEBSERVICE is used for all HTTP requests
that are matched by the URIMAP. If a WEBSERVICE is not specified, the WEBSERVICE is selected
based on the name of the z/OS Connect Service. If the WEBSERVICE attribute of the URIMAP is left
blank, z/OS Connect performs the mapping itself, which allows z/OS Connect Enterprise Edition to
associate different Services with different HTTP methods within an API.

« Optional: Update the server.xml file
Some usage patterns might require changes in the Liberty server configuration file, server.xml. It
is usually not necessary to make Service-specific changes in the servexr. xml file, unless you require
special-case processing for a Service. For example, you might choose to associate a specific set of
z/0S Connect interceptors with a Service in the server. xml file, or expose a Service by using a URI
that does not match the z/OS Connect default naming convention.

Use these steps to define a Service in the server.xml file:

1. Ensure that the intended Service nhame does not match the name of a WEBSERVICE resource
in CICS. CICS automatically injects configuration information into z/OS Connect, and if an
explicitly defined Service and a CICS WEBSERVICE have the same name, the resultant behavior
is unpredictable.

2. Set a suitable value for the invokeURI attribute in the server. xml file that matches the URI used
in the URIMAP.

3. Bind the Service to the CICSEndpointService serviceRef element.

4. Ensure that a URIMAP exists to match the URI for the Service to the precise WEBSERVICE that
is to be used. If an invokeURI attribute was set in Step 2, the URIMAP must match that URL.
Otherwise, the URIMAP must assume the z/OS Connect default URI nhaming convention.

72 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/web-services/zos_connect_authentication_for_services.html

The following example shows an explicit z/OS Connect for CICS 1.0 Service declaration in the
server.xml file:

<zosConnectService invokeURI="/json/myCustomService"
serviceName="CICSServicel"
serviceRef="com.ibm.cics.wlp.zosconnect.CICSEndpointService"/>

The following example shows the equivalent declaration for z/OS Connect Enterprise Edition in the
server.xml file:

<zosconnect_zosConnectService invokeURI="/json/myCustomService"
serviceName="CICSServicel"
serviceRef="com.ibm.cics.wlp.zosconnect.CICSEndpointService"/>

In both examples, the "/json/myCustomService" URI is associated with the z/OS Connect for CICS
receiver program, CICSServicel.

Results

You can test the configuration for z/OS Connect for CICS by typing this URL into a web browser:
https://hostname:portnumber/zosConnect/services. The hosthame is the IP address or name
of the CICS region that hosts z/OS Connect for CICS. The portnumber is the httpsPoxt that is configured
in the <httpEndpoint> section of the server.xml configuration file. The web browser displays a list of
the installed services.

The service is now ready to be called from a JSON client that uses the same hostname and portnumber.

Each installed Service has an entry in the zosConnect/services list, for example:

1

"id":"EXAMPLE",

"name" : "EXAMPLE",
"url":"https://hostname:portnumber/zosConnect/services/EXAMPLE",
"protocol":"REST",

"description":"CICS Service"

In this example, the associated WEBSERVICE resource was named "EXAMPLE", and this Service
definition was created dynamically by CICS when the EXAMPLE WEBSERVICE resource was installed. You
can use a web browser to visit https://hostname: portnumber/zosConnect/services/EXAMPLE
that returns a document with more details about the Service, similar to the following:

1

"id":"EXAMPLE",
“name" : "EXAMPLE",
"protocol":"REST",
"description":"CICS Service",
"restEndpoints": [

"name" : "EXAMPLE",
"address":"hostname:portnumber/jsonTests/myExampleService"

]
¥

In this example, the "address" is the URI at which the Service is exposed. This URI might be derived
from information in a WSBind file, from an invokeURI attribute, or from the default z/OS Connect naming
convention.

When a request arrives in the Liberty JVM server, it is associated with the z/OS Connect for CICS receiver
that uses the information from the server.xml configuration file. A new CICS task starts to perform
this work, and it is associated with a specific WEBSERVICE resource that uses the information from the
URIMAP resource. The data transformation process occurs in the Liberty JVM server, and the target CICS
program is attached, as named in the WSBind file.

Migrating from JSON web services to z/OS Connect
JSON Services can be re-deployed to z/OS Connect from older JSON web services technology in CICS,
and also from the even older Feature Pack for Mobile Extensions. Such re-deployment requires z/0S

Chapter 2. Configuring web services in CICS 73

Connect to be configured in compatibility mode. This mode is available in both z/OS Connect for CICS 1.0
and z/0OS Connect Enterprise Edition.

About this task
In this task, z/0OS Connect refers to both z/OS Connect for CICS 1.0 and z/OS Connect Enterprise Edition.

Redeploying a JISON web service from a Java Pipelines for JSON (as used with the CICS Transaction
Server Feature Pack for Mobile Extensions V1.0) to z/OS Connect is a straightforward process. The
WSBInd files that are used for the Java Pipelines for JISON and for z/OS Connect are produced by using the
same tools (DFHLS23JS and DFHJS2LS), and are fully compatible with each other. If you are exploring this
capability in CICS, you can find examples of JSON web services in the IBM Redbooks: Implementing IBM
CICS JSON Web Services for Mobile Applications.

The z/OS Connect environment encourages the use of SSL between the client application and CICS. If
your existing Java Pipelines for JISON environment does not use SSL, the conversion to z/OS Connect
involves an extra step.

Procedure

1. Create the necessary z/OS Connect infrastructure by using the instructions from Configuring z/OS
Connect for CICS. For part of this configuration, you select an SSL TCP/IP port number at which the
Liberty JVM server listens for incoming connections. You have two options to consider:

a) Select a different port number from the port number that is used by the TCPIPSERVICE for the
Java Pipelines for JSON. This option has the advantage of ensuring that both environments can be
installed concurrently on different TCP/IP ports. It means that client programs need updating to
target the new JSON Service. If the old environment didn't use SSL, the conversion to z/OS Connect
requires changes to the URI, so this option is more suitable.

b) Select the same port number as that used by the TCPIPSERVICE for the Java Pipelines for JSON.
The port numbers in the URIs used by the client programs do not need to be changed, but the two
environments cannot be installed concurrently. The URI might need changing for other reasons,
such as switching from HTTP to HTTPS when you enable SSL.

2. Deploy the WSBind files to z/OS Connect. Your existing WSBind files are entirely compatible with
z/0S Connect. Follow the steps to deploy a new JSON web service to z/OS Connect as described
in Configuring z/OS Connect for a CICS JSON web service. CICS does not allow two WEBSERVICE
resources with the same name to both be installed. You therefore have two options:

a) Discard the original WEBSERVICE to allow the new one to install with the same name as was
previously used.
b) Rename the new WEBSERVICE to avoid a clash.

3. If you customized the processing of the Java Pipelines for JISON through use of PIPELINE Handler
programs, consider whether that customization is still needed. If it is needed, create z/OS Connect
Interceptor programs with equivalent functions, and deploy them as global interceptors. For more
information about z/OS Connect interceptors, see Defining z/OS Connect interceptors.

Results

You are now ready to test your new z/OS Connect JSON web services. If you deployed the services by
using the same port number as used in the Java Pipelines for JISON, no changes are needed in the client
(unless the security configuration has changed, such as when enabling SSL). If you changed the port
number or URI for the service, the client needs changing.

Using APIs from z/OS Connect Enterprise Edition

A primary feature of z/OS Connect Enterprise Edition is the ability to compose JSON APIs from one

or more JSON services. This capability does not exist in z/OS Connect for CICS 1.0. For the best API
development experience, deploy APIs and services to z/OS Connect Enterprise Edition v3.0, rather than
using older JSON web services technology in CICS in compatibility mode. For more information, see the
z/0S Connect Enterprise Edition documentation.

74 CICS TS for z/OS: Using Web Services with CICS

https://www.redbooks.ibm.com/abstracts/sg248161.html?Open
https://www.redbooks.ibm.com/abstracts/sg248161.html?Open
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/zos_connect_configuring.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/zos_connect_configuring.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/zos_connect_configuring_json.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_zconnect_interceptor.html

For details about the API Toolkit, see z/OS Connect Enterprise Edition V3.0 product documentation.

There are some slight differences in deploying APIs to z/OS Connect Enterprise Edition for CICS,
compared to deploying APIs to a standalone installation of z/OS Connect Enterprise Edition. The following
considerations apply to deploying APIs to CICS:

 You cannot adopt an existing WSBind file for use with an API. The API Editor requires one or more
Service Archive Resource (SAR) files as part of its input.

If you use the CICS service provider supplied by CICS TS, the WSBind file is created with the BAQLS2JS
or BAQJS2LS assistants that are distributed with z/OS Connect Enterprise Edition. If you want to create
APIs, start by generating the required WSBind and SAR files using the assistants that are supplied with

z/0S Connect Enterprise Edition.

You must set the SERVICE-NAME parameter in BAQLS23JS or BAQJS2LS to match the name of the
WEBSERVICE resource that will be used in CICS. CICS relies on a one-to-one match between the name
of the Service in z/OS Connect, and the name of the WEBSERVICE in CICS.

If you use the CICS service provider that is supplied with z/OS Connect Enterprise Edition, a SAR file is
created with either the service editor in the z/OS Connect Enterprise Edition V3 API Toolkit or the build
toolkit that is distributed with z/OS Connect Enterprise Edition. You must use these tools to generate
the required SAR files before you can create APIs.

« A WEBSERVICE resource definition is required in CICS that matches the name of the service.

If you use the CICS service provider supplied by CICS TS, the WEBSERVICE encapsulates the WSBind
file for the service.

If you use the CICS service provider supplied with z/OS Connect EE V3, a WEBSERVICE resource
definition is not required.

« A URIMAP resource definition may also be provided in CICS. If a URIMAP is used, CICS automatically
associates the work for the API with a transaction ID and sets a suitable initial user ID.

« The API Editor produces an Application archive (AAR) file as output. This must be deployed to the z/OS
Connect EE server using the deployment mechanisms provided by z/OS Connect EE. By default, APIs
are deployed to the /resources/zosconnect/apis directory in the server's configuration directory.
If this directory does not already exist, you must create it, or you might prefer to create an alternative
directory for the APIs and specify that on the zosconnect_APIs elementin server.xml.

If you follow the considerations above, the API and its component services are deployed to CICS. CICS
is configured with suitable URIMAP and WEBSERVICE resources, and the AAR file is deployed into the
Liberty configuration work area. The main Liberty configuration file, server.xml, contains an entry for
each component service that is deployed.

Configuring z/0S Connect Enterprise Edition V3.0 for z/0S Connect managed services

z/0S Connect Enterprise Edition is a separately orderable product; it is not supplied as part of CICS TS.
First, you must install the runtime component of z/OS Connect Enterprise Edition and configure a zFS file
so that CICS can locate it. Then you configure a JVM server and set up the pipeline configuration and
resources for z/OS Connect before you can deploy JSON services and APIs. This initial configuration is a
one-time activity that allows z/OS Connect Enterprise Edition to run embedded in the Liberty server that
is distributed with CICS TS.

Before you begin

Install the z/OS Connect Enterprise Edition run time. Follow the instructions in the z/OS Connect
Enterprise Edition V3.0 product documentation. If you are preparing z/OS Connect Enterprise Edition

to run embedded within CICS, then you do not need to create a separate Liberty server instance. You must
install at least the file system components on zFS. Installing the API Toolkit that is supplied with z/OS
Connect Enterprise Edition is not part of this task.

Have you previously installed z/OS Connect for CICS 1.0? If so, several of the steps in this task are not
necessary. The steps that you can skip are indicated in the list.

Chapter 2. Configuring web services in CICS 75

https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html

Procedure

1. Ensure that all the steps in “Configuring z/OS Connect Enterprise Edition” on page 70 are complete.

2. Update the <featureManager> list in the sexrver.xml file to include the
zosconnect:cicsService-1.0 feature.

For example,

<featureManager>
<feature>cicsts:core-1.0</feature>
<feature>zosconnect:cicsService-1.0</feature>
</featureManager>

Note: The CICS service providers that are supplied by CICS TS and z/OS Connect Enterprise Edition
v3.0 are mutually exclusive. If you upgrade from z/OS Connect for CICS 1.0 to z/OS Connect Enterprise
Edition V3.0, you must change the feature code.

3. Define the elements for the CICS service provider.
If you have z/0OS Connect for CICS 1.0 installed, you can skip this step because you are likely to have a
suitable configuration already.
Configure the following elements in server. xml:

a) Define either a local CICS connection, or a remote IPIC connection.
The following example definition is for a local CICS connection:

<zosconnect_cicsLocalConnection id="eciTest"/>

The following example definition is for a remote IPIC connection:

<zosconnect_cicsIPICConnection
id="eciTest"
host="cicshost.company.com"
port="1111"/>
b) Enable deployment of services by using SAR files:
For example,
<zosconnect_services
pollingRate="5s"
updateTrigger="polled">
¢) Configure zosconnect_zosConnectManager to disable security.

For more information about configuring the CICS service provider that is supplied with z/OS Connect
Enterprise Edition, see Using the CICS service provider.

4. Install the JVMSERVER. Check the generated messages. log file for error or warning messages.

This log contains the messages that are generated by WebSphere Liberty Server, including messages
that are issued by z/OS Connect Enterprise Edition such as:

SRVE0169I: Loading Web Module: z/0S Connect.
SRVEQ250I: Web Module z/0S Connect has been bound to default_host.

Results

Your z/0OS Connect Enterprise Edition instance is configured. You can test the basic configuration for

z/0S Connect by typing this URL into a web browser: https://hostname:portnumber/zosConnect/
services, where hostname is the IP address or host name of the system on which the CICS region

that is hosting z/OS Connect is running, and portnumber is the httpsPoxt that is specified in the
<httpEndpoint> element of the server.xml file. The web browser displays a list of installed services;
because no services are yet installed, the list is empty.

If you receive an HTTP 403 AuthorizationFailed response rather than the expected service list,
review the security configuration step in “Configuring z/OS Connect Enterprise Edition” on page 70. The
authenticated user might not be not be authorized to use z/OS Connect.

76 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/configuring/cics_service_provider.html

What to do next

You are now ready to deploy JSON services or APIs into z/OS Connect Enterprise Edition. For more
information about deploying services, see Exposing z/OS assets as REST APIs in z/OS Connect Enterprise
Edition V3.0 product documentation. For more information about deploying APIs, see “Using APIs from
z/0S Connect Enterprise Edition” on page 74.

Configuring z/OS Connect Enterprise Edition for CICS managed services

z/0OS Connect Enterprise Edition is a separately orderable product; it is not supplied as part of CICS TS.
First, you must install the runtime component of z/OS Connect Enterprise Edition and configure a zFS file
so that CICS can locate it. Then, you configure a JVM server and set up the pipeline configuration and
resources for z/OS Connect before you can deploy JSON services and APIs. This initial configuration is a
one-time activity that allows z/OS Connect Enterprise Edition to run embedded in the Liberty server that
is distributed with CICS TS.

Before you begin

Install the z/OS Connect Enterprise Edition run time. Follow the instructions in the z/OS Connect
Enterprise Edition V2.0 product documentation. If you are preparing z/OS Connect Enterprise Edition

to run embedded within CICS, then you do not need to create a separate Liberty server instance. You must
install at least the file system components on zFS. Installing the API Toolkit that is supplied with z/OS
Connect Enterprise Edition is not part of this task.

Have you previously installed z/OS Connect for CICS 1.0? If so, several of the steps in this task are not
necessary. The steps that you can skip are indicated in the list.

Procedure

1. Ensure that all the steps in “Configuring z/OS Connect Enterprise Edition” on page 70 are complete.

2. Update the <featureManagexr> list in the server. xml file to include the
cicsts:zosConnect-2.0 feature.

For example,

<featureManager>
<feature>cicsts:core-1.0</feature>
<feature>transportSecurity-1.0</feature>
<feature>cicsts:zosConnect-2.0</feature>
</featureManager>

Note: z/OS Connect for CICS 1.0 and z/OS Connect Enterprise Edition features are mutually exclusive.
If you upgrade from z/OS Connect for CICS 1.0 to z/OS Connect Enterprise Edition, you must change
the feature.

3. Define the z/OS Connect Service Controller.

If you use the CICS service provider that is supplied with CICS TS, add the following statement to the
server.xml file:

<com.ibm.cics.wlp.zosconnect.CICSEndpoint
id="com.ibm.cics.wlp.zosconnect.CICSEndpointSexrvice"/>

If you have z/0OS Connect for CICS 1.0 installed, you can skip this step because you are likely to have a
suitable configuration already.

If you use the CICS service provider that is supplied with z/OS Connect Enterprise Edition V2,
configure the following elements in server. xml:

a) Define either a local CICS connection, or a remote IPIC connection.
The following example definition is for a local CICS connection:

<zosconnect_cicsLocalConnection id="eciTest"/>

The following example definition is for a remote IPIC connection:

Chapter 2. Configuring web services in CICS 77

https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/designing/apieditor_intro.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/designing/apieditor_intro.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_2.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_2.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html

<zosconnect_cicsIPICConnection
id="eciTest"
host="cicshost.company.com"
port="1111"/>

b) Enable deployment of services by using SAR files:
For example,

<zosconnect_services
pollingRate="5s"
updateTrigger="polled">

For more information about configuring the z/OS Connect Enterprise Edition CICS service provider, see
Using the CICS service provider in z/OS Connect Enterprise Edition V3.0 product documentation.

4. Install the JVMSERVER. Check the generated messages. log file for error or warning messages.

This log contains the messages that are generated by WebSphere Liberty Server, including messages
that are issued by z/OS Connect Enterprise Edition such as:

SRVEO169I: Loading Web Module: z/0S Connect.
SRVEG250I: Web Module z/0S Connect has been bound to default_host.

5. Create an XML pipeline configuration file. Sample pipeline configuration file
jsonzosconnectprovider.xml is provided in the directory /usr/lpp/cicsts/cicstsb5/
samples/pipelines/ (where /usr/lpp/cicsts/cicsts55 is the default installation directory
for CICS files on z/OS UNIX). Decide whether you want to parse the JSON by using Java in the Liberty
JVM server (the default), or to use the non Java JSON parser.

« To parse the JSON by using Java in the Liberty JVM server, you can use the sample pipeline
configuration file, but replace DFHWLP in the <jvmserver> element with the name of your
JVMSERVER from step 2.

« To parse the JSON by using the non Java parser, modify the sample configuration file to append the

java_parser="no" attribute to the <provider_pipeline_json> element as in the following
example:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>

<provider_pipeline_json java_parser="no" xmlns="http://www.ibm.com/software/htp/cics/pipeline">
<jvmserver>DFHWLP</jvmserver>

</provider_pipeline_json>

Replace DFHWLP with the name of the JVMSERVER that you created at the start of this procedure.
If you have z/OS Connect for CICS 1.0 installed, you can skip this step because you are likely to have a
suitable configuration already.

6. Copy the pipeline configuration file to a suitable directory in zFS and ensure that the file permissions
allow the CICS region to read the file.

For more information, see Pipeline configuration files.

If you have z/OS Connect for CICS 1.0 installed, you can skip this step because you are likely to have a
suitable configuration already.
7. Create a PIPELINE resource.

The PIPELINE resource defines the location of the pipeline configuration file. Do not attempt to use the
SCAN mechanism to install WEBSERVICEs into this PIPELINE.

If you have z/OS Connect for CICS 1.0 installed, you can skip this step because you are likely to have a
suitable configuration already.
8. Optional: Create a default URIMAP resource for z/OS Connect.

URIMAP resources are used to associate a TRANSACTION and default user ID with z/OS Connect
work. One or more URIMAP resources can be used to configure a default policy for z/OS Connect. For
an example of URIMAP configuration and more information on configuration options, see Configuring
permissions for z/OS Connect Services and APIs.

Note:

78 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/configuring/cics_service_provider.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_pipelineconfig.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/pipeline/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/web-services/zos_connect_authentication_for_services.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/web-services/zos_connect_authentication_for_services.html

z/0S Connect performs extra authentication for individual HTTP requests, so the application tasks that
run in CICS are typically associated with a more specific User ID than the initial User ID from the
URIMAP.

This initial User ID is only in effect until user-specific authentication happens within z/OS Connect. Use
a specific User ID such as ZOSCUSER in the URIMAP, rather than relying on the default CICS User ID to
be used (typically "CICSUSER"), and authorizing it to use the target transactions.

Results

Your z/OS Connect Enterprise Edition instance is configured. You can test the basic configuration for
z/0S Connect by typing this URL into a web browser: https://hostname:portnumber/zosConnect/
services, where hostname is the IP address or host name of the system on which the CICS region

that is hosting z/OS Connect is running, and portnumber is the httpsPort that is specified in the
<httpEndpoint> element of the server.xml file. The web browser displays a list of installed services;
because no services are yet installed, the list is empty.

If you receive an HTTP 403 AuthorizationFailed response rather than the expected service list,
review the security configuration step in “Configuring z/OS Connect Enterprise Edition” on page 70. The
authenticated user might not be not be authorized to use z/OS Connect.

What to do next

You are now ready to deploy JSON services or APIs into z/OS Connect Enterprise Edition. For more
information about deploying services, see Configuring z/OS Connect for a CICS JSON web service. For
more information about deploying APIs, see “Using APIs from z/OS Connect Enterprise Edition” on page
74.

Pipeline configuration files

The configuration of a pipeline used to handle a web service request is specified in an XML document,
known as a pipeline configuration file.

The pipeline configuration file is stored in the z/OS UNIX System Services file system and its name is
specified in the CONFIGFILE attribute of a PIPELINE resource definition. Use a suitable XML editor or text
editor to work with your pipeline configuration files. The XML schemas for the pipeline configuration files
are in the directory /usr/lpp/cicsts/cicsts55/schemas/pipeline/ (where /usxr/lpp/cicsts/
cicsts55 is the default install directory for CICS files on z/OS UNIX). When you work with configuration
files, ensure that the character set encoding is UTF-8. If you import an existing configuration file that is
encoded in EBCDIC, it is automatically converted to UTF-8.

When CICS processes a web service request, it uses a pipeline of one or more message handlers

to handle the request. A pipeline is configured to provide aspects of the execution environment that
apply to different categories of applications, such as support for web service security, and web service
transactions. Typically, a CICS region that has a large number of service provider or service requester
applications needs several different pipeline configurations. However, where different applications have
similar requirements, they can share the same pipeline configuration.

Note: When using CICS Explorer to create a new PIPELINE configuration file as part of a bundle, there
must not be a configuration file with the same name in the root of the bundle.

There are two kinds of pipeline configurations: one describes the configuration of a service provider
pipeline; the other describes a service requester pipeline. Each is defined by its own schema, and each
has a different root element.

Pipeline Schema Root element
Service provider Provider. xsd <provider_pipeline>
Service requester Requester.xsd <requester_pipeline>

Chapter 2. Configuring web services in CICS 79

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/zos_connect_configuring_json.html

Although many of the XML elements used are common to both kinds of pipeline configuration, others
are used only in one or the other, so you cannot use the same configuration file for both a provider and
requester.

Restriction: Namespace-qualified element names are not supported in the pipeline configuration file.

The <provider_pipeline>and <requester_pipeline> elements have the following immediate
sub-elements:

« A<service> element, which specifies the message handlers that are invoked for every request. This
element is mandatory when used within the <provider_pipeline> element, and optional within the
<requester_pipeline> element.

- An optional <transport> element, which specifies message handlers that are selected at run time,
based upon the resources that are being used for the message transport.

e Forthe <provider_pipeline> only, an optional <apphandler> element, which is used to specify
channel-attached application handlers.

« Forthe <provider_pipeline> only, an optional <apphandler_class> element, which is used to
specify an Axis2 application handler.

« An optional <service_parameter_list> element, which contains the parameters that are available
to the message handlers in the pipeline.

Certain elements can have attributes associated with them. Each attribute value must have quotes around
it to produce a valid XML document.

Associated with the pipeline configuration file is a PIPELINE resource. The attributes include
CONFIGFILE, which specifies the name of the pipeline configuration file in z/OS UNIX. When you install a
PIPELINE definition, CICS reads the information that it needs in order to configure the pipeline from the
file.

CICS-supplied sample configuration files

CICS supplies sample configuration files that you can use as a basis for developing your own configuration
files. They are provided in library /usr/1pp/cicts/cicsts55/samples/pipelines.

Copy the sample configuration files to a local directory, and use them as a template to create your own
configuration files. The sample files are not intended to be used as is.

Note: Ensure that your configuration files are valid in the local CCSID.

basicsoapllprovider.xml
A service provider pipeline definition that uses the SOAP 1.1 protocol for a pipeline that does not
support Java. The pipeline uses the <cics_soap_1.1_handler> message handler and is used
when the CICS application has been deployed using the CICS web services assistant.

basicsoapllrequester.xml
A service requester pipeline definition that uses the SOAP 1.1 protocol for a pipeline that does not
support Java. The pipeline uses the <cics_soap_1.1_handler> message handler and is used
when the CICS application has been deployed using the CICS web services assistant.

basicsoaplljavaprovider.xml
A service provider pipeline definition that uses the SOAP 1.1 protocol for a pipeline that supports
Java. The pipeline uses the <cics_soap_1.1_handler_java> message handler and is used when
the application has been deployed using the CICS web services assistant. This configuration contains
the element <jvmserver>. This message handler must be edited to specify the appropriate JVM
server before the configuration can be used.

basicsoaplljavarequester.xml
A service requester pipeline definition that uses the SOAP 1.1 protocol for a pipeline that supports
Java. The pipeline uses the <cics_soap_1.1_handler_java> message handler and is used when
the application has been deployed using the CICS web services assistant. This configuration contains
the element <jvmserver>. This message handler must be edited to specify the appropriate JVM
server before the configuration can be used.

80 CICS TS for z/OS: Using Web Services with CICS

jsonjavaprovider.xml
A service provider pipeline definition that uses the JSON message format for a pipeline that supports
Java. The pipeline uses the <cics_json_handler_java> message handler and is used when the
CICS application has been deployed using the CICS JSON assistant. This configuration contains the
element <jvmserver>. This message handler must be edited to specify the appropriate JVM server
before the configuration can be used.

jsonzosconnectprovider.xml
A pipeline definition for a JSON web service that is deployed to a PIPELINE that is configured for
z/0S Connect for CICS. The pipeline uses the <provider_pipeline_json> message handler. This
configuration contains the element <jvmservexr>. This message handler must be edited to specify
the appropriate JVM server before the configuration can be used.

kexrberosprovider.xml

A service provider pipeline definition that adds configuration information for Kerberos support to
basicsoapllprovider.xml.

samlprovidexr.xml

A service provider pipeline definition that adds configuration information for SAML support to
basicsoapllprovider.xml.

samlrequester.xml

A service requester pipeline definition that adds configuration information for SAML support to
basicsoapllrequester.xml.

propagatesamlprovider.xml

A service provider pipeline definition that adds configuration information for SAML support with
propagation of SAML information through a CICS transaction to basicsoapllprovider.xml.

propagatesamlrequester.xml

A service requester pipeline definition that adds configuration information for SAML support with
propagation of SAML information through a CICS transaction to basicsoapllrequester.xml.

wsatprovider.xml
A pipeline definition that adds configuration information for web services transactions to
basicsoapllprovider.xml.

wsatrequester.xml
A pipeline definition that adds configuration information for web services transactions to
basicsoapllrequester.xml.

Example provider pipeline configuration file (JSON application handler)

This is a simple example of a configuration file for a service provider pipeline that uses the
<cics_json_handler_java> element:

<p><?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline">
<service>
<terminal_handler>
<cics_json_handler_java>
<jvmserver>DFHAXIS</jvmserver>
<repository>/usr/lpp/cicsts/cicsts52/1ib/pipeline/repository</repository>
</cics_json_handler_java>
</terminal_handler>
</service>
<apphandler_class>com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler</apphandler_class>
</provider_pipeline>

The pipeline contains just one message handler. The handler links to program DFHJSON.

e The <provider_pipeline> element is the root element of the pipeline configuration file for a service
provider pipeline.

Chapter 2. Configuring web services in CICS 81

« The <service> element specifies the message handlers that are invoked for every request. In the
example, there is just one message handler.

« The <terminal_handler> element contains the definition of the terminal message handler of the
pipeline.

« The <cics_json_handler_java> element indicates that the pipeline is a Java-based pipeline and
the service handler of the pipeline is a message handler that supports JSON messages.

« The <apphandler> element specifies the name of the application handler that the terminal handler
of the pipeline links to by default. In this case, the program is DFHISON, which is the CICS-supplied
program for applications deployed with the CICS JSON assistant.

Example provider pipeline configuration file (Channel-attached application handler)

This is a simple example of a configuration file for a service provider pipeline that uses the
<cics_soap_1.1_handler> element:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline"
<service>
<terminal_handler>
<cics_soap_1.1_handler/>
</terminal_handler>
</service>
<apphandler>DFHPITP</apphandler>
</provider_pipeline>

The pipeline contains just one message handler. The handler links to program DFHPITP.

« The <provider_pipeline> element is the root element of the pipeline configuration file for a service
provider pipeline.

- The <service> element specifies the message handlers that are invoked for every request. In the
example, there is just one message handler.

« The <terminal_handler> element contains the definition of the terminal message handler of the
pipeline.

« The<cics_soap_1.1_handler> element indicates that the pipeline is not a Java-based pipeline and
the terminal handler of the pipeline is a message handler that supports SOAP 1.1 messages.

« The <apphandler> element specifies the name of the application handler that the terminal handler
of the pipeline links to by default. In this case, the program is DFHPITP, which is the CICS-supplied
program for applications deployed with the CICS web services assistant.

Example provider pipeline configuration file (Axis2 application handler)

This is a simple example of a configuration file for a service provider pipeline that uses the
<cics_soap_1.1_handler_java> element:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline"
<service>
<terminal_handler>
<cics_soap_1.1_handler_java>
<jvmserver>DFHAXIS</jvmserver>
</cics_soap_1.1_handler_java>
</terminal_handler>
</service>
<apphandler_class>com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler</apphandler_class>
</provider_pipeline>

The pipeline contains just one message handler. The handler links to program DFHPITP.

« The <provider_pipeline> element is the root element of the pipeline configuration file for a service
provider pipeline.

82 CICS TS for z/0S: Using Web Services with CICS

« The <service> element specifies the message handlers that are invoked for every request. In the
example, there is just one message handler.

« The <terminal_handler> element contains the definition of the terminal message handler of the
pipeline.

« The<cics_soap_1.1_handler_java> element indicates that the pipeline is a Java-based pipeline
and the service handler of the pipeline is a message handler that supports SOAP 1.1 messages.

« The <apphandler_class> element specifies the supplied Axis2 application handler.

Example requester pipeline configuration file

This is a simple example of a configuration file for a service requester pipeline that uses the
<cics_soap_1.2_handler_java> element with Axis2 MTOM/XOP support:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<requester_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline">
<service>
<service_handler_list>
<cics_soap_1.2_handler_java>
<jvmserver>JVMSERV1</jvmserver>
<mtom>
</cics_soap_1.2_handler_java>
</service_handler_list>
</service>
</requester_pipeline>

The pipeline contains just one message handler.

- The <requester_pipeline> element is the root element of the pipeline configuration file for a
service requester pipeline.

- The <service> element specifies the message handlers that are invoked for every request. In the
example, there is just one message handler.

« The <service_handler_list> specifies a list of message handlers that are invoked for every
request.

« The<cics_soap_1.2_handler_java> elementindicates that the pipeline supports Java and the
service handler of the pipeline is a message handler that supports SOAP 1.2 messages.

« The <jvmserver> element specifies the JVM server to be used.

« The <mtom/> element specifies that outbound XOP documents are packaged into MTOM messages and
sent. By default, inbound MTOM messages are accepted and unpackaged for Java-based pipelines.

Example provider pipeline configuration file for a z/0S Connect for CICS JSON web service

This is a simple example of a configuration file for a service provider pipeline that uses the
<provider_pipeline_json> element. Because a java_parser="NO" attribute is supplied, it uses
the non-Java JSON parser:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline_json java_parser="NO"
xmlns="http://www.ibm.com/software/htp/cics/pipeline">
<jvmserver>DFHWLP</jvmserver>
</provider_pipeline_json>

The <provider_pipeline_json> element differs from the <provider_pipeline> element in that
handler programs cannot be defined.

« The <provider_pipeline_json> elementis the root element of the pipeline configuration file for a
z/0S Connect for CICS JSON web service provider pipeline.

« The java_parser="N0" attribute specifies that the non-Java JSON parser is used.
« The <jvmserver> element specifies the JVM server to be used.

Chapter 2. Configuring web services in CICS 83

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_provider_pipeline_json.html

Note: An attempt to start a <provider_pipeline_json> pipeline by using anything other than z/OS
Connect for CICS results in an error.

Example provider pipeline configuration file for non-Java JSON parsing

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline">
<service>
<terminal_handler>
<handler>
<program>DFHPIJT</program><handler_parameter_list/>
</handler>
</terminal_handler>
</service>
</provider_pipeline>

The pipeline contains only one message handler.

« The <provider_pipeline> element is the root element of the pipeline configuration file for a service
provider pipeline.

« The <service> element specifies the message handlers that are invoked for every request. In the
example, there is only one message handler.

e The <terminal_handler> element contains the definition of the terminal message handler of the
pipeline.

« The <handler> element specifies details of the handler.

« The <program> element specifies the program to be invoked. DFHPIJT is the CICS-supplied handler
for non-Java JSON processing.

Transport-related handlers

In the configuration file for each pipeline, you can specify more than one set of message handlers. At run
time, CICS selects the message handlers that are called, based upon the resources that are being used for
the message transport.

In a service provider, and in a service requester, you can specify that some message handlers should be
called only when a particular transport (HTTP or WebSphere MQ) is in use. For example, consider a web
service that you make available to your employees. Those who work at a company location access the
service using the WebSphere MQ transport on a secure internal network; however, employees working
at a business partner location access the service using the HTTP transport over the internet. In this
situation, you might want to use message handlers to encrypt parts of the message when the HTTP
transport is used, because of the sensitive nature of the information.

In a service provider, inbound messages are associated with a named resource (a TCPIPSERVICE for the
HTTP transport, a QUEUE for the MQ transport). You can specify that some message handlers should be
called only when a particular resource is used for an inbound request.

To make this possible, the message handlers are specified in two distinct parts of the pipeline
configuration file:

The service section
Specifies the message handlers that are called each time the pipeline executes.

The transport section
Specifies the message handlers that might or might not be called, depending upon the transport
resources that are in use.

Remember: At run time, a message handler can choose to curtail the execution of the pipeline. Therefore,
even if CICS decides that a particular message handler should be called based on what is in the pipeline
configuration file, the decision might be overruled by an earlier message handler.

The message handlers that are specified within the transport section (the transport-related handlers) are
organized into several lists. At run time, CICS selects the handlers in just one of these lists for execution,
based on which transport resources are in use. If more than one list matches the transport resources that

84 CICS TS for z/0S: Using Web Services with CICS

are being used, CICS uses the list that is most selective. The lists that are used in both service provider
and service requester pipelines are:

<default_transport_handler_list>
This is the least selective list of transport-related handlers; the handlers specified in this list are called
when none of the following lists matches the transport resources that are being used.

<default_http_transport_handler_list>
In a service requester pipeline, the handlers in this list are called when the HTTP transport is in use.

In a service provider pipeline, the handlers in this list are called when the HTTP transport is in use,
and no <named_transport_entry> names the TCPIPSERVICE for the TCP/IP connection.

<default_mq_transport_handlexr_list>
In a service requester pipeline, the handlers in this list are called when the WebSphere MQ transport
isin use.

In a service provider pipeline, the handlers in this list are called when the WebSphere MQ transport is
in use, and no <named_transport_entry> names the message queue on which inbound messages
are received.

The following list of message handlers is used only in the configuration file for a service provider pipeline:

<named_transport_entry>
As well as a list of handlers, the <named_transport_entry> specifies the name of a resource, and
the transport type.

« For the HTTP transport, the handlers in this list are called when the resource name matches the
name of the TCPIPSERVICE for the inbound TCP/IP connection.

« For the WebSphere MQ transport, the handlers in this list are called when the resource name
matches the name of the message queue that receives the inbound message.

Example

This is an example of a <transpoxrt> element from the pipeline configuration file for a service provider
pipeline:

<transport>

<!-- HANDLER1 and HANDLER2 are the default transport handlers -->
<default_transport_handler_list>
<handler><program>HANDLER1</program><handler_parameter_list/></handler>
<handler><program>HANDLER2</program><handler_parameter_list/></handler>
</default_transport_handler_list>

<!-- HANDLER3 overrides defaults for MQ transport -->
<default_mq_transport_handler_list>

<handler><program>HANDLER3</program><handler_parameter_list/></handler>
</default_mq_transport_handler_list>

<!-- HANDLER4 overrides defaults for http transport with TCPIPSERVICE(WS00) -->
<named_transport_entry type="http">
<name>WSOO</name>
<transport_handler_list>
<handler><program>HANDLER4</program><handler_parameter_list/></handler>
</transport_handler_list>
</named_transport_entry>

</transport>

The effect of this definition is this:

« The <default_mqg_transport_handler_list> ensures that messages that use the MQ transport
are processed by handler HANDLERS3.

« The <named_transport_entry> ensures that messages that use the TCP/IP connection associated
with TCPIPSERVICE(WSO0O) are processed by handler HANDLER4.

Chapter 2. Configuring web services in CICS 85

« The <default_transport_handler_list> ensures that all remaining messages, that is, those that
use the HTTP transport, but not TCPISERVICE(WSO00), are processed by handlers HANDLER1 and
HANDLER2.

Remember: Any handlers specified in the service section of the pipeline definition will be called in
addition to those specified in the transport section.

The pipeline definition for a service provider

The message handlers are defined in an XML document, which is stored in z/OS UNIX. The name of the
file that contains the document is specified in the CFGFILE attribute of a PIPELINE definition.

The root element of the pipeline configuration document is the <provider_pipeline> element. The
high-level structure of the document is shown in Figure 23 on page 87.

86 CICS TS for z/OS: Using Web Services with CICS

provider_

pipeline
| | cics_mtom_
handler
I
dfhmtom
configuration
— transport
default default_http default_mg namead
transport transport transport transport
handler_list handier_list handler_list entry
transport
handler handler handler name handler
list
L | sarvicas handler
service_ terminal
han_dler_ handier
Illst
cics cics
W5se
handler soap_1.1 spap_1.2 P
handler handler
L apphandier l] | |
RarIet cics cics_ cics_ Cics cics
jsomn soap_1.1_ soap 1.2 soap_1.1 soap_1.2
SErVICE_ handler_java handler handler handler_java handler_java
— parameter_
list

Figure 23. Structure of the pipeline definition for a service provider

The pipeline definition for a service requester

The message handlers are defined in an XML document, which is stored in z/OS UNIX. The name of the
file that contains the document is specified in the CFGFILE attribute of a PIPELINE definition.

The root element of the pipeline configuration document is the <requester_pipeline> element. The
high-level structure of the document is shown in Figure 24 on page 88.

Chapter 2. Configuring web services in CICS 87

requastar

pipeling
sarvice
sarvice
handler
lizt
I I [I I
cics cics cics cics wesa
handler soap_1.1 spap_1.2 soap_1.1 spap_1.2 handler
handler handler handler_java handler_java
— transport
default default_http default_mg default
target transport transport transport
handler_list handler_list handler_list
handler handler handler
cics_mitom
handler
dfhmtom
configuration
sarvice
| parameter

list

Figure 24. Structure of the pipeline definition for a service requester

Elements used only in service providers

Some of the XML elements used in a pipeline configuration file apply only to service provider pipelines.

Application handlers
An application handler is a CICS program that the terminal handler of a SOAP service provider pipeline
links to at run time.

Application handlers are used in provider mode pipelines in which

the terminal handler is one of the supplied SOAP message handlers.

This situation occurs when the <terminal _handler> element contains a
<cics_soap_1.1_handler>, <cics_soap_1.2_handler>, <cics_soap_1.1_handler_java>ora
<cics_soap_1.2_handler_java> element.

88 CICS TS for z/OS: Using Web Services with CICS

The application handler is responsible for processing the body of a SOAP request, and for generating

a response using the returned data. The application handler can call other programs to complete this
processing. Typically the application handler acts as a general-purpose presentation layer around one or
more business applications. It is responsible for mapping XML into a form that an application can use,
attaching that application, and then generating a response using the data returned.

An application handler can be attached by CICS in two ways. The typical mechanism involves a channel
and control containers; the other method involves Java bindings for Axis2.

Channel-attached application handlers are specified in the <apphandler> element of the
<provider_pipeline> element. At run time, the DFHWS-APPHANDLER container is populated by the
contents of <apphandler>. However, the DFHWS - APPHANDLER container can be dynamically updated by
any of the other message handlers. Therefore, the program that is linked to at run time can be different to
the program specified in the <apphandler> element. The following application handlers can be specified
in the <apphandler> element or the DFHWS - APPHANDLER container:

« The supplied channel-attached SOAP application handler, DFHPITP. For more information about
channel-attached application handlers, see “Channel-attached application handlers” on page 126

« Your own channel-attached application handler. This application handler can be written in languages
other than Java. For more information about the control containers that can be used in your channel-
attached application handler, see “Control containers” on page 139.

« Your own Java application handler for Java-based pipelines, which implements the ApplicationHandler
Java interface and that is attached to the pipeline using Axis2 MessageContext. For more information
about the ApplicationHandler Java interface, see Interface ApplicationHandler.

To use an application handler that uses Java bindings for Axis2, you must specify the
<apphandler_class> element of the <provider_pipeline> element. Axis2 application handlers
also require that a JVM server must exist for the web services pipeline and application

handler to run on and that the terminal handler of your web services pipeline must

be either the <cics_soap_1.1_handler_java> orthe <cics_soap_1.2_handler_java>
message handler. To use the supplied Axis2 application handler, you must specify
com.ibm.cicsts.axis2.CICSAxis2ApplicationHandlex inthe <apphandlexr_class> element,
however you can specify your own Axis2 application handler class. At run time, the DFHWS-APPHANCLAS
container is populated by the contents of <apphandler_class>.

For web service applications that are deployed using the CICS web services assistant, you must specify
either DFHPITP or your own application handler that uses DFHPITP in the <apphandlexr> element,

or specify com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler inthe <apphandler_class>
element. For more information about the CICS web services assistant, see The CICS web services
assistant.

It is also possible to deploy Axis2 applications as provider mode web services in CICS using the Axis2
style of web service deployment. For more information, see Deploying a Java provider-mode web service
in an Axis2 JVM server.

The <apphandler_class> pipeline configuration element
Specifies that the terminal handler of the pipeline links to an Axis2 application handler.

The <apphandler_class> element is used to specify an

Axis2 application handler when your <terminal_handler> element

contains a<cics_json_handler_java>, <cics_soap_1.1_handler_java>,or
<cics_soap_1.2_handler_java> element. To use the supplied Axis2 application handler, specify
com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler inthe <apphandler_class> element.
When using the CICS SOAP handlers, you can also specify your own Axis2 application handler class.

Alternatively, you can specify the <apphandler> element in your pipeline configuration file if you want
to use a channel-attached application handler, for more information see the <apphandler> element.
However, you must not specify <apphandler_class> and <apphandler> elements in the same
pipeline configuration file.

Note: You must not use the <apphandler> element with the <cics_json_handler_java> element.

Chapter 2. Configuring web services in CICS 89

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/jcics-javadoc/com/ibm/cics/server/pipeline/ApplicationHandler.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_utility.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_utility.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_deploy_axis2_web_service.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_deploy_axis2_web_service.html

You must not use the <apphandler_class> element if your <terminal_handler> element contains
eithera<cics_soap_1.1_handler>or<cics_soap_1.2_handler> element.

For more information about application handlers, see “Application handlers” on page 88.

Used in:

« Service provider

Contained by:

« <provider_pipeline> element

Example

<apphandler_class>com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler</apphandler_class>

The <named_transport_entry> pipeline configuration element
Contains a list of handlers that are to be invoked when a named transport resource is being used by a
service provider.

« For the WebSphere MQ transport, the named resource is the local input queue on which the request is
received.

» For the HTTP transport, the resource is the TCPIPSERVICE that defines the port on which the request
was received.

Used in:

« Service provider

Contained by:

<transport>
Attributes:
Name Description
type The transport mechanism with which the named resource is
associated:
wmgq
The named resource is a queue
http
The named resource is a TCPIPSERVICE
Contains:

1. A <name> element, containing the name of the resource

2. An optional <transport_handler_list> element. Each <transport_handler_list> contains
one or more <handler> elements.

If you do not code a <transport_handler_list> element, then the only message handlers that are
invoked when the named transport is used are those that are specified in the <service> element.

90 CICS TS for z/OS: Using Web Services with CICS

Example

<named_transport_entry type="http">
<name>PORT80</name>
<transport_handler_list>
<handler><program>HANDLER1</program><handler_parameter_list/></handler>
<handler><program>HANDLER2</program><handler_parameter_list/></handler>
</transport_handler_list>
</named_transport_entry>

In this example, the message handlers specified (HANDLER1 and HANDLER?2) are invoked for messages
received on the TCPIPSERVICE with the name PORT80.

The <provider_pipeline> pipeline configuration element
Specifies the root element of the XML document that describes the configuration of the CICS pipeline for a
web service provider.

Used in:

« Service provider

Contains:

. Optional <cics_mtom_handler> element

. Optional <transport> element
. <service> element
. Optional <apphandler> element

. Optional <apphandler_class> element

o gk WN P

. Optional <service_parameter_list> element, containing XML elements that are made available
to all the message handlers in the pipeline in container DFH-SERVICEPLIST.

Example

<provider_pipeline>
<service>

</éé£vice>
<apphandler>DFHPITP</apphandler>
</provider_pipeline>

The <provider_pipeline_json> pipeline configuration element
Specifies the root element of the XML document that describes the configuration of the CICS pipeline for a
z/0S Connect JSON web service provider.

This differs from the <provider_pipeline> element in that handler programs cannot be defined. This
style of pipeline is used as a container for the WNEBSERVICE resources that are used by z/OS Connect. An
attempt to start a <provider_pipeline_json> pipeline using anything other than z/OS Connect will
result in an error. The resultant PIPELINE resource can't be used as the target of a USAGE (PIPELINE)
URIMAP resource. It can only be used with USAGE (JVMSERVER) URIMAP resources.

Used in:

« Service provider

Attributes:

java_parser={yes|no?}
Select the type of JSON parser that is used to process inbound messages.

Possible values are:

Chapter 2. Configuring web services in CICS 91

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_cics_mtom_handler.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_transport.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_service.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_application_handler.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_application_handler_class.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_service_parameter_list.html

yes
Perform the JSON parsing by using Java within the JVM server. This is the default.

no
Perform non-Java parsing of the JSON message.

Note: The java_pazrser attribute is optional. If you do not supply it, the default behavior is to
parse the JSON message by using Java, within the JVM server. This would be the same as specifying
java_parser="yes".

java_generator={yes|no}
Select the type of JISON generator that is used to generate outbound messages.

Possible values are:

yes
Perform the JSON generation by using Java within the JVM server.

no
Perform non-Java generation of the JSON message. This is the default.

Contains:

- A <jvmserver> element, containing the name of the JVMSERVER resource in which z/OS Connect is
configured.

Example that uses Java parsing

<provider_pipeline_json java_parser="yes">
<jvmserver>DFHWLP</jvmserver>
</provider_pipeline_json>

Example that uses non-Java parsing

<provider_pipeline_json java_parser="no">
<jvmserver>DFHWLP</jvmserver>
</provider_pipeline_json>

The <terminal_handler> pipeline configuration element
Contains the definition of the terminal message handler of the service provider pipeline.

Used in:

« Service provider

Contained by:

« <service> element

Contains:
One of the following elements:

<handler>
<cics_json_handler_java>
<cics_soap_1.1_handler>
<cics_soap_1.2_handler>
<cics_soap_1.1_handler_java>
<cics_soap_1.2_handler_java>

If you expect your pipeline to process both SOAP 1.1 and SOAP 1.2 messages, you must use either the
<cics_soap_1.2_handler>or<cics_soap_1.2_handler_java> element.

92 CICS TS for z/OS: Using Web Services with CICS

Remember: In a service provider, you can specify the <cics_soap_1.1_handler>

and <cics_soap_1.2_handler>inthe <service_handler_list> element, as well as

in the <terminal_handler> element. However, in a service provider, you can only

specify <cics_soap_1.1_handler_java>and <cics_soap_1.2_handler_java>inthe
<terminal_handler> element.

Example

<terminal_handler>
<cics_soap_1.1_handler>

<]éics_soap_1.1_handler>
<service_handler_list>

Example: Enabling non-Java processing of JSON messages

To enable non-Java processing of JSON messages, specify the terminal handler program as DFHPIJT:

<terminal_handler>
<handler>
<program>DFHPIJT</program><handler_parameter_list/>
</handler>
</terminal_handler>

Note: When you use DFHPIJT as the terminal handler, do not define an application handler in the pipeline
configuration file, that is, the pipeline configuration file should not contain an <apphandler> element. If
an application handler is specified, it is not invoked.

The <transport_handler_list> pipeline configuration element
Contains a list of message handlers that are invoked when a named resource is used.

« For the MQ transport, the named resource is the name of the local input queue.

« For the HTTP transport, the resource is the TCPIPSERVICE that defines the port on which the request
was received.

Used in:

« Service provider

Contained by:

- <named_transport_entry> element

Contains:

« One or more <handler> elements.

Example

<transport_handler_list>
<handler>

</Héﬁdler>
<handler>

</Héﬁdler>
<transport_handler_list>

Chapter 2. Configuring web services in CICS 93

Elements used in service requesters
Some of the XML elements used in a pipeline configuration file apply only to service requester pipelines.
The <requester_pipeline> configuration element

The root element of the XML document that describes the configuration of a pipeline in a service
requester.

Used in:

= Service requester

Contains:

1. Optional <service> element
2. Optional <transport> element
3. Optional <cics_mtom_handler> element

4. Optional <service_parameter_list> element, containing XML elements that are made available
to the message handlers in container DFH-SERVICEPLIST.

Example

<requester_pipeline>
<service>
<service_handler_list>
<cics_soap_1.1_handlexr/>
</service_handler_list>
</service>
</requester_pipeline>

Elements used in service provider and service requester pipelines

Some of the XML elements used in a pipeline configuration file apply to both service provider and service
requester pipelines.

The <addressing> pipeline configuration element
Specifies the support for Web Services Addressing in Java-based SOAP processing.

Used in:

« Service provider
« Service requester

Contained by:

<cics_soap_1.1_handler_java> element
<cics_soap_1.2_handler_java> element

Contains:

A <namespace> element. In a service provider, this element is optional. The element contains one of
the two WS-Addressing schemas that are supported by CICS. For inbound messages, Axis2 supports
both specifications. For outbound messages, the namespace specified in this element is used. If you
do not specify this element or you have two elements, CICS uses the same specification on the
outbound message as the inbound message. In a service requester, this element is required and you
can specify only one namespace for the outbound message.

94 CICS TS for z/OS: Using Web Services with CICS

This example shows the configuration for a service provider pipeline, where both WS-Addressing
specifications are supported. CICS uses the same specification on the outbound message as the inbound
message. You can get the same results by specifying an empty <addressing> element.

<addressing>
<namespace>http://www.w3.0rg/2005/08/addressing</namespace>
<namespace>http://schemas.xmlsoap.oxrg/ws/2004/08/addressing</namespace>
</addressing>

The <cics_json_handler_java> pipeline configuration element
Specifies the attributes of the handler program for JSON messages in Java-based JSON pipelines.

Used in:

« Service provider

Contained by:

The <service_handler_list> element
The <terminal_handler> element

Contains:

1. A <jvmserver> element.
2. An optional <repository> element.

Example

The following example shows the XML for the Java-based JSON handler and its nested elements:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline">
<service>
<terminal_handler>
<cics_json_handler_java>
<jvmserver>DFHAXIS</jvmserver>
<repository>/usr/lpp/cicsts/cicsts55/1ib/pipeline/repository</repository>
</cics_json_handler_java>
</terminal_handler>
</service>
<apphandler_class>com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler</apphandler_class>
</provider_pipeline>

The <cics_soap_1.1_handle> pipeline configuration element
Specifies the attributes of the handler program for SOAP 1.1 messages in non-Java pipelines

Used in:

« Service requester
« Service provider

Contained by:

<service_handler_list> element
<terminal_handler> element

Contains:
Zero, one, or more <headerprogram> elements. Each <headerprogram> contains:

1. A<program_name> element, containing the name of a header processing program

Chapter 2. Configuring web services in CICS 95

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_service_handler_list.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_terminal_handler.html

2. A <namespace> element, which is used with the following <localname> element to determine
which header blocks in a SOAP message should be processed by the header processing program.
The <namespace> element contains the URI (Uniform Resource Identifier) of the header block's
namespace.

3. A<localname> element, which is used with the preceding <namespace> element to determine
which header blocks in a SOAP message should be processed by the header processing program. The
<localname> contains the element name of the header block.

For example, consider this header block:

<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

« The namespace name is http://mynamespace
« The element name is myheaderblock

To make a header program match this header block, code the <namespace> and <localname>
elements like this:

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

You can code an asterisk (%) in the <localname> element to indicate that all header blocks in the
namespace whose names begin with a given character string should be processed. For example:

<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>

When you use the asterisk in the <localname> element, a header in a message can match more than
one <headerprogram> element. For example, this header block

<t:myheaderblock xmlns:t="http://mynamespace" ...> </myheaderblock>

matches all the following <headerprogram> elements:

<headerprogram>
<program_name>HDRPROG1</program_name>
<namespace>http://mynamespace</namespace>
<localname>*</localname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG2</program_name>
<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG3</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>
<mandatory>false</mandatory>

</headerprogram>

When this is the case, the header program that runs is the one specified in the <headerprogram>
element in which the element name of the header block is most precisely stated. In the example, that
is HDRPROG3.

When the SOAP message contains more than one header, the header processing program is invoked
once for each matching header, but the sequence in which the headers are processed is undefined.

If you code two or more <headerprogram> elements that contain the same <namespace> and
<localname>, but that specify different header programs, only one of the header programs will run,
but which of the programs will run is not defined.

4. A <mandatory> element, containing an XML boolean value (true or false). Alternatively, you can
code the values as 1 or O respectively.

96 CICS TS for z/0OS: Using Web Services with CICS

true
During service request processing in a service provider pipeline, and service response processing
in a service requester pipeline, the header processing program is to be invoked at least once,
even if none of the headers in the SOAP messages matches the <namespace> and <localname>
elements:

- If none of the headers matches, the header processing program is invoked once.

« If any of the headers match, the header processing program is invoked once for each matching
header.

During service request processing in a service requester pipeline, and service response processing
in a service provider pipeline, the header processing program is to be invoked at least once, even
though the SOAP message that CICS creates has no headers initially. If you want to add headers
to your message, you must ensure that at least one header processing program is invoked, by
specifying <mandatory>true</mandatory> or <mandatory>1</mandatory>.

false
The header processing program is to be invoked only if one or more of the headers in the SOAP
messages matches the <namespace> and <localname> elements:

« If none of the headers matches, the header processing program is not invoked.

- If any of the headers match, the header processing program is invoked once for each matching
header.

Example

<cics_soap_1.1_handler>
<headerprogram>
<program_name> ... </program_name>
<namespace>...</namespace>
<localname>...</localname>
<mandatory>true</mandatory>
</headerprogram>
</cics_soap_1.1_handler>

The <cics_soap_1.1_handler_java> pipeline configuration element
Specifies the attributes of the handler program for SOAP 1.1 messages in Java-based SOAP pipelines.

Used in:

« Service requester
« Service provider

Contained by:

<service_handler_list> element
<terminal_handler> element

Contains:

1. A<jvmserver> element.
2. An optional <repository> element.

3. An optional <addressing> element. If you enable Web Services Addressing in Axis2, do not use the
DFHWSADH header processing program.

4. Zero, one, or more <headerprogram> elements. Each <headerprogram> element contains:

a. A <program_name> element, containing the name of a header processing program. You can write
Axis2 handlers in Java to process the SOAP headers.

b. A <namespace> element, which is used with the following <localname> element to determine
which header blocks in a SOAP message should be processed by the header processing program.

Chapter 2. Configuring web services in CICS 97

The <namespace> element contains the URI (Uniform Resource Identifier) of the header block's
namespace.

c. A <localname> element, which is used with the preceding <namespace> element to determine
which header blocks in a SOAP message should be processed by the header processing program.
The <localname> contains the element name of the header block.

For example, consider this header block:
<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

The namespace name is http://mynamespace and the element name is myheaderblock.

To make a header program match this header block, code the <namespace> and <localname>
elements like this:

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

You can code an asterisk (%) in the <localname> element to indicate that all header blocks in the
namespace whose names begin with a given character string should be processed. For example:

<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>

When you use the asterisk in the <localname> element, a header in a message can match more
than one <headerprogram> element. For example, this header block:

<t:myheaderblock xmlns:t="http://mynamespace" ...> </myheaderblock>
matches all the following <headerprogram> elements:

<headerprogram>
<program_name>HDRPROG1</program_name>
<namespace>http://mynamespace</namespace>
<localname>*</localname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG2</program_name>
<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG3</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>
<mandatory>false</mandatory>

</headerprogram>

When this is the case, the header program that runs is the one specified in the <headerprogram>
element in which the element name of the header block is most precisely stated. In the example,
that is HDRPROGS3.

When the SOAP message contains more than one header, the header processing program is invoked
once for each matching header, but the sequence in which the headers are processed is undefined.

If you code two or more <headerprogram> elements that contain the same <namespace>
and <localname> elements, but that specify different header programs, only one of the header
programs will run, but which of the programs will run is not defined.

d. A <mandatozry> element, containing an XML boolean value (true or false). Alternatively, you can
code the values as 1 or O respectively.

true
During service request processing in a service provider pipeline, and service response
processing in a service requester pipeline, the header processing program is to be invoked

98 CICS TS for z/0OS: Using Web Services with CICS

at least once, even if none of the headers in the SOAP messages matches the <namespace>
and <localname> elements:

- If none of the headers matches, the header processing program is invoked once.

« If any of the headers match, the header processing program is invoked once for each
matching header.

During service request processing in a service requester pipeline, and service response
processing in a service provider pipeline, the header processing program is to be invoked at
least once, even though the SOAP message that CICS creates has no headers initially. If you
want to add headers to your message, you must ensure that at least one header processing
program is invoked, by specifying <mandatory>true</mandatory> or <mandatory>1</
mandatory>.

false
The header processing program is to be invoked only if one or more of the headers in the SOAP
messages matches the <namespace> and <localname> elements:

« If none of the headers matches, the header processing program is not invoked.

- If any of the headers match, the header processing program is invoked once for each
matching header.

Example

The following example shows the XML for the Java-based SOAP handler and its nested elements:

<cics_soap_1.1_handler_java>
<jvmserver>JVMSERV1</jvmserver>
<headerprogram>
<program_name>HDRPROG4</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>
<mandatory>true</mandatory>
</headerprogram>
</cics_soap_1.1_handler_java>

The <cics_soap_1.2_handler> pipeline configuration element
Specifies the attributes of the handler program for SOAP 1.2 messages in non-Java pipelines.

Used in:

« Service requester
« Service provider

Contained by:

<service_handler_list> element
<terminal_handler> element

Contains:
Zero, one, or more <headerprogram> elements. Each <headerprogram> contains:

1. A<program_name> element, containing the name of a header processing program

2. A <namespace> element, which is used with the following <localname> element to determine
which header blocks in a SOAP message should be processed by the header processing program.
The <namespace> element contains the URI (Uniform Resource Identifier) of the header block's
namespace.

3. A<localname> element, which is used with the preceding <namespace> element to determine
which header blocks in a SOAP message should be processed by the header processing program. The
<localname> contains the element name of the header block.

Chapter 2. Configuring web services in CICS 99

For example, consider this header block:

<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

« The namespace name is http://mynamespace
« The element name is myheaderblock

To make a header program match this header block, code the <namespace> and <localname>
elements like this:

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

You can code an asterisk (%) in the <localname> element to indicate that all header blocks in the
namespace whose names begin with a given character string should be processed. For example:

<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>

When you use the asterisk in the <localname> element, a header in a message can match more than
one <headerprogram> element. For example, this header block

<t:myheaderblock xmlns:t="http://mynamespace" ...> </myheaderblock>
matches all the following <headerprogram> elements:

<headerprogram>
<program_name>HDRPROG1</program_name>
<namespace>http://mynamespace</namespace>
<localname>*</localname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG2</program_name>
<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG3</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>
<mandatory>false</mandatory>

</headerprogram>

When this is the case, the header program that runs is the one specified in the <headerprogram>
element in which the element name of the header block is most precisely stated. In the example, that
is HDRPROG3.

When the SOAP message contains more than one header, the header processing program is invoked
once for each matching header, but the sequence in which the headers are processed is undefined.

If you code two or more <headerprogram> elements that contain the same <namespace> and
<localname>, but that specify different header programs, only one of the header programs will run,
but which of the programs will run is not defined.

4. A <mandatory> element, containing an XML boolean value (true or false). Alternatively, you can
code the values as 1 or O respectively.

true
During service request processing in a service provider pipeline, and service response processing
in a service requester pipeline, the header processing program is to be invoked at least once,
even if none of the headers in the SOAP messages matches the <namespace> and <localname>
elements:

- If none of the headers matches, the header processing program is invoked once.

« If any of the headers match, the header processing program is invoked once for each matching
header.

100 CICS TS for z/OS: Using Web Services with CICS

During service request processing in a service requester pipeline, and service response processing
in a service provider pipeline, the header processing program is to be invoked at least once, even
though the SOAP message that CICS creates has no headers initially. If you want to add headers
to your message, you must ensure that at least one header processing program is invoked, by
specifying <mandatory>true</mandatory> or <mandatory>1</mandatory>.

false
The header processing program is to be invoked only if one or more of the headers in the SOAP
messages matches the <namespace> and <localname> elements:

« If none of the headers matches, the header processing program is not invoked.

- If any of the headers match, the header processing program is invoked once for each matching
header.

Example

<cics_soap_1.2_handler>
<headerprogram>
<program_name> ... </program_name>
<namespace>...</namespace>
<localname>...</localname>
<mandatory>true</mandatory>
</headerprogram>
</cics_soap_1.2_handler>

The <cics_soap_1.2_handler_java> pipeline configuration element
Specifies the attributes of the handler program for SOAP 1.2 messages in Java-based SOAP pipelines.

Used in:

« Service requester
« Service provider

Contained by:

<service_handler list> element
<terminal_handler> element

Contains:

1. A<jvmserver> element.
2. An optional <repository> element.

3. An optional <addressing> element. If you enable support for Web Services Addressing in Axis2,
do not use header processing programs. You can write Axis2 handlers in Java to process the SOAP
headers.

4. Zero, one, or more <headerprogram> elements. Each <headerprogram> element contains:

a. A <program_name> element, containing the name of a header processing program

b. A <namespace> element, which is used with the following <localname> element to determine
which header blocks in a SOAP message should be processed by the header processing program.
The <namespace> element contains the URI (Uniform Resource Identifier) of the header block's
namespace.

c. A<localname> element, which is used with the preceding <namespace> element to determine
which header blocks in a SOAP message should be processed by the header processing program.
The <localname> contains the element name of the header block.

For example, consider this header block:

<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

Chapter 2. Configuring web services in CICS 101

The namespace name is http://mynamespace and the element name is myheaderblock

To make a header program match this header block, code the <namespace> and <localname>
elements like this:

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

You can code an asterisk (%) in the <localname> element to indicate that all header blocks in the
namespace whose names begin with a given character string should be processed. For example:

<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>

When you use the asterisk in the <localname> element, a header in a message can match more
than one <headerprogram> element. For example, this header block:

<t:myheaderblock xmlns:t="http://mynamespace" ...> </myheaderblock>
matches all the following <headerprogram> elements:

<headerprogram>
<program_name>HDRPROG1</program_name>
<namespace>http://mynamespace</namespace>
<localname>*</localname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG2</program_name>
<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG3</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>
<mandatory>false</mandatory>

</headerprogram>

When this is the case, the header program that runs is the one specified in the <headerprogram>
element in which the element name of the header block is most precisely stated. In the example,
that is HDRPROGS3.

When the SOAP message contains more than one header, the header processing program is invoked
once for each matching header, but the sequence in which the headers are processed is undefined.

If you code two or more <headerprogram> elements that contain the same <namespace>
and <localname> elements, but that specify different header programs, only one of the header
programs will run, but which of the programs will run is not defined.

d. A <mandatozry> element, containing an XML boolean value (true or false). Alternatively, you can
code the values as 1 or O respectively.

true
During service request processing in a service provider pipeline, and service response
processing in a service requester pipeline, the header processing program is to be invoked
at least once, even if none of the headers in the SOAP messages matches the <namespace>
and <localname> elements:

- If none of the headers matches, the header processing program is invoked once.

« If any of the headers match, the header processing program is invoked once for each
matching header.

During service request processing in a service requester pipeline, and service response

processing in a service provider pipeline, the header processing program is to be invoked at
least once, even though the SOAP message that CICS creates has no headers initially. If you
want to add headers to your message, you must ensure that at least one header processing

102 CICS TS for z/OS: Using Web Services with CICS

program is invoked, by specifying <mandatory>true</mandatory> or <mandatory>1</
mandatory>.

false
The header processing program is to be invoked only if one or more of the headers in the SOAP
messages matches the <namespace> and <localname> elements:

« If none of the headers matches, the header processing program is not invoked.

- If any of the headers match, the header processing program is invoked once for each
matching header.

Example

The following example shows the XML for the Java-based SOAP handler and its nested elements:

<cics_soap_1.2_handler_java>
<jvmserver>JVMSERV1</jvmserver>
<headerprogram>
<program_name>HDRPROG4</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>
<mandatory>true</mandatory>
</headerprogram>
</cics_soap_1.2_handler_java>

The <default_http_transport_handler_list> pipeline configuration element
Specifies the message handlers that are invoked by default when the HTTP transport is in use.

In a service provider, message handlers specified in this list are invoked only if the list of handlers defined
ina <named_transport_entry> element is less specific.

Used in:

« Service provider
 Service requester

Contained by:

« <transport> element

Contains:

« One or more <handlexr> elements.

Example

<default_http_transport_handler_list>
<handler>

</handler>

<handler>

</handler>
</default_http_transport_handler_list>

The <default_mq_transport_handler_list> pipeline configuration element
Specifies the message handlers that are invoked by default when the WebSphere MQ transport is in use.

In a service provider, message handlers specified in this list are invoked only if the list of handlers defined
ina <named_transport_entry> element is less specific.

Chapter 2. Configuring web services in CICS 103

Used in:

« Service provider
 Service requester

Contained by:

« <transport> element

Contains:

« One or more <handlexr> elements.

Example

<default_mq_transport_handler_list>
<handler>

</handler>

<handler>

</handler>
</default_mq_transport_handler_list>

The <default_transport_handler_list> pipeline configuration element
Specifies the message handlers that are invoked by default when any transport is in use.

In a service provider, message handlers specified in this list are invoked when the list of handlers defined
in any of the following elements is less specific:

<default_http_transport_handler_list>

<default_mqg_transport_handlexr_list>

<named_transport_entry>

Used in:

« Service provider
« Service requester

Contained by:

- <transport>element

Contains:

» One or more <handler> elements.

Example

<default_transport_handler_list>
<handler>
<program>HANDLER1</program>
<handler_parameter_list/>
</handler>
<handler>
<program>HANDLER2</program>
<handler_parameter_list/>
</handler>
</default_transport_handler_list>

104 CICS TS for z/OS: Using Web Services with CICS

The <handler> pipeline configuration element
Specifies the attributes of a message handler program.

Some CICS-supplied handler programs do not use the <handlexr> element. For

example, the CICS-supplied SOAP message handler programs are defined using the
<cics_soap_1.1_handler>,<cics_soap_1.2_handler>,<cics_soap_1.1_handler_java>,
and <cics_soap_1.2_handler_java> elements.

Used in:

« Service provider
= Service requester

Contained by:

<default_transport_handler_list>
<transport_handler_list>
<service_handler_list>
<terminal_handler>
<default_http_transport_handler_list>
<default_mg_transport_handler_list>

Contains:

1. <program> element, containing the name of the handler program

2. <handler_parameter_list> element, containing XML elements that are made available to the
message handlers in container DFH-HANDLERPLIST.

Example

<?xml version="1.0"?>
<provider_pipeline>
xmlns="http://www.ibm.com/software/htp/cics/pipeline">
<service>
<service_handler_list>
<handler>
<program>MYPROG</program>
<handler_parameter_list><output print="yes"/></handler_parameter_list>
</handlex>
</service_handler_list>
<terminal_handler>
<cics_soap_1.1_handler>

<)éics_soap_1.1_handler>
</terminal_handler>
</service

<apphandler>DFHPITP</apphandler>
</provider_pipeline>

In this example, the handler program is MYPROG. The handler parameter list consists of a single
<output> element; the contents of the parameter list are known to MYPROG.

The <jvmserver> pipeline configuration element
Specifies the name of the JVMSERVER resource.

This element identifies the name of the JVMSERVER resource, which will process the request. If a value is
not supplied, an error message is generated and the PIPELINE is installed in the DISABLED state.

Used in:

« Service provider
= Service requester

Chapter 2. Configuring web services in CICS 105

Contained by:

« The <cics_json_handler_java> element

« The <cics_soap_1.1_handler_java> element

« The <cics_soap_1.2_handler_java> element

« The <provider_pipeline_json> element

Example

<jvmserver>JVMSERVER_NAME</jvmserver>

The <repository> pipeline configuration element
Specifies the directory name of the Axis2 repository.

This optional element identifies the directory name of the Axis2 repository. If you use this option, you
must specify The <jvmserver> element beforehand in the handler XML. If the element is not supplied
then, the sample repository will be used. When you install CICS Transaction Server the sample Axis2
repository is installed in the /usr/lpp/cicsts/cicsts55/1ib/pipeline/repository directory,
where /usxr/lpp/cicsts/cicsts55 is the default installation directory for CICS files on z/OS UNIX.

Used in:

« Service provider
« Service requester

Contained by:

« The <cics_json_handler_java> element

« The <cics_soap_1.1_handler_java> element

« The <cics_soap_1.2_handler_java> element

Example

<cics_soap_1.1_handler_java>
<jvmserver>JVMSERV1</jvmserver>
<repository>/lib/pipeline/repository</repository>

</cics_soap_1.1_handler_java>

The <service> pipeline configuration element
Specifies the message handlers that are invoked for every request.

Used in:

« Service provider
 Service requester

Contained by:

<provider_pipeline>
<requester_pipeline>

Contains:

1. <service_handler_list> element

2. In a service provider only, a <terminal_handler> element

106 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_cics_json_handler_java.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_cics_soap_11_handler_java.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_cics_soap_12_handler_java.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_provider_pipeline_json.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_jvmserver.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_cics_json_handler_java.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_cics_soap_11_handler_java.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_cics_soap_12_handler_java.html

Example

<service>
<service_handler_list>

;)éervice_handler_list>
<terminal_handler>

</terminal_handler>
</service>

The <service_handler_list> pipeline configuration element
Specifies a list of message handlers that are invoked for every request.

Used in:

« Service provider
- Service requester

Contained by:

« <service> element

Contains:
One or more of the following elements:

<cics_soap_1.1_handler>
<cics_soap_1.2_handler>
<cics_soap_1.1_handler_java>
<cics_soap_1.2_handler_java>
<handler>

<wsse_handler>

You determine the order that each handler is called at run time by the order that you specify the

handler elements in the <sexrvice_handlexr_list> element. For example, if your pipeline supports
WS-Security, encrypted SOAP messages remain encrypted until the <wsse_handler> element is called.
Therefore, you must specify the <wsse_handler> element before any other handler program that
processes unencrypted messages.

The <service_handler_list> element for a service provider cannot contain the
<cics_soap_1.1_handler_java>and<cics_soap_1.2_handler_java> elements, because
these elements must be specified in the <terminal_handler> element for Java-based

pipelines. A service requestor can contain the <cics_soap_1.1_handler_java> and
<cics_soap_1.2_handler_java>, however if these elements are used, they must be the first element
listed in the <service_handler_list> element.

If you expect your pipeline to process both SOAP 1.1 and SOAP 1.2 messages, you must use either the
<cics_soap_1.2_handler>or<cics_soap_1.2_handler_java> element.

You can use either a SOAP 1.1 or a SOAP 1.2 handler in a service requester pipeline, but in this case

the SOAP 1.2 handler does not support SOAP 1.1 messages. Do not specify the SOAP 1.1 or SOAP 1.2
handler in the pipeline if your service requester applications are sending complete SOAP envelopes in the
DFHREQUEST container. This avoids duplicating the SOAP message headers in outbound messages.

In a service provider, you can specify the generic handler and SOAP handlers in the
<terminal_handler> element as well as in the <service_handler_list> element. For more
information about processing SOAP header, see “Header processing programs” on page 134.

Example

<service_handler_list>
<wsse_handler>

Chapter 2. Configuring web services in CICS 107

</Wéée_handler>
<cics_soap_1.1_handler_java>

</ciéé_soap_1.1_hand1er_java>
<handler>

</héﬁdler>
</service_handler_list>

The <service_parameter_list> pipeline configuration element
Specifies the XML elements that are made available to all the message handlers in the pipeline in
container DFH-SERVICEPLIST. This is an optional element.

Used in:

« Service requester
« Service provider

Contains:

« If you are using WS-AT: a <registration_service_endpoint> element
« In aservice requester if you are using WS-AT: an optional <new_tx_context_required/> element

« Optional user defined tags

Example

<requester_pipeline>
<service_parameter_list>
<registration_service_endpoint>
http://provider.example.com:7160/cicswsat/RegistrationService
</registration_service_endpoint>
<new_tx_context_required/>
<user_defined_tagl>

;)ﬂser_defined_tag1>

</service_parameter_list>
</requester_pipeline>

The <transport> pipeline configuration element
Specifies handlers that are to be invoked only when a particular transport is in use.

Used in:

« Service provider
« Service requester

Contained by:

<provider_pipeline>
<requester_pipeline>

Contains:

In a service provider:

1. An optional <default_transport_handler_list> element

2. An optional <default_http_transport_handler_list> element
3. An optional <default_mg_transport_handler_list> element

4. Zero, one, or more <named_transport_entry> elements

108 CICS TS for z/OS: Using Web Services with CICS

In a service requester:

1. An optional <default_target> element. The <default_target> contains a URI that CICS uses
to locate the target web service when the service requester application does not provide a URI. In
many cases, however, the URI of the target will be provided by the service requester application,
and whatever you specify in the <default_target> will be ignored. For example, service provider
applications that are deployed using the CICS web services assistant normally get the URI from the
web service description.

2. An optional <default_http_transport_handler_list> element
3. An optional <default_mqg_transport_handler_list> element
4. An optional <default_transport_handler_list> element

Example

<transport>
<default_transport_handler_list>

;)defau1t_transport_hand1er_list>
</transport>

Pipeline configuration for MTOM/XOP

CICS SOAP pipelines can support the Message Transmission Optimization Mechanism (MTOM) and XML-
binary Optimized Packaging (XOP) specifications. These specifications define a mechanism for sending
and receiving binary data using SOAP, without incurring the overhead of base64 encoding. To enable
MTOM support, you must configure your pipelines accordingly.

The <mtom> pipeline configuration element

Enables MTOM/XOP support for Java-based pipelines. If this element is defined in the pipeline
configuration file, MTOM support is enabled for all inbound and outbound messages. However, if this
element is not specified in the pipeline configuration file, then MTOM support is enabled for only inbound
messages.

Used in:

« Service provider
« Service requester

Contained by:

<cics_soap_1.1_handler_java>
<cics_soap_1.2_handler_java>

For both provider and requester pipeline configuration files, the <mtom> element should be defined after
the optional <addressing> element and before the optional <headerprogram> element.

Example
For a provider or requester mode pipeline, you could specify:

<cics_soap_1.2_handler_java>
<jvmserver>JVMSERV1</jvmserver>
<addressing></addressing>
<mtom></mtom>
<headerprogram>
<program_name>HDRPROG4</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>
<mandatory>true</mandatory>
</headerprogram>
</cics_soap_1.2_handler_java>

Chapter 2. Configuring web services in CICS 109

The <cics_mtom_handler> pipeline configuration element

Enables the supplied MTOM handler program for SOAP pipelines. This program provides support for
MTOM MIME multipart/related messages that contain XOP documents and binary attachments. MTOM
support is enabled for all inbound messages that are received in the pipeline, but MTOM support for
outbound messages is conditionally enabled subject to further options.

Used in:

« Service provider
« Service requester

Contained by:

<provider_pipeline>
<requester_pipeline>

In a provider pipeline configuration file, the <cics_mtom_handler> element should be defined before
the <transpoxrt> element. At run time, the MTOM handler program needs to unpackage the inbound
MTOM message before other handlers including the transport handler process it. It is then invoked as
the last handler for the response message, to package an MTOM message to send to the web service
requester.

In a requester pipeline configuration file the <cics_mtom_handler> element should be defined after
the <transpoxrt> element. At run time, the outbound request message is not converted into MTOM
format until all other handlers have processed it. It is then invoked as the first handler for the inbound
response message to unpackage the MTOM message before other handlers process it and return to the
requesting program.

Note: You must not use this handler program with Java-based pipelines. For Java-based pipelines,
specify the <mtom> element.

Contains:

<dfhmtom_configuration> element

Default options can be changed using configuration options specified in the
<dfhmtom_configuration> element. If you do not want to change the default options, you can use
an empty element.

Example
For a provider mode pipeline, you could specify:

<provider_pipeline>
<cics_mtom_handler></cics_mtom_handler>
<transport>

</transport>

<service>

</service>
</provider_pipeline>

The <dfhmtom_configuration> pipeline configuration element

Specifies configuration information for the supplied MTOM handler program for pipelines that do not
support Java. This program provides support for MIME messages that contain XOP documents and binary
attachments. If you do not specify any configuration for MTOM, CICS assumes default values.

Used in:

« Service provider

110 CICS TS for z/OS: Using Web Services with CICS

= Service requester

Contained by:

<cics_mtom_handler>

Attributes:
Name Description
version An integer denoting the version of the configuration information. The
only valid value is 1.
Contains:

« An optional <mtom_options> element

« An optional <xop_options> element

« An optional <mime_options> element

Example

<dfhmtom_configuration version="1">
<mtom_options send_mtom="same" send_when_no_xop="no"/>
<xop_options apphandler_supports_xop="yes"/>
<mime_options content_id_domain="example.org"/>

</dfhmtom_configuration>

The <mtom_options> pipeline configuration element
Specifies when to use MTOM for outbound SOAP messages for pipelines that do not support Java.

Used in:

« Service provider
 Service requester

Contained by:

<dfhmtom_configuration>

Chapter 2. Configuring web services in CICS 111

Attributes:

Attribute Description
send_mtom Specifies if MTOM should be used to convert the outbound SOAP
message into a MIME message:
no
MTOM is not used for outbound SOAP messages.
same

In service provider mode, MTOM is used for SOAP response
messages whenever the requester uses MTOM. This is the
default value in a service provider pipeline.

In service requester mode, specifying this value is the same as
when you specify send_mtom="yes".

yes
MTOM is used for all outbound SOAP messages. This is the
default value in a service requester pipeline.

send_when_no_xop Specifies if an MTOM message should be sent, even when there are
no binary attachments present in the message.

no
MTOM is only used when binary attachments are being sent with
the message.

yes
MTOM is used for all outbound SOAP messages, even when
there are no binary attachments to send in the message. This
is the default value, and is primarily used as an indicator to the
receiving program that the sender supports MTOM/XOP.

This attribute can be combined with any of the send_mtom attribute
values, but has no effect if you specify send_mtom="no".

Example

<provider_pipeline>
<cics_mtom_handler>
<dfhmtom_configuration version="1">
<mtom_options send_mtom="same" send_when_no_xop="no"/>
</dfhmtom_configuration>
</cics_mtom_handler>
;)brovider_pipeline>
In this provider pipeline example, SOAP messages are converted into MTOM messages only when binary
attachments need to be sent with the message, and the service requester sent an MTOM message.

The <xop_options> pipeline configuration element
Specifies whether XOP processing can take place in direct or compatibility mode for pipelines that do not
support Java.

Used in:

« Service provider
- Service requester

Contained by:

<dfhmtom_configuration>

112 CICS TS for z/OS: Using Web Services with CICS

Attributes:

Attribute

Description

apphandler_supports_xop

In provider mode, specifies if the application handler is capable of
handling XOP documents in direct mode:

no
The application handler cannot handle XOP documents directly.
This is the default value if the <apphandlexr> element does not
specify DFHPITP.

Compatibility mode is used in the pipeline to handle any inbound
or outbound messages that are received or sent in MTOM format.

yes
The application handler can handle XOP documents. This is the
default value if the <apphandler> element specifies DFHPITP.

Direct mode is used in the pipeline to handle any inbound

or outbound messages that are received or sent in MTOM
format. This is subject to restrictions at run time. For example,
if you have specified WS-Security related elements in the
pipeline configuration file, the MTOM handler determines that
the pipeline should use compatibility mode rather than direct
mode for processing XOP documents.

In requester mode, specifies if service requester applications use the
CICS web services support to create and handle XOP documents in
direct mode.

no
Service requester applications do not use the CICS web services
support. Specify this value if your requester application links to
DFHPIRT to drive the pipeline, and is therefore not capable of
creating and handling XOP documents in direct mode.

yes
Service requester applications do use the CICS web services
support. Specify this value if your requester application uses the
EXEC CICS INVOKE WEBSERVICE command.

Example

<provider_pipeline>
<cics_mtom_handler>

<dfhmtom_configuration version="1">
<xop_options apphandler_supports_xop="no"/>

</dfhmtom_configuration>
</cics_mtom_handler>

<)b£ovider_pipeline>

In this provider pipeline example, inbound MTOM messages and outbound response messages are
processed in the pipeline using compatibility mode.

The <mime_options> pipeline configuration element
Specifies the domain name that should be used when generating MIME content-ID values for pipelines

that do not support Java. The MIME

Used in:

« Service provider

content-ID values are used to identify binary attachments.

Chapter 2. Configuring web services in CICS 113

= Service requester

Contained by:

<dfhmtom_configuration>

Attributes:

Attribute Description

content_id_domain The syntax to use is domain.name.
To conform to Internet standards, the name should be a valid
internet host name and should be unique to the CICS system where
the pipeline is installed. Note that this is not checked by CICS.
If this element is omitted, CICS uses the value cicsts.

Example

<provider_pipeline>
<dfhmtom_configuration version="1">

<mime_options content_id_domain="example.org"/>
</dfhmtom_configuration>

;)5Iovider_pipeline>

In this example, references to binary attachments are created using
cid:unique_value@example.org.

Pipeline configuration for WS-Security

In order for web service requester and provider applications to participate in WS-Security protocols, you
must configure your pipelines accordingly, by including message handler DFHWSSE, and by providing
configuration information for the handler.

Example

A provider pipeline configuration file that uses WS-Security might take the following form:

<?xml version="1.0"?>
<provider_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline">
<service>
<service_handler_list>
<wsse_handler>
<dfhwsse_configuration version="1">
<authentication trust="blind" mode="basic"/>
</dfhwsse_configuration>
</wsse_handler>
<handler>

</handler>
</service_handler_list>
<terminal_handler>
<cics_soap_1.2_handler/>
</terminal_handler>
</service>
<apphandler>DFHPITP</apphandler>
</provider_pipeline>

114 CICS TS for z/OS: Using Web Services with CICS

The <wsse_handler> pipeline configuration element
Specifies parameters used by the CICS-supplied message handler that provides support for WS-Security.

Used in:

« Service provider
= Service requester

Contained by:

<service_handler_list>

Contains:

« A The <dfhwsse_configuration>pipeline configuration element.

In a provider pipeline configuration file, the CICS supplied message handler for WS-Security might have to
decrypt an encypted message. The <wsse_handler> element must be defined before any other handler
programs that need to process the unencrypted message content.

In a requester pipeline configuration file, the CICS supplied message handler for WS-Security might have
to encrypt a message. It must be defined after any other handler programs that need to process the
unencrypted message content, including the CICS SOAP handler program.

The <dfhwsse_configuration> pipeline configuration element
Specifies configuration information for the security handler DFHWSSE1, which provides support for
securing web services.

Used in:

« Service provider
« Service requester

Contained by:

<wsse_handler>

Attributes:
Name Description
version An integer denoting the version of the configuration information. The
only valid value is 1.
Contains:

1. Either of the following elements:

« An optional <authentication> element.

— Inaservice requester pipeline, the <authentication> element specifies the type of
authentication that must be used in the security header of outbound SOAP messages.

— Inaservice provider pipeline, the element specifies whether CICS uses the security tokens in an
inbound SOAP message to determine the user ID under which work is processed.

« Anoptional <sts_authentication> element.

The action attribute on this element specifies what type of request to send to the Security Token
Service. If the request is to issue an identity token, then CICS uses the values in the nested elements
to request an identity token of the specified type.

Chapter 2. Configuring web services in CICS 115

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_service_handler_list.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_dfhwsse_configuration.html

2. If you specify an <sts_authentication> element, you must also specify an <sts_endpoint>
element.

When this element is present, CICS uses the URI in the <endpoint> element to send a request to the
Security Token Service.

3. An optional, empty <expect_signed_body/> element.

The <expect_signed_body/> element indicates that the <body> of the inbound message must be
signed. If the body of an inbound message is not correctly signed, CICS rejects the message with a
security fault.

4. An optional, empty <expect_encrypted_body/> element.

The <expect_encrypted_body/> element indicates that the <body> of the inbound message must
be encrypted. If the body of an inbound message is not correctly encrypted, CICS rejects the message
with a security fault.

5. An optional <sign_body> element.

If this element is present, CICS will sign the <body> of the outbound message, using the algorithm
specified in the <algorithm> element contained in the <sign_body> element.

6. An optional <encrypt_body> element.

If this element is present, CICS will encrypt the <body> of the outbound message, using the algorithm
specified in the <algorithm> element contained in the <encrypt_body> element.

7. In provider pipelines only, an optional <reject_signature/> element.

If this element is present, CICS rejects any message that includes a certificate in its header that signs
part or all of the message body. A SOAP fault is issued to the web service requester.

8. In provider pipelines only, an optional <reject_encryption/> element.

If this element is present, CICS rejects any message that is partially or fully encrypted. A SOAP fault is
issued to the web service requester.

Example

<dfhwsse_configuration version="1">

<sts_authentication action="issue">

<auth_token_type>
<namespace>http://example.org.tokens</namespace>
<element>UsernameToken</element>

</auth_token_type>
<suppress/>

</sts_authentication>

<sts_endpoint>
<endpoint>https://example.com/SecurityTokenService</endpoint>

</sts_endpoint>

<expect_signed_body/>

<expect_encrypted_body/>

<sign_body>
<algorithm>http://www.w3.0rg/2000/09/xmldsigi#rsa-shal</algorithm>
<certificate_label>SIGCERTO1</certificate_label>

</sign_body>

<encrypt_body>
<algorithm>http://www.w3.0rg/2001/04/xmlenci#tripledes-chc</algorithm>
<certificate_label>ENCCERTO2</certificate_label>

</encrypt_body>

</dfhwsse_configuration>

The <authentication> pipeline configuration element
Specifies the use of security tokens in the headers of inbound and outbound SOAP messages.

Used in:

« Service provider
« Service requester

116 CICS TS for z/OS: Using Web Services with CICS

Contained by:

<dfhwsse_configuration>

Attributes:

Attribute

Description

trust and mode

Taken together, the trust and mode attributes specify:

« whether asserted identity is used
- the combination of security tokens that are used in SOAP messages.

Asserted identity allows a trusted user to assert that work must run under
a different identity, the asserted identity, without the trusted user having the
credentials that are associated with that identity.

When asserted identity is used, messages contain a trust token and an identity
token. The trust token is used to check that the sender has the correct permissions
to assert identities. The identity token holds the asserted identity, that is, the user
ID under which the request is run.

Use of asserted identity requires that a service provider trusts the requester to
make this assertion. In CICS, the trust relationship is established with security
manager surrogate definitions: the requesting identity must have the correct
authority to start work on behalf of the asserted identity.

The allowable combinations of these attributes, and their meanings, are described
in Table 3 on page 117 and Table 4 on page 118.

Table 3. The mode and trust attributes in a service requester pipeline

trust mode Meaning

none none No credentials are added to the message

none basic Invalid combination of attribute values

none signature Asserted identity is not used. CICS uses a single X.509
security token, which is added to the message, and used
to sign the message body. The certificate is identified with
the <certificate_label> element, and the algorithm is
specified in the <algorithm> element.

blind none Invalid combination of attribute values

blind basic Asserted identity is not used. CICS adds an identity token to
the message, but does not provide a trust token. The identity
token is a user name with no password. The user ID placed
in the identity token is the contents of the DFHWS-USERID
container (which, by default, contains the running task's user
ID).

blind signature Invalid combination of attribute values

basic none Invalid combination of attribute values

basic basic Invalid combination of attribute values

basic signature Invalid combination of attribute values

signature none Invalid combination of attribute values

Chapter 2. Configuring web services in CICS 117

Table 3. The mode and trust attributes in a service requester pipeline (continued)

trust

mode

Meaning

signature

basic

Asserted identity is used. CICS adds the following tokens to
the message:

» The trust token is an X.509 security token.

« The identity token is a user name with no password.

The certificate that is used to sign the identity token and
message body is specified by the <certificate_label>.
The user ID placed in the identity token is the contents of the

DFHWS-USERID container (which, by default, contains the
running task's user ID).

signature

signature

Invalid combination of attribute values

Table 4. The mode and trust attributes in a service provider pipeline

trust

mode

Meaning

none

none

Inbound messages need not contain any credentials, and
CICS does not attempt to extract or verify any credentials
that are found in a message. However, CICS checks that any
signed elements are correctly signed.

none

basic

Inbound messages must contain a user name security token
with a password. CICS puts the user name in the DFHWS-
USERID container.

none

basic-ICRX

Invalid combination of attribute values

none

basic-kerberos

Invalid combination of attribute values

none

signature

Inbound messages must contain an X.509 security token that
has been used to sign the message body.

blind

none

Invalid combination of attribute values

blind

basic

Inbound messages must contain an identity token, where the
identity token contains a user ID and optionally a password.
CICS puts the user ID in the DFHWS-USERID container. If no
password is included, CICS uses the user ID without verifying
it. If a password is included, the security handler DFHWSSE1
verifies it.

blind

basic-ICRX

Inbound messages must contain an ICRX identity token.
CICS resolves the identity, puts the user ID in the DFHWS-
USERID container, and puts the ICRX in container DFHWS-
ICRX. Authentication, if required, uses client-certified SSL or
another security protocol.

blind

basic-kerberos

Invalid combination of attribute values

blind

signature

Inbound messages must contain an identity token, where

the identity token is the first X.509 certificate in the SOAP
message header. The certificate does not need to have signed
the message. The security handler extracts the matching user
ID and places it in the DFHWS-USERID container.

basic

none

Invalid combination of attribute values

118 CICS TS for z/OS: Using Web Services with CICS

Table 4. The mode and trust attributes in a service provider pipeline (continued)

trust

mode

Meaning

basic

basic

Inbound messages must use asserted identity:

» The trust token is a user name token with a password

« The identity token is a second user name token without a
password. CICS puts this user name in container DFHWS-
USERID.

basic

basic-ICRX

Inbound messages must use asserted identity:
» The trust token is a user name token with a password.

CICS establishes whether the user ID and password
combination are valid, and, if they are valid, CICS resolves
the asserted ICRX-based identity to a user ID. CICS then
performs a surrogate security check from the authenticated
identity to the asserted identity.

» The identity token is an ICRX, which identifies the specific
client user. CICS puts the user name in container DFHWS-
USERID and the ICRX in container DFHWS-ICRX.

basic

basic-kerberos

Inbound messages must use asserted identity.

One token is required, a Kerberos Version 5 token with one of
the following format types:

- http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#Kerberosvs_AP_REQ1510

« http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ1510

- http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#Kerberosvs_AP_REQ4120

- http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ4120

The token must be Base-64 encoded. CICS validates the
token by using Network Authentication Service for z/OS and
puts the user ID associated with the token in container
DFHWS-USERID.

basic

signature

Inbound messages must use asserted identity:

» The trust token is a user name token with a password

» The identity token is an X.509 certificate. CICS puts the
user ID associated with the certificate in container DFHWS-
USERID.

signature

none

Invalid combination of attribute values

signature

basic

Inbound messages must use asserted identity:

» The trust token is an X.509 certificate

« The identity token is a user name token without a password.
CICS puts the user name in container DFHWS-USERID.

The identity token and the body must be signed with the
X.509 certificate.

Chapter 2. Configuring web services in CICS 119

Table 4. The mode and trust attributes in a service provider pipeline (continued)

trust mode Meaning

signature basic-ICRX Inbound messages must use asserted identity.
» The trust token is an ICRX signed with an X.509 certificate.

CICS resolves the X.509 certificate to a user ID and ensures
that the XML signature is valid. CICS resolves the asserted
ICRX-based identity to a user ID. CICS then performs a
surrogate security check from the authenticated X.509
identity to the asserted ICRX identity.

« The identity token is a user name token without a password.
CICS puts the user name in container DFHWS-USERID and
the ICRX in container DFHWS-ICRX.

signature basic-kerberos Invalid combination of attribute values

signature signature Inbound messages must use asserted identity:

« The trust token is an X.509 certificate

» The identity token is a second X.509 certificate. CICS puts
the user ID associated with this certificate in container
DFHWS-USERID.

The identity token and the body must be signed with the first
X.509 certificate (the trust token).

Notes:

1. The combinations of the trust and mode attribute values are checked when the PIPELINE is installed.
The installation fails if the attributes are incorrectly coded.

2. CICS uses password verification to verify a user ID during the processes described in VERIFY PHRASE.

Contains:
1. An optional, empty <suppress/> element.

If this element is specified in a service provider pipeline, the handler does not attempt to use any
security tokens in the message to determine under which user ID the work runs.

If this element is specified in a service requester pipeline, the handler does not attempt to add to the
outbound SOAP message any of the security tokens that are required for authentication.

2. In arequester pipeline, an optional <algorithm> element that specifies the URI of the algorithm that
is used to sign the body of the SOAP message. You must specify this element if the combination of
trust and mode attribute values indicate that the messages are signed. You can specify only the RSA
with SHA1 algorithm in this element. The URLis http://www.w3.0xrg/2000/09/xmldsigi#rsa-
shal.

3. Anoptional <certificate_label> element that specifies the label that is associated with an X.509
digital certificate installed in RACF®. If you specify this element in a service requester pipeline and
the <suppress> element is not specified, the certificate is added to the security header in the SOAP
message. If you do not specify a <certificate_label> element, CICS uses the default certificate in
the RACF key ring.

This element is ignored in a service provider pipeline.

Example

<authentication trust="signature" mode="basic">
<suppress/>
<algorithm>http://www.w3.0rg/2000/09/xmldsigi#rsa-shal</algorithm>

120 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_verifyphrase.html

<certificate_label>AUTHCERTO3</certificate_label>

</authentication>

The <sts_authentication> pipeline configuration element
Specifies that a Security Token Service (STS) must be used for authentication and determines what type

of request is sent.

Used in:

« Service provider
« Service requester

Contained by:

<dfhwsse_configuration>

Attributes:

Name

Description

action

Specifies what type of request CICS sends to the STS when a
message is received in the service provider pipeline. Valid values
are as follows:

issue
The STS issues an identity token for the SOAP message. This
value is not valid for SAML in a provider pipeline.

validate
The STS validates the provided identity token and returns
whether the token is valid to the security handler.

If you do not specify this attribute, CICS assumes that the action
is to request an identity token.

In a service requester pipeline, you cannot specify this attribute
because CICS always requests that the STS issues a token.

extract

This attribute is valid only when you are using SAML. Are the
elements of the SAML token to be extracted? Valid values are as
follows:

no
The elements of the SAML token are not extracted into
containers.

yes
The main elements of the SAML token are extracted and
placed in containers that are created by CICS.

token_signature

This attribute is valid only when you are using SAML. Must a token
signature be supplied? Valid values are as follows:

ignored
Any signature that is supplied is ignored.

required
A valid signature must be supplied. This is the default value.

Chapter 2. Configuring web services in CICS 121

Name Description

tran_channel This attribute is valid only when you are using SAML. In a service
provider pipeline, this attribute specifies whether SAML assertions
contained in a message that is received in the pipeline are

made available to the target application program in containers

in the transaction channel DFHTRANSACTION. Valid values are as
follows:

yes
The SAML assertions are copied into containers in the
DFHTRANSACTION channel to be made available to the
program. For more information about container names and
types, see The SAML linkable interface, DFHSAML.

no
SAML assertions are not made available to the program via the
DFHTRANSACTION channel, but in containers in the channel
that is passed to the program by the pipeline. This is the
default value.

If you do not specify this attribute for a service provider, the
assertions are made available only in containers in the channel
that is passed to the program from the SOAP pipeline.

In a service requester pipeline, this attribute specifies whether
the SAML token contained in the DFHSAML-OUTTOKEN container
of the transaction channel DFHTRANSACTION is used on the
request. Valid values are as follows:

yes
The contents of the DFHTRANSACTION channel's DFHSAML-
OUTTOKEN container are used as the SAML token for the
request.

no
The contents of the DFHSAML-OUTTOKEN container in the
channel that is passed to the pipeline are used as the
request's SAML token. This is the default value.

If you do not specify this attribute for a service requester, the
SAML token is taken from the DFHSAML-OUTTOKEN container in
the channel that is passed to the SOAP pipeline.

Contains:

1. An <auth_token_type> element. This element is required when you specify a
<sts_authentication> elementin a service requester pipeline and is optional in a service provider
pipeline. For more information, see The <auth_token_type> element.

- Inaservice requester pipeline, the <auth_token_type> element indicates the type of token that
STS issues when CICS sends it the user ID contained in the DFHWS-USERID container. The token
that CICS receives from the STS is placed in the header of the outbound message.

« In aservice provider pipeline, the <auth_token_type> element is used to determine the identity
token that CICS takes from the message header and sends to the STS to exchange or validate.
CICS uses the first identity token of the specified type in the message header. If you do not specify
this element, CICS uses the first identity token that it finds in the message header. CICS does not
consider the following as identity tokens:

— wsu:Timestamp
— xenc:Referencelist

122 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/security/saml_link_int.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/web-services/dfhws_auth_token_type.html

- xenc:EncryptedKey
— ds:Signatuzre

2. In a service provider pipeline only, an optional, empty <suppress/> element. If this element is
specified, the handler does not attempt to use any security tokens in the message to determine the
user ID that the work runs under. The <suppress/> element includes the identity token that is
returned by the STS.

Example

The following example shows a service provider pipeline, where the security handler requests a token
from the STS.

<sts_authentication action="issue">
<auth_token_type>
<namespace>http://example.org.tokens</namespace>
<element>UsernameToken</element>
</auth_token_type>
<suppress/>
</sts_authentication>

The <auth_token_type> pipeline configuration element
Specifies what type of identity token is required.

This element is mandatory when you specify the <sts_authentication> elementin a service
requester pipeline, and optional in a service provider.

- In aservice requester pipeline, the <auth_token_type> element indicates the type of token that STS
issues when CICS sends it the user ID contained in the DFHWS-USERID container. The token that CICS
receives from the STS is placed in the header of the outbound message.

« Inaservice provider pipeline, the <auth_token_type> element is used to determine the identity
token that CICS takes from the message header and sends to the STS to exchange or validate. CICS
uses the first identity token of the specified type in the message header. If you do not specify this
element, CICS uses the first identity token that it finds in the message header. CICS does not consider
the following as identity tokens:

wsu:Timestamp
xenc:ReferencelList

xenc:EncryptedKey
— ds:Signatuzre

Used in:

« Service provider
« Service requester

Contained by:

<sts_authentication>

Contains:

1. A <namespace> element. This element contains the namespace of the token type that is to be
validated or exchanged.

If you are using SAML, set the content of this
element to either urn:oasis:names:tc:SAML:1.0:assertion or
urn:oasis:names:tc:SAML:2.0:assexrtion, depending on the version of SAML.

2. An <element> element. This element contains the local name of the token type that is to be validated
or exchanged.

Chapter 2. Configuring web services in CICS 123

For SAML, use the local name Assertion.

The values of these elements form the Qname of the token.

Example

<auth_token_type>
<namespace>http://example.org.tokens</namespace>
<element>UsernameToken</element>
</auth_token_type>

The <sts_endpoint> pipeline configuration element
Specifies the location of the Security Token Service (STS).

Used in:

« Service provider
« Service requester

Contained by:

<dfhwsse_configuration>

Contains:

- An <endpoint> element. This element contains a URI that points to the location of the Security Token
Service (STS) on the network. It is recommended that you use SSL or TLS to keep the connection to the
STS secure, rather than using HTTP.

To use SAML support, set the endpoint to cics://PROGRAM/DFHSAML.

You can also specify a WebSphere MQ endpoint, by using the JMS format of URL.

« An optional <jvmserver> element. This element identifies the JVM server that is configured to run the
SAML token service. If this element is not included, the default sample resource JVM server DFHXSTS
is assumed. This element is valid only if you are using SAML: if you use it in other situations, an error
occurs.

Examples
In this example, the endpoint is configured to use a secure connection to the STS at the specified URI.

<sts_endpoint>
<endpoint>https://example.com/SecurityTokenService</endpoint>
</sts_endpoint>

In this example, the endpoint is configured to use CICS SAML support.

<sts_endpoint>
<endpoint>cics://PROGRAM/DFHSAML</endpoint>
</sts_endpoint>

The <sign_body> pipeline configuration element
Directs DFHWSSE to sign the body of outbound SOAP messages, and provides information about how the
messages are to be signed.

Used in:

« Service provider
« Service requester

124 CICS TS for z/OS: Using Web Services with CICS

Contained by:

<dfhwsse_configuration>

Contains:

1. An <algorithm> element that contains the URI that identifies the algorithm used to sign the body of
the SOAP message. You can specify the algorithms shown in Signature algorithms.

2. A<certificate_label> element that specifies the label associated with a digital certificate
installed in RACF. The digital certificate provides the key that is used to sign the message.

Example
<sign_body>
<algorithm>http://www.w3.0rg/2000/09/xmldsigi#rsa-shal</algorithm>

<certificate_label>SIGCERTO1</certificate_label>
</sign_body>

The <encrypt_body> pipeline configuration element
Directs DFHWSSE to encrypt the body of outbound SOAP messages, and provides information about how
the messages are to be encrypted.

Used in:

« Service provider
 Service requester

Contained by:

<dfhwsse_configuration>

Contains:

1. An <algorithm> element containing the URI that identifies the algorithm used to encrypt the body of
the SOAP message. You can specify the algorithms shown in Encryption algorithms.

2. A<certificate_label> element that specifies the label that is associated with a digital certificate
in RACF. The digital certificate provides the key that is used to encrypt the message.

Example

<encrypt_body>
<algorithm>http://www.w3.0rg/2001/04/xmlenci#aes256-chc</algorithm>
<certificate_label>ENCCERTO2</certificate_label>

</encrypt_body>

Application handlers

An application handler is a CICS program that the terminal handler of a SOAP service provider pipeline
links to at run time.

Application handlers are used in provider mode pipelines in which

the terminal handler is one of the supplied SOAP message handlers.

This situation occurs when the <terminal_handler> element contains a
<cics_soap_1.1_handler>,<cics_soap_1.2_handler>,<cics_soap_1.1_handler_java>ora
<cics_soap_1.2_handler_java> element.

The application handler is responsible for processing the body of a SOAP request, and for generating
aresponse using the returned data. The application handler can call other programs to complete this
processing. Typically the application handler acts as a general-purpose presentation layer around one or

Chapter 2. Configuring web services in CICS 125

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/web-services/dfhws_signaturealgorithms.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/web-services/dfhws_encryptionalgorithms.html

more business applications. It is responsible for mapping XML into a form that an application can use,
attaching that application, and then generating a response using the data returned.

An application handler can be attached by CICS in two ways. The typical mechanism involves a channel
and control containers; the other method involves Java bindings for Axis2.

Channel-attached application handlers are specified in the <apphandler> element of the
<provider_pipeline> element. At run time, the DFHWS- APPHANDLER container is populated by the
contents of <apphandler>. However, the DFHWS - APPHANDLER container can be dynamically updated by
any of the other message handlers. Therefore, the program that is linked to at run time can be different to
the program specified in the <apphandler> element. The following application handlers can be specified
in the <apphandler> element or the DFHWS - APPHANDLER container:

« The supplied channel-attached SOAP application handler, DFHPITP. For more information about
channel-attached application handlers, see “Channel-attached application handlers” on page 126

« Your own channel-attached application handler. This application handler can be written in languages
other than Java. For more information about the control containers that can be used in your channel-
attached application handler, see “Control containers” on page 139.

« Your own Java application handler for Java-based pipelines, which implements the ApplicationHandler
Java interface and that is attached to the pipeline using Axis2 MessageContext. For more information
about the ApplicationHandler Java interface, see Interface ApplicationHandler.

To use an application handler that uses Java bindings for Axis2, you must specify the
<apphandler_class> element of the <provider_pipeline> element. Axis2 application handlers
also require that a JVM server must exist for the web services pipeline and application

handler to run on and that the terminal handler of your web services pipeline must

be either the <cics_soap_1.1_handler_java> orthe <cics_soap_1.2_handler_java>
message handler. To use the supplied Axis2 application handler, you must specify
com.ibm.cicsts.axis2.CICSAxis2ApplicationHandlex inthe <apphandlexr_class> element,
however you can specify your own Axis2 application handler class. At run time, the DFHWS-APPHANCLAS
container is populated by the contents of <kapphandler_class>.

For web service applications that are deployed using the CICS web services assistant, you must specify
either DFHPITP or your own application handler that uses DFHPITP in the <apphandlexr> element,

or specify com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler inthe <apphandler_class>
element. For more information about the CICS web services assistant, see The CICS web services
assistant.

It is also possible to deploy Axis2 applications as provider mode web services in CICS using the Axis2
style of web service deployment. For more information, see Deploying a Java provider-mode web service
in an Axis2 JVM server.

Channel-attached application handlers

Channel-attached application handlers are application handlers that are attached to CICS using a channel
and control containers.

The channel that is used by the application handler is the DFHAHC-V1 channel. This channel passes the
following containers between the terminal handler and the provider-mode web service application:
DFHWS-XMLNS

Contains a list of name-value pairs that map namespace prefixes to namespaces.

« Oninput, the list contains the namespaces that are in scope from the SOAP envelope.

« On output, the list contains the namespace data that is assumed to be in the envelope tag.
DFHWS-BODY

Contains the body section of the SOAP envelope. Typically, the application will modify the contents.

If the application does not modify the contents, the application handler program must update the

contents of this container, even if it is putting the same content back into the container before
returning to the terminal handler.

126 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/jcics-javadoc/com/ibm/cics/server/pipeline/ApplicationHandler.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_utility.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_utility.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_deploy_axis2_web_service.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_deploy_axis2_web_service.html

DFHNORESPONSE
In the request phase of a service requester pipeline, indicates that the service provider is not
expected to return a response. The contents of container DFHNORESPONSE are undefined; message
handlers that need to know if the service provider is expected to return a response need only
determine if the container is present or not:

« If container DFHNORESPONSE is present, then no response is expected.
« If container DFHNORESPONSE is absent, then a response is expected.

The channel also passes all the context containers that were passed to the terminal handler. For example,
a header processing program can add containers to the channel. These containers are passed as user
containers. For more information about application handlers, see “Application handlers” on page 88.

Message handlers

A message handler is a CICS program that is used to process a web service request during input and to
process the response during output. Message handlers use channels and containers to interact with one
another and with the system.

The message handler interface lets you perform the following tasks in a message handler program:

- Examine the contents of an XML or JSON request or response, without changing it
« Change the contents of an XML or JSON request or response

« In a non-terminal message handler, pass an XML or JSON request or response to the next message
handler in the pipeline

« In aterminal message handler, call an application program, and generate a response

« In the request phase of the pipeline, force a transition to the response phase, by absorbing the request,
and generating a response

« Handle errors

Tip: It is advisable to use the SOAP handlers, <cics_soap_1.1_handler>, <cics_soap_1.2_handler>,
<cics_soap_1.1_handler_java> or <cics_soap_1.2_handler_java>, to work with SOAP messages. These
handlers let you work directly with the major elements in a SOAP message (the SOAP headers and the
SOAP body).

All programs that are used as message handlers are invoked with the same interface: they are invoked
with a channel that holds a number of containers. The containers can be categorized as the following
types:

Control containers
These are essential to the operation of the pipeline. Message handlers can use the control containers
to modify the sequence in which subsequent handlers are processed.

Context containers
In some situations, message handler programs need information about the context in which they are
invoked. CICS provides this information in a set of context containers that are passed to the programs.

Some of the context containers hold information that you can change in your message handler. For
example, in a service provider pipeline, you can change the user ID and transaction ID of the target
application program by modifying the contents of the appropriate context containers.

User containers
These contain information that one message handler needs to pass to another. The use of user
containers is entirely a matter for the message handlers.

Restriction: Do not use names that start with DFH for user containers.

Chapter 2. Configuring web services in CICS 127

How containers control the pipeline protocols

The contents of the DFHFUNCTION, DFHREQUEST, and DFHRESPONSE containers together control the
pipeline protocols.

During the two phases of the execution of a pipeline (the request phase and the response phase) the
value of DFHFUNCTION determines which control containers are passed to each message handler:

DFHFUNCTION Context DFHREQUEST DFHRESPONSE

RECEIVE-REQUEST Service provider; Present (length > 0) Present (length = 0)
request phase

SEND-RESPONSE Service provider; Absent Present (length > 0)
response phase

SEND-REQUEST Service requester; Present (length > 0) | Present (length = 0)
request phase

RECEIVE-RESPONSE Service requester; Absent Present (length > 0)
response phase

PROCESS-REQUEST Service provider; Present (length > 0) | Present (length = 0)
terminal handler

HANDLER-ERROR Service requester Absent Present (length = 0)
or provider; either
phase

NO-RESPONSE Service requester or | Absent Absent
provider; response
phase

Subsequent processing is determined by the containers that your message handler passes back to the
pipeline:

During the request phase

« Your message handler can return the DFHREQUEST container. Processing continues in the request
phase with the next handler. The length of the data in the container must not be zero.

« Your message handler can return the DFHRESPONSE container. Processing switches to the response
phase, and the same handler is called with DFHFUNCTION set to SEND-RESPONSE in a service
provider and to RECEIVE-RESPONSE in a service requester. The length of the data in the container
must not be zero.

« Your message handler can return no containers. Processing switches to the response phase, and the
same handler is called with DFHFUNCTION set to NO-RESPONSE.

In the terminal handler (service provider only)

» Your message handler can return the DFHRESPONSE container. Processing switches to the response
phase, and the previous handler is called with a new value of DFHFUNCTION (SEND-RESPONSE).
The length of the data in the container must not be zero.

« Your message handler can return no containers. Processing switches to the response phase, and the
previous handler is called with a new value of DFHFUNCTION (NO-RESPONSE).

During the response phase

« Your message handler can return the DFHRESPONSE container. Processing continues in the
response phase, and the next handler is called. The length of the data in the container must not
be zero.

« Your message handler can return no containers. Processing continues in the response phase, and
the next handler in sequence is called with a new value of DFHFUNCTION (NO-RESPONSE).

128 CICS TS for z/OS: Using Web Services with CICS

Important: During the request phase, your message handler can return DFHREQUEST or DFHRESPONSE,
but not both. Because both containers are present when your message handler is called, you must delete

one of them.

This table shows the action taken by the pipeline for all values of DFHFUNCTION and all combinations of
DFHREQUEST and DFHRESPONSE returned by each message handler.

DFHFUNCTION Context DFHREQUEST DFHRESPONSE Action
RECEIVE-REQUEST Service provider; Present (length > 0) | Present (error)
request phase
RECEIVE-REQUEST Service provider; Present (length > 0) | Absent Call the next handler with the

request phase

RECEIVE-REQUEST function

RECEIVE-REQUEST

Service provider;
request phase

Present (length = 0)

Not applicable

(error)

RECEIVE-REQUEST

Service provider;
request phase

Absent

Present (length > 0)

Switch to response phase, and
invoke the same handler with the
SEND-RESPONSE function

RECEIVE-REQUEST

Service provider;
request phase

Absent

Present (length = 0)

(error)

RECEIVE-REQUEST

Service provider;
request phase

Absent

Absent

Call the same handler with the
NO-RESPONSE function

SEND-RESPONSE

Service provider;
response phase

Not applicable

Present (length > 0)

Call the previous handler with
the SEND-RESPONSE function

SEND-RESPONSE

Service provider;
response phase

Not applicable

Present (length = 0)

(error)

SEND-RESPONSE

Service provider;
response phase

Not applicable

Absent

Call the same handler with the
NO-RESPONSE function

SEND-REQUEST

Service requester;
request phase

Present (length > 0)

Present (length > 0)

(error)

SEND-REQUEST

Service requester;
request phase

Present (length > 0)

Absent

Call the next handler with the
SEND-REQUEST function

SEND-REQUEST

Service requester;
request phase

Present (length = 0)

Not applicable

(error)

SEND-REQUEST Service requester; Absent Present (length > 0) | Switch to response phase,
request phase and call the previous handler
with the RECEIVE-RESPONSE
function
SEND-REQUEST Service requester; Absent Present (length =0) | (error)
request phase
SEND-REQUEST Service requester; Absent Absent Call the same handler with the

request phase

NO-RESPONSE function

RECEIVE-RESPONSE

Service requester;
response phase

Not applicable

Present (length > 0)

Call the previous handler
with the RECEIVE-RESPONSE
function

RECEIVE-RESPONSE

Service requester;
response phase

Not applicable

Present (length = 0)

(error)

RECEIVE-RESPONSE

Service requester;
response phase

Not applicable

Absent

Call the same handler with the
NO-RESPONSE function

PROCESS-REQUEST

Service provider;
terminal handler

Not applicable

Present (length > 0)

Call the previous handler
with the RECEIVE-RESPONSE
function

PROCESS-REQUEST

Service provider;
terminal handler

Not applicable

Present (length = 0)

(error)

PROCESS-REQUEST

Service provider;
terminal handler

Not applicable

Absent

Call the same handler with the
NO-RESPONSE function

Chapter 2. Configuring web services in CICS 129

DFHFUNCTION Context DFHREQUEST DFHRESPONSE Action

HANDLER-ERROR Service requester Not applicable Present (length > 0) | Call the previous handler with
or provider; either the SEND-RESPONSE function
phase or the RECEIVE-RESPONSE

function

HANDLER-ERROR Service requester Not applicable Present (length =0) | (error)
or provider; either
phase

HANDLER-ERROR Service requester Not applicable Absent Call the same handler with the
or provider; either NO-RESPONSE function
phase

Supplying your own message handlers

When you want to perform specialized processing on the messages that flow between a service requester
and a service provider, and CICS does not supply a message handler that meets your needs, you will need
to supply your own.

About this task

In most situations, you can perform all the processing you need with the CICS-supplied message
handlers. For example, you can use the SOAP 1.1 and 1.2 message handlers which CICS supplies to
process SOAP messages. But there are occasions when you will want to perform your own, specialized,
operations on web service requests and responses. To do this, you must supply your own message
handlers.

Procedure

1. Write your message handler program.

A message handler is a CICS program with a channel interface. You can write your program in any
of the languages which CICS supports, and use any CICS command in the DPL subset within your
program.

2. Compile and link-edit your program.

Message handler programs normally run under transaction CPIH, which is defined with the attribute
TASKDATALOC (ANY). Therefore, when you link-edit the program, you must specify the AMODE (31)
option.

3. Install the program in your CICS system in the usual way.
4. Define the program in the pipeline configuration file.
Use the <handlexr> element to define your message handler. Within the <handler> element, code a

<program> element containing the name of the program.
Working with messages in a non-terminal message handler

A typical non-terminal message handler processes a message, then passes control to another message
handler in the pipeline.

About this task

In a non-terminal message handler, you can work with a request or response, with or without changing it,
and pass it on to the next message handler.

Note: Although web services typically use SOAP messages which contain XML, your message handlers
will work as well with other message formats
Procedure

1. Using the contents of container DFHFUNCTION, determine if the message passed to this message
handler is a request or a response.

130 CICS TS for z/OS: Using Web Services with CICS

DFHFUNCTION Request or Type of message Inbound or
response handler outbound
RECEIVE-REQUEST Request Non-terminal Inbound
SEND-RESPONSE response Non-terminal Outbound
SEND-REQUEST Request Non-terminal Outbound
RECEIVE-RESPONSE response Non-terminal Inbound

Tip:
« If DFHFUNCTION contains PROCESS-REQUEST, the message handler is a terminal message handler,
and these steps do not apply.

- If DFHFUNCTION contains HANDLER-ERROR, the handler is being called for error processing, and
these steps do not apply.

2. Retrieve the request or the response from the appropriate container.

- If the message is a request, it is passed to the program in container DFHREQUEST. Container
DFHRESPONSE is also present, with a length of zero.

- If the message is a response, it is passed to the program in container DFHRESPONSE.
3. Perform any processing of the message which is required.
Depending upon the purpose of the message handler, you might:
- Examine the message without changing it, and pass it to the next message handler in the pipeline.
- Change the request, and pass it to the next message handler in the pipeline.

- If the message is a request, you can bypass the following message handlers in the pipeline, and,
instead, construct a response message.

Note: It is the contents of the containers which a message handler returns that determines which
message handler is invoked next.

Itis an error if a message handler makes no changes to any of the containers passed to it.
It is an error for a message handler program to return any of the following:

« An empty DFHRESPONSE container.

« A non-empty DFHREQUEST container and a non-empty DFHRESPONSE container.

« An empty DFHREQUEST container on the outbound request.

Passing a message to the next message handler in the pipeline
In a typical non-terminal message handler, you will process a request or response, with or without
changing it, and pass it on to the next message handler.

Procedure
1. Return the message to the pipeline - changed or unchanged - in the appropriate container.

- Ifthe message is a request and you have changed it, return it in container DFHREQUEST
« If the message is a response and you have changed it, put it in container DFHRESPONSE
« Ifyou have not changed the messagg, it is already in the appropriate container

2. If the message is a request, delete container DFHRESPONSE.

When a message handler is invoked for a request, containers DFHREQUEST and DFHRESPONSE are
passed to the program; DFHRESPONSE has a length of zero. However, it is an error to return both
DFHREQUEST and DFHRESPONSE.

Chapter 2. Configuring web services in CICS 131

Results
The message is passed to the next message handler on the pipeline.

Forcing a transition to the response phase of the pipeline
When you are processing a request, there are times when you will want to generate an immediate
response, instead of passing the request to the next message handler in the pipeline.

Procedure

1. Delete container DFHREQUEST.
2. Construct your response, and put it in container DFHRESPONSE.

Results
The response is passed to the next message handler on the response phase of the pipeline.

Suppressing the response
In some situations, you will want to absorb a request without sending a response.

Procedure

1. Delete container DFHREQUEST.
2. Delete container DFHRESPONSE.

Handling one way messages in a service requester pipeline

When a service requester pipeline sends a request to a service provider, there is normally an expectation
that there will be a response, and that, following the sending of the request, the message handlers in the
pipeline will be invoked again when the response arrives. Some web services do not send a response, and
so you must take special action to indicate that CICS should not wait for a response before invoking the
message handlers for a second time.

About this task

To do this, ensure that container DFHNORESPONSE is present at the end of pipeline processing in the
request phase. Typically, this is done by application level code, because the knowledge of whether a
response is expected is lodged in the application:

« For applications deployed with the CICS web services assistant, CICS code will create the container.

- Applications that are not deployed with the assistant will typically create the container before invoking
the application.

If you create or destroy container DFHNORESPONSE in a message handler, you must be sure that doing so
will not disturb the message protocol between the service requester and the provider.

Working with messages in a terminal message handler

A typical terminal handler processes a request, invokes an application program, and generates a
response.

About this task

Note: Although web services typically use SOAP messages which contain XML, your message handlers
will work as well with other message formats

In a terminal message handler, you can work with a request, and - optionally - generate a response and
pass it back along the pipeline. A typical terminal handler will use the request as input to an application
program, and use the application program's response to construct the response.

132 CICS TS for z/OS: Using Web Services with CICS

Procedure

1. Using the contents of container DFHFUNCTION, determine that the message passed to this handler is
a request, and that the handler is being called as a terminal handler.

DFHFUNCTION Request or Type of handler Inbound or
response outbound
PROCESS-REQUEST Request Terminal Inbound
Tip:
« If DFHFUNCTION contains any other value, the handler is not a terminal handler, and these steps do
not apply.

2. Retrieve the request from container DFHREQUEST.
Container DFHRESPONSE is also present, with a length of zero.

3. Perform any processing of the message which is required.
Typically, a terminal handler will invoke an application program.

4. Construct your response, and put it in container DFHRESPONSE.
If there is no response, you must delete container DFHRESPONSE.

Results

The response is passed to the next handler in the response phase of the pipeline. The handler is
invoked for function SEND-RESPONSE. If there is no response, the next handler is invoked for function
NO-RESPONSE.

Handling errors

Message handlers should be designed to handle errors that might occur in the pipeline.

About this task

When an error occurs in a message handler program, the program is invoked again for error processing.
Error processing always takes place in the response phase of the pipeline; if the error occurred in the
request phase, subsequent handlers in the request phase are bypassed.

In most cases, therefore, you must write your handler program to handle any errors that might occur.

Procedure

1. Check that container DFHFUNCTION contains HANDLER-ERROR, indicating that the message handler
has been called for error processing.
Tip:
- If DFHFUNCTION contains any other value, the message handler has not been invoked for error
processing and these steps do not apply.
2. Analyze the error information, and determine if the message handler can recover from the error by
constructing a suitable response.

Container DFHERROR holds information about the error. For detailed information about this container,
see “DFHERROR container ” on page 139.

Container DFHRESPONSE is also present, with a length of zero.
3. Perform any recovery processing.
- Ifthe message handler can recover, construct a response, and return it in container DFHRESPONSE.

- If the message handler can recover, but no response is required, delete container DFHRESPONSE,
and return container DFHNORESPONSE instead.

Chapter 2. Configuring web services in CICS 133

« If the message handler cannot recover, return container DFHRESPONSE unchanged (that is, with a
length of zero).

Results

If your message handler is able to recover from the error, pipeline processing continues normally. If not,
CICS generates a SOAP fault that contains information about the error. In the case of a transaction abend,
the abend code is included in the fault.

The message handler interface

The CICS pipeline links to the message handlers using a channel containing a number of containers.
Some containers are optional, others are required by all message handlers, and others are used by some
message handlers, and not by others.

Before a handler is invoked, some or all of the containers are populated with information which the
handler can use to perform its work. The containers returned by the handler determine the subsequent
processing, and are passed on to later handlers in the pipeline.

The SOAP message handlers

The SOAP message handlers are CICS-provided message handlers that you can include in your pipeline
to process SOAP 1.1 and SOAP 1.2 messages. You can use the SOAP message handlers in a service
requester or in a service provider pipeline.

On input, the SOAP message handlers parse inbound SOAP messages, and extract the SOAP <Body>
element for use by your application program. On output, the handlers construct the complete SOAP
message, using the <Body> element that your application provides.

If you use SOAP headers in your messages, the SOAP handlers can invoke user-written header processing
programs that allow you to process the headers on inbound messages, and to add them to outbound
messages.

SOAP message handlers, and any header processing programs, are specified in the pipeline
configuration file. For pipelines that do not support Java, the <cics_soap_1.1_handler> or
<cics_soap_1.2_handler> message handlers must be specified. For pipelines that support Java, the
<cics_soap_1.1_handler_java>,or<cics_soap_1.2_handler_java> message handlers must
be specified.

Typically, you will need just one SOAP handler in a pipeline. However, there are some situations where
more than one is needed. For example, you can ensure that SOAP headers are processed in a particular
sequence by defining multiple SOAP handlers.

You must not define <cics_soap_1.1_handler>and <cics_soap_1.2_handler> message
handlers, or <cics_soap_1.1_handler_java>and <cics_soap_1.2_handler_java> message
handlers in the same pipeline. If you expect your pipeline to process both SOAP

1.1 and SOAP 1.2 messages, you should use either the <cics_soap_1.2_handler> or
<cics_soap_1.2_handler_java> message handler.

Header processing programs

Header processing programs are user-written CICS programs that are linked to from the CICS-provided
SOAP 1.1 and SOAP 1.2 message handlers, in order to process SOAP header blocks.

You can write your header processing program in any of the languages that CICS supports, and use any
CICS command in the DPL subset. Your header processing program can link to other CICS programs.

The header processing programs have a channel interface; the containers hold information that the
header program can examine or modify, including the SOAP header block for which the program is
invoked, and the SOAP message body.

The channel and the containers that the header processing program can use are described in “The header
processing program interface” on page 136.

134 CICS TS for z/OS: Using Web Services with CICS

Other containers hold information about the environment in which the header program is invoked, for
example:

« The transaction ID under which the header program was invoked
« Whether the program was invoked for a service provider or requester pipeline
« Whether the message being processed is a request or response

Header processing programs normally run under transaction CPIH, which is defined with the attribute
TASKDATALOC (ANY). Therefore, when you link-edit the program, you must specify the AMODE (31)
option.

How header processing programs are invoked for a SOAP request

The <cics_soap_1.1_handler>, <cics_soap_1.2_handler>,
<cics_soap_1.1_handler_java>,and <cics_soap_1.2_handler_java> elementsin a pipeline
configuration contain zero, one, or more <headerprogram> elements, each of which contains the
following children:

<program_name>
<namespace>
<localname>
<mandatory>

When a pipeline is processing an inbound SOAP message (a request in the case of a service provider,
aresponse in the case of a service requester), the header program specified in the <program_name>
element is invoked or not, depending upon the following items:

- The contents of the <namespace>, <localname>, and <mandatory> elements

« The value of certain attributes of the root element of the SOAP header itself (the actor attribute for
SOAP 1.1; the role attribute for SOAP 1.2)

The following rules determine if the header program will be invoked in a given case:

The <mandatoxy> element in the pipeline configuration file
If the element contains txrue (or 1), the header processing program is invoked at least once, even if
none of the headers in the SOAP message are selected for processing by the remaining rules:

- If none of the header blocks are selected, the header processing program is invoked once.

- If any of the header blocks are selected by the remaining rules, the header processing program is
invoked once for each selected header.

Attributes in the SOAP header block
For SOAP 1.1, a header block is eligible for processing only if the actor attribute is absent, or has a
value of http://schemas.xmlsoap.org/soap/actor/next

For SOAP 1.2, a header block is eligible for processing only if the role attribute is absent, or has one of
the following values:

http://www.w3.0rg/2003/05/soap-envelope/role/next
http://www.w3.0rg/2003/05/soap-envelope/role/ultimateReceiver
A header block that is eligible for processing is not processed unless it is selected by the next rule.

The <namespace> and <localname> elements in the pipeline configuration file
A header block that is eligible for processing according to the previous rule is selected for processing
only if the following conditions are satisfied:

« The name of the root element of the header block matches the <localname> element in the
pipeline configuration file

« The namespace of the root element matches the <namespace> element in the pipeline
configuration file

For example, consider this header block:

Chapter 2. Configuring web services in CICS 135

<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

Subject to the other rules, the header block is selected for processing when the following lines are
coded in the pipeline configuration file:

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

The <localname> elements can contain an * to indicate that all header blocks in the namespace
should be processed. Therefore, the same header block is selected by the following code:

<namespace>http://mynamespace</namespace>
<localname>x</localname>

When the SOAP message contains more than one header, the header processing program is invoked once
for each matching header, but the sequence in which the headers are processed is undefined.

The CICS-provided SOAP message handlers select the header processing programs that are invoked
based upon the header blocks that are present in the SOAP message at the time when the message
handler receives it. Therefore, a header processing program is never invoked as a result of a header block
that is added to a message in the same SOAP message handler. If you want to process the new header (or
any modified headers) in your pipeline, you must define another SOAP message handler in your pipeline.

For an outbound message (a request in a service requester, a response in a service provider) the CICS-
provided SOAP message handlers create a SOAP message that does not contain any headers. In order to
add one or more headers to the message, you must write a header handler program to add the headers.
To ensure that this header handler is invoked, you must define it in your pipeline configuration file, and
specify <mandatory>true</mandatory>.

If a header handler is invoked in the request phase of a pipelineg, it is invoked again in the response phase,
even if the message that flows in the response phase does not contain a matching header.

The header processing program interface

The CICS-provided SOAP 1.1 and SOAP 1.2 message handlers link to the header processing programs
using channel DFHHHC-V1. The containers that are passed on the channel include several that are
specific to the header processing program interface, and sets of context containers and user containers
that are accessible to all the header processing programs and message handler programs in the pipeline.

Container DFHHEADER is specific to the header processing program interface. Other containers are
available elsewhere in your pipeline, but have specific uses in a header processing program. The
containers in this category are DFHWS-XMLNS, DFHWS-BODY, and DFHXMLSS-PARSE.

Note: Although web service that use Axis2 to process SOAP messages can use the header processing
program interface, it is more efficient to write your own Axis2 handlers in Java to process the SOAP
headers. For more information on creating Axis2 handlers, see Writing Your Own Axis2 Module

Container DFHHEADER

When the header processing program is called, DFHHEADER contains the single header block that
caused the header processing program to be driven. When the header program is specified with
<mandatory>true</mandatory> or <mandatory>1</mandatory> in the pipeline configuration file,
it is called even when there is no matching header block in the SOAP message. In this case, container
DFHHEADER has a length of zero. This is the case when a header processing program is called to add a
header block to a SOAP message that does not have header blocks.

The SOAP message that CICS creates has no headers initially. If you want to add headers to your
message, you must ensure that at least one header processing program is called, by specifying
<mandatory>true</mandatory> or <mandatory>1</mandatory>.

When the header program returns, container DFHHEADER must contain zero, one, or more header blocks
that CICS inserts in the SOAP message in place of the original:

136 CICS TS for z/OS: Using Web Services with CICS

http://axis.apache.org/axis2/java/core/docs/modules.html

 You can return the original header block unchanged.

You can modify the contents of the header block.
 You can append one or more new header blocks to the original block.
 You can replace the original header block with one or more different blocks.

You can delete the header block completely.

Container DFHWS-XMLNS

When the header processing program is called, DFHWS-XMLNS contains information about XML
namespaces that are declared in the SOAP envelope. The header program can use this information to
perform the following tasks:

» Resolve qualified names that it encounters in the header block
« Construct qualified names in new or modified header blocks.
The namespace information consists of a list of namespace declarations, which use the standard XML

notation for declaring namespaces. The namespace declarations in DFHWS-XMLNS are separated by
spaces. For example:

xmlns:na="http://abc.example.oxrg/schema' xmlns:nx='http://xyz.example.oxrg/schema'

You can add further namespace declarations to the SOAP envelope by appending them to the contents
of DFHWS-XMLNS. However, namespaces whose scope is a SOAP header block or a SOAP body are

best declared in the header block or the body respectively. You are advised not to delete namespace
declarations from container DFHWS-XMLNS in a header processing program, because XML elements that
are not visible in the program may rely on them.

Container DFHWS-BODY
This container contains the body section of the SOAP envelope. The header processing program can
modify the contents.

When the header processing program is called, DFHWS-BODY contains the SOAP <Body> element.

When the header program returns, container DFHWS-BODY must again contain a valid SOAP <Body>,
which CICS inserts in the SOAP message in place of the original:

« You can return the original body unchanged.
« You can modify the contents of the body.

You must not delete the SOAP body completely, as every SOAP message must contain a <Body> element.

Container DFHXMLSS-PARSE

When you use either the <cics_soap_1.1_handler> or<cics_soap_1.2_handler> elements
in your pipeline configuration, and header program is called, DFHXMLSS-PARSE contains the

XML System Services (XMLSS) records for that header. This container is not created when
<cics_soap_1.1_handler_java>or<cics_soap_1.2_handler_java> elements are used.

Control, context, and user containers
As well as the containers described, the interface passes the control containers, context containers, and
user containers on channel DFHHHC-V1.

For more information about these containers, see “Containers used in the pipeline” on page 138.

Dynamic routing of inbound requests in a terminal handler

When the terminal handler of a service provider pipeline is one of the CICS-supplied SOAP message
handlers, the target application handler program specified in container DFHWS -APPHANDLER is, in some
cases, eligible for dynamic routing. All pipeline processing before the application handler program is
always performed locally in the CICS region that received the SOAP message.

Chapter 2. Configuring web services in CICS 137

The transaction that runs the target application handler program is eligible for routing when one of the
following conditions is true:

- The transaction under which the pipeline is processing the message is defined as DYNAMIC or REMOTE.
This transaction is defined in the URIMAP that is used to map the URI from the inbound SOAP message.

« A program in the pipeline has changed the contents of container DFHWS -USERID from its initial value.
« A program in the pipeline has changed the contents of container DFHWS -TRANID from its initial value.
« A WS-AT SOAP header exists in the inbound SOAP message.

In all the preceding scenarios, a task switch occurs during the pipeline processing. The second task runs
under the transaction specified in the DFHWS -TRANID container. This task switch provides an opportunity
for dynamic routing to take place, but only if MRO is used to connect the CICS regions together. In
addition, the CICS region that you are routing to must support channels and containers.

The routing only takes place if the TRANSACTION definition for the transaction named in DFHWS -TRANID
specifies one of the following sets of attributes:

DYNAMIC(YES)
The transaction is routed using the distributed routing model, in which the routing program is
specified in the DSRTPGM system initialization parameter.

DYNAMIC(NO) REMOTESYSTEM(sysid)
The transaction is routed to the system identified by sysid.

For more information about the routing of web service requests, see technote: Routing of provider mode
CICS web services .

For applications deployed with the CICS web services assistant, there is a second opportunity to
dynamically route the request, at the point where CICS links to the users program. The request is then
routed using the dynamic routing model, in which the routing program is specified in the DTRPGM system
initialization parameter. Eligibility for routing is determined, in this case, by the characteristics of the
program. If you are using a channel and containers when linking to the program, you can only dynamically
route the request to CICS regions that are at V3.1 or higher. If you are using a COMMAREA, this restriction
does not apply.

When a request has been dynamically routed to a target region, it cannot be dynamically routed from the
target to a third region, even though the transaction is defined as ROUTABLE (YES) and DYNAMIC (YES).
The transaction can, however, be statically routed from the target region to a third region.

Containers used in the pipeline

A pipeline typically consists of a number of message handler programs and, when the CICS-supplied
SOAP message handlers are used, a number of header processing programs. CICS uses containers to pass
information to and from these programs. The programs also use containers to communicate with other
programs in the pipeline.

The CICS pipeline links to the message handlers and to the header processing programs using a channel
that has a number of containers. Some containers are optional, others are required by all message
handlers, and others are used by some message handlers and not by others.

Before a handler is invoked, some or all of the containers are populated with information that the
handler can use to perform its work. The containers returned by the handler determine the subsequent
processing, and are passed on to later handlers in the pipeline.

The containers can be categorized in these ways:

Control containers
These containers are essential to the operation of the pipeline. Handlers can use the control
containers to modify the sequence in which the handlers are processed. The names of the control
containers are defined by CICS, and begin with the characters DFH.

Context containers
These containers contain information about the environment in which the handlers are called. CICS
puts information in these containers before it invokes the first message handler, but, in some cases,

138 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/docview.wss?uid=swg21252179
https://www.ibm.com/support/docview.wss?uid=swg21252179

the handlers are free to change the contents, or to delete the containers. Changes to the context
containers do not directly affect the sequence in which the handlers are invoked. The names of the
context containers are defined by CICS, and begin with the characters DFH.

Header processing program containers
These containers contain information that is used by header processing programs that are called from
the CICS-supplied SOAP message handlers. For information about these containers, see The header
processing program interface.

Security containers
These containers contain information that is used by the Trust client interface and the security
message handler to process security tokens using a Security Token Service (STS). The names of the
security containers are defined by CICS, and begin with the characters DFH.

Generated containers
These containers contain the data from the SOAP message, such as variable arrays and long strings,
that is passed to and from the application program for processing. CICS automatically creates these
containers during pipeline processing, and the names begin with the characters DFH.

User containers
These containers contain information that one message handler needs to pass to another. The use of
user containers is entirely a matter for the message handlers. You can choose your own names for
these containers, but you must not use names that start with DFH.

Control containers

The control containers are essential to the operation of the pipeline. Handlers can use the control
containers to modify the sequence in which the handlers are processed.

DFHERROR container

DFHERROR is a container of DATATYPE(BIT) that is used to convey information about pipeline errors to
other message handlers.

Table 5. Structure of the DFHERROR container.

Field name Length (bytes) Contents
PIISNEB-MAJOR-VERSION 1 "
PIISNEB-MINOR-VERSION 1 "
PIISNEB-ERROR-TYPE 1 A numeric value denoting the
type of error. The values are
described in Table 6 on page 140.
PIISNEB-ERROR-MODE 1 P
The error occurred in a
provider pipeline
R
The error occurred in a
requester pipeline
T
The error occurred in a Trust
client
PIISNEB-ABCODE 4 The abend code when the error
is associated with a transaction
abend.
PIISNEB-ERROR-CONTAINER1 16 The name of the container when
the error is associated with a
container.

Chapter 2. Configuring web services in CICS 139

Table 5. Structure of the DFHERROR container. (continued)

Field name Length (bytes) Contents

PIISNEB-ERROR-CONTAINER2 16 The name of the second

container when the error is
associated with more than one
container.

PIISNEB-ERROR-NODE 8 The name of the handler program

in which the error occurred.

Table 6. Values for the PIISNEB-ERROR-TYPE field

Value of PIISNEB-ERROR-TYPE Meaning

1 The handler program failed. The abend code is in
field PIISNEB-ABCODE.

2 A container required by the handler was empty.
The name of the container is in field PIISNEB-
ERROR-CONTAINER1.

3 A container required by the handler was missing.
The name of the container is in field PIISNEB-
ERROR-CONTAINER1.

4 Two containers were passed to the handler
when only one was expected. The names of
the containers are in fields PIISNEB-ERROR-
CONTAINER1 and PIISNEB-ERROR-CONTAINER2.

5 An attempt to link to the target program failed.

If the target program failed, the abend code is in
container PIISNEB-ABCODE.

6 The pipeline manager failed to communicate with a
remote server because of an error in the underlying
transport.

7 The DFHWS-STSACTION container has an error. It
is missing, corrupt, or contains an incorrect value.

8 DFHPIRT failed to start the pipeline.

9 DFHPIRT failed to put a message in a container.

10 DFHPIRT failed to get a message from a container.

11 An unhandled error has occurred.

The COBOL declaration of the container's structure is this:

01 PIISNEB.
02 PIISNEB-MAJOR-VERSION PIC X(1).
02 PIISNEB-MINOR-VERSION PIC X(1).
02 PIISNEB-ERROR-TYPE PIC X(1).
02 PIISNEB-ERROR-MODE PIC X(1).
02 PIISNEB-ABCODE PIC X(4).
02 PIISNEB-ERROR-CONTAINER1 PIC X(16).
02 PIISNEB-ERROR-CONTAINER2 PIC X(16).
02 PIISNEB-ERROR-NODE PIC X(8).

The following table shows the language copybooks that map the container.

140 CICS TS for z/OS: Using Web Services with CICS

Table 7. Copybooks that map the container

Language Copybook
COBOL DFHPIUCO
PL/I DFHPIUCL
Cand C++ dfhpiuch.h
Assembler DFHPIUCD

DFHFUNCTION container
DFHFUNCTION is a container of DATATYPE(CHAR) that contains a 16-character string that indicates
where in a pipeline a program is being called.

The string has one of the following values. The rightmost character positions are padded with blank
characters.

RECEIVE-REQUEST
The handler is a nonterminal handler in a service provider pipeline, and is being called to process an
inbound request message. On entry to the handler, the message is in control container DFHREQUEST.

SEND-RESPONSE
The handler is a nonterminal handler in a service provider pipeline, and is being called to process
an outbound response message. On entry to the handler, the message is in control container
DFHRESPONSE.
SEND-REQUEST
The handler is being called by a pipeline that is sending a request; that is, in a service requester that is
processing an outbound message
RECEIVE-RESPONSE
The handler is being called by a pipeline that is receiving a response; that is, in a service requester
that is processing an inbound message
PROCESS-REQUEST
The handler is being called as the terminal handler of a service provider pipeline
NO-RESPONSE
The handler is being called after processing a request, when no response is to be processed.
HANDLER-ERROR
The handler is being called because an error has been detected.

In a service provider pipeline that processes a request and returns a response, the values of
DFHFUNCTION that occur are RECEIVE-REQUEST, PROCESS-REQUEST, and SEND-RESPONSE. Figure
25 on page 141 shows the sequence in which the handlers are called and the values of DFHFUNCTION
that are passed to each handler.

CICS Transaction Server

CICS Web services

Request % I
Service Handler Handler Handler @ s
1 2 3 r—

v

v

requester Application
< - - program
Response
non-terrninal terminal
handlers handler

Figure 25. Sequence of handlers in a service provider pipeline

Chapter 2. Configuring web services in CICS 141

Sequence Handler DFHFUNCTION

1 Handler 1 RECEIVE-REQUEST
2 Handler 2 RECEIVE-REQUEST
3 Handler 3 PROCESS-REQUEST
4 Handler 2 SEND-RESPONSE

5 Handler 1 SEND-RESPONSE

In a service requester pipeline that sends a request and receives a response, the values of DFHFUNCTION
that occur are SEND-REQUEST and RECEIVE-RESPONSE. Figure 26 on page 142 shows the sequence in
which the handlers are called, and the values of DFHFUNCTION that are passed to each handler.

CICS Transaction Server
CICS Web services
Request
CICS 2 o i i =
@ Application : b Hanlu:ller Hanﬂdler Hanﬂdler psreof-fig:eer
program P —] .
Response
non-terminal terminal
handlers handler
Figure 26. Sequence of handlers in a service requester pipeline
Sequence Handler DFHFUNCTION
1 Handler 1 SEND-REQUEST
2 Handler 2 SEND-REQUEST
3 Handler 3 SEND-REQUEST
4 Handler 3 RECEIVE-RESPONSE
5 Handler 2 RECEIVE-RESPONSE
6 Handler 1 RECEIVE-RESPONSE

The values of DFHFUNCTION that can be encountered in a given message handler depend on whether the
pipeline is a provider or requester, whether the pipeline is in the request or response phase, and whether
the handler is a terminal handler or a nonterminal handler. The following table summarizes when each
value can occur:

Value of DFHFUNCTION

Provider or requester

Pipeline phase

Terminal or nonterminal

pipeline handler
RECEIVE-REQUEST Provider Request phase Nonterminal
SEND-RESPONSE Provider Response phase Nonterminal
SEND-REQUEST Requester Request phase Nonterminal
RECEIVE-RESPONSE Requester Response phase Nonterminal
PROCESS-REQUEST Provider Request phase Terminal
NO-RESPONSE Both Response phase Nonterminal
HANDLER-ERROR Both Both Both

142 CICS TS for z/OS: Using Web Services with CICS

DFHHTTPMETHOD container

This is a container of DATATYPE(CHAR) that is available to application programs in all HTTP provider mode
CICS pipelines.

This container is 8 characters long and holds the name of the HTTP method that was used on the
incoming request. It is not populated if the request did not arrive over HTTP.

DFHHTTPSTATUS container
DFHHTTPSTATUS is a container of DATATYPE(CHAR) that is used to specify the HTTP status code and
status text for a message produced in the response phase of a service provider pipeline.

The content of the DFHHTTPSTATUS container must be the same as the initial status line of an HTTP
response message, which has the following structure:

HTTP/1.1 nnn tttttttt

HTTP/1.1
The version and release of HTTP.

nnn
The 3-digit decimal HTTP status code to return.

tttttttt
The human-readable status text associated with the status code nnn.

The following string is an example of the content:

HTTP/1.1 412 Precondition Failed

The DFHHTTPSTATUS container is ignored when the pipeline uses the WebSphere MQ transport.

If the container contains more than 45 bytes of data, CICS sends 45 bytes and ignores the remaining
data.

DFHMEDIATYPE container
DFHMEDIATYPE is a container of DATATYPE(CHAR) that is used to specify the media type for a message
produced in the response phase of a service provider pipeline.

The content of the DFHMEDIATYPE container must consist of a type and a subtype separated by a slash
character. The following strings show two examples of correct content for the DFHMEDIATYPE container:

text/plain

image/svg+xml
The DFHMEDIATYPE container is ignored when the pipeline uses the WebSphere MQ transport.

DFHNORESPONSE container
DFHNORESPONSE is a container of DATATYPE(CHAR) that, in the request phase of a service requester
pipeline, indicates that the service provider is not expected to return a response.

The contents of the DFHNORESPONSE container are undefined; message handlers that need to know if
the service provider is expected to return a response need only determine if the container is present or
not:

« If container DFHNORESPONSE is present, no response is expected.
« If container DFHNORESPONSE is absent, a response is expected.

Chapter 2. Configuring web services in CICS 143

This information is provided, initially, by the service requester application, based on the protocol used
with the service provider. Therefore, you are advised not to delete this container in a message handler (or
to create it, if it does not exist), because doing so might disturb the protocol between the endpoints.

Other than in the request phase of a service requester pipeline, the use of this container is not defined.

DFHREQUEST container
DFHREQUEST is a container of DATATYPE(CHAR) that contains the request message that is processed in
the request phase of a pipeline.

If one of the CICS-supplied SOAP message handlers is configured in the pipeline, the container
DFHREQUEST is updated to include the SOAP message headers in the SOAP envelope. If the message
is constructed by a CICS-supplied SOAP message handler, and has not been changed subsequently,
DFHREQUEST contains a complete SOAP envelope and all of its contents is in the UTF-8 code page.

The DFHREQUEST container is present in the request when a message handler is called, and the
DFHFUNCTION container contains RECEIVE-REQUEST or SEND-REQUEST.

In this situation, the normal protocol is to return DFHREQUEST to the pipeline with the same or modified
contents. Processing of the pipeline request phase continues normally, with the next message handler
program in the pipeline, if there is one.

As an alternative, your message handler can delete container DFHREQUEST, and put a response in the
DFHRESPONSE container. In this way, the normal sequence of processing is reversed, and the processing
continues with the response phase of the pipeline.

DFHRESPONSE container

DFHRESPONSE is a container of DATATYPE(CHAR) that contains the response message that is processed
in the response phase of a pipeline. If the message was constructed by a CICS-supplied SOAP message
handler, and has not been changed subsequently, DFHRESPONSE contains a complete SOAP envelope
and all its contents in UTF-8 code page.

The DFHRESPONSE container is present when a message handler is called, and the DFHFUNCTION
container contains SEND-RESPONSE or RECEIVE-RESPONSE.

In this situation, the normal protocol is to return DFHRESPONSE to the pipeline with the same or modified
contents. Pipeline processing continues normally, with the next message handler program in the pipeline,
if there is one.

The DFHRESPONSE container is also present, with a length of zero, when DFHFUNCTION contains
RECEIVE-REQUEST, SEND-REQUEST, PROCESS-REQUEST, or HANDLER-ERROR.

DFHWS-CCSID container
DFHWS-CCSID is a container of DATATYPE(BIT) that contains a fullword (4 bytes) specifying the CCSID of
the data in the response container.

The container is valid only for a provider mode pipeline that uses CICS code to transform the language
structure into XML.

The CCSID must be compatible with the CCSID used to generate the WSBIND file. If it is not, the SOAP
response that is produced might contain incorrect or invalid characters.

The CCSID is not allowed to be changed to or from 930, 1390, 5026 and 1026. Also CICS does not allow
the CCSID to be changed to one that is usable as a client CCSID.

If there are any problems processing the value in the DFHWS-CCSID container, processing continues
using the CCSID from the WSBIND file.

The DFHWS-CCSID container is checked only on return from a channel driven application program.

144 CICS TS for z/OS: Using Web Services with CICS

DFHWS-NODEJSAPP container
DFHWS-NODEJSAPP is a container of DATATYPE(CHAR) that contains the name of the NODEJSAPP
resource for this pipeline.

The container is valid only for a provider mode pipeline, and only if the pipeline is started through a
NODEJSAPP resource using the invoke function from the ibm-cics-api module.

How containers control the pipeline protocols

The contents of the DFHFUNCTION, DFHREQUEST, and DFHRESPONSE containers together control the
pipeline protocols.

During the two phases of the execution of a pipeline (the request phase and the response phase) the
value of DFHFUNCTION determines which control containers are passed to each message handler:

DFHFUNCTION Context DFHREQUEST DFHRESPONSE

RECEIVE-REQUEST Service provider; Present (length > 0) | Present (length = 0)
request phase

SEND-RESPONSE Service provider; Absent Present (length > 0)
response phase

SEND-REQUEST Service requester; Present (length > 0) | Present (length = 0)
request phase

RECEIVE-RESPONSE Service requester; Absent Present (length > 0)
response phase

PROCESS-REQUEST Service provider; Present (length > 0) Present (length = 0)
terminal handler

HANDLER-ERROR Service requester Absent Present (length = 0)
or provider; either
phase

NO-RESPONSE Service requester or | Absent Absent
provider; response
phase

Subsequent processing is determined by the containers that your message handler passes back to the
pipeline:

During the request phase

« Your message handler can return the DFHREQUEST container. Processing continues in the request
phase with the next handler. The length of the data in the container must not be zero.

« Your message handler can return the DFHRESPONSE container. Processing switches to the response
phase, and the same handler is called with DFHFUNCTION set to SEND-RESPONSE in a service
provider and to RECEIVE-RESPONSE in a service requester. The length of the data in the container
must not be zero.

« Your message handler can return no containers. Processing switches to the response phase, and the
same handler is called with DFHFUNCTION set to NO-RESPONSE.

In the terminal handler (service provider only)

» Your message handler can return the DFHRESPONSE container. Processing switches to the response
phase, and the previous handler is called with a new value of DFHFUNCTION (SEND-RESPONSE).
The length of the data in the container must not be zero.

« Your message handler can return no containers. Processing switches to the response phase, and the
previous handler is called with a new value of DFHFUNCTION (NO-RESPONSE).

Chapter 2. Configuring web services in CICS 145

During the response phase

« Your message handler can return the DFHRESPONSE container. Processing continues in the
response phase, and the next handler is called. The length of the data in the container must not

be zero.

» Your message handler can return no containers. Processing continues in the response phase, and
the next handler in sequence is called with a new value of DFHFUNCTION (NO-RESPONSE).

Important: During the request phase, your message handler can return DFHREQUEST or DFHRESPONSE,
but not both. Because both containers are present when your message handler is called, you must delete

one of them.

This table shows the action taken by the pipeline for all values of DFHFUNCTION and all combinations of
DFHREQUEST and DFHRESPONSE returned by each message handler.

request phase

DFHFUNCTION Context DFHREQUEST DFHRESPONSE Action
RECEIVE-REQUEST Service provider; Present (length > 0) | Present (error)
request phase
RECEIVE-REQUEST Service provider; Present (length > 0) | Absent Call the next handler with the

RECEIVE-REQUEST function

RECEIVE-REQUEST

Service provider;
request phase

Present (length = 0)

Not applicable

(error)

RECEIVE-REQUEST

Service provider;
request phase

Absent

Present (length > 0)

Switch to response phase, and
invoke the same handler with the
SEND-RESPONSE function

RECEIVE-REQUEST

Service provider;
request phase

Absent

Present (length = 0)

(error)

RECEIVE-REQUEST

Service provider;
request phase

Absent

Absent

Call the same handler with the
NO-RESPONSE function

SEND-RESPONSE

Service provider;
response phase

Not applicable

Present (length > 0)

Call the previous handler with
the SEND-RESPONSE function

SEND-RESPONSE

Service provider;
response phase

Not applicable

Present (length = 0)

(error)

SEND-RESPONSE

Service provider;
response phase

Not applicable

Absent

Call the same handler with the
NO-RESPONSE function

SEND-REQUEST

Service requester;
request phase

Present (length > 0)

Present (length > 0)

(error)

SEND-REQUEST

Service requester;
request phase

Present (length > 0)

Absent

Call the next handler with the
SEND-REQUEST function

SEND-REQUEST

Service requester;
request phase

Present (length = 0)

Not applicable

(error)

request phase

SEND-REQUEST Service requester; Absent Present (length > 0) | Switch to response phase,
request phase and call the previous handler
with the RECEIVE-RESPONSE
function
SEND-REQUEST Service requester; Absent Present (length =0) | (error)
request phase
SEND-REQUEST Service requester; Absent Absent Call the same handler with the

NO-RESPONSE function

RECEIVE-RESPONSE

Service requester;
response phase

Not applicable

Present (length > 0)

Call the previous handler
with the RECEIVE-RESPONSE
function

RECEIVE-RESPONSE

Service requester;
response phase

Not applicable

Present (length = 0)

(error)

RECEIVE-RESPONSE

Service requester;
response phase

Not applicable

Absent

Call the same handler with the
NO-RESPONSE function

146 CICS TS for z/OS: Using Web Services with CICS

DFHFUNCTION

Context

DFHREQUEST

DFHRESPONSE

Action

PROCESS-REQUEST

Service provider;
terminal handler

Not applicable

Present (length > 0)

Call the previous handler
with the RECEIVE-RESPONSE
function

PROCESS-REQUEST

Service provider;
terminal handler

Not applicable

Present (length = 0)

(error)

PROCESS-REQUEST

Service provider;
terminal handler

Not applicable

Absent

Call the same handler with the
NO-RESPONSE function

HANDLER-ERROR

Service requester
or provider; either

Not applicable

Present (length > 0)

Call the previous handler with
the SEND-RESPONSE function

phase or the RECEIVE-RESPONSE
function

HANDLER-ERROR

Service requester
or provider; either
phase

Not applicable Present (length =0) | (error)

HANDLER-ERROR

Call the same handler with the
NO-RESPONSE function

Service requester
or provider; either
phase

Not applicable Absent

Context containers

In some situations, user-written message handler programs, and header processing programs, need
information about the context in which they are called. CICS provides this information in a set of context
containers, which are passed to the programs.

CICS initializes the contents of each context container, but, in some cases, you can change the contents
in your message handler programs, and header processing program. For example, in a service provider
pipeline in which the terminal handler is one of the CICS-provided SOAP handlers, you can change the
user ID and transaction ID of the target application program by modifying the contents of the appropriate
context containers.

Some of the information provided in the containers applies only to a service provider, or only to a service
requester, and therefore some of the context containers are not available in both.

DFH-EXIT-HEADER1 container
DFH-EXIT-HEADER1 is a container of DATATYPE(CHAR). It contains one or more SOAP headers that are
added to a response from a web service provider application in CICS.

Programs running global user exit XWSPRRWO can add a header to a SOAP response. The header must
be valid SOAP and the name spaces must be self-contained in the header XML. A program that puts data
in this container must check for its presence and add the new header to the end of the data. By following
this best practice, multiple programs can be driven at the same exit point if required.

DFH-HANDLERPLIST container
DFH-HANDLERPLIST is a container of DATATYPE(CHAR) that is initialized with the contents of the
appropriate <handler_parameter_list> element of the pipeline configuration file.

If you have not specified a handler parameter list in the pipeline configuration file, the container is empty;
that is, it has a length of zero.

You cannot change the contents of this container.
DFH-SERVICEPLIST container

DFH-SERVICEPLIST is a container of DATATYPE(CHAR) that contains the contents of the
<service_parameter_list> element of the pipeline configuration file.

If you have not specified a service parameter list in the pipeline configuration file, the container is empty;
that is, it has a length of zero.

You cannot change the contents of this container.

Chapter 2. Configuring web services in CICS 147

DFHWS-APPHANDLER container
DFHWS-APPHANDLER is a container of DATATYPE(CHAR) that, in a service provider pipeline, is initialized
with the contents of the <apphandler> element of the pipeline configuration file.

In the terminal handler of a pipeline that contains the <apphandlexr> element, the supplied SOAP
handlers get the name of the target application program from this container.

You can change the contents of this container in your message handlers or header-processing programs.
CICS does not provide this container in a service requester pipeline.

Related concepts

“Application handlers” on page 88

An application handler is a CICS program that the terminal handler of a SOAP service provider pipeline
links to at run time.

DFHWS-APPHANCLAS container
DFHWS-APPHANCLAS is a container of DATATYPE(CHAR) that, in a service provider pipeline, is initialized
with the contents of the <apphandler_class> element of the pipeline configuration file.

In the terminal handler of a Java-based pipeline, the supplied SOAP handlers,
<cics_soap_1.1_handler_java>and<cics_soap_1.2_handler_java>, get the name of the
target application program from this container.

CICS does not provide this container in a service requester pipeline.

Related concepts

“Application handlers” on page 88

An application handler is a CICS program that the terminal handler of a SOAP service provider pipeline
links to at run time.

Related reference

“The <apphandler_class> pipeline configuration element” on page 89
Specifies that the terminal handler of the pipeline links to an Axis2 application handler.

DFHWS-DATA container

DFHWS-DATA is a container of DATATYPE(BIT) that is used in service requester applications and
optionally in service provider applications that are deployed with the CICS web services assistant. It
holds the top-level data structure that is mapped to and from a SOAP request.

In service requester applications, the DFHWS-DATA container must be present when the service
requester program issues an EXEC CICS INVOKE SERVICE command. When the command is issued,
CICS converts the data structure that is in the container into a SOAP request. When the SOAP response
is received, CICS converts it into another data structure that is returned to the application in the same
container.

In service provider applications, the DFHWS-DATA container is used by default when you do not specify
the CONTID parameter on the DFHLS2WS or DFHWS2LS batch jobs. CICS converts the SOAP request
message into the data structure that is passed to the application in the DFHWS-DATA container. The
response is then saved in the same container, and CICS converts the data structure into a SOAP response
message.

DFHWS-FAULT container
DFHWS-FAULT is a container of DATATYPE(BIT) that holds information about the type of SOAP fault CICS
generates.

The container holds a binary fullword that indicates the fault type that can be used in further processing
for a web service response:

1. The most recent SOAP fault was for a CICS fault (for example, CICS or user abend).

148 CICS TS for z/OS: Using Web Services with CICS

2. The most recent SOAP fault was for an application fault. The container is deleted when you issue the
EXEC CICS SOAPFAULT DELETE command. If a second or new SOAP fault is created, CICS updates the
new container appropriately.

You cannot change the contents of this container.

DFHWS-LOCATION container
DFHWS-LOCATION is a container of DATATYPE(CHAR) that contains supplied Location header when the
HTTP response was 302, 303 or 307.

DFHWS-MEP container
DFHWS-MEP is a container of DATATYPE(BIT) that holds a representative value for the message exchange
pattern (MEP) of an inbound or outbound SOAP message. This value is one byte in length.

CICS supports four message exchange patterns for both service requesters and service providers. The
message exchange pattern is defined in the WSDL 2.0 document for the web service and determines
whether CICS responds as the provider, and if CICS expects a response from an external provider. In
requester mode, the time that CICS waits for a response is configured using the PIPELINE resource.

If you used the CICS web services assistant to deploy your application, this container is populated by
CICS:

« In aservice provider pipeline, this container is populated by the DFHPITP application handler when it
receives the inbound message from the terminal handler.

« In aservice requester pipeline, this container is populated when the application uses the INVOKE
SERVICE command.

If the application uses the DFHPIRT channel to start the pipeline, the application populates this container.
If the container is not present or has no value, CICS assumes that the request is using either the In-Out or
In-Only MEP, depending on whether the DFHNORESPONSE container is present in the channel.

This container is populated by the supplied application handler program, DFHPITP. If you use a different
application handler then this container is not available for use.

Table 8. Values that can appear in container DFHWS-MEP

Value MEP URI

1 In-Only http://www.w3.org/ns/wsdl/in-only

2 In-Out http://www.w3.org/ns/wsdl/in-out

4 Robust-In-Only http://www.w3.org/ns/wsdl/robust-in-only
8 In-Optional-Out http://www.w3.org/ns/wsdl/in-opt-out

DFHWS-OPERATION container

DFHWS-OPERATION is a container of DATATYPE(CHAR) that is usually used in a service provider
application deployed with the CICS web services assistant. It holds the name of the operation that is
specified in a SOAP request.

In a service provider, the container supplies the name of the operation for which the application is being
called. It is populated when a supplied SOAP message handler passes control to the target application
program, and is visible only when the target program is called with a channel interface.

In a service requester pipeline, the container holds the name specified in the OPERATION option of the
EXEC CICS INVOKE SERVICE command. The container is not available to the application that issues
the command.

This container is populated by the supplied application handler program, DFHPITP. If you use a different
application handler then this container is not available for use.

Chapter 2. Configuring web services in CICS 149

DFHWS-PIPELINE container
DFHWS-PIPELINE is a container of DATATYPE(CHAR) that contains the name of the PIPELINE in which the
program is being run.

You cannot change the contents of this container.

DFHWS-RESPWAIT container
DFHWS-RESPWAIT is a container of DATATYPE(BIT) that contains an unsigned fullword binary number to
represent the timeout in seconds that applies to outbound web service request and response messages.

The value of this container is supplied by the RESPWAIT attribute of the PIPELINE definition and is set
by CICS when the INVOKE SERVICE command is issued. Any value set in this container by the user
application before the INVOKE SERVICE command is issued will be ignored.

A message handler program that is invoked during pipeline processing can overwrite the value of the
DFHWS-RESPWAIT container. If this is done, the updated value is only used if the PIPELINE definition has
a RESPWAIT attribute that is not set to DEFT or left blank. If the PIPELINE definition has the RESPWAIT
attribute set to DEFT or left blank, the default timeout value of the transport protocol is always used,
regardless of the value in the DFHWS-RESPWAIT container.

This container is used only in requester mode pipelines.

DFHWS-SOAPLEVEL container
DFHWS-SOAPLEVEL is a container of DATATYPE(BIT) that holds information about the level of SOAP used
in the message that you are processing.

The container holds a binary fullword that indicates the level of SOAP that is used for a web service
request or response:

1
The request or response is a SOAP 1.1 message.

The request or response is a SOAP 1.2 message.

10
The request or response is not a SOAP message.

You cannot change the contents of this container.

DFHWS-TRANID container
DFHWS-TRANID is a container of DATATYPE(CHAR) that is initialized with the transaction ID of the task in
which the pipeline is running.

If you change the contents of this container in a service provider pipeline in which the terminal handler is
one of the CICS-supplied SOAP handlers (and you do so before control is passed to the target application
program), the target application runs in a new task with the new transaction ID.

New tasks cannot be started when both the terminal handler and the application handler of a pipeline
run in the same JVM server. For this reason, if you deploy JAX-WS Axis2 applications into CICS, DFHWS-
TRANID cannot be used to change the user ID.

DFHWS-URI container
DFHWS-URI is a container of DATATYPE(CHAR) that contains the URI of the service.

In a service provider pipeline, CICS extracts the relative URI from the incoming message and places it in
the DFHWS-URI container.

For example, if the URI of the web services is http://example.com/location/address or jms://
queue?destination=INPUT.QUEUE&targetService=/location/address, the relative URIis /
location/address.

If you are using Web Services Addressing in your requester pipeline, this container will be created and
updated in the following order:

150 CICS TS for z/OS: Using Web Services with CICS

1. When the INVOKE SERVICE command runs, it creates the DFHWS-URI container and initiates it with
the value of the WSDL service endpoint address. If the WSACONTEXT BUILD API command was used
to create an addressing context, you must not specify the URI or URIMAP parameters on the INVOKE
SERVICE command.

2. When the web services addressing handler (DFHWSADH) runs, if a <wsa:To> EPR exists in the
addressing context with a non-anonymous URI, the URI in the DFHWS-URI container is overwritten
with the value of the <wsa:To> EPR. The anonymous URI is ignored.

The SOAP message is sent to the service defined by the URI in DFHWS-URI.

In a service requester pipeline, CICS puts the URI that is specified on the INVOKE SERVICE command,
or, if missing, the URI from the web service binding, in the DFHWS-URI container. You can override this
URI by using a message handler in the pipeline.

A service can use an HTTP, HTTPS, JMS, or WebSphere MQ URI for external services. A service can also
use a CICS URI for a service that is provided by another CICS application:

URI Query string Description
cics://PROGRAM/program ?options The CICS transport handler uses
an EXEC CICS LINK PROGRAM
command to link to the specified
program, passing the current channel
and containers. No data transformation
takes place on the application data.
cics://SERVICE/service ? The CICS transport handler uses the
targetServiceUri=targetServic | path of the service, expressed as the
eUri&options targetServiceUri, to match a URIMAP
resource to run the request through a
provider pipeline.
You must specify a value for the
targetServicelri parameter if you
use this URI type.
cics://PIPELINE/pipeline ? The CICS transport handler starts
targetServiceUri=targetServic |another service requester pipeline.
elUri

You can add parameters to each type of CICS URI using the format parameter=value, where each
parameter is separated by an ampersand. The following rules apply to the CICS URI:

- The first parameter in the query string must be prefixed with a question mark. You cannot use a
question mark before this point in the URI.

« To include an ampersand in a parameter value, you must escape the character. For more information,
see the example section at the end of this topic.

« CICS changes any lowercase values for program and pipeline to uppercase.

The parameters on the query string determine how CICS processes the request at the end of the
requester pipeline:

maxCommaxealength=value
Specify the maximum size of the COMMAREA in bytes, that is required for the target application
program. The value must not exceed 32 763. If this parameter is present in the query string, CICS
links to the specified program using a COMMAREA. If this parameter is not present in the query string,
CICS links to the specified program using a channel.

This parameter not case-sensitive and is valid only for the cics://PROGRAM URI.

newTask=yes|no
Specify whether the transport handler will run the request as a new task.

This parameter is not case-sensitive. cics://PROGRAM/testapp?newTask=yes and cics://
PROGRAM/testapp?NEWTASK=Yes are the same.

Chapter 2. Configuring web services in CICS 151

targetServiceUri=uri
Specify the path of the service to be called. On a SERVICE destination type, the transport handler uses
the value with host=1ocalhost to locate the URIMAP resource to start a service provider pipeline.
On a PIPELINE destination type, the transport handler uses the value to start another requester

pipeline.

This parameter is case-sensitive.

transid=char(4)

Specify a transaction under which the request will run. The transport handler starts a request stream

using the specified transaction ID.

This parameter is case-sensitive.

usexrid=char(8)

Specify a user ID under which the request will run. The transport handler starts a request stream
using the specified user ID.

This parameter is not case-sensitive.

Destination type Parameters on URI

PROGRAM userid Optional

PROGRAM transid Optional

PROGRAM maxCommarealLength Optional

PROGRAM newTask Optional. Must be yes or not
specified at all if you specify
userid or transid.

PROGRAM targetServiceUri Not supported

SERVICE userid Optional

SERVICE transid Optional

SERVICE maxCommarealLength Not supported

SERVICE newTask Optional. Must be yes or not
specified at all if you specify
userid or transid.

SERVICE targetServicelri Required

PIPELINE userid Not supported

PIPELINE transid Not supported

PIPELINE maxCommaxrealLength Not supported

PIPELINE newTask Not supported

PIPELINE targetServiceUri Required

Examples of CICS URIs

In this first example, the DFHWS-URI container has the following URI by the time it reaches the end of the
pipeline:

cics://PROGRAM/testapp?newTask=yes&userid=userl

The transport handler links to the CICS program called testapp, passing the channel and containers.

No data transformation takes place, so the target program must be able to process the contents of the
containers on the current channel. CICS links to the program under a new unit of work and a different user
ID of userl.

152 CICS TS for z/OS: Using Web Services with CICS

In this second example, the DFHWS-URI container has the following URI by the time it reaches the end of
the pipeline:

cics://SERVICE/getStockQuote?targetServicelUri=/stock/getQuote&newTask=yes&userid=user2

The transport handler replaces the URI in the DFHWS-URI container with the value /stock/getQuote,
finds the URIMAP using the path in the targetServiceUri parameter to resolve the URI, and starts the
provider pipeline under a new task and different user ID.

In this third example, the DFHWS-URI container has the following URI by the time it reaches the end of
the pipeline:

cics://PIPELINE/reqpipeA?targetServiceUri=cics://PROGRAM/testapp?newTask=yes%26userid=userl

The transport handler replaces the URI in the DFHWS-URI container with the value cics://PROGRAM/
testapp?newTask=yes&userid=usexrl and starts the requester pipeline called reqpipeA, passing the
current channel and containers. The %26 characters escape the ampersand, so the transport handler puts
the whole URI in the DFHWS-URI container.

DFHWS-URI-RESID container
This is a container of DATATYPE(CHAR) that is only available to applications attached by a JSON pipeline.

This container holds a simplified copy of the URI path (a RESource IDentifier), in which the path URI
fragment that was used for URIMAP matching has been removed. For example,

If the URIMAP that matched the incoming request has a PATH of:
/JSONServices/CustomerDetails/*

and the incoming URI from the client was:

http://www.example.org:10000/JSONServices/CustomerDetails/customerNumber/13388?action=query

then the contents of DFHWS-URI-RESID would be:

customerNumber/13388

RESTful JSON applications will be able to use this container to help identify the resource id (or primary
key) for RESTful resources that are matched using a wild-carded URIMAP. This should be significantly
simpler than parsing through the contents of DFHWS-URL.

Note: If the PATH attribute of the matching URIMAP isn't wild-carded (i.e. it contained the complete Path
for the URI), the contents of this Container will be empty.

Note: The PATH attribute of the matching URIMAP may contain an optional query string fragment. If so,
the query string fragment is ignored when constructing this container.

DFHWS-URI-QUERY container
This is a container of DATATYPE(CHAR), that is available to application programs in all HTTP provider
mode CICS pipelines.

This container holds the query string fragment of the URI. For example,
If the incoming URI from the client was:
http://www.example.org:10000/ISONServices/CustomerDetails/customerNumber/133882action=query&page=1
then the contents of DFHWS-URI-QUERY would be:
action=query&page=1

Applications may parse through the contents of this Container to identify
individual name=value parameters from the URI.

Chapter 2. Configuring web services in CICS 153

Note: If the incoming URI did not include a query string then this Container will not be present on the
Channel.

DFHWS-URIMAP container

DFHWS-URIMAP is a container of DATATYPE(CHAR). In a requester PIPELINE, DFHWS-URIMAP contains
the 8-character name of the URIMAP used on the INVOKE SERVICE command, or 8 blanks if a URIMAP
was not specified. For a provider PIPELINE, DFHWS-URIMAP contains the 8-character name of the
URIMAP that matched the inbound request.

You cannot change the contents of this container.

DFHWS-URIMAPPATH container
This is a container of DATATYPE(CHAR), and holds a copy of the PATH data from the URIMAP that was
used to match the incoming URI.

Any pipeline attached application may make use of this Container to understand more about how it came
to be attached.

DFHWS-USERID container
DFHWS-USERID is a container of DATATYPE(CHAR) that is initialized with the user ID of the task in which
the pipeline is running.

If you change the contents of this container in a service provider pipeline in which the terminal handler is
one of the CICS-supplied SOAP handlers (and you do so before control is passed to the target application
program), the target application runs in a new task that is associated with the new user ID. Unless you
change the contents of container DFHWS-TRANID, the new task has the same transaction ID as the task
in which the pipeline is running.

New tasks cannot be started when both the terminal handler and the application handler of a pipeline
run in the same JVM server. For this reason, if you deploy JAX-WS Axis2 applications into CICS, DFHWS-
USERID cannot be used to change the user ID.

DFHWS-WEBSERVICE container

DFHWS-WEBSERVICE is a container of DATATYPE(CHAR), and it holds the name of the web service that
specifies the execution environment when the target application has been deployed by using the web
services assistant.

DFHWS-CID-DOMAIN container
DFHWS-CID-DOMAIN is a container of DATATYPE(CHAR). It contains the domain name that is used to
generate content-ID values for referencing binary attachments.

The value of the domain name is cicsts by default. You can override the value by specifying the
<mime_options> element in the pipeline configuration file.

You cannot change the contents of this container.

DFHWS-MTOM-IN container

DFHWS-MTOM-IN is a container of DATATYPE(BIT) that holds information about the specified options
for the <cics_mtom_handler> element of the pipeline configuration file and information about the
message format that has been received in the pipeline.

It contains the information to process an inbound MTOM message in the pipeline. The inbound message
can be a request message from a web service requester or a response message from a web service
provider.

If you do not specify a <cics_mtom_handler> element in the pipeline configuration file, or if a SOAP
message is received instead of an MTOM message, this container is not created.

If web services security is configured in the pipeline, or if validation is switched on for a web service,
the contents of field XOP_MODE in DFHWS-MTOM-IN can be overridden by CICS when the container is
created. For example, if you configure the pipeline to process the content of MTOM messages in direct
mode, and you then switch validation on for the web service, CICS overrides the defined value in the

154 CICS TS for z/OS: Using Web Services with CICS

pipeline configuration file and sets the XOP processing to run in compatibility mode. CICS performs the
override because of the restrictions in support for processing XOP documents and binary attachments in
the pipeline.

You cannot change the contents of this container.

Table 9. Structure of the DFHWS-MTOM-IN container

Length
Field name (bytes) Contents
MTOM_STATUS 4 Contains the value "1" indicating that the message received
by CICS is in MTOM format.
MTOMNOXOP_STATUS 4 Contains one of the following values:
0
The MTOM message contains binary attachments.
1
The MTOM message does not contain binary
attachments.
XOP_MODE 4 Contains one of the following values:
0
No XOP processing takes place.
1
XOP processing takes place in compatibility mode.
2
XOP processing takes place in direct mode.

DFHWS-MTOM-OUT container
DFHWS-MTOM-0UT is a container of DATATYPE(BIT) that holds information about the specified options
for the <cics_mtom_handler> element of the pipeline configuration file.

It contains the information to process an outbound MTOM message in the pipeline, whether it is a
response message for a web service requester or a request message for a web service provider.

If you do not specify a <cics_mtom_handlexr> element in the pipeline configuration file, or if the
<mtom_options> element in the pipeline configuration file has the attribute send_mtom="no", this
container is not created.

In provider mode, this container is created at the same time as the DFHWS-MTOM-IN container. If

the <mtom_options> element in the pipeline configuration file has the attribute send_mtom="same",
the MTOM_STATUS field is set to indicate whether the web service requester wants an MTOM or SOAP
response message.

If web services security is configured in the pipeline, or if validation is switched on for a web service,

the XOP_MODE field of DFHWS-MTOM-0OUT can be changed by CICS when the container is created. For
example, if you configure the pipeline to process the XOP document and any binary attachments using
direct mode, and you then switch validation on for a web service, CICS overrides the defined value in the
pipeline configuration file and sets the XOP processing to run in compatibility mode when it creates the
container. CICS performs the override because of restrictions in support for processing XOP documents
and binary attachments in the pipeline.

You cannot change the contents of this container.

Chapter 2. Configuring web services in CICS 155

Table 10. Structure of the DFHWS-MTOM-OUT container

Length
Field name (bytes) Contents
MTOM_STATUS 4 Indicates whether MTOM is enabled:
0
MTOM is not enabled. The outbound message is sent in SOAP
format.
1
MTOM is enabled. The outbound message is sent in MTOM
format.
MTOMNOXOP_STATUS 4 Indicates whether to use MTOM when there are no binary
attachments:
0
Do not send an MTOM message when there are no binary
attachments.
1
Send an MTOM message when there are no binary
attachments.
XOP_MODE 4 Indicates what XOP processing should take place:
0
No XOP processing takes place.
1
XOP processing takes place in compatibility mode.
2
XOP processing takes place in direct mode.

DFHWS-WSDL-CTX container

DFHWS-WSDL-CTX is a container of DATATYPE(CHAR) that is used in either a service provider or a service
requester application deployed with the CICS web services assistant. It holds WSDL context information
that can be used for monitoring purposes.

DFHWS-WSDL-CTX holds the following context information for the WSDL document:
« The name and namespace of the operation for which the application is being invoked.
« If known, the name and namespace for the WSDL 1.1 port or WSDL 2.0 endpoint that is being used.

These values are separated by space characters. DFHWS-WSDL-CTX is populated by CICS only at runtime
level 2.1 and later.

If you used the CICS web services assistant to deploy your application, this container is populated by
CICS:

« Inaservice provider pipeline, this container is populated by the DFHPITP application handler when it
receives the inbound message from the terminal handler.

« In aservice requester pipeline, this container is populated when the application uses the INVOKE
SERVICE command.

If the application uses the DFHPIRT program to start the pipeline, the application populates the DFHWS-
WSDL-CTX container if required.

156 CICS TS for z/OS: Using Web Services with CICS

DFHWS-XOP-IN container

DFHWS-XOP-IN is a container of DATATYPE(BIT). It contains a list of references to the binary attachments
that have been unpackaged from an inbound MIME message and placed in containers using XOP
processing.

Each attachment record in the DFHWS-XOP-IN container consists of these items:

« The 16-byte name of the container that holds the MIME headers for the binary attachment
« The 16-byte name of the container that holds the binary attachment

- The 2-byte length of the content-ID, in signed halfword binary format

« The content-ID, including the < and > delimiters, stored as an ASCII character string

You cannot change the contents of this container.

DFHWS-XOP-OUT container

DFHWS-XOP-OUT is a container of DATATYPE(BIT). It contains a list of references to the containers that
hold binary attachments. The binary attachments are packaged into an outbound MIME message by the
MTOM handler program.

Each attachment record in the DFHWS-XOP-OUT container consists of these items:

« The 16-byte name of the container that holds the MIME headers for the binary attachment
« The 16-byte name of the container that holds the binary attachment

« The 2-byte length of the content-ID, in signed halfword binary format

« The content-ID, including the < and > delimiters, stored as an ASCII character string

You cannot change the contents of this container.

The header processing program containers

The CICS-provided SOAP 1.1 and SOAP 1.2 message handlers link to the header processing programs
using channel DFHHHC-V1. The containers that are passed on the channel include several that are
specific to the header processing program interface, and sets of context containers and user containers
that are accessible to all the header processing programs and message handler programs in the pipeline.

Container DFHHEADER is specific to the header processing program interface. Other containers are
available elsewhere in your pipeline, but have specific uses in a header processing program. The
containers in this category are DFHWS-XMLNS, DFHWS-BODY, and DFHXMLSS-PARSE.

Note: Although web service that use Axis2 to process SOAP messages can use the header processing
program interface, it is more efficient to write your own Axis2 handlers in Java to process the SOAP
headers. For more information on creating Axis2 handlers, see Writing Your Own Axis2 Module

Container DFHHEADER

When the header processing program is called, DFHHEADER contains the single header block that
caused the header processing program to be driven. When the header program is specified with
<mandatory>true</mandatory> or <mandatory>1</mandatory> in the pipeline configuration file,
it is called even when there is no matching header block in the SOAP message. In this case, container
DFHHEADER has a length of zero. This is the case when a header processing program is called to add a
header block to a SOAP message that does not have header blocks.

The SOAP message that CICS creates has no headers initially. If you want to add headers to your
message, you must ensure that at least one header processing program is called, by specifying
<mandatory>true</mandatory> or <mandatory>1</mandatory>.

When the header program returns, container DFHHEADER must contain zero, one, or more header blocks
that CICS inserts in the SOAP message in place of the original:

 You can return the original header block unchanged.
« You can modify the contents of the header block.

Chapter 2. Configuring web services in CICS 157

http://axis.apache.org/axis2/java/core/docs/modules.html

 You can append one or more new header blocks to the original block.
 You can replace the original header block with one or more different blocks.
 You can delete the header block completely.

Container DFHWS-XMLNS

When the header processing program is called, DFHWS-XMLNS contains information about XML
namespaces that are declared in the SOAP envelope. The header program can use this information to
perform the following tasks:

» Resolve qualified names that it encounters in the header block

« Construct qualified names in new or modified header blocks.

The namespace information consists of a list of namespace declarations, which use the standard XML

notation for declaring namespaces. The namespace declarations in DFHWS-XMLNS are separated by
spaces. For example:

xmlns:na="http://abc.example.oxrg/schema' xmlns:nx='http://xyz.example.org/schema'

You can add further namespace declarations to the SOAP envelope by appending them to the contents
of DFHWS-XMLNS. However, namespaces whose scope is a SOAP header block or a SOAP body are

best declared in the header block or the body respectively. You are advised not to delete namespace
declarations from container DFHWS-XMLNS in a header processing program, because XML elements that
are not visible in the program may rely on them.

Container DFHWS-BODY

This container contains the body section of the SOAP envelope. The header processing program can
modify the contents.

When the header processing program is called, DFHWS-BODY contains the SOAP <Body> element.

When the header program returns, container DFHWS-BODY must again contain a valid SOAP <Body>,
which CICS inserts in the SOAP message in place of the original:

« You can return the original body unchanged.
« You can modify the contents of the body.

You must not delete the SOAP body completely, as every SOAP message must contain a <Body> element.

Container DFHXMLSS-PARSE

When you use either the <cics_soap_1.1_handler>or<cics_soap_1.2_handler> elements
in your pipeline configuration, and header program is called, DFHXMLSS-PARSE contains the

XML System Services (XMLSS) records for that header. This container is not created when
<cics_soap_1.1_handler_java>or<cics_soap_1.2_handlexr_java> elements are used.

Control, context, and user containers
As well as the containers described, the interface passes the control containers, context containers, and
user containers on channel DFHHHC-V1.

For more information about these containers, see “Containers used in the pipeline” on page 138.

Security containers

Security containers are used on the DFHWSTC-V1 channel to send and receive identity tokens from a
Security Token Service (STS) such as Tivoli Federated Identity Manager. This interface is called the Trust
client interface and can be used in web service requester and provider pipelines.

158 CICS TS for z/OS: Using Web Services with CICS

DFHWS-IDTOKEN container
DFHWS-IDTOKEN is a container of DATATYPE(CHAR). It contains the token that the Security Token
Service (STS) either validates or uses to issue an identity token for the message.

The token must be in XML format.
Use this container only with channel DFHWSTC-V1 for the Trust client interface.
DFHWS-RESTOKEN container

DFHWS-RESTOKEN is a container of DATATYPE(CHAR). It contains the response from the Security Token
Service (STS).

The response depends on the action that was requested from the STS in the DFHWS-STSACTION
container.

- If the action is issue, this container holds the token that the STS has exchanged for the one that was
sent in the DFHWS-IDTOKEN container.

« If the action is validate, this container holds a URI to indicate whether the security token that was sent
in the DFHWS-IDTOKEN container is valid or not valid. The URIs that can be returned are as follows:

URI Description

http://schemas.xmlsoap.org/ws/2005/02/trust/status/ |The security token is valid.
valid

http://schemas.xmlsoap.org/ws/2005/02/trust/status/ |The security token is not valid.
invalid

This container is returned on the channel DFHWSTC-V1 when using the Trust client interface.

DFHWS-SERVICEURI container
DFHWS-SERVICEURI is a container of DATATYPE(CHAR). It contains the URI that the Security Token
Service (STS) uses as the AppliesTo scope.

The AppliesTo scope is used to determine the web service with which the security token is associated.
Use this container only with channel DFHWSTC-V1 for the Trust client interface.
DFHWS-STSACTION container

DFHWS-STSACTION is a container of DATATYPE(CHAR). It contains the URI of the action that the Security
Token Service (STS) takes to either validate or issue a security token.

The URI values that you can specify in this container are as follows:

URI Description

http://schemas.xmlsoap.org/ws/ The STS issues a token in exchange for the one that is
2005/02/trust/Issue sent in the DFHWS-IDTOKEN container.
http://schemas.xmlsoap.org/ws/ The STS validates the token that is sent in the DFHWS-
2005/02/trust/Validate IDTOKEN container.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

DFHWS-STSFAULT container
DFHWS-STSFAULT is a container of DATATYPE(CHAR). It contains the error that was returned by the
Security Token Service (STS).

If an error occurs, the STS issues a SOAP fault. The contents of the SOAP fault are returned in this
container.

This container is returned on the channel DFHWSTC-V1 when using the Trust client interface.

Chapter 2. Configuring web services in CICS 159

DFHWS-STSREASON container
DFHWS-STSREASON is a container of DATATYPE(CHAR). It contains the contents of the <wst :Reason>
element, if this element is present in the response message from the Security Token Service (STS).

The <wst:Reason> element contains an optional string that provides information relating to the status of
the validation request that was sent to the STS by CICS. If the security token is not valid, the information
provided by the STS in this element can help you to determine why the token is not valid.

For more information, see the Web Services Trust Language specification that is published at OASIS
WS-Trust v1.4 Standard.

DFHWS-STSURI container
DFHWS-STSURI is a container of DATATYPE(CHAR). It contains the absolute URI of the Security Token
Service (STS) that is used to validate or issue an identity token for the SOAP message.

The format of the URI is http://www.example.com:8080/TrustServer/SecurityTokenService.
You can use HTTP or HTTPS, depending on your security requirements.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.
DFHWS-TOKENTYPE container

DFHWS-TOKENTYPE is a container of DATATYPE(CHAR). It contains the URI of the requested token type
that the Security Token Service (STS) issues as an identity token for the SOAP message.

You can specify any valid token type, but it must be supported by the STS.
Use this container only with channel DFHWSTC-V1 for the Trust client interface.

SAML support containers
The read-only containers that are used by CICS SAML support.

In the following topics, nnn means that there might be more than one container. Containers are numbered
001 to nnn (the number of containers of this type returned). More than 999 containers of a particular type
are not supported and the data in the SAML assertion that relates to them is ignored. Containers that are
not mapped to a DSECT are variable length.

DFHSAML-AnnnVmmm container
DFHSAML-AnnnVmmm is a container of DATATYPE(CHAR). It contains Attribute Value mmm for attribute
nnn, where nnn and mmm are 3-digit numbers.

The number of attributes is SAMLC-ATTRNUM in DFHSAML-COUNTS container.
The number of values for this attribute is in DFHSAML-ATTRANNN.

DFHSAML-ASSQNAME container
DFHSAML-ASSQNAME is a container of DATATYPE(CHAR). It contains the SAML Assertion namespace.

Possible values are

SAML 1.1
urn:oasis:names:tc:SAML:1.0:assertion

SAML 2.0
urn:oasis:names:tc:SAML:2.0:assertion

This assertion must be a URL. If the assertion is more complex, it extracts into the 3 parts.
DFHSAML-ATTRANnn container

DFHSAML-ATTRANNN is a container of DATATYPE(BIT). It contains a BIN(31) field with the number of
values for attribute nnn. The maximum number of values is 999.

The number of attributes is SAMLC-ATTRNUM in DFHSAML-COUNTS container.

160 CICS TS for z/OS: Using Web Services with CICS

http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.html

DFHSAML-ATTRFnnn container
DFHSAML-ATTRFnnn is a container of DATATYPE(CHAR). It contains the Attribute name format for
attribute nnn, where nnn is a 3-digit number.

The number of attributes is SAMLC-ATTRNUM in DFHSAML-COUNTS container.

DFHSAML-ATTRNnnn container
DFHSAML-ATTRNNNN is a container of DATATYPE(CHAR). It contains the Attribute Name for attribute nnn,
where nnn is a 3-digit number.

The number of attributes is SAMLC-ATTRNUM in DFHSAML-COUNTS container.

DFHSAML-ATTRSnnn container
DFHSAML-ATTRSnNNnN is a container of DATATYPE(CHAR). It contains the Attribute Name Space for
attribute nnn, where nnn is a 3-digit number.

The number of attributes is SAMLC-ATTRNUM in DFHSAML-COUNTS container.

DFHSAML-ATTRYnnn container
DFHSAML-ATTRYnnn is a container of DATATYPE(CHAR). It contains the Attribute Friendly name for
attribute nnn, where nnn is a 3-digit number.

The number of attributes is SAMLC-ATTRNUM in DFHSAML-COUNTS container.

DFHSAML-AUDNRnnn container
DFHSAML-AUDNRnNNN is a container of DATATYPE(CHAR). It contains the AudienceRestriction name.

The number of containers returned is AUDNRNUM.

DFHSAML-AUTHMETH container
DFHSAML-AUTHMETH is a container of DATATYPE(CHAR). It contains the method that is used to
authenticate the token holder.

Methods include passwoxrd, Kexrberos, and 1tpa.

DFHSAML-CERTIDN container
DFHSAML-CERTIDN is a container of DATATYPE(CHAR). It contains the issuer's distinguished name of the
SAML signer's X.509 Certificate.

DFHSAML-CERTSDN container
DFHSAML-CERTSDN is a container of DATATYPE(CHAR). It contains the subject's distinguished name of
the SAML signer's X.509 Certificate.

DFHSAML-CERTSNUM container
DFHSAML-CERTSNUM is a container of DATATYPE(CHAR). It is an eight-character field that contains the
SAML signer's X.509 Certificate serial number.

DFHSAML-CONFMETH container
DFHSAML-CONFMETH is a container of DATATYPE(CHAR). It contains the SubjectConfirmation method
that is used in this SAML token.

Valid methods are holder-of-key, bearer, or sender-vouches. The returned string is based on the OASIS
SAML token profile 1.1 and 2.0.

Note: SAML tokens that have more than one confirmation method are not supported. If there is more than
one confirmation method, the results are unpredictable.

Chapter 2. Configuring web services in CICS 161

DFHSAML-COUNTS container
DFHSAML-COUNTS is a container of DATATYPE(BIT). It contains the number of variable length containers
output.

DFHSAML-FLAGS container
DFHSAML-FLAGS is a container of DATATYPE(CHAR). It contains a collection of flag bytes.

DFHSAML-ISSUER container
DFHSAML-ISSUER is a container of DATATYPE(CHAR). It contains the name of the issuer.

DFHSAML-NAMID container
DFHSAML-NAMID is a container of DATATYPE(CHAR). It contains the value of the name format property.

DFHSAML-NAMIDF container
DFHSAML-NAMIDF is a container of DATATYPE(CHAR). It contains a URI reference that represents the
classification of string-based identifier information.

DFHSAML-NAMIDQ container
DFHSAML-NAMIDQ is a container of DATATYPE(CHAR). It contains the security or administrative domain
that qualifies the name.

DFHSAML-NAMIDSP container
DFHSAML-NAMIDSP is a container of DATATYPE(CHAR). It contains the name identifier that is established
by a service provider or affiliation of providers of the entity.

DFHSAML-NAMIDSPQ container
DFHSAML-NAMIDSPQ is a container of DATATYPE(CHAR). It contains the name of a service provider or
affiliation of providers.

DFHSAML-OUTTOKEN container
DFHSAML-OUTTOKEN is a container of DATATYPE(CHAR). It contains a SAML token.

If this is an input container, it contains the previously validated token, which is being routed to another
service provider, or extended and then routed.

If this is an output container, it contains a SAML token output by DFHSAML processing. If the processing is
validation or extraction, this token is the validated,extracted, or modified and resigned token.

DFHSAML-PROXYnnn container
DFHSAML-PROXYnnn is a container of DATATYPE(CHAR). It contains the ProxyRestriction Audience name.

DFHSAML-RESPONSE container
DFHSAML-RESPONSE is a container of DATATYPE(BIT). It contains a response code that is used internally.

DFHSAML-SAMLID container
DFHSAML-SAMLID is a container of DATATYPE(CHAR). It contains a string that represents the ID for SAML
2.0, or AssertionID for SAML 1.1.

DFHSAML-SUBJADDR container
DFHSAML-SUBJADDR is a container of DATATYPE(CHAR). It contains the IP address in SubjectLocality.

Restriction: This container is not returned for SAML 2.0.

162 CICS TS for z/OS: Using Web Services with CICS

DFHSAML-SUBJDNS container
DFHSAML-SUBJDNS is a container of DATATYPE(CHAR). It contains the DNSAddress in SubjectLocality.

DFHSAML-TIMES container
DFHSAML-TIMES is a container of DATATYPE(CHAR). It contains a collection of time values.

Containers generated by CICS

CICS generates containers to store data such as variable arrays and long strings. These containers are
created during pipeline processing and are used as input to, or output from, the application program.
These containers are prefixed with DFH.

The naming convention for these containers is to use the CICS module that created them, combined with
a numeric suffix to make the container name unique in the request. These container names occur during
pipeline processing:

DFHPIAXIS-nnnnnn
Containers that are used to store strings and variable arrays that are passed to the application in Axis2
pipelines. This container can also include binary data.

DFHPICC-nnnnnnnn
Containers that are used to store strings and variable arrays that are passed to the application. This
container can also include binary data.

DFHPIII-nnnnnnnn
Outbound attachment containers created when the pipeline is enabled with the MTOM message
handler and is running in direct mode. These containers are created when binary data is provided in a
field rather than in a container by the application program.

DFHPIMM-nnnnnnnn
Inbound attachment containers created during the processing of MIME messages. These containers
are generated by CICS when the MTOM message handler is enabled in the pipeline. When direct mode
processing is enabled, these containers can be passed through to the application directly.

DFHPIXO-nnnnnnnn
Outbound attachment containers created when the pipeline is enabled with the MTOM message
handler and is running in compatibility mode.

The numbered container names start from 1 for each web service request; for example,
DFHPICC-00000001. However, if an application program uses the INVOKE SERVICE command to initiate
more than one web service request in the same channel, the containers that were returned to the
application for one response might still exist when a further request is made. In this situation, CICS
checks to see if the container already exists and increments the number of the generated container to
avoid a naming conflict.

User containers
These containers contain information that one message handler needs to pass to another. The use of
user containers is entirely a matter for the message handlers. You can choose your own names for these
containers, but you must not use names that start with DFH.

Runtime processing for web services

To send a request to a web service provider or to receive a request from a web service requester, your
application (or wrapper program) must interact correctly with the web services support in CICS. You can

Chapter 2. Configuring web services in CICS 163

also control the processing that takes place in the pipeline to determine how the inbound and outbound
requests are handled.

How CICS invokes a service provider program deployed with the web services
assistant

When a service provider application that has been deployed using the CICS web services assistant is
invoked, CICS links to it with a COMMAREA or a channel.

You specify which sort of interface is used when you run JCL procedure DFHWS2LS or DFHLS2WS with
the PGMINT parameter. If you specify a channel, you can name the container in the CONTID parameter.

« If the program is invoked with a COMMAREA interface, the COMMAREA contains the top level data
structure that CICS created from the SOAP request.

« If the program is invoked with a channel interface, the top level data structure is passed to your
program in the container that was specified in the CONTID parameter of DFHWS2LS or DFHLS2WS.
If you did not specify the CONTID parameter, the data is passed in container DFHWS-DATA. The
channel interface supports arrays with varying numbers of elements, which are represented as series of
connected data structures in a series of containers. These containers will also be present.

When you code API commands to work with the containers, you do not need to specify the CHANNEL
option, because all the containers are associated with the current channel (the channel that was passed
to the program). If you need to know the name of the channel, use the EXEC CICS ASSIGN CHANNEL
command.

When your program has processed the request, it must use the same mechanism to return the response:
if the request was received in a COMMAREA, then the response must be returned in the COMMAREA,; if
the request was received in a container, the response must be returned in the same container.

If an error is encountered when the application program is issuing a response message, CICS rolls back all
of the changes unless the application has performed a syncpoint.

If the web service provided by your program is not designed to return a response, CICS will ignore
anything in the COMMAREA or container when the program returns.

Invoking a web service from an application deployed with the web services
assistant
A service requester application that is deployed with the web services assistant uses the EXEC CICS

INVOKE SERVICE command to invoke a web service. The request and response are mapped to a data
structure in container DFHWS-DATA. This method of invoking a service is not supported for JISON.

Procedure

1. Create a channel and populate it with containers.

At the minimum, container DFHWS-DATA must be present. DFHWS-DATA holds the top level data
structure that CICS will convert into a SOAP request. If the SOAP request contains any arrays that have
varying numbers of elements, they are represented as a series of connected data structures in a series
of containers. These containers must also be present in the channel.

2. Invoke the target web service.

Use the following command:

EXEC CICS INVOKE SERVICE (webservice)
CHANNEL (userchannel)
OPERATION (operation)

where:

» webservice is the name of the WEBSERVICE resource that defines the web service to be invoked.
The WEBSERVICE resource specifies the location of the web service description and the web service
binding file that CICS uses when it communicates with the web service.

164 CICS TS for z/OS: Using Web Services with CICS

« userchannel is the channel that holds container DFHWS-DATA and any other containers
associated with the application's data structure.

- operation is the name of the operation that is to be invoked in the target web service.

For more information, see “Local optimization for web services” on page 165.
3. If the command was successful, retrieve the response containers from the channel.

At the minimum, container DFHWS-DATA will be present. It holds the top level data structure that
CICS created from the SOAP response. If the response contains any arrays that have varying numbers
of elements, they are a represented as series of connected data structures in a series of containers.
These containers will be present in the channel.

4. If the service requester receives a SOAP fault message from the invoked web service, you must decide
if the application program should roll back any changes.

If a SOAP fault occurs, an INVREQ error with a RESP2 value of 6 is returned to the application program.
However, if optimization is in effect, the same transaction is used in both the requester and provider.

If an error occurs in a locally optimized web service provider, all of the work done by the transaction
rolls back in both the provider and the requester. An INVREQ error is returned to the requester with a
RESP2 value of 16.

Local optimization for web services

You can use the provider application name in the web service binding file associated with the
WEBSERVICE resource to enable local optimization of the web service request.

Using the INVOKE SERVICE command, you can specify the URIMAP(urimap) or URI(uri) where the uri is
the URI of the web service to be invoked. If a URIMAP is specified, CICS uses the client mode URIMAP
indicated to resolves the URI. If these options are omitted, CICS uses the URI specified in the web service
description (WSDL) from which the WEBSERVICE was generated.

If the WEBSERVICE indicated is deployed in a requester mode PIPELINE, CICS invokes the remote web
service. This is the most typical scenario.

If the WEBSERVICE indicated is deployed in a provider mode PIPELINE, CICS invokes the service locally.
If you use this optimization, the EXEC CICS INVOKE SERVICE command is optimized to an EXEC CICS
LINK command. This results in significant performance benefits, but introduces the following limitations:

« The PIPELINE is not driven and therefore no handler programs are used.

- The PIPELINE control containers are not present on the Channel. Some containers are present,
including the DFHWS-DATA, DFHWS-OPERATION and DFHWS-URI containers. Any containers that
normally contain XML are not present; this includes the DFH-REQUEST, DFHWS-BODY and DFHWS-
XMLNS containers.

« Both the provider and requester applications must share the same copybooks and be implemented in
the same programming language.

- Both the provider and requester applications share a single unit of work.

- If the web service is not expected to return a response, the EXEC CICS INVOKE SERVICE command
does not return control to the application until after the target PROGRAM has ended.

If you want to use locally optimized web services but require data to be processed through a PIPELINE,
use the cics URI format described here: “Options for controlling requester pipeline processing” on page
169. This mechanism is less efficient than using the fully optimized approach, but it avoids the processing
cost of going out to the network.

Runtime limitations for code generated by the web services assistant

At runtime, CICS is capable of transforming almost any valid SOAP message that conforms to the web
service description (WSDL) into the equivalent data structures. However, there are some limitations that

Chapter 2. Configuring web services in CICS 165

you should be aware of when developing a service requester or service provider application using the web
services assistant batch jobs.

Code pages

CICS can support SOAP messages sent to it in any code page if there is an appropriate HTTP or
WebSphere MQ header identifying the code page. CICS converts the SOAP message to UTF-8 to process it
in the pipeline, before transforming it to the code page required by the application program. To minimize
the performance impact, it is recommended that you use the UTF-8 code page when sending SOAP
messages to CICS. CICS always sends SOAP messages in UTF-8.

CICS can only transform SOAP messages if the application data is encoded in EBCDIC or UTF-16.
Applications that expect data to be encoded in code pages such as UTF-8, ASCII and ISO8859-1 are
unsupported. If you want to use DBCS characters within your data structures and SOAP messages, then
you must specify a code page that supports DBCS. The EBCDIC code page that you select must also be
supported by both Java and z/OS conversion services. z/OS conversion services must also be configured
to support the conversion from the code page of the SOAP message to UTF-8. See Support for UTF-16 in
application data for more information on UTF-16 support.

To set an appropriate code page, you can either use the LOCALCCSID system initialization parameter or
the optional CCSID parameter in the web services assistant jobs. If you use the CCSID parameter, the
value that you specify overrides the LOCALCCSID code page for that particular web service. If you do not
specify the CCSID parameter, the LOCALCCSID code page is used to convert the data and the web service
binding file is encoded in US EBCDIC (Cp037).

Containers

In service provider mode, if you specify that the PGMINT parameter has a value of CHANNEL, then the
container that holds your application data must be written to and read from in binary mode. This container
is DFHWS-DATA by default. The PUT CONTAINER command must either have the DATATYPE option set to
BIT, or you must omit the FROMCCSID option so that BIT remains the default. For example, the following
code explicitly states that the data in the container CUSTOMER-RECORD on the current channel should be
written in binary mode.

EXEC CICS PUT CONTAINER (CUSTOMER-RECORD)
FROM (CREC)
DATATYPE (BIT)

Although the containers themselves are all in BIT mode, any text fields within the language structure
that map this data must use an EBCDIC code page - the same code page as you have specified in the
LOCALCCSID or CCSID parameter. If you are using DFHWS2LS to generate the web service binding file,
there could be many containers on the channel that hold parts of the complete data structure. If this is
the case, then the text fields in each of these containers must be read from and written to using the same
code page.

If the application program is populating containers that are going to be converted to SOAP messages,
the application is responsible for ensuring that the containers have the correct amount of content. If a
container holds less data than expected, CICS issues a conversion error.

If an application program uses the INVOKE SERVICE command, then any containers it passes to CICS
could potentially be reused and the data within them replaced. If you want to keep the data in these
containers, create a new channel and copy the containers to it before you run the program. If you have a
provider mode web service that is also a requester mode web service, it is recommended that you use a
different channel when using the INVOKE SERVICE command, rather than using the default channel that
it was originally attached to. If your application program is using the INVOKE SERVICE command many
times, it is recommended that you either use different channels on each call to CICS, or ensure that all the
important data from the first request is saved before making the second request.

166 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_unicode.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web-services/dfhws_unicode.html

Conforming with the web services description

A web service description could describe some of the possible content of a SOAP message as optional. If
this is the case, DFHWS2LS allocates fields within the generated language structure to indicate whether
the content is present or not. At runtime, CICS populates these fields accordingly. If a field, for example
an existence flag or an occurrence field, indicates that the information is not present, the application
program should not attempt to process the fields associated with that optional content.

If a SOAP message is missing some of its content when CICS transforms it, the equivalent fields within the
data structures are not initialized when passed to the application program.

A web service description can also specify the white space processing rules to use when reading a SOAP
message, and CICS implements these rules at runtime.

- If the value of the xsd :whiteSpace facet is replace, the white space characters such as "tab" and
“carriage return" are replaced with spaces.

- If the value of the xsd :whiteSpace facet is collapse, any trailing white space characters are
removed when generating SOAP messages. At runtime, inbound SOAP messages are parsed according
to the XML Schema specification and all leading, trailing, and embedded white space is removed.

SOAP messages

CICS does not support SOAP message content derivation. For example, a SOAP message could

use the xsi:type attribute to specify that an element has a particular type, together with an
xsi:schemalocation attribute to specify the location of the schema that describes the element. CICS
does not support the capability of dynamically retrieving the schema and transforming the value of

the element based on the content of the schema. CICS does support the xsi:nil attribute when the
mapping level set in the web services assistant is 1.1 or higher, but this is the only XML schema instance
attribute that is supported.

DFHWS2LS might have to make assumptions about the maximum length or size of some values in

the SOAP message. For example, if the XML schema does not specify a maximum length for an
xsd:string, then DFHWS2LS assumes that the maximum length is 255 characters and generates a
language structure accordingly. You can change this value by using the DEFAULT-CHAR-MAXLENGTH
parameter in DFHWS2LS. At runtime, if CICS encounters a SOAP message with a value that is larger than
the space that has been allocated in the language structure, CICS issues a conversion error.

If CICS is the service provider, a SOAP fault message is returned to the requester. If CICS is the service
requester, then an appropriate RESP2 code is returned from the INVOKE SERVICE command.

Some characters have special meanings in XML, such as the < and > characters. If any of these special
characters appear within a character array that is processed by CICS at runtime, then it is replaced with
the equivalent entity. The XML entities that are supported are:

Character XML entity
& &

< <

> >

! "

: '

CICS also supports the canonical forms of the numeric character references used for white space codes:

Character XML entity
Tab 	
Carriage return &H#XA;

Chapter 2. Configuring web services in CICS 167

Character XML entity
Line feed 

Note that this support does not extend to any pipeline handler programs that are invoked.

The null character (x'00") is invalid in any XML document. If a character type field that is provided by
the application program contains the null character, CICS truncates the data at that point. This allows
you to treat character arrays as null terminated strings. Character type fields generated by DFHWS2LS
from base64Binary or hexBinary XML schema data types represent binary data and could contain null
characters without truncation.

Attention: CICS generates XML and JSON data from structured application data. If that application
data contains bit patterns that look like preformatted XML, JSON, HTML, JPEG images, or any
other meaningful content type, CICS is unaware of this semantic meaning, and processes such
data as ordinary text or binary data. CICS does not attempt to recognize patterns in the data, or

to process encoded data differently. For example, if the data contains pre-formatted XML (such

as CDATA encoded text), that data is processed in the same way as any other data. Consider

the following application data: "An example: <here>".This example application-supplied data
contains what looks like an XML tag, but it will be processed as raw text, resulting in the following
XML representation: "An example: < here > ".Ifanapplication needs to generate
XML itself, consider using xsd: any constructs in your XML schemas, or using XML-ONLY=TRUE in
the Assistants.

SOAP fault messages

If CICS is the service provider, and you want the application program to issue a SOAP fault message, use
the SOAPFAULT CREATE command. In order to use this API command, you must specify that the web
services assistant PGMINT parameter has a value of CHANNEL. If you do not specify this value, and the
application program invokes the SOAPFAULT CREATE command, CICS does not attempt to generate a
SOAP response message.

Customizing pipeline processing

In addition to providing your own message handlers, you can also use a set of global user exit points
(GLUES) to customize the processing that occurs for inbound and outbound web services in the pipeline.

Before you begin

You must understand the best practices for writing global user exit programs before customizing the
pipeline. If you are customizing a service provider pipeline, you must be using the supplied DFHPITP or
Axis2 application handler in your pipeline.

About this task

You can use the pipeline domain exits to access containers on a web services provider pipeline, a web
services requester pipeline, or a web services requester pipeline that contains a security handler. The
pipeline global user exits are described in detail in Pipeline domain exits.

Procedure

1. Select which global user exit points to use:
« Use XWSPRRWI, XWSPRROI, XWSPRROO, or XWSPRRWO GLUEs to access containers in a web
services provider pipeline.

« Use XWSRQRWO, XWSRQROO, XWSROROI, or XWSRQRWI GLUEs to access containers in a web
services requester pipeline.

« Use XWSSRRWO, XWSSRROO, XWSSRROI, or XWSSRRWI GLUESs to access containers in a secured
web services requester pipeline.

2. Use the DFH$PIEX sample exit program to write your own global user exit program.

168 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3_pipelines.html

DFH$PIEX is in the SDFHSAMP library. You are recommended to make the program threadsafe.
3. Enable the global user exit program.
4. Test your global user exit program to ensure it works correctly.

Options for controlling requester pipeline processing

In service requester pipelines, message handlers can determine where the web service request is sent by
changing the URI. CICS provides support for different URI formats so that you have much more flexibility
in the way that the pipeline processes web service requests.

When the service requester pipeline reaches the end of its processing, you have the following options:

Linking to a program
If you change the URI to the format cics://PROGRAM/program, where program is the name of the
target application program, CICS passes the current channel and its containers or COMMAREA to the
program using an EXEC CICS LINKcommand.

This processing is similar to the local optimization that occurs when the service requester and service
provider applications are in the same CICS region. However, using this URI format provides the
benefit of running the request through the pipeline and any custom message handlers first. The target
application program must be able to handle the contents of the containers or COMMAREA.

Starting another requester mode pipeline
If you change the URI to the format cics://PIPELINE/pipeline?
targetServiceUri=targetServiceUri, where pipeline is the name of a PIPELINE resource and
targetServiceUri is the URI that you want to put in the DFHWS-URI container, CICS passes the current
channel and its containers to the specified requester pipeline. Use this URI when you want to link two
or more requester pipelines together before sending the request to the service provider. The number
of requester pipelines that you can chain together is not limited.

In the following example, one generic requester pipeline supports one application. Message handlers
1 or 2 can change the URI for each request depending on the application data in the containers,
sending the request to one of two requester pipelines that contain different message handlers.

CICS Transaction Server
Requester pipeline

« | Handler Handler [Handler | [T Service
Requester pipeline 3 4 et & lel | provider
Application Handler [Handler
program 1 | 2 Requester pipeline

] 7 et B el | provider

* | Handler :' Handler [Handler | [T Service

Although the example shows only one service requester application, many applications could use the
same generic requester pipeline and have their requests sent to different requester pipelines before
the request is finally sent to the appropriate web service provider.

Sending the request straight to the provider mode pipeline
If you change the URI to the format cics://SERVICE/service?
targetServiceUri=targetServiceUri, where service is the name of the target service and
targetServiceUri is the path to the service, CICS resolves the request by matching the path to a
URIMAP and passes the request to the correct provider pipeline. Use this option when you want to
take advantage of processing the request through both the requester and provider pipelines without
using the network.

This URI might also be useful where the requester and provider applications are written in different
languages, or use different mapping levels, and expect different binary data.

Chapter 2. Configuring web services in CICS 169

Controlling requester pipeline processing using a URI

In service requester pipelines, a message handler can determine where to send the web service request
by changing the URI. By changing the URI format, you can choose to perform certain optimizations, such
as starting another requester pipeline or starting a service provider pipeline without sending the request
over the network.

Before you begin
Decide which options you want to implement in your requester pipeline. See “Options for controlling
requester pipeline processing” on page 169 for details.

About this task

The web service requester application can populate the DFHWS-URI container using the EXEC CICS
INVOKE SERVICE command or, if no value is supplied by the application, CICS populates the container
using the value in the web service binding file. To modify the URI, you must write a message handler that
changes the contents of this container.

Procedure

1. Write a message handler to modify the DFHWS-URI container according to one of the following URI
formats:

« Tolink to an application program, use the URI cics://PROGRAM/program, where program is
the target application program. No data transformation takes place, so you must ensure that
the application program can process the contents of the containers on the current channel. The
application program can pass either the current channel and containers or a COMMAREA.

« To start a provider pipeline without going through the network, use the URI cics://SERVICE/
service?targetServicelUri=targetServiceUri, where service is the name of the service
and targetServiceUri is the path of the service. The transport handler uses the path of the service to
locate the URIMAP resource that resolves the request and passes it to the correct provider pipeline.
CICS does not use the name of the service in its processing.

An error occurs if no URIMAP resource is installed for the service. The URIMAP resource
definition must also specify USAGE(PIPELINE). The transport handler puts the value of the
targetServiceUri parameter in the DFHWS-URI container and starts the provider pipeline.

- To start another requester pipeline, use the URI cics://PIPELINE/pipeline?
targetServiceUri=targetServiceUri, where pipeline is the name of the PIPELINE resource
that you want to start and targetServiceUri is the value that you want to pass to the next pipeline in
the DFHWS-URI container.

Each type of URI has additional parameters that you can add as a query string. For more information
about the format of these URIs and the rules for coding them, see the “DFHWS-URI container” on
page 150.

2. Use an XML editor to add the message handler to the pipeline configuration file:

<service>
<service_handler_list>
<handler>
<program>MYPROG</program>
</handler>
</service_handler_list>
</service>

3. Disable, discard, and reinstall the PIPELINE resource for the requester pipeline to include your new
message handler program in the pipeline.

4. Install the message handler program in the CICS region.

Results
The next service request to run through the requester pipeline is processed by your new message handler.

170 CICS TS for z/OS: Using Web Services with CICS

What to do next

Test out the changes to your requester pipeline to make sure that the service requests are going to the
correct location and that your message handler program is behaving as designed.

Support for Web Services transactions

The Web Services Atomic Transaction (or WS-AtomicTransaction) specification and the Web Services
Coordination (or WS-Coordination) specification define protocols for short term transactions that enable
transaction processing systems to interoperate in a web services environment. Transactions that use
WS-AtomicTransaction have the ACID properties of atomicity, consistency, isolation, and durability.

The specifications can be found at OASIS.
Note: CICS supports the November 2004 level of the specifications.

CICS applications that are deployed as web service providers or requesters can participate in distributed
transactions with other web service implementations that support the specifications.

Registration services

Registration services is that part of the WS-Coordination model that enables an application to register for
coordination protocols. In a distributed transaction, the registration services in the participating systems
communicate with one another to enable the connected applications to participate in those protocols.

CICS1 cics2

requester.axample.com | provider.example.com

)) Provider pipeline |4 Registration mquest Hequester pipeline i
Registration Registration
sanvices — - — services
Reguester pipeling - o Provider pipeline
Reagistration response

Service reguester
application

Service requester — Application
application Reguester pipeline

Provider pipeling

request and response |

Figure 27. Registration services

Figure 27 on page 171 shows two CICS systems, CICS1 and CICS2. A service requester application

in CICS1 invokes a service provider application in CICS2. The two CICS regions and the applications

are configured so that the two applications participate in a single distributed transaction, using the
WS-Coordination protocols. The service requester application is the coordinator, and the service provider
application is the participant.

In support of these protocols, the registration services in the two CICS regions interact at the start of

the transaction, and again during transaction termination. During these interactions, registration services
in both regions can operate at different times as a service provider and as a requester. Therefore, in

each region, registration services use a service provider pipeline, and a service requester pipeline. The
pipelines are defined to CICS with the PIPELINE and associated resources.

The registration services in each region are associated with an endpoint address. Thus, in the example,
registration services in CICS1 has an endpoint address of requester.example.com; thatin CICS2 has
an endpoint address of provider.example.com.

In a CICSplex, you can distribute the registration services provider pipeline to a different region. This is
shown in Figure 28 on page 172.

Chapter 2. Configuring web services in CICS 171

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html

CICSA clcs2

requester.example.com | | provider.example.com

| Provider pipaline Provider pipaline |

\

e

X

b

£
A

Reqistration .
1 hY
MRO o e e MRO or
APPC ™ / APPC
’ s
7 \}(f \\
CICS1A Vi \\ CICS2A
ry ,
/ ™,
N,
Registration \\
response ,
Ragiztration Reguester pipaline g Requestar pipeling Registration
sarvices &q pipet 4 pip SErvices
Service requester - Application - — Sarvice requester
application Reguester pipaling |+ request and response Provider pipeline application

Figure 28. Registration services in a CICSPlex

In this configuration, the provider pipeline communicates with registration services using MRO or APPC.
The registration services requester pipeline must remain in the same region as the application's requester
pipeline.

This configuration is useful when your service requester and provider applications are distributed across
a large number of regions. When you configure the application's pipelines to participate in web service
transactions, you must provide information about the registration services endpoint by providing the IP
address and port number of the registration services provider pipeline. By having a single endpoint, you
can simplify configuration, because all your pipelines will contain the same information. For example,

in Figure 28 on page 172 the IP address that you specify in the application's requester pipeline is
requester.example.com.

The same arguments apply to the service provider application. In the example, the provider application's
pipeline will specify an IP address of requester.example.com.

Configuring CICS for web service transactions

For web service requester and provider applications to participate in web service transactions, you must
configure CICS accordingly by installing a number of CICS resources.

Before you begin

Before you can install these resources you must know the location of the pipeline configuration files that
CICS supplies in support of web service transactions. By default, the configuration files are supplied in
the /usxr/lpp/cicsts/cicsts55/pipeline/configs directory, but the default file path might have
been changed during CICS installation.

172 CICS TS for z/OS: Using Web Services with CICS

About this task

CICS support for web service transactions uses a CICS-supplied registration service. This registration
service consists of a service provider and a service requester. You must install resources for both the
service provider and the service requester; even if your applications are all service providers or all service
requesters.

You must also install a program definition for the header handler program that is invoked when you run
your service provider and requester applications.

The resources you require to configure CICS for web service transactions are all supplied in the DFHWSAT
group, except for DFHPIDIR which is supplied in one of the following groups: DFHPIVS, DFHPIVR,

or DFHPICF. The DFHWSAT group is not included in the DFHLIST list, and therefore is not installed
automatically. You cannot change the resources supplied by CICS in the DFHWSAT group.

To configure CICS for web service transactions:

Procedure

1. Add the DFHPIDIR data set to your startup JCL.
DFHPIDIR stores a mapping between contexts and tasks.
a) Add a new DD statement for the DFHPIDIR data set to your CICS startup JCL
b) Create the DFHPIDIR data set using information in DFHDEFDS.JCL.

The default RECORDSIZE of DFHPIDIR is 1 KB, which is adequate for most uses. You can create
DFHPIDIR with a larger RECORDSIZE if you need to.

¢) Install the appropriate group for the data set on your CICS system: DFHPIVS, DFHPIVR, or
DFHPICF.

For more information about these groups, see Defining the WS-AT data set.

If you want to share the DFHPIDIR file across CICS regions, the regions must be logically connected
over MRO. You must install one data set per group of regions that are acting as a logical server.

Tip: You are recommended not to share data sets between regions that are not logically connected.
2. Copy the contents of the DFHWSAT group to another group.

You cannot change the resources supplied by CICS in the DFHWSAT group. However, you must change
the CONFIGFILE attribute in the PIPELINE resources.

3. Modify the registration service's provider PIPELINE resource.

The PIPELINE is named DFHWSATP, and specifies the pipeline configuration file /usx/lpp/cicsts/
cicsts55/pipeline/configs/registrationservicePROV.xml in the CONFIGFILE attribute.

a) Change the CONFIGFILE attribute to reflect the location of the file in your system.
b) Leave the other attributes unchanged.
Use the pipeline configuration file exactly as provided; do not change its contents.

4. Install the PIPELINE resource.

The registration services provider PIPELINE resource need not be in the same CICS region as your
service requester or provider applications, but must be connected to that region with a suitable MRO
or APPC connection.

5. Without changing it, install the URIMAP that is used by the registration services provider in the same
region as the PIPELINE.

The URIMAP is named DFHRSURL.
6. Modify the registration service's requester PIPELINE resource.

The PIPELINE is named DFHWSATR, and specifies the pipeline configuration file /usx/1pp/cicsts/
cicsts55/pipeline/configs/registrationserviceREQ.xml in the CONFIGFILE attribute.

a) Change the CONFIGFILE attribute to reflect the location of the file in your system.
b) Leave the other attributes unchanged.
Use the pipeline configuration file exactly as provided; do not change its contents.

Chapter 2. Configuring web services in CICS 173

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cics/dfha2_def_wsatdatasets.html

7. Install the PIPELINE resource.

The registration services requester PIPELINE resource must be in the same CICS region as the service
requester and provider applications.

8. Install the programs used by the registration service provider pipeline in the same region as your
PIPELINE resources.

The programs are DFHWSATX, DFHWSATR, and DFHPIRS. If both your PIPELINE resources are in
different regions, you must install these programs in both regions.

9. Install the PROGRAM resource definition for the header handler program.

The program is named DFHWSATH. Install the PROGRAM in the regions where your service provider
and requester applications run.

Results
CICS is now configured so that your service provider and requester applications can participate in
distributed transactions using WS-AtomicTransaction and WS-Coordination protocols.

What to do next
You must now configure each participating application individually.

Configuring a service provider for web service transactions

If a service provider application is to participate in web service transactions, the pipeline configuration file
must specify a <headerprogram> element and a <service_parameter_list> element.

Before you begin

If you want your service provider application to participate in web service transactions, it must use SOAP
protocols to communicate with the service requester, and you must configure your pipeline to use one of
the CICS-provided SOAP message handlers. Even if you have configured your service provider application
correctly, it will participate in web service transactions with the service requester only if the requester
application has been set up to participate.

About this task

In addition to the pipeline configuration information that is specific to your application, the configuration
file must contain information that CICS uses to ensure that your application participates in web service
transactions.

CICS provides an example of a pipeline configuration file containing this information
infile /usr/1pp/cicsts/cicsts55/samples/pipelines/wsatprovider.xml directory
(where /usx/lpp/cicsts/cicsts55 is the default install directory for CICS files on z/OS UNIX).

Procedure

1. In the definition of your terminal handler, code a <headerprogram> element in the
<cics_soap_1.1_handler>, <cics_soap_1.2_handler>, <cics_soap_1.1_handler_java>,
or<cics_soap_1.2_handler_java> element.

Code the <program_name>, <namespace>, <localname>, and <mandatory> elements exactly as
shown in this example:

<terminal_handler>
<cics_soap_1.1_handler>
<headerprogram>
<program_name>DFHWSATH</program_name>
<namespace>http://schemas.xmlsoap.org/ws/2004/10/wscoor</namespace>
<localname>CoordinationContext</localname>
<mandatory>false</mandatory>
</headerprogram>
</cics_soap_1.1_handler>
</terminal_handler>

174 CICS TS for z/OS: Using Web Services with CICS

Include other <headerprogram> elements if your application needs them.
2. Code a<registration_service_endpoint> elementina<service_parameter_list>.
Code the <registration_service_endpoint> as follows:

<registration_service_endpoint>
http://address:port/cicswsat/RegistrationService
</registration_service_endpoint>

address is the IP address of the CICS region where the registration service provider pipeline is
located.

port is the port number used by the registration service provider pipeline.

Code everything else exactly as shown; the string cicswsat/RegistrationService matches the
PATH attribute of URIMAP DFHRSURI:

<registration_service_endpoint>
http://provider.example.com:7160/cicswsat/RegistrationService
</registration_service_endpoint>

Configuring a service requester for web service transactions

If a service requester application is to participate in web service transactions, the pipeline configuration
file must specify a <headerprogram> element and a <service_parameter_list> element.

Before you begin

If you want your service requester application to participate in web service transactions, it must use
SOAP protocols to communicate with the service provider, and your pipeline must be configured to use
one of the CICS-provided SOAP message handlers. Even if you have configured your service requester
application correctly, it will only participate in web service transactions with the service provider if the
provider application has been set up to participate.

About this task

In addition to the pipeline configuration information that is specific to your application, the configuration
file must contain information which CICS uses to ensure that your application participates in web service
transactions.

CICS provides an example of a pipeline configuration file containing this information
infile /usr/1pp/cicsts/cicsts55/samples/pipelines/wsatrequester.xml directory
(where /usr/1pp/cicsts/cicsts55 is the default install directory for CICS files on z/OS UNIX).

Procedure

1. Code a <headerprogram> elementin the <cics_soap_21.1_handler>,
<cics_soap_1.2_handler>, <cics_soap_1.1_handler_java>,or
<cics_soap_1.2_handler_java> element.

Code the <program_name>, <namespace>, <localname>, and <mandatory> elements exactly as
shown in the following example:

<cics_soap_1.1_handler>
<headerprogram>
<program_name>DFHWSATH</program_name>
<namespace>http://schemas.xmlsoap.org/ws/2004/10/wscoor</namespace>
<localname>CoordinationContext</localname>
<mandatory>true</mandatory>
</headerprogram>
</cics_soap_1.1_handler>

You can include other <headerprogram> elements if your application needs them.
2. Codea<registration_service_endpoint> elementina<service_parameter_list>.

Chapter 2. Configuring web services in CICS 175

Code the <registration_service_endpoint> as follows:

<registration_service_endpoint>
http://address:port/cicswsat/RegistrationService
</registration_service_endpoint>

address is the IP address of the CICS region where the registration service provider pipeline is
located.

port is the port number used by the registration service provider pipeline.

There must be no space between the start the <registration_service_endpoint> element, its
contents, and the end of the <registration_service_endpoint> element. Spaces have been
included in this example for clarity.

3. If you want CICS to create a new transactional context for each request, rather than using the same
one for requests in the same unit of work, add the empty element, <new_tx_context_required/>,
ina<service_parameter_list> to your pipeline configuration file:

<service_parameter_list>
<registration_service_endpoint>
http://requester.example.com:7159/cicswsat/RegistrationService
</registration_service_endpoint>
<new_tx_context_required/>

</service_parameter_list>

There must be no space between the start of the <registration_service_endpoint> element,
its contents, and the end of the <registration_service_endpoint> element. Spaces have been
included in this example for clarity.

The <new_tx_context_required/> setting is not the default for CICS, and is not

included in the example pipeline configuration file, wsatprovider. xml. If you add
<new_tx_context_required/>ina<service_parameter_list> to your pipeline configuration
file, loopback calls to CICS are allowed, so be aware that a deadlock might occur in this situation.

Determining if the SOAP message is part of an atomic transaction

When a CICS web service is invoked in the atomic transaction pipeline, the SOAP message does not
necessarily have to be part of an atomic transaction.

About this task

The <soapenv:Header> element contains specific information when the SOAP message is part of an
atomic transaction. To find out if the SOAP message is part of an atomic transaction, you can either:

Procedure

« Look inside the contents of the <soapenv:Header> element using a trace.
a) Perform an auxiliary trace using component PI and set the tracing level to 2.

b) Look for trace point PI 0A31, which contains the information for the request container.
In particular, look for PIIS EVENT - REQUEST_CNT which appears just before the
<cicswsa:Action> element.

« Use a user-written message handler program in the DFHWSATP pipeline to display the content of the
DFHREQUEST container when it contains the data RECEIVE-REQUEST.

If you opt for this approach, make sure that you define the message handler program in the pipeline
configuration file.

Example

The following example shows the information that you could see in the SOAP envelope header for an
atomic transaction.

<soapenv:Header>
<wscoor:CoordinationContext soapenv:mustUnderstand="1">

176 CICS TS for z/OS: Using Web Services with CICS

<wscoor:Expires>500</wscoor:Expires>
<wscoor:Identifier>com.ibm.ws.wstx:
0000010a2h5008c80000000200000019a75aabh901a1758a4e40e2731c61192a10ad6e921
</wscoor:Identifier>
<wscoor:CoordinationType>http://schemas.xmlsoap.org/ws/2004/10/wsat</wscoor:CoordinationType>
<wscoor:RegistrationService
xmlns:wscoor="http://schemas.xmlsoap.org/ws/2004/10/wscoor">
<cicswsa:Address xmlns:cicswsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
http://clientIPaddress:clientPort/_IBMSYSAPP/wscoor/services/RegistrationCoordinatorPort
</cicswsa:Address>
<cicswsa:ReferenceProperties
xmlns:cicswsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
<websphere-wsat:txID
xmlns:websphere-wsat="http://wstx.Transaction.ws.ibm.com/extension">com.ibm.ws.wstx:
0000010a2h5008c80000000200000019a75aab901a1758a4e40e2731c61192a10ad6e921
</websphere-wsat:txID>
<websphere-wsat:instancelD
xmlns:websphere-wsat="http://wstx.Transaction.ws.ibm.com/extension">com.ibm.ws.wstx:
0000010a2bh5008c80000000200000019a75aabh901a1758a4e40e2731c61192a10ad6e921
</websphere-wsat:instancelID>
</cicswsa:ReferenceProperties>
</wscoor:RegistrationService>
</wscoor:CoordinationContext>
</soapenv:Header>

1. The CoordinationContext indicates that the SOAP message is intended to participate in an atomic
transaction. It contains the necessary information for the web service provider to be part of the
coordination service, assuming that the provider is configured to recognize and process the header.

2. The CoordinationType indicates the version of the WS-AT specification that the coordination context
complies with.

3. The coordination RegistrationService describes where the coordinator's registration point is, and the
information that the participating web service must return to the coordinator when it attempts to
register as a component of the atomic transaction.

Checking the progress of an atomic transaction

When a CICS web service is invoked as part of an atomic transaction, the transaction passes through a
number of states. These states indicate whether the transaction was successful or had to roll back.

About this task
If you need to access this information, you can either:

Procedure

« Look inside the contents of the <cicswsa:Action> element using a trace.
a) Perform an auxiliary trace using component PI and set the tracing level to 2.

b) Look for trace point PI 0A31, which contains the information for the request container.
In particular, look for PIIS EVENT - REQUEST_CNT which appears just before the
<cicswsa:Action> element.

e Use a user-written message handler program in the DFHWSATR and DFHWSATP pipelines to display
the content of DFHWS-SOAPACTION containers.

If you opt for this approach, make sure that you define the message handler program in the pipeline
configuration files.

Example

The states for a transaction that completes successfully and is committed are:

"http://schemas.xmlsoap.org/ws/2004/10/wscoor/Register"
"http://schemas.xmlsoap.org/ws/2004/10/wscoor/RegisterResponse"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Prepare"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Prepared"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Commit"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Committed "

Chapter 2. Configuring web services in CICS 177

The states for a transaction that is rolled back are:

"http://schemas.xmlsoap.org/ws/2004/10/wscoor/Register"
"http://schemas.xmlsoap.org/ws/2004/10/wscoor/RegisterResponse”
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Rollback"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Aborted"

Support for MTOM/XOP optimization of binary data

In standard SOAP messages, binary objects are base64-encoded and included in the message body,
which increases their size by 33%. For very large binary objects, this size increase can significantly impact
transmission time. Implementing MTOM/XOP provides a solution to this problem.

The SOAP Message Transmission Optimization Mechanism (MTOM) and XML-binary Optimized Packaging
(XOP) specifications, often referred to as MTOM/XOP, define a method for optimizing the transmission of
large base64Binary data objects within SOAP messages.

- The MTOM specification conceptually defines a method for optimizing SOAP messages by separating
out binary data, that would otherwise be base64 encoded, and sending it in separate binary
attachments using a MIME Multipart/Related message. This type of MIME message is called an
MTOM message. Sending the data in binary format significantly reduces its size, thus optimizing the
transmission of the SOAP message.

« The XOP specification defines an implementation for optimizing XML messages using binary
attachments in a packaging format that includes but is not limited to MIME messages.

CICS implements support for these specifications in both requester and provider pipelines when the
transport protocol is WebSphere MQ, HTTP, or HTTPS. As an alternative to including the base64Binary
data directly in the SOAP message, CICS applications that are deployed as web service providers or
requesters can use this support to send and receive MTOM messages with binary attachments.

You can configure this support by using additional options in the pipeline configuration file.

MTOM/XOP and SOAP

When MTOM/XOP is used to optimize a SOAP message, it is serialized into a MIME Multipart/Related
message using XOP processing. The base64Binary data is extracted from the SOAP message and
packaged as separate binary attachments within the MIME message, in a similar manner to e-mail
attachments.

The size of the base64Binary data is significantly reduced because the attachments are encoded in binary
format. The XML in the SOAP message is then converted to XOP format by replacing the base64Binary
data with a special <xop:Include> element that references the relevant MIME attachment using a URI.

The modified SOAP message is called the XOP document, and forms the root document within the
message. The XOP document and binary attachments together form the XOP package. When applied to
the SOAP MTOM specification, the XOP pa