
IBM XL C/C++ for AIX
16.1

Migration Guide

IBM

GC27-8051-00

Note

Before using this information and the product it supports, read the information in “Notices” on page
23.

First edition

This edition applies to IBM® XL C/C++ for AIX® 16.1 (Program 5765-J12; 5725-C72) and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the
product.
© Copyright International Business Machines Corporation 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document..v
Who should read this document.. v
How to use this document... v
Conventions.. v
Related information...ix

Available help information... ix
Standards and specifications.. xi

Technical support... xii
How to send your comments... xii

Chapter 1. Comparison between the XL-based and Clang-based front ends.............1

Chapter 2. Migration checklist when moving from the XL-based front end to the
Clang-based front end... 5

Chapter 3. Migrating from earlier versions to the latest version............................. 13
Migrating applications that use transactional memory built-in functions... 14

Chapter 4. Compatibility considerations when mixing object files......................... 15

Chapter 5. Resolving the compatibility issues of IPA object files............................17

Chapter 6. Using 32-bit and 64-bit modes...19
Assigning long values...19

Assigning constant values to long variables..20
Bit-shifting long values...21

Assigning pointers ...21
Aligning aggregate data... 22
Calling Fortran code...22

Notices..23
Trademarks.. 25

Index.. 27

 iii

iv

About this document

This document contains migration considerations applicable to IBM XL C/C++ for AIX 16.1.

Who should read this document
This document is intended for C and C++ developers who are to use IBM XL C/C++ for AIX 16.1 to compile
programs that were previously compiled on different platforms, by previous releases of XL C/C++, or by
other compilers.

How to use this document
Unless indicated otherwise, all of the text in this reference pertains to both C and C++ languages.
Where there are differences between languages, these are indicated through qualifying text and icons, as
described in “Conventions” on page v.

Throughout this document, the xlc, xlc++, xlC, xlclang, and xlclang++ invocation commands are used to
describe the behavior of the compiler. You can, however, substitute other forms of the compiler invocation
command if your particular environment requires it, and compiler option usage might differ.

While this document covers migration considerations applicable to IBM XL C/C++ for AIX 16.1, it does not
include the following topics:

• An executive overview of new functions: see the What's New for XL C/C++.
• Compiler installation: see the XL C/C++ Installation Guide.
• Overview of XL C/C++ features: see the Getting Started with XL C/C++.
• Compiler options: see the XL C/C++ Compiler Reference for detailed information about the syntax and

usage of compiler options.
• The C or C++ programming language: see the XL C/C++ Language Reference for information about the

syntax, semantics, and IBM implementation of the C or C++ programming language.
• Programming topics: see the XL C/C++ Optimization and Programming Guide for detailed information

about developing applications with XL C/C++, with a focus on program portability and optimization.

Conventions

Typographical conventions
The following table shows the typographical conventions used in the IBM XL C/C++ for AIX 16.1
information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and directives.

The compiler provides basic invocation
commands, xlc and xlC (xlc++), along
with several other compiler invocation
commands to support various C/C+
+ language levels and compilation
environments.

© Copyright IBM Corp. 2021 v

Table 1. Typographical conventions (continued)

Typeface Indicates Example

italics Parameters or variables whose actual
names or values are to be supplied
by the user. Italics are also used to
introduce new terms.

Make sure that you update the size
parameter if you return more than the size
requested.

underlining The default setting of a parameter of a
compiler option or directive.

nomaf | maf

monospace Programming keywords and library
functions, compiler builtins, examples
of program code, command strings, or
user-defined names.

To compile and optimize myprogram.c,
enter: xlc myprogram.c -O3.

Qualifying elements (icons)
Most features described in this information apply to both C and C++ languages. In descriptions of
language elements where a feature is exclusive to one language, or where functionality differs between
languages, this information uses icons to delineate segments of text as follows:

Table 2. Qualifying elements

Icon Short description Meaning

C only begins /

C only ends

The text describes a feature that is supported in the C
language only; or describes behavior that is specific to the C
language.

C++ only begins /

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the
C++ language.

C11 begins /

C11 ends

The text describes a feature that is introduced into standard
C as part of C11.

C++11 begins /

C++11 ends

The text describes a feature that is introduced into standard
C++ as part of C++11.

C++14 begins /

C++14 ends

The text describes a feature that is introduced into standard
C++ as part of C++14.

IBM extension begins /

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

IBM XL C/C++ for
AIX that is invoked
by legacy invocations
begins/

IBM XL C/C++ for AIX
that is invoked by
legacy invocations ends

The text describes a feature that is specific to IBM XL C/C++
for AIX that is invoked by legacy invocations, such as xlc and
xlC. For the full list of the legacy invocations, see Legacy
invocation commands in the XL C/C++ Compiler Reference.

vi About this document

Table 2. Qualifying elements (continued)

Icon Short description Meaning

IBM XL C/C++ for
AIX that is invoked
by xlclang/xlclang++
invocations begins/

IBM XL C/C++ for
AIX that is invoked
by xlclang/xlclang++
invocations ends

The text describes a feature that is specific to IBM XL C/C++
for AIX that is invoked by xlclang and xlclang++.

Syntax diagrams
Throughout this information, diagrams illustrate XL C/C++ syntax. This section helps you to interpret and
use those diagrams.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ▶▶─── symbol indicates the beginning of a command, directive, or statement.

The ───▶ symbol indicates that the command, directive, or statement syntax is continued on the next
line.

The ▶─── symbol indicates that a command, directive, or statement is continued from the previous line.

The ───▶◀ symbol indicates the end of a command, directive, or statement.

Fragments, which are diagrams of syntactical units other than complete commands, directives, or
statements, start with the │─── symbol and end with the ───│ symbol.

• Required items are shown on the horizontal line (the main path):
keyword required_argument

• Optional items are shown below the main path:
keyword

optional_argument

• If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main path.

keyword required_argument1

required_argument2

If choosing one of the items is optional, the entire stack is shown below the main path.
keyword

optional_argument1

optional_argument2

• An arrow returning to the left above the main line (a repeat arrow) indicates that you can make more
than one choice from the stacked items or repeat an item. The separator character, if it is other than a
blank, is also indicated:

keyword

,

repeatable_argument

About this document vii

• The item that is the default is shown above the main path.

keyword

default_argument

alternate_argument

• Keywords are shown in nonitalic letters and should be entered exactly as shown.
• Variables are shown in italicized lowercase letters. They represent user-supplied names or values.
• If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must

enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma comment directive.
1

#
2

pragma
3

comment
4

(
5

compiler

date

timestamp

copyright

user

6

,
7

" token_sequence "
8

)
9 10

Notes:
1 This is the start of the syntax diagram.
2 The symbol # must appear first.
3 The keyword pragma must appear following the # symbol.
4 The name of the pragma comment must appear following the keyword pragma.
5 An opening parenthesis must be present.
6 The comment type must be entered only as one of the types indicated: compiler, date,
timestamp, copyright, or user.
7 A comma must appear between the comment type copyright or user, and an optional character
string.
8 A character string must follow the comma. The character string must be enclosed in double
quotation marks.
9 A closing parenthesis is required.
10 This is the end of the syntax diagram.

The following examples of the #pragma comment directive are syntactically correct according to the
diagram shown above:

 #pragma comment(date)
 #pragma comment(user)
 #pragma comment(copyright,"This text will appear in the module")

Example of a syntax statement

EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:

• Enter the keyword EXAMPLE.
• Enter a value for char_constant.
• Enter a value for a or b, but not for both.
• Optionally, enter a value for c or d.
• Enter at least one value for e. If you enter more than one value, you must put a comma between each.

viii About this document

• Optionally, enter the value of at least one name for name_list. If you enter more than one value, you
must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram representations.

Examples in this information
The examples in this information, except where otherwise noted, are coded in a simple style that does not
try to conserve storage, check for errors, achieve fast performance, or demonstrate all possible methods
to achieve a specific result.

The examples for installation information are labelled as either Example or Basic example. Basic examples
are intended to document a procedure as it would be performed during a default installation; these need
little or no modification.

Related information
The following sections provide related information for XL C/C++:

Available help information

IBM XL C/C++ information
XL C/C++ provides product information in the following formats:

• Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM XL C/C++ for AIX
16.1. It is located by default in the XL C/C++ directory and in the \quickstart directory of the
installation DVD.

• README files

README files contain late-breaking information, including changes and corrections to the product
information. README files are located by default in the XL C/C++ directory and in the root directory of
the installation DVD.

• Installable man pages

Man pages are provided for the compiler invocations and all command-line utilities provided with the
product. Instructions for installing and accessing the man pages are provided in the IBM XL C/C++ for
AIX 16.1 Installation Guide.

• Online product documentation

The fully searchable HTML-based documentation is viewable in IBM Documentation at http://
www.ibm.com/support/knowledgecenter/SSGH3R_16.1.0/com.ibm.compilers.aix.doc/welcome.html.

• PDF documents

PDF documents are available on the web at https://www.ibm.com/support/knowledgecenter/
SSGH3R_16.1.0/com.ibm.compilers.aix.doc/download_pdf.html.

The following files comprise the full set of XL C/C++ product information.

Note: To ensure that you can access cross-reference links to other XL C/C++ PDF documents, download
and unzip the .zip file that contains all the product documentation files, or you can download each
document into the same directory on your local machine.

About this document ix

http://www.ibm.com/support/knowledgecenter/SSGH3R_16.1.0/com.ibm.compilers.aix.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGH3R_16.1.0/com.ibm.compilers.aix.doc/welcome.html
https://www.ibm.com/support/knowledgecenter/SSGH3R_16.1.0/com.ibm.compilers.aix.doc/download_pdf.html
https://www.ibm.com/support/knowledgecenter/SSGH3R_16.1.0/com.ibm.compilers.aix.doc/download_pdf.html

Table 3. XL C/C++ PDF files

Document title PDF file name Description

What's New for IBM
XL C/C++ for AIX 16.1,
GC27-8053-00

whats_new.pdf Provides an executive overview of new
functions in the IBM XL C/C++ for AIX 16.1
compiler, with new functions categorized
according to user benefits.

Getting Started with IBM
XL C/C++ for AIX 16.1,
SC27-8055-00

getstart.pdf Contains an introduction to XL C/C++, with
information about setting up and configuring
your environment, compiling and linking
programs, and troubleshooting compilation
errors.

IBM XL C/C++ for AIX
16.1 Installation Guide,
SC27-8058-00

install.pdf Contains information for installing XL C/C++
and configuring your environment for basic
compilation and program execution.

IBM XL C/C++ for AIX
16.1 Migration Guide,
GC27-8051-00

migrate.pdf Contains migration considerations for using
XL C/C++ to compile programs that were
previously compiled on different platforms,
by previous releases of XL C/C++, or by other
compilers.

IBM XL C/C++ for AIX
16.1 Compiler Reference,
SC27-8057-00

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in functions,
including those used for parallel processing.

IBM XL C/C++ for AIX
16.1 Language Reference,
SC27-8059-00

langref.pdf Contains information about the C and C+
+ programming languages, as supported
by IBM, including language extensions
for portability and conformance to
nonproprietary standards.

IBM XL C/C++ for
AIX 16.1 Optimization
and Programming Guide,
SC27-8060-00

proguide.pdf Contains information about advanced
programming topics, such as application
porting, interlanguage calls with Fortran
code, library development, application
optimization and parallelization, and the XL
C/C++ high-performance libraries.

Standard C++ Library
Reference, SC27-4262-02

standlib.pdf Contains reference information about the
standard C++ runtime libraries and headers.

C/C++ Legacy Class
Libraries Reference,
SC09-7652-00

legacy.pdf Contains reference information about the
USL I/O Stream Library and the Complex
Mathematics Library.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you can download it (subject to
license terms) from the Adobe website at http://www.adobe.com.

More information related to XL C/C++, including IBM Redbooks® publications, white papers, and other
articles, is available on the web at http://www.ibm.com/support/docview.wss?uid=swg27036618.

For more information about the compiler, see the XL compiler on Power® community at http://ibm.biz/
xl-power-compilers.

Other IBM information
• Parallel Environment for AIX: Operation and Use

x About this document

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036618
http://ibm.biz/xl-power-compilers
http://ibm.biz/xl-power-compilers

• The IBM Systems Information Center, at http://publib.boulder.ibm.com/infocenter/systems/index.jsp?
topic=/com.ibm.aix.doc/doc/base/aixparent.htm, is a resource for AIX information.

You can find the following books for your specific AIX system:

– AIX Commands Reference, Volumes 1 - 6
– Technical Reference: Base Operating System and Extensions, Volumes 1 & 2
– AIX National Language Support Guide and Reference
– AIX General Programming Concepts: Writing and Debugging Programs
– AIX Assembler Language Reference

Other information
• Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs.

Standards and specifications
XL C/C++ is designed to support the following standards and specifications. You can refer to these
standards and specifications for precise definitions of some of the features found in this information.

• Information Technology - Programming languages - C, ISO/IEC 9899:1990, also known as C89.
• Information Technology - Programming languages - C, ISO/IEC 9899:1999, also known as C99.

• Information Technology - Programming languages - C, ISO/IEC 9899:2011, also known
as C11.

• Information Technology - Programming languages - C, ISO/IEC 9899:2011, also known as C11
(Partial support).

• Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also known as C++98.
• Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also known as C++03.

• Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also
known as C++11.

• Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also known as
C++11 (Partial support).

• Information Technology - Programming languages - C++, ISO/IEC 14882:2014, also
known as C++14.

• Draft Technical Report on C++ Library Extensions, ISO/IEC DTR 19768. This draft technical report
has been submitted to the C++ standards committee, and is available at http://www.open-std.org/JTC1/
SC22/WG21/docs/papers/2005/n1836.pdf.

• AltiVec Technology Programming Interface Manual, Motorola Inc. This specification for vector data
types, to support vector processing technology, is available at https://www.nxp.com/docs/en/reference-
manual/ALTIVECPIM.pdf.

• Information Technology - Programming Languages - Extension for the programming language
C to support decimal floating-point arithmetic, ISO/IEC WDTR 24732. This draft technical report has
been submitted to the C standards committee, and is available at http://www.open-std.org/JTC1/SC22/
WG14/www/docs/n1176.pdf.

• Decimal Types for C++: Draft 4 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/
n1977.html

• ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

About this document xi

http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm
http://gcc.gnu.org/onlinedocs
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
https://www.nxp.com/docs/en/reference-manual/ALTIVECPIM.pdf
https://www.nxp.com/docs/en/reference-manual/ALTIVECPIM.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1176.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1176.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1977.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1977.html

Technical support
Additional technical support is available from the XL C/C++ Support page at https://www.ibm.com/
mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?productId=01t0z000007g72LAAQ. This page provides
a portal with search capabilities to a large selection of Technotes and other support information.

If you have any question on the product, raise it in the XL C, C++, and Fortran Compilers for Power
servers community or open a case at https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/
xl-cc?productId=01t0z000007g72LAAQ.

For the latest information about XL C/C++, visit the product information site at https://www.ibm.com/
products/xl-cpp-aix-compiler-power.

How to send your comments
Your feedback is important in helping us to provide accurate and high-quality information. If you
have any comments or questions about this information or any other XL C/C++ information, send
compinfo@cn.ibm.com an email.

Be sure to include the name of the manual, the part number of the manual, the version of XL C/C++, and,
if applicable, the specific location of the text you are commenting on (for example, a page number or table
number).

xii XL C/C++: Migration Guide

https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?productId=01t0z000007g72LAAQ
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?productId=01t0z000007g72LAAQ
http://ibm.biz/xl-power-compilers
http://ibm.biz/xl-power-compilers
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?productId=01t0z000007g72LAAQ
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?productId=01t0z000007g72LAAQ
https://www.ibm.com/products/xl-cpp-aix-compiler-power
https://www.ibm.com/products/xl-cpp-aix-compiler-power
mailto:compinfo@cn.ibm.com
mailto:compinfo@cn.ibm.com

Chapter 1. Comparison between the XL-based and
Clang-based front ends

IBM XL C/C++ for AIX 16.1 provides two front ends, which share the same back end that provides
the advanced optimization technology. One front end is the IBM legacy XL-based compiler front end,
which is similar with what is provided in previous releases of XL C/C++; the other is a Clang-based front
end, combining the Clang front end infrastructure with the advanced optimization technology in the IBM
compiler back end. For an explanation of the XL-based front end and the Clang-based front end, see A
two-in-one compiler: Clang-based front end and XL-based front end in the Getting Started with XL C/C++.

Overview of advantages specific to each front end and recommended user scenarios
Refer to the following table to get a rough idea on which front end to choose and its advantages. You can
find detailed comparison in the rest of this topic.

Compiler front end Advantages Recommended user scenarios

XL-based front end • C++ binary compatibility with
releases of IBM XL C/C++
for AIX earlier than V16.1
(Breakage in C++ binary
compatibility)

• Full support for the OpenMP
API Version 3.1 specification
and partial support for the
OpenMP API Version 4.0
specification

• Maintain 100% binary
compatibility with legacy
programs that were compiled
by earlier version of IBM XL
C/C++ for AIX 16.1.

• Compile code containing
pragma directives compliant
to the OpenMP Application
Program Interface specification
for explicit parallelization of C
and C++ program code .

• Do not have new source code
or development requirements
to leverage C11, C++11,
and C++14 language standard
features.

• Tune your application for
POWER9™ technology.

• Utilize the optimization
enhancements introduced in
IBM XL C/C++ for AIX.

Clang-based front end • Support to the C11, C++11,
and C++14 language standards
(Different supported language
levels)

• Enhanced support to GCC
options and pragmas (GCC
options and pragmas available
in the Clang-based front end)

• Modernize your C++
development on AIX with
more C11, C++11, and C++14
language standard features.

• Migrate from the Linux®

platform or open source
projects to AIX platform more
easily. With the Clang-based
front end, you are encouraged
to use GCC options instead
of legacy XL compile options
where possible.

© Copyright IBM Corp. 2021 1

Compiler front end Advantages Recommended user scenarios

• Tune your application for
POWER9 technology.

• Utilize the optimization
enhancements introduced in
IBM XL C/C++ for AIX.

Compatibilities and incompatibilities of the Clang-based front end across platforms
• Mangled names by the Clang-based front end of IBM XL C/C++ for AIX are as defined in the Itanium C++

ABI, which is consistent with the implementation of XL C/C++ for Linux.
• The object model of the Clang-based front end of IBM XL C/C++ for AIX is based on the XL

implementation of the object model defined by the Itanium C++ ABI, which the GCC object model
also implements. However, objects files generated by the Clang-based front end of IBM XL C/C++ for
AIX are not interoperable with the object files generated by GCC, which use different C++ standard
libraries, run times, and object models, so you cannot mix and match binaries generated by gcc or g++
and those by xlclang or xlclang++.

Differences and incompatibilities between the XL-based and Clang-based front
ends
Different supported language levels

IBM XL C/C++ for AIX 16.1 modernizes its support to the C and C++ language standards by leveraging the
Clang front end infrastructure. The legacy XL-based compiler front end remains unchanged in regard of
supported language levels.

Table 4. Comparison of supported language levels by the XL-based and Clang-based front ends

XL-based front end 1 Clang-based front end

The compiler invoked by xlc provides partial
support for the ISO C11 standard.

The compiler invoked by xlclang conforms to
the ISO C11 standard with the exception of the
atomics features.

The compiler invoked by xlC provides partial
support for the ISO C++11 standard.

The compiler invoked by xlclang++ conforms to
the ISO C++112 and C++14 standards with some
dependencies on hardware and version of AIX.

Notes:

1. Only typical invocations are listed in this table. You can refer to the full list of compiler invocations in
the XL C/C++ Compiler Reference for all basic invocations and their equivalent special invocations.

2. Treat C++11 as a new language that is not directly interoperable with C++03 or prior language levels.
For expert users, if you follow the “Considerations when merging generated code of C++11 and C++03
or prior” on page 5, C++03 or prior generated code can co-exist alongside C++11 generated code.

Breakage in C++ binary compatibility

The implementation of the C++11 language standard requires an update to the std library, libc++, and
causes a breakage in C++ binary compatibility. Therefore, for C++ source, object files generated by the
legacy XL-based front end invoked by xlc++ are not directly interoperable with object files generated by
the Clang-based front end invoked by xlclang++.

Although this breakage requires your additional migration efforts, the XL C/C++ compiler also takes this
breakage as an opportunity to modernize other aspects of the C++ implementation.

GCC options and pragmas available in the Clang-based front end

2 XL C/C++: Migration Guide

When using xlclang/xlclang++ to invoke IBM XL C/C++ for AIX, you can use the GCC options and
pragmas listed in the following topics. Note that these GCC options and pragmas are not available in the
XL-based front end unless they were already mapped to legacy XL counterparts in releases earlier than
V16.1.

• Supported GCC options
• Supported GCC pragmas

Unavailability of most XL legacy pragmas in the Clang-based front end

Most IBM pragmas that are supported in releases prior to IBM XL C/C++ for AIX 16.1 are not supported
in the Clang-based front end introduced in V16.1. Therefore, if you want to compile with the Clang-based
front end, you need to modify your programs that were previously written for and compiled by earlier
releases than IBM XL C/C++ for AIX 16.1.

For full list of unsupported pragmas, see “Unsupported legacy XL pragmas by xlclang/xlclang++” on page
9.

In the XL-based front end, the support to IBM XL pragmas remains unchanged.

Commonalities and compatibilities between the XL-based and Clang-based front
ends
C binary compatibility

For C source, object files generated by xlc, xlc++, xlclang, and xlclang++ are directly compatible when
the symbols names in source files contain only the dollar sign and the characters from the basic character
set.

You can refer to the full list of compiler invocations in the XL C/C++ Compiler Reference for all basic
invocations and their equivalent special invocations.

Availability of most IBM XL legacy options

To ease your migration, most IBM XL compiler options that are available in the XL-based front end,
including the -qoption_keyword and flag options, are selectively supported by the Clang-based front end,
which is invoked by xlclang/xlclang++. You are encouraged to use GCC options instead of legacy XL
compile options with the Clang-based front end wherever possible.

For more information, see Supported IBM XL compiler options by different invocations in the XL C/C++
Compiler Reference.

Chapter 1. Comparison between the XL-based and Clang-based front ends 3

4 XL C/C++: Migration Guide

Chapter 2. Migration checklist when moving from the
XL-based front end to the Clang-based front end

Aside from invoking the legacy IBM XL-based compiler front end, you can alternatively invoke the
Clang-based front end provided by XL C/C++ by using the xlclang or xlclang++ invocation command.
As the Clang-based front end provides enhancements described in Chapter 1, “Comparison between
the XL-based and Clang-based front ends,” on page 1, you might want to move to xlclang/xlclang++.
However, you must be aware of these differences during migration.

Binary compatibility of xlc/xlc++ and xlclang/xlclang++

Category Case Required action

Binary incompatibility case For C++ source, object files
generated by xlc++ and xlclang+
+ are not directly compatible as
the XL-based and Clang-based
front ends use different C++
standard libraries, run times, and
object models.

You must recompile your legacy
programs by using xlclang or
xlclang++ to solve such binary
incompatibility and link object
files successfully.

Binary compatibility case For C source, object files
generated by xlc, xlc++, xlclang,
and xlclang++ are directly
compatible when the symbols
names in source files contain
only the dollar sign and the
characters from the basic
character set.

No action is required. You do not
need to recompile source files
before you link these object files.

Considerations when merging generated code of C++11 and C++03 or prior
You should treat C++11 as a new language that is not directly interoperable with C++03 or prior language
levels.

If you are an expert in the C++ library and runtime state and are willing to manage that complexity by
yourself, provided you take the following considerations, C++03 or prior generated code can co-exist
alongside C++11 generated code:

• There might be two C++ run times active in a single process. Modifying state in the C++ runtime, such as
the std::locale settings, in both C++03 and C++11 modules results in undefined behavior.

• Do not delete a pointer in a C++03 module, which was allocated in a C++11 module, or vice versa.
• Do not use direct C++ language calls between C++11 and C++03 or prior. Use C interfaces instead to

call between C++11 and C++03 or prior.
• Do not catch C++ exceptions thrown from C++11 in C++03 or prior, or vice versa.

Discrepancies of option defaults between xlc/xlC and xlclang/xlclang++

Default on xlc/xlc++ Default on xlclang/xlclang++

-qnortti -qrtti

-qbitfields=unsigned Bit fields are treated as signed.

-qhalt=s -Werror (-qhalt=w) is disabled.

© Copyright IBM Corp. 2021 5

Default on xlc/xlc++ Default on xlclang/xlclang++

-qnothreaded -qthreaded

-qtmplinst=auto -qtmplinst=none

The following legacy macros are defined:
__xlC__, __xlC_ver__, __IBMCPP__ ,

__IBMC__, and __xlc__

-qnoxlcompatmacros (These legacy macros are
not defined.)

-qvisibility=unspecified -qnovisibility (All the visibility pragmas and
attributes that are specified in the source are
ignored.)

Note: Only typical invocations are listed in this table. You can refer to the full list of compiler invocations
in the XL C/C++ Compiler Reference for all basic invocations and their equivalent special invocations.

Changed predefined macros to identify XL C/C++ when invoked by xlclang/xlclang+
+
For IBM XL C/C++ for AIX 16.1 that is invoked by xlclang or xlclang++, predefined macros to identify the
XL C/C++ compiler are changed:

• The formerly predefined legacy macros, namely __xlC__, __xlC_ver__, __IBMCPP__ ,
__IBMC__, and __xlc__ , are no longer predefined by default.

• Some new macros are introduced and predefined by default.

For more information, see Macros to identify the XL C/C++ compiler in the XL C/C++ Compiler Reference.

To ease your migration efforts, option -qxlcompatmacros is introduced, which defines the
five legacy macros. Note that the compiler default for xlclang and xlclang++ invocations is
-qnoxlcompatmacros, meaning that the five legacy macros are not predefined. You might need to
specify the -qxlcompatmacros option when you migrate programs from IBM XL C/C++ for AIX, V13.1.3
or earlier releases to IBM XL C/C++ for AIX 16.1 that is invoked by xlclang or xlclang++.

Unsupported legacy XL options by xlclang/xlclang++

Option xlclang (Compiling C) xlclang++ (Compiling C++)

-xc++ Unsupported

-g3, -g4, -g5, -g6, -g7, -g8, -g9 Unsupported Unsupported

-ma Unsupported Unsupported

-qalias=allptrs | noallptrs | global | noglobal
| typeptr | notypeptr

Unsupported Unsupported

-qalign Unsupported Unsupported

-qalignrulefor Unsupported Unsupported

-qalloca Unsupported Unsupported

-qasm=stdcpp Unsupported Unsupported

-qassert Unsupported Unsupported

-qattr | -qnoattr Unsupported Unsupported

-qbitfields Unsupported Unsupported

-qcinc | -qnocinc Unsupported Unsupported

6 XL C/C++: Migration Guide

Option xlclang (Compiling C) xlclang++ (Compiling C++)

-qconcurrentupdate |
-qnoconcurrentupdate

Unsupported Unsupported

-qcpluscmt | -qnocpluscmt Unsupported Unsupported

-qc_stdinc Unsupported

-qcpp_stdinc Unsupported

-qdbcs | -qnodbcs Unsupported Unsupported

-qdbxextra | -qnodbxextra Unsupported Unsupported

-qdfp | -qnodfp Unsupported Unsupported

-qdigraph | -qnodigraph Unsupported Unsupported

-qdpcl | -qnodpcl Unsupported Unsupported

-qfloat=dfpemulate | nodfpemulate | fltint
| nofltint | hssngl ｜ nohssngl | rndsngl |
norndsngl | single | nosingle

Unsupported Unsupported

-qeh Unsupported

-qenum Unsupported Unsupported

-qextchk | -qnoextchk Unsupported Unsupported

-qflag Unsupported Unsupported

-qformat | -qnoformat Unsupported Unsupported

-qgenproto | -qnogenproto Unsupported Unsupported

-qhalt = i | e | s (C only)

-qhalt = i | s (C++ only)

Unsupported Unsupported

-qhaltonmsg | -qnohaltonmsg Unsupported Unsupported

-qheapdebug | -qnoheapdebug Unsupported Unsupported

-qignprag Unsupported Unsupported

-qinfo | -qnoinfo Unsupported Unsupported

-qinline=autothreshold Unsupported Unsupported

-qipa=threads | nothreads Unsupported Unsupported

-qisolated_call Unsupported Unsupported

-qkeepinlines Unsupported

-qkeyword | -qnokeyword Unsupported Unsupported

-qlanglvl=classic | extended | saa | saal2 |
feature_suboption (C only)

-qlanglvl=compat366 | strict98 |
feature_suboption (C++ only)

Unsupported Unsupported

-qldbl128 | -qnoldbl128 Unsupported Unsupported

-qlistfmt Unsupported Unsupported

-qlistopt | -qnolistopt Unsupported Unsupported

Chapter 2. Migration checklist when moving from the XL-based front end to the Clang-based front end 7

Option xlclang (Compiling C) xlclang++ (Compiling C++)

-qlongdouble | -qnolongdouble Unsupported Unsupported

-qlonglit | -qnolonglit Unsupported Unsupported

-qlonglong | -qqnolonglong Unsupported Unsupported

-qmacpstr | -qnomacpstr Unsupported Unsupported

-qmakedep Unsupported Unsupported

-qmaxerr | -qnomaxerr Unsupported Unsupported

-qmbcs | -qnombcs Unsupported Unsupported

-qnamemangling Unsupported Unsupported

-qobjmodel Unsupported Unsupported

-qoldpassbyvalue | -qnooldpassbyvalue Unsupported Unsupported

-qoptdebug | -qnooptdebug Unsupported Unsupported

-qppline | -qnoppline Unsupported Unsupported

-qprint | -qnoprint Unsupported Unsupported

-qpriority Unsupported

-qproto | -qnoproto Unsupported Unsupported

-qrestrict | -qnorestrict Unsupported Unsupported

-qroptr | -qnoroptr Unsupported Unsupported

-qrtti Unsupported

-qshowinc | -qnoshowinc Unsupported Unsupported

-qshowmacros = all | pre | nopre Unsupported Unsupported

-qskipsrc Unsupported Unsupported

-qsmp | -qnosmp Unsupported Unsupported

-qsource | -qnosource Unsupported Unsupported

-qsrcmsg | -qnosrcmsg Unsupported Unsupported

-qstaticinline | -qnostaticinline Unsupported Unsupported

-qstatsym | -qnostatsym Unsupported Unsupported

-qsymtab Unsupported Unsupported

-qtabsize Unsupported Unsupported

-qtempinc | -qnotempinc Unsupported Unsupported

-qtemplatedepth Unsupported

-qtemplaterecompile |
-qnotemplaterecompile

Unsupported Unsupported

-qtemplateregistry | -qnotemplateregistry Unsupported Unsupported

-qtempmax Unsupported Unsupported

-qnothreaded Unsupported Unsupported

-qtmplinst= always | auto | noinline Unsupported Unsupported

8 XL C/C++: Migration Guide

Option xlclang (Compiling C) xlclang++ (Compiling C++)

-qtmplparse Unsupported Unsupported

-qtrigraph | -qnotrigraph Unsupported Unsupported

-qtwolink Unsupported

-qupconv | -qnoupconv Unsupported Unsupported

-qutf | -qnoutf Unsupported Unsupported

-qwarn0x | -qnowarn0x Unsupported Unsupported

-qwarn64 | -qnowarn64 Unsupported Unsupported

-qweaksymbol | -qnoweaksymbol Unsupported Unsupported

-qxcall | -qnoxcall Unsupported Unsupported

-qxref | -qnoxref Unsupported Unsupported

For more information, see Supported IBM XL compiler options by different invocations in the XL C/C++
Compiler Reference.

Unsupported legacy XL pragmas by xlclang/xlclang++

IBM pragma xlclang (Compiling C) xlclang++ (Compiling C++)

#pragma alloca (C only) Unsupported Unsupported

#pragma block_loop Unsupported Unsupported

#pragma chars Unsupported Unsupported

#pragma comment Unsupported Unsupported

#pragma define (C++ only) Unsupported Unsupported

#pragma instantiate (C++ only) Unsupported Unsupported

#pragma do_not_instantiate (C++ only) Unsupported Unsupported

#pragma enum Unsupported Unsupported

#pragma expected_value Unsupported Unsupported

#pragma fini (C only) Unsupported Unsupported

#pragma hashome (C++ only) Unsupported Unsupported

#pragma ibm iterations Unsupported Unsupported

#pragma ibm max_iterations Unsupported Unsupported

#pragma ibm min_iterations Unsupported Unsupported

#pragma ibm snapshot Unsupported Unsupported

#pragma implementation (C++ only) Unsupported Unsupported

#pragma info Unsupported Unsupported

#pragma init (C only) Unsupported Unsupported

#pragma ishome (C++ only) Unsupported Unsupported

#pragma isolated_call Unsupported Unsupported

Chapter 2. Migration checklist when moving from the XL-based front end to the Clang-based front end 9

IBM pragma xlclang (Compiling C) xlclang++ (Compiling C++)

#pragma langlvl (C only) Unsupported Unsupported

#pragma leaves Unsupported Unsupported

#pragma loopid Unsupported Unsupported

#pragma map Unsupported Unsupported

#pragma mc_func Unsupported Unsupported

#pragma namemangling (C++ only) Unsupported Unsupported

#pragma namemanglingrule (C++ only) Unsupported Unsupported

#pragma nofunctrace Unsupported Unsupported

#pragma nosimd Unsupported Unsupported

#pragma novector Unsupported Unsupported

#pragma object_model (C++ only) Unsupported Unsupported

#pragma operator_new (C++ only) Unsupported Unsupported

#pragma options Unsupported Unsupported

#pragma pass_by_value (C++ only) Unsupported Unsupported

#pragma priority (C++ only) Unsupported Unsupported

#pragma reg_killed_by Unsupported Unsupported

#pragma report (C++ only) Unsupported Unsupported

#pragma simd_level Unsupported Unsupported

#pragma stream_unroll Unsupported Unsupported

#pragma strings Unsupported Unsupported

#pragma unroll Unsupported Unsupported

#pragma nounroll Unsupported Unsupported

#pragma unrollandfuse Unsupported Unsupported

#pragma weak Unsupported Unsupported

#pragma ibm independent_calls (C only) Unsupported Unsupported

#pragma ibm permutation (C only) Unsupported Unsupported

#pragma ibm schedule (C only) Unsupported Unsupported

#pragma ibm sequential_loop (C only) Unsupported Unsupported

#pragma omp atomic Unsupported Unsupported

#pragma omp parallel Unsupported Unsupported

#pragma omp for Unsupported Unsupported

#pragma omp ordered Unsupported Unsupported

#pragma omp parallel for Unsupported Unsupported

#pragma omp section, #pragma omp
sections

Unsupported Unsupported

#pragma omp parallel sections Unsupported Unsupported

10 XL C/C++: Migration Guide

IBM pragma xlclang (Compiling C) xlclang++ (Compiling C++)

#pragma omp single Unsupported Unsupported

#pragma omp master Unsupported Unsupported

#pragma omp critical Unsupported Unsupported

#pragma omp barrier Unsupported Unsupported

#pragma omp flush Unsupported Unsupported

#pragma omp threadprivate Unsupported Unsupported

#pragma omp task Unsupported Unsupported

#pragma omp taskyield Unsupported Unsupported

#pragma omp taskwait Unsupported Unsupported

For more information, see Supported IBM pragmas by different invocations in the XL C/C++ Compiler
Reference.

Different built-in function names between xlc/xlC and xlclang/xlclang++
The names of the built-in functions supported by IBM XL C/C++ for AIX 16.1 that is invoked by xlclang/
xlclang++ are in the form of __builtin_name while the names supported by xlc/xlC are in the form
of __name. For example, you should use __builtin_addex when invoking xlclang/xlclang++ while
__addex when invoking xlc/xlC. Note that names of the vector built-in functions are the same across two
front ends.

The full list of built-in functions and their descriptions are available at Compiler built-in functions in the XL
C/C++ Compiler Reference.

Unsupported GCC atomic memory access built-in functions by xlclang/xlclang++
IBM XL C/C++ for AIX 16.1 that is invoked by xlclang or xlclang++ does not support the following GCC
atomic memory access built-in functions. Use the C++11 atomics features instead.

• Atomic fetch and operation functions

– __sync_fetch_and_and
– __sync_fetch_and_nand
– __sync_fetch_and_or
– __sync_fetch_and_xor
– __sync_fetch_and_add
– __sync_fetch_and_sub

• Atomic operation and fetch functions

– __sync_and_and_fetch
– __sync_nand_and_fetch
– __sync_or_and_fetch
– __sync_xor_and_fetch
– __sync_add_and_fetch
– __sync_sub_and_fetch

• Atomic compare and swap functions

– __sync_val_compare_and_swap
– __sync_bool_compare_and_swap

Chapter 2. Migration checklist when moving from the XL-based front end to the Clang-based front end 11

For more information about GCC atomic memory access built-in functions, see GCC atomic memory
access built-in functions (IBM extension) in the XL C/C++ Compiler Reference.

Unsupported decimal floating-point built-in functions by xlclang/xlclang++
IBM XL C/C++ for AIX 16.1 that is invoked by xlclang or xlclang++ does not support decimal floating-
point built-in functions.

You can find these built-in functions at Decimal floating-point built-in functions in the XL C/C++ Compiler
Reference.

Changed usage for utility makeC++SharedLib and linkxlC
If you link binaries generated by the Clang-based front end of IBM XL C/C++ for AIX by using makeC+
+SharedLib or linkxlC, you must also specify -lc++ manually, in addition to the parameters you need,
to make the makeC++SharedLib and linkxlC utilities work properly. If you link binaries generated by
the XL-based front end, such requirement does not apply.

12 XL C/C++: Migration Guide

Chapter 3. Migrating from earlier versions to the
latest version

When you migrate programs from IBM XL C/C++ for AIX of earlier versions to the latest version, consider
factors including changed compiler options, built-in functions, and environment variables.

Changed compiler options
-qaltivec

The altivec.h file is no longer implicitly included when -qaltivec is in effect.
-qslmtags

In IBM XL C/C++ for AIX, V16.1, the option to invoke license usage tracking with SLM Tags logging is
changed from -qxflag=slmtags to -qslmtags.

Changed built-in functions

In IBM XL C/C++ for AIX, V16.1, you must include altivec.h to use the following built-in functions. For
more information, see XL C/C++ Compiler Reference.

• BCD add and subtract functions
• BCD comparison functions
• BCD load and store functions
• BCD test add and subtract for overflow functions
• Vector built-in functions

vec_cntlz
In IBM XL C/C++ for AIX 16.1, the data types of the returned value are changed: now the compiler
returns the same type as the argument, instead of always returning an unsigned type.
You can refer to the following table for the differences:

Table 5. Result and argument types of different releases

Argument
Result (release versions before
IBM XL C/C++ for AIX 16.1)

Result (release versions
starting from IBM XL C/C++ for
AIX 16.1)

vector signed char vector unsigned char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector signed short vector unsigned short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector signed int vector unsigned int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector signed long long vector unsigned long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

When you migrate programs from earlier versions to release versions starting from IBM XL C/C++ for
AIX 16.1 , this change might cause incompatibility. It is recommended that you change your code
according to the new behavior.

© Copyright IBM Corp. 2021 13

For more information, see vec_cntlz in the XL C/C++ Compiler Reference.

Migrating applications that use transactional memory built-in functions
Starting from IBM XL C/C++ for AIX 13.1.2, to use transactional memory built-in functions, you must
include a header file in the source code. In addition, if you used numeric return values of the transaction
begin and end built-in functions, you must replace numeric return values with macro return values that
are provided by IBM XL C/C++ for AIX 16.1.

For more information, see “Migrating applications that use transactional memory built-in functions” on
page 14.

Removed IBM Debugger for AIX
Starting from V16.1, IBM XL C/C++ for AIX does no longer ship IBM Debugger for AIX.

Migrating applications that use transactional memory built-in
functions

Starting from IBM XL C/C++ for AIX 13.1.2, to use transactional memory built-in functions, you must
include a header file in the source code. In addition, if you used numeric return values of the transaction
begin and end built-in functions, you must replace numeric return values with macro return values that
are provided by IBM XL C/C++ for AIX 16.1.

New header file needed for transactional memory built-in functions
You must include the htmxlintrin.h file in the source code if you use any of the transactional memory
built-in functions.

Changed return values of the transaction begin and end built-in functions
The return values of the transaction begin and end built-in functions are no longer numeric. You must
update your program using the following return values:
__TM_begin

This function returns _HTM_TBEGIN_STARTED if successful; otherwise, it returns a different value.
__TM_end

This function returns _HTM_TBEGIN_STARTED if the thread is in the transactional state before the
instruction starts; otherwise, it returns a different value.

__TM_simple_begin
This function returns _HTM_TBEGIN_STARTED if successful; otherwise, it returns a different value.

Related information in the XL C/C++ Compiler Reference
Transactional memory built-in functions

14 XL C/C++: Migration Guide

Chapter 4. Compatibility considerations when mixing
object files

Mixing object files generated by the same compiler with different versions or option
settings
Most object files that were compiled with different compilers can be linked together. However, some
object files are not compatible and are restricted to be linked together. You must recompile source code
to get compatible object files.

In XL C/C++ V11.1, the implementation of the threadprivate data, that is, OpenMP threadprivate
variable, has been improved. The operating system thread local storage is used instead of the runtime
implementation. The new implementation might improve performance on some applications.

If you plan to mix the object files .o that you have compiled with levels prior to 11.1 with the object files
that you compiled with IBM XL C/C++ for AIX 16.1, and the same OpenMP threadprivate variables are
referenced in both old and new object files, different implementations might cause incompatibility issues.
A link error, a compile time error or other undefined behaviors might occur. To support compatibility with
earlier versions, you can use the -qsmp=noostls suboption to switch back to the old implementation.
You can recompile the entire program with the default suboption -qsmp=ostls to get the benefit of the
new implementation.

If you are not sure whether the object files you have compiled with levels prior to 11.1 contain
any old implementation, you can use the nm command to determine whether you need to use the
-qsmp=noostls suboption. The following code is an example that shows how to use the nm command:\

> nm oldfiles.o
...
._xlGetThStorageBlock U -
._xlGetThValue U -
...

In the preceding example, if _xlGetThStorageBlock or _xlGetThValue is found, this means the
object files contain old implementation. In this case, you must use -qsmp=noostls; otherwise, use the
default suboption -qsmp=ostls.

More compatibility considerations are as follows:

• Do not mix object and library files that were compiled with different versions of a compiler if the -qipa
option was used during the compilation. The -qipa option instructs the compiler to perform an IPA link
for these object and library files. An IPA link might not be able to handle mismatched versions.

• If object files were compiled with different object models, when the -qobjmodel option is in effect,
the object files cannot be linked together and must be recompiled. The -qobjmodel option sets the
object model to be used for structures, unions, and classes . Different object modules are not
compatible.

Mixing object files generated by the same compiler with different front ends
IBM XL C/C++ for AIX 16.1 offers two front ends, which are the legacy XL-based front end that is invoked
by xlc/xlc++ and the Clang-based front end that is invoked by xlclang/xlclang++. For an explanation of
the XL-based front end and the Clang-based front end, see A two-in-one compiler: Clang-based front end
and XL-based front end in the Getting Started with XL C/C++.

For C source, object files generated by xlc, xlc++, xlclang, and xlclang++ are directly compatible when
the symbol names in source files contain only the dollar sign or characters from the basic character

© Copyright IBM Corp. 2021 15

set. For C++ source, object files generated by xlc++ and xlclang++ are not directly compatible as the
XL-based and Clang-based front ends use different C++ standard libraries, run times, and object models
so that symbol mangled names are different.

Generally, symbols in object files have the following mangled names:

• Simple identifiers for C source when compiled with any of xlc, xlc++, xlclang, and xlclang++
• Simple identifiers with a __ suffix in their names for C++ source when compiled with xlc++
• Identifiers with a beginning _Z in their names for C++ source when compiled with xlclang++

You can refer to the full list of compiler invocations in the XL C/C++ Compiler Reference for all basic
invocations and their equivalent special invocations.

For example, for C function int foo() {return 0;}, the symbol name is foo when compiled with any
of xlc, xlc++, xlclang, and xlclang++. For C++ function int foo() {return 0;}, the symbol name is
foo__Fv when compiled with xlc++ and _Z3foov when compiled with xlclang++.

To make binaries compatible, you are encouraged to compile source code and link the generated object
files consistently with either xlc++ or xlclang++.

Mixing object files generated by the different compilers
There is no binary compatibility among AIX, Linux for big endian distributions, and Linux for little endian
distributions compilers.

The objects generated by the Linux for little endian distributions compiler has a high degree of binary
compatibility with objects generated by GCC.

Object files generated by IBM XL C/C++ for AIX are not interoperable with the object files generated by
GCC, which use a different run time and C++ standard library, so you cannot mix and match binaries
generated by GCC and IBM XL C/C++ for AIX.

Related information in the XL C/C++ Migration Guide
“Resolving the compatibility issues of IPA object files” on page 17
It is recommended that you use the latest version of the compiler to compile and link the IPA object files
to avoid compatibility issues. If any compatibility issues occur, you can try these resolutions.
Related information in the XL C/C++ Compiler Reference
-qipa
-qobjmodel
Related information in the XL C/C++ Optimization and Programming Guide
Using interprocedural analysis

16 XL C/C++: Migration Guide

Chapter 5. Resolving the compatibility issues of IPA
object files

It is recommended that you use the latest version of the compiler to compile and link the IPA object files
to avoid compatibility issues. If any compatibility issues occur, you can try these resolutions.

IPA object files that are compiled using earlier versions but are linked by a newer
version
When IPA object files that are compiled with earlier versions of compilers are linked by a newer version,
errors might occur if the IPA object is compiled by one of the following compilers.

• XL Fortran 15.1.2 or earlier
• XL C/C++ 13.1.2 or earlier

Try resolving the compatibility issue using one of the following methods:

• Recompile and link your object files with the latest XL compiler if you want to use IPA.
• Do not enable the -qipa option.

IPA object files that are compiled using newer versions but are linked by an earlier
version
If IPA object files that are compiled with newer versions of compilers are linked by an earlier version,
errors occur during the link step. You might be able to resolve the issue by recompiling and linking the IPA
object files with the latest XL compiler.

For more information, see Using interprocedural analysis in the XL C/C++ Optimization and Programming
Guide.

© Copyright IBM Corp. 2021 17

18 XL C/C++: Migration Guide

Chapter 6. Using 32-bit and 64-bit modes

You can use the XL C/C++ compiler to develop either 32-bit or 64-bit applications. To do so, specify
-q32 (the default) or -q64, respectively, during compilation. Alternatively, you can set the OBJECT_MODE
environment variable to 32 or 64 at compile time. If both OBJECT_MODE and -q32/-q64 are specified,
-q32/-q64 takes precedence.

However, porting existing applications from 32-bit to 64-bit mode can lead to a number of problems,
mostly related to the differences in C/C++ long and pointer data type sizes and alignment between the
two modes. The following table summarizes these differences.

Table 6. Size and alignment of data types in 32-bit and 64-bit modes

Data type 32-bit mode 64-bit mode

Size Alignment Size Alignment

long, signed long, unsigned long 4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

pointer 4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

size_t (defined in the header file
<cstddef>)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

ptrdiff_t (defined in the header file
<cstddef>)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

The following sections discuss some of the common pitfalls implied by these differences, as well as
recommended programming practices to help you avoid most of these issues:

• “Assigning long values” on page 19
• “Assigning pointers ” on page 21
• “Aligning aggregate data” on page 22
• “Calling Fortran code” on page 22

When compiling in 32-bit or 64-bit mode, you can use the -qwarn64 option to help diagnose
some issues related to porting applications. In either mode, the compiler immediately issues a warning if
undesirable results, such as truncation or data loss, will occur when the program is executed.

For suggestions on improving performance in 64-bit mode, see "Optimize operations in 64-bit mode" in
the XL C/C++ Optimization and Programming Guide.

Related information in the XL C/C++ Compiler Reference
-q32, -q64
-qwarn64
Compile-time and link-time environment variables

Assigning long values
The limits of long type integers that are defined in the limits.h standard library header file are
different in 32-bit and 64-bit modes, as shown in the following table.

Table 7. Constant limits of long integers in 32-bit and 64-bit modes

Symbolic constant Mode Value Hexadecimal Decimal

LONG_MIN
(smallest signed long)

32-bit –(231) 0x80000000L –2,147,483,648

64-bit –(263) 0x8000000000000000L –9,223,372,036,854,775,808

© Copyright IBM Corp. 2021 19

Table 7. Constant limits of long integers in 32-bit and 64-bit modes (continued)

Symbolic constant Mode Value Hexadecimal Decimal

LONG_MAX
(largest signed long)

32-bit 231–1 0x7FFFFFFFL 2,147,483,647

64-bit 263–1 0x7FFFFFFFFFFFFFFFL 9,223,372,036,854,775,807

ULONG_MAX
(largest unsigned long)

32-bit 232–1 0xFFFFFFFFUL 4,294,967,295

64-bit 264–1 0xFFFFFFFFFFFFFFFFUL 18,446,744,073,709,551,615

These differences have the following implications:

• Assigning a long value to a double variable can cause loss of accuracy.
• Assigning constant values to long variables can lead to unexpected results. This issue is explored in

more detail in “Assigning constant values to long variables” on page 20.
• Bit-shifting long values will produce different results, as described in “Bit-shifting long values” on page

21.
• Using int and long types interchangeably in expressions will lead to implicit conversion through

promotions, demotions, assignments, and argument passing, and it can result in truncation of
significant digits, sign shifting, or unexpected results, without warning. These operations can impact
performance.

In situations where a long value can overflow when assigned to other variables or passed to functions,
you must observe the following guidelines:

• Avoid implicit type conversion by using explicit type casting to change types.
• Ensure that all functions that accept or return long types are properly prototyped.
• Ensure that long type parameters can be accepted by the functions to which they are being passed.

Assigning constant values to long variables
Although type identification of constants follows explicit rules in C and C++, many programs
use hexadecimal or unsuffixed constants as "typeless" variables and rely on a twos complement
representation to truncate values that exceed the limits permitted on a 32-bit system. As these large
values are likely to be extended into a 64-bit long type in 64-bit mode, unexpected results can occur,
generally at the following boundary areas:

• constant > UINT_MAX
• constant < INT_MIN
• constant > INT_MAX

Some examples of unexpected boundary side effects are listed in the following table.

Table 8. Unexpected boundary results of constants assigned to long types

Constant assigned to long Equivalent value 32-bit mode 64-bit mode

–2,147,483,649 INT_MIN–1 +2,147,483,647 –2,147,483,649

+2,147,483,648 INT_MAX+1 –2,147,483,648 +2,147,483,648

+4,294,967,726 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFF UINT_MAX –1 +4,294,967,295

0x100000000 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFFFFFFFFFF ULONG_MAX –1 –1

Unsuffixed constants can lead to type ambiguities that can affect other parts of your program, such
as when the results of sizeof operations are assigned to variables. For example, in 32-bit mode, the

20 XL C/C++: Migration Guide

compiler types a number like 4294967295 (UINT_MAX) as an unsigned long and sizeof returns 4 bytes.
In 64-bit mode, this same number becomes a signed long and sizeof returns 8 bytes. Similar problems
occur when the compiler passes constants directly to functions.

You can avoid these problems by using the suffixes L (for long constants), UL (for unsigned long
constants), LL (for long long constants), or ULL (for unsigned long long constants) to explicitly type all
constants that have the potential of affecting assignment or expression evaluation in other parts of your
program. In the example cited in the preceding paragraph, suffixing the number as 4294967295U forces
the compiler to always recognize the constant as an unsigned int in 32-bit or 64-bit mode. These
suffixes can also be applied to hexadecimal constants.

Bit-shifting long values
Left-bit-shifting long values produces different results in 32-bit and 64-bit modes. The examples in Table
9 on page 21 show the effects of performing a bit-shift on long constants using the following code
segment:

long l=valueL<<1;

Table 9. Results of bit-shifting long values

Initial value Symbolic
constant

Value after bit shift by one bit

32-bit mode 64-bit mode

0x7FFFFFFFL INT_MAX 0xFFFFFFFE 0x00000000FFFFFFFE

0x80000000L INT_MIN 0x00000000 0x0000000100000000

0xFFFFFFFFL UINT_MAX 0xFFFFFFFE 0x00000001FFFFFFFE

In 32-bit mode, 0xFFFFFFFE is negative. In 64-bit mode, 0x00000000FFFFFFFE and
0x00000001FFFFFFFE are both positive.

Assigning pointers
In 64-bit mode, pointers and int types are no longer of the same size. The implications of this are as
follows:

• Exchanging pointers and int types causes segmentation faults.
• Passing pointers to a function expecting an int type results in truncation.
• Functions that return a pointer but are not explicitly prototyped as such, return an int instead and

truncate the resulting pointer, as illustrated in the following example.

In C, the following code is valid in 32-bit mode without a prototype:

a=(char*) calloc(25);

Without a function prototype for calloc, when the same code is compiled in 64-bit mode, the compiler
assumes the function returns an int, so a is silently truncated and then sign-extended. Type casting the
result does not prevent the truncation, as the address of the memory allocated by calloc was already
truncated during the return. In this example, the best solution is to include the header file, stdlib.h,
which contains the prototype for calloc. An alternative solution is to prototype the function as it is in the
header file.

To avoid these types of problems, you can take the following measures:

• Prototype any functions that return a pointer, where possible by using the appropriate header file.
• Ensure that the type of parameter you are passing in a function, pointer or int, call matches the type

expected by the function being called.

Chapter 6. Using 32-bit and 64-bit modes 21

• For applications that treat pointers as an integer type, use type long or unsigned long in either
32-bit or 64-bit mode.

• Use the -qwarn64 option to get warning messages in the listing file about potential problems.

Aligning aggregate data
Normally, structures are aligned according to the most strictly aligned member in both 32-bit and 64-
bit modes. However, since long types and pointers change size and alignment in 64-bit modes, the
alignment of a structure's strictest member can change, resulting in changes to the alignment of the
structure itself.

Structures that contain pointers or long types cannot be shared between 32-bit and 64-bit applications.
Unions that attempt to share long and int types or overlay pointers onto int types can change
the alignment. In general, you need to check all but the simplest structures for alignment and size
dependencies.

In 64-bit mode, member values in a structure passed by value to a va_arg argument might not be
accessed properly if the size of the structure is not a multiple of 8-bytes.

Any aggregate data written to a file in one mode cannot be correctly read in the other mode. Data
exchanged with other languages has the similar problems.

For detailed information about aligning data structures, including structures that contain bit fields, see
Aligning data in the XL C/C++ Optimization and Programming Guide.

Calling Fortran code
A significant number of applications use C, C++, and Fortran together by calling each other or sharing
files. It is currently easier to modify data sizes and types on the C and C++ sides than on the Fortran side
of such applications. The following table lists C and C++ types and the equivalent Fortran types in the
different modes.

Table 10. Equivalent C/C++ and Fortran data types

C/C++ type Fortran type

32-bit 64-bit

signed int INTEGER INTEGER

signed long INTEGER INTEGER*8

unsigned long LOGICAL LOGICAL*8

pointer INTEGER INTEGER*8

integer POINTER (8 bytes)

22 XL C/C++: Migration Guide

Notices

Programming interfaces: Intended programming interfaces allow the customer to write programs to
obtain the services of IBM XL C/C++ for AIX.

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886

© Copyright IBM Corp. 2021 23

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 1998, 2018.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, or
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

24 XL C/C++: Migration Guide

For more information about the use of various technologies, including cookies, for these purposes,
see IBM's Privacy Policy at http://www.ibm.com/privacy and IBM's Online Privacy Statement at http://
www.ibm.com/privacy/details in the section entitled "Cookies, Web Beacons and Other Technologies,"
and the "IBM Software Products and Software-as-a-Service Privacy Statement" at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
“Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices 25

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

26 XL C/C++: Migration Guide

Index

Numerics
64-bit mode

bit-shifting 21

B
bit-shifting 21

Index 27

28 XL C/C++: Migration Guide

IBM®

Product Number: 5765-J12; 5725-
C72

GC27-8051-00

	Contents
	About this document
	Who should read this document
	How to use this document
	Conventions
	Related information
	Available help information
	Standards and specifications

	Technical support
	How to send your comments

	Chapter 1. Comparison between the XL-based and Clang-based front ends
	Chapter 2. Migration checklist when moving from the XL-based front end to the Clang-based front end
	Chapter 3. Migrating from earlier versions to the latest version
	Migrating applications that use transactional memory built-in functions

	Chapter 4. Compatibility considerations when mixing object files
	Chapter 5. Resolving the compatibility issues of IPA object files
	Chapter 6. Using 32-bit and 64-bit modes
	Assigning long values
	Assigning constant values to long variables
	Bit-shifting long values

	Assigning pointers
	Aligning aggregate data
	Calling Fortran code

	Notices
	Trademarks

	Index

