
IBM XL C/C++ for AIX, V13.1.2

Getting Started with XL C/C++
Version 13.1.2

SC27-4257-01

IBM

IBM XL C/C++ for AIX, V13.1.2

Getting Started with XL C/C++
Version 13.1.2

SC27-4257-01

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 59.

First edition

This edition applies to IBM XL C/C++ for AIX, V13.1.2 (Program 5765-J07; 5725-C72) and to all subsequent releases
and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

© Copyright IBM Corporation 1996, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Conventions v
Related information ix

IBM XL C/C++ information ix
Standards and specifications x
Other IBM information. xi
Other information xi

Technical support xii
How to send your comments xii

Chapter 1. Introducing XL C/C++ 1
Commonality with other IBM compilers 1
Operating system and hardware support 1
A highly configurable compiler 1
Language standard compliance 3

Compatibility with GNU 3
Source-code migration and conformance checking 3

Libraries 4
Tools, utilities, and commands 5
Program optimization 7
64-bit object capability 8
Shared memory parallelization 8
Diagnostic reports 9
Symbolic debugger support 10

Chapter 2. What's new for IBM XL
C/C++ for AIX, V13.1.2 11
Built-in functions 11
Commands 11
Compiler options 12

Chapter 3. Migration of your
applications 13
Migrating applications that use transactional
memory built-in functions 13

Chapter 4. Enhancements added in
earlier versions 15
Enhancements added in Version 13.1 15

Support for POWER8 processors 15
C++11 features 16
C11 features 17
OpenMP 4.0 18
Built-in functions 18
Compiler options and pragma directives . . . 22
Performance and optimization 24

Enhancements added in Version 12.1 24
C++11 features 24
C11 features 27
OpenMP 3.1 28
Performance and optimization 28
Diagnostic reports 29
Built-in functions 30
Compiler options and pragma directives . . . 31

Enhancements added in Version 11.1 33
Support for POWER7 processors 33
C++11 features 35
Performance and optimization 37
New diagnostic reports 39
Utilization tracking and reporting tool 42
New or changed compiler options and directives 42
Built-in functions 46
Compatibility of redistributable library libxlopt.a 47

Chapter 5. Setting up and customizing
XL C/C++. 49
Using custom compiler configuration files 49
Configuring compiler utilization tracking and
reporting 49

Chapter 6. Developing applications
with XL C/C++ 51
The compiler phases 51
Editing C/C++ source files 51
Compiling with XL C/C++ 51

Invoking the compiler 52
Compiling parallelized XL C/C++ applications 52
Specifying compiler options 53
XL C/C++ input and output files 54

Linking your compiled applications with XL C/C++ 54
Relinking an existing executable file 55
Dynamic and static linking 55

Running your compiled application 56
XL C/C++ compiler diagnostic aids 57

Debugging compiled applications 57
Determining which level of XL C/C++ is being
used 57

Notices 59
Trademarks 61

Index 63

© Copyright IBM Corp. 1996, 2015 iii

iv XL C/C++: Getting Started

About this document

This document contains overview and basic usage information for the IBM® XL
C/C++ for AIX®, V13.1.2 compiler.

Who should read this document

This document is intended for C and C++ developers who are looking for
introductory overview and usage information for XL C/C++. It assumes that you
have some familiarity with command-line compilers, basic knowledge of the C and
C++ programming languages, and basic knowledge of operating system
commands. Programmers new to XL C/C++ can use this document to find
information about the capabilities and features unique to XL C/C++.

How to use this document

Unless indicated otherwise, all of the text in this reference pertains to both C and
C++ languages. Where there are differences between languages, these are indicated
through qualifying text and icons, as described in “Conventions.”

Throughout this document, the xlc and xlC compiler invocations are used to
describe the behavior of the compiler. You can, however, substitute other forms of
the compiler invocation command if your particular environment requires it, and
compiler option usage remains the same unless otherwise specified.

While this document covers information such as configuring the compiler
environment, and compiling and linking C or C++ applications using the XL
C/C++ compiler, it does not include the following topics:
v Compiler installation: see the XL C/C++ Installation Guide.
v Compiler options: see the XL C/C++ Compiler Reference for detailed information

about the syntax and usage of compiler options.
v The C or C++ programming language: see the XL C/C++ Language Reference for

information about the syntax, semantics, and IBM implementation of the C or
C++ programming language.

v Programming topics: see the XL C/C++ Optimization and Programming Guide for
detailed information about developing applications with XL C/C++, with a
focus on program portability and optimization.

Conventions
Typographical conventions

© Copyright IBM Corp. 1996, 2015 v

The following table shows the typographical conventions used in the IBM XL
C/C++ for AIX, V13.1.2 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, xlc and xlC
(xlc++), along with several other
compiler invocation commands to
support various C/C++ language
levels and compilation environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: xlc myprogram.c
-O3.

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon Meaning

C only begins
C

C

C only ends

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

C++ only begins
C++

C++

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++
language.

IBM extension begins
IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

vi XL C/C++: Getting Started

Table 2. Qualifying elements (continued)

Qualifier/Icon Meaning

C11 begins
C11

C11

C11 ends

The text describes a feature that is introduced into standard C
as part of C11.

C++11 begins
C++11

C++11

C++11 ends

The text describes a feature that is introduced into standard
C++ as part of C++11.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
helps you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

If choosing one of the items is optional, the entire stack is shown below the
main path.

About this document vii

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma
comment directive.

►►
(1) (2) (3) (4) (5) (9) (10)

pragma comment (compiler)
date
timestamp

(6)
copyright
user (7) (8)

, " token_sequence "

►◄

Notes:

1 This is the start of the syntax diagram.

2 The symbol # must appear first.

3 The keyword pragma must appear following the # symbol.

4 The name of the pragma comment must appear following the keyword pragma.

5 An opening parenthesis must be present.

6 The comment type must be entered only as one of the types indicated:
compiler, date, timestamp, copyright, or user.

7 A comma must appear between the comment type copyright or user, and an
optional character string.

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

viii XL C/C++: Getting Started

#pragma comment(date)
#pragma comment(user)
#pragma comment(copyright,"This text will appear in the module")

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.
v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Related information
The following sections provide related information for XL C/C++:

IBM XL C/C++ information
XL C/C++ provides product information in the following formats:
v Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL C/C++ for AIX, V13.1.2. It is located by default in the XL C/C++ directory
and in the \quickstart directory of the installation DVD.

v README files
README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory and in the root directory of the installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for AIX, V13.1.2 Installation Guide.

v Online product documentation

About this document ix

The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSGH3R_13.1.2/
com.ibm.compilers.aix.doc/welcome.html.

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27036618.
The following files comprise the full set of XL C/C++ product information:

Table 3. XL C/C++ PDF files

Document title
PDF file
name Description

IBM XL C/C++ for AIX,
V13.1.2 Installation Guide,
SC27-4258-01

install.pdf Contains information for installing XL C/C++
and configuring your environment for basic
compilation and program execution.

Getting Started with IBM
XL C/C++ for AIX,
V13.1.2, SC27-4257-01

getstart.pdf Contains an introduction to the XL C/C++
product, with information about setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL C/C++ for AIX,
V13.1.2 Compiler Reference,
SC27-4259-01

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in functions,
including those used for parallel processing.

IBM XL C/C++ for AIX,
V13.1.2 Language Reference,
SC27-4260-01

langref.pdf Contains information about the C and C++
programming languages, as supported by IBM,
including language extensions for portability
and conformance to nonproprietary standards.

IBM XL C/C++ for AIX,
V13.1.2 Optimization and
Programming Guide,
SC27-4261-01

proguide.pdf Contains information about advanced
programming topics, such as application
porting, interlanguage calls with Fortran code,
library development, application optimization
and parallelization, and the XL C/C++
high-performance libraries.

Standard C++ Library
Reference, SC27-4262-01

standlib.pdf Contains reference information about the
standard C++ runtime libraries and headers.

C/C++ Legacy Class
Libraries Reference,
SC09-7652-00

legacy.pdf Contains reference information about the USL
I/O Stream Library and the Complex
Mathematics Library.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL C/C++, including IBM Redbooks® publications,
white papers, and other articles, is available on the web at http://www.ibm.com/
support/docview.wss?uid=swg27036618.

For more information about C/C++, see the C/C++ café at https://
www.ibm.com/developerworks/community/groups/service/html/
communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3.

Standards and specifications
XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards and specifications for precise definitions of some of the
features found in this information.

x XL C/C++: Getting Started

http://www.ibm.com/support/knowledgecenter/SSGH3R_13.1.2/com.ibm.compilers.aix.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGH3R_13.1.2/com.ibm.compilers.aix.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27036618
http://www.ibm.com/support/docview.wss?uid=swg27036618
http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036618
http://www.ibm.com/support/docview.wss?uid=swg27036618
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3

v Information Technology - Programming languages - C, ISO/IEC 9899:1990, also
known as C89.

v Information Technology - Programming languages - C, ISO/IEC 9899:1999, also
known as C99.

v Information Technology - Programming languages - C, ISO/IEC 9899:2011, also
known as C11. (Partial support)

v Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also
known as C++98.

v Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also
known as Standard C++.

v Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also
known as C++11 (Partial support).

v Draft Technical Report on C++ Library Extensions, ISO/IEC DTR 19768. This draft
technical report has been submitted to the C++ standards committee, and is
available at http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/
n1836.pdf.

v AltiVec Technology Programming Interface Manual, Motorola Inc. This specification
for vector data types, to support vector processing technology, is available at
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.

v Information Technology - Programming Languages - Extension for the programming
language C to support decimal floating-point arithmetic, ISO/IEC WDTR 24732. This
draft technical report has been submitted to the C standards committee, and is
available at http://www.open-std.org/JTC1/SC22/WG14/www/docs/
n1176.pdf.

v Decimal Types for C++: Draft 4 http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2006/n1977.html

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
v OpenMP Application Program Interface Version 3.1 (full support) and OpenMP

Application Program Interface Version 4.0 (partial support), available at
http://www.openmp.org

Other IBM information
v Parallel Environment for AIX: Operation and Use

v The IBM Systems Information Center, at http://publib.boulder.ibm.com/
infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm,
is a resource for AIX information.
You can find the following books for your specific AIX system:
– AIX Commands Reference, Volumes 1 - 6

– Technical Reference: Base Operating System and Extensions, Volumes 1 & 2

– AIX National Language Support Guide and Reference

– AIX General Programming Concepts: Writing and Debugging Programs

– AIX Assembler Language Reference

Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

About this document xi

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1176.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1176.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1977.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1977.html
http://www.openmp.org
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm
http://gcc.gnu.org/onlinedocs

Technical support
Additional technical support is available from the XL C/C++ Support page at
http://www.ibm.com/support/entry/portal/Overview/Software/Rational/
XL_C~C++_for_AIX. This page provides a portal with search capabilities to a large
selection of Technotes and other support information.

If you cannot find what you need, you can send an email to
compinfo@cn.ibm.com.

For the latest information about XL C/C++, visit the product information site at
http://www.ibm.com/software/products/us/en/xlcpp-aix/.

How to send your comments
Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments by email to compinfo@cn.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL C/C++, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

xii XL C/C++: Getting Started

http://www.ibm.com/support/entry/portal/Overview/Software/Rational/XL_C~C++_for_AIX
http://www.ibm.com/support/entry/portal/Overview/Software/Rational/XL_C~C++_for_AIX
http://www.ibm.com/software/products/us/en/xlcpp-aix/

Chapter 1. Introducing XL C/C++

IBM XL C/C++ for AIX, V13.1.2 is an advanced, high-performance compiler that
can be used for developing complex, computationally intensive programs,
including interlanguage calls with C and Fortran programs.

This section contains information about the features of the XL C/C++ compiler at a
high level. It is intended for people who are evaluating the compiler and for new
users who want to find out more about the product.

Commonality with other IBM compilers
IBM XL C/C++ for AIX, V13.1.2 is part of a larger family of IBM C, C++, and
Fortran compilers. XL C/C++, together with XL C and XL Fortran, comprises the
family of XL compilers.

These compilers are derived from a common code base that shares compiler
function and optimization technologies for a variety of platforms and
programming languages. Programming environments include IBM AIX, IBM Blue
Gene®/Q, IBM i, selected Linux distributions, IBM z/OS®, and IBM z/VM®. The
common code base, along with compliance with international programming
language standards, helps support consistent compiler performance and ease of
program portability across multiple operating systems and hardware platforms.

Operating system and hardware support
This section describes the operating systems and hardware that IBM XL C/C++ for
AIX, V13.1.2 supports.

IBM XL C/C++ for AIX, V13.1.2 supports the following operating systems:
v AIX V6.1 TL 2 Service Pack 5 or later
v AIX V7.1
v IBM i V7.1 PASE V7.1
v IBM i V7.2 PASE V7.2

See the README file and "Before installing XL C/C++" in the XL C/C++
Installation Guide for a complete list of requirements.

The compiler, its libraries, and its generated object programs run on POWER5,
POWER5+, POWER6®, POWER7®, POWER7+™, and POWER8® systems with the
required software and disk space.

To exploit the various supported hardware configurations, the compiler provides
options to tune the performance of applications according to the hardware type
that runs the compiled applications.

A highly configurable compiler
You can use a variety of compiler invocation commands and options to tailor the
compiler to your unique compilation requirements.

© Copyright IBM Corp. 1996, 2015 1

Compiler invocation commands

XL C/C++ provides several commands to invoke the compiler, for example, xlC,
xlc++, and xlc. Compiler invocation commands are provided to support most
standardized C/C++ language levels and many popular language extensions.

The compiler also provides corresponding "_r" versions of most invocation
commands, for example, xlc_r and xlC_r. The "_r" invocations instruct the compiler
to link and bind object files to threadsafe components and libraries, and produce
threadsafe object code for compiler-created data and procedures.

For more information about XL C/C++ compiler invocation commands, see
"Invoking the compiler" in the XL C/C++ Compiler Reference.

Compiler options

You can choose from a large selection of compiler options to control compiler
behavior. You can benefit from using different options for the following tasks:
v Debugging your applications
v Optimizing and tuning application performance
v Selecting language levels and extensions for compatibility with nonstandard

features and behaviors that are supported by other C or C++ compilers
v Performing many other common tasks that would otherwise require changing

the source code

You can specify compiler options through a combination of environment variables,
compiler configuration files, command line options, and compiler directive
statements embedded in your program source.

For more information about XL C/C++ compiler options, see "Compiler options
reference" in the XL C/C++ Compiler Reference.

Custom compiler configuration files

The installation process creates a default plain text compiler configuration file
containing stanzas that define compiler option default settings.

If you frequently specify compiler option settings other than the default settings of
XL C/C++, you can use makefiles to define your settings. Alternatively, you can
create custom configuration files to define your own frequently used option
settings.

For more information about using custom compiler configuration files, see “Using
custom compiler configuration files” on page 49.

Utilization tracking configuration file

The utilization and reporting tool can be used to detect whether your
organization's use of the compiler exceeds your license entitlements.

The utilization tracking and reporting feature of the compiler has its own
configuration file. The main compiler configuration file contains an entry that
points to this file. The different installations of the compiler product can use a
single utilization tracking configuration file to centrally manage the utilization
tracking and reporting feature.

2 XL C/C++: Getting Started

For detailed information about the utilization tracking and reporting feature, see
"Tracking and reporting compiler usage" in the XL C/C++ Compiler Reference.

Language standard compliance
IBM XL C/C++ for AIX, V13.1.2 supports the following C/C++ programming
language specifications.

C language specifications

v Partial support for ISO/IEC 9899:2011 (referred to as C11)
v ISO/IEC 9899:1999 (referred to as C99)
v ISO/IEC 9899:1990 (referred to as C89)

C++ language specifications

v Partial support for ISO/IEC 14882:2011 (referred to as C++11)
v ISO/IEC 14882:2003 (referred to as C++03)
v ISO/IEC 14882:1998, the first official specification of the language (referred to as

C++98)

In addition to the standard language levels, XL C/C++ supports the following
language extensions:
v Partial support for OpenMP Application Program Interface V4.0
v OpenMP Application Program Interface V3.1
v Language extensions to support vector programming
v A subset of GNU C and C++ language extensions

See "Language levels and language extensions" in the XL C/C++ Language Reference
for more information about C/C++ language specifications and extensions.

Compatibility with GNU
XL C/C++ supports a subset of the GNU compiler command options to facilitate
porting applications that are developed with the gcc and g++ compilers.

This support is available when the gxlc or gxlc++ invocation command is used
together with select GNU compiler options. Where possible, the compiler maps
GNU options to their XL C/C++ compiler option counterparts before invoking the
compiler.

The invocation commands use a plain text configuration file to control GNU-to-XL
C/C++ option mappings and defaults. You can customize this configuration file to
meet your unique compilation requirements. For more information, see "Reusing
GNU C/C++ compiler options with gxlc and gxlc++" in the XL C/C++ Compiler
Reference.

Source-code migration and conformance checking
XL C/C++ provides compiler invocation commands that instruct the compiler to
compile your application code to a specific language level.

You can also use the -qlanglvl compiler option to specify a language level. If the
language or language extension elements in your program source do not conform
to the specified language level, the compiler issues diagnostic messages.

Chapter 1. Introducing XL C/C++ 3

See -qlanglvl in the XL C/C++ Compiler Reference for more information.

Libraries
XL C/C++ includes a runtime environment containing a number of libraries.

Standard C++ library

XL C/C++ ships a modified version of the Dinkum C++ Library, a conforming
implementation of the Standard C++ Library. The Standard C++ Library consists of
51 headers, including 13 headers which constitute the Standard Template Library
(STL). In addition, the Standard C++ Library works with the 18 headers from the
Standard C Library. The functions in these headers perform essential services such
as input and output. They also provide efficient implementations of frequently
used operations.

For more information, see the Standard C++ Library Reference.

C++ library extensions

In addition to the Standard C++ Library, XL C/C++ V13.1.2 supports many
extensions to the C++ language as defined by the Draft Technical Report on C++
Library Extensions (TR1).

For more information about these language extensions, see Draft Technical Report
on C++ Library Extensions (TR1).

Mathematical Acceleration Subsystem library

The Mathematical Acceleration Subsystem (MASS) library consists of scalar and
vector mathematical built-in functions tuned specifically for optimum performance
on supported processor architectures. You can choose a MASS library to support
high-performance computing on a broad range of processors, or you can select a
library tuned to support a specific processor family.

The MASS library functions support both 32-bit and 64-bit compilation modes and
offer improved performance over the default libm math library routines. These
libraries are threadsafe and are called automatically when you request specific
levels of optimization for your application. You can also make explicit calls to
MASS library functions, whether optimization options are in effect or not.

For more information, see "Using the Mathematical Acceleration Subsystem" in the
XL C/C++ Optimization and Programming Guide.

Basic Linear Algebra Subprograms

The Basic Linear Algebra Subprograms (BLAS) set of high-performance algebraic
functions are shipped in the libxlopt library. You can use these functions to:
v Compute the matrix-vector product for a general matrix or its transpose.
v Perform combined matrix multiplication and addition for general matrices or

their transposes.

For more information about using the BLAS functions, see "Using the Basic Linear
Algebra Subprograms" in the XL C/C++ Optimization and Programming Guide.

4 XL C/C++: Getting Started

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf

Other libraries

The following libraries are also shipped with XL C/C++:
v The SMP runtime library supports both explicit and automated parallel

processing. See "SMP Runtime Library" in the XL C/C++ Optimization and
Programming Guide.

v The memory debug runtime library is used for diagnosing memory leaks. See
"Using memory heaps" in the XL C/C++ Optimization and Programming Guide.

v XL C++ Runtime Library contains support routines needed by the compiler.
v UNIX System Laboratories (USL) contains stream classes for input and output

capabilities for C++. This library is provided for use by old applications. For
new applications, use the Standard C++ Library for portability. See C/C++ Legacy
Class Libraries Reference for more information.

v USL contains classes for manipulating complex numbers. This library is
provided for use by old applications. For new applications, use the Standard
C++ Library for portability. See C/C++ Legacy Class Libraries Reference for more
information.

v C++ The demangler library provides routines and classes for demangling
linkage names created by the C++ compiler.

Support for Boost libraries

IBM XL C/C++ for AIX, V13.1.2 provides partial support for the Boost V1.55.0
libraries. A patch file is available that modifies the Boost V1.55.0 libraries so that
they can be built and used with XL C/C++ applications. The patch or modification
file does not extend nor provide additional functionality to the Boost libraries.

To access the patch file for building the Boost libraries, go to Boost Library
Regression Test Summaries and select download required Boost modification
file for your compiler release and platform.

You can download the latest Boost libraries at http://www.boost.org/.

For more information about support for libraries, search on the XL C/C++
Compiler support page at http://www.ibm.com/support/entry/portal/Overview/
Software/Rational/XL_C~C++_for_AIX.

Tools, utilities, and commands
This topic introduces the main tools, utilities, and commands that are included
with XL C/C++. It does not contain all compiler tools, utilities, and commands.

Tools

IBM Debugger for AIX
The IBM Debugger for AIX can help you detect and diagnose errors in
programs that are running locally or remotely. You can control the
execution of your programs by setting compiled language-specific
breakpoints, suspending execution, stepping through your code, and
examining and changing the contents of variables.

The debugger contains views and functionality specific to a given
programming language. With the compiled language views, you can
monitor variables, expressions, registers, memory, and application modules
of the application you are debugging.

Chapter 1. Introducing XL C/C++ 5

http://www.ibm.com/support/docview.wss?uid=swg27006911
http://www.ibm.com/support/docview.wss?uid=swg27006911
http://www.boost.org/
http://www.ibm.com/support/entry/portal/Overview/Software/Rational/XL_C~C++_for_AIX
http://www.ibm.com/support/entry/portal/Overview/Software/Rational/XL_C~C++_for_AIX

Utilization reporting tool

The utilization reporting tool generates a report describing your
organization's utilization of the compiler. These reports help determine
whether your organization's use of the compiler matches your compiler
license entitlements. The urt command contains options that can be used
to customize the report. For more information, see Tracking and reporting
compiler usage in the XL C/C++ Compiler Reference.

Utilities

C++ c++filt name demangling utility
The c++filt name demangling utility converts the mangled names to their
original source code names. When XL C/C++ compiles a C++ program, it
encodes all function names and certain other identifiers to include type
and scoping information. This encoding process is called mangling. For
more information, see Demangling compiled C++ names in the XL C/C++
Optimization and Programming Guide. C++

CreateExportList utility
The CreateExportList utility creates a file that contains a list of all the
exportable symbols found in a given set of object files. For more
information, see Exporting symbols with the CreateExportList utility in the
XL C/C++ Optimization and Programming Guide.

gxlc and gxlc++ utilities
The gxlc and gxlc++ utilities translate GNU C and GNU C++ invocation
commands into corresponding xlc and xlc++ commands before the XL
C/C++ compiler is invoked. The purpose of these utilities is to minimize
the number of changes to makefiles used for existing applications built
with the GNU compilers and to facilitate the transition to the XL C/C++
compiler. For more information, see Reusing GNU C/C++ compiler
options with gxlc and gxlc++ in the XL C/C++ Compiler Reference.

C++ linkxlC utility
The linkxlC utility links C++ .o and .a files. It is used for linking on
systems where the XL C/C++ compiler is not installed. For more
information, see Linking with the linkxlC utility in the XL C/C++
Optimization and Programming Guide. C++

C++ makeC++SharedLib utility
The makeC++SharedLib utility permits the creation of C++ shared libraries
on systems where the XL C/C++ compiler is not installed. For more
information, see Creating a shared library with the makeC++SharedLib
utility in the XL C/C++ Optimization and Programming Guide. C++

Commands

genhtml command
The genhtml command converts an existing XML diagnostic report
produced by the -qlistfmt option. You can choose to produce XML or
HTML diagnostic reports by using the -qlistfmt option. The report can
help you find optimization opportunities. For more information about how
to use this command, see genhtml command in the XL C/C++ Compiler
Reference.

Profile-directed feedback (PDF) related commands

6 XL C/C++: Getting Started

cleanpdf command
The cleanpdf command removes all the PDF files or the specified
PDF files from the directory to which profile-directed feedback
data is written.

mergepdf command
The mergepdf command provides the ability to weigh the
importance of two or more PDF records when combining them into
a single record. The PDF records must be derived from the same
executable.

showpdf command
The showpdf command displays the following types of profiling
information for all the procedures executed in a PDF run
(compilation under the -qpdf1 option):
v Block-counter profiling
v Call-counter profiling
v Value profiling
v Cache-miss profiling, if you specified the -qpdf1=level=2 option

during the -qpdf1 phase.

You can view the first two types of profiling information in either
text or XML format. However, you can view value profiling and
cache-miss profiling information only in XML format.

For more information, see -qpdf1, -qpdf2 in the XL C/C++ Compiler
Reference.

xlCndi
The xlCndi script installs XL C/C++ to a nondefault directory location. For
more information, see Updating an advanced installation using xlCndi in
the XL C/C++ Installation Guide.

Program optimization
XL C/C++ provides several compiler options that can help you control the
optimization and performance of your programs.

With these options, you can perform the following tasks:
v Select different levels of compiler optimizations.
v Control optimizations for loops, floating point, and other types of operations.
v Optimize a program for a particular class of machines or for a very specific

machine configuration, depending on where the program will run.

Optimizing transformations can give your application better overall execution
performance. XL C/C++ provides a portfolio of optimizing transformations
tailored to various supported hardware. These transformations offer the following
benefits:
v Reducing the number of instructions executed for critical operations
v Restructuring generated object code to make optimal use of the Power

Architecture® processors
v Improving the usage of the memory subsystem
v Exploiting the ability of the architecture to handle large amounts of shared

memory parallelization

For more information, see these related topics:

Chapter 1. Introducing XL C/C++ 7

v "Optimizing your applications" in the XL C/C++ Optimization and Programming
Guide

v "Optimizing and tuning options" in the XL C/C++ Compiler Reference

v "Compiler built-in functions" in the XL C/C++ Compiler Reference

64-bit object capability
The 64-bit object capability of the XL C/C++ compiler addresses increasing
demand for larger storage requirements and greater processing power.

The AIX operating system provides an environment that allows you to develop
and execute programs that exploit 64-bit processors through the use of 64-bit
address spaces.

To support larger executables that can fit within a 64-bit address space, a separate
64-bit object format is used. The binder binds these objects to create 64-bit
executables. Objects that are bound together must all be of the same object format.
The following scenarios are not permitted and will fail to load, execute, or both:
v A 64-bit object or executable that has references to symbols from a 32-bit library

or shared library
v A 32-bit object or executable that has references to symbols from a 64-bit library

or shared library
v A 64-bit executable that explicitly attempts to load a 32-bit module
v A 32-bit executable that explicitly attempts to load a 64-bit module
v Attempts to run 64-bit applications on 32-bit platforms

On both 64-bit and 32-bit platforms, 32-bit executables will continue to run as they
currently do on a 32-bit platform.

XL C/C++ supports 64-bit mode mainly through the use of the -q64 and -qarch
compiler options. This combination determines the bit mode and instruction set for
the target architecture.

For more information, see "Using 32-bit and 64-bit modes" in the XL C/C++
Optimization and Programming Guide

Shared memory parallelization
XL C/C++ supports application development for multiprocessor system
architectures.

You can use any of the following methods to develop your parallelized
applications with XL C/C++:

v Directive-based shared memory parallelization (OpenMP, SMP)
v Instructing the compiler to automatically generate shared memory

parallelization
v Message-passing-based shared or distributed memory parallelization (MPI)
v POSIX threads (Pthreads) parallelization
v Low-level UNIX parallelization using fork() and exec()

The parallel programming facilities are based on the concept of threads. Parallel
programming exploits the advantages of multiprocessor systems while maintaining
a full binary compatibility with existing uniprocessor systems. This means that a

8 XL C/C++: Getting Started

multithreaded program that works on a uniprocessor system can take advantage of
a multiprocessor system without recompiling.

For more information, see "Parallelizing your programs" in the XL C/C++
Optimization and Programming Guide.

OpenMP directives

OpenMP directives are a set of API-based commands supported by XL C/C++ and
many other IBM and non-IBM C, C++, and Fortran compilers.

You can use OpenMP directives to instruct the compiler how to parallelize a
particular block of code. The existence of the directives in the source removes the
need for the compiler to perform any dependence analysis on the parallel code.
OpenMP directives require the presence of Pthread libraries to provide the
necessary infrastructure for parallelization.

OpenMP directives address the following important issues of parallelizing an
application:

1. Clauses and directives are available for scoping variables. Generally,
variables should not be shared; that is, each thread should have its own
copy of the variable.

2. Work sharing directives specify how the work contained in a parallel
region of code should be distributed across the threads.

3. Directives are available to control synchronization between threads.

As of IBM XL C/C++ for AIX 13.1, XL C/C++ supports OpenMP API Version 3.1
and selected features of the OpenMP API Version 4.0 specification. For details, see
“OpenMP 4.0” on page 18.

For more information about program performance optimization, see the following
topics:
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide

v The OpenMP API specification for parallel programming

Diagnostic reports
The compiler listings , XML reports, and HTML reports provide important
information to help you develop and debug your applications more efficiently.

Listing information is organized into optional sections that you can include or
omit. For more information about the applicable compiler options and the listing
itself, see "Compiler messages and listings" in the XL C/C++ Compiler Reference.

You can also obtain diagnostic information from the compiler in XML or HTML
format. The XML and HTML reports provide information about optimizations that
the compiler performed or could not perform. You can use this information to
reduce programming effort when tuning applications, especially high-performance
applications. The report is defined by an XML schema and is easily consumable by
tools that you can create to read and analyze the results. For detailed information
about this report and how to use it, see "Using reports to diagnose optimization
opportunities" in the XL C/C++ Optimization and Programming Guide.

Chapter 1. Introducing XL C/C++ 9

http://www.openmp.org

Symbolic debugger support
You can instruct XL C/C++ to include debugging information in your compiled
objects by using different levels of the -g compiler option.

For details, see -g in XL C/C++ Compiler Reference.

The debugging information can be examined by dbx, the IBM Debugger for AIX, or
any other symbolic debugger that supports the AIX XCOFF executable format to
help you debug your programs.

10 XL C/C++: Getting Started

Chapter 2. What's new for IBM XL C/C++ for AIX, V13.1.2

This section describes features and enhancements added to IBM XL C/C++ for
AIX, V13.1.2.

Built-in functions
This section describes the major categories of built-in functions that are new or
changed for IBM XL C/C++ for AIX, V13.1.2.

New built-in functions

vec_mergee
Merges the values of even-numbered elements of two vectors.

vec_mergeo
Merges the values of odd-numbered elements of two vectors.

vec_revb
Returns a vector that contains the bytes of the corresponding element of
the argument in the reverse byte order.

vec_reve
Returns a vector that contains the elements of the argument in the reverse
element order.

vec_xl(a, b)
Loads a 16-byte vector from the memory address specified by the
displacement a and the pointer b.

vec_xl_be(a, b)
Loads a 16-byte vector from the memory address specified by the
displacement a and the pointer b.

vec_xst(a, b,c)
Stores the elements of the 16-byte vector a to the effective address obtained
by adding the displacement provided in b with the address provided by c.
The effective address is not truncated to a multiple of 16 bytes.

vec_xst_be(a, b,c)
Stores the elements of the 16-byte vector a in big endian element order to
the effective address obtained by adding the displacement provided in b
with the address provided by c. The effective address is not truncated to a
multiple of 16 bytes.

For more information about built-in functions provided by XL C/C++, see
Compiler built-in functions in the XL C/C++ Compiler Reference.

Commands
This section describes new, changed, or removed compiler commands.

resetpdf
This command has been removed. It is recommended that you use the
cleanpdf command instead. The behavior of the resetpdf command is the
same as that of the cleanpdf command. For more information, see -qpdf1,
-qpdf2 in the XL C/C++ Compiler Reference.

© Copyright IBM Corp. 1996, 2015 11

Compiler options
This section describes new or changed compiler options.

-qfloat
The following suboptions are added:

subnormals
This suboption asserts to the compiler that the code uses
subnormal floating point values, also known as denormalized
floating point values.

nosubnormals
This suboption asserts to the compiler that the code does not use
subnormal floating point values, also known as denormalized
floating point values.

Whether or not you specify this suboption, the behavior of your program
will not change, but the compiler uses this information to gain possible
performance improvements. The suboptions take effect only on POWER8
processors. To use -qfloat=subnormals or -qfloat=nosubnormals, you must
also specify the -qarch=pwr8 and -qtune=pwr8 options.

-qinline
The level suboption is added to represent the relative degree of inlining.

-qstrict=guards
The actions that are performed by XL C/C++ if you specify the
-qstrict=guards option have been increased. When the -qstrict=guards
option is in effect, the compiler behavior is as follows:
v The compiler does not move operations past guards.
v When the compiler encounters if statements that contain pointer

wraparound checks that can be resolved at compile time, it does not
remove the checks or the enclosed operations.

12 XL C/C++: Getting Started

Chapter 3. Migration of your applications

This section lists important considerations when you migrate your applications
that was compiled with other versions of XL C/C++.

Migrating applications that use transactional memory built-in functions
Starting from IBM XL C/C++ for AIX V13.1.2, to use transactional memory built-in
functions, you must include a header file in the source code. In addition, if you
used numeric return values of the transaction begin and end built-in functions, you
must replace numeric return values with macro return values that are provided by
IBM XL C/C++ for AIX, V13.1.2.

New header file needed for transactional memory built-in
functions

You must include the htmxlintrin.h file in the source code if you use any of the
transactional memory built-in functions.

Changed return values of the transaction begin and end built-in
functions

The return values of the transaction begin and end built-in functions are no longer
numeric. You must update your program using the following return values:

__TM_begin
This function returns _HTM_TBEGIN_STARTED if successful; otherwise, it
returns a different value.

__TM_end
This function returns _HTM_TBEGIN_STARTED if the thread is in the
transactional state before the instruction starts; otherwise, it returns a
different value.

__TM_simple_begin
This function returns _HTM_TBEGIN_STARTED if successful; otherwise, it
returns a different value.

Related information

Transactional memory built-in functions

Transactional memory built-in functions

© Copyright IBM Corp. 1996, 2015 13

14 XL C/C++: Getting Started

Chapter 4. Enhancements added in earlier versions

This section describes enhancements added in earlier versions. These
enhancements also apply to the current version.

Enhancements added in Version 13.1
This section describes features and enhancements added to the compiler in Version
13.1. These features and enhancements apply to later versions as well.

Support for POWER8 processors
XL C/C++ for AIX, V13.1 supports POWER8 processors.

The new features and enhancements introduced in support of the POWER8
processors, fall under the following categories:
v MASS libraries for POWER8 processors
v Compiler options for POWER8 processors
v Built-in functions for POWER8 processors

Mathematical Acceleration Subsystem (MASS) libraries for
POWER8 processors

Vector libraries

The vector MASS library libmassvp8.a contains vector functions that have
been tuned for the POWER8 architecture. The functions can be used in
either 32-bit mode or 64-bit mode.

For more information about the vector libraries, see Using the vector
libraries in the XL C/C++ Optimization and Programming Guide.

SIMD libraries

The MASS SIMD library libmass_simdp8.a contains an accelerated set of
frequently used math built-in functions that provide improved
performance over the corresponding standard system library functions.

For more information about the SIMD libraries, see Using the SIMD
libraries in the XL C/C++ Optimization and Programming Guide.

Compiler options for POWER8 processors

The -qarch compiler option specifies the processor architecture for which code is
generated. The -qtune compiler option tunes instruction selection, scheduling, and
other architecture-dependent performance enhancements to run best on a specific
hardware architecture.

The new -qarch=pwr8 suboption produces object code containing instructions that
will run on the POWER8 hardware platforms. With the new -qtune=pwr8
suboption, optimizations are tuned for the POWER8 hardware platforms.

For more information, see -qarch in the XL C/C++ Compiler Reference and -qtune in
the XL C/C++ Compiler Reference.

© Copyright IBM Corp. 1996, 2015 15

Built-in functions for POWER8 processors

New hardware built-in functions are added to support the following POWER8
processor features:
v POWER8 functions for vector processing
v POWER8 binary-coded decimal functions
v POWER8 cryptography functions
v POWER8 quad-word arithmetic functions
v POWER8 load-and-reserve/store conditional instructions
v POWER8 cache and data prefetch control functions
v POWER8 transactional memory functions
v POWER8 prefetch functions

For more information about built-in functions provided by XL C/C++, see
Compiler built-in functions in the XL C/C++ Compiler Reference.

C++11 features
In addition to the existing C++11 features, new C++11 features are supported in
this release of XL C/C++.

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation might change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

The following features are introduced in XL C/C++ V13.1:
v Defaulted and deleted functions
v The nullptr keyword

The generalized constant expressions feature is enhanced in XL C/C++ V13.1.

You can use the -qlanglvl=extended0x option to enable most of the C++ features
and all the currently supported C++11 features. For details, see -qlanglvl in the XL
C/C++ Compiler Reference.

Defaulted and deleted functions

This feature introduces two new forms of function declarations to define explicitly
defaulted functions and deleted functions. For the explicitly defaulted functions,
the compiler generates the default implementations, which are more efficient than
manually programmed implementations. The compiler disables the deleted
functions to avoid calling unwanted functions.

You can use the -qlanglvl=defaultanddelete option to enable this feature.

For more information, see "Explicitly defaulted functions (C++11)" and "Deleted
functions (C++11)" in the XL C/C++ Language Reference.

16 XL C/C++: Getting Started

Generalized constant expressions

The generalized constant expressions feature extends the set of expressions
permitted within constant expressions. The implementation of this feature in XL
C/C++ V12.1 was a partial implementation of what is defined in the C++11
standard. In this release, enhancements are made to support user-defined
constexpr objects and constexpr pointers or references to constexpr functions and
objects.

You can use the -qlanglvl=constexpr option to enable this feature.

For more information, see "Generalized constant expressions (C++11)" in the XL
C/C++ Language Reference.

The nullptr keyword

This feature introduces nullptr as a null pointer constant. The nullptr constant
can be distinguished from integer 0 for overloaded functions. The constants of 0
and NULL are treated as of the integer type for overloaded functions, whereas
nullptr can be implicitly converted to only the pointer type, pointer-to-member
type, and bool type.

You can use the -qlanglvl=nullptr option to enable this feature.

For more information, see langref.pdf#nullpt in the XL C/C++ Language Reference.
Related information in the XL C/C++ Compiler Reference

-qlanglvl

C11 features
In addition to the existing C11 features, new C11 features are supported in this
release of XL C/C++.

Note: IBM supports selected features of C11, known as C1X before its ratification.
IBM will continue to develop and implement the features of this standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the C11 features is complete, including
the support of a new C11 standard library, the implementation may change from
release to release. IBM makes no attempt to maintain compatibility, in source,
binary, or listings and other compiler interfaces, with earlier releases of IBM's
implementation of the C11 features.

The following features are introduced in AIX, V13.1:
v typedef redeclaration
v Generic selection

typedef redeclaration

Using typedef redeclaration, you can redefine a name that is a previous typedef
name in the same scope to refer to the same type. IBM

The XL C compiler

supports all types, including a variably modified type. IBM

For more

information, see "typedef definitions" in the XL C/C++ Language Reference.

Chapter 4. Enhancements added in earlier versions 17

Generic selection

Generic selection provides a mechanism to choose an expression according to a
given type name at compile time. A common usage is to define type generic
macros. For more information, see Generic selection (C11).

OpenMP 4.0
XL C/C++ for AIX, V13.1 partially supports the OpenMP Application Program
Interface Version 4.0 specification. The XL C/C++ implementation is based on
IBM's interpretation of the OpenMP Application Program Interface Version 4.0.

This version of XL C/C++ supports the following OpenMP 4.0 features:
v update and capture clauses enhancements
v OMP_DISPLAY_ENV environment variable

update and capture clauses enhancements

The update and capture clauses of the atomic construct are extended to support
more expression forms.

OMP_DISPLAY_ENV environment variable

You can use the OMP_DISPLAY_ENV environment variable to display the values
of the internal control variables (ICVs) associated with the environment variables
and the build-specific information about the runtime library.

Related information
v "OpenMP environment variables" in the XL C/C++ Compiler Reference

v "Pragma directives for parallel processing" in the XL C/C++ Compiler Reference

v The OpenMP API specification for parallel programming

Built-in functions
The following major categories of built-in functions are new to this release.

Note: POWER8 built-in functions are valid only when -qarch=pwr8 is set or
implied.

POWER8 built-in functions for vector processing

The following vector built-in functions are added:
v The vector gather-bits-by-bytes doubleword function

– vec_gbb

v The vector count leading zeros function
– vec_cntlz

v The vector population count function
– vec_popcnt

v Extended vector logical operations functions
– vec_eqv

– vec_nand

– vec_orc

v 128-bit integer add subtract functions

18 XL C/C++: Getting Started

http://www.openmp.org

– vec_add_u128

– vec_sub_u128

– vec_adde_u128

– vec_sube_u128

– vec_addc_u128

– vec_subc_u128

– vec_addec_u128

– vec_subec_u128

– vec_bperm

The following built-in functions are extended to support doubleword types:
v Vector pack functions

– vec_pack

– vec_packs

– vec_packsu

v Vector unpack functions
– vec_unpackh

– vec_unpackl

v Vector add and subtract functions
– vec_add

– vec_sub

v Vector max and min functions
– vec_max

– vec_min

v Vector shift and rotate functions
– vec_rl

– vec_sl

– vec_sr

– vec_sra

v Vector compare functions
– vec_cmpeq

– vec_cmpgt

– vec_cmpge

– vec_cmplt

– vec_cmple

Binary-coded decimal built-in functions

The following built-in functions are added to support binary-coded decimal (BCD)
arithmetic and comparison. The first three types of built-in functions are POWER8
built-in functions. BCD load and store functions are valid when -qarch is set to
target POWER8 or POWER7 processors:
v BCD add and subtract functions

– __bcdadd

– __bcdsub

v BCD test add and subtract for overflow functions
– __bcdadd_ofl

Chapter 4. Enhancements added in earlier versions 19

– __bcdsub_ofl

– __bcd_invalid

v BCD comparison functions
– __bcdcmpeq

– __bcdcmpgt

– __bcdcmpge

– __bcdcmplt

– __bcdcmple

v BCD load and store functions
– __vec_ldrmb

– __vec_strmb

POWER8 cryptography built-in functions

The following built-in functions are provided to perform cryptographic operations:
v Advanced Encryption Standard (AES) functions

– __vcipher

– __vcipherlast

– __vncipher

– __vncipherlast

– __vsbox

v Secure Hash Algorithm (SHA) functions
– __vshasigmad

– __vshasigmaw

v Miscellaneous functions
– __vpmsumb

– __vpmsumh

– __vpmsumw

– __vpmsumd

– __vpermxor

POWER8 non-vector built-in functions

The following built-in functions are added to improve the efficiency of cache:
v __dcbtna

v __icbt

Load and store built-in functions are extended with the following functions to
support more types:
v __lqarx

v __lharx

v __lbarx

v __stqcx

v __sthcx

v __stbcx

20 XL C/C++: Getting Started

POWER8 transactional memory built-in functions

Transactional memory is a model for parallel programming. In this model, you can
designate a block of instructions or statements to be treated atomically.

You can use the following built-in functions to mark the beginning or end of
transactions, and to diagnose the reasons for failure:
v Transaction begin and end functions

– __TM_begin

– __TM_end

– __TM_simple_begin

v Transaction abort functions
– __TM_abort

– __TM_named_abort

v Transaction inquiry functions
– __TM_failure_address

– __TM_failure_code

– __TM_is_conflict

– __TM_is_failure_persistent

– __TM_is_footprint_exceeded

– __TM_is_illegal

– __TM_is_named_user_abort

– __TM_is_nested_too_deep

– __TM_is_user_abort

– __TM_nesting_depth

POWER8 prefetch built-in functions

The following built-in functions display the problem state control of the Data
Stream Control Register (DSCR) in an intuitive, portable, and optimization-friendly
way:
v Transient attribute enable functions

– __hardware_transient_enable

– __load_transient_enable

– __software_transient_enable

– __store_transient_enable

v Unit count enable and set functions
– __hardware_unit_count_enable

– __software_unit_count_enable

– __set_prefetch_unit_count

v Prefetch depth functions
– __default_prefetch_depth

– __depth_attainment_urgency

v Load stream enable and disable functions
– __load_stream_disable

– __stride_n_stream_enable

v DSCR functions

Chapter 4. Enhancements added in earlier versions 21

– __prefetch_get_dscr_register

– __prefetch_set_dscr_register

Related information:
v Compiler built-in functions in the XL C/C++ Compiler Reference

v -qarch

Compiler options and pragma directives
This section describes new or changed compiler options and pragma directives.

You can specify compiler options on the command line. You can also modify
compiler behavior through pragma directives embedded in your application source
files. For detailed descriptions and usage information for XL C/C++ compiler
options, see the XL C/C++ Compiler Reference.

-qarch The option default is updated to pwr4. Suboptions denoting old hardware
families are silently upgraded to newer architectures.

The following suboptions are added or updated:

-qarch=pwr7
This suboption produces object code containing instructions that
run on the POWER7, POWER7+, or POWER8 hardware platforms.

-qarch=pwr8
This suboption produces object code containing instructions that
run on the POWER8 hardware platforms.

-qcheck
The following suboptions are added or updated:

-qcheck=stackclobber
This suboption detects a certain type of stack corruption in your
programs.

-qcheck=unset
This suboption checks for automatic variables that are used before
they are set at run time.

-qdbgfmt=dwarf4
This suboption generates debugging information in DWARF 4 format.

-qhelp This option displays the man page of the compiler.

-qinfo

The compiler does not issue informational messages for the following files:
v Files in the standard search paths for compiler and system header files.
v Files that are ultimately included by the files in the standard search

paths for compiler and system header files.

The following suboptions are added or updated:

-qinfo=mt
This suboption notifies you about potential places where
synchronization is needed.

-qinfo=unset
This suboption detects automatic variables that are used before
they are set, and flags them with informational messages at
compile time.

22 XL C/C++: Getting Started

-qlanglvl
The following suboptions are added or updated:

C++11 -qlanglvl=defaultanddelete
This suboption enables the defaulted and deleted functions feature,
with which you can define explicitly defaulted functions whose
implementations are generated by the compiler to achieve higher
efficiency. With this feature, you can also define deleted functions
whose usages are disabled by the compiler to avoid calling
unwanted functions. C++11

C++11 -qlanglvl=nullptr
This suboption enables the nullptr feature. With this feature, you
can initialize a null pointer with the nullptr constant. The null
pointer can be converted to the pointer type, pointer-to-member
type, or bool type. The nullptr constant can be distinguished from
the integer 0 for overloaded functions. C++11

-qnamemangling (C++ only)
The following suboption is added:

-qnamemangling=v13
This suboption enables the name mangling scheme that is
compatible with IBM XL C/C++ V13.1.

-qpdf1=unique
This suboption creates a unique PDF file for each process during run time.

-qprefetch=dscr
This suboption helps to improve the runtime performance of your
applications. You can specify a value for dscr depending on your system
architecture.

-qsimd=auto
This suboption controls the autosimdization, which was performed by the
deprecated -qhot=simd option.

-qtune The option default is updated.

The following suboptions are added or updated:

-qtune=pwr7
This suboption specifies that optimizations are tuned for the
POWER7 or POWER7+ hardware platforms.

-qtune=pwr8
This suboption specifies that optimizations are tuned for the
POWER8 hardware platforms.

SMT suboptions
The new -qtune simultaneous multithreading (SMT) suboptions
allow you to specify a target SMT to direct optimization for best
performance in that mode.

-qunroll=n
This suboption hints to the compiler to unroll loops by a factor of n. If the
loop has fewer than n iterations, it is fully unrolled.

-qvisibility
This option specifies visibility attributes for entities. Entity visibility
attributes describe whether and how entities defined in one module can be
referenced or used in other modules. Visibility attributes affect entities with
external linkage only, and cannot increase the visibility of other entities.

Chapter 4. Enhancements added in earlier versions 23

New or changed pragma directives

#pragma GCC visibility push, #pragma GCC visibility pop
This pair of pragma directives is the pragma equivalent of the
-qvisibility option. The pragma directives are used to specify visibility
attributes for external linkage symbols.

#pragma namemangling (C++ only)
This pragma directive is the pragma equivalent of the -qnamemangling
option. The pragma directive #pragma namemangling(v13) is added to
enable the name mangling scheme that is compatible with IBM XL C/C++
V13.1.

Performance and optimization
Additional features and enhancements assist with performance tuning and
application optimization.

IBM

Visibility attributes of entities

Entity visibility attributes describe whether and how an entity that is defined in
one module can be referenced or used in other modules. By using the visibility
attributes for entities, you can get the following benefits:
v Decrease the size of shared libraries
v Reduce the chance of symbol collision
v Allow more optimization for the compile and link phases
v Improve the efficiency of dynamic linking

For more information, see "Using visibility attributes (IBM extension)" in the XL
C/C++ Optimization and Programming Guide.

IBM

For more information about performance tuning and program optimization, see
"Optimizing your applications" and "Coding your application to improve
performance" in the XL C/C++ Optimization and Programming Guide.

Enhancements added in Version 12.1
This section describes features and enhancements added to the compiler in Version
12.1. These features and enhancements apply to later versions as well.

C++11 features
C++11 is a new C++ programming language standard. Before its ratification, C++11
was called C++0x.In addition to the existing C++11 features, new C++11 features
are supported in XL C/C++ V12.1.

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation might change from release to release. IBM makes no attempt to

24 XL C/C++: Getting Started

maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

The following features are introduced in XL C/C++, V12.1:
v Explicit conversion operators
v Generalized constant expressions
v Reference collapsing
v Right angle brackets
v Rvalue references
v Scoped enumerations
v Trailing return type

You can use the -qlanglvl=extended0x option to enable most of the C++ features
and all the currently-supported C++11 features. For details, see -qlanglvl in the XL
C/C++ Compiler Reference.

Explicit conversion operators

The explicit conversion operators feature supports the explicit function specifier
being applied to the definition of a user-defined conversion function. You can use
this feature to inhibit implicit conversions from being applied where they might be
unintended, and thus program more robust classes with fewer ambiguity errors.

You can use the -qlanglvl=explicitconversionoperators option to enable this
feature.

For more information, see "Explicit Conversion Operators (C++11)" in the XL
C/C++ Language Reference.

Generalized constant expressions

The generalized constant expressions feature extends the set of expressions
permitted within constant expressions. A constant expression is one that can be
evaluated at compile time.

You can use the -qlanglvl=constexpr option to enable this feature.

Note: In XL C/C++ V12.1, this feature is a partial implementation of what is
defined in the C++11 standard.

Reference collapsing

With the reference collapsing feature, you can form a reference to a reference type
using one of the following contexts:
v A decltype specifier
v A typedef name
v A template type parameter

You can use the -qlanglvl=referencecollapsing option to enable this feature.

For more information, see "Reference collapsing (C++11)" in the XL C/C++ Language
Reference.

Chapter 4. Enhancements added in earlier versions 25

Right angle brackets

In the C++ language, two consecutive closing angle brackets (>) must be separated
with a white space, because they are otherwise parsed as the bitwise right-shift
operator (>>). The right angle bracket feature removes the white space requirement
for consecutive right angle brackets, thus making programming more convenient.

You can use the -qlanglvl=rightanglebracket option to enable this feature.

For more information, see "Class templates (C++ only)" in the XL C/C++ Language
Reference.

Rvalue references

With the rvalue references feature, you can overload functions based on the value
categories of arguments and similarly have lvalueness detected by template
argument deduction. You can also have an rvalue bound to an rvalue reference
and modify the rvalue through the reference. This enables a programming
technique with which you can reuse the resources of expiring objects and therefore
improve the performance of your libraries, especially if you use generic code with
class types, for example, template data structures. Additionally, the value category
can be considered when writing a forwarding function.

You can use the -qlanglvl=rvaluereferences option to enable this feature.

For more information, see "Using rvalue references (C++11)" in the XL C/C++
Optimization and Programming Guide.

Scoped enumerations

With the scoped enumeration feature, you can get the following benefits:
v The ability to declare a scoped enumeration type, whose enumerators are

declared in the scope of the enumeration.
v The ability to declare an enumeration without providing the enumerators. The

declaration of an enumeration without providing the enumerators is referred to
as forward declaration.

v The ability to specify explicitly the underlying type of an enumeration.
v Improved type safety with no conversions from the value of an enumerator (or

an object of an enumeration type) to an integer.

You can use the -qlanglvl=scopedenum option to enable this feature.

For more information, see "Enumeration" in the XL C/C++ Language Reference.

Trailing return type

The trailing return type feature is useful when declaring the following types of
templates and functions:
v Function templates or member functions of class templates with return types

that depend on the types of the function arguments
v Functions or member functions of classes with complicated return types
v Perfect forwarding functions

You can use the -qlanglvl=autotypededuction option to enable this feature.

26 XL C/C++: Getting Started

For more information, see "Trailing return type (C++11)" in the XL C/C++ Language
Reference.

Related information in the XL C/C++ Compiler Reference

-qlanglvl

C11 features
XL C/C++ V12.1 introduces support for selected features of C11, which is a new C
programming language standard.

Note: IBM supports selected features of C11, known as C1X before its ratification.
IBM will continue to develop and implement the features of this standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the C11 features is complete, including
the support of a new C11 standard library, the implementation may change from
release to release. IBM makes no attempt to maintain compatibility, in source,
binary, or listings and other compiler interfaces, with earlier releases of IBM's
implementation of the C11 features.

The following C11 features are introduced in XL C/C++, V12.1:
v Anonymous structures
v Complex type initialization
v New language level - extc1x

v The _Noreturn function specifier
v Static assertions

Anonymous structures

This feature enables the declaration of anonymous structures under the extc1x
language level. For more information, see "Anonymous structures" in the XL C/C++
Language Reference.

Complex type initialization

Macros CMPLX, CMPLXF, and CMPLXL are defined inside the standard header
file complex.h to enable the initialization of complex types under the extc1x
language level. For more information, see "Initialization of complex types (C11)" in
the XL C/C++ Language Reference.

New language level - extc1x

A new suboption has been added to the -qlanglvl option in this release. When
you compile with the C compiler, you can use -qlanglvl=extc1x to enable C11
features that are currently supported by XL C/C++. Certain C11 features are also
available when you compile with the C++ compiler. For further information, see
the sections that describe individual features.

The _Noreturn function specifier

The _Noreturn function specifier declares that a function does not return to its
caller. You can define your own functions that do not return using this function
specifier. The compiler can produce better code by ignoring what would happen if
the function returns. For more information, see "The _Noreturn function specifier"
in the XL C/C++ Language Reference.

Chapter 4. Enhancements added in earlier versions 27

Static assertions

The addition of static assertions to the C language has the following benefits:
v Libraries can detect common usage errors at compile time.
v Implementations of the C Standard Library can detect and diagnose common

usage errors, improving usability.

You can declare static assertions to check important program invariants at compile
time.

For more information, see "_Static_assert declaration (C11)" in the XL C/C++
Language Reference.

OpenMP 3.1
XL C/C++ V12.1 supports the OpenMP Application Program Interface Version 3.1
specification. The XL C/C++ implementation is based on IBM's interpretation of
the OpenMP Application Program Interface Version 3.1.

OpenMP 3.1 includes the following updates to OpenMP 3.0:
v Adds the final and mergeable clauses to the task construct to support

optimization.
v Adds the taskyield construct to allow users to specify where in the program

can perform task switching.
v Adds the omp_in_final runtime library function to support specialization of final

task regions.
v Extends the atomic construct to include read, write, and capture forms; adds

the update clause to apply the existing form of the atomic construct.
v Adds two reduction operators: min and max.
v Allows const-qualified types to be specified on the firstprivate clause.
v Adds the OMP_PROC_BIND environment variable to control whether OpenMP

threads are allowed to move between processors.
v Extends the OMP_NUM_THREADS environment variable to specify the number of

threads to use for nested parallel regions.

Related information
v "OpenMP environment variables" in the XL C/C++ Compiler Reference

v "Pragma directives for parallel processing" in the XL C/C++ Compiler Reference

v www.openmp.org

Performance and optimization
Additional features and enhancements in XL C/C++ V12.1 assist with performance
tuning and application optimization.

Reports about compiler optimizations

There are a number of enhancements to the listing reports to give you more
information about how the compiler optimized your code. You can use this
information to get further benefits from the optimization capabilities of the
compiler. For more details about these enhanced reports, see “Diagnostic reports”
on page 29.

28 XL C/C++: Getting Started

http://www.openmp.org

Small String Optimized string class

If you have programs that produce large amounts of small strings, that is, strings
smaller than 32 bytes, consider using the new <ssostring> header file supplied by
IBM to reduce runtime overhead and improve runtime performance. For more
information about the header file, see "Managing memory efficiently" in the XL
C/C++ Optimization and Programming Guide.

For additional information about performance tuning and program optimization,
see "Optimizing your applications" in the XL C/C++ Optimization and Programming
Guide.

Diagnostic reports
The new diagnostic reports added in XL C/C++ V12.1 can help you identify
opportunities to improve the performance of your code.

Compiler reports in HTML format

It is now possible to get information in XML or HTML format about the
optimizations that the compiler was able to perform and also which optimization
opportunities were missed. This information can be used to reduce programming
effort for tuning applications, especially high-performance applications.

The -qlistfmt option and its associated suboptions can be used to generate the
XML or HTML report. By default, this option now generates all the available
content if you do not specify the type of content.

To view the HTML version of an XML report that has been already generated, you
can now use the genhtml tool. For more information about how to use this tool, see
the genhtml command in the XL C/C++ Compiler Reference.

For detailed information about this report and how to use it, see "Using reports to
diagnose optimization opportunities" in the XL C/C++ Optimization and
Programming Guide.

Enhancements to profiling reports

New sections have been added to your listing file to help you analyze your
programs. When using the -qreport option with the -qpdf2 option, you can get the
following sections added to the listing file in the section entitled PDF Report:

Relevance of profiling data
This section shows the relevance of the profiling data to the source code
during the -qpdf1 phase. The relevance is indicated by a number in the
range of 0 - 100. The larger the number is, the more relevant the profiling
data is to the source code, and the more performance gain can be achieved
by using the profiling data.

Missing profiling data
This section might include a warning message about missing profiling
data. The warning message is issued for each function for which the
compiler does not find profiling data.

Outdated profiling data
This section might include a warning message about outdated profiling
data. The compiler issues this warning message for each function that is

Chapter 4. Enhancements added in earlier versions 29

modified after the -qpdf1 phase. The warning message is also issued when
the optimization level changes from the -qpdf1 phase to the -qpdf2 phase.

For detailed information about profile-directed feedback, see "Using
profile-directed feedback" in the XL C/C++ Optimization and Programming Guide.

For additional information about the listing files, see "Compiler listings" in the XL
C/C++ Compiler Reference.

Enhancements to showpdf reports

In addition to block-counter and call-counter profiling information currently
provided, you can also use the showpdf utility to view cache-miss profiling and
value profiling information. Value profiling and cache-miss profiling information
can be displayed only in XML format. However, all the other types of profiling
information can be displayed in either text or XML format. In this release, the
profile-directed feedback (PDF) information is saved in two files. One is a PDF
map file that is generated during the -qpdf1 phase, and the other is a PDF file that
is generated during the execution of the resulting application. You can run the
showpdf utility to display the PDF information contained in these two files. For
more information, see "Viewing profiling information with showpdf" in the XL
C/C++ Optimization and Programming Guide.

New and enhanced diagnostic options

The entries in the following table describe new or changed compiler options and
directives that give you control over compiler listings.

The information presented here is a brief overview. For detailed information about
these and other performance-related compiler options, see "Listings, messages and
compiler information" in the XL C/C++ Compiler Reference.

Table 4. Listings-related compiler options and directives

Option/directive Description

-qlistfmt The -qlistfmt option has been enhanced to generate
HTML reports as well as XML reports, containing
information about optimizations performed by the
compiler and missed optimization opportunities.

The default behavior of this option has changed. Now,
if you do not specify a particular type of content, the
option generates all the available content, rather than
generating none.

Built-in functions
This section describes the major categories of built-in functions that are new for
V12.1.

GCC atomic memory access built-in functions (IBM extension)

New XL C/C++ built-in functions for atomic memory access, whose behavior
corresponds to that provided by GNU Compiler Collection (GCC), are added in
this release. In a program with multiple threads, you can use these functions to
atomically and safely modify data in one thread without interference from another
thread.

30 XL C/C++: Getting Started

For more information about built-in functions provided by XL C/C++, see
Compiler built-in functions in the XL C/C++ Compiler Reference.

Compiler options and pragma directives
This section describes new or changed compiler options and pragma directives in
V12.1.

You can specify compiler options on the command line. You can also modify
compiler behavior through pragma directives embedded in your application source
files. See the XL C/C++ Compiler Reference for detailed descriptions and usage
information for these and other compiler options.

New or changed compiler options

-g The -g option is extended to have new different levels to improve the
debugging of optimized programs.

-qhaltonmsg
The -qhaltonmsg option, previously supported only by the C++ compiler, is
now supported by XL C. It stops compilation before producing any object
files, executable files, or assembler source files if a specified error message
is generated. The negative form -qnohaltonmsg has also been added.

-qinclude

The negative form -qnoinclude is added to ignore the previously specified
-qinclude option.

-qinfo -qinfo=all now enables all diagnostic messages for all groups except als
and ppt

-qinitauto
The -qinitauto option is enhanced to be able to perform word
initialization for automatic variables.

-qkeyword
C++11 The new suboption -q[no]keyword=constexpr enables or disables

the constexpr keyword.

-qlanglvl
The following suboptions are added or updated:

C++11 -qlanglvl=autotypededuction
This suboption can now enable the trailing return type feature in
addition to the auto type deduction feature.

C++ -qlanglvl=c1xnoreturn
This suboption enables support for the _Noreturn function
specifier.

C++ -qlanglvl=complexinit
This suboption controls whether to enable the initialization of
complex types.

C++ IBM -qlanglvl=compatrvaluebinding
This suboption instructs the compiler to allow a non-const lvalue
reference to bind to an rvalue of a user-defined type where an
initializer is not required.

Chapter 4. Enhancements added in earlier versions 31

C++11 -qlanglvl=constexpr
This suboption enables the generalized constant expressions
feature, which extends the expressions permitted within constant
expressions.

Note: In XL C/C++ V12.1, this feature is a partial implementation
of what is defined in the C++11 standard.

C++11 -qlanglvl=explicitconversionoperators
This suboption enables the explicit conversion operators feature,
which allows you to inhibit unintended implicit conversions
through the user-defined conversion function.

C11 -qlanglvl=extc1x
This suboption enables all the currently supported C11 features
and other implementation-specific language extensions.

C++11 -qlanglvl=referencecollapsing
This suboption enables the reference collapsing feature, with which
you can form a reference to a reference type using a decltype
specifier, a typedef name, or a template type parameter.

C++11 -qlanglvl=rightanglebracket
This suboption enables the right angle bracket feature, which
removes the white space requirement for consecutive right angle
brackets.

C++11 -qlanglvl=rvaluereferences
This suboption enables the rvalue references feature.

C++11 -qlanglvl=scopedenum
This suboption enables the scoped enumeration feature, with
which you can declare a scoped enumeration type or an
enumeration without providing the enumerators.

C++ IBM -qlanglvl=tempsaslocals
This suboption extends the lifetime of temporaries to reduce
migration difficulty.

IBM -qlanglvl=textafterendif
This suboption suppresses the warning message that is emitted
when you are porting code from a compiler that allows extra text
after #endif or #else to IBM XL C/C++ compiler.

For more information about the new C++11 features, see “C++11 features”
on page 24.

For more information about the C11 features, see “C11 features” on page
27.

-qlistfmt
The -qlistfmt option is enhanced to generate HTML reports as well as
XML reports, containing information about optimizations performed by the
compiler and missed optimization opportunities.

The default behavior of -qlistfmt has changed. In this release, if you do
not specify a particular type of content, the option generates all the
available content, rather than generating none.

C++ -qnamemangling
The v12 namemangling scheme is added. The v12 fix preserves the
cv-qualifiers nested within template argument lists.

32 XL C/C++: Getting Started

-qoptfile
The new option -qoptfile specifies a file containing a list of additional
command line options to be used for the compilation.

-qpic -qpic=large now enables large TOC access and prevents TOC overflow
conditions when the Table of Contents is larger than 64 Kb.

-qshowpdf
The default value is changed from -qnoshowpdf to -qshowpdf.

New or changed pragma directives

C++ #pragma ibm independent_loop
The independent_loop pragma is added. It explicitly states that the
iterations of the chosen loop are independent, and that the iterations can
be executed in parallel.

#pragma ibm iterations
The iterations pragma is added. It specifies the approximate number of
loop iterations for the chosen loop.

#pragma ibm max_iterations
The max_iterations pragma is added. It specifies the approximate
maximum number of loop iterations for the chosen loop.

#pragma ibm min_iterations
The min_iterations pragma is added. It specifies the approximate
minimum number of loop iterations for the chosen loop.

#pragma simd_level
The simd_level pragma is added. It controls the compiler code generation
of vector instructions for individual loops.

Enhancements added in Version 11.1
This section describes features and enhancements added to the compiler in Version
11.1. These features and enhancements apply to later versions as well.

Support for POWER7 processors
XL C/C++ for AIX, V11.1 supports POWER7 processors.

The new features and enhancements introduced in support for the POWER7
processors, fall under the following four categories:
v Vector scalar extension data types and built-in functions
v MASS libraries for POWER7 processors
v Built-in functions for POWER7 processors
v Compiler options for POWER7 processors

Vector scalar extension data types and built-in functions

This release of the compiler supports the Vector Scalar eXtension (VSX) instruction
set in the POWER7 processors. New data types and built-in functions are
introduced to support the VSX instructions. With the VSX built-in functions and
the original Vector Multimedia eXtension (VMX) built-in functions, you can
efficiently manipulate vector operations in your application.

Chapter 4. Enhancements added in earlier versions 33

For more information about the VSX data types and built-in functions, see Vector
types in the XL C/C++ Language Reference and Vector built-in functions in the XL
C/C++ Compiler Reference.

Mathematical Acceleration Subsystem (MASS) libraries for
POWER7 processors

Vector libraries

The vector MASS library libmassvp7.a contains vector functions that have
been tuned for the POWER7 architecture. The functions can be used in
either 32-bit mode or 64-bit mode.

Functions supporting previous Power® processors, either single-precision
or double-precision, are included for POWER7 processors.

The following new functions are added, in both single-precision and
double-precision function groups:
v exp2
v exp2m1
v log21p
v log2

For more information about the vector libraries, see Using the vector
libraries in the XL C/C++ Optimization and Programming Guide.

SIMD libraries

The MASS SIMD library libmass_simdp7.a contains an accelerated set of
frequently used math built-in functions that provide improved
performance over the corresponding standard system library functions.

For more information about the SIMD libraries, see Using the SIMD library
for POWER7 in the XL C/C++ Optimization and Programming Guide.

POWER7 hardware built-ins

New hardware built-in functions are added to support the following POWER7
processor features:
v New POWER7 prefetch extensions and cache control
v New POWER7 hardware instructions

For more information, see “Built-in functions” on page 46.

New compiler options for POWER7 processors

New arch and tune compiler options

The -qarch compiler option specifies the processor architecture for which
code is generated. The -qtune compiler option tunes instruction selection,
scheduling, and other architecture-dependent performance enhancements
to run best on a specific hardware architecture.

-qarch=pwr7 produces object code containing instructions that will run on
the POWER7 hardware platforms. With -qtune=pwr7, optimizations are
tuned for the POWER7 hardware platforms.

For more information, see -qarch in the XL C/C++ Compiler Reference and
-qtune in the XL C/C++ Compiler Reference.

34 XL C/C++: Getting Started

C++11 features
XL C/C++, V11.1 introduces support for selected features of C++11, which is a
new C++ programming language standard.

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation might change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

The following features are introduced in XL C/C++, V11.1:
v Auto type deduction
v C99 long long
v C99 preprocessor features adopted in C++11
v Decltype
v Delegating constructors
v Explicit instantiation declarations
v Extended friend declarations
v Inline namespace definitions
v Static assertion
v Variadic templates

You can use the -qlanglvl=extended0x option to enable most of the C++ features
and all the currently-supported C++11 features. For details, see -qlanglvl in the XL
C/C++ Compiler Reference.

Auto type deduction

With the auto type deduction feature, you no longer need to specify a type while
declaring a variable. This is because auto type deduction delegates the task of
deducting the type of an auto variable to the compiler from the type of its
initializer expression.

You can use the -qlanglvl=autotypededuction option to enable this feature.

For more information, see "The auto type specifier (C++11)" in the XL C/C++
Language Reference.

C99 long long

The C++ compiler can use the C99 long long feature, which improves source
compatibility between the C and C++ languages.

You can use the -qlanglvl=c99longlong option to enable the C99 long long
feature.

IBM

After this feature is enabled, if a decimal integer literal that does not

have a suffix containing u or U cannot be represented by the long long int type,
you can decide whether to use the unsigned long long int type to represent the
literal or not by specifying the -qlanglvl=[no]extendedintegersafe option.

Chapter 4. Enhancements added in earlier versions 35

For more information, see "Integer literals" in the XL C/C++ Language Reference.

C99 preprocessor features adopted in C++11

With several C99 preprocessor features adopted in C++11, C and C++ compilers
provide a more common preprocessor interface, which can ease porting C source
files to the C++ compiler, eliminate semantic differences between the C and C++
preprocessors, and avoid preprocessor compatibility issues or diverging
preprocessor behaviors.

You can use the -qlanglvl=c99preprocessor option to enable this feature.

For more information, see "C99 preprocessor features adopted in C++11)" in the XL
C/C++ Language Reference.

Decltype

With the decltype feature, you can get a type that is based on the resultant type of
a possibly type-dependent expression.

You can use the -qlanglvl=decltype option to enable this feature.

For more information, see "The decltype(expression) type specifier (C++11)" in the
XL C/C++ Language Reference.

Delegating constructors

With the delegating constructors feature, you can concentrate common
initializations in one constructor, which makes programs more readable and
maintainable.

You can use the -qlanglvl=delegatingctors option to enable this feature.

For more information, see "Delegating constructors (C++11)" in the XL C/C++
Language Reference.

Explicit instantiation declarations

With the explicit instantiation declarations feature, you can suppress the implicit
instantiation of a template specialization or its members.

You can use the individual suboption -qlanglvl=externtemplate or the group
options -qlanglvl=extended or -qlanglvl=extended0x to enable this feature.

For more information, see "Explicit instantiation (C++ only)" in the XL C/C++
Language Reference.

Extended friend declarations

The extended friend declarations feature relaxes the syntax rules governing friend
declarations as follows:
v Template parameters, typedef names, and basic types can be declared as friends.
v The class-key in the context for friend declarations is no longer necessary in

C++11.

36 XL C/C++: Getting Started

You can use the -qlanglvl=extendedfriend option to enable this feature.

For more information, see "Friends (C++ only)" in the XL C/C++ Language Reference.

Inline namespace definitions

Inline namespace definitions are namespace definitions with an initial inline
keyword. You can define or specialize the members of an inline namespace as if
they belong to the enclosing namespace that contains the inline namespace.

You can use the -qlanglvl=inlinenamespace option to enable this feature.

For more information, see "Inline namespace definitions (C++11)" in the XL C/C++
Language Reference.

Static assertion

The static assertion feature provides you with the following benefits:
v Libraries can detect common usage errors at compile time.
v Implementations of the C++ Standard Library can detect and diagnose common

usage errors, thus improving usability.

You can use a static_assert declaration to check important program invariants at
compile time.

You can use the -qlanglvl=static_assert option to enable this feature.

For more information, see "static_assert declaration (C++11)" in the XL C/C++
Language Reference.

Variadic templates

With the variadic templates feature, you can define class or function templates that
have any number (including zero) of parameters.

You can use the -qlanglvl=variadic[templates] option to enable this feature.

For more information, see "Variadic templates (C++11)" in the XL C/C++ Language
Reference.

Related information in the XL C/C++ Compiler Reference

-qlanglvl

Performance and optimization
Additional features and enhancements assist with performance tuning and
application optimization.

Enhancements to -qpdf

The use of the -qpdf option consists of two steps. First, compile your program
with the -qpdf1 option and run it with a typical set of data to generate the
profiling data. Second, compile your program again with the -qpdf2 option to
optimize the program based on the profiling data.

Chapter 4. Enhancements added in earlier versions 37

In previous releases, if you modify the source files and compile them with the
-qpdf2 option, the compilation stops with an error. As of XL C/C++ for AIX, V11.1,
the compiler issues a list of warnings but the compilation does not stop. This
allows you to continue using the profiling data after modifying the source files.

Some new suboptions are added to the -qpdf option. You can use these new
suboptions to get more control over performance improvements and enhance -qpdf
to support cache-miss profiling and extended value profiling.

The new -qpdf suboptions are:

level Supports cache-miss profiling, value profiling, block-counter profiling, and
call-counter profiling. You can compile your program with
-qpdf1=level=0|1|2 to specify the type of profiling information to be
generated by the resulting application.

exename
Specifies the name of the generated PDF file according to the output file
name specified by the -o option.

defname
Reverts the PDF file to its default file name.

For detailed information about these suboptions, see -qpdf1, -qpdf2 in the XL
C/C++ Compiler Reference.

Reports about compiler optimizations

There are a number of enhancements to the listing reports to give you more
information about how the compiler optimizes your code. You can use this
information to get further benefits from the optimization capabilities of the
compiler. For more details about these enhanced reports, see “New diagnostic
reports” on page 39.

Performance-related compiler options and directives

The entries in the following table describe new or changed compiler options and
directives.

Information presented here is a brief overview. For detailed information about
these options, directives, and other performance-related compiler options, see
"Optimization and tuning options" in the XL C/C++ Compiler Reference.

Table 5. Performance-related compiler options and directives

-qfuncsect An enhancement added to -qfuncsect is to improve
linker garbage collection of functions with XL C/C++
programs. -qfuncsect places instructions for each
function in a separate object file control section or
CSECT which might reduce the size of your program.
Placing each function in its own CSECT enables the
linker to perform garbage collection on a per function
basis rather than per object file. For details, see the
-qfuncsect section in the XL C/C++ Compiler Reference.

38 XL C/C++: Getting Started

Table 5. Performance-related compiler options and directives (continued)

-qhot Two suboptions -qhot=fastmath and -qhot=nofastmath
are added to -qhot, to tune your applications to use the
fast scalar versions of the math routines or to use the
default versions. -qhot=level=2 is also added for loop
transformation analysis of nested loops. For details, see
the -qhot section in the XL C/C++ Compiler Reference.

-qinline=level=number A new option is added to -qinline to provide guidance
to the compiler about the relative value of inlining in
relation to the default value of 5.number is a range of
integer values 0 - 10 that indicates the level of inlining
you want to use. For details, see -qinline in the XL
C/C++ Compiler Reference.

-qipa A new enhancement added to -qipa is -r
-qipa=relink. You can generate relinkable objects while
preserving IPA information by specifying -r
-qipa=relink. This creates a nonexecutable package
that contains all object files. By using this suboption,
you can postpone linking until the last stage.

-qipa=clonearch is no longer supported. Consider
using -qtune=balanced.

For detailed information, see -qipa section in the XL
C/C++ Compiler Reference.

-qpdf -qpdf provides suboptions to give you more control
flexibility in controlling different PDF optimizations.
For more information, see the -qpdf1, -qpdf2 section in
the XL C/C++ Compiler Reference.

-qprefetch A new enhancement is added to -qprefetch for
inserting prefetch instructions automatically where
there are opportunities to improve code performance:
-qprefetch=assistthread. For details, see -qprefetch in
the XL C/C++ Compiler Reference.

For additional information about performance tuning and program optimization,
see "Optimizing your applications" in the XL C/C++ Optimization and Programming
Guide.

New diagnostic reports
The new diagnostic reports can help you identify opportunities to improve the
performance of your code.

Compiler reports in XML format

It is now possible to get information in XML format about the optimizations that
the compiler was able to perform and also which optimization opportunities were
missed. This information can be used to reduce programming effort for tuning
applications, especially high-performance applications.

The information from the compiler is produced in XML 1.0 format. The report is
defined by an XML schema and is easily consumable by tools that you can create
to read and analyze the results. A stylesheet, xlstyle.xsl, is provided to render
the report into a human readable format that can be read by anyone with a
browser which supports XSLT.

Chapter 4. Enhancements added in earlier versions 39

In this release, the following four optimization categories are available in the
report:
v Inlining
v Loop transformations
v Data reorganizations
v Profile-directed feedback information

The new -qlistfmt option and its associated suboptions can be used to generate
the new XML 1.0 report.

For detailed information about this report and how to use it, see "Using reports to
diagnose optimization opportunities" in the XL C/C++ Optimization and
Programming Guide.

Enhancements to profiling reports

New sections have been added to your listing file to help you analyze your
programs. When using the -qreport option with the -qpdf2 option, you can get the
following sections added to the listing file in the section entitled PDF Report:

Loop iteration count
The most frequent loop iteration count and the average iteration count, for
a given set of input data, is calculated for most loops in a program. This
information is only available when the program is compiled at
optimization level -O5.

Block and call count
This section of the report covers the call structure of the program and the
respective execution count for each called function. It also includes block
information for each function. For non-user defined functions, only
execution count is given. The total block and call coverage, and a list of the
user functions ordered by decreasing execution count are printed in the
end of this report section. In addition, the block count information is
printed at the beginning of each block of the pseudo-code in the listing
files.

Cache miss
This section of the report is printed in a single table. It reports the number
of cache misses for certain functions, with additional information about the
functions such as: cache level, cache miss ratio, line number, file name, and
memory reference.

Note: You must use the -qpdf1=level=2 option to get this report.
You can also select the level of cache to profile using the PDF_PM_EVENT
environment variable during run time.

For detailed information about profile-directed feedback, see "Using
profile-directed feedback" in the XL C/C++ Optimization and Programming Guide.

For additional information about the listing files, see "Compiler listings" in the XL
C/C++ Compiler Reference.

Report of data reorganization

The compiler can generate the following information in the listing files:
v Data reorganizations (a summary of how program variable data gets reorganized

by the compiler)

40 XL C/C++: Getting Started

v The location of data prefetch instructions inserted by the compiler

To generate data reorganization information, specify the optimization level
-qipa=level=2 or -O5 together with -qreport. The data reorganization messages for
program variable data are added to the data reorganization section of the listing
file with the label DATA REORGANIZATION SECTION during the IPA link pass.
Reorganizations include:
v array splitting
v array transposing
v memory allocation merging
v array interleaving
v array coalescing

To generate information about data prefetch insertion locations, use the
optimization level of -qhot, or any other option that implies -qhot together with
-qreport. This information appears in the LOOP TRANSFORMATION SECTION of the
listing file.

Additional loop analysis

A new suboption has been added to -qhot to add more aggressive loop analysis.
-qhot=level=2 together with -qsmp and -qreport add information about loop nests
on which the aggressive loop analysis was performed to the LOOP TRANSFORMATION
SECTION of the listing file. This information can also appear in the XML listing file
created with the -qlistfmt option.

New and enhanced diagnostic options

The entries in the following table describe new or changed compiler options and
directives that give you control over compiler listings.

Information presented here is a brief overview. For detailed information about
these and other performance-related compiler options, see "Listings, messages and
compiler information" in the XL C/C++ Compiler Reference.

Table 6. Listings-related compiler options and directives

Option/directive Description

-qlistfmt Generates a report in an XML 1.0 format containing
information about optimizations performed by the
compiler and missed optimization opportunities. The
report contains information about inlining, loop
transformations, data reorganization and
profile-directed feedback.

-qreport The listing now contains a PDF report section when
used with -qpdf2. Another new section in the listing
files is a DATA REORGANIZATION section when used with
-qipa=level=2 or -O5.

-qskipsrc Determines whether the source statements skipped by
the compiler are shown in the SOURCE section of the
listing file.

Chapter 4. Enhancements added in earlier versions 41

Utilization tracking and reporting tool
The utilization tracking and reporting feature is a lightweight and simple
mechanism for tracking the compiler utilization within your organization. It is
disabled by default. You can use this feature to detect whether your organization's
use of the compiler exceeds your compiler license entitlements.

When utilization tracking is enabled, each invocation of the compiler is recorded in
a compiler utilization file. You can run the utilization reporting tool to generate a
report from one or more of these files to get a picture of the overall usage of the
compiler within your organization. The urt command can be used to control how
the report is generated. In particular, the report indicates the number of concurrent
users using the compiler.

The utilization tracking and reporting feature is easy to set up and manage, and
utilization tracking does not impact the usage or performance of the compiler.

For detailed information about the utilization tracking and reporting feature, see
"Tracking and reporting compiler usage" in the XL C/C++ Compiler Reference.

New or changed compiler options and directives
This section describes new and changed compiler options and directives in XL
C/C++, V11.1.

You can specify compiler options on the command line. You can also modify
compiler behavior through pragma directives embedded in your application source
files. See the XL C/C++ Compiler Reference for detailed descriptions and usage
information for these and other compiler options.

Table 7. New or changed compiler options and directives

Option or directive Description

-qarch A new suboption has been added to -qarch, specifying
-qarch=pwr7 produces object code that contains
instructions that run on the POWER7 hardware
platforms.

-qassert -qassert is a new option for XL C/C++. It is used to
provide information about the characteristics of the
files that can help to fine-tune optimizations.

-qconcurrentupdate If you are building kernel extensions, you must use
-qconcurrentupdate to enable hot patching. For details,
see -qconcurrentupdate in the XL C/C++ Compiler
Reference.

-qfuncsect In previous releases,-qfuncsect had minimal size
reductions for C++ programs. You can see a significant
improvement in the current release.

-qfunctrace Traces the entry and exit points of functions in a
compilation unit or only for a specific list of functions.

42 XL C/C++: Getting Started

Table 7. New or changed compiler options and directives (continued)

Option or directive Description

-qhot A new suboption has been added for -qhot. The -qhot
compiler option is a powerful alternative to hand
tuning that provides opportunities to optimize loops
and array language.

The -qhot=fastmath option enables the replacement of
math routines with available math routines from the
XLOPT library only if -qstrict=nolibrary is enabled.
-qhot=nofastmath disables the replacement of math
routines by the XLOPT library. -qhot=fastmath is
enabled by default if -qhot is specified regardless of the
hot level.

-qinline Attempts to inline functions instead of generating calls
to those functions, for improved performance.

-qipa You can generate relinkable objects while preserving
IPA information by specifying -r -qipa=relink.

-qkeepinlines A new suboption exports has been added to the
-qkeepinlines option. You can use
-qkeepinlines=exports to make sure that the compiler
keeps the list of symbols and their definitions from the
shared object file compiled with an earlier version of
the compiler.

Chapter 4. Enhancements added in earlier versions 43

Table 7. New or changed compiler options and directives (continued)

Option or directive Description

-qlanglvl C++11 New suboptions have been added to
-qlanglvl:

v -qlanglvl=autotypededuction: Controls whether the
auto type deduction feature is enabled. This feature
can be used to delegate the task of type deduction of
an auto variable to the compiler from the type of its
initializer expression.

v -qlanglvl=c99longlong: Controls whether the C99
long long feature is enabled. This feature improves
source compatibility between the C and C++
languages.

v -qlanglvl=c99preprocessor: Controls whether the
C99 preprocessor features adopted in C++11 are
enabled. This feature can be used to provide a more
common preprocessor interface for C and C++
compilers.

v -qlanglvl=decltype: Controls whether the decltype
feature is enabled. This feature can be used to get a
type that is based on the resultant type of a possibly
type-dependent expression.

v -qlanglvl=delegatingctors: Controls whether the
delegating constructors feature is enabled. This
feature can be used to concentrate common
initializations in one constructor.

v -qlanglvl=extendedfriend: Controls whether the
extended friend declarations feature is enabled. This
feature can be used to accept additional forms of
non-function friend declarations.

v IBM -qlanglvl=extendedintegersafe: Controls
whether or not unsigned long long int can be used
as the type for decimal integer literals that do not
have a suffix containing u or U and cannot be
represented by the long long int type. This option
takes effect only when the -qlanglvl=c99longlong
option is specified.

v -qlanglvl=externtemplate: Controls whether the
explicit instantiation declarations feature is enabled.
This feature can be used to suppress the implicit
instantiation of a template specialization or its
members.

v -qlanglvl=inlinenamespace: Controls whether the
inline namespace definitions feature is enabled. This
feature can be used to define and specialize
members of an inline namespace as if they were also
members of the enclosing namespace.

v -qlanglvl=static_assert: Controls whether the
static assertions feature is enabled. This feature can
be used to produce compile-time assertions for
which a severe error message is issued on failure.

v -qlanglvl=variadic[templates]: Controls whether
the variadic templates feature is enabled. This
feature can be used to define class or function
templates that have any number (including zero) of
parameters.

44 XL C/C++: Getting Started

Table 7. New or changed compiler options and directives (continued)

Option or directive Description

-qlibmpi Tunes code based on the known behavior of the
Message Passing Interface (MPI) functions.

-qlistfmt Generates a report in an XML 1.0 format containing
information about some optimizations performed by
the compiler and some missed optimization
opportunities for inlining, loop transformations,
profile-directed feedback, and data reorganization.

-qnamemangling There is a new namemangling scheme for this release.

-qpdf1,-qpdf2 New suboptions have been added to -qpdf1,-qpdf2.

-qprefetch A new suboption has been added to -qprefetch. When
you work with applications that generate a high
cache-miss rate, you can use -qprefetch=assistthread
to exploit assist threads for data prefetching.

-qrestrict (C only) You can use -qrestrict to indicate to the compiler that
no other pointer can access the same memory that has
been addressed by function parameter pointers.

-qsaveopt|-qnosaveopt The existing -qsaveopt option is enhanced to also
include the user's configuration file name and the
options specified in the configuration files.

-qsimd Controls whether the compiler can automatically take
advantage of vector instructions for processors that
support them.

-qskipscrc When a listing file is generated using the -qsource
option, you can use -qskipsrc to control whether the
source statements skipped by the compiler are shown
in the source section of the listing file. Alternatively,
you can use the -qskipsrc=hide option to hide the
source statements skipped by the compiler.

-qstackprotect Protects your applications against malicious code or
programming errors that overwrite or corrupt the
stack.

-qstrict A new suboption has been added to the -qstrict
option to allow more control over optimizations and
transformations that violate strict program semantics.

-qstrict=vectorprecision disables vectorization in
loops where it might produce different results in
vectorized iterations than in nonvectorized ones.

-qtune A new suboption has been added to -qtune. If you
specify -qtune=pwr7, optimizations are tuned for the
POWER7 hardware platforms.

Table 8. Deprecated directives and options

Option or directive Description

#pragma ibm critical This directive is deprecated and might be
removed in a future release. You can use the
OpenMP equivalent.

#pragma ibm parallel_loop This directive is deprecated and might be
removed in a future release. You can use the
OpenMP equivalent.

Chapter 4. Enhancements added in earlier versions 45

Table 8. Deprecated directives and options (continued)

Option or directive Description

#pragma ibm schedule This directive is deprecated and might be
removed in a future release. You can use the
OpenMP equivalent.

-Q This option is deprecated and replaced with
-qinline.

-qenablevmx This option is deprecated and replaced with
the -qsimd=auto option.

-qhot=simd | nosimd -qhot=simd | nosimd are deprecated and
might be removed in a future release. You can
use -qsimd.

-qinfo=private -qinfo=private is deprecated and replaced
with -qreport.

-qinfo=reduction -qinfo=reduction is deprecated and replaced
with -qreport.

-qipa=inline | noinline -qipa=inline | noinline are deprecated and
might be removed in a future release. You can
use -qinline.

-qipa=clonearch | noclonearch -qipa=clonearch | noclonearch is no longer
supported. You can use -qtune=balanced.

-qipa=clonearch | noclonearch -qipa=cloneproc | nocloneproc is no longer
supported. You can use -qtune=balanced.

Built-in functions
This section lists built-in functions that are new for XL C/C++, V11.1.

For more information about built-in functions provided by XL C/C++, see
Compiler built-in functions in the XL C/C++ Compiler Reference.

VSX built-in functions

Vector Scalar eXtension (VSX) is newly added for POWER7 processors.

For more information about VSX built-in functions, see Vector built-in functions.

POWER7 prefetch extensions and cache control

The POWER7 processor has cache control and stream prefetch extensions that
support store stream prefetch and prefetch depth control. XL C/C++ provides the
following new built-in functions to provide direct programmer access to these
instructions:
v __protected_stream_stride

v __transient_protected_stream_count_depth

v __unlimited_protected_stream_depth

v __transient_unlimited_protected_stream_depth

v __partial_dcbt

v __dcbtt

v __dcbtstt

v __dcbflp

46 XL C/C++: Getting Started

The compiler can insert the built-in functions automatically when it optimizes the
code. You can disable automatic use of these instructions with -qnoprefetch.

For more information about the directives, see built-in functions in the XL C/C++
Compiler Reference.

POWER7 hardware built-in functions

New XL C/C++ built-in functions corresponding to each new POWER7 hardware
instruction are added in this release. With these functions, you can directly
manipulate specific hardware instructions in your code, which can improve the
performance of your application.
v __bpermd

v __cbcdtd

v __cdtbcd

v __load8r

v __store8r

v __divde

v __divdeu

v __cmpb

v __divwe

v __divweu

v __addg6s

Conversion functions

These new functions convert between Declets and Binary Coded Decimal.
v __cbcdtd

v __cdtbcd

Comparison functions

This new function compares bytes.
v __cmpb

Decimal floating-point functions

This new function adds and generates sixes.
v __addg6s

Compatibility of redistributable library libxlopt.a
Starting from V11.1, backwards compatibility of the redistributable library,
libxlopt.a, will be maintained. The libxlopt.a library of a higher release will be
compatible with the XL C/C++ for AIX, V11.1 compiler and the releases in
between.

Previously, the version of the redistributable library had to be the same as the
version of the compiler with which the application was compiled.

You can download and use the latest redistributable library for multiple
applications compiled with XL C/C++ for AIX, V11.1 or later.

Chapter 4. Enhancements added in earlier versions 47

For more information about the redistributable libraries, see Redistributable
libraries in the XL C/C++ Compiler Reference.

48 XL C/C++: Getting Started

Chapter 5. Setting up and customizing XL C/C++

For complete prerequisite and installation information for XL C/C++, see "Before
installing XL C/C++" in the XL C/C++ Installation Guide.

Using custom compiler configuration files
You can customize compiler settings and options by modifying the default
configuration file or creating your own configuration file.

You have the following options to customize compiler settings:
v The XL C/C++ compiler installation process creates a default compiler

configuration file. You can directly modify this configuration file to add default
options for specific needs. However, if you later apply updates to the compiler,
you must reapply all of your modifications to the newly installed configuration
file.

v You can create your own custom configuration file that either overrides or
complements the default configuration file. The compiler can recognize and
resolve compiler settings that you specify in your custom configuration files
with compiler settings that are specified in the default configuration file.
Compiler updates that might later affect settings in the default configuration file
do not affect the settings in your custom configuration files.

For more information, see "Using custom compiler configuration files" in the XL
C/C++ Compiler Reference.

Configuring compiler utilization tracking and reporting
In addition to the compiler configuration file, there is a separate configuration file
for the utilization tracking and reporting feature. Utilization tracking is disabled by
default, but you can enable it by modifying an entry in this configuration file.
Various other aspects of utilization tracking can also be configured using this file.

Although the compiler configuration file is separate from the utilization tracking
configuration file, it contains an entry that specifies the location of the utilization
tracking configuration file so that the compiler can find this file.

For more information about how to configure the utilization tracking and reporting
feature, see Tracking and reporting compiler usage in the XL C/C++ Compiler
Reference.

© Copyright IBM Corp. 1996, 2015 49

50 XL C/C++: Getting Started

Chapter 6. Developing applications with XL C/C++

C/C++ application development consists of repeating cycles of editing, compiling,
linking, and running. By default, compiling and linking are combined into a single
step.

Notes:

v Before you use the compiler, ensure that XL C/C++ is properly installed and
configured. For more information, see the XL C/C++ Installation Guide.

v To learn about writing C/C++ programs, refer to the XL C/C++ Language
Reference.

The compiler phases
A typical compiler invocation executes some or all of these activities in sequence.
For link time optimizations, some activities are executed more than once during a
compilation. As each compilation component runs, the results are sent to the next
step in the sequence.
1. Preprocessing of source files
2. Compilation, which might consist of the following phases, depending on what

compiler options are specified:
a. Front-end parsing and semantic analysis
b. High-level optimization
c. Low-level optimization
d. Register allocation
e. Final assembly

3. Assembling the assembly (.s) files and the unpreprocessed assembler (.S) files
after they are preprocessed

4. Object linking to create an executable application

To see the compiler step through these phases, specify the -v compiler option
when you compile your application. To see the amount of time the compiler
spends in each phase, specify -qphsinfo.

Editing C/C++ source files
To create C/C++ source programs, you can use any text editor available to your
system, such as vi or emacs.

Source programs must be saved using a recognized file name suffix. See “XL
C/C++ input and output files” on page 54 for a list of suffixes recognized by XL
C/C++.

For a C or C++ source program to be a valid program, it must conform to the
language definitions specified in the XL C/C++ Language Reference.

Compiling with XL C/C++
XL C/C++ is a command-line compiler. Invocation commands and options can be
selected according to the needs of a particular C/C++ application.

© Copyright IBM Corp. 1996, 2015 51

Invoking the compiler
The compiler invocation commands perform all necessary steps to compile C/C++
source files or preprocessed files (.i or .ii), assemble any .s and .S files, and link
the object files and libraries into an executable program.

To compile a C source program, use the following basic invocation syntax:

►► xlc ▼ ▼ input_file
compiler_option

►◄

To compile a C++ source program, use the following basic invocation syntax:

►► xlC
xlc++

▼ ▼ input_file
compiler_option

►◄

For most applications, compile with xlc, xlC or a threadsafe counterpart. You can
use xlC to compile either C or C++ program source, but compiling C++ files with
xlc might result in link or runtime errors because libraries required for C++ code
are not specified when the linker is called by the C compiler.

More invocation commands are available to meet specialized compilation needs,
primarily to provide explicit compilation support for different levels and
extensions of the C or C++ language. For more information about available
compiler invocation commands, including special invocations that are intended to
assist developers in migrating from a GNU compilation environment to XL C/C++,
see "Invoking the compiler" in the XL C/C++ Compiler Reference.

Compiling parallelized XL C/C++ applications
XL C/C++ provides threadsafe compiler invocation commands to compile
parallelized applications for use in multiprocessor environments.

These invocations are similar to their corresponding base compiler invocations,
except that they link and bind compiled objects to threadsafe components and
libraries. The generic XL C/C++ threadsafe compiler invocations are as follows:

v xlC_r, xlC_r7, xlC128_r, xlC128_r7
v xlc++_r, xlc++_r7, xlc++128_r, xlc++128_r7
v xlc_r, xlc_r7, xlc128_r, xlc128_r7

XL C/C++ provides additional threadsafe invocations to meet specific compilation
requirements. For more information, see "Invoking the compiler" in the XL C/C++
Compiler Reference.

Note: Using any of these commands alone does not imply parallelization. For the
compiler to recognize SMP or OpenMP directives and activate parallelization, you
must also specify the -qsmp compiler option. In turn, you should specify the -qsmp

52 XL C/C++: Getting Started

option only when threadsafe invocations are used. When you specify -qsmp, the
driver links the libraries that are specified on the smp libraries line in the active
stanza of the configuration file.

For more information about parallelized applications, see "Parallelizing your
programs" in the XL C/C++ Optimization and Programming Guide.

Specifying compiler options
Compiler options perform a variety of functions, such as setting compiler
characteristics, describing the object code to be produced, controlling the diagnostic
messages emitted, and performing some preprocessor functions.

You can specify compiler options in one or any combination of the following ways:
v On the command-line with command-line compiler options
v In your source code using directive statements
v In a makefile
v In the stanzas found in a compiler configuration file

You can also pass options to the linker, assembler, and preprocessor.

For more information about compiler options and their usage, see "Compiler
options reference" in the XL C/C++ Compiler Reference.

Priority sequence of compiler options

Option conflicts and incompatibilities might occur when multiple compiler options
are specified. To resolve these conflicts in a consistent fashion, the compiler usually
applies the following general priority sequence to most options:
1. Directive statements in your source file override command-line settings.
2. Command-line compiler option settings override configuration file settings.
3. Configuration file settings override default settings.

Generally, if the same compiler option is specified more than once on a
command-line when the compiler is invoked, the last option specified prevails.

Note: Some compiler options, such as the -I option, do not follow the priority
sequence described above. The compiler searches any directories specified with -I
in the xlc.cfg file before it searches the directories specified with -I on the
command-line. The -I option is cumulative rather than preemptive.

Reusing GNU C/C++ compiler options with gxlc and gxlc++
XL C/C++ includes various features to help you transition from GNU C/C++
compilers to XL C/C++, including the gxlc and gxlc++ commands.

Each of the gxlc and gxlc++ utilities accepts GNU C or C++ compiler options and
translates them into comparable XL C/C++ options. Both utilities use the XL
C/C++ options to create an xlc or xlc++ invocation command, which is then used
to invoke the compiler. These utilities are provided to help you reuse makefiles
created for applications previously developed with GNU C/C++. However, to fully
exploit the capabilities of XL C/C++, you can use the XL C/C++ invocation
commands and their associated options.

The actions of gxlc and gxlc++ are controlled by the gxlc.cfg configuration file.
The GNU C/C++ options that have an XL C/C++ counterpart are shown in this

Chapter 6. Developing applications with XL C/C++ 53

file. Not every GNU option has a corresponding XL C/C++ option. gxlc and
gxlc++ return warnings for input options that were not translated.

The gxlc and gxlc++ option mappings are modifiable. For information about using
the gxlc or gxlc++ configuration file, see "Reusing GNU C/C++ compiler options
with gxlc and gxlc++ " in the XL C/C++ Compiler Reference .

XL C/C++ input and output files
The topic describes the file types that are recognized by XL C/C++.

For detailed information about these and additional file types used by the
compiler, see "Types of input files" in the XL C/C++ Compiler Reference and "Types
of output files" in the XL C/C++ Compiler Reference.

Table 9. Input file types

Filename extension Description

.a Archive or library files

.c C source files

.C, .cc, .cp, .cpp, .cxx, .c++ C++ source files

.i Preprocessed source files

.o Object files

.s Assembler files

.S Unpreprocessed assembler files

.so Shared object files

Table 10. Output file types

Filename extension Description

a.out Default name for executable file created by the compiler

.d Target file suitable for inclusion in a makefile

.i Preprocessed source files

.lst Listing files

.o Object files

.s Assembler files

.so Shared object files

.u Make dependency files

Linking your compiled applications with XL C/C++
By default, you do not need to do anything special to link an XL C/C++ program.
The compiler invocation commands automatically call the linker to produce an
executable output file.

For example, you can use xlc++ to compile file1.C and file3.C to produce object
files file1.o and file3.o; after that, all object files, including file2.o, are
submitted to the linker to produce one executable.
xlc++ file1.C file2.o file3.C

54 XL C/C++: Getting Started

Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.
xlc++ -c file1.C # Produce one object file (file1.o)
xlc++ -c file2.C file3.C # Or multiple object files (file1.o, file3.o)
xlc++ file1.o file2.o file3.o # Link object files with default libraries

For more information about compiling and linking your programs, see the
following topics:
v "Linking" in the XL C/C++ Compiler Reference

v "Constructing a library" in the XL C/C++ Optimization and Programming Guide

Relinking an existing executable file
The linker accepts executable files as input, so you can link an existing executable
file with updated object files.

You cannot, however, relink executable files that were previously linked using the
-qipa option.

If you have a program consisting of several source files and only make localized
changes to some of the source files, you do not necessarily have to compile each
file again. Instead, you can include the executable file as the last input file when
compiling the changed files:

xlc -omansion front_door.c entry_hall.c parlor.c sitting_room.c \
master_bath.c kitchen.c dining_room.c pantry.c utility_room.c

vi kitchen.c # Fix problem in OVEN function

xlc -o newmansion kitchen.c mansion

Limiting the number of files to compile and link the second time reduces the
compile time, disk activity, and memory use.

Note: You should avoid this type of linking unless you are experienced with
linking. If done incorrectly, it can result in interface errors and other problems. If
you do encounter problems, compiling with the -qextchk compiler option can help
you diagnose problems with linking.

Dynamic and static linking
You can use XL C/C++ to take advantage of the operating system facilities for
both dynamic and static linking.

Dynamic linking means that the code for some external routines is located and
loaded when the program is first run. When you compile a program that uses
shared libraries, the shared libraries are dynamically linked to your program by
default. Dynamically linked programs take up less disk space and less virtual
memory if more than one program uses the routines in the shared libraries. During
linking, they do not require any special precautions to avoid naming conflicts with
library routines. They might perform better than statically linked programs if
several programs use the same shared routines at the same time. By using dynamic
linking, you can upgrade the routines in the shared libraries without relinking.
This form of linking is the default and no additional options are needed.

Static linking means that the code for all routines called by your program becomes
part of the executable file. Statically linked programs can be moved to run on

Chapter 6. Developing applications with XL C/C++ 55

systems without the XL C/C++ runtime libraries. They might perform better than
dynamically linked programs if they make many calls to library routines or call
many small routines. They do require some precautions in choosing names for data
objects and routines in the program if you want to avoid naming conflicts with
library routines.

Note: Dynamically and statically linked programs might not work if you compile
them on one level of the operating system and run them on a different level of the
operating system.

Running your compiled application
After a program is compiled and linked, you can run the generated executable file
on the command line.

The default file name for the program executable file produced by the XL C/C++
compiler is a.out. You can select a different name with the -o compiler option.

You should avoid giving your program executable file the same name as system or
shell commands, such as test or cp, as you could accidentally execute the wrong
command. If you do decide to name your program executable file with the same
name as a system or shell command, you should execute your program by
specifying the path name to the directory in which your executable file resides,
such as ./test.

To run a program, enter the name of the program executable file together with any
runtime arguments on the command line.

Canceling execution

To suspend a running program, press Ctrl+Z while the program is in the
foreground. Use the fg command to resume running.

To cancel a running program, press Ctrl+C while the program is in the foreground.

Setting runtime options

You can use environment variable settings to control certain runtime options and
behaviors of applications created with the XL C/C++ compiler. Some environment
variables do not control actual runtime behavior, but they can have an impact on
how your applications run.

For more information about environment variables and how they can affect your
applications at run time, see the XL C/C++ Installation Guide.

Running compiled applications on other systems

In general, applications linked on a system using an earlier version of AIX can run
with more recent versions of AIX. However, applications linked on a system using
a newer version of AIX might not necessarily run with earlier versions of AIX.

If you want to run an application developed with the XL C/C++ compiler on
another system that does not have the compiler installed, you need to install a
runtime environment on that system or link your application statically.

56 XL C/C++: Getting Started

You can obtain the latest XL C/C++ Runtime Environment images, together with
licensing and usage information, from the XL C/C++ for AIX support page.

XL C/C++ compiler diagnostic aids
XL C/C++ issues diagnostic messages when it encounters problems compiling
your application. You can use these messages and other information provided in
compiler output listings to help identify and correct such problems.

For more information about listing, diagnostics, and related compiler options that
can help you resolve problems with your application, see the following topics in
the XL C/C++ Compiler Reference:
v "Compiler messages and listings"
v "Error checking and debugging options"
v "Listings, messages, and compiler information options"

Debugging compiled applications
You can use a symbolic debugger to debug applications compiled with XL C/C++.

At compile time, you can use the -g or -qlinedebug option to instruct the XL
C/C++ compiler to include debugging information in compiled output. For -g, you
can also use different levels to balance between debug capability and compiler
optimization. For more information about the debugging options, see "Error
checking and debugging" in the XL C/C++ Compiler Reference.

You can then use dbx, the IBM Debugger for AIX, or any other symbolic debugger
that supports the AIX XCOFF executable format to step through and inspect the
behavior of your compiled application.

Optimized applications pose special challenges when you debug your applications.
If you need to debug an optimized application, you can consider using the -gN
form of the -g option along with any optimization options. This form of the -g
option provides different levels of tradeoff between full optimization and full
debugging support, depending on the value of N. For more information about
optimizing your code, see "Debugging optimized code" in the XL C/C++
Optimization and Programming Guide.

Determining which level of XL C/C++ is being used
To display the version and release level of XL C/C++ that you are using, invoke
the compiler with the -qversion compiler option.

For example, to obtain detailed version information, enter the following command:
xlc++ -qversion=verbose

Chapter 6. Developing applications with XL C/C++ 57

http://www.ibm.com/support/entry/portal/Overview/Software/Rational/XL_C~C++_for_AIX

58 XL C/C++: Getting Started

Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM XL C/C++ for AIX.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1996, 2015 59

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

60 XL C/C++: Getting Started

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2015.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 61

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

62 XL C/C++: Getting Started

Index

Special characters
.a files 54
.c and .C files 54
.i files 54
.ii files 54
.lst files 54
.mod files 54
.o files 54
.s files 54
.S files 54

Numerics
64-bit environment 8

A
a.out file 54
archive files 54
assembler

source (.s) files 54
source (.S) files 54

B
basic example, described ix
built-in functions 11, 18, 30, 46

C
C++11 35

auto type deduction 35
C99 long long 35
C99 preprocessor features adopted in

C++11 35
decltype 35
defaulted and deleted functions 16
delegating constructors 35
explicit conversion operators 24
explicit instantiation declarations 35
extended friend declarations 35
inline namespace definitions 35
reference collapsing 24
rvalue references 24
scoped enumerations 24
static assertion 35
trailing return type 24
variadic templates 35

C11 17
C1X 17

_Static_assert 27
code optimization 7
commands 5
compilation

sequence of activities 51
compiler

controlling behavior of 53
invoking 52
running 52

compiler directives
new or changed 12, 22, 31, 42

compiler options
conflicts and incompatibilities 53
new or changed 12, 22, 31, 42
specification methods 53

compiling
SMP programs 52

customization
for compatibility with GNU 3

D
dbx debugger 10, 57
debugger support 57

output listings 57
symbolic 10

debugging 57
debugging compiled applications 57
debugging information, generating 57
dynamic linking 55

E
editing source files 51
executable files 54
executing a program 56
executing the linker 55

F
files

editing source 51
input 54
output 54

G
GNU

compatibility with 3

I
input files 54
invocation commands 52
invoking a program 56
invoking the compiler 52

L
language standards 3
language support 3
level of XL C/C++, determining 57
libraries 54
linking

dynamic 55
static 55

linking process 54

listings 54

M
migration

source code 53
multiprocessor systems 8

O
object files 54

creating 55
linking 55

OpenMP 9
optimization 24

programs 7
output files 54

P
parallelization 8
performance 24

optimizing transformations 7
problem determination 57
programs

running 56

R
running the compiler 52
runtime

libraries 54
runtime environment 56
runtime options 56

S
shared memory parallelization 8
shared object files 54
SMP

programs, compiling 52
SMP programs 8
source files 54
source-level debugging support 10
static linking 55
symbolic debugger support 10

T
tools 5

C++filt name demangling utility 5
cleanpdf utility 7
CreateExportList 6
custom installation 7
debugger 5
gxlc and gxlc++ utilities 6
IBM Debugger 5
install 7

© Copyright IBM Corp. 1996, 2015 63

tools (continued)
linkxlC 5
makeC++SharedLib 5
mergepdf utility 7
showpdf utility 7
xlcndi 7
xlCndi 7

U
utilities 5

C++filt name demangling utility 5
cleanpdf 7
CreateExportList 6
custom installation 7
gxlc and gxlc++ 6
IBM Debugger 5
install 7
linkxlC 5
makeC++SharedLib 5
mergepdf 7
showpdf 7
xlCndi 7

X
xlc.cfg file 53

64 XL C/C++: Getting Started

IBM®

Product Number: 5765-J07; 5725-C72

Printed in USA

SC27-4257-01

	Contents
	About this document
	Conventions
	Related information
	IBM XL C/C++ information
	Standards and specifications
	Other IBM information
	Other information

	Technical support
	How to send your comments

	Chapter 1. Introducing XL C/C++
	Commonality with other IBM compilers
	Operating system and hardware support
	A highly configurable compiler
	Language standard compliance
	Compatibility with GNU
	Source-code migration and conformance checking

	Libraries
	Tools, utilities, and commands
	Program optimization
	64-bit object capability
	Shared memory parallelization
	Diagnostic reports
	Symbolic debugger support

	Chapter 2. What's new for IBM XL C/C++ for AIX, V13.1.2
	Built-in functions
	Commands
	Compiler options

	Chapter 3. Migration of your applications
	Migrating applications that use transactional memory built-in functions

	Chapter 4. Enhancements added in earlier versions
	Enhancements added in Version 13.1
	Support for POWER8 processors
	C++11 features
	C11 features
	OpenMP 4.0
	Built-in functions
	Compiler options and pragma directives
	Performance and optimization

	Enhancements added in Version 12.1
	C++11 features
	C11 features
	OpenMP 3.1
	Performance and optimization
	Diagnostic reports
	Built-in functions
	Compiler options and pragma directives

	Enhancements added in Version 11.1
	Support for POWER7 processors
	C++11 features
	Performance and optimization
	New diagnostic reports
	Utilization tracking and reporting tool
	New or changed compiler options and directives
	Built-in functions
	Compatibility of redistributable library libxlopt.a

	Chapter 5. Setting up and customizing XL C/C++
	Using custom compiler configuration files
	Configuring compiler utilization tracking and reporting

	Chapter 6. Developing applications with XL C/C++
	The compiler phases
	Editing C/C++ source files
	Compiling with XL C/C++
	Invoking the compiler
	Compiling parallelized XL C/C++ applications
	Specifying compiler options
	Reusing GNU C/C++ compiler options with gxlc and gxlc++

	XL C/C++ input and output files

	Linking your compiled applications with XL C/C++
	Relinking an existing executable file
	Dynamic and static linking

	Running your compiled application
	XL C/C++ compiler diagnostic aids
	Debugging compiled applications
	Determining which level of XL C/C++ is being used

	Notices
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	O
	P
	R
	S
	T
	U
	X

