
IBM Z OMEGAMON Data Provider
1.1

Installation and User's Guide

IBM

Note:

Before using this information and the product it supports, read “Product legal notices” on page 187.

2024-04-26 edition

This edition applies to IBM Z® OMEGAMON® Data Provider Version 1.1 with the PTF for APAR OA65724, and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Rocket Software 2021, 2024.

Figures

1. OMEGAMON Data Provider: data sources, output methods, and example destinations..........................27

2. Components of OMEGAMON Data Provider... 29

3. Example OMEGAMON Data Provider topology...31

4. Example topology with separate instances of OMEGAMON Data Connect for production and
development.. 32

5. OMEGAMON Data Provider communication protocols with or without TLS..33

6. OMEGAMON attribute collection before introducing OMEGAMON Data Provider.................................... 34

7. Runtime environment member RKANPARU(KAYOPEN) sets the destination of collected attributes......35

8. Excerpt of sample OMEGAMON Data Provider collection configuration member, KAYOPEN...................45

9. JCL procedure that starts the Zowe cross-memory server, PROCLIB(KAYSIS01)....................................48

10. Instana can ingest attributes from OMEGAMON Data Provider as JSON Lines over TCP or as JSON
in HTTP POST requests.. 52

11. Configuring which attributes OMEGAMON Data Provider sends, and to where......................................53

12. Elasticsearch index template that maps string fields to the keyword data type.................................... 55

13. Logstash pipeline configuration to ingest JSON Lines over TCP from OMEGAMON Data Connect........ 55

14. OMEGAMON Data Connect installation directory.. 62

15. OMEGAMON Data Connect user directory... 63

16. Configuration points: Source, Broker, Connect, destination..77

17. OMEGAMON Data Provider collection configuration parameters control where attributes are sent.....77

18. OMEGAMON Data Broker configuration points: store, forwarder, and output (sink).............................. 83

19. OMEGAMON Data Broker configuration: one store, one or more forwarders... 84

20. OMEGAMON Data Connect configuration points: input from OMEGAMON Data Broker and various
outputs... 93

21. OMEGAMON Data Connect configuration: TCP input...96

22. OMEGAMON Data Connect configuration: TCP output.. 101

 iii

23. OMEGAMON Data Connect configuration: HTTP output... 106

24. OMEGAMON Data Connect configuration: Kafka output... 112

25. OMEGAMON Data Connect configuration: Prometheus output from an HTTP(S) perspective............ 119

26. OMEGAMON Data Provider is a Prometheus target...119

27. Example Prometheus text-format output.. 122

iv

Tables

1. Connections between OMEGAMON Data Provider components, with links to security parameter
descriptions..33

2. Product offerings that contain OMEGAMON Data Provider... 36

3. Zowe parts required by OMEGAMON Data Broker and supplied with OMEGAMON Data Provider.......... 37

4. OMEGAMON monitoring agents supported by OMEGAMON Data Provider, with links to attributes
documentation... 139

 v

vi

Contents

Figures... iii

Tables... v

About this document...xi

What's new... 1
December 2023: APAR OA65724... 1

Breaking changes... 1
Other changes...3

September 2023: APAR OA65247.. 4
July 2023: APAR OA64880..4

Breaking changes... 5
Other changes...6

February 2023: APAR OA64177..10
September 2022: APAR OA63539.. 10
June 2022: APAR OA63141.. 11
March 2022: APAR OA62775.. 13
December 2021: APAR OA62420... 13
November 2021: First release...14

Earlier documentation... 15

Upgrading... 17
December 2023: APAR OA65724... 17

Upgrading OMEGAMON Data Connect...17
Upgrading OMEGAMON Data Broker... 20
Restarting OMEGAMON Data Provider.. 21

July 2023: APAR OA64880..22
Upgrading OMEGAMON Data Connect...22
Upgrading OMEGAMON Data Broker... 23
Restarting OMEGAMON Data Provider.. 25

Introduction.. 27
Architecture... 29
Topology...31
Security.. 32
OMEGAMON monitoring agents as a data source...34

OMEGAMON attribute collection... 34
How OMEGAMON Data Provider extends OMEGAMON attribute collection...................................... 35
Starter dashboards...35

Prerequisites.. 36
For all data sources.. 36
For OMEGAMON monitoring agents as a data source...38

Installing...41

Getting started.. 43

 vii

Configuring data sources... 43
OMEGAMON monitoring agents...44

Configuring OMEGAMON Data Broker...46
Configuring OMEGAMON Data Connect.. 49
Integrating analytics platforms... 51

Instana..51
Elastic Stack... 54
Splunk... 56

Starting OMEGAMON Data Provider.. 57

Where and how to run OMEGAMON Data Connect... 61
Installation directory... 61
User directory...63
JCL..64
Shell script... 65
Java command line.. 68

Modifying running components.. 71
Reloading OMEGAMON collection configuration.. 71
Reloading OMEGAMON Data Broker configuration...71
Reloading OMEGAMON Data Connect configuration.. 72
Displaying OMEGAMON Data Broker status..73
Changing OMEGAMON Data Broker network activity logging level..73

Adding more OMEGAMON collections... 75

Configuration.. 77
OMEGAMON monitoring agents as a data source...77
OMEGAMON Data Broker...83
OMEGAMON Data Connect..93

Connect...95
Server... 134
Logging... 138

Output from OMEGAMON monitoring agents... 139
Supported OMEGAMON monitoring agents..139
OMEGAMON attribute dictionary.. 141

Attribute names versus field names..142
Attribute groups versus table names.. 144

Fields introduced by OMEGAMON Data Connect... 145
JSON output characteristics..146

Troubleshooting...149
Common issues... 149

Attributes not arriving at a destination analytics platform... 149
Attributes not arriving at OMEGAMON Data Broker or PDS..150
OMEGAMON Data Connect fails with charset.MalformedInputException........................... 151
OMEGAMON Data Connect fails with UnsupportedClassVersionError..................................152

Gathering diagnostic information..152

Messages.. 155
Expected messages...156
KAYL, KPQD, KPQH: Messages from OMEGAMON collection tasks.. 160
KAYB: Messages from OMEGAMON Data Broker..164
KAYC: Messages from OMEGAMON Data Connect... 172

viii

Product legal notices... 187

 ix

x

About this document

This document describes how to install, configure, and use OMEGAMON Data Provider.

© Copyright IBM Corp. 2021, 2024 xi

xii IBM Z OMEGAMON Data Provider: Installation and User's Guide

What's new in OMEGAMON Data Provider
A summary of significant changes.

December 2023: APAR OA65724
Upgraded Zowe™ cross-memory server, raised minimum version of Java™.

Important: If you are an existing user of OMEGAMON Data Provider, this APAR introduces changes that
require you to perform upgrade steps.

Breaking changes
Breaking changes introduced by APAR OA65724.

OMEGAMON Data Broker
Minimum supported Zowe version raised from 1.28.2 to 2.12.0

OMEGAMON Data Broker is a plug-in for the Zowe cross-memory server. The latest plug-in requires a
server from Zowe 2.12.0 or later.

This is a breaking change only if both of the following conditions are true:

• You are running OMEGAMON Data Broker using a Zowe cross-memory server that you have obtained
from a separate Zowe distribution.

• The version of that Zowe distribution is earlier than 2.12.0.

In that case, you need to use a Zowe cross-memory server load module from a more recent version of
Zowe.

OMEGAMON Data Provider supplies the Zowe cross-memory server load module from Zowe 2.12.0.
For details, see the description of the change "Upgraded Zowe cross-memory server".

New required configuration parameter to register the ZISDYNAMIC plug-in
The latest OMEGAMON Data Broker plug-in requires ZISDYNAMIC, the ZIS dynamic linkage base
plug-in.

OMEGAMON Data Provider supplies the ZISDYNAMIC plug-in as TKANMODP(KAYSISDL).

You need to register the ZISDYNAMIC plug-in by adding a new parameter to your Zowe cross-memory
server configuration member. For example, in PARMLIB(KAYSIPxx):

ZWES.PLUGIN.KAY.ZISDYNAMIC=KAYSISDL

The supplied sample member TKANSAM(KAYSIP00) has been updated to include this new
parameter.

OMEGAMON Data Connect
Minimum supported Java version raised from 8 to 17

OMEGAMON Data Connect is a Java application developed using the Spring Boot framework.

Previously, OMEGAMON Data Connect used a version of Spring Boot that is based on Java 8. That
version of Spring Boot has an end of support date of 24 November 2023.

To continue to take advantage of ongoing Spring Boot support, such as bug fixes, security updates,
and new features, OMEGAMON Data Connect now uses a more recent version of Spring Boot that is
based on Java 17.

You must upgrade the Java runtime environment that you use for OMEGAMON Data Connect to Java
17 or later, 64-bit edition.

© Copyright IBM Corp. 2021, 2024 1

Running OMEGAMON Data Connect on z/OS® now requires z/OS 2.5 or later. Java 17 runtime
environments on z/OS require IBM® Semeru Runtime Certified Edition for z/OS 17. IBM Semeru
Runtime Certified Edition for z/OS 17 requires z/OS 2.5 or later. Java 17 is not available on z/OS 2.4 or
earlier.

Important: If you are currently running OMEGAMON Data Connect on a version of z/OS earlier
than 2.5, then do not apply the PTF for this APAR until you have decided where and how to run
OMEGAMON Data Connect afterward. For example:

• Run OMEGAMON Data Connect on a z/OS 2.5 or later LPAR. OMEGAMON Data Connect can run
on a different LPAR or sysplex than OMEGAMON Data Broker. For details, see “OMEGAMON Data
Provider topology” on page 31.

• Run OMEGAMON Data Connect on a non-z/OS platform that supports Java 17.
• Defer applying the PTF for this APAR of OMEGAMON Data Provider until you upgrade to z/OS 2.5 or

later. The z/OS 2.4 end of support (EOS) date is 30 September 2024.

In Spring Boot server SSL properties, follow safkeyring: with two (2) slashes, not four (4)
If you run OMEGAMON Data Connect on z/OS, you can use the safkeyring protocol to refer to a
RACF® key ring.

You must now follow safkeyring: with only two (2) slashes.

Previously, in Spring Boot server SSL properties (server.ssl.*), you had to follow safkeyring:
with four (4) slashes.

Kafka producer property names must be enclosed in square brackets and double quotes

To ensure that OMEGAMON Data Connect correctly parses Kafka producer properties in the
OMEGAMON Data Connect configuration file, you must enclose the property names in square
brackets, and then in double quotes. Example:

connect:
 output:
 kafka:
 properties:
 "[reconnect.backoff.max.ms]": 30000

Kafka output parameters retry-interval and max-connection-attempts removed

Previously, to configure the reconnection behavior of the Kafka output, you could specify optional
retry-interval and max-connection-attempts parameters:

connect:
 output:
 kafka:
 retry-interval: <seconds> # Default: 30
 max-connection-attempts: <number> # Default: unlimited

retry-interval and max-connection-attempts are no longer supported. They have been
superseded by the enhanced internal queueing introduced by this APAR.

Instead, to configure the reconnection behavior of the Kafka output, specify native Kafka producer
configuration properties such as reconnect.backoff.max.ms:

connect:
 output:
 kafka:
 properties:
 "[reconnect.backoff.max.ms]": 30000

For information about Kafka producer configuration properties, see the Apache Kafka documentation.

2 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://www.ibm.com/docs/en/semeru-runtime-ce-z/17

Other changes
Other (non-breaking) changes introduced by APAR OA65724.

OMEGAMON Data Broker
Upgraded Zowe cross-memory server

OMEGAMON Data Broker is a plug-in for the Zowe cross-memory server. OMEGAMON Data Provider
supplies the Zowe cross-memory server load module in TKANMODP(KAYSIS01). The load module
supplied with OMEGAMON Data Provider has been updated to match the load module supplied with
Zowe 2.12.0.

New z/OS MVS™ MODIFY system command to dynamically change logging level of OMEGAMON Data
Broker network activity

Typically, you only need to set this logging level if IBM Software Support requests you to do so for
troubleshooting.

Previously, you could only set this logging level in the configuration member of the Zowe cross-
memory server.

Now, you can enter a MODIFY system command to change this logging level dynamically, while
OMEGAMON Data Broker is running.

OMEGAMON Data Connect
Kafka output now supports RACF key rings as a store type for SSL

If you run OMEGAMON Data Connect on z/OS, you can now use RACF key rings as keystores or
truststores to configure a secure (SSL/TLS) connection to Kafka.

Enhanced internal queueing
Each output, including each TCP sink and each HTTP endpoint, now has its own internal queue.

Previously, all outputs sharing a single internal queue.

Under normal circumstances, where OMEGAMON Data Connect processes data as fast as it arrives,
and all destinations read data as fast as it arrives from OMEGAMON Data Connect, there is no
significant change in behavior.

This enhancement introduces a change in behavior only when the number of queued events (records)
reaches the queue capacity.

Previously, a problem with one output could cause all outputs to lose data. If the single internal queue
reached capacity, OMEGAMON Data Connect stopped reading incoming data, exerting back pressure
on OMEGAMON Data Broker.

OMEGAMON Data Broker responds to back pressure with the following behavior:

1. OMEGAMON Data Broker stops sending data to OMEGAMON Data Connect.
2. OMEGAMON Data Broker continues to accept incoming data, causing its forwarder queues to fill

up.

When a queue is full, each new incoming record overwrites the oldest remaining record in the
queue. Records overwritten in OMEGAMON Data Broker are lost to all outputs of OMEGAMON Data
Connect.

For example, previously, if an output destination was connected to OMEGAMON Data Connect but
stopped reading incoming data because it was out of space, then the single internal queue in
OMEGAMON Data Connect could fill to capacity. The subsequent behavior of OMEGAMON Data
Connect and OMEGAMON Data Broker could potentially cause all outputs to lose data.

Now, a problem with one OMEGAMON Data Connect output does not affect other outputs. If the
queue for an output is at capacity, the queue rejects (drops) any new incoming records. Regardless
of whether any queues are at capacity, OMEGAMON Data Connect continues to accept incoming data
and does not exert back pressure.

What's new in OMEGAMON Data Provider 3

Reduced default queue capacity
The configuration parameter connect.event-publisher.queue-capacity specifies the
maximum number of records in a queue. The default value has been reduced from 1,000,000 (one
million) to 50,000 (fifty thousand).

The previous much higher default value, allowing up to one million queued events, could potentially
mask data throughput issues and delay troubleshooting. The reduced value helps to identify data
throughput issues earlier.

New message KAYC0084W warns you when a queue reaches capacity
If an internal queue for an output reaches capacity, the queue rejects (drops) any new incoming
records. The output loses data, hence the warning.

Increased Java heap size

In the sample JCL procedure and shell script to run OMEGAMON Data Connect, the Java runtime
options for minimum and maximum heap size have been increased from:

-Xms64m -Xmx2048m

to:

-Xms1024m -Xmx4096m

This increase is a precautionary measure to accommodate higher data volume, including larger
incoming record sizes.

Actual heap size requirements depend on factors that are specific to your site.

Documentation-only changes
Acknowledging data sources other than OMEGAMON monitoring agents

Previously, the only data sources for OMEGAMON Data Provider were OMEGAMON monitoring agents.

Now, OMEGAMON Data Provider also has other data sources:

• IBM Db2® Automation Expert for z/OS
• IBM Db2 Query Monitor for z/OS

Some introductory topics have been updated to acknowledge these other data sources and
distinguish between content that applies to all data sources and content that applies only to
OMEGAMON monitoring agents. However, later topics do not yet acknowledge these other data
sources.

September 2023: APAR OA65247
OMEGAMON Data Connect has been enhanced with a new HTTP output for Instana.
New HTTP output

The new HTTP output sends POST requests to HTTP or HTTPS endpoints such as IBM Instana
Observability on z/OS (Instana). Each request contains a JSON object that describes a single record
(event).

The JSON from the HTTP output has the same structure as the existing TCP and Kafka outputs. The
HTTP output supports the same security (SSL/TLS) and filtering parameters as those existing outputs.

July 2023: APAR OA64880
Architectural enhancement to enable alternative deployment options for attributes support.

Important: If you are an existing user of OMEGAMON Data Provider, this APAR introduces changes that
require you to perform upgrade steps.

4 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Overview of changes:

OMEGAMON Data Broker

• Updated Zowe cross-memory server load module, from Zowe 1.28.2, removes the previous
restriction on the load module name.

OMEGAMON Data Connect

• The previous monolithic JAR file has been split into one mapping extension JAR file per agent and
one core JAR file.

This new modular architecture enables alternative deployment options for attributes support, in
addition to the conventional option of supplying attributes support with OMEGAMON Data Provider.

• New user directories keep your site-specific configuration details separate from the installation
directory.

To run OMEGAMON Data Connect, you now refer to a user directory. A user directory contains a
configuration file and, optionally, mapping extension JAR files.

• Logging flood control suppresses duplicate messages.
• Improved runtime exception handling offers more control and consistency for SpEL expressions in
filters.

• Refreshed attribute support introduces the latest attributes from agents.

For details, see the descriptions of breaking changes and other changes.

Documentation-only changes:

“Prerequisites for OMEGAMON Data Provider”
Lists new ways to get OMEGAMON Data Provider.

“Where and how to run OMEGAMON Data Connect”
A new topic that describes how you can run OMEGAMON Data Connect, a Java application, on various
platforms. Includes subtopics that describe the installation and user directories, and how to use the
supplied sample JCL procedure and shell script to run OMEGAMON Data Connect.

Breaking changes
Breaking changes introduced by APAR OA64880.
OMEGAMON Data Broker

Minimum supported Zowe version raised from 1.24 to 1.28.2
OMEGAMON Data Broker is a plug-in for the Zowe cross-memory server. The latest plug-in
requires a server from Zowe 1.28.2, or later.

This is a breaking change only if both of the following conditions are true:

• You are running OMEGAMON Data Broker using a Zowe cross-memory server that you have
obtained from a separate Zowe distribution.

• The version of that Zowe distribution is earlier than 1.28.2.

In that case, you need to use a Zowe cross-memory server load module from a more recent
version of Zowe.

OMEGAMON Data Provider supplies the Zowe cross-memory server load module from Zowe
1.28.2. For details, see the description of the change "Updated Zowe cross-memory server".

OMEGAMON Data Connect
Renamed JAR file to odp-server-version.jar

The file data-connect-version.jar has been renamed to odp-server-version.jar. This
file is now known as the core JAR file, to distinguish it from mapping extension JAR files.

What's new in OMEGAMON Data Provider 5

New symbolic link odp-server.jar
The lib directory that contains the core JAR file now also contains a symbolic link, odp-
server.jar, that refers to the core JAR file. The core JAR file name contains a version. The
symbolic link offers a stable file name that avoids the inconvenience of updating references to the
core JAR file whenever the version changes.

New runtime option -Dodp.ext refers to new mapping extension JAR files
Previously, a monolithic JAR file implemented the core functions of OMEGAMON Data Connect
and the support for each monitoring agent. Now, there are multiple JAR files:
lib/odp-server-version.jar

The core JAR file: a single JAR file that implements the core functions of OMEGAMON Data
Connect.

lib/ext/kpp-odp-model-version.jar
Mapping extension JAR files: a JAR file for each monitoring agent supported by OMEGAMON
Data Provider, where kpp is the product code for the agent. Each mapping extension JAR file
encapsulates the support for a specific agent.

Mapping extensions extend OMEGAMON Data Connect to support different types of incoming
data. Mapping extensions consist of Java classes that contain the data and logic required to
map binary-format data from monitoring agents to various output formats. These classes are
sometimes referred to as mapping classes.

The new OMEGAMON Data Connect runtime option -Dodp.ext specifies the locations of mapping
extensions as a comma-separated list of directory paths and individual JAR file paths. The
sample JCL procedure and shell script for running OMEGAMON Data Connect set a default value
for -Dodp.ext that includes the lib/ext directory under the installation directory and the
extensions directory under the user directory. If a mapping extension JAR file for an agent
exists in more than one location, then OMEGAMON Data Connect uses the latest version of the
JAR file.

Changes to the sample shell script
Changes to the sample shell script, bin/connect, include the following breaking changes:
New required argument to specify an action

Previously, you could run the script with no command-line argument. Now, you must specify
one of the following actions as a command-line argument:
run

Runs OMEGAMON Data Connect, as before.
create

Creates a user directory for OMEGAMON Data Connect containing a sample configuration
file copied from the installation directory as a starting point for you to edit.

This is the recommended method for creating a user directory, even if you plan to use JCL
to run OMEGAMON Data Connect.

New environment variable ODP_CONNECT_USER_DIR
The script refers to a user directory specified by the environment variable
ODP_CONNECT_USER_DIR. Set this variable before running the script.

Other changes
Other (non-breaking) changes introduced by APAR OA64880.
OMEGAMON Data Broker

Updated Zowe cross-memory server
OMEGAMON Data Broker is a plug-in for the Zowe cross-memory server. OMEGAMON Data
Provider supplies the Zowe cross-memory server load module in TKANMODP(KAYSIS01). The
load module supplied with OMEGAMON Data Provider has been updated to match the load
module supplied with Zowe 1.28.2. This new version introduces various changes:

6 IBM Z OMEGAMON Data Provider: Installation and User's Guide

No need to rename the supplied load module from KAYSIS01 to ZWESIS01
Previously, you had to rename the supplied module to ZWESIS01 before using it. The module
relied on that name to load itself into the link pack area (LPA).

Now, the module no longer relies on that name. You no longer have to rename the supplied
module. You can use the supplied member name KAYSIS01 or a name of your choice. A
benefit of this change is that you can run the Zowe cross-memory server directly from the
TKANMODP SMP/E target library. In the JCL that runs the Zowe cross-memory server, the
STEPLIB concatenation can simply refer to the single TKANMODP library, which contains all of
the required load modules: the server load module and the load modules for the OMEGAMON
Data Broker plug-in.

PARMLIB member name matches the first four characters of the load module name
OMEGAMON Data Broker configuration parameters are stored in the configuration member of
the Zowe cross-memory server in a PARMLIB data set.

Previously, the PARMLIB member name was ZWESIPxx, where xx is the value of the optional
MEM runtime parameter in the startup JCL for the Zowe cross-memory server. The default
value of MEM is 00. Hence, the default PARMLIB member name was ZWESIP00.

Now, the PARMLIB member name is ppppIPxx, where pppp matches the first four characters
of the Zowe cross-memory server load module name. If you use the load module name
KAYSIS01 as supplied with OMEGAMON Data Provider and the default MEM value of 00, then
the PARMLIB member name is KAYSIP00.

Line continuations in PARMLIB member: support moved from plug-in to server
Support for line continuations in the PARMLIB member has moved from the OMEGAMON Data
Broker plug-in to the Zowe cross-memory server. There is no change to the supported line
continuation syntax. If you use the latest OMEGAMON Data Broker plug-in with the latest
Zowe cross-memory server load module supplied with OMEGAMON Data Provider, you will not
notice any difference in behavior.

Sample JCL procedure renamed to KAYSIS01 and updated
The sample OMEGAMON Data Broker startup JCL procedure TKANSAM(ZWESIS01) has been
renamed to KAYSIS01. The new name reflects the fact that the corresponding supplied load
module TKANMODP(KAYSIS01) no longer needs to be renamed to ZWESIS01 before use.

Previously, the sample JCL procedure ZWESIS01 was a verbatim copy of the procedure supplied
with Zowe . That procedure referred to the load module ZWESIS01 and specified the NAME
parameter value ZWESIS_STD.

Now, the renamed and updated sample KAYSIS01 refers to the load module KAYSIS01 and
specifies the NAME parameter value ODP_BROKER.

The new NAME parameter value ODP_BROKER reflects the fact that you might choose to run more
than one instance of the Zowe cross-memory server on the same instance of z/OS. For example:

• A server dedicated to running OMEGAMON Data Broker
• Another server running as part of a separate Zowe installation, unrelated to OMEGAMON Data

Provider

Each Zowe cross-memory server on the same instance of z/OS must specify a unique NAME
parameter value. The broker.name key of the OMEGAMON Data Provider collection configuration
member, RKANPARU(KAYOPEN), must refer to the instance of the Zowe cross-memory server that
runs OMEGAMON Data Broker.

Sample configuration member renamed to KAYSIP00
The sample OMEGAMON Data Broker configuration member TKANSAM(KAYBRP00) has been
renamed to KAYSIP00. The new name matches the PARMLIB member name that is required if
you use the Zowe cross-memory server load module supplied with OMEGAMON Data Provider
with its original name, KAYSIS01, and you use the default MEM runtime parameter value, 00.

What's new in OMEGAMON Data Provider 7

Value of broker.name key in sample collection configuration member changed to ODP_BROKER
Previously, the broker.name key in the sample OMEGAMON Data Provider collection
configuration member TKANSAM(KAYOPEN) specified the value ZWESIS_STD, matching the NAME
parameter in the sample OMEGAMON Data Broker startup JCL procedure.

Now, broker.name specifies the value ODP_BROKER, matching the NAME parameter in the
updated sample JCL procedure.

OMEGAMON Data Connect
Changes to the sample JCL procedure and shell script

There are numerous changes to the sample OMEGAMON Data Connect startup JCL procedure
sample/KAYCONN (now also supplied in the MVS library TKANSAM) and shell script bin/
connect. Compare the new versions of these supplied files to your edited copies, and update
your copies accordingly.

Common changes to both samples:

New user directories separate site-specific configuration files from the installation directory
Previously, the sample JCL procedure and shell script assumed that your site-specific
configuration file, connect.yaml, was stored in a config subdirectory under the
OMEGAMON Data Connect installation directory.

The problem: that assumption risked your site-specific changes to connect.yaml being
overwritten when you applied service to the installation directory. You had to be careful to not
overwrite your edited connect.yaml with the latest sample file.

Now, the sample JCL procedure and shell script make it easier to keep your site-specific
configuration files separate from the installation directory.

In the JCL procedure, the symbol KAYHOME, which referred to the OMEGAMON Data Connect
installation directory, has been renamed to INSTLDIR. A new USERDIR symbol refers to the
user directory containing your configuration file.

Similarly, in the shell script, the new environment variable ODP_CONNECT_USER_DIR refers to
the user directory.

Each instance of OMEGAMON Data Connect now refers to a user directory. User directories
can be shared.

-jar option refers to the new symbolic link
Rather than referring to the original JAR file name, which contains a version, the -jar option
in the Java command line that runs OMEGAMON Data Connect now refers to the new symbolic
link, with the stable file name odp-server.jar. Referring to the symbolic link avoids the
inconvenience of updating the -jar option when the version changes in the original JAR file
name.

Filter condition expressions: improved handling of runtime exceptions
To conditionally filter records, you can write expressions in the Spring Expression Language
(SpEL). These expressions can trigger runtime exceptions. For example, if an expression uses
an integer field as the denominator in a division operation, then a zero value for that field in an
incoming record will trigger a divide-by-zero runtime exception.

Previously, OMEGAMON Data Connect handled runtime exceptions that SpEL characterized as
evaluation exceptions differently than other runtime exceptions:

1. For all runtime exceptions: discard the current record that triggered the exception.
2. Depending on the type of runtime exception:

Evaluation exceptions

a. Stop processing records that use the expression; disable the table for outputs that use
this filter.

b. Report messages KAYC0048E and KAYC0056I.

8 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Other runtime exceptions

a. Continue processing records that use the expression.
b. Report message KAYC0031W.

In that previous behavior, an expression that triggered an evaluation exception was considered
to be unreliable, and was immediately excluded from processing to avoid the potential for
undesirable filtering. However, in practice, that behavior is problematic, inconsistent, because
other types of runtime exceptions could also be considered to mark the expression as unreliable.
For details on which runtime exceptions SpEL characterizes as an evaluation exception, see the
SpEL documentation.

Now, OMEGAMON Data Connect handles all runtime exceptions in expressions in the same way.
A new configuration parameter for each condition, disable-table-on-error, enables you to
control whether OMEGAMON Data Connect stops or continues processing records that use the
expression:

1. Discard the current record that triggered the exception.
2. Report new message KAYC0057W.
3. Depending on the value of disable-table-on-error:
false (default)

Continue processing records that use the expression.
true

a. Stop processing records that use the expression; disable the table for outputs that use
this filter.

b. Report message KAYC0056I.

Message KAYC0048E no longer occurs.

Example use of the new configuration parameter in a global-level filter:

connect:
 filter:
 enabled: true
 products:
 km5:
 tables:
 ascpuutil:
 condition:
 expression: sysplex_name.equals('PLEXA') # No safe
navigation operator (?) after sysplex_name
 disable-table-on-error: true # If sysplex_name field is
missing, stop processing records from this table

Logging flood control to suppress duplicate messages
Some events can occur frequently, resulting in numerous duplicate log messages. To avoid
duplicate messages flooding the log, OMEGAMON Data Connect applies new flood control
configuration parameters to some messages. Here are the new parameters shown with their
default values:

connect:
 logging:
 flood-control:
 enabled: true
 interval: 300
 limit: 1

where interval specifies a number of seconds (300 seconds = 5 minutes) and limit is the
maximum instances of a particular message allowed within that interval.

OMEGAMON Data Connect applies flood control to the following messages:

What's new in OMEGAMON Data Provider 9

KAYC0031W
KAYC0057W
KAYC0061W
KAYC0062W

Actuator endpoints over HTTP: now exposing only the health endpoint by default
Previously, OMEGAMON Data Connect specified the following Spring Boot property value to
expose all Spring Boot Actuator endpoints over HTTP by default:

management:
 endpoints:
 web:
 exposure:
 include: "*"

OMEGAMON Data Connect no longer specifies that property. OMEGAMON Data Connect now
follows the default Spring Boot behavior, exposing only the health endpoint over HTTP.

To control which Spring Boot Actuator endpoints are exposed, use the corresponding include or
exclude properties in the OMEGAMON Data Connect configuration file. For example, to expose
the health and prometheus endpoints over HTTP:

management:
 endpoints:
 web:
 exposure:
 include: "health,prometheus"

For more details, see the Spring Boot documentation about exposing endpoints for production-
ready features.

Removal of z/OS MVS MODIFY system command to restart OMEGAMON Data Connect
Previously, if you ran OMEGAMON Data Connect as a z/OS batch job or started task, then you
could enter the following MVS MODIFY system command to restart OMEGAMON Data Connect
without stopping the batch job or started task:

F job_name,APPL=RESTART

That application-specific restart method, using the parameter APPL=RESTART, is no longer
supported. Instead, use the normal z/OS methods for stopping and starting batch jobs and
started tasks, such as the MVS STOP system command and, for started tasks, the START system
command. For details, see “Reloading OMEGAMON Data Connect configuration” on page 72.

Refreshed attribute support
Attributes support refreshed to include new attributes introduced by monitoring agents.

February 2023: APAR OA64177
Attributes support refreshed to include new attributes introduced by monitoring agents.

No documentation updates.

September 2022: APAR OA63539
Attributes support refreshed to include new attributes introduced by monitoring agents.

Documentation-only changes:

“OMEGAMON monitoring agents as a data source for OMEGAMON Data Provider” on page 34
A new topic about choosing the destinations of collected attributes.

10 IBM Z OMEGAMON Data Provider: Installation and User's Guide

“Expected messages” on page 156
A new topic that lists the normal messages that you should expect from each component involved in
OMEGAMON Data Provider.

“Configuration parameters for OMEGAMON monitoring agents as a data source” on page 77

• More details about the special interval value 0
• Clarification of default destinations for unselected collections
• Precedence of entries in the collections sequence
• More examples

“Adding more OMEGAMON collections to OMEGAMON Data Provider” on page 75
A new topic about adding more collections to an environment that already sends some collections to
OMEGAMON Data Provider.

OMEGAMON Data Broker
Forwarding to multiple instances of OMEGAMON Data Connect

Each instance of OMEGAMON Data Broker can forward attributes to multiple instances of
OMEGAMON Data Connect.

For an overview of this concept, see “OMEGAMON Data Provider topology” on page 31.

For configuration details, see “OMEGAMON Data Broker configuration parameters” on page 83.

Logging level
Typically, you only need to set the OMEGAMON Data Broker logging options parameter (LOGOPTS)
if IBM Software Support requests you to do so for troubleshooting.

OMEGAMON Data Connect
Handling of errors in filter condition expressions

Clarification of how OMEGAMON Data Connect handles different types of errors in filter condition
expressions.

Parameters for managing attempts to connect to a TCP sink
Descriptions of two previously undocumented TCP output parameters: max-connection-
attempts and retry-interval.

Methods for setting the logging level
Different ways to set the OMEGAMON Data Connect logging level.

June 2022: APAR OA63141
Support for MQ, Network, and Storage monitoring agents, and other new function.
Support for more monitoring agents

• MQ

– IBM OMEGAMON for Messaging on z/OS, V7.5
• Network

– IBM Z OMEGAMON Network Monitor, V5.6
• Storage

– IBM OMEGAMON for Storage on z/OS, V5.5

Support for Instana
IBM Instana Observability on z/OS can now ingest attributes from OMEGAMON Data Provider as JSON
Lines over TCP.

To support this new Instana feature, OMEGAMON Data Connect now includes an embedded filter
include file tailored for Instana.

OMEGAMON Data Connect
New configuration parameters:

What's new in OMEGAMON Data Provider 11

Filter include files
Filters for JSON-format outputs (Kafka, STDOUT, and TCP) can use the new include parameter
to refer to an external filter include file, rather than specifying filter parameters inline in the
OMEGAMON Data Connect configuration file.

The filter include file can be in the file system or embedded in the OMEGAMON Data Connect JAR
file.

Conditional filters
Filters for JSON-format outputs can now include a condition for each table.

A condition specifies an expression written in the Spring Expression Language (SpEL). The
expression can refer to fields in the table, enabling you to conditionally filter records based on
their field values. OMEGAMON Data Connect forwards a record only if the expression is true.

For example, the following parameters configure OMEGAMON Data Connect to send records from
the z/OS monitoring agent (product code km5) table ascpuutil to the stdout file only if the
value of the job_name field matches the regular expression PFX.*:

connect:
 output:
 stdout:
 enabled: true
 filter:
 products:
 km5:
 tables:
 ascpuutil:
 condition:
 expression: job_name?.matches('PFX.*')

Kafka topic per table
Previously, to configure OMEGAMON Data Connect to send data to Kafka, you used the
connect.output.kafka.topic key to specify the name of a single destination Kafka topic.

Now, the connect.output.kafka.topic key is optional:

• If you specify the topic key, then the behavior is unchanged: OMEGAMON Data Connect sends
data from all tables to that single topic.

• If you omit the topic key, then OMEGAMON Data Connect sends data for each table to a
separate topic.

The per-table topic names have the following pattern:

topic_prefix.product.table_name

where topic_prefix is the value of the new key connect.output.kafka.topic-prefix
(default: odp).

Example topic name:

odp.km5.ascpuutil

Kafka connection retries after timeout
The following new parameters control retries after an attempt to connect to Kafka times out:
retry-interval

Number of seconds between retries.
max-connection-attempts

Maximum number of connection attempts.
Attribute dictionary

OMEGAMON Data Connect now includes an attribute dictionary. The dictionary is a set of YAML files
that describe the attributes of each table of each supported monitoring agent.

Documentation-only changes:

12 IBM Z OMEGAMON Data Provider: Installation and User's Guide

• OMNIMON Base APAR/PTF level cited as a prerequisite for OMEGAMON Data Provider.
• Improved description of OMEGAMON Data Provider as a Prometheus target.

March 2022: APAR OA62775
Support for IMS and JVM monitoring agents, and other new function.
Support for more monitoring agents

• IMS:

– IBM OMEGAMON for IMS on z/OS, V5.5
• Java Virtual Machine (JVM):

– IBM Z OMEGAMON for JVM on z/OS, V5.5

OMEGAMON Data Broker
New warning messages report records lost due to the OMEGAMON Data Broker record queue limit
being reached: KAYB0046W, KAYB0047W.

OMEGAMON Data Connect
Multiple TCP outputs

Previously, OMEGAMON Data Connect could send JSON Lines over TCP to only a single
destination. To send to multiple TCP outputs, you had to run multiple instances of OMEGAMON
Data Connect.

Now, a single instance of OMEGAMON Data Connect can send JSON Lines over TCP to multiple
destinations.

Different filter for each output
Previously, you could specify only a global-level filter that applies to all JSON-format outputs: TCP,
Kafka, and STDOUT.

Now, you can also specify a filter for each output. These are known as output-level filters. If you
specify a filter at both levels, the output-level filter replaces the global-level filter.

The combination of multiple TCP outputs and output-level filters means, for example, that a single
instance of OMEGAMON Data Connect can send one set of attributes over TCP to Splunk and a
different set to the Elastic Stack.

Starter dashboards
The starter Elastic Kibana dashboards have moved to a new GitHub repository.

Documentation-only changes:

• Character encoding issues for the YAML documents RKANPARU(KAYOPEN) and connect.yaml.
• Updated example Elastic Stack configuration:

– Uses data streams instead of time-based indices
– Index names now also include the product code as a qualifier, in addition to the existing table name

qualifier

December 2021: APAR OA62420
Support for CICS® and Db2 monitoring agents, and other new function.
Support for more monitoring agents

• CICS:

– IBM OMEGAMON for CICS on z/OS, 5.5
– IBM OMEGAMON for CICS TG on z/OS, 5.5

• Db2:

What's new in OMEGAMON Data Provider 13

– IBM OMEGAMON for Db2 Performance Expert on z/OS, 5.4

OMEGAMON Data Connect
Enhanced validation of field and table names in configuration parameters.

OMEGAMON Data Broker

• Configuration member now supports parameters longer than 80 characters
• New configuration parameters for retrying the connection with OMEGAMON Data Connect:

KAY.CIDB.FWD.OM.CONNECT_RETRY_INTERVAL
KAY.CIDB.FWD.OM.MAX_CONNECT_RETRY_ATTEMPTS

• Support for IPv6 addresses
• Writes significant messages to the JES log

November 2021: First release
OMEGAMON Data Provider was introduced as a part of IBM Z OMEGAMON Integration Monitor.

14 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Earlier editions of this documentation
Earlier editions of this documentation are available in PDF only.
Related information
PDF documentation

© Copyright IBM Corp. 2021, 2024 15

https://www.ibm.com/docs/SSFHX8_latest/product_manuals.html

16 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Upgrading to the latest APAR level
Some APARs involve performing upgrade steps in addition to the steps described in the corresponding
APAR text.

December 2023: APAR OA65724
To upgrade an existing OMEGAMON Data Provider environment to use the PTF for this APAR, you must
perform upgrade steps after applying the PTF.

Before you begin
Read what's new in this APAR so that you understand the reasons for these upgrade steps.

Running OMEGAMON Data Connect on z/OS now requires z/OS 2.5 or later. Java 17 runtime
environments on z/OS require IBM Semeru Runtime Certified Edition for z/OS 17. IBM Semeru Runtime
Certified Edition for z/OS 17 requires z/OS 2.5 or later. Java 17 is not available on z/OS 2.4 or earlier.

Important: If you are currently running OMEGAMON Data Connect on a version of z/OS earlier than 2.5,
then do not apply the PTF for this APAR until you have decided where and how to run OMEGAMON Data
Connect afterward. For example:

• Run OMEGAMON Data Connect on a z/OS 2.5 or later LPAR. OMEGAMON Data Connect can run on a
different LPAR or sysplex than OMEGAMON Data Broker. For details, see “OMEGAMON Data Provider
topology” on page 31.

• Run OMEGAMON Data Connect on a non-z/OS platform that supports Java 17.
• Defer applying the PTF for this APAR of OMEGAMON Data Provider until you upgrade to z/OS 2.5 or later.

The z/OS 2.4 end of support (EOS) date is 30 September 2024.

If, after understanding what's new in this APAR, you decide to proceed, then apply the PTF to your z/OS
SMP/E target libraries.

Upgrading OMEGAMON Data Connect
Upgrade the Java runtime environment that you use to run OMEGAMON Data Connect to Java 17 or
later, 64-bit edition. Consider increasing the heap size of the Java virtual machine that you use to run
OMEGAMON Data Connect. If you use OMEGAMON Data Connect to send data to Apache Kafka, revise the
Kafka output configuration parameters.

Before you begin
Ensure that you have a Java 17, or later, 64-bit edition runtime environment installed on the platform
where you run OMEGAMON Data Connect. For example, if you run OMEGAMON Data Connect on z/OS,
ensure that you have IBM Semeru Runtime Certified Edition for z/OS 17 installed. IBM Semeru Runtime
Certified Edition for z/OS 17 requires z/OS 2.5 or later.

Locate the path of the Java installation directory. For example, on z/OS UNIX , /usr/lpp/java/
J17.0_64/.

Procedure
1. If you use a z/OS JCL procedure to run OMEGAMON Data Connect, upgrade the procedure to refer to a

Java 17 runtime environment.
a) Replace your procedure with the latest sample procedure supplied in TKANSAM(KAYCONN).

Significant changes in the latest sample procedure:

© Copyright IBM Corp. 2021, 2024 17

https://www.ibm.com/docs/en/semeru-runtime-ce-z/17

VERSION
In the PROC statement at the start of the procedure, the value of the VERSION parameter is now
17. The procedure uses this value as the suffix of the Java virtual machine (JVM) load module
name, JVMLDMxx.

LIBPATH
In the PARMS inline data set, the value of the LIBPATH environment variable has been updated
to match the directories listed in the JZOS documentation for Java 17.

-Djava.protocol.handler.pkgs
The value of the Java runtime option java.protocol.handler.pkgs has been updated to
com.ibm.crypto.zsecurity.provider. This change is described later, in step “3” on page
18.

b) Edit the values of the symbolic parameters at the start of the procedure.
JAVAHOME

The path of the installation directory of Java 17, or later, 64-bit edition. The directory must
contain a bin subdirectory that contains the java command.

INSTLDIR
The path of the OMEGAMON Data Connect installation directory.

USERDIR
The path of your OMEGAMON Data Connect user directory.

c) Ensure that the system can locate the JVMLDM17 load module.

The sample procedure does not contain a STEPLIB DD statement to specify the location of the
load module. Instead, the procedure assumes that the load module is in a library that the system
searches for programs, such as a library in the LNKLST concatenation. For example, a default SMP/E
installation of JZOS places the load module in the SYS1.SIEALNKE library, which is in the default
LNKLST concatenation.

If the load module is not in such a system library, then insert a STEPLIB DD statement that
specifies the location of the load module. For example, hlq.JZOS.LOADLIB.

2. If you use a shell script or Java command line to run OMEGAMON Data Connect, upgrade them to use
a Java 17 or later, 64-bit edition runtime environment.

This step does not necessarily involve editing the shell script or command line. For example, the
supplied sample shell script refers to the JAVA_HOME environment variable; in the profile that sets that
variable, change the value to refer to a Java 17 runtime environment.

3. If you run OMEGAMON Data Connect on z/OS, and you specify the Java
runtime option java.protocol.handler.pkgs, then set the option value to
com.ibm.crypto.zsecurity.provider.

-Djava.protocol.handler.pkgs=com.ibm.crypto.zsecurity.provider

(note the zsecurity qualifier in the value)

The Java runtime option java.protocol.handler.pkgs refers to packages that contain protocol
handlers. For example, a handler for the safkeyring protocol that you can use in OMEGAMON Data
Connect SSL parameters on z/OS to refer to RACF key rings.

Previously, in Java 8, the safkeyring protocol handler was supplied by the IBMJCE provider in the
package com.ibm.crypto.provider.

In Java 17, the IBMJCE provider is no longer supported. The safkeyring protocol handler is now
supplied by the IBMZSecurity provider in the package com.ibm.crypto.zsecurity.provider.

Tip: Java only reads the value of the java.protocol.handler.pkgs runtime option if it encounters
a reference to an "unknown" protocol, such as safkeyring. Otherwise, Java ignores the value of this
runtime option.

4. In each of the methods that you use to run OMEGAMON Data Connect, consider increasing the Java
heap size to match the latest samples provided with OMEGAMON Data Connect.

18 IBM Z OMEGAMON Data Provider: Installation and User's Guide

In the sample JCL procedure and shell script to run OMEGAMON Data Connect, the Java runtime
options for minimum and maximum heap size have been increased from:

-Xms64m -Xmx2048m

to:

-Xms1024m -Xmx4096m

This increase is a precautionary measure to accommodate higher data volume, including larger
incoming record sizes.

Actual heap size requirements depend on factors that are specific to your site.
5. If you run OMEGAMON Data Connect on z/OS, and your OMEGAMON Data Connect configuration

contains Spring Boot server SSL properties that refer to the safkeyring protocol, then reduce the
number of slashes following safkeyring: from four (4) to two (2).
For example, given the following key-store property value:

server:
 ssl:
 key-store: safkeyring:////STCOMDP/OMDPring

remove two of the slashes:

 key-store: safkeyring://STCOMDP/OMDPring

6. If you use OMEGAMON Data Connect to send data to Apache Kafka, revise the Kafka output
configuration parameters.
a) If you specify Kafka producer properties (that is, parameters under the key
connect.output.kafka.properties), then wrap the property names in square brackets, and
then in quotes.

To ensure that OMEGAMON Data Connect correctly parses Kafka producer properties in the
OMEGAMON Data Connect configuration file, you must enclose the property names in square
brackets, and then in double quotes. Example:

connect:
 output:
 kafka:
 properties:
 "[reconnect.backoff.max.ms]": 30000

b) If you specify the optional Kafka output parameters retry-interval and max-connection-
attempts, then remove those parameters.

Previously, to configure the reconnection behavior of the Kafka output, you could specify optional
retry-interval and max-connection-attempts parameters:

connect:
 output:
 kafka:
 retry-interval: <seconds> # Default: 30
 max-connection-attempts: <number> # Default: unlimited

retry-interval and max-connection-attempts are no longer supported. They have been
superseded by the enhanced internal queueing introduced by this APAR.

Upgrading to the latest APAR level 19

Instead, to configure the reconnection behavior of the Kafka output, specify native Kafka producer
configuration properties such as reconnect.backoff.max.ms:

connect:
 output:
 kafka:
 properties:
 "[reconnect.backoff.max.ms]": 30000

For information about Kafka producer configuration properties, see the Apache Kafka
documentation.

Related concepts
Where and how to run OMEGAMON Data Connect
OMEGAMON Data Connect is a Java application. You can run OMEGAMON Data Connect anywhere that
you can run Java 17, or later, 64-bit edition.
Related reference
Kafka output parameters
OMEGAMON Data Connect Kafka output parameters specify whether to publish attributes in JSON format
to an Apache Kafka topic.
Related information
OMEGAMON Data Connect fails with UnsupportedClassVersionError

Upgrading OMEGAMON Data Broker
Upgrade the Zowe cross-memory server that runs OMEGAMON Data Broker, and register the additional
ZISDYNAMIC plug-in that OMEGAMON Data Broker now requires.

About this task
These upgrade steps are required because OMEGAMON Data Broker now requires:

• A Zowe cross-memory server load module from Zowe 2.12.0, or later.
• The ZIS dynamic linkage base plug-in, ZISDYNAMIC.

If you already run OMEGAMON Data Broker in the Zowe cross-memory server that is supplied with
OMEGAMON Data Provider, then you can simply continue doing that. OMEGAMON Data Provider supplies
a newer server load module in the same location as the old load module, TKANMODP(KAYSIS01), and the
new ZISDYNAMIC plug-in in the same library, as TKANMODP(KAYSISDL).

However, if you run OMEGAMON Data Broker in a Zowe cross-memory server that is part of a stand-alone
installation of Zowe earlier than 2.12.0, then either:

• Upgrade your stand-alone installation of Zowe to a more recent version. For details, see the Zowe
documentation.

Ensure that the STEPLIB concatenation for your Zowe cross-memory server job step includes
the latest OMEGAMON Data Broker load modules, supplied in TKANMODP(KAYB0001) and
TKANMODP(KAYBNETL).

• Switch to using the server load module that is supplied with OMEGAMON Data Provider. For details
on configuring OMEGAMON Data Broker to run in the Zowe cross-memory server that is supplied with
OMEGAMON Data Provider, see “Configuring OMEGAMON Data Broker” on page 46.

Whether you use the server supplied with OMEGAMON Data Provider or in a stand-alone installation of
Zowe, perform the following procedure to register the ZISDYNAMIC plug-in.

Procedure
1. Register the ZISDYNAMIC plug-in in the Zowe cross-memory server configuration member.

20 IBM Z OMEGAMON Data Provider: Installation and User's Guide

• If you are using the server supplied with OMEGAMON Data Provider, insert the following line at the
top of the PARMLIB(KAYSIPxx) configuration member:

ZWES.PLUGIN.KAY.ZISDYNAMIC=KAYSISDL

• If you are using the server in a stand-alone installation of Zowe, insert the following line at the top
of the PARMLIB(ZWESIPxx) configuration member:

ZWES.PLUGIN.ZISDYNAMIC=ZWESISDL

Important: Only register the ZISDYNAMIC plug-in once. For example, do not attempt to register the
ZISDYNAMIC plug-in once referring to the ZWESISDL load module supplied with Zowe, and then
again referring to the KAYSISDL load module supplied with OMEGAMON Data Provider. You do not
need to copy the TKANMODP(KAYSISDL) member supplied with OMEGAMON Data Provider to the
STEPLIB concatenation for the server in your stand-alone installation of Zowe. If you are using the
server in a stand-alone installation of Zowe, refer to the ZWESISDL plug-in load module supplied
with Zowe.

2. Change the name of the existing parameter that registers the OMEGAMON Data Broker plug-in in the
Zowe cross-memory server configuration member.

This change is not strictly necessary, but it's recommended for consistency with the name of the new
parameter for the ZISDYNAMIC plug-in.

Change the existing line:

ZWES.PLUGIN.CIDB=KAYB0001

to:

ZWES.PLUGIN.KAY.CIDB=KAYB0001

That is, insert the new qualifier .KAY between .PLUGIN and .CIDB.

Related tasks
Configuring OMEGAMON Data Broker
OMEGAMON Data Broker is a plug-in for the Zowe cross-memory server. You need to configure a
JCL procedure to run the server as a started task and you need to specify OMEGAMON Data Broker
parameters in the server PARMLIB member.

Restarting OMEGAMON Data Provider
After applying the PTF and performing the upgrade steps, restart the components involved, and then
check for expected messages. In particular, check the messages that report the APAR number and Zowe
version.

Procedure
1. Stop any running instances of OMEGAMON Data Broker.
2. Stop any running instances of OMEGAMON Data Connect.
3. Use your upgraded method to start OMEGAMON Data Broker.
4. Use your upgraded method to start OMEGAMON Data Connect.
5. Restart your OMEGAMON runtime environments.
6. Check for expected messages.

In particular, check the following messages for the correct APAR number, OA65724, and the required
Zowe version, 2.12.0 or later:

Upgrading to the latest APAR level 21

OMEGAMON Data Broker
In the SYSPRINT output data set of the Zowe cross-memory server job that runs OMEGAMON Data
Broker (for example, job name KAYS* or ZWES*):

Message Check

ZWES0001I Zowe version

KAYB0005I APAR number

OMEGAMON Data Connect
In the STDOUT file of OMEGAMON Data Connect:

Message Check

KAYC0035I APAR number

Related tasks
Starting OMEGAMON Data Provider
Starting OMEGAMON Data Provider involves starting the related components: OMEGAMON Data Connect,
OMEGAMON Data Broker, and the data source, such as the OMEGAMON runtime environment.
Related reference
Expected messages
These are the normal messages that you should expect from each component involved in OMEGAMON
Data Provider. If data is not arriving at a destination analytics platform, but there are no obvious errors,
then use these messages as a checklist to diagnose the problem.

July 2023: APAR OA64880
To upgrade an existing OMEGAMON Data Provider environment to use the PTF for this APAR, you must
perform upgrade steps after applying the PTF.

Before you begin
Read what's new in this APAR so that you understand the reasons for these upgrade steps.

Apply the PTF to your z/OS SMP/E target libraries.

Upgrading OMEGAMON Data Connect
Move your OMEGAMON Data Connect configuration files to user directories and upgrade your methods of
running OMEGAMON Data Connect.

Procedure
1. Move your existing OMEGAMON Data Connect configuration files to user directories.

This APAR introduces user directories as a formalized structure for storing your site-specific
OMEGAMON Data Connect configuration details.

Perform the following steps for each of your existing OMEGAMON Data Connect configuration files:

a) Use the create action of the supplied shell script to create a user directory.

For example, at a shell prompt, change to the bin directory under the OMEGAMON Data Connect
installation directory, and then enter the following command, where /var/omdp/prod-a is the
user directory that you want to create:

ODP_CONNECT_USER_DIR=/var/omdp/prod-a ./connect create

22 IBM Z OMEGAMON Data Provider: Installation and User's Guide

b) Move your existing configuration file to the relative path config/connect.yaml under the new
user directory. Overwrite the sample configuration file that the script copied to that directory.

2. If you use a z/OS JCL procedure to run OMEGAMON Data Connect, upgrade your procedure based on
the latest sample.
a) Replace your procedure with the latest sample procedure supplied in TKANSAM(KAYCONN).
b) Edit the values of the symbolic parameters at the start of the procedure.
JAVAHOME

The path of the installation directory of Java 8, or later, 64-bit edition. The directory must
contain a bin subdirectory that contains the java command.

INSTLDIR
The path of the OMEGAMON Data Connect installation directory.

USERDIR
The path of your OMEGAMON Data Connect user directory.

3. If you use the supplied sample shell script to run OMEGAMON Data Connect, change your method for
invoking the script to match the latest sample.

Changes to the sample shell script include:

• To run OMEGAMON Data Connect, you must now specify the command-line argument run.
• You must set the value of the environment variable ODP_CONNECT_USER_DIR to refer to the path of

the OMEGAMON Data Connect user directory.

For more details on the changes to the shell script, see “What's new in OMEGAMON Data Provider” on
page 1 and “Sample shell script to run OMEGAMON Data Connect” on page 65.

4. If you use your own custom Java command line to run OMEGAMON Data Connect, upgrade your
command line to reflect the changes in OMEGAMON Data Connect.

In particular, note the new JAR file name in the -jar option and the new -Dodp.ext option.

For details on changes to the Java command line, see “What's new in OMEGAMON Data Provider” on
page 1 and “Java command line to run OMEGAMON Data Connect” on page 68.

Related concepts
Where and how to run OMEGAMON Data Connect
OMEGAMON Data Connect is a Java application. You can run OMEGAMON Data Connect anywhere that
you can run Java 17, or later, 64-bit edition.
Related reference
OMEGAMON Data Connect user directory
An OMEGAMON Data Connect user directory contains files that configure OMEGAMON Data Connect for
your site.
OMEGAMON Data Connect installation directory
The OMEGAMON Data Connect installation directory contains the files for OMEGAMON Data Connect that
are supplied with OMEGAMON Data Provider.

Upgrading OMEGAMON Data Broker
Upgrade the Zowe cross-memory server that runs OMEGAMON Data Broker.

About this task
These upgrade steps are required for two reasons:

• OMEGAMON Data Broker now requires a Zowe cross-memory server load module from Zowe 1.28.2, or
later.

• You are no longer required to rename the Zowe cross-memory server load module supplied with
OMEGAMON Data Provider from KAYSIS01 to ZWESIS01. OMEGAMON Data Provider supplies the
server load module from Zowe 1.28.2. You can use that load module with the name KAYSIS01.

Upgrading to the latest APAR level 23

If you run OMEGAMON Data Broker in a Zowe cross-memory server that is part of a stand-alone
installation of Zowe earlier than 1.28.2, then either:

• Upgrade your stand-alone installation of Zowe to a more recent version. Skip the upgrade procedure
described here. Instead, see the Zowe documentation.

Ensure that the STEPLIB concatenation for your Zowe cross-memory server job step includes
the latest OMEGAMON Data Broker load modules, supplied in TKANMODP(KAYB0001) and
TKANMODP(KAYBNETL).

• Switch to using the server load module, from Zowe 1.28.2, that is supplied with OMEGAMON Data
Provider. For details, see the following procedure.

If you already run OMEGAMON Data Broker in a Zowe cross-memory server that is supplied with
OMEGAMON Data Provider, then perform the following procedure to replace your existing ZWE-prefix
members with KAY-prefix members.

Tip: Performing the following procedure to replace your existing ZWE-prefix members with KAY-prefix
members is not strictly necessary. The important point for this upgrade is that, whatever name you use
for the Zowe cross-memory server load module, you use a load module from Zowe 1.28.2, or later.
However, switching to KAY-prefix members will save you future work and avoids the risk of inadvertently
continuing to use an old copy of the server module. OMEGAMON Data Provider supplies the load module
as KAYSIS01. If you decide to continue renaming it to ZWESIS01, as required by earlier APARs, then,
if you ever forget to perform that rename, you'll continue to use the old renamed copy. It's your choice,
but it's less work and less risky to switch to using the KAYSIS01 load module name as supplied with
OMEGAMON Data Provider.

Procedure
1. Replace your existing OMEGAMON Data Broker startup JCL procedure, PROCLIB(ZWESIS01), with a

new procedure, PROCLIB(KAYSIS01), based on the new sample member TKANSAM(KAYSIS01).

The new sample procedure refers to the supplied load module name KAYSIS01, reflecting the fact
that this load module no longer needs to be renamed to ZWESIS01. The STEPLIB can now refer to the
single library, TKANMODP, that contains all of the required load modules.

The new sample procedure specifies the name ODP_BROKER (was: ZWESIS_STD). The name that you
specify here must match the name specified by the broker.name key in the collection configuration
member, RKANPARU(KAYOPEN). If you decide to keep the name ODP_BROKER, to identify this instance
of the Zowe cross-memory server as dedicated to running OMEGAMON Data Broker, then ensure that
you also update RKANPARU(KAYOPEN).

For more details on editing the sample procedure, see “Configuring OMEGAMON Data Broker” on page
46.

2. Rename your existing OMEGAMON Data Broker configuration member to match the first four
characters of the server load module name.

For example, rename the existing member PARMLIB(ZWESIP00) to PARMLIB(KAYSIP00).
3. Define a resource profile for KAYS*.* started tasks to match the existing ZWES*.* profile.

Example RACF commands:

RDEFINE STARTED KAYS*.* STDATA(USER(OMEGSTC) GROUP(STCGROUP)
PRIVILEGED(NO) TRUSTED(NO))
SETROPTS RACLIST(STARTED) REFRESH

Replace the parameter values in this example with values that reflect your site-specific practices for
started tasks.

4. If the resource profile for ZWES*.* started tasks was required only for the Zowe cross-memory server
that is dedicated to running OMEGAMON Data Broker, then delete that profile.

24 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Attention: Only delete the ZWES*.* profile if you are certain that it is no longer required. For
example, confirm that the profile is not required by a stand-alone Zowe installation unrelated to
OMEGAMON Data Provider.

Example RACF commands:

RDELETE STARTED ZWES*.*
SETROPTS RACLIST(STARTED) REFRESH

5. Modify the z/OS MVS program properties table (PPT) to make the Zowe cross-memory server load
module KAYSIS01 run in key 4 and be non-swappable.
a) Edit the PPT definition member SYS1.PARMLIB(SCHEDxx).

Add the following entry:

PPT PGMNAME(KAYSIS01) KEY(4) NOSWAP

b) Modify the PPT.
Example MVS system command:

SET SCH=xx

6. If the existing PPT entry for ZWESIS01 was used only for the Zowe cross-memory server that is
dedicated to running OMEGAMON Data Broker, then delete that entry.

Attention: Only delete the PPT entry for ZWESIS01 if you are certain that it is no longer
required. For example, confirm that the entry is not required by a stand-alone Zowe installation
unrelated to OMEGAMON Data Provider.

Related tasks
Configuring OMEGAMON Data Broker
OMEGAMON Data Broker is a plug-in for the Zowe cross-memory server. You need to configure a
JCL procedure to run the server as a started task and you need to specify OMEGAMON Data Broker
parameters in the server PARMLIB member.

Restarting OMEGAMON Data Provider
After applying the PTF and performing the upgrade steps, restart the components involved, and then
check for expected messages. In particular, check the messages that report the APAR number and Zowe
version.

Procedure
1. Stop any running instances of OMEGAMON Data Broker.
2. Stop any running instances of OMEGAMON Data Connect.
3. Use your upgraded method to start OMEGAMON Data Broker.
4. Use your upgraded method to start OMEGAMON Data Connect.
5. Restart your OMEGAMON runtime environments.
6. Check for expected messages.

In particular, check the following messages for the correct APAR number, OA64880, and the required
Zowe version, 1.28.2 or later:

OMEGAMON Data Broker
In the SYSPRINT output data set of the Zowe cross-memory server job that runs OMEGAMON Data
Broker (for example, job name KAYS* or ZWES*):

Upgrading to the latest APAR level 25

Message Check

ZWES0001I Zowe version

KAYB0005I APAR number

OMEGAMON Data Connect
In the STDOUT file of OMEGAMON Data Connect:

Message Check

KAYC0035I APAR number

Related tasks
Starting OMEGAMON Data Provider
Starting OMEGAMON Data Provider involves starting the related components: OMEGAMON Data Connect,
OMEGAMON Data Broker, and the data source, such as the OMEGAMON runtime environment.
Related reference
Expected messages
These are the normal messages that you should expect from each component involved in OMEGAMON
Data Provider. If data is not arriving at a destination analytics platform, but there are no obvious errors,
then use these messages as a checklist to diagnose the problem.

26 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Introduction to OMEGAMON Data Provider
OMEGAMON Data Provider makes data from z/OS available to various destinations. Typically, the data
consists of metrics or events from z/OS subsystems or applications, and the destinations are analytics
platforms that analyze that data.

Figure 1. OMEGAMON Data Provider: data sources, output methods, and example destinations

OMEGAMON
Data Provider

Outputs

JSON

Push
output
methods

Pull

Apache Kafka

Elastic Stack

Splunk

Instana

Prometheus/
Grafana

OMEGAMON
monitoring agents

Other software

Destinations
such as

Sources
on z/OS

Data

TCP
JSON Lines

Kafka
over TCP

HTTP
POST requests

Prometheus
HTTP endpoint

Data sources
Data sources for OMEGAMON Data Provider include the following software:

• OMEGAMON monitoring agents on z/OS
• Other software on z/OS, such as:

– IBM Db2 Automation Expert for z/OS
– IBM Db2 Query Monitor for z/OS

This OMEGAMON Data Provider documentation includes information that applies to all data sources, with
specific details for OMEGAMON monitoring agents. For specific details about other software as a data
source for OMEGAMON Data Provider, see the separate documentation for that software.

Output methods
OMEGAMON Data Provider output methods are designed to be easily ingested by destinations such as
analytics platforms.

OMEGAMON Data Provider supports the following output methods:

Push
The following output methods "push" (send) data in JSON format to destinations that have been
configured to listen for this input:
TCP

JSON Lines over TCP

© Copyright IBM Corp. 2021, 2024 27

HTTP
HTTP POST requests containing JSON

Kafka
Apache Kafka topics containing JSON

Pull
The following output method enables destinations to "pull" (get, scrape) data from OMEGAMON Data
Provider:
Prometheus

Prometheus metrics HTTP endpoint served by OMEGAMON Data Provider

Some output methods are for a specific analytics platform. Other output methods, such as JSON
Lines over TCP, are generic, and can be ingested by various analytics platforms. For example, analytics
platforms that can ingest JSON Lines over TCP include IBM Instana Observability on z/OS (Instana), the
Elastic Stack, and Splunk.

Some analytics platforms support more than one output method from OMEGAMON Data Provider. To help
decide which output method to use, see the documentation for your analytics platform.

Example destinations
Destinations for OMEGAMON Data Provider include the following platforms:

• IBM Instana
• Elastic Stack
• Splunk
• Apache Kafka
• Prometheus/Grafana

Related reference
OMEGAMON monitoring agents supported by OMEGAMON Data Provider

28 IBM Z OMEGAMON Data Provider: Installation and User's Guide

OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.

OMEGAMON Data Provider architecture
OMEGAMON Data Provider consists of two components: OMEGAMON Data Broker and OMEGAMON Data
Connect.

Zowe
cross-memory

server

Java
runtime

environment

OMEGAMON
Data

Broker

OMEGAMON Data Provider

OMEGAMON
Data

ConnectSources

Configuration
member

connect.yamlMapping
extension
JAR files

Destinations

Specifies location
of OMEGAMON
Data Connect

Contain data and logic to map
source data to output formats

Specifies which
output methods to use,
destination details,
and what data to send

z/OS z/OS or other platform

Figure 2. Components of OMEGAMON Data Provider

OMEGAMON Data Broker
OMEGAMON Data Broker forwards data from sources, such as OMEGAMON monitoring agents, over a TCP
network to OMEGAMON Data Connect.

OMEGAMON Data Broker is a plug-in for the Zowe cross-memory server.

Tip: You don't need to install Zowe. The Zowe cross-memory server is supplied with OMEGAMON Data
Provider. For details, see “Prerequisites for OMEGAMON Data Provider” on page 36.

The Zowe cross-memory server runs in its own z/OS address space on the same z/OS instance as the data
source.

The behavior of OMEGAMON Data Broker is determined by plain-text key-value configuration parameters
in the Zowe cross-memory server configuration member. The parameters include details such as the
hostname and port on which OMEGAMON Data Connect is listening for data.

OMEGAMON Data Connect
OMEGAMON Data Connect receives data from OMEGAMON Data Broker, transforms the data from its
original format, and publishes the data using one or more output methods.

Each instance of OMEGAMON Data Connect can publish to multiple destinations:

• Multiple TCP destinations ("sinks")
• Multiple HTTP endpoints that accept POST requests

Introduction to OMEGAMON Data Provider 29

• One Prometheus metrics HTTP endpoint served by OMEGAMON Data Connect
• One Kafka cluster

You can optionally filter which tables and which fields to publish to each destination.

OMEGAMON Data Connect is a Java application developed using the Spring Boot framework. The
framework provides features such as application metrics published to Prometheus by Micrometer, which
you can use to monitor OMEGAMON Data Connect activity and performance. For details, see the Spring
Boot documentation for the Spring Boot Actuator endpoints.

You can run OMEGAMON Data Connect on z/OS or on any platform that meets the Java requirements for
OMEGAMON Data Connect.

The behavior of OMEGAMON Data Connect is determined by a YAML document, config/connect.yaml,
in the OMEGAMON Data Connect user directory of your choice.

OMEGAMON Data Connect is a modular application that consists of multiple Java archive (JAR) files:

Core JAR file
A single JAR file that implements the core functionality of OMEGAMON Data Connect.

OMEGAMON Data Provider supplies the core JAR file in the OMEGAMON Data Connect installation
directory in the following path:

lib/odp-server-version.jar

Mapping extension JAR files
A JAR file for each data source of OMEGAMON Data Provider.

Mapping extensions extend OMEGAMON Data Connect to support data from different sources.
Typically, the source data from z/OS is in a proprietary binary format. Mapping extensions consist of
Java classes that contain data and logic to map the source data to the output formats of OMEGAMON
Data Connect. Mapping extension Java classes are sometimes referred to as mapping classes.

OMEGAMON Data Provider supplies mapping extension JAR files for OMEGAMON monitoring agents in
the OMEGAMON Data Connect installation directory in the following path:

lib/ext/kpp-odp-model-version.jar

where kpp is the product code for the agent.

Other data sources must supply their own mapping extension JAR file. You must copy the mapping
extension JAR file from the installation directory of that other software to your OMEGAMON Data
Connect user directory.

Related concepts
Where and how to run OMEGAMON Data Connect
OMEGAMON Data Connect is a Java application. You can run OMEGAMON Data Connect anywhere that
you can run Java 17, or later, 64-bit edition.
Related reference
OMEGAMON monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.
Configuration
OMEGAMON Data Provider involves four configuration points: the data source, the two components
of OMEGAMON Data Provider (OMEGAMON Data Broker and OMEGAMON Data Connect), and the
destination.
Characteristics of JSON output from OMEGAMON Data Connect

30 IBM Z OMEGAMON Data Provider: Installation and User's Guide

If you need to work directly with JSON output from OMEGAMON Data Connect, then it's useful to
understand the characteristics of this data, such as its structure, property names, and property values.

OMEGAMON Data Provider topology
OMEGAMON Data Provider topology typically consists of one instance of OMEGAMON Data Broker per
z/OS LPAR, with multiple instances of OMEGAMON Data Broker feeding a single instance of OMEGAMON
Data Connect.

The following figure shows an example topology with multiple instances of OMEGAMON Data Broker
sending data to a single instance of OMEGAMON Data Connect:

OMEGAMON
Data Broker

OMEGAMON
Data Broker

OMEGAMON
Data Broker

OMEGAMON
Data Broker

OMEGAMON
Data Connect

z/OS sysplex B

z/OS sysplex A

LPAR B1

LPAR A1

LPAR B2

LPAR A2

Sources

Sources

Sources

Sources

One Broker per LPAR

One or more data
sources, such as
OMEGAMON
monitoring agents,
per LPAR Each Connect

can be fed by
one or more
Brokers

Figure 3. Example OMEGAMON Data Provider topology

In this example, OMEGAMON Data Connect runs in a z/OS LPAR that is also running OMEGAMON Data
Broker. Alternatively, OMEGAMON Data Connect can run in a z/OS LPAR that is not running OMEGAMON
Data Broker, or OMEGAMON Data Connect can run on a different platform, such as a remote, non-
mainframe Linux® system.

OMEGAMON Data Broker can forward to multiple instances of OMEGAMON Data
Connect
You can configure each instance of OMEGAMON Data Broker to forward data to multiple instances of
OMEGAMON Data Connect.

The following figure shows an example topology where each instance of OMEGAMON Data Broker feeds
two instances of OMEGAMON Data Connect:

Introduction to OMEGAMON Data Provider 31

OMEGAMON
Data Broker

OMEGAMON
Data Broker

OMEGAMON
Data Broker

OMEGAMON
Data Connect

OMEGAMON
Data Connect

Production
analytics dashboards

In-development
analytics dashboards

Each Broker
can feed
one or more
Connects

Development environment

Production environment

Figure 4. Example topology with separate instances of OMEGAMON Data Connect for production and
development

In this example, one instance of OMEGAMON Data Connect belongs to a production environment while
the other instance belongs to a development environment. Configuring OMEGAMON Data Broker to feed
both instances of OMEGAMON Data Connect has the following advantages:

• You can stop, start, and reconfigure the development instance of OMEGAMON Data Connect without
interrupting the flow of data to production analytics dashboards.

• You don't have to drive a separate workload to send data to in-development analytics dashboards. The
development environment receives data from the production workload.

Related reference
Configuration
OMEGAMON Data Provider involves four configuration points: the data source, the two components
of OMEGAMON Data Provider (OMEGAMON Data Broker and OMEGAMON Data Connect), and the
destination.
OMEGAMON Data Broker configuration parameters
OMEGAMON Data Broker configuration parameters include the hostname and port on which OMEGAMON
Data Connect is listening.

OMEGAMON Data Provider security
You can secure each component of OMEGAMON Data Provider, including their input and output
communication methods.

You can use Transport Layer Security (TLS), including HTTPS (HTTP over TLS), to secure output from
OMEGAMON Data Provider to external applications or analytics platforms.

The following figure shows the connections between components of OMEGAMON Data Provider, and the
options for unsecure versus secure communication protocols.

32 IBM Z OMEGAMON Data Provider: Installation and User's Guide

OMEGAMON
Data Broker

OMEGAMON
Data Connect

TLS/TCP

TLS/TCP

HTTPS

TLS/TCP

HTTPS

TCP

Outputs

JSON

HTTP

Kafka

Prometheus

TCP

TCP

HTTP

TCP

HTTP

Client Server

Server

Server

Client

Client

Client

Server

ServerClient 1

5

2

3

4

Push
output

methods

Pull

z/OS z/OS or other platform

Figure 5. OMEGAMON Data Provider communication protocols with or without TLS

Table 1. Connections between OMEGAMON Data Provider components, with links to security parameter
descriptions

Connection Source Destination Secure protocol

 1 Client:
OMEGAMON Data Broker

Server:
OMEGAMON Data Connect
TCP input

TLS over TCP

 2 Client:
OMEGAMON Data Connect
TCP output

Server:
Analytics platform or application

TLS over TCP

 3 Client:
OMEGAMON Data Connect
HTTP output

Server:
Instana
acting as an HTTP(S) server

HTTPS

 4 Client:
OMEGAMON Data Connect
Kafka output

Server:
Kafka server

TLS over TCP

 5 Server:
OMEGAMON Data Connect
Prometheus output

Client:
Prometheus server
acting as an HTTP(S) client

HTTPS

To control the permission to run each component of OMEGAMON Data Provider and access to the related
data sets, use your system's access control facility. For example, on z/OS, use RACF.

Introduction to OMEGAMON Data Provider 33

OMEGAMON monitoring agents as a data source for OMEGAMON
Data Provider

To use OMEGAMON monitoring agents as a data source, OMEGAMON Data Provider extends OMEGAMON
attribute collection.
Related reference
Configuration parameters for OMEGAMON monitoring agents as a data source
OMEGAMON runtime environment member RKANPARU(KAYOPEN) configures the collection tasks of
OMEGAMON monitoring agents. The member contains configuration parameters that select collections
and set their destinations: the OMEGAMON persistent data store (PDS), OMEGAMON Data Broker, both, or
none.

OMEGAMON attribute collection
To understand how OMEGAMON Data Provider extends OMEGAMON attribute collection, it's useful to
understand how OMEGAMON attribute collection works before introducing OMEGAMON Data Provider.

The OMEGAMON family of products includes monitoring agents that collect performance, behavior, and
resource usage metrics of systems and applications on z/OS. In OMEGAMON, these metrics are known as
attributes. Related attributes are organized into groups. Attribute groups are also known as tables.

To configure OMEGAMON attribute collection, you create historical collections. Each historical collection
specifies an attribute group that you want to collect and a collection interval: a minimum of 1 minute to a
maximum of 1 day.

To create historical collections, you use the OMEGAMON enhanced 3270 user interface (e3270UI) or
the Tivoli® Enterprise Portal (TEP). For more information about creating historical collections, see the
OMEGAMON documentation for e3270UI and TEP.

OMEGAMON stores recently collected attributes, also known as near-term historical data, in a set of files
known as the persistent data store (PDS).

OMEGAMON
persistent

data store (PDS)

Attributes

OMEGAMON
monitoring agent

Collection task

Figure 6. OMEGAMON attribute collection before introducing OMEGAMON Data Provider

34 IBM Z OMEGAMON Data Provider: Installation and User's Guide

How OMEGAMON Data Provider extends OMEGAMON attribute collection
OMEGAMON Data Provider extends OMEGAMON attribute collection by introducing a new runtime
environment member, RKANPARU(KAYOPEN), that sets the destination of collected attributes: PDS,
OMEGAMON Data Provider, both, or neither.

OMEGAMON
Data Provider

OMEGAMON
persistent

data store (PDS)
RKANPARU(KAYOPEN)

Attributes

Specifies where to send attributes:
OMEGAMON Data Provider,
PDS, or both

OMEGAMON
monitoring agent

Collection task

Figure 7. Runtime environment member RKANPARU(KAYOPEN) sets the destination of collected attributes

The prerequisite APAR level of the OMNIMON Base element extends the collection task of OMEGAMON
monitoring agents to look for the runtime environment member RKANPARU(KAYOPEN).

If the member does not exist, then OMEGAMON Data Provider is dormant and the collection task stores
attributes in the PDS only.

Otherwise, the member is a YAML document that contains OMEGAMON Data Provider collection
configuration parameters. The parameters set the destinations of collected attributes: OMEGAMON Data
Provider, PDS, both, or neither.

You can choose to continue storing attributes in the PDS while also sending attributes to OMEGAMON
Data Provider, or you can choose to only send attributes to OMEGAMON Data Provider.

To pass attributes through to OMEGAMON Data Provider without storing them on disk in the PDS, you can
specify OMEGAMON Data Provider as the only destination. Sending attributes only to OMEGAMON Data
Provider is known as passthrough.

If you need to retrieve near-term historical data from the PDS, then you must specify PDS as a
destination. For example, if you need to display near-term historical data in the OMEGAMON enhanced
3270 user interface (e3270UI) or the Tivoli Enterprise Portal (TEP), then you must specify PDS as a
destination.

OMEGAMON Data Provider publishes attributes as they are collected. The data frequency is determined
by the collection interval. For example, suppose you have created a historical collection for an attribute
group and set the collection interval to 1 minute. If you configure OMEGAMON Data Provider to send
those attributes as JSON Lines over TCP, then the destination analytics platform receives data for that
attribute group every minute.

Starter dashboards
You can get a set of starter Elastic Kibana dashboards that visualize attributes from OMEGAMON
monitoring agents.

The starter dashboards are available from GitHub. For details, see the documentation website.

You can use the starter dashboards as a starting point for analyzing your own data and developing your
own dashboards.

Introduction to OMEGAMON Data Provider 35

https://yaml.org/
https://z-open-data.github.io/odp-elastic-samples/

If you cannot access GitHub, then, for alternative methods of getting the starter dashboards, contact your
IBM Software representative for OMEGAMON products.

Related tasks
Integrating the Elastic Stack with OMEGAMON Data Provider
To integrate the Elastic Stack with OMEGAMON Data Provider, you can configure the OMEGAMON Data
Connect component of OMEGAMON Data Provider to send attributes as JSON Lines over TCP to Logstash.
You can configure Logstash to listen on a TCP port for that JSON Lines and forward the attributes to
Elasticsearch.

Prerequisites for OMEGAMON Data Provider
Some prerequisites for OMEGAMON Data Provider are common to all data sources. Other prerequisites
are specific to the data source.

This documentation describes prerequisites that are common to all data sources and prerequisites that
are specific to OMEGAMON monitoring agents as a data source.

For prerequisites that are specific to other data sources, see the documentation for those data sources.

Related concepts
Starter dashboards
You can get a set of starter Elastic Kibana dashboards that visualize attributes from OMEGAMON
monitoring agents.
Related reference
OMEGAMON monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.

Prerequisites for all data sources
These prerequisites are common to all data sources for OMEGAMON Data Provider.

A product offering that contains OMEGAMON Data Provider
OMEGAMON Data Provider is not available separately. You must have one of the following product
offerings that contain OMEGAMON Data Provider:

Table 2. Product offerings that contain OMEGAMON Data Provider

Product offering Minimum version
that contains
OMEGAMON Data
Provider

IBM Z Monitoring Suite 1.2.1

IBM Z Service Management Suite 2.1.1

IBM Db2 Management Solution Pack for z/OS 3.1

IBM Db2 Performance Solution Pack for z/OS 2.1

IBM zSystems Integration for Observability 6.1

IBM Z OMEGAMON AI for JVM (stand-alone monitoring agent) 6.1

IBM Z OMEGAMON AI for Networks (stand-alone monitoring agent) 6.1

IBM Z OMEGAMON AI for z/OS (stand-alone monitoring agent) 6.1

IBM Db2 Automation Expert for z/OS 1.1

IBM Db2 Query Monitor for z/OS 3.4

36 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://www.ibm.com/docs/om-zmon-suite
https://www.ibm.com/docs/zsms2
https://www.ibm.com/docs/dmpfz
https://www.ibm.com/docs/dppfz
https://www.ibm.com/docs/om-integ-obs
https://www.ibm.com/docs/om-jvm
https://www.ibm.com/docs/om-nm
https://www.ibm.com/docs/zoafz
https://www.ibm.com/docs/daefz
https://www.ibm.com/docs/dqmfz

For details on how each product offering packages OMEGAMON Data Provider, such as which FMIDs you
need to install, see the program directory for each product offering.

z/OS
The z/OS version that OMEGAMON Data Provider requires depends on where you decide to run the
OMEGAMON Data Connect component:

• If you decide to run OMEGAMON Data Connect on z/OS, then OMEGAMON Data Provider requires z/OS
2.5 or later.

• Otherwise, OMEGAMON Data Provider requires z/OS 2.4 or later.

The z/OS version that OMEGAMON Data Provider requires is dictated by the distinct requirements of each
component of OMEGAMON Data Provider:

• OMEGAMON Data Broker is a plug-in for the z/OS-based Zowe cross-memory server. Running
OMEGAMON Data Broker using the server that is supplied with OMEGAMON Data Provider requires
z/OS 2.4 or later. For details, see “Zowe cross-memory server (supplied with OMEGAMON Data
Provider)” on page 37.

• OMEGAMON Data Connect runs on any platform that supports Java 17, or later, 64-bit edition. On
z/OS, Java 17 requires z/OS 2.5 or later. For details, see “Java” on page 37.

Each product offering that contains OMEGAMON Data Provider and each data source for OMEGAMON
Data Provider has its own prerequisites. Those prerequisites might include different z/OS versions than
cited here. For details, see the separate documentation for that software.

Zowe cross-memory server (supplied with OMEGAMON Data Provider)
The OMEGAMON Data Broker component of OMEGAMON Data Provider is a plug-in for the Zowe cross-
memory server. However, OMEGAMON Data Provider does not require you to install Zowe.

Instead, OMEGAMON Data Provider supplies the two Zowe parts (load modules) that OMEGAMON Data
Broker requires:

Table 3. Zowe parts required by OMEGAMON Data Broker and supplied with OMEGAMON Data Provider

Description Library and
member name
as supplied with
OMEGAMON Data
Provider

Member name
as supplied with
Zowe

Zowe cross-memory server load module TKANMODP(KAYSI
S01)

ZWESIS01

ZISDYNAMIC, the ZIS dynamic linkage base plug-in: a Zowe
cross-memory server plug-in (load module) that is required
by OMEGAMON Data Broker

TKANMODP(KAYSI
SDL)

ZWESISDL

OMEGAMON Data Provider has no other dependencies on Zowe.

If you already have Zowe installed (minimum version: 2.12.0), then you can configure your existing Zowe
cross-memory server to run OMEGAMON Data Broker. For details, see “Configuring OMEGAMON Data
Broker” on page 46.

Java
OMEGAMON Data Connect is a Java application that requires Java 17, or later, 64-bit edition.

Running OMEGAMON Data Connect on z/OS requires z/OS 2.5 or later. Java 17 runtime environments on
z/OS require IBM Semeru Runtime Certified Edition for z/OS 17. IBM Semeru Runtime Certified Edition for
z/OS 17 requires z/OS 2.5 or later. Java 17 is not available on z/OS 2.4 or earlier.

Introduction to OMEGAMON Data Provider 37

https://www.ibm.com/docs/en/semeru-runtime-ce-z/17

OMEGAMON Data Provider supplies a sample JCL procedure that runs OMEGAMON Data Connect on
z/OS. The sample JCL requires the Java Batch Launcher and Toolkit for z/OS (JZOS). JZOS is supplied with
IBM Semeru Runtime Certified Edition for z/OS.

Prerequisites for OMEGAMON monitoring agents as a data source
These prerequisites apply only if you are using OMEGAMON monitoring agents as a data source for
OMEGAMON Data Provider.

OMEGAMON monitoring agents
To use OMEGAMON monitoring agents as a data source for OMEGAMON Data Provider, you must have one
or more OMEGAMON monitoring agents supported by OMEGAMON Data Provider.

OMNIMON Base APAR level
OMNIMON Base, minimum version 7.5.0, APAR/PTF level OA62052/UJ06872, extends the collection
task of OMEGAMON monitoring agents to work with OMEGAMON Data Provider. To use OMEGAMON
monitoring agents as a data source for OMEGAMON Data Provider, you must have at least that minimum
APAR level of OMNIMON Base.

All product offerings that include OMEGAMON monitoring agents also include the OMNIMON Base
element.

OMEGAMON runtime environment
Configure an OMEGAMON runtime environment that you want to use with OMEGAMON Data Provider.

At a minimum, the runtime environment must include the following items:

• A monitoring server.
• One or more monitoring agents supported by OMEGAMON Data Provider.
• Historical data collection configured to collect at least one attribute group from one of those monitoring

agents.

For example, Address Space CPU Utilization attributes (table name: ascpuutil).

Important: Except for attribute tables that must be collected at the TEMS (monitoring server), set the
collection location of the historical data collection to TEMA (monitoring agent).

If you plan to use this runtime environment as a data source for the starter Elastic Kibana dashboards
for OMEGAMON Data Provider, then see the separate documentation for those dashboards for details
on which tables you need to collect.

Before proceeding, test that the runtime environment successfully collects attributes. For example, view
the attribute data in the OMEGAMON enhanced 3270 user interface (e3270UI) or in the Tivoli Enterprise
Portal (TEP).

Starter Elastic Kibana dashboards
You can get starter Elastic Kibana dashboards that visualize attributes from OMEGAMON monitoring
agents.

The starter dashboards are not a prerequisite. They are an optional, ready-made starting point for
analyzing output from OMEGAMON Data Provider. You can process output from OMEGAMON Data
Provider with the software of your choice. For example:

• You can use a command shell to display STDOUT output from OMEGAMON Data Provider.
• You can configure your analytics platform to ingest attributes from OMEGAMON Data Provider.
• You can use a command-line TCP listener tool to save JSON Lines from OMEGAMON Data Provider to a
file, and then examine the contents of the file in an editor.

38 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://www.ibm.com/docs/en/SSA3RN_17.0/com.ibm.java.17.doc/user/jzos/jzos_overview.html

• You can develop your own application to process attributes from OMEGAMON Data Provider.

Related tasks
Configuring OMEGAMON monitoring agents as a data source
To use OMEGAMON monitoring agents as a data source for OMEGAMON Data Provider, you need to
configure the runtime member RKANPARU(KAYOPEN) to specify which historical collections to send to
OMEGAMON Data Broker.
Related reference
Configuration parameters for OMEGAMON monitoring agents as a data source
OMEGAMON runtime environment member RKANPARU(KAYOPEN) configures the collection tasks of
OMEGAMON monitoring agents. The member contains configuration parameters that select collections
and set their destinations: the OMEGAMON persistent data store (PDS), OMEGAMON Data Broker, both, or
none.

Introduction to OMEGAMON Data Provider 39

40 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Installing OMEGAMON Data Provider
If you have the prerequisite software, then OMEGAMON Data Provider is already installed in your
z/OS SMP/E target libraries. You need to know the location of those libraries. Also, before configuring
OMEGAMON Data Provider, you might need to install some components in other locations.

Before you begin
You need to understand the OMEGAMON Data Provider architecture.

Ensure that you have the prerequisite software.

You need to know the SMP/E target locations where OMEGAMON Data Provider is installed. In particular:

• The high-level qualifiers of the TKANMODP and TKANSAM MVS libraries.
• The z/OS UNIX directory path specified by the SMP/E DDDEF TKAYHFS. The default path is /usr/lpp/
omdp.

If you do not know these locations, then contact the person who installed the prerequisite product
offering that contains OMEGAMON Data Provider.

About this task
The following procedure ensures that each component is installed in the correct location.

Procedure
1. If you are using OMEGAMON monitoring agents as a data source: ensure that your RTE load modules

are at the prerequisite software levels for OMEGAMON Data Provider.

If you have not already done so, follow your site-specific procedures to refresh the runtime members
in the RKANMOD* libraries of your RTE from the TKANMOD* SMP/E target libraries. For example, perform
the GENERATE action of Monitoring Configuration Manager.

This step ensures that the collection tasks in your RTE support OMEGAMON Data Provider.
2. Decide whether you want to run OMEGAMON Data Connect on or off z/OS.

The SMP/E installation steps for product offerings that contain OMEGAMON Data Provider create
a z/OS UNIX directory that is specified by the DDDEF name TKAYHFS. The directory contains
OMEGAMON Data Connect. The default directory path is /usr/lpp/omdp.

That z/OS UNIX directory contains one subdirectory and three files:

kay-110
The OMEGAMON Data Connect installation directory. This directory contains the expanded files for
running OMEGAMON Data Connect.

KAY11PAX
A pax interchange format archive file containing the OMEGAMON Data Connect installation
directory.

KAY11SH
A z/OS UNIX shell script that extracts the pax file KAY11PAX into the subdirectory kay-110. This
script will already have been run by an SMP/E APPLY command when the product offering that
contains OMEGAMON Data Provider was installed.

KAY11ZIP
A compressed binary file with the same contents as the KAY11PAX file, but using a different
compressed file format.

© Copyright IBM Corp. 2021, 2024 41

If you want to run OMEGAMON Data Connect on z/OS, but you would prefer to run it from a location
that is not an SMP/E target, then copy the installation directory, kay-110, to the z/OS UNIX path of
your choice.

If you want to run OMEGAMON Data Connect off z/OS:

a. Transfer the compressed binary file KAY11ZIP from z/OS UNIX to another platform, such as Linux.

Consider renaming the transferred copy with a .zip file extension.
b. Create the OMEGAMON Data Connect installation directory kay-110 on that platform by expanding

the compressed file.

Results
The software components involved in OMEGAMON Data Provider are now installed in the locations you
will run them. Before you run them, you must configure them.

Related concepts
Prerequisites for OMEGAMON Data Provider
Some prerequisites for OMEGAMON Data Provider are common to all data sources. Other prerequisites
are specific to the data source.
Where and how to run OMEGAMON Data Connect
OMEGAMON Data Connect is a Java application. You can run OMEGAMON Data Connect anywhere that
you can run Java 17, or later, 64-bit edition.
Related reference
OMEGAMON Data Connect installation directory
The OMEGAMON Data Connect installation directory contains the files for OMEGAMON Data Connect that
are supplied with OMEGAMON Data Provider.

42 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Getting started with OMEGAMON Data Provider
After installing OMEGAMON Data Provider, you need to configure and then start its components.

About this task
OMEGAMON Data Provider can receive data from multiple sources and send data in multiple formats to
multiple destinations.

While the procedures for getting started are similar for all combinations, configuration details can differ
depending on the input data source, output format, and destination. The procedures presented here
provide details for the following configuration:

Data source Data format Destination

OMEGAMON monitoring agents JSON Lines An analytics platform, such
as the Elastic Stack, that is
configured to ingest JSON Lines
over TCP

For details on configuring other data sources, see the separate documentation for each data source.

For comprehensive details on configuring each component of OMEGAMON Data Provider, see
“Configuration” on page 77.

These procedures configure each OMEGAMON Data Provider component, and then, when all the
components have been configured, start the components.

Results
These procedures configure and start OMEGAMON Data Provider on one z/OS instance (LPAR).

To use OMEGAMON Data Provider to send data from other LPARs, you need to configure and start
OMEGAMON Data Provider on each LPAR. You don't necessarily need to configure and start an instance
of OMEGAMON Data Connect for each LPAR. That topology depends on your specific requirements. For
details, see “OMEGAMON Data Provider architecture” on page 29.

Configuring data sources for OMEGAMON Data Provider
You need to configure each data source to send data to OMEGAMON Data Provider.

Procedure
Follow the procedure for each data source.
Data source Procedure

OMEGAMON monitoring agents “Configuring OMEGAMON monitoring agents as a
data source” on page 44

Others See the separate documentation for each data
source

© Copyright IBM Corp. 2021, 2024 43

Configuring OMEGAMON monitoring agents as a data source
To use OMEGAMON monitoring agents as a data source for OMEGAMON Data Provider, you need to
configure the runtime member RKANPARU(KAYOPEN) to specify which historical collections to send to
OMEGAMON Data Broker.

Before you begin
Historical collections are a prerequisite for using OMEGAMON Data Provider. Before configuring
OMEGAMON Data Provider, you need to create historical collections.

To create historical collections, you use the OMEGAMON enhanced 3270 user interface (e3270UI) or
the Tivoli Enterprise Portal (TEP). For more information about creating historical collections, see the
OMEGAMON documentation for e3270UI and TEP.

Some analytics platforms might require, or provide specific support for, particular attributes. You need to
create the corresponding historical collections for those attributes. For information about some analytics
platforms, see “Integrating analytics platforms with OMEGAMON Data Provider” on page 51. Otherwise,
see the documentation for your analytics platform.

You need to know the location of the TKANSAM library installed by the prerequisite OMEGAMON software.

About this task
OMEGAMON Data Provider uses the runtime member RKANPARU(KAYOPEN) to specify destinations for
historical collections.

The KAYOPEN member is optional. If you omit it, then collected attributes are sent only to the persistent
data store (PDS), not OMEGAMON Data Broker.

KAYOPEN specifies which attribute groups (tables) to send to OMEGAMON Data Broker. Later, when
configuring OMEGAMON Data Connect, you can specify which attributes (fields) to publish from those
tables.

The TKANSAM library contains a sample KAYOPEN member.

Procedure
1. Copy the TKANSAM(KAYOPEN) member to a location of your choice where you want to permanently

store your primary customized copy of this member.

Attention: The KAYOPEN member is not managed by PARMGEN or Monitoring Configuration
Manager. Some actions of PARMGEN and Monitoring Configuration Manager, such as the
GENERATE action of Monitoring Configuration Manager, delete RKANPARU library members. PTF
UJ93077 for APAR OA64681 (2Q23) excludes members with the name pattern KAY*, such as
KAYOPEN, from being deleted. If your site does not yet have that PTF applied, then you must
maintain your primary copy of KAYOPEN in a different location of your choice and, after each
GENERATE action, copy KAYOPEN into the RKANPARU library.

2. Edit the KAYOPEN member in the permanent location you have chosen to maintain it.

44 IBM Z OMEGAMON Data Provider: Installation and User's Guide

broker:
 name: ODP_BROKER # 1
collections:
 - product: km5 # 2
 table: assumry
 interval: 1
 destination:
 - open
 - pds
 - product: km5
 table: ascpuutil
 interval: 1
 destination:
 - open
 - pds

Figure 8. Excerpt of sample OMEGAMON Data Provider collection configuration member, KAYOPEN

 1
The broker.name key (the name child key of the broker key) refers to the name of the Zowe
cross-memory server that runs OMEGAMON Data Broker.

The name is the value of the NAME runtime parameter of the JCL EXEC statement that runs the
server.

Tip: Use the value ODP_BROKER as specified in the sample configuration member. That value
matches the name in the sample JCL member to run the server, described later in “Configuring
OMEGAMON Data Broker” on page 46.

 2
For each existing historical collection that you want to send to OMEGAMON Data Broker, insert a
corresponding entry under the collections key to select the collection.

Each entry must specify the following selection criteria:

product
The 3-character kpp product code of the monitoring agent that owns the table.

table
The table name.

interval
The collection interval in minutes or the special value 0 (zero).

The value 0 acts as a wildcard; it selects all historical collections for the table, regardless of
collection interval.

If you specify a number of minutes, ensure that the value matches the interval of a historical
collection that you want to send.

destination
To send attributes to OMEGAMON Data Broker, the destinations must include the value open.

For comprehensive details on editing KAYOPEN, see “Configuration parameters for OMEGAMON
monitoring agents as a data source” on page 77.

3. Copy the customized KAYOPEN member from its permanent location to the RKANPARU library of your
OMEGAMON runtime environment.

4. If the monitoring agents that own the tables for the collections are running, then reload the collection
configuration in each of the affected agents.

Related concepts
Prerequisites for OMEGAMON monitoring agents as a data source

Getting started with OMEGAMON Data Provider 45

These prerequisites apply only if you are using OMEGAMON monitoring agents as a data source for
OMEGAMON Data Provider.
Related tasks
Reloading OMEGAMON collection configuration
After updating collection configuration parameters in the RKANPARU(KAYOPEN) member, you need to
apply the configuration changes to the affected collection tasks. To apply the changes, you can either
restart the jobs that run the collection tasks, or enter the MVS MODIFY system command presented here.
Adding more OMEGAMON collections to OMEGAMON Data Provider
If you have already configured an OMEGAMON runtime environment to send collections to OMEGAMON
Data Provider, then follow the steps here to add more.
Related reference
Configuration parameters for OMEGAMON monitoring agents as a data source
OMEGAMON runtime environment member RKANPARU(KAYOPEN) configures the collection tasks of
OMEGAMON monitoring agents. The member contains configuration parameters that select collections
and set their destinations: the OMEGAMON persistent data store (PDS), OMEGAMON Data Broker, both, or
none.
OMEGAMON monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.

Configuring OMEGAMON Data Broker
OMEGAMON Data Broker is a plug-in for the Zowe cross-memory server. You need to configure a
JCL procedure to run the server as a started task and you need to specify OMEGAMON Data Broker
parameters in the server PARMLIB member.

Before you begin
You need to know the location of the TKANMODP and TKANSAM libraries that were installed by the product
offering that contains OMEGAMON Data Provider.

Decide where to host OMEGAMON Data Broker. Either:

• A new instance of the Zowe cross-memory server, using the server load module supplied with
OMEGAMON Data Provider.

• An existing instance of the server from a separate Zowe installation (minimum Zowe version: 2.12.0).

If you are unsure, use the load module supplied with OMEGAMON Data Provider to configure a new server.

If you plan to use an existing server, then you need to know the location of the JCL procedure that runs
that server.

About this task
OMEGAMON Data Broker involves the following load modules, all of which are supplied in the TKANMODP
library of the prerequisite OMEGAMON software:

TKANMODP(KAYSIS01)
Zowe cross-memory server. The same load module is supplied with Zowe as ZWESIS01.

TKANMODP(KAYB0001)
OMEGAMON Data Broker, a plug-in for the Zowe cross-memory server.

TKANMODP(KAYBNETL)
A load module used by OMEGAMON Data Broker.

TKANMODP(KAYSISDL)
ZISDYNAMIC, the dynamic linkage base plug-in for the Zowe cross-memory server. This plug-in is
required by OMEGAMON Data Broker. The same load module is supplied with Zowe as ZWESISDL.

46 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Configuring OMEGAMON Data Broker involves the following sample members supplied in the TKANSAM
library of the prerequisite OMEGAMON software:

TKANSAM(KAYSIS01)
JCL procedure that runs the Zowe cross-memory server. This member is required only if you decide to
configure a new server.

TKANSAM(KAYSIP00)
Zowe cross-memory server configuration member that contains OMEGAMON Data Broker
configuration parameters.

Procedure
1. If you have decided to configure an existing Zowe cross-memory server, make the OMEGAMON Data

Broker load modules and configuration parameters available to that server. Otherwise, if you have
decided to configure a new server, skip to step “2” on page 47.
a) Copy the KAYB0001 and KAYBNETL members from the TKANMODP library to a library in the
STEPLIB concatenation for the existing server.

b) Append the contents of TKANSAM(KAYSIP00) to the existing PARMLIB(ZWESIPxx) member for
that server.

c) Replace the line that refers to the ZISDYNAMIC plug-in load module supplied with OMEGAMON
Data Provider, KAYSISDL, with a line that refers to the plug-in load module supplied with Zowe,
ZWESISDL.

Replace the following line copied from TKANSAM(KAYSIP00):

ZWES.PLUGIN.KAY.ZISDYNAMIC=KAYSISDL

with:

ZWES.PLUGIN.ZISDYNAMIC=ZWESISDL

Important: Only register the ZISDYNAMIC plug-in once. For example, do not attempt to register the
ZISDYNAMIC plug-in once referring to the ZWESISDL load module supplied with Zowe, and then
again referring to the KAYSISDL load module supplied with OMEGAMON Data Provider. You do not
need to copy the TKANMODP(KAYSISDL) member supplied with OMEGAMON Data Provider to the
STEPLIB concatenation for the server in your stand-alone installation of Zowe. If you are using the
server in a stand-alone installation of Zowe, refer to the ZWESISDL plug-in load module supplied
with Zowe.

d) Skip to step “8” on page 49.
2. Modify the z/OS MVS program properties table (PPT) to make the Zowe cross-memory server load

module KAYSIS01 run in key 4 and be non-swappable.
a) Edit the PPT definition member SYS1.PARMLIB(SCHEDxx).

Add the following entry:

PPT PGMNAME(KAYSIS01) KEY(4) NOSWAP

b) Modify the PPT.
Example MVS system command:

SET SCH=xx

3. Ensure that the TKANMODP library is APF-authorized.

If you have followed the installation instructions for the prerequisite OMEGAMON software, then the
TKANMODP library should already be APF-authorized.

Getting started with OMEGAMON Data Provider 47

To check the APF-authorization status of the library, enter the following MVS system command:

D PROG,APF,DSNAME=omegamon_hlq.TKANMODP

where omegamon_hlq represents the high-level qualifiers of the TKANMODP library.

To dynamically add the SMS-managed library to the APF list, enter:

SETPROG APF,ADD,DSNAME=omegamon_hlq.TKANMODP,SMS

4. Copy the sample Zowe cross-memory server configuration member TKANSAM(KAYSIP00) to your
choice of PARMLIB library. For example, your site-specific library for user parameter members, or the
system parameter library, SYS1.PARMLIB.

5. Copy the sample Zowe cross-memory server startup JCL procedure TKANSAM(KAYSIS01) to your
choice of PROCLIB library. For example, your site-specific library for user procedures, or the system
procedure library, SYS1.PROCLIB.

6. Edit the new copy of the PROCLIB(KAYSIS01) JCL procedure.

//KAYSIS01 PROC NAME='ODP_BROKER',MEM=00,RGN=0M 1
…
//BROKER EXEC PGM=KAYSIS01,REGION=&RGN,
// PARM='NAME=&NAME,MEM=&MEM'
//STEPLIB DD DSNAME=omegamon.TKANMODP,DISP=SHR 2
//PARMLIB DD DSNAME=SYS1.PARMLIB,DISP=SHR 3
//SYSPRINT DD SYSOUT=*

Figure 9. JCL procedure that starts the Zowe cross-memory server, PROCLIB(KAYSIS01)

 1
The supplied sample JCL procedure specifies the name of the Zowe cross-memory server as
ODP_BROKER. You only need to change the name if you run more than one instance of the server
on the same instance of z/OS.

The MEM parameter specifies the last two characters of the Zowe cross-memory server PARMLIB
member name, ppppIPxx, where pppp is the first four characters of the Zowe cross-memory
server load module name. The default MEM value is 00. Given the server load module name
KAYSIS01 and MEM value 00, then the PARMLIB member name matches the supplied sample,
KAYSIP00. You only need to change the MEM value if you have different versions of this member in
the same PARMLIB data set.

 2
Edit the STEPLIB DD statement to refer to the TKANMODP library on your system.

Note:

• Data sets in this STEPLIB concatenation must be partitioned data set extended (PDSE), not PDS.
The prerequisite OMEGAMON software already specifies that TKANMODP must be a PDSE.

• Data sets in this STEPLIB concatenation must be APF-authorized.
• Use a STEPLIB DD statement to identify the location of the Zowe cross-memory server load

library, so that the job refers to the appropriate specific version of the software. Do not add the
load library to the system LNKLST or LPALST.

• The Zowe cross-memory server loads itself into the link pack area (LPA) so that it can use PC-cp
services (program call in the user's primary address space).

 3
Either edit the PARMLIB DD statement to refer to the library containing the Zowe cross-memory
server configuration member or, if you copied that member to the system PARMLIB, remove this
statement. The low-level qualifier PARMLIB in the example dsname reflects a typical convention,
not a requirement. It is your choice where to store this configuration member.

48 IBM Z OMEGAMON Data Provider: Installation and User's Guide

7. Define a resource profile to control the security of the started task that will use the
PROCLIB(KAYSIS01) procedure.

The user that you associate with the started task must have an OMVS segment.

Example RACF commands:

RDEFINE STARTED KAYS*.* STDATA(USER(OMEGSTC) GROUP(STCGROUP)
PRIVILEGED(NO) TRUSTED(NO))
SETROPTS RACLIST(STARTED) REFRESH

Replace the parameter values in this example with values that reflect your site-specific practices for
started tasks.

8. Edit the OMEGAMON Data Broker parameters in the Zowe cross-memory server PARMLIB member.

Set the values of the following parameters:

KAY.CIDB.FWD.forwarder_id.SINK_HOST=connect_hostname
Hostname or IP address of the OMEGAMON Data Connect instance that is listening for data from
OMEGAMON Data Broker.

In the context of the OMEGAMON Data Broker forwarder, OMEGAMON Data Connect is a sink: a
destination.

If you plan to run OMEGAMON Data Connect on the same z/OS instance as OMEGAMON Data
Broker, then you can specify the value localhost or the local loopback IP address. The typical
local loopback IPv4 address is 127.0.0.1.

KAY.CIDB.FWD.forwarder_id.SINK_PORT=connect_port
The port on which OMEGAMON Data Connect is listening. Follow your site-specific standards for
assigning port numbers.

9. If you are using an existing instance of the Zowe cross-memory server, don't restart it yet with the
updated configuration.
We'll restart it later, after you have configured all components.

Results
When the Zowe cross-memory server starts, it will load the OMEGAMON Data Broker plug-in, and
OMEGAMON Data Broker will connect to OMEGAMON Data Connect.

Related reference
OMEGAMON Data Broker configuration parameters
OMEGAMON Data Broker configuration parameters include the hostname and port on which OMEGAMON
Data Connect is listening.

Configuring OMEGAMON Data Connect
OMEGAMON Data Connect is a Java application that can run on or off z/OS.

Before you begin
You need to know the paths of the following directories:

• OMEGAMON Data Connect installation directory. The default installation directory name is kay-110.
• Java runtime environment that you plan to use to run OMEGAMON Data Connect: Java 17, or later,

64-bit edition.

Decide the location of your OMEGAMON Data Connect user directories: where you want to keep your
site-specific configuration files.

Getting started with OMEGAMON Data Provider 49

Procedure
1. Create an OMEGAMON Data Connect user directory.

The user directory will contain your site-specific OMEGAMON Data Connect configuration file. The
location of the user directory is your choice.

To create a user directory, use the create action of the supplied shell script.

For example, at a shell prompt, change to the bin directory under the OMEGAMON Data Connect
installation directory, and then enter the following command, where /var/omdp/prod-a is the user
directory that you want to create:

ODP_CONNECT_USER_DIR=/var/omdp/prod-a ./connect create

2. Edit the config/connect.yaml configuration file in the user directory to match your site-specific
requirements.

Example:

connect:
 input:
 tcp:
 enabled: true
 hostname: <connect_host> # 1
 port: <connect_port> # 2
 output:
 tcp:
 enabled: true
 sinks:
 logstash: # Your choice of sink name (not a fixed key name)
 enabled: true
 hostname: <logstash_host> # 3
 port: <logstash_port> # 4

 1
Hostname or IP address on which the OMEGAMON Data Connect host listens for data from
OMEGAMON Data Broker.

If you run OMEGAMON Data Connect on the same z/OS instance as OMEGAMON Data Broker, then
you can specify localhost as the hostname.

This value must match the OMEGAMON Data Broker parameter
KAY.CIDB.FWD.forwarder_id.SINK_HOST.

 2
Port on which to listen for data from OMEGAMON Data Broker.

This value must match the OMEGAMON Data Broker parameter
KAY.CIDB.FWD.forwarder_id.SINK_PORT.

 3
Destination hostname or IP address. For example, the host running Elastic Logstash.

 4
Port on which the destination host is listening for JSON Lines over TCP.

The previous example configures OMEGAMON Data Connect to send JSON Lines over TCP. For
comprehensive details on configuring OMEGAMON Data Connect, including configuration for other
data formats and destinations, see “OMEGAMON Data Connect configuration parameters” on page
93.

Some analytics platforms might require, or provide specific support for, particular attributes. You
might choose to filter the output from OMEGAMON Data Connect to send only those attributes. For
information about some analytics platforms, see “Integrating analytics platforms with OMEGAMON
Data Provider” on page 51. Otherwise, see the documentation for your analytics platform.

50 IBM Z OMEGAMON Data Provider: Installation and User's Guide

3. If you want to run OMEGAMON Data Connect on z/OS as a started task, use the sample JCL procedure
as a starting point.
a) Copy the sample JCL procedure TKANSAM(KAYCONN) (also supplied as sample/KAYCONN in the

OMEGAMON Data Connect installation directory) to your choice of MVS PROCLIB library. For
example, SYS1.PROCLIB.

b) Edit the values of the symbolic parameters at the start of the PROCLIB(KAYCONN) procedure.
JAVAHOME

The path of the installation directory of Java 17, or later, 64-bit edition. The directory must
contain a bin subdirectory that contains the java command.

INSTLDIR
The path of the OMEGAMON Data Connect installation directory.

USERDIR
The path of your OMEGAMON Data Connect user directory.

c) Define a resource profile to control the security of the started task.

The user that you associate with the started task must have an OMVS segment.

Example RACF commands:

RDEFINE STARTED KAYCONN.* STDATA(USER(OMEGSTC) GROUP(STCGROUP)
PRIVILEGED(NO) TRUSTED(NO))
SETROPTS RACLIST(STARTED) REFRESH

Replace the parameter values in this example with values that reflect your site-specific practices
for started tasks.

Tip: For ad hoc testing of OMEGAMON Data Connect from a z/OS UNIX shell, use the sample shell
script bin/connect.

Related concepts
Where and how to run OMEGAMON Data Connect
OMEGAMON Data Connect is a Java application. You can run OMEGAMON Data Connect anywhere that
you can run Java 17, or later, 64-bit edition.
Related reference
OMEGAMON Data Connect configuration parameters
OMEGAMON Data Connect configuration parameters identify inputs, such as the TCP port on which to
listen for data from OMEGAMON Data Broker, and outputs, such as destination analytics platforms. You
can filter which attributes to output.

Integrating analytics platforms with OMEGAMON Data Provider
Use the information provided here together with the product documentation for your analytics platform.

Integrating Instana with OMEGAMON Data Provider
To integrate Instana with OMEGAMON Data Provider, you configure the OMEGAMON Data Connect
component of OMEGAMON Data Provider to send attributes to Instana using one of two output methods:
HTTP or TCP.

Optionally, you can also configure OMEGAMON Data Provider to send just the attributes that Instana
specifically supports.

This documentation provides an overview of configuring OMEGAMON Data Provider to send attributes
to Instana. For additional hints and tips, including details of the corresponding prerequisite OMEGAMON
historical data collections, see the Instana configuration topics on GitHub.

For details of the Instana architecture and how to configure Instana to ingest attributes from OMEGAMON
Data Provider, see the IBM Instana Observability on z/OS documentation.

Getting started with OMEGAMON Data Provider 51

https://z-open-data.github.io/instana-topics/

Overview of Instana integration with OMEGAMON Data Provider
Instana can ingest attributes from two output methods of OMEGAMON Data Provider:

TCP
OMEGAMON Data Provider sends attributes in JSON Lines format over TCP to a port on which Instana
is listening.

HTTP
OMEGAMON Data Provider sends attributes in JSON format in HTTP POST requests to an Instana
HTTP endpoint.

OMEGAMON
Data Provider

Instana
architecture

or

Outputs

Attributes

JSON

TCP
JSON Lines

HTTP
POST requests

For details on which output to use
for your environment, see the
Instana documentation.

Figure 10. Instana can ingest attributes from OMEGAMON Data Provider as JSON Lines over TCP or as JSON
in HTTP POST requests

For details on which output to use for your environment, see the Instana documentation.

Historical data collections
Historical data collections are a prerequisite for using OMEGAMON Data Provider. Before configuring
OMEGAMON Data Provider, you need to create a historical collection for each attribute group supported
by Instana.

For details of the attribute groups supported by Instana, see the Instana documentation.

To create historical collections, you use the OMEGAMON enhanced 3270 user interface (e3270UI) or
the Tivoli Enterprise Portal (TEP). For more information about creating historical collections, see the
OMEGAMON documentation for e3270UI and TEP.

OMEGAMON Data Provider configuration members
Two configuration members specify which attributes OMEGAMON Data Provider sends, and to where.

52 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Collection task

OMEGAMON
runtime environment

RKANPARU(K OPEN)AY connect.yaml

OMEGAMON
Data Broker

OMEGAMON
Data Connect

Instana
architecture

Which attributes to send to Broker Which attributes to send to Instana
and which output method to use

Configuration members that specify which attributes to send

Figure 11. Configuring which attributes OMEGAMON Data Provider sends, and to where

RKANPARU(KAYOPEN)
Specifies which attribute groups to send to OMEGAMON Data Broker.

OMEGAMON Data Broker forwards attributes to OMEGAMON Data Connect.

The "getting started" task “Configuring OMEGAMON monitoring agents as a data source” on page 44
describes editing the KAYOPEN member.

For KAYOPEN entries that match the attribute groups supported by Instana, see the Instana
documentation.

connect.yaml
Specifies where OMEGAMON Data Connect sends attributes, such as Instana.

The "getting started" task “Configuring OMEGAMON Data Connect” on page 49 describes editing
connect.yaml. When you reach that step, specify a TCP output or an HTTP output for Instana.

Here is the typical format of a TCP output for Instana:

connect:
 output:
 tcp:
 enabled: true
 sinks: # One or more sinks (destinations)
 instana: # Each sink has a unique name of your choice
 enabled: true
 hostname: instana_host
 port: instana_port

Here is the typical format of an HTTP output for Instana, with an HTTPS URL and corresponding
SSL/TLS configuration parameters:

connect:
 output:
 http:
 enabled: true
 endpoints: # One or more endpoints (destinations)
 instana: # Each endpoint has a unique name of your choice
 enabled: true
 url: https://instana_endpoint
 ssl:
 enabled: true
 protocol: TLSv1.2

Getting started with OMEGAMON Data Provider 53

 enabled-protocols: TLSv1.2
 key-store: jks_file_path
 key-store-type: JKS
 key-store-password: password
 trust-store: jks_file_path
 trust-store-type: JKS
 trust-store-password: password

These are typical examples only. For details of the specific configuration required for your environment,
such as SSL/TLS, see the Instana documentation.

Integrating the Elastic Stack with OMEGAMON Data Provider
To integrate the Elastic Stack with OMEGAMON Data Provider, you can configure the OMEGAMON Data
Connect component of OMEGAMON Data Provider to send attributes as JSON Lines over TCP to Logstash.
You can configure Logstash to listen on a TCP port for that JSON Lines and forward the attributes to
Elasticsearch.

About this task
The information provided here assumes that you are familiar with the Elastic Stack, that you know how to
configure the Elastic Stack to ingest data, and that you want to configure your own existing instance of the
Elastic Stack.

If you are new to the Elastic Stack, then instead of using the information here, consider using the
information provided with the starter dashboards as a starting point.

Related concepts
Starter dashboards
You can get a set of starter Elastic Kibana dashboards that visualize attributes from OMEGAMON
monitoring agents.
Related reference
TCP output parameters
OMEGAMON Data Connect TCP output parameters specify one or more destinations ("sinks") for sending
attributes in JSON Lines format over a TCP network.

Basic Elastic Stack configuration for OMEGAMON Data Provider
To ingest JSON Lines from OMEGAMON Data Connect into the Elastic Stack, you need to define a Logstash
configuration and an Elasticsearch index template.

The following Elastic Stack configuration defines a minimal basic configuration for ingesting JSON Lines
over TCP from OMEGAMON Data Connect.

The configuration described here is a minimal subset of the more detailed configuration for the starter
Kibana dashboards.

Elasticsearch configuration
By default, Elasticsearch maps incoming string fields to the text data type. Elasticsearch parses the
contents of text fields into tokens for full-text search. You might not want that default behavior for
OMEGAMON attribute string values. Many OMEGAMON string fields are names or identifiers. It makes
more sense to search these fields as whole values, so the keyword data type is a better choice. You can
configure Elasticsearch by creating an index template that maps string fields to the keyword data type.

The result of this mapping is no .raw fields. Instead, you use the original field names for sorting and
aggregation, because the fields have been mapped to the keyword data type.

For example, you can use the following JSON as the body of an Elasticsearch create index template API
request:

54 IBM Z OMEGAMON Data Provider: Installation and User's Guide

{
 "index_patterns": ["omegamon-*"],
 "template": {
 "settings": {
 "lifecycle": {
 "name": "omegamon-ds-ilm-policy"
 }
 },
 "mappings": {
 "dynamic_templates": [{
 "strings": {
 "match_mapping_type": "string",
 "mapping": {
 "type": "keyword"
 }
 }
 }]
 }
 },
 "data_stream": { }
}

Figure 12. Elasticsearch index template that maps string fields to the keyword data type

Set the index_patterns key value to match your site practices for Elasticsearch index names.

Set the lifecycle.name to the Elasticsearch index lifecycle policy that you want to use for this data.

The presence of the data_stream object in the index template enables data streams.

This example is for use with the _index_template API endpoint for composable index templates, not
the endpoint for deprecated legacy index templates.

Logstash pipeline configuration
The following Logstash config listens on a TCP port for JSON Lines from OMEGAMON Data Connect.

input {
 tcp {
 id => "omegamon_tcp_input"
 port => 15046
 codec => json_lines
 }
}
filter {
 date {
 match => ["write_time", "ISO8601"]
 }
}
output {
 elasticsearch {
 id => "elasticsearch"
 hosts => ["elasticsearch:9200"]
 index => "omegamon-%{product_code}-%{table_name}-ds"
 action => "create"
 manage_template => false
 }
}

Figure 13. Logstash pipeline configuration to ingest JSON Lines over TCP from OMEGAMON Data Connect

Set the port on which Logstash listens for input to match the
connect.output.tcp.sinks.sink_name.port configuration parameter of OMEGAMON Data
Connect.

Getting started with OMEGAMON Data Provider 55

Set the index option to match your site practices for Elasticsearch index names.

This example sets the action option to create, for use with data streams.

Related reference
Fields introduced by OMEGAMON Data Connect
OMEGAMON Data Connect introduces fields that do not correspond to OMEGAMON attributes.

Integrating Splunk with OMEGAMON Data Provider
To integrate Splunk with OMEGAMON Data Provider, you can configure the OMEGAMON Data Connect
component of OMEGAMON Data Provider to send attributes as JSON Lines to a Splunk TCP input.
Related reference
TCP output parameters
OMEGAMON Data Connect TCP output parameters specify one or more destinations ("sinks") for sending
attributes in JSON Lines format over a TCP network.

Basic Splunk configuration for OMEGAMON Data Provider
To ingest JSON Lines from OMEGAMON Data Connect into Splunk, you need to define a Splunk source
type that breaks each input line into a separate event, identifies the data format as JSON, and recognizes
timestamps. To ingest the data over TCP, you need to define a Splunk TCP input that refers to that source
type.

The following Splunk configuration stanzas define a minimal basic configuration for ingesting JSON Lines
over TCP from OMEGAMON Data Connect: one stanza in props.conf, and one in inputs.conf.

Depending on your own site practices, you might perform additional configuration, such as assigning
different source types, routing events to different indexes, or using secure TCP (TLS).

Location of Splunk configuration stanzas
This OMEGAMON Data Provider documentation refers to Splunk configuration (.conf) file names, but not
directory paths. It is your decision where to store the Splunk configuration stanzas for OMEGAMON Data
Provider.

For example, you might choose to create a Splunk application directory named your-organization-
omegamon specifically for OMEGAMON Data Provider, and save the configuration files there:

$SPLUNK_HOME/etc/apps/your-organization-omegamon/local/*.conf

props.conf
The following stanza in props.conf defines the properties of an "omegamon" source type:

[omegamon]
SHOULD_LINEMERGE = false
KV_MODE = json
TIME_PREFIX = \"write_time\":\"
TIME_FORMAT = %Y-%m-%dT%H:%M:%S.%6N%:z

The combination of SHOULD_LINEMERGE = false and KV_MODE = json defines the incoming data as
JSON Lines: one event per line, data in JSON format. These two settings apply to different stages in the
Splunk data pipeline: SHOULD_LINEMERGE applies to parsing, before indexing; KV_MODE applies later, to
search-time field extraction.

The regular expression for TIME_PREFIX is case sensitive; it matches the lowercase field name
write_time, which is the field name for event timestamps in JSON from OMEGAMON Data Connect.

The value of TIME_FORMAT matches the format of timestamps in JSON from OMEGAMON Data Connect:
ISO 8601 date and time of day representation extended format with a zone designator.

56 IBM Z OMEGAMON Data Provider: Installation and User's Guide

inputs.conf
The following stanza in inputs.conf defines an unsecure TCP input that listens on port 5046, assigns
the source type "omegamon" to all incoming events, and stores the events in the default index (typically,
main):

[tcp://:5046]
sourcetype = omegamon

The port number and source type shown here are examples only. The actual values are your choice.

If you have a file of JSON Lines from OMEGAMON Data Connect, then you don't need to define a TCP
input. Instead, you can use the Splunk Web Add Data > Upload option to ingest the file directly from your
computer. If you use that technique, remember to select the "omegamon" source type, so that Splunk
correctly interprets the file contents.

Tip: In the Source type dropdown list on the Set Source Type page, the "omegamon" source type will
appear under the heading "Uncategorized".

Setting source type per-event based on product code and table name
Rather than assigning the same source type to all events from OMEGAMON Data Connect, you might
prefer more granularity; more source types. The method presented here sets the source type per-event
based on the values of the JSON keys product_code and table_name.

You can use transforms in Splunk to override the source type per event.

Each event, each line of JSON Lines, from OMEGAMON Data Connect contains the keys product_code
and table_name. You can use the values of these keys to set the Splunk source type of each event.

Depending on your own site practices, you might perform additional configuration, such as assigning
different source types, routing events to different indexes, or using secure TCP.

For example, in props.conf, append the following line to the stanza for the corresponding source type
or input:

TRANSFORMS-changesourcetype = set_sourcetype_omegamon

and add the following stanza to transforms.conf:

[set_sourcetype_omegamon]
Set sourcetype using values of product_code and table_name fields
REGEX = (?=.*\"product_code\":\"([^\"]+)\")(?=.*\"table_name\":\"([^\"]+)\")
FORMAT = sourcetype::omegamon_$1_$2
DEST_KEY = MetaData:Sourcetype

Related reference
Fields introduced by OMEGAMON Data Connect
OMEGAMON Data Connect introduces fields that do not correspond to OMEGAMON attributes.

Starting OMEGAMON Data Provider
Starting OMEGAMON Data Provider involves starting the related components: OMEGAMON Data Connect,
OMEGAMON Data Broker, and the data source, such as the OMEGAMON runtime environment.

Before you begin
You should have already configured and started an analytics platform, such as the Elastic Stack, or an
application or tool to listen for data from OMEGAMON Data Connect. For example, if you have configured
OMEGAMON Data Connect to send JSON Lines over TCP, then you should have tested that the analytics
platform successfully ingests JSON Lines over TCP on the specified port. That software should be actively
listening now.

Getting started with OMEGAMON Data Provider 57

If you are using OMEGAMON monitoring agents as a data source, then you should have already tested
that your OMEGAMON runtime environment collects attributes in the persistent data store (PDS) without
OMEGAMON Data Provider. This confirms that you have successfully configured historical data collection,
which is a prerequisite for using OMEGAMON Data Provider.

About this task
You can start the components in any order. You don't need to ensure that any components are stopped
before you begin. However, the behavior of components and the messages that they issue can depend on
the order in which you start them.

The following procedure assumes that the following components are stopped, inactive:

• OMEGAMON Data Connect.
• OMEGAMON Data Broker.

If you have configured an existing instance of the Zowe cross-memory server to run OMEGAMON Data
Broker, that's okay; there's no need to stop it. We'll restart it in the following procedure.

For the purpose of describing a set of expected messages, to help new users, the following procedure
starts components in order from "downstream" to "upstream":

1. OMEGAMON Data Connect
2. OMEGAMON Data Broker
3. Data source, such as an OMEGAMON runtime environment

After starting each component, the procedure includes steps to check for expected messages before
starting the next component.

If you decide to start the components in a different order, that's okay. Just be aware that the messages
issued might differ from the messages described in the following procedure.

Procedure
1. Start OMEGAMON Data Connect.

• If you have chosen to run OMEGAMON Data Connect on z/OS, here is an example z/OS MVS START
system command that you can enter to start the OMEGAMON Data Connect started task:

S KAYCONN

• If you have chosen to run OMEGAMON Data Connect off z/OS, use your platform-specific method to
start OMEGAMON Data Connect. For example, the following shell command line runs the supplied
sample shell script:

ODP_CONNECT_USER_DIR=/var/omdp/prod-a ./connect run

– This example shows a single command line that sets the environment variable
ODP_CONNECT_USER_DIR and then runs the script. Instead of setting the variable each time
you run the script, consider using an export shell command to set the variable in your user
profile.

– The dot and slash (./) preceding the script name connect assumes that the script is in the
current directory. That is, the current directory is the bin directory under the OMEGAMON Data
Connect installation directory.

– Replace /var/omdp/prod-a with your user directory path.
2. Check the KAYC-prefix messages in the STDOUT output file from OMEGAMON Data Connect.

You should see several KAYC-prefix messages, including, not necessarily in this order:

58 IBM Z OMEGAMON Data Provider: Installation and User's Guide

KAYC0023I Starting TCP input service listening on host:port
…
KAYC0011I Connected to TCP sink: sink_name {host: hostname, port: port}

Message KAYC0023I indicates that OMEGAMON Data Connect is listening on a TCP port for data from
OMEGAMON Data Broker.

KAYC0011I indicates that OMEGAMON Data Connect has successfully connected to an analytics
platform or application that is listening for data on a TCP port.

3. Start the Zowe cross-memory server that runs OMEGAMON Data Broker. If you are using an existing
server, stop and then restart the server.

Example MVS command to start the corresponding started task:

S KAYSIS01,REUSASID=YES

Zowe cross-memory server supports reusable address spaces and can be started with the
REUSASID=YES parameter.

4. Check the KAYB-prefix messages in the SYSPRINT output data set of the Zowe cross-memory server
job.

You should see several KAYB-prefix messages, including:

KAYB0036I Store 'OMEGAMON' has connected to sink host:port

Message KAYB0036I indicates that OMEGAMON Data Broker has connected to the TCP port on which
OMEGAMON Data Connect is listening.

5. Start the data source.
For example, if you are using OMEGAMON monitoring agents as a data source, then start the
OMEGAMON runtime environment, if it is not already running. Use your site-specific procedures to
start the runtime environment jobs.

6. Check for the expected messages from the data source.
For example, if you are using OMEGAMON monitoring agents as a data source, then check the KPQH-
prefix messages in the RKLVLOG output data set of the monitoring agent jobs.

Note: The z/OS and storage monitoring agents run in the same address space as the monitoring server
(default job name: OMEGDS).

You should see several KPQH-prefix messages, including:

KPQH038I KPQHSMGR: TABLE product.table_name HAS BEEN CONNECTED TO BROKER

Message KPQH038I indicates the first time that the collection task sends data for this table to
OMEGAMON Data Broker. The timing of this message depends on the collection interval for the table.

7. Check again the KAY-prefix messages in the STDOUT output file from OMEGAMON Data Connect.

You should see new KAYC-prefix messages:

KAYC0008I Creating mapping class for table table_name
KAYC0033I Table table_name received from origin_type origin_name

Message KAYC0008I indicates the first time since starting that this instance of OMEGAMON Data
Connect has received data for this table.

KAYC0033I indicates the first time since starting that this instance of OMEGAMON Data Connect has
received data for this table from this origin_name.

8. View the attributes in the destination analytics platform or application.
For example, view the attributes in the starter Elastic Kibana dashboards.

9. Configure and start OMEGAMON Data Provider on other z/OS LPARs.

Related reference
Expected messages

Getting started with OMEGAMON Data Provider 59

These are the normal messages that you should expect from each component involved in OMEGAMON
Data Provider. If data is not arriving at a destination analytics platform, but there are no obvious errors,
then use these messages as a checklist to diagnose the problem.
Related information
Attributes not arriving at OMEGAMON Data Broker or PDS

60 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Where and how to run OMEGAMON Data Connect
OMEGAMON Data Connect is a Java application. You can run OMEGAMON Data Connect anywhere that
you can run Java 17, or later, 64-bit edition.

Candidate platforms include operating systems such as z/OS UNIX and Linux. Choose a platform that
meets your site-specific requirements and preferences. For example, you might prefer to perform all
OMEGAMON Data Provider processing, including running OMEGAMON Data Connect, on z/OS. Or, to
conserve z/OS resources, you might prefer to run OMEGAMON Data Connect off z/OS.

How to run OMEGAMON Data Connect is also your choice, and can depend on the platform. For example:

• On z/OS, JCL
• Shell script
• Java command line

Related concepts
OMEGAMON Data Provider architecture
OMEGAMON Data Provider consists of two components: OMEGAMON Data Broker and OMEGAMON Data
Connect.
Related tasks
Configuring OMEGAMON Data Connect
OMEGAMON Data Connect is a Java application that can run on or off z/OS.

OMEGAMON Data Connect installation directory
The OMEGAMON Data Connect installation directory contains the files for OMEGAMON Data Connect that
are supplied with OMEGAMON Data Provider.

If you're responsible for installing, configuring, or running OMEGAMON Data Connect, it's useful to know
the location and contents of the installation directory.

Location
The original location of the installation directory is a z/OS UNIX directory. The z/OS SMP/E installation
steps for OMEGAMON Data Provider create a z/OS UNIX directory specified by the DDDEF name TKAYHFS.
That directory is the SMP/E target. The default path of the SMP/E target directory is /usr/lpp/omdp.

The installation directory, kay-110, is a child of the SMP/E target.

You can copy the installation directory to a location of your choice, including off z/OS.

Contents
The following tree diagram shows the structure and contents of the installation directory:

© Copyright IBM Corp. 2021, 2024 61

kay-110

bin

sample

config

dictionary

ext

lib

Installation directory

Shell script

JCL procedure;
also supplied in MVS library TKANSAM

Mapping extension JAR files

Sample configuration files

Dictionary of supported attributes;
documentation only

Symbolic link to core JAR file

Core JAR file

connect

KAYCONN

connect*.yaml

odp-server.jar

odp-server- .jarversion

*.jar

Figure 14. OMEGAMON Data Connect installation directory

The installation directory contains the following files:

• Java archive (JAR) files:

– Core JAR file
– Mapping extension JAR files

• Attribute dictionary (documentation)
• Sample configuration files
• Sample files for running OMEGAMON Data Connect:

– Shell script
– JCL procedure

Tip: Do not edit sample files in their supplied location in the installation directory; especially, not in their
original location under the SMP/E target z/OS UNIX directory. Instead, to avoid updates to the supplied
samples overwriting your changes, copy the samples out of the installation directory before editing them.
In particular, store your site-specific configuration file in a user directory.

Related tasks
Installing OMEGAMON Data Provider

62 IBM Z OMEGAMON Data Provider: Installation and User's Guide

If you have the prerequisite software, then OMEGAMON Data Provider is already installed in your
z/OS SMP/E target libraries. You need to know the location of those libraries. Also, before configuring
OMEGAMON Data Provider, you might need to install some components in other locations.
Related reference
OMEGAMON Data Connect user directory
An OMEGAMON Data Connect user directory contains files that configure OMEGAMON Data Connect for
your site.

OMEGAMON Data Connect user directory
An OMEGAMON Data Connect user directory contains files that configure OMEGAMON Data Connect for
your site.

If you're responsible for configuring or running OMEGAMON Data Connect, you need to know the location
of the user directory and understand its contents.

Location
The location of the user directory is your choice.

Depending on your site-specific topology, you might have multiple OMEGAMON Data Connect user
directories, each with a different configuration file.

You might choose to store all OMEGAMON Data Connect user directories under a parent directory
such as /var/omdp, and then name each user directory according to your site-specific convention. For
example, names that reflect your site's system topology: dev-a, dev-b, test-a, prod-a.

To create a user directory, use the create action of the supplied shell script.

Contents
The following tree diagram shows the structure and contents of a user directory:

/var/omdp/prod-aUser directory;
your choice of path

Structure expected by
the sample shell script
and JCL procedure

Configuration file

config

extensions

connect.yaml

Mapping extension JAR files
(optional)

*.jar

Figure 15. OMEGAMON Data Connect user directory

A user directory can contain the following files:

• Required: a configuration file.
• Optional: mapping extension JAR files.

Tip: OMEGAMON Data Connect supplies mapping extension JAR files in the installation directory. You can
also choose to keep some mapping extension JAR files in a user directory. For example, if you receive
a service update that contains a mapping extension JAR file for an agent, you might choose to test that
update in an instance of OMEGAMON Data Connect that refers to a specific user directory.

Where and how to run OMEGAMON Data Connect 63

Related reference
OMEGAMON Data Connect installation directory
The OMEGAMON Data Connect installation directory contains the files for OMEGAMON Data Connect that
are supplied with OMEGAMON Data Provider.
OMEGAMON Data Connect configuration parameters
OMEGAMON Data Connect configuration parameters identify inputs, such as the TCP port on which to
listen for data from OMEGAMON Data Broker, and outputs, such as destination analytics platforms. You
can filter which attributes to output.
Sample shell script to run OMEGAMON Data Connect
You can use a shell script to run OMEGAMON Data Connect on operating systems such as z/OS UNIX and
Linux. In addition to running OMEGAMON Data Connect, the supplied sample script can also create a user
directory containing a sample OMEGAMON Data Connect configuration file as a starting point for you to
edit.

Sample JCL procedure to run OMEGAMON Data Connect
You can use JCL to run OMEGAMON Data Connect on z/OS.

OMEGAMON Data Provider supplies a sample JCL procedure that runs OMEGAMON Data Connect on
z/OS. The sample JCL requires the Java Batch Launcher and Toolkit for z/OS (JZOS). JZOS is supplied with
IBM Semeru Runtime Certified Edition for z/OS.

Location
OMEGAMON Data Provider supplies the sample JCL procedure in two locations:

• MVS library member TKANSAM(KAYCONN)
• Under the OMEGAMON Data Connect installation directory in the relative file path:

sample/KAYCONN

Example absolute file path:

/usr/lpp/omdp/kay-110/sample/KAYCONN

Before running the JCL
The sample JCL procedure requires a user directory that contains your site-specific OMEGAMON Data
Connect configuration file.

Before running the JCL:

1. Use the create action of the supplied shell script to create a user directory.
2. Edit the config/connect.yaml configuration file in the user directory to match your site-specific

requirements.

Usage
The sample JCL procedure is designed to be used as a starting point for you to copy and edit to meet your
site-specific requirements.

Copy the sample from its supplied location to your choice of MVS PROCLIB library. For example,
SYS1.PROCLIB.

Tip: Review the entire sample so that you understand it completely before using it.

Typically, to edit the procedure for your own use, you only need to edit the values of the following
symbolic parameters, near the start of the procedure. You must edit the values of these parameters in
the SET statements in the procedure itself. The sample JCL procedure is not sensitive to values for these
parameters passed by a calling job or START command.

64 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://www.ibm.com/docs/en/SSA3RN_17.0/com.ibm.java.17.doc/user/jzos/jzos_overview.html

JAVAHOME
The path of the installation directory of Java 17, or later, 64-bit edition. The directory must contain a
bin subdirectory that contains the java command.

INSTLDIR
The path of the OMEGAMON Data Connect installation directory.

USERDIR
The path of your OMEGAMON Data Connect user directory.

Related reference
Java command line to run OMEGAMON Data Connect
Whichever platform you choose, you can use a Java command line to run OMEGAMON Data Connect.
Sample shell script to run OMEGAMON Data Connect
You can use a shell script to run OMEGAMON Data Connect on operating systems such as z/OS UNIX and
Linux. In addition to running OMEGAMON Data Connect, the supplied sample script can also create a user
directory containing a sample OMEGAMON Data Connect configuration file as a starting point for you to
edit.

Sample shell script to run OMEGAMON Data Connect
You can use a shell script to run OMEGAMON Data Connect on operating systems such as z/OS UNIX and
Linux. In addition to running OMEGAMON Data Connect, the supplied sample script can also create a user
directory containing a sample OMEGAMON Data Connect configuration file as a starting point for you to
edit.

Location
The sample shell script is supplied under the OMEGAMON Data Connect installation directory in the
relative file path:

bin/connect

The script file name connect has no file extension (no trailing .sh).

Example absolute file path:

/usr/lpp/omdp/kay-110/bin/connect

Tip: Run the script from its supplied location in the installation directory. Don't copy the script to a
different directory and try to run it from there. The script uses its own path to locate files in the
installation directory. If you try to run the script from a different directory, the script won't find those
files. If you want to make the script available in a directory that is already listed in your PATH environment
variable, then, in that other directory, create a symbolic link that refers to the script in the installation
directory. Running the symbolic link will run the script in the installation directory.

Syntax

connect action

The script requires an action argument: create or run.

The script refers to the value of the environment variable ODP_CONNECT_USER_DIR. Before calling the
script, set the variable to the path of a user directory: depending on the action, either a directory that you
want to create or an existing directory that you want to use to run OMEGAMON Data Connect.

create action

connect create

The create action creates an OMEGAMON Data Connect user directory.

Where and how to run OMEGAMON Data Connect 65

Before performing the create action, set the environment variable ODP_CONNECT_USER_DIR to the
path of the user directory that you want to create.

If the directory specified by ODP_CONNECT_USER_DIR already exists, the script exits without performing
any action.

If intermediate directories in the path don't already exist, the script creates them. For example, if the user
directory path is /var/omdp/config, but the omdp directory doesn't already exist, the script creates it.

The create action copies a sample connect.yaml configuration file from the installation directory as a
starting point for you to edit.

The create action also copies another file, connect.sample.yaml, containing numerous examples
of configuration parameters. OMEGAMON Data Connect does not use connect.sample.yaml. Use the
examples in connect.sample.yaml as a reference for inserting new parameters into connect.yaml.

You can use the create action regardless of how you plan to run OMEGAMON Data Connect. For
example, on z/OS, you can use the script to perform the create action, and then use JCL to run
OMEGAMON Data Connect.

The create action assumes that the script is located in the OMEGAMON Data Connect installation
directory. The create action uses the path of the running script to locate the sample configuration files
under the installation directory.

run action

connect run

The run action uses a Java command line to start OMEGAMON Data Connect.

Before performing the run action, set the environment variable ODP_CONNECT_USER_DIR to the path of
an existing user directory that you want to use to run OMEGAMON Data Connect.

The run action expects to find a configuration file at:

${ODP_CONNECT_USER_DIR}/config/connect.yaml

The run action assumes that the script is located in the OMEGAMON Data Connect installation directory.
The run action uses the path of the running script to locate the core JAR file and mapping extension JAR
files in the installation directory.

If the JAVA_HOME environment variable is not set, the script uses the following shell command to get the
path of the java command:

command -v java

Requirement on z/OS UNIX: _BPXK_AUTOCVT=ON
On z/OS UNIX, the script is tagged as a text file that is uniformly encoded in code set ISO8859-1 (chtag
command options -tc ISO8859-1). While this encoding and tagging is a common practice on z/OS
UNIX, by default z/OS UNIX interprets shell scripts using EBCDIC encoding.

Before you run the script on z/OS UNIX, you must activate automatic text conversion of tagged UNIX file
system files.

Otherwise, when you run the script, z/OS UNIX attempts to interpret the script using EBCDIC encoding
and reports the error message FSUM7332 syntax error.

To activate automatic text conversion, set the _BPXK_AUTOCVT environment variable to ON.

For example, in your z/OS UNIX profile script:

export _BPXK_AUTOCVT=ON

66 IBM Z OMEGAMON Data Provider: Installation and User's Guide

or on the z/OS UNIX command line to run the script, before the script name:

_BPXK_AUTOCVT=ON ./connect run

For more information about automatic text conversion, see the z/OS UNIX documentation.

Usage
Typical usage involves three steps:

1. Perform the script create action.
2. Edit the config/connect.yaml configuration file in the user directory to meet your site-specific

requirements.
3. Perform the script run action.

Example: Create an OMEGAMON Data Connect user directory

Suppose that:

1. You want to create the OMEGAMON Data Connect user directory /var/omdp/prod-a
2. The OMEGAMON Data Connect installation directory is /usr/lpp/omdp/kay-110

At a shell prompt, change to the directory /usr/lpp/omdp/kay-110/bin, and then enter the following
command line:

ODP_CONNECT_USER_DIR=/var/omdp/prod-a ./connect create

• This example shows a single command line that sets the environment variable
ODP_CONNECT_USER_DIR and then runs the script. Instead of setting the variable each time you run
the script, consider using an export shell command to set the variable in your user profile.

• The dot and slash (./) preceding the script name connect assumes that the script is in the current
directory. That is, the current directory is the bin directory under the OMEGAMON Data Connect
installation directory.

• Replace /var/omdp/prod-a with your user directory path.

Example: Run OMEGAMON Data Connect

Suppose that:

1. You have performed the create action in the previous example.
2. You have edited the configuration file in /var/omdp/prod-a/config/connect.yaml to meet your

site-specific requirements.

To run OMEGAMON Data Connect, enter the following shell command line:

ODP_CONNECT_USER_DIR=/var/omdp/prod-a ./connect run

Related reference
Java command line to run OMEGAMON Data Connect
Whichever platform you choose, you can use a Java command line to run OMEGAMON Data Connect.
Sample JCL procedure to run OMEGAMON Data Connect
You can use JCL to run OMEGAMON Data Connect on z/OS.
OMEGAMON Data Connect user directory

Where and how to run OMEGAMON Data Connect 67

An OMEGAMON Data Connect user directory contains files that configure OMEGAMON Data Connect for
your site.

Java command line to run OMEGAMON Data Connect
Whichever platform you choose, you can use a Java command line to run OMEGAMON Data Connect.

For example:

java \
 -Xms1024m -Xmx4096m -XX:+ExitOnOutOfMemoryError \ 1
 -Dfile.encoding=ISO8859-1 \ 2
 -Dodp.ext=odp_installation_directory/lib/ext,\ 3
 odp_user_directory/extensions \
 -jar odp_installation_directory/lib/odp-server.jar \ 4
 --spring.config.additional-location=odp_user_directory/config/connect.yaml 5

 1
The initial heap size (-Xms) and maximum heap size (-Xmx) shown here are examples only.

The maximum heap size must be large enough to accommodate the OMEGAMON Data Connect queue
capacity of each output. In practice, the default queue capacity meets typical requirements and fits
within this example maximum heap size.

For more information on setting the heap size, see the advice on how to do heap sizing in the IBM
Semeru Runtime Certified Edition for z/OS documentation.

 2
Setting the file encoding option avoids a potentially inappropriate system default encoding, such as
EBCDIC on z/OS.

 3
The -Dodp.ext runtime option specifies the value of the custom Java system property odp.ext.

odp.ext specifies the location of OMEGAMON Data Connect mapping extension JAR files. The value
of odp.ext is a comma-separated list of directory paths and individual .jar file paths. In the
directory paths, OMEGAMON Data Connect looks for files with the extension .jar. OMEGAMON Data
Connect does not recurse into subdirectories.

Mapping extensions extend OMEGAMON Data Connect to support different types of incoming data.
OMEGAMON Data Connect supplies mapping extension JAR files in the lib/ext directory under the
installation directory. You can also choose to store mapping extension JAR files in the user directory.

The sample JCL procedure and shell script for running OMEGAMON Data Connect set a default
value for -Dodp.ext that includes the lib/ext directory under the installation directory and the
extensions directory under the user directory. If a mapping extension JAR file for an agent exists in
more than one location, then OMEGAMON Data Connect uses the latest version of the file.

 4
odp-server.jar is a symbolic link that refers to the OMEGAMON Data Connect core JAR file,
odp-server-version.jar.

It is your choice whether to use the symbolic link, which has no version in its file name, or the original
file with a version in its name. To avoid updating the command for each version, use the symbolic link.

 5
odp_user_directory/config/connect.yaml is the location of your site-specific OMEGAMON
Data Connect configuration file. To avoid updates to the sample configuration file overwriting your
site-specific changes, store your configuration file in a user directory separate from the OMEGAMON
Data Connect installation directory.

Platform-specific options
In some cases, on some platforms, you might need to specify additional Java command-line options.

68 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://www.ibm.com/docs/SSA3RN_17.0/com.ibm.java.vm.17.doc/docs/mm_heapsizing.html

For example, on z/OS, if you use Transport Layer Security (TLS) with the store type JCERACFKS to specify
a RACF key ring with the safkeyring protocol, then you need to ensure that the Java virtual machine
(JVM) includes the IBMZSecurity provider to handle that protocol. You can include the IBMZSecurity
provider by specifying the following command-line option:

 -Djava.protocol.handler.pkgs=com.ibm.crypto.zsecurity.provider

Related reference
Sample shell script to run OMEGAMON Data Connect
You can use a shell script to run OMEGAMON Data Connect on operating systems such as z/OS UNIX and
Linux. In addition to running OMEGAMON Data Connect, the supplied sample script can also create a user
directory containing a sample OMEGAMON Data Connect configuration file as a starting point for you to
edit.
Sample JCL procedure to run OMEGAMON Data Connect
You can use JCL to run OMEGAMON Data Connect on z/OS.
Event publisher parameters
OMEGAMON Data Connect event publisher parameters control aspects of internal OMEGAMON Data
Connect processing.

Where and how to run OMEGAMON Data Connect 69

70 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Modifying running components of OMEGAMON Data
Provider

To control components of OMEGAMON Data Provider that are running on z/OS , you can use MVS system
commands, such as MODIFY, STOP, and START.

Reloading OMEGAMON collection configuration
After updating collection configuration parameters in the RKANPARU(KAYOPEN) member, you need to
apply the configuration changes to the affected collection tasks. To apply the changes, you can either
restart the jobs that run the collection tasks, or enter the MVS MODIFY system command presented here.

About this task
You only need to restart or modify the jobs that are affected by the changes to the KAYOPEN member. For
example, if you only edited parameters that select the collections for product name kc5, then you only
need to restart or modify the job that runs the CICS monitoring agent.

For monitoring agents that run in the monitoring server address space (TEMS), such as the z/OS and
storage agents, you need to restart or modify the TEMS job (example job name: OMEGDS).

Procedure
Enter the following MODIFY command for each job:

F job_name,KPQ,RELOAD_CONFIG,KAY

What to do next
To confirm the configuration changes, read the KAYL0005I messages in the RKLVLOG output data set of
the job.

Related tasks
Configuring OMEGAMON monitoring agents as a data source
To use OMEGAMON monitoring agents as a data source for OMEGAMON Data Provider, you need to
configure the runtime member RKANPARU(KAYOPEN) to specify which historical collections to send to
OMEGAMON Data Broker.
Related reference
Configuration parameters for OMEGAMON monitoring agents as a data source
OMEGAMON runtime environment member RKANPARU(KAYOPEN) configures the collection tasks of
OMEGAMON monitoring agents. The member contains configuration parameters that select collections
and set their destinations: the OMEGAMON persistent data store (PDS), OMEGAMON Data Broker, both, or
none.

Reloading OMEGAMON Data Broker configuration
After updating OMEGAMON Data Broker configuration parameters in the Zowe cross-memory server
configuration member, you need to apply those changes to OMEGAMON Data Broker. To apply the
changes, you need to restart (stop and then start) the Zowe cross-memory server.

Procedure
1. Stop the Zowe cross-memory server started task.

© Copyright IBM Corp. 2021, 2024 71

For example, enter the following MVS STOP system command:

P KAYSIS01

2. Start the Zowe cross-memory server started task.
For example, enter the following MVS START system command:

S KAYSIS01

What to do next
To confirm the configuration changes, check the expected messages from OMEGAMON Data Broker.

Related reference
OMEGAMON Data Broker configuration parameters
OMEGAMON Data Broker configuration parameters include the hostname and port on which OMEGAMON
Data Connect is listening.
Expected messages
These are the normal messages that you should expect from each component involved in OMEGAMON
Data Provider. If data is not arriving at a destination analytics platform, but there are no obvious errors,
then use these messages as a checklist to diagnose the problem.

Reloading OMEGAMON Data Connect configuration
After updating the contents of an OMEGAMON Data Connect user directory, such as the connect.yaml
configuration file or mapping extension JAR files, you need to apply those changes to the instances of
OMEGAMON Data Connect that refer to the user directory. To apply the changes, you need to restart (stop
and then start) the affected instances of OMEGAMON Data Connect.

Procedure
Stop and then start each affected instance of OMEGAMON Data Connect.
Method used to run OMEGAMON Data Connect How to stop and then start OMEGAMON Data

Connect

z/OS started task a. Enter an MVS STOP system command. For
example:

P KAYCONN

b. Enter an MVS START system command. For
example:

S KAYCONN

Shell script Follow your site-specific practices to stop and then
start the shell script.

What to do next
To confirm the configuration changes, check the expected messages from OMEGAMON Data Connect.

Related reference
OMEGAMON Data Connect configuration parameters

72 IBM Z OMEGAMON Data Provider: Installation and User's Guide

OMEGAMON Data Connect configuration parameters identify inputs, such as the TCP port on which to
listen for data from OMEGAMON Data Broker, and outputs, such as destination analytics platforms. You
can filter which attributes to output.
Expected messages
These are the normal messages that you should expect from each component involved in OMEGAMON
Data Provider. If data is not arriving at a destination analytics platform, but there are no obvious errors,
then use these messages as a checklist to diagnose the problem.

Displaying OMEGAMON Data Broker status
You can enter MVS MODIFY system commands to display information about the status of OMEGAMON
Data Broker.

Procedure
Issue one of the following MVS MODIFY system commands to the Zowe cross-memory server that runs
OMEGAMON Data Broker:

• To display the status of connections to OMEGAMON Data Connect:

F KAYSIS01,D(KAYB) FWD

• To display the status of stores, such as how many records OMEGAMON Data Broker has sent to
OMEGAMON Data Connect:

F KAYSIS01,D(KAYB) STORE

where:

• KAYSIS01 is the name of the Zowe cross-memory server job.
• The fixed value KAYB identifies the OMEGAMON Data Broker plug-in as the target of the command.

Changing OMEGAMON Data Broker network activity logging level
You can enter an MVS MODIFY system command to change the logging level of OMEGAMON Data Broker
network activity dynamically, while OMEGAMON Data Broker is running.

About this task
In OMEGAMON Data Broker, each forwarder has a logging level. The logging level determines the level of
network activity each forwarder logs. The default level is 0 (none).

Typically, you only need to set the logging level if IBM Software Support requests you to do so for
troubleshooting. The logging level does not affect KAYB-prefix messages from OMEGAMON Data Broker.

You can set the logging level in the forwarder parameters in the configuration member of the Zowe
cross-memory server that runs OMEGAMON Data Broker.

Alternatively, you can use the MVS MODIFY system command described here to set the logging level
dynamically, overriding the logging level set in the configuration member.

Procedure
Issue an MVS MODIFY system command to the Zowe cross-memory server that runs OMEGAMON Data
Broker:

F KAYSIS01,S(KAYB) FWD LOGOPTS(VERBOSITY) forwarder_id log_level

where:

Modifying running components of OMEGAMON Data Provider 73

• KAYSIS01 is the name of the Zowe cross-memory server job.
• The fixed value KAYB identifies the OMEGAMON Data Broker plug-in as the target of the command.
• forwarder_id matches the corresponding forwarder parameters in the configuration member.
• Allowed values for log_level:

log_level Description Notes

0 None Default value

1 Fatal Only log fatal errors

2 Error Log all errors

3 Warning Log any warnings

4 Info Log informational messages

5 Verbose Log verbose informational messages

6 Debug Log messages useful for debugging

7 Trace Log low-level trace messages

8 All Log all messages

Higher logging levels include all messages from lower levels. For example, level 4 (info) includes all
warnings and errors.

The details in messages at levels 6 and higher are intended for use only by IBM Software Support.

To reset the logging level to the value set in the configuration member or, if the member does not set a
value, to 0, specify the keyword DEFAULT instead of a numeric level.

Results
OMEGAMON Data Broker logs network activity messages to the Zowe cross-memory server job step
output data set with ddname SYSOUT (//SYSOUT DD) or, if the server job step does not define that
ddname, then to data sets with the ddname SYSnnnnn (SYS00001, SYS00002, etc.).

Example

The following command sets the OM forwarder logging level to 7:

F KAYSIS01,S(KAYB) FWD LOGOPTS(VERBOSITY) OM 7

The following command resets the OM forwarder logging level to the value set in the configuration member
or, if the member does not set a value, to 0:

F KAYSIS01,S(KAYB) FWD LOGOPTS(VERBOSITY) OM DEFAULT

Related reference
OMEGAMON Data Broker configuration parameters
OMEGAMON Data Broker configuration parameters include the hostname and port on which OMEGAMON
Data Connect is listening.

74 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Adding more OMEGAMON collections to OMEGAMON
Data Provider

If you have already configured an OMEGAMON runtime environment to send collections to OMEGAMON
Data Provider, then follow the steps here to add more.

Procedure
1. Update the collection configuration in the RKANPARU(KAYOPEN) member to select the additional

collections.

Tip: Update KAYOPEN before you create the collections. Performing the configuration in this order
ensures that attributes go to the correct destinations as soon as you create the collections.

2. Reload the collection configuration in the affected monitoring agents.
3. If necessary, update and then reload the OMEGAMON Data Connect configuration.

Whether you need to perform this step depends on whether the current OMEGAMON Data Connect
configuration already selects the corresponding table for forwarding. For example, if OMEGAMON Data
Connect is already configured to forward all tables from a monitoring agent, and you are adding a
collection for another table from that agent, then you don't need to perform this step.

4. Create the collections.

To create historical collections, you use the OMEGAMON enhanced 3270 user interface (e3270UI) or
the Tivoli Enterprise Portal (TEP). For more information about creating historical collections, see the
OMEGAMON documentation for e3270UI and TEP.

5. Check the RKLVLOG output data set of the affected monitoring agent jobs for KPQH038I messages.
6. Check the STDOUT output file from OMEGAMON Data Connect for KAYC0008I and KAYC0033I

messages.
7. Check that the attributes are arriving at your analytics platform.

For example, in Elastic, check that an index has been created for the table.

Related tasks
Configuring OMEGAMON monitoring agents as a data source
To use OMEGAMON monitoring agents as a data source for OMEGAMON Data Provider, you need to
configure the runtime member RKANPARU(KAYOPEN) to specify which historical collections to send to
OMEGAMON Data Broker.
Reloading OMEGAMON collection configuration
After updating collection configuration parameters in the RKANPARU(KAYOPEN) member, you need to
apply the configuration changes to the affected collection tasks. To apply the changes, you can either
restart the jobs that run the collection tasks, or enter the MVS MODIFY system command presented here.
Reloading OMEGAMON Data Connect configuration
After updating the contents of an OMEGAMON Data Connect user directory, such as the connect.yaml
configuration file or mapping extension JAR files, you need to apply those changes to the instances of
OMEGAMON Data Connect that refer to the user directory. To apply the changes, you need to restart (stop
and then start) the affected instances of OMEGAMON Data Connect.
Related reference
OMEGAMON Data Connect configuration parameters
OMEGAMON Data Connect configuration parameters identify inputs, such as the TCP port on which to
listen for data from OMEGAMON Data Broker, and outputs, such as destination analytics platforms. You
can filter which attributes to output.
Related information
Attributes not arriving at OMEGAMON Data Broker or PDS

© Copyright IBM Corp. 2021, 2024 75

76 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Configuration
OMEGAMON Data Provider involves four configuration points: the data source, the two components
of OMEGAMON Data Provider (OMEGAMON Data Broker and OMEGAMON Data Connect), and the
destination.

OMEGAMON
Data

Broker

OMEGAMON
Data

Connect

OMEGAMON Data Provider

DestinationSource

z/OS z/OS or other platform

Figure 16. Configuration points: Source, Broker, Connect, destination

This OMEGAMON Data Provider documentation includes details for the following configuration points:

• OMEGAMON monitoring agents as a data source
• OMEGAMON Data Broker
• OMEGAMON Data Connect

This OMEGAMON Data Provider documentation also includes basic configuration details for some
destinations. See “Integrating analytics platforms with OMEGAMON Data Provider” on page 51.

For other data sources, and comprehensive details on configuring destinations, see the separate
documentation for that software.

Configuration parameters for OMEGAMON monitoring agents as a
data source

OMEGAMON runtime environment member RKANPARU(KAYOPEN) configures the collection tasks of
OMEGAMON monitoring agents. The member contains configuration parameters that select collections
and set their destinations: the OMEGAMON persistent data store (PDS), OMEGAMON Data Broker, both, or
none.

OMEGAMON
Data BrokerCollection tasks

Persistent
data store

attributes

z/OS

Figure 17. OMEGAMON Data Provider collection configuration parameters control where attributes are sent

Selecting versus creating collections
These parameters select collections; they do not create collections.

© Copyright IBM Corp. 2021, 2024 77

Historical collections are a prerequisite for using OMEGAMON Data Provider. Before configuring
OMEGAMON Data Provider, you need to create historical collections.

To create historical collections, you use the OMEGAMON enhanced 3270 user interface (e3270UI) or
the Tivoli Enterprise Portal (TEP). For more information about creating historical collections, see the
OMEGAMON documentation for e3270UI and TEP.

Tip: You can specify these parameters to select collections before you create the corresponding
collections. Configuring these parameters first means that, when you create the collections, collection
tasks immediately send the attributes to the appropriate destinations.

Format

broker:
 name: string
collections:
 - product: kpp # Product code (example: km5)
 table: table_name
 interval: minutes # 0 matches any interval
 destination: # Either or both
 - pds
 - open
 - ... # More collections

The OMEGAMON Data Provider collection configuration member is a YAML document. The configuration
parameters and their values conform to YAML syntax.

Tip: Use a YAML validator to check that your configuration file conforms to YAML syntax.

Parameter names and values are case-insensitive, with one exception: the broker name is case-sensitive.

Character encoding
Collection tasks use EBCDIC code page 1047 to interpret the characters of the configuration member.

The code page is significant only if you use characters outside of the "invariant subset" of EBCDIC:
characters that have different byte values in different EBCDIC code pages. For example, square brackets
([]) have different byte values in EBCDIC code pages 037 and 1047.

If you do use such characters, then when you edit the configuration member on z/OS, ensure that
your terminal code page is set to EBCDIC code page 1047. For example, in your terminal emulator
settings. Otherwise, you risk introducing byte values that your terminal displays as one character but that
represents a different character when interpreted using EBCDIC code page 1047.

Tip: To avoid such code page issues, only use characters in the invariant subset of EBCDIC. In particular,
do not use square brackets.

To avoid square brackets in YAML, use the block sequence YAML syntax shown in this documentation, not
flow sequences. Block sequences are delimited by newlines and hyphens, whereas flow sequences are
enclosed in square brackets.

Location
If you choose to specify this optional configuration member, then it must be member name KAYOPEN in
the RKANPARU library of your OMEGAMON runtime environment (RTE).

If you omit this member, then OMEGAMON Data Provider is dormant and attributes from historical
collections are sent to PDS only.

Attention: The KAYOPEN member is not managed by PARMGEN or Monitoring Configuration
Manager. Some actions of PARMGEN and Monitoring Configuration Manager, such as the
GENERATE action of Monitoring Configuration Manager, delete RKANPARU library members. PTF
UJ93077 for APAR OA64681 (2Q23) excludes members with the name pattern KAY*, such as

78 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://yaml.org/

KAYOPEN, from being deleted. If your site does not yet have that PTF applied, then you must
maintain your primary copy of KAYOPEN in a different location of your choice and, after each
GENERATE action, copy KAYOPEN into the RKANPARU library.

A sample member is supplied in TKANSAM(KAYOPEN).

Parameter descriptions
broker

Contains a single child key:
name

The name of the Zowe cross-memory server that runs the OMEGAMON Data Provider to which you
want to send data.

This name is the value of the NAME runtime parameter of the JCL EXEC statement for the
KAYSIS01 program (corresponding default procedure and job name: KAYSIS01).

Example value: ODP_BROKER

collections
Specifies a block sequence of historical collections. Each entry in the sequence is marked by a dash
and space.

Each entry selects a historical collection that you have created in OMEGAMON and specifies
destinations for that collection.

Each entry uses a combination of three values to select a historical collection: product code, table
name, and collection interval.

To send data from a collection to OMEGAMON Data Broker, you must select the collection and specify
the destination open.

product
The 3-character kpp product code of the monitoring agent that owns the table.

table
The table name. For example, ascpuutil (Address Space CPU Utilization).

interval
The collection interval in minutes or the special value 0 (zero).

The value 0 acts as a wildcard; it selects all historical collections for the table, regardless of
collection interval.

Examples of minute values:

1
Every minute

5
Every 5 minutes

15
Every 15 minutes

30
Every 30 minutes

60
Every hour

1440
Once per day

To select a collection, either specify the wildcard value 0 or the number of minutes that matches
the specific collection interval.

Configuration 79

For example, to select a collection that has a collection interval of 1 day, specify interval:
1440.

Specifying interval: 0 offers flexibility: it means that you can change the collection interval
of a collection without having to specify that different interval value here and then restart or
modify running OMEGAMON monitoring agents.

If you have multiple collections for the same table, but with different collection intervals, then
you can choose to send them all to the same destinations with a single entry that specifies
interval: 0, or you can specify multiple entries with specific collection intervals.

destination
Specifies a sequence of destinations for the table.

The sequence can contain either or both of the following values:

open
Send data from this collection to OMEGAMON Data Broker.

pds
Send data from this collection to the persistent data store.

If you want to view attributes from this collection in the OMEGAMON enhanced 3270 user
interface (e3270UI) or the Tivoli Enterprise Portal (TEP) user interface, or store the attributes
in Tivoli Data Warehouse, then you must include pds as a destination.

To pass attributes directly through to OMEGAMON Data Broker without storing them on disk (in
the PDS), specify open as the only destination.

For an overview of the choice of destinations, see “OMEGAMON monitoring agents as a data
source for OMEGAMON Data Provider” on page 34.

You can specify destinations either in a block sequence, delimited by line breaks and hyphens:

destination:
 - open
 - pds

or in a flow sequence, delimited by commas and wrapped in square brackets:

destination: [open, pds]

Precedence of entries that select the same collections
If more than one entry in the collections sequence specifies the same combination of product name,
table name, and collection interval, then the last entry takes precedence. That is, collections will be sent
to the destinations specified by the last entry.

Entries with a specific interval value take precedence over entries with the wildcard interval value of 0.

Default destinations of unselected collections
The following conditions determine the default destination for collections that are not selected by any of
the entries in the collections sequence:

Condition Destination

No entries select that combination of product code
and table name.

PDS only.

One or more entries select that combination of
product code and table name, but none of those
entries select that collection interval.

None.

80 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Condition Destination

The collection is discarded. Data from that
collection is not sent to either the PDS or
OMEGAMON Data Broker.

Applying configuration changes
After editing this configuration member, you need to apply changes to the jobs that run the affected
OMEGAMON monitoring agents.

You must either restart the jobs or enter an MVS MODIFY system command to reload their collection
configuration.

Example: All collection intervals to both destinations

The following example selects collections for two tables; both tables are from the z/OS monitoring agent,
product code km5.

broker:
 name: ODP_BROKER
collections:
 - product: km5
 table: ascpuutil
 interval: 0
 destination:
 - open
 - pds
 - product: km5
 table: km5msucap
 interval: 0
 destination:
 - open
 - pds

This example selects all collections for these tables, regardless of collection interval.

This example sends all selected collections to both the PDS and OMEGAMON Data Broker.

Collections for all other tables are sent to PDS only.

Example: Specific collection intervals

The following example only selects collections with the cited collection intervals.

broker:
 name: ODP_BROKER
collections:
 - product: km5
 table: ascpuutil
 interval: 1
 destination:
 - open
 - pds
 - product: km5
 table: km5msucap
 interval: 5
 destination:
 - open
 - pds

For table ascpuutil, this example only selects a collection that has a collection interval of 1 minute.

Configuration 81

For table km5msucap, this example only selects a collection that has a collection interval of 5 minutes.

Collections for tables ascpuutil and km5msucap with other collection intervals are discarded.

Collections for all other tables are sent to PDS only.

Example: Multiple specific collection intervals

The following example sends collections for the same table, but with different collection intervals, to
different destinations.

broker:
 name: ODP_BROKER
collections:
 - product: km5
 table: ascpuutil
 interval: 1
 destination:
 - open
 - product: km5
 table: ascpuutil
 interval: 5
 destination:
 - pds

A collection for table ascpuutil with a collection interval of 1 minute is sent to OMEGAMON Data Broker
only.

A collection for table ascpuutil with a collection interval of 5 minutes is sent to the PDS only.

Collections for table ascpuutil with other collection intervals are discarded.

Collections for all other tables are sent to PDS only.

Example: All collection intervals to the PDS but only a specific collection interval to OMEGAMON Data
Broker

Suppose that you want collections for a table to be sent to the PDS regardless of collection interval.
However, you only want a collection for that table to be sent to OMEGAMON Data Broker if the collection
has a specific collection interval.

The following example demonstrates using the special interval value 0 to select all collection intervals,
and then using a separate entry for the same table to override that behavior for a specific collection
interval.

broker:
 name: ODP_BROKER
collections:
 - product: kc5
 table: kcpplx
 interval: 0
 destination:
 - pds
 - product: kc5
 table: kcpplx
 interval: 1 # Specific value takes precedence over wildcard (0)
 destination:
 - pds
 - open

All collections for CICS (kc5) table kcpplx are sent to the PDS, regardless of collection interval.

A collection for that table with a collection interval of 1 minute is sent to OMEGAMON Data Broker.

Collections for all other tables are sent to PDS only.

82 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Related concepts
OMEGAMON monitoring agents as a data source for OMEGAMON Data Provider
To use OMEGAMON monitoring agents as a data source, OMEGAMON Data Provider extends OMEGAMON
attribute collection.
Prerequisites for OMEGAMON monitoring agents as a data source
These prerequisites apply only if you are using OMEGAMON monitoring agents as a data source for
OMEGAMON Data Provider.
Related tasks
Configuring OMEGAMON monitoring agents as a data source
To use OMEGAMON monitoring agents as a data source for OMEGAMON Data Provider, you need to
configure the runtime member RKANPARU(KAYOPEN) to specify which historical collections to send to
OMEGAMON Data Broker.
Reloading OMEGAMON collection configuration
After updating collection configuration parameters in the RKANPARU(KAYOPEN) member, you need to
apply the configuration changes to the affected collection tasks. To apply the changes, you can either
restart the jobs that run the collection tasks, or enter the MVS MODIFY system command presented here.
Related reference
OMEGAMON monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.
OMEGAMON attribute dictionary
OMEGAMON Data Connect includes a dictionary of OMEGAMON attributes in a set of YAML files.
Related information
Attributes not arriving at OMEGAMON Data Broker or PDS

OMEGAMON Data Broker configuration parameters
OMEGAMON Data Broker configuration parameters include the hostname and port on which OMEGAMON
Data Connect is listening.

In the context of the TCP connection between OMEGAMON Data Broker and OMEGAMON Data Connect,
OMEGAMON Data Broker is the client and OMEGAMON Data Connect is the server.

Zowe
cross-memory server

OMEGAMON
Data Broker

OMEGAMON
Data Connect

Data source

TLS/TCP

TCP
ServerClientForwarder

Store
Cells Source:

Origin of data for the forwarder

Sink:
Forwarder destination

z/OS z/OS or other platform

Figure 18. OMEGAMON Data Broker configuration points: store, forwarder, and output ("sink")

OMEGAMON Data Broker receives data from a data source into an internal store, and then forwards the
data to OMEGAMON Data Connect.

To forward data to OMEGAMON Data Connect, you configure a forwarder with the store as its source and
OMEGAMON Data Connect as its sink.

Configuration 83

You can configure one or more forwarders. Each forwarder uses the same store as its source but sends
data to a different sink; a different instance of OMEGAMON Data Connect:

OMEGAMON
Data Broker

OMEGAMON
Data Connect

OMEGAMON
Data Connect

OMEGAMON
Data Connect

Forwarder 1

Forwarder 2

Forwarder

Store

n

Data source

Figure 19. OMEGAMON Data Broker configuration: one store, one or more forwarders

Format

* General parameters
* Register the OMEGAMON Data Broker plug-in (load module)
ZWES.PLUGIN.KAY.CIDB=KAYB0001
* Register the ZIS dynamic linkage base plug-in required by OMEGAMON Data
Broker
ZWES.PLUGIN.KAY.ZISDYNAMIC=KAYSISDL
* Enable the forwarder subsystem
KAY.CIDB.FWD=ON

* Forwarder parameters
KAY.CIDB.FWD.forwarder_id.SOURCE_STORE=OMEGAMON
KAY.CIDB.FWD.forwarder_id.SINK_HOST=connect_hostname
KAY.CIDB.FWD.forwarder_id.SINK_PORT=connect_port
* Optional timeout and retry parameters
KAY.CIDB.FWD.forwarder_id.CONNECT_TIMEOUT=seconds
KAY.CIDB.FWD.forwarder_id.RECEIVE_TIMEOUT=seconds
KAY.CIDB.FWD.forwarder_id.SEND_TIMEOUT=seconds
KAY.CIDB.FWD.forwarder_id.CONNECT_RETRY_INTERVAL=seconds
KAY.CIDB.FWD.forwarder_id.MAX_CONNECT_RETRY_ATTEMPTS=number
* Other optional parameters
KAY.CIDB.FWD.forwarder_id.RECORD_QUEUE_LIMIT=records
KAY.CIDB.FWD.forwarder_id.LOGOPTS=--verbosity log_level
* SSL parameters: only required if sink connection uses SSL/TLS
KAY.CIDB.FWD.forwarder_id.SECURITY=TLSv1.2
KAY.CIDB.FWD.forwarder_id.FIPS=ON|OFF
KAY.CIDB.FWD.forwarder_id.KEYRING=string
KAY.CIDB.FWD.forwarder_id.STASH=string
KAY.CIDB.FWD.forwarder_id.PASSWORD=string
KAY.CIDB.FWD.forwarder_id.CIPHERS=string
KAY.CIDB.FWD.forwarder_id.CERTLABEL=string

* Optional: More forwarders...

* Store parameters
KAY.CIDB.STORE.store_id.NAME=OMEGAMON

84 IBM Z OMEGAMON Data Provider: Installation and User's Guide

* As a starting point, use the cell definitions in
* sample member TKANSAM(KAYSIP00)
KAY.CIDB.STORE.store_id.CELL.cell_id.SIZE=bytes
KAY.CIDB.STORE.store_id.CELL.cell_id.CAPACITY=number
* More OMEGAMON store cell definitions...

OMEGAMON Data Broker configuration parameter names are case-sensitive.

Location
OMEGAMON Data Broker configuration parameters are stored in the configuration member of the Zowe
cross-memory server.

The configuration member name matches the following pattern:

ppppIPxx

where:

pppp
The first four characters of the Zowe cross-memory server load module name. OMEGAMON Data
Provider supplies the Zowe cross-memory server load module in TKANMODP(KAYSIS01). The same
load module is supplied with Zowe as ZWESIS01.

xx
The value of the optional MEM runtime parameter in the startup JCL for the Zowe cross-memory
server. Default value: 00.

For example:

Zowe cross-memory server load module
name

MEM parameter in JCL Configuration member
name

KAYSIS01
(as supplied with OMEGAMON Data
Provider)

00 (default) KAYSIP00

KAYSIS01 01 KAYSIP01

ZWESIS01
(as supplied with Zowe)

00 ZWESIP00

ZWESIS01 01 ZWESIP01

The configuration member must be in a PARMLIB data set. Either:

• The data set specified by the PARMLIB ddname of the job step that runs the Zowe cross-memory server
program.

• If that job step does not specify a PARMLIB ddname, the system PARMLIB. For example,
SYS1.PARMLIB.

For example, given the following JCL after any symbol substitution:

//BROKER EXEC PGM=KAYSIS01,REGION=0M,
// PARM='NAME=ODP_BROKER,MEM=02'
//PARMLIB DD DSNAME=MY.ODP.PARMLIB

the fully qualified dsname of the configuration member is MY.ODP.PARMLIB(KAYSIP02).

A sample member is supplied in TKANSAM(KAYSIP00).

Configuration 85

Parameter namespaces and IDs
OMEGAMON Data Broker configuration parameters are namespaced. Each parameter name is prefixed by
a sequence of period-delimited qualifiers that specify the context of the parameter.

For example, in the following parameter name:

KAY.CIDB.FWD.forwarder_id.SINK_HOST

• KAY.CIDB specifies that the parameter belongs to the OMEGAMON Data Broker component of
OMEGAMON Data Provider.

• FWD specifies that the parameter belongs to a forwarder.
• forwarder_id specifies which forwarder the parameter belongs to.

A parameter namespace can include one or more IDs, such as forwarder_id, store_id, or cell_id.

An ID specifies an instance of an object and groups the parameters for that object. The qualifier preceding
the ID specifies the object type, such as forwarder (FWD), store (STORE), or cell (CELL). Objects of the
same type must use different IDs.

An ID is a case-sensitive string of 1 - 8 alphanumeric characters (a - z, A - Z, 0 - 9).

Example IDs:

OM
1
2
A
B

Note: A forwarder and a store can use the same ID, such as OM, but this does not imply any relationship
between them. Each forwarder specifies the name of the store to use as its source.

No other Zowe cross-memory server configuration parameters required
If you're only using the Zowe cross-memory server to host OMEGAMON Data Broker, then the Zowe
cross-memory server configuration member only needs to contain the following parameters:

• ZWES.PLUGIN.KAY.CIDB=KAYB0001, to register the OMEGAMON Data Broker plug-in.
• ZWES.PLUGIN.KAY.ZISDYNAMIC=KAYSISDL, to register the ZIS dynamic linkage base plug-in that is

required by OMEGAMON Data Broker.
• KAY.CIDB-namespace OMEGAMON Data Broker configuration parameters described here.

You don't need to specify any other ZWES-namespace parameters for the Zowe cross-memory server
itself.

Splitting long parameter values over multiple lines
Some parameters can have long values. However, each record of the Zowe cross-memory server
configuration member can contain a maximum of only 71 characters.

To split long parameter values over multiple lines, use a backslash (\) as a line continuation character.
Example:

KAY.CIDB.FWD.OM.KEYRING=\
 /u/my/long/directory/path/to/\
 a-long-file-name.p12

Leading spaces on continuation lines are ignored.

86 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Use the sample configuration member
As a starting point, use the sample configuration member TKANSAM(KAYSIP00).

For a connection without Transport Layer Security (TLS), you only need to change the values of two
parameters in that sample member:

KAY.CIDB.FWD.OM.SINK_HOST
KAY.CIDB.FWD.OM.SINK_PORT

General parameters
The following general parameters are required:

ZWES.PLUGIN.KAY.CIDB=KAYB0001
Registers OMEGAMON Data Broker as a plug-in of the Zowe cross-memory server.

OMEGAMON Data Provider supplies the OMEGAMON Data Broker plug-in load module in
TKANMODP(KAYB0001).

The OMEGAMON Data Broker load module KAYB0001 must be a member of the data set specified by
the STEPLIB ddname of the job step that runs the Zowe cross-memory server program, KAYSIS01.

ZWES.PLUGIN.KAY.ZISDYNAMIC=KAYSISDL
Registers ZISDYNAMIC, the ZIS dynamic linkage base plug-in.

OMEGAMON Data Broker requires the ZISDYNAMIC plug-in.

OMEGAMON Data Provider supplies the ZISDYNAMIC plug-in load module in TKANMODP(KAYSISDL).
The same load module is supplied with Zowe as ZWESISDL.

If you are running OMEGAMON Data Broker in a Zowe cross-memory server in a stand-alone
installation of Zowe rather than the server supplied with OMEGAMON Data Provider, then use the
following parameter name, without the KAY qualifier, and refer to the plug-in load module name as
supplied with Zowe:

ZWES.PLUGIN.ZISDYNAMIC=ZWESISDL

KAY.CIDB.FWD=ON
Enables the forwarder subsystem of OMEGAMON Data Broker. The forwarder enables OMEGAMON
Data Broker to send data over a TCP/IP network to a "sink" (forwarding destination) such as
OMEGAMON Data Connect.

Values:

ON
Enables the forwarder. This value is case-sensitive.

If you omit this parameter, or specify any value other than ON in all uppercase, then the forwarder
subsystem is disabled, and OMEGAMON Data Broker will not forward data.

Forwarder parameters
You can define one or more forwarders. Use a different forwarder_id to group the parameters for each
forwarder.

The following parameters are required:

KAY.CIDB.FWD.forwarder_id.SOURCE_STORE=OMEGAMON
The name of the OMEGAMON Data Broker store to which the data source sends data.

For OMEGAMON Data Provider, you must specify the store name OMEGAMON.

KAY.CIDB.FWD.forwarder_id.SINK_HOST=connect_hostname
Hostname or IP address of the OMEGAMON Data Connect instance that is listening for data from
OMEGAMON Data Broker.

Configuration 87

In the context of the OMEGAMON Data Broker forwarder, OMEGAMON Data Connect is a sink: a
destination.

If you plan to run OMEGAMON Data Connect on the same z/OS instance as OMEGAMON Data Broker,
then you can specify the value localhost or the local loopback IP address. The typical local
loopback IPv4 address is 127.0.0.1.

KAY.CIDB.FWD.forwarder_id.SINK_PORT=connect_port
The port on which OMEGAMON Data Connect is listening. Follow your site-specific standards for
assigning port numbers.

The following parameters are optional:

KAY.CIDB.FWD.forwarder_id.CONNECT_TIMEOUT=seconds
Time in seconds to wait to establish a connection to OMEGAMON Data Connect. Default: 5.

KAY.CIDB.FWD.forwarder_id.RECEIVE_TIMEOUT=seconds
Receive timeout in seconds. Default: 5.

KAY.CIDB.FWD.forwarder_id.SEND_TIMEOUT=seconds
Send timeout in seconds. Default: 0 (indefinite).

KAY.CIDB.FWD.forwarder_id.CONNECT_RETRY_INTERVAL=seconds
Number of seconds to wait before retrying connection to OMEGAMON Data Connect. Default: 20.

KAY.CIDB.FWD.forwarder_id.MAX_CONNECT_RETRY_ATTEMPTS=number
Maximum number of attempts to retry connection to OMEGAMON Data Connect. Default: no value;
unlimited.

The following optional parameters are deliberately omitted from the sample member, because their
default values are typically suitable:

KAY.CIDB.FWD.forwarder_id.RECORD_QUEUE_LIMIT=records
The maximum number of records allowed in this forwarder's queue. The default value is 1000000
(one million) records.

When a queue is full, each new incoming record overwrites the oldest remaining record in the queue.

If OMEGAMON Data Connect is unavailable, then older records in the queue might be lost, overwritten
by new records before they can be forwarded.

KAY.CIDB.FWD.forwarder_id.LOGOPTS=--verbosity log_level
The logging level of network activity for this forwarder. The default level is 0 (none).

Typically, you only need to set the logging level if IBM Software Support requests you to do so
for troubleshooting. The logging level does not affect KAYB-prefix messages from OMEGAMON Data
Broker.

Allowed values:

log_level Description Notes

0 None Default value

1 Fatal Only log fatal errors

2 Error Log all errors

3 Warning Log any warnings

4 Info Log informational messages

5 Verbose Log verbose informational messages

6 Debug Log messages useful for debugging

7 Trace Log low-level trace messages

8 All Log all messages

88 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Higher logging levels include all messages from lower levels. For example, level 4 (info) includes all
warnings and errors.

The details in messages at levels 6 and higher are intended for use only by IBM Software Support.

OMEGAMON Data Broker logs network activity messages to the Zowe cross-memory server job step
output data set with ddname SYSOUT (//SYSOUT DD) or, if the server job step does not define that
ddname, then to data sets with the ddname SYSnnnnn (SYS00001, SYS00002, etc.).

Example parameter:

KAY.CIDB.FWD.OM.LOGOPTS=--verbosity 7

Tip: You can override the value of this parameter dynamically, while OMEGAMON Data Broker is
running. For details, see “Changing OMEGAMON Data Broker network activity logging level” on page
73.

Forwarder SSL parameters
The following parameters are relevant only if you use TLS to secure the connection between OMEGAMON
Data Broker and OMEGAMON Data Connect:

KAY.CIDB.FWD.forwarder_id.SECURITY=string
Enabled security protocols. Allowed values: TLSv1.2 or blank (no value). Default: no value; no
security protocol.

Tip: For a connection without TLS, omit or comment-out this parameter.

KAY.CIDB.FWD.forwarder_id.FIPS=ON|OFF
Sets z/OS System SSL Federal Information Processing Standards (FIPS) mode. Default: OFF. For
information about FIPS mode, see the z/OS System SSL documentation for your version of z/OS. For
example, FIPS 140-2 support in z/OS 2.5.0.

KAY.CIDB.FWD.forwarder_id.KEYRING=string
Identifies the collection of security certificates required for this connection. Can be one of the
following values:
SAF key ring

Specified in the format owner_user_id/key_ring_name. For example:

my/kay_keyring

If the current user owns the key ring, the current user must have READ access to the
IRR.DIGTCERT.LISTRING resource in the FACILITY class. If another user owns the key ring, the
current user must have UPDATE access to that resource.

Certificate private keys are not available when using a SAF key ring owned by another user,
except for SITE certificates where CONTROL authority is given to IRR.DIGTCERT.GENCERT
in the FACILITY class or for user certificates where READ or UPDATE authority is given to
ring_owner.ring_name.LST resource in the RDATALIB class.

Key database
A key database created by the z/OS gskkyman utility. The key database is specified as a z/OS
UNIX file path. For example:

/u/my/security/certs/kay.kdb

PKCS #12 file
Specified as a z/OS UNIX file path. For example:

/u/my/security/certs/kay.p12

PKCS #11 token
Specified in the format *TOKEN*/token_name. For example:

TOKEN/kay.pkcs11.token

Configuration 89

https://www.ibm.com/docs/en/zos/2.5.0?topic=programming-system-ssl-fips-140-2

The *TOKEN* qualifier indicates that the value refers to a PKCS #11 token rather than a SAF key
ring.

If you specify a key database or PKCS #12 file, but you do not specify either a STASH parameter or
a PASSWORD parameter, then OMEGAMON Data Broker looks for a stash file in the same directory as
the key database or PKCS #12 file, and with the same base file name, but with .sth extension. For
example, if the KEYRING parameter specifies the following z/OS UNIX file path:

/u/my/security/certs/kay.kdb

or:

/u/my/security/certs/kay

(with no extension)

then OMEGAMON Data Broker looks for a stash file at the following path:

/u/my/security/certs/kay.sth

KAY.CIDB.FWD.forwarder_id.STASH=path
z/OS UNIX file path of the stash file that contains the password for the key database or PKCS #12 file.

If PASSWORD is specified, STASH is ignored.

KAY.CIDB.FWD.forwarder_id.PASSWORD=string
Password for the key database or PKCS #12 file.

If KEYRING specifies a SAF key ring or PKCS #11 token, PASSWORD is ignored.

KAY.CIDB.FWD.forwarder_id.CIPHERS=hex_string
List of candidate cipher suites to try, in order. The list is a concatenation of 4-digit hexadecimal cipher
suite numbers supported by z/OS System SSL. For example:

000A000D001000130016

If you omit CIPHERS, OMEGAMON Data Broker uses the system default list of cipher suites. That list
depends on whether FIPS mode is on.

Tip: To match a z/OS System SSL cipher suite number to the corresponding OpenSSL cipher suite
name, go to the z/OS System SSL documentation and look up the "short name" for that cipher suite
in the table of cipher suite definitions. The short name is the name that is defined in the associated
Request for Comments (RFC) by the Internet Engineering Task Force (IETF). Then go to the OpenSSL
documentation for the ciphers command, and use the RFC name to find the corresponding OpenSSL
name.

For more information on cipher suite definitions, see the z/OS System SSL documentation for your
version of z/OS. For example, the cipher suite definitions supported by z/OS 2.5.0.

KAY.CIDB.FWD.forwarder_id.CERTLABEL=string
Specifies the label (also known as alias) of the client certificate that is used to authenticate
OMEGAMON Data Broker (the client) to OMEGAMON Data Connect (server). The client certificate,
and its private key, must be in the collection that is specified by the KEYRING parameter.

CERTLABEL is only used if OMEGAMON Data Connect requires client authentication.

If OMEGAMON Data Connect requires client authentication, but you omit CERTLABEL, then
OMEGAMON Data Broker uses the default certificate from the collection that is specified by the
KEYRING parameter.

Store parameters
Typically, you do not need to understand store parameters in detail. Unless you have a specific reason to
use different values, use the values supplied in sample member TKANSAM(KAYSIP00).

Tip: You only need to specify one set of store parameters, regardless of the number of forwarders.

90 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://www.ibm.com/docs/en/zos/2.5.0?topic=programming-cipher-suite-definitions

OMEGAMON Data Broker places each incoming record into a cell in a store. Cells can be various sizes.
Store parameters specify the different sizes of cell in the store and the initial number of cells of each size.

The following parameters are required:

KAY.CIDB.STORE.store_id.NAME=OMEGAMON
Defines a store named OMEGAMON.

For OMEGAMON Data Provider, you must specify the store name OMEGAMON.

KAY.CIDB.STORE.store_id.CELL.cell_id.SIZE=bytes
Cell size, in bytes.

The cell_id groups the parameters for this cell size.

KAY.CIDB.STORE.store_id.CELL.cell_id.CAPACITY=number
The initial number of cells of this cell_id; this size.

OMEGAMON Data Broker uses this value to preallocate memory for cells. During processing,
OMEGAMON Data Broker allocates additional memory as required.

KAY.CIDB.STORE.store_id.QUEUE.CAPACITY=number
The initial number of cells that the store's queues can contain. Default: 10000.

A store can have multiple forwarders. Each forwarder has its own queue. This capacity is shared
across all of the store's queues.

OMEGAMON Data Connect expands this capacity as required. However, while the total shared
capacity can expand, each forwarder's queue has a maximum number of records, set by the
forwarder's RECORD_QUEUE_LIMIT parameter.

Example: Forwarding to OMEGAMON Data Connect without TLS

The following example configures OMEGAMON Data Broker to send data to OMEGAMON Data Connect
that is running on the same z/OS instance as OMEGAMON Data Broker (localhost) and listening on port
15351:

ZWES.PLUGIN.KAY.CIDB=KAYB0001
ZWES.PLUGIN.KAY.ZISDYNAMIC=KAYSISDL
KAY.CIDB.FWD=ON

KAY.CIDB.FWD.OM.SOURCE_STORE=OMEGAMON
KAY.CIDB.FWD.OM.SINK_HOST=localhost
KAY.CIDB.FWD.OM.SINK_PORT=15351

KAY.CIDB.STORE.OM.NAME=OMEGAMON
KAY.CIDB.STORE.OM.CELL.1.SIZE=128
KAY.CIDB.STORE.OM.CELL.1.CAPACITY=1000
KAY.CIDB.STORE.OM.CELL.2.SIZE=256
KAY.CIDB.STORE.OM.CELL.2.CAPACITY=5000
KAY.CIDB.STORE.OM.CELL.3.SIZE=512
KAY.CIDB.STORE.OM.CELL.3.CAPACITY=5000
KAY.CIDB.STORE.OM.CELL.4.SIZE=1024
KAY.CIDB.STORE.OM.CELL.4.CAPACITY=1000
KAY.CIDB.STORE.OM.CELL.5.SIZE=2048
KAY.CIDB.STORE.OM.CELL.5.CAPACITY=1000
KAY.CIDB.STORE.OM.CELL.6.SIZE=4096
KAY.CIDB.STORE.OM.CELL.6.CAPACITY=1000
KAY.CIDB.STORE.OM.CELL.7.SIZE=8192
KAY.CIDB.STORE.OM.CELL.7.CAPACITY=200

In this example, the forwarder and the store have the same ID, OM. This common value has no
significance; it does not define a relationship between the forwarder and the store. The relationship
between the forwarder and the store is defined by the forwarder SOURCE_STORE and the store NAME
parameters.

Configuration 91

A similar example set of OMEGAMON Data Broker parameters is supplied in the sample member
TKANSAM(KAYSIP00).

Some parameter values in the previous example listing, such as CAPACITY and SIZE, might differ from
the values in the sample member. Use the values in the sample member.

Example: Forwarding to multiple instances of OMEGAMON Data Connect

To define additional forwarders, add the following parameters to the first example:

Second instance of OMEGAMON Data Connect
KAY.CIDB.FWD.OM2.SOURCE_STORE=OMEGAMON
KAY.CIDB.FWD.OM2.SINK_HOST=analytics2.example.com
KAY.CIDB.FWD.OM2.SINK_PORT=15351

Third instance of OMEGAMON Data Connect
KAY.CIDB.FWD.OM3.SOURCE_STORE=OMEGAMON
KAY.CIDB.FWD.OM3.SINK_HOST=analytics3.example.com
KAY.CIDB.FWD.OM3.SINK_PORT=15351

Each forwarder has the same source store, but different FWD.forwarder_id and sink details.

Example: Forwarding to OMEGAMON Data Connect with TLS using a RACF key ring

Add the following parameters to the first example:

KAY.CIDB.FWD.OM.SECURITY=TLSv1.2
KAY.CIDB.FWD.OM.FIPS=ON
KAY.CIDB.FWD.OM.KEYRING=KAYSIS01/KAYSring

This example is based on the following assumptions:

• You have configured the TCP input of OMEGAMON Data Connect to use TLSv1.2.
• At least one of the FIPS cipher suites specified here by OMEGAMON Data Broker matches a cipher suite
specified by OMEGAMON Data Connect.

• You have created a RACF key ring named KAYSring, owned by user KAYSIS01 (the user that runs the
Zowe cross-memory server instance that hosts the OMEGAMON Data Broker plug-in).

• The key ring contains a certificate that OMEGAMON Data Broker (the client) can use to authenticate
OMEGAMON Data Connect (the server).

• OMEGAMON Data Connect does not require client authentication.

If OMEGAMON Data Connect requires client authentication, add the following parameter:

KAY.CIDB.FWD.OM.CERTLABEL=OMDPcert

where OMDPcert is the label (alias) of the client certificate in the key ring.

Related concepts
OMEGAMON Data Provider topology
OMEGAMON Data Provider topology typically consists of one instance of OMEGAMON Data Broker per
z/OS LPAR, with multiple instances of OMEGAMON Data Broker feeding a single instance of OMEGAMON
Data Connect.
Related tasks
Configuring OMEGAMON Data Broker
OMEGAMON Data Broker is a plug-in for the Zowe cross-memory server. You need to configure a
JCL procedure to run the server as a started task and you need to specify OMEGAMON Data Broker
parameters in the server PARMLIB member.
Reloading OMEGAMON Data Broker configuration

92 IBM Z OMEGAMON Data Provider: Installation and User's Guide

After updating OMEGAMON Data Broker configuration parameters in the Zowe cross-memory server
configuration member, you need to apply those changes to OMEGAMON Data Broker. To apply the
changes, you need to restart (stop and then start) the Zowe cross-memory server.
Changing OMEGAMON Data Broker network activity logging level
You can enter an MVS MODIFY system command to change the logging level of OMEGAMON Data Broker
network activity dynamically, while OMEGAMON Data Broker is running.
Related reference
TCP input parameters
OMEGAMON Data Connect TCP input parameters specify how OMEGAMON Data Connect listens for
attributes over a TCP network from OMEGAMON Data Broker.

OMEGAMON Data Connect configuration parameters
OMEGAMON Data Connect configuration parameters identify inputs, such as the TCP port on which to
listen for data from OMEGAMON Data Broker, and outputs, such as destination analytics platforms. You
can filter which attributes to output.

OMEGAMON
Data Broker

OMEGAMON
Data Connect

TCP

STDOUT

Outputs

JSON

Kafka

HTTP

Prometheus

z/OS z/OS or other platform

Figure 20. OMEGAMON Data Connect configuration points: input from OMEGAMON Data Broker and various
outputs

Format
The OMEGAMON Data Connect configuration file, connect.yaml, is a YAML document. OMEGAMON Data
Connect configuration parameters and their values conform to YAML syntax.

Here is the high-level structure of the document. Lower-level structures are indicated by placeholder
labels inside angle brackets (< >):

connect:
 <Connect-specific parameters>

Common Spring Boot application properties

server: # Optional
 <Spring Boot server properties>

Configuration 93

https://yaml.org/

logging: # Optional
 <Spring Boot logging properties>

Tip: Use a YAML validator to check that your configuration file conforms to YAML syntax.

connect is the parent key for parameters that are specific to OMEGAMON Data Connect.

OMEGAMON Data Connect is a Java application developed using the Spring Boot framework. In
addition to Connect-specific parameters, the OMEGAMON Data Connect configuration file can also
specify common Spring Boot properties. The following keys set common Spring Boot properties that
are particularly relevant to OMEGAMON Data Connect:

server
The parent key for Spring Boot server properties.

logging
The parent key for Spring Boot logging properties.

For more details on common Spring Boot properties, see the Spring Boot documentation on common
application properties.

Terminology: parameter versus property
In the context of OMEGAMON Data Connect, the terms parameter and property are interchangeable
synonyms. In general, OMEGAMON Data Provider uses the term configuration parameter or just parameter
across all components, whereas Spring Boot uses the term property. For consistency with Spring
Boot documentation, for artifacts that are already defined by Spring Boot, OMEGAMON Data Provider
documentation uses the term property.

Character encoding
The configuration file must be encoded in UTF-8.

If the file is not valid UTF-8, then OMEGAMON Data Connect reports the error
java.nio.charset.MalformedInputException and stops.

Location
OMEGAMON Data Connect configuration parameters are stored in a config/connect.yaml file in an
OMEGAMON Data Connect user directory.

A sample configuration file is supplied in config/connect.yaml in the OMEGAMON Data Connect
installation directory..

Dot notation for YAML parameters
Some references to YAML configuration parameters use dot notation as a concise method for indicating
the parameter hierarchy. Dot notation is not for direct use in the YAML document.

For example, connect.output.prometheus.mappings represents the following YAML hierarchy:

connect:
 output:
 prometheus:
 mappings:

Example: Output to JSON Lines over TCP without SSL/TLS

This example configures OMEGAMON Data Connect with the following behavior:

• Receive input from OMEGAMON Data Broker over TCP on port 15361 of the local z/OS host.

94 IBM Z OMEGAMON Data Provider: Installation and User's Guide

• Send output in JSON Lines format over TCP to a remote host named elastic.example.com on which
Logstash has been configured to listen on port 5046.

connect:
 input:
 tcp:
 enabled: true
 hostname: localhost
 port: 15351
 output:
 tcp:
 enabled: true
 sinks:
 logstash:
 hostname: elastic.example.com
 port: 5046

For more examples, including secure (SSL/TLS) configuration examples, see the topics on each input and
output method.

Related tasks
Configuring OMEGAMON Data Connect
OMEGAMON Data Connect is a Java application that can run on or off z/OS.
Reloading OMEGAMON Data Connect configuration
After updating the contents of an OMEGAMON Data Connect user directory, such as the connect.yaml
configuration file or mapping extension JAR files, you need to apply those changes to the instances of
OMEGAMON Data Connect that refer to the user directory. To apply the changes, you need to restart (stop
and then start) the affected instances of OMEGAMON Data Connect.
Related reference
OMEGAMON Data Connect user directory
An OMEGAMON Data Connect user directory contains files that configure OMEGAMON Data Connect for
your site.

Connect-specific parameters
The connect key sets parameters that are specific to OMEGAMON Data Connect.

connect:
 input:
 tcp: # Required
 <TCP input parameters>

 output: # At least one output is required
 tcp:
 <TCP output parameters>

 http:
 <HTTP output parameters>

 kafka:
 <Kafka output parameters>

 prometheus:
 <Prometheus output parameters>

 stdout:
 <STDOUT output parameters>

 filter: # Optional
 <Global-level filter for JSON outputs>

Configuration 95

 event-publisher: # Optional
 <Event publisher parameters>

 logging: # Optional
 <Connect-specific logging parameters>

input
OMEGAMON Data Connect supports a single input: data from OMEGAMON Data Broker over TCP.

output
A single instance of OMEGAMON Data Connect can send data to all of these outputs:
tcp

JSON Lines over TCP. You can specify multiple destinations ("sinks") for TCP output.
http

JSON in HTTP POST requests. You can specify multiple destinations ("endpoints") for HTTP
output.

kafka
JSON published to Apache Kafka. You can publish either to a single topic, or to a separate topic for
each attribute group (table).

prometheus
Prometheus metrics HTTP endpoint hosted by OMEGAMON Data Connect.

stdout
JSON Lines written to the stdout file.

filter
Filters which tables (attribute groups) and which fields (attributes) from those tables to send to the
JSON-format outputs: tcp, http, kafka, and stdout.

event-publisher
Controls aspects of internal OMEGAMON Data Connect processing.

logging
Controls logging behavior specific to OMEGAMON Data Connect, such as flood control.

TCP input parameters
OMEGAMON Data Connect TCP input parameters specify how OMEGAMON Data Connect listens for
attributes over a TCP network from OMEGAMON Data Broker.

OMEGAMON
Data Broker

OMEGAMON
Data Connect

z/OS On or off z/OS

TLS/TCP

TCP
ServerClient

Figure 21. OMEGAMON Data Connect configuration: TCP input

In the context of OMEGAMON Data Connect receiving data from OMEGAMON Data Broker, OMEGAMON
Data Connect is the server and OMEGAMON Data Broker is the client.

connect:
 input:
 tcp:
 enabled: boolean # Default at this level: false
 hostname: string
 port: number
 ssl: # Optional
 <SSL parameters>

96 IBM Z OMEGAMON Data Provider: Installation and User's Guide

enabled
Whether this function is enabled. Allowed values: true, false. This key is optional. Default: false.

To enable this function, you must specify enabled: true.

Specifying enabled: false has the same effect as commenting-out the parent key of this enabled
key and all descendants of that parent key.

hostname
Hostname or IP address on which the OMEGAMON Data Connect host listens for data from
OMEGAMON Data Broker.

If you run OMEGAMON Data Connect on the same z/OS instance as OMEGAMON Data Broker, then
you can specify localhost as the hostname.

This value must match the OMEGAMON Data Broker parameter
KAY.CIDB.FWD.forwarder_id.SINK_HOST.

port
Port on which to listen for data from OMEGAMON Data Broker.

This value must match the OMEGAMON Data Broker parameter
KAY.CIDB.FWD.forwarder_id.SINK_PORT.

SSL parameters
connect.input.tcp.ssl:

enabled: boolean
ciphers: ciphers_list
client-auth: need|none|want
enabled-protocols: protocols_list
protocol: protocol
key-alias: string
key-password: string
key-store: string
key-store-password: string
key-store-type: JKS|PKCS12|JCERACFKS
trust-store: string
trust-store-password: string
trust-store-type: JKS|PKCS12|JCERACFKS

enabled
Whether to enable SSL/TLS:
true

Enable SSL/TLS.
false

Disable SSL/TLS.

This key is optional. Default: true.

Use enabled: false as a convenient single-line method for disabling SSL/TLS, as an alternative to
using YAML comment syntax to comment-out all of the SSL parameters.

ciphers
A list of candidate ciphers for the connection, in one of the following formats:

• OpenSSL cipher list
• A comma-separated list of ciphers using the standard OpenSSL cipher names or the standard JSSE

cipher names

This key is optional. Example, in OpenSSL cipher list format:

HIGH:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!kRSA

Configuration 97

client-auth
Client authentication. Whether to request a client certificate from the client, and then whether to
allow the connection based on the client response.
need

Request a client certificate. Allow the connection only if the client responds with a valid certificate.
none

Do not request a client certificate. Allow the connect without client authentication.
want

Request a client certificate. If the client responds with a certificate, allow the connection only if
the certificate is valid. If the client does not respond with a certificate, allow the connection.

enabled-protocols
List of protocols to enable.

This key is optional. Example:

TLSv1.3,TLSv1.2

protocol
Protocol to use.

If this protocol is not supported by both ends of the connection, then the connection can fall back
(downgrade) to one of the other enabled protocols.

This key is optional. Default in Java 17: TLSv1.3.

key-alias
Alias of the server private key and associated server certificate in the keystore. On z/OS, the alias is
also known as the certificate label.

This key is optional. Default: the default certificate in the keystore.

key-password
Password required to access the server private key in the keystore.

This key is optional. Default: the value of key-store-password.

key-store-password
Password to access the keystore.

If the keystore type is JCERACFKS, then specify the fixed value:

password

RACF does not use this value for authentication; this value is required only for compatibility with the
JCE requirement for a password.

key-store
Location of the keystore that contains the server certificate.

The location format depends on the keystore type:

JKS
Keystore file path. Example:

/u/my/security/certs/certs.jks

PKCS12
Keystore file path. Example:

/u/my/security/certs/certs.p12

JCERACFKS
Only valid if OMEGAMON Data Connect runs on z/OS.

98 IBM Z OMEGAMON Data Provider: Installation and User's Guide

RACF key ring, in the following format:

safkeyring://owner_user_id/key_ring_name

Note: In this specific context, follow safkeyring: with two (2) consecutive slashes.

where owner_user_id is the RACF user ID that owns the key ring and key_ring_name is the RACF
key ring name. Example:

safkeyring://STCOMDP/OMDPring

key-store-type
Keystore type. Supported types depend on the security providers in the JRE. Examples:
JKS

Java keystore.
PKCS12

Public-Key Cryptography Standards (PKCS) #12.
JCERACFKS

Java Cryptography Standards (JCE) RACF keystore (key ring). Only available if OMEGAMON Data
Connect is running on z/OS and the IBMZSecurity provider is available in the JRE.

trust-store
Location of the truststore that contains trusted client certificates. See the list of example locations for
key-store.

A truststore is required only for client authentication; that is, when the value of client-auth is need
or want.

trust-store-password
Password to access the truststore.

If the truststore type is JCERACFKS, then specify the fixed value:

password

RACF does not use this value for authentication; this value is required only for compatibility with the
JCE requirement for a password.

trust-store-type
Truststore type. See the list of example types for key-store-type.

Example: Secure connection over TLS using the same RACF key ring as both keystore and truststore

In this example:

• OMEGAMON Data Connect is running on z/OS, so it can use the JCERACFKS keystore and truststore
type, and refer to RACF key rings. Note the fixed value password for the keystore and truststore
passwords.

• OMEGAMON Data Connect requires client authentication: OMEGAMON Data Broker must provide a valid
certificate.

connect:
 input:
 tcp:
 enabled: true
 hostname: 0.0.0.0
 port: 15379
 ssl:
 enabled-protocols: TLSv1.2
 protocol: TLS
 client-auth: need
 # Certificates of trusted clients (instances of OMEGAMON Data Broker)
 trust-store: safkeyring://STCOMDP/OMDPring

Configuration 99

 trust-store-type: JCERACFKS
 trust-store-password: password
 # Server certificate
 key-store: safkeyring://STCOMDP/OMDPring
 key-store-type: JCERACFKS
 key-store-password: password
 key-alias: OMDPcert

 output:
 # One or more outputs...

Example: Secure connection over TLS using PKCS12 keystore and JKS truststore

In this example:

• OMEGAMON Data Connect might be running on or off z/OS.
• OMEGAMON Data Connect requires client authentication: OMEGAMON Data Broker must provide a valid
certificate.

• OMEGAMON Data Connect uses the default certificate in the keystore.

connect:
 input:
 tcp:
 enabled: true
 hostname: 0.0.0.0
 port: 15379
 ssl:
 enabled-protocols: TLSv1.2
 protocol: TLS
 client-auth: need
 # Trusted client certificates
 trust-store: /u/my/security/certs/omdp-broker.jks
 trust-store-type: JKS
 trust-store-password: Pa$$w0rdTS
 # Server certificate
 key-store: /u/my/security/certs/omdp-connect.p12
 key-store-type: PKCS12
 key-store-password: Pa$$w0rdKS

 output:
 # One or more outputs...

Related reference
OMEGAMON Data Broker configuration parameters

100 IBM Z OMEGAMON Data Provider: Installation and User's Guide

OMEGAMON Data Broker configuration parameters include the hostname and port on which OMEGAMON
Data Connect is listening.

TCP output parameters
OMEGAMON Data Connect TCP output parameters specify one or more destinations ("sinks") for sending
attributes in JSON Lines format over a TCP network.

OMEGAMON
Data Connect

Destination
such as
Instana,

Elastic Stack, Splunk

TLS/TCPTCP
JSON Lines

Output

JSON

TCP
Client

Server

Port

Sink

Figure 22. OMEGAMON Data Connect configuration: TCP output

In the context of OMEGAMON Data Connect sending data over TCP, OMEGAMON Data Connect is the
client and the destination is the server.

connect:
 output:
 tcp:
 enabled: boolean # Default at this level: false
 sinks: # One or more sinks (destinations)
 sink_name_1: # Each sink has a unique name of your choice
 enabled: boolean # Default at this level: true
 hostname: string
 port: number
 # All of the following parameters are optional
 max-connection-attempts: number
 retry-interval: seconds
 ssl:
 <SSL parameters>
 filter: # Output-level filter
 <Filter parameters>
 sink_name_2: # Additional sink
 ...

enabled
Whether this function is enabled. Allowed values: true, false. This key is optional.

You can specify the enabled key as a child of the tcp key and as a child of each sink_name.

Defaults:

connect.output.tcp.enabled: false
connect.output.tcp.sinks.sink_name.enabled: true

Specifying enabled: false has the same effect as commenting-out the parent key of the enabled
key and all descendants of that parent key.

To enable any sinks, you must specify connect.output.tcp.enabled: true.

To disable a sink, specify connect.output.tcp.sinks.sink_name.enabled: false.

To disable all sinks, either omit connect.output.tcp.enabled or specify
connect.output.tcp.enabled: false.

Configuration 101

sink_name_1, sink_name_2, ...
OMEGAMON Data Connect can send to multiple sinks.

Sink names are your choice. You might choose descriptive names, such as logstash and splunk.
See the examples at the end of this topic.

hostname
Destination hostname or IP address on which software is listening for JSON Lines over TCP.

port
Destination port.

max-connection-attempts
Optional. Maximum number of attempts to connect to the sink. Default: no value; unlimited.

OMEGAMON Data Connect attempts to connect to the sink in two situations:

• When OMEGAMON Data Connect starts.
• When the connection is lost.

To avoid unlimited connection attempts, set a max-connection-attempts value.

retry-interval
Optional. Number of seconds to wait before retrying connection to the sink, either when attempting
initial connection at startup or when the connection is lost. Default: 20.

filter
Optional filter to restrict what data to send.

This output-level filter applies only to this sink, replacing any global-level filter (connect.filter).

Tip: You can specify an output-level filter for each sink
(connect.output.tcp.sinks.sink_name.filter) and a global-level filter that applies to all
JSON-format outputs (connect.filter). However, you cannot specify a filter that applies only to all
TCP outputs; there is no connect.output.tcp.filter.

SSL parameters
connect.output.tcp.sinks.sink_name.ssl:

enabled: boolean
ciphers: ciphers_list
enabled-protocols: protocols_list
protocol: protocol
key-alias: string
key-password: string
key-store: string
key-store-password: string
key-store-type: JKS|PKCS12|JCERACFKS
trust-store: string
trust-store-password: string
trust-store-type: JKS|PKCS12|JCERACFKS

enabled
Whether to enable SSL/TLS:
true

Enable SSL/TLS.
false

Disable SSL/TLS.

This key is optional. Default: true.

Use enabled: false as a convenient single-line method for disabling SSL/TLS, as an alternative to
using YAML comment syntax to comment-out all of the SSL parameters.

102 IBM Z OMEGAMON Data Provider: Installation and User's Guide

ciphers
A list of candidate ciphers for the connection, in one of the following formats:

• OpenSSL cipher list
• A comma-separated list of ciphers using the standard OpenSSL cipher names or the standard JSSE

cipher names

This key is optional. Example, in OpenSSL cipher list format:

HIGH:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!kRSA

enabled-protocols
List of protocols to enable.

This key is optional. Example:

TLSv1.3,TLSv1.2

protocol
Protocol to use.

If this protocol is not supported by both ends of the connection, then the connection can fall back
(downgrade) to one of the other enabled protocols.

This key is optional. Default in Java 17: TLSv1.3.

key-alias
Alias of the client private key and associated client certificate in the keystore. On z/OS, also known as
the certificate label.

This key is optional. Default: the default certificate in the keystore.

key-password
Password required to access the client private key in the keystore.

This key is optional. Default: the value of key-store-password.

key-store-password
Password to access the keystore.

If the keystore type is JCERACFKS, then specify the fixed value:

password

RACF does not use this value for authentication; this value is required only for compatibility with the
JCE requirement for a password.

key-store
Location of the keystore that contains the client certificate.

A keystore is required only if the server requires client authentication.

The location format depends on the keystore type:

JKS
Keystore file path. Example:

/u/my/security/certs/keystore.jks

PKCS12
Keystore file path. Example:

/u/my/security/certs/keystore.p12

JCERACFKS
Only valid if OMEGAMON Data Connect runs on z/OS.

RACF key ring, in the following format:

safkeyring://owner_user_id/key_ring_name

Configuration 103

Note: In this specific context, follow safkeyring: with two (2) consecutive slashes.

where owner_user_id is the RACF user ID that owns the key ring and key_ring_name is the RACF
key ring name.

key-store-type
Keystore type. Supported types depend on the security providers in the JRE. Examples:
JKS

Java keystore.
PKCS12

Public-Key Cryptography Standards (PKCS) #12.
JCERACFKS

Java Cryptography Standards (JCE) RACF keystore (key ring). Only available if OMEGAMON Data
Connect is running on z/OS and the IBMZSecurity provider is available in the JRE.

trust-store
Location of the truststore that contains trusted server certificates. See the list of example locations for
key-store.

trust-store-password
Password to access the truststore.

If the truststore type is JCERACFKS, then specify the fixed value:

password

RACF does not use this value for authentication; this value is required only for compatibility with the
JCE requirement for a password.

trust-store-type
Truststore type. See the list of example types for key-store-type.

Example: Connection without TLS

connect:
 input: # From OMEGAMON Data Broker...
 tcp:
 enabled: true
 hostname: localhost # on same z/OS instance as OMEGAMON Data Connect
 port: 15379

 output:
 tcp:
 enabled: true # Required to enable any sinks: default is false
 sinks:
 splunk:
 enabled: true # Optional: default is true
 hostname: splunk.example.com
 port: 5046

Example: Multiple destinations

connect:
 input:
 tcp:
 enabled: true
 hostname: localhost
 port: 15379

 output:
 tcp:
 enabled: true
 sinks:

104 IBM Z OMEGAMON Data Provider: Installation and User's Guide

 logstash1: # Descriptive sink name
 hostname: elastic1.example.com
 port: 5046
 logstash2:
 hostname: elastic2.example.com
 port: 5046
 splunk:
 hostname: splunk.example.com
 port: 5047

Example: Secure connection over TLS with client authentication, using the same RACF key ring as
both keystore and truststore

In this example:

• OMEGAMON Data Connect is running on z/OS, so it can use the JCERACFKS keystore and truststore
type, and refer to RACF key rings.

• The destination server, Logstash, requires client authentication, so the SSL parameters here include
client certificate details: the keystore and key alias (in RACF terms, the certificate label).

connect:
 input:
 tcp:
 enabled: true
 hostname: 0.0.0.0
 port: 15379

 output:
 tcp:
 enabled: true
 sinks:
 logstash:
 hostname: elastic.example.com
 port: 5046
 ssl:
 enabled: true
 enabled-protocols: TLSv1.2
 protocol: TLS
 trust-store: safkeyring://STCOMDP/OMDPring
 trust-store-type: JCERACFKS
 trust-store-password: password

 # If Logstash requires client authentication
 key-store: safkeyring://STCOMDP/OMDPring
 key-store-type: JCERACFKS
 key-store-password: password
 key-alias: Cert.OMDP

Example: Secure connection over TLS with client authentication, using PKCS12 keystore and JKS
truststore

In this example, OMEGAMON Data Connect might be running on or off z/OS.

connect:
 input:
 tcp:
 enabled: true
 hostname: 0.0.0.0
 port: 15379

 output:
 tcp:
 enabled: true

Configuration 105

 sinks:
 logstash:
 hostname: elastic.example.com
 port: 5046
 ssl:
 enabled-protocols: TLSv1.2
 protocol: TLS
 # Server certificates
 trust-store: /u/my/security/certs/omdp-connect-sinks.jks
 trust-store-type: JKS
 trust-store-password: Pa$$w0rdTS
 # Client certificate
 key-store: /u/my/security/certs/omdp-connect.p12
 key-store-type: PKCS12
 key-store-password: Pa$$w0rdKS

Related reference
Filters for JSON-format outputs
You can optionally filter which attributes to send to the JSON-format outputs of OMEGAMON Data
Connect: TCP, HTTP, Kafka, and STDOUT.
Characteristics of JSON output from OMEGAMON Data Connect
If you need to work directly with JSON output from OMEGAMON Data Connect, then it's useful to
understand the characteristics of this data, such as its structure, property names, and property values.

HTTP output parameters
OMEGAMON Data Connect HTTP output parameters specify one or more destinations ("endpoints") for
sending attributes in JSON format in an HTTP/1.1 POST request.

OMEGAMON
Data Connect

HTTPSHTTP
POST requests

Output

JSON

HTTP
Client

Destination
such as
Instana

Server

Endpoint

Figure 23. OMEGAMON Data Connect configuration: HTTP output

In the context of OMEGAMON Data Connect sending data over HTTP, OMEGAMON Data Connect is the
client and the destination is the server.

connect:
 output:
 http:
 enabled: boolean # Default at this level: false
 endpoints: # One or more endpoints (destinations)
 endpoint_name_1: # Each endpoint has a unique name of your choice
 enabled: boolean # Default at this level: true
 url: string
 # All of the following parameters are optional
 call-timeout: seconds
 connect-timeout: seconds
 write-timeout: seconds
 read-timeout: seconds
 max-failures: number
 ssl:

106 IBM Z OMEGAMON Data Provider: Installation and User's Guide

 <SSL parameters>
 filter: # Output-level filter
 <Filter parameters>
 endpoint_name_2: # Additional endpoint
 ...

enabled
Whether this function is enabled. Allowed values: true, false. This key is optional.

You can specify the enabled key as a child of the http key and as a child of each endpoint_name.

Defaults:

connect.output.http.enabled: false
connect.output.http.endpoints.endpoint_name.enabled: true

Specifying enabled: false has the same effect as commenting-out the parent key of the enabled
key and all descendants of that parent key.

To enable sending to any endpoints, you must specify connect.output.http.enabled: true.

To disable sending to an endpoint, specify
connect.output.http.endpoints.endpoint_name.enabled: false.

To disable sending to all endpoints, either omit connect.output.http.enabled or specify
connect.output.http.enabled: false.

endpoint_name_1, endpoint_name_2, ...
OMEGAMON Data Connect can send to multiple endpoints.

Endpoint names are your choice. You might choose descriptive names, such as instana. See the
examples at the end of this topic.

url
HTTP or HTTPS URL of the destination endpoint. If the URL does not specify a port, then the default
port is 80 for HTTP or 443 for HTTPS.

If you specify an HTTPS URL, then you must also specify SSL parameters.

call-timeout
Optional. Either:

• Integer number of seconds to allow for a request to complete before considering the request a
failure

• 0 (zero), meaning unlimited; no timeout

Default: 0 (no timeout).

The call timeout covers the entire duration of an HTTP request, ending when OMEGAMON Data
Connect receives the complete response from the server. Other timeout parameters cover individual
stages of a request.

A call timeout contributes to the failures counted by max-failures.

connect-timeout
Optional. Either:

• Integer number of seconds to allow for establishing a connection to the server before considering
the request a failure

• 0 (zero), meaning unlimited; no timeout

Default: 10.

OMEGAMON Data Connect reuses connections. The connect timeout applies only to an HTTP request
that requires a new connection.

write-timeout
Optional. Either:

Configuration 107

• Integer number of seconds to allow for writing the request to the server before considering the
request a failure

• 0 (zero), meaning unlimited; no timeout

Default: 10.

One possible cause of write timeout is an unusually large request body.

read-timeout
Optional. Either:

• Integer number of seconds to allow for reading a response from the server before considering the
request a failure

• 0 (zero), meaning unlimited; no timeout

Default: 10.

The elapsed time to read a complete response can exceed the read timeout. A response can arrive in
a single piece or in multiple pieces spread over time. The read timeout applies to each attempt to read
a piece of the response.

Tip: There is no separate timeout parameter for the complete response. To indirectly set a timeout for
the complete response, set call-timeout, which applies to the entire HTTP request, including the
time to read the complete response.

max-failures
Optional. Maximum number of failures to allow before stopping sending requests to the endpoint.
Default: no value; unlimited.

Possible failures include timeouts, connection failures, and unsuccessful responses.

To avoid unlimited failures, set a max-failures value. For example:

• To not allow any failures, and stop sending requests to the endpoint immediately after the first
failure, set max-failures to 0 (zero)

• To allow 5 failures, and then stop sending requests to the endpoint if a 6th failure occurs, set
max-failures to 5

filter
Optional filter to restrict what data to send.

This output-level filter applies only to this endpoint, replacing any global-level filter
(connect.filter).

Tip: You can specify an output-level filter for each endpoint
(connect.output.http.endpoints.endpoint_name.filter) and a global-level filter that
applies to all JSON-format outputs (connect.filter). However, you cannot specify a filter that
applies only to all HTTP outputs; there is no connect.output.http.filter.

SSL parameters
connect.output.http.endpoints.endpoint_name.ssl:

enabled: boolean
ciphers: ciphers_list
enabled-protocols: protocols_list
protocol: protocol
key-alias: string
key-password: string
key-store: string
key-store-password: string
key-store-type: JKS|PKCS12|JCERACFKS
trust-store: string

108 IBM Z OMEGAMON Data Provider: Installation and User's Guide

trust-store-password: string
trust-store-type: JKS|PKCS12|JCERACFKS

enabled
Whether to enable SSL/TLS:
true

Enable SSL/TLS.
false

Disable SSL/TLS.

This key is optional. Default: true.

Use enabled: false as a convenient single-line method for disabling SSL/TLS, as an alternative to
using YAML comment syntax to comment-out all of the SSL parameters.

ciphers
A list of candidate ciphers for the connection, in one of the following formats:

• OpenSSL cipher list
• A comma-separated list of ciphers using the standard OpenSSL cipher names or the standard JSSE

cipher names

This key is optional. Example, in OpenSSL cipher list format:

HIGH:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!kRSA

enabled-protocols
List of protocols to enable.

This key is optional. Example:

TLSv1.3,TLSv1.2

protocol
Protocol to use.

If this protocol is not supported by both ends of the connection, then the connection can fall back
(downgrade) to one of the other enabled protocols.

This key is optional. Default in Java 17: TLSv1.3.

key-alias
Alias of the client private key and associated client certificate in the keystore. On z/OS, also known as
the certificate label.

This key is optional. Default: the default certificate in the keystore.

key-password
Password required to access the client private key in the keystore.

This key is optional. Default: the value of key-store-password.

key-store-password
Password to access the keystore.

If the keystore type is JCERACFKS, then specify the fixed value:

password

RACF does not use this value for authentication; this value is required only for compatibility with the
JCE requirement for a password.

key-store
Location of the keystore that contains the client certificate.

A keystore is required only if the server requires client authentication.

Configuration 109

The location format depends on the keystore type:

JKS
Keystore file path. Example:

/u/my/security/certs/keystore.jks

PKCS12
Keystore file path. Example:

/u/my/security/certs/keystore.p12

JCERACFKS
Only valid if OMEGAMON Data Connect runs on z/OS.

RACF key ring, in the following format:

safkeyring://owner_user_id/key_ring_name

Note: In this specific context, follow safkeyring: with two (2) consecutive slashes.

where owner_user_id is the RACF user ID that owns the key ring and key_ring_name is the RACF
key ring name.

key-store-type
Keystore type. Supported types depend on the security providers in the JRE. Examples:
JKS

Java keystore.
PKCS12

Public-Key Cryptography Standards (PKCS) #12.
JCERACFKS

Java Cryptography Standards (JCE) RACF keystore (key ring). Only available if OMEGAMON Data
Connect is running on z/OS and the IBMZSecurity provider is available in the JRE.

trust-store
Location of the truststore that contains trusted server certificates. See the list of example locations for
key-store.

trust-store-password
Password to access the truststore.

If the truststore type is JCERACFKS, then specify the fixed value:

password

RACF does not use this value for authentication; this value is required only for compatibility with the
JCE requirement for a password.

trust-store-type
Truststore type. See the list of example types for key-store-type.

Example: HTTP with call timeout and limited allowed failures

connect:
 input: # From OMEGAMON Data Broker...
 tcp:
 enabled: true
 hostname: localhost # on same z/OS instance as OMEGAMON Data Connect
 port: 15379

 output:
 http:
 enabled: true # Required to enable any endpoints: default is false
 endpoints:
 instana:
 enabled: true # Optional: default is true

110 IBM Z OMEGAMON Data Provider: Installation and User's Guide

 url: http://instana.example.com/endpoint
 call-timeout: 30 # Each request must complete within 30 seconds
 max-failures: 5 # Allow 5 failures before stopping sending to this
endpoint

Example: Secure (HTTPS) connection with client authentication, using the same RACF key ring as
both keystore and truststore

In this example:

• OMEGAMON Data Connect is running on z/OS, so it can use the JCERACFKS keystore and truststore
type, and refer to RACF key rings.

• The destination server requires client authentication, so the SSL parameters here include client
certificate details: the keystore and key alias (in RACF terms, the certificate label).

connect:
 input:
 tcp:
 enabled: true
 hostname: 0.0.0.0
 port: 15379

 output:
 http:
 enabled: true
 endpoints:
 instana:
 url: https://instana.example.com/endpoint
 ssl:
 enabled: true
 enabled-protocols: TLSv1.2
 protocol: TLS
 # Server certificates
 trust-store: safkeyring://STCOMDP/OMDPring
 trust-store-type: JCERACFKS
 trust-store-password: password
 # Client certificate
 key-store: safkeyring://STCOMDP/OMDPring
 key-store-type: JCERACFKS
 key-store-password: password
 key-alias: Cert.OMDP

Example: Secure (HTTPS) with client authentication, using PKCS12 keystore and JKS truststore

In this example, OMEGAMON Data Connect might be running on or off z/OS.

connect:
 input:
 tcp:
 enabled: true
 hostname: 0.0.0.0
 port: 15379

 output:
 http:
 enabled: true
 endpoints:
 instana:
 url: https://instana.example.com/endpoint
 ssl:
 enabled-protocols: TLSv1.2
 protocol: TLS
 trust-store: /u/my/security/certs/omdp-connect-endpoints.jks

Configuration 111

 trust-store-type: JKS
 trust-store-password: Pa$$w0rdTS
 key-store: /u/my/security/certs/omdp-connect.p12
 key-store-type: PKCS12
 key-store-password: Pa$$w0rdKS

Related reference
Filters for JSON-format outputs
You can optionally filter which attributes to send to the JSON-format outputs of OMEGAMON Data
Connect: TCP, HTTP, Kafka, and STDOUT.

Kafka output parameters
OMEGAMON Data Connect Kafka output parameters specify whether to publish attributes in JSON format
to an Apache Kafka topic.

Kafka binary protocol over TCP

Apache Kafka

Server

Port

OMEGAMON
Data Connect

TLS/TCPKafka
over TCP

Output

JSON

TCP
Client

Figure 24. OMEGAMON Data Connect configuration: Kafka output

In this context, OMEGAMON Data Connect is a Kafka client. More specifically, OMEGAMON Data Connect
is a Kafka producer.

connect:
 output:
 kafka:
 enabled: boolean # Default at this level: false
 servers: string
 # All of the following parameters are optional
 topic: topic_name # Default: per-table topics
 topic-prefix: topic_prefix # Default: odp
 filter: # Output-level filter
 <Filter parameters>
 properties:
 <Kafka producer configuration properties, such as SSL>

enabled
Whether this function is enabled. Allowed values: true, false. This key is optional. Default: false.

To enable this function, you must specify enabled: true.

Specifying enabled: false has the same effect as commenting-out the parent key of this enabled
key and all descendants of that parent key.

servers
A string containing one or more host/port pairs to use for establishing the initial connection to the
Kafka cluster. Use a comma to separate host/port pairs:

servers: host:port

112 IBM Z OMEGAMON Data Provider: Installation and User's Guide

or

servers: host1:port1,host2:port2,...

The value of the servers key is a string, not a YAML sequence.

topic
Optional Kafka topic name.

If you omit the topic key, then OMEGAMON Data Connect sends data for each table to a separate
topic.

The per-table topic names have the following pattern:

topic_prefix.product.table_name

where topic_prefix is the value of the topic-prefix key.

Example per-table topic name:

odp.km5.ascpuutil

topic-prefix
Optional prefix for per-table Kafka topic names. Default: odp.

If you specify a topic key, then the topic-prefix key is ignored.

filter
Optional filter to restrict what data to send.

This output-level filter applies only to Kafka output, replacing any global-level filter
(connect.filter).

properties
Optional Kafka producer configuration properties.

For example:

"[reconnect.backoff.max.ms]": 30000

Important: Enclose Kafka producer property names in square brackets, and then in double quotes.

You can specify any Kafka producer configuration properties under this key. For comprehensive
details on Kafka producer configuration properties, see the Apache Kafka documentation.

To configure a secure connection between OMEGAMON Data Connect and the Kafka cluster, specify
SSL properties. The following listing shows a typical subset of SSL properties:

"[security.protocol]": SSL

Server certificates
"[ssl.truststore.location]": file_path
"[ssl.truststore.password]": string
"[ssl.truststore.type]": JKS|PKCS12

Client certificate
(only required if the Kafka server requires client authentication)
"[ssl.keystore.location]": file_path
"[ssl.keystore.password]": string
"[ssl.keystore.type]": JKS|PKCS12

SSL using RACF key rings
If you run OMEGAMON Data Connect on z/OS, and you want to use RACF key rings to configure SSL, then
you need to use the SSL engine provided with OMEGAMON Data Provider instead of the default SSL engine
for Kafka producers. The default SSL engine does not support RACF key rings as a store type.

Configuration 113

To use the OMEGAMON Data Provider SSL engine, in addition to setting the security.protocol
property as you would for the default SSL engine, set the ssl.engine.factory.class property:

"[security.protocol]": SSL
"[ssl.engine.factory.class]":
com.rocketsoft.odp.server.output.kafka.KafkaSslEngineFactory

If you set the ssl.engine.factory.class property to the OMEGAMON Data Provider SSL engine, then
OMEGAMON Data Connect does not use any of the other ssl.* properties.

Instead, the OMEGAMON Data Provider SSL engine has its own set of properties, with the prefix
odp.ssl.*:

"[odp.ssl.cipher.suites]": ciphers_list
"[odp.ssl.enabled.protocols]": protocols_list
"[odp.ssl.protocol]": protocol
"[odp.ssl.key.alias]": string
"[odp.ssl.keystore.location]": string
"[odp.ssl.keystore.password]": string
"[odp.ssl.keystore.type]": JKS|PKCS12|JCERACFKS
"[odp.ssl.truststore.location]": string
"[odp.ssl.truststore.password]": string
"[odp.ssl.truststore.type]": JKS|PKCS12|JCERACFKS

Note: The default SSL engine supports Privacy-Enhanced Mail (PEM) as a store type, but the OMEGAMON
Data Provider SSL engine does not. Typically, security providers in the Java runtime environment (JRE)
provide support for store types. However, in this case, the default SSL engine contains its own built-in
support for PEM. The OMEGAMON Data Provider SSL engine does not contain built-in support for PEM.

odp.ssl.cipher.suites
A list of candidate ciphers for the connection, in one of the following formats:

• OpenSSL cipher list
• A comma-separated list of ciphers using the standard OpenSSL cipher names or the standard JSSE

cipher names

This key is optional. Example, in OpenSSL cipher list format:

HIGH:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!kRSA

odp.ssl.enabled.protocols
List of protocols to enable.

This key is optional. Example:

TLSv1.3,TLSv1.2

odp.ssl.protocol
Protocol to use.

If this protocol is not supported by both ends of the connection, then the connection can fall back
(downgrade) to one of the other enabled protocols.

This key is optional. Default in Java 17: TLSv1.3.

odp.ssl.key.alias
Alias of the client private key and associated client certificate in the keystore. On z/OS, also known as
the certificate label.

This key is optional. Default: the default certificate in the keystore.

odp.ssl.keystore.location
Location of the keystore that contains the client certificate.

A keystore is required only if the server requires client authentication.

114 IBM Z OMEGAMON Data Provider: Installation and User's Guide

The location format depends on the keystore type:

JKS
Keystore file path. Example:

/u/my/security/certs/keystore.jks

PKCS12
Keystore file path. Example:

/u/my/security/certs/keystore.p12

JCERACFKS
Only valid if OMEGAMON Data Connect runs on z/OS.

RACF key ring, in the following format:

safkeyring://owner_user_id/key_ring_name

Note: In this specific context, follow safkeyring: with two (2) consecutive slashes.

where owner_user_id is the RACF user ID that owns the key ring and key_ring_name is the RACF
key ring name.

odp.ssl.keystore.password
Password to access the keystore.

If the keystore type is JCERACFKS, then specify the fixed value:

password

RACF does not use this value for authentication; this value is required only for compatibility with the
JCE requirement for a password.

odp.ssl.keystore.type
Keystore type. Supported types depend on the security providers in the JRE. Examples:
JKS

Java keystore.
PKCS12

Public-Key Cryptography Standards (PKCS) #12.
JCERACFKS

Java Cryptography Standards (JCE) RACF keystore (key ring). Only available if OMEGAMON Data
Connect is running on z/OS and the IBMZSecurity provider is available in the JRE.

odp.ssl.truststore.location
Location of the truststore that contains trusted server certificates. See the list of values for
odp.ssl.keystore.location.

odp.ssl.truststore.password
Password to access the truststore.

If the truststore type is JCERACFKS, then specify the fixed value:

password

RACF does not use this value for authentication; this value is required only for compatibility with the
JCE requirement for a password.

odp.ssl.truststore.type
Truststore type. See the list of values for odp.ssl.keystore.type.

Tip: Conversely, if you specify odp.ssl.* properties, but the default SSL engine is selected, then the
OMEGAMON Data Connect log contains information messages that report the odp.ssl.* properties are
"supplied but are not used yet". In any case, the presence of properties for the other SSL engine is benign,
and does not affect the behavior of the selected SSL engine.

Configuration 115

Example: Per-table topics

The following example sends attributes to per-table topics in Kafka.

connect:
 input:
 tcp:
 enabled: true
 hostname: 0.0.0.0
 port: 15379

 output:
 kafka:
 enabled: true
 servers: kafka.example.com:9095

The topic names match the pattern:

odp.product.table_name

Example: Per-table topics with a custom topic name prefix

The following example sends attributes to per-table topics in Kafka. The only difference to the previous
example is the prefix of the topic names.

connect:
 input:
 ...

 output:
 kafka:
 enabled: true
 servers: kafka.example.com:9095
 topic-prefix: omegamon

In this example, the topic names match the pattern:

omegamon.product.table_name

Example: Send attributes from all tables to a single topic

The following example sends all attributes to a single Kafka topic named omegamon-json.

connect:
 input:
 ...

 output:
 kafka:
 enabled: true
 servers: kafka.example.com:9095
 topic: omegamon-json

Example: Connection with TLS using PKCS12

The following example sends attributes to Kafka over a secure connection using the default SSL engine.

connect:
 input:
 ...

 output:
 kafka:

116 IBM Z OMEGAMON Data Provider: Installation and User's Guide

 enabled: true
 servers: kafka1.example.com:9095,kafka2.example.com:9095
 properties:
 "[reconnect.backoff.max.ms]": 30000

 "[security.protocol]": SSL

 # Server certificates
 "[ssl.truststore.location]": /u/my/security/certs/omdp-kafka-
server.p12
 "[ssl.truststore.password]": Pa$$w0rdTS
 "[ssl.truststore.type]": PKCS12

 # Client certificate
 # (only required if the Kafka server requires client authentication)
 "[ssl.keystore.location]": /u/my/security/certs/omdp-connect.p12
 "[ssl.keystore.password]": Pa$$w0rdKS
 "[ssl.keystore.type]": PKCS12

Example: Connection with TLS using a RACF key ring

The following example sends attributes to Kafka over a secure connection using the OMEGAMON Data
Provider SSL engine to refer to a RACF key ring. In this example, the same key ring is used as both a
truststore and a keystore.

connect:
 input:
 ...

 output:
 kafka:
 enabled: true
 servers: kafka1.example.com:9095,kafka2.example.com:9095
 properties:
 "[reconnect.backoff.max.ms]": 30000
 "[security.protocol]": SSL
 "[ssl.engine.factory.class]":
 com.rocketsoft.odp.server.output.kafka.KafkaSslEngineFactory
 "[odp.ssl.truststore.location]": safkeyring://STCOMDP/OMDPring
 "[odp.ssl.truststore.password]": password
 "[odp.ssl.truststore.type]": JCERACFKS
 "[odp.ssl.keystore.location]": safkeyring://STCOMDP/OMDPring
 "[odp.ssl.keystore.password]": password
 "[odp.ssl.keystore.type]": JCERACFKS

In this example, the keystore and truststore passwords are the literal string password; this is the actual
value, not a placeholder.

Example: Connection with TLS using a RACF key ring for the keystore and a PKCS12 file for the
truststore

The following example sends attributes to Kafka over a secure connection using the OMEGAMON Data
Provider SSL engine to refer to a RACF key ring for the keystore and a PKCS12 file for the truststore.

connect:
 input:
 ...

 output:
 kafka:
 enabled: true
 servers: kafka1.example.com:9095,kafka2.example.com:9095
 properties:

Configuration 117

 "[security.protocol]": SSL
 "[ssl.engine.factory.class]":
 com.rocketsoft.odp.server.output.kafka.KafkaSslEngineFactory
 "[odp.ssl.truststore.location]": /u/my/security/certs/omdp-kafka-
server.p12
 "[odp.ssl.truststore.password]": Pa$$w0rdTS
 "[odp.ssl.truststore.type]": PKCS12
 "[odp.ssl.keystore.location]": safkeyring://STCOMDP/OMDPring
 "[odp.ssl.keystore.password]": password
 "[odp.ssl.keystore.type]": JCERACFKS

Example: Connection with TLS using a RACF key ring for the truststore

The following example sends attributes to Kafka over a secure connection using the OMEGAMON Data
Provider SSL engine to refer to a RACF key ring for the truststore. In this example, the Kafka servers do not
require client authentication, so there is no need for a keystore.

connect:
 input:
 ...

 output:
 kafka:
 enabled: true
 servers: kafka1.example.com:9095,kafka2.example.com:9095
 properties:
 "[security.protocol]": SSL
 "[ssl.engine.factory.class]":
 com.rocketsoft.odp.server.output.kafka.KafkaSslEngineFactory
 "[odp.ssl.truststore.location]": safkeyring://STCOMDP/OMDPring
 "[odp.ssl.truststore.password]": password
 "[odp.ssl.truststore.type]": JCERACFKS

Example: ssl.* properties present but unused

The following example has exactly the same effect as the previous example.

connect:
 input:
 ...

 output:
 kafka:
 enabled: true
 servers: kafka1.example.com:9095,kafka2.example.com:9095
 properties:
 "[security.protocol]": SSL
 "[ssl.engine.factory.class]":
 com.rocketsoft.odp.server.output.kafka.KafkaSslEngineFactory
 "[odp.ssl.truststore.location]": safkeyring://STCOMDP/OMDPring
 "[odp.ssl.truststore.password]": password
 "[odp.ssl.truststore.type]": JCERACFKS
 # The remaining properties have no effect: the ODP SSL engine does
not use them
 "[ssl.truststore.location]": /u/my/security/certs/omdp-kafka-
server.p12
 "[ssl.truststore.password]": Pa$$w0rdTS
 "[ssl.truststore.type]": PKCS12
 "[ssl.keystore.location]": /u/my/security/certs/omdp-connect.p12
 "[ssl.keystore.password]": Pa$$w0rdKS
 "[ssl.keystore.type]": PKCS12

118 IBM Z OMEGAMON Data Provider: Installation and User's Guide

This example demonstrates that, if ssl.engine.factory.class selects the OMEGAMON Data
Provider SSL engine, then OMEGAMON Data Connect does not use any other ssl.* properties.

Related reference
Filters for JSON-format outputs
You can optionally filter which attributes to send to the JSON-format outputs of OMEGAMON Data
Connect: TCP, HTTP, Kafka, and STDOUT.
Characteristics of JSON output from OMEGAMON Data Connect
If you need to work directly with JSON output from OMEGAMON Data Connect, then it's useful to
understand the characteristics of this data, such as its structure, property names, and property values.

Prometheus output parameters
OMEGAMON Data Connect can publish attributes to a Prometheus endpoint. OMEGAMON Data Connect
Prometheus output parameters describe the Prometheus endpoint and which attributes to publish.

OMEGAMON Data Connect runs an HTTP(S) server that serves the Prometheus endpoint URL. In HTTP(S)
terms, OMEGAMON Data Connect is the server and Prometheus is the client.

Gets (scrapes) metrics from the endpoint
served by OMEGAMON Data Connect

OMEGAMON
Data Connect

Prometheus/
Grafana

HTTPSPrometheus
HTTP endpoint

Output

HTTP
Server Client

Figure 25. OMEGAMON Data Connect configuration: Prometheus output from an HTTP(S) perspective

In Prometheus architecture, OMEGAMON Data Provider is a target. A Prometheus server collect metrics
from OMEGAMON Data Provider by scraping metrics from the endpoint served by OMEGAMON Data
Connect.

OMEGAMON
ProviderData

OMEGAMON
Data Connect

Prometheus
target

Prometheus
server Grafana

Prometheus endpoint

Figure 26. OMEGAMON Data Provider is a Prometheus target

OMEGAMON Data Connect publishes metrics in the Prometheus text-based exposition format. Before
specifying Prometheus output parameters for OMEGAMON Data Connect, read the Prometheus
documentation for the Prometheus data model and text-based exposition format.

connect:
 output:
 prometheus:
 enabled: boolean # Default at this level: false
 mappings:
 products:
 kpp: # Example: km5, for the z/OS monitoring agent
 enabled: boolean # Default at this level: true

Configuration 119

 tables:
 table_name:
 enabled: boolean # Default at this level: true
 metrics:
 - <Metrics parameters>
 - ... # More metrics
 labels:
 - field_name
 - ... # More labels
 ...: # More table names
 ...: # More product codes

enabled
An enabled key can be specified at several levels in the hierarchy of Prometheus output parameters:

• At the highest level, under the prometheus key, enabled determines whether any metrics are
published to Prometheus.

If you set enabled to false at this level, then no metrics are published to Prometheus, regardless
of parameters at lower levels.

Default: false.
• Under a kpp (product code) key, enabled determines whether metrics for that product are

published.

If you set enabled to false for a product, then no metrics are published for that product,
regardless of parameters at lower levels.

Default: true.
• Under a table_name key, enabled determines whether metrics for that table are published.

Default: true.

Allowed values: true, false.

tables
Specifies the tables (attribute groups), and metrics (attributes) from those tables, that OMEGAMON
Data Connect publishes to the Prometheus endpoint.

If you omit the tables key, then no tables for this product are published.

Each child key of tables is a table_name. Each table_name key specifies a list of attributes to publish
as metrics.

labels
A list of attribute field names in the table to use as metric labels. Typically, labels refer to string
attributes, such as a job, user, or system identifier.

OMEGAMON Data Connect uses labels to map the flat structure of attribute records to the
Prometheus dimensional data model.

Metrics parameters
connect.output.prometheus.mappings.products.kpp.tables.table_name.metrics:

- name: field_name
 help: help_text # Optional
 type: counter|gauge # Optional (default: gauge)

name
Metric name. Must be the field name of an attribute in the table. Typically, metrics refer to numeric
attributes, such as a timer in seconds or a size in bytes.

In the Prometheus output, OMEGAMON Data Connect prefixes this name with the table name,
separated by a underscore.

120 IBM Z OMEGAMON Data Provider: Installation and User's Guide

help
Optional. Metric help text.

type
Optional. Metric type. OMEGAMON Data Connect supports the following Prometheus metric types:

counter
gauge

Default: gauge.

Metrics endpoint URL
The path of the metrics endpoint URL is:

/metrics

The hostname and port of the metrics endpoint URL are determined by the Spring Boot server properties
server.address and server.port.

If you do not specify server.address or server.port, then the default metrics endpoint URL is:

http://localhost:9070/metrics

Given the following values:

server:
 address: myserver.example.com
 port: 9090

the metrics endpoint URL is:

http://myserver.example.com:9090/metrics

By default, the endpoint URL uses HTTP, not HTTPS. To use a secure connection (HTTPS), specify
server.ssl properties.

Metrics expiry
OMEGAMON collects data periodically, according to the historical collection interval that you specify for
each attribute group (table).

OMEGAMON Data Connect publishes metrics based on the latest collected data, refreshing metrics at the
endpoint as new data arrives.

If a time series for a metric has no value in a new interval, then OMEGAMON Data Connect removes the
time series from the endpoint. This is known as metrics expiry.

For example, if a metric is labeled by job name, then OMEGAMON Data Connect publishes metrics for a
job name only while a corresponding job is running; only for the intervals in which incoming attribute data
contains that job name.

Tip: Some monitoring agents collect some attribute groups at fixed intervals. For example, the CICS
monitoring agent collects kcpwss attributes every 5 minutes and wss attributes every 15 minutes.

If you use attribute groups with fixed collection intervals for Prometheus output, then configure the
historical collection interval to match these fixed interval values.

Attributes versus the Prometheus dimensional data model
OMEGAMON attribute records have a flat structure that consists of a timestamp and a set of attribute
key/value pairs.

By contrast, the Prometheus dimensional data model arranges data by metric name and unique
combinations of label values.

Configuration 121

OMEGAMON Data Connect maps the flat structure of OMEGAMON attributes to the Prometheus
dimensional data model based on the labels and metrics that you specify in the configuration parameters,
and label values in the incoming attribute data.

Example

Given the following two incoming attribute records (expressed here in JSON format, with line breaks for
readability):

{
 "write_time": "2021-04-07T05:36:08.773Z",
 "table_name": "cicsrov",
 "cics_region_name": "SCICWEB1", "system_id": "SYSV",
 "cpu_utilization": 10, "transaction_rate": 5
}

{
 "write_time": "2021-04-07T05:36:08.773Z",
 "table_name": "cicsrov",
 "cics_region_name": "SCICWEB2", "system_id": "SYSV",
 "cpu_utilization": 20, "transaction_rate": 10
}

and the following OMEGAMON Data Connect configuration:

connect:
 output:
 prometheus:
 enabled: true
 mappings:
 products:
 kc5:
 enabled: true
 tables:
 cicsrov:
 enabled: true
 metrics:
 - name: transaction_rate
 type: gauge
 - name: cpu_utilization
 type: gauge
 labels:
 - cics_region_name
 - system_id

then OMEGAMON Data Connect publishes the following data to the Prometheus endpoint:

cicsrov_cpu_utilization{cics_region_name="SCICWEB1", system_id="SYSV"} 10
cicsrov_cpu_utilization{cics_region_name="SCICWEB2", system_id="SYSV"} 20
cicsrov_transaction_rate{cics_region_name="SCICWEB1", system_id="SYSV"} 5
cicsrov_transaction_rate{cics_region_name="SCICWEB2", system_id="SYSV"} 10

Figure 27. Example Prometheus text-format output

Related reference
Spring Boot server properties
OMEGAMON Data Connect uses the Spring Boot Java framework. The server key sets Spring Boot server
properties.
OMEGAMON monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.
Fields introduced by OMEGAMON Data Connect

122 IBM Z OMEGAMON Data Provider: Installation and User's Guide

OMEGAMON Data Connect introduces fields that do not correspond to OMEGAMON attributes.

STDOUT output parameters
OMEGAMON Data Connect STDOUT output parameters specify whether to write attributes in JSON Lines
format to the stdout file.

connect:
 output:
 stdout:
 enabled: boolean
 filter: # Optional output-level filter
 <Filter parameters>

enabled
Whether this function is enabled. Allowed values: true, false. This key is optional. Default: false.

To enable this function, you must specify enabled: true.

Specifying enabled: false has the same effect as commenting-out the parent key of this enabled
key and all descendants of that parent key.

filter
Optional filter to restrict what data to write.

This output-level filter applies only to STDOUT, replacing any global-level filter (connect.filter).

Example

connect:
 output:
 stdout:
 enabled: true

Related reference
Filters for JSON-format outputs
You can optionally filter which attributes to send to the JSON-format outputs of OMEGAMON Data
Connect: TCP, HTTP, Kafka, and STDOUT.
Characteristics of JSON output from OMEGAMON Data Connect
If you need to work directly with JSON output from OMEGAMON Data Connect, then it's useful to
understand the characteristics of this data, such as its structure, property names, and property values.

Filters for JSON-format outputs
You can optionally filter which attributes to send to the JSON-format outputs of OMEGAMON Data
Connect: TCP, HTTP, Kafka, and STDOUT.

Note: The filters described here do not apply to the Prometheus output.
The Prometheus output has its own parameters with similar behavior,
connect.output.prometheus.mappings.products.kpp.tables.

You can filter attributes by product (agent), by table (attribute group), and individually by field name.

For each table, you can conditionally filter records by specifying an expression. OMEGAMON Data Connect
only sends records for which the expression is true.

You can specify a global-level filter that applies to all JSON-format outputs and an output-level filter for
each output. Output-level filters replace any global-level filter.

To specify a global-level filter, insert a filter key as a child of the connect root key:

connect.filter

To specify an output-level filter, insert a filter key as a child of the key for that output:

Configuration 123

connect.output.stdout.filter
connect.output.tcp.sinks.sink_name.filter
connect.output.http.endpoints.endpoint_name.filter
connect.output.kafka.filter

If you specify a filter, then only attributes enabled by the filter are sent.

If you do not specify a filter, then all attributes from all tables from all products are sent.

You can specify filters inline in the OMEGAMON Data Connect configuration file or in separate filter include
files.

Global-level and output-level filters have the same format:

filter:
 enabled: boolean
 include: file_path # If specified, the products key is ignored
 products:
 kpp: # Product code
 enabled: boolean
 tables: # Optional. Default: send all tables from this product
 table_name:
 enabled: boolean
 condition: # Optional. Default: send all records from this table
 enabled: boolean
 expression: SpEL expression
 disable-table-on-error: boolean
 fields: # Optional. Default: send all fields from this table
 - field_name
 - ... # More attribute field names
 ...: # More table names
 ...: # More product codes

enabled
An enabled key can be specified at several levels in the filter parameters:

• At the highest level, under the filter key
• Under a kpp product code key
• Under a table_name key
• Under a condition key

Allowed values: true, false. Default at all levels: true.

The enabled key has the same effect at every level: setting enabled: false is equivalent to
omitting, or commenting-out, the parent key and that parent key's descendants.

Key Effect of omitting the key, or setting
the child key value enabled: false

filter No filter is set.

On an output-level filter: causes the
global-level filter, if it is enabled, to
take effect for that output.

filter.products.kpp No data from this product is sent.

filter.products.kpp.tables.table_name No data from this table is sent.

filter.products.kpp.tables.table_name.
condition

No condition is set. All records of this
table are sent.

include
Optional. Uses the filter defined in a separate filter include file.

124 IBM Z OMEGAMON Data Provider: Installation and User's Guide

If you specify an include key, then OMEGAMON Data Connect ignores the sibling products key.

A filter include file is a YAML document that has the same format as the filter key in an
OMEGAMON Data Connect configuration file, but without the root filter key.

Example filter include file:

enabled: true
products:
 km5:
 tables:
 ascpuutil: # Send all fields
 enabled: true

The filter include file_path can be absolute or relative. OMEGAMON Data Connect treats a relative file
path as being relative to the working directory.

You cannot nest filter includes; you cannot specify an include key in a filter include file.

Filter include files must be encoded in UTF-8.

products
Only fields from the specified products (monitoring agents) are sent.

Strictly speaking, the products key is optional. Omitting the products key specifies an "empty"
filter with no criteria, which has the same effect as no filter.

If you specify an include key, then the products key is ignored.

kpp
The 3-character kpp product code of the monitoring agent that owns the table.

You must specify at least one child key under the kpp key.

To send all tables from the product, omit the child tables key and explicitly specify enabled:
true.

tables
Optional. Only fields from the specified tables are sent.

You must specify at least one child table_name key under the tables key.

If all table_name keys under a tables key are set to enabled: false, then no data from the
product is sent.

table_name
The name of a table owned by the product.

You must specify at least one child key under the table_name key.

To send all fields from the table, omit the fields key and explicitly specify enabled: true.

condition
Optional. OMEGAMON Data Connect only sends records for which the condition expression is true. If
the expression is false, OMEGAMON Data Connect discards the record.

The expression child key specifies an expression in the Spring Expression Language (SpEL). The
expression can test field values in the table. For example:

condition:
 expression: cpu_time > 2

To test field values, you can either use relational operators or methods:

Expression using a relational operator Equivalent expression using a method

syncpoint_elapsed_time == 0 syncpoint_elapsed_time.equals(0)

Configuration 125

Expression using a relational operator Equivalent expression using a method

cpu_time > 2 cpu_time.compareTo(2) > 0

cpu_time < 2 cpu_time.compareTo(2) < 0

(cics_region_name == 'CICSPRD' or
cics_region_name == 'TSTRGN1') and
syncpoint_elapsed_time == 0

cics_region_name.equals('CICSPRD')
or
cics_region_name.equals('TSTRGN1')
and syncpoint_elapsed_time.equals(0)

Tip: The matches method offers a shorthand
for testing alternative values, but uses
regular expressions, which are typically more
computationally expensive:

cics_region_name.matches('CICSPRD|
TSTRGN1') and
syncpoint_elapsed_time.equals(0)

(transaction_id != null) and
(transaction_id matches 'PFX.*')

transaction_id?.matches('PFX.*')

(total_other_wait_times != null) and
(total_other_wait_times != 0)

total_other_wait_times?.compareTo(0)
> 0

The methods that you can use with a field depend on the Java class to which OMEGAMON
Data Connect maps the field: String, Double, Integer, Long, or, for timestamp fields such as
write_time, OffsetDateTime. All of these classes support the equals and compareTo methods.
The String class also supports the matches method, for testing a field value against a regular
expression. For details on these and other methods, see the Java documentation for each class.

Attention: Expressions can cause runtime errors or undesirable behavior. Test expressions
thoroughly with your data before deploying them in a production environment.

If the expression syntax is invalid, then the Spring framework reports APPLICATION FAILED TO
START, followed by the error details, and OMEGAMON Data Connect does not start.

If OMEGAMON Data Connect encounters a runtime exception while evaluating the expression, then
OMEGAMON Data Connect performs the following actions:

1. Discard the record currently being processed.
2. Report warning message KAYC0057W.
3. Depending on the value of disable-table-on-error:
false (default)

Continue processing records that use the expression.
true

a. Stop processing records that use the expression; disable the table for outputs that use this
filter.

If the expression is in an output-level filter, then OMEGAMON Data Connect disables the
table for that output only. If the expression is in a global-level filter, then OMEGAMON Data
Connect disables the table for all outputs that use the global-level filter.

b. Report information message KAYC0056I.

Tip:

• If an expression refers to a field that might not be in every record, then, to avoid throwing a "null
pointer" runtime exception, either explicitly test the field for a null value (field_name != null)
or use the safe navigation operator when accessing a method or property of the field. The safe
navigation operator is a question mark (?) immediately after the field name.

126 IBM Z OMEGAMON Data Provider: Installation and User's Guide

• Division by integer zero causes an error. However, division by floating-point zero does not cause an
error. For details, see the Java documentation for division by zero.

For more information about SpEL, such as comprehensive details of the operators that you can use in
an expression, see the Spring documentation.

To break long expressions over multiple lines in the configuration file, use one of the YAML folding
styles. For example, line folding (>-):

condition:
 expression: >-
 cics_region_name.matches('CCVQ.*') and
 (total_io_wait_times +
 total_other_wait_times == 0)

fields
Optional. A list of attribute field names to send from this table.

OMEGAMON Data Connect always sends the common fields write_time, product_code, and
table_name; do not specify these in the list of field names. However, other common fields, such
as interval_seconds, are sent only if you specify them in this list.

Example: Global-level filter to send all data from one product only

The following filter sends all data from the z/OS monitoring agent.

connect:
 filter:
 products:
 km5: # z/OS
 enabled: true

Example: No filter: send all data from all products

The following filter is the same as the previous example except for enabled: false directly under the
filter key, disabling the entire filter.

connect:
 filter:
 enabled: false # Disables the entire filter
 products:
 km5:
 enabled: true

Example: Global-level filter to send all data from some products only

The following filter sends all data from the z/OS, CICS, and CICS TG monitoring agents, but blocks all
data from other agents. For instance, if OMEGAMON Data Connect receives data from the Db2 monitoring
agent, then OMEGAMON Data Connect does not send the data from that agent, because the filter does not
enable the corresponding kd5 product code.

connect:
 filter:
 enabled: true
 products:
 km5:
 enabled: true
 kc5: # CICS
 enabled: true
 kgw: # CICS TG
 enabled: true

Configuration 127

The following filter is equivalent to the previous filter. The resulting behavior is identical. The only
difference is that the following filter contains an entry for the Db2 monitoring agent marked enabled:
false (effectively, a comment).

connect:
 filter:
 enabled: true
 products:
 km5:
 enabled: true
 kc5:
 enabled: true
 kgw:
 enabled: true
 kd5: # Db2: do not send
 enabled: false

Example: Global-level and output-level filters to send data from different products to different
outputs

In the following example:

• The global-level filter sends data from the z/OS monitoring agent only.
• The Kafka output and the logstash1 TCP output have no output-level filters, so they use the global-

level filter.
• Two of the TCP outputs have output-level filters: the logstash2 output sends data from the Db2 and

IMS monitoring agents only, and the splunk output sends data from the CICS and Java monitoring
agents only.

• Only required enabled keys are shown; in this example, all of the omitted enabled keys default to
true.

connect:
 filter: # Global-level
 products:
 km5:
 enabled: true
 output:
 kafka: # Uses global-level filter
 enabled: true
 servers: kafka.example.com:9095
 topic: omegamon-json
 tcp:
 enabled: true
 sinks:
 logstash1: # Uses global-level filter
 hostname: elastic1.example.com
 port: 5046
 logstash2:
 hostname: elastic2.example.com
 port: 5046
 filter: # Output-level
 products:
 kd5:
 enabled: true
 ki5:
 enabled: true
 splunk:
 hostname: splunk.example.com
 port: 5047
 filter: # Output-level
 products:
 kc5:

128 IBM Z OMEGAMON Data Provider: Installation and User's Guide

 enabled: true
 kjj:
 enabled: true

Example: Filter to send selected fields from one product only

The following global-level filter sends data from the z/OS monitoring agent: all fields from table
ascpuutil, but only the specified fields from table km5wlmclpx.

connect:
 filter:
 enabled: true
 products:
 km5:
 enabled: true
 tables:
 ascpuutil: # Send all fields
 enabled: true
 km5wlmclpx:
 fields: # Send only these fields
 - managed_system
 - class_name
 - class_type
 - transaction_rate
 - transaction_completions
 - transaction_total

In the following example, there is no global-level filter. Only the Kafka output is filtered.

connect:
 output:
 kafka:
 enabled: true
 servers: kafka.example.com:9095
 topic: omegamon-json
 filter: # Output-level: applies to Kafka output only
 enabled: true
 products:
 km5:
 enabled: true
 tables:
 ascpuutil: # Send all fields
 enabled: true
 km5wlmclpx:
 fields: # Send only these fields
 - managed_system
 - class_name
 - class_type
 - transaction_rate
 - transaction_completions
 - transaction_total
 stdout: # Unfiltered
 enabled: true
 tcp:
 enabled: true
 sinks:
 logstash: # Unfiltered
 hostname: elastic1.example.com
 port: 5046

Configuration 129

Example: Global-level filter with condition

The following global-level filter restricts output to records of the z/OS monitoring agent table ascpuutil
that are for sysplex PLEXA.

connect:
 filter:
 enabled: true
 products:
 km5:
 tables:
 ascpuutil: # Send all fields
 condition:
 expression: sysplex_name?.equals('PLEXA')

 output:
 tcp:
 enabled: true
 sinks:
 logstash:
 hostname: elastic1.example.com
 port: 5046

Example: Output-level filters with conditions

The following output-level filters send records of the z/OS monitoring agent table ascpuutil to different
outputs for different sysplexes.

connect:
 output:
 tcp:
 enabled: true
 sinks:
 logstash1: # Sysplex PLEXA output
 hostname: elastic1.example.com
 port: 5046
 filter:
 products:
 km5:
 tables:
 ascpuutil:
 condition:
 expression: sysplex_name?.equals('PLEXA')
 logstash2: # Sysplex PLEXB output
 hostname: elastic2.example.com
 port: 5046
 filter:
 products:
 km5:
 tables:
 ascpuutil:
 condition:
 expression: sysplex_name?.equals('PLEXB')

Example: Filter include file

The following TCP output uses a filter include file.

connect:
 output:
 tcp:
 enabled: true
 sinks:

130 IBM Z OMEGAMON Data Provider: Installation and User's Guide

 analytics:
 hostname: analytics.example.com
 port: 5046
 filter:
 include: /var/omdp/filters/analytics.yaml

Example: "Empty" output-level filter to send all data from all products

Suppose that you have a global-level filter that restricts output, but you want a particular output to be
unfiltered. You can achieve this by specifying an output-level filter with enabled: true but no criteria;
no products key. The "empty" output-level filter replaces the global-level filter.

In the following example, STDOUT output is unfiltered:

connect:
 filter:
 enabled: true
 products:
 km5:
 ascpuutil: # Send all fields
 enabled: true
 output:
 stdout:
 enabled: true
 filter: # Enabled but empty: does not restrict output
 enabled: true

Example: Global-level filter that disables the table if a runtime exception occurs in the condition
expression

connect:
 filter:
 enabled: true
 products:
 km5:
 tables:
 ascpuutil:
 condition:
 expression: sysplex_name.equals('PLEXA') # No safe navigation
operator (?) after sysplex_name
 disable-table-on-error: true # If sysplex_name field is
missing, stop processing records from this table

Related reference
OMEGAMON monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.
OMEGAMON attribute dictionary
OMEGAMON Data Connect includes a dictionary of OMEGAMON attributes in a set of YAML files.
TCP output parameters
OMEGAMON Data Connect TCP output parameters specify one or more destinations ("sinks") for sending
attributes in JSON Lines format over a TCP network.
HTTP output parameters
OMEGAMON Data Connect HTTP output parameters specify one or more destinations ("endpoints") for
sending attributes in JSON format in an HTTP/1.1 POST request.
Kafka output parameters
OMEGAMON Data Connect Kafka output parameters specify whether to publish attributes in JSON format
to an Apache Kafka topic.
STDOUT output parameters

Configuration 131

OMEGAMON Data Connect STDOUT output parameters specify whether to write attributes in JSON Lines
format to the stdout file.

Event publisher parameters
OMEGAMON Data Connect event publisher parameters control aspects of internal OMEGAMON Data
Connect processing.

connect:
 event-publisher:
 queue-capacity: number_of_records

queue-capacity
The maximum number of records in the queue for each output of OMEGAMON Data Connect.

Default: 50000 (fifty thousand).

Each output of OMEGAMON Data Connect, including each TCP sink and each HTTP endpoint, has its
own internal queue.

If a queue reaches capacity:

• The queue rejects (drops) any new incoming records until the queue falls within capacity.
• OMEGAMON Data Connect reports the warning message KAYC0084W.

OMEGAMON Data Connect continues to read incoming records, even if all queues are at capacity.

Queue capacity affects the required maximum heap size (-Xmx) of the Java virtual machine that runs
OMEGAMON Data Connect.

Attention: If the storage required for all records referred to by all queues exceeds the
maximum heap size, OMEGAMON Data Connect shuts down with an out-of-memory condition.

Calculating queue capacity (a number of records) for a given maximum heap size (a number of bytes),
or vice versa, is not straightforward:

• The storage, in bytes, depends on the length of each record. Different record types have different
lengths.

• The mixture of record lengths can vary over time and depends on site-specific factors such as the
attributes involved and their collection intervals.

• The number of records in each queue can vary over time depending on site-specific factors such as
data volume and the processing speed of each destination.

In practice, the default queue capacity of fifty thousand records meets typical requirements, and
fits within the maximum heap size of 4096 MB that is set in the supplied sample files for running
OMEGAMON Data Connect.

Related reference
Java command line to run OMEGAMON Data Connect
Whichever platform you choose, you can use a Java command line to run OMEGAMON Data Connect.

Connect-specific logging parameters
OMEGAMON Data Connect has its own specific logging parameters, separate from the common Spring
Boot logging properties.

connect:
 logging:
 flood-control:
 enabled: boolean # Default: true
 interval: seconds
 limit: records

132 IBM Z OMEGAMON Data Provider: Installation and User's Guide

flood-control
Some events can occur frequently, resulting in numerous duplicate log messages. To avoid duplicate
messages flooding the log, OMEGAMON Data Connect applies flood control to some messages.
enabled

Whether to enable flood control. Allowed values: true, false. Default: true.

Attention: If you disable flood control, then the OMEGAMON Data Connect log could
contain many duplicate log messages for frequently occurring events.

interval
Flood control interval, in seconds. Must be either 0 or a positive integer. Default: 300 (5 minutes).

A positive integer specifies the duration of a rolling interval. OMEGAMON Data Connect resets the
counter for each flood-controlled message at the end of each interval.

A value of 0 specifies an indefinite interval. OMEGAMON Data Connect never resets the flood-
controlled message counters. The limit applies to the entire duration of the current instance of
OMEGAMON Data Connect.

limit
The maximum number of instances of a particular message, including message variable values,
allowed with the interval. Must be either 0 or a positive integer. Default: 1 (only one instance of a
particular message per interval; no duplicates).

A value of 0 suppresses all flood-controlled messages.

To allow duplicate messages within the interval, increase the limit.

OMEGAMON Data Connect applies flood control to the following messages:

KAYC0031W
KAYC0057W
KAYC0061W
KAYC0062W
KAYC0079E
KAYC0084W

At the end of each rolling interval, if any messages have been suppressed, OMEGAMON Data Connect
reports message KAYC0074I, followed by a report of the suppressed messages and the number of
messages suppressed.

Example: Flood control interval of 10 minutes, with a limit of 10 instances of the same message
within each interval

connect:
 logging:
 flood-control:
 enabled: true
 interval: 600
 limit: 10

Example: Indefinite flood control interval, with a limit of 10 instances of the same message for the
duration of the current instance of OMEGAMON Data Connect

connect:
 logging:
 flood-control:
 enabled: true
 interval: 0 # Indefinite, not rolling
 limit: 10

Configuration 133

Example: Disable flood control

connect:
 logging:
 flood-control:
 enabled: false

Related reference
Spring Boot logging properties
OMEGAMON Data Connect uses the Spring Boot Java framework. The logging key sets Spring Boot
logging properties.
Related information
KAYC0031W
Event publication error
KAYC0057W
Filter condition for product_code.table_name failed, expression 'expression'
KAYC0061W
Malformed record received
KAYC0062W
Mapping class not found for product_code.table_name table_version
KAYC0074I
total_messages_suppressed messages have been suppressed in logger_name in the last
flood_control_interval seconds:

Spring Boot server properties
OMEGAMON Data Connect uses the Spring Boot Java framework. The server key sets Spring Boot server
properties.

In the context of publishing Prometheus or actuator endpoints over HTTPS, OMEGAMON Data Connect is
the server.

To publish Prometheus output and Spring Boot Actuator endpoints, OMEGAMON Data Connect uses the
Spring Boot server address, port, and SSL properties.

Only some Spring Boot server properties are described here. For more details on these and other Spring
Boot server properties, see the Spring Boot documentation.

server:
 address: string
 port: number
 ssl: # Required only for HTTPS, not HTTP
 <SSL properties>

address
Hostname or IP address on which to listen for requests. Default: localhost.

port
Port number on which to listen for requests. Default: 9070.

SSL properties
SSL properties are required only if you want to use HTTPS rather than HTTP.

Transport Layer Security (TLS) supersedes the deprecated Secure Sockets Layer (SSL) protocol. However,
for historical reasons, the term SSL is sometimes still used when not referring to a specific protocol.

134 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Only some Spring Boot server SSL properties and allowed values are described here. For example, this
documentation does not describe all types of keystore and truststore. For more details on these and other
Spring Boot server SSL properties and allowed values, see the Spring Boot documentation.

enabled: boolean
ciphers: ciphers_list
client-auth: need|none|want
enabled-protocols: protocols_list
protocol: protocol
key-alias: string
key-password: string
key-store: string
key-store-password: string
key-store-type: JKS|PKCS12|JCERACFKS
trust-store: string
trust-store-password: string
trust-store-type: JKS|PKCS12|JCERACFKS

enabled
Whether to enable SSL/TLS:
true

Use HTTPS.
false

Use HTTP.

This key is optional. Default: true.

Use enabled: false as a convenient single-line method for falling back to HTTP, as an alternative
to using YAML comment syntax to comment-out all of the SSL properties.

ciphers
A list of candidate ciphers for the connection, in one of the following formats:

• OpenSSL cipher list
• A comma-separated list of ciphers using the standard OpenSSL cipher names or the standard JSSE

cipher names

This key is optional. Example, in OpenSSL cipher list format:

HIGH:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!kRSA

client-auth
Client authentication. Whether to request a client certificate from the client, and then whether to
allow the connection based on the client response.
need

Request a client certificate. Allow the connection only if the client responds with a valid certificate.
none

Do not request a client certificate. Allow the connect without client authentication.
want

Request a client certificate. If the client responds with a certificate, allow the connection only if
the certificate is valid. If the client does not respond with a certificate, allow the connection.

enabled-protocols
List of protocols to enable.

This key is optional. Example:

TLSv1.3,TLSv1.2

protocol
Protocol to use.

Configuration 135

If this protocol is not supported by both ends of the connection, then the connection can fall back
(downgrade) to one of the other enabled protocols.

This key is optional. Default in Java 17: TLSv1.3.

key-alias
Alias of the server private key and associated server certificate in the keystore. On z/OS, the alias is
also known as the certificate label.

This key is optional. Default: the default certificate in the keystore.

key-password
Password required to access the server private key in the keystore.

This key is optional. Default: the value of key-store-password.

key-store
Location of the keystore that contains the server certificate.

The location format depends on the keystore type:

JKS
Keystore file path. Example:

/path/to/keystore.jks

PKCS12
Keystore file path. Example:

/path/to/keystore.p12

JCERACFKS
Only valid if OMEGAMON Data Connect runs on z/OS.

RACF key ring, in the following format:

safkeyring://owner_user_id/key_ring_name

Note: In this specific context, follow safkeyring: with two (2) consecutive slashes.

where owner_user_id is the RACF user ID that owns the key ring and key_ring_name is the RACF
key ring name.

key-store-password
Password to access the keystore.

If the keystore type is JCERACFKS, then specify the fixed value:

password

RACF does not use this value for authentication; this value is required only for compatibility with the
JCE requirement for a password.

key-store-type
Keystore type. Supported types depend on the security providers in the JRE. Examples:
JKS

Java keystore.
PKCS12

Public-Key Cryptography Standards (PKCS) #12.
JCERACFKS

Java Cryptography Standards (JCE) RACF keystore (key ring). Only available if OMEGAMON Data
Connect is running on z/OS and the IBMZSecurity provider is available in the JRE.

trust-store
Location of the truststore that contains trusted client certificates. See the list of example locations for
key-store.

136 IBM Z OMEGAMON Data Provider: Installation and User's Guide

A truststore is required only for client authentication; that is, when the value of client-auth is need
or want.

trust-store-password
Password to access the truststore.

If the truststore type is JCERACFKS, then specify the fixed value:

password

RACF does not use this value for authentication; this value is required only for compatibility with the
JCE requirement for a password.

trust-store-type
Truststore type. See the list of example types for key-store-type.

Example: HTTPS with client authentication, using the same RACF key ring as both keystore and
truststore

server:
 address: 0.0.0.0
 port: 9080
 ssl:
 enabled: true
 enabled-protocols: TLSv1.2
 protocol: TLS
 client-auth: need
 # Server certificate
 key-store: safkeyring://STCOMDP/OMDPring
 key-store-type: JCERACFKS
 key-store-password: password # Required fixed value
 key-alias: OMDPcert
 # Trusted client certificates
 trust-store: safkeyring://STCOMDP/OMDPring
 trust-store-type: JCERACFKS
 trust-store-password: password # Required fixed value

Example: HTTPS with client authentication, using JKS keystore and PKCS12 truststore

server:
 address: 0.0.0.0
 port: 9080
 ssl:
 enabled: true
 enabled-protocols: TLSv1.2
 protocol: TLS
 client-auth: need
 # Server certificate
 key-store: /u/my/security/keystore.jks
 key-store-type: JKS
 key-store-password: pa$$w0rdKS
 key-alias: OMDPcert
 # Trusted client certificates
 trust-store: /u/my/security/truststore.p12
 trust-store-type: PKCS12
 trust-store-password: pa$$w0rdTS

Related reference
Prometheus output parameters

Configuration 137

OMEGAMON Data Connect can publish attributes to a Prometheus endpoint. OMEGAMON Data Connect
Prometheus output parameters describe the Prometheus endpoint and which attributes to publish.

Spring Boot logging properties
OMEGAMON Data Connect uses the Spring Boot Java framework. The logging key sets Spring Boot
logging properties.

To control the logging level for OMEGAMON Data Connect, set the logging.level.com.rocketsoft
property value:

logging:
 level:
 com:
 rocketsoft: level

Allowed values for level, from lowest to highest logging level: ERROR (lowest), WARN, INFO (default),
DEBUG, TRACE (highest).

For details of logging levels and their meanings, see the Spring Boot documentation.

Example: Set the logging level in the configuration file

Set the logging.level.com.rocketsoft property value in the YAML configuration file,
connect.yaml.

logging:
 level:
 com:
 rocketsoft: INFO

Example: Set the logging level in the z/OS JCL procedure

If you use the supplied sample KAYCONN JCL procedure to run OMEGAMON Data Connect, you can set the
logging level by setting the value of the LOGLEVEL symbolic parameter in the procedure JCL:

// SET LOGLEVEL='ERROR'

Related reference
Connect-specific logging parameters
OMEGAMON Data Connect has its own specific logging parameters, separate from the common Spring
Boot logging properties.

138 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Characteristics of output from OMEGAMON
monitoring agents

The general characteristics of output from OMEGAMON Data Provider depend on the OMEGAMON Data
Connect configuration, and are independent of the data source. However, some specific characteristics
depend on the data source.

For example:

• The output data format, such as JSON, depends on the OMEGAMON Data Connect configuration.
• Property names in the output, such as JSON keys, depend on the data source.

This OMEGAMON Data Provider documentation describes characteristics of output where OMEGAMON
monitoring agents are the data source.

For characteristics of output for other data sources, see the separate documentation for that software.

OMEGAMON monitoring agents supported by OMEGAMON Data
Provider

OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.

Table 4. OMEGAMON monitoring agents supported by OMEGAMON Data Provider, with links to attributes
documentation

Product
code

Monitored
subsystem

Monitoring agent Minimum
version of
monitoring
agent
supported

kc5 CICS IBM Z OMEGAMON for CICS

Previous name, before version 5.6:

IBM Z OMEGAMON for CICS on z/OS

5.5

kgw CICS TG IBM Z OMEGAMON for CICS TG

Previous name, before version 5.6:

IBM Z OMEGAMON for CICS TG on z/OS

5.5

kd5 Db2 IBM OMEGAMON for Db2 Performance Expert on z/OS

Previous name, before version 5.5:

IBM Tivoli OMEGAMON XE for Db2 Performance Expert on z/OS

5.4

ki5 IMS IBM OMEGAMON for IMS on z/OS 5.5

kjj JVM IBM Z OMEGAMON AI for JVM

Previous name, before version 6.1:

IBM Z OMEGAMON for JVM

5.5

kmq MQ IBM OMEGAMON for Messaging on z/OS 7.5

© Copyright IBM Corp. 2021, 2024 139

https://www.ibm.com/docs/en/om-cics/5.6.0?topic=guide-attributes
https://www.ibm.com/docs/en/om-cics/5.6.0?topic=octzug-attributes
https://www.ibm.com/docs/en/om-db2-pe/5.5.0?topic=client-omegamon-db2-pe-attributes
https://www.ibm.com/docs/en/om-ims/5.5.0?topic=portal-attributes
https://www.ibm.com/docs/en/om-jvm/6.1.0?topic=reference-attributes
https://www.ibm.com/docs/en/om-msg/7.5.0?topic=reference-attributes

Table 4. OMEGAMON monitoring agents supported by OMEGAMON Data Provider, with links to attributes
documentation (continued)

Product
code

Monitored
subsystem

Monitoring agent Minimum
version of
monitoring
agent
supported

kn3 Network IBM Z OMEGAMON AI for Networks

Previous name, before version 6.1:

IBM Z OMEGAMON Network Monitor

5.6

ks3 Storage IBM OMEGAMON for Storage on z/OS 5.5

km5 z/OS IBM Z OMEGAMON AI for z/OS

Previous name, before version 6.1:

IBM Z OMEGAMON Monitor for z/OS

5.6

Some versions of some supported monitoring agents contain OMEGAMON Data Provider. For details, see
“A product offering that contains OMEGAMON Data Provider” on page 36.

A similar mapping of product codes to monitoring agent product names is available in YAML format in the
attribute dictionary included with OMEGAMON Data Connect.

OMEGAMON Data Provider is designed to be extended to support more agents.

Product code
Each agent has a unique kpp product code. The product code matches the agent configuration parameter
prefix.

You use product codes to configure the behavior of OMEGAMON Data Provider:

• OMEGAMON Data Provider collection: which collections to send to OMEGAMON Data Connect
• OMEGAMON Data Connect filters: which data to send to each output

Output from OMEGAMON Data Provider contains the product code in the product_code common field.

Related reference
Configuration parameters for OMEGAMON monitoring agents as a data source
OMEGAMON runtime environment member RKANPARU(KAYOPEN) configures the collection tasks of
OMEGAMON monitoring agents. The member contains configuration parameters that select collections
and set their destinations: the OMEGAMON persistent data store (PDS), OMEGAMON Data Broker, both, or
none.
Prometheus output parameters
OMEGAMON Data Connect can publish attributes to a Prometheus endpoint. OMEGAMON Data Connect
Prometheus output parameters describe the Prometheus endpoint and which attributes to publish.
Filters for JSON-format outputs
You can optionally filter which attributes to send to the JSON-format outputs of OMEGAMON Data
Connect: TCP, HTTP, Kafka, and STDOUT.
Fields introduced by OMEGAMON Data Connect
OMEGAMON Data Connect introduces fields that do not correspond to OMEGAMON attributes.
Attribute groups versus table names

140 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://www.ibm.com/docs/en/om-nm/6.1.0?topic=guide-attributes
https://www.ibm.com/docs/en/om-stor/5.5?topic=guide-attributes
https://www.ibm.com/docs/en/zoafz/6.1.0?topic=reference-attributes

OMEGAMON Data Provider uses concise table names to refer to attribute groups.

OMEGAMON attribute dictionary
OMEGAMON Data Connect includes a dictionary of OMEGAMON attributes in a set of YAML files.

The dictionary describes OMEGAMON monitoring agent product codes, table names, and attribute field
names.

The dictionary is a useful reference for various tasks. For example:

• Configuring OMEGAMON collection tasks to select collections to send to OMEGAMON Data Broker
based on product code and table name.

• Configuring OMEGAMON Data Connect to filter attributes based on product code, table name, and
attribute field name.

• Understanding attribute values in output from OMEGAMON Data Provider.

You can use the dictionary files as a human-readable reference or develop programs to parse their
contents.

Location of the dictionary files
The dictionary files are supplied in the dictionary directory under the OMEGAMON Data Connect
installation directory.

Default z/OS UNIX directory path:

/usr/lpp/omdp/kay-110/dictionary

Index of supported monitoring agents
The following file contains an index of the monitoring agents supported by OMEGAMON Data Provider:

dictionary/_index.yaml

This file maps kpp product codes to product names (titles).

Example snippet:

products:
 - code: km5
 title: IBM Z OMEGAMON Monitor for z/OS

Indexes of tables owned by each monitoring agent
The following files contain indexes of tables owned by each monitoring agent:

dictionary/kpp/_index.yaml

These files map the concise table names used by OMEGAMON Data Provider to the attribute group names
presented in OMEGAMON user interfaces and documentation.

Example snippet of km5/_index.yaml:

tables:
 - name: ascpuutil
 title: Address Space CPU Utilization

Note: OMEGAMON Data Provider supports only the attribute groups that can be included in OMEGAMON
historical data collection.

Characteristics of output from OMEGAMON monitoring agents 141

Attributes in each table
The following files describe the attributes in each table:

dictionary/kpp/table_name.yaml

Note: There is one exception to the table_name.yaml file naming pattern. The CICS monitoring agent
has an attribute group named CICSplex Connection Analysis that has the table name con. The Windows
operating system reserves the word con to refer to the console device and does not allow con.yaml as
a file name. The attribute dictionary file for the con table is kc5/cont.yaml, with a t appended to the
table name.

These files map the snake_case field names used by OMEGAMON Data Provider to the attribute names
(titles) presented in OMEGAMON user interfaces and documentation. For example, job_name maps to
Job Name.

These files also contain a multi-line, plain-text description of each attribute. These descriptions are
similar to the attribute descriptions in the monitoring agent documentation.

Example snippet of km5/ascpuutil.yaml:

name: ascpuutil
title: Address Space CPU Utilization
fields:
 - name: managed_system
 title: Managed System
 description:
 - A z/OS operating system in your enterprise that is being monitored
 - by an IBM Z OMEGAMON Monitor for z/OS agent. Valid value is a
 - character string with a maximum length of 32 bytes.
 - name: job_name
 title: Job Name
 description:
 - The name of the job, started task, TSO user, APPC address space,
 - and so on, consuming CPU cycles. Valid value is a string, with a
 - maximum of eight characters.

Related reference
Configuration parameters for OMEGAMON monitoring agents as a data source
OMEGAMON runtime environment member RKANPARU(KAYOPEN) configures the collection tasks of
OMEGAMON monitoring agents. The member contains configuration parameters that select collections
and set their destinations: the OMEGAMON persistent data store (PDS), OMEGAMON Data Broker, both, or
none.
Filters for JSON-format outputs
You can optionally filter which attributes to send to the JSON-format outputs of OMEGAMON Data
Connect: TCP, HTTP, Kafka, and STDOUT.

Attribute names versus field names
OMEGAMON attribute names are either not ideal or not usable as field names in some analytics platforms
and data formats. OMEGAMON Data Provider converts OMEGAMON attribute names into "safe" field
names.

In this context, the term field name corresponds to platform- or format-specific terms such as key,
property name, and metric name.

Example OMEGAMON attribute name: "MVS Busy%".

Format of OMEGAMON attribute names Example rules for field names

Several words separated by spaces. No spaces allowed.

142 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Format of OMEGAMON attribute names Example rules for field names

Can contain various non-alphanumeric characters,
such as a percent sign (%).

Only a limited subset of non-alphanumeric
characters allowed.

Can begin with a digit. Must begin with a letter.

Mixed-case. Case-sensitive. Referring to a field name with a
single character in the incorrect case can result in
an error such as "Field not found".

OMEGAMON Data Provider field names
OMEGAMON Data Provider field names have the following format:

• Snake case, containing only lowercase letters (a - z), digits (0 - 9), and underscores (_).
• Begin with a letter.
• End with a letter or a number; no trailing underscores.

Converting attribute names to field names
OMEGAMON Data Provider field names are the OMEGAMON attribute names after applying the following
conversion steps:

1. Lowercase all letters.
2. Replace space, hyphen (-), backslash (\) with underscore (_).
3. Replace slash (/) with underscore (_).

Exception: replace "I/O" with "io", not "i_o".
4. Replace percent sign (%) with the string "pct".

Insert a leading or trailing underscore before or after "pct", to separate it from adjacent text, unless
that underscore already exists.

5. If the first character is a digit (1, 2, 3, …), replace it with the corresponding English word (one, two,
three, …).

6. Convert double underscores (__) to a single underscore (_).

Note:

• For a comprehensive mapping of field names to attribute names, see the attribute dictionary included
with OMEGAMON Data Connect.

• Each OMEGAMON product documents the attributes that it collects. For example, for attributes
collected by IBM Z OMEGAMON AI for z/OS, 5.6, see the corresponding Attributes documentation.

• The OMEGAMON enhanced 3270 user interface (e3270UI) menu option Tools > ODI (Object
Definitions) lists attribute tables and their attributes.

Examples

OMEGAMON attribute name OMEGAMON Data Provider field name

Buffer Size buffer_size

SCM Service Time scm_service_time

Amount CSA In Use amount_csa_in_use

Total 4K Reqs Completed/Sec total_4k_reqs_completed_sec

Active I/O Threshold active_io_threshold

Characteristics of output from OMEGAMON monitoring agents 143

https://www.ibm.com/docs/en/om-zos/5.6.0?topic=reference-attributes

OMEGAMON attribute name OMEGAMON Data Provider field name

MVS Busy% mvs_busy_pct

Physical % zIIP physical_pct_ziip

Dependent Enclave IFA % On CP dependent_enclave_ifa_pct_on_cp

CPU % \ MVS Normalized cpu_pct_mvs_normalized

1 Megabyte Writes Demoted one_megabyte_writes_demoted

3rd Device Wait Percentage third_device_wait_percentage

• In JSON output from OMEGAMON Data Provider, the attribute name "Buffer Size" is represented as the
key buffer_size.

• In a Prometheus endpoint published by OMEGAMON Data Provider, the attribute name "MVS Busy%" is
represented as the metric km5thrsuml_mvs_busy_pct, where km5thrsuml is the table name.

Attribute groups versus table names
OMEGAMON Data Provider uses concise table names to refer to attribute groups.

A mapping of table names to attribute groups is available from several sources:

• YAML-format attribute dictionary supplied with OMEGAMON Data Connect.
• OMEGAMON enhanced 3270 user interface (e3270UI) menu option Tools > ODI (Object Definitions).
• Documentation for some monitoring agents. For example:

Monitoring agent Mapping documentation

IBM Z OMEGAMON AI for z/OS Historical data table names and corresponding
attribute groups

IBM Z OMEGAMON for CICS OMEGAMON for CICS on z/OS near-term history
tables

IBM Z OMEGAMON for CICS TG OMEGAMON for CICS TG on z/OS near-term
history tables

Examples

OMEGAMON Data Provider uses the table name ascpuutil to refer to the attribute group "Address
Space CPU Utilization".

In the collection configuration member, RKANPARU(KAYOPEN):

 - product: km5
 table: ascpuutil
 interval: 0

In the OMEGAMON Data Connect configuration file, config/connect.yaml:

 filter:
 products:
 km5:
 ascpuutil:
 fields:
 - cpu_percent
 - ... # Other field names

144 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://www.ibm.com/docs/en/om-zos/5.6.0?topic=tables-understanding-how-data-store-works
https://www.ibm.com/docs/en/om-zos/5.6.0?topic=tables-understanding-how-data-store-works
https://www.ibm.com/docs/en/om-cics/5.5.0?topic=collection-sample-pds-estimates-omegamon-cics-zos
https://www.ibm.com/docs/en/om-cics/5.5.0?topic=collection-sample-pds-estimates-omegamon-cics-zos
https://www.ibm.com/docs/en/om-cics/5.5.0?topic=collection-sample-pds-estimates-omegamon-cics-tg-zos
https://www.ibm.com/docs/en/om-cics/5.5.0?topic=collection-sample-pds-estimates-omegamon-cics-tg-zos

In JSON output from OMEGAMON Data Provider:

"table_name":"ascpuutil"

In a Prometheus metric published by OMEGAMON Data Provider:

ascpuutil_cpu_percent{labels} value

Related reference
OMEGAMON monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.

Fields introduced by OMEGAMON Data Connect
OMEGAMON Data Connect introduces fields that do not correspond to OMEGAMON attributes.

Common fields
OMEGAMON Data Connect introduces the following common field to data from all OMEGAMON
monitoring agents:

interval_seconds
The collection interval of the historical collection, in seconds.

OMEGAMON Data Connect includes the following common fields to data from all data sources, not just
data from OMEGAMON monitoring agents:

product_code
The 3-character kpp product code of the monitoring agent that owns the table.

table_name
The concise table name corresponding to the longer, multi-word attribute group name typically
presented in OMEGAMON product documentation and user interfaces.

table_version
An integer representing the table schema version.

write_time
Timestamp when the data was created on z/OS by the OMEGAMON collection task, before it was
forwarded to OMEGAMON Data Broker.

For descriptions of the values of the common fields product_code, table_name, and write_time for
other data sources, see the separate documentation for that software.

km5: z/OS monitoring agent
OMEGAMON Data Connect introduces the following fields to data from IBM Z OMEGAMON AI for z/OS:

smf_id
The SMF ID of the z/OS LPAR from which these attributes were collected.

The smf_id field is included only for tables that contain LPAR-specific attributes. If the table contains
sysplex-wide attributes, then there is no smf_id field.

If smf_id already exists as an attribute in a table, then OMEGAMON Data Connect does nothing: the
output contains the original field value.

sysplex_name
The z/OS sysplex from which these attributes were collected.

If sysplex_name already exists as an attribute in a table, then OMEGAMON Data Connect does
nothing: the output contains the original field value.

Characteristics of output from OMEGAMON monitoring agents 145

kd5: Db2 monitoring agent
OMEGAMON Data Connect introduces the following fields to data from IBM OMEGAMON for Db2
Performance Expert on z/OS:

db2_subsystem
The Db2 subsystem ID from which these attributes were collected, derived from the originnode
attribute value.

mvs_system
The MVS ID of the z/OS LPAR from which these attributes were collected, derived from the
originnode attribute value.

ks3: Storage monitoring agent
OMEGAMON Data Connect introduces the following field to data from IBM OMEGAMON for Storage on
z/OS:

smf_id
The SMF ID of the z/OS LPAR from which these attributes were collected.

If smf_id already exists as an attribute in a table, then OMEGAMON Data Connect does nothing: the
output contains the original field value.

Related reference
OMEGAMON monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.

Characteristics of JSON output from OMEGAMON Data Connect
If you need to work directly with JSON output from OMEGAMON Data Connect, then it's useful to
understand the characteristics of this data, such as its structure, property names, and property values.

The characteristics described here refer to data with OMEGAMON monitoring agents as the data source.
For characteristics of data from other data sources, see the separate documentation for that other
software.

Flat: no nested objects
Each line of the JSON Lines output by OMEGAMON Data Connect is a JSON object consisting of a
collection of name/value pairs ("properties").

The structure is flat: there are no nested objects.

No null values
If there is no underlying data available for an OMEGAMON attribute, then rather than representing the
attribute in JSON output as a key with the JavaScript value null, OMEGAMON Data Connect omits the
key.

OMEGAMON Data Connect performs this processing for each line of JSON. Depending on the availability
of the underlying data, a key that is present in some lines of JSON output might not be present in other
lines for the same attribute table.

No whitespace between tokens
The JSON standard (ECMA-404) allows insignificant whitespace before or after any token.

The JSON output by OMEGAMON Data Connect is deliberately compact and omits such whitespace.

146 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://jira.rocketsoftware.com/browse/ECMA-404

Property names
JSON property names are based on OMEGAMON attribute names. For details, see “Attribute names
versus field names” on page 142.

Timestamps
Timestamps are in ISO 8601 date and time of day representation extended format with a trailing zone
designator:

yyyy-mm-ddThh:mm:ss.SSSSSSSSS[+|-]hh:mm

Example:

2021-06-23T00:18:28.999999001-04:00

Scientific notation
Very large or very small numbers might be represented in scientific notation. For example,
1.077952576E8.

Introduced fields
OMEGAMON Data Connect introduces fields that do not occur in the original OMEGAMON attribute
groups.

Example

Here is a single line of JSON output from OMEGAMON Data Connect, shown here with indenting and line
breaks for readability:

{
 "managed_system":"ZOSAPLEX:ZOS1:MVSSYS",
 "job_name":"M5M5DS",
 "cpu_percent":1.7,
 "tcb_percent":1.7,
 "srb_percent":0.0,
 "step_name":"M5M5DS",
 "proc_step":"TEMSREMT",
 "svcclass":"STCLO",
 "svcclasp":1,
 "asid":417,
 "jesjobid":"S0852831",
 "job_cpu_time":1671.63,
 "job_tcb_time":1655.76,
 "job_srb_time":15.34,
 "sysplex_name":"ZOSAPLEX",
 "smf_id":"ZOS1",
 "table_name":"ascpuutil",
 "write_time":"2021-10-13T08:00:13.999999001-04:00",
 "product_code":"km5",
 "interval_seconds":60
}

This example includes the following fields introduced by OMEGAMON Data Connect:

sysplex_name
smf_id
table_name
write_time
product_code
interval_seconds

Characteristics of output from OMEGAMON monitoring agents 147

Related reference
Fields introduced by OMEGAMON Data Connect
OMEGAMON Data Connect introduces fields that do not correspond to OMEGAMON attributes.
TCP output parameters
OMEGAMON Data Connect TCP output parameters specify one or more destinations ("sinks") for sending
attributes in JSON Lines format over a TCP network.
Kafka output parameters
OMEGAMON Data Connect Kafka output parameters specify whether to publish attributes in JSON format
to an Apache Kafka topic.
STDOUT output parameters
OMEGAMON Data Connect STDOUT output parameters specify whether to write attributes in JSON Lines
format to the stdout file.

148 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Troubleshooting
Follow these steps to diagnose and correct problems that you experience with OMEGAMON Data Provider.
For example, expected attributes are not arriving at a destination analytics platform.

Procedure
1. Examine the messages from the components involved in OMEGAMON Data Provider.

Check that each component reports the expected messages.

To get more detailed messages, you can adjust the logging level of some components. For example,
you can set the logging levels of OMEGAMON Data Broker and OMEGAMON Data Connect.

2. Check for common issues.

Tip:

• If possible, before introducing SSL/TLS (security protocols), test that your configuration works
without SSL/TLS. For example, in a sandbox environment that is entirely inside a secure intranet.

• Check that you are using the correct character encoding for each configuration member. For details,
see “Configuration” on page 77.

• As a rudimentary test that OMEGAMON Data Connect is receiving the expected data from
OMEGAMON Data Broker, temporarily enable the STDOUT output of OMEGAMON Data Connect.

3. Finally, if you cannot resolve the problem, gather diagnostic information, and then contact IBM
Software Support.

Related reference
Messages
Each component involved in OMEGAMON Data Provider writes messages that describe activity or errors.
Expected messages
These are the normal messages that you should expect from each component involved in OMEGAMON
Data Provider. If data is not arriving at a destination analytics platform, but there are no obvious errors,
then use these messages as a checklist to diagnose the problem.
Related information
Attributes not arriving at a destination analytics platform

Common issues
Before contacting IBM Software Support, check for these common issues.

Attributes not arriving at a destination analytics platform

Symptoms
An analytics platform doesn’t show data from OMEGAMON Data Provider. For example, you're expecting
an analytics platform to show charts populated with data from OMEGAMON Data Provider, but the charts
are empty, with no data.

Causes
There are numerous possible causes across multiple components.

Resolving the problem
1. Eliminate configuration issues with the destination analytics platform as the cause.

© Copyright IBM Corp. 2021, 2024 149

Troubleshooting configuration issues with destination analytics platforms is beyond the scope of this
OMEGAMON Data Provider documentation.

Tip: Use a generic "network listener" application, separate from the analytics platform, to check
whether attributes are arriving at the destination computer in the expected data format at the expected
port.

2. Follow the general troubleshooting steps for OMEGAMON Data Provider.

Related tasks
Troubleshooting
Follow these steps to diagnose and correct problems that you experience with OMEGAMON Data Provider.
For example, expected attributes are not arriving at a destination analytics platform.

Attributes not arriving at OMEGAMON Data Broker or PDS

Symptoms
The address space where a collection task is running (typically, the monitoring agent address space) is
missing one or both of the following expected messages for a table (attribute group):
KPQH037I

Reports that the collection task has written attributes to the OMEGAMON persistent data store (PDS).
KPQH038I

Reports that the collection task has sent attributes to OMEGAMON Data Broker.

Causes
• The historical data collection for this table might not be correctly configured in OMEGAMON.
• The table might not be correctly specified in the OMEGAMON Data Provider collection configuration

member, RKANPARU(KAYOPEN).
• The monitoring agent might require additional configuration to collect this table.

Resolving the problem
1. Check that the historical data collection for this table has been created and activated (distributed).
2. Check that there is a corresponding entry in RKANPARU(KAYOPEN) for this table. Check that the entry

selects the collection interval specified for the collection.
3. Check whether the monitoring agent requires additional configuration to collect this table. For details,

see the monitoring agent documentation.

Some examples (not comprehensive):

IBM Z OMEGAMON for CICS
To collect bottleneck analysis data, you need to start internal bottleneck collection. Either set the
configuration parameter BOTTLENECK_ANALYSIS to AUTO or use a command or user interface to
manually activate collection.

IBM OMEGAMON for Messaging on z/OS
For some tables, you need to set the configuration parameter KMQ_HISTCOLL_DATA_FLAG to YES.

IBM Z OMEGAMON AI for Networks
To collect z/OS Encryption Readiness Technology (zERT) data, you need to set the configuration
parameter KN3_TCP_ZERT to Y.

4. If the issue is not resolved, contact IBM Software Support.

Related tasks
Starting OMEGAMON Data Provider

150 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Starting OMEGAMON Data Provider involves starting the related components: OMEGAMON Data Connect,
OMEGAMON Data Broker, and the data source, such as the OMEGAMON runtime environment.
Adding more OMEGAMON collections to OMEGAMON Data Provider
If you have already configured an OMEGAMON runtime environment to send collections to OMEGAMON
Data Provider, then follow the steps here to add more.
Related reference
Configuration parameters for OMEGAMON monitoring agents as a data source
OMEGAMON runtime environment member RKANPARU(KAYOPEN) configures the collection tasks of
OMEGAMON monitoring agents. The member contains configuration parameters that select collections
and set their destinations: the OMEGAMON persistent data store (PDS), OMEGAMON Data Broker, both, or
none.
Expected messages
These are the normal messages that you should expect from each component involved in OMEGAMON
Data Provider. If data is not arriving at a destination analytics platform, but there are no obvious errors,
then use these messages as a checklist to diagnose the problem.
Related information
KPQH037I
TABLE table HAS BEEN CONNECTED TO PDS
KPQH038I
TABLE table HAS BEEN CONNECTED TO BROKER

OMEGAMON Data Connect fails with charset.MalformedInputException

Symptoms
The OMEGAMON Data Connect log contains the following message:

hh:mm:ss.SSS [main] ERROR org.springframework.boot.SpringApplication -
Application run failed
org.yaml.snakeyaml.error.YAMLException:
java.nio.charset.MalformedInputException: Input length = 1

Causes
The OMEGAMON Data Connect configuration file config/connect.yaml is incorrectly encoded. The file
must be encoded in UTF-8.

Example incorrect encodings:

• EBCDIC
• ISO8559-1, where the file includes byte values that are valid in ISO8559-1 but invalid in UTF-8

Resolving the problem
Ensure that the file is valid UTF-8.

For compatibility with common z/OS UNIX tools and applications, the sample connect.yaml is supplied
on z/OS UNIX tagged as being encoded in ISO8559-1 (CCSID 819).

The supplied sample file only uses ASCII characters. ASCII characters have 7-bit byte values; byte values
under 128. In this case, there is no difference between ISO8859-1 and UTF-8, because both encodings
are supersets of ASCII. However, outside of the common subset of ASCII characters, byte values that are
valid in ISO8859-1 can be invalid in UTF-8.

If you use an editor that interprets and writes the file using ISO8859-1, only use ASCII characters.
Otherwise, you could insert byte values that are invalid in UTF-8.

For example, in ISO8859-1, the byte value X'A9' represents the copyright symbol (©). However, in UTF-8,
X'A9' is valid only as a continuation byte in a multi-byte sequence. If you insert a copyright symbol in an

Troubleshooting 151

editor that uses ISO8859-1, then the file will be invalid UTF-8. Instead, to insert a copyright symbol, your
editor must use UTF-8, which will insert the correct 2-byte sequence X'C2A9'.

Related reference
OMEGAMON Data Connect configuration parameters
OMEGAMON Data Connect configuration parameters identify inputs, such as the TCP port on which to
listen for data from OMEGAMON Data Broker, and outputs, such as destination analytics platforms. You
can filter which attributes to output.

OMEGAMON Data Connect fails with UnsupportedClassVersionError

Symptoms
The OMEGAMON Data Connect log contains the following message:

Exception in thread "main" java.lang.UnsupportedClassVersionError: org/
springframework/boot/loader/PropertiesLauncher has been compiled by a more
recent version of the Java Runtime (class file version x1.y1), this version
of the Java Runtime only recognizes class file versions up to x2.y2

Causes
You tried to run OMEGAMON Data Connect using an old version of Java.

Resolving the problem
Upgrade the Java runtime environment that you use to run OMEGAMON Data Connect to Java 17, or later,
64-bit edition.

If you are using the Java Batch Launcher and Toolkit for z/OS (JZOS) to run OMEGAMON Data Connect,
then check that your JCL refers to the correct version-specific Java virtual machine (JVM) load module
name, JVMLDMxx.

Check that the JAVA_HOME environment variable refers to the correct version of Java .

Related tasks
Upgrading OMEGAMON Data Connect
Upgrade the Java runtime environment that you use to run OMEGAMON Data Connect to Java 17 or
later, 64-bit edition. Consider increasing the heap size of the Java virtual machine that you use to run
OMEGAMON Data Connect. If you use OMEGAMON Data Connect to send data to Apache Kafka, revise the
Kafka output configuration parameters.

Gathering diagnostic information
Before you report a problem with OMEGAMON Data Provider to IBM Software Support, you need to gather
the appropriate diagnostic information.

About this task
The following procedure lists the information that you need to gather and then send to IBM Software
Support to help diagnose a problem.

Procedure
1. Write a clear description of the problem and the steps to reproduce the problem.
2. Gather the configuration parameters for each component of OMEGAMON Data Provider,
RKANPARU(KAYOPEN)

Collection configuration

152 IBM Z OMEGAMON Data Provider: Installation and User's Guide

PARMLIB(ZWESISxx)
Zowe cross-memory server configuration, containing OMEGAMON Data Broker configuration
parameters

config/connect.yaml
OMEGAMON Data Connect configuration

3. Gather the complete job log and any dumps from each of the z/OS address spaces involved.

• The address spaces where the OMEGAMON collection tasks are running. For example, for the z/OS
monitoring agent: the z/OS monitoring server address space.

• The Zowe cross-memory server that is running OMEGAMON Data Broker.
• OMEGAMON Data Connect, if you are running it on z/OS.

Store each job log and dump in a separate text file with a semantic (meaningful, plain English) name
that identifies its contents (for example, include in the file names the terms "collection", "broker",
"connect").

Tip: In z/OS SDSF, to save the complete job log to a data set, enter the action XD next to the job.
4. If you are running OMEGAMON Data Connect on a distributed platform (off z/OS), gather the Java log,

including the stdout and stderr file contents.
5. Specify the operating systems and versions involved.

• z/OS version
• If you are running OMEGAMON Data Connect off z/OS, the corresponding details for that platform,

such as the operating system distribution name and version.
6. Specify the Java version that you are using to run OMEGAMON Data Connect.

Tip: To get the Java version, use the command java -version.
7. Specify details of the analytics platform or application to which you are sending data.

Examples:

• The name and version of the analytics platform.
• The operating system distribution name and version.
• How you have configured the analytics platform to ingest data from OMEGAMON Data Connect.

For example, for the Elastic Stack: the Logstash configuration and index template; for Splunk, the
configuration stanzas.

• Whether, and how, you have tested that the destination is correctly configured to ingest data,
independent from OMEGAMON Data Provider. For example, have you used a stand-alone TCP
forwarder to send a sample line of JSON to the destination, in the same format sent by OMEGAMON
Data Connect?

Troubleshooting 153

154 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Messages
Each component involved in OMEGAMON Data Provider writes messages that describe activity or errors.

Message location and prefix by component

Component Message location Message prefix

Data source: OMEGAMON
monitoring agents

Other data sources: see the
separate documentation for that
software

RKLVLOG output data set of the corresponding job
for the agent.

For example, for attributes from IBM Z
OMEGAMON AI for z/OS: the monitoring server job
(default job name: OMEGDS).

KAYL, KPQD,
KPQH

OMEGAMON Data Broker SYSPRINT output data set of the Zowe cross-
memory server job that runs OMEGAMON Data
Broker or, for some messages, the z/OS system log.

The Zowe cross-memory server also writes its
own messages, with the prefix ZWES. For details,
see the message descriptions in the Zowe
documentation.

KAYB

OMEGAMON Data Connect STDOUT file.

If you are running OMEGAMON Data Connect as a
z/OS job: the STDOUT output data set of that job.

KAYC

Message format
Each OMEGAMON Data Provider message begins with an identifier in the following format:

KAYxnnnns

or

KPQxnnns

where:

KAYx
Identifies the origin of the message as one of the following components:
KAYL

OMEGAMON historical collection task. See also KPQx.
KAYB

OMEGAMON Data Broker.
KAYC

OMEGAMON Data Connect.
KPQx

Identifies the origin of the message as a historical collection task (x: D or H).
nnnn or nnn

4-digit or 3-digit message identification number.
s

Severity of the message:

© Copyright IBM Corp. 2021, 2024 155

https://docs.zowe.org/stable/troubleshoot/app-framework/zis-error-codes/
https://docs.zowe.org/stable/troubleshoot/app-framework/zis-error-codes/

I
Informational.

W
Warning to alert you to a possible error condition.

E
Error.

The documentation for each message includes the following information:

Explanation
Describes what the message text means, why the message occurred, and what its variables represent.

System action
Describes what the system will do in response to the event that triggered this message.

User response
Describes whether a response is necessary, what the appropriate response is, and how the response
will affect the system or program.

Related tasks
Troubleshooting
Follow these steps to diagnose and correct problems that you experience with OMEGAMON Data Provider.
For example, expected attributes are not arriving at a destination analytics platform.

Expected messages
These are the normal messages that you should expect from each component involved in OMEGAMON
Data Provider. If data is not arriving at a destination analytics platform, but there are no obvious errors,
then use these messages as a checklist to diagnose the problem.

A missing expected message indicates a problem. However, the cause of the problem is not necessarily at
the point in processing where the message should occur. The cause might be upstream.

Components and their messages are presented here according to the direction of data flow: from the
data source, to OMEGAMON Data Broker, and then to OMEGAMON Data Connect. The actual chronological
order of some messages can differ from the order presented here.

Tip: Solving a problem upstream can solve multiple problems downstream. Investigate missing messages
in the order presented here.

Messages from OMEGAMON Data Provider might be interleaved with messages from other software, such
as the operating system, a related component, or a supporting software framework. For example:

• The STDOUT file for OMEGAMON Data Connect includes messages from the Spring framework.
• The SYSPRINT output data set of the Zowe cross-memory server includes ZWE-prefix messages from

the server that are not specific to the OMEGAMON Data Broker plug-in.

Data source
If you are using OMEGAMON monitoring agents as a data source, then the RKLVLOG output data set of
each agent job (for example, job names OM*) should contain the following messages.

Message Description

KAYL0005I KPQHSTxx: BROKER NAME =
'value'

Echoes the value of the broker.name key in the
RKANPARU(KAYOPEN) configuration member.

If this message is missing, check that your
OMNIMON Base component meets the required
APAR level for OMEGAMON Data Provider. For
details, see “Prerequisites for OMEGAMON Data
Provider” on page 36.

156 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Message Description

KAYL0005I KPQHSTxx: PCODE='product',
TABLE='table_name', INTERVAL=interval,
DEST={destinations}

…

Echoes each entry under the collections key in
RKANPARU(KAYOPEN).

If this message is missing for a table, check that
there is a corresponding entry for the table under
the collections key.

KPQH037I KPQHSMGR: TABLE
product.table_name HAS BEEN CONNECTED
TO PDS

…

Reports the first instance of a record for each table
written to the PDS.

This message is written only for tables that are
explicitly specified under the collections key. If
RKANPARU(KAYOPEN) does not explicitly specify
a table, then the default behavior is to write
records from the table to PDS without reporting
this message.

If this message is missing for a table, see
“Attributes not arriving at OMEGAMON Data Broker
or PDS” on page 150.

KPQH038I KPQHSMGR: TABLE
product.table_name HAS BEEN CONNECTED
TO BROKER

…

Reports the first instance of a record for each table
sent to OMEGAMON Data Broker.

If this message is missing for a table, see
“Attributes not arriving at OMEGAMON Data Broker
or PDS” on page 150.

For information about messages from other data sources, see the separate documentation for that
software.

OMEGAMON Data Broker
The SYSPRINT output data set of the Zowe cross-memory server job that runs OMEGAMON Data Broker
(for example, job name KAYSIS01) should contain the following messages.

Message Description

KAYB0005I CIDB starting, version (APAR
apar_number, build_time_stamp)

Reports that OMEGAMON Data Broker is starting.
Also reports the OMEGAMON Data Broker version
and APAR number.

Some messages use the term CIDB. CIDB is an
abbreviation of Common Intercept Data Broker.
CIDB is a synonym for OMEGAMON Data Broker.

KAYB0009I Init step 'CIDB anchor
initialization' done

Normal initialization message.

KAYB0016I No CIDB ID has been provided Normal initialization message.

OMEGAMON Data Provider users do not need to
provide this ID.

KAYB0016I Forwarder subsystem
component is on

Corresponds to the OMEGAMON Data Broker
configuration parameter KAY.CIDB.FWD=ON.

Messages 157

Message Description

KAYB0009I Init step 'Load CIDB
parameters' done
KAYB0009I Init step 'CIDB global area
initialization' done
KAYB0009I Init step 'CIDB ID
generation' done, ID = 'cidb_id'
KAYB0009I Init step 'CIDB store
manager creation' done
KAYB0020I Store 'store_name' has been
added
KAYB0009I Init step 'User defined
store creation' done
KAYB0009I Init step 'Forwarder
subsystem initialization' done

Normal initialization messages.

KAYB0036I Store 'store_name' has
connected to sink host:port

OMEGAMON Data Broker has connected to
OMEGAMON Data Connect.

KAYB0009I Init step 'Forwarder
subsystem startup' done
KAYB0006I CIDB successfully started

Normal initialization messages.

OMEGAMON Data Connect
The STDOUT file of OMEGAMON Data Connect should contain the following messages.

General messages, regardless of which outputs are enabled:

Message Description

KAYC0026I Creating JSON mapping
provider

Normal initialization message

KAYC0023I Starting TCP input service
listening on hostname:port

OMEGAMON Data Connect has started listening on
hostname:port for TCP input from OMEGAMON
Data Broker.

KAYC0028I Source hostname:port has
connected

The instance of OMEGAMON Data Broker that is
at hostname:port has connected to OMEGAMON
Data Connect.

KAYC0038I Starting console listener OMEGAMON Data Connect has started listening for
console commands. For example, z/OS MVS system
MODIFY commands.

KAYC0035I Build: build_identifier Reports the OMEGAMON Data Connect build
identifier.

KAYC0067I Framework version =
connect_framework_version

Identifies the version of the OMEGAMON Data
Connect framework that was used to build the
OMEGAMON Data Connect core JAR file, odp-
server-version.jar.

KAYC0068I Extension file jar_file_path
found (spec=framework_version,
impl=mapping_extension_version)

OMEGAMON Data Connect reports this message for
each mapping extension JAR file that it finds in the
directories that are listed in the OMEGAMON Data
Connect runtime option -Dodp.ext.

158 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Message Description

KAYC0069I class_count mapping classes
found in jar_file_path

OMEGAMON Data Connect reports the number of
mapping classes it finds in each mapping extension
JAR file.

KAYC0008I Creating mapping class for
table table_name

Indicates the first instance of a record received for
this table.

KAYC0033I Table table_name received
from origin_type origin_name

…

Indicates the first instance of a record received for
this table from this origin.

The origin type depends on the table. Examples:
sysplex, CICS region.

KAYC0036I filter_scope filter selected
table: table_name, fields: field_list

…

OMEGAMON Data Connect has been configured to
filter records of this table.

If STDOUT output is enabled:

Message Description

KAYC0024I Starting STDOUT output
service

Normal initialization message.

If TCP output is enabled:

Message Description

KAYC0009I Starting TCP output service Normal initialization message.

KAYC0042I Starting TCP sink:
sink_name {host: hostname, port: port}
KAYC0010I Connecting to TCP sink:
sink_name {host: hostname, port: port}
KAYC0011I Connected to TCP sink:
sink_name {host: hostname, port: port}
…

Normal initialization messages for each sink.

If HTTP output is enabled:

Message Description

KAYC0076I Starting HTTP output service Normal initialization message.

KAYC0078I Starting output to HTTP
endpoint: endpoint_name {url: url}

…

Normal initialization message for each endpoint.

If Prometheus output is enabled:

Message Description

KAYC0018I Starting metrics service Normal initialization message.

KAYC0037I Registered metric for table:
table_name, field: field_name, type:
metric_type, labels: [label_list]

Normal initialization message for each metric.

Messages 159

Message Description

…

If Kafka output is enabled:

Message Description

KAYC0025I Starting Kafka output
service

Normal initialization message.

When OMEGAMON Data Connect stops:

Message Description

KAYC0034I Stopping server
KAYC0027I Stopping TCP listener
KAYC0029I Source hostname:port has
disconnected

Normal shutdown messages.

KAYC0032I Stopping TCP output service If TCP output was enabled.

KAYC0043I Stopping TCP sink: sink_name
{host: hostname, port: port}

For each TCP output sink.

KAYC0077I Stopping HTTP output service If HTTP output was enabled.

KAYC0081I Stopping output to HTTP
endpoint: endpoint_name {url: url}

For each HTTP output endpoint.

Related tasks
Troubleshooting
Follow these steps to diagnose and correct problems that you experience with OMEGAMON Data Provider.
For example, expected attributes are not arriving at a destination analytics platform.
Related information
Attributes not arriving at OMEGAMON Data Broker or PDS

KAYL, KPQD, KPQH: Messages from OMEGAMON collection tasks
Messages with the prefix KAYL, KPQD, or KPQH are from the OMEGAMON historical collection tasks that
send attributes to OMEGAMON Data Broker.

The KPQD and KPQH messages documented here are the messages introduced by OMEGAMON Data
Provider. For descriptions of other KPQ-prefix messages, see the OMEGAMON shared documentation.

KAYL0001E task: resource NOT ALLOCATED

Explanation
The OMEGAMON historical collection task could not
allocate the resource due to memory shortage.

The task is the name of the task in which the error
originated, in the format KPQHSTpp, where pp is the
product code.

System action:
Processing of historical data and streaming stops for
the application identified by task.

User response:

Contact IBM Software Support. See the diagnostic
information in the ITMS:Engine log, RKLVLOG.

KAYL0002W task: MEMBER member_name
READ ERROR, RC = rc, RSN = rsn

Explanation
The OMEGAMON historical collection task could not
read the configuration member member_name.

The task is the name of the task in which the error
originated, in the format KPQHSTpp, where pp is the
product code.

The return code rc and reason code rsn indicate the
cause of the error. These codes are from the z/OS MVS

160 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://www.ibm.com/docs/en/om-shared?topic=components-kpq-messages

assembler logical parmlib support service, IEFPRMLB.
For descriptions of IEFPRMLB return codes and reason
codes, see z/OS documentation.

System action:
Processing of historical data and streaming stops for
the application identified by task until the issue has
been resolved.

User response
1. Fix the issues reported in the message.
2. Reload the configuration by entering the following

MVS system command:

MODIFY jobname,KPQ,RELOAD_CONFIG,KAY

3. If you cannot resolve the issue, contact IBM
Software Support.

KAYL0003W task: MEMBER member_name NOT
FOUND, OPEN DATA PROCESSING
IS STOPPED

Explanation
The configuration member member_name is missing.

The task is the name of the task in which the error
originated, in the format KPQHSTpp, where pp is the
product code.

The rc and rsn are from the IEFPRMLB service and
indicate the cause of the error.

System action:
Streaming stops for the application identified by task
until the issue has been resolved.

User response
1. Deploy the missing configuration member.
2. Load the configuration by entering the following

MVS system command:

MODIFY jobname,KPQ,RELOAD_CONFIG,KAY

KAYL0004W task: YAML CONFIG ERROR,
details

Explanation
An error occurred while processing the YAML
configuration member.

The task is the name of the task in which the error
originated, in the format KPQHSTpp, where pp is the
product code.

The details contain additional information such as the
error type and line number.

The following details:
PARSER FAILED WITH CODE 2 AT LINE 0, COLUMN 0
(invalid trailing UTF-8 octet)

indicate that the character encoding of the member
might be incorrect. For example, this error occurs if
the member contains square brackets ([]) encoded
using EBCDIC code page 037. The member must be
encoded using EBCDIC code page 1047.

System action:
Depending on the error details, either the entire
configuration or parts of the configuration are ignored.

User response
1. Correct the error by editing the YAML configuration

member according to the provided details.
2. Reload the configuration by entering the following

MVS system command:

MODIFY jobname,KPQ,RELOAD_CONFIG,KAY

KAYL0005I task: parameters

Explanation
Information about collection configuration parameters
set by the YAML configuration member.

The task is the name of the collection task to which the
parameter applies.

The parameters report parameters set by the YAML
configuration member.

System action:
The configuration parameters are applied to the
collection task.

User response:
None required.

Related reference
Configuration parameters for OMEGAMON
monitoring agents as a data source
OMEGAMON runtime environment member
RKANPARU(KAYOPEN) configures the collection
tasks of OMEGAMON monitoring agents. The
member contains configuration parameters that
select collections and set their destinations:
the OMEGAMON persistent data store (PDS),
OMEGAMON Data Broker, both, or none.

KPQD107E KPQDBCMD: KPQ VECTOR NOT
FOUND

Explanation:
While running the KPQ operator command, the KPQ
vector was not found.

System action:
The KPQ command terminates.

Messages 161

User response:
View the related messages in the ITMS:Engine log,
RKLVLOG. Contact IBM Software Support.

KPQD108E KPQDBCMD: MODULE KPQSPCMD
NOT AVAILABLE, RC = rc

Explanation:
While running the KPQ operator command, the
command handler module was not available.

System action:
The KPQ command terminates.

User response:
View the related messages in the ITMS:Engine log,
RKLVLOG. Contact IBM Software Support.

KPQH032W KPQHSMGR: BROKER MODULE
name NOT LOADED, RC = rc, RSN
= rsn

Explanation:
The broker API module name could not be loaded.
The return code (rc) and reason (rsn) values have the
abend and reason codes from the LOAD system call.

System action:
No data is sent to the broker.

User response:
Review the JCL for the job that runs the OMEGAMON
historical collection task. Check that the broker
module is in the STEPLIB data sets specified by the
JCL. If you cannot resolve the issue, contact IBM
Software Support.

KPQH033W KPQSPCMD: COMMAND IGNORED,
reason

Explanation:
A MODIFY command has been entered for the job
that runs the OMEGAMON historical collection task;
for example, the monitoring server job. The MODIFY
command has been ignored. The reason specifies the
cause of the error.

System action:
The command is ignored.

User response:
Enter a correct MODIFY command.

KPQH034I KPQSPCMD: COMMAND
ACCEPTED, details

Explanation:
A MODIFY command has been entered for the job
that runs the OMEGAMON historical collection task;
for example, the monitoring server job. The MODIFY
command has been accepted. The details contain
additional command response information.

System action:
The command is accepted.

User response:
None required.

KPQH037I TABLE table HAS BEEN
CONNECTED TO PDS

Explanation
The OMEGAMON historical collection task has
successfully written a record of this table to the
persistent data store (PDS).

This message is written only if the table is explicitly
specified in the RKANPARU(KAYOPEN) configuration
member. If the member does not exist, or the member
exists but does not explicitly specify the table, then
the default behavior is to write records from the table
to PDS without reporting this message.

This message is written only in the following
situations:

• For the first instance of a record of this table since
the task's configuration was loaded: either when the
task's job started or when the configuration was
reloaded by a MODIFY command while the job was
running.

• After the issue that caused message KPQH039W has
been fixed.

Tip: The frequency of incoming data is determined by
the collection interval of the collection for this table. A
long collection interval can mean a long delay before
this message occurs.

System action:
None.

User response:
None required.

Related information
Attributes not arriving at OMEGAMON Data
Broker or PDS

KPQH038I TABLE table HAS BEEN
CONNECTED TO BROKER

Explanation
The OMEGAMON historical collection task has
successfully sent a record from this table to
OMEGAMON Data Broker.

This message is written only if the table is explicitly
specified in the RKANPARU(KAYOPEN) configuration
member. If the member does not exist, or the member
exists but does not explicitly specify the table, then
the default behavior is to write records from the table
to PDS without reporting this message.

This message is written only in the following
situations:

162 IBM Z OMEGAMON Data Provider: Installation and User's Guide

• For the first instance of a record of this table since
the task's configuration was loaded: either when the
task's job started or when the configuration was
reloaded by a MODIFY command while the job was
running.

• After the issue that caused message KPQH040W has
been fixed.

Tip: The frequency of incoming data is determined by
the collection interval of the collection for this table. A
long collection interval can mean a long delay before
this message occurs.

System action:
None.

User response:
None required.

Related information
Attributes not arriving at OMEGAMON Data
Broker or PDS

KPQH039W PDS CONNECTION FOR TABLE
table FAILED, reason

Explanation
The OMEGAMON historical collection task failed to
write records of this table to the persistent data store
(PDS). The reason provides details of the cause.

This message is written only if the table is explicitly
specified in the RKANPARU(KAYOPEN) configuration
member. If the member does not exist, or the member
exists but does not explicitly specify the table, then
the default behavior is to write records from the table
to PDS without reporting this message.

System action:
Until this issue is resolved, no records of this table are
written to the PDS.

User response:
Review the provided details and take appropriate
action. If you cannot resolve the issue, contact IBM
Software Support.

KPQH040W BROKER CONNECTION FOR TABLE
table FAILED, reason

Explanation
The OMEGAMON historical collection task failed to
send records of this table to OMEGAMON Data Broker.
The reason provides details of the cause.

This message is written only if the table is explicitly
specified in the RKANPARU(KAYOPEN) configuration
member. If the member does not exist, or the member
exists but does not explicitly specify the table, then
the default behavior is to write records from the table
to PDS without reporting this message.

System action:
Until this issue is resolved, no records of this table are
sent to OMEGAMON Data Broker.

User response
Review the provided details and take appropriate
action.

reason values and suggested actions:

STORE NOT FOUND
Ensure that the OMEGAMON store is defined in the
OMEGAMON Data Broker configuration member.

BROKER HAS NO CONNECTION TO SINK
Ensure that OMEGAMON Data Broker is connected
to OMEGAMON Data Connect.

BROKER OFFLINE
Ensure that the OMEGAMON Data Broker name is
correct in the collection configuration member.

Ensure that the Zowe cross-memory server that
hosts OMEGAMON Data Broker is running.

RC = rc, RSN = rsn
Contact IBM Software Support.

If you cannot resolve the issue, contact IBM Software
Support.

KPQH041E task: CONFIG NOT
LOADED, HISTORY/OPEN DATA
PROCESSING IS STOPPED

Explanation
There are issues with the OMEGAMON
historical collection task configuration member,
rte_hilev.rte_name.RKANPARU(KAYOPEN), for
the application identified by task.

The task is the name of the task in which the error
originated, in the format KPQHSTpp, where pp is the
product code.

System action:
Until the issue is resolved, processing of records from
the application (pp) stops. No records of tables from
this application are sent to OMEGAMON Data Broker or
written to PDS.

User response:
Review the issues reported in previous error
messages. If you cannot resolve these issues, contact
IBM Software Support.

KPQH042W task: CONFIG NOT LOADED,
EXISTING CONFIG WILL BE USED

Explanation
A MODIFY command has been entered for the
job that runs the OMEGAMON historical collection

Messages 163

task, to reload the configuration. However, the new
configuration is ignored. Processing of historical data
and/or streaming continues the same as before the
RELOAD_CONFIG command was issued; the new
parameters are ignored.

The task is the name of the task in which the error
originated, in the format KPQHSTpp, where pp is the
product code.

System action:

The new configuration is ignored. Processing of
historical data and streaming continues the same as
before for the application identified by task until the
issue has been resolved.

User response:
Address the issues reported in previous error
messages. If you cannot resolve this issue, contact
IBM Software Support.

KAYB: Messages from OMEGAMON Data Broker
Messages with the prefix KAYB are from OMEGAMON Data Broker.

Messages with the prefix KAYBN are from network functions of OMEGAMON Data Broker, such as secure
connection (SSL/TLS) functions.

OMEGAMON Data Broker writes messages to the SYSPRINT output data set of the Zowe cross-memory
server job that runs OMEGAMON Data Broker or, for some messages, the z/OS system log.

The Zowe cross-memory server also writes its own messages, with the prefix ZWES. For details, see the
message descriptions in the Zowe documentation.

Some messages use the term CIDB. CIDB is an abbreviation of Common Intercept Data Broker. CIDB is a
synonym for OMEGAMON Data Broker.

KAYB0001I trace_message

Explanation:
OMEGAMON Data Broker trace message.

System action:
None.

User response:
None required.

KAYB0002I trace_message

Explanation:
OMEGAMON Data Broker service trace message.

System action:
None.

User response:
None required.

KAYB0003I trace_dump

Explanation:
OMEGAMON Data Broker trace dump.

System action:
None.

User response:
None required.

KAYB0004I command_response

Explanation:
Response from an operator command to OMEGAMON
Data Broker.

System action:

None.

User response:
None required.

KAYB0005I CIDB starting, version
version (APAR apar_number,
build_time_stamp)

Explanation
OMEGAMON Data Broker initialization has begun.

The message details include the OMEGAMON Data
Broker version and APAR number.

System action:
OMEGAMON Data Broker initialization continues.

User response:
None required.

KAYB0006I CIDB successfully started

Explanation:
OMEGAMON Data Broker has successfully initialized.

System action:
OMEGAMON Data Broker is ready to accept service
calls.

User response:
None required.

KAYB0007I CIDB terminating

Explanation:
OMEGAMON Data Broker termination has begun.

164 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://docs.zowe.org/stable/troubleshoot/app-framework/zis-error-codes/

System action:
OMEGAMON Data Broker termination continues.

User response:
None required.

KAYB0008I CIDB successfully terminated

Explanation:
OMEGAMON Data Broker has successfully terminated.

System action:
None. OMEGAMON Data Broker has stopped.

User response:
None required.

KAYB0009I Init step 'description' done

Explanation:
This OMEGAMON Data Broker initialization step has
successfully completed.

System action:
OMEGAMON Data Broker initialization continues.

User response:
None required.

KAYB0010W Init step 'description' failed -

Explanation:
A failure occurred during this OMEGAMON Data Broker
initialization step.

System action:
Depending on the step, some functionality might
be disabled. OMEGAMON Data Broker initialization
continues.

User response:
If you cannot resolve the issue, contact IBM Software
Support.

KAYB0011E Init step 'description' failed -

Explanation:
A severe failure occurred during this OMEGAMON Data
Broker initialization step.

System action:
OMEGAMON Data Broker initialization stops.

User response:
If you cannot resolve the issue, contact IBM Software
Support.

KAYB0012I Term step 'description' done

Explanation:
This OMEGAMON Data Broker termination step
successfully completed.

System action:
OMEGAMON Data Broker termination continues.

User response:
None required.

KAYB0013W Term step 'description' failed -

Explanation:
A failure occurred during this OMEGAMON Data Broker
termination step.

System action:
Depending on the step, some functionality might
not be terminated cleanly. OMEGAMON Data Broker
termination continues.

User response:
If you cannot resolve the issue, contact IBM Software
Support.

KAYB0014E Term step 'description' failed -

Explanation:
A severe failure occurred during this OMEGAMON Data
Broker termination step.

System action:
OMEGAMON Data Broker termination stops. Some
components might not be terminated properly.

User response:
If you cannot resolve the issue, contact IBM Software
Support.

KAYB0015W CIDB modify command error -

Explanation:
An error occurred handling a MODIFY command for
OMEGAMON Data Broker.

System action:
OMEGAMON Data Broker does not perform the action
requested by the MODIFY command.

User response:
Review the details provided and then retry the
command.

KAYB0016I response

Explanation:
This message describes the effect of, or response to,
an OMEGAMON Data Broker configuration parameter.

System action:
OMEGAMON Data Broker continues normal
processing.

User response:
None required.

KAYB0017W CIDB parameter error -

Explanation:
An error occurred handling an OMEGAMON Data
Broker configuration parameter.

System action:
OMEGAMON Data Broker ignores the parameter.

User response:
Review the details and correct the parameter.

Messages 165

KAYB0018E CIDB ID not generated -

Explanation:
An error occurred generating the OMEGAMON Data
Broker ID.

System action:
OMEGAMON Data Broker initialization stops. The
OMEGAMON Data Broker service will not be available.

User response:
Use the KAY.CIDB.ID configuration parameter to
specify an OMEGAMON Data Broker ID, rather than
relying on an automatically generated value.

KAYB0019W Store configuration error -

Explanation:
An error occurred configuring the OMEGAMON Data
Broker store.

System action:
OMEGAMON Data Broker ignores the affected store
parameter.

User response:
Review the details and ensure that the parameters are
correct.

KAYB0020I Store 'store_name' has been added

Explanation:
The OMEGAMON Data Broker store has successfully
initialized.

System action:
OMEGAMON Data Broker initialization continues. The
store will be available when OMEGAMON Data Broker
initialization is complete.

User response:
None required.

KAYB0021W Store 'store_name' has not been
added, RC = return_code

Explanation:
An error occurred initializing this OMEGAMON Data
Broker store.

System action:
OMEGAMON Data Broker initialization continues.
However, this store will not be available.

User response:
return_code 35 indicates a duplicate store name:
correct the store name in the PARMLIB(ZWESIPxx)
configuration member. For other return_code values,
contact IBM Software Support.

KAYB0022E subsystem_name subsystem error
-

Explanation:
An error occurred initializing this OMEGAMON Data
Broker subsystem.

System action:
OMEGAMON Data Broker initialization continues.
However, this subsystem will not be available.

User response:
If you cannot resolve the issue, contact IBM Software
Support.

KAYB0023W subsystem_name subsystem
configuration error -

Explanation:
An error occurred configuring this OMEGAMON Data
Broker subsystem.

System action:
OMEGAMON Data Broker ignores the affected
parameter.

User response:
Review the details and ensure that the parameters are
correct.

KAYB0036I Store 'store_name' has connected
to sink host:port

Explanation:
OMEGAMON Data Broker has successfully connected
to a sink, such as OMEGAMON Data Connect.

System action:
OMEGAMON Data Broker sends data to the sink.

User response:
None required.

KAYB0037I Store store_name has
disconnected from sink host:port

Explanation:
A sink, such as OMEGAMON Data Connect, has
disconnected from OMEGAMON Data Broker.

System action:
OMEGAMON Data Broker frees resources that were
allocated to that sink.

User response:
None required.

KAYB0038W Store store_name has failed to
connect to sink host:port

Explanation:
OMEGAMON Data Broker has failed to connect to a
sink, such as OMEGAMON Data Connect.

System action:
OMEGAMON Data Broker retries connection. Failed
retries are not reported. Message KAYB0036I
indicates a successful retry.

User response:
Review SYSPRINT for other warning or error messages
that might be related to this warning.

166 IBM Z OMEGAMON Data Provider: Installation and User's Guide

KAYB0039E Config member member_name
error -

Explanation:
OMEGAMON Data Broker encountered an error reading
the configuration member.

System action:
OMEGAMON Data Broker ignores all of the parameters
in the configuration member.

User response:
If you cannot resolve the issue, contact IBM Software
Support.

KAYB0040E CIDB startup failed

Explanation:
OMEGAMON Data Broker failed to initialize.

System action:
OMEGAMON Data Broker stops.

User response:
Review the preceding messages. If you cannot resolve
the issue, contact IBM Software Support.

KAYB0041E CIDB terminated with errors

Explanation:
OMEGAMON Data Broker unsuccessfully terminated.

System action:
OMEGAMON Data Broker stops with errors.

User response:
Review the preceding messages. If you cannot resolve
the issue, contact IBM Software Support.

KAYB0042I Forwarder 'forwarder_name' has
connected to sink

Explanation:
OMEGAMON Data Broker has successfully connected
to a sink.

System action:
OMEGAMON Data Broker sends data to the sink.

User response:
None required.

KAYB0043I Forwarder 'forwarder_name' has
disconnected from sink

Explanation:
OMEGAMON Data Broker has disconnected from a
sink.

System action:
OMEGAMON Data Broker frees the resources allocated
to the sink.

User response:
None required.

KAYB0044W Forwarder 'forwarder_name' has
failed to connect to sink

Explanation:
OMEGAMON Data Broker has failed to connect to a
sink.

System action:
The forwarder retries to connect. Further failed
attempts will not be reported until there has been a
successful connection.

User response:
Ensure that the sink is reachable. Review SYSPRINT
for other warning or error messages that might be
related to this warning.

KAYB0045I modify_command

Explanation:
OMEGAMON Data Broker has received a MODIFY
command. This message echoes the command details.

System action:
The MODIFY command is printed to SYSPRINT and
SYSLOG.

User response:
None required.

KAYB0046W Record queue limit has
been reached for forwarder
'forwarder_name'

Explanation:
A OMEGAMON Data Broker forwarder has reached its
record queue limit. This message is reported only once
per sink connection. When the forwarder reconnects,
this will be re-reported when the limit is reached
again.

System action:
OMEGAMON Data Broker discards some old records to
make room for new records.

User response:
To avoid losing records, increase the value of the
OMEGAMON Data Broker configuration parameter
RECORD_QUEUE_LIMIT.

KAYB0047W Forwarder 'forwarder_name' has
lost n records in total

Explanation:
After reaching the record queue limit, a OMEGAMON
Data Broker forwarder has lost n records since the last
successful connection.

System action
OMEGAMON Data Broker continues discarding old
records to make room for new records.

Approximately every 5 minutes, if the total number of
lost records has increased since the previous instance

Messages 167

of this message, OMEGAMON Data Broker issues a
new message with the updated total.

User response:
To avoid losing records, increase the value of the
OMEGAMON Data Broker configuration parameter
RECORD_QUEUE_LIMIT.

KAYB0052E Timer 'timer_name' failed, RC =
return_code, RSN = reason_code
(description)

Explanation:
OMEGAMON Data Broker encountered an error in a
timer.

System action:
The functionality associated with the timer might not
be available.

User response:
Contact IBM Software Support.

KAYB0053E Lost record check not set up, RC =
return_code, RSN = reason_code

Explanation:
OMEGAMON Data Broker was unable to set up the
mechanism for checking lost records.

System action:
Lost records will not be checked or reported.

User response:
Contact IBM Software Support.

KAYB0054W Lost record check not deleted, RC
= return_code, RSN = reason_code

Explanation:
OMEGAMON Data Broker was unable to remove the
mechanism for checking lost records.

System action:
None.

User response:
Contact IBM Software Support.

KAYB0055I Default store 'store_name' has
been added

Explanation:
OMEGAMON Data Broker successfully initialized a
default store.

System action:
OMEGAMON Data Broker continues initializing. The
store will be available when OMEGAMON Data Broker
initialization is complete.

User response:
None required.

KAYB0056E Default store 'store_name' has not
been added, RC = return_code

Explanation:
An error occurred initializing this OMEGAMON Data
Broker default store.

System action:
OMEGAMON Data Broker initialization stops. The
OMEGAMON Data Broker service will not be available.

User response:
Contact IBM Software Support.

KAYB0057E Bad plugin environment - details

Explanation:
OMEGAMON Data Broker encountered a problem with
ZISDYNAMIC, the dynamic linkage base plug-in of the
Zowe cross-memory server. OMEGAMON Data Broker
requires the dynamic linkage base plug-in.

System action:
OMEGAMON Data Broker initialization stops. The
OMEGAMON Data Broker service will not be available.

User response
The appropriate response depends on the details.

Typical details:

bad stub version dl_stub_version (must be
>= broker_stub_version)

Use a more recent version of the dynamic linkage
base plug-in.

This version of the dynamic linkage base plug-in is
not compatible with OMEGAMON Data Broker.

The "stub version" refers to the definitions of Zowe
cross-memory server internal data structures. The
stub version that was used to compile this dynamic
linkage base plug-in is earlier than the stub version
that was used to compile the OMEGAMON Data
Broker plug-in.

If you are using the Zowe cross-memory server
supplied with OMEGAMON Data Provider, then
ensure that you are using the server load module,
dynamic linkage base plug-in, and OMEGAMON
Data Broker plug-in that were all supplied with the
same APAR level of OMEGAMON Data Provider.

Otherwise, if you are running OMEGAMON Data
Broker in a Zowe cross-memory server in a stand-
alone installation of Zowe, then check that the
Zowe version meets the minimum requirement,
2.12.0.

dynamic linkage vector is NULL
Check that you have registered the dynamic
linkage base plug-in, ZISDYNAMIC, in the
Zowe cross-memory server configuration member.
For details, see “OMEGAMON Data Broker
configuration parameters” on page 83.

168 IBM Z OMEGAMON Data Provider: Installation and User's Guide

If you cannot resolve the issue, contact IBM Software
Support.

KAYB0058E Unsupported cross-memory server
version server_version, versions
supported_versions are supported
only

Explanation
This version of the Zowe cross-memory server is not
compatible with OMEGAMON Data Broker.

supported_versions uses interval notation with an
opening square bracket and a closing parenthesis to
specify a right-open interval:

[a,b)

where the supported versions are: a up to, but not
including, b.

System action:
OMEGAMON Data Broker initialization stops. The
OMEGAMON Data Broker service will not be available.

User response:
Use a supported version of the Zowe cross-memory
server.

KAYB0059E Unsupported dynamic linkage
plugin version version, versions
supported_versions are supported
only

Explanation
OMEGAMON Data Broker requires the dynamic linkage
base plug-in, ZISDYNAMIC. However, this version of
the plug-in is not compatible with OMEGAMON Data
Broker.

supported_versions uses interval notation with an
opening square bracket and a closing parenthesis to
specify a right-open interval:

[a,b)

where the supported versions are: a up to, but not
including, b.

System action:
OMEGAMON Data Broker initialization stops. The
OMEGAMON Data Broker service will not be available.

User response:
Use a supported version of the dynamic linkage base
plug-in.

KAYB0258W Clean-up triggered - broker_name/
store_name/subscriber_id
(server_rc,broker_rc,service_rc)

Explanation
A subscriber to an OMEGAMON Data Broker store
started terminating without explicitly unsubscribing.
That event triggered the resource manager of the store
to perform clean-up.

Typically, the subscriber is a forwarder, and
the subscriber_id is a string of hexadecimal
digits where each pair of digits represents a
single-byte EBCDIC code point. Converting each
pair of digits into a character produces a
string with the pattern KAY.FWD.forwarder_id.
For example, a subscriber_id value of
D2C1E84BC6E6C44BD6D4404040404040 converts to
KAY.FWD.OM, where OM is the forwarder ID.

A possible reason for this message: the Zowe cross-
memory server job that runs OMEGAMON Data Broker
was ended "abruptly". For example, by an MVS
CANCEL system command.

System action:
OMEGAMON Data Broker unsubscribes the subscriber
from the store.

User response
In future, to avoid this message, end the Zowe cross-
memory server job by issuing an MVS STOP system
command instead of CANCEL.

If this message cannot be explained by the server
job being ended abruptly, then contact IBM Software
Support.

KAYB0259E Clean-up failed - details

Explanation:
A subscriber to an OMEGAMON Data Broker store
started terminating without explicitly unsubscribing.
That event triggered the resource manager of the
store to perform clean-up, as reported by message
KAYB0258E. The clean-up failed.

System action:
The subscriber remains subscribed to the store.

User response:
Contact IBM Software Support.

KAYBN000E Unknown error: description:
function: rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed. The reason for
the failure is unknown.

The description, function, and return code are from the
point of failure, and can help identify the reason for the
failure.

System action:

Messages 169

OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Contact IBM Software Support.

KAYBN001E System error: description:
function: rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed while performing
a POSIX system function.

The return code is from that function. The description
matches the return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Contact IBM Software Support.

KAYBN002E SSL/TLS error: description:
function: rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed while performing
a GSKit SSL/TLS function.

The return code is from that function. The description
matches the return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Contact IBM Software Support.

KAYBN003E Not permitted: description:
function: rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed for one of the
following reasons:

• The operation is not possible, perhaps due to
temporary conditions. For example, no spare ports
are currently available for network connections.

• The current user does not have permission to
perform the operation.

The return code is from the function that attempted
to perform the operation. The description matches the
return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Use the description, function name, and return code to
diagnose the reason for the failure.

KAYBN004E Connection could not be
established: description: function:
rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data
to OMEGAMON Data Connect, but failed because a
connection was refused or the host was unreachable.

Some common reasons:

• OMEGAMON Data Connect is not running.
• One or both of the OMEGAMON Data Broker
configuration parameters for specifying the host and
port on which OMEGAMON Data Connect is listening,
SINK_HOST and SINK_PORT, are incorrect.

Tip: If the message includes an errno2 value, use the
z/OS command bpxmtext to display a corresponding
description. For example, if the message includes
errno2=0x769F0442, then enter:

bpxmtext 769F0442

The return code is from the function that attempted to
establish the connection. The description matches the
return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Use the description, function name, and return code to
diagnose the reason for the failure.

Related reference
OMEGAMON Data Broker configuration
parameters
OMEGAMON Data Broker configuration
parameters include the hostname and port on
which OMEGAMON Data Connect is listening.

KAYBN005E Operation timed out: description:
function: rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed because an
operation timed out.

The return code is from the function that attempted
to perform the operation. The description matches the
return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Consider adjusting the values of the OMEGAMON Data
Broker configuration parameters for timeout and retry.
Otherwise, contact your system network support.

170 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Related reference
OMEGAMON Data Broker configuration
parameters
OMEGAMON Data Broker configuration
parameters include the hostname and port on
which OMEGAMON Data Connect is listening.

KAYBN006E Connection lost: description:
function: rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed because the
connection was closed by the peer or dropped.

The return code is from the function that detected the
lost connection. The description matches the return
code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Contact your system network support.

KAYBN007E Key ring password
error: description: function:
rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed because the key
ring password was missing, wrong, or expired.

The return code is from the function that detected the
error. The description matches the return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Use the OMEGAMON Data Broker configuration
parameter STASH or PASSWORD to specify the correct
password.

KAYBN008E Error opening key
database: description: function:
rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed because an I/O
or formatting error occurred opening the key ring.

The return code is from the function that detected the
error. The description matches the return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Contact your z/OS system security administrator.

KAYBN009E Remote host's certificate could not
be validated: description: function:
rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed because the
certificate from OMEGAMON Data Connect (the remote
host in this context) could not be validated. Possible
reasons include: the certificate could be self-signed,
revoked, or have an unknown certificate authority (CA).

The return code is from the function that detected the
error. The description matches the return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Contact your system security administrator.

KAYBN010E Remote host unsupported:
description: function:
rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data
to OMEGAMON Data Connect, but failed because
OMEGAMON Data Connect (the remote host in this
context) performed an action that is not supported.

The return code is from the function that detected the
error. The description matches the return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Contact your z/OS security administrator with the
details of this message. After resolving the issue,
restart the Zowe cross-memory server that is running
OMEGAMON Data Broker.

KAYBN011E Invalid argument: description:
function: rc=decimal_rc(hex_rc)

Explanation
An OMEGAMON Data Broker configuration parameter
specified an invalid value.

The return code is from the function that detected the
error. The description matches the return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Address the error described in the message, and then
restart the Zowe cross-memory server that is running
OMEGAMON Data Broker.

Messages 171

Related reference
OMEGAMON Data Broker configuration
parameters

OMEGAMON Data Broker configuration
parameters include the hostname and port on
which OMEGAMON Data Connect is listening.

KAYC: Messages from OMEGAMON Data Connect
Messages with the prefix KAYC are from OMEGAMON Data Connect.

OMEGAMON Data Connect writes messages to the STDOUT file.

KAYC0001I Connecting to hostname:port store
store

Explanation:
OMEGAMON Data Connect is attempting to connect
to the OMEGAMON Data Broker specified by a
connect.input.cidb configuration parameter.

System action:
None.

User response:
None required.

KAYC0002I Connected to hostname:port store
store

Explanation:
OMEGAMON Data Connect has successfully connected
to the OMEGAMON Data Broker store specified by a
connect.input.cidb configuration parameter.

System action:
None.

User response:
None required.

KAYC0003W Connection to hostname:port lost.
Reconnecting in retry_interval
seconds

Explanation:
OMEGAMON Data Connect has lost its connection
to a OMEGAMON Data Broker specified by a
connect.input.cidb configuration parameter.

System action:
OMEGAMON Data Connect waits for the specified
interval, and then attempts to reconnect.

User response:
None required.

KAYC0004I Disconnecting from hostname:port
store store

Explanation:
OMEGAMON Data Connect is about to disconnect from
the OMEGAMON Data Broker store specified by a
connect.input.cidb configuration parameter.

System action:
None.

User response:

None required.

KAYC0005I Disconnected from hostname:port
store store

Explanation:
OMEGAMON Data Connect has disconnected from
the OMEGAMON Data Broker store specified by a
connect.input.cidb configuration parameter.

System action:
None.

User response:
None required.

KAYC0006E An error occurred unsubscribing
from CIDB: details

Explanation:
OMEGAMON Data Connect encountered an error
disconnecting from the OMEGAMON Data Broker
specified by a connect.input.cidb configuration
parameter.

System action:
Depending on the details provided in the
message, OMEGAMON Data Connect might not have
disconnected from OMEGAMON Data Broker.

User response:
Review the details provided in this message. Review
the messages in the output from the corresponding
OMEGAMON Data Broker job.

KAYC0007E An error occurred subscribing to
CIDB: details

Explanation:
OMEGAMON Data Connect encountered an error
connecting to the OMEGAMON Data Broker specified
by a connect.input.cidb configuration parameter.

System action:
OMEGAMON Data Connect does not connect to
OMEGAMON Data Broker.

User response:
Review the details provided in this message. Review
the messages in the output from the corresponding
OMEGAMON Data Broker job.

KAYC0008I Creating mapping class for table
table_name

172 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Explanation
For the first time since starting, this instance of
OMEGAMON Data Connect has received data for this
table. "Mapping class" refers to code in OMEGAMON
Data Connect that transforms OMEGAMON attributes
from their original proprietary binary format. Compare
with KAYC0033I.

Tip: The frequency of incoming data is determined by
the collection interval of the collection for this table. A
long collection interval can mean a long delay before
this message occurs.

System action:
None.

User response:
None required.

KAYC0009I Starting TCP output service

Explanation:
OMEGAMON Data Connect is starting the output
service requested by a connect.output.tcp
configuration parameter.

System action:
None.

User response:
None required.

KAYC0010I Connecting to TCP sink:
sink_name {host: hostname, port:
port}

Explanation:
OMEGAMON Data Connect is attempting to
connect to the TCP sink specified by
the connect.output.tcp.sinks.sink_name
configuration parameter.

System action:
None.

User response:
None required.

KAYC0011I Connected to TCP sink: sink_name
{host: hostname, port: port}

Explanation:
OMEGAMON Data Connect has successfully
connected to the TCP sink specified by
the connect.output.tcp.sinks.sink_name
configuration parameter.

System action:
None.

User response:
None required.

KAYC0012E Error connecting to TCP sink:
sink_name {host: hostname, port:
port}

Explanation:
OMEGAMON Data Connect could not
connect to the TCP sink specified by
the connect.output.tcp.sinks.sink_name
configuration parameter.

System action:
OMEGAMON Data Connect continues, but does not
send output to that TCP sink.

User response:
Check that the destination hostname:port is listening
for JSON Lines over TCP from OMEGAMON Data
Connect.

KAYC0013E Maximum allowed
connection attempts
(max_connection_attempts)
exceeded, output to TCP sink
sink_name {host: hostname, port:
port} has stopped

Explanation:
OMEGAMON Data Connect could not
connect to the TCP sink specified by
the connect.output.tcp.sinks.sink_name
configuration parameter.

System action:
OMEGAMON Data Connect continues running, but
does not send output to that TCP sink.

User response
1. Check that the destination is listening for JSON

Lines over TCP from OMEGAMON Data Connect.
2. Consider changing the value of the OMEGAMON

Data Connect configuration parameter
connect.output.tcp.sinks.sink_name.max
-connection-attempts.

3. Restart OMEGAMON Data Connect.

KAYC0014E I/O error writing to peer
socket: details. Reconnection will
be attempted in retry_interval
seconds

Explanation
OMEGAMON Data Connect could not reconnect
to the output TCP destination specified by a
connect.output.tcp configuration parameter.

details describes the specific I/O error.

System action:
OMEGAMON Data Connect attempts reconnection
after the specified interval.

Messages 173

User response
If OMEGAMON Data Connect cannot reconnect, or this
issue occurs frequently:

1. Check that the destination host:port is listening
for JSON Lines over TCP from OMEGAMON Data
Connect.

2. Consider changing the value of the OMEGAMON
Data Connect configuration parameter
connect.output.tcp.sinks.sink_name.ret
ry-interval.

3. Restart OMEGAMON Data Connect.

KAYC0015E Error creating JSON

Explanation:
OMEGAMON Data Connect encountered an error
creating JSON for output.

System action:
The data is not sent to the output destination.

User response:
Review the error details following this message. If
you cannot resolve the issue, contact IBM Software
Support.

KAYC0016E Error instantiating mapping object

Explanation:
OMEGAMON Data Connect encountered an error
while initializing the mapping code that transforms
OMEGAMON attributes from their original proprietary
binary format.

System action:
OMEGAMON Data Connect continues, but does not
process records for that table.

User response:
Review the error details following this message. If
you cannot resolve the issue, contact IBM Software
Support.

KAYC0018I Starting metrics service

Explanation:
OMEGAMON Data Connect is starting the
Prometheus metrics output service requested
by a connect.output.prometheus configuration
parameter.

System action:
None.

User response:
None required.

KAYC0019W Unhandled metric type:
metric_type

Explanation
An OMEGAMON Data Connect configuration parameter
connect.output.prometheus.mappings.produc
ts.tables.table_name.metrics.type specified
an unsupported Prometheus metric type:

metrics:
 - name: field_name
 type: metric_type # 1

 1
The supported values of metric_type are
counter and gauge.

System action:
The metric field_name is not published. Other
metrics are unaffected.

User response:
Specify a supported metric type, and then restart
OMEGAMON Data Connect.

KAYC0020E Error writing 'field_name' metric

Explanation
OMEGAMON Data Connect encountered an error
writing the metric to the Prometheus endpoint.

field_name is the value of a
connect.output.prometheus.mappings.produc
ts.tables.table_name.metrics.name
parameter in the OMEGAMON Data Connect
configuration file.

System action:
The metric field_name is not published.

User response:
Review the error details following this message. If
you cannot resolve the issue, contact IBM Software
Support.

KAYC0021E Reflection error accessing label

Explanation:
There is a problem in the OMEGAMON Data Connect
configuration file with a parameter for a Prometheus
metric.

System action:
Depends on the specific issue described in the details
that follow this message.

User response:
Review the error details following this message.
Examine the corresponding OMEGAMON Data
Connect configuration parameters under the
connect.output.prometheus key. If you cannot
resolve the issue, contact IBM Software Support.

KAYC0022I Starting Kafka input service

Explanation:

174 IBM Z OMEGAMON Data Provider: Installation and User's Guide

OMEGAMON Data Connect is starting the
Apache Kafka input service requested by a
connect.input.kafka configuration parameter.

System action:
None.

User response:
None required.

KAYC0023I Starting TCP input service
listening on hostname:port

Explanation:
OMEGAMON Data Connect is starting the TCP
input service requested by a connect.input.tcp
configuration parameter.

System action:
None.

User response:
None required.

KAYC0024I Starting STDOUT output service

Explanation:
OMEGAMON Data Connect is starting the output
service requested by a connect.output.stdout
configuration parameter.

System action:
None.

User response:
None required.

KAYC0025I Starting Kafka output service

Explanation:
OMEGAMON Data Connect is starting the
Apache Kafka output service requested by a
connect.output.kafka configuration parameter.

System action:
None.

User response:
None required.

KAYC0026I Creating JSON mapping provider

Explanation:
OMEGAMON Data Connect is initializing the code
that maps OMEGAMON attributes from their original
proprietary data format to JSON.

System action:
None.

User response:
None required.

KAYC0027I Stopping TCP listener

Explanation:
OMEGAMON Data Connect is stopping the TCP listener.

System action:
None.

User response:
None required.

KAYC0028I Source hostname:port has
connected

Explanation:
OMEGAMON Data Broker, at the specified hostname
and port, has connected to OMEGAMON Data Connect.

System action:
None.

User response:
None required.

KAYC0029I Source hostname:port has
disconnected

Explanation:
OMEGAMON Data Broker, at the specified hostname
and port, has disconnected from OMEGAMON Data
Connect.

System action:
None.

User response:
None required.

KAYC0031W Event publication error

Explanation
OMEGAMON Data Connect encountered an error
publishing an event.

Flood-controlled: To avoid duplicate messages
flooding the log, this message is subject to
flood control. OMEGAMON Data Connect might
suppress duplicate messages within the flood
control interval. For details, see the OMEGAMON
Data Connect configuration parameters under
connect.logging.flood-control.

System action:
Depends on the details in the KAYC0073I message
that follows this message.

User response:
See the details in the KAYC0073I message that follows
this message. If you cannot resolve the issue, contact
IBM Software Support.

Related reference
Connect-specific logging parameters
OMEGAMON Data Connect has its own specific
logging parameters, separate from the common
Spring Boot logging properties.

KAYC0032I Stopping TCP output service

Explanation:

Messages 175

OMEGAMON Data Connect is stopping its TCP output
service.

System action:
None.

User response:
None required.

KAYC0033I Table table_name received from
origin_type origin_name

Explanation
For the first time since starting, this instance of
OMEGAMON Data Connect has received data for this
table from this origin_name.

origin_type and origin_name depend on the table.
Examples:

origin_type origin_name

Sysplex The name of the sysplex

CICS Region The name of the CICS region

Compare with KAYC0008I.

System action:
None.

User response:
None required.

KAYC0034I Stopping server

Explanation:
OMEGAMON Data Connect is stopping.

System action:
None.

User response:
None required.

KAYC0035I Build: build_identifier

Explanation:
Identifies the OMEGAMON Data Connect build. This
identifier is for use by IBM Software Support.

System action:
None.

User response:
None required.

KAYC0036I filter_scope filter selected table:
table_name, fields: field_list

Explanation
The OMEGAMON Data Connect filter for JSON-format
outputs has been configured to select only the
specified fields from this table for processing.

The value of field_list depends on the filter:

• If the filter specifies a list of fields, then field_list is
a comma-separated list of field names enclosed in
square brackets:

[field_name, field_name, ...]

• If the filter does not specify a list of fields, then all
fields in the table are selected, and field_list has the
value ALL

filter_scope identifies the scope of the filter:

• Global
• Kafka
• STDOUT
• TCP sink: sink_name

System action:
None.

User response:
None required.

Related reference
Filters for JSON-format outputs
You can optionally filter which attributes to send
to the JSON-format outputs of OMEGAMON
Data Connect: TCP, HTTP, Kafka, and STDOUT.

KAYC0037I Registered metric for table:
table_name, field: field_name,
type: metric_type, labels: label_list

Explanation:
OMEGAMON Data Connect has been configured to
output a Prometheus metric with these details.

System action:
None.

User response:
None required.

Related reference
Prometheus output parameters
OMEGAMON Data Connect can publish
attributes to a Prometheus endpoint.
OMEGAMON Data Connect Prometheus output
parameters describe the Prometheus endpoint
and which attributes to publish.

KAYC0038I Starting console listener

Explanation
OMEGAMON Data Connect is listening for commands
from the console.

For example, if OMEGAMON Data Connect is running
on z/OS, OMEGAMON Data Connect is listening for
MVS system MODIFY commands.

176 IBM Z OMEGAMON Data Provider: Installation and User's Guide

System action:
None.

User response:
None required.

KAYC0039W Invalid modify command:
command

Explanation
OMEGAMON Data Connect received an invalid
command from the console.

For example, if OMEGAMON Data Connect is running
on z/OS, OMEGAMON Data Connect received an invalid
MVS system MODIFY command.

System action:
The command is ignored.

User response:
Enter a valid console command; on z/OS, a valid MVS
system MODIFY command.

KAYC0040E Error creating socket

Explanation:
OMEGAMON Data Connect encountered an error
creating a socket network connection for TCP output.

System action:
OMEGAMON Data Connect does not send data to the
TCP output destination.

User response:
Review the error details following this message. If
you cannot resolve the issue, contact IBM Software
Support.

KAYC0041E Error creating SSL context

Explanation:
OMEGAMON Data Connect encountered an error
creating a secure (SSL/TLS) socket network
connection for TCP input from OMEGAMON Data
Broker.

System action:
OMEGAMON Data Connect does not receive data from
OMEGAMON Data Broker.

User response:
Review the error details following this message. If
you cannot resolve the issue, contact IBM Software
Support.

KAYC0042I Starting TCP sink: sink_name
{host: hostname, port: port}

Explanation:
OMEGAMON Data Connect is starting a
thread for the TCP sink specified by
the connect.output.tcp.sinks.sink_name
configuration parameter.

System action:
None.

User response:
None required.

KAYC0043I Stopping TCP sink: sink_name
{host: hostname, port: port}

Explanation:
OMEGAMON Data Connect is stopping the
thread for the TCP sink specified by
the connect.output.tcp.sinks.sink_name
configuration parameter.

System action:
None.

User response:
None required.

KAYC0044I Event publication for table
table_name has been disabled

Explanation:
OMEGAMON Data Connect configuration parameters
have disabled publication of data for this table.

System action:
OMEGAMON Data Connect does not publish data for
this table.

User response:
None required.

KAYC0045E Field 'field_name' does not exist
in table 'table_name', product
'product_code'

Explanation:
The OMEGAMON Data Connect configuration
parameters refer to a field that does not exist in the
specified table.

System action:
OMEGAMON Data Connect stops.

User response
1. Check that the field exists and that you have

spelled the field name correctly, in the correct case.
2. Edit the configuration parameters, and then restart

OMEGAMON Data Connect.
3. If you cannot resolve the issue, contact IBM

Software Support.

Related reference
OMEGAMON attribute dictionary
OMEGAMON Data Connect includes a dictionary
of OMEGAMON attributes in a set of YAML files.

KAYC0046E Table 'table_name' does not exist
in product 'product_code'

Messages 177

Explanation:
The OMEGAMON Data Connect configuration
parameters refer to a table that does not exist in the
specified product.

System action:
OMEGAMON Data Connect stops.

User response
1. Edit the configuration parameters.
2. Restart OMEGAMON Data Connect.
3. If you cannot resolve the issue, contact IBM

Software Support.

KAYC0047I Starting broker stats service

Explanation:
OMEGAMON Data Broker sends statistics about its
activity to OMEGAMON Data Connect. OMEGAMON
Data Connect publishes these OMEGAMON Data
Broker statistics to the Spring Boot Actuator
Prometheus endpoint /actuator/prometheus as
metrics with the prefix odp_broker.

System action:
None.

User response:
None required.

KAYC0049E Error publishing to Kafka

Explanation:
OMEGAMON Data Connect encountered an error
attempting to send attributes to Kafka.

System action
OMEGAMON Data Connect performs the following
actions:

1. Flushes (discards) any unsent data queued for
output to Kafka

2. Stops sending data to Kafka.
3. Attempts to reconnect to Kafka.

If the reconnection attempt succeeds, then
OMEGAMON Data Connect restarts sending data to
Kafka. However, the previously flushed data is lost.

4. If the reconnection attempt fails, then OMEGAMON
Data Connect reports error message KAYC0050E,
and permanently stops sending data to Kafka.

User response
1. Check that you have specified the correct
host:port connection details for the Kafka
servers.

2. Consider the values that you have set for the
Kafka output parameters retry-interval and
max-connection-attempts.

3. Investigate the Kafka log for potential causes of the
error.

KAYC0050E Kafka output service has stopped

Explanation:
This message follows KAYC0049E, which reports an
error sending data to Kafka. This message reports that
OMEGAMON Data Connect was unable to connect to
Kafka after that error.

System action:
OMEGAMON Data Connect permanently stops sending
data to Kafka.

User response:
See the response for KAYC0049E.

KAYC0051E Error connecting to Kafka.
Retrying in retry-interval seconds

Explanation:
OMEGAMON Data Connect attempted but failed to
connect to Kafka.

System action:
OMEGAMON Data Connect will retry connecting to
Kafka after the number of seconds specified by
the Kafka output parameter retry-interval. The
maximum number of attempts is determined by the
parameter max-connection-attempts.

User response:
None required.

KAYC0053E Nested filter includes are not
supported

Explanation:
OMEGAMON Data Connect found an include
parameter in a filter include file.

System action:
OMEGAMON Data Connect stops.

User response
1. Remove the include parameter from the filter

include file.
2. Restart OMEGAMON Data Connect.

KAYC0054E Filter include file file_path was not
found

Explanation:
OMEGAMON Data Connect could not find the filter
include file, specified by an include parameter, either
in the file system or in the class path.

System action:
OMEGAMON Data Connect stops.

178 IBM Z OMEGAMON Data Provider: Installation and User's Guide

User response:
Edit the include parameter to point to the correct file
path. Restart OMEGAMON Data Connect.

KAYC0056I Table table_name has been
disabled for outputs that use this
filter

Explanation:
This message follows KAYC0057W, which reports an
error in a filter condition expression. As a result of that
error, OMEGAMON Data Connect disables the table for
outputs that use this filter.

System action:
OMEGAMON Data Connect continues processing.
However, OMEGAMON Data Connect stops processing
records of this table for outputs that use this filter.

User response:
No response required for this message. See the
response for message KAYC0057W.

Related reference
Filters for JSON-format outputs
You can optionally filter which attributes to send
to the JSON-format outputs of OMEGAMON
Data Connect: TCP, HTTP, Kafka, and STDOUT.

KAYC0057W Filter condition for
product_code.table_name failed,
expression 'expression'

Explanation
OMEGAMON Data Connect encountered an error while
evaluating the specified filter condition expression. The
Spring Expression Language (SpEL) expression caused
a runtime exception.

Typical causes include:

Divide-by-zero error
The expression uses an integer field as the
denominator in a division operation. In this case,
the field value is expected to always be nonzero.
If the field value is zero, a divide-by-zero error
occurs.

Null field value
A null value can cause an error, depending on
where that value occurs in an expression. For
details on how SpEL treats null field values, see
the Spring documentation.

Misspelled field name
The field will not be found.

Attempting to set the value of a read-only field
For example, mistakenly using a single equal sign
(=) to compare for equality instead of the correct
two consecutive equal signs (==).

Flood-controlled: To avoid duplicate messages
flooding the log, this message is subject to
flood control. OMEGAMON Data Connect might
suppress duplicate messages within the flood
control interval. For details, see the OMEGAMON
Data Connect configuration parameters under
connect.logging.flood-control.

System action
OMEGAMON Data Connect continues processing as if
the expression had successfully returned a false value.
The corresponding input record is discarded.

If the OMEGAMON Data Connect configuration
parameter disable-table-on-error is true for
this filter, then OMEGAMON Data Connect performs
the following actions:

1. Stop processing records that use the expression;
disable the table for outputs that use this filter.

If the expression is in an output-level filter, then
OMEGAMON Data Connect disables the table for
that output only. If the expression is in a global-
level filter, then OMEGAMON Data Connect disables
the table for all outputs that use the global-level
filter.

2. Report information message KAYC0056I.

User response:
See the details in the KAYC0072I message that follows
this message. Consider adjusting the expression in
the OMEGAMON Data Connect configuration to avoid
triggering the runtime exception.

Related reference
Filters for JSON-format outputs
You can optionally filter which attributes to send
to the JSON-format outputs of OMEGAMON
Data Connect: TCP, HTTP, Kafka, and STDOUT.
Connect-specific logging parameters
OMEGAMON Data Connect has its own specific
logging parameters, separate from the common
Spring Boot logging properties.

KAYC0058W Duplicate field name 'field_name'
in the mapping class
for product_code.table_name
table_version

Explanation
A mapping class in an OMEGAMON Data Connect
mapping extension JAR file contains more than one
definition for the same field_name.

The table_version is for use by IBM Software Support.
The table_version is specific to the table; it is not
related to the version of the mapping extension JAR
file that contains the table schema.

Messages 179

System action:
OMEGAMON Data Connect ignores the duplicate field
definition and continues processing.

User response:
Contact IBM Software Support.

KAYC0059W No fields found in the mapping
class for product_code.table_name
table_version

Explanation
A mapping class in an OMEGAMON Data Connect
mapping extension JAR file contains no field
definitions for the specified table.

The table_version is for use by IBM Software Support.
The table_version is specific to the table; it is not
related to the version of the mapping extension JAR
file that contains the table schema.

System action:
OMEGAMON Data Connect does not process any fields
in this table (attributes in this group).

User response:
Contact IBM Software Support.

KAYC0060W Unsupported specification version
mapping_extension_framework_ve
rsion in class_name (jar_file_path)

Explanation
The OMEGAMON Data Connect mapping extension
identified by class_name and jar_file_path is not
supported by the running version of OMEGAMON Data
Connect.

OMEGAMON Data Connect involves one JAR file
containing core classes and multiple JAR files
containing mapping extension classes. The mapping
extension classes must be compatible with the core
classes. Compatibility is determined by the versions of
the OMEGAMON Data Connect framework that were
used to build the JAR files:

mapping_extension_framework_version
(Reported in this message.) The version of the
OMEGAMON Data Connect framework that was
used to build the mapping extension JAR file.

This is the value of the Specification-Version
header in the manifest in the mapping extension
JAR file.

core_framework_version
(Reported in message KAYC0067I.) The version of
the OMEGAMON Data Connect framework that was
used to build the OMEGAMON Data Connect core
JAR file, odp-server-version.jar.

Given version numbers in the three-
part format major.minor.patch, the
mapping_extension_framework_version must meet
both of the following requirements:

• The mapping_extension_framework_version must
have the same major version as
core_framework_version.

• The mapping_extension_framework_version must
have the same or earlier minor.patch version as
core_framework_version.

For example, given a core_framework_version value of
2.3.1:

• Supported values of
mapping_extension_framework_version include:
2.3.1, 2.3.0, 2.1.0

• Unsupported values of
mapping_extension_framework_version include:
3.1.0, 2.4.0, 2.3.2, 1.1.0

System action
OMEGAMON Data Connect ignores the mapping
extension and continues processing.

Mapping extensions contain mapping classes that
enable OMEGAMON Data Connect to process different
types of incoming record. OMEGAMON Data Connect
discards records for which there is no mapping class.

User response:
Check that the OMEGAMON Data Connect runtime
option -Dodp.ext refers to the correct set of mapping
extensions for this version of OMEGAMON Data
Connect. If you cannot resolve the issue, contact IBM
Software Support.

Related information
KAYC0067I
Framework version =
connect_framework_version

KAYC0061W Malformed record received

Explanation
OMEGAMON Data Connect received a malformed
record from OMEGAMON Data Broker. The record does
not have the structure that OMEGAMON Data Connect
expected.

Flood-controlled: To avoid duplicate messages
flooding the log, this message is subject to
flood control. OMEGAMON Data Connect might
suppress duplicate messages within the flood
control interval. For details, see the OMEGAMON
Data Connect configuration parameters under
connect.logging.flood-control.

System action:

180 IBM Z OMEGAMON Data Provider: Installation and User's Guide

OMEGAMON Data Connect discards the record and
continues processing.

User response:
See the details in the KAYC0071I message that follows
this message. If you cannot resolve the issue, contact
IBM Software Support.

Related reference
Connect-specific logging parameters
OMEGAMON Data Connect has its own specific
logging parameters, separate from the common
Spring Boot logging properties.

KAYC0062W Mapping class not found
for product_code.table_name
table_version

Explanation
OMEGAMON Data Connect received a record from
OMEGAMON Data Broker with a combination of
product_code, table_name, and table_version that is
not supported by any of the available mapping classes.

The table_version is for use by IBM Software Support.
The table_version is specific to the table; it is not
related to the version of the mapping extension JAR
file that contains the table schema.

Flood-controlled: To avoid duplicate messages
flooding the log, this message is subject to
flood control. OMEGAMON Data Connect might
suppress duplicate messages within the flood
control interval. For details, see the OMEGAMON
Data Connect configuration parameters under
connect.logging.flood-control.

System action:
OMEGAMON Data Connect discards the record and
continues processing.

User response:
Check that the paths specified by the OMEGAMON
Data Connect runtime option -Dodp.ext refer to
all of the available mapping extension JAR files. If
you cannot resolve the issue, contact IBM Software
Support.

Related reference
Connect-specific logging parameters
OMEGAMON Data Connect has its own specific
logging parameters, separate from the common
Spring Boot logging properties.
OMEGAMON attribute dictionary
OMEGAMON Data Connect includes a dictionary
of OMEGAMON attributes in a set of YAML files.
OMEGAMON monitoring agents supported by
OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes
from several OMEGAMON monitoring agents.

KAYC0063I Internal Statistics:

Explanation:
This message is followed by a dump of internal
statistics from OMEGAMON Data Connect.

System action:
None.

User response:
None required.

KAYC0064W Specification version is missing in
class_name (jar_file_path)

Explanation
The OMEGAMON Data Connect mapping extension
identified by class_name and jar_file_path has no
Specification-Version header in its JAR file
manifest.

Mapping extensions must include a specification
version. The specification version indicates the version
of the OMEGAMON Data Connect framework that was
used to build the mapping extension.

System action
OMEGAMON Data Connect ignores the mapping
extension and continues processing.

Mapping extensions contain mapping classes that
enable OMEGAMON Data Connect to process different
types of incoming record. OMEGAMON Data Connect
discards records for which there is no mapping class.

User response:
Contact IBM Software Support.

KAYC0065W Implementation version is missing
in class_name (jar_file_path)

Explanation
The OMEGAMON Data Connect mapping extension
identified by class_name and jar_file_path has no
Implementation-Version header in its JAR file
manifest.

Mapping extensions must include an implementation
version. The implementation version indicates the
version of the mapping extension.

System action
OMEGAMON Data Connect ignores the mapping
extension and continues processing.

Mapping extensions contain mapping classes that
enable OMEGAMON Data Connect to process different
types of incoming record. OMEGAMON Data Connect
discards records for which there is no mapping class.

User response:

Messages 181

Contact IBM Software Support.

KAYC0066W Duplicate mapping class
for product_code.table_name
table_version found (impl
duplicate_package_impl_version
in duplicate_jar_file_path vs
existing_package_impl_version in
existing_jar_file_path)

Explanation:
OMEGAMON Data Connect has found a mapping class
for the same table, with the same table schema
version, in two mapping extension JAR files.

System action
OMEGAMON Data Connect uses the mapping class
from the mapping extension JAR file with the most
recent implementation version.

That is, if the implementation version of the newly
found (duplicate) mapping extension JAR file is later
than the implementation version of the previously
found (existing) mapping extension JAR file, then
OMEGAMON Data Connect uses the mapping class
in the newly found file. Otherwise, OMEGAMON Data
Connect ignores the mapping class in the newly found
file.

User response
Investigate why both of these JAR files exist in the
paths specified by the OMEGAMON Data Connect
runtime option -Dodp.ext.

For example, it's possible that you might deliberately
have stored in your user directory a newer version of
a JAR file that also exists in the installation directory;
in which case, this warning is expected, and you can
ignore it. However, if the presence of the duplicate is
unexpected, then you need to review how you manage
these JAR files.

If you cannot resolve the issue, contact IBM Software
Support.

KAYC0067I Framework version =
connect_framework_version

Explanation
Identifies the version of the OMEGAMON Data
Connect framework that was used to build the
OMEGAMON Data Connect core JAR file, odp-
server-version.jar.

connect_framework_version is the value of the
Specification-Version header in the manifest in
the core JAR file.

System action:
None.

User response:
None required.

Related information
KAYC0060W
Unsupported specification version
mapping_extension_framework_version in
class_name (jar_file_path)

KAYC0068I Extension file jar_file_path
found (spec=framework_version,
impl=mapping_extension_version)

Explanation
OMEGAMON Data Connect reports this message for
each mapping extension JAR file that it finds in the
directories that are listed in the OMEGAMON Data
Connect runtime option -Dodp.ext.
framework_version

The version of the OMEGAMON Data Connect
framework that was used to build the mapping
extension JAR file.

This is the value of the Specification-Version
header in the manifest in the mapping extension
JAR file.

mapping_extension_version
The version of the mapping extension.

This is the value of the Implementation-
Version header in the manifest in the mapping
extension JAR file.

System action:
None.

User response:
None required.

KAYC0069I class_count mapping classes found
in jar_file_path

Explanation:
OMEGAMON Data Connect reports the number of
mapping classes it finds in each mapping extension
JAR file.

System action:
None.

User response:
None required.

KAYC0070W Failed to read JAR file
jar_file_path: details

Explanation:
OMEGAMON Data Connect could not read the
specified mapping extension JAR file.

182 IBM Z OMEGAMON Data Provider: Installation and User's Guide

System action
OMEGAMON Data Connect ignores the mapping
extension and continues processing.

Mapping extensions contain mapping classes that
enable OMEGAMON Data Connect to process different
types of incoming record. OMEGAMON Data Connect
discards records for which there is no mapping class.

User response:
Review the details provided by this message. If
you cannot resolve the issue, contact IBM Software
Support.

KAYC0071I Malformed record reason: details

Explanation:
This message reports the reason for the preceding
KAYC0061W message.

System action:
None.

User response:
Review the details provided by this message. If
you cannot resolve the issue, contact IBM Software
Support.

KAYC0072I Filter failure reason: details

Explanation:
This message reports the reason for the preceding
KAYC0057W message.

System action:
None.

User response:
Review the details provided by this message. If
you cannot resolve the issue, contact IBM Software
Support.

KAYC0073I Event publication error reason:
details

Explanation:
This message reports the reason for the preceding
KAYC0031W message.

System action:

User response:
Review the details provided by this message. If
you cannot resolve the issue, contact IBM Software
Support.

KAYC0074I total_messages_suppressed
messages have been suppressed
in logger_name in the last
flood_control_interval seconds:

Explanation
Reports the number of messages that OMEGAMON
Data Connect has suppressed from the log in the last
flood control interval.

OMEGAMON Data Connect reports this message only if
messages have been suppressed.

The logger_name is for use by IBM Software Support.

To configure flood control, set the OMEGAMON
Data Connect configuration parameters under
connect.logging.flood-control.

System action:
This message is followed by a report of the suppressed
messages, sorted in order of highest to lowest number
of messages suppressed.

User response:
None required.

Related reference
Connect-specific logging parameters
OMEGAMON Data Connect has its own specific
logging parameters, separate from the common
Spring Boot logging properties.

KAYC0075W Only JAR files are supported. File
file_path was ignored

Explanation
The OMEGAMON Data Connect runtime option
-Dodp.ext specified a file path that does not end
with the file extension .jar.

-Dodp.ext specifies the locations of mapping
extension JAR files. File paths specified in -Dodp.ext
must end with the file extension .jar.

System action:
OMEGAMON Data Connect ignores the file.

User response:
Correct or remove the file path in the value of
-Dodp.ext.

KAYC0076I Starting HTTP output service

Explanation:
OMEGAMON Data Connect is starting the output
service requested by a connect.output.http
configuration parameter.

System action:
None.

User response:
None required.

KAYC0077I Stopping HTTP output service

Explanation:
OMEGAMON Data Connect is stopping its HTTP output
service.

Messages 183

System action:
None.

User response:
None required.

KAYC0078I Starting output to HTTP endpoint:
endpoint_name {url: url}

Explanation:
OMEGAMON Data Connect is starting a thread for the
HTTP output specified by the
connect.output.http.endpoints.endpoint_na
me configuration parameter.

System action:
None.

User response:
None required.

KAYC0079E Error sending data to HTTP
endpoint endpoint_name: details

Explanation
OMEGAMON Data Connect encountered a problem
sending data to the HTTP endpoint specified by the
connect.output.http.endpoints.endpoint_na
me configuration parameter.

Flood-controlled: To avoid duplicate messages
flooding the log, this message is subject to
flood control. OMEGAMON Data Connect might
suppress duplicate messages within the flood
control interval. For details, see the OMEGAMON
Data Connect configuration parameters under
connect.logging.flood-control.

System action:
OMEGAMON Data Connect continues. However, data in
a failed POST request to the endpoint is lost.

User response:
Check that the HTTP endpoint is listening for POST
requests from OMEGAMON Data Connect.

KAYC0080E Maximum allowed failures
(max_failures) exceeded, output to
HTTP endpoint endpoint_name has
stopped

Explanation
The number of failures attempting to send a request to
this HTTP endpoint has exceeded the maximum
number of allowed failures specified by the
OMEGAMON Data Connect configuration parameter
connect.output.http.endpoints.endpoint_na
me.max-failures.

Possible failures include timeouts, connection failures,
and unsuccessful responses.

System action:

OMEGAMON Data Connect continues running, but
does not send any more requests to this HTTP
endpoint.

User response
1. Check that the HTTP endpoint is listening for POST

requests from OMEGAMON Data Connect.
2. Consider changing the value of the max-failures

parameter.
3. Restart OMEGAMON Data Connect.

KAYC0081I Stopping output to HTTP endpoint:
endpoint_name {url: url}

Explanation:
OMEGAMON Data Connect is stopping the thread for
the HTTP endpoint specified by the
connect.output.http.endpoints.endpoint_na
me configuration parameter.

System action:
None.

User response:
None required.

KAYC0082E Error creating HTTP client for
endpoint endpoint_name.

Explanation:
OMEGAMON Data Connect could not create an HTTP
client for the endpoint specified by the
connect.output.http.endpoints.endpoint_na
me configuration parameter.

System action:
OMEGAMON Data Connect stops.

User response
1. Review the error details following this message.
2. Check that the HTTP endpoint is listening for POST

requests from OMEGAMON Data Connect.
3. Review the configuration of
connect.output.http.endpoints.endpoint
_name.

4. Restart OMEGAMON Data Connect.
5. If you cannot resolve the issue, contact IBM

Software Support.

KAYC0083E Fatal error, output to HTTP
endpoint endpoint_name has
stopped

Explanation:
OMEGAMON Data Connect encountered an
unrecoverable error attempting to send to the HTTP
endpoint specified by the

184 IBM Z OMEGAMON Data Provider: Installation and User's Guide

connect.output.http.endpoints.endpoint_na
me configuration parameter.

System action:
OMEGAMON Data Connect continues running, but
does not send any more requests to that HTTP
endpoint.

User response
1. Check that the HTTP endpoint is listening for POST

requests from OMEGAMON Data Connect.
2. Review the configuration of
connect.output.http.endpoints.endpoint
_name.

3. Restart OMEGAMON Data Connect.

KAYC0084W Queue capacity (queue_capacity)
reached for output
output_description

Explanation
The OMEGAMON Data Connect internal
queue for this output has reached the
maximum number of records specified by
the connect.event-publisher.queue-capacity
configuration parameter.

Typical reasons are related to high data volume, such
as high data frequency. For example:

• The output destination has stopped reading
incoming records because it has run out of space.

• Incoming records are arriving faster than
OMEGAMON Data Connect can process them.

Flood-controlled: To avoid duplicate messages
flooding the log, this message is subject to
flood control. OMEGAMON Data Connect might
suppress duplicate messages within the flood
control interval. For details, see the OMEGAMON
Data Connect configuration parameters under
connect.logging.flood-control.

System action
1. The queue rejects (drops) any new incoming

records until the queue falls within capacity. This
output loses data.

2. OMEGAMON Data Connect continues to read
incoming records, even if all queues are at capacity.

3. OMEGAMON Data Connect continues to report this
message until the queue falls within capacity.

Other outputs are unaffected because each output
has its own queue. For example, suppose you have
configured multiple outputs, and the destination of
one of those outputs stops reading records. The queue
for that output grows until it reaches capacity, and
then rejects any new incoming records. Meanwhile, the
queues for other outputs continue accepting incoming
records.

User response
1. Check the health of the output destination.

For example, check the log of the destination
analytics platform for the following messages:

• Errors such as "No space left on device"
• Warnings about data arriving faster that it can be

processed, including internal queues or buffers
reaching capacity

2. If the destination is healthy, review the following
aspects of your OMEGAMON Data Provider
environment:

• The value of connect.event-
publisher.queue-capacity.

Consider whether you need to increase the value
to match your site-specific conditions.

• The data frequency of records that you are
sending to OMEGAMON Data Connect.

For example, review your OMEGAMON collection
intervals. Consider whether you can reduce the
frequency of some collection intervals.

• The processing resources and performance
characteristics of the system on which you are
running OMEGAMON Data Connect.

Consider whether you need faster hardware.
• The topology of your OMEGAMON Data Provider

environment.

Consider whether to divide the workload across
more instances of OMEGAMON Data Connect.

Messages 185

186 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Product legal notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 2021, 2024 187

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

188 IBM Z OMEGAMON Data Provider: Installation and User's Guide

IBM®

	Contents
	Figures
	Tables
	About this document
	What's new
	December 2023: APAR OA65724
	Breaking changes
	Other changes

	September 2023: APAR OA65247
	July 2023: APAR OA64880
	Breaking changes
	Other changes

	February 2023: APAR OA64177
	September 2022: APAR OA63539
	June 2022: APAR OA63141
	March 2022: APAR OA62775
	December 2021: APAR OA62420
	November 2021: First release

	Earlier documentation
	Upgrading
	December 2023: APAR OA65724
	Upgrading OMEGAMON Data Connect
	Upgrading OMEGAMON Data Broker
	Restarting OMEGAMON Data Provider

	July 2023: APAR OA64880
	Upgrading OMEGAMON Data Connect
	Upgrading OMEGAMON Data Broker
	Restarting OMEGAMON Data Provider

	Introduction
	Architecture
	Topology
	Security
	OMEGAMON monitoring agents as a data source
	OMEGAMON attribute collection
	How OMEGAMON Data Provider extends OMEGAMON attribute collection
	Starter dashboards

	Prerequisites
	For all data sources
	For OMEGAMON monitoring agents as a data source

	Installing
	Getting started
	Configuring data sources
	OMEGAMON monitoring agents

	Configuring OMEGAMON Data Broker
	Configuring OMEGAMON Data Connect
	Integrating analytics platforms
	Instana
	Elastic Stack
	Basic configuration

	Splunk
	Basic configuration
	Setting source type per-event based on product code and table name

	Starting OMEGAMON Data Provider

	Where and how to run OMEGAMON Data Connect
	Installation directory
	User directory
	JCL
	Shell script
	Java command line

	Modifying running components
	Reloading OMEGAMON collection configuration
	Reloading OMEGAMON Data Broker configuration
	Reloading OMEGAMON Data Connect configuration
	Displaying OMEGAMON Data Broker status
	Changing OMEGAMON Data Broker network activity logging level

	Adding more OMEGAMON collections
	Configuration
	OMEGAMON monitoring agents as a data source
	OMEGAMON Data Broker
	OMEGAMON Data Connect
	Connect
	TCP input
	TCP output
	HTTP output
	Kafka output
	Prometheus output
	STDOUT output
	Filters for JSON-format outputs
	Event publisher
	Logging

	Server
	Logging

	Output from OMEGAMON monitoring agents
	Supported OMEGAMON monitoring agents
	OMEGAMON attribute dictionary
	Attribute names versus field names
	Attribute groups versus table names

	Fields introduced by OMEGAMON Data Connect
	JSON output characteristics

	Troubleshooting
	Common issues
	Attributes not arriving at a destination analytics platform
	Attributes not arriving at OMEGAMON Data Broker or PDS
	OMEGAMON Data Connect fails with charset.MalformedInputException
	OMEGAMON Data Connect fails with UnsupportedClassVersionError

	Gathering diagnostic information

	Messages
	Expected messages
	KAYL, KPQD, KPQH: Messages from OMEGAMON collection tasks
	KAYB: Messages from OMEGAMON Data Broker
	KAYC: Messages from OMEGAMON Data Connect

	Product legal notices

