
Db2 13 for z/OS

SQL Data Insights User Guide
Last updated: 2024-02-19

IBM

Notes

Before using this information and the product it supports, be sure to read the general information under
"Notices" at the end of this information.

Subsequent editions of this PDF will not be delivered in IBM Publications Center. Always download the
latest edition from IBM Documentation.

2024-02-19 edition

This edition applies to Db2® 13 for z/OS® (product number 5698-DB2®), Db2 13 for z/OS Value Unit Edition (product
number 5698-DBV), and to any subsequent releases until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.
© Copyright International Business Machines Corporation 2022, 2023.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/docs/en/SSEPEK_13.0.0/home/src/tpc/db2z_pdfmanuals.html

Contents

About this information... v
Who should read this information..v
Terminology and citations.. v
Accessibility features for Db2 for z/OS... vi
How to send comments...vi

Chapter 1. Overview of SQL Data Insights.. 1

Chapter 2. Installing and configuring SQL DI (Roadmap)... 5
Preparing SQL DI installation...6
Configuring system resources for SQL DI..8
Configuring network ports for SQL DI..8
Configuring setup user ID for SQL DI.. 9
Configuring a keyring-based keystore (JCERACFKS) for SQL DI..12
Configuring Db2 for SQL DI..13
Installing SQL DI.. 14
Verifying the installation and configuration of SQL DI.. 16

Chapter 3. Upgrading SQL DI..19

Chapter 4. Enabling and running AI queries..21
Creating a connection to Db2.. 21
Adding an AI object..22
Enabling AI query...22
Viewing an AI object model...24
Running an AI query.. 25
Analyzing data..26

Chapter 5. Administering SQL DI..29
Modifying your SQL DI settings... 29
Creating a started task for the SQL DI application... 30
Creating started tasks for the Spark cluster... 31

Chapter 6. Db2 tables for SQL DI..33

Chapter 7. Db2 subsystem parameter for SQL DI.. 41
DSNTIP81: Performance and optimization panel 2..41
MAX AI DATA CACHING field (MXAIDTCACH subsystem parameter)..41

Chapter 8. Db2 built-in functions for SQL DI... 43
AI_ANALOGY..43
AI_COMMONALITY.. 45
AI_SIMILARITY..47
AI_SEMANTIC_CLUSTER... 49

Chapter 9. Db2 SQL statements for SQL DI... 51
CREATE FUNCTION (sourced)... 51
CREATE FUNCTION (inlined SQL scalar)...62
CREATE FUNCTION (SQL table).. 71

 iii

CREATE INDEX...79
CREATE MASK..108
CREATE PERMISSION..117
CREATE TABLE... 124
CREATE VIEW.. 193
DELETE...200
SET CURRENT TEMPORAL BUSINESS_TIME..217
SET CURRENT TEMPORAL SYSTEM_TIME..218
UPDATE.. 220

Chapter 10. Db2 queries for SQL DI.. 243
table-reference..243

Chapter 11. Db2 SQL codes for SQL DI..255

Information resources for Db2 for z/OS and related products..............................263

Notices..265
Trademarks.. 266
Terms and conditions for product documentation... 266
Privacy policy considerations.. 267

Glossary.. 269

Index.. 271

iv

About this information

Throughout this information, "Db2" means "Db2 13 for z/OS". References to other Db2 products use
complete names or specific abbreviations.

Important: To find the most up to date content for Db2 13 for z/OS, always use IBM® Documentation
or download the latest PDF file from PDF format manuals for Db2 13 for z/OS (Db2 for z/OS in IBM
Documentation).

For more about how to use this information, see "About this information" in the online product
documentation.

Who should read this information
This information is for data scientists and data engineers who want to enable and run AI queries against
Db2 data to extract hidden patterns and derive business insights.

This information is also for Db2 application architects and developers who are familiar with Structured
Query Language (SQL) and who want to develop AI-based applications that can quickly analyze complex
Db2 data for explainable insights in real time.

Terminology and citations
When referring to a Db2 product other than Db2 for z/OS, this information uses the product's full name to
avoid ambiguity.

The following terms are used as indicated:

Db2
Represents either the Db2 licensed program or a particular Db2 subsystem.

IBM OMEGAMON® for Db2 Performance Expert on z/OS
Refers to any of the following products:

• IBM IBM OMEGAMON for Db2 Performance Expert on z/OS
• IBM Db2 Performance Monitor on z/OS
• IBM Db2 Performance Expert for Multiplatforms and Workgroups
• IBM Db2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS®
Represents CICS Transaction Server for z/OS.

IMS
Represents the IMS Database Manager or IMS Transaction Manager.

MVS™
Represents the MVS element of the z/OS operating system, which is equivalent to the Base Control
Program (BCP) component of the z/OS operating system.

RACF®
Represents the functions that are provided by the RACF component of the z/OS Security Server.

© Copyright IBM Corp. 2022, 2023 v

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_13.0.0/home/src/tpc/db2z_13_prodhome.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/db2-for-zos/13?topic=zos-about-this-information
https://www.ibm.com/docs/en/db2-for-zos/13?topic=zos-about-this-information

Accessibility features for Db2 for z/OS
Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in z/OS products, including Db2 for z/OS. These
features support:

• Keyboard-only operation.
• Interfaces that are commonly used by screen readers and screen magnifiers.
• Customization of display attributes such as color, contrast, and font size

Tip: IBM Documentation (which includes information for Db2 for z/OS) and its related publications are
accessibility-enabled for the IBM Home Page Reader. You can operate all features using the keyboard
instead of the mouse.

Keyboard navigation
For information about navigating the Db2 for z/OS ISPF panels using TSO/E or ISPF, refer to the z/OS
TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS ISPF User's Guide. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information about the commitment
that IBM has to accessibility.

How to send your comments about Db2 for z/OS documentation
Your feedback helps IBM to provide quality documentation.

Send any comments about Db2 for z/OS and related product documentation by email to
db2zinfo@us.ibm.com.

To help us respond to your comment, include the following information in your email:

• The product name and version
• The address (URL) of the page, for comments about online documentation
• The book name and publication date, for comments about PDF manuals
• The topic or section title
• The specific text that you are commenting about and your comment

vi Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_13.0.0/home/src/tpc/db2z_13_prodhome.html
http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com

Chapter 1. Overview of SQL Data Insights
SQL Data Insights (SQL DI) is an AI-powered Db2 feature. It combines deep learning in artificial
intelligence (AI) with advanced IBM Z technologies to infuse the Db2 engine with SQL-based semantic
queries on user tables and views.

The existing data model in a relational database, SQL queries, text extensions, and user-defined functions
are incapable of capturing the semantic relationships among value entities within and across columns or
rows. SQL DI uses database embedding, a self-supervised learning approach in deep learning and AI, to
train a neural network model and infer semantic meanings for the unique values in a relational table. The
inferred meanings in the form of numeric vectors encapsulate the inter-column and intra-column data
relationships. SQL DI then uses the trained model that consists of numeric vectors to run AI queries that
discover, match, and cluster semantic similarities and dissimilarities in your Db2 data.

SQL DI
UI & training services

Z Deep Neural Network
Library stack

z/OS

RACF

User group
(SQLDIGRP)

Keyring
(SQLDIRG)

Db2

Db2 applications

Db2 stored
procedures

Db2 built-in
functions

SQL DI catalog
tables

AI query

zII P-enabled

H2 database

akka http server

Spark-integration
service

akka http server

Spark cluster

JDBC

zII P-enabled

https
Web

browser

Figure 1. SQL DI architecture

SQL DI is seamlessly integrated into your Db2 for z/OS environment. The feature is comprised of an AI
library stack, a data and query engine, and a web application. The AI library stack is provided by the Z
Deep Neural Network Library component that resides natively in z/OS. The stack consist of the zDNN,
zAIO, and zADE libraries, which enables SQL DI to take full advantage of IBM Z processors.

The data and query engine is built into Db2 for z/OS and provides services for processing
data and semantic queries. The core of this processing engine is the set of AI_SIMILARITY,
AI_SEMANTIC_CLUSTER, AI_ANALOGY, and AI_COMMONALITY scalar functions. You can use these built-
in functions in SQL statements to ask semantic questions about your data.

The SQL DI web application leverages the analytic framework of IBM Watson® Machine Learning for z/OS
and the runtime engines of z/OS Spark. The application provides the primary user interface for you to
create AI objects, enable AI queries, run AI queries, and visualize query results.

With SQL DI, you can quickly tap into the vast amount of mission-critical data in your Db2 and easily
uncover the hidden information across tables and views for actionable insights. You can achieve all these

© Copyright IBM Corp. 2022, 2023 1

without the costly effort of moving massive data across platforms, procuring expensive AI infrastructures
and acquiring advanced AI skills.

How does SQL DI work?
In the web user interface (UI), you connect SQL DI to your Db2, create an AI object from selected Db2
tables and views, enable the object for AI queries, and run queries on the object at any time.

To enable the object for AI queries, SQL DI preprocesses the data in the object, creates a neural network
model on the data, and loads the model into Db2. For data preprocessing, SQL DI uses an embedded
Spark cluster to convert Db2 columns selected for enablement as text, known as the AI object text data.
After data transformation, SQL DI clusters numeric data type values and replace all numeric values with
cluster identifiers. In text format, every numeric or categorical data type value in the data is tagged with
its column name. In addition, every numeric data type value is associated a cluster identifier.

IBM Z
Deep Neural

Network
Library stack

IBM Z AI Data
Embedding

Library

IBM Z AI
Optimization

Library

IBM Z Deep
Neural Network

Library

z/OS
OpenBlas

IBM zSystem

Spark cluster

Db2

Built-in AI
functions

SQL DI
web app

Java

z/OS
Supervisor

Figure 2. SQL DI AI query enablement

After the data is preprocessed, SQL DI uses z/OS AI capabilities provided by the zDNN stack to train
the model with input from the AI object text data set. The training process generates numeric vectors
for every unique value in the data set. The numeric vectors represent the inter-column and intra-column
semantic relationships between different unique values, also referred as the vocabulary, in the object.
SQL DI uses the Db2 LOAD utility to load the trained model into a Db2 table.

After successful enablement, you can run similarity, dissimilarity, clustering, or analogy queries on the
object at any time. Simply select a query type, enter a SQL statement, and run the query. Depending on
the query type that you select, SQL DI uses a corresponding Db2 AI function to process your query. It
displays the first 50 rows of the query results in the UI and loads the remaining rows into the Db2 table.
You can export the displayed rows from the SQL DI UI or download the entire result set from Db2.

During model training, SQL DI also collects key data statistics and renders them into column influence
and discriminator scores for the object and the model. A column influence score correlates to the number
of user-specified NULL values in a column and indicates the column's influence on the training of the
object model. On the other hand, a discriminator score correlates to the number of unique values in a
column and measures the column's ability to semantically distinguish its values from other values in the
table. You can use the visualized scores to help you understand the results of your AI queries on the
object

SQL DI concepts and definitions
The following concepts and definitions can help you learn, use, and administer SQL DI:

2 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

AI object
A SQL DI asset that you can create to contain a Db2 user table or view. You can then enable the object
for AI query in the SQL DI UI.

AI object text data
The data in an AI object that is transformed and formatted as text for AI query enablement. This
text data is the input to model training. The number of tokens in the data are the values in every
categorical and numeric column that are selected for model training for the AI object.

Vocabulary
The total number of unique values in the selected SQL DI categorical columns and the number of
clusters associated with the selected numeric columns in the AI object for AI query enablement.

SQL DI data type
A SQL DI-specific data category descriptor that you can assign to a column in an AI object for column
configuration and model training. You can assign the column one of the following SQL DI data types:

• Categorical: The SQL DI categorical data type is used for columns with discrete values, each of
which is its own entity.

• Numeric: The SQL DI numeric data type is used for columns with continuous values.
• Key: The SQL DI key data type is used to indicate that a column represents an entire row.

See “Enabling AI query” on page 22 for more information.

AI query
A semantic query that you can run on an AI object to infer hidden relationships between entities in the
object. You can select from the following AI query types:

SQL DI AI query types and corresponding Db2 AI functions

SQL DI query type Description Corresponding Db2 AI
function

Semantic similarity A similarity query identifies groups of similar
records or entities in records.

AI_SIMILARITY

Semantic dissimilarity A dissimilarity query finds the outliers from the
norm in records.

AI_SIMILARITY

Semantic clustering A clustering query forms a cluster of entities
in records and evaluates whether or not an
additional entity belongs in the cluster.

AI_SEMANTIC_CLUSTE
R

Semantic analogy An analogy query determines if the relationship
between two entities applies to that of a second
pair of entities.

AI_ANALOGY

Semantic commonality A commonality query identifies the entities
in records that exhibit the most common or
uncommon patterns.

AI_COMMONALITY

See “Running an AI query” on page 25 for more information.

Vector prefetch
The advanced processes that SQL DI uses to upload the numeric vectors to the zAIO library for
calculating the similarity scores. The vectors are generated from an AI object text data set. The
existing query processing architecture dictates that Db2 AI functions submit the vectors, record-by-
record, to z/OS for processing. To significantly improve the query performance, SQL DI implements
vector prefetch, which enables Db2 to upload multiple vectors in a batch at a time.

ibm-data2vec
A z/OS native AI function that SQL DI uses for model training. The ibm-data2vec function is an
implementation of a self-supervised database embedding algorithm. The database embedding takes
as input a text file that is created from a multi-modal relational table and builds a relationship map

Chapter 1. Overview of SQL Data Insights 3

between text tokens by using the relational data model. The input training document generated from
a relational table consists of string tokens that represent different relational entities in the original
Db2 table or view. The ibm-data2vec function views the training document as a set of sentences,
where each sentence represents a relational table row.

After model training is completed, ibm-data2vec generates a numeric vector of a pre-defined length
(dimension) for each token, and the vector encodes the meaning of that token. The core numerical
computations of the training process are paralleled by using multiple threads and accelerated by
using hardware-accelerated numerical computations. The final trained model is stored as a binary file
that uses the Db2 ZLOAD utility. See ibm-data2vec for more information.

base10Cluster
A z/OS numerical clustering algorithm that clusters together numerically closer items in different
buckets, each of which represents a distinct cluster. SQL DI uses the base10Cluster algorithm to
process an input data set and generate an output file that lists the number of buckets and their
corresponding minimum values. See base10Cluster for more information.

Column influence score
A score that correlates to the number of user-specified and SQL NULL values in a column and
indicates the column's influence on the training of the object model. The fewer NULL values the
column has, the higher influence score it generates.

Column discriminator score
A score that correlates to the number of unique values in a column and measures the column's ability
to semantically distinguish its values from other values in the table. The more unique values the
column has, the higher discriminator score it generates.

4 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/zos/2.5.0?topic=reference-data2vec
https://www.ibm.com/docs/en/zos/2.5.0?topic=reference-base10cluster

Chapter 2. Installing and configuring SQL DI
(Roadmap)

Getting SQL DI up and running involves a sequence of tasks that might be best performed by people in
different roles at different times. Create a high level action plan for planning, installing, and configuring
SQL DI.

Consider using the following roadmap to manage your planning, installation, and configuration activities
and progresses.

Sequen
ce Task and instructions Priority Type Role and skills

Step 1 Preparing for SQL DI installation

• Meet hardware requirements by allocating a
IBM z16™, z15®, z14, z13®, or zEnterprise®

EC12 system.
• Meet OS requirements by installing IBM

z/OS 2.5 or 2.4.
• Install the IBM Z Deep Neural Network

Library (zDNN) stack.
• Install z/OS Supervisor.
• Install IBM OpenBLAS.
• Install IBM Db2 13 for z/OS.
• Obtain SQL DI product code packages.

Require
d

Plannin
g,

installat
ion,

configu
ration

z/OS system administrator
or programmer, Db2
system or database
administrator, SQL DI
setup user

Step 2 Configuring system capacity and resources for
SQL DI

Require
d

Plannin
g,

configu
ration

z/OS system administrator,
MVS system administrator

Step 3 “Configuring network ports for SQL DI” on
page 8

Require
d

Plannin
g,

configu
ration

z/OS system programmer
with Unix service
system skills, network
administrator

Step 4 “Configuring setup user ID for SQL DI” on
page 9

Require
d

Plannin
g,

configu
ration

z/OS system administrator
or programmer with Unix
service system skills,
security administrator

Step 5 “Configuring a keyring-based keystore
(JCERACFKS) for SQL DI” on page 12

Require
d

Configu
ration

z/OS system administrator
or programmer with Unix
service system skills
and z/OS keyring and
keystore skills, network
administrator, security
administrator

Step 6 “Configuring Db2 for SQL DI” on page 13 Require
d

Configu
ration

Db2 system or database
administrator

© Copyright IBM Corp. 2022, 2023 5

Sequen
ce Task and instructions Priority Type Role and skills

Step 7 Installing and configuring SQL DI Require
d

Installa
tion,

configu
ration

SQL DI setup user, z/OS
system programmer with
Unix shell skills

Step 8 “Verifying the installation and configuration of
SQL DI” on page 16

Require
d

Installa
tion,

configu
ration

z/OS system administrator
or programmer, Db2
system or database
administrator, SQL DI
setup user

Step 9 Chapter 3, “Upgrading SQL DI,” on page 19 Require
d (for

installin
g the
latest

enhanc
ements)

z/OS system administrator
or programmer, Db2
system or database
administrator, SQL DI
setup user

The roadmap consists of the following elements:

Sequence
Prescribes the order in which a task must be performed in the overall installation and configuration
process. It will be noted if a particular task can be executed concurrently with another one or
otherwise out of the order.

Task and instructions
Specifies the name of a task in the sequence and links to step-by-step instructions for performing the
task.

Priority
Specifies whether a task is required or optional.

Type
Indicates the type of a task that can be planning, installation, or configuration. Some planning tasks,
such as allocating system capacity and procuring prerequisite hardware and software, require longer
lead time to complete. Quickly identify those tasks so that you can factor in the required time in your
own action plan.

Role and skills
Recommends the IT role, skills, and access levels required for performing a particular task. For
example, a z/OS system administrator with UNIX shell programming skills is one of the roles required
for installing and configuring SQL DI. While the roles of database administrator, security administrator,
network administrator, and UNIX shell programmer are optional, their skills and knowledge are much
wanted.

Preparing SQL DI installation
Preparing for installation involves obtaining the SQL Data Insights (SQL DI) product code and readying
your system environment. SQL DI has specific system, network, user access, and security requirements.
You must satisfy these requirements before you install SQL DI.

Required product code packages
IBM distributes the SQL DI product code in SMP/E RELFILE format. Make sure that you obtain the
following SQL DI code packages:

• SQL Data Insights 1.1.0 (HDBDD18) for Db2 13 for z/OS.
• APAR PH46563 (and any latest maintenance packages if available).

6 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Important: Db2 releases new and enhanced SQL DI functions as they become available. To exploit these
functions, install the latest maintenance packages (APARs/PTFs) for your Db2, z/OS, and SQL DI UI. See
Chapter 3, “Upgrading SQL DI,” on page 19 for details.

Hardware and software requirements
SQL DI requires the following hardware, software, and integrated development tools. If you decide
to enable the feature, make sure that you meet all the prerequisites before the installation. Consider
planning the system requirements for both your Db2 system and the SQL DI feature together, particularly
if you decide to install the SQL DI feature on the same LPAR where your Db2 system runs.

• IBM z16, z15, z14, z13, or zEnterprise EC12 system.

For best performance, consider running SQL DI on the latest models of Z.
• IBM z/OS 2.5 or 2.4.

Verify that data set SYS1.SIEALNKE and CEE.SCEERUN2 are APF authorized and accessible by Db2.
See z/OS 2.5 program directory or z/OS 2.4 program directory for instructions.

• IBM Z Deep Neural Network Library (zDNN), including the Z AI Optimization Library (zAIO) and the Z AI
Data Embedding Library (zADE), by applying the following APARs for z/OS:

– For z/OS 2.5, apply OA62901, OA62902, and OA62903.
– For z/OS 2.4, apply OA62849, OA62886, and OA62887.

• z/OS Supervisor with APAR OA62728 for both z/OS 2.5 and 2.4.
• IBM OpenBLAS by applying the following APARs for z/OS:

– For z/OS 2.5, apply PH45672, PH44479, and PH46862.
– For z/OS 2.4, apply PH45663, PH44479, and PH46862.

• IBM Db2 13 for z/OS (5698-DB2 or 5698-DBV) with APAR PH49781 applied.
• z/OS OpenSSH. See z/OS OpenSSH for instructions.
• IBM 64-bit SDK for z/OS Java™ Technology Edition Version 8 SR7 FP11.

Browser requirements
SQL DI features a web-based user interface (UI). Make sure that you run the UI with the following
standard or desktop version of Mozilla Firefox and Google Chrome:

• Firefox version 54 or higher
• Chrome version 60 or higher.

Related tasks
“Installing SQL DI” on page 14
The installation of SQL Data Insights (SQL DI) involves a script-driven sequence of interactive tasks. Make
sure that you follow the step-by-step instructions and successfully complete each task.
“Verifying the installation and configuration of SQL DI” on page 16

Chapter 2. Installing and configuring SQL DI (Roadmap) 7

http://publibz.boulder.ibm.com/epubs/pdf/e0zpdz40.pdf
http://publibz.boulder.ibm.com/epubs/pdf/e0zpdz30.pdf
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ssh/ssh.htm

Before you and your business start to use SQL Data Insights (SQL DI), complete a quick procedure to
verify that the feature is properly installed and configured.

Configuring system resources for SQL DI
Preparing for installation involves obtaining the SQL Data Insights (SQL DI) product code and readying
your system environment. SQL DI has specific system, network, user access, and security requirements.
You must satisfy these requirements before you install SQL DI.

System capacity requirements
System capacity for SQL DI varies based on several key workload factors, including the size of source
data, the number of unique values, and the data type of selected columns. As the number of rows and
columns increase, more CPU, memory, and storage are required for enabling and running AI queries. The
number of unique column values and the size of an AI object model correspond proportionally. The more
distinct column values there are, the larger the resulting object model becomes and the more system
resources are needed for training the model.

Take for example the system resource usage for processing a small SQL DI AI object. The AI object is
2.2 GB in size with 26 columns and 10 million rows. While 14 columns are of the SQL DI numeric data
type, the remaining 12 columns are of the categorical type. It requires 8 threads on 10 CPUs, up to 17
GB of memory, and 20 GB file system storage to enable the object for AI query while achieving adequate
performance goals. The total of 4 million unique values contributes to the final size of the resulting model,
which requires 13 GB of disk space in the Db2 storage group.

MVS resource workload requirements
When you enable an AI object for AI query, SQL DI creates and trains a machine learning model for
the object. Model training can consume all the resources available for your OMVS subsystem. Consider
defining your SQL DI workload in z/OS Workload Manager (WLM) and assign a service class for Spark
associated with this workload. For the service class, specify the default qualifier names SQLD% and
SQLDAPPS with your performance goals and resource requirements for the workload. Also, consider
assigning the service class for your SQL DI workload a lower priority than for your Db2 workloads. See
z/OS workload management for Apache Spark for more information.

Related tasks
“Installing SQL DI” on page 14
The installation of SQL Data Insights (SQL DI) involves a script-driven sequence of interactive tasks. Make
sure that you follow the step-by-step instructions and successfully complete each task.
“Verifying the installation and configuration of SQL DI” on page 16
Before you and your business start to use SQL Data Insights (SQL DI), complete a quick procedure to
verify that the feature is properly installed and configured.

Configuring network ports for SQL DI
Preparing for installation involves obtaining the SQL Data Insights (SQL DI) product code and readying
your system environment. SQL DI has specific system, network, user access, and security requirements.
You must satisfy these requirements before you install SQL DI.

Network requirements
SQL DI requires dedicated networks and ports for communications across systems and services. Some of
the ports are predefined while others can be user-defined. You must configure the following ports in your
firewall before the SQL DI installation.

8 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/zpas/1.1.0?topic=spark-configuring-zos-workload-management-apache

System or service Port number Outbound system Inbound system Default address
space

SQL DI UI 15001 or user-
defined

Your network z/OS system SQLDAPPS

z/OS Spark master 7077 or user-
defined

z/OS system z/OS Spark system SQLDSPKM

z/OS Spark master
REST API

6066 or user-
defined

z/OS system z/OS Spark system SQLDSPKM

z/OS Spark master
UI

8080 or user-
defined

Your network z/OS Spark system SQLDSPKM

z/OS Spark worker System-assigned*

or user-defined
z/OS system z/OS Spark system SQLDSPKW

z/OS Spark worker
UI

8081 or user-
defined

Your network z/OS Spark system SQLDSPKW

z/OS Spark driver System-assigned*

or user-defined
z/OS system z/OS Spark system SQLDSPKD

z/OS Spark block
manager

System-assigned*

or user-defined
z/OS system z/OS Spark system SQLDSPKX

z/OS driver-
specific port
for Spark block
manager

System-assigned*

or user-defined
z/OS system z/OS Spark system SQLDSPKD

Notes:
* If you manage port assignments and access in your sysplex, do not use system-assigned port
numbers for Spark worker, Spark driver, Spark block manager, or z/OS driver-specific port for Spark
block manager. Also, a Spark cluster requires a port range, instead of a single port, at runtime. The
actual range depends on the specified maximum number of retries for binding to a port.

Related tasks
“Installing SQL DI” on page 14
The installation of SQL Data Insights (SQL DI) involves a script-driven sequence of interactive tasks. Make
sure that you follow the step-by-step instructions and successfully complete each task.
“Verifying the installation and configuration of SQL DI” on page 16
Before you and your business start to use SQL Data Insights (SQL DI), complete a quick procedure to
verify that the feature is properly installed and configured.

Configuring setup user ID for SQL DI
The installation and configuration of SQL Data Insights (SQL DI) requires that you have sufficient
privileges to access your z/OS system, allocate system resources, and customize system environment
variables. Consider creating a multipurpose SQL DI setup user ID, grant it required permissions, and
customize your z/OS environment for it.

Procedure
1. If you have not done so, create a multipurpose <sqldi_setup_userid>, which you will use to

install, configure, and run your SQL DI.

Chapter 2. Installing and configuring SQL DI (Roadmap) 9

You can create the required <sqldi_setup_userid> in different ways. For example, you can
customize and run the following sample JCL job to create the ID:

//CREATE JOB (0),SQLDI RACF',CLASS=A,REGION=0M,
//MSGCLASS=H,NOTIFY=&SYSUID
//*--*/
//RACF EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
ADDGROUP SQLDIGRP OMVS(GID(<group-identifier>)) OWNER(SYS1)
ADDUSER <sqldi_setup_userid> DFLTGRP(SQLDIGRP) OMVS(UID(<user-identifier>) -
HOME(/u/<sqldi_setup_userid>) -
PROGRAM($SQLDI_INSTALL_DIR/tools/bin/bash)) -
NAME('SQLDI ID') PASSWORD(<password>) NOOIDCARD
/*

where

• <sqldi_setup_userid> is the user ID that you will use to configure and run your SQL DI.
• SQLDIGRP is a RACF group that you will use to associate SQL DI users and manage their access.
• <group-identifier> is the identifier for SQLDIGRP.
• <user-identifier> is the identifier for <sqldi_setup_userid>. Do not use UID 0 for

<sqldi_setup_userid>.
• $SQLDI_INSTALL_DIR is the directory where SQL DI is installed. The default is /usr/lpp/IBM/
db2sqldi/.

2. Allocate a minimum of 500 MB disk space to the home directory for <sqldi_setup_userid>.
3. Create a SQLDI_HOME directory where SQL DI will store all the configuration, customization, and log

files as well as runtime data.

a. Create the SQLDI_HOME directory. Make sure that SQLDI_HOME is mounted to a zFS file system
with at least 100 GB storage available.

Tip: Avoid creating or configuring the SQLDI_HOME directory with automount management.
Automount might unmount a directory if it is not referenced for a period of time. Any unplanned
unmount of the SQLDI_HOME directory will cause SQL DI to fail.

b. If you use another user ID to create the SQLDI_HOME directory, make sure to change the directory
owner to <sqldi_setup_userid> by issuing the following command:

chown –R sqldi_setup_userid:SQLDIGRP SQLDI_HOME/

c. To allocate zFS data sets for SQLDI_HOME that are larger than 100 GB, make sure that you specify
the DFSMS data class with extended format and extended addressability.

4. Configure your z/OS UNIX shell environment for <sqldi_setup_userid>

a. Copy the $SQLDI_INSTALL_DIR/templates/profile.template directory into
$HOME/.profile for <sqldi_setup_userid>.

b. Customize the following environment variables in the profile template:

• Set $JAVA_HOME to the directory of your IBM Java 8 SR7 installation.
• Set $SQLDI_INSTALL_DIR to the directory where your SQL DI is installed. The default

is /usr/lpp/IBM/db2sqldi/.
• Set $BLAS_INSTALL_DIR to the directory where the IBM OpenBLAS is located on your z/OS

system. The default is /usr/lpp/cbclib.
c. Verify that the PATH environment variable is correctly set in the profile template as shown in the

following example:

PATH=/bin:
PATH=$SQLDI_INSTALL_DIR/sql-data-insights/bin:$PATH
PATH=$SQLDI_INSTALL_DIR/tools/bin:$PATH
PATH=$PATH:$JAVA_HOME/bin
export PATH=$PATH

10 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Where /tools/bin is home to bash, OpenSSL, and other tools.
5. Configure <sqldi_setup_userid> access to your z/OS UNIX shell environment.

<sqldi_setup_userid> must have the following permissions to install, configure, and run your SQL
DI:

• Permission to read and write to the SQLDI_HOME directory.
• Permission to read and execute to the $SQLDI_INSTALL_DIR directory used by the SMP/E

installation.
• $JAVA_HOME/bin defined in the $PATH environment variable in the user's profile.
• IBM_JAVA_OPTIONS environment variable set to -Dfile.encoding=UTF-8 in the user's profile.
• _BPXK_AUTOCVT environment variable set to ON in the user's profile.
• READ access to the RACF BPX.JOBNAME facility class so that SQL DI default address space names

can take effect and that you can assign default job names with the SQLDI prefix to SQL DI started
services.

• READ access to resources CSFDSG, CSFDSV, CSFEDH, CSFIQA, CSFIQF, CSFOWH, CSFPKG, CSFPKI,
CSFPKX, CSFRNG, and CSFRNGL for ICSF services in the CSFSERV class if your system is
CryptoCard-enabled.

6. Update system resource settings, including CPUTIMEMAX, MEMLIMIT, and ASSIZEMAX values in the
OMVS segment of the RACF profile for <sqldi_setup_userid>.

If needed, issue the ALTUSER command to update the CPUTIMEMAX, MEMLIMIT, and ASSIZEMAX
settings as shown in the following example:

ALTUSER <sqldi_setup_userid> OMVS(ASSIZEMAX(address-space-size)
 MEMLIMIT(nonshared-memory-size) CPUTIMEMAX(cpu-time))

SQL DI requires sufficient system memory to function properly. You can use the MEMLIMIT
and ASSIZEMAX parameters to control the amount of memory for the address space started
by <sqldi_setup_userid>. At the minimum, set MEMLIMIT initially to 32 GB or greater and
ASSIZEMAX to 1 GB.

SQL DI also requires sufficient system CPU to run unimpeded. Consider setting the CPUTIMEMAX
parameter to unlimited to ensure uninterrupted operations.

You can issue the ulimit command in a z/OS UNIX shell session to verify CPUTIMEMAX, MEMLIMIT,
and ASSIZEMAX settings. The command returns a message that is similar to the following example:

/bin/ulimit -a
core file 8192b
cpu time unlimited
data size unlimited
file size unlimited
stack size unlimited
file descriptors 520000
address space 1048576k
memory above bar 24576m

Where

• "cpu time" is the value of the CPUTIMEMAX parameter.
• "address space" is the value of the ASSIZEMAX parameter.
• "memory above bar" is the value of the MEMLIMIT parameter.

See ALTUSER (Alter user profile) and ulimit for more information.
7. Verify that the required Java is installed on the z/OS system where you will install the SQL DI and

available to <sqldi_setup_userid>.

Related tasks
“Installing SQL DI” on page 14

Chapter 2. Installing and configuring SQL DI (Roadmap) 11

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.icha400/altuser.htm#altuser
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.bpxa500/ulimit.htm

The installation of SQL Data Insights (SQL DI) involves a script-driven sequence of interactive tasks. Make
sure that you follow the step-by-step instructions and successfully complete each task.
“Configuring a keyring-based keystore (JCERACFKS) for SQL DI” on page 12
SQL Data Insights (SQL DI) uses SSL to secure network communications and RACF to authenticate
users. You must configure a RACF keyring and an associated keystore (JCERACFKS) to manage your SSL
certificates and SQL DI user authentication.

Configuring a keyring-based keystore (JCERACFKS) for SQL DI
SQL Data Insights (SQL DI) uses SSL to secure network communications and RACF to authenticate
users. You must configure a RACF keyring and an associated keystore (JCERACFKS) to manage your SSL
certificates and SQL DI user authentication.

Before you begin
A RACF keyring is a set of digital certificates, private keys, and key mappings that defines your network
trust policy, and a RACF keystore (JCERACFKS) collects and manages all the keyrings. To configure a RACF
keystore, make sure that you grant your user ID with the RACF SPECIAL authority or sufficient authority
as described in RACDCERT command.

Procedure
1. Create a keyring by issuing the following RACF command:

RACDCERT ADDRING(SQLDIRG) ID(SQLDIID)

Where SQLDIID is the owner of the RACF keyring.
2. Generate a CA (certificate authority) certificate by issuing the following command:

RACDCERT GENCERT CERTAUTH +
SUBJECTSDN(+
 CN('PLEXE2') +
 C('US') +
 SP('CA') +
 L('SAN JOSE') +
 O('IBM') +
 OU('SQLDI') +
) +
ALTNAME(+
 EMAIL('user1@ibm.com') +
) +
WITHLABEL('SQLDICert') +
NOTAFTER(DATE(2030/01/01))

If you decide to use an existing CA-signed certificate used by your business, make sure that you add
and import the root CA certificate to RACF. See instructions in RACDCERT command for using the
RACDCERT ADD and RACDCERT IMPORT commands.

3. Generate and sign a user certificate for <sqldi_setup_userid> by issuing the following command:

RACDCERT GENCERT ID(SQLDIID) +
SUBJECTSDN(+
 CN('PLEXE2') +
 C('US') +
 SP('CA') +
 L('SAN JOSE') +
 O('IBM') +
 OU('SQLDI') +
) +
ALTNAME(+
 EMAIL('user1@ibm.com') +
) +
WITHLABEL('SQLDICert_SQLDIID') +
SIGNWITH(CERTAUTH LABEL('SQLDICert')) +
NOTAFTER(DATE(2022/01/01))

Where SQLDIID is the owner of the RACF keyring.

12 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.icha400/radcertg.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.icha400/radcertg.htm

4. Connect the user certificate and the CA certificate to the keyring you created and add usage options by
issuing the following commands:

RACDCERT ID(SQLDIID) CONNECT(CERTAUTH LABEL('SQLDICert') +
RING(SQLDIRG))

RACDCERT ID(SQLDIID) CONNECT(ID(SQLDIID) LABEL('SQLDICert_SQLDIID') +
RING(SQLDIRG) USAGE(PERSONAL))

5. Grant <sqldi_setup_userid> permission to access the keyring and the CA certificate.

<sqldi_setup_userid> must have the READ or UPDATE authority to the
IRR.DIGTCERT.LISTRING resource in the FACILITY class. While the READ access enables the
listing of your own keyring, the UPDATE access enables the listing of keyrings owned by others.

Issue the following commands:

RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(<sqldi_setup_userid>) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

<sqldi_setup_userid> must also have the READ or UPDATE authority to the
<ringOwner>.<ringName>.LST resource in the RDATALIB class. While the READ access enables
the retrieval of your private keys, the UPDATE access enables the retrieval of keys by others.

Issue the following commands:

RDEFINE RDATALIB SQLDIID.SQLDIRG.LST UACC(NONE)
SETROPTS CLASSACT(RDATALIB) RACLIST(RDATALIB)
SETROPTS CLASSACT(RDATALIB)
PERMIT SQLDIID.SQLDIRG.LST CLASS(RDATALIB) ID(<sqldi_setup_userid>) ACCESS(READ)
SETROPTS RACLIST(RDATALIB) REFRESH

See “Configuring setup user ID for SQL DI” on page 9 for the full list of the privileges required for
<sqldi_setup_userid>.

Related tasks
“Installing SQL DI” on page 14
The installation of SQL Data Insights (SQL DI) involves a script-driven sequence of interactive tasks. Make
sure that you follow the step-by-step instructions and successfully complete each task.
Related information
RACDCERT command

Configuring Db2 for SQL DI
To enable SQL Data Insights (SQL DI), you must customize and submit the DSNTIJAI job to create the
required database and tables in Db2 for z/OS for SQL DI.

Before you begin
The DSNUTILU stored procedure must be configured in Db2. See DSNUTILU stored procedure.

Note: DSNTIJAI uses program DSNTIAD, the package of which must be bound with APPLCOMPAT
V12R1M500 or higher in order to run.

Procedure
1. Copy and customize the DSNTIJAI sample job member in the Db2 SDSNSAMP library according to your

needs.

When you create STOGROUP DSNAIDSG in the DSNTIJAI sample job, use a catalog alias for the
VCAT option. Make sure that the alias is assigned to SMS-managed data sets that have allocation for
extended format and extended addressability. The allocation will accommodate models that are larger
than 4 GB in size.

Chapter 2. Installing and configuring SQL DI (Roadmap) 13

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.icha400/radcertg.htm
https://www.ibm.com/docs/en/db2-for-zos/13?topic=db2-dsnutilu

2. Submit DSNTIJAI.

Note: The last step, DSNTIAI4, of the DSNTIJAI job grants the necessary database permissions to SQL
DI users. You must repeat step DSNTIAI4 for each user.

3. Review the load template and add permissions.

This step involves loading a Db2 table. SQL DI provides a template with the utility control statements
for the zLoad process.

Follow the instructions described in step “3” on page 29 of “Modifying your SQL DI settings” on page
29 to review the load template file. Ensure that SQL DI users have access to the data sets referred
to in the template, and that adequate temporary space has been allocated, based on the size of your
source table.

Note: The default high-level qualifier (HLQ) specified in the TEMPLATE statements in the load template
is the z/OS job name indicated by the "&JO" variable. Review whether it is appropriate for SQL DI users
to run the zLOAD utility in your environment.

Related tasks
“Installing SQL DI” on page 14
The installation of SQL Data Insights (SQL DI) involves a script-driven sequence of interactive tasks. Make
sure that you follow the step-by-step instructions and successfully complete each task.
“Modifying your SQL DI settings” on page 29
During the installation and configuration, default values are automatically set to some of your SQL Data
Insights (SQL DI) parameters, including the minimum amount of memory to run Spark jobs and the
maximum number of rows to load for AI queries. Depending on the size of your data and the need of your
workload, you can modify the default settings on the Settings page of the SQL DI user interface.

Installing SQL DI
The installation of SQL Data Insights (SQL DI) involves a script-driven sequence of interactive tasks. Make
sure that you follow the step-by-step instructions and successfully complete each task.

Before you begin
Make sure that you have obtained the SQL DI code packages and met all system requirements as
described in “Preparing SQL DI installation” on page 6.

Procedure
1. Transfer the SQL DI program directory and product code packages onto your Z system.
2. Follow the instructions in the Db2 SQL Data Insights Program Directory and use SMP/E to install SQL

DI and apply fixes.

The SMP/E program installs SQL DI in the $SQLDI_INSTALL_DIR directory. The default
$SQLDI_INSTALL_DIR directory is /usr/lpp/IBM/db2sqldi/.

3. Verify that SMP/E was successfully executed for all the product code packages.
4. Create a separate SQLDI_HOME directory, with a minimum of 100 GB free disk space, to store the SQL

DI configuration and log files.
5. Install the SQL DI web application.

a) In a bash session, change to the $SQLDI_INSTALL_DIR/bin directory.
b) Execute the installation script by issuing the following command:

./sqldi.sh create

c) For each prompt, respond by entering the requested information or accepting the default.

• Enter the SQLDI_HOME directory where your SQL DI configuration and log files will be stored.
• Enter the IP address or hostname for your SQL DI application.

14 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

• Enter the port number for your SQL DI application or press Enter to use the default port of 15001.
• Enter your keystore information.

SQL DI requires one of the following keystore types:
1. JCERACFKS (for managing RACF certificates and keys)
2. JCECCARACFKS (for managing RACF certificates and keys and exploiting hardware
cryptography)

Select your keystore type and then enter the keyring name, the keyring owner, and the label of
your SSL certificate.

• Enter the IP address or hostname of your Spark master.
• Enter the port number of your Spark master or press Enter to use the default port of 7077.
• Enter the port number of your Spark master REST API or press Enter to use the default port of
6066.

• Enter the port number of your Spark web UI or press Enter to use the default port of 8080.
• Enter the port number of your Spark worker or press Enter to use a system-assigned port.
• Enter the port number of your Spark worker web UI or press Enter to use the default port of
8081.

• Enter the port number of your Spark driver or press Enter to use a system-assigned port.
• Enter the port number of your Spark block manager or press Enter to use a system-assigned port.
• Enter the driver-specific port for the Spark block manager to listen on or press Enter to use a

system-assigned port as the default.
• Enter the maximum number of retries when binding to a port or press Enter to use the default

number of 16.

The installation process continues. You will see a message similar to the following example when
it completes:

Congratulations! You have successfully installed SQL Data Insights.

• Confirm or decline to start your SQL DI automatically. If you confirm, the current command
process will start SQL DI automatically. If you decline, continue to the next step to start SQL DI
manually.

6. Start your SQL DI by issuing the following command:

./sqldi.sh start

Your SQL DI is successfully started if you see a message similar to the following example:

SQL Data Insights will use SQLDI_HOME to store configuration files and logs.
Bash version is 4.3
Starting SQL Data Insights ...
Reading configurations ...
Generating required configuration files ...
Launching SQL Data Insights ...

.............

SQL Data Insights is successfully started.

You can access it at https://<SQLDI-IPAddress>:<SQLDI-PortNumber>

Where SQLDI-IPAddress and SQLDI-PortNumber are either the IP address and port number that you
entered or the defaults you accepted earlier. Make note of this URL and distribute it to your users.

7. Verify that the SQL DI user interface (UI) is up and running.

Sign in the UI at the following address with a valid RACF user ID that belongs to the SQLDIGRP group:

https://<SQLDI-IPAddress>:<SQLDI-PortNumber>

Chapter 2. Installing and configuring SQL DI (Roadmap) 15

The SQL DI UI supports the standard or desktop version of Mozilla Firefox and Google Chrome. See
“Preparing SQL DI installation” on page 6 for details.

Tip: When the installation and configuration process completes successfully, the sqldi.sh script
appends a set of command aliases to your $HOME/.profile. After you execute a source
$HOME/.profile command, you can use the aliases to manage the lifecycle of SQL DI application
and related Spark processes as follows:

• start_sqldi used for starting the SQL DI application.
• stop_sqldi used for stopping the SQL DI application.
• start_spark used for starting the embedded Spark cluster.
• stop_spark used for stopping the embedded Spark cluster.

Related tasks
“Verifying the installation and configuration of SQL DI” on page 16
Before you and your business start to use SQL Data Insights (SQL DI), complete a quick procedure to
verify that the feature is properly installed and configured.
Related reference
“Preparing SQL DI installation” on page 6
Preparing for installation involves obtaining the SQL Data Insights (SQL DI) product code and readying
your system environment. SQL DI has specific system, network, user access, and security requirements.
You must satisfy these requirements before you install SQL DI.

Verifying the installation and configuration of SQL DI
Before you and your business start to use SQL Data Insights (SQL DI), complete a quick procedure to
verify that the feature is properly installed and configured.

Before you begin
• Complete all the pre-installation tasks as described in “Preparing SQL DI installation” on page 6.
• Complete the installation and configuration of SQL DI as described in “Installing SQL DI” on page 14.

Procedure
Your SQL DI is properly installed and configured and ready for use if you can successfully complete the
following sequence of tasks.
1. Customize and run the DSNTIJAV sample job in the Db2 SDSNSAMP data set.

The JCL job creates the sample DSNAIDB.CHURN table.
2. Create a connection to the Db2 system where the DSNAIDB.CHURN table is stored, as described in

“Creating a connection to Db2” on page 21.
3. Create an AI object named CHURN from the DSNAIDB.CHURN table and then enable it for AI query as

described in “Enabling AI query” on page 22.
a) For column configuration, assign SQL DI key data type to the CustomerID and retain the pre-

assigned SQL DI data types for all other columns. You don't need to set column filter values.
b) Click Enable AI query to start the enablement process.

When the AI query enabling process completes successfully, the status of object CHURN is changed
to Enabled.

4. Run AI query on object CHURN as described in “Running an AI query” on page 25.
a) Enter the following statement in the SQL editor:

SELECT AI_SIMILARITY(X.customerID, '3668-QPYBK') AS SimilarityScore, X.*
FROM DSNAIDB.CHURN X
WHERE X.customerID<>'3668-QPYBK'

16 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

ORDER BY SimilarityScore DESC
FETCH FIRST 10 ROWS ONLY

The purpose of this SQL statement is to identify top 10 customers who share similar characteristics
with customer with ID 3668-QPYBK at a banking service. Customer 3668-QPYBK closed all
accounts and left the service. The CHURN object and this sample query are intended to identify
other customers who might also churn so that the service can act on this insight to mitigate the risk
and try to retain those potential churners.

b) Click Run to start the query.

As specified, the query displays 10 rows of the result set in the Results section.

Chapter 2. Installing and configuring SQL DI (Roadmap) 17

18 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Chapter 3. Upgrading SQL DI
Db2 releases new and enhanced SQL DI functions as they become available. If you have already installed
SQL DI, install the latest maintenance packages (APARs/PTFs) to upgrade your SQL DI and exploit all the
new functions.

Before you begin
Important:

• The upgrade procedure assumes that you have already installed SQL DI. Make sure that you have met
all system requirements as described in “Preparing SQL DI installation” on page 6.

• Db2 APAR PH55212 includes the new AI_COMMONALITY function, and the function requires Db2
application compatibility level V13R1M504.

• The new Db2 AI_COMMONALITY function requires that models be trained with the latest zADE updates.
The zADE updates are available in APAR OA64845 for z/OS 3.1 or OA64844 for z/OS 2.5. The function
is not supported on z/OS 2.4. Consider upgrading your z/OS system to 2.5 or later if you want to use the
AI_COMMONALITY function.

Procedure
1. Apply the latest APARs in the following order:

a. For zAIO and zADE in the zDNN stack on z/OS:

• Apply OA64845 on z/OS 3.1 (HZAI310).
• Apply OA64844, OA63950, and OA63952 for z/OS 2.5 (HZAI250).
• Apply OA63949 and OA63951 for z/OS 2.4 (HBB77C0).

b. For OpenBLAS on z/OS:

• Apply PH56723 for z/OS 3.1 (HLE77E0)
• Apply PH49807 and PH50872 for both z/OS 2.5 and z/OS 2.4 (HTV77C0).
• Apply PH50881 for z/OS 2.5 (HLE77D0).
• Apply PH50880 for z/OS 2.4 (HLE77C0).

c. For Db2 13 for z/OS, apply PH55212 and PH51892.
d. For SQL Data Insights 1.1.0 (HDBDD18), apply PH55943, PH55964, PH54368, and PH54661.

2. Verify that your SQL DI is successfully upgraded by completing some quick tasks as described in
“Verifying the installation and configuration of SQL DI” on page 16.

Related tasks
“Installing SQL DI” on page 14
The installation of SQL Data Insights (SQL DI) involves a script-driven sequence of interactive tasks. Make
sure that you follow the step-by-step instructions and successfully complete each task.
“Verifying the installation and configuration of SQL DI” on page 16
Before you and your business start to use SQL Data Insights (SQL DI), complete a quick procedure to
verify that the feature is properly installed and configured.
Related reference
“Preparing SQL DI installation” on page 6
Preparing for installation involves obtaining the SQL Data Insights (SQL DI) product code and readying
your system environment. SQL DI has specific system, network, user access, and security requirements.
You must satisfy these requirements before you install SQL DI.

© Copyright IBM Corp. 2022, 2023 19

20 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Chapter 4. Enabling and running AI queries
After successful installation and configuration, you can use the web user interface of your SQL DI to
connect it to your Db2, create an AI object from selected Db2 tables and views, enable the object for AI
queries, and run queries on the object at any time.

Creating a connection to Db2
To access data and enable AI query, your SQL Data Insights (SQL DI) must be connected to your
Db2 system or data sharing group. You can create and activate a required JDBC connection on the
Connections page of the SQL DI user interface.

Procedure
1. Sign in your SQL DI user interface with a valid RACF user ID (associated with the SQLDIGRP group) on

the LPAR where your SQL DI is installed:

https://<SQLDI-IPAddress>:<SQLDI-PortNumber>

The SQL DI UI supports the standard or desktop version of Mozilla Firefox and Google Chrome. See
“Preparing SQL DI installation” on page 6 for details.

2. On the Connections page, click Add connection.
3. On the Add connection page, specify a name and details for the connection, including the hostname

or IP address, port number, location, JDBC properties (optional), and special registers (optional) of
your Db2 system or data sharing group.

4. Optionally, check Port enabled for SSL connections and enter the SSL certificate content in the input
field.

If your Db2 system or data sharing group uses SSL for network communications, you must configure
the new connection with the required SSL certificate information. You can provide your SSL certificate
information in one of the following ways:

• Option 1: Check the box for Port enabled for SSL connections and provide the required SSL
certificate information. Your SSL certificate must use Base64 ASCII encoding in PEM (.pem) format.
Make sure that the certificate content is bound by the -----BEGIN CERTIFICATE----- header
and the -----END CERTIFICATE----- footer.

• Option 2: Specify the following value in the JDBC properties field in the previous step:

sslConnection=true;sslCertLocation=<path_to_trusted_certificate>

Where <path_to_trusted_certificate> is the full path and the file name of your SSL certificate on the
system where your SQL DI runs. The certificate must use Base64 ASCII or binary encoding in ARM
(.arm), PEM (.pem), CERT (.cert), CRT (.crt), or DER (.der) format. If the certificate file uses Base64
ASCII encoding, make sure that the certificate content is bound by the plain-text -----BEGIN
CERTIFICATE----- and -----END CERTIFICATE----- lines.

5. Enter your Db2 username and password.

Make sure that your username or ID has sufficient privileges to access the Db2 system or the Db2 data
sharing group.

6. Click Add to create the new connection.
7. Back on the Connections page, verify that the new connection shows up.
8. Optionally, activate the new connection.

A new connection is activated (green-checked) when it is created. If necessary, you can deactivate the
connection by selecting Disconnect from the action menu of the connection. To re-activate the
connection:

© Copyright IBM Corp. 2022, 2023 21

a) Click the action menu and select Connect.
b) Enter your Db2 username and password.
c) Click Connect to activate the connection.

The connection is successfully activated when it's green-checked.

If necessary, you can deactivate, edit, or remove the connection.

Adding an AI object
SQL Data Insights (SQL DI) executes AI functions on a Db2 user table or view through a corresponding AI
object and that is enabled for AI query. AI objects are associated with a specific connection. You can add
and manage AI objects for a connection on the AI objects page of the SQL DI user interface.

Procedure
1. Sign in your SQL DI user interface with a valid RACF user ID (associated with the SQLDIGRP group) on

the LPAR where your SQL DI is installed:

https://<SQLDI-IPAddress>:<SQLDI-PortNumber>

The SQL DI UI supports the standard or desktop version of Mozilla Firefox and Google Chrome. See
“Preparing SQL DI installation” on page 6 for details.

2. On the Connections page, select a connection and click the action menu.
3. Select List AI objects to open the AI objects page for the connection.
4. On the AI objects page, click Add object.
5. On the Add object page, choose one or more schemas to display all associated Db2 tables and

views.
6. Select one or more Db2 tables or views.
7. Click Add object to create one or more AI objects.

If you select one Db2 table or view and click the Add object button, SQL DI will create a single AI
object. If you select multiple Db2 tables or views, SQL DI will create multiple AI objects with each
object corresponding to a specific Db2 table or view.

If you select only one Db2 table or view to create a corresponding AI object and want to enable the
object for AI query, click Enable AI query to accomplish both in a single step. See “Enabling AI query”
on page 22 for instructions on column configurations.

8. Back on the AI objects page, verify that the newly added object show up and their statuses are
Created.

Enabling AI query
You can enable an AI object for AI query when or after the object is created. Enabling AI query requires
column configuration and model training. You can enable an AI object for AI query on the AI objects
page of the SQL Data Insights (SQL DI) user interface.

Procedure
1. Sign in your SQL DI user interface with a valid RACF user ID (associated with the SQLDIGRP group) on

the LPAR where your SQL DI is installed:

https://<SQLDI-IPAddress>:<SQLDI-PortNumber>

The SQL DI UI supports the standard or desktop version of Mozilla Firefox and Google Chrome. See
“Preparing SQL DI installation” on page 6 for details.

2. On the Connections page, select a connection and click the action menu.

22 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

3. Select List AI objects to open the AI objects page for the connection.

4. Select an AI object and from the action menu, select Enable AI query.
5. On the Enable AI query page, select and configure the columns that you want to include for your AI

queries.
a) Select columns and assign SQL DI data types to create a column configuration for the AI object.

You can select one or more columns and assign each column a SQL DI categorical, numeric, or
key data type. SQL DI uses your selections to create a column configuration and train a machine
learning model for the object.

• Categorical: The SQL DI categorical data type is used for columns with discrete values, each
of which is its own entity. Type categorical is common in columns of many SQL data types.
Columns with character or datetime SQL data types, such as CHAR, VARCHAR, DATE, TIME,
TIMESTAMP, and TIMESTAMP WITH TIMEZONE, are a SQL DI categorical type, and so are
columns with numeric values representing social security or ID numbers.

• Numeric: The SQL DI numeric data type is used for columns with continuous values. Columns
with numeric SQL data types, such as SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, FLOAT, and
DECFLOAT, are a SQL DI numeric type. SQL DI uses clustering to group numeric values that are
close together during the AI query enablement process.

• Key: The SQL DI key data type is used to indicate that a column represents an entire row. A
customer ID column is a SQL DI key type. When processing an AI query that includes a column
with the key type, SQL DI evaluates the affected rows in their entirety and effectively compares
all the values in one row to those in another, not just the values in the column of the key type.

Important:

• SQL data types BINARY, LOB, XML, and ROWID are currently not supported for AI query
enablement. Any BINARY, LOB, XML or ROWID column of an AI object is designated as
"unsupported" and cannot be selected for the column configuration.

• While you can specify SQL DI data type categorical or numeric to as many columns as you
want, assign type key to only one column.

• Do not assign SQL DI data type numeric to any non-numeric column, such as a CHAR or
VARCHAR column. The conversion of non-numeric data to float might produce unpredictable
results, which causes model training to fail.

• Treat a column of numeric SQL data type as a SQL DI categorical type if the column contains
10 or fewer distinct values. A grade column in a class schedule table and an interest rate in a
bank loan table are good examples. If the grade column has only 6-10 unique values, set the
column as a SQL DI categorical column.

• When a SQL DI categorical or key column is trained, SQL DI will automatically change the
data type to VARCHAR. However, typecasting might not work properly if the data in the column is
BINARY, such as FOR BIT DATA. In this case, create a view of the table and convert the column
data from BINARY to HEX, which will ensure the correct working of your AI queries.

• Make sure that the name of a selected column does not contain any exclamation mark or
whitespace character. If you want to include columns with names that don't meet the criteria,
create a Db2 view on these columns and include the view in the column configuration.

Optionally, you can import the column configuration of an AI object that is already enabled for
AI query. You must first export the column configuration of the object into a .json file. When
importing a column configuration, make sure the columns defined in the JSON file are consistent
with those in the AI object that you currently select.

b) Click Next to continue.
c) Optionally, specify column values as NULL for model training.

You can specify column values of your choice, such as N/A, n/a, na, NR, invalid, and empty, as
NULL values. SQL DI ignores these user-specified and SQL NULL values during model training.

Chapter 4. Enabling and running AI queries 23

As the field names indicate, the value that you specify in the Specify NULL values that
apply to all columns field applies to one or more columns with matching records. The value
you specify in the Specify NULL values that apply to a specific column field applies
to any matching record within a specific column only. All records that match the specified NULL
values are ignored when SQL DI trains the machine model for the AI object.

You can specify multiple values separated by semicolons. For example, you can specify N/A;n/
a;na;NR;invalid;empty as NULL values, and SQL DI will ignore all matching records from
model training.

6. Click Enable to start the model training in the background.

If you create your AI objects one at a time, you have the option to enable the object for AI query during
the creation process. On the Add object page, click Enable AI query to add the object and enable it
for AI query in a single step. See “Adding an AI object” on page 22 for more information.

SQL DI starts the enabling process in the background. The entire process may take some time to
complete depending on the size of your table or view and the number of selected columns. You can
monitor the progress by refreshing the page and then clicking the details arrow to the left of the
object name.

The AI query enabling process completes successfully when the object's status is changed to
Enabled with a green check mark. The Enabled status indicates that the model for the object is
successfully created and trained. If needed, export the column configuration of this object for future
use by clicking Export column configuration from the action menu of the object. The column
configuration is saved into a .json file.

If the status is Failed with a red triangle, repeat steps “4” on page 23 - “6” on page 24 to restart the
enabling process. Make sure that you review your column configuration and eliminate any error.

SQL DI uses the Db2 zLoad utility to upload object model data during the AI query enablement. If the
enablement process fails during the zLoad phase, check the Spark log and resolve any data loading
errors. When you select to enable AI query on the object again, you will have the option to resume
the previously failed process without having to start a new one. When the resumed process completes
successfully, the object's status will be changed to Enabled after you refresh the UI page.

If needed, you can disable the object for AI query. Afterward, the status of the object is changed to
Disabled.

If an object is never initiated for AI query enablement, its status remains Created.

Viewing an AI object model
When an AI object is enabled for AI query, SQL Data Insights (SQL DI) creates and trains a model for the
object. You can view the model on the Model details page of the SQL DI user interface.

Procedure
1. Sign in your SQL DI user interface with a valid RACF user ID (associated with the SQLDIGRP group) on

the LPAR where your SQL DI is installed:

https://<SQLDI-IPAddress>:<SQLDI-PortNumber>

The SQL DI UI supports the standard or desktop version of Mozilla Firefox and Google Chrome. See
“Preparing SQL DI installation” on page 6 for details.

2. On the Connections page, select a connection and click the action menu.
3. Select List AI objects to open the AI objects page for the connection.

4. On the AI objects page, select an object and click the action menu.
5. Select View model to open the Model details page.

You can toggle between Training history and Cluster center tabs to view the details of an
object model.

24 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Running an AI query
After an AI object is enabled for AI query, you can run queries on the object on the AI objects page of
the SQL Data Insights (SQL DI) user interface.

Procedure
1. Sign in your SQL DI user interface with a valid RACF user ID (associated with the SQLDIGRP group) on

the LPAR where your SQL DI is installed:

https://<SQLDI-IPAddress>:<SQLDI-PortNumber>

The SQL DI UI supports the standard or desktop version of Mozilla Firefox and Google Chrome. See
“Preparing SQL DI installation” on page 6 for details.

2. On the Connections page, select a connection and click the action menu.
3. Select List AI objects to open the AI objects page for the connection.
4. Click Run query to open the Run query page with the query editor.
5. On the Run query page, select a query type from the options menu and then enter a query in the SQL

editor.
a) Optionally, select one of the following query types based on the insights you want your query to

discover:

• Semantic similarity: A similarity query identifies groups of similar records or entities in records.
Consider selecting semantic similarity if your query intends to identify the similarities of customer
characteristics and behaviors in industries, such as commerce, finance, and insurance.

• Semantic dissimilarity: A dissimilarity query finds the outliers from the norm in records. Consider
selecting semantic dissimilarity if your query intends to detect operational anomalies, fraudulent
activities, and other patterns of deviation.

• Semantic clustering: A clustering query forms a cluster of entities in records and evaluates
whether or not an additional entity belongs in the cluster. Consider selecting semantic clustering
if your query intends to examine similarities or dissimilarities across multiple entities in a broader
context.

• Semantic analogy: An analogy query determines if the relationship between two entities applies
to that of a second pair of entities. Consider selecting semantic analogy if your query intends
to discover your customers' preference for a specific product and the degree of their affinity for
other products.

• Semantic commonality: A commonality query identifies the entities in records that exhibit the
most common or uncommon patterns. Consider using semantic commonality if your query
intends to detect the normal or aberrant characteristics and behaviors of your customers.

Note: Selecting a query type is optional, and not all available semantic query types, such as
semantic commonality, are listed on the options menu. With or without a selected query type,
SQL DI will process your query and invoke the AI function you specify. You can specify the
AI_ANALOGY, AI_COMMONALITY, AI_SEMANTIC_CLUSTER, or AI_SIMILARITY function in your
query. See Chapter 8, “Db2 built-in functions for SQL DI,” on page 43 for details about the AI
functions.

b) In the SQL editor, customize the sample query or enter a new one.

When you select a query type, SQL DI populates the corresponding tab of the SQL editor with a
sample query. You can customize the sample query based on your need.

Alternatively, enter a new query as shown in the following example. This simple query specifies the
AI_COMMONALITY function and intends to find the top 20 customers by their CUSTOMERID who
exhibit the most common pattern of behaviors:

SELECT AI_COMMONALITY(CUSTOMERID) AS SCORE, C.*
FROM DSNAIDB.CHURN C

Chapter 4. Enabling and running AI queries 25

ORDER BY SCORE DESC
FETCH FIRST 20 ROWS ONLY;

If you want to find the top 10 customers by their CUSTOMERID who exhibit the most uncommon
pattern of behaviors, enter the following query that also specifies the AI_COMMONALITY function:

SELECT AI_COMMONALITY(CUSTOMERID) AS SCORE, C.*
FROM DSNAIDB.CHURN C
ORDER BY SCORE ASC
FETCH FIRST 10 ROWS ONLY;

The most common pattern means that the scores of the top 20 customers converge toward the
centroid value of the whole data set, and the most uncommon pattern indicates that the scores of
the top 10 customers deviate the most from the centroid value.

SQL DI retains and caches the SQL statement on each tab of the editor. If needed, click Add SQL +
to add a new tab or click X to remove a tab from the editor.

You can open up to 10 tabs of the query editor. When the limit is reached, you must close some
existing tabs in order to open new ones. When you close a tab, the SQL statement on the tab and in
the cache is deleted.

6. Click Run to run the query and review the results in the Result set section.

• You can run multiple queries specified on multiple tabs at the same time. A query run on each
tab returns the results in the corresponding Result set section of the tab. Any subsequent run
repopulates and refreshes the result set. If there is no matching record for a query, you will see an
"Unable to retrieve query results" message in the section. In this case, verify that there are matching
records for the specified query or update the SQL statement in the editor and run the query again.

• By default, SQL DI fetches and displays 50 rows for a query result set on this page. If you want to see
fewer than 50 rows, you can specify the fetch * rows option in your SQL statement. You have the
option to export the displayed rows into a CSV file.

• SQL DI loads the remaining rows of a query result set in the backend. You have the option to
download the remaining rows or the entire set of your query result. The default value for the
maximum number of loaded rows is 1000. If you want more rows loaded, change the default value
on the Settings page as described in “Modifying your SQL DI settings” on page 29.

• An AI query returns an SQL null value if it includes functions with arguments of null, filtered,
or unseen values. Filtered values result from the application of the NULL values that you
specify for all columns or a specific column. In the AI model, they are represented with the
DB2_GENERATED_EMPTY string. Unseen values are those that are not present in the AI object when
it's enabled for AI query. If your query includes arguments with null, filtered, or unseen values, SQL
DI does not compute any result and thus returns an SQL null value.

• For best query results from the AI_SEMANTIC_CLUSTER function, consider specifying constant or
unchanging values for three clustering-arguments.

Related information
Db2 built-in scalar functions

Analyzing data
When training the model for an AI object, SQL Data Insights (SQL DI) collects key data statistics and
renders them into metric scores for the model. The visualized scores can help you understand the results
of AI queries on the object. You can view the data statistics and model scores on the Analyze data
page of the SQL DI user interface.

Procedure
1. Sign in your SQL DI user interface with a valid RACF user ID (associated with the SQLDIGRP group) on

the LPAR where your SQL DI is installed:

https://<SQLDI-IPAddress>:<SQLDI-PortNumber>

26 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://ibm.com/docs/en/db2-for-zos/13?topic=functions-scalar

The SQL DI UI supports the standard or desktop version of Mozilla Firefox and Google Chrome. See
“Preparing SQL DI installation” on page 6 for details.

2. On the Connections page, select a connection and click the action menu.
3. Select List AI objects to open the AI objects page for the connection.

4. Select an AI object and from the action menu, select Analyze data.
5. On the Analyze data page, toggle between the Object details, Data statistics, Column
influence, and Column discriminator tabs.

• The Object details tab displays the column configuration information, including the name, Db2
data type, and SQL DI data type of a column.

• The Data statistics tab displays the column value distribution information, including the most
common value, the number of most common value, the number of unique value, standard deviation,
mean, max, and min values of a column.

• The Column influence tab, available after successful AI query enablement on the object, displays
the column influence scores. An influence score correlates to the number of user-specified and SQL
NULL values in a column and indicates the column's influence on the training of the object model.
The fewer NULL values the column has, the higher influence score it generates.

• The Column discriminator tab, available after successful AI query enablement on the object,
displays the column discriminator scores. A discriminator score correlates to the number of unique
values in a column and measures the column's ability to semantically distinguish its values from
other values in the table. The more unique values the column has, the higher discriminator score it
generates. The generally high discriminator score of the primary key column is not included on the
tab because it may skew the representation of the scores of other columns.

6. Click the icon to reload the page to display data updates.

Chapter 4. Enabling and running AI queries 27

28 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Chapter 5. Administering SQL DI
After SQL Data Insights (SQL DI) is up and running, it is important to keep it that way. You can adjust your
SQL DI settings based on your workload. You can also manage the SQL DI application and the embedded
Spark cluster with z/OS started tasks.

SQL Data Insights supports the standard or desktop version of Mozilla Firefox and Google Chrome. See
“Preparing SQL DI installation” on page 6 for details.

Related tasks
“Installing SQL DI” on page 14
The installation of SQL Data Insights (SQL DI) involves a script-driven sequence of interactive tasks. Make
sure that you follow the step-by-step instructions and successfully complete each task.
Related reference
“Preparing SQL DI installation” on page 6
Preparing for installation involves obtaining the SQL Data Insights (SQL DI) product code and readying
your system environment. SQL DI has specific system, network, user access, and security requirements.
You must satisfy these requirements before you install SQL DI.

Modifying your SQL DI settings
During the installation and configuration, default values are automatically set to some of your SQL Data
Insights (SQL DI) parameters, including the minimum amount of memory to run Spark jobs and the
maximum number of rows to load for AI queries. Depending on the size of your data and the need of your
workload, you can modify the default settings on the Settings page of the SQL DI user interface.

Procedure
1. Sign in your SQL DI user interface with a valid RACF user ID (associated with the SQLDIGRP group) on

the LPAR where your SQL DI is installed:

https://<SQLDI-IPAddress>:<SQLDI-PortNumber>

The SQL DI UI supports the standard or desktop version of Mozilla Firefox and Google Chrome. See
“Preparing SQL DI installation” on page 6 for details.

2. On the upper right corner of the SQL DI framework, click the (gear) icon to open the Settings
page.

3. On the Settings page, review and adjust the settings for the following parameters:

• For Spark, specify the number of cores and the amount of memory for your Spark driver and
executor. SQL DI uses Spark jobs to transform the data in the tables or views in your AI object.
Increase the number of cores and the amount of memory to improve performance if the size of the
data is large.

• For CPU threads, specify the number of CPU threads for data preprocessing and model training.
Increase the number of CPU threads to reduce the model training time.

• For Db2 load utility, use the default LOAD utility control statement or customize it for loading
trained models. SQL DI uses the ZLOAD command to upload the model training results to your Db2
system. Verify that the Db2 user ID has the permissions to run the ZLOAD command and to access
the data sets referenced in the load utility control statement. See “Configuring Db2 for SQL DI” on
page 13 for details.

Customize the LOAD control statement based on your Db2 settings. For a very large data, increase
the space allocation and specify a data class with the extended addressability attribute, allowing
the data sets to grow in size beyond 4 GB.

• For AI query, specify the maximum number of rows to load for a query result set. By default, SQL
DI loads up to 1000 rows of a query result set. You can change the default value if needed.

© Copyright IBM Corp. 2022, 2023 29

Creating a started task for the SQL DI application
After you have successfully installed and configured SQL Data Insights (SQL DI), consider running the
application as a z/OS started task. You can quickly create a started task by customizing the SQLDAPPS
sample JCL job.

Before you begin
• Plan, install, and configure SQL DI as described in “Preparing SQL DI installation” on page 6 and

“Installing SQL DI” on page 14.

Procedure
1. Locate the following files in the $SQLDI_INSTALL_DIR/templates/started-task-samples

directory on the z/OS system where your SQL DI runs:

• SQLDAPPS (sample JCL job)
• SQLDSTRT-STDPARM.template (sample MVS data set content)
• SQLDSTOP-STDPARM.template (sample MVS data set content)
• stdenvs-STDENV.template (sample z/OS Unix text file content)

2. Copy SQLDAPPS into a data set in your PROCLIB concatenation, such as SYS1.PROCLIB, and
customize them based on your system environment.

3. Define a new MVS data set to be used by ddname STDPARM.
a) Create member SQLDSTRT for SQLDAPPS by copying the following lines from SQLDSTRT-
STDPARM.template:

PGM /usr/lpp/IBM/db2sqldi/v1r1/tools/bin/bash
/usr/lpp/IBM/db2sqldi/v1r1/sql-data-insights/bin/sqldi.sh start

b) Create member SQLDSTOP for SQLDAPPS by copying the following lines from SQLDSTOP-
STDPARM.template:

PGM /usr/lpp/IBM/db2sqldi/v1r1/tools/bin/bash
/usr/lpp/IBM/db2sqldi/v1r1/sql-data-insights/bin/sqldi.sh stop

c) If necessary, replace the default /usr/lpp/IBM/db2sqldi/v1r1 segment in each directory path
with $SQLDI_INSTALL_DIR where your SQL DI is installed.

4. Create a new z/OS Unix text file stdenvs to be used by ddname STDENV.

You can use the same STDENV file for all your SQL DI started tasks.

a) Copy the following lines from stdenvs-STDENV.template:

_BPXK_AUTOCVT=ON
SQLDI_INSTALL_DIR=/usr/lpp/IBM/db2sqldi/v1r1
BLAS_INSTALL_DIR=/usr/lpp/cbclib
SQLDI_HOME=/path/to/sqldi-home
SPARK_HOME=/usr/lpp/IBM/db2sqldi/v1r1/spark24x
SPARK_CONF_DIR=/path/to/sqldi-home/spark/conf
JAVA_HOME=/java8_64/J8.0_64
PATH=/bin:/usr/lpp/IBM/db2sqldi/v1r1/tools/bin:/java8_64/J8.0_64/bin
LIBPATH=/lib:/usr/lib:/java8_64/J8.0_64/bin/classic:/java8_64/J8.0_64/bin/j9vm:
 /java8_64/J8.0_64/lib/s390x:/java8_64/J8.0_64/lib:/usr/lpp/cbclib/lib
IBM_JAVA_OPTIONS="-Dfile.encoding=UTF-8"
_ENCODE_FILE_NEW=ISO8859-1
_ENCODE_FILE_EXISTING=UNTAGGED
_CEE_RUNOPTS="FILETAG(AUTOCVT,AUTOTAG) POSIX(ON)"
SQLDI_SERVICE_ONLY=TRUE

b) If necessary, replace the default /usr/lpp/IBM/db2sqldi/v1r1 segment in each directory path
with $SQLDI_INSTALL_DIR where your SQL DI is installed.

c) If necessary, replace the default /usr/lpp/cbclib segment in each directory path with
$BLAS_INSTALL_DIR where the IBM OpenBLAS is installed.

30 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

d) Set all environment variables based on your z/OS system environment and your SQL DI installation.
See “Configuring setup user ID for SQL DI” on page 9 for instructions.

5. Define a RACF profile for the new SQLDAPPS started task and assign <sqldi_setup_userid> as the
owner by issuing the following commands:

RDEFINE STARTED SQLDAPPS.* STDATA(USER(<sqldi_setup_userid>) GROUP(SQLDIGRP))

SETROPTS RACLIST(STARTED) REFRESH

6. Run the SQLDAPPS started task to start the SQL DI application as shown in the following example:

/S SQLDAPPS

7. If necessary, run the SQLDAPPS started task to stop the UI services by issuing the following command:

/S SQLDAPPS,OPTION=’SQLDSTOP’

The OPTION value is case-sensitive. Make sure that you issue the command in your SDSF system
command extension to retain the lower case of your input.

Related tasks
“Creating started tasks for the Spark cluster” on page 31
The SQL Data Insights (SQL DI) application is powered by an embedded Spark cluster. After you have
successfully installed SQL DI, consider managing the cluster by creating and running z/OS started tasks.
You can quickly create the started tasks for the Spark master and worker by customizing the SQLDSPKM
and SQLDSPKW sample JCL jobs.

Creating started tasks for the Spark cluster
The SQL Data Insights (SQL DI) application is powered by an embedded Spark cluster. After you have
successfully installed SQL DI, consider managing the cluster by creating and running z/OS started tasks.
You can quickly create the started tasks for the Spark master and worker by customizing the SQLDSPKM
and SQLDSPKW sample JCL jobs.

Before you begin
• Plan, install, and configure SQL DI as described in “Preparing SQL DI installation” on page 6 and

“Installing SQL DI” on page 14.

Procedure
1. Navigate to the $SQLDI_INSTALL_DIR/templates/started-task-samples directory on the

z/OS system where your SQL DI runs.
2. Copy the SQLDSPKM and SQLDSPKW sample JCL files into a data set in your PROCLIB concatenation,

such as SYS1.PROCLIB.
3. Follow the instructions in the sample procedures to customize the environment variables based on

your system environment.

For example, set $SPARK_CONF_DIR to SQLDI_HOME/spark/conf.
4. Copy the spark-zos-started-tasks.sh.template file to the SQLDI_HOME/spark/conf

directory by issuing the following command:

cp $SQLDI_INSTALL_DIR/templates/started-task-samples/spark-zos-started-tasks.sh.template
SQLDI_HOME/spark/conf/spark-zos-started-tasks.sh

5. Update the spark-zos-started-tasks.sh script in the SQLDI_HOME/spark/conf directory as
shown in the following example:

Java environment variable - REQUIRED
Default: /usr/lpp/java/J8.0_64
export JAVA_HOME=<PATH_TO_JAVA_HOME>

Chapter 5. Administering SQL DI 31

SQL DI installation directory - REQUIRED
Default: /usr/lpp/IBM/db2sqldi/
export SQLDI_INSTALL_DIR=<PATH_TO_SQLDI_INSTALL_DIR>

OpenBLAS installation directory - REQUIRED
Default: /usr/lpp/cbclib
export BLAS_INSTALL_DIR=<PATH_TO_BLAS_INSTALL_DIR>

6. Define a RACF profile for the new SQLDSPKM and SQLDSPKW started tasks and assign
<sqldi_setup_userid> as the owner by issuing the following commands:

RDEFINE STARTED SQLDSPKM.* STDATA(USER(<sqldi_setup_userid>) GROUP(SQLDIGRP))

RDEFINE STARTED SQLDSPKW.* STDATA(USER(<sqldi_setup_userid>) GROUP(SQLDIGRP))

SETROPTS RACLIST(STARTED) REFRESH

7. Start the SQLDSPKM and SQLDSPKW started tasks by issuing the following MVS commands without any
parameter:

start SQLDSPKM
start SQLDSPKW

To run the Spark started tasks manually, make sure that you start SQLDSPKM before SQLDSPKW. If you
automate the run, you can start them in parallel in which the processes triggered by SQLDSPKW will
start right after those by SQLDSPKM.

8. If necessary, stop the SQLDSPKM and SQLDSPKW started tasks by issuing the following MVS commands
without any parameter:

stop SQLDSPKM
stop SQLDSPKW

See Stopping z/OS started tasks for more information about stopping Spark started tasks.

Related tasks
“Installing SQL DI” on page 14
The installation of SQL Data Insights (SQL DI) involves a script-driven sequence of interactive tasks. Make
sure that you follow the step-by-step instructions and successfully complete each task.
Related reference
“Preparing SQL DI installation” on page 6
Preparing for installation involves obtaining the SQL Data Insights (SQL DI) product code and readying
your system environment. SQL DI has specific system, network, user access, and security requirements.
You must satisfy these requirements before you install SQL DI.

32 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/izoda/1.1.0?topic=processes-stopping-started-tasks

Chapter 6. Db2 tables for SQL DI
When you run the sample DSNTIJAI job to configure your Db2 system for SQL DI, the job creates a set of
tables that are used to record and store metadata for AI objects, object models, and tables.

The sample DSNTIJAI job creates the following Db2 tables, tablespaces, and indexes for SQL DI:

Table 1. Db2 tables, tablespaces, and indexes for SQL DI

Table Description Tablespac
e

Index Index
field

SYSAIDB.SYSAIOBJEC
TS

Contains a row for each Db2
table or view you select for
an SQL DI AI object

SYSTSAIO SYSAIOBJECTSIX1 OBJECT_I
D

SYSAIOBJECTSIX2 SCHEMA,
NAME

SYSAIDB.SYSAICONFI
GURATIONS

Contains a row for each
configuration ID for an AI
object and related attributes

SYSTSAIC SYSAICONFIGURATIO
NSIX1

CONFIGU
RATION_I
D

SYSAIDB.SYSAICOLUM
NCONFIG

Contains a row for each
column and related attributes
within a column configuration

SYSTSAID SYSAICOLUMNCONFIG
IX1

CONFIGU
RATION_I
D,
COLUMN_
NAME,
COLUMN_
AISQL_TY
PE

SYSAIDB.SYSAIMODEL
S

Contains a row for each AI
object model and related
table and state information

SYSTSAIM SYSAIMODELSIX1 MODEL_ID

SYSAIDB.SYSAICOLUM
NCENTERS

Contains a row for each
column centroid for a trained
model

SYSTSAIE SYSAICOLUMNCENTER
SIX2

MODEL_ID
,
COLUMN_
NAME,
CENTROID

SYSAIDB.SYSAITRAINI
NGJOBS

Contains a row for each
training job that you initiate
and job status information

SYSTSAIT SYSAITRAININGJOBSI
X1

TRAINING
_JOB_ID

SYSAITRAININGJOBSI
X2

OBJECT_I
D,
CONFIGU
RATION_I
D,
MODEL_ID

SYSAIDB.SYSAIOBJECTS
The SYSAIDB.SYSAIOBJECTS table contains a row for each Db2 table or view you select for an SQL DI AI
object.

Column name Data type Description Usage

OBJECT_ID BIGINT
NOT NULL

A unique identifier for the AI object.

© Copyright IBM Corp. 2022, 2023 33

Column name Data type Description Usage

OBJECT_NAME VARCHAR(32) A user-defined name for the AI object.

OBJECT_TYPE CHAR(1) An identifier that identifies a Db2 table or
view:
T

Specifies a Db2 table
V

Specifies a Db2 view

SCHEMA VARCHAR(128)
NOT NULL

The schema of the AI object.

NAME VARCHAR(128)
NOT NULL

The name of the AI object.

STATUS VARCHAR(16)
NOT NULL

The status of the AI query enabling
process:
Enabled

Indicates that the AI object is enabled
with AI query and that the row for the
AI object model is populated.

Disabled
Indicates that the AI object is not
enabled with AI query and that the
row for the AI object model is not
populated.

Training
Indicates that the AI object is being
enabled with AI query and that the
row for the AI object model is being
updated.

Failed
Indicates that the AI query enabling
process for the AI object failed.

CONFIGURATION_ID BIGINT The identifier for the configuration used
for the active model. A null value indicates
that there is no active configuration yet.

MODEL_ID BIGINT The identifier for the active model. A null
value indicates that there is no active
model table created yet.

CREATED_BY VARCHAR(32)
(With SESSION_USER as
default)

The SQLID of the user to which the object
is registered.

CREATED_DATE VARCHAR(32)
(With CURRENT
TIMESTAMP as default)

The timestamp when the object was
registered.

LAST_UPDATED_BY VARCHAR(32)
(With SESSION_USER as
default)

The SQLID of the user who last updated
the object.

34 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Column name Data type Description Usage

LAST_UPDATED_DATE TIMESTAMP
(With ROW CHANGE
TIMESTAMP as default)

The timestamp when the object was last
updated.

DESCRIPTION VARCHAR(256) A user-specified description of the object.

SYSAIDB.SYSAICONFIGURATIONS
The SYSAIDB.SYSAICONFIGURATIONS table contains a row for each configuration ID for an AI object and
related attributes.

Column name Data type Description Usage

CONFIGURATION_ID BIGINT
NOT NULL

A unique identifier for this configuration.

NAME VARCHAR(32) A user-defined name for the configuration.

OBJECT_ID BIGINT
NOT NULL

An identifier of the object for which this
configuration is created.

RETRAIN_INTERVAL INTEGER The interval at which retraining occurs.

KEEP_ROWIDENTIFIER_
KEY

CHAR(1)
NOT NULL

An indicator for the presence of the row
identifier key in a model:
Y

Indicates that the row identifier key is
kept in the model.

N
Indicates that the row identifier key is
not kept in the model.

NEGLECT_VALUES VARCHAR(1024) A semicolon-separated string of values to
be treated as null in the model.

CREATED_BY VARCHAR(32)
(With SESSION_USER as
default)

The SQLID of the user to which the object
is registered.

CREATED_DATE VARCHAR(32)
(With CURRENT
TIMESTAMP as default)

The timestamp when the object was
registered.

LAST_UPDATED_BY VARCHAR(32)
(With SESSION_USER as
default)

The SQLID of the user who last updated
the object.

LAST_UPDATED_DATE TIMESTAMP
(With ROW CHANGE
TIMESTAMP as default)

The timestamp when the object was last
updated.

SYSAIDB.SYSAICOLUMNCONFIG
The SYSAIDB.SYSAICOLUMNCONFIG table contains a row for each column and related attributes within a
column configuration.

Chapter 6. Db2 tables for SQL DI 35

Column name Data type Description Usage

CONFIGURATION_ID BIGINT
NOT NULL

A unique identifier for the column
configuration.

COLUMN_AISQL_TYPE CHAR(1)
NOT NULL

A SQL DI data type that you assign to a
column in the column configuration:
K

Indicates that a column is assigned
the key data type.

C
Indicates that a column is assigned
the categorical data type.

N
Indicates that a column is assigned
the numeric data type.

I
Indicates that a column is not
assigned a data type.

U
Indicates that a column is assigned an
unsupported data type

COLUMN_NAME VARCHAR(128)
NOT NULL

The name of the column in the column
configuration.

COLUMN_PRIORITY CHAR(1) (Reserved) The processing priority that
you assign to a column in the column
configuration:
H

Indicates an high priority.
M

Indicates a medium priority.
L

Indicates a low priority.

COLUMN_VECTOR_CAR
DINALITY

BIGINT
NOT NULL
(With -1 as default)

The cardinality of the vectors in the
VECTOR column in the vector table.

MAX_DATA_VALUE_LEN INTEGER
NOT NULL
(With -1 as default)

The maximum length of the value for the
column in the vector table.

NEGLECT_VALUES VARCHAR(1024) A semicolon-separated string of values to
be treated as null in the model.

SYSAIDB.SYSAIMODELS
The SYSAIDB.SYSAIMODELS table contains a row for each AI object model and related table and state
information.

Column name Data type Description Usage

CONFIGURATION_ID BIGINT
NOT NULL

A unique identifier for the configuration
that is used to create this model.

36 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Column name Data type Description Usage

MODEL_CODE_LEVEL CHAR(32)
NOT NULL
(With ' ' as default)

The code level for training the model.

MODEL_ID BIGINT
NOT NULL

A unique identifier for the model.

NAME VARCHAR(32) A user-defined name for the model.

OBJECT_ID BIGINT
NOT NULL

An identifier of the object for which this
configuration is created.

VECTOR_TABLE_CREATO
R

VARCHAR(128) The name of the user who created the
vector table.

VECTOR_TABLE_NAME VARCHAR(128)
NOT NULL

The name of the vector table.

VECTOR_TABLE_STATUS CHAR(2)
NOT NULL

The status of the vector table.
I

Indicates that the table is initialized
for the current process.

L
Indicates that the table is loading.

A
Indicates that the table is available for
use.

E
Indicates that the table is in error
state.

VECTOR_TABLE_DBID SMALLINT
NOT NULL

The internal identifier of the vector table
database.

VECTOR_TABLE_OBID SMALLINT
NOT NULL

The internal identifier of the vector table.

VECTOR_TABLE_IXDBID SMALLINT
NOT NULL

The internal identifier of the vector table
index database.

VECTOR_TABLE_IXOBID SMALLINT
NOT NULL

The internal identifier of the vector table
index.

VECTOR_TABLE_VERSIO
N

SMALLINT
NOT NULL

The internal format number of the vector
table.

METRICS CLOB(500K) A JSON object to store metrics about the
model for display in the user interface.

INTERPRETABILITY_
OCCURENCE_STRUCT

BLOB(2G) Reserved.

CREATED_BY VARCHAR(32)
(With SESSION_USER as
default)

The SQLID of the user who created the
model.

CREATED_DATE TIMESTAMP
(With CURRENT
TIMESTAMP as default)

The timestamp when the model was
created.

Chapter 6. Db2 tables for SQL DI 37

Column name Data type Description Usage

LAST_UPDATED_BY VARCHAR(32)
(With SESSION_USER as
default)

The SQLID of the user who last updated
the model.

LAST_UPDATED_DATE TIMESTAMP
(With ROW CHANGE
TIMESTAMP as default)

The timestamp when the model was last
updated.

MODEL_ROWID ROWID
NOT NULL

A rowid column to support a LOB table.

SYSAIDB.SYSAICOLUMNCENTERS
The SYSAIDB.SYSAICOLUMNCENTERS table contains a row for each column centroid for a trained model.

Column name Data type Description Usage

MODEL_ID BIGINT
NOT NULL

The unique identifier of the model to
which the centroid belongs.

COLUMN_NAME VARCHAR(128)
NOT NULL

The name of the column to which the
centroid belongs.

CLUSTER_MIN FLOAT
NOT NULL

The numeric center of a cluster.

LABEL VARCHAR(5)
NOT NULL

The label of the vector corresponding to
the cluster.

SYSAIDB.SYSAITRAININGJOBS
The SYSAIDB.SYSAITRAININGJOBS table contains a row for each training job that you initiate and job
status information.

Column name Data type Description Usage

TRAINING_JOB_ID BIGINT
NOT NULL

A unique identifier for the model training
job.

OBJECT_ID BIGINT
NOT NULL

The identifier for the object for which the
model is being trained.

CONFIGURATION_ID BIGINT
NOT NULL

The identifier for the configuration that is
used for the model training.

MODEL_ID BIGINT
NOT NULL

The identifier for the model that is created
as a result of training.

38 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Column name Data type Description Usage

STATUS CHAR(2)
NOT NULL

The status of the model training for the
object:
I

Indicates that the training process is
being initialized.

L
Indicating that the data is being
loaded for the training job.

P
Indicates that the data is being
processed.

T
Indicates that the training is started.

C
Indicates that the training process is
completed.

F
Indicates that the training process
failed.

PROGRESS SMALLINT
NOT NULL

The percentage of the training process
completed.

RESOURCE VARCHAR(512)
NOT NULL

A JSON object that describes the
resources allocated to the training job.

MESSAGES CLOB(8K) The output of the training job.

START_TIME TIMESTAMP
NOT NULL

The start time of the training job.

END_TIME TIMESTAMP The end time of the training job. A null
value indicates that the training job has
not yet completed.

CREATED_BY VARCHAR(32)
(With SESSION_USER as
default)

The SQLID of the user who initiated the
training job.

CREATED_DATE TIMESTAMP
(With CURRENT
TIMESTAMP as default)

The timestamp when the training job
started.

LAST_UPDATED_BY VARCHAR(32)
(With SESSION_USER as
default)

The SQLID of the user who last updated
the training job.

LAST_UPDATED_DATE TIMESTAMP
(With ROW CHANGE
TIMESTAMP as default)

The timestamp when the training job was
last updated.

Related tasks
“Configuring Db2 for SQL DI” on page 13
To enable SQL Data Insights (SQL DI), you must customize and submit the DSNTIJAI job to create the
required database and tables in Db2 for z/OS for SQL DI.

Chapter 6. Db2 tables for SQL DI 39

40 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Chapter 7. Db2 subsystem parameter for SQL DI
Db2 updates the DSNTIP81 CLIST panel and adds the MXAIDTCACH subsystem parameter to support
SQL DI.

DSNTIP81: Performance and optimization panel 2
The DSNTIP81 panel is a continuation of the DSNTIP8 panel. It is used to set application programming
default values pertaining to performance and optimization panel.

DSNTIP81 INSTALL DB2 - PERFORMANCE AND OPTIMIZATION (PANEL 2)
===>

Enter data below:
 1 CURRENT DEGREE ===> 1 1 or ANY
 2 MAX DEGREE ===> 0 Maximum degree of parallelism. 0-254
 3 MAX DEGREE FOR DPSI ===> 0 Maximum degree of parallelism for data
 partitioned secondary indexes. 0-254
 or DISABLE

 4 STAR JOIN QUERIES ===> DISABLE DISABLE, ENABLE, 1-32768
 5 MAX DATA CACHING ===> 20 0-512
 6 MAX AI DATA CACHING ===> 0 0-512

Enter default settings for maintained query special registers:
 7 CURRENT REFRESH AGE ===> 0 0 or ANY
 8 CURRENT MAINT TYPES ===> SYSTEM NONE, SYSTEM, USER, ALL

PRESS: ENTER to continue RETURN to exit HELP for more information

Figure 3. Performance and optimization panel: DSNTIP81

MAX AI DATA CACHING field (MXAIDTCACH subsystem parameter)
The MXAIDTCACH subsystem parameter specifies the maximum amount of memory, in MB, that is to be
allocated for AI data caching for each thread.

Acceptable values: 0 - 512

Default: 0

Update: option 30 on panel DSNTIPB

DSNZPxxx: DSN6SPRM MXAIDTCACH

Data sharing scope Member

Online changeable Yes

MXAIDTCACH controls memory allocation for AI queries that use sparse index access.

0
Specifies the default value. Db2 does not allocate any additional memory for AI data caching and
disables batching for vector fetching.

1 - 512

Specifies a value between 1 and 512 (in MB). Db2 allocates the specified memory from above the 2
GB bar pool for AI data caching and enables batching for vector fetching.

© Copyright IBM Corp. 2022, 2023 41

If vector prefetching is enabled and if a query consists of multiple threads, Db2 allocates the specified
amount of memory to each thread for AI data caching.

Db2 dynamically chooses between vector prefetching and row-by-row processing based on the AI
object (table vs. view) and the AI cache size. If the MXAIDTCACH parameter is set to a value
greater than 0 and a query invokes a SQL DI function on a table, Db2 automatically disables vector
prefetching to optimize the CPU usage of the function.

Related reference
MAX DATA CACHING field (MXDTCACH subsystem parameter) (Db2 Installation and Migration)

42 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_mxdtcach.html

Chapter 8. Db2 built-in functions for SQL DI
Db2 introduces the following built-in scalar functions to support SQL DI. You can use these functions to
run AI queries on your Db2 user tables and views.

AI_ANALOGY
The AI_ANALOGY function computes an analogy score between two sets of values.

FL 500

AI_ANALOGY (source-1 , target-1 , source-2 , target-2)

source or target:

expression

USING
MODEL COLUMN

column-name

The schema is SYSIBM.

The AI_ANALOGY function computes an analogy score using the values returned by the arguments. The
arguments to the function specify two pairs, where there is a relationship between source-1 and source-2
and a relationship between target-1 and target-2. The interaction between the pairs form an analogy,
which can be thought of as a human language analogy:source-1 is to target-1 as source-2 is to target-2.

source-1

The expression specifies the first source value for the analogy. The value must not be a binary, LOB,
XML, or ROWID data type.

The column-name is an identifier in the USING MODEL COLUMN clause, which can be used to specify
which machine learning model and column to use for the evaluation of the function.

target-1

The expression specifies the first target value for the analogy. The value must not be a binary, LOB,
XML, or ROWID data type.

The column-name is an identifier in the USING MODEL COLUMN clause, which can be used to specify
which machine learning model and column to use for the evaluation of the function.

source-2

The expression specifies the second source value for the analogy. The value must not be a binary,
LOB, XML, or ROWID data type . The values for source-1 and source-2 must not be the same
(SQLCODE -20580, SQLSTATE 428ID, RC=10).

If the source-1 and source-2 model columns are both a SQL DI numeric data type, Db2 may return
SQLCODE -20580 even if the two numeric values are different. This happens when the numeric values
belong to the same cluster during model training. In this case, SQL DI treats them as the same value
(token). See the Model details page of the SQL DI UI for more information how numeric values in a
cluster are processed in function arguments.

The column-name is an identifier in the USING MODEL COLUMN clause, which can be used to specify
which machine learning model and column to use for the evaluation of the function.

target-2

The expression specifies the second target value for the analogy. The value must not be a binary, LOB,
XML, or ROWID data type.

© Copyright IBM Corp. 2022, 2023 43

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_fl_v13r1m500.html

The column-name is an identifier in the USING MODEL COLUMN clause, which can be used to specify
which machine learning model and column to use for the evaluation of the function.

Arguments to AI_ANALOGY must specify a machine learning model and machine learning model columns
that are used to evaluate the function. The following rules are used to determine which model and model
column is used for each argument:

• If an expression argument is a standalone column reference and no model column is explicitly specified
with the USING MODEL COLUMN clause, the standalone column is the model column that is used to
evaluate the function, and the model is the model table associated with the Db2 table that the column
belongs to.

• If the expression argument is a standalone column reference, but the USING MODEL COLUMN clause
specifies a different column, the column specified in the USING MODEL COLUMN clause is the model
column, and the model is the model table associated with the Db2 table that the model column belongs
to.

• A model column must be determined for at least one of source-1 and source-2. A model column can be
explicitly specified in the USING MODEL COLUMN clause, or the expression must be a simple column
reference. If a model column can be determined for one of source-1 or source-2 but not the other, then
the model column that is determined is used for both source-1 and source-2. If a model column is
specified for both source-1 and source-2, they must be the same model column.

• A model column must be determined for at least one of target-1 and target-2. The model column can
be explicitly specified in the USING MODEL COLUMN clause, or the expression must be a simple column
reference. If a model column can be determined for one of target-1 or target-2 but not the other, then
the model column that is determined is used for both target-1 and target-2. If a model column is
determined for both target-1 and target-2, they must be the same model column.

• All model columns specified in the function invocation must refer to columns that belong to the same
table or view.

• AI must be enabled for the table or view that the model is associated with and the model must be
trained. All model columns must be included in the model.

The model column, either specified as a standalone column reference or with the USING MODEL COLUMN
clause, can be a qualified name. The qualifier must not be a synonym name or a correlation name of a
table expression. The qualifier must refer to a table name or a view name, or to an alias to a table name or
view name.

The result is a double-precision floating point number (FLOAT) that is the analogy score. Larger-valued
positive results indicate a better analogy than smaller results. If the expressions in target-1 and target-2
return the same value, the result of the function is -1 indicating a poor analogy, unless the expressions in
source-1 and source-2 return values that are very similar (the similarity score >= 0.9).

The result can be null; if any argument is null, the result is the null value. If the arguments to the function
contain values that were not seen during model training, the result is the null value.

By default, Db2 returns all results from a query. If you want to limit the result set to just the source-2
argument, specify the WHERE predicate in your query.

Notes
Configuration requirement

SQL Data Insights must be configured in Db2 to use this function.
AI_ANALOGY must not be specified in a CREATE VIEW statement

AI_ANALOGY must not be specified in a CREATE VIEW statement, and must not be specified in the
fullselect of a materialized-query-definition of a CREATE TABLE statement.

AI_ANALOGY is not deterministic
The function reads data from the table associated with the model. The AI_ANALOGY function is not
deterministic. Training of the model is also not deterministic. The model may change slightly, even if
trained again using the same data, which can cause small differences in the analogy scores produced
by the function which can affect the ordering of results.

44 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Examples
The customer with ID ‘1066_JKSGK’ has churned. Given the relationship of that customer to ‘YES’ in the
churn column, find customers with the same relationship to ‘NO’ in the churn column, in other words,
customers unlikely to churn.

SELECT AI_ANALOGY('YES' USING MODEL COLUMN CHURN,
 '1066_JKSGK' USING MODEL COLUMN CUSTOMERID,
 'NO' USING MODEL COLUMN CHURN,
 CUSTOMERID),
 CHURN.*
FROM CHURN
ORDER BY 1 DESC
FETCH FIRST 5 ROWS ONLY

The source-2 argument specifies the column for contract terms. If you want to see just the results from
source-2 and the rows where the CONTRACT is "One year," add the WHERE CONTRACT = 'One year'
predicate to your query as shown in the following example:

SELECT * FROM
 (SELECT DISTINCT AI_ANALOGY(
 'Month-to-month' USING MODEL COLUMN CONTRACT,
 'Electronic check' USING MODEL COLUMN PAYMENTMETHOD,
 'One year',
 PAYMENTMETHOD) AS SIMILARITY,
 CONTRACT, PAYMENTMETHOD
 FROM ADMF001.CHURN
 WHERE CONTRACT = 'One year')
WHERE SIMILARITY > 0.0
ORDER BY SIMILARITY DESC
FETCH FIRST 5 ROWS ONLY;

AI_COMMONALITY
The AI_COMMONALITY function computes a similarity score by using the value of the expression
argument and the centroid value of the model column.

FL 504

The centroid value represents the common behavior of the model column for all the rows in a table. As
a result, when a query invokes the AI_COMMONALITY function, the resulting similarity score represents
the similarity of the function argument with the common behavior of the model column, computed over all
rows in the table, not just the qualified rows.

AI_COMMONALITY (expression

USING
MODEL COLUMN

column-name

)

The schema is SYSIBM.

The machine learning model that is used to compute the score is determined by the expression or the
column-name specified in the USING MODEL COLUMN clause and the centroid values of the model
column. You can use the AI_COMMONALITY function to detect outliers. With -1 as the minimum score,
the lower the similarity score is, the further away the argument deviates from the common behavior.

expression

An expression that specifies the value on which the similarity score is computed against the centroid
values of the model column. The value returned by expression must be a built-in data type (SQLCODE
-440, SQLSTATE 42884) that is not binary, LOB, XML, or ROWID (SQLCODE -171, SQLSTATE 42815).

Chapter 8. Db2 built-in functions for SQL DI 45

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_fl_v13r1m504.html

column-name

An identifier that specifies a column to be used as the model column. The identified column
determines the machine learning model that is used for evaluating the function.

An argument to the AI_COMMONALITY function must specify a machine learning model and a model
column that is used for evaluating the function. The following rules are used to determine the machine
learning model and the model column for the argument:

• If the expression argument references a standalone column and the USING MODEL COLUMN clause
does not specify a model column, the standalone column is used to evaluate the function, and the
vector table is used as the model. The vector table is generated from the Db2 table where the
standalone column belongs.

• If the expression argument references a standalone column, but the USING MODEL COLUMN clause
specifies a different column, the column specified in the USING MODEL COLUMN clause is used to
evaluate the function, and the vector table is used as the model.

An expression other than a standalone column reference must specify a model column by using the
USING MODEL COLUMN clause. The model is determined by the table where the model column
belongs.

• A model column specified in the function invocation must refer to the columns that belong to the same
Db2 table or view (SQLCODE -20579, SQLSTATE 428ID, RC=5).

• AI model training must be enabled for the table with which the model is associated (SQLCODE -20579,
SQLSTATE 428ID, RC=1), and the model must be trained (SQLCODE -20579, SQLSTATE 428ID, RC=3).
The model column must be included in the model (SQLCODE -20579, SQLSTATE 428ID, RC=2).

A model column, specified either as a standalone column reference or in the USING MODEL COLUMN
clause, may be a qualified name. The qualifier must not be a synonym name or a correlation name of a
table expression (SQLCODE -20579, SQLSTATE 428ID, RC=6). The qualifier must refer to a table or view,
or to an alias of a table or view (SQLCODE -20579, SQLSTATE 428ID, RC=6).

If the model column is a numeric column as indicated during model training, the value of the expression
is cast to FLOAT during execution of the function (SQLCODE -420, SQLSTATE 22018, or other SQLCODE/
SQLSTATE pairs for cast errors).

The result is a double-precision floating point number (FLOAT) that is the similarity score. The FLOAT is
a number between -1.0 and 1.0, where -1.0 represents the minimum common values (outlier) and 1.0
indicates the maximum common values.

The result can be null; if any argument is null, the result is the null value. If the expression evaluates to a
value that is not seen during model training, the result is also the null value.

Notes
• You must enable and configure the SQL DI functionality in Db2 to use the AI_COMMONALITY function

(SQLCODE -20577, SQLSTATE 0A502, RC=3).
• You cannot specify the AI_COMMONALITY function in a CREATE VIEW statement (SQLCODE -154,

SQLSTATE 42909) or in the fullselect of a materialized-query-definition of a CREATE TABLE statement
(SQLCODE -20058, SQLSTATE 428EC).

• The AI_COMMONALITY function reads data from the Db2 table that is associated with the model.
Neither the function nor the model training is deterministic. The model may change slightly over time
even if it is retrained on the same data. This slight change can cause minor differences in the resulting
similarity scores and affect the similarity ordering of the results.

• Db2 application compatibility level V13R1M504 is required to use the AI_COMMONALITY function
(SQLCODE –20473, SQLSTATE 428HA).

• The AI_COMMONALITY function requires that models be trained after the following z/OS APARs
applied:

– Apply APAR OA64845 on z/OS 3.1 (HZAI310).

46 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

– Apply APAR OA64844 on z/OS 2.5 (HZAI250).

The function is not supported on z/OS 2.4.

To use the function on existing models, you must retrain those models after the application of the
required APARs. The function returns null if it is executed on a model that was trained without the
required APARs applied.

Examples
The following sample SQL statement finds the top five outliers of the model column CUSTOMERID:

SELECT AI_COMMONALITY(CUSTOMERID) AS SCORE, C.*
FROM CHURN C
ORDER BY SCORE ASC
FETCH FIRST 5 ROWS ONLY;

AI_SIMILARITY
The AI_SIMILARITY function computes a similarity score between two values.

FL 500

AI_SIMILARITY (expression-1

USING
MODEL COLUMN

column-name

, expression-2

USING
MODEL COLUMN

column-name

)

The schema is SYSIBM.

The AI_SIMILARITY function computes a similarity score using the values returned by expression-1 and
expression-2. The machine learning model used to compute the score is determined by the columns
specified in expression-1 and expression-2, or you can explicitly specify it in the column-name in the
USING MODEL COLUMN clause.

expression-1
An expression that specifies the first value on which the similarity score is computed. The value
returned by expression-1 must be a built-in data type that is not a binary data type, a LOB data type,
XML or ROWID.

expression-2
An expression that specifies the second value on which the similarity score is computed. The value
returned by expression-2 must be a built-in data type that is not a binary data type, a LOB data type,
XML or ROWID.

column-name

An identifier that specifies a column to be used as the model column, which determines the machine
learning model used to evaluate the function.

Arguments to AI_SIMILARITY must specify a machine learning model and a machine learning model
column that is used to evaluate the function. The following rules are used to determine which model and
model columns are used for each argument:

• If the expression argument is a standalone column reference and no model column is explicitly
specified with the USING MODEL COLUMN clause, the standalone column is the model column that
is used to evaluate the function, and the model is the model table associated with the table that the
column belongs to.

Chapter 8. Db2 built-in functions for SQL DI 47

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_fl_v13r1m500.html

• If the expression argument is a standalone column reference, but the USING MODEL COLUMN clause
specifies a different column, the column specified in the USING MODEL COLUMN clause is the model
column, and the model is the model table associated with the table that the model column belongs to.

• Any kind of expression other than a standalone column reference either must specify a model column
name using the USING MODEL COLUMN clause, or the model column must be able to be inferred
according to these rules:

– The model column can be explicitly specified by the USING MODEL COLUMN clause. The model is
determined by the table that the model column belongs to.

– The model column of an argument that is not a standalone column-reference and does not have a
column specified by the USING MODEL COLUMN clause will be inferred by the model column of the
other argument. At least one of the arguments must have a model column.

• All model columns specified in the function invocation must refer to columns that belong to the same
table or view.

• AI must be enabled for the table or view that the model is associated with and the model must be
trained. All model columns must be included in the model.

• If either expression specifies a model column that was identified during model training as a primary
key column, the other expression must specify the same model column or must not specify any model
column.

Each model column, either specified as a standalone column reference or with the USING MODEL
COLUMN clause, may be a qualified name. The qualifier must not be a synonym name or a correlation
name of a table expression. The qualifier must refer to a table name or a view name, or to an alias to a
table name or view name.

If the model column is a numeric column as indicated during the training of the model, the value of
the expression is cast to DOUBLE during execution of the function. The value of the numeric column is
converted into a string token based on the clustering of the value. You can find the minimum values for
each cluster in the Model details panel. If the value is outside the range of DOUBLE, the result of the
function is a null value

The result is a double-precision floating point number (FLOAT) that is the similarity score. The result is
a number between -1.0 and 1.0, where -1.0 means that the values are least similar, and 1.0 means that
they are most similar.

The result can be null; if any argument is null, the result is the null value. If expression-1 or expression-2
evaluates to a value that was not seen during model training, and the model column used is a categorical
one as indicated during the training of the model, the result is the null value. This does not apply when the
model column a numeric one.

Notes
Configuration requirement

SQL Data Insights must be configured in Db2 to use this function.
AI_SIMILARITY must not be specified in a CREATE VIEW statement

AI_SIMILARITY must not be specified in a CREATE VIEW statement, and must not be specified in the
fullselect of a materialized-query-definition of a CREATE TABLE statement.

AI_SIMILARITY is not deterministic
The AI_SIMILARITY function reads data from the table associated with the model. The function is
not deterministic. Training of the model is also not deterministic. The model may change slightly,
even if trained again using the same data, which can cause small differences in the similarity scores
produced by the function. This can affect the similarity ordering of results.

48 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Examples
Find the top five customers by ID most similar to the customer with ID '3668-QPYBK'.

SELECT AI_SIMILARITY(CUSTOMERID, '3668-QPYBK'), CHURN.*
FROM CHURN
ORDER BY 1 DESC
FETCH FIRST 5 ROWS ONLY;

Find the top three payment methods most similar to 'YES' in the CHURN column.

SELECT DISTINCT AI_SIMILARITY(PAYMENTMETHOD, 'YES' USING MODEL COLUMN CHURN),
PAYMENTMETHOD
FROM CHURN
ORDER BY 1 DESC
FETCH FIRST 3 ROWS ONLY

AI_SEMANTIC_CLUSTER
The AI_SEMANTIC_CLUSTER function computes a semantic clustering score of a member argument
against a set of clustering arguments.

FL 500

AI_SEMANTIC_CLUSTER (member-expr ,

,

clustering-expression)

member-expr:

expression

USING
MODEL COLUMN

column-name

The schema is SYSIBM.

The AI_SEMANTIC_CLUSTER function computes a clustering score using the value returned by member-
expr among the cluster formed by the values returned by clustering-expression arguments. The machine
learning model and machine learning model column is determined by the column in member-expr, or you
can specify it in the column-name in the USING MODEL COLUMN clause.

member-expr

An expression that specifies the value to be scored against the rest of the cluster. The value must be a
built-in data type that is not a binary data type, a LOB data type, XML, or ROWID.

The member-expr determines which model and model column is used for the function:

• If the member-expr is a standalone column reference and no model column is explicitly specified
with the USING MODEL COLUMN clause, the standalone column is the model column that is used to
evaluate the function, and the model is the model table associated with the table that the column
belongs to.

• The USING MODEL COLUMN clause can be used to specify a column for the member-expr . The
column named in the USING MODEL COLUMN clause is the model column, and the model is the
model table associated with the table that the model column belongs to.

• Db2 must be able to determine a model column from the member-expr, either because the
expression is a standalone column reference, or because a column is specified in the USING MODEL
COLUMN clause.

• AI must be enabled for the table or view that the model is associated with and the model must be
trained. All model columns must be included in the model.

Chapter 8. Db2 built-in functions for SQL DI 49

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_fl_v13r1m500.html

The model column, either specified as a standalone column reference or with the USING MODEL
COLUMN clause, may be a qualified name. The qualifier must not be a synonym name or a correlation
name of a table expression. The qualifier must refer to a table name or a view name, or to an alias to a
table name or view name.

If the model column is a numeric column as indicated during the training of the model, the value of
the expression and the values of each clustering-expression are cast to FLOAT during execution of the
function. If the value is outside of the range of FLOAT, the result of the function is a null value.

clustering-expression

The values returned by the set of clustering-expressions form a cluster against which the member-expr
is scored. The values must each be a built-in data type that is not a binary data type, a LOB data type,
XML, or ROWID.

The model and model column of the clustering-expression argument is inferred to be the same as the
model and model column of the member-expr.

Up to three clustering-expression arguments may be specified for AI_SEMANTIC_CLUSTER.

The result is a double-precision floating point number (FLOAT) between -1.0 and 1.0 that is the semantic
clustering score. A larger positive result indicates a better clustering of member-expr among the cluster
formed by clustering-expressions than a lower result.

The result can be null; if any argument is null, the result is the null value. If the arguments to the function
contain values that were not seen during model training, and the model column is trained as categorical,
the result is the null value.

Notes
Configuration requirement

SQL Data Insights must be configured in Db2 to use this function.
AI_SEMANTIC_CLUSTER must not be specified in a CREATE VIEW statement

AI_SEMANTIC_CLUSTER must not be specified in a CREATE VIEW statement, and must not be
specified in the fullselect of a materialized-query-definition of a CREATE TABLE statement.

AI_SEMANTIC_CLUSTER is not deterministic
The function reads data from the table associated with the model. The AI_SEMANTIC_CLUSTER
function is not deterministic. Training of the model is also not deterministic. The model may change
slightly, even if trained again using the same data, which can cause small differences in the semantic
cluster scores produced by the function which can affect the ordering of results.

Example
Customers with IDs '0280_XJGEX', '6467_CHFZW' and '0093_XWZFY' have all churned. If we form a
semantic cluster of those three customers, find the top 5 customers that would belong in that cluster.

SELECT AI_SEMANTIC_CLUSTER(CUSTOMERID, '0280_XJGEX', '6467_CHFZW', '0093_XWZFY'), CHURN.*
FROM CHURN
ORDER BY 1 DESC
FETCH FIRST 5 ROWS ONLY

50 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Chapter 9. Db2 SQL statements for SQL DI
Db2 updates the following SQL statements to support SQL DI. Make sure that you are aware of pertinent
restrictions when you use these SQL statements.

CREATE FUNCTION (sourced)
This CREATE FUNCTION statement registers a user-defined function that is based on an existing scalar or
aggregate function with a database server.

Invocation for CREATE FUNCTION (sourced)
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see Authorization IDs and dynamic SQL (Db2 SQL).

Authorization for CREATE FUNCTION (sourced)
The privilege set defined below must include at least one of the following:

• The CREATEIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

If the authorization ID that is used to create the function has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the function is identified as
system-defined function.

Additional privileges are required for the source function, and other privileges are also needed if the
function uses a table as a parameter, or refers to a distinct type. These privileges are:

• The EXECUTE privilege for the function that the SOURCE clause references.
• The SELECT privilege on any table that is an input parameter to the function.
• The USAGE privilege on each distinct type that the function references.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the owner is a role, the implicit schema match does
not apply and this role needs to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the privilege set is the set of privileges that are held by the SQL
authorization ID of the process. If the schema name is not the same as the SQL authorization ID of the
process, one of the following conditions must be met:

• The privilege set includes SYSADM or SYSCTRL authority.
• The SQL authorization ID of the process has the CREATEIN privilege on the schema.

© Copyright IBM Corp. 2022, 2023 51

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authidsdynamicsql.html

Syntax for CREATE FUNCTION (sourced)

CREATE FUNCTION function-name (
,

parameter-declaration

)
1

RETURNS data-type2

AS LOCATOR
2 SPECIFIC specific-name

PARAMETER CCSID ASCII

EBCDIC

UNICODE

SOURCE function-name

(

,

parameter-type)

SPECIFIC specific-name

Notes:
1 RETURNS, SPECIFIC, and SOURCE can be specified in any order.
2 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data type.

parameter-declaration:

parameter-name

parameter-type

parameter-type:

data-type

AS LOCATOR
1

TABLE LIKE table-name

view-name

AS LOCATOR
2

Notes:
1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data type.
2 The TABLE LIKE name AS LOCATOR clause can only be specified for the parameter list of the function
that is being defined.

data-type:

built-in-type

distinct-type-name

built-in-type:

52 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

Chapter 9. Db2 SQL statements for SQL DI 53

Description for CREATE FUNCTION (sourced)
function-name

Names the user-defined function. The name is implicitly or explicitly qualified by a schema name. For
more information, see "Choosing the schema and function names" and "Determining the uniqueness
of functions in a schema" in CREATE FUNCTION (Db2 SQL).

(parameter-declaration,…)
Specifies the number of input parameters of the function and the data type of each parameter. All of
the parameters for a function are input parameters and are nullable. There must be one entry in the
list for each parameter that the function expects to receive. Although not required, you can give each
parameter a name.

A function can have no parameters. In this case, you must code an empty set of parentheses, for
example:

 CREATE FUNCTION WOOFER()

parameter-name
Specifies the name of the input parameter. The name is an SQL identifier, and each name in the
parameter list must not be the same as any other name.

data-type
Specifies the data type of the input parameter. The data type can be a built-in data type or a
distinct type.
built-in-type

The data type of the input parameter is a built-in data type.

For information on the data types, see built-in-type.

For parameters with a character or graphic data type, the PARAMETER CCSID clause or CCSID
clause indicates the encoding scheme of the parameter. If you do not specify either of these
clauses, the encoding scheme is the value of field DEF ENCODING SCHEME on installation
panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length, precision, scale, subtype, or
encoding scheme attributes for the parameter are those of the source type of the distinct type.

The implicitly or explicitly specified encoding scheme of all of the parameters with a character or
graphic string data type must be the same—either all ASCII, all EBCDIC, or all UNICODE.

Although parameters with a character data type have an implicitly or explicitly specified subtype
(BIT, SBCS, or MIXED), the function program can receive character data of any subtype. Therefore,
conversion of the input data to the subtype of the parameter might occur when the function is
invoked.

Parameters with a datetime data type or a distinct type are passed to the function as a different
data type:

• A datetime type parameter is passed as a character data type, and the data is passed in ISO
format.

The encoding scheme for a datetime type parameter is the same as the implicitly or explicitly
specified encoding scheme of any character or graphic string parameters. If no character or
graphic string parameters are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

• A distinct type parameter is passed as the source type of the distinct type.

You can specify any built-in data type or distinct type that matches or can be cast to the data
type of the corresponding parameter of the source function (the function that is identified in the
SOURCE clause). (For information on casting data types, see Casting between data types (Db2
SQL).) Length, precision, or scale attributes do not have be specified for data types with these
attributes. When specifying data types with these attributes, follow these rules:

54 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createfunction.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_castingbetweendatatypes.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_castingbetweendatatypes.html

• An empty set of parentheses can be used to indicate that the length, precision, or scale is the
same as the source function.

• If length, precision, or scale is not explicitly specified, and empty parentheses are not specified,
the default values are used.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the function instead of the
actual value. Specify AS LOCATOR only for parameters with a LOB data type or a distinct type
based on a LOB data type. Passing locators instead of values can result in fewer bytes being
passed to the function, especially when the value of the parameter is very large.

The AS LOCATOR clause has no effect on determining whether data types can be promoted,
nor does it affect the function signature, which is used in function resolution.

TABLE LIKE table-name or view-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the function is invoked, the
actual values in the transition table are not passed to the function. A single value is passed
instead. This single value is a locator to the table, which the function uses to access the columns
of the transition table. A function with a table parameter can only be invoked from the triggered
action of a trigger.

The use of TABLE LIKE provides an implicit definition of the transition table. It specifies that
the transition table has the same number of columns as the identified table or view. If a table
is specified, the transition table includes columns that are defined as implicitly hidden in the
table. The columns have the same data type, length, precision, scale, subtype, and encoding
scheme as the identified table or view, as they are described in catalog tables SYSCOLUMNS and
SYSTABLESPACE. The number of columns and the attributes of those columns are determined at
the time the CREATE FUNCTION statement is processed. Any subsequent changes to the number
of columns in the table or the attributes of those columns do not affect the parameters of the
function.

table-name or view-name must identify a table or view that exists at the current server. A view
cannot have columns of length 0. The name must not identify a declared temporary table. The
table that is identified can contain XML columns; however, the function cannot reference those
XML columns. The name does not have to be the same name as the table that is associated
with the transition table for the trigger. An unqualified table or view name is implicitly qualified
according to the following rules:

• If the CREATE FUNCTION statement is embedded in a program, the implicit qualifier is the
authorization ID in the QUALIFIER bind option when the plan or package was created or last
rebound. If QUALIFIER was not used, the implicit qualifier is the owner of the plan or package.

• If the CREATE FUNCTION statement is dynamically prepared, the implicit qualifier is the SQL
authorization ID in the CURRENT SCHEMA special register.

When the function is invoked, the corresponding columns of the transition table identified by
the table locator and the table or view identified in the TABLE LIKE clause must have the same
definition. The data type, length, precision, scale, and encoding scheme of these columns must
match exactly. The description of the table or view at the time the CREATE FUNCTION statement
was executed is used.

Additionally, a character FOR BIT DATA column of the transition table cannot be passed as
input for a table parameter for which the corresponding column of the table specified at the
definition is not defined as character FOR BIT DATA. (The definition occurs with the CREATE
FUNCTION statement.) Likewise, a character column of the transition table that is not FOR BIT
DATA cannot be passed as input for a table parameter for which the corresponding column of the
table specified at the definition is defined as character FOR BIT DATA.

For more information about using table locators, see Accessing transition tables in a user-defined
function or stored procedure (Db2 Application programming and SQL).

RETURNS
Identifies the output of the function.

Chapter 9. Db2 SQL statements for SQL DI 55

https://www.ibm.com/docs/en/SSEPEK_13.0.0/apsg/src/tpc/db2z_accesstansitiontable.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/apsg/src/tpc/db2z_accesstansitiontable.html

data-type2
Specifies the data type of the output. The output is nullable.

You can specify any built-in data type or distinct type that can be cast from the data type of the
result of the source function. (For information on casting data types, see Casting between data
types (Db2 SQL).)

AS LOCATOR
Specifies that the function returns a locator to the value rather than the actual value. You can
specify AS LOCATOR only if the output from the function has a LOB data type or a distinct type
based on a LOB data type.

SPECIFIC specific-name
Provides a unique name for the function. The name is implicitly or explicitly qualified with a schema
name. The name, including the schema name, must not identify the specific name of another function
that exists at the current server.

The unqualified form of specific-name is an SQL identifier. The qualified form is an SQL identifier (the
schema name) followed by a period and an SQL identifier.

If you do not specify a schema name, it is the same as the explicit or implicit schema name of the
function name (function-name). If you specify a schema name, it must be the same as the explicit or
implicit schema name of the function name.

If you do not specify the SPECIFIC clause, the default specific name is the name of the function.
However, if the function name does not provide a unique specific name or if the function name is a
single asterisk, Db2 generates a specific name in the form of:

SQLxxxxxxxxxxxx

where 'xxxxxxxxxxxx' is a string of 12 characters that make the name unique.

The specific name is stored in the SPECIFIC column of the SYSROUTINES catalog table. The specific
name can be used to uniquely identify the function in several SQL statements (such as ALTER
FUNCTION, COMMENT, DROP, GRANT, and REVOKE) and in Db2 commands (START FUNCTION, STOP
FUNCTION, and DISPLAY FUNCTION). However, the function cannot be invoked by its specific name.

PARAMETER CCSID
Indicates whether the encoding scheme for character and graphic string parameters is ASCII,
EBCDIC, or UNICODE. The default encoding scheme is the value specified in the CCSID clauses of
the parameter list or RETURNS clause, or in the field DEF ENCODING SCHEME on installation panel
DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for character and graphic
string parameters. If individual CCSID clauses are specified for individual parameters in addition to
this PARAMETER CCSID clause, the value specified in all of the CCSID clauses must be the same value
that is specified in this clause.

This clause also specifies the encoding scheme to be used for system-generated parameters of the
routine such as message tokens and DBINFO.

SOURCE
Specifies that the new function is being defined as a sourced function. A sourced function is
implemented by another function (the source function). The source function must be a scalar or
aggregate function that exists at the current server, and it must be one of the following types of
functions:

• A function that was defined with a CREATE FUNCTION statement
• A cast function that was generated by a CREATE TYPE statement for a distinct type
• A built-in function

If the source function is not a built-in function, the particular function can be identified by its name,
function signature, or specific name.

56 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_castingbetweendatatypes.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_castingbetweendatatypes.html

If the source function is a built-in function, the SOURCE clause must include a function signature for
the built-in function.

The source function must not be any of the built-in functions (if a particular syntax is shown, only the
indicated form cannot be specified):

• AI_ANALOGY
• AI_COMMONALITY
• AI_SEMANTIC_CLUSTER
• AI_SIMILARITY
• ARRAY_AGG
• ARRAY_DELETE
• ARRAY_FIRST
• ARRAY_LAST
• ARRAY_NEXT
• ARRAY_PRIOR
• CARDINALITY
• CHAR(datetime-expression, second-argument) where second-argument is ISO, USA, EUR, JIS, or

LOCAL or if CHAR is specified with OCTETS, CODEUNITS16, or CODEUNITS32.
• CHARACTER_LENGTH
• CLOB if OCTETS, CODEUNITS16, or CODEUNITS32 is specified
• COALESCE if a parameter is an array
• COUNT(*)
• COUNT_BIG(*)
• CUME_DIST
• CUME_DIST (aggregate)
• DBCLOB if OCTETS, CODEUNITS16, or CODEUNITS32 is specified
• DECODE
• DECRYPT_BIT where the second argument is DEFAULT
• DECRYPT_CHAR where the second argument is DEFAULT
• DECRYPT_DB where the second argument is DEFAULT
• DECRYPT_DATAKEY_BIGINT
• DECRYPT_DATAKEY_BIT
• DECRYPT_DATAKEY_CLOB
• DECRYPT_DATAKEY_DBCLOB
• DECRYPT_DATAKEY_DECIMAL
• DECRYPT_DATAKEY_INTEGER
• DECRYPT_DATAKEY_VARCHAR
• DECRYPT_DATAKEY_VARGRAPHIC
• ENCRYPT_DATAKEY
• EXTRACT
• FIRST_VALUE
• GETVARIABLE where the second argument is DEFAULT
• GRAPHIC if OCTETS, CODEUNITS16, or CODEUNITS32 is specified, or if the first argument is

numeric
• IFNULL if a parameter is an array

Chapter 9. Db2 SQL statements for SQL DI 57

• INSERT if OCTETS, CODEUNITS16, or CODEUNITS32 is specified
• LAG
• LAST_VALUE
• LEAD
• LEFT if OCTETS, CODEUNITS16, or CODEUNITS32 is specified
• LISTAGG
• LOCAL
• LOCATE if OCTETS, CODEUNITS16, or CODEUNITS32 is specified
• MAX
• MAX_CARDINALITY
• MIN
• NTH_VALUE
• NTILE
• NULLIF
• PERCENT_RANK
• PERCENT_RANK (aggregate)
• POSITION
• RATIO_TO_REPORT
• REGEXP_COUNT
• REGEXP_INSTR
• REGEXP_LIKE
• REGEXP_REPLACE
• REGEXP_SUBSTR
• RID
• RIGHT if OCTETS, CODEUNITS16, or CODEUNITS32 is specified
• STRIP where multiple arguments are specified
• SUBSTRING
• TRIM where the first argument is BOTH, B, LEADING, L, TRAILING, T, or the first or second argument

is FROM
• TRIM_ARRAY
• VARCHAR if OCTETS, CODEUNITS16, or CODEUNITS32 is specified
• VARGRAPHIC if OCTETS, CODEUNITS16, or CODEUNITS32 is specified, or if the first argument is

numeric.
• XMLAGG
• XMLCONCAT
• XMLELEMENT
• XMLFOREST
• XMLNAMESPACES

If you base the sourced function directly or indirectly on an external scalar function, the sourced
function inherits the attributes of the external scalar function. This can involve several layers of
sourced functions. For example, assume that function A is sourced on function B, which in turn is
sourced on function C. Function C is an external scalar function. Functions A and B inherit all of
the attributes that are specified on the EXTERNAL clause of the CREATE FUNCTION statement for
function C.

58 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

function-name
Identifies the function that is to be used as the source function. The source function can be
defined with any number of parameters. If more than one function is defined with the specified
name in the specified or implicit schema, an error is returned.

If you specify an unqualified function-name, Db2 searches the schemas of the SQL path. Db2
selects the first schema that has only one function with this name on which the user has EXECUTE
authority. An error is returned if a function is not found or a schema has more than one function
with this name.

function-name (parameter-type,...)
Identifies the function that is to be used as the source function by its function signature,
which uniquely identifies the function. Thefunction-name (parameter-type,...) must identify a
function with the specified signature. The specified parameters must match the data types in the
corresponding position that were specified when the function was created. Db2 uses the number
of data types and the logical concatenation of the data types to identify the specific function
instance. Synonyms for data types are considered a match.

If the function was defined with a table parameter (the LIKE TABLE name AS LOCATOR clause was
specified in the CREATE FUNCTION statement to indicate that one of the input parameters is a
transition table), the function signature cannot be used to uniquely identify the function. Instead,
use one of the other syntax variations to identify the function with its function name, if unique, or
its specific name.

If function-name() is specified, the identified function must have zero parameters.

function-name
Identifies the function name of the source function. If you specify an unqualified name, Db2
searches the schemas of the SQL path. Otherwise, Db2 searches for the function in the
specified schema.

parameter-type,...
Identifies the parameters of the function.

If an unqualified distinct type name is specified, Db2 searches the SQL path to resolve the
schema name for the distinct type.

Empty parentheses are allowed for some data types that are specified in this context. For data
types that have a length, precision, or scale attribute, use one of the following specifications:

• Empty parentheses indicate that Db2 ignores the attribute when determining whether the
data types match. For example, DEC() is considered a match for a parameter of a function
that is defined with a data type of DEC(7,2). However, FLOAT cannot be specified with empty
parentheses because its parameter value indicates a specific data type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement. If the data type is FLOAT, the precision does not need to exactly match the value
that was specified because matching is based on the data type (REAL or DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

If you omit the FOR subtype DATA clause or the CCSID clause for data types with a subtype
or encoding scheme attribute, Db2 is to ignore the attribute when determining whether the
data types match. An exception to ignoring the attribute is FOR BIT DATA. A character FOR BIT
DATA parameter of the new function cannot correspond to a parameter of the source function
that is not defined as character FOR BIT DATA. Likewise, a character parameter of the new
function that is not FOR BIT DATA cannot correspond to a parameter of the source function
that is defined as character FOR BIT DATA.

The number of input parameters in the function that is being created must be the same as
the number of parameters in the source function. If the data type of each input parameter is

Chapter 9. Db2 SQL statements for SQL DI 59

not the same as or castable to the corresponding parameter of the source function, an error
occurs. The data type of the final result of the source function must match or be castable to
the result of the sourced function.

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR is
specified, the data type must be a LOB or distinct type that is based on a LOB.

SPECIFIC specific-name
Identifies the function to be used as the source function by its specific name.

If you specify an unqualified specific-name, Db2 searches the SQL path to locate the schema. Db2
selects the first schema that contains a function with this specific name for which the user has
EXECUTE authority. Db2 returns an error if it cannot find a function with the specific name in one
of the schemas in the SQL path.

If you specify a qualified specific-name, Db2 searches the named schema for the function. Db2
returns an error if it cannot find a function with the specific name.

Notes for CREATE FUNCTION (sourced)
Considerations for all types of user-defined functions:

For considerations that apply to all types of user-defined functions, see CREATE FUNCTION (Db2
SQL).

Owner privileges for sourced functions:
For sourced functions, the owner is authorized to execute the function (EXECUTE privilege) in the
following cases:

• If the underlying function is a user-defined function, and the owner is authorized with the grant
option to execute the underlying function, the privilege on the new function includes the grant
option. Otherwise, the owner can execute the new function but cannot grant others the privilege to
do so.

• If the underlying function is a built-in function, the owner is authorized with the grant option to
execute the underlying built-in function and the privilege on the new function includes the grant
option.

For more information, see GRANT (function or procedure privileges) (Db2 SQL). For more information
about ownership of the object, see Authorization, privileges, permissions, masks, and object
ownership (Db2 SQL).

Rules for creating sourced functions:
Assume that the function that is being created is named NEWF and the source function is named
SOURCEF. Consider the following rules when creating a sourced function:

• The unqualified names of the sourced function and source function can be different (NEWF and
SOURCEF).

• The number of input parameters for NEWF and SOURCEF must be the same.
• When specifying the input parameters and output for NEWF, you can specify a value for the

precision, scale, subtype, or encoding scheme for a data type with any of these attributes or use
empty parentheses.

Empty parentheses, such as VARCHAR(), indicate that the value of the attribute is the same
as the attribute for the corresponding parameter of SOURCEF, or that is determined by data
type promotion. If you specify any values for the attributes, Db2 checks the values against the
corresponding input parameters and returned output of SOURCEF as described next.

• When the CREATE FUNCTION statement is executed, Db2 checks the input parameters of NEWF
against those of SOURCEF. The data type of each input parameter of NEWF function must be either
the same as, or promotable to, the data type of the corresponding parameter of SOURCEF. (For
information on the promotion of data types, see Casting between data types (Db2 SQL).)

60 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createfunction.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createfunction.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_grantfunctionorprocedureprivileges.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authprivilegesandobjownership.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authprivilegesandobjownership.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_castingbetweendatatypes.html

This checking does not guarantee that an error will not occur when NEWF is invoked. For example,
an argument that matches the data type and length or precision attributes of a NEWF parameter
might not be promotable if the corresponding SOURCEF parameter has a shorter length or less
precision. In general, do not define the parameters of a sourced function with length or precision
attributes that are greater than the attributes of the corresponding parameters of the source
function.

• When the CREATE FUNCTION statement is executed, Db2 checks the data type identified in the
RETURNS clause of NEWF against the data type that SOURCEF returns. The data type that SOURCEF
returns must be either the same as, or promotable to, the RETURNS data type of NEWF.

This checking does not guarantee that an error will not occur when NEWF is invoked. For example,
the value of a result that matches the data type and length or precision attributes of those specified
for the SOURCEF result might not be promotable if the RETURNS data type of NEWF has a shorter
length or less precision. Consider the possible effects of defining the RETURNS data type of a
sourced function with length or precision attributes that are less than the attributes defined for the
data type returned by source function.

Secure functions:
The sourced user-defined function inherits the SECURED or NOT SECURED attribute from the source
function in which only the topmost user-defined function is considered. If the topmost user-defined
function is secure, any nested user-defined functions are also considered secure. Db2 does not
validate whether those nested user-defined functions are secure. If those nested functions can
access sensitive data, the security administrator needs to ensure that those functions are allowed to
access sensitive data and should ensure that a change control audit procedure has been established
for all changes to those functions.

If the sourced function is defined with the VERIFY_GROUP_FOR_USER or VERIFY_ ROLE_FOR_USER
function as its source, the sourced function must specify only two input parameters.

Examples for CREATE FUNCTION (sourced)
Example 1

Assume that you created a distinct type HATSIZE, which you based on the built-in data type INTEGER.
You want to have an AVG function to compute the average hat size of different departments. Create a
sourced function that is based on built-in function AVG.

 CREATE FUNCTION AVE (HATSIZE) RETURNS HATSIZE
 SOURCE SYSIBM.AVG (INTEGER);

When you created distinct type HATSIZE, two cast functions were generated, which allow HATSIZE
to be cast to INTEGER for the argument and INTEGER to be cast to HATSIZE for the result of the
function.

Example 2
After Smith registered the external scalar function CENTER in his schema, you decide that you want
to use this function, but you want it to accept two INTEGER arguments instead of one INTEGER
argument and one FLOAT argument. Create a sourced function that is based on CENTER.

 CREATE FUNCTION MYCENTER (INTEGER, INTEGER)
 RETURNS FLOAT
 SOURCE SMITH.CENTER (INTEGER, FLOAT);

Related concepts
Sourced functions (Db2 Application programming and SQL)
Naming conventions (Db2 SQL)
Related tasks
Creating a user-defined function (Db2 Application programming and SQL)

Chapter 9. Db2 SQL statements for SQL DI 61

https://www.ibm.com/docs/en/SSEPEK_13.0.0/apsg/src/tpc/db2z_sourcedfn.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/apsg/src/tpc/db2z_defineudf.html

CREATE FUNCTION (inlined SQL scalar)
The CREATE FUNCTION (inlined SQL scalar) statement defines an SQL scalar function at the current
server and specifies an SQL procedural language RETURN statement for the body of the function. The
function returns a single value each time it is invoked.

A package is not created for an inlined SQL scalar function. The function is not invoked as part of a query;
instead, the expression in the RETURN statement of the function is copied (inlined) into the query itself.

Invocation for CREATE FUNCTION (inlined SQL scalar)
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see Authorization IDs and dynamic SQL (Db2 SQL).

Authorization for CREATE FUNCTION (inlined SQL scalar)
The privilege set defined below must include at least one of the following:

• The CREATEIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

If the authorization ID that is used to create the function has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the function is identified as
system-defined function.

If a user-defined type is referenced (as the data type of a parameter), the privilege set must also include
at least one of the following:

• Ownership of the user-defined type
• The USAGE privilege on the user-defined type
• SYSADM authority

At least one of the following additional privileges is required if the SECURED option is specified:

• SECADM authority
• CREATE_SECURE_OBJECT privilege

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the owner is a role, the implicit schema match does
not apply and this role needs to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the privilege set is the set of privileges that are held by the SQL
authorization ID of the process. If the schema name is not the same as the SQL authorization ID of the
process, one of the following conditions must be met:

• The privilege set includes SYSADM or SYSCTRL authority.
• The SQL authorization ID of the process has the CREATEIN privilege on the schema.

62 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authidsdynamicsql.html

Syntax for CREATE FUNCTION (inlined SQL scalar)

CREATE FUNCTION function-name (
,

parameter-declaration

)

function-definition

WRAPPED obfuscated-statement-text

parameter-declaration:

parameter-name
1

data-type

Notes:
1 Note that the parameter-name is required for SQL functions.

data-type:

built-in-type

distinct-type-name

Chapter 9. Db2 SQL statements for SQL DI 63

built-in-type:
SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

XML

option-list:

64 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

SPECIFIC specific-name

1

PARAMETER CCSID ASCII

EBCDIC

UNICODE

NOT DETERMINISTIC

DETERMINISTIC

EXTERNAL ACTION

NO EXTERNAL ACTION

READS SQL DATA

CONTAINS SQL

STATIC DISPATCH CALLED ON NULL INPUT NOT SECURED

SECURED

Notes:
1 This clause and the other clauses in the option-list can be specified in any order. However, the same
clause cannot be specified more than one time.

function-defintion

RETURNS data-type2
1

LANGUAGE SQL

option-list SQL-routine-body

Notes:
1 The RETURNS clause, the RETURN-statement, and the clauses in the option-list can be specified in any
order. However, the same clause cannot be specified more than one time.

SQL-routine-body

RETURN statement

Description for CREATE FUNCTION (inlined SQL scalar)
function-name

Names the user-defined function. The name is implicitly or explicitly qualified by a schema name. For
more information, see "Choosing the schema and function names" and "Determining the uniqueness
of functions in a schema" in CREATE FUNCTION (Db2 SQL).

(parameter-declaration,…)

Specifies the number of input parameters of the function and the name and data type of each
parameter. Each parameter-declaration specifies an input parameter for the function. A function can
have zero or more input parameters. There must be one entry in the list for each parameter that the
function expects to receive. All of the parameters for a function are input parameters and are nullable.
If the function has more than 30 parameters, only the first 30 parameters are used to determine if the
function is unique.

parameter-name
Specifies the name of the input parameter. The name is an SQL identifier, and each name in the
parameter list must not be the same as any other name.

data-type
Specifies the data type of the input parameter. The data type can be a built-in data type or a
user-defined type.

Chapter 9. Db2 SQL statements for SQL DI 65

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createfunction.html

built-in-type
The data type of the input parameter is a built-in data type.

For information on the data types, see "built-in-type" in CREATE TABLE (Db2 SQL).

For parameters with a character or graphic data type, the PARAMETER CCSID clause or CCSID
clause indicates the encoding scheme of the parameter. If you do not specify either of these
clauses, the encoding scheme is the value of field DEF ENCODING SCHEME on installation
panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length, precision, scale, subtype, or
encoding scheme attributes for the parameter are those of the source type of the distinct type.
The distinct type must not be based on a LOB data type.

If you specify the name of the distinct type without a schema name, Db2 resolves the distinct
type by searching the schemas in the SQL path.

The implicitly or explicitly specified encoding scheme of all of the parameters with a character or
graphic string data type must be the same—either all ASCII, all EBCDIC, or all UNICODE.

Although parameters with a character data type have an implicitly or explicitly specified subtype
(BIT, SBCS, or MIXED), the function program can receive character data of any subtype. Therefore,
conversion of the input data to the subtype of the parameter might occur when the function is
invoked. An error occurs if mixed data that actually contains DBCS characters is used as the value
for an input parameter that is declared with an SBCS subtype.

Parameters with a datetime data type or a distinct type are passed to the function as a different
data type:

• A datetime type parameter is passed as a character data type, and the data is passed in ISO
format.

The encoding scheme for a datetime type parameter is the same as the implicitly or explicitly
specified encoding scheme of any character or graphic string parameters. If no character or
graphic string parameters are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

• A distinct type parameter is passed as the source type of the distinct type.

RETURNS
Identifies the output of the function.
data-type2

Specifies the data type of the output. The output is nullable.

The same considerations that apply to the data type of input parameter, as described under
"data-type" in “data-type” on page 65, apply to the data type of the output of the function.

LANGUAGE SQL
Specifies that the function is written exclusively in SQL.

SPECIFIC specific-name
Specifies a unique name for the function. The name is implicitly or explicitly qualified with a schema
name. The name, including the schema name, must not identify the specific name of another function
that exists at the current server.

The unqualified form of specific-name is an SQL identifier. The qualified form is an SQL identifier (the
schema name) followed by a period and an SQL identifier.

If you do not specify a schema name, it is the same as the explicit or implicit schema name of the
function name (function-name). If you specify a schema name, it must be the same as the explicit or
implicit schema name of the function name.

66 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createtable.html

If you do not specify the SPECIFIC clause, the default specific name is the name of the function.
However, if the function name does not provide a unique specific name or if the function name is a
single asterisk, Db2 generates a specific name in the form of:

SQLxxxxxxxxxxxx

where 'xxxxxxxxxxxx' is a string of 12 characters that make the name unique.

The specific name is stored in the SPECIFIC column of the SYSROUTINES catalog table. The specific
name can be used to uniquely identify the function in several SQL statements (such as ALTER
FUNCTION, COMMENT, DROP, GRANT, and REVOKE) and must be used in Db2 commands (START
FUNCTION, STOP FUNCTION, and DISPLAY FUNCTION). However, the function cannot be invoked by
its specific name.

PARAMETER CCSID
Indicates whether the encoding scheme for character and graphic string parameters is ASCII,
EBCDIC, or UNICODE. The default encoding scheme is the value specified in the CCSID clauses of
the parameter list or RETURNS clause, or in the field DEF ENCODING SCHEME on installation panel
DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for character and graphic
string parameters. If individual CCSID clauses are specified for individual parameters in addition to
this PARAMETER CCSID clause, the value specified in all of the CCSID clauses must be the same value
that is specified in this clause.

This clause also specifies the encoding scheme to be used for system-generated parameters of the
routine such as message tokens and DBINFO.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the function is invoked with
the same input arguments.
NOT DETERMINISTIC

The function might not return the same result each time that the function is invoked with the same
input arguments. The function depends on some state values that affect the results. Db2 uses
this information to disable the merging of views and table expressions when processing SELECT
and SQL data change statements that refer to this function. An example of a function that is not
deterministic is one that generates random numbers.

NOT DETERMINISTIC must be specified explicitly or implicitly if the function program accesses a
special register or invokes another function that is not deterministic. NOT DETERMINISTIC is the
default.

DETERMINISTIC
The function always returns the same result function each time that the function is invoked
with the same input arguments. An example of a deterministic function is a function that
calculates the square root of the input. Db2 uses this information to enable the merging of views
and table expressions for SELECT and SQL data change statements that refer to this function.
DETERMINISTIC is not the default. If applicable, specify DETERMINISTIC to prevent non-optimal
access paths from being chosen for SQL statements that refer to this function.

Db2 does not verify that the function program is consistent with the specification of DETERMINISTIC
or NOT DETERMINISTIC.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that Db2 does not
manage. An example of an external action is sending a message or writing a record to a file.
EXTERNAL ACTION

The function can take an action that changes the state of an object that Db2 does not manage.

Some SQL statements that invoke functions with external actions can result in incorrect results if
parallel tasks execute the function. For example, if the function sends a note for each initial call to

Chapter 9. Db2 SQL statements for SQL DI 67

it, one note is sent for each parallel task instead of once for the function. Specify the DISALLOW
PARALLEL clause for functions that do not work correctly with parallelism.

If you specify EXTERNAL ACTION, then Db2:

• Materializes the views and table expressions in SELECT and SQL data change statements that
refer to the function. This materialization can adversely affect the access paths that are chosen
for the SQL statements that refer to this function. Do not specify EXTERNAL ACTION if the
function does not have an external action.

• Does not move the function from one task control block (TCB) to another between FETCH
operations.

• Does not allow another function or stored procedure to use the TCB until the cursor is closed.
This is also applicable for cursors declared WITH HOLD.

The only changes to resources made outside of Db2 that are under the control of commit and
rollback operations are those changes made under RRS control.

EXTERNAL ACTION must be specified implicitly or explicitly specified if the SQL routine body
invokes a function that is defined with EXTERNAL ACTION. EXTERNAL ACTION is the default.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object that Db2 does not
manage. Db2 uses this information to enable the merging of views and table expressions for
SELECT and SQL data change statements that refer to this function. If applicable, specify NO
EXTERNAL ACTION to prevent non-optimal access paths from being chosen for SQL statements
that refer to this function.

Although the scope of global variables are beyond the scope of the routine, global variables can be
set in the routine body when NO EXTERNAL ACTION is specified.

Db2 does not verify that the function program is consistent with the specification of EXTERNAL
ACTION or NO EXTERNAL ACTION.

READS SQL DATA or CONTAINS SQL
Specifies the classification of SQL statements and nested routines that this routine can execute
or invoke. The database manager verifies that the SQL statements issued by the function, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
SQL statement data access classification for routines (Db2 SQL).
READS SQL DATA

Specifies that the function can execute statements with a data access classification of READS SQL
DATA, CONTAINS SQL, or NO SQL. The function cannot execute SQL statements that modify data.

READS SQL DATA is the default.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data access classification of
CONTAINS SQL or NO SQL. The function cannot execute SQL statements that read or modify data.

STATIC DISPATCH
At function resolution time, Db2 chooses a function based on the static (or declared) types of the
function parameters. STATIC DISPATCH is the default.

CALLED ON NULL INPUT
Specifies that the function is to be invoked if any, or if all, of the argument values are null. Specifying
CALLED ON NULL INPUT means that the body of the function must be coded to test for null argument
values.

CALLED ON NULL INPUT is the default.

NOT SECURED or SECURED
Specifies if the function is considered secure for row access control and column access control. The
SECURED or NOT SECURED option applies to all future versions of the function.

68 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sqlstmtsallowedinexternalfuncsandprocs.html

NOT SECURED
Specifies that the function is not considered secure for row access control and column access
control.

NOT SECURED is the default.

When the function is invoked, the arguments of the function must not reference a column for
which a column mask is enabled when the table is using active column access control.

SECURED
Specifies that the function is considered secure for row access control and column access control.

The function must be secure when it is referenced in a row permission or a column mask.

SQL-routine-body
Specifies a single RETURN statement. For more information, see RETURN statement (Db2 SQL).

If the RETURN statement includes a scalar fullselect, Db2 attempts to define a compiled function. For
more information, see CREATE FUNCTION (compiled SQL scalar) (Db2 SQL).

To determine what type of SQL scalar function is created, refer to the INLINE column of the
SYSIBM.SYSROUTINES catalog table.

WRAPPED obfuscated-statement-text
Specifies the encoded definition of the function. A CREATE FUNCTION statement can be encoded
using the WRAP scalar function.

WRAPPED must not be specified on a static CREATE statement.

Notes for CREATE FUNCTION (inlined SQL scalar)
Considerations for all types of user-defined functions:

For considerations that apply to all types of user-defined functions, see CREATE FUNCTION (Db2
SQL).

Types of SQL scalar functions:
If the syntax of the CREATE FUNCTION statement conforms to the syntax diagrams and descriptions
for CREATE FUNCTION (inlined SQL scalar), Db2 defines an inlined function, and a package is not
created. When an inlined SQL scalar function is invoked, the expression in the RETURN statement of
the function is copied (inlined) into the query itself; the function is not invoked. The attributes of an
inlined SQL scalar function are described in CREATE FUNCTION (inlined SQL scalar) (Db2 SQL).

Otherwise, Db2 attempts to define a compiled function with an associated package. For example,
if the RETURN statement contains a scalar fullselect, Db2 attempts to define a compiled function.
The attributes of a compiled SQL scalar function are described in CREATE FUNCTION (compiled SQL
scalar) (Db2 SQL).

To determine what type of SQL scalar function is created, refer to the INLINE column of the
SYSIBM.SYSROUTINES catalog table. In the INLINE column, a value of Y indicates that the function is
an inlined function, and a value of N indicates that the function is a compiled function.

Considerations for functions defined with MODIFIES SQL DATA:
If a function is specified in a subselect, and the function is defined as MODIFIES SQL DATA, the
number of times the function is invoked is invoked will vary depending on the access plan used.

Self-referencing function:
The body of an SQL function (that is, the expression or NULL in the RETURN statement in the body
of the CREATE FUNCTION statement) cannot contain a recursive invocation of itself or to another
function that invokes it, because such a function would not exist to be referenced.

Dependent objects:
An SQL routine is dependent on objects that are referenced in the routine body.

Obfuscated statements:
A CREATE FUNCTION statement can be executed in obfuscated form. In an obfuscated statement,
only the function name, parameters, and the WRAPPED keyword are readable. The rest of the

Chapter 9. Db2 SQL statements for SQL DI 69

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_returnstatement4nativesqlpl.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createfunctionsqlscalar.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createfunction.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createfunction.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createfuncinlinesqlscalar.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createfunctionsqlscalar.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createfunctionsqlscalar.html

statement is encoded in such a way that it is not readable but can be decoded by a database server
that supports obfuscated statements. The WRAP scalar function produces obfuscated statements.
Any debug options that are specified when the function is created from an obfuscated statement are
ignored.

Resolution of object names:
Db2 resolves object names inside the body of the function according to the rules in Resolution of
unqualified object names (Db2 SQL) and the type of the object. The name resolution occurs when the
function is created.

Referencing date and time special registers:
If an SQL function contains multiple references to any of the date or time special registers, all
references return the same value. In addition, this value is the same value that is returned by the
retrieving value of the special register in the statement that invoked the function.

Self-referencing function:
The body of an SQL function (that is, the expression or NULL in the RETURN clause of the CREATE
FUNCTION (inlined SQL scalar) statement) cannot contain a recursive invocation of itself or to another
function that invokes it, because such a function would not exist to be referenced.

Dependent objects:
An SQL routine is dependent on objects that are referenced in the routine body.

Alternative syntax and synonyms:
To provide compatibility with previously releases of Db2 or other products in the Db2 family, Db2
supports the following alternative syntax:

• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC
• NULL CALL as a synonym for CALLED ON NULL INPUT
• TIMEZONE can be specified as an alternative to TIME ZONE.

For an inlined SQL scalar function, the RETURNS clause and the clauses in the option-list can be
specified in any order.

Restriction on use of AI Scalar Functions:
Scalar functions AI_ANALOGY, AI_COMMONALITY, AI_SEMANTIC_CLUSTER, and AI_SIMILARITY
cannot be used in an inlined function. The AI functions must refer to model columns, which cannot be
specified in an inlined function definition. If the AI function appears inside of a scalar fullselect in the
RETURN statement of the function, then the function is created as a compiled SQL scalar function as
described above, and the use of the AI function is allowed.

Examples for CREATE FUNCTION (inlined SQL scalar)

Example 1: Define a scalar function that returns the tangent of a value using existing SIN and COS built-in
functions:

 CREATE FUNCTION TAN (X DOUBLE)
 RETURNS DOUBLE
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN SIN(X)/COS(X);

70 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_resolutionofobjnames.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_resolutionofobjnames.html

CREATE FUNCTION (SQL table)
The CREATE FUNCTION (SQL table) statement creates an SQL table function at the current server. The
function returns a set of rows.

Invocation for CREATE FUNCTION (SQL table)
This statement can only be dynamically prepared only if dynamic rules run behavior is in effect. For more
information, see Authorization IDs and dynamic SQL (Db2 SQL).

Authorization for CREATE FUNCTION (SQL table)
The privilege set that is defined below must include at least one of the following privileges or authorities:

• The CREATEIN privilege on the schema
• SYSADM authority
• SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

If the authorization ID that is used to create the function has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the function is identified as
system-defined function.

If a distinct type is referenced (i.e. as the data type of a parameter or SQL variable), the privilege set must
also include at least one of the following:

• Ownership of the distinct type
• The USAGE privilege on the distinct type
• SYSADM authority
• SYSDBADM authority

If the function uses a table as a parameter, the privilege set must also include at least one of the
following:

• Ownership of the table
• The SELECT privilege on the table
• SYSADM authority

At least one of the following additional privileges is required if the SECURED option is specified

• SECADM authority
• CREATE_SECURE_OBJECT privilege

Privilege set: If the statement is embedded in an application program, the privilege set is the set of
privileges that are held by the owner of the plan or package. If the owner is a role, matching of the
implicit schema name does not apply and the role must include one of the previously listed privileges or
authorities.

If the statement is dynamically prepared and is not running in a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the privilege set is the set of privileges that are held by the SQL
authorization ID of the process. If the schema name is not the same as the SQL authorization ID of the
process, one of the following conditions must be met:

• The privilege set includes SYSADM authority
• The privilege set includes SYSCTRL authority
• The SQL authorization ID of the process has the CREATEIN privilege on the schema

Chapter 9. Db2 SQL statements for SQL DI 71

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authidsdynamicsql.html

Syntax for CREATE FUNCTION (SQL table)

CREATE FUNCTION function-name (
,

parameter-declaration

)

function-definition

WRAPPED obfuscated-statement-text

parameter-declaration:
parameter-name parameter-type

parameter-type:
data-type1

TABLE LIKE table-name

view-name

AS LOCATOR

data-type1, data-type2:
built-in-type

distinct-type-name

72 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

built-in-type:
SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

XML

Chapter 9. Db2 SQL statements for SQL DI 73

option-list:

1
LANGUAGE SQL

SPECIFIC specific-name

NOT DETERMINISTIC

DETERMINISTIC

EXTERNAL ACTION

NO EXTERNAL ACTION

READS SQL DATA

CONTAINS SQL

CALLED ON NULL INPUT INHERIT SPECIAL REGISTERS

STATIC DISPATCH

CARDINALITY integer

PARAMETER CCSID ASCII

EBCDIC

UNICODE

NOT SECURED

SECURED

Notes:
1 The options in the option-list can be specified in any order. However, the same clause cannot be
specified more than one time.

function-definition

RETURNS TABLE (

,

column-name data-type2) option-list

SQL-routine-body

SQL-routine-body:
RETURN statement

BEGIN ATOMIC RETURN statement END

Description for CREATE FUNCTION (SQL table)
function-name

Names the user-defined function. The name is implicitly or explicitly qualified by a schema name. The
combination of the name, the schema name, the number of parameters, and the data type of each
parameter (without regard to any length, precision, scale, subtype, or encoding scheme attribute of
the data type) must not identify a user-defined function that exists at the current server. For more
information, see "Choosing the schema and function names" and "Determining the uniqueness of
functions in a schema" in CREATE FUNCTION (Db2 SQL).

(parameter-declaration,...)
Identifies the number of input parameters of the function, and specifies the name and data type of
each parameter. All of the parameters for a function are input parameters and are nullable. There
must be one entry in the list for each parameter that the function expects to receive.

74 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createfunction.html

parameter-name
Specifies the name of the input parameter. Each name in the parameter list must not be the same
as any other name.

data-type1
Specifies the data type of the input parameter. The data type can be a built-in data type or a
distinct type.
built-in-type

The data type of the parameter is a built-in data type.

For more information on the data types, including the subtype of character data types (the
FOR subtype DATA clause), see built-in types. However, the varying length string data types
have different maximum lengths for this statement than for the CREATE TABLE statement. The
maximum lengths for parameters (and SQL variables) are as follows:

• VARCHAR or VARBINARY: 32704
• VARGRAPHIC: 16352

For parameters with a character or graphic data type, the PARAMETER CCSID clause or the
CCSID clause indicates the encoding scheme of the parameter. If you do not specify either of
the CCSID clauses, the encoding scheme is the value of the DEF ENCODING SCHEME field on
installation panel DSNTIPF.

Although an input parameter with a character data type has an implicitly or explicitly specified
subtype (BIT, SBCS, or MIXED), the value that is actually passed in the input parameter can
have any subtype. Therefore, conversion of the input data to the subtype of the parameter
might occur when the function is invoked. With ASCII or EBCDIC, an error occurs if mixed
data that actually contains DBCS characters is used as the value for an input parameter that is
declared with an SBCS subtype.

distinct-type-name
The data type of the parameter is a distinct type. Any length, precision, scale, subtype, or
encoding scheme attributes for the parameter are those of the source type for the distinct
type.

TABLE LIKE table-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the function is invoked, the
actual values in the transition table are not passed to the function. A single value is passed
instead. This value is a locator for the table, which the function uses to access the columns
of the transition table. The table that is identified can contain XML columns; however, the
function cannot reference those XML columns.

A function with a table parameter can only be invoked from the triggered action of a trigger.

RETURNS TABLE
Specifies that the output of the function is a table. The RETURN statement in an SQL table function
must return a table result. The parentheses that follow the RETURNS TABLE keyword delimit a list
of name and data type pairs of the columns of the output table. All columns of the output table are
nullable.
column-name

Specifies the name of the column. The name cannot be qualified, and must be unique within the
RETURNS TABLE clause for the function.

data-type2
Specifies the data type and attributes of the column of the output table.

For SQL table functions, the result table of the function might include multiple encoding schemes
– similar to what a view definition can include.

LANGUAGE SQL
Specifies that the function is written exclusively in SQL.

SPECIFIC specific-name
Specifies a unique name for the function.

Chapter 9. Db2 SQL statements for SQL DI 75

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the function is invoked with
the same input arguments. Db2 does not verify that the function program is consistent with the
specification of NOT DETERMINISTIC or DETERMINISTIC.
NOT DETERMINISTIC

Specifies that the function might not return the same result table each time that the function
is invoked with the same input arguments, even when the referenced data in the database has
not changed. The function depends on some state values that might affect the results. Db2
disables the merging of views and table expressions when processing SELECT and SQL data
change operations that refer to a function that is defined with this option. An example of a table
function that is not deterministic is one which references special registers, other functions that
are not deterministic, or a sequence in a way that affects the table function's result table. NOT
DETERMINISTIC is the default.

DETERMINISTIC
Specifies that the function always returns the same result table each time that the function is
invoked with the same input arguments (provided that the referenced data in the database has not
changed). Db2 enables the merging of SQL table functions that are defined with this option.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function contains an external action. Db2 does not verify that the function
program is consistent with the specification of EXTERNAL ACTION or NO EXTERNAL ACTION.
EXTERNAL ACTION

The function performs some external action (outside the scope of the function program). Thus, the
function must be invoked with each successive function invocation. EXTERNAL ACTION must be
specified if the function invokes another function that has external actions. EXTERNAL ACTION is
the default.

NO EXTERNAL ACTION
The function does not perform any external action. It need not be called with each successive
function invocation. Functions that are defined with NO EXTERNAL ACTION might perform better
than functions that are defined with EXTERNAL ACTION because the function might not be
invoked for each successive function invocation.

Although the scope of global variables are beyond the scope of the routine, global variables can be
set in the routine body when NO EXTERNAL ACTION is specified.

READS SQL DATA or CONTAINS SQL
Specifies the classification of SQL statements and nested routines that this routine can execute
or invoke. The database manager verifies that the SQL statements issued by the function, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
SQL statement data access classification for routines (Db2 SQL).
READS SQL DATA

Specifies that the function can execute statements with a data access indication of READS SQL
DATA or CONTAINS SQL. The function cannot execute SQL statements that modify data.

READS SQL DATA is the default.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data access indication of
CONTAINS SQL. The function cannot execute statements that read or modify data.

CALLED ON NULL INPUT
Specifies that the function is called regardless of whether any of the input arguments are null, making
the function responsible for testing for null argument values. The function can return an empty table,
depending on its logic.

CALLED ON NULL INPUT is the default.

76 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sqlstmtsallowedinexternalfuncsandprocs.html

INHERIT SPECIAL REGISTERS
Specifies that existing values of special registers are inherited upon entry to the function. INHERIT
SPECIAL REGISTERS is the default.

STATIC DISPATCH
At function resolution time, Db2 chooses a function based on the static (or declared) types of the
function parameters. STATIC DISPATCH is the default.

CARDINALITY integer
Specifies an estimate of the expected number of rows that the function returns. The number is used
for optimization purposes. The value of integer must be between 0 and 2147483647.

If you do not specify CARDINALITY, Db2 assumes a finite value. The finite value is the same value that
Db2 assumes for tables for which the RUNSTATS utility has not gathered statistics.

If a function has an infinite cardinality (the function never returns the end-of-table condition and
always returns a row), a query that requires the end-of-table condition to work correctly will need to
be interrupted.

PARAMETER CCSID
Specifies the encoding scheme for character and graphic string parameters is ASCII, EBCDIC, or
UNICODE. The default encoding scheme is the value that is specifies in the CCSID clauses of the
parameter list or RETURNS clause, or in the DEF ENCODING SCHEME field on installation panel
DSNTIPF. This clause provides a convenient way to specify the encoding scheme for character and
graphic string parameters. If individual CCSID clauses are specified for individual parameters in
addition to this PARAMETER CCSID clause, the value specified in all of the CCSID clauses must be the
same value that is specified in this clause. This clause also specifies the encoding scheme that is used
for system-generated parameters of the routine such as message tokens and DBINFO.

NOT SECURED or SECURED
Specifies if the function is considered secure for row access control and column access control. The
SECURED or NOT SECURED option applies to all future versions of the function.
NOT SECURED

Specifies that the function is not considered secure for row access control and column access
control.

NOT SECURED is the default.

When the function is invoked, the arguments of the function must not reference a column for
which a column mask is enabled when the table is using active column access control.

SECURED
Specifies that the function is considered secure for row access control and column access control.

The function must be secure when it is referenced in a row permission or a column mask.

SQL-routine-body

RETURN-statement
Specifies the return value of the function. A RETURN statement must be specified for an SQL table
function.

WRAPPED obfuscated-statement-text
Specifies the encoded definition of the function. A CREATE FUNCTION statement can be encoded
using the WRAP scalar function.

WRAPPED must not be specified on a static CREATE statement.

ATOMIC
ATOMIC indicates that an unhandled exception condition within the RETURN statement causes the
statement to be rolled back.

Chapter 9. Db2 SQL statements for SQL DI 77

Notes for CREATE FUNCTION (SQL table)
Considerations for all types of user-defined functions:

For considerations that apply to all types of user-defined functions, see CREATE FUNCTION (Db2
SQL).

Self-referencing function:
The body of an SQL function (that is, the expression or NULL in the RETURN statement in the body
of the CREATE FUNCTION statement) cannot contain a recursive invocation of itself or to another
function that invokes it, because such a function would not exist to be referenced.

Dependent objects:
An SQL routine is dependent on objects that are referenced in the routine body.

Obfuscated statements:
A CREATE FUNCTION statement can be executed in obfuscated form. In an obfuscated statement,
only the function name, parameters, and the WRAPPED keyword are readable. The rest of the
statement is encoded in such a way that it is not readable but can be decoded by a database server
that supports obfuscated statements. The WRAP scalar function produces obfuscated statements.
Any debug options that are specified when the function is created from an obfuscated statement are
ignored.

Resolution of object names:
Db2 resolves object names inside the body of the function according to the rules in Resolution of
unqualified object names (Db2 SQL) and the type of the object. The name resolution occurs when the
function is created.

Referencing date and time special registers:
If an SQL function contains multiple references to any of the date or time special registers, all
references return the same value. In addition, this value is the same value that is returned by the
retrieving value of the special register in the statement that invoked the function.

Considerations for column names longer than 30 bytes
If a length of a new column name is greater than 30 Unicode bytes, truncation occurs in the SQLNAME
field of the SQLDA when the column is described in an application. A column name in UTF8, and its
equivalent in the system EBCDIC CCSID, must be 128 bytes or less. For more information about long
column names, see Column names longer than 30 bytes (Db2 SQL).

Considerations for columns that are defined with a field procedure:
The body of an SQL table function must not reference a column that is defined with a field procedure,
and the RETURNS clause of an SQL table function must not reference a column that is defined with a
field procedure. An SQL table function must not be invoked with an expression that is derived from a
column that is defined with a field procedure.

Restrictions involving pending definition changes:
The body of an SQL table function must not reference a table that has pending definition changes.

Alternative syntax and synonyms:
To provide compatibility with previously releases of Db2 or other products in the Db2 family, Db2
supports the following alternative syntax:

• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC
• NULL CALL as a synonym for CALLED ON NULL INPUT

Restrictions involving AI functions:
The body of a SQL table function must not reference AI functions: AI_ANALOGY, AI_COMMONALITY,
AI_SEMANTIC_CLUSTER, or AI_SIMILARITY.

Examples for CREATE FUNCTION (SQL table)

78 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createfunction.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createfunction.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_resolutionofobjnames.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_resolutionofobjnames.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_longcolumnnames.html

Example 1

Define a table function, JTABLE, to return a table with 3 columns:

CREATE FUNCTION JTABLE (COLD_VALUE CHAR(9), T2_FLAG CHAR(1))
 RETURNS TABLE (COLA INT, COLB INT, COLC INT)
 LANGUAGE SQL
 SPECIFIC DEPTINFO
 NOT DETERMINISTIC
 READS SQL DATA
 RETURN
 SELECT A.COLA, B.COLB, B.COLC
 FROM TABLE1 AS A
 LEFT OUTER JOIN
 TABLE2 AS B
 ON A.COL1 = B.COL1 AND T2_FLAG = 'Y'
 WHERE A.COLD = COLD_VALUE;

Example 2

Define a table function that returns the employees in a specified department number. The function
simply returns the employees for the requested department:

CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))
 RETURNS TABLE (EMPNO CHAR(6), LASTNAME VARCHAR(15), FIRSTNAME VARCHAR(12))
 LANGUAGE SQL
 READS SQL DATA
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN
 SELECT EMPNO, LASTNAME, FIRSTNME
 FROM YEMP
 WHERE YEMP.WORKDEPT = DEPTEMPLOYEES.DEPTNO;

Related concepts
SQL table functions (Db2 Application programming and SQL)
Naming conventions (Db2 SQL)
Related tasks
Creating a user-defined function (Db2 Application programming and SQL)

CREATE INDEX
The CREATE INDEX statement creates a partitioning index or a secondary index and an index space at the
current server. The columns included in the key of the index are columns of a table at the current server.

Invocation for CREATE INDEX
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see Authorization IDs and dynamic SQL (Db2 SQL).

Authorization for CREATE INDEX
The privilege set that is defined below must include at least one of the following:

• The INDEX privilege on the table
• Ownership of the table
• DBADM authority for the database that contains the table
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

Chapter 9. Db2 SQL statements for SQL DI 79

https://www.ibm.com/docs/en/SSEPEK_13.0.0/apsg/src/tpc/db2z_sqltablefn.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/apsg/src/tpc/db2z_defineudf.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authidsdynamicsql.html

If the index is created using an expression, the EXECUTE privilege is required on any user-defined
function that is invoked in the index expression.

Additional privileges might be required, as explained in the description of the BUFFERPOOL and USING
STOGROUP clauses.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the specified index name includes a qualifier that is
not the same as this owner, the privilege set must include SYSADM or SYSCTRL authority, or DBADM or
DBCTRL authority for the database.

If ROLE AS OBJECT OWNER is in effect, the schema qualifier must be the same as the role, unless the role
has the CREATEIN privilege on the schema, SYSADM authority, or SYSCTRL authority.

If ROLE AS OBJECT OWNER is not in effect, one of the following rules applies:

• If the privilege set lacks the CREATIN privilege on the schema, SYSADM authority, or SYSCTRL authority,
the schema qualifier (implicit or explicit) must be the same as one of the authorization ids of the
process.

• If the privilege set includes SYSADM authority or SYSCTRL authority, the schema qualifier can be any
valid schema name.

If the statement is dynamically prepared, the privilege set is the privileges that are held by the SQL
authorization ID of the process unless the process is within a trusted context and the ROLE AS OBJECT
OWNER clause is specified. In that case, the privilege set is the set of privileges that are held by the role
that is associated with the primary authorization ID of the process. However, if the specified index name
includes a qualifier that is not the same as this authorization ID, the following rules apply:

• If the privilege set includes SYSADM or SYSCTRL authority (or DBADM authority for the database, or
DBCTRL authority for the database when creating a table), the schema qualifier can be any valid schema
name.

• If the privilege set lacks SYSADM or SYSCTRL authority (or DBADM authority for the database, or
DBCTRL authority for the database when creating a table), the schema qualifier is valid only if it is
the same as one of the authorization IDs of the process and the privilege set that are held by that
authorization ID includes all privileges needed to create the index. This is an exception to the rule that
the privilege set is the privileges that are held by the SQL authorization ID of the process.

Syntax for CREATE INDEX

CREATE

UNIQUE

WHERE NOT NULL

INDEX index-name ON

table-name (

,

column-name

key-expression

ASC

DESC

RANDOM

, BUSINESS_TIME WITHOUT OVERLAPS

WITH OVERLAPS

)

aux-table-name

other-options

other-options:

80 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

XML-index-specification

INCLUDE (

,

column-name)

NOT CLUSTER

CLUSTER

PARTITIONED

NOT PADDED

PADDED

2

using-specification

free-specification

gbpcache-specification

DEFINE YES

DEFINE NO

COMPRESS NO

COMPRESS YES

INCLUDE NULL KEYS

EXCLUDE NULL KEYS

PARTITION BY
RANGE

(

,

partition-element
1

using-specification

free-specification

gbpcache-specification

DSSIZE integer G

)

BUFFERPOOL bpname

CLOSE YES

CLOSE NO

DEFER NO

DEFER YES

DSSIZE integer G

PIECESIZE integer K

M

G

COPY NO

COPY YES

Notes:
1 The same clause must not be specified more than one time.

Chapter 9. Db2 SQL statements for SQL DI 81

2 The value of field PAD INDEXES BY DEFAULT (on installation panel DSNTIPE) determines the default.
When the value is NO, NOT PADDED is the default. When the value is YES, PADDED is the default. For more
information, see the description of the PADDED or NOT PADDED options.

XML-index-specification:

GENERATE KEY USING

GENERATE KEYS USING

XMLPATTERN XML-pattern-clause AS SQL-data-type

XML-pattern-clause:

prolog

pattern-expression

prolog:

declare namespace NCName = StringLiteral ;

declare default element namespace StringLiteral ;

pattern-expression:

/

//

forward-axis element-name

*

nsprefix :*

*: NCName
.

/

//

@ attribute-name

attribute::  attribute-name

@ *

attribute::  *

forward-axis text()

function-step

1

Notes:
1 pattern-expression cannot be an empty string.

forward-axis:

82 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

child::

descendant::

self::

descendant-or-self::

function-step:

fn::upper-case(.)

fn::exists (element-name

*

nsprefix :*

*: NCName

child:: element-name

child::*

child:: nsprefix :*

child::*: NCName

@ attribute-name

attribute::  attribute-name

@ *

attribute::  *

)

SQL-data-type:

SQL VARCHAR (integer)

DECFLOAT

(34)

DATE

TIMESTAMP

(12)

using-specification:

Chapter 9. Db2 SQL statements for SQL DI 83

USING VCAT catalog-name

STOGROUP stogroup-name
1

PRIQTY -1

PRIQTY integer

SECQTY -1

SECQTY integer

ERASE NO

ERASE YES

Notes:
1 The same clause must not be specified more than once.

free-specification:

FREEPAGE 0

FREEPAGE integer

PCTFREE 10

PCTFREE integer

1

Notes:
1 The same clause must not be specified more than one time.

gbpcache-specification:

GBPCACHE CHANGED

GBPCACHE ALL

NONE

partition-element:

84 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

PARTITION integer

ENDING
AT

(

,

constant

MAXVALUE

MINVALUE

)
INCLUSIVE

Description for CREATE INDEX
UNIQUE

Prevents the table from containing two or more rows with the same value of the index key. When
UNIQUE is used, all null values for a column are considered equal. For example, if the key is a single
column that can contain null values, that column can contain only one null value. The constraint is
enforced when rows of the table are updated or new rows are inserted.

The constraint is also checked during the execution of the CREATE INDEX statement. If the table
already contains rows with duplicate key values, the index is not created.

UNIQUE WHERE NOT NULL
Prevents the table from containing two or more rows with the same value of the index key where all
null values for a column are not considered equal. Multiple null values are allowed. Otherwise, this is
identical to UNIQUE.

INDEX index-name
Names the index. The name must not identify an index that exists at the current server, or is listed in
the SYSIBM.SYSPENDINGOBJECTS catalog table, or is in an accelerator-only table.

The associated index space also has a name. That name appears as a qualifier in the names of data
sets defined for the index. If the data sets are managed by the user, the name is the same as the
second (or only) part of index-name. If this identifier consists of more than eight characters, only the
first eight are used. The name of the index space must be unique among the names of the index
spaces and table spaces of the database for the identified table. If the data sets are defined by Db2,
Db2 derives a unique name.

If the index is an index on a declared temporary table, the qualifier, if explicitly specified, must be
SESSION. If the index name is unqualified, Db2 uses SESSION as the implicit qualifier.

For more information, see Index names and guidelines (Db2 Administration Guide).

ON table-name or aux-table-name
Identifies the table on which the index is created. The name can identify a base table, a materialized
query table, a declared temporary table, or an auxiliary table.
table-name

Identifies the base table, materialized query table, or declared temporary table on which the
index is created. The name must identify a table that exists at the current server. (The name of a
declared temporary table must be qualified with SESSION.)

The name must not identify a clone table. The name must not identify a created temporary table
or a table that is implicitly created for an XML column. If the index that is being created is for
XML values, the table can contain an XML column, otherwise, the table must not contain an XML
column. The name must not identify a catalog table or declared temporary table if the index is
created using expressions. The name must not identify an accelerator-only table or a directory
table.

If the table has enforced row or column access controls, the row permissions and column masks
are not applied during key generation.

Chapter 9. Db2 SQL statements for SQL DI 85

https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_guidelinesfordefiningindexes.html

column-name,…
Specifies the columns of the index key.

Each column-name must identify a column of the table. Do not specify more than 64 columns
or the same column more than one time. Do not qualify column-name.

Do not specify a column for column-name that is defined as follows:

• a LOB column (or a column with a distinct type that is based on a LOB data type)
• a BINARY or VARBINARY column (or a column with a distinct type that is based on a BINARY

or VARBINARY data type) when the PARTITION BY RANGE clause is also specified
• a VARBINARY column (or a column with a distinct type that is based on a VARBINARY data

type) when the PADDED clause is also specified
• a row change timestamp column when the PARTITION BY RANGE or PARTITIONED clause is

also specified.
• a timestamp with time zone column (or a column with a distinct type that is based on the

timestamp with time zone data type) when the PARTITION or PARTITION BY RANGE clause
is also specified.

A column with an XML type can only be specified if the XMLPATTERN clause is also specified.
If the XMLPATTERN clause is specified, only one column can be identified and the column
must be an XML type. The resulting index is an XML index.

If the table is an EBCDIC table with Unicode columns, character and graphic columns that are
specified for the index key must be all EBCDIC or all Unicode.

The sum of the length attributes of the columns must not be greater than the following
limits, where n is the number of columns that can contain null values, m is the number of
varying-length columns, and d is the number of DECFLOAT columns in the key:

• 2000 - n for a padded, nonpartitioning index
• 2000 - n - 2m - 3d for a nonpadded, nonpartitioning index
• 255 - n for a partitioning index (padded or nonpadded)
• 255 - n - 2m- 3d for a nonpadded, partitioning index

key-expression
Specifies an expression that returns a scalar value. An index with a key that includes one or
more expressions consisting of more than just a column name is an expression-based index.
key-expression cannot be specified with the GENERATE KEY USING clause or the INCLUDE
clause. key-expression has the following restrictions:

• Each key-expression must contain as least one reference to a column of table-name.

All references to columns of table-name must be unqualified. Referenced columns cannot
include any FIELDPROCs or a SECURITY LABEL. Referenced columns cannot be implicitly
hidden (that is, defined with the IMPLICITLY HIDDEN attribute).

• key-expression must not include any of the following:

– A subquery
– An aggregate function
– A function that is not deterministic function
– A function that has an external action
– A user-defined function
– The VERIFY_GROUP_FOR_USER or VERIFY_ROLE_FOR_USER functions
– A sequence reference
– A host variable
– A parameter marker

86 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

– A global variable
– A special register
– An expression for which implicit time zone value apply (or example, cast a timestamp to a

timestamp with time zone)
– A CASE expression
– An OLAP specification
– An AI_ANALOGY, AI_COMMONALITY, AI_SEMANTIC_CLUSTER, or AI_SIMILARITY

function.
• If key-expression invokes a cast function, the privilege set must implicitly include EXECUTE

authority on the generated cast functions for the distinct type.
• If key-expression invokes the LOWER or UPPER functions, the input string-expression cannot

be FOR BIT DATA, and the function invocation must contain the locale-name argument.
• If key-expression invokes the TRANSLATE function, the function invocation must contain the

to-string argument.
• key-expression must not invoke a built-in function with an argument that references a LOB

column, unless the function is SUBSTR or JSON_VAL.
• If key-expression invokes the SUBSTR function, an argument to the function that references

a LOB column can reference only the inline portion of the LOB column.
• If key-expression invokes the JSON_VAL function and the first argument is a LOB column, the

column must be defined as an inline LOB.
• If key-expression invokes the JSON_VAL function, the function invocation must meet the

following conditions:

– The invocation of the JSON_VAL function must be the outermost expression for key-
expression.

– If the first argument is a column, that column must be contained in a table in a partition-
by-growth table space.

– The third argument must end with the string ':na', to indicate that the first argument does
not contain a JSON array.

• If key-expression invokes the JSON_VAL built-in function, the CREATE INDEX statement
must not reference any LOB columns other than the LOB column that is the argument to the
JSON_VAL function. Such a CREATE INDEX statement can refer only to a single LOB column.

• The same expression cannot be used more than one time in the same index.
• The data type of the result of the expression cannot be a LOB, XML, DECFLOAT, or array

value. However, the data type of an intermediate result can be a LOB or DECFLOAT value (or
a distinct type that is based on one of these data types), but not an XML value. For an index
with a DECFLOAT intermediate result, the rounding mode that was in effect when the index
was created should also be in effect when the index is used.

• If a Unicode column in an EBCDIC table is referenced in a key-expression, the encoding
scheme of the index keys must either be all Unicode or all EBCDIC. Otherwise, the encoding
scheme of the result of a key-expression must be the same encoding scheme as the table.

The maximum length of the text string of each key-expression is 4000 bytes after conversion
to UTF-8. The maximum number of key-expression in an extended index is 64.

ASC
Puts the index entries in ascending order by the column. ASC cannot be specified with the
GENERATE KEY USING clause.

ASC is the default.

DESC
Puts the index entries in descending order by the column. DESC cannot be specified with the
GENERATE KEY USING clause or if the ON clause contains key-expression.

Chapter 9. Db2 SQL statements for SQL DI 87

RANDOM
Index entries are put in a random order by the column. RANDOM cannot be specified in the
following cases:

• A varying length column is part of the index key and the index is defined with the NOT
PADDED option

• A column of the index key is defined as TIMESTAMP WITH TIME ZONE or DECFLOAT
• The index is an XML index. An XML index is defined with the GENERATE KEY USING clause
• The index is part of the partitioning key
• The index is an expression-based index

BUSINESS_TIME

Specifies that the columns of the BUSINESS_TIME period are automatically added to the end
of the index key in the following order:

• The end column of the BUSINESS_TIME period in ascending order
• The start column of the BUSINESS_TIME period in ascending order

BUSINESS_TIME can be specified as the last item in the list. The list must also include at
least one column-name or key-expression. When BUSINESS_TIME is specified, the columns of
the BUSINESS_TIME period must not be specified as column-name or a key-expression, or as
columns in the partitioning key.

WITH OR WITHOUT OVERLAPS
Indicates whether multiple rows may exist with the same values for the non-period
columns and expressions of the index key for a row, with overlapping time periods.
WITH OVERLAPS

Indicates that multiple rows may exist with the same values for the non-period
columns and expressions of the index key for a row, with overlapping time periods.
The BUSINESS_TIME WITH OVERLAPS clause is intended for use in defining an index
for the foreign key of a temporal referential constraint.

BUSINESS_TIME WITH OVERLAPS must not be specified when UNIQUE is specified for
the index definition.

BUSINESS_TIME WITHOUT OVERLAPS must not be specified if the table is defined
with a partitioning key that includes any columns of the BUSINESS_TIME period.

WITHOUT OVERLAPS

Indicates that the values for the non-period columns and expressions of the index key
for a row must be unique with respect to the time represented by the BUSINESS_TIME
period for the row. Db2 enforces that multiple rows do not exist with the same key
values for the columns or expressions of the index, with overlapping time periods. The
BUSINESS_TIME WITHOUT OVERLAPS clause is intended for use in defining a unique
index to enforce a primary key or unique constraint.

BUSINESS_TIME WITHOUT OVERLAPS can only be specified for an index that is
defined as UNIQUE.

aux-table-name
Identifies the auxiliary table on which the index is created. The name must identify an auxiliary
table that exists at the current server. If the auxiliary table already has an index, do not create
another one. An auxiliary table can only have one index.

Do not specify any columns for the index key. The key value is implicitly defined as a unique 19
byte value that is system generated.

If qualified, table-name or aux-table-name can be a two-part or three-part name. If a three-part name
is used, the first part must match the value of the field Db2 LOCATION NAME of installation panel
DSNTIPR at the current server. (If the current server is not the local Db2, this name is not necessarily

88 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

the name in the CURRENT SERVER special register.) Whether the name is two-part or three-part, the
authorization ID that qualifies the name is the owner of the index.

The table space that contains the named table must be available to Db2 so that its data sets can be
opened. If the table space is EA-enabled, the data sets for the index must be defined to belong to a
DFSMS data class that has the extended format and addressability attributes.

GENERATE KEY USING
Along with XMLPATTERN, GENERATE KEY USING is required to generate an XML index.

XMLPATTERN
When an XML column is indexed, only parts of the documents will be indexed. To identify those
parts, a path expression that follows the XMLPATTERN clause is specified. Only values of those
element, attribute, or text nodes which match the specified pattern are indexed. An XML pattern
can be specified using an optional namespace declaration where namespace prefixes are mapped
to namespace URIs and by providing a path expression. The path expression is similar to a path
expression in XQuery except that the paths that are specified for the XML index can support child
axis, self-or-descendant axis, wildcard expressions, or attribute only. The maximum length of an XML
pattern text is 4000 bytes after being converted to UTF-8. For more information about XQuery, see
Overview of pureXML (Db2 Programming for XML).

prolog
To use qualified names in the pattern-expression, namespace prefixes need to be declared. A default
namespace can also be declared for use with unqualified names.
declare namespace NCName=StringLiteral

The namespace prefix, NCName, is mapped to a namespace URI that is identified in StringLiteral.
Multiple namespaces can be declared, but each namespace prefix must be unique within
the list of namespace declarations. NCName is an XML name as defined by the XML 1.0
standard. NCName cannot include a colon character. The namespace URI cannot be http://
www.w3.org/XML/1998/namespace or http://w3.org/2000/xmlns/.

declare default element namespace StringLiteral
Specifies the default namespace URI for unqualified names of elements and types. StringLiteral
is a namespace URI. If no default element namespace is declared, unqualified names of element
and types are in no namespace. Only one default namespace can be declared.

pattern-expression
Pattern-expression is used to identify those nodes in an XML document that are indexed. Pattern-
expression cannot be an empty or invalid string, and the XQuery expression cannot be nested more
than 50 levels. pattern-expression cannot be an XQuery updating expression.
/ (forward slash)

Separates path expression steps.
// (double forward slash)

Abbreviated syntax for /descendant-or-self::node()/
. (dot)

Abbreviated syntax for /self::node()/
child::

Specifies children of the context node. child:: is the default if no forward axis is specified.
descendant::

Specifies the descendants of the context node.
self::

Specifies the current context node.
descendant-or-self::

Specifies the context node and the descendents of the context node.
element-name

Identifies an element in an XML document. element-name is an XML QName that can have one of
the following forms:

Chapter 9. Db2 SQL statements for SQL DI 89

https://www.ibm.com/docs/en/SSEPEK_13.0.0/xml/src/tpc/db2z_xmldb2.html

nsprefix:NCName
nsprefix explicitly specifies a namespace prefix that must be declared.

NCName
An unqualified XML name that uses the default namespace.

* (an asterisk)
Indicates any element name. If * is prefixed by attribute:: or @, * indicates any attribute name.

nsprefix:*
Indicates any NCName within the specified namespace.

*:NCName
Indicates a specific XML name in any of the currently declared namespaces.

attribute:: or @
Specifies attributes of the context node.

attribute-name
Identifies an attribute in an XML document. attribute-name is an XML QName that can have one of
the following forms:
nsprefix:NCName

nsprefix explicitly specifies a namespace prefix that must be declared.
NCName

An unqualified XML name that uses the default namespace.
text()

Matches any text node.
fn:upper-case(.)

Specifies an element node or an attribute node that identifies the key value for the index for each
node that is specified by the context step (the part of pattern-expression that is specified prior to
fn:upper-case).

The context step of fn:upper-case() must specify an element node or an attribute node. The
argument of fn:upper-case() must be a self step. The key values of an XML value index must be
specified as the SQL data type VARCHAR. The length of the VARCHAR value can be any value that
is allowed in Db2.

fn:exists()
Specifies an element node that identifies the key value for the index for each node that is specified
by the context step (the part of pattern-expression that is specified prior to fn:exists).

The context step of fn:exists() must specify an element node. The argument of fn:exists() must
be either a single step of a child element node or an attribute node. The name test part can be a
wildcard character for either the namespace prefix or NCName. The key values of an XML value
index for an XPath expression that ends with fn:exists() must be specified as the SQL data type
VARCHAR(1). The key value will be "T" or "F". "T" implies that fn:exists() evaluates to true and "F"
implies that fn:exists() evaluates to false.

AS SQL data-type
Specifies that indexed values are stored as an instance of the specified SQL data type. Casting to the
specified data type can result in a loss of precision of the values. For example, a loss of precision can
occur when an XML integer value is cast to the SQL data type DECFLOAT. If the cast causes a loss of
precision, the result will be rounded to the approximate value when it is stored in the index. The cast
result cannot be outside of the range that is supported by the SQL data type. If the value cannot be
cast to the specified data type, the document is still inserted into the table, but the index entry for that
value is not created. No error or warning code is returned.

If the index is unique, the uniqueness is enforced on the value after it is cast to the specified type.
Because rounding can occur during the cast to the SQL data type, if a value is cast to the same key
value as a document that the table already contains, Db2 will return duplicate key errors at insert
time, or fail to create the index.

90 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

VARCHAR (integer)
The length integer is a value in the range 1 - 1000 bytes. If VARCHAR is specified with a length, the
specified length is treated as a constraint. If documents are inserted into a table (or exist in the
table at create index time) that have nodes with values that are longer than the specified length,
the insert or index creation will fail.

DECFLOAT
DECFLOAT can be specified to index numeric values. For the cast to succeed, the string must be a
valid XML numeric type. Otherwise the value will be ignored and no insert to the index will occur.
The result of the cast cannot be outside of the range that DECFLOAT can represent. Because the
XML Schema data type for numeric values allows greater precision than the SQL data type, the
result might be rounded to fit into the SQL data type. The DECFLOAT values that are stored in the
index are the normalized numeric values.

DATE
The SQL DATE data type values will be normalized to UTC (Coordinated Universal Time) before
being stored in the index. For invalid xs:date values, the value will be ignored without being
inserted into the index. The XML schema data type for DATE allows for greater precision than the
SQL data type. If an out-of-range value is encountered, an error is returned.

TIMESTAMP (12)
The SQL TIMESTAMP data type values will be normalized to UTC (Coordinated Universal Time)
before being stored in the index. If the value that is specified in the document does not specify
the time zone, Db2 will use the implicit time zone to normalize the value to UTC. For invalid
xs:dateTime values, the value will be ignored without being inserted into the index. The XML
schema data type for timestamps allows for greater precision than the SQL data type. If an out-of
range value is encountered, an error is returned. Only a precision of 12 fractional digits is allowed
for an SQL TIMESTAMP index key.

INCLUDE (column-name)
Specifies additional columns to append to the set of index key columns of a unique index. Any column
that is specified using INCLUDE column-name is not used to enforce uniqueness. The included
columns might improve performance for some queries using index only access.

The UNIQUE clause must be specified when INCLUDE is specified. Columns that are specified in the
INCLUDE clause count towards the limits for the number of columns and the limits on the sum of the
length attributes of the columns that are specified in the index. The total number of columns for the
index cannot exceed 64.

column-name must be distinct from the columns that are used to enforce uniqueness and from other
columns specified in the INCLUDE clause. column-name must be unqualified, must identify a column
of the specified table, and must not be one of the existing columns of the index. column-name must
not identify a LOB or DECFLOAT column (or a distinct type that is based on one of those types).

The INCLUDE clause cannot be specified for the following types of indexes:

• A non-unique index
• A partitioning index when index-controlled partitioning is used
• An auxiliary index
• An XML index
• An extended index
• An expression-based index

Columns in the INCLUDE list that are defined as character or graphic string data types must be
defined with the same encoding scheme as other key columns with character or graphic string data
types.

CLUSTER or NOT CLUSTER
Specifies whether the index is the clustering index for the table. This clause must not be specified for
an index on an auxiliary table, or on a table that is defined to use hash organization.

Chapter 9. Db2 SQL statements for SQL DI 91

CLUSTER
The index is to be used as the clustering index of the table. CLUSTER cannot be specified if
XMLPATTERN or key-expression is specified.

NOT CLUSTER
The index is not to be used as the clustering index of the table.

PARTITIONED
Specifies that the index is data partitioned (that is, partitioned according to the partitioning scheme
of the underlying data). A partitioned index can be created only on a partitioned table space, not on a
partition-by-growth table space. PARTITIONED cannot be specified if XMLPATTERN is specified. The
types of partitioned indexes are partitioning and secondary.

An index is considered a partitioning index if the specified index key columns match or comprise a
superset of the columns specified in the partitioning key, are in the same order, and have the same
ascending or descending attributes.

If PARTITION BY was not specified when the table was created, the CREATE INDEX statement
must have the ENDING AT clause specified to define a partitioning index and use index-controlled
partitioning. This index is created as a partitioned index even if the PARTITIONED keyword is not
specified. When a partitioning index is created, if both the PARTITIONED and ENDING AT keywords
are omitted, the index will be non-partitioned. If PARTITIONED is specified, the USING specification
with PRIQTY and SECQTY specifications are optional. If these space parameters are not specified,
default values are used.

A secondary index is any index defined on a partitioned table space that does not meet the definition
of the partitioning index. For partitioned secondary indexes (data-partitioned secondary indexes), the
ENDING AT clause is not allowed because the partitioning scheme of the index is predetermined by
that of the underlying data. UNIQUE and UNIQUE WHERE NOT NULL are allowed only if the columns
in the index are a superset of the partitioning columns. All of the index columns must be specified
in a table-name(column-name) clause, and not in an INCLUDE clause. If a partitioned secondary
index is created on a table that uses index-controlled partitioning, the table is converted to use
table-controlled partitioning.

Index-controlled partitioning cannot be used if the PREVENT_NEW_IXCTRL_PART subsystem
parameter is set to YES.

For more information, see PREVENT_NEW_IXCTRL_PART in macro DSN6SPRM (Db2 Installation and
Migration).

NOT PADDED or PADDED
Specifies how varying-length string columns are to be stored in the index. If the index contains no
varying-length columns, this option is ignored, and a warning message is returned. Indexes that do
not have varying-length string columns are always created as physically padded indexes.
NOT PADDED

Specifies that varying-length string columns are not to be padded to their maximum length in the
index. The length information for a varying-length column is stored with the key.

NOT PADDED is ignored and has no effect if the index is being created on an auxiliary table.
Indexes on auxiliary tables are always padded.

PADDED
Specifies that varying-length string columns within the index are always padded with the default
pad character to their maximum length. PADDED cannot be specified if XMLPATTERN is specified.
PADDED cannot be specified for indexes that are defined on VARBINARY columns.

When the index contains at least one varying-length column, the default for the option depends on the
value of field PAD INDEXES BY DEFAULT on installation panel DSNTIPE:

• When the value of this field is NO, new indexes are not padded unless PADDED is specified.
• When the value of this field is YES, new indexes are padded unless NOT PADDED is specified.

92 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_preventnewixctrlpart.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_preventnewixctrlpart.html

USING (for non-partitioned indexes)
For non-partitioned indexes, the USING clause indicates whether the data sets for the index are to be
managed by the user or managed by Db2. If Db2 definition is specified, the clause also gives space
allocation parameters (PRIQTY and SECQTY) and an erase rule (ERASE).

If you omit USING, the data sets Db2 manages on volumes listed in the default storage group of the
database that is associated with the table. The default storage group for the database must exist. With
no USING clause, PRIQTY, SECQTY, and ERASE assume their default values.

VCAT catalog-name
Specifies that the first data set for the index is managed by the user, and that following data sets,
if needed, are also managed by the user.

The data sets are VSAM linear data sets cataloged in the integrated catalog facility catalog
that catalog-name identifies. For more information about catalog-name values, see Naming
conventions (Db2 SQL).

More than one Db2 subsystem can share the integrated catalog facility catalogs with the current
server. To avoid the chance of those subsystems attempting to assign the same name to different
data sets, specify a catalog-name value that is not used by the other Db2 subsystems.

Do not specify VCAT in any of the following circumstances:

• For an index on a declared temporary table.
• If the table space is partition-by-growth, and the table space is not part of the Db2 catalog.

STOGROUP stogroup-name
Specifies that Db2 will define and manage the data sets for the index. Each data set will be
defined on a volume listed in the identified storage group. The values specified (or the defaults)
for PRIQTY and SECQTY determine the primary and secondary allocations for the data set. If
PRIQTY+118×SECQTY is 2 gigabytes or greater, more than one data set could eventually be used,
but only the first is defined during execution of this statement.

To use USING STOGROUP, the privilege set must include one of the following, except when
creating an index on a declare global temporary table if stogroup-name matches the default
storage group of the work file database:

• SYSADM authority
• SYSCTRL authority
• The USE privilege for that storage group

Moreover, stogroup-name must identify a storage group that exists at the current server and
includes in its description at least one volume serial number. The description can indicate that the
choice of volumes will be left to Storage Management Subsystem (SMS). Each volume specified in
the storage group must be accessible to z/OS for dynamic allocation of the data set, and all these
volumes must be of the same device type.

The integrated catalog facility catalog used for the storage group must not contain an entry for
the first data set of the index. If the catalog is password protected, the description of the storage
group must include a valid password.

The storage group supplies the data set name. The first level qualifier is also the name of, or
an alias for, the integrated catalog facility catalog on which the data set is to be cataloged. The
naming convention for the data set is the same as if the data set is managed by the user.

PRIQTY integer
Specifies the minimum primary space allocation for a Db2-managed data set. integer must be
a positive integer, or -1. When you specify PRIQTY with a positive integer value, the primary
space allocation is at least n kilobytes, where n is:
 12

If integer is greater than 0 and less than 12.

Chapter 9. Db2 SQL statements for SQL DI 93

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_namingconventions.html

 integer
If integer is between 12 and 4194304.

 2097152
If both of the following conditions are true:

• integer is greater than 2097152.
• The index is a non-partitioned index on a table space that is not defined with the LARGE

or DSSIZE attribute.

 4194304
If integer is greater than 4194304.

If you do not specify PRIQTY, or you specify a PRIQTY value of -1, Db2 uses a default value for
the primary space allocation. For information on how Db2 determines the default value, see .

If you specify PRIQTY, and do not specify a value of -1, Db2 specifies the primary space
allocation to access method services using the smallest multiple of 4KB not less than n. The
allocated space can be greater than the amount of space requested by Db2. For example,
it could be the smallest number of tracks that will accommodate the space requested. To
more closely estimate the actual amount of storage, see DEFINE CLUSTER command (DFSMS
Access Method Services for Catalogs).

When determining a suitable value for PRIQTY, be aware that two of the pages of the primary
space could be used by Db2 for purposes other than storing index entries.

SECQTY integer
Specifies the minimum secondary space allocation for a Db2-managed data set. integer must
be a positive integer, 0, or -1. If you do not specify SECQTY, or specify a SECQTY value of -1,
Db2 uses a formula to determine a value. For information on the actual value that is used for
secondary space allocation, whether you specify a value or not, see "Rules for primary and
secondary space allocation" in CREATE TABLESPACE (Db2 SQL).

If you specify SECQTY, and do not specify a value of -1, Db2 specifies the secondary space
allocation to access method services using the smallest multiple of 4KB not less than integer.
The allocated space can be greater than the amount of space requested by Db2. For example,
it could be the smallest number of tracks that will accommodate the space requested. To
more closely estimate the actual amount of storage, see DEFINE CLUSTER command (DFSMS
Access Method Services for Catalogs).

ERASE
Indicates whether the Db2-managed data sets are to be erased when they are deleted during
the execution of a utility or an SQL statement that drops the index.
NO

Does not erase the data sets. Operations involving data set deletion will perform better
than ERASE YES. However, the data is still accessible, though not through Db2. This is the
default.

YES
Erases the data sets. As a security measure, Db2 overwrites all data in the data sets with
zeros before they are deleted.

USING (partitioned indexes)
If the index is partitioned, there is a PARTITION clause for each partition. Within a PARTITION clause,
a USING clause is optional. If a USING clause is present, it applies to that partition in the same way
that a USING clause for a secondary index applies to the entire index.

When a USING specification is absent from a PARTITION clause, the USING clause parameters for the
partition depend on whether a USING clause is specified before the PARTITION clauses.

• If the USING clause is specified, it applies to every PARTITION clause that does not include a
USING clause.

• If the USING clause is not specified, the following defaults apply to the partition:

94 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm

– Data sets are managed by Db2.
– The default storage group for the database is used. If the USING clause for the index space is

omitted, the default storage group for database must exist.
– Default values of -1 are used for both PRIQTY and SECQTY.
– A value of NO is used for ERASE.

VCAT catalog-name
Specifies a user-managed data set with a name that starts with the specified catalog name. The
identified integrated catalog facility catalog must already contain an entry for the nth data set of
the index, where n is the partition number.

The data sets are VSAM linear data sets cataloged in the integrated catalog facility catalog
that catalog-name identifies. For more information about catalog-name values, see Naming
conventions (Db2 SQL).

More than one Db2 subsystem can share the integrated catalog facility catalogs with the current
server. To avoid the chance of those subsystems attempting to assign the same name to different
data sets, specify a catalog-name value that is not used by the other Db2 subsystems.

Db2 assumes one and only one data set for each partition.

STOGROUP stogroup-name
If USING STOGROUP is used, explicitly or by default, for a partition n, Db2 defines the data set for
the partition during the execution of the CREATE INDEX statement, using space from the named
storage group. The privilege set must include SYSADM authority, SYSCTRL authority, or the USE
privilege for that storage group. The integrated catalog facility catalog used for the storage group
must NOT contain an entry for the nth data set of the index.

stogroup-name must identify a storage group that exists at the current server and the privilege
set must include one of the following privileges or authorities, except when creating an index on
a declare global temporary table if stogroup-name matches the default storage group of the work
file database:

• SYSADM authority
• SYSCTRL authority
• USE privilege for the storage group

If you omit PRIQTY, SECQTY, or ERASE from a USING STOGROUP clause for some partition, their
values are given by the next USING STOGROUP clause that governs that partition: either a USING
clause that is not in any PARTITION clause, or a default USING clause. Db2 assumes one and only
one data set for each partition.

FREEPAGE integer
Specifies how often to leave a page of free space when index entries are created as the result of
executing a Db2 utility or when creating an index for a table with existing rows. One free page is left
for every integer pages. The value of integer can range 0 - 255. The default is 0, leaving no free pages.

Do not specify FREEPAGE for an index on a declared temporary table.

PCTFREE integer
Determines the percentage of free space to leave in each nonleaf page and leaf page when entries are
added to the index or index partition as the result of executing a Db2 utility or when creating an index
for a table with existing rows. The first entry in a page is loaded without restriction. When additional
entries are placed in a nonleaf or leaf page, the percentage of free space is at least as great as integer.

The value of integer can range from 0 to 99, however, if a value greater than 10 is specified, only 10
percent of free space will be left in nonleaf pages. The default is 10.

Do not specify PCTFREE for an index on a declared temporary table.

Chapter 9. Db2 SQL statements for SQL DI 95

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_namingconventions.html

If the index is partitioned , the values of FREEPAGE and PCTFREE for a particular partition are given
by the first of these choices that applies:

• The values of FREEPAGE and PCTFREE given in the PARTITION clause for that partition. Do not use
more than one free-specification in any PARTITION clause.

• The values given in a free-specification that is not in any PARTITION clause.
• The default values FREEPAGE 0 and PCTFREE 10.

GBPCACHE
In a data sharing environment, specifies what index pages are written to the group buffer pool. In
a non-data-sharing environment, the option is ignored unless the index is on a declared temporary
table. Do not specify GBPCACHE for an index on a declared temporary table in either environment
(data sharing or non-data-sharing).
CHANGED

Specifies that updated pages are written to the group buffer pool, when there is inter-Db2 R/W
interest on the index or partition. When there is no inter-Db2 R/W interest, the group buffer pool
is not used. Inter-Db2 R/W interest exists when more than one member in the data sharing group
has the index or partition open, and at least one member has it open for update. GBPCACHE
CHANGED is the default.

If the index is in a group buffer pool that is defined as GBPCACHE(NO), CHANGED is ignored and
no pages are written to the group buffer pool.

ALL
Indicates that pages are written to the group buffer pool as they are read in from DASD.

Exception: In the case of a single updating Db2 subsystem when no other Db2 subsystems have
any interest in the page set, no pages are written to the group buffer pool.

If the index is in a group buffer pool that is defined as GBPCACHE(NO), ALL is ignored and no
pages are written to the group buffer pool.

NONE
Indicates that no pages are written to the group buffer pool. Db2 uses the group buffer pool only
for cross-invalidation.

If the index is partitioned, the value of GBPCACHE for a particular partition is given by the first of
these choices that applies:

1. The value of GBPCACHE given in the PARTITION clause for that partition. Do not use more than
one gbpcache-specification in any PARTITION clause.

2. The value given in a gbpcache-specification that is not in any PARTITION clause.
3. GBPCACHE CHANGED is the default value.

DEFINE
Specifies when the underlying data sets for the index are physically created. The SPACE column in
catalog table SYSINDEXPART is used to record the status of the data sets (undefined or allocated).
If the DEFINE keyword is not specified, the define attribute is inherited from the current state of the
base table space.
YES

The data sets are created when the index is created (the CREATE INDEX statement is executed).
NO

The data sets are not created until data is inserted into the index.

DEFINE NO is applicable only for Db2-managed data sets (USING STOGROUP is specified). Use
DEFINE NO especially when performance of the CREATE INDEX statement is important or DASD
resource is constrained.

Do not use DEFINE NO on an index if you use a program outside of Db2 to propagate data into a
table on which that index is defined. If you use DEFINE NO on an index of a table and data is then
propagated into the table from a program that is outside of Db2, the index space data sets are

96 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

allocated, but the Db2 catalog will not reflect this fact. As a result, Db2 treats the data sets for the
index space as if they have not yet been allocated. The resulting inconsistency causes Db2 to deny
application programs access to the data until the inconsistency is resolved.

DEFINE NO is ignored for user-managed data sets (USING VCAT is specified). DEFINE NO is also
ignored if the index is being created on a table that is not empty.

Do not specify DEFINE NO if the index is created on a base table that is involved in a clone
relationship.

Do not specify DEFINE NO for an index on a declared temporary table.

COMPRESS NO or COMPRESS YES
Specifies whether compression for index data will be used. If the index is partitioned, the clause will
apply to all partitions.
COMPRESS NO

Specifies that no index compression will be used.

COMPRESS NO is the default.

COMPRESS YES
Specifies that index compression will be used. The buffer pool that is used to create the index
must be 8K, 16K, or 32K in size. The physical page size on disk will be 4K. The index compression
will take place immediately.

Index compression is recommended for applications that do sequential insert operations with few
or no delete operations. Random inserts and deletes can adversely effect compression. Index
compress is also recommended for applications where the indexes are created primarily for scan
operations.

INCLUDE NULL KEYS or EXCLUDE NULL KEYS
Specifies whether an index entry will be created when every key column contains the NULL value.
INCLUDE NULL KEYS

Specifies that an index entry will be created when every key column contains the NULL value.

INCLUDE NULL KEYS is the default.

EXCLUDE NULL KEYS
Specifies that no index entry will be created when every key column contains the NULL value. If
any key column is not null the index entry will be created.

EXCLUDE NULL KEYS must not be specified with the following:

• UNIQUE
• BUSINESS_TIME WITHOUT OVERLAPS
• XML-index-specification
• key-expression
• INCLUDE (column-name)

EXCLUDE NULL KEYS must also not be specified if any of the columns that are identified by
column-name are defined as NOT NULL, or if the index is defined as a partitioning index for use
with index-controlled partitioning.

PARTITION BY RANGE
Specifies the partitioning index for the table, which determines the partitioning scheme for the data in
the table.

PARTITION BY RANGE should only be specified if the table space is partitioned and the partitioning
schema has not already been established.

PARTITION BY RANGE must not be specified if the index is an extended index, is defined with the
BUSINESS_TIME WITHOUT OVERLAPS, or if the table is in a universal table space (ranged-partitioned
or partition-by-growth table space).

Chapter 9. Db2 SQL statements for SQL DI 97

partition-element
Specifies the range for each partition.
PARTITION integer

A PARTITION clause specifies the highest value of the index key in one partition of a
partitioning index. In this context, highest means highest in the sorting sequences of the
index columns. In a column defined as ascending (ASC), highest and lowest have their usual
meanings. In a column defined as descending (DESC), the lowest actual value is highest in the
sorting sequence.

If you use CLUSTER, and the table is contained in a partitioned table space, you must
use exactly one PARTITION clause for each partition (defined with NUMPARTS on CREATE
TABLESPACE). If there are p partitions, the value of integer must range from 1 through p.

The length of the highest value of a partition (also called the limit key) is the same as the
length of the partitioning index.

ENDING AT(constant, MAXVALUE, or MINVALUE...)
Specifies that this is the partitioning index and indicates how the data will be partitioned. The
table space is marked complete after this partitioning index is created. You must use at least
one value (constant, MAXVALUE, or MINVALUE) after ENDING AT in each PARTITION clause.
You can use as many as there are columns in the key. The concatenation of all the values is
the highest value of the key in the corresponding partition of the index unless the VALUES
statement was already specified when the table or previous index was created.
constant

Specifies a constant value with a data type that must conform to the rules for assigning
that value to the column. If a string constant is longer or shorter than required by the
length attribute of its column, the constant is either truncated or padded on the right
to the required length. If the column is ascending, the padding character is X'FF'. If the
column is descending, the padding character is X'00'. The precision and scale of a decimal
constant must not be greater than the precision and scale of its corresponding column. A
hexadecimal string constant (GX) cannot be specified.

MAXVALUE
Specifies a value greater than the maximum value for the limit key of a partition boundary
(that is, all X'FF' regardless of whether the column is ascending or descending). If all of the
columns in the partitioning key are ascending, a constant or the MINVALUE clause cannot
be specified following MAXVALUE. After MAXVALUE is specified, all subsequent columns
must be MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for the limit key of a
partition boundary (that is, all X'00' regardless of whether the column is ascending or
descending). If all of the columns in the partitioning key are descending, a constant or the
MAXVALUE clause cannot be specified following MAXVALUE. After MINVALUE is specified,
all subsequent columns must be MINVALUE.

The key values are subject to the following rules:

• The first value corresponds to the first column of the key, the second value to the second
column, and so on. Using fewer values than there are columns in the key has the same effect
as using the highest or lowest values for the omitted columns, depending on whether they
are ascending or descending.

• If a key includes a ROWID column or a column with a distinct type that is based on a ROWID
data type, 17 bytes of the constant that is specified for the corresponding ROWID column
are considered.

• The highest value of the key in any partition must be lower than the highest value of the key
in the next partition.

• If the concatenation of all the values exceeds 255 bytes, only the first 255 bytes are
considered.

98 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

• The highest value of the key in the last partition depends on how the table space is defined.
For table spaces that are created without the LARGE or DSSIZE options, the values that you
specify after VALUES are not enforced. The highest value of the key that can be placed in the
table is the highest possible value of the key.

For large partitioned table space, the values you specify are enforced. The value specified
for the last partition is the highest value of the key that can be placed in the table. Any key
values greater than the value that is specified for the last partition are out of range.

ENDING AT can be specified only if the ENDING AT clause was not specified on a previous
CREATE or ALTER TABLE statement for the underlying table.

INCLUSIVE
Specifies that the specified range values are included in the data partition.

BUFFERPOOL bpname
Identifies the buffer pool that is to be used for the index. The privilege set must include SYSADM or
SYSCTRL authority or the USE privilege for the buffer pool, except when creating an index on a declare
global temporary table and bpname matches the default index buffer pool of the work file database.
The bpname must identify an activated 4KB, 8KB, 16KB, or 32KB buffer pool.

A buffer pool with a smaller size should be chosen for indexes with random insert patterns. A buffer
pool with a larger size should be chosen for indexes with sequential insert patterns.

For more details about bpname, see Naming conventions (Db2 SQL). For a description of active and
inactive buffer pools, see Controlling Db2 databases and buffer pools (Db2 Administration Guide).

CLOSE
Specifies whether or not the data set is eligible to be closed when the index is not being used and the
limit on the number of open data sets is reached.
YES

Eligible for closing. This is the default unless the index is on a declared temporary table.
NO

Not eligible for closing.

If the limit on the number of open data sets is reached and there are no page sets that specify
CLOSE YES to close, page sets that specify CLOSE NO will be closed.

For an index on a declared temporary table, Db2 uses CLOSE NO regardless of the value specified.

DEFER
Indicates whether the index is built during the execution of the CREATE INDEX statement. Regardless
of the option specified, the description of the index and its index space is added to the catalog. If the
table is determined to be empty and DEFER YES is specified, the index is neither built nor placed in
a rebuild-pending status. For more information about using DEFER, see Index names and guidelines
(Db2 Administration Guide). Do not specify DEFER for an index on a declared temporary table or an
auxiliary table.
NO

The index is built. This is the default.
YES

The index is not built. If the table is populated, the index is placed in a rebuild-pending status and
a warning message is issued; the index must be rebuilt by the REBUILD INDEX utility.

DSSIZE integer G
Specifies the maximum size for each partition of a partitioned index. Any integer 1 - 1024 can be
specified (for example, 1G – 1024G). This keyword is not valid on nonpartitioned secondary indexes.
You can only specify DSSIZE on CREATE INDEX if the index is on a table space with relative page
numbers.

To specify a value greater than 4G, the data sets for the table space must be associated with a DFSMS
data class that has been specified with extended format and extended addressability.

Chapter 9. Db2 SQL statements for SQL DI 99

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_controldatabaseandbuffer.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_guidelinesfordefiningindexes.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_guidelinesfordefiningindexes.html

If the index is a partitioned index using relative page numbering, the value of DSSIZE for a particular
partition is given by the first of these choices that applies:

• The value of DSSIZE given in the PARTITION clause for that partition.
• The value given by a DSSIZE keyword that is not in any PARTITION clause.
• The default value is inherited from the base table space.

PIECESIZE integer
Specifies the maximum addressability of each data set for a non-partitioned index. The subsequent
keyword K, M, or G, indicates the units of the value that is specified in integer.
K

Indicates that the integer value is to be multiplied by 1024 to specify the maximum data set size in
bytes. integer must be a power of two between 1 and 268435456.

M
Indicates that the integer value is to be multiplied by 1048576 to specify the maximum data set
size in bytes. integer must be a power of two between 1 and 262144.

G
Indicates that the integer value is to be multiplied by 1073741824 to specify the maximum data
set size in bytes. integer must be a power of two between 1 and 256.

integer can be separated from K, M, or G by 0 or more spaces.integer

The following table shows the valid values for the data set size, which depend on the size of the table
space.

Table 2. Valid values of PIECESIZE clause

K units M units G units Size attribute of table space

256K

512 K

1024 K 1 M

2048 K 2 M

4096 K 4 M

8192 K 8 M

16384 K 16 M

32768 K 32 M

65536 K 64 M

131072 K 128 M

262144 K 256 M

524288 K 512 M

1048576 K 1024 M 1 G

2097152 K 2048 M 2 G

4194304 K 4096 M 4 G LARGE, DSSIZE 4 G (or greater)

8388608 K 8192 M 8 G DSSIZE 8 G (or greater)

16777216 K 16384 M 16 G DSSIZE 16 G (or greater)

33554432 K 32768 M 32 G DSSIZE 32 G (or greater)

67108864 K 65536 M 64 G DSSIZE 64 G (or greater)

100 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Table 2. Valid values of PIECESIZE clause (continued)

K units M units G units Size attribute of table space

134217728 K 131072 M 128 G DSSIZE 128 G (or greater)

268435456 K 262144 M 256 G DSSIZE 256 G

PIECESIZE has no effect on primary and secondary space allocation as it is only a specification of the
maximum amount of data that a data set can hold and not the actual allocation of storage.

If you change the PIECESIZE value with the ALTER INDEX statement, the index is put into REBUILD-
pending status.

See the following for additional information:

• Number of pieces and maximum piece size for non-partitioned indexes and data-partitioned
secondary indexes

• Choosing a value for PIECESIZE

COPY
Indicates whether the COPY utility is allowed for the index. Do not specify COPY for an index on a
declared temporary table.
NO

Does not allow full image or concurrent copies or the use of the RECOVER utility on the index. NO
is the default.

YES
Allows full image or concurrent copies and the use of the RECOVER utility on the index.

Notes for CREATE INDEX
Owner privileges:

The owner of the table has all table privileges (see GRANT (table or view privileges) (Db2 SQL)) with
the ability to grant these privileges to others. For more information about ownership of the object, see
Authorization, privileges, permissions, masks, and object ownership (Db2 SQL).

Effects of the DEFER clause:
If DEFER NO is implicitly or explicitly specified, the CREATE INDEX statement cannot be executed
while a Db2 utility has control of the table space that contains the identified table.

If the identified table already contains data and if the index build is not deferred, CREATE INDEX
creates the index entries for it. If the table does not yet contain data, CREATE INDEX creates a
description of the index; the index entries are created when data is inserted into the table.

Errors evaluating the expressions for an index:
Errors that occur during the evaluation of an expression for an index are returned when the expression
is evaluated. This can occur on an SQL data change statement, SELECT from an SQL data change
statement, or the REBUILD INDEX utility. For example, the evaluation of the expression 10 /
column_1 returns an error if the value in column_1 is 0. The error is returned during CREATE INDEX
processing if the table is not empty and contains a row with a value of zero in column_1, otherwise the
error is returned during the processing of the insert or update operation when a row with a value of
zero in column_1 is inserted or updated.

Result length of expressions that return a string type:
If the result data type of key-expression is a string type and the result length cannot be calculated at
bind time, the length is set to the maximum allowable length of that data type or the largest length
that Db2 can estimate. In this case, the CREATE INDEX statement can fail because the total key length
might exceed the limit of an index key.

For example, the result length of the expression REPEAT('A', CEIL(1.1)) is VARCHAR(32767)
and the result length of the expression SUBSTR(DESCRIPTION,1,INTEGER(1.2)) is the length of
the DESCRIPTION column. Therefore, a CREATE INDEX statement that uses any of these expressions

Chapter 9. Db2 SQL statements for SQL DI 101

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_granttableorviewprivileges.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authprivilegesandobjownership.html

as a key-expression might not be created because the total key length might exceed the limit of an
index key.

Use of ASC or DESC on key columns:
There are no restrictions on the use of ASC or DESC for the columns of a parent key or foreign key.
An index on a foreign key does not have to have the same ascending and descending attributes as the
index of the corresponding parent key.

EBCDIC, ASCII, and UNICODE encoding schemes for an index:
In general, an index has the same encoding scheme as its associated table. However, if an index on an
EBCDIC table consists of only Unicode columns, the encoding scheme of the index is Unicode.

Maximum partition size of a partitioned index
The size of a partitioned index depends on whether the corresponding partitioned table space is
created with or without the LARGE or DSSIZE keywords, and on the number of partitions.

The following table provides information about partitioned indexes on table spaces that are created
without the LARGE or DSSIZE keywords and with 64 or fewer partitions.

Table 3. Maximum number of pieces and the default size of a partitioned index on a partitioned table space that
is created without the LARGE or DSSIZE clauses and with a NUMPARTS value of less than or equal to 64

Definition of partitioned table
space (non-large)

Maximum number of pieces for a
partitioned index

Default size of a partitioned index,
per data set

NUMPARTS <= 16 16 4G

NUMPARTS >= 17
but
NUMPARTS <= 32

32 2G

NUMPARTS >= 33 64 1G

The following table shows information about partitioned indexes on table spaces that are created with
the LARGE or DSSIZE keywords and with more than 64 partitions.

Table 4. Maximum number of pieces and the default partitioned index size for a partitioned table space that is
created with the LARGE or DSSIZE clauses or with a NUMPARTS value of greater than 64

Definition of partitioned table
space (large)

Maximum number of pieces for a
partitioned index

Default index piece size for a
partitioned index

One or more of the following
conditions are true:

• LARGE clause - specified
• NUMPARTS greater than 64 but

less than 256

Maximum number of partitions in
the partitioned table space

4G

One or more of the following
conditions are true:

• DSSIZE clause - specified
• NUMPARTS greater than or

equal to 256

Maximum number of partitions in
the partitioned table space

MIN(table space DSSIZE,
2^32/
(Maximum number of
partitions
 in the table space) *
index
 page size)

To calculate the maximum data set size for a partitioned index, you need to first calculate the
maximum number of partitions in the table space by using the following formula:

MIN(4096, 2^32/ (table space DSSIZE / table space page size))

102 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

After you calculate the maximum number of partitions in the table space, you can calculate the
maximum data set size for a partitioned index with the following formula, using the number of
partitions that you calculated above:

MIN(table space DSSIZE, 2^32/
(Maximum number of partitions in the table space) * index page size)

For an index that is defined with COMPRESS YES, index page size is always 4096 (4KB).

For example, suppose that a table space and an index on that table space have the following
characteristics:

• DSSIZE: 64 GB
• Page size: 32 KB
• Index page size: 4 KB
• Maximum number of partitions: 2048

Given those characteristics, you can begin by calculating the maximum number of partitions in the
table space:

MIN(4096, 2^32/ (64GB / 32KB)) = 2048

You can then use the value of 2048 to calculate the maximum data set size for the partitioned index:

MIN(64 GB, 2^32/ 2048 * 4KB)
= MIN(64GB, 8GB)
= 8GB

Number of pieces and maximum piece size for non-partitioned indexes
The largest amount of data that an index can hold is the maximum number of pieces for the index
times the maximum amount of data that a piece can hold.

For a non-partitioned index, the maximum amount of data that an index can hold is defined by using
the PIECESIZE parameter.

The default piece size for an index is as follows:

• 2 GB (PIECESIZE 2 G) for indexes of table spaces created without the LARGE or DSSIZE option
• 4 GB (PIECESIZE 4 G) for indexes of table spaces created with the LARGE or DSSIZE option
• 4 GB (PIECESIZE 4 G) for auxiliary indexes

The following tables list the maximum number of pieces and the default index piece size for various
table spaces.

Table 5. Maximum number of pieces and the default index piece size for a partitioned table space that is created
without the LARGE or DSSIZE clauses and has a NUMPART value of less than or equal to 64

Definition of partitioned table
space (non-large), NUMPART
value

Maximum number of pieces in a
non-partitioned index

Default index piece size for a non-
partitioned index

NUMPARTS <= 16 32 2G

NUMPARTS >= 17
but
NUMPARTS <= 32

32 2G

NUMPARTS >= 33 32 2G

Chapter 9. Db2 SQL statements for SQL DI 103

Table 6. Maximum number of pieces and the default index piece size for a partitioned table space that is created
with the LARGE or DSSIZE clauses or has a NUMPARTS value of greater than or equal to 65

Definition of partitioned table
space (large)

Maximum number of pieces for a
non-partitioned index

Default index piece size for a non-
partitioned index

• LARGE clause - specified
• DSSIZE clause - not specified

MIN(4096, 2^32/
(x/y))
- see “1” on page 104

4G

• LARGE clause - not specified
• DSSIZE clause - not specified
• NUMPARTS clause - greater than

64 but less than 256

MIN(4096, 2^32/
(x/y))
- see “1” on page 104

4G

• LARGE clause - not specified
• DSSIZE clause - specified or

NUMPARTS clause - greater than
or equal to 256

MIN(4096, 2^32/
(x/y))
- see “1” on page 104

4G

Note:

1. For a non-partitioned index, the formula MIN(4096, 2^32 / (x / y)), determines the
maximum number of pieces for the non-partitioned index, where x and y have the following values:

x is the piece size of the index (stored in the PIECESIZE column of the SYSIBM.SYSINDEXES
catalog table)
y is the page size of the index (stored in the PGSIZE column of the SYSIBM.SYSINDEXES catalog
table)

Table 7. Maximum number of pieces and the default index piece size for a non-partitioned table space

Type of non-partitioned table
space Maximum number of pieces Default index piece size

non-segmented table space 32 2G

segmented table space 32 2G

LOB, auxiliary, or XML table
space

32 4G

Choosing a value for PIECESIZE:
To choose a value for PIECESIZE, divide the size of the non-partitioned index by the number of data
sets that you want. For example, to ensure that you have five data sets for the non-partitioned index,
and your index is 10MB (and not likely to grow much), specify PIECESIZE 2 M. If your non-partitioned
index is likely to grow, choose a larger value.

Remember that 32 data sets is the limit if the underlying table space is not defined as LARGE or
with a DSSIZE parameter and that the limit is 4096 for objects with greater than 254 parts. For a
non-partitioned index on a table space that is defined as LARGE or with a DSSIZE parameter, the
maximum is MIN(4096, 232 / (index piece size/index page size)).

Keep the PIECESIZE value in mind when you are choosing values for primary and secondary
quantities. Ideally, the value of your primary quantity plus the secondary quantities should be evenly
divisible into PIECESIZE.

Dropping an index:
Partitioning indexes can be dropped. If the table space is using index-controlled partitioning, the
table space is converted to table-controlled partitioning. Secondary indexes that are not indexes on

104 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

auxiliary tables can be dropped simply by dropping the indexes. An empty index on an auxiliary table
can be explicitly dropped; a populated index can be dropped only by dropping other objects. For
details, see "Dropping an index on a base table and auxiliary table" in DROP (Db2 SQL).

If the index is a unique index that enforces a primary key, unique key, or referential constraint, the
constraint must be dropped before the index is dropped. See DROP (Db2 SQL).

Unique indexes and enforcement of UNIQUE or PRIMARY KEY specifications for a table:
A table requires a unique index (that is not defined as UNIQUE WHERE NOT NULL) if you use the
UNIQUE or PRIMARY KEY clause in the CREATE or ALTER TABLE statements, or if there is a ROWID
column that is defined as GENERATED BY DEFAULT. Db2 implicitly creates those unique indexes if
the table space is explicitly created and the CREATE or ALTER TABLE statement is processed by the
schema processor or if the table space is implicitly created; otherwise, you must explicitly create
them. If any of the unique indexes that must be explicitly defined do not exist, the definition of the
table is incomplete, and the following rules apply:

• Let K denote a key for which a required unique index does not exist and let n denote the number of
unique indexes that remain to be created before the definition of the table is complete. (For a new
table that has no indexes, K is its primary key or any of the keys defined in the CREATE or ALTER
TABLE statement as UNIQUE and n is the number of such keys. After the definition of a table is
complete, an index cannot be dropped if it is enforcing a primary key or unique key.)

• The creation of the unique index reduces n by one if the index key is identical to K. The keys are
identical only if they have the same columns in the same order.

• If n is now zero, the creation of the index completes the definition of the table.
• If K is a primary key, the description of the index indicates that it is a primary index. If K is not a

primary key, the description of the index indicates that it enforces the uniqueness of a key defined
as UNIQUE in the CREATE or ALTER TABLE statement.

A unique index cannot be created on a materialized query table.

Unique indexes and XML columns:
If the index is an XML index on a unique XML column, the uniqueness applies to values of the
specified pattern across all documents of that column, and the uniqueness is enforced on the value
after the value is cast to the specified SQL data type. Because the data type conversion might result in
a loss of precision and normalization, multiple values that appear unique in the XML document might
still result in duplicate errors. If the index is defined using an expression, the uniqueness is enforced
against the values that are stored in the index, not against the original values of the columns. The
WHERE NOT NULL specification is ignored with a warning if XMLPATTERN is also specified, and the
index is treated as if UNIQUE had been specified.

Defining an XML index using an XPath pattern-expression that includes functions:
An XPath pattern-expression that includes functions (including fn:exists() or fn:upper-case()) will have
two parts. The first part is referred to as the context step and specifies the XPath of the element node
or attribute node for which an index entry will be created (the element or attributes NodeID will be
included in the index). The context step follows the same syntax as the XPath pattern-expression for
an XML index, except that for fn:exists() it has to specify an element node, and for fn:upper-case() it
has to specify an element node or an attribute node.

The second part is referred to as the function expression step and specifies the fn:exists() or fn:upper-
case() XPath function. The function expression step is the right-most part of an XPath pattern-
expression. For each node specified by the context step, the function expression step specifies the key
value for the index. For example, in the XPath pattern-expression /purchaseOrder/items/item/
fn:exists(shipDate), the context step is /purchaseOrder/items/item, and the function
expression step is fn:exists(shipDate).

Use of PARTITIONED keyword:
When a partitioned index is created and no additional keywords are specified, the index is non-
partitioned. If the keyword PARTITIONED is specified, the index is partitioned. If PARTITION BY
RANGE is specified, the index is both data-partitioned and key-partitioned because it is defined on
the partitioning columns of the table. Any index on a partitioned table space that does not meet
the definition of a partitioning index is a secondary index. When a secondary index is created and

Chapter 9. Db2 SQL statements for SQL DI 105

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_drop.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_drop.html

no additional keywords are specified, the secondary index is non-partitioned (NPSI). If the keyword
PARTITIONED is specified, the index is a data-partitioned secondary index (DPSI).

Creating a partitioning index for a table created without partition boundaries:
When a table is created without specifying partition boundaries using the ENDING AT clause, the
table is incomplete until a partitioning index is created. The first index that is created for a table must
specify both the PARTITION and the ENDING AT clauses.

When the PARTITION clause is specified while creating an index, either the PARTITIONED clause, or
the ENDING AT clause must also be specified.

Considerations for tables that are involved in a clone relationship:
If an index is created on a base table that is involved in a clone relationship, an index with the same
name is also created on the clone table. The index on the clone table will be placed in rebuild-pending
status unless the clone table is empty when the index is created.

Considerations for tables that contain a row change timestamp column:
To create an index that refers to a row change timestamp column in the table, values must already
exist in the column for all rows. Values are stored in row change timestamp columns whenever a row
is inserted or updated in the table. If the row change timestamp column is added to an existing table
that contains rows, the values for the row change timestamp column is not materialized and stored
at the time of the ALTER TABLE statement. Values are materialized for these rows when they are
updated, or when a REORG or a LOAD REPLACE utility is run on the table or table space.

Restriction on table spaces when there are pending changes to the definition:
A CREATE INDEX statement is not allowed if there are pending changes to the definition of the table
space or to any objects in the table space. In addition, an index that references an expression cannot
be created on a table where the inline length of a LOB column has been changed and the table space
has not been reorganized.

Effects of DEFINE NO and INCLUDE NULL KEYS or EXCLUDE NULL KEYS:
When INCLUDE NULL KEYS is specified (implicitly or explicitly) with DEFINE NO and the table that is
being indexed is populated, a warning is returned, the index is created, and the data set is defined.
When EXCLUDE NULL KEYS is specified, it is possible that the data set will not be defined if the all
rows for the table that is being indexed contain the NULL value for all key columns. The index will be
empty after the CREATE INDEX statement. However, if DEFINE NO is specified with EXCLUDE NULL
KEYS a warning is returned.

Creating indexes on Db2 catalog tables:

For details on creating indexes on catalog tables, see SQL statements allowed on the catalog (Db2
SQL).

EA-enabled index data sets:
If an index is created for an EA-enabled table space, the data sets for the index must be set up to
belong to a DFSMS data class that has the extended format and extended addressability attributes.

Alternative syntax and synonyms:
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following keywords when creating a partitioned index:

• PART integer VALUES as an alternative syntax for PARTITION integer ENDING. The PARTITION BY
RANGE keyword that precedes the partition-element clause is optional.

Although these keywords are supported as alternatives, they are not the preferred syntax.

User-defined indexes on catalog tables:
If you issue CREATE INDEX for an index on a catalog table, and you specify the USING clause, Db2
ignores that clause. Instead, Db2 defines and manages the index data sets. The data sets are defined
in the same SMS environment that is used for the catalog data sets with default space attributes.

Temporal referential constraints:
An index is required for the foreign key of a temporal referential constraint. The index must be defined
in one of the following ways:

• Specify the BUSINESS_TIME WITH OVERLAPS clause after the columns and key expressions.

106 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/cattab/src/tpc/db2z_sqlstatementsallowedonthecatalog.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/cattab/src/tpc/db2z_sqlstatementsallowedonthecatalog.html

• Specify the end column of the BUSINESS_TIME period, followed by the begin column of the
BUSINESS_TIME period as the last two keys of the index. ASC must be used for each of these
columns.

When a temporal referential constraint is defined for a table, the first index that is created that meets
the criteria for an index on the foreign key, is recorded as a dependency for the constraint. An index
used for the foreign key of a temporal referential constraint cannot be dropped. A column cannot be
added to an index used for a temporal referential constraint.

Examples for CREATE INDEX

Example 1

Create a unique index, named DSN8D10.XDEPT1, on table DSN8D10.DEPT. Index entries are to be
in ascending order by the single column DEPTNO. Db2 is to define the data sets for the index, using
storage group DSN8G130. Each data set should hold 1 megabyte of data at most. Use 512 kilobytes
as the primary space allocation for each data set and 64 kilobytes as the secondary space allocation.
These specifications enable each data set to be extended up to 8 times before a new data set is
used—512KB + (8*64KB)= 1024KB. Make the index padded.

The data sets can be closed when no one is using the index and do not need to be erased if the index
is dropped.

 CREATE UNIQUE INDEX DSN8D10.XDEPT1
 ON DSN8D10.DEPT
 (DEPTNO ASC)
 PADDED
 USING STOGROUP DSN8G130
 PRIQTY 512
 SECQTY 64
 ERASE NO
 BUFFERPOOL BP1
 CLOSE YES
 PIECESIZE 1 M;

For the above example, the underlying data sets for the index will be created immediately, which
is the default (DEFINE YES). Assuming that table DSN8D10.DEPT is empty, if you wanted to defer
the creation of the data sets until data is first inserted into the index, you would specify DEFINE
NO instead of accepting the default behavior. Specifying PADDED ensures that the varying-length
character string columns in the index are padded with blanks.

Example 2

Create a cluster index, named XEMP2, on table EMP in database DSN8D10. Put the entries in
ascending order by column EMPNO. Let Db2 define the data sets for each partition using storage
group DSN8G130. Make the primary space allocation be 36 kilobytes, and allow Db2 to use the
default value for SECQTY, which for this example is 12 kilobytes (3 times 4KB). If the index is dropped,
the data sets need not be erased.

There are to be 4 partitions, with index entries divided among them as follows:

Partition 1: entries up to H99
Partition 2: entries above H99 up to P99
Partition 3: entries above P99 up to Z99
Partition 4: entries above Z99

Associate the index with buffer pool BP1 and allow the data sets to be closed when no one is using
the index. Enable the use of the COPY utility for full image or concurrent copies and the RECOVER
utility.

 CREATE INDEX DSN8D10.XEMP2
 ON DSN8D10.EMP
 (EMPNO ASC)
 USING STOGROUP DSN8G130
 PRIQTY 36

Chapter 9. Db2 SQL statements for SQL DI 107

 ERASE NO
 CLUSTER
 PARTITION BY RANGE
 (PARTITION 1 ENDING AT('H99'),
 PARTITION 2 ENDING AT('P99'),
 PARTITION 3 ENDING AT('Z99'),
 PARTITION 4 ENDING AT('999'))
 BUFFERPOOL BP1
 CLOSE YES
 COPY YES;

Example 3

Create a secondary index, named DSN8D10.XDEPT1, on table DSN8D10.DEPT. Put the entries in
ascending order by column DEPTNO. Assume that the data sets are managed by the user with catalog
name DSNCAT and each data set is to hold 1GB of data, at most, before the next data set is used.

 CREATE UNIQUE INDEX DSN8D10.XDEPT1
 ON DSN8D10.DEPT
 (DEPTNO ASC)
 USING VCAT DSNCAT
 PIECESIZE 1048576 K;

Example 4

Assume that a column named EMP_PHOTO with a data type of BLOB(110K) was added to the sample
employee table for each employee's photo and auxiliary table EMP_PHOTO_ATAB was created in LOB
table space DSN8D13A.PHOTOLTS to store the BLOB data for the column. Create an index named
XPHOTO on the auxiliary table. The data sets are to be user-managed with catalog name DSNCAT.

 CREATE UNIQUE INDEX DSN8D10.XPHOTO
 ON DSN8D10.EMP_PHOTO_ATAB
 USING VCAT DSNCAT
 COPY YES;

In this example, no columns are specified for the key because auxiliary indexes have implicitly
generated keys.

Related concepts
Implementing Db2 indexes (Db2 Administration Guide)
Naming conventions (Db2 SQL)

CREATE MASK
The CREATE MASK statement creates a column mask at the current server. A column mask is used for
column access control and specifies the value that should be returned for a specified column.

Invocation for CREATE MASK
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see Authorization IDs and dynamic SQL (Db2 SQL).

Authorization for CREATE MASK
The privilege set that is defined below must include the following authority:

SECADM authority

SECADM authority can create a column mask in any schema. Additional privileges are not needed to
reference other objects in the mask definition. For example, the SELECT privilege is not needed query a
table, and the EXECUTE privilege is not needed to invoke a user-defined function.

Privilege set: If the statement is embedded in an application program, the privilege set is the set of
privileges that are held by the owner of the package. If the statement is dynamically prepared, the
privilege set is the set of privileges that are held by the SQL authorization ID of the process. However,

108 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_indeximplementation.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authidsdynamicsql.html

if the process is running in a trusted context that is defined with the ROLE AS OBJECT OWNER AND
QUALIFIER clause, the privilege set is the set of privileges that are held by the role that is in effect.

Syntax for CREATE MASK

CREATE MASK mask-name ON table-name

AS
correlation-name

FOR COLUMN column-name RETURN case-expression
DISABLE

ENABLE

Description for CREATE MASK
mask-name

Specifies the names the column mask. The name, including the implicit or explicit qualifier, must not
identify a column mask or a row permission that already exists at the current server.

ON table-name
Identifies the table for which the column mask is created. The name must identify a table that exists
at the current server. It must not identify any of the following objects:

• An auxiliary table
• A created or declared temporary table
• A view
• A catalog table
• An alias
• A synonym
• A materialized query table or table that is directly or indirectly referenced in the definition of a

materialized query table
• A table that was implicitly created for an XML column
• A table that contains a period
• A history table
• An accelerator-only table
• An archive-enabled table
• An archive table

correlation-name
Specifies a correlation name that can be used within case-expression to designate the table. For
information about correlation-name, see Correlation names (Db2 SQL).

FOR COLUMN column-name
Identifies the column to which the mask applies. column-name must be an unqualified name that
identifies a column of the specified table. A mask must not already exist for the column. The column
must not be:

• a LOB column or a distinct type column that is based on a LOB
• an XML column
• defined with a FIELDPROC

RETURN case-expression
Specifies a CASE expression that determines the value that is returned for the column. The result
of the CASE expression is returned in place of the column value in a row. The result data type,

Chapter 9. Db2 SQL statements for SQL DI 109

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_correlationnames.html

null attribute, data length, subtype, encoding scheme, and CCSID of the CASE expression must be
identical to those attributes of the column that is specified by column-name. If the data type of
column-name is a user-defined data type, the result data type of the CASE expression must be the
same user-defined type. The CASE expression must not reference any of the following objects:

• A remote object
• The table for which the column mask is being defined
• A created global temporary table or a declared global temporary table
• An auxiliary table
• A table that was implicitly created for an XML column
• A column that is defined with a FIELDPROC
• A LOB column or a distinct type column that is based on a LOB
• An XML column
• A select list notation * or name.* in the SELECT clause
• A table function
• A collection-derived table (UNNEST)
• A user-defined function that is defined as not secure
• A function that is not deterministic or that has an external action or is defined with the MODIFIES

SQL DATA option
• An aggregate function, unless it is specified in a subquery
• A built-in table function
• An XMLTABLE table function
• An XMLEXISTS predicate
• An OLAP specification
• A ROW CHANGE expression
• A sequence reference
• A host variable, SQL variable, SQL parameter, or trigger transition variable
• A parameter marker
• A table reference that contains a period specification
• A view that includes any of the preceding restrictions in its definition
• An accelerator-only table
• An AI_ANALOGY, AI_COMMONALITY, AI_SEMANTIC_CLUSTER, or AI_SIMILARITY function.

The encoding scheme of the table is used to evaluate the CASE expression. Tables and language
elements that require multiple encoding scheme evaluation, other than EBCDIC tables with Unicode
columns, must not be referenced in the CASE expression. See Determining the encoding scheme
and CCSID of a string (Introduction to Db2 for z/OS) for language elements that require multiple
evaluation.

If the CASE expression references tables for which row or column access control is active, access
controls for those tables are not cascaded.

DISABLE or ENABLE
Specifies that the column mask is to be enabled or disabled for column access control.
DISABLE

Specifies that the column mask is to be disabled for column access control. The column mask will
remain disabled regardless of whether column access control is activated for the table.

DISABLE is the default.

110 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

ENABLE
Specifies that the column mask is to be enabled for column access control. If column access
control is not currently active for the table, the column mask will become enabled when column
access control is activated for the table. If column access control is currently active for the table,
the column mask becomes enabled immediately and all packages and statements in the dynamic
statement cache that reference the table are invalidated. For more information, see Changes that
invalidate packages (Db2 Application programming and SQL).

Notes for CREATE MASK
How column masks affect queries:

The application of enabled column masks does not interfere with the operations of other clauses
within the statement such as the WHERE, GROUP BY, HAVING, SELECT DISTINCT, or ORDER BY.
The rows that are returned in the final result table remain the same, except that the values in the
resulting rows might have been masked by the column masks. As such, if the masked column also
appears in an ORDER BY clause with a sort-key expression, the order is based on the original values
of the column and the masked values in the final result table might not reflect that order. Similarly,
the masked values might not reflect the uniqueness enforced by a SELECT DISTINCT statement.
If the masked column is embedded in an expression, the result of the expression might become
different because the column mask is applied on the column before the expression evaluation can
take place. For example, a column mask on column SSN might change the result of the aggregate
function COUNT(DISTINCT SSN) because the DISTINCT operation is performed on the unmasked
values.

Conflicts between the definition of a column mask and SQL:
A column mask is created as a stand alone object, without knowing all of the contexts in which it
might be used. To mask the value of a column in the final result table, the definition of the column
mask is merged into a query by Db2. When the definition of the column mask is brought into the
context of the statement, it might conflict with certain SQL semantics in the statement. Therefore, in
some situations, the combination of the statement and the application of the column mask can return
an error. When this happens, either the statement needs to be modified or the column mask must be
dropped or re-created with a different definition. See ALTER TABLE (Db2 SQL) for those situations in
which a bind time error might be issued for the statement.

Column masks and null columns:
If the column is not nullable, the definition of its column mask will not, most likely, consider a null
value for the column. After the column access control is activated for the table, if the table is the
null-padded table in an outer join, the value of he column in the final result table might be a null.
To ensure that the column mask can mask a null value, if the table is the null-padded table in an
outer join, Db2 will add "WHEN target-column IS NULL THEN NULL" as the first WHEN clause to the
column mask definition. This forces a null value to always be masked as a null value. For a nullable
column, this removes the ability to mask a null value as something else. Example 5 shows this added
WHEN clause.

Column mask values for SQL data change statements
When columns are used to derive new values for an INSERT, UPDATE, MERGE, or a SET transition-
variable assignment statement, the original values of the column, not the masked values, are used to
derive the new values. If the columns have column masks, those column masks are applied to ensure
that the evaluation of the access control rules at run time masks the column to itself, not to a constant
or an expression. This is to ensure that the masked values are the same as the original column values.
If a column mask does not mask the column to itself, the existing row is not updated or the new row
is not inserted and an error is returned at run time. The rules that are used to apply column masks in
order to derive the new values follow the same rules for the final result table of a query.

Column masks that are created before column access control is activated:
The CREATE MASK statement is an independent statement that can be used to create a column
access control mask before column access control is activated for a table. The only requirement
is that the table and the columns exist before the mask is created. Multiple column masks can be
created for a table but a column can have one mask only.

Chapter 9. Db2 SQL statements for SQL DI 111

https://www.ibm.com/docs/en/SSEPEK_13.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_altertable.html

The definition of a mask is stored in the Db2 catalog. Dependency on the table for which the mask
is being created and dependencies on other objects referenced in the definition are recorded. No
package or dynamic cached statement is invalidated. A column mask can be created as enabled or
disabled for column access control. An enabled column mask does not take effect until the ALTER
TABLE statement with the ACTIVATE COLUMN ACCESS CONTROL clause is used to activate column
access control for the table. SECADM authority is required to issue such an ALTER TABLE statement. A
disabled column mask remains ineffective even when column access control is activated for the table.
The ALTER MASK statement can be used to alter between ENABLE and DISABLE.

After column access control is activated for a table, when the table is referenced in a data
manipulation statement, all enabled column masks that have been created for the table are implicitly
applied by Db2 to mask the values returned for the columns referenced in the final result table of the
queries or to determine the new values used in the data change statements.

Tip: To avoid multiple invalidations of packages and dynamic cached statements that reference the
table, creating column masks before activating column access control for a table .

Column masks that are created after column access control is activated:
The enabled column masks become effective as soon as they are committed. All the packages and
dynamic cached statements that reference the table are invalidated. Thereafter, when the table is
referenced in a data manipulation statement, all enabled column masks are implicitly applied by Db2
to the statement. Any disabled column mask remains ineffective even when column access control is
activated for the table.

No cascaded effect when column or row access control enforced tables are referenced in column
mask definitions:

A column mask definition may reference tables and columns that are currently enforced by row or
column access control. Access control from those tables and columns are ignored when the table for
which the column mask is being created is referenced in a data manipulation statement.

Multiple column masks and row permissions sharing the same environment variables:
Multiple column masks and row permissions can be created for a table. They must use the same set of
environment variables. The set of environment variables is determined when the first column mask or
row permission is created for the table.

The catalog table SYSENVIRONMENT contains the list of environment variables. The following table
shows which environment variable must be the same among the multiple column masks and row
permissions.

Table 8. Environment Variables in SYSIBM.SYSENVIRONMENT

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

ENVID Internal identifier of
the environment

Assigned by Db2 Assigned by Db2 Yes

CURRENT_SCHEMA The qualifier used
to qualify unqualified
objects such as
tables, views. etc.

Package owner Value of
CURRENT_SCHEMA
special register

Yes

PATHSCHEMAS The schema path
used to qualify
unqualified object
such as user-defined
functions and CAST
functions for user-
defined data types.

PATH bind option Value of
CURRENT_PATH
special register

Yes

112 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Table 8. Environment Variables in SYSIBM.SYSENVIRONMENT (continued)

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

APPLICATION_
ENCODING_
CCSID

The CCSID of
the application
environment

ENCODING bind
option

CURRENT
APPLICATION
ENCODING SCHEME
special register

Yes

ORIGINAL_
ENCODING_
CCSID

The original CCSID
of the statement text
string

CCSID(n) pre-
compiler option or
EBCDIC CCSID on
DSNTIPF installation
panel

CCSID based on DEF
ENCODING SCHEME
on DSNTIPF
installation panel

Yes

DECIMAL_POINT The decimal point
indicator

COMMA or PERIOD
precompiler option
or DECIMAL POINT
IS on DSNTIPF
installation panelv

DECIMAL POINT
IS on DSNTIPF
installation panel

Yes

MIN_DIVIDE_SCALE The minimum divide
scale

MINIMUM DIVIDE
SCALE on DSNTIP4
installation panel

MINIMUM DIVIDE
SCALE on DSNTIP4
installation panelv

Yesv

STRING_DELIMITER The string delimiter
that is used
in COBOL string
constants

APOST precompiler
option or STRING
DELIMITER on
DSNTIPF installation
panel

STRING DELIMITER
on DSNTIPF
installation panel

No

SQL_
STRING_
DELIMITER

The SQL string
delimiter that is used
in constants

APOSTSQL pre-
compiler option
or SQL STRING
DELIMITER on
DSNTIPF installation
panel

SQL STRING
DELIMITER on
DSNTIPF installation
panel

Yes

MIXED_DATA Uses mixed DBCS
data

MIXED DATA on
DSNTIPF installation
panel

MIXED DATA on
DSNTIPF installation
panel

Yes

DECIMAL_
ARITHMETIC

The rules that
are to be used
for CURRENT
PRECISION and
when both operands
in a decimal
operation have a
precision of 15 or
less.

DEC(15) or DEC(31)
precompiler option
or DECIMAL
ARITHMETIC on
DSNTIP4 installation
panel

DECIMAL
ARITHMETIC on
DSNTIP4 installation
panel

Yes

DATE_FORMAT The date format DATE pre-compiler
option or DATE
FORMAT on
DSNTIP4 installation
panel

DATE FORMAT on
DSNTIP4 installation
panel

Yes

Chapter 9. Db2 SQL statements for SQL DI 113

Table 8. Environment Variables in SYSIBM.SYSENVIRONMENT (continued)

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

TIME_FORMAT The time format TIME pre-compiler
option or TIME
FORMAT on
DSNTIP4 installation
panel

TIME FORMAT on
DSNTIP4 installation
panel

Yes

FLOAT_FORMAT The floating point
format

FLOAT (S390 | IEEE)
pre-compiler option
or default of FLOAT
S390

Default of FLOAT
S390

No

HOST_LANGUAGE The host language HOST pre-compiler
option or LANGUAGE
DEFAULT on
DSNTIPF installation
panel

LANGUAGE DEFAULT
on DSNTIPF
installation panel

No

CHARSET The character set CCSID(n) pre-
compiler option or
EBCDIC CCSID on
DSNTIPF installation
panel

EBCDIC CCSID on
DSNTIPF installation
panel

No

FOLD FOLD is only
applicable when
HOST_LANGUAGE is
C or CPP. Otherwise
FOLD is blank.

HOST(C(FOL D)
precompiler option
or default of NO
FOLD

default of NO FOLD No

ROUNDING The rounding mode
that is used
when arithmetic and
casting operations
are performed on
DECFLOAT data.

ROUNDING bind
option

CURRENT DECFLOAT
ROUNDING MODE
special register

Yes

Note: In a data sharing environment, if a separate DSNHDECP module is provided for each member of the
group, the DSNHDECP settings for each environment variable should be the same in all members of the
data sharing group, otherwise an error might be issued when multiple column masks or row permissions are
created.

Ordinary SQL identifiers specified in a static CREATE MASK statement in a COBOL application:
If the CREATE MASK statement is a static statement in a COBOL application, the ordinary SQL
identifiers used in the column mask definition must not follow the rules for naming COBOL words.
They must follow the rules for naming SQL identifiers (Db2 SQL). For example, the COBOL word
1ST-TIME is not allowed as an ordinary SQL identifier in a column mask definition; change it to
FIRST_TIME or put it in the delimiters.

Encoding scheme and CCSIDs of the data manipulation statement after column masks are applied:
The encoding scheme and CCSIDs of the data manipulation statement are not affected by the column
masks that are implicitly applied by Db2 for the column access control. For a target table or a
referenced table that is not an EBCDIC table with Unicode columns, the column mask definition is
evaluated using its table's encoding scheme and CCSIDs. For a target table or a referenced table that

114 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sqlidentifiers.html

is an EBCDIC table with Unicode columns, the column mask definition is evaluated using the rules for
multiple encoding schemes.

Consideration for Db2 limits:
If the data manipulation statement already approaches some Db2 limits in the statement, it should
be noted that the more enabled column masks and enabled row permissions are created, the more
likely they would impact some limits. For example, they may cause the statement to exceed the
maximum total length (32600 bytes) of columns of a query operation requiring sort and evaluating
aggregate functions (MULTIPLE DISTINCT and GROUP BY). This is because the enabled column mask
and enabled row permission definitions are implicitly merged into the statement when the table is
referenced in a data manipulation statement. See "Limits in Db2 for z/OS" in SQL Reference for the
limits of a statement.

Restrictions involving pending definition changes:
CREATE MASK is not allowed if the mask is defined on a table or references a table that has pending
definition changes.

Examples for CREATE MASK

In the following examples, the data type of column SSN is VARCHAR(11).

Example 1
After column access control is activated for table EMPLOYEE, Paul from the payroll department can
see the social security number of the employee whose employee number is 123456. Mary who is
a manager can see the last four characters only of the social security number. Peter who is neither
cannot see the social security number.

CREATE MASK SSN_MASK ON EMPLOYEE
 FOR COLUMN SSN RETURN
 CASE
 WHEN (VERIFY_GROUP_FOR_USER(SESSION_USER,'PAYROLL') = 1)
 THEN SSN
 WHEN (VERIFY_GROUP_FOR_USER(SESSION_USER,'MGR') = 1)
 THEN 'XXX-XX-' || SUBSTR(SSN,8,4)
 ELSE NULL
 END
 ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT SSN FROM EMPLOYEE
 WHERE EMPNO = 123456;

Example 2
In the SELECT statement, column SSN is embedded in an expression that is the same as the
expression used in the column mask SSN_MASK. After column access control is activated for table
EMPLOYEE, the column mask SSN_MASK is applied to column SSN in the SELECT statement. For
this particular expression, the SELECT statement produces the same result as before column access
control is activated for all users. The user can replace the expression in the SELECT statement with
column SSN to avoid the same expression gets evaluated twice.

CREATE MASK SSN_MASK ON EMPLOYEE
 FOR COLUMN SSN RETURN
 CASE
 WHEN (1 = 1)
 THEN 'XXX-XX-' || SUBSTR(SSN,8,4)
 ELSE NULL
 END
 ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE

Chapter 9. Db2 SQL statements for SQL DI 115

 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT 'XXX-XX-' || SUBSTR(SSN,8,4) FROM EMPLOYEE
 WHERE EMPNO = 123456;

Example 3
A state government conducted a survey for the library usage of the households in each city. Fifty
households in each city were sampled in the survey. Each household was given an option, opt-in or
opt-out, whether to show their usage in any reports generated from the result of the survey.

A SELECT statement is used to generate a report to show the average hours used by households in
each city. Column mask CITY_MASK is created to mask the city name based on the opt-in or opt-out
information chosen by the sampled households. However, after column access control is activated
for table LIBRARY_ USAGE, the SELECT statement receives a bind time error. This is because column
mask CITY_MASK references another column LIBRARY_OPT and LIBRARY_OPT does not identify a
grouping column.

CREATE MASK CITY_MASK ON LIBRARY_USAGE
 FOR COLUMN CITY RETURN
 CASE
 WHEN (LIBRARY_OPT = 'OPT-IN')
 THEN CITY
 ELSE ' '
 END
 ENABLE;

COMMIT;

ALTER TABLE LIBRARY_USAGE
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT CITY, AVG(LIBRARY_TIME) FROM LIBRARY_USAGE
 GROUP BY CITY;

Example 4
Employee with EMPNO 123456 earns bonus $8000 and salary $80000 in May. When the manager
retrieves his salary, the manager receives his salary, not the null value. This is because of no
cascaded effect when column mask SALARY_MASK references column BONUS for which column
mask BONUS_MASK is defined.

CREATE MASK SALARY_MASK ON EMPLOYEE
 FOR COLUMN SALARY RETURN
 CASE
 WHEN (BONUS < 10000)
 THEN SALARY
 ELSE NULL
 END
 ENABLE;

COMMIT;

CREATE MASK BONUS_MASK ON EMPLOYEE
 FOR COLUMN BONUS RETURN
 CASE
 WHEN (BONUS > 5000)
 THEN NULL
 ELSE BONUS
 END
 ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT SALARY FROM EMPLOYEE
 WHERE EMPNO = 123456;

116 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Example 5
This example shows Db2 adds "WHEN target-column IS NULL THEN NULL" as the first WHEN clause
to the column mask definition then merges the column mask definition into the statement.

CREATE EMPLOYEE (EMPID INT,
 DEPTID CHAR(8),
 SALARY DEC(9,2) NOT NULL,
 BONUS DEC(9,2));

CREATE MASK SALARY_MASK ON EMPLOYEE
 FOR COLUMN SALARY RETURN
 CASE
 WHEN SALARY < 10000
 THEN CAST(SALARY*2 AS DEC(9,2))
 ELSE COALESCE(CAST(SALARY/2 AS DEC(9,2)), BONUS)
 END
 ENABLE;

COMMIT;

CREATE MASK BONUS_MASK ON EMPLOYEE
 FOR COLUMN BONUS RETURN
 CASE
 WHEN BONUS > 1000
 THEN BONUS
 ELSE NULL
 END
 ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT SALARY FROM DEPT
 LEFT JOIN EMPLOYEE ON DEPTNO = DEPTID;

/* When SALARY_MASK is merged into the above statement,
 * 'WHEN SALARY IS NULL THEN NULL' is added as the
 * first WHEN clause, as follows:
 */

SELECT CASE WHEN SALARY IS NULL THEN NULL
 WHEN SALARY < 10000 THEN CAST(SALARY*2 AS DEC(9,2))
 ELSE COALESCE(CAST(SALARY/2 AS DEC(9,2)), BONUS)
 END SALARY
 FROM DEPT
 LEFT JOIN EMPLOYEE ON DEPTNO = DEPTID;

Related concepts
Column mask (Managing Security)
Naming conventions (Db2 SQL)
Related tasks
Creating column masks (Managing Security)

CREATE PERMISSION
The CREATE PERMISSION statement creates a row permission for row access control at the current
server.

Invocation for CREATE PERMISSION
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see Authorization IDs and dynamic SQL (Db2 SQL).

Authorization for CREATE PERMISSION
The privilege set that is defined below must include the following authority:

Chapter 9. Db2 SQL statements for SQL DI 117

https://www.ibm.com/docs/en/SSEPEK_13.0.0/seca/src/tpc/db2z_columnmask.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/seca/src/tpc/db2z_createcolumnmask.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authidsdynamicsql.html

• SECADM authority

SECADM authority can create a row permission in any schema. Additional privileges are not needed to
reference other objects in the permission definition. For example, the SELECT privilege is not needed to
retrieve from a table, and the EXECUTE privilege is not needed to invoke a user-defined function.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package. If the statement is dynamically prepared, the privilege set is
the set of privileges that are held by the SQL authorization ID of the process. However, if it is running in a
trusted context defined with the ROLE AS OBJECT OWNER AND QUALIFIER clause, the privilege set is the
set of privileges that are held by the role in effect.

Syntax for CREATE PERMISSION

CREATE PERMISSION permission-name ON table-name

AS
correlation-name

FOR ROWS WHERE search-condition

ENFORCED FOR ALL ACCESS
DISABLE

ENABLE

Description for CREATE PERMISSION
permission-name

Names the row permission for row access control. The name, including the implicit or explicit qualifier,
must not identify a row permission or a column mask that already exists at the current server

ON table-name
Identifies the table on which the row permission is created. The name must identify a table that exists
at the current server. It must not identify any of the following objects:

• An auxiliary table
• A created or declared temporary table
• A view
• A catalog table
• An alias
• A synonym
• A materialized query table or table that is directly or indirectly referenced in the definition of a

materialized query table
• A table that was implicitly created for an XML column
• A table that contains a period
• A history table
• An accelerator-only table
• An archive-enabled table
• An archive table
• A table that has a security label column.

correlation-name
Can be used within search-condition to designate the table. For the explanation of correlation-name,
see Correlation names (Db2 SQL).

118 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_correlationnames.html

FOR ROWS WHERE
Indicates that a row permission is created. A row permission specifies a search condition under which
rows of the table can be accessed.

search-condition
Specifies a condition that can be true, false, or unknown for a row of the table. search-condition
follows the same rules that are used by the search condition in a WHERE clause of a subselect. In
addition, the search condition must not reference any of the following objects:

• A remote object
• The table for which the row permission is being defined
• A table that has a security label column
• A created global temporary table or a declared global temporary table
• An auxiliary table
• A table that was implicitly created for an XML column
• A collection-derived table (UNNEST)
• A table function
• A host variable, SQL variable, SQL parameter, or trigger transition variable
• A user-defined function that is defined as not secure
• A function that is not deterministic or that has an external action or is defined with the MODIFIES

SQL DATA option
• A parameter marker
• A column that is defined with a FIELDPROC
• A LOB column or a distinct type column that is based on a LOB
• An XML column
• An XMLEXISTS predicate
• An OLAP specification
• A ROW CHANGE expression
• A sequence reference
• A select list notation * or name.* in the SELECT clause
• A table reference that contains a period specification
• A view that includes any of the preceding restrictions in its definition
• An AI_ANALOGY, AI_COMMONALITY, AI_SEMANTIC_CLUSTER, or AI_SIMILARITY function.

The encoding scheme of the table is used to evaluate the search-condition. Tables and language
elements that require multiple encoding scheme evaluation, other than EBCDIC tables with Unicode
columns, must not be referenced in the search-condition. See Determining the encoding scheme and
CCSID of a string (Introduction to Db2 for z/OS) for those language elements.

If the search-condition references tables for which row or column access control is activated, access
control from those tables is not cascaded.

ENFORCED FOR ALL ACCESS
Specifies that the row permission applies to all references of the table. If row access control is
activated for the table, when the table is referenced in a data manipulation statement, Db2 implicitly
applies the row permission to control the access of the table. If the reference of the table is for a fetch
operation such as SELECT, the application of the row permission determines what set of rows can be
retrieved by the user who requested the fetch operation. If the reference of the table is for a data
change operation such as INSERT, the application of the row permission determines whether all rows
to be changed are insertable or updatable by the user who requested the data change operation.

DISABLE or ENABLE
Specifies that the row permission is to be enabled or disabled for row access control.

Chapter 9. Db2 SQL statements for SQL DI 119

https://www.ibm.com/docs/en/SSEPEK_13.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

DISABLE
Specifies that the row permission is to be disabled for row access control. The row permission will
remain ineffective regardless the row access control is activated for the table or not.

DISABLE is the default.

ENABLE
Specifies that the row permission is to be enabled for row access control. If row access control is
not currently activated for the table, the row permission will become effective when row access
control is activated for the table. If row access control is currently activated for the table, the row
permission becomes effective immediately and all packages and dynamic cached statements that
reference the table are invalidated. For more information, see Changes that invalidate packages
(Db2 Application programming and SQL).

Notes for CREATE PERMISSION
How row permission are applied and how they affect certain statements:

See the ALTER TABLE statement with the ACTIVATE ROW ACCESS CONTROL clause for information
on how to activate row access control and how row permissions are applied. See the description of
subselect for information on how the application of row permissions affects the fetch operation. See
the data change statements for information on how the application of row permissions affects the
data change operation.

Row permissions that are created before row access control is activated for a table:
The CREATE PERMISSION statement is an independent statement that can be used to create a row
permission before row access control is activated for a table. The only requirement is that the table
and the columns exist before the permission is created. Multiple row permissions can be created for a
table.

The definition of the row permission is stored in the Db2 catalog. Dependency on the table for which
the permission is being created and dependencies on other objects referenced in the definition are
recorded. No package or dynamic cached statement is invalidated. A row permission can be created
as enabled or disabled for row access control. An enabled row permission does not take effect until
the ALTER TABLE statement with the ACTIVATE ROW ACCESS CONTROL clause is used to activate
row access control for the table. A disabled row permission remains ineffective even when row access
control is activated for the table. The ALTER PERMISSION statement can be used to alter between
ENABLE and DISABLE.

After row access control is activated for a table, when the table is referenced in a data manipulation
statement, all enabled row permissions that are defined for the table are implicitly applied by Db2 to
control access to the table.

Tip: Create row permissions before activating row access control for a table to avoid multiple
invalidations of packages and dynamic cached statements that reference the table.

Row permissions that are created after row access control is activated for a table:
An enabled row permission becomes effective as soon as it is committed. All the packages and
dynamic cached statements that reference the table are invalidated. Thereafter, when the table is
referenced in a data manipulation statement, all enabled row permissions are implicitly applied to
the statement. Any disabled row permission remains ineffective even when row access control is
activated for the table.

No cascaded effect when row or column access control enforced tables are referenced in row
permission definitions:

A row permission definition may reference tables and columns that are currently enforced by row or
column access control. Access control from those tables are ignored when the table for which the row
permission is being created is referenced in a data manipulation statement.

Multiple column masks and row permissions sharing the same environment variables:
Multiple column masks and row permissions can be created for a table. They must use the same set of
environment variables. The set of environment variables is determined when the first column mask or
row permission is created for the table.

120 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

The catalog table SYSENVIRONMENT contains the list of environment variables. The following table
shows which environment variable must be the same among the multiple column masks and row
permissions.

Table 9. Environment Variables in SYSIBM.SYSENVIRONMENT

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

ENVID Internal identifier of
the environment

Assigned by Db2 Assigned by Db2 Yes

CURRENT_SCHEMA The qualifier used
to qualify unqualified
objects such as
tables, views. etc.

Package owner Value of
CURRENT_SCHEMA
special register

Yes

PATHSCHEMAS The schema path
used to qualify
unqualified object
such as user-defined
functions and CAST
functions for user-
defined data types.

PATH bind option Value of
CURRENT_PATH
special register

Yes

APPLICATION_
ENCODING_
CCSID

The CCSID of
the application
environment

ENCODING bind
option

CURRENT
APPLICATION
ENCODING SCHEME
special register

Yes

ORIGINAL_
ENCODING_
CCSID

The original CCSID
of the statement text
string

CCSID(n) pre-
compiler option or
EBCDIC CCSID on
DSNTIPF installation
panel

CCSID based on DEF
ENCODING SCHEME
on DSNTIPF
installation panel

Yes

DECIMAL_POINT The decimal point
indicator

COMMA or PERIOD
precompiler option
or DECIMAL POINT
IS on DSNTIPF
installation panelv

DECIMAL POINT
IS on DSNTIPF
installation panel

Yes

MIN_DIVIDE_SCALE The minimum divide
scale

MINIMUM DIVIDE
SCALE on DSNTIP4
installation panel

MINIMUM DIVIDE
SCALE on DSNTIP4
installation panelv

Yesv

STRING_DELIMITER The string delimiter
that is used
in COBOL string
constants

APOST precompiler
option or STRING
DELIMITER on
DSNTIPF installation
panel

STRING DELIMITER
on DSNTIPF
installation panel

No

SQL_
STRING_
DELIMITER

The SQL string
delimiter that is used
in constants

APOSTSQL pre-
compiler option
or SQL STRING
DELIMITER on
DSNTIPF installation
panel

SQL STRING
DELIMITER on
DSNTIPF installation
panel

Yes

Chapter 9. Db2 SQL statements for SQL DI 121

Table 9. Environment Variables in SYSIBM.SYSENVIRONMENT (continued)

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

MIXED_DATA Uses mixed DBCS
data

MIXED DATA on
DSNTIPF installation
panel

MIXED DATA on
DSNTIPF installation
panel

Yes

DECIMAL_
ARITHMETIC

The rules that
are to be used
for CURRENT
PRECISION and
when both operands
in a decimal
operation have a
precision of 15 or
less.

DEC(15) or DEC(31)
precompiler option
or DECIMAL
ARITHMETIC on
DSNTIP4 installation
panel

DECIMAL
ARITHMETIC on
DSNTIP4 installation
panel

Yes

DATE_FORMAT The date format DATE pre-compiler
option or DATE
FORMAT on
DSNTIP4 installation
panel

DATE FORMAT on
DSNTIP4 installation
panel

Yes

TIME_FORMAT The time format TIME pre-compiler
option or TIME
FORMAT on
DSNTIP4 installation
panel

TIME FORMAT on
DSNTIP4 installation
panel

Yes

FLOAT_FORMAT The floating point
format

FLOAT (S390 | IEEE)
pre-compiler option
or default of FLOAT
S390

Default of FLOAT
S390

No

HOST_LANGUAGE The host language HOST pre-compiler
option or LANGUAGE
DEFAULT on
DSNTIPF installation
panel

LANGUAGE DEFAULT
on DSNTIPF
installation panel

No

CHARSET The character set CCSID(n) pre-
compiler option or
EBCDIC CCSID on
DSNTIPF installation
panel

EBCDIC CCSID on
DSNTIPF installation
panel

No

FOLD FOLD is only
applicable when
HOST_LANGUAGE is
C or CPP. Otherwise
FOLD is blank.

HOST(C(FOL D)
precompiler option
or default of NO
FOLD

default of NO FOLD No

122 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Table 9. Environment Variables in SYSIBM.SYSENVIRONMENT (continued)

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

ROUNDING The rounding mode
that is used
when arithmetic and
casting operations
are performed on
DECFLOAT data.

ROUNDING bind
option

CURRENT DECFLOAT
ROUNDING MODE
special register

Yes

Note: In a data sharing environment, if a separate DSNHDECP module is provided for each member of the
group, the DSNHDECP settings for each environment variable should be the same in all members of the
data sharing group, otherwise an error might be issued when multiple column masks or row permissions are
created.

Ordinary SQL identifiers specified in a static CREATE PERMISSION statement in a COBOL
application:

If the CREATE PERMISSION statement is a static statement in a COBOL application, the ordinary SQL
identifiers used in the row permission definition must not follow the rules for naming COBOL words
(DSNH20474, reason code 14). They must follow the rules for naming SQL identifiers as described
in the topic “SQL identifiers” in Db2 SQL Reference. For example, the COBOL word 1ST-TIME is not
allowed as an ordinary SQL identifier in a row permission definition; change it to FIRST_TIME or put it
in the delimiters.

Encoding scheme and CCSIDs of the data manipulation statement after row permissions are applied:
The encoding scheme and CCSIDs of the data manipulation statement are not affected by the row
permissions that are implicitly applied by Db2 for the row access control. For a target table or a
referenced table that is not an EBCDIC table with Unicode columns, the row permission definition is
evaluated using its table's encoding scheme and CCSIDs. For a target table or a referenced table that
is an EBCDIC table with Unicode columns, the row permission definition is evaluated using the rules
for multiple encoding schemes.

Consideration for Db2 limits:
If the data manipulation statement already approaches some Db2 limits in the statement, it should
be noted that the more enabled row permissions and enabled column masks are created, the more
likely they would impact some limits. For example, they may cause the statement to exceed the
maximum total length (32600 bytes) of columns of a query operation requiring sort and evaluating
aggregate functions (MULTIPLE DISTINCT and GROUP BY). This is because the enabled column mask
and enabled row permission definitions are implicitly merged into the statement when the table is
referenced in a data manipulation statement. See "Limits in Db2 for z/OS" in SQL Reference for the
limits of a statement.

Restrictions involving pending definition changes:
CREATE PERMISSION is not allowed if the permission is defined on a table or references a table that
has pending definition changes.

Examples for CREATE PERMISSION

Example 1
Secure user-defined function ACCOUNTING_UDF in row permission SALARY_ROW_ACCESS processes
the sensitive data in column SALARY. After row access control is activated for table EMPLOYEE,
Accountant Paul retrieves the salary of employee with EMPNO 123456 who is making $100,000 a
year. Paul may or may not see the row depending on the output value from user-defined function
ACCOUNTING_UDF.

Chapter 9. Db2 SQL statements for SQL DI 123

CREATE PERMISSION SALARY_ROW_ACCESS ON EMPLOYEE
 FOR ROWS WHERE VERIFY_GROUP_FOR_USER(SESSION_USER,'MGR','ACCOUNTING') = 1
 AND
 ACCOUNTING_UDF(SALARY) < 120000
 ENFORCED FOR ALL ACCESS
 ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
 ACTIVATE ROW ACCESS CONTROL;

COMMIT;

SELECT SALARY FROM EMPLOYEE
 WHERE EMPNO = 123456;

Example 2
The tellers in a bank can only access customers from their branch. All tellers have secondary
authorization ID TELLER. The customer service representatives are allowed to access all customers
of the bank. All customer service representatives have secondary authorization ID CSR. A row
permission is created for each group of personnel in the bank accordingly to the access rule defined
by SECADM authority. After row access control is activated for table CUSTOMER, in the SELECT
statement the search conditions of both row permissions are merged into the statement and they are
combined with the logic OR operator to control the set of rows accessible by each group.

CREATE PERMISSION TELLER_ROW_ACCESS ON CUSTOMER
 FOR ROWS WHERE VERIFY_GROUP_FOR_USER(SESSION_USER,'TELLER') = 1
 AND
 BRANCH = (SELECT HOME_BRANCH FROM INTERNAL_INFO
 WHERE EMP_ID = SESSION_USER)
 ENFORCED FOR ALL ACCESS
 ENABLE;

COMMIT;

CREATE PERMISSION CSR_ROW_ACCESS ON CUSTOMER
 FOR ROWS WHERE VERIFY_GROUP_FOR_USER(SESSION_USER,'CSR') = 1
 ENFORCED FOR ALL ACCESS
 ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
 ACTIVATE ROW ACCESS CONTROL;

COMMIT;

SELECT * FROM CUSTOMER;

Related concepts
Row permission (Managing Security)
Naming conventions (Db2 SQL)
Related tasks
Creating row permissions (Managing Security)

CREATE TABLE
The CREATE TABLE statement defines a table. The definition must include its name and the names and
attributes of its columns. The definition can include other attributes of the table, such as its primary key
and its table space.

Invocation for CREATE TABLE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see Authorization IDs and dynamic SQL (Db2 SQL).

124 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/seca/src/tpc/db2z_rowpermission.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/seca/src/tpc/db2z_createrowpermission.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authidsdynamicsql.html

Authorization for CREATE TABLE
The privilege set that is defined below must include at least one of the following:

• The CREATETAB privilege for the database explicitly specified by the IN clause.

If the IN clause is not specified, the CREATETAB privilege on database DSNDB04 is required.
• DBADM, DBCTRL, or DBMAINT authority for the database explicitly specified by the IN clause. If the IN

clause is not specified, DBADM, DBCTRL, or DBMAINT authority for database DSNDB04 is required.
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the table space is created implicitly, the privilege set that is defined below must include at least one of
the following:

• The CREATETS privilege for the database explicitly specified by the IN clause.

If the IN clause is not specified, the CREATETS privilege on database DSNDB04 is required.
• DBADM, DBCTRL, or DBMAINT authority for the database explicitly specified by the IN clause. If the IN

clause is not specified, DBADM, DBCTRL, or DBMAINT authority for database DSNDB04 is required.
• SYSADM or SYSCTRL authority
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The privilege set must also have the USE privilege for the following objects:

• For the table space if one is specified in the IN clause
• For the default buffer pool and default storage group of the database if a database is specified in the IN

clause

If you specify a table space name, you must also have the SYSADM or SYSCTRL authority or the DBADM
authority for the database.

For tables that are created in an implicit database, the database authority must be held on DSNDB04.

Additional privileges might be required in the following conditions:

• The clause IN, LIKE or FOREIGN KEY is specified.
• The data type of a column is a distinct type.
• The table space is implicitly created.
• A fullselect is specified.
• A column is defined as a security label column.

Privilege set: See the description of the appropriate clauses for details about these privileges.

If the statement is embedded in an application program, the privilege set is the privileges that are held by
the owner of the package.

If the application is bound in a trusted context with the ROLE AS OBJECT OWNER clause specified:

• A role is the owner of the table that is being created
• The privilege set is the set of privileges that are held by that role
• The schema qualifier (implicit or explicit) must be the same as the role, unless the role has the

CREATEIN privilege on the schema, or SYSADM, SYSCTRL, or system DBADM authority

Otherwise, an authorization ID is the owner of the package, and the following rules apply:

• If the privilege set lacks the CREATEIN privilege on the schema, SYSADM authority, SYSCTRL authority,
and System DBADM authority, the schema qualifier (implicit or explicit) must be the same as the
authorization ID of the owner of the package.

Chapter 9. Db2 SQL statements for SQL DI 125

• If the privilege set lacks SYSADM authority, SYSCTRL authority, and System DBADM authority, and the
table is explicitly qualified, the authorization ID that is the same as the schema name must have all the
necessary privileges to create the table, and that authorization ID is the owner of the table. Otherwise,
the authorization ID of the owner of the package must have all the necessary privileges to create the
table, and that authorization ID is the owner of the table.

• If the privilege set includes SYSADM authority, SYSCTRL authority, or system DBADM authority, the
schema qualifier (implicit or explicit) can be any schema name. However, if the table is explicitly
qualified, the authorization ID that is the same as the schema name is the owner of the table.
Otherwise, the authorization ID of the owner of the package is the owner of the table.

• If the privilege set includes DBADM authority and DBCTRL authority for the database, the schema
qualifier (implicit or explicit) can be any schema name. However, if the table is explicitly qualified,
the authorization ID that is the same as the schema name is the owner of the table. Otherwise, the
authorization ID of the owner of the package is the owner of the table.

If the statement is dynamically prepared, the privilege set is the privileges that are held by the SQL
authorization ID of the process unless the process is within a trusted context and the ROLE AS OBJECT
OWNER clause is in effect. When ROLE AS OBJECT OWNER is in effect, the privileges set is the privileges
that are held by the role that is associated with the primary authorization ID of the process, and the owner
of the table is that role. The schema qualifier (implicit or explicit) must be the same as that role, unless
the role has CREATEIN privilege on the schema, or SYSADM authority, SYSCTRL authority, or System
DBADM authority.

For the case where the SQL authorization ID of the process holds the privileges, the following rules apply:

• If the privilege set lacks CREATEIN privilege on the schema, SYSADM authority, SYSCTRL authority, and
System DBADM authority, the schema qualifier must be the same as one of the authorization IDs of the
process.

• If the privilege set lacks SYSADM authority, SYSCTRL authority, and System DBADM authority, and the
table is explicitly qualified, then the authorization ID that is the same as the schema name must have
all the necessary privileges to create the table, and that authorization ID is the owner of the table.
Otherwise, the SQL authorization ID of the process must include all privileges that are needed to create
the table, and that authorization ID is the owner of the table.

• If the privilege set includes SYSADM authority, SYSCTRL authority, or System DBADM authority, the
schema qualifier can be any schema name. However, if the table is explicitly qualified, then the
authorization ID that is the same as the schema name is the owner of the table. Otherwise, the SQL
authorization ID of the process is the owner of the table.

126 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Syntax for CREATE TABLE

CREATE TABLE table-name (

,

column-definition

period-definition

unique-constraint

referential-constraint

check-constraint

)

LIKE table-name

view-name copy-options

as-result-table

copy-options

materialized-query-definition

1

IN

database-name .

 table-space-name

IN DATABASE database-name

IN ACCELERATOR accelerator-name

partitioning-clause

organization-clause
2

EDITPROC program-name
WITH ROW ATTRIBUTES

WITHOUT ROW ATTRIBUTES

VALIDPROC program-name

AUDIT NONE

AUDIT CHANGES

AUDIT ALL

OBID integer

DATA CAPTURE NONE

DATA CAPTURE CHANGES

WITH RESTRICT ON DROP

CCSID ASCII

EBCDIC

UNICODE

NOT VOLATILE
CARDINALITY

VOLATILE
CARDINALITY

LOGGED

NOT LOGGED

imptscmp-parameter
3

COMPRESS NO

COMPRESS YES

COMPRESS YES FIXEDLENGTH

COMPRESS YES HUFFMAN

APPEND

NO

YES

impdssize-parameter
4

DSSIZE integer G

tbsbp-parameter
5

BUFFERPOOL bpname

MEMBER CLUSTER

TRACKMOD imptkmod-parameter
6

TRACKMOD YES

TRACKMOD NO

PAGENUM pageset_pagenum-parameter
7

PAGENUM RELATIVE
8

PAGENUM ABSOLUTE

NO KEY LABEL

KEY LABEL key-label-name

Notes:
1 The same clause must not be specified more than once.

Chapter 9. Db2 SQL statements for SQL DI 127

2 Hash-organized tables are deprecated. Beginning in Db2 12, packages bound with
APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter existing tables to use
hash-organization. Existing hash organized tables remain supported, but they are likely to be unsupported in
the future.
3 The IMPTSCMP subsystem parameter specifies the default value. See USE DATA COMPRESSION field
(IMPTSCMP subsystem parameter) (Db2 Installation and Migration).
4 The IMPDSSIZE subsystem parameter specifies the default value. See IMPDSSIZE in macro DSN6SYSP
(Db2 Installation and Migration).
5 The TBSBPOOL, TBSBP8K, TBSBP16K, or TBSBP32K subsystem parameter determines the default value.
See DSNTIP2: Buffer pool sizes panel 2 (Db2 Installation and Migration).
6 The IMPTKMOD subsystem parameter specifies the default value. See IMPTKMOD in macro DSN6SYSP
(Db2 Installation and Migration).
7 See PAGE SET PAGE NUMBERING field (PAGESET_PAGENUM subsystem parameter) (Db2 Installation and
Migration).
8 PAGENUM RELATIVE is allowed only if a partitioning clause is specified.

column-definition:

column-name data-type
1

2

NOT NULL

generated-clause

column-constraint

WITH
DEFAULT

constant

SESSION_USER

USER

CURRENT SQLID

NULL
3

cast-function-name (constant

SESSION_USER

USER

CURRENT SQLID

NULL

)

FIELDPROC program-name

(

,

constant)

AS SECURITY LABEL
4

IMPLICITLY HIDDEN

INLINE LENGTH integer
5

Notes:
1 Data type is optional if as-row-change-timestamp-clause is specified
2 The same clause must not be specified more than one time.

128 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_imptscmp.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_imptscmp.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_impdssize.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_impdssize.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_dsntip2.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_imptkmod.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_imptkmod.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html

3 The cast-function-name form of the DEFAULT value can only be used with a column that is defined as a
distinct type.
4 AS SECURITY LABEL can be specified only for a CHAR(8) data type and requires that the NOT NULL and
WITH DEFAULT clauses be specified.
5 INLINE LENGTH only applies to a column with a LOB data type or a distinct type that is based on a LOB
data type.

data-type:

built-in-type

distinct-type-name

built-in-type:

Chapter 9. Db2 SQL statements for SQL DI 129

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

FOR SBCS

MIXED

BIT

DATA

CCSID 1208
1

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) FOR SBCS

MIXED

BIT

DATA

CCSID 1208
1

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID 1200
1

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

XML

(XML-type-modifier)

Notes:
1 The CCSID clause must only be specified for a character string or graphic string column in an EBCDIC
table. The CCSID clause must not be specified with non-deterministic-expression.

130 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

XML-type-modifier:

XMLSCHEMA

,

XML-schema-specification

ELEMENT element-name

XML-schema-specification:

ID registered-XML-schema-name

URI target-namespace

NO NAMESPACE LOCATION schema-location

generated-clause:

GENERATED
ALWAYS

BY DEFAULT as-identity-clause

as-row-change-timestamp-clause

GENERATED
ALWAYS

as-row-transaction-start-id-clause

as-row-transaction-timestamp-clause

as-generated-expression-clause

as-identity-clause:

Chapter 9. Db2 SQL statements for SQL DI 131

AS IDENTITY

(
1

START WITH 1

START WITH numeric-constant

INCREMENT BY 1

INCREMENT BY numeric-constant

NO MINVALUE

MINVALUE numeric-constant

NO MAXVALUE

MAXVALUE numeric-constant

NO CYCLE

CYCLE

CACHE 20

NO CACHE

CACHE integer-constant

NO ORDER

ORDER

)

Notes:
1 Separator commas can be specified between attributes when an identity column is defined.

as-row-change-timestamp-clause:

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

as-row-transaction-start-id-clause:

AS TRANSACTION START ID

as-row-transaction-timestamp-clause:

AS ROW BEGIN

START

END

as-generated-expression-clause:

AS (non-deterministic-expression)

non-deterministic-expression:

132 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

DATA CHANGE OPERATION

special-register

session-variable

special-register:

1

CURRENT CLIENT_ACCTNG

CURRENT CLIENT_APPLNAME

CURRENT CLIENT_CORR_TOKEN

CURRENT CLIENT_USERID

CURRENT CLIENT_WRKSTNNAME

CURRENT SERVER

CURRENT SQLID

SESSION_USER
2

Notes:
1 This definition of special register is specific to this context, as part of non-deterministic-expression.
2 USER can be specified as a synonym for SESSION_USER.

session-variable:

1

SYSIBM.PACKAGE_NAME

SYSIBM.PACKAGE_SCHEMA

SYSIBM.PACKAGE_VERSION

Notes:
1 This definition of session variable is specific to this context, as part of non-deterministic-expression.

column-constraint:

CONSTRAINT constraint-name

PRIMARY KEY

UNIQUE

references-clause

CHECK(check-condition)

period-definition:

Chapter 9. Db2 SQL statements for SQL DI 133

PERIOD
FOR

SYSTEM_TIME (begin-column-name , end-column-name)

BUSINESS_TIME (begin-column-name , end-column-name
EXCLUSIVE

INCLUSIVE

)

unique-constraint:

CONSTRAINT constraint-name

PRIMARY KEY

UNIQUE

(

,

 column-name

,BUSINESS_TIME WITHOUT OVERLAPS
1

)

Notes:
1 If BUSINESS_TIME WITHOUT OVERLAPS is specified, the BUSINESS_TIME period will not overlap in
time periods for the same column-name values.

referential-constraint:

CONSTRAINT constraint-name

FOREIGN KEY

(

,

 column-name
, PERIOD BUSINESS_TIME

)

references-clause

references-clause:

134 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

REFERENCES parent-table-name

(

,

column-name

, PERIOD BUSINESS_TIME

)

ON DELETE RESTRICT

NO ACTION

CASCADE

SET NULL

ENFORCED

NOT ENFORCED

ENABLE QUERY OPTIMIZATION

check-constraint:

CONSTRAINT constraint-name

CHECK (check-condition)

as-result-table:

(

,

column-name)

AS (fullselect) WITH NO DATA

copy-options:

Chapter 9. Db2 SQL statements for SQL DI 135

1

EXCLUDING IDENTITY
COLUMN ATTRIBUTES

INCLUDING IDENTITY
COLUMN ATTRIBUTES

EXCLUDING ROW CHANGE TIMESTAMP
COLUMN ATTRIBUTES

INCLUDING ROW CHANGE TIMESTAMP
COLUMN ATTRIBUTES

EXCLUDING
COLUMN

DEFAULTS
2

INCLUDING
COLUMN

DEFAULTS

USING TYPE DEFAULTS

EXCLUDING XML TYPE MODIFIERS
3

Notes:
1 These clauses can be specified in any order and must not be specified more than one time.
2 EXCLUDING COLUMN DEFAULTS, INCLUDING COLUMN DEFAULTS, and USING TYPE DEFAULTS must not
be specified with the LIKE clause.
3 EXCLUDING XML TYPE MODIFIERS must be specified with the LIKE clause if the identified table has an
XML type modifier and none of the XML columns of the new table has an XML type modifier. EXCLUDING
XML TYPE MODIFIERS is not supported when a view is identified in a LIKE clause and the view contains
XML columns.

materialized-query-definition

(

,

column-name)

AS ( fullselect) refreshable-table-options

refreshable-table-options:

136 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

DATA INITIALLY DEFERRED REFRESH DEFERRED

1

MAINTAINED BY SYSTEM

MAINTAINED BY USER

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

Notes:
1 The same clause must not be specified more than one time.

partitioning-clause:

PARTITION BY SIZE

EVERY integer-constant G

PARTITION BY
RANGE

(

,

partition-expression) (

,

partition-element)

partition-expression:

column-name
NULLS LAST ASC

DESC

partition-element:

PARTITION integer ENDING
AT

(

,

constant

MAXVALUE

MINVALUE

)

partition-hash-space
1

INCLUSIVE

Notes:
1 Hash-organized tables are deprecated. Beginning in Db2 12, packages bound with
APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter existing tables to use
hash-organization. Existing hash organized tables remain supported, but they are likely to be unsupported
in the future.

Chapter 9. Db2 SQL statements for SQL DI 137

Description for CREATE TABLE
table-name

Names the table. The name, including the implicit or explicit qualifier, must not identify a
table, view, alias, or synonym that exists at the current server or a table that exists in the
SYSIBM.SYSPENDINGOBJECTS catalog table. The unqualified name must not be the same as an
existing synonym.

If the name is qualified, the name can be a two-part or three-part name. If a three-part name is used,
the first part must match the value of field Db2LOCATION NAME on installation panel DSNTIPR at the
current server. (If the current server is not the local Db2, this name is not necessarily the name in the
CURRENT SERVER special register.)

For more information, see Guidelines for table names (Db2 Administration Guide).

KEY LABEL key-label-name or NO KEY LABEL
Specifies whether key label is specified at the table level for encryption. The table-name must identify
a table that resides in a universal table space, or a partitioned (non-UTS) table space. If you specify a
table-space-name using the IN clause, a subsequent REORG of the table space is required for the key
label value to take effect.
KEY LABEL key-label-name

Specifies the default key label that is used to encrypt all the table spaces and index spaces
associated with the table. This includes base table spaces, auxiliary table spaces, XML table
spaces, index spaces, and clone table spaces, regardless of whether they are explicitly or
implicitly created. Users must set the key label for archive or history tables independently.

The data set must be Db2-managed for all the table spaces and index spaces associated with the
table.

The table-name must not identify one of the following:

• An accelerator-only table.
• An auxiliary table.

The key label must be defined in ICSF and not refer to an archived key for decryption operations
only. Db2 address space RACF user ID or group must be permitted access to the key label in RACF.

The key label can be inherited or overridden when the data set is allocated. For details about the
order of precedence, see Notes®.

NO KEY LABEL
Indicates that there is no key label specified at the table level for encryption.

column-definition
column-name

Names a column of the table. For a dependent table, up to 749 columns can be named. For a table
that is not a dependent, this number is 750. Do not qualify column-name and do not use the same
name for more than one column of the table.

built-in-type
Specifies the data type of the column as one of the following built-in data types, and for character
string data types, specifies the subtype. For more information about defining a table with a LOB
column (CLOB, BLOB, or DBCLOB), see Creating a table with LOB columns.

If IN ACCELERATOR is specified, not all data types are supported. For example, DECFLOAT, LOB,
ROWID, TIMESTAMP WITH TIME ZONE, and XML are not supported. The IBM Db2 Analytics
Accelerator for z/OS: Stored Procedures Reference has a complete list of supported data types.

SMALLINT
For a small integer.

INTEGER or INT
For a large integer.

138 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_guidelinesfortablenames.html

BIGINT
For a big integer.

DECIMAL(integer,integer) or DEC(integer,integer)
DECIMAL(integer) or DEC(integer)
DECIMAL or DEC

For a decimal number. The first integer is the precision of the number. That is, the total number of
digits, which can range from 1 to 31. The second integer is the scale of the number. That is, the
number of digits to the right of the decimal point, which can range from 0 to the precision of the
number.

You can use DECIMAL(p) for DECIMAL(p,0) and DECIMAL for DECIMAL(5,0).

You can also use the word NUMERIC instead of DECIMAL. For example, NUMERIC(8) is equivalent
to DECIMAL(8). Unlike DECIMAL, NUMERIC has no allowable abbreviation.

DECFLOAT(integer)
For a decimal floating-point number. The value of integer must be either 16 or 34 and represents
the number of significant digits that can be stored. If integer is omitted, the DECFLOAT column will
be capable of representing 34 significant digits.

FLOAT(integer)
FLOAT

For a floating-point number. If integer is between 1 and 21 inclusive, the format is single precision
floating-point. If the integer is between 22 and 53 inclusive, the format is double precision
floating-point.

You can use DOUBLE PRECISION or FLOAT for FLOAT(53).

REAL
For single precision floating-point.

DOUBLE or DOUBLE PRECISION
For double precision floating-point

CHARACTER(integer) or CHAR(integer)
CHARACTER or CHAR

For a fixed-length character string of length integer, which can range 1–255. If the length
specification is omitted, a length of 1 character is assumed.
CCSID 1208

Specifies that the column is a Unicode column encoded in UTF-8. This clause must not be
specified for an ASCII or Unicode table.

VARCHAR(integer), CHAR VARYING(integer), or CHARACTER VARYING(integer)
For a varying-length character string of maximum length integer, which can range from 1 to the
maximum record size minus 10 bytes. See Table 14 on page 182 to determine the maximum
record size.
CCSID 1208

Specifies that the column is a Unicode column encoded in UTF-8. This clause must not be
specified for an ASCII or Unicode table.

FOR subtype DATA
Specifies a subtype for a character string column, which is a column with a data type of CHAR,
VARCHAR, or CLOB. Do not use the FOR subtype DATA clause with columns of any other data type
(including any distinct type). subtype can be one of the following:
SBCS

Column holds single-byte data.
MIXED

Column holds mixed data. Do not specify MIXED if the value of field MIXED DATA on
installation panel DSNTIPF is NO unless the CCSID UNICODE clause is also specified, or the
table is being created in a Unicode table space or database.

Chapter 9. Db2 SQL statements for SQL DI 139

BIT
Column holds BIT data. Do not specify BIT for a CLOB column.

Only character strings are valid when subtype is BIT.

If you do not specify the FOR subtype DATA clause, the column is defined with a default subtype.
For ASCII or EBCDIC data:

• The default is SBCS when the value of field MIXED DATA on installation panel DSNTIPF is NO.
• The default is MIXED when the value is YES.

For Unicode data, the default subtype is MIXED.

A security label column is always considered SBCS data, regardless of the encoding scheme of the
table.

CLOB(integer [K|M|G]), CHAR LARGE OBJECT(integer [K|M|G]), or CHARACTER LARGE
OBJECT(integer [K|M|G])
CLOB, CHAR LARGE OBJECT, or CHARACTER LARGE OBJECT

For a character large object (CLOB) string of the specified maximum length in bytes. The maximum
length must be in the range 1–2147483647. A CLOB column has a varying-length. It cannot
be referenced in certain contexts regardless of its maximum length. For more information, see
Restrictions using LOBs (Db2 SQL).

When integer is not specified, the default length is 1M. The maximum value that can be specified
for integer depends on whether a units indicator is also specified as shown in the following list.
integer

The maximum value for integer is 2147483647. The maximum length of the string is integer.
integer K

The maximum value for integer is 2097152. The maximum length is 1024 times integer.
integer M

The maximum value for integer is 2048. The maximum length is 1,048,576 times integer.
integer G

The maximum value for integer is 2. The maximum length is 1,073,741,824 times integer.

integer can be separated from K, M, or G by 0 or more spaces.

If you specify a value that evaluates to 2 gigabytes (2,147,483,648), Db2 uses a value that is one
byte less, or 2147483647.

CCSID 1208
Specifies that the column is a Unicode column encoded in UTF-8. This clause must not be
specified for an ASCII or Unicode table.

GRAPHIC(integer)
GRAPHIC

For a fixed-length graphic string of length integer, which can range 1–127. If the length
specification is omitted, a length of 1 character is assumed.
CCSID 1200

Specifies that the column is a Unicode column encoded in UTF-16. This clause must not be
specified for an ASCII or Unicode table.

VARGRAPHIC(integer)
For a varying-length graphic string of maximum length integer, which must range from 1 to n/2,
where n is the maximum row size minus 2 bytes.
CCSID 1200

Specifies that the column is a Unicode column encoded in UTF-16. This clause must not be
specified for an ASCII or Unicode table.

140 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_lobrestrictions.html

DBCLOB(integer [K|M|G])
DBCLOB

For a double-byte character large object (DBCLOB) string of the specified maximum length in
double-byte characters. The maximum length must be in the range of 1–1,073,741,823. A
DBCLOB column has a varying-length. It cannot be referenced in certain contexts regardless of its
maximum length. For more information, see Restrictions using LOBs (Db2 SQL).

When integer is not specified, the default length is 1M. The meaning of integer K|M|G is similar to
CLOB. The difference is that the number specified is the number of double-byte characters.

integer can be separated from K, M, or G by 0 or more spaces.

CCSID 1200
Specifies that the column is a Unicode column encoded in UTF-16. This clause must not be
specified for an ASCII or Unicode table.

BINARY(integer)
A fixed-length binary string of length integer. The integer can range 1–255. If the length
specification is omitted, a length of 1 byte is assumed.

BINARY VARYING(integer) or VARBINARY(integer)
A varying-length binary string of maximum length integer, which can range 1–32704. The length is
limited by the page size of the table space.

BLOB (integer [K|M|G] or BINARY LARGE OBJECT(integer [K|M|G])
BLOB or BINARY LARGE OBJECT

For a binary large object (BLOB) string of the specified maximum length in bytes. The maximum
length must be in the range of 1–2147483647. A BLOB column has a varying-length. It cannot
be referenced in certain contexts regardless of its maximum length. For more information, see
Restrictions using LOBs (Db2 SQL).

When integer is not specified, the default length is 1M. The meaning of integer K|M|G is the same
as for CLOB.

integer can be separated from K, M, or G by 0 or more spaces.

DATE
For a date.

TIME
For a time.

TIMESTAMP(integer) WITHOUT TIME ZONE
For a timestamp. integer specifies the optional timestamp precision attribute and must be in the
range 0–12. The timestamp precision denotes the number of fractional second digits that are
included in the timestamp. The default is 6.

TIMESTAMP(integer) WITH TIME ZONE
For a timestamp with time zone. integer specifies the optional timestamp precision attribute and
must be in the range 0–12. The timestamp precision denotes the number of fractional second
digits that are included in the timestamp. The default is 6.

ROWID
For a row ID type.

A table can contain at most two ROWID columns. If it contains two, one column is implicitly
generated by Db2 and the other column is explicitly defined as a ROWID without the IMPLICITLY
HIDDEN attribute. The values in a ROWID column are unique for every row in the table and cannot
be updated. You must specify NOT NULL with ROWID.

XML
For an XML document. Only well-formed XML documents can be inserted into an XML column.

If the XML column is the first XML column that you create for the table, a BIGINT DOCID column is
implicitly created and is used to store a unique document identifier for the XML columns of a row.

Chapter 9. Db2 SQL statements for SQL DI 141

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_lobrestrictions.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_lobrestrictions.html

XMLSCHEMA
Specifies one or more XML schemas that are used to validate the XML value. The same XML
schema can not be specified more than one time.

If the XML value has already been validated, for example, the XML value is the result of the
DSN_XMLVALIDATE function or from an XML column with a type modifier, and the XML schema
against which the XML value is validated is one of the schemas specified in the XML-type-modifier,
Db2 accepts the XML value without revalidation.

XML-schema-specification
Specifies one XML schema. The XML schema can be identified by using either the registered-
XML-schema-name or the schema's target namespace followed by an optional schema
location. Any XML schema that is referenced in this clause must be registered in the XML
schema repository prior to use.
ID registered-XML-schema-name

Identifies an XML schema by using its registered-XML-schema-name. The name must
uniquely identify an existing XML schema in the XML schema repository at the current
server. If no XML schema by this name exists, an error is returned.

The schema qualifier must be SYSXSR.

URI target-namespace
Specifies the target namespace URI of the XML schema. The value for the target-
namespace URI is a character string constant which is not empty. The URI must be the
target namespace of a registered XML schema and, if no LOCATION clause is specified, it
must uniquely identify the registered XML schema.

NO NAMESPACE
Specifies that the XML schema has no target namespace. There must be a registered XML
schema that has no target namespace. If no LOCATION clause is specified, there must be
only one such registered XML schema.

LOCATION schema-location
Specifies the XML schema location URI of the XML schema. The value of schema-location
is a character string constant that is not empty. The schema location URI, combined with
the target namespace URI, must identify a registered XML schema.

ELEMENT element-name
Specifies the name of the global element declaration. element-name must match the local
name of the root element node in the instance XML document. The namespace name of the
root element node must be the same as the target namespace URI.

distinct-type-name
Specifies the data type of the column is a distinct type (a user-defined data type). The length,
precision, and scale of the column are respectively the length, precision, and scale of the source type
of the distinct type. The privilege set must implicitly or explicitly include the USAGE privilege on the
distinct type.

The encoding scheme of the distinct type must be the same as the encoding scheme of the table. The
subtype for the distinct type, if it has the attribute, is the subtype with which the distinct type was
created.

If the column is to be used in the definition of the foreign key of a referential constraint, the data type
of the corresponding column of the parent key must have the same distinct type.

NOT NULL
Prevents the column from containing null values. Omission of NOT NULL implies that the column can
contain null values.

column-constraint
The column-constraint of a column-definition provides a shorthand method of defining a constraint
composed of a single column. Thus, if a column-constraint is specified in the definition of column C,
the effect is the same as if that constraint were specified as a unique-constraint, referential-constraint,
or check-constraint in which C is the only identified column.

142 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

CONSTRAINT constraint-name
Names the constraint. If a constraint name is not specified, a unique constraint name is
generated. If the name is specified, it must be different from the names of any referential, check,
primary key, or unique key constraints previously specified on the table.

PRIMARY KEY
Provides a shorthand method of defining a primary key composed of a single column. Thus, if
PRIMARY KEY is specified in the definition of column C, the effect is the same as if the PRIMARY
KEY(C) clause is specified as a separate clause.

The NOT NULL clause must be specified with this clause. PRIMARY KEY cannot be specified more
than one time in a column definition, and must not be specified if the UNIQUE clause is specified
in the definition. This clause must also not be specified if the definition is for one of the following
types of columns:

• a LOB column
• a ROWID column
• a distinct type column that is based on a LOB or ROWID data type
• an XML column
• a row change timestamp column
• a column in an accelerator-only table

The table is marked as unavailable until its primary index is explicitly created unless the CREATE
TABLE statement is processed by the schema processor or the table space that contains the table
is implicitly created. In that case, Db2 implicitly creates an index to enforce the uniqueness of the
primary key and the table definition is considered complete. (For more information about implicitly
created indexes, see Implicitly created indexes.)

UNIQUE
Provides a shorthand method of defining a unique key composed of a single column. Thus, if
UNIQUE is specified in the definition of column C, the effect is the same as if the UNIQUE(C)
clause is specified as a separate clause.

The NOT NULL clause must be specified with this clause. UNIQUE cannot be specified more than
one time in a column definition and must not be specified if the PRIMARY KEY clause is specified
in the column definition or if the definition is for one of the following types of columns:

• a LOB column
• a ROWID column
• a distinct type column that is based on a LOB or ROWID data type
• an XML column
• a row change timestamp column
• a column in an accelerator-only table

The table is marked as unavailable until all the required indexes are explicitly created unless the
CREATE TABLE statement is processed by the schema processor or the table space that contains
the table is implicitly created. In that case, Db2 implicitly creates the indexes that are required
for the unique keys and the table definition is considered complete. (For more information about
implicitly created indexes, see Implicitly created indexes.)

references-clause
The references-clause of a column-definition provides a shorthand method of defining a foreign
key composed of a single column. Thus, if references-clause is specified in the definition of column
C, the effect is the same as if the references-clause were specified as part of a FOREIGN KEY
clause in which C is the only identified column.

Do not specify references-clause in the definition of the following types of columns because these
types of columns cannot be a foreign key:

• a LOB column

Chapter 9. Db2 SQL statements for SQL DI 143

• a ROWID column
• a DECFLOAT column
• a distinct type column that is based on a LOB, ROWID, or DECFLOAT data type
• an XML column
• a row change timestamp column
• a security label column

CHECK (check-condition)
CHECK (check-condition) provides a shorthand method of defining a check constraint that applies
to a single column. For conformance with the SQL standard, if CHECK is specified in the column
definition of column C, no columns other than C should be referenced in the check condition of
the check constraint. The effect is the same as if the check condition were specified as a separate
clause.

DEFAULT
Specifies the default value that is assigned to the column in the absence of a value specified on an
insert or update operation or LOAD. DEFAULT must not be specified more than one time in the same
column-definition. Do not specify DEFAULT for the following types of columns because Db2 generates
default values:

• An identity column (a column that is defined AS IDENTITY)
• A ROWID column (or a distinct type that is based on a ROWID)
• A row change timestamp column
• A row-begin column
• A row-end column
• A transaction-start-id column
• An XML column

If IN ACCELERATOR is specified, do not specify DEFAULT for a column.

Do not specify a value after the DEFAULT keyword for a security label column. Db2 provides the
default value for a security label column.

If a value is not specified after DEFAULT, the default value depends on the data type of the column, as
follows:
Data Type

Default Value
Numeric

0
Big integer

0
Fixed-length character string

Blanks
Fixed-length graphic string

Blanks
Fixed-length binary string

Hexadecimal zeros
Varying-length string

A string of length 0
Inline BLOB

Hexadecimal zeros
Inline CLOB

Blanks

144 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Inline DBCLOB
Blanks

Date
CURRENT DATE

Time
CURRENT TIME

TIMESTAMP(integer) WITHOUT TIME ZONE
CURRENT TIMESTAMP(p) WITHOUT TIME ZONE where p is the corresponding timestamp
precision.

TIMESTAMP(integer) WITH TIME ZONE
CURRENT TIMESTAMP(p) WITH TIME ZONE where p is the corresponding timestamp precision.

If the column is defined as timestamp with time zone the default value must include a time zone.

Distinct type
The default of the source data type

A default value other than the one that is listed above can be specified in one of the following forms:

• WITH DEFAULT for a default value of an empty string
• DEFAULT NULL for a default value of null

Omission of NOT NULL and DEFAULT from a column-definition, for a column other than an identity
column, is an implicit specification of DEFAULT NULL. For an identity column, it is an implicit
specification of NOT NULL, and Db2 generates default values.

constant
Specifies a constant as the default value for the column. The value of the constant must conform
to the rules for assigning that value to the column.

A character or graphic string constant must be short enough so that its UTF-8 representation
requires no more than 1536. A hexadecimal graphic string constant (GX) cannot be specified.

In addition, the length of the constant value cannot be greater than the INLINE LENGTH attribute
for LOB columns.

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register at the time of an SQL data
change statement or LOAD as the default value for the column. If SESSION_USER is specified, the
data type of the column must be a character string with a length attribute greater than or equal to
8 characters when the value is expressed in CCSID 37. If the data type of the column is an inline
CLOB, the INLINE LENGTH attribute must be greater than or equal to 8 characters when the value
is expressed as CCSID 37.

CURRENT SQLID
Specifies the value of the SQL authorization ID of the process at the time of an insert or update
operation or LOAD as the default value for the column. If CURRENT SQLID is specified, the data
type of the column must be a character string with a length attribute greater than or equal to the
length attribute of the CURRENT SQLID special register. If the data type of the column is an inline
CLOB, the INLINE LENGTH attribute must be greater than or equal to the length attribute of the
CURRENT SQLID special register.

NULL
Specifies null as the default value for the column. If NOT NULL is specified, DEFAULT NULL must
not be specified with the same column-definition.

cast-function-name
The name of the cast function that matches the name of the distinct type for the column. A cast
function can only be specified if the data type of the column is a distinct type.

The schema name of the cast function, whether it is explicitly specified or implicitly resolved
through function resolution, must be the same as the explicitly or implicitly specified schema
name of the distinct type.

Chapter 9. Db2 SQL statements for SQL DI 145

constant
Specifies a constant as the argument. The constant must conform to the rules of a constant
for the source type of the distinct type. The length of the constant cannot be greater than the
INLINE LENGTH attribute for LOB columns.

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register at the time a row is inserted
as the default for the column. The source type of the distinct type of the column must be a
CHAR, VARCHAR, or inline CLOB with a length attribute (inline length attribute for CLOB) that is
greater than or equal to the length attribute of the SESSION_USER special register.

CURRENT SQLID
Specifies the value of the CURRENT SQLID special register at the time a row is inserted as the
default for the column. The source type of the distinct type of the column must be a CHAR,
VARCHAR, or inline CLOB with a length attribute (or inline length attribute for CLOB) that is
greater than or equal to the length attribute of the CURRENT SQLID special register.

NULL
Specifies the NULL value as the argument.

In a given column definition:

• DEFAULT and FIELDPROC cannot both be specified.
• NOT NULL and DEFAULT NULL cannot both be specified.

Table 10 on page 146 summarizes the effect of specifying the various combinations of the NOT NULL
and DEFAULT clauses on the CREATE TABLE statement column-description clause.

Table 10. Effect of specifying combinations of the NOT NULL and DEFAULT clauses

If NOT NULL is: And DEFAULT is: The effect is:

Specified1 Omitted An error occurs if a value is not provided
for the column on an insert or update
operation or LOAD.

Specified without an operand The system defined nonnull default value
is used.

constant The specified constant is used as the
default value.

SESSION_USER The value of the SESSION_USER special
register at the time of an insert or update
operation or LOAD is used as the default
value.

CURRENT SQLID The SQL authorization ID of the process
at the time of an insert or update
operation or LOAD is used as the default
value.

NULL An error occurs during the execution of
CREATE TABLE.

146 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Table 10. Effect of specifying combinations of the NOT NULL and DEFAULT clauses (continued)

If NOT NULL is: And DEFAULT is: The effect is:

Omitted Omitted Equivalent to an implicit specification of
DEFAULT NULL.

Specified without an operand The system defined nonnull default value
is used.

constant The specified constant is used as the
default value.

SESSION_USER The value of the SESSION_USER special
register at execution time is used as the
default value.

CURRENT SQLID The SQL authorization ID of the process
is used as the default value.

NULL Null is used as the default value.

Note: The table does not apply to a column with a ROWID data type or to an identity column.

GENERATED
Specifies that Db2 generates values for the column. GENERATED must be specified if the column is to
be considered one of the following types of columns:

• An identity column
• A row change timestamp column.
• A ROWID column
• A row-begin column
• A row-end column
• A transaction-start-id column
• A generated expression column

GENERATED must only be specified for these types of columns. GENERATED must not be specified
with default-clause in a column definition.

GENERATED must not be specified if the column definition references global variables.

ALWAYS
Specifies that Db2 always generates a value for the column when a row is inserted or updated and
a default value must be generated. ALWAYS is the default and recommended value.

BY DEFAULT
Specifies that Db2 will generate a value for the column when a row is inserted or updated and a
default value must be generated, unless an explicit value is specified.

For a row change timestamp column, Db2 inserts or updates a specified value but does not verify
that the value is unique for the column unless the row change timestamp column has a unique
constraint or a unique index that specifies only the row change timestamp column.

For a ROWID column, Db2 uses a specified value only if it is a valid row ID value that was
previously generated by Db2 and the column has a unique, single-column index. Until this index
is created on the ROWID column, the SQL insert or update operation and the LOAD utility cannot
be used to add rows to the table. If the table space is explicitly created and the value of the
CURRENT RULES special register is 'STD' when the CREATE TABLE statement is processed, or
if the table space is implicitly created, Db2 implicitly creates the index on the ROWID column.
The name of this index is 'I' followed by the first ten characters of the column name followed by
seven randomly generated characters. If the column name is less than ten characters, Db2 adds

Chapter 9. Db2 SQL statements for SQL DI 147

underscore characters to the end of the name until it has ten characters. The implicitly created
index has the COPY NO attribute.

For an identity column, Db2 inserts a specified value but does not verify that it a unique value for
the column unless the identity column has a unique, single-column index.

BY DEFAULT is the recommended value only when you are using data propagation.

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
Specifies that the column is a timestamp column for the table. Db2 generates a value for the
column for each row as the row is inserted, and for any row in which any column is updated.
The value that is generated for a row change timestamp column is a timestamp that corresponds
to the insert or update time of the row. If multiple rows are inserted or updated with a single
statement, the value for the row change timestamp column might be different for each row.

A table can only have one row change timestamp column.

If data-type is specified, it must be TIMESTAMP WITHOUT TIME ZONE with a precision of 6.

A row change timestamp column cannot have a DEFAULT clause. NOT NULL must be specified for
a row change timestamp column.

AS TRANSACTION START ID
Specifies that the value is assigned by Db2 whenever a row is inserted into the table or any
column in the row is updated. Db2 assigns a unique timestamp value per transaction or the null
value. The null value is assigned to the transaction-start-ID column if the column is nullable.
Otherwise, the value is generated using the time-of-day clock during execution of the first data
change statement in the transaction that requires a value to be assigned to a row-begin column
or transaction-start-ID column in the table, or when a row in a system-period temporal table is
deleted. If multiple rows are inserted or updated within a single SQL transaction, the values for
the transaction-start-ID column are the same for all the rows and are unique from the values that
are generated for the column for another transaction.

A transaction-start-ID column is required for a system-period temporal table.

A table can have only one transaction-start-ID column. If a data type is not specified, the column
is defined as TIMESTAMP(12) WITHOUT TIME ZONE. If a data type is specified, it must be
TIMESTAMP(12) WITHOUT TIME ZONE or TIMESTAMP(12) WITH TIME ZONE. If the column is
defined as TIMESTAMP WITH TIME ZONE, the values are stored in UTC, with a time zone of
+00:00. A transaction-start-ID column cannot have a DEFAULT clause. A transaction-start-ID
column is not updatable.

A value for a transaction-start-ID column is composed of a TIMESTAMP(9) value that is unique per
transaction per data sharing member followed by 3 digits that indicate the data sharing member
number.

AS ROW BEGIN
Specifies that a timestamp value is assigned to the column whenever a row
is inserted or any column in the row is updated. If the value of the
SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the time of the
insert or update is null, the value is generated using a reading of the time-of-day clock during
execution of the first data change statement in the unit of work that requires a value to be
assigned to a row-begin column or transaction-start-ID column in a table, or a row in a system-
period temporal table is deleted. Otherwise, the row-begin column is assigned the value of the
SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the time of the
insert or update.

A row-begin column is intended to be used for a system-period temporal table.

A table can have only one column defined as AS ROW BEGIN. If a data type is specified, it must
be TIMESTAMP(12) WITHOUT TIME ZONE or TIMESTAMP(12) WITH TIME ZONE. If the column
is defined as TIMESTAMP(12) WITH TIME ZONE, the values are stored in UTC, with a time zone
of +00:00. If no data type is specified, the column is defined as TIMESTAMP(12) WITHOUT TIME

148 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

ZONE. A column defined as a row-begin column cannot have a DEFAULT clause, and must be
defined as NOT NULL.

A row-begin column is not updatable.

A value for a row-begin column is composed of a TIMESTAMP(9) value that is unique per
transaction per data sharing member followed by 3 digits that indicate the data sharing member
number.

AS ROW END
Specifies that a value for the data type of the column is assigned by Db2 whenever a row is
inserted or any column in the row is updated. The value that is assigned for a TIMESTAMP
WITHOUT TIME ZONE column is the TIMESTAMP value '9999-12-30-00.00.00.000000000000'.
The value that is assigned for a TIMESTAMP WITH TIME ZONE column is the TIMESTAMP value
'9999-12-30-00.00.00.000000000000 +00:00'.

A row-end column is required as the second column of a SYSTEM_TIME period.

A table can have only one row-end column. If a data type is not specified, the column is defined as
TIMESTAMP(12) WITHOUT TIME ZONE. If a data type is specified, it must be TIMESTAMP(12)
WITHOUT TIME ZONE or TIMESTAMP(12) WITH TIME ZONE. If the column is defined as
TIMESTAMP WITH TIME ZONE, the values are stored in UTC, with a time zone of +00:00. A
row-end column cannot have a DEFAULT clause and must be defined as NOT NULL. A row-end
column is not updatable.

as-generated-expression-clause
Specifies that values for the column are generated by Db2. The generated value is assigned to the
column whenever a row is inserted, or any column in the row is updated.
DATA CHANGE OPERATION

Specifies that the database manager generates one of the following values, depending on the
specified expression:
I

Insert operation.
U

Update operation.
D

Delete operation.

A table can have only one DATA CHANGE OPERATION column. The column must be defined as
CHAR(1). The column cannot have a DEFAULT clause and must not be defined as NOT NULL.

The column is a non-deterministic generated expression column.

Do not specify any of the following clauses for the column:

• CCSID 1200
• CCSID 1208
• FIELDPROC

special-register
Specifies the value of the special register. The column is to contain the value of the special
register at the time of the data change statement that assigns the value to the column. If
multiple rows are inserted or updated with a single SQL statement, the value for the column is
the same for all of the rows.

special-register must be one of the following special registers, and the column must use the
required data type.

Chapter 9. Db2 SQL statements for SQL DI 149

Table 11. Possible special register values for non-deterministic generated expression columns

Special register Data type for the column

CURRENT CLIENT_ACCTNG VARCHAR(255)

CURRENT CLIENT_APPLNAME VARCHAR(255)

CURRENT CLIENT_CORR_TOKEN VARCHAR(255)

CURRENT CLIENT_USERID VARCHAR(255)

CURRENT CLIENT_WRKSTNNAME VARCHAR(255)

CURRENT SERVER CHAR(16)

CURRENT SQLID VARCHAR(n) where n ≥ 8

SESSION_USER or USER VARCHAR(128)

The column cannot have a DEFAULT clause and must not be defined as NOT NULL.

The column is a non-deterministic generated expression column.

Do not specify any of the following clauses for the column:

• CCSID 1200
• CCSID 1208
• FIELDPROC

For more information, see Special registers (Db2 SQL).

session-variable
Specifies the value of a built-in session variable. The fully qualified name of the session
variable must be specified. The value of the session variable is obtained from the
GETVARIABLE function at the time of the data change operation that assigns the value to the
column. If multiple rows are changed with a single SQL statement, the value for the column is
the same for all of the rows.

session-variable must be one of the following session variables, and the column must use the
required data type.

Table 12. Possible session variable values for non-deterministic generated expression columns

Session variable Data type for the column

SYSIBM.PACKAGE_NAME VARCHAR(128)

SYSIBM.PACKAGE_SCHEMA VARCHAR(128)

SYSIBM.PACKAGE_VERSION VARCHAR(122)

The column cannot have a DEFAULT clause and must not be defined as NOT NULL.

The column is a non-deterministic generated expression column.

Do not specify any of the following clauses for the column:

• CCSID 1200
• CCSID 1208
• FIELDPROC

For more information, see Built-in session variables (Db2 SQL).

AS IDENTITY
Specifies that the column is an identity column for the table. A table can have only one identity
column. AS IDENTITY can be specified only if the data type for the column is an exact numeric

150 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_specialregistersintro.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_refs2builtinsessionvars.html

type with a scale of zero (SMALLINT, INTEGER, BIGINT, DECIMAL with a scale of zero, or a distinct
type based on one of these types).

An identity column is implicitly NOT NULL. An identity column cannot have a WITH DEFAULT
clause.

Defining a column AS IDENTITY does not necessarily ensure the uniqueness of the values. To
ensure uniqueness of the values, define a unique, single-column index on the identity column.

If IN ACCELERATOR is specified, AS IDENTITY must not be specified.

START WITH numeric-constant
Specifies the first value that is generated for the identity column. The value can be any positive
or negative value that could be assigned to the column without non-zero digits existing to the
right of the decimal point.

If a value is not explicitly specified when the identity column is defined, the default is the
MINVALUE for an ascending identity column and the MAXVALUE for a descending identity
column. This value is not necessarily the value that would be cycled to after reaching the
maximum or minimum value for the identity column. The range used for cycles is defined by
MINVALUE and MAXVALUE. MAXVALUE and MINVALUE do not constrain the numeric-constant
value. That is, the START WITH clause can be used to start the generation of values outside
the range that is used for cycles. However, the next generated value after the specified START
WITH value is MINVALUE for an ascending identity column or MAXVALUE for a descending
identity column.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity column. The value can be
any positive or negative value (including 0) that does not exceed the value of a large integer
constant, and could be assigned to the column without any non-zero digits existing to the right
of the decimal point.

If this value is negative, the values for the identity column descend. If this value is 0 or
positive, the values for the identity column ascend. The default is 1.

MINVALUE or NO MINVALUE
Specifies the minimum value at which a descending identity column either cycles or stops
generating values or an ascending identity column cycles to after reaching the maximum
value.
NO MINVALUE

Specifies that the minimum end point of the range of values for the identity column has not
be set. In such a case, the default value for MINVALUE becomes one of the following:

• For an ascending identity column, the value is the START WITH value or 1 if START WITH
is not specified.

• For a descending identity column, the value is the minimum value of the data type of the
column.

The default is NO MINVALUE.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value that is generated for this identity
column. This value can be any positive or negative value that could be assigned to this
column without non-zero digits existing to the right of the decimal point. The value must
be less than or equal to the maximum value.

MAXVALUE or NO MAXVALUE
Specifies the maximum value at which an ascending identity column either cycles or stops
generating values or a descending identity column cycles to after reaching the minimum value.
NO MAXVALUE

Specifies that the minimum end point of the range of values for the identity column has not
be set. In such a case, the default value for MAXVALUE becomes one of the following:

Chapter 9. Db2 SQL statements for SQL DI 151

• For an ascending identity column, the value is the maximum value of the data type
associated with the column.

• For a descending identity column, the value is the START WITH value -1 if START WITH is
not specified.

The default is NO MAXVALUE.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value that is generated for this
identity column. This value can be any positive or negative value that could be assigned
to this column without non-zero digits existing to the right of the decimal point. The value
must be greater than or equal to the minimum value.

CYCLE or NO CYCLE
Specifies whether this identity column should continue to generate values after reaching
either its maximum or minimum value. The default is NO CYCLE.
NO CYCLE

Specifies that values will not be generated for the identity column after the maximum or
minimum value has been reached.

CYCLE
Specifies that values continue to be generated for the identity column after the maximum
or minimum value has been reached. If this option is used, after an ascending identity
column reaches the maximum value, it generates its minimum value. After a descending
identity column reaches its minimum value, it generates its maximum value. The maximum
and minimum values for the identity column determine the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated by Db2 for an identity column.
However, if a unique index exists on the identity column and a non-unique value is
generated for it, an error occurs.

CACHE integer-constant or NO CACHE
Specifies whether to keep some preallocated values in memory. Preallocating and storing
values in the cache improves the performance of inserting rows into a table. The default is
CACHE 20.

In a non-data sharing environment, if the system is shut down (either normally or through a
system failure), all cached sequence values that have not been used in committed statements
are lost (that is, they will never be used). The value specified for the CACHE option is the
maximum number of sequence values that could be lost when the system is shut down.

In a data sharing environment, you can use the CACHE and NO ORDER options to allow
multiple Db2 members to cache sequence values simultaneously.

NO CACHE
Specifies that values for the identity column and sequences are not preallocated and
stored in the cache, ensuring that values will not be lost in the case of a system failure.
In this case, every request for a new value for the identity column or sequence results in
synchronous I/O.

In a data sharing environment, use NO CACHE if you need to guarantee that the identity
column and sequence values are generated in the order in which they are requested.

CACHE integer-constant
Specifies the maximum number of values of the identity column sequence that Db2 can
preallocate and keep in memory.

During a Db2 shutdown, all cached identity column values and sequence values that are
yet to be assigned will be lost and will not be used. Therefore, the value that is specified
for CACHE also represents the maximum number of identity column values and sequence
values that will be lost during a Db2 shutdown.

The minimum value is 2.

152 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

In a data sharing environment, you can use the CACHE and NO ORDER options to allow
multiple Db2 members to cache sequence values simultaneously.

ORDER or NO ORDER
Specifies whether the identity column values must be generated in order of request. The
default is NO ORDER.

In a non-data sharing environment, there is no guarantee that values are assigned in order
across the entire server unless NO CACHE is also specified. ORDER applies only to a single-
application process.

In a data sharing environment, if ORDER is specified, NO CACHE is implicitly set, even if
CACHE integer-constant is specified.

NO ORDER
Specifies that the values do not need to be generated in order of request.

ORDER
Specifies that the values are generated in order of request. Specifying ORDER might
disable the caching of values. ORDER applies only to a single-application process.

In a data sharing environment, if the CACHE and NO ORDER options are in effect, multiple
caches can be active simultaneously, and the requests for identity values from different Db2
members might not result in the assignment of values in strict numeric order. For example, if
members DB2A and DB2B are using the identity column, and DB2A gets the cache values 1
to 20 and DB2B gets the cache values 21 to 40, the actual order of values assigned would be
1,21,2 if DB2A requested a value first, then DB2B requested, and then DB2A again requested.
Therefore, to guarantee that identity values are generated in strict numeric order among
multiple Db2 members using the same identity column, specify the ORDER option.

FIELDPROC program-name
Designates program-name as the field procedure exit routine for the column. A field procedure can
be specified only for a column with a length attribute that is not greater than 255 bytes. FIELDPROC
can only be specified for columns that are a built-in character string or graphic string data types. The
column must not be one of the following:

• a LOB column
• a security label column
• a row change timestamp column
• a column with the TIMESTAMP WITH TIME ZONE data type
• a Unicode column in an EBCDIC table
• a column in an accelerator-only table

The field procedure encodes and decodes column values: before a value is inserted in the column, it is
passed to the field procedure for encoding. Before a value from the column is used by a program, it is
passed to the field procedure for decoding. A field procedure could be used, for example, to alter the
sorting sequence of values entered in the column.

The field procedure is also invoked during the processing of the CREATE TABLE statement. When so
invoked, the procedure provides Db2 with the column's field description. The field description defines
the data characteristics of the encoded values. By contrast, the information you supply for the column
in the CREATE TABLE statement defines the data characteristics of the decoded values.

For more information, see:

Field procedures (Db2 Administration Guide)
Character and graphic string comparisons (Db2 SQL)

constant
Is a parameter that is passed to the field procedure when it is invoked. A parameter list is optional.
The nth parameter specified in the FIELDPROC clause on CREATE TABLE corresponds to the nth

Chapter 9. Db2 SQL statements for SQL DI 153

https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_fieldprocedure.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_charandgraphiccomparisions.html

parameter of the specified field procedure. The maximum length of the parameter list is 254
bytes, including commas but excluding insignificant blanks and the delimiting parentheses.

If you omit FIELDPROC, the column has no field procedure.

AS SECURITY LABEL
Specifies that the column will contain security label values. This also indicates that the table is
defined with multilevel security with row level granularity. A table can have only one security label
column. A security label column cannot be defined for an accelerator-only table. To define a table
with a security label column, the primary authorization ID of the statement must have a valid security
label, and the RACF SECLABEL class must be active. In addition, the following conditions are also
required:

• The data type of the column must be CHAR(8).
• The subtype of the column must be SBCS.
• The column must be defined with the NOT NULL and WITH DEFAULT clauses.
• The column must be an EBCDIC column.
• The WITH DEFAULT clause must not specify a default value (Db2 determines the default value)
• No field procedures, check constraints, or referential constraints are defined on the column.
• No edit procedure for the table can be defined with row attribute sensitivity.

For information about using multilevel security, see Multilevel security (Managing Security).

IMPLICITLY HIDDEN
Specifies that the column is not visible in the result for SQL statements unless you explicitly refer
to the column by name. For example, assuming that the table T1 includes a column that is defined
with the IMPLICITLY HIDDEN clause, the result of a SELECT * would not include the implicitly hidden
column. However, the result of a SELECT statement that explicitly refers to the name of the implicitly
hidden column would include that column in the result table.

IMPLICITLY HIDDEN must not be specified for all columns of a table. If IN ACCELERATOR is specified,
IMPLICITLY HIDDEN must not be specified.

INLINE LENGTH integer
Specifies the maximum length of the inline portion of a LOB column value. The inline portion is the
portion that is stored in the base table space. INLINE LENGTH cannot be specified if the column is not
a LOB column (or a distinct type that is based on a LOB), if the table is not in a universal table space, or
if the table is an accelerator-only table.

For BLOB and CLOB columns, integer specifies the maximum number of bytes that are stored in the
base table space for the column. integer must be between 0 and 32680 (inclusive) for a BLOB or CLOB
column.

For a DBCLOB column, integer specifies the maximum number of double-byte characters that are
stored in the table space for the column. integer must be between 0 and 16340 (inclusive) for a
DBCLOB column.

If INLINE LENGTH is specified, the value of integer cannot be greater than the maximum length of the
LOB column.

If the INLINE LENGTH clause is not specified, the maximum length of the LOB column depends on the
following conditions:

• If a distinct type is not used or the distinct type that is used has been created without the INLINE
LENGTH attribute, the LOB column will use the value of the LOB INLINE LENGTH parameter on
installation panel DSNTIPD as the default inline length when the value of LOB INLINE LENGTH does
not exceed the maximum length of the LOB column. If the value of LOB INLINE LENGTH exceeds the
maximum length of the LOB column, the maximum length is the inline length of this LOB column.

• If a distinct type that has been created with the INLINE LENGTH attribute is used, the LOB column
inherits the inline length from the distinct type.

154 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/seca/src/tpc/db2z_mls.html

Regardless of how the length is determined, the inline length of the LOB cannot be greater than its
maximum length.

period-definition
PERIOD FOR

Defines a period for the table. begin-column-name must not be the same as end-column-name. The
data type, length, precision, and scale for begin-column-name must be the same as for end-column-
name.

If IN ACCELERATOR is specified, PERIOD must not be specified.

SYSTEM_TIME (begin-column-name,end-column-name)
Defines a system period with the name SYSTEM_TIME. There must not be a column in the table
with the name SYSTEM_TIME. A table can have only one SYSTEM_TIME period. begin-column-
name must be defined as AS ROW BEGIN and end-column-name must be defined as AS ROW END.

BUSINESS_TIME (begin-column-name,end-column-name)
Defines an application period with the name BUSINESS_TIME. There must not be a column in the
table with the name BUSINESS_TIME. A table can have only one BUSINESS_TIME period. begin-
column-name and end-column-name must be defined as DATE or TIMESTAMP(6) WITHOUT TIME
ZONE, and the columns must be defined as NOT NULL. begin-column-name and end-column-name
must not identify a column that is defined with a GENERATED clause.

An implicit check constraint is generated to ensure the relationship of the value of end-column-
name to the value of begin-column-name as follows:

• For an inclusive-exclusive BUSINESS_TIME period, the value of end-column-name is greater
than the value of begin-column-name.

• For an inclusive-inclusive BUSINESS_TIME period, the value of end-column-name is greater than
or equal to the value of begin-column-name.

The name of the implicitly created check constraint is
DB2_GENERATED_CHECK_CONSTRAINT_FOR_BUSINESS_TIME, and that name must not be
defined as the name of an existing check constraint.

begin-column-name
Identifies the column that records the beginning of the period of time in which a row is valid. The
name must identify a column that exists in the table and must not be the same as a column that is
used in the definition of another period for the table. begin-column-name must not be the same as
end-column-name. The data type and precision for begin-column-name must be the same as for
end-column-name.

For a SYSTEM_TIME period, begin-column-name must be defined as AS ROW BEGIN.

For a BUSINESS_TIME period, the column must not be defined with a GENERATED clause.

end-column-name
Identifies the column that records the end of the period of time in which a row is valid. In the
history table that is associated with a system-period temporal table, the history table column that
corresponds to end-column-name in the system-period temporal table is set to reflect the deletion
of the row. The name must identify a column that exists in the table and must not be the same as a
column that is used in the definition of another period for the table.

For a SYSTEM_TIME period, end-column-name must be defined as AS ROW END.

For a BUSINESS_TIME period, the column must not be defined with a GENERATED clause.

EXCLUSIVE
Specifies that the value of the end column is not included in the period. The BUSINESS_TIME
period is defined as inclusive-exclusive.

INCLUSIVE
Specifies that the value of the end column is included in the period. The BUSINESS_TIME period is
defined as inclusive-inclusive.

Chapter 9. Db2 SQL statements for SQL DI 155

unique-constraint
CONSTRAINT constraint-name

Names the constraint. If a constraint name is not specified, a unique constraint name is generated.
If a name is specified, it must be different from the names of any referential, check, primary key, or
unique key constraints previously specified on the table.

PRIMARY KEY(column-name,...)
Defines a primary key composed of the identified columns. The clause must not be specified more
than one time and the same column must not be identified more than one time. The identified
columns must be defined as NOT NULL. Each column-name must be an unqualified name that
identifies a column of the table except for the following types of columns:

• a LOB column
• a ROWID column
• a distinct type column that is based on a LOB or ROWID data type
• an XML column
• a row change timestamp column
• a column in an accelerator-only table

All character and graphic string columns in the key must use the same encoding scheme.

The number of identified columns must not exceed 64. In addition, the sum of the length attributes of
the columns must not be greater than 2000 - n - 2m - 3d, where m is the number of varying-length
columns and d is the number of DECFLOAT columns in the key.

The table is marked as unavailable until its primary index is explicitly created unless the table space
is explicitly created and the CREATE TABLE statement is processed by the schema processor, or
the table space is implicitly created. In that case, Db2 implicitly creates an index to enforce the
uniqueness of the primary key and the table definition is considered complete. (For more information
about implicitly created indexes, see Implicitly created indexes.)

BUSINESS_TIME WITHOUT OVERLAPS can be specified as the last item in the list. If BUSINESS_TIME
WITHOUT OVERLAPS is specified, the list must include at least one column-name or key-expression.
When WITHOUT OVERLAPS is specified, the values for the rest of the specified keys are unique with
respect to the time for the BUSINESS_TIME period. When BUSINESS_TIME WITHOUT OVERLAPS is
specified, the columns of the BUSINESS_TIME period must not be specified as part of the constraint.
The specification of BUSINESS_TIME WITHOUT OVERLAPS adds the following to the constraint:

• The end column of the BUSINESS_TIME period in ascending order
• The begin column of the BUSINESS_TIME period in ascending order

UNIQUE(column-name,…)
Defines a unique key composed of the identified columns. Each column-name must be an unqualified
name that identifies a column of the table. Each identified column must be defined as NOT NULL. The
same column must not be identified more than one time. The following types of columns cannot be
identified:

• a LOB column
• a ROWID column
• a distinct type column that is based on a LOB or ROWID data type
• an XML column
• a row change timestamp column
• a column in an accelerator-only table

The number of identified columns must not exceed 64. In addition, the sum of the length attributes of
the columns must not be greater than 2000 - n - 2m - 3d, where m is the number of varying-length
columns and d is the number of DECFLOAT columns in the key.

All character and graphic string columns in the key must use the same encoding scheme.

156 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

A unique key is a duplicate if it is the same as the primary key or a previously defined unique key. The
specification of a duplicate unique key is ignored with a warning.

The table is marked as unavailable until all the required indexes are explicitly created unless the table
space is explicitly created and the CREATE TABLE statement is processed by the schema processor,
or the table space is implicitly created. In these cases, Db2 implicitly creates the indexes that are
required for the unique keys and the table definition is considered complete. (For more information
about implicitly created indexes, see Implicitly created indexes.)

BUSINESS_TIME WITHOUT OVERLAPS can be specified as the last item in the list. If BUSINESS_TIME
WITHOUT OVERLAPS is specified, the list must include at least one column-name or key-expression.
When WITHOUT OVERLAPS is specified, the values for the rest of the specified keys are unique with
respect to the time for the BUSINESS_TIME period. When BUSINESS_TIME WITHOUT OVERLAPS is
specified, the columns of the BUSINESS_TIME period must not be specified as part of the constraint.
The specification of BUSINESS_TIME WITHOUT OVERLAPS adds the following to the constraint:

• The end column of the BUSINESS_TIME period in ascending order
• The begin column of the BUSINESS_TIME period in ascending order

referential-constraint
CONSTRAINT constraint-name

Names the referential constraint. If a constraint name is not specified, a unique constraint name
is generated. If a name is specified, it must be different from the names of any referential, check,
primary key, or unique key constraints previously specified on the table.

FOREIGN KEY (column-name,...) references-clause
Each specification of the FOREIGN KEY clause defines a referential constraint. The table being created
is the child table for the referential constraint.

The foreign key of the referential constraint is composed of the identified columns, and the columns
of the BUSINESS_TIME period if the clause PERIOD BUSINESS_TIME is specified. Each column-name
must be an unqualified name that identifies a column of the table. The same column must not
be identified more than one time. If PERIOD BUSINESS_TIME is specified, the columns of the
BUSINESS_TIME period must not be specified as part of the constraint.The column cannot be any
of the following types of columns:

• a LOB column
• a ROWID column
• a DECFLOAT column
• an XML column
• a row change timestamp column
• a security label column
• a column in an accelerator-only table

The number of identified columns, and the columns of the BUSINESS_TIME period if the clause
PERIOD BUSINESS_TIME is specified, must not exceed 64, including columns of the BUSINESS_TIME
period if PERIOD BUSINESS_TIME is specified. The sum of the column length attributes must not
exceed 255 minus the number of columns that allow null values. The referential constraint is a
duplicate if the FOREIGN KEY and parent table are the same as the FOREIGN KEY and parent table
of a previously defined referential constraint. The specification of a duplicate referential constraint is
ignored with a warning. An exception is that a duplicate referential constraint is not allowed if the
definition of the constraint includes the PERIOD BUSINESS_TIME clause.

REFERENCES parent-table-name (column-name,...)
The table name that is specified after REFERENCES is the parent table for the referential constraint.
parent-table-name must identify a table that exists at the current server4. The table name must not
identify one of the following tables:

• A catalog table

Chapter 9. Db2 SQL statements for SQL DI 157

• A directory table
• A declared global temporary table
• A history table
• An archive table

In the following discussion, let T2 denote an identified table and let T1 denote the table that you are
creating (T1 and T2 cannot be the same table4).

T2 must have a unique index. The privilege set must include the ALTER or REFERENCES privilege on
the parent table, or the REFERENCES privilege on the columns of the nominated parent key, including
the columns of the BUSINESS_TIME period if the PERIOD BUSINESS_TIME clause is specified..

The parent key of the referential constraint is composed of the identified columns, or columns of
the BUSINESS_TIME period if PERIOD BUSINESS_TIME is specified. Each column-name must be an
unqualified name that identifies a column of T2. The same column must not be identified more than
one time. If PERIOD BUSINESS_TIME is specified, the columns of the BUSINESS_TIME period must
not be specified as part of the constraint. The identified column cannot be any of the following types
of columns:

• a LOB column
• a ROWID column
• a DECFLOAT column
• an XML column
• a row change timestamp column
• a security label column

The list of column names in the parent key must match the list of column names in a primary key or
unique key in the parent table T2. The column names must be specified in the same order as in the
primary key or unique key. If PERIOD BUSINESS_TIME was specified for the primary key or unique key
of the parent table T2, then PERIOD BUSINESS_TIME must also be specified for the foreign key clause
for T1. If any of the referenced columns in T2 has a non-numeric data type, T2 and T1 must use the
same encoding scheme, unless T2 is a Unicode table, and T1 is an EBCDIC table with Unicode key
columns. In that case, for each character or graphic string column in T1, the CCSID must be the same
as the corresponding column in T2.

If a list of column names is not specified, T2 must have a primary key. Omission of a list of column
names is an implicit specification of the columns of the primary key for T2.

The specified foreign key must have the same number of columns as the parent key of T2 and,
except for their names, default values, null attributes and check constraints, the description of the nth
column of the foreign key must be identical to the description of the nth column of the nominated
parent key. If the foreign key includes a column defined as a distinct type, the corresponding column
of the nominated parent key must be the same distinct type. If a column of the foreign key has a
field procedure, the corresponding column of the nominated parent key must have the same field
procedure and an identical field description. A field description is a description of the encoded value
as it is stored in the database for a column that has been defined to have an associated field
procedure.

If PERIOD BUSINESS_TIME is specified in the FOREIGN KEY clause, then PERIOD BUSINESS_TIME
must also be specified in the REFERENCES clause. If PERIOD BUSINESS_TIME is not specified in the
FOREIGN KEY clause, then PERIOD BUSINESS_TIME must also not be specified in the REFERENCES
clause.

If the PERIOD BUSINESS_TIME clause is specified, T2 must not be defined as part of a referential
cycle. T1 and T2 must not be the same table, and T1 must not be a descendent, directly or indirectly,
of another table that is a descendent of T2.

4 This restriction is relaxed when the statement is processed by the schema processor and the other table is
created within the same CREATE SCHEMA.

158 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

The table space that contains T1 must be available to Db2. If T1 is populated, its table space is placed
in a check pending status. A table in a segmented table space is populated if the table is not empty.
A table in a table space that is not segmented is considered populated if the table space has ever
contained any records.

The referential constraint that is specified by a FOREIGN KEY clause defines a relationship in which
T2 is the parent and T1 is the dependent. A description of the referential constraint is recorded in the
catalog.

PERIOD BUSINESS_TIME
Specifies that the BUSINESS_TIME period is considered part of the referential constraint. When
PERIOD BUSINESS_TIME is specified, the values for the rest of the specified columns are unique with
respect to the specified point of time.

PERIOD BUSINESS_TIME can be specified as the last key expression. If PERIOD BUSINESS_TIME is
not the last key expression, an error is returned. If PERIOD BUSINESS_TIME is specified, the columns
of the BUSINESS_TIME period must not be specified as part of the constraint.

When PERIOD BUSINESS_TIME is specified, the following columns are implicitly added to the end of
the constraint:

• The end column of the BUSINESS_TIME period.
• The start column of the BUSINESS_TIME period.

The PERIOD BUSINESS_TIME clause specifies that there must not be a row in the child table for which
the period of time represented by the BUSINESS_TIME period values for that row is not contained
in the BUSINESS_TIME period of a corresponding row in the parent table. Furthermore, it is not
necessary that there be exactly one corresponding row in the parent table where the BUSINESS_TIME
period contains the BUSINESS_TIME period of the child row. As long as the BUSINESS_TIME period
of a row in the child table is contained in the union of the BUSINESS_TIME periods of two or more
contiguous matching rows in the parent table, the referential constraint is considered satisfied.

When the FOREIGN KEY clause specifies the PERIOD BUSINESS_TIME clause, the following
conditions apply:

• The corresponding REFERENCES clause must also specify the PERIOD BUSINESS_TIME clause.
• A unique index with the BUSINESS_TIME WITHOUT OVERLAPS clause must be defined on the table.

The table is marked as unavailable until the index is created.
• A unique index must be defined on the parent table with the BUSINESS_TIME WITHOUT OVERLAPS

clause.

ON DELETE RESTRICT must be, implicitly or explicitly, specified when PERIOD BUSINESS_TIME is
also specified.

ON DELETE
The delete rule of the relationship is determined by the ON DELETE clause. For more on the concepts
used here, see Referential constraints (Introduction to Db2 for z/OS).

SET NULL must not be specified unless some column of the foreign key allows null values. The
default value for the rule depends on the value of the CURRENT RULES special register when the
CREATE TABLE statement is processed. If the value of the register is 'Db2', the delete rule defaults to
RESTRICT; if the value is 'STD', the delete rule defaults to NO ACTION.

The delete rule applies when a row of T2 is the object of a DELETE or propagated delete operation and
that row has dependents in T1. Let p denote such a row of T2. Then:

• If RESTRICT or NO ACTION is specified, an error occurs and no rows are deleted.
• If CASCADE is specified, the delete operation is propagated to the dependents of p in T1.
• If SET NULL is specified, each nullable column of the foreign key of each dependent of p in T1 is set

to null.

Chapter 9. Db2 SQL statements for SQL DI 159

https://www.ibm.com/docs/en/SSEPEK_13.0.0/intro/src/tpc/db2z_integrity.html

Let T3 denote a table identified in another FOREIGN KEY clause (if any) of the CREATE TABLE
statement. The delete rules of the relationships involving T2 and T3 must be the same and must not
be SET NULL if:

• T2 and T3 are the same table.
• T2 is a descendent of T3 and the deletion of rows from T3 cascades to T2.
• T2 and T3 are both descendents of the same table and the deletion of rows from that table

cascades to both T2 and T3.

ENFORCED or NOT ENFORCED
Indicates whether or not the referential constraint is enforced by Db2 during normal operations, such
as insert, update, or delete.
ENFORCED

Specifies that the referential constraint is enforced by the Db2 during normal operations (such as
insert, update, or delete) and that it is guaranteed to be correct. This is the default.

NOT ENFORCED
Specifies that the referential constraint is not enforced by Db2 during normal operations, such
as insert, update, or delete. This option should only be used when the data that is stored in the
table is verified to conform to the constraint by some other method than relying on the database
manager.

ENABLE QUERY OPTIMIZATION
Specifies that the constraint can be used for query optimization. Db2 uses the information in query
optimization using materialized query tables with the assumption that the constraint is correct. This is
the default.

check-constraint
CONSTRAINT constraint-name

Names the check constraint. The constraint name must be different from the names of any referential,
check, primary key, or unique key constraints previously specified on the table.

If constraint-name is not specified, a unique constraint name is derived from the name of the first
column in the check-condition specified in the definition of the check constraint.

CHECK (check-condition)
Defines a check constraint. At any time, the check-condition must be true or unknown for every
row of the table. A check-condition can evaluate to unknown if a column that is an operand of the
predicate is null. A check-condition that evaluates to unknown does not violate the check constraint. A
check-condition is a search condition, with the following restrictions:

• It can refer only to columns of table table-name.
• The columns cannot be the following types of columns:

– LOB columns
– ROWID columns
– DECFLOAT columns
– distinct type columns that are based on LOB, ROWID, and DECFLOAT data types
– XML columns
– security label columns
– columns in an accelerator-only table

• It can be up to 3800 bytes long, not including redundant blanks.
• It must not contain any of the following:

– Subselects
– Built-in or user-defined functions
– CAST specifications

160 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

– Cast functions other than those created when the distinct type was created
– Host variables
– Parameter markers
– Special registers
– Global variables
– Columns that include a field procedure
– CASE expressions
– ROW CHANGE expressions
– Row-value expressions
– DISTINCT predicates
– GX constants (hexadecimal graphic string constants)
– Sequence references
– OLAP specifications

• It must not result in CCSID conversion.
• If a check-condition refers to a LOB column (including a distinct type that is based on a LOB), the

reference must occur within a LIKE predicate.
• The AND and OR logical operators can be used between predicates. The NOT logical operator

cannot be used with the following predicates: NOT BETWEEN, NOT IN, NOT LIKE, or IS NOT NULL.
• The first operand of every predicate must be the column name of a column in the table.
• The second operand in the check-condition must be either a constant or the name of a column in the

table.

– If the second operand of a predicate is a constant, and if the constant is:

- A floating-point number, then the column data type must be floating point.
- A decimal number, then the column data type must be either floating point or decimal.
- An integer number, then the column data type must not be a small integer.
- A small integer number, then the column data type must be small integer.
- A decimal constant, then its precision must not be larger than the precision of the column.

– If the second operand of a predicate is a column, then both columns of the predicate must have:

- The same data type.
- Identical descriptions with the exception that the specification of the NOT NULL and DEFAULT

clauses for the columns can be different, and that string columns with the same data type can
have different length attributes.

LIKE
table-name or view-name

Specifies that the columns of the table have exactly the same name and description as the columns of
the identified table or view.

The name that is specified after LIKE must identify a table or view that exists at the current server or a
declared temporary table. A view cannot contain columns of length 0.

LIKE must not reference an accelerator-only table or be used with the IN ACCELERATOR clause.

The privilege set must implicitly or explicitly include the SELECT privilege on the identified table or
view. If the identified table or view contains a column with a distinct type, the USAGE privilege on
the distinct type is also needed. An identified table must not be an auxiliary table or a clone table.
An identified view must not include a column that is an explicitly defined ROWID column (including a
distinct type that is based on a ROWID), an identity column, or a row change timestamp column.

Chapter 9. Db2 SQL statements for SQL DI 161

The use of LIKE is an implicit definition of n columns, where n is the number of columns in
the identified table (including implicitly hidden columns) or view. A column of the new table that
corresponds to an implicitly hidden column in the existing table will also be defined as implicitly
hidden. The implicit definition includes all attributes of the n columns as they are described in
SYSCOLUMNS with the following exceptions:

• When a table is identified in the LIKE clause and a column in the table has a field procedure, the
corresponding column of the new table has the same field procedure and the field description.
However, the field procedure is not invoked during the execution of the CREATE TABLE statement.
When a view is identified in the LIKE clause, none of the columns of the new table will have a field
procedure. This is true even in the case that a column of a base table underlying the view has a field
procedure defined.

• When a table is identified in the LIKE clause and a column in the table is an identity column, the
corresponding column of the new table inherits only the data type of the identity column; none
of the identity attributes of the column are inherited unless the INCLUDING IDENTITY clause is
specified.

• When a table is identified in the LIKE clause and a column in the table is a security label column, the
corresponding column of the new table inherits only the data type of the security label column; none
of the security label attributes of the column are inherited.

• When a table that contains a ROWID column is identified in the LIKE clause, the corresponding
column of the new table inherits the ROWID column, regardless of whether the column has the
IMPLICITLY HIDDEN attribute.

• When a table is identified in the LIKE clause and the table contains a row change timestamp
column, a transaction-start-ID column, a row-begin column, or a row-end column, the
corresponding column of the new table inherits only the data type of the original column. The new
column is not considered a generated column.

• When a table is identified in the LIKE clause and a column in the table is a generated expression
column, the corresponding column of the new table inherits only the data type of the original
column. The new column is not considered a generated column.

• When a table is identified in the LIKE clause and the table contains an inline LOB column, the
corresponding columns of the new table will inherit the inline attribute if the table is in an universal
table space. Otherwise, the inline attribute of the table identified in the LIKE clause is ignored.

• When a view is identified in the LIKE clause, the default value that is associated with the
corresponding column of the new table depends on the column of the underlying base table for
the view. If the column of the base table does not have a default, the new column does not have a
default. If the column of the base table has a default, the default of the new column is:

– Null if the column of the underlying base table allows nulls.
– The default for the data type of the underlying base table if the underlying base table does not

allow nulls.

The above defaults are chosen regardless of the current default of the base table column. The
existence of an INSTEAD OF trigger does not affect the inheritance of default values.

• When a table that uses table-controlled partitioning is identified in the LIKE clause, the new table
does not inherit partitioning scheme of that table. You can add these partition boundaries by
specifying ALTER TABLE with the ADD PARTITION BY RANGE clause.

• The CCSID of the column is determined by the implicit or explicit CCSID clause. For more
information, see the CCSID clause.

An exception is a Unicode column in an EBCDIC table, which inherits the CCSID of the column in the
existing table.

• When a table is identified in the LIKE clause and the table includes a period definition, the new table
does not inherit the period. definition.

• When the table that is identified in the LIKE clause is a system-period temporal table, the new table
is not a system-period temporal table.

162 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

• When the table that is identified in the LIKE clause has row access controls or column access
controls activated, the new table does not inherit the row access controls or the column access
controls.

The implicit definition does not include any other attributes of the identified table or view. For
example, the new table does not have a primary key or foreign key. The table is created in the table
space implicitly or explicitly specified by the IN clause, and the table has any other optional clause
only if the optional clause is specified.

copy-options
copy-options

Specifies whether identity column attributes, row change timestamp attributes, and column defaults
are inherited from the definition of the source of the result table.
EXCLUDING IDENTITY COLUMN ATTRIBUTES or INCLUDING IDENTITY COLUMN ATTRIBUTES

Specifies whether identity column attributes are inherited from the definition of the source of the
result table.
EXCLUDING IDENTITY COLUMN ATTRIBUTES

Specifies that identity column attributes are not inherited from the definition of the source of
the result table. This is the default.

INCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that, if available, identity column attributes (such as START WITH, INCREMENT BY,
and CACHE values) are inherited from the definition of the source table. These attributes can
be inherited if the element of the corresponding column in the table, view, or fullselect is the
name of a column of a table or the name of a column of a view that directly or indirectly maps
to the column name of a base table with the identity attribute. In other cases, the columns of
the new temporary table do not inherit the identity attributes. The columns of the new table do
not inherit the identity attributes in the following cases:

• The select list of the fullselect includes multiple instances of an identity column name (that
is, selecting the same column more than one time).

• The select list of the fullselect includes multiple identity columns (that is, it involves a join).
• The identity column is included in an expression in the select list.
• The fullselect includes a set operation.

EXCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES or INCLUDING ROW CHANGE
TIMESTAMP COLUMN ATTRIBUTES

Specifies whether row change timestamp column attributes are inherited from the definition of the
source of the result table.
EXCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES

Specifies that row change timestamp column attributes are not inherited from the source
result table definition. This is the default.

INCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES
Specifies that, if available, row change timestamp column attributes are inherited from
the definition of the source table. These attributes can be inherited if the element of the
corresponding column in the table, view, or fullselect is the name of a column of a table or the
name of a column of a view that directly or indirectly maps to the column name of a base table
defined as a row change timestamp column. In other cases, the columns of the new temporary
table do not inherit the row change timestamp column attributes. The columns of the new
table do not inherit the row change timestamp attributes in the following cases:

• The select list of the fullselect includes multiple instances of a row change timestamp
column name (that is, selecting the same column more than one time).

• The select list of the fullselect includes multiple row change timestamp column names (that
is, it involves a join).

• The row change timestamp column is included in an expression in the select list.

Chapter 9. Db2 SQL statements for SQL DI 163

• The fullselect includes a set operation (such as union).

EXCLUDING COLUMN DEFAULTS, INCLUDING COLUMN DEFAULTS, or USING TYPE DEFAULTS
Specifies whether column defaults are inherited from the source result table definition.
EXCLUDING COLUMN DEFAULTS, INCLUDING COLUMN DEFAULTS, and USING TYPE DEFAULTS
must not be specified if the LIKE clause is specified.
EXCLUDING COLUMN DEFAULTS

Specifies that the column defaults are not inherited from the definition of the source table. The
default values of the column of the new table are either null or there are no default values. If
the column can be null, the default is the null value. If the column cannot be null, there is no
default value, and an error occurs if a value is not provided for a column on an insert or update
operation, or LOAD for the new table.

INCLUDING COLUMN DEFAULTS
Specifies that column defaults for each updatable column of the definition of the source
table are inherited. Columns that are not updatable do not have a default defined in the
corresponding column of the created table. The existence of an INSTEAD OF trigger for a view
does not affect the inheritance of default values.

USING TYPE DEFAULTS
Specifies that the default values for the table depend on data type of the columns that result
from fullselect, as follows:
Data type

Default value
Numeric

0
Fixed-length character string

Blanks
Fixed-length graphic string

Blanks
Fixed-length binary string

Hexadecimal zeros
Varying-length string

A string of length 0
Fixed-length char or fixed-length graphic

A string of blanks
Fixed-length binary

Hexadecimal zeros
Date

CURRENT DATE
Time

CURRENT TIME
Timestamp(integer) without time zone

CURRENT TIMESTAMP(p) WITHOUT TIME ZONE where p is the corresponding timestamp
precision.

Timestamp(integer) with time zone
CURRENT TIMESTAMP(p) WITH TIME ZONE where p is the corresponding timestamp
precision.

as-result-table
as-result-table

Specifies that the column definitions of the table are based on the result of the fullselect.

164 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

column-name
Names the columns in the table. If a list of column names is specified, it must consist of as
many names as there are columns in the result table of the fullselect. Each column-name must be
unique and unqualified. If a list of column names is not specified, the columns of the table inherit
the names of the columns of the result table of the fullselect.

A list of column names must be specified if the result table of the fullselect has duplicate column
names or an unnamed column. An unnamed column is a column derived from a constant, function,
expression, or set operation that is not named using the AS clause.

AS (fullselect)
Specifies that the table definition is based on the column definitions from the result of the
fullselect. The use of AS (fullselect) is an implicit definition of n columns for the table, where n
is the number of columns that would result from the fullselect. The columns of the new table
are defined by the columns that result from the fullselect. Every select list element must have a
unique name. The AS clause can be used in the select-clause to provide unique names.

The implicit definition includes the column name, data type, length, precision, scale, and
nullability characteristic of each of the result columns of fullselect. The length of each column
must not be 0. Other column attributes, such as DEFAULT and IDENTITY, are not inherited from
the fullselect. A column of the new table that corresponds to an implicitly hidden column of a base
table referenced in the fullselect is not considered hidden in the new table. The generated column
attributes are not inherited from the fullselect. That is, a new column of the table is not considered
as a generated column. A FIELDPROC is inherited for a column if the corresponding select item of
the fullselect is a column that can be mapped to a column of a base table or a view. The new table
contains a security label column if only one table in the fullselect contains a security label column
and the primary authorization ID of the statement has a valid security label.

The outermost SELECT list of the fullselect must not reference data that is encoded with different
encoding schemes. An exception is that the outermost SELECT list can contain a mixture of
EBCDIC and Unicode columns. In this case, the new table is an EBCDIC table with one or more
Unicode columns.

The implicit definition does not include any other attributes of the identified table or view. For
example, the new table does not have a primary key or foreign key. The table is created in the
table space implicitly or explicitly specified by the IN clause, and the table has any other optional
clause only if the optional clause is specified.

If IN ACCELERATOR is specified, AS (fullselect) cannot be specified.

The owner of the table being created must have the SELECT privilege on the tables or views
referenced in the fullselect, or the privilege set must include SYSADM or DBADM authority for
the database in which the tables of the fullselect reside. Having SELECT privilege means that the
owner has at least one of the following authorizations.

• Ownership of the tables or views referenced in the fullselect
• The SELECT privilege on the tables and views referenced in the fullselect
• SYSADM authority
• DBADM authority for the database in which the tables of the fullselect reside

Additional privileges might be necessary for accessing other objects that are referenced in the
fullselect.

The fullselect must not:

• Result in a column having a ROWID, BLOB, CLOB, DBCLOB, or XML data type or a distinct type
based on these data types.

• Include multiple security label columns.
• Include a PREVIOUS VALUE or a NEXT VALUE expression.
• Refer to host variables or include parameter markers.
• Include an SQL data change statement in the FROM clause.

Chapter 9. Db2 SQL statements for SQL DI 165

• In the outermost SELECT, reference a combination of ASCII and EBCDIC data, or a combination
of ASCII and Unicode data.

• Result in a column that is an array.
• Reference a remote object.
• Reference an accelerator-only table.

WITH NO DATA
Specifies that the query is used only to define the attributes of the new table. The table is not
populated using the results of the fullselect and the REFRESH TABLE statement cannot be used.

If the tables that are specified in the fullselect use row access controls or column access controls,
the row access controls and the column access controls are not defined for the new table.

materialized-query-definition
materialized-query-definition

Specifies that the column definitions of the materialized query table are based on the result of a
fullselect. If materialized-query-table-options are specified, the REFRESH TABLE statement can be
used to populate the table with the results of the fullselect.
column-name

Names the columns in the table. If a list of column names is specified, it must consist of as
many names as there are columns in the result table of the fullselect. Each column-name must be
unique and unqualified. If a list of column names is not specified, the columns of the table inherit
the names of the columns of the result table of the fullselect.

A list of column names must be specified if the result table of the fullselect has duplicate column
names or an unnamed column. An unnamed column is a column derived from a constant, function,
expression, or set operation that is not named using the AS clause of the select list.

AS (fullselect)
Specifies that the table definition is based on the column definitions from the result of the
fullselect. The use of AS (fullselect) is an implicit definition of n columns for the table, where n
is the number of columns that would result from the fullselect. The columns of the new table
are defined by the columns that result from the fullselect. Every select list element must have a
unique name. The AS clause can be used in the select-clause to provide unique names.

The implicit definition includes the column name, data type, length, precision, scale, and
nullability characteristic of each of the result columns of fullselect. The length of each column
must not be a 0. Other column attributes, such as DEFAULT, IDENTITY, and unique constraints,
are not inherited from the fullselect. A column of the new table that corresponds to an implicitly
hidden column of a base table referenced in the fullselect is not considered hidden in the new
table. The generated column attributes are not inherited from the fullselect. That is, the new
column of the materialized query table is not considered as a generated column. A FIELDPROC
is inherited for a column if the corresponding select item of the fullselect is a column that can be
directly mapped to a column of a base table or a view in the FROM clause of the fullselect. The
materialized query table contains a security label column if only one table in the fullselect contains
a security label column and the primary authorization ID of the statement has a valid security
label.

The outermost SELECT list of the fullselect can include result columns that are defined as EBCDIC
columns and result columns that are defined as Unicode columns. In this case, the materialized
query table is an EBCDIC table with one or more Unicode columns.

Authorization for creating materialized query tables
The owner of the table being created must have the SELECT privilege on the tables or views
referenced in the fullselect, or the privilege set must include SYSADM or DBADM authority for
the database in which the tables of the fullselect reside. Having SELECT privilege means that
the owner has at least one of the following authorizations:

• Ownership of the tables or views referenced in the fullselect

166 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

• The SELECT privilege on the tables and views referenced in the fullselect
• SYSADM authority
• DBADM authority for the database in which the tables of the fullselect reside

Additional privileges might be necessary for accessing other objects that are referenced in the
fullselect.

The rules for establishing the qualifiers for names used in the fullselect are the same as the
rules used to establish the qualifiers for table-name.

The following restrictions apply when creating materialized query tables. When fullselect does not
satisfy the restrictions, an error occurs:

• The length of each result column of the fullselect must not be 0.
• The fullselect cannot contain a column of a LOB or XML data type.
• No more than one table in the fullselect can contain a security label column.
• The fullselect must not contain a period specification.
• The outermost SELECT list must not reference data that is encoded with a combination of ASCII

and EBCDIC CCSID sets, or a combination of ASCII and Unicode CCSID sets.
• The object that is specified in the FROM clause of the fullselect cannot be a view with columns

of length 0.
• The fullselect cannot contain a reference to a created global temporary table, a declared global

temporary table, an accelerator-only table, a directory table, or another materialized query
table.

• If IN ACCELERATOR is specified, materialized-query-definition cannot be specified.
• The fullselect cannot directly or indirectly reference a base table that has been activated for the

row or column access control or a base table for which a row permission or a column mask has
been defined.

• The fullselect must not refer to host variables or include parameter markers.
• The fullselect must not refer to global variables.
• The fullselect must not include the following built-in functions: LISTAGG, PERCENTILE_CONT, or

PERCENTILE_DISC.
• The fullselect must not include the following built-in functions: AI_ANALOGY,

AI_COMMONALITY, AI_SEMANTIC_CLUSTER, or AI_SIMILARITY.

Additional restrictions when ENABLE QUERY OPTIMIZATION is in effect:

• The fullselect must be a subselect.
• The subselect cannot include the following:

– A special register
– A scalar fullselect
– A row change timestamp column
– A ROW CHANGE expression
– An expression for which implicit time zone values apply (for example, cast a timestamp to a

timestamp with time zone)
– The RAND built-in function
– The RID built-in function
– A user-defined scalar or table function that is not deterministic or that has external actions
– Any predicates that include a subquery
– A row-value-expression in a predicate
– A join using the INNER JOIN syntax, or an outer join

Chapter 9. Db2 SQL statements for SQL DI 167

– A lateral correlation
– A nested table expression or view that requires temporary materialization
– A direct or indirect reference to a table that uses activated row or column access controls, or

a table for which row or column access controls have been defined.
– A FETCH FIRST clause
– A reference to a global variable
– A collection-derived table (UNNEST)
– A GROUPING SETS or super-groups clause

• If a table with a security label is referenced, the security label column must be referenced in the
outer select list of the subselect.

• If the subselect references a view, the fullselect in the view definition must satisfy all other
restrictions.

refreshable-table-options
Specifies the options for a refreshable materialized query table. The ORDER BY clause is allowed,
but it is used only by REFRESH. The ORDER BY clause can improve the locality of reference of data
in the materialized query table.
DATA INITIALLY DEFERRED

Specifies that the data is not inserted into the materialized query table when it is created. Use
the REFRESH TABLE statement to populate the materialized query table, or use the INSERT
statement to insert data into a user-maintained materialized query table.

REFRESH DEFERRED
Specifies that the data in the table can be refreshed at any time using the REFRESH TABLE
statement. The data in the table only reflects the result of the query as a snapshot at the
time when the REFRESH TABLE statement is processed or when it was last updated for a
user-maintained materialized query table.

MAINTAINED BY SYSTEM or MAINTAINED BY USER
Specifies how the data in the materialized query table is maintained.
MAINTAINED BY SYSTEM

Specifies that the materialized query table is maintained by the system. Only the REFRESH
statement is allowed on the table. This is the default.

MAINTAINED BY USER
Specifies that the materialized query table is maintained by the user, who can use the
LOAD utility, an SQL data change statement, a SELECT from data change statement, or
REFRESH TABLE SQL statements on the table.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether this materialized query table can be used for optimization.
ENABLE QUERY OPTIMIZATION

Specifies that the materialized query table can be used for query optimization. If the
fullselect specified does not satisfy the restrictions for query optimization, an error occurs.

ENABLE QUERY OPTIMIZATION is the default.

The fullselect must not contain a period specification.

DISABLE QUERY OPTIMIZATION
Specifies that the materialized query table cannot be used for query optimization. The
table can still be queried directly.

IN
IN database-name.table-space-name or IN DATABASE database-name

Identifies the database and table space in which the table is created. Both forms are optional.

168 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

If you specify database-name and table-space-name, the database must be described in the catalog
on the current server. The database must not be DSNDB06 or a work file database. The table space
must belong to the database that you specify.

If you specify database-name but not table-space-name, a table space is implicitly created in
database-name. The name of the table space is derived from the name of the table. The buffer pool
that is used is the default buffer pool for user data that is specified on installation panel DSNTIP1.

If you specify a table space but not a database, the database that contains the table space is used.

If you do not specify the IN clause, a database is implicitly created with the name DSNxxxxx, where
xxxxx is a five-digit number. A table space is also implicitly created.

If you specify table-space-name, the table space cannot be one of the following table spaces:

• A table space that was created implicitly
• A partitioned table space that already contains a table
• A LOB table space
• An XML table space
• A non-UTS table space

If you specify a partitioned table space, you cannot load or use the table until its partitioned scheme is
created.

You cannot specify a name in the format of an implicitly created database name, which is DSNxxxxx,
where xxxxx is a five-digit number..

If you specify table-space-name, but you do not specify database-name, or you do not specify the
IN clause, users who have the authority to create table spaces or tables in database DSNDB04 have
authority to create tables and table spaces in the implicitly created database.

If you do not specify table-space-name, the privilege set must have: SYSADM or SYSCTRL authority;
DBADM, DBCTRL, or DBMAINT authority for the database; or the CREATETS privilege for the database.
You must also have the USE privilege for the default buffer pool in the database and default storage
group.

For implicitly created table spaces, Db2 selects the buffer pool as described in Implicitly defined table
spaces (Db2 Administration Guide).

IN ACCELERATOR accelerator-name
Specifies that the table is an accelerator-only table. accelerator-name identifies the accelerator in
which the table will be defined.

You can specify an alias (logical name) for accelerator-name. For more information, see Using an alias
for an accelerator (Db2 Performance). To create a high availability accelerator-only table, specify a
location alias that represents multiple accelerators to define the table in all accelerators that are
associated with the location alias.

If you specify an accelerator-only table, the table and the data of the table exists only in the
accelerator, not in Db2. However, the table and column definition of the accelerator-only table are
contained in Db2 catalog tables.

partitioning-clause block
PARTITION BY SIZE or PARTITION BY RANGE

Specifies the partitioning scheme for the table. For more information, see Partitioning data in Db2
tables (Db2 Administration Guide).
PARTITION BY SIZE

Specifies that the table is created in a partition-by-growth table space. If the IN clause specifies
a table-space-name, it must identify a partition-by-growth table space. If the IN clause does not
specify an existing table space name and the PARTITION BY clause is not specified, PARTITION
BY SIZE is the default.

Chapter 9. Db2 SQL statements for SQL DI 169

https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_implicitlydefinedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_implicitlydefinedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/idaa/src/tpc/db2z_acceleratoralias.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/idaa/src/tpc/db2z_acceleratoralias.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_partitiontabledata.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_partitiontabledata.html

If IN ACCELERATOR is specified, PARTITION BY SIZE must not be specified.

EVERY integer G
Specifies that the table is to be partitioned by growth, every integer G bytes. integer must not
be greater than 256. If the IN clause identifies a table space, integer must be the same as the
DSSIZE value that is in effect for the table space that will contain the table.

integer can be separated from G by 0 or more spaces.

PARTITION BY RANGE
Specifies the range partitioning scheme for the table (the columns that are used to partition the
data). When this clause is specified, the table space is complete, and it is not necessary to create
a partitioned index on the table. If this clause is used, the ENDING AT clause cannot be used on a
subsequent CREATE INDEX statement for this table.

PARTITION BY RANGE must not be specified for a table that is created in a partition-by-growth
table space. If IN ACCELERATOR is specified, PARTITION BY RANGE must not be specified.

partition-expression
Specifies the key data over which the range is defined to determine the target data partition of
the data.
column-name

Specifies the columns of the key. Each column-name must identify a column of the table.
Do not specify more than 64 columns or the same column more than one time. The sum of
length attributes of the columns must not be greater than 255 - n, where n is the number
of columns that can contain null values. Do not specify a qualified column name.

A timestamp with time zone column (or a column with a distinct type that is based on
the timestamp with time zone data type) can only be specified as the last column in a
partitioning key.

Do not specify a column for column-name if the column is defined as follows:

• a LOB column (or a column with a distinct type that is based on a LOB data type)
• a BINARY column (or a column with a distinct type that is based on a BINARY data type)
• a VARBINARY column (or a column with a distinct type that is based on a VARBINARY

data type)
• a DECFLOAT column (or a column with a distinct type that is based on a DECFLOAT data

type)
• an XML column

All character and graphic string columns in the key must be defined with the same
encoding scheme.

NULLS LAST
Specifies that null values are treated as positive infinity for purposes of comparison.

ASC
Puts the entries in ascending order by the column. ASC is the default.

DESC
Puts the entries in descending order by the column.

partition-element
Specifies ranges for a data partitioning key and the table space where rows of the table in the
range will be stored.
PARTITION integer

integer is the physical number of a partition in the table space. A PARTITION clause must
be specified for every partition of the table space. In this context, highest means highest
in the sorting sequences of the columns. In a column defined as ascending (ASC), highest
and lowest have their usual meanings. In a column defined as descending (DESC), the
lowest actual value is highest in the sorting sequence.

170 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

ENDING AT (constant, MAXVALUE, or MINVALUE, ...)
Defines the limit key for a partition boundary. Specify at least one value (constant,
MAXVALUE, or MINVALUE) after ENDING AT in each PARTITION clause. You can use as
many values as there are columns in the key. The concatenation of all values is the highest
value of the key for ascending and the lowest for descending.
constant

Specifies a constant value with a data type that must conform to the rules for assigning
that value to the column. If a string constant is longer or shorter than required by the
length attribute of its column, the constant is either truncated or padded on the right
to the required length. If the column is ascending, the padding character is X'FF'. If
the column is descending, the padding character is X'00'. The precision and scale of a
decimal constant must not be greater than the precision and scale of its corresponding
column. A hexadecimal string constant (GX) cannot be specified.

MAXVALUE
Specifies a value greater than the maximum value for the limit key of a partition
boundary (that is, all X'FF' regardless of whether the column is ascending or
descending). If all of the columns in the partitioning key are ascending, a constant
or the MINVALUE clause cannot be specified following MAXVALUE. After MAXVALUE is
specified, all subsequent columns must be MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for the limit key of a
partition boundary (that is, all X'00' regardless of whether the column is ascending
or descending). If all of the columns in the partitioning key are descending, a constant
or the MAXVALUE clause cannot be specified following MINVALUE. After MINVALUE is
specified, all subsequent columns must be MINVALUE.

The key values are subject to the following rules:

• The first value corresponds to the first column of the key, the second value to the second
column, and so on. Using fewer values than there are columns in the key has the same
effect as using the highest or lowest values for the omitted columns, depending on
whether they are ascending or descending.

• The highest value of the key in any partition must be lower than the highest value of the
key in the next partition for ascending cases.

• The values specified for the last partition are enforced. The value specified for the last
partition is the highest value of the key that can be placed in the table. Any key values
greater than the value specified for the last partition are out of range.

• If the concatenation of all the values exceeds 255 bytes, only the first 255 bytes are
considered.

• If a key includes a ROWID column or a column with a distinct type that is based on
a ROWID data type, 17 bytes of the constant that is specified for the corresponding
ROWID column are considered.

• If a null value is specified for the partitioning key and the key is ascending, an error is
returned unless MAXVALUE is specified. If the key is descending, an error is returned
unless MINVALUE is specified.

partition-hash-space
See partition-hash-space.

INCLUSIVE
Specifies that the specified range values are included in the data partition.

organization-clause
See organization-clause.

Chapter 9. Db2 SQL statements for SQL DI 171

Other options
EDITPROC program-name

Identifies the user-written code that implements the edit procedure for the table. The edit procedure
must exist at the current server. The procedure is invoked during the execution of an SQL data change
statement or LOAD and all row retrieval operations on the table.

An edit routine receives an entire table row, and can transform that row in any way. Also, it receives a
transformed row and must change the row back to its original form.

For information on writing an EDITPROC exit routine, see Edit procedures (Db2 Administration Guide).

WITH ROW ATTRIBUTES
Specifies that the edit procedure parameter list contains an address for the description of a row.
WITH ROW ATTRIBUTES must not be specified for a table with an identity, LOB, XML, ROWID, or
SECURITY LABEL column. WITH ROW ATTRIBUTES is the default. When WITH ROW ATTRIBUTES
is specified, the column names in the table must not be longer than 18 EBCDIC SBCS characters in
length.

WITHOUT ROW ATTRIBUTES
Specifies that the description of the row is not provided to the edit procedure. On entry to the edit
procedure, the address for the row description in the parameter list contains a value of zero.

VALIDPROC program-name
Designates program-name as the validation exit routine for the table. Writing a validation exit routine
is described in Validation routines (Db2 Administration Guide).

The validation routine can inhibit a load, insert, update, or delete operation on any row of the table:
before the operation takes place, the procedure is passed the row. The values that are represented
by any LOB or XML columns in the table are not passed to the validation routine. On an insert or
update operation, if the table has a security label column and the user does not have write-down
privilege, the user's security label value is passed to the validation routine as the value of the column.
After examining the row, the procedure returns a value that indicates whether the operation should
proceed. A typical use is to impose restrictions on the values that can appear in various columns. If IN
ACCELERATOR is specified, VALIDPROC must not be specified.

A table can have only one validation procedure at a time. In an ALTER TABLE statement, you can
designate a replacement procedure or discontinue the use of a validation procedure.

If you omit VALIDPROC, the table has no validation routine.

AUDIT
Identifies the types of access to this table that causes auditing to be performed. For information
about audit trace classes, see Types of Db2 traces (Db2 Performance) and -START TRACE (Db2) (Db2
Commands).

If a materialized query table is refreshed with the REFRESH TABLE statement, the auditing also
occurs during the REFRESH TABLE operation. AUDIT works as usual for LOAD and SQL data change
operations on a user-maintained materialized query table.

NONE
Specifies that no auditing is to be done when this table is accessed. This is the default.

CHANGES
Specifies that auditing is to be done when the table is accessed during the first insert, update, or
delete operation. However, the auditing is done only if the appropriate audit trace class is active.

ALL
Specifies that auditing is to be done when the table is accessed during the first operation of
any kind performed by a utility or application process. However, the auditing is done only if the
appropriate audit trace class is active and the access is not performed with COPY, RECOVER,
REPAIR, LOAD with a dummy input data set, or any stand-alone utility.

172 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_editroutine.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_validationroutine.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/perf/src/tpc/db2z_tracetypes.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/comref/src/tpc/db2z_cmd_starttrace.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/comref/src/tpc/db2z_cmd_starttrace.html

If the table is subsequently altered with an ALTER TABLE statement, the ALTER TABLE statement is
audited for successful and failed attempts in the following cases, if the appropriate audit trace class is
active:

• AUDIT attribute is changed to NONE, CHANGES, or ALL on an audited or non-audited table.
• AUDIT CHANGES or AUDIT ALL is in effect.

If IN ACCELERATOR is specified, AUDIT NONE, CHANGES, and ALL must not be specified.

OBID integer
Identifies the OBID to be used for this table. An OBID is the identifier for an object's internal
descriptor. The integer must be greater than 1 and must not identify an existing or previously used
OBID of the database. If you omit OBID, Db2 generates a value.

The following statement retrieves the value of OBID:

 SELECT OBID
 FROM SYSIBM.SYSTABLES
 WHERE CREATOR = 'ccc' AND NAME = 'nnn';

Here, nnn is the table name and ccc is the creator of the table.

DATA CAPTURE
Specifies whether the logging of the following actions on the table includes additional information to
support data replication processing:

• SQL data change operations
• Adding columns (using the ADD COLUMN clause)
• Changing columns (using the ALTER COLUMN clause)

For more information, see Altering a table to capture changed data (Db2 Administration Guide).

If a materialized query table is refreshed with the REFRESH TABLE statement, the logging of the
augmented information occurs during the REFRESH TABLE operation. DATA CAPTURE works as usual
for insert, update, and delete operations on a user-maintained materialized query table.

A table with data that is stored only in an accelerator-only table cannot be defined with this attribute.

NONE
Do not record additional information to the log. This is the default.

CHANGES
Write additional data about SQL updates to the log. Information about the values that are
represented by any LOB or XML columns is not available. Do not specify DATA CAPTURE CHANGES
for tables that reside in table spaces that specify NOT LOGGED.

WITH RESTRICT ON DROP
Indicates that the table can be dropped only by using REPAIR DBD DROP. In addition, the database
and table space that contain the table can be dropped only by using REPAIR DBD DROP.

The WITH RESTRICT ON DROP clause can be removed using the ALTER TABLE statement with the
DROP RESTRICT ON DROP clause. After the WITH RESTRICT ON DROP clause is removed from the
definition of the table, the table, the database, and the containing table space can be dropped using
the DROP statement.

CCSID encoding-scheme
Specifies the encoding scheme for string data stored in the table. If the IN clause is specified with a
table space, the value must agree with the encoding scheme that is already in use for the specified
table space. The specific CCSIDs for SBCS, mixed, and graphic data are determined by the table space
or database specified in the IN clause. If the IN clause is not specified, the value specified is used
for the table being created as well as for the table space that Db2 implicitly creates. The specific
CCSIDs for SBCS, mixed, and graphic data are determined by the default CCSIDs for the server for the
specified encoding scheme. The valid values are ASCII, EBCDIC, and UNICODE.

Chapter 9. Db2 SQL statements for SQL DI 173

https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_altertablefordatacapture.html

If IN ACCELERATOR is specified, a Unicode column cannot be defined in an EBCDIC table and a
column cannot be defined as ASCII mixed or graphic. IBM Db2 Analytics Accelerator for z/OS: Stored
Procedures Reference contains a complete description of encoding schemes allowed in an accelerator.

If the CCSID clause is not specified, the encoding scheme for the table depends on the IN clause:

• If the IN clause is specified, the encoding scheme already in use for the table space or database
specified in the IN clause is used.

• If the IN clause is not specified, the encoding scheme of the new table is the same as the scheme
for the table that is specified in the LIKE clause.

If CCSID EBCDIC is explicitly or implicitly specified, and any columns in the table are defined with
the CCSID 1208 or CCSID 1200 clause, CCSID EBCDIC represents the default encoding scheme for
character or graphic columns that do not include the CCSID 1208 or CCSID 1200 clause.

If the CCSID clause is specified for a materialized query table:

• If the encoding scheme in the CCSID clause is ASCII or Unicode, or if the encoding scheme in the
CCSID clause is EBCDIC and the result table of the fullselect contains no Unicode columns, the
encoding scheme specified in the clause must be the same as the scheme for the result CCSID of
the fullselect. The CCSID must also be the same as the CCSID of the table space for the table being
created.

• If the encoding scheme in the CCSID clause is EBCDIC, and the result table of the fullselect contains
Unicode columns, the encoding scheme of the table space for the table must be EBCDIC.

VOLATILE or NOT VOLATILE
Specifies how Db2 chooses to access the table.
VOLATILE

Specifies that Db2 uses index access to the table whenever possible for SQL operations. However,
be aware that list prefetch and certain other optimization techniques might be disabled when
VOLATILE is used.

One instance in which you might want to use VOLATILE is for a table whose size can vary greatly.
If statistics are taken when the table is empty or has only a few rows, those statistics might not be
appropriate when the table has many rows.

Another instance in which you might want to use VOLATILE is for a table that contains groups of
rows, as defined by the primary key on the table. All but the last column of the primary key of such
a table indicate the group to which a given row belongs. The last column of the primary key is the
sequence number indicating the order in which the rows are to be read from the group. VOLATILE
maximizes concurrency of operations on rows within each group, since rows are usually accessed
in the same order for each operation. If IN ACCELERATOR is specified, VOLATILE must not be
specified. For this usage, the primary index must be the only index that is defined on the table, and
list prefetch is disabled to ensure the sequence in which the rows are locked.

NOT VOLATILE
Specifies that SQL access to this table should be based on the current statistics. NOT VOLATILE is
the default.

CARDINALITY
An optional keyword that currently has no effect, but that is provided for Db2 family compatibility.

LOGGED or NOT LOGGED
Specifies whether changes that are made to the data in an implicitly created table space are recorded
in the log. This parameter applies to an implicitly created table space and to all indexes of this table.
XML table spaces and indexes associated with the XML table spaces inherit the logging attribute
from the associated base table space. Auxiliary indexes also inherit the logging attribute from the
associated base table space.

Do not specify LOGGED or NOT LOGGED if the table space name is specified by using the IN table-
space-name clause or if the IN ACCELERATOR clause is specified.

174 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

LOGGED
Specifies that changes that are made to the data in an implicitly created table space are recorded
in the log.

LOGGED is the default.

NOT LOGGED
Specifies that changes that are made to data in an implicitly created table space are not recorded
in the log.

NOT LOGGED prevents undo and redo information from being recorded in the log. However,
control information for an implicitly created table space will continue to be recorded in the log.

COMPRESS YES or COMPRESS NO
Specifies whether data compression applies to the rows of any implicitly created table space. The
IMPTSCMP subsystem parameter specifies the default value. See USE DATA COMPRESSION field
(IMPTSCMP subsystem parameter) (Db2 Installation and Migration).

If the IN table-space-name clause or the IN ACCELERATOR clause is specified, COMPRESS must not
be specified.

YES
Specifies that data compression applies to the rows of the implicitly created table space. The rows
are not compressed until the LOAD or REORG utility is run on the table in the implicitly created
table space, or the total row data size reaches the compression data threshold while an insert
operation is performed.

If a keyword for the compression algorithm is not specified, the default compression algorithm is
used. The data compression algorithm is determined by the TS_COMPRESSION_TYPE subsystem
parameter.

If a keyword for the compression algorithm is specified:

• LOB table spaces that are implicitly created for LOB columns in this table are defined as if
COMPRESS YES is specified without a compression algorithm. LOB compression is managed by
zEnterprise data compression (zEDC) hardware if available.

• XML table spaces that are implicitly created for XML columns in this table inherit the COMPRESS
attribute.

FIXEDLENGTH
Specified the fixed-length data compression algorithm.

HUFFMAN
Specifies the Huffman data compression algorithm. See Using Huffman compression to
compress your data (Db2 Performance) for requirements to enable Huffman compression.

NO
Specifies that data compression is not used for the rows of the implicitly created table space.
Inserted and updated rows are not subject to data compression.

APPEND NO or APPEND YES
Specifies whether append processing is used for the table. The APPEND clause must not be specified
for a table that is created in a work file table space.
NO

Specifies that append processing is not used for the table. For insert and LOAD operations, Db2
will attempt to place data rows in a well clustered manner with respect to the value in the row's
cluster key column.

NO is the default.

YES
Specifies that data rows are to be placed into the table by disregarding the clustering during insert
and LOAD operations.

Chapter 9. Db2 SQL statements for SQL DI 175

https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_imptscmp.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_imptscmp.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/perf/src/tpc/db2z_compressdatahuffman.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/perf/src/tpc/db2z_compressdatahuffman.html

DSSIZE integer G
Specifies the maximum size for an implicitly created partition-by-growth or partition-by-range table
space. This value is only applied to an implicitly created base table space, not to any associated
implicitly created XML or LOB table spaces.

Do not specify DSSIZE integer G if any of the following conditions are true:

• The table space name is specified by using the IN table-space-name clause.
• The PARTITION BY clause includes the EVERY integer-constant G clause.
• The statement contains an accelerator-only table.

The IMPDSSIZE subsystem parameter specifies the default value. See IMPDSSIZE in macro
DSN6SYSP (Db2 Installation and Migration).

For more detailed information about the DSSIZE clause, refer to CREATE TABLESPACE (Db2 SQL).

integer can be separated from G by 0 or more spaces.

BUFFERPOOL bpname
Specifies the buffer pool be use for an implicitly created table space and determines the page size of
the table space. For 4KB, 8KB, 16KB and 32KB page buffer pools, the page sizes are 4 KB, 8 KB, 16
KB, and 32 KB, respectively.

bpname must identify an activated buffer pool. The privilege set must include SYSADM authority,
SYSCTRL authority, or the USE privilege on the buffer pool.

Do not specify BUFFERPOOL bpname if the table space name is specified by using the IN table-space-
name clause or the IN ACCELERATOR clause is specified.

If you do not specify the BUFFERPOOL clause, Db2 selects the buffer pool as described in Implicitly
defined table spaces (Db2 Administration Guide).

Refer to Naming conventions (Db2 SQL) for more information about bpname.

MEMBER CLUSTER
Specifies that data that is inserted by an insert operation is not clustered by the implicit clustering
index (the first index) or the explicit clustering index. Db2 places the data in an implicitly created table
space based on available space.

Do not specify MEMBER CLUSTER if the table space name is specified by using the IN table-space-
name clause or if IN ACCELERATOR clause is specified.

TRACKMOD YES or TRACKMOD NO
Specifies whether Db2 tracks modified pages in the space map pages of an implicitly created table
space. The IMPTKMOD subsystem parameter specifies the default value. See IMPTKMOD in macro
DSN6SYSP (Db2 Installation and Migration).

Do not specify TRACKMOD YES or TRACKMOD NO if the table space name is specified by using the IN
table-space-name clause or if using the IN ACCELERATOR clause.

TRACKMOD YES
Changed pages are tracked in the space map pages to help improve performance of incremental
image copies.

TRACKMOD NO
Changed pages are not tracked in the space map pages. Db2 uses the LRSN value in each page to
determine whether a page has been changed.

PAGENUM
Identifies the type of page numbering that is used when you create a partition-by-range table
space. This value is applied to an implicitly created base table space. The PAGESET_PAGENUM
subsystem parameter specifies the default PAGENUM value. See PAGE SET PAGE NUMBERING field
(PAGESET_PAGENUM subsystem parameter) (Db2 Installation and Migration).

176 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_impdssize.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_impdssize.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_implicitlydefinedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_implicitlydefinedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_imptkmod.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_imptkmod.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html

RELATIVE
Indicates that internal page numbering is kept as a 4-byte value without a partition number. The
page number is a relative page from the start of the partition, and the partition number is kept only
in the header page.

ABSOLUTE
Indicates that internal page numbering is kept as a 4-byte value that includes a partition number
and page number. Distinguishing which bits represent the partition and which represent the page
number requires a shift value. The shift value is LOG base 2 (DSSIZE/(page size)).

Notes for CREATE TABLE
Owner privileges

The owner of the table has all table privileges (see GRANT (table or view privileges) (Db2 SQL)) with
the ability to grant these privileges to others. For more information about ownership of the object, see
Authorization, privileges, permissions, masks, and object ownership (Db2 SQL).

Table design
Designing tables is part of the process of database design. For more information, see Db2 database
design (Introduction to Db2 for z/OS) .

Considerations for column names longer than 30 bytes
If a length of a new column name is greater than 30 Unicode bytes, truncation occurs in the SQLNAME
field of the SQLDA when the column is described in an application. A column name in UTF8, and its
equivalent in the system EBCDIC CCSID, must be 128 bytes or less. For more information about long
column names, see Column names longer than 30 bytes (Db2 SQL).

If the IN DATABASE clause is specified without a table space name
If you specify IN DATABASE (either explicitly or by default), but do not specify a table space, a table
space is implicitly created in the specified database. The name of the table space is derived from the
table name. The qualifier of the table space is the same as the qualifier of the table. The owner of the
table space is SYSIBM.

For more information, see Implicitly defined table spaces (Db2 Administration Guide).

If the IN clause is not specified
If you do not specify the IN clause, the Db2 implicitly creates a table space as described previously,
but the Db2 also chooses a database. Db2 creates a name in the form of DSNnnnnn, where nnnnn is
between 00001 and the maximum value of the sequence SYSIBM.DSNSEQ_IMPLICITDB, which has a
default of 10000, inclusive. The owner of the database is SYSIBM.

• If DSNnnnnn already exists and is an implicitly created database, the Db2 subsystem creates the
table in that database.

• If DSNnnnnn does not exist, the Db2 subsystem creates a database with the name DSNnnnnn.

If DSNnnnnn cannot be created because of a deadlock, timeout, or resource unavailable condition,
the Db2 subsystem increments nnnnn by one and tries the resultant database name. If the Db2
subsystem reaches the maximum value of the sequence SYSIBM.DSNSEQ_IMPLICITDB, and the
corresponding database name is not available, the Db2 subsystem sets nnnnn to 00001 and tries the
resultant database name. If the Db2 subsystem attempts to create the table a number of times that is
equal to the maximum value of the sequence SYSIBM.DSNSEQ_IMPLICITDB without success, an error
occurs.

System objects for implicitly created table spaces
If a table space is implicitly created, all of the following required system objects are also implicitly
created:

• The enforcing primary key index
• The enforcing unique key index
• Any necessary LOB table spaces, auxiliary table spaces, and auxiliary indexes
• The ROWID index (if the ROWID column is defined as GENERATED BY DEFAULT)

Chapter 9. Db2 SQL statements for SQL DI 177

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_granttableorviewprivileges.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authprivilegesandobjownership.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/intro/src/tpc/db2z_implementationofdatabasedesign.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/intro/src/tpc/db2z_implementationofdatabasedesign.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_longcolumnnames.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_implicitlydefinedtablespaces.html

When Db2 implicitly creates a base table space for a table with LOB columns that can have inline
LOBs, Db2 creates the base table space in reordered row format, regardless of the value of the RRF
subsystem parameter.

The attributes of an implicitly created table space can be changed by using the ALTER TABLESPACE
(Db2 SQL) statement.

Creating a table in a segmented (non-UTS) table space (deprecated)
A table cannot be created in a segmented table space if any of the following conditions are true:

• The effective application compatibility of the CREATE TABLE statement is V12R1M504 or higher.
• The available space in the data set is less than the segment size specified for the table space, and
• The data set cannot be extended.

Deprecated function: Non-UTS table spaces for base tables are deprecated. CREATE TABLESPACE
statements that run at application compatibility level V12R1M504 or higher always create a partition-
by-growth or partition-by-range table space, and CREATE TABLE statements that specify a non-UTS
table space (including existing multi-table segmented table spaces) return an error. However, you can
use a lower application compatibility level to create table spaces of the deprecated types if needed,
such as for recovery situations. For instructions, see Creating non-UTS table spaces (deprecated)
(Db2 Administration Guide).

Creating a table with graphic and mixed data columns
You cannot create an ASCII or EBCDIC table with a GRAPHIC, VARGRAPHIC, or DBCLOB column or
a CHAR, VARCHAR, or CLOB column defined as FOR MIXED DATA when the setting for installation
option MIXED DATA is NO, unless the table is EBCDIC, and the columns are Unicode.

Creating a table with distinct type columns based on LOB, ROWID, and DECFLOAT columns
Because a distinct type is subject to the same restrictions as its source type, all the syntactic rules
that apply to LOB columns (CLOB, DBCLOB, and BLOB), ROWID columns, and DECFLOAT columns
apply to distinct type columns that are based on LOBs, row IDs, and DECFLOATs. For example, a table
cannot have both an explicitly defined ROWID column and a column with a distinct type that is based
on a row ID.

Tables with inline LOB columns
If the page size is exceeded for a table in a universal table space, Db2 recalculates the record size
using 0 as the inline length for LOB columns that do not specify the INLINE LENGTH clause. A record
size of 0 is used in the recalculation even if the LOB_INLINE_LENGTH subsystem parameter value is
greater than 0. After the recalculation, if the page size is still exceeded, the CREATE TABLE statement
returns an error.

You cannot create a table with an inline LOB column in a table space that has basic row format.

Creating a table with LOB columns
A table with a LOB column (CLOB, DBCLOB, or BLOB) must also have a ROWID column, one or more
auxiliary tables, and indexes on the auxiliary tables. In many situations, Db2 can implicitly create the
required objects for you. For more information, see “ROWID columns for tables with LOB columns” on
page 178 and “Auxiliary tables and indexes for LOB columns” on page 179.

ROWID columns for tables with LOB columns

When you create the table without explicitly defining a ROWID column, Db2 implicitly generates
a ROWID column for you. This column is called an implicitly hidden ROWID column. The implicitly
hidden ROWID column has the following attributes:

• Db2 creates the column with a name of DB2_GENERATED_ROWID_FOR_LOBSnn.

Db2 appends nn only if the column name already exists in the table, replacing nn with 00 and
incrementing by 1 until the name is unique within the row.

• Defines the column as GENERATED ALWAYS.
• Appends the implicitly hidden ROWID column to the end of the row after all the other explicitly
defined columns.

178 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html

For example, assume that Db2 generated an implicitly hidden ROWID column named
DB2_GENERATED_ROWID_FOR_LOBS for table MYTABLE. The result table for a SELECT * statement
for table MYTABLE would not contain that ROWID column. However, the result table for SELECT COL1,
DB2_GENERATED_ROWID_FOR_LOBS would include the implicitly hidden ROWID column.

If the MIXED DATA subsystem parameter is set to YES, and a lowercase or mixed case hexadecimal
constant is specified as the default value for a LOB column, the CREATE TABLE statement returns an
error.

Auxiliary tables and indexes for LOB columns

The definition of a table that contains a LOB column is marked incomplete until an auxiliary table is
created in a LOB table space for each LOB column in the base table and an index is created on each
auxiliary table. The auxiliary table stores the actual values of a LOB column. For each LOB column in a
partitioned table space, one auxiliary table and related index must be defined for each partition of the
base table space.

Db2 sometimes implicitly creates the LOB table space, auxiliary table, and index on the auxiliary
table for each LOB column in a table or partition. For more information, see LOB table space implicit
creation (Db2 Administration Guide).

If Db2 does not implicitly create the LOB table spaces, auxiliary tables, and indexes on the auxiliary
tables, you must create these objects by issuing CREATE TABLESPACE, CREATE AUXILIARY TABLE,
and CREATE INDEX statements.

Creating a table with an XML column
If the table has XML columns, the underlying XML table space is implicitly created with the same
PAGENUM attribute as the base table space. The DSSIZE is inherited from the base table space for a
base table in the partition-by-growth (PBG) table space.

The following table shows the DSSIZE for an implicitly created XML table space for a base table in
a partition-by-range (PBR) or range-partitioned (non-UTS) table space. For partition-by-range (PBR)
table spaces with relative page numbering, Db2 also rounds the DSSIZE up to the nearest power of
two before using the following table.

Table 13. Default DSSIZE for XML table spaces, given the base table space DSSIZE and buffer-pool
page size

Base table space
DSSIZE

4KB base page
size

8KB base page
size

16KB base page
size

32KB base page
size

1–4 GB 4G B 4 GB 4 GB 4 GB

5–8 GB 32 GB 16 GB 16 GB 16 GB

9–16 GB 64 GB 32 GB 16 GB 16 GB

17–32 GB 64 GB 64 GB 32 GB 16 GB

33–64 GB 64 GB 64 GB 64 GB 32 GB

65–128 GB 256 GB 256 GB 128 GB 64 GB

129–256 GB 256 GB 256 GB 256 GB 128 GB

257–512 GB 512 GB 512 GB 512 GB 256 GB

513-1024 GB 1024 GB 1024 GB 1024 GB 512 GB

For more information, see XML table space implicit creation (Db2 Administration Guide).

Naming convention for implicitly created XML objects
Implicitly created XML table spaces names will be Xyyynnnn, where yyy is derived from the first three
bytes of the base table name (if the name is shorter than 3, yyy is padded with X). nnnn is a numeric
string that will start at 0000 and be incremented by 1 until a unique number is found.

Chapter 9. Db2 SQL statements for SQL DI 179

https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_howimplicitlycreatexmltablespace.html

Implicitly created XML table names will be Xyyyyyyyyyyyyyyyyyynnn, where yyyyyyyyyyyyyyyyyy is the
first 18 UTF-8 bytes of the base table name or of the entire name if it is less than 18. nnn will only be
appended if the name already exists in the table. If the name already exists, nnn will be replaced with
000 and will be incremented by 1 until the name is unique.

Implicitly created document ID index names will be I_DOCIDyyyyyyyyyyyyyyyyyynnn, where
yyyyyyyyyyyyyyyyyy is the first 18 UTF-8 bytes of the base table name or the entire name if it is
less than 18. nnn will only be appended if the index already exists in the table. If the index already
exists, nnn will be replaced with 000 and will be incremented by 1 until the name is unique.

Implicitly created node ID index names will be I_NODEIDyyyyyyyyyyyyyyyyyynnn, where
yyyyyyyyyyyyyyyyyy is the first 18 UTF-8 bytes of the XML table name or the entire name if it is
less than 18. nnn will only be appended if the index already exists in the table. If the index already
exists, nnn will be replaced with 000 and will be incremented by 1 until the name is unique.

Creating a table with an identity column
When a table has an identity column, Db2 can automatically generate sequential numeric values for
the column as rows are inserted into the table. Thus, identity columns are ideal for primary keys.
Identity columns and ROWID columns are similar in that both types of columns contain values that
Db2 generates. ROWID columns are used in large object (LOB) table spaces and can be useful in
direct-row access. ROWID columns contain values of the ROWID data type, which returns a 40-byte
VARCHAR value that is not regularly ascending or descending. ROWID data values are therefore not
well suited to many application uses, such as generating employee numbers or product numbers. For
data that is not LOB data and that does not require direct-row access, identity columns are usually a
better approach, because identity columns contain existing numeric data types and can be used in a
wide variety of uses for which ROWID values would not be suitable.

When a table is recovered to a point-in-time, it is possible that a large gap in the generated values
for the identity column might result. For example, assume a table has an identity column that has an
incremental value of 1 and that the last generated value at time T1 was 100 and Db2 subsequently
generates values up to 1000. Now, assume that the table space is recovered back to time T1. The
generated value of the identity column for the next row that is inserted after the recovery completes
will be 1001, leaving a gap from 100 to 1001 in the values of the identity column.

If you want to ensure that an identity column has unique values, create a unique index on the column.

Creating a table with a LONG VARCHAR or LONG VARGRAPHIC column
Although the syntax LONG VARCHAR and LONG VARGRAPHIC is allowed for compatibility with
previous releases of Db2, its use is not encouraged. VARCHAR(integer) and VARGRAPHIC(integer)
is the recommended syntax, because after the CREATE TABLE statement is processed, Db2 considers
a LONG VARCHAR column to be VARCHAR and a LONG VARGRAPHIC column to be VARGRAPHIC.

When a column is defined using the LONG VARCHAR or LONG VARGRAPHIC syntax, Db2 determines
the length attribute of the column. You can use the following information, which is provided for
existing applications that require the use of the LONG VARCHAR or LONGVARGRAPHIC syntax, to
calculate the byte count and the character count of the column.

To calculate the byte count, use this formula:

2*(INTEGER((INTEGER((m-i-k)/j))/2))

Where:
m

Is the maximum row size (8 less than the maximum record size)
i

Is the sum of the byte counts of all columns in the table that are not LONG VARCHAR or LONG
VARGRAPHIC

j
is the number of LONG VARCHAR and LONG VARGRAPHIC columns in the table

k
k is the number of LONG VARCHAR and LONG VARGRAPHIC columns that allow nulls

180 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

To find the character count:

1. Find the byte count.
2. Subtract 2.
3. If the data type is LONG VARGRAPHIC, divide the result by 2. If the result is not an integer, drop

the fractional part.

Defining a system-period temporal table
A system-period temporal table definition includes the following:

• A system period named SYSTEM_TIME which is defined using a row-begin column and a row-end
column.

• A transaction-start-ID column.
• A system-period data versioning definition which includes the name of the associated history table,

which is specified in a subsequent ALTER TABLE statement.

To ensure that the history table cannot be implicitly dropped when a system-period temporal table is
dropped, use the WITH RESTRICT ON DROP clause in the definition of the history table.

Defining an application-period temporal table
An application-period temporal table definition includes an application period named
BUSINESS_TIME. The application period is defined using a begin timestamp column and an end
timestamp column.

Data change operations on an application-period temporal table might result in an automatic insert
of one or two additional rows when a row is updated or deleted. When an update or delete of a row
in an application-period temporal table is specified for a portion of the period that is represented by
that row, the row is updated or deleted and one or two rows are automatically inserted to represent
the portion of the row that is not changed. New values are generated for each generated column in an
application-period temporal table for each row that is automatically inserted as a result of an update
or delete operation on the table. If a generated column is defined as part of a unique or primary
key, parent key in a referential constraint, or unique index, it is possible that an automatic insert will
violate a constraint or index, in which case an error is returned.

Bitemporal tables
A table that is defined for system-period data versioning and contains a BUSINESS_TIME period is
referred to as a bitemporal table.

Considerations for transaction-start-ID columns
A transaction-start-ID column contains a null value if the column allows null values. A row-begin
column which is unique from other row-begin column values that are generated for other transactions
exists with the transaction-start-ID column. Given that the column might contain null values, consider
using one of the following methods when retrieving a value from the column:

COALESCE (transaction_start_id_col, row_begin_col)
CASE WHEN transaction_start_id_col IS NOT NULL
 THEN transaction_start_id_col
 ELSE row_begin_col
END

Implicitly created indexes
When the PRIMARY KEY or UNIQUE clause is used in the CREATE TABLE statement and the CREATE
TABLE statement is processed by the schema processor or the table space that contains the table is
implicitly created, Db2 implicitly creates the unique indexes used to enforce the uniqueness of the
primary or unique keys.

When a ROWID column is defined as GENERATED BY DEFAULT in the CREATE TABLE statement, and
the CREATE TABLE statement is processed by SET CURRENT RULES = 'STD' or the table space that
contains the table is implicitly created, Db2 implicitly creates the unique indexes used to enforce the
uniqueness of the ROWID column.

The privilege set must include the USE privilege of the buffer pool.

Each index is created as if the following CREATE INDEX statement were issued:

Chapter 9. Db2 SQL statements for SQL DI 181

CREATE UNIQUE INDEX xxx ON table-name (column1,...)

Where:

• xxx is the name of the index that Db2 generates.
• table-name is the name of the table specified in the CREATE TABLE statement.
• (column1,...) is the list of column names that were specified in the UNIQUE or PRIMARY KEY clause

of the CREATE TABLE statement, or the column is a ROWID column that is defined as GENERATED
BY DEFAULT.

For more information about the schema processor, see Creating a schema by using the schema
processor (Db2 Administration Guide).

In addition, if A table space that contains the table is implicitly created, Db2 will check the DEFINE
DATA SET subsystem parameter to determine whether to define the underlying data set for the index
space of the implicitly created index on the base table.

If DEFINE DATA SET is NO, the index is created as if the following CREATE INDEX statement is issued:

CREATE UNIQUE INDEX xxx ON table-name (column1,...) DEFINE NO

Maximum record size
The maximum record size of a table depends on the page size of the table space and whether the
EDITPROC clause is specified, as shown in Table 14 on page 182.

The initial page size of the table space is the size of its buffer, which is determined by the
BUFFERPOOL clause that was explicitly or implicitly specified when the table space was created.
When the record size reaches 90 percent of the maximum record size for the page size of the table
space, the next largest page size is automatically used.

Table 14. Maximum record size, in bytes

Page Size
= 4KB

Page Size
= 8KB

Page Size
= 16KB

Page Size
= 32KB

Table without
EDITPROC=YES

4056 8138 16330 32714

Table with
EDITPROC=YES

4046 8128 16320 32704

The maximum record size corresponds to the maximum length of a VARCHAR column if that column is
the only column in the table.

If the table space that contains the table is implicitly created, the proper buffer pool size is chosen
according to the actual record size. If the record size reaches 90% of the maximum record size for the
page size of the table space, the next largest page size will be used. Table 15 on page 182 shows 90%
of the maximum record size:

Table 15. 90% of Maximum record size, in bytes

Page Size
= 4KB

Page Size
= 8KB

Page Size
= 16KB

Page Size
= 32KB

Table without
EDITPROC=YES

3650 7324 14697 29443

Table with
EDITPROC=YES

3641 7315 14688 29434

182 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_createschemas.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_createschemas.html

A row in a table with PAGENUM RELATIVE or in a table space with PAGENUM RELATIVE must have
a minimum data size of 3 bytes. Rows with data that compresses to less than 3 bytes, will not be
compressed when stored in the table.

Byte counts
The sum of the byte counts of the columns must not exceed the maximum row size of the table. The
maximum row size is eight less than the maximum record size.

For columns that do not allow null values, Table 16 on page 183 gives the byte counts of columns by
data type. For columns that allow null values, the byte count is one more than shown in the table.

Table 16. Byte counts of columns by data type

Data Type Byte Count

INTEGER 4

SMALLINT 2

BIGINT 8

FLOAT(n) If n is between 1 and 21, the byte count is 4. If n is between 22 and
53, the byte count is 8.

DECIMAL INTEGER(p/2)+1, where p is the precision

DECFLOAT(16) 9

DECFLOAT(34) 17

CHAR(n) n

VARCHAR(n) n+2

CLOB 6

Inline CLOB 6 + inline byte count

GRAPHIC(n) 2n

VARGRAPHIC(n) 2n+2

DBCLOB 6

Inline DBCLOB 6 + (inline char count * 2)

BINARY(n) n

VARBINARY(n) n+2

BLOB 6

Inline BLOB 6 + inline byte count

DATE 4

TIME 3

TIMESTAMP(p) WITHOUT
TIME ZONE

INTEGER((p+1)/2) + 7 where p is the precision

TIMESTAMP(p) WITH TIME
ZONE

INTEGER((p+1)/2) + 9 where p is the precision

ROWID 19

distinct type The length of the source data type upon which the distinct type was
based

Chapter 9. Db2 SQL statements for SQL DI 183

Table 16. Byte counts of columns by data type (continued)

Data Type Byte Count

XML 6 - If column cannot contain multiple versions of an XML document.

14 - If column can contain multiple versions of an XML document.

For more information, see XML versions (Db2 Programming for XML).

Creating a materialized query table
If the fullselect in the CREATE TABLE statement contains a SELECT *, the select list of the subselect
is determined at the time the materialized query table is created. In addition, any references to
user-defined functions are resolved at the same time. The isolation level at the time when the
CREATE TABLE statement is executed is the isolation level for the materialized query table. After
a materialized query table is created, the REFRESH_TIME column of the row for the table in the
SYSIBM.SYSVIEWS catalog table contains the default timestamp.

The owner of a materialized query table has all the table privileges with the grant option on the table
irrespective of whether the owner has the necessary privileges on the base tables, views, functions,
and sequences.

No unique constraints or unique indexes can be created for materialized query tables. Thus, a
materialized query table cannot be a parent table in a referential constraint.

When you are creating user-maintained materialized query tables, you should create the materialized
query table with query optimization disabled and then enable the table for query optimization after
it is populated. Otherwise, Db2 might rewrite queries to use the empty materialized query table, and
you will not get accurate results.

Considerations for implicitly hidden columns
A column that is defined as implicitly hidden is not part of the result table of a query that specifies
* in a SELECT list. However, an implicitly hidden column can be explicitly referenced in a query. For
example, an implicitly hidden column can be referenced in the SELECT list or in a predicate in a query.
Additionally, an implicitly hidden column can be explicitly referenced in a COMMENT, CREATE INDEX
statement, ALTER TABLE statement, INSERT statement, MERGE statement, UPDATE statement, or
RENAME statement. An implicitly hidden column can be referenced in a referential constraint. A
REFERENCES clause that does not contain a column list refers implicitly to the primary key of the
parent table. It is possible that the primary key of the parent table includes a column defined as
implicitly hidden. Such a referential constraint is allowed.

If the SELECT list of the fullselect of a materialized query definition explicitly refers to an implicitly
hidden column, that column will be part of the materialized query table.

If the SELECT list of the fullselect of a view definition (CREATE VIEW statement) explicitly refers to
an implicitly hidden column, that column will be part of the view, however the view column is not
considered 'hidden'.

Restrictions on field procedures, edit procedures, and validation exit procedures
Field procedures, edit procedures, and validation exit procedures cannot be used on tables that have
column names that are larger than 18 EBCDIC bytes. If you have tables that have field procedures or
validation exit procedures and you add a column where the column name is larger than 18 bytes, the
field procedures and validation exit procedures for the table will be invalidated.

Consider using triggers to replace the functionality on field procedures, edit procedures, and
validation exit procedures on tables where the column names are larger than 18 EBCDIC bytes.

Restrictions on certain SQL statements in the same unit of work as CREATE TABLE

• A CREATE TABLE statement that contains a PARTITION BY clause should not be followed in the
same unit of work by SQL statements that change data.

• A CREATE TABLE statement that contains an IN ACCELERATOR clause should be issued in a
separate unit of work from other SQL statements.

184 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/xml/src/tpc/db2z_xmlversions.html

Creating a table while a utility runs
You cannot use CREATE TABLE while a Db2 utility has control of the table space implicitly or explicitly
specified by the IN clause.

Restrictions involving pending definition changes
A CREATE TABLE statement is not allowed if there are pending changes to the definition of the
table space, if the CREATE TABLE statement specifies a FOREIGN KEY clause that reference a
column for which there are pending definition changes, or if the CREATE TABLE statement specifies
a materialized query table definition that references a table for which there are pending definition
changes.

Key label requirement
To use a key label for encryption, the VSAM data sets for the page sets need to be associated with an
SMS Data Class that has extended format capability (EF enabled).

Determining a key label for base table space and associated objects
When a key label is specified at the table level, Db2 provides the key label to DFSMS to encrypt all
the table spaces and index spaces associated with the table. This includes base table space, auxiliary
table spaces, XML table spaces, index spaces, and clone table space, regardless of whether the base
table space or associated objects are explicitly or implicitly created. Db2 does not enforce any key
label relationship between the base table and an associated history or archive table. The key label for
the archive and the history tables has to be set independent of the base table. If there is no key label
specified at the table level, Db2 will provide the key label to DFSMS specified for the storage group.

When Db2 calls DFSMS to allocate the dataset for table space or index space, DFSMS uses its order of
precedence to determine the key label and can override the key label specified by Db2.

DFSMS order of precedence:

• RACF data set profile
• JCL, dynamic allocation, TSO ALLOCATE
• SMS data class construct

If the security administrator has specified a key label for the RACF data set profile, that key label takes
precedence over the Db2 provided key label. The REPORT utility can be run to determine the key label
used for encryption.

Description of key label in effect in DB2

Table 17. Example scenarios for a partition-by-growth table space, that describe the key label in effect in DB2.
This is the key label provided to DFSMS during allocation of data set for table spaces and index spaces.

Scenarios Catalog key label value Key label provided to DFSMS
during data set allocation

Create storage group, SG01 with key
label, SGKL01.

SYSSTOGROUP record - KEY
LABEL: SGKL01

Create table space, TBSP01 using storage
group, SG01 – Creates Partition 1

SGKL01

Create table, TB01 in table space,
TBSP01 with key label, TBKL01

SYSTABLESPACE record for
TBSP01 / SYSTABLES record for
TBKL01 – KEY LABEL: TBKL01

REORG TABLESPACE TBSP01 – Reorgs
Partition 1

TBKL01

Create index, IX01 on table, TB01 creates
index space

SYSINDEXES record for IX01 –
KEY LABEL: TBKL01

TBKL01

Insert data into TB01 – Creates Partition
2

TBKL01

Chapter 9. Db2 SQL statements for SQL DI 185

Table 17. Example scenarios for a partition-by-growth table space, that describe the key label in effect in
DB2. This is the key label provided to DFSMS during allocation of data set for table spaces and index spaces.
(continued)

Scenarios Catalog key label value Key label provided to DFSMS
during data set allocation

Alter table, TB01 to specify NO KEY
LABEL

SYSTABLESPACE record for
TBSP01 / SYSTABLES record for
TBKL01 / SYSINDEXES record
for IX01 – KEY LABEL: Empty
string

Insert data into TB01 – Creates partition
3

SGKL01

REORG TABLESPACE TBSP01 with REUSE
option – Resets and reuses DB2-managed
data sets. No change to key label

Key label considerations

If the last table is dropped from a segmented table space, the table space and its underlying data
set will remain. If key label is in effect, the KEYLABEL column for the table space's SYSTABLESPACE
record will be cleared. If a new table is created in this table space, it will be encrypted with the
previous key label. If the table has to be created as unencrypted, execute the REORG TABLESPACE
utility for the table space.

If a table space is explicitly created with the DEFINE YES option and a table with a key label is
defined in that table space, then the data sets associated with the table space will not be encrypted.
A subsequent REORG is necessary to encrypt the data sets. Users that want immediate encryption of
the data sets associated with the table space must to define table spaces with the DEFINE NO option.

Syntax and descriptions for hash organization (deprecated)

Deprecated function: Hash-organized tables are deprecated. Beginning in Db2 12, packages bound
with APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter existing
tables to use hash-organization. Existing hash organized tables remain supported, but they are likely
to be unsupported in the future.

organization-clause

organization-clause

ORGANIZE BY HASH UNIQUE (

,

column-name)

HASH SPACE 64 M

HASH SPACE integer K

M

G

ORGANIZE BY HASH
Specifies that a hash is to be used for the data organization of the table.

If PARTITION BY RANGE is specified, and the IN clause specifies a table space, the table
space must be a partition by range universal table space, and cannot be a table space with
PAGENUM RELATIVE.

186 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

If PARTITION BY RANGE is not specified, and an IN clause is specified, the IN clause must
identify a partition-by-growth table space.

ORGANIZE BY HASH must not be specified if the table is defined with APPEND YES.

ORGANIZE BY HASH must not be specified if the table is using basic row format.

If IN ACCELERATOR is specified, ORGANIZE BY HASH must not be specified.

UNIQUE
Specifies that Db2 enforces uniqueness of the hash key columns, preventing the table
from containing two or more rows with the same value of the hash key.

(column-name,...)

The list of column names defines the hash key that is used to determine where a row will
be placed. Each column-name must be an unqualified name that identifies a column of the
table. The same column must not be specified more than once and the specified columns
must be defined as NOT NULL. The number of specified columns must not exceed 64, and
the sum of their length attributes must not exceed 255. A specified column cannot be any
of the following types:

• a LOB column
• a DECFLOAT column
• a XML column
• a distinct type column that is based on one of the preceding data types

All character and graphic string columns in the key must use the same encoding scheme.

If PARTITION BY RANGE is also specified, the list of column names must specify all
of the column names that are specified in partition-expression for the table, and must
specify the column names in the same order as partition-expression. If the ORGANIZE BY
clause contains more columns than partition-expression, partition-expression determines
the partition number.

HASH SPACE integerK|M|G
Specifies the amount of fixed hash space to preallocate for the table. If the table is
partitioned by range, this is the space for each partition.

The default is 64M for a table in a partition-by-growth table space or 64M for each
partition of a partition-by-range table space.

K
Indicates that the integer value is multiplied by 1024 to specify the hash space size in
bytes. The integer value must be between 256 and 268,435,456.

M
Indicates that the integer value is multiplied by 1,048,576 to specify the hash space
size in bytes. The integer value must be between 1 and 262,144.

G
Indicates that the integer value is to be multiplied by 1,073,741,824 to specify the
hash space size in bytes. The integer value must be between 1 and 256 for a partition
by range table and must be between 1 and 131,072 for a non-partitioned table.

If a value greater than 4G is specified, the data sets for the table space are associated
with a DFSMS data class that has been specified with extended format and extended
addressability.

Chapter 9. Db2 SQL statements for SQL DI 187

partition-hash-space

HASH SPACE integer K

M

G

HASH SPACE integerK|M|G
Specifies the amount of fixed hash space to preallocate for the partition that is associated with
the partition-element. If HASH SPACE is omitted from the partition element, the HASH SPACE
value from the ORGANIZE BY clause is used. If IN ACCELERATOR is specified, HASH SPACE
must not be specified.

If HASH SPACE is not specified, each partition will use the HASH SPACE value specified in
organization-clause.

The HASH SPACE keyword in partition-element must only be specified if organization-clause is
also specified.

K
Indicates that the integer value is multiplied by 1024 to specify the hash space size in
bytes. The integer value must be between 256 and 268,435,456.

M
Indicates that the integer value is multiplied by 1,048,576 to specify the hash space size in
bytes. The integer value must be between 1 and 262,144.

G
Indicates that the integer value is to be multiplied by 1,073,741,824 to specify the hash
space size in bytes. The integer value must be between 1 and 256 for a partition by range
table and must be between 1 and 131,072 for a non-partitioned table.

If a value greater than 4G is specified, the data sets for the table space are associated with a
DFSMS data class that has been specified with extended format and extended addressability.

Notes for hash organization (deprecated)

Deprecated function: Hash-organized tables are deprecated. Beginning in Db2 12, packages bound
with APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter existing
tables to use hash-organization. Existing hash organized tables remain supported, but they are likely
to be unsupported in the future.

If the IN clause is not specified with ORGANIZE BY HASH
If you do not specify IN DATABASE (either explicitly or by default), Db2 will use the default DSSIZE
of 4G for each partition for a partition-by-range table space or use the value that is specified in the
partitioning clause. The hash space value that is specified on CREATE TABLE will be validated, per
part, to ensure that the specified DSSIZE is adequate. If the DSSIZE is not adequate, an error will
be returned.

If the maximum number of partitions needed for the specified hash space is more than the
maximum number of partitions allowed, Db2 to will return an error.

If the selected buffer pool is not available, a error will be returned.

Creating a table with hash organization and LOB columns
If the table space is a partition-by-growth table space, Db2 will preallocate as many partitions as
needed depending on the value specified for HASH SPACE. If Db2 needs to implicitly create the
LOB object in a new partition, the privilege set for the implicitly created LOB objects must include
the USE privilege on the buffer pool for the LOB table space.

Hash space and Db2 page size
If the specified hash space is less than or equal to 64 MB (the Db2 default), Db2 will add extra
space for Db2 system pages. If the specified hash space is greater than 64 MB, Db2 will use part
of the hash space for Db2 system pages. The amount of space needed for Db2 system pages

188 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

depends on SEGSIZE and PAGESIZE. The larger the SEGSIZE and/or PAGESIZE becomes, the
larger the requirement for Db2 system pages. Db2 can reserve up to 5 MB for system pages for the
highest SEGSIZE value (64) and PAGESIZE value (32K).

Hash space and DSSIZE
Depending on certain table space characteristics, Db2 needs to reserve space for the hash
overflow area. Therefore, the amount of hash space cannot be equal to the DSSIZE value. The
maximum amount of hash space that can be specified is approximately 20% less than the DSSIZE
value. Db2 returns an error if the amount of hash space is too large. If the amount of hash space is
too large, specify a larger value of DSSIZE, or decrease the amount of hash space.

Specifying APPEND for hash-organized tables
Append processing is not applicable to tables with hash organization since there is no key
clustering in hash organization. For insert operations into tables with hash organization, Db2 will
use the internal hash algorithm to determine the location of the row.

Maximum record size for hash-organized tables
For hash-organized tables, the maximum record size on whether the EDITPROC clause is
specified, as shown in Table 18 on page 189.

The initial page size of the table space is the size of its buffer, which is determined by the
BUFFERPOOL clause that was explicitly or implicitly specified when the table space was created.
When the record size reaches 90 percent of the maximum record size for the page size of the table
space, the next largest page size is automatically used.

Table 18. Maximum record size, in bytes for hash organized tables

Page Size
= 4KB

Page Size
= 8KB

Page Size
= 16KB

Page Size
= 32KB

Hash table (hash
home page)

3817 7899 16091 32475

Hash table with
EDITPROC=YES
(hash home page)

3807 7889 16081 32465

The maximum record size corresponds to the maximum length of a VARCHAR column if that
column is the only column in the table.

If the table space that contains the table is implicitly created, the proper buffer pool size is chosen
according to the actual record size.

A row in a table with PAGENUM RELATIVE or in a table space with PAGENUM RELATIVE must have
a minimum data size of 3 bytes. Rows with data that compresses to less than 3 bytes, will not be
compressed when stored in the table.

Restrictions for tables with hash organization
Tables that use hash organization are subject to the following restrictions:

• A table that is defined to use hash organization cannot be created in a LOB table space or XML
table space.

• ORGANIZE BY HASH must not be specified if the table space is defined with the MEMBER
CLUSTER clause.

• The MAXROWS clause is applicable only to the hash overflow area of the table space for tables
with hash organization. The fixed hash area of each page will contain as many rows as it can
hold, up to a maximum of 255.

• The ORGANIZE BY HASH UNIQUE (column-list) clause is required when specifying HASH SPACE
integer K|M|G in the partition-element. The organization-clause applies to the entire table and
the partition-element clause applies at the partition level.

• Db2 automatically creates a hash overflow index when a table is created with hash organization.

Chapter 9. Db2 SQL statements for SQL DI 189

Alternative syntax and synonyms
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following clauses:

• NOCACHE (single clause) as a synonym for NO CACHE
• NOCYCLE (single clause) as a synonym for NO CYCLE
• NOMINVALUE (single clause) as a synonym for NO MINVALUE
• NOMAXVALUE (single clause) as a synonym for NO MAXVALUE
• NOORDER (single clause) as a synonym for NO ORDER
• PART integer VALUES can be specified as an alternative to PARTITION integer ENDING AT.
• VALUES as a synonym for ENDING AT
• DEFINITION ONLY as a synonym for WITH NO DATA
• SUMMARY between CREATE and TABLE
• TIMEZONE can be specified as an alternative to TIME ZONE.

Examples for CREATE TABLE

Example 1

Create a table named DSN8D10.DEPT in the table space DSN8S13D of the database DSN8D13A.
Name the five columns DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, and LOCATION, allowing only
MGRNO and LOCATION to contain nulls, and designating DEPTNO as the only column in the primary
key. All five columns hold character string data. Assuming a value of NO for the field MIXED DATA on
installation panel DSNTIPF, all five columns have the subtype SBCS.

 CREATE TABLE DSN8D10.DEPT
 (DEPTNO CHAR(3) NOT NULL,
 DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO CHAR(6) ,
 ADMRDEPT CHAR(3) NOT NULL,
 LOCATION CHAR(16) ,
 PRIMARY KEY(DEPTNO))
 IN DSN8D13A.DSN8S13D;

Example 2
Create a table named DSN8D10.PROJ in an implicitly created table space of the database DSN8D13A.
Assign the table a validation procedure named DSN8EAPR.

 CREATE TABLE DSN8D10.PROJ
 (PROJNO CHAR(6) NOT NULL,
 PROJNAME VARCHAR(24) NOT NULL,
 DEPTNO CHAR(3) NOT NULL,
 RESPEMP CHAR(6) NOT NULL,
 PRSTAFF DECIMAL(5,2) ,
 PRSTDATE DATE ,
 PRENDATE DATE ,
 MAJPROJ CHAR(6) NOT NULL)
 IN DATABASE DSN8D13A
 VALIDPROC DSN8EAPR;

Example 3

Assume that table PROJECT has a non-primary unique key that consists of columns DEPTNO and
RESPEMP (the department number and employee responsible for a project). Create a project activity
table named ACTIVITY with a foreign key on that unique key.

 CREATE TABLE ACTIVITY
 (PROJNO CHAR(6) NOT NULL,
 ACTNO SMALLINT NOT NULL,
 ACTDEPT CHAR(3) NOT NULL,
 ACTOWNER CHAR(6) NOT NULL,
 ACSTAFF DECIMAL(5,2) ,
 ACSTDATE DATE NOT NULL,

190 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

 ACENDATE DATE ,
 FOREIGN KEY (ACTDEPT,ACTOWNER)
 REFERENCES PROJECT (DEPTNO,RESPEMP) ON DELETE RESTRICT)
 IN DSN8D13A.DSN8S13D;

Example 4

Create an employee photo and resume table EMP_PHOTO_RESUME that complements the sample
employee table. The table contains a photo and resume for each employee. Put the table in table
space DSN8D13A.DSN8S13E. Let Db2 always generate the values for the ROWID column.

 CREATE TABLE DSN8D10.EMP_PHOTO_RESUME
 (EMPNO CHAR(6) NOT NULL,
 EMP_ROWID ROWID NOT NULL GENERATED ALWAYS,
 EMP_PHOTO BLOB(110K),
 RESUME CLOB(5K),
 PRIMARY KEY (EMPNO))
 IN DSN8D13A.DSN8S13E
 CCSID EBCDIC;

Example 5
Create an EMPLOYEE table with an identity column named EMPNO. Define the identity column so
that Db2 will always generate the values for the column. Use the default value, which is 1, for the
first value that should be assigned and for the incremental difference between the subsequently
generated consecutive numbers.

 CREATE TABLE EMPLOYEE
 (EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
 ID SMALLINT,
 NAME CHAR(30),
 SALARY DECIMAL(5,2),
 DEPTNO SMALLINT)
 IN DSN8D13A.DSN8S13D;

Example 6
Assume a very large transaction table named TRANS contains one row for each transaction processed
by a company. The table is defined with many columns. Create a materialized query table for the
TRANS table that contain daily summary data for the date and amount of a transaction.

 CREATE TABLE STRANS AS
 (SELECT YEAR AS SYEAR, MONTH AS SMONTH, DAY AS SDAY, SUM(AMOUNT) AS SSUM
 FROM TRANS
 GROUP BY YEAR, MONTH, DAY)
 DATA INITIALLY DEFERRED REFRESH DEFERRED;

Example 7
The following example creates a table in a partition-by-growth table space and includes the APPEND
option:

 CREATE TABLE TS01TB
 (C1 SMALLINT,
 C2 DECIMAL(9,2),
 C3 CHAR(4))
 APPEND YES
 IN TS01DB.TS01TS;

Example 8
The following example creates a table in a partition-by-growth table space where the table space is
implicitly created:

 CREATE TABLE TS02TB
 (C1 SMALLINT,
 C2 DECIMAL(9,2),
 C3 CHAR(4))
 PARTITION BY SIZE EVERY 4G
 IN DATABASE DSNDB04;

Chapter 9. Db2 SQL statements for SQL DI 191

Example 9
Create a table, EMP_INFO, that contains a phone number and address for each employee. Include a
row change timestamp column in the table to track the modification of employee information:

 CREATE TABLE EMP_INFO
 (EMPNO CHAR(6) NOT NULL,
 EMP_INFOCHANGE NOT NULL
 GENERATED ALWAYS FOR EACH ROW ON UPDATE
 AS ROW CHANGE TIMESTAMP,
 EMP_ADDRESS VARCHAR(300),
 EMP_PHONENO CHAR(4),
 PRIMARY KEY (EMPNO));

Example 10
Create a table, TB01, that uses a range partitioning scheme with a segment size of 4 and 4 partitions.

CREATE TABLE TB01 (
 ACCT_NUM INTEGER,
 CUST_LAST_NM CHAR(15),
 LAST_ACTIVITY_DT VARCHAR(25),
 COL2 CHAR(10),
 COL3 CHAR(25),
 COL4 CHAR(25),
 COL5 CHAR(25),
 COL6 CHAR(55),
 STATE CHAR(55))
 IN DBB.TS01

 PARTITION BY (ACCT_NUM)
 (PARTITION 1 ENDING AT (199),
 PARTITION 2 ENDING AT (299),
 PARTITION 3 ENDING AT (399),
 PARTITION 4 ENDING AT (MAXVALUE));

Example 11
Create a table, policy_info, that uses a SYSTEM_TIME period and create a history table,
hist_policy_info. Then issue an ALTER TABLE statement to associate the policy_info table with the
hist_policy_info table.

CREATE TABLE policy_info
 (policy_id CHAR(10) NOT NULL,
 coverage INT NOT NULL,
 sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
 sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
 create_id TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,
 PERIOD SYSTEM_TIME(sys_start,sys_end));

CREATE TABLE hist_policy_info
 (policy_id CHAR(10) NOT NULL,
 coverage INT NOT NULL,
 sys_start TIMESTAMP(12) NOT NULL,
 sys_end TIMESTAMP(12) NOT NULL,
 create_id TIMESTAMP(12));

ALTER TABLE policy_info
 ADD VERSIONING USE HISTORY TABLE hist_policy_info;

Example 12
Create a table, policy_info, that uses a BUSINESS_TIME period.

CREATE TABLE policy_info
 (policy_id CHAR(4) NOT NULL,
 coverage INT NOT NULL,
 bus_start DATE NOT NULL,
 bus_end DATE NOT NULL,
 PERIOD BUSINESS_TIME(bus_start, bus_end));

Example 13

Create a table, policy_info, that uses both a SYSTEM_TIME period and a BUSINESS_TIME period
to keep historical rows and track a user-specified time period. A table that specifies both a

192 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

SYSTEM_TIME period and a BUSINESS_TIME period is sometimes referred to as a bitemporal table.
To enable retention of historical rows, a history table, hist_policy_info, also needs to be created and
associated (using the ALTER TABLE statement) with the policy_info table.

CREATE TABLE policy_info
 (policy_id CHAR(4) NOT NULL,
 coverage INT NOT NULL,
 bus_start DATE NOT NULL,
 bus_end DATE NOT NULL,
 sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
 sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
 create_id TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,
 PERIOD BUSINESS_TIME(bus_start, bus_end),
 PERIOD SYSTEM_TIME(sys_start, sys_end));

CREATE TABLE hist_policy_info
 (policy_id CHAR(4) NOT NULL,
 coverage INT NOT NULL,
 bus_start DATE NOT NULL,
 bus_end DATE NOT NULL,
 sys_start TIMESTAMP(12) NOT NULL,
 sys_end TIMESTAMP(12) NOT NULL),
 create_id TIMESTAMP(12);

ALTER TABLE policy_info
 ADD VERSIONING USE HISTORY TABLE hist_policy_info;

Example 14: Create table EMPLOYEE.PERSONAL with key label EMPKEYLABEL.

CREATE TABLE EMPLOYEE.PERSONAL
 (DEPTNO CHAR(3) NOT NULL,
 DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO CHAR(6) ,
 ADMRDEPT CHAR(3) NOT NULL,
 LOCATION CHAR(16) ,
 PRIMARY KEY(DEPTNO))
 IN DSN8D12A.DSN8S12D
 KEY LABEL EMPKEYLABEL;

Related concepts
Types of accelerator tables (Db2 Performance)
Unicode columns in EBCDIC tables (Db2 SQL)
Unicode support in Db2 (Db2 Installation and Migration)
Naming conventions (Db2 SQL)
Related tasks
Creating tables from application programs (Db2 Application programming and SQL)
Related reference
EBCDIC and ASCII support (Db2 Installation and Migration)
Related information
Implementing Db2 tables (Db2 Administration Guide)
Conditions that prevent query routing to an accelerator

CREATE VIEW
The CREATE VIEW statement creates a view on tables or views at the current server.

Invocation for CREATE VIEW
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see Authorization IDs and dynamic SQL (Db2 SQL).

Chapter 9. Db2 SQL statements for SQL DI 193

https://www.ibm.com/docs/en/SSEPEK_13.0.0/idaa/src/tpc/db2z_typesofacceleratortables.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_unicodecolinebcdictable.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_unicodesupp.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/apsg/src/tpc/db2z_createtablesapp.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_ebcdicasciisupp.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_tableimplementation.html
https://www.ibm.com/docs/en/daafz/7.5?topic=accelerator-conditions-that-prevent-query-routing
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authidsdynamicsql.html

Authorization for CREATE VIEW
For every table or view identified in the fullselect, the privilege set that is defined below must include at
least one of the following:

• The SELECT privilege on the table or view
• Ownership of the table or view
• DBADM authority for the database (tables only)
• DATAACCESS authority
• SYSADM authority
• SQLADM authority (catalog tables only)
• System DBADM authority (catalog tables only)
• ACCESSCTRL authority (catalog tables only)
• SYSCTRL authority (catalog tables only)
• SECADM authority (catalog tables only)

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

Authority requirements depend in part on the choice of the owner of the view. For information on how to
choose the owner, see the description of view-name in ALTER VIEW (Db2 SQL).

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the of the owner of the plan or package. If the application is bound in a trusted context
with the ROLE AS OBJECT OWNER clause specified, a role is the owner. Otherwise, an authorization ID is
the owner.

• If this privilege set includes SYSADM authority, the owner of the view can be any authorization ID. If that
set includes SYSCTRL but not SYSADM authority, the following is true: the owner of the view can be any
authorization ID, provided the view does not refer to user tables or views in the first FROM clause of its
defining fullselect. (It could refer instead, for example, to catalog tables or views thereof.)

If the view satisfies the rules in the preceding paragraph, and if no errors are present in the CREATE
statement, the view is created, even if the owner has no privileges at all on the tables and views
identified in the fullselect of the view definition.

• If the privilege set includes system DBADM authority, the owner of the view can be any authorization
ID. However, to create a view on a user table, either the owner of the view or the creator must have the
SELECT privilege on all the tables or views in the CREATE VIEW statement.

• If the privilege set lacks system DBADM, SYSADM and SYSCTRL but includes DBADM authority on at
least one of the databases that contains a table from which the view is created, the owner of the view
can be any authorization ID if all of the following conditions are true:

– The value of subsystem parameter DBACRVW is set to YES.
– The view is not based only on views.

Note: The owner of the view must have the SELECT privilege on all tables and views in the CREATE
VIEW statement, or, if the owner does not have the SELECT privilege on a table, the creator must have
DBADM authority on the database that contains that table.

• If the privilege set lacks SYSADM, SYSCTRL, system DBADM, and DBADM authority, or if the
authorization ID of the application plan or package fails to meet any of the previous conditions, the
owner of the view must be the owner of the application plan or package.

If ROLE AS OBJECT OWNER is in effect, the schema qualifier must be the same as the role, unless the
role has the CREATEIN privilege on the schema, SYSADM authority, system DBADM authority, or SYSCTRL
authority.

If ROLE AS OBJECT OWNER is not in effect, one of the following rules applies:

194 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_alterview.html

• If the privilege set lacks the CREATIN privilege on the schema, SYSADM authority, system DBADM
authority, or SYSCTRL authority, the schema qualifier (implicit or explicit) must be the same as one of
the authorization ids of the process.

• If the privilege set includes system DBADM authority, SYSADM authority or SYSCTRL authority, the
schema qualifier can be any valid schema name.

If the statement is dynamically prepared, the following rules apply:

• If the SQL authorization ID of the process has SYSADM authority, the owner of the view can be any
authorization ID. If that authorization ID has SYSCTRL but not SYSADM authority, the following is true:
the owner of the view can be any authorization ID, provided the view does not refer to user tables or
views in the first FROM clause of its defining fullselect. (It could refer instead, for example, to catalog
tables or views thereof.)

If the view satisfies the rules in the preceding paragraph, and if no errors are present in the CREATE
statement, the view is created, even if the owner has no privileges at all on the tables and views
identified in the fullselect of the view definition.

• If the SQL authorization ID of the process has system DBADM authority, the owner of the view can be
any authorization ID. However, to create a view on a user table, either the owner of the view or the
SQL authorization ID must have the SELECT privilege on all the tables or views in the CREATE VIEW
statement.

• If SQL authorization ID of the process lacks system DBADM authority, SYSADM and SYSCTRL but
includes DBADM authority on at least one of the databases that contains a table from which the view
is created, the owner of the view can be different from the SQL authorization ID if all of the following
conditions are true:

– The value of field DBADM CREATE AUTH was set to YES on panel DSNTIPP during Db2 installation.
– The view is not based only on views.

Note: The owner of the view must have the SELECT privilege on all tables and views in the CREATE
VIEW statement, or, if the owner does not have the SELECT privilege on a table, the creator must have
DBADM authority on the database that contains that table.

• If the SQL authorization ID of the process lacks SYSADM, SYSCTRL, system DBADM authority, or DBADM
authority, or if the SQL authorization ID of the process fails to meet any of the previous conditions, only
the authorization IDs of the process can own the view. In this case, the privilege set is the privileges that
are held by the authorization ID selected for ownership.

Syntax for CREATE VIEW

CREATE VIEW view-name

(

,

column-name)

AS

WITH

,

common-table-expression

fullselect

WITH
CASCADED

LOCAL

CHECK OPTION

Chapter 9. Db2 SQL statements for SQL DI 195

Description for CREATE VIEW
view-name

Names the view. The name, including the implicit or explicit qualifier, must not identify a
table, view, alias, or synonym that exists at the current server or a table that exists in the
SYSIBM.SYSPENDINGOBJECTS catalog table. The unqualified name must not be the same as an
existing synonym.

If the name is qualified, the name can be a two-part or three-part name. If a three-part name is used,
the first part must match the value of the field Db2 LOCATION NAME of installation panel DSNTIPR at
the current server. (If the current server is not the local Db2, this name is not necessarily the name in
the CURRENT SERVER special register.)

column-name,…
Names the columns in the view. If you specify a list of column names, it must consist of as many
names as there are columns in the result table of the fullselect. Each name must be unique and
unqualified. If you do not specify a list of column names, the columns of the view inherit the names of
the columns of the result table of the fullselect.

You must specify a list of column names if the result table of the fullselect has duplicate column
names or an unnamed column (a column derived from a constant, function, or expression that was not
given a name by the AS clause). For more details about unnamed columns, see the information about
names of result columns under select-clause (Db2 SQL).

AS
Identifies the view definition.

WITH common-table-expression
Defines a common table expression for use with the fullselect that follows. The fullselect must not
contain a period specification. For an explanation of common table expression, see common-table-
expression (Db2 SQL).

fullselect
Defines the view. At any time, the view consists of the rows that would result if the fullselect were
executed.

The fullselect must conform to the following rules:

• The fullselect must not refer to any host variables or parameter markers (question marks), but can
refer to global variables.

• The fullselect must not refer to any declared temporary tables.
• The fullselect must not include an invocation of the UNPACK function.
• The fullselect must not include an invocation of the AI_ANALOGY, AI_COMMONALITY,

AI_SEMANTIC_CLUSTER, or AI_SIMILARITY function.
• The fullselect must not contain a period specification.
• The FROM clause of the fullselect must not include a data-change-table-reference.
• The FROM clause of the fullselect must not include a view for which an INSTEAD OF trigger is
defined.

• The outer SELECT list of the outer fullselect must not result in a column that is an array.

For an explanation of fullselect, see fullselect (Db2 SQL).

WITH CASCADED CHECK OPTION or WITH LOCAL CHECK OPTIONS
Specifies that every row that is inserted or updated through the view must conform to the definition of
the view. A row that does not conform to the definition of the view is a row that cannot be retrieved
using that view.

The CHECK OPTION clause must not be specified if the view is read-only, includes a subquery,
references a function that is not deterministic or has an external action, or if the fullselect of the view
refers to a created temporary table. If the CHECK OPTION clause is specified for an updatable view
that does not allow inserts, it applies to updates only.

196 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_selectclause.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_commontableexpression.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_commontableexpression.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_fullselect.html

If the CHECK OPTION clause is omitted, the definition of the view is not used in the checking of any
insert or update operations that use the view. Some checking might still occur during insert or update
operations if the view is directly or indirectly dependent on another view that includes the CHECK
OPTION clause. Because the definition of the view is not used, rows might be inserted or updated
through the view that do not conform to the definition of the view.

The difference between the two forms of the check option, CASCADED and LOCAL, is meaningful only
when a view is dependent on another view. The default is CASCADED. The view on which another view
is directly or indirectly defined is an underlying view.
CASCADED

Update and insert operations on view V must satisfy the search conditions of view V and all
underlying views, regardless of whether the underlying views were defined with a check option.
Furthermore, every updatable view that is directly or indirectly defined on view V inherits those
search conditions (the search conditions of view V and all underlying views of V) as a constraint on
insert or update operations. WITH CASCADED CHECK OPTION must not be specified if a view on
which the specified view definition is dependent has an INSTEAD OF trigger defined.

LOCAL
Update and insert operations on view V must satisfy the search conditions of view V and
underlying views that are defined with a check option (either WITH CASCADED CHECK OPTION
or WITH LOCAL CHECK OPTION). Furthermore, every updatable view that is directly or indirectly
defined on view V inherits those search conditions (the search conditions of view V and all
underlying views of V that are defined with a check option) as a constraint on insert or update
operations.

The LOCAL form of the CHECK option lets you update or insert rows that do not conform to the
search condition of view V. You can perform these operations if the view is directly or indirectly
defined on a view that was defined without a check option.

Table 19 on page 197 illustrates the effect of using the default check option, CASCADED. The
information in Table 19 on page 197 is based on the following views:

• CREATE VIEW V1 AS SELECT COL1 FROM T1 WHERE COL1 > 10
• CREATE VIEW V2 AS SELECT COL1 FROM V1 WITH CASCADED CHECK OPTION
• CREATE VIEW V3 AS SELECT COL1 FROM V2 WHERE COL1 < 100

Table 19. Examples using default check option, CASCADED

SQL statement Description of result

INSERT INTO V1 VALUES(5) Succeeds because V1 does not have a check option and it is
not dependent on any other view that has a check option.

INSERT INTO V2 VALUES(5) Results in an error because the inserted row does not
conform to the search condition of V1 which is implicitly
is part of the definition of V2.

INSERT INTO V3 VALUES(5) Results in an error because the inserted row does not
conform to the search condition of V1.

INSERT INTO V3 VALUES(200) Succeeds even though it does not conform to the definition
of V3 (V3 does not have the view check option specified); it
does conform to the definition of V2 (which does have the
view check option specified).

The difference between CASCADED and LOCAL is shown best by example. Consider the following
updatable views, where x and y represent either LOCAL or CASCADED:

V1 is defined on Table T0.
V2 is defined on V1 WITH x CHECK OPTION.
V3 is defined on V2.

Chapter 9. Db2 SQL statements for SQL DI 197

V4 is defined on V3 WITH y CHECK OPTION.
V5 is defined on V4.

This example shows V1 as an underlying view for V2 and V2 as dependent on V1.

Table 20 on page 198 shows the views in which search conditions are checked during an insert or
update operation:

Table 20. Views in which search conditions are checked during insert and update operations

View used in
INSERT or
UPDATE operation

x = LOCAL
y = LOCAL

x = CASCADED
y = CASCADED

x = LOCAL
y = CASCADED

x = CASCADED
y = LOCAL

V1 None None None None

V2 V2 V2, V1 V2 V2, V1

V3 V2 V2, V1 V2 V2, V1

V4 V4, V2 V4, V3, V2, V1 V4, V3, V2, V1 V4, V2, V1

V5 V4, V2 V4, V3, V2, V1 V4, V3, V2, V1 V4, V2, V1

Notes for CREATE VIEW
Owner privileges

The owner of a view always acquires the SELECT privilege on the view and the authority to drop the
view. If all of the privileges that are required to create the view are held with the GRANT option before
the view is created, the owner of the view receives the SELECT privilege with the GRANT option.
Otherwise, the owner receives the SELECT privilege without the GRANT option. For example, assume
that a view definition also refers to a user-defined function. If the owner's EXECUTE privilege on the
user-defined function is held without the GRANT option, the owner acquires the SELECT privilege on
the view without the GRANT option.

The owner can also acquire INSERT, UPDATE, and DELETE privileges on the view. Acquiring these
privileges is possible if the view is not "read-only", which means a single table of view is identified in
the first FROM clause of the fullselect. For each privilege that the owner has on the identified table or
view (INSERT, UPDATE, and DELETE) before the new view is created, the owner acquires that privilege
on the view. The owner receives the privilege with the GRANT option if the privilege is held on the
table or view with the GRANT option. Otherwise, the owner receives the privileges without the GRANT
option.

With appropriate Db2 authority, a process can create views for those who have no authority to create
the views themselves. The owner of such a view has the SELECT privilege on the view, without the
GRANT option, and can drop the view.

For more information on the ownership of an object, see Authorization, privileges, permissions,
masks, and object ownership (Db2 SQL).

Authorization for views created for other users
When a process with appropriate authority creates a view for another user that does not have
authorization for the underlying table or view, the SELECT privilege for the created view is implicitly
granted to the user.

Considerations for column names longer than 30 bytes
If a length of a new column name is greater than 30 Unicode bytes, truncation occurs in the SQLNAME
field of the SQLDA when the column is described in an application. A column name in UTF8, and its
equivalent in the system EBCDIC CCSID, must be 128 bytes or less. For more information about long
column names, see Column names longer than 30 bytes (Db2 SQL).

Considerations for row access control and column access control
The view definition might reference a table for which row access control or column access control
is activated. If the view definition references a table for which row access control or column access

198 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authprivilegesandobjownership.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authprivilegesandobjownership.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_longcolumnnames.html

control is activated, the WITH CHECK OPTION clause must not be specified if the search conditions
from the view or from the underlying views will be checked during an insert or update operation. Note
that the WITH CHECK OPTION clause is ignored if such search conditions do not exist.

Read-only views
A view is read-only if one or more of the following statements is true of its definition:

• The first FROM clause identifies more than one table or view, or identifies a table function, a nested
table expression, a common table expression, or a collection-derived table.

• The first SELECT clause specifies the keyword DISTINCT.
• The outer fullselect contains a GROUP BY clause.
• The outer fullselect contains a HAVING clause.
• The first SELECT clause contains an aggregate function.
• It contains a subquery such that the base object of the outer fullselect, and of the subquery, is the

same table.
• The first FROM clause identifies a read-only view.
• The first FROM clause identifies a system-maintained materialized query table.
• The outer fullselect is not a subselect (contains a set operator).

A read-only view cannot be the object of an SQL data change statement or a TRUNCATE statement. A
view that includes GROUP BY or HAVING cannot be referred to in a subquery of a basic predicate.

Insertable views
A view is insertable if an INSTEAD OF trigger for the insert operation has been defined for the view, or
if at least one column of the view is updatable (independent of an INSTEAD OF trigger for update).

Considerations for implicitly hidden columns
It is possible that the result table of the fullselect will include a column of a base table that is defined
as implicitly hidden. This can occur when the implicitly hidden column is explicitly referenced in the
fullselect of the view definition. However, the corresponding column of the view does not inherit the
implicitly hidden attribute. Columns of a view cannot be defined as hidden.

Testing a view definition
You can test the semantics of your view definition by executing SELECT * FROM view-name.

The two forms of a view definition
Both the source and the operational form of a view definition are stored in the Db2 catalog. Those two
forms are not necessarily equivalent because the operational form reflects the state that exists when
the view is created. For example, consider the following statement:

 CREATE VIEW V AS SELECT * FROM S;

In this example, S is a synonym or alias for A.T, which is a table with columns C1, C2, and C3®. The
operational form of the view definition is equivalent to:

 SELECT C1, C2, C3 FROM A.T;

Adding columns to A.T using ALTER TABLE and dropping S does not affect the operational form of the
view definition. Thus, if columns are added to A.T or if S is redefined, the source form of the view
definition can be misleading.

View restrictions
A view definition cannot contain references to remote objects. A view definition cannot map to more
than 15 base table instances. A view definition cannot reference a declared global temporary table.

Restrictions involving pending definition changes
CREATE VIEW is not allowed if the view references a column on which there are pending definition
changes.

Chapter 9. Db2 SQL statements for SQL DI 199

Considerations for inline LOB columns
If the view references a table that contains an inline LOB column and Db2 determines that the inline
attribute can be passed on to the view, the view will then inherit the inline attribute, otherwise the
inline attribute is not inherited by the view.

Considerations for XML columns
If the view has an XML column and the column of the underlying base table for the view has an XML
type modifier, the view column has the same type modifier. However, if there is an instead of trigger
defined on the view, validation of the column, according to XML schemas in the type modifier, is not
enforced during insert or update to this view.

Examples for CREATE VIEW

Example 1
Create the view DSN8D10.VPROJRE1. PROJNO, PROJNAME, PROJDEP, RESPEMP, FIRSTNME,
MIDINIT, and LASTNAME are column names. The view is a join of tables and is therefore read-only.

 CREATE VIEW DSN8D10.VPROJRE1
 (PROJNO,PROJNAME,PROJDEP,RESPEMP,
 FIRSTNME,MIDINIT,LASTNAME)
 AS SELECT ALL
 PROJNO,PROJNAME,DEPTNO,EMPNO,
 FIRSTNME,MIDINIT,LASTNAME
 FROM DSN8D10.PROJ, DSN8D10.EMP
 WHERE RESPEMP = EMPNO;

In the example, the WHERE clause refers to the column EMPNO, which is contained in one of the base
tables but is not part of the view. In general, a column named in the WHERE, GROUP BY, or HAVING
clause need not be part of the view.

Example 2

Create the view DSN8D10.FIRSTQTR that is the UNION ALL of three fullselects, one for each month of
the first quarter of 2000. The common names are SNO, CHARGES, and DATE.

 CREATE VIEW DSN8D10.FIRSTQTR (SNO, CHARGES, DATE) AS
 SELECT SNO, CHARGES, DATE
 FROM MONTH1
 WHERE DATE BETWEEN '01/01/2000' and '01/31/2000'
 UNION All
 SELECT SNO, CHARGES, DATE
 FROM MONTH2
 WHERE DATE BETWEEN '02/01/2000' and '02/29/2000'
 UNION All
 SELECT SNO, CHARGES, DATE
 FROM MONTH3
 WHERE DATE BETWEEN '03/01/2000' and '03/31/2000';

Related concepts
Db2 views (Introduction to Db2 for z/OS)
Naming conventions (Db2 SQL)
Related tasks
Creating Db2 views (Db2 Administration Guide)

DELETE
The DELETE statement deletes rows from a table or view. Deleting a row from a view deletes the row from
the table on which the view is based if no INSTEAD OF DELETE trigger is defined for this view. If such a
trigger is defined, the trigger is activated instead.

The table or view can be at the current server or any Db2 subsystem with which the current server can
establish a connection.

There are two forms of this statement:

200 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/intro/src/tpc/db2z_views.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_createviews.html

• The searched DELETE form is used to delete one or more rows, optionally determined by a search
condition.

• The positioned DELETE form specifies that one or more rows corresponding to the current cursor
position are to be deleted.

Invocation for DELETE
This statement can be embedded in an application program or issued interactively. A positioned DELETE
is embedded in an application program. Both the embedded and interactive forms are executable
statements that can be dynamically prepared.

Authorization for DELETE
Authority requirements depend on whether the object identified in the statement is a user-defined table,
a catalog table, or a view, and whether the statement is a searched DELETE and SQL standard rules are in
effect:

When a table other than a catalog table is identified: The privilege set must include at least one of the
following:

• The DELETE privilege on the table
• Ownership of the table
• DBADM authority on the database that contains the table
• SYSADM authority

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

When a catalog table is identified: The privilege set must include at least one of the following:

• DBADM authority on the catalog database
• SYSCTRL authority
• SYSADM authority

When a view is identified: The privilege set must include at least one of the following:

• The DELETE privilege on the view
• SYSADM authority

If the search-condition in a searched DELETE contains a reference to a column of the table or view, or the
expression in the assignment-clause contains a reference to a column of the table or view, the privilege set
must include at least one of the following:

• The SELECT privilege on the table or view
• Ownership of the table or view
• DBADM authority on the database that contains the table, if the target is a table and that table that is

not a catalog table
• DATAACCESS
• SYSADM authority

If the search-condition in a searched DELETE includes a subquery, or if the assignment-clause includes
a scalar-fullselect or a row-fullselect, see Authorization for queries (Db2 SQL) for an explanation of the
authorization required.

The owner of a view, unlike the owner of a table, might not have DELETE authority on the view (or might
have DELETE authority without being able to grant it to others). The nature of the view itself can preclude
its use for DELETE. For more information, see the description of authority in CREATE VIEW (Db2 SQL).

If the statement is embedded in an application program, the privilege set is the privileges that are
held by the owner of the plan or package. If the statement is dynamically prepared, the privilege set is

Chapter 9. Db2 SQL statements for SQL DI 201

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_queriesauthorization.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createview.html

determined by the DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is summarized
in "DYNAMICRULES behaviors and authorization checking" in Dynamic preparation and execution (Db2
SQL). (For more information on these behaviors, including a list of the DYNAMICRULES bind option values
that determine them, see Authorization IDs and dynamic SQL (Db2 SQL).)

If the statement attempts to delete a row in the SYSIBM.SYSAUDITPOLICIES catalog table that is subject
to a tamper-proof audit policy, additional RACF authorization is required. During statement execution,
the primary authorization ID or one of the groups associated with the primary authorization ID must
be authorized to access the tamper-proof audit policy profile in RACF. For more information on the
authorization rules, see Db2 audit policy (Managing Security).

searched delete:

DELETE FROM table-name

view-name period-clause
1 correlation-name

include-column SET assignment-clause

WHERE search-condition fetch-clause

2

isolation-clause

SKIP LOCKED DATA

QUERYNO integer

Notes:
1 If the period-clause is specified, the fetch-clause must not be specified.
2 The same clause must not be specified more than one time.

positioned delete:

DELETE FROM table-name

view-name correlation-name

WHERE CURRENT OF

cursor-name

FOR ROW host-variable

integer-constant

OF ROWSET

period-clause:

FOR PORTION OF BUSINESS_TIME FROM value1 TO value2

BETWEEN value1 AND value2

include-column:

INCLUDE (

,

column-name data-type)

202 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_dynamicprepandexecution.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_dynamicprepandexecution.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authidsdynamicsql.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/seca/src/tpc/db2z_auditpolicy.html

data-type:

built-in-type

distinct-type

built-in-type:

Chapter 9. Db2 SQL statements for SQL DI 203

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

FOR BIT DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC ( integer)

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

assignment clause:

204 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

,

column-name = expression

NULL

(

,

column-name) = (

,
1

expression

NULL

row-fullselect
2

)

Notes:
1 The number of expressions and NULL keywords must match the number of column-names.
2 The number of columns in the select list must match the number of column-names.

isolation-clause:

WITH RR

RS

CS

Description for DELETE
FROM table-name or view-name

Identifies the table or view from which rows are to be deleted. The name must identify a table or
view that exists at the Db2 subsystem that is identified by the implicitly or explicitly specified location
name. The name must not identify:

• An auxiliary table
• A catalog table for which deletes are not allowed
• A view of such a catalog table
• A directory table
• A read-only view (see CREATE VIEW (Db2 SQL))
• A view that is defined with an instead of trigger if the fetch-clause is specified.
• A created global temporary table if the fetch-clause is specified.
• An accelerator-only table if the fetch-clause is specified.
• A system-maintained materialized query table
• A table that is implicitly created for an XML column
• An archive-enabled table if the SYSIBMADM.GET_ARCHIVE global variable is set to Y, the

ARCHIVESENSITIVE bind option is set to YES, and the operation is a positioned delete

In an IMS or CICS application, the Db2 subsystem that contains the identified table or view must be a
remote server that supports two-phase commit.

period-clause
Specifies that a period clause applies to the target of the delete operation. The same period name
must not be specified more than one time. If the target of the delete operation is a view:

• The FROM clause of the outer fullselect of the view definition must include a reference, directly or
indirectly, to an application-period temporal table.

• An INSTEAD OF trigger must not be defined for that view.

Chapter 9. Db2 SQL statements for SQL DI 205

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createview.html

FOR PORTION OF BUSINESS_TIME
Specifies that the delete only applies to row values for the portion of the BUSINESS_TIME period
in the row that is specified by the period clause. BUSINESS_TIME must be a period that is defined
on the table.

FOR PORTION OF BUSINESS_TIME must not be specified if the value of the CURRENT TEMPORAL
BUSINESS_TIME special register is not NULL when the BUSTIMESENSITIVE bind option is set to
YES.

FROM value1 TO value2
Specifies that the delete operation applies to rows for the period that is specified from value1 to
value2. No rows are deleted if value1 is greater than or equal to value2, or if value1 or value2 is
the null value.

This clause must not be specified for an inclusive-inclusive period.

For the period condition that is specified with FROM value1 TO value2, the period that is specified
by period-name in a row of the target table of the delete:

• Overlaps the beginning of the specified period if the value of the begin column is less than
value1 and the value of the end column is greater than value1.

• Overlaps the end of the specified period if the value of the end column is greater than or equal to
value2 and the value of the begin column is less than value2.

• Is fully contained within the specified period if the value for the begin column for period-name in
the row is greater than or equal to value1 and the value for the corresponding end column in the
row is less than or equal to value2.

• Is partially contained in the specified period if the row overlaps the beginning of the specified
period or the end of the specified period.

• Fully overlaps the specified period if the period in the row overlaps the beginning of the specified
period and overlaps the end of the specified period, .

• Is not contained in the period if both columns of period-name are less than or equal to value1 or
are greater than value2.

If the period period-name in a row is not contained in the specified period, the row is not deleted.
Otherwise, the delete operation is applied based on the specification of the PORTION OF clause
and how the values in the columns of period-name overlap the specified period as follows:

• If the period period-name in a row is fully contained within the specified period, the row is
deleted.

• If the period period-name in a row is partially contained in the specified period and overlaps the
beginning of the specified period:

– The row is deleted.
– A row is inserted using the original values from the row, except that the end column is set to

value1, and new values are used for other generated columns.
• If the period period-name in a row is partially contained in the specified period and overlaps the

end of the specified period:

– The row is deleted.
– A row is inserted using the original values from the row, except that the begin column is set to

value2, and new values are used for other generated columns.
• If the period period-name in a row fully overlaps the specified period:

– The row is deleted.
– A row is inserted using the original values from the row, except that the end column is set to

value1, a column defined as DATA CHANGE OPERATION is set to 'I', and new values are used
for other generated columns.

206 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

– An additional row is inserted using the original values from the row, except that the begin
column is set to value2, a column defined as DATA CHANGE OPERATION is set to 'I', and new
values are used for other generated columns.

Any existing delete triggers are activated for the rows that are deleted, and any existing insert
triggers are activated for the rows that are implicitly inserted.

BETWEEN value1 AND value2
Specifies that the delete operation applies to rows for the period that is specified from value1 up
to and including value2. No rows are deleted if value1 is greater than value2, or if value1 or value2
is the null value. This clause must not be specified for an inclusive-exclusive period.

For the period clause that is specified with BETWEEN value1 AND value2, period period-name in a
row in the target of the delete covers one of the following ranges:

• Overlaps the beginning of the specified period if the value of the begin column is less than
value1 and the value of the end column is greater than or equal to value1.

• Overlaps the end of the specified period if the value of the end column is greater than value2
and the value of the begin column is less than or equal to value2.

• Is fully contained within the specified period if the value for the begin column for period-name in
the row is greater than or equal to value1 and the value for the corresponding end column in the
row is less than or equal to value2.

• Is partially contained in the specified period if the row overlaps the beginning of the specified
period or the end of the specified period, but not both .

• fully overlaps the specified period if the period in the row overlaps the beginning of the specified
period and overlaps the end of the specified period.

• Is not contained in the period if both columns of period-name are less than value1 or greater
than value2.

If the period period-name in a row is not contained in the specified period, the row is not deleted.
Otherwise, the delete operation is based on the following items:

• The specification of the PORTION OF clause.
• How the values in the columns of period-name overlap the specified period.
• spu (smallest period unit), which depends on the data type of the columns of the period as

follows:

– For a period containing DATE columns, spu is 1 day.
– For a period containing TIMESTAMP(6) columns, spu is 1 microsecond.

Based on those items, the delete operation is applied as follows:

• If the period period-name in a row is fully contained within the specified period, the row is
deleted.

• If the period period-name in a row is partially contained in the specified period and overlaps the
beginning of the specified period:

– The row is deleted.
– A row is inserted using the original values from the row, except that the end column is set to

value1 - spu, and new values are used for other generated columns.
• If the period period-name in a row is partially contained in the specified period and overlaps the

end of the specified period:

– The row is deleted.
– A row is inserted using the original values from the row, except that the begin column is set to

value2 + spu, and new values are used for other generated columns.
• If the period period-name in a row fully overlaps the specified period:

– The row is deleted.

Chapter 9. Db2 SQL statements for SQL DI 207

– A row is inserted using the original values from the row, except that the end column is set to
value1 - spu, and new values are used for other generated columns.

– An additional row is inserted using the original values from the row, except that the begin
column is set to value2 + spu, and new values are used for other generated columns.

value1, value2
Specifies expressions that return a value of a built-in data type. The result of each expression
must be comparable to the data type of the columns of the specified period. See the comparison
rules described in Assignment and comparison (Db2 SQL). Each expression can contain any of the
following supported operands:

• A constant
• A special register
• A variable
• An array element specification
• A built-in scalar function whose arguments are supported operands. The scalar function must

not be AI_ANALOGY, AI_COMMONALITY, AI_SEMANTIC_CLUSTER, or AI_SIMILARITY.
• A CAST specification where the cast operand is a supported operand
• An expression that uses arithmetic operators and operands

Each expression must not have a timestamp precision that is greater than the precision of the
columns for the period.

If the begin and end columns of the period are defined as TIMESTAMP WITHOUT TIME ZONE,
each expression must not return a value of a timestamp with a time zone.

A period clause for a view must not contain an untyped parameter marker.

correlation-name
Specifies an alternate name that can be used within the search-condition to designate the table or
view. (For an explanation of correlation names, see Correlation names (Db2 SQL).)

include-column
Specifies a set of columns that are included, along with the columns of table-name or view-name, in
the result table of the DELETE statement when it is nested in the FROM clause of the outer fullselect
that is used in a subselect, SELECT statement, or in a SELECT INTO statement. The included columns
are appended to the end of the list of columns that is identified by table-name or view-name. If no
value is assigned to a column that is specified by an include-column, a NULL value is returned for that
column.
INCLUDE

Introduces a list of columns that are to be included in the result table of the DELETE statement.
The included columns are only available if the DELETE statement is nested in the FROM clause of
a SELECT statement or a SELECT INTO statement.

column-name
Specifies the name for a column of the result table of the DELETE statement that is not the same
name as another included column nor a column in the table or view that is specified in table-name
or view-name.

data-type
Specifies the data type of the included column. The included columns are nullable.
built-in-type

Specifies a built-in data type. See CREATE TABLE (Db2 SQL) for a description of each built-in
type.

The CCSID 1208 and CCSID 1200 clauses must not be specified for an INCLUDE column.

distinct-type
Specifies a distinct type. Any length, precision, or scale attributes for the column are those of
the source type of the distinct type as specified by using the CREATE TYPE statement.

208 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_assignmentandcomparison.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_correlationnames.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createtable.html

SET
Introduces the assignment of values to columns.
assignment-clause

The assignment-clause introduces a list of one or more column-names and the values that are to
be assigned to the columns. The column-names are the only columns that can be set using the
assignment-clause.

column-name
Identifies an INCLUDE column.

Assignments to included columns are only processed when the DELETE statement is nested in the
FROM clause of a SELECT statement or a SELECT INTO statement. The columns that are named in
the INCLUDE clause are the only columns that can be set using the SET clause. The null value is
returned for an included column that is not set by using an explicit SET clause.

expression
Indicates the new value of the column. The expression is any expression of the type described in
Expressions (Db2 SQL). It must not include an aggregate function.

A column-name in an expression must identify a column of the table or view. For each row that is
deleted, the value of the column in the expression is the value of the column in the row before the
row is deleted.

NULL
Specifies the null value as the new value of the column. Specify NULL only for nullable columns.

row-fullselect
Specifies a fullselect that returns a single row. The column values are assigned to each of the
corresponding column-names. If the fullselect returns no rows, the null value is assigned to each
column; an error occurs if any column that is to be deleted is not nullable. An error also occurs if
there is more than one row in the result.

If the fullselect refers to columns that are to be deleted, the value of such a column in the
fullselect is the value of the column in the row before the row is deleted.

WHERE
Specifies the rows to be deleted. You can omit the clause, give a search condition, or specify a cursor.
For a created temporary table or a view of a created temporary table, you must omit the clause. When
the clause is omitted, all the rows of the table or view are deleted.
search-condition

Is any search condition as described in Language elements (Db2 SQL). Each column-name in the
search condition, other than in a subquery, must identify a column of the table or view.

The search condition is applied to each row of the table or view and the deleted rows are those for
which the result of the search condition is true.

If the search condition contains a subquery, the subquery can be thought of as being executed
each time the search condition is applied to a row, and the results used in applying the search
condition. In actuality, a subquery with no correlated references is executed just once, whereas it
is possible that a subquery with a correlated reference must be executed once for each row.

Let T2 denote the object table of a DELETE statement and let T1 denote a table that is referred to
in the FROM clause of a subquery of that statement. T1 must not be a table that can be affected by
the DELETE on T2. Thus, the following rules apply:

• T1 must not be a dependent of T2 in a relationship with a delete rule of CASCADE or SET NULL,
unless the result of the subquery is materialized before the DELETE action is executed.

• T1 must not be a dependent of T3 in a relationship with a delete rule of CASCADE or SET NULL if
deletes of T2 cascade to T3.

fetch-clause
Limits the effects of the delete to a subset of the qualifying rows. See fetch-clause (Db2 SQL) for
details.

Chapter 9. Db2 SQL statements for SQL DI 209

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_expressionsintro.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_langelementsoverview.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_fetchclause.html

WHERE CURRENT OF cursor-name
Identifies the cursor to be used in the delete operation. cursor-name must identify a declared cursor
as explained in the description of the DECLARE CURSOR statement in DECLARE CURSOR (Db2 SQL).
If the DELETE statement is embedded in a program, the DECLARE CURSOR statement must include
select-statement rather than statement-name.

The table or view named must also be named in the FROM clause of the SELECT statement of the
cursor, and the result table of the cursor must be capable of being deleted. For an explanation of
read-only result tables, see Read-only cursors in DECLARE CURSOR (Db2 SQL). Note that the object
of the DELETE statement must not be identified as the object of the subquery in the WHERE clause of
the SELECT statement of the cursor.

If the cursor is ambiguous and the plan or package was bound with CURRENTDATA(NO), Db2 might
return an error to the application if DELETE WHERE CURRENT OF is attempted for any of the following:

• A cursor that is using block fetching
• A cursor that is using query parallelism
• A cursor that is positioned on a row that has been modified by this or another application process

When the DELETE statement is executed, the cursor must be open and positioned on a row or rowset
of the result table.

• If the cursor is positioned on a single row, that row is the one deleted, and after the deletion
the cursor is positioned before the next row of its result table. If there is no next row, the cursor
positioned after the last row.

• If the cursor is positioned on a rowset, all rows corresponding to the rows of the current rowset are
deleted, and after the deletion the cursor is positioned before the next rowset of its result table. If
there is no next rowset, the cursor positioned after the last rowset.

A positioned DELETE must not be specified for a cursor that references a view on which an instead of
delete trigger is defined, even if the view is an updatable view.

FOR ROW n OF ROWSET
Specifies which row of the current rowset is to be deleted. The corresponding row of the rowset is
deleted, and the cursor remains positioned on the current rowset. If the rowset consists of a single
row, or all other rows in the rowset have already been deleted, then the cursor is positioned before
the next rowset of the result table. If there is no next rowset, the cursor is positioned after the last
rowset.

host-variable or integer-constant is assigned to an integral value k. If host-variable is specified, it must
be an exact numeric type with scale zero, must not include an indicator variable, and k must be in the
range 1 - 32767. The cursor must be positioned on a rowset, and the specified value must be a valid
value for the set of rows most recently retrieved for the cursor.

If the specified row cannot be deleted, an error is returned. It is possible that the specified row is
within the bounds of the rowset most recently requested, but the current rowset contains less than
the number of rows that were implicitly or explicitly requested when that rowset was established.

If, via a positioned delete against a sensitive static cursor that specifies a particular row of the current
rowset, and that row has been identified as a delete hole (that is, a row in the result table whose
corresponding row has deleted from the base table), an error is returned.

If, via a positioned delete against a sensitive static cursor that specifies a particular row of the
current rowset, and that row has been identified as an update hole (that is, a row in the result table
whose corresponding row has been updated so that it no longer satisfies a predicate of the SELECT
statement), an error is returned.

It is possible for another application process to delete a row in the base table of the SELECT
statement so that the specified row of the cursor no longer has a corresponding row in the base
table. An attempt to delete such a row results in an error.

If the FOR ROW n OF ROWSET clause is not specified, the current position of cursor determines the
rows that are affected by the statement:

210 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_declarecursor.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_declarecursor.html

• If the cursor is positioned on a single row, that row is the one deleted. After the row is deleted,
the cursor is positioned before the next row of its result table. If there is no next row, the cursor
positioned after the last row.

• If the cursor is positioned on a rowset, all rows corresponding to the rows of the current rowset
are deleted. After the rows are deleted, the cursor is positioned before the next rowset of its result
table. If there is no next rowset, the cursor positioned after the last rowset.

isolation-clause
Specifies the isolation level used when locating the rows to be deleted by the statement.
WITH

Introduces the isolation level, which may be one of the following:
RR

Repeatable read
RS

Read stability
CS

Cursor stability

The default isolation level of the statement is the isolation level of the package or plan in which the
statement is bound, with the package isolation taking precedence over the plan isolation. When a
package isolation is not specified, the plan isolation is the default.

SKIP LOCKED DATA
The SKIP LOCKED DATA clause specifies that rows are skipped when incompatible locks are held on
the row by other transactions. These rows can belong to any accessed table that is specified in the
statement. SKIP LOCKED DATA can be used only when isolation CS or RS is in effect and applies only
to row level or page level locks.

For DELETE statements, SKIP LOCKED DATA can be specified only in the searched form of the DELETE
statement. SKIP LOCKED DATA is ignored if it is specified when the isolation level that is in effect
is repeatable read (WITH RR) or uncommitted read (WITH UR). The default isolation level of the
statement depends on the isolation level of the package or plan with which the statement is bound,
with the package isolation taking precedence over the plan isolation. When a package isolation is not
specified, the plan isolation is the default.

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output and trace records. The
number is used for the QUERYNO column of the plan table for the rows that contain information about
this SQL statement. This number is also used in the QUERYNO column of the SYSIBM.SYSSTMT and
SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number associated with the SQL statement is the statement number
assigned during precompilation. Thus, if the application program is changed and then precompiled,
that statement number might change.

Using the QUERYNO clause to assign unique numbers to the SQL statements in a program is helpful:

• For simplifying the use of optimization hints for access path selection
• For correlating SQL statement text with EXPLAIN output in the plan table

For more information about enabling and using optimization hints, see Influencing access path
selection (Db2 Performance)

For information on accessing the plan table, see Investigating SQL performance by using EXPLAIN
(Db2 Performance).

Notes for DELETE

Chapter 9. Db2 SQL statements for SQL DI 211

https://www.ibm.com/docs/en/SSEPEK_13.0.0/perf/src/tpc/db2z_influenceaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/perf/src/tpc/db2z_influenceaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html

Delete operation errors:
If an error occurs during the execution of any delete operation, no changes are made. If an error
occurs during the execution of a positioned delete, the position of the cursor is unchanged. However,
it is possible for an error to make the position of the cursor invalid, in which case the cursor is closed.
It is also possible for a delete operation to cause a rollback, in which case the cursor is closed.

Position of cursor:
If an application process deletes a row on which any of its cursors are positioned, those cursors are
positioned before the next row of the result table. Let C be a cursor that is positioned before row R
(as a result of an OPEN, a DELETE through C, a DELETE through some other cursor, or a searched
DELETE). In the presence of an SQL data change statements that affect the base table from which R
is derived, the next FETCH operation referencing C does not necessarily position C on R. For example,
the operation can position C on R', where R' is a new row that is now the next row of the result table.

Locking:
Unless appropriate locks already exist, one or more exclusive locks are acquired during the execution
of a successful delete operation. Until the locks are released by a commit or rollback operation, the
effect of the delete operation can only be perceived by the application process that performed the
deletion and the locks can prevent other application processes from performing operations on the
table. Locks are not acquired when rows are deleted from a declared temporary table unless all the
rows are deleted (DELETE FROM T). When all the rows are deleted from a declared temporary table,
a segmented table lock is acquired on the pages for the table and no other table in the table space is
affected.

Triggers:
Delete operations can cause triggers to be activated. A trigger might cause other statements to be
executed or might raise error conditions that are based on the deleted rows. If a DELETE statement
on a view causes an INSTEAD OF trigger to be activated, referential integrity is checked against the
updates that are performed in the trigger and not against the underlying tables of the view that cause
the trigger to be activated.

Triggers defined on a table for which row or column access control is also enforced:
Row permissions and column masks are not applied to the initial values of transition variables and
transition tables. Row and column access control that is enforced for the triggering table is also
ignored for any transition variables or transition tables that are referenced in the trigger body or that
are passed as arguments to user-defined functions that are invoked in the trigger body. To ensure
that no security concern exists for SQL statements in the trigger action (access to sensitive data in
transition variables and transition tables, for example), the trigger must be secure. For information
about securing a trigger, see CREATE TRIGGER (basic) (Db2 SQL) and ALTER TRIGGER (basic) (Db2
SQL).

Referential integrity:
If the identified table or the base table of the identified view is a parent, the rows selected must not
have any dependents in a relationship with a delete rule of RESTRICT or NO ACTION. In addition, the
delete operation must not cascade to descendent rows that have dependents in a relationship with a
delete rule of RESTRICT or NO ACTION.

If the delete operation is not prevented by a RESTRICT or NO ACTION delete rule, the selected rows
are deleted and any rows that are dependents of the selected rows are also deleted.

• The nullable columns of foreign keys in any rows that are their dependents in a relationship
governed by a delete rule of SET NULL are set to the null value.

• Any rows that are their dependents in a relationship governed by a delete rule of CASCADE are also
deleted, and these rules apply, in turn, to those rows.

The only difference between NO ACTION and RESTRICT is when the referential constraint is enforced.
RESTRICT (IBM SQL rules) enforces the rule immediately, and NO ACTION (SQL standard rules)
enforces the rule at the end of the statement. This difference matters only in the case of a searched
DELETE involving a self-referencing constraint that deletes more than one row. NO ACTION might
allow the DELETE to be successful where RESTRICT (if it were allowed) would prevent it.

212 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createtrigger.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_altertrigger.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_altertrigger.html

Check constraint:
A check constraint can prevent the deletion of a row in a parent table when there are dependents in a
relationship with a delete rule of SET NULL. If deleting a row in the parent table would cause a column
in a dependent table to be set to null and there is a check constraint that specifies that the column
must not be null, the row is not deleted.

Referential constraints defined on a table for which row or column access control is enforced:
Row and column access controls do not effect referential constraints.

Nesting user-defined functions or stored procedures:
A DELETE statement can implicitly or explicitly refer to user-defined functions or stored procedures.
This is known as nesting of SQL statements. A user-defined function or stored procedure that is
nested within the DELETE must not access the table from which you are deleting rows.

Indexes with VARBINARY columns:
If the identified table has an index on a VARBINARY column or a column that is a distinct type that
is based on VARBINARY data type, that index column cannot specify the DESC attribute. To use the
SQL data change operation on the identified table, either drop the index or alter the data type of the
column to BINARY and then rebuild the index.

Number of rows deleted:
Except as noted below, a delete operation sets SQLERRD(3) in the SQLCA to the number of deleted
rows. This number does not include any rows that were deleted as a result of a CASCADE delete rule
or a trigger.

DELETE FROM T without a WHERE clause deletes all rows of T. If a table T is contained in a segmented
table space and is not a parent table, this deletion will be performed without accessing T. The
SQLERRD(3) field is set to -1. (For a complete description of the SQLCA, including exceptions to the
above, see SQL communication area (SQLCA) (Db2 SQL).

Rules for positioned DELETE with SENSITIVE STATIC scrollable cursor:
When a SENSITIVE STATIC scrollable cursor has been declared, the following rules apply:

• Delete attempt of delete holes or update holes. If, with a positioned delete against a SENSITIVE
STATIC scrollable cursor, an attempt is made to delete a row that has been identified as a delete
hole (that is, a row in the result table whose corresponding row has been deleted from the base
table), an error occurs.

If an attempt is made to delete a row that has been identified as an update hole (that is, a row in the
result table whose corresponding row has been updated so that it no longer satisfies the predicate
of the SELECT statement), an error occurs.

• Delete operations. Positioned delete operations with SENSITIVE STATIC scrollable cursors perform
as follows:

1. The SELECT list items in the target row of the base table of the cursor are compared with the
values in the corresponding row of the result table (that is, the result table must still agree with
the base table). If the values are not identical, the delete operation is rejected and an error
occurs. The operation can be attempted again after a successful FETCH SENSITIVE has occurred
for the target row.

2. The WHERE clause of the SELECT statement is re-evaluated to determine whether the current
values in the base table still satisfy the search criteria. The values in the SELECT list are
compared to determine that these values have not changed. If the WHERE clause evaluates
as true, and the values in the SELECT list have not changed, the delete operation is allowed
to proceed. Otherwise, an error occurs, the delete operation is rejected, and an update hole
appears in the cursor.

3. After the base table row is successfully deleted, the temporary result table is updated and the
row is marked as a delete hole.

• Rollback of delete holes. Delete holes are usually permanent. Once a delete hole is identified, it
remains a delete hole until the cursor is closed. However, if a positioned delete using this cursor
actually caused the creation of the hole (that is, this cursor was used to make the changes that

Chapter 9. Db2 SQL statements for SQL DI 213

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sqlcommunicationsareaintro.html

resulted in the hole) and the delete was subsequently rolled back, then the row is no longer
considered a delete hole.

• Result table. Any deletes, either positioned or searched, to rows of the base table on which a
SENSITIVE STATIC scrollable cursor is defined are reflected in the result table if a positioned update
or positioned delete is attempted with the scrollable cursor. A SENSITIVE STATIC scrollable cursor
sees these deletes when a FETCH SENSITIVE is attempted.

If the FOR ROW n OF ROWSET clause is not specified, the entire rowset fetched by the most recent
FETCH statement that returned data for the specified cursor is deleted.

Referencing columns that will be updated:
If a cursor uses FETCH statements to retrieve columns that will be updated later, specify FOR UPDATE
OF when you select the columns. Then specify WHERE CURRENT OF in the subsequent UPDATE
or DELETE statements. These clauses prevent Db2 from selecting access through an index on the
columns that are being updated, which might otherwise cause Db2 to read the same row more than
once.

For more information, see Updating previously retrieved data (Db2 Application programming and
SQL).

Deleting rows from a table with multilevel security:
When you delete rows from a table with multilevel security, Db2 compares the security label of the
user (the primary authorization ID) to the security label of the row. The delete proceeds according to
the following rules:

• If the security label of the user and the security label of the row are equivalent, the row is deleted.
• If the security label of the user dominates the security label of the row, the user's write-down

privilege determines the security the result of the DELETE statement:

– If the user has write-down privilege or write-down control is not enabled, the row is deleted.
– If the user does not have write-down privilege and write-down control is enabled, the row is not

deleted.
• If the security label of the row dominates the security label of the user, the row is not deleted.

Deleting rows from a table for which row and column access control is enforced:
When a DELETE statement is issued for a table for which row access control is enforced, the rules
specified in the row permissions affect whether a row can be deleted. Typically those rules are based
on the authorization ID or role of the process.

A table for which row access control is enforced has at least one row permission, the default row
permission that prevents all access to the table. When multiple row permissions are defined and
enabled for a table, a row access control search condition is derived by using the logical OR operator
to the search condition in each enabled permission. This row access control search condition is
applied to the table to determine which rows are accessible to the authorization ID or role of the
DELETE statement. If the WHERE clause is specified in the DELETE statement, the user-specified
predicates are applied on the accessible rows to determine the rows to be deleted. If there is no
WHERE clause, the accessible rows are the rows to be deleted.

If there are rows to be deleted, and there is a DELETE trigger for the table, the trigger is activated.

When a DELETE statement is issued for a table for which column access control is enforced, column
masks do not affect the DELETE statement.

The preceding rules are not applicable to include-columns. include-columns are subject to the rules
for the select list because they are not the columns of the object table of the DELETE statement.

Other SQL statements in the same unit of work:
The following statements cannot follow a DELETE statement in the same unit of work:

• An ALTER TABLE statement that changes the data type of a column (ALTER COLUMN SET DATA
TYPE)

214 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/apsg/src/tpc/db2z_updateretrieveddata.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/apsg/src/tpc/db2z_updateretrieveddata.html

• An ALTER INDEX statement that changes the padding attribute of an index with varying-length
columns (PADDED to NOT PADDED or vice versa)

• A CREATE TABLE statement that creates an accelerator-only table.
• An INSERT, UPDATE or DELETE statement that updates an accelerator-only table from a different

accelerator

Considerations for a system-period temporal table:
If the DELETE statement has a search condition that contains a correlated subquery that references
the history table (explicitly referencing the name of the history table or implicitly referenced through
the use of a period specification in the FROM clause), the deleted rows that are stored as historical
rows are potentially visible for delete operations for the rows that are subsequently processed for the
statement.

The mass delete operation is not used for a DELETE statement that does not contain a search
condition if the table is defined as a system-period temporal table.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value, the underlying
target of the DELETE statement cannot be a system-period temporal table. This restriction applies
regardless of whether the system-period temporal table is directly or indirectly referenced.

Considerations for a history table:
When a row of a system-period temporal table is deleted, a historical copy of the row is inserted
into the corresponding history table and the end timestamp of the historical row is captured in the
form of a system determined value that corresponds to the time of the data change operation.
If the value of the SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at
the time of the data change operation is null, the value is generated using a reading of the
time-of-day clock during execution of the first data change statement in the unit of work that
requires a value to be assigned to a row-begin column or transaction-start-ID column in a table,
or a row in a systemperiod temporal table is deleted. Otherwise, the value is assigned from the
SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the time of the data
change operation. If a conflicting transaction is updating the same row in the system-period temporal
table and the row that is to be inserted into the associated history table will have a value for the end
column that is greater than the value of the corresponding begin column, an error is returned.

Considerations for an application-period temporal table:
A DELETE statement that contains a FOR PORTION OF BUSINESS_TIME clause for an application-
period temporal table indicates the two points in time between which the specified delete operations
are effective.

Suppose that FOR PORTION OF BUSINESS_TIME is specified and the period value for a row is only
partially contained in the period that is specified from value1 up to value2 or between value1 and
value2. (The period value for a row is specified by the values of the begin column and end column.) In
this case, the row is deleted and one or two rows are automatically inserted to represent the portion
of the row that is not deleted. For each row that is automatically inserted as a result of a delete
operation on the table, new values are generated for each generated column in the application-period
temporal table. If a generated column is defined as part of a unique or primary key, parent key in a
referential constraint, or unique index, an automatic insert might violate a constraint or index. In this
case, an error is returned.

When an application-period table is the target of a DELETE statement and the value in effect for the
CURRENT TEMPORAL BUSINESS_TIME special register is not the null value, Db2 adds the following
additional predicates to the statement:

• inclusive-exclusive period:

 bt_begin <= CURRENT TEMPORAL BUSINESS_TIME AND
bt_end > CURRENT TEMPORAL BUSINESS_TIME

• inclusive-inclusive period:

 bt_begin <= CURRENT TEMPORAL BUSINESS_TIME AND
bt_end >= CURRENT TEMPORAL BUSINESS_TIME

Chapter 9. Db2 SQL statements for SQL DI 215

In the preceding code, bt_begin and bt_end are the begin and end columns of the BUSINESS_TIME
period of the target table of the DELETE statement.

Deleting rows from archive-enabled tables:
If the target of the DELETE statement is an archive-enabled table, existing rows in the associated
archive table are not affected.

When a row of an archive-enabled table is deleted, the effect on the associated archive table
is determined by the setting of the SYSIBMADM.MOVE_TO_ARCHIVE global variable. If the global
variable is set to Y, a copy of a deleted row is inserted into the associated archive table. Otherwise, a
copy of a deleted row is not inserted into the associated archive table.

A data change statement cannot reference an archive-enabled table when a system-period temporal
table or application-period temporal table is also referenced.

Syntax alternatives:
For compatibility with other SQL implementations, the FROM keyword that immediately follows the
DELETE keyword can be omitted.

Examples for DELETE

Assume that the statements in the examples are embedded in PL/I programs.

Example 1
From the table DSN8D10.EMP delete the row on which the cursor C1 is currently positioned.

 EXEC SQL DELETE FROM DSN8D10.EMP WHERE CURRENT OF C1;

Example 2
From the table DSN8D10.EMP, delete all rows for departments E11 and D21.

 EXEC SQL DELETE FROM DSN8D10.EMP
 WHERE WORKDEPT = 'E11' OR WORKDEPT = 'D21';

Example 3
From employee table X, delete the employee who has the most absences.

 EXEC SQL DELETE FROM EMP X
 WHERE ABSENT = (SELECT MAX(ABSENT) FROM EMP Y
 WHERE X.WORKDEPT = Y.WORKDEPT);

Example 4
Assuming that cursor CS1 is positioned on a rowset consisting of 10 rows of table T1, delete all 10
rows in the rowset.

EXEC SQL DELETE FROM T1 WHERE CURRENT OF CS1;

Example 5
Assuming cursor CS1 is positioned on a rowset consisting of 10 rows of table T1, delete the fourth row
of the rowset.

EXEC SQL DELETE FROM T1 WHERE CURRENT OF CS1 FOR ROW 4 OF ROWSET;

Example 6
Delete rows in table T1 if the value for column COL2 matches the cardinality of array INTA. The array
INTA is specified as an argument for the CARDINALITY function in the DELETE statement.

CREATE TYPE INTARRAY AS INTEGER ARRAY[6];
CREATE VARIABLE INTA AS INTARRAY;
SET INTA = ARRAY[1, 2, 3, 4, 5];
CREATE TABLE T1 (COL1 CHAR(7), COL2 INT);
INSERT INTO T1 VALUES('abc', 10);
DELETE FROM T1 WHERE COL2 = CARDINALITY(INTA);

216 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Example 7
Delete only 3 rows from table T1 where the value of column C2 is greater than 10.

DELETE FROM T1
 WHERE C2 > 10
 FETCH FIRST 3 ROWS ONLY;

SET CURRENT TEMPORAL BUSINESS_TIME
The SET CURRENT TEMPORAL BUSINESS_TIME statement changes the value of the CURRENT TEMPORAL
BUSINESS_TIME special register.

Invocation for SET CURRENT TEMPORAL BUSINESS_TIME
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET CURRENT TEMPORAL BUSINESS_TIME
None required.

Syntax for SET CURRENT TEMPORAL BUSINESS_TIME

SET CURRENT TEMPORAL BUSINESS_TIME
=

NULL

expression

Description for SET CURRENT TEMPORAL BUSINESS_TIME
NULL

Specifies the null value.
expression

Specifies an expression that returns the null value or the value of one of the following built-in data
types:

• Timestamp
• Character string
• Graphic string

If the expression is a character or graphic string, it must meet the following requirements:

• It must not be a CLOB or DBCLOB.
• The value of the expression must be a valid character-string or graphic-string representation of a

timestamp.
• The result of the expression must be castable to TIMESTAMP(12).

expression can contain any of the following supported operands:

• Constant
• Special register
• Variable (host variable, SQL parameter, SQL variable, or global variable)
• Scalar function whose arguments are supported operands. The scalar function must not be

AI_ANALOGY, AI_COMMONALITY, AI_SEMANTIC_CLUSTER or AI_SIMILARITY.
• CAST specification where the cast operand is a supported operand
• Expression that uses arithmetic operators and operands

Chapter 9. Db2 SQL statements for SQL DI 217

For more information, see:

String representations of datetime values (Db2 SQL)
Casting between data types (Db2 SQL)

Notes for SET CURRENT TEMPORAL BUSINESS_TIME
Transactions

The SET CURRENT TEMPORAL BUSINESS_TIME statement is not a committable operation. The
ROLLBACK statement has no effect on CURRENT TEMPORAL BUSINESS_TIME.

Effects on other special registers
The setting of the CURRENT TEMPORAL BUSINESS_TIME special register does not affect other special
registers, such as the CURRENT DATE and CURRENT TIMESTAMP special registers.

Examples for SET CURRENT TEMPORAL BUSINESS_TIME
Example of setting the special register to a valid value

Both of the following statements set the CURRENT TEMPORAL BUSINESS_TIME special register to
'2008-01-06-00.00.00.000000000000'.

SET CURRENT TEMPORAL BUSINESS_TIME = TIMESTAMP('2008-01-01') + 5 DAYS ;
SET CURRENT TEMPORAL BUSINESS_TIME = '2008-01-06-00.00.00.000000000000';

Example of how setting the special register affects subsequent SQL statements
In the following example, the first statement sets the CURRENT TEMPORAL BUSINESS_TIME special
register to last month. Assume that table att1 is an application-period temporal table. The setting of
the CURRENT TEMPORAL BUSINESS_TIME special register affects the update of att1.

SET CURRENT TEMPORAL BUSINESS_TIME = CURRENT TIMESTAMP - 1 MONTH
UPDATE att1 SET c1 = 5 WHERE pk = 100

Assume that the att1 table has columns bt_begin and bt_end to indicate the beginning and end of the
BUSINESS_TIME period. In this example, Db2 interprets the UPDATE statement as follows:

UPDATE att1 SET c1 = 5 WHERE pk = 100
AND bt_begin <= CURRENT TEMPORAL BUSINESS_TIME
AND bt_end > CURRENT TEMPORAL BUSINESS_TIME

Example of setting the special register so that it does not affect subsequent SQL statements
The following statement sets the CURRENT TEMPORAL BUSINESS_TIME special register to the null
value. Subsequent SQL statements that reference application-period temporal tables are not affected
by the CURRENT TEMPORAL BUSINESS_TIME special register.

SET CURRENT TEMPORAL BUSINESS_TIME = NULL

Related concepts
Data types (Db2 SQL)
Related reference
CURRENT TEMPORAL BUSINESS_TIME (Db2 SQL)

SET CURRENT TEMPORAL SYSTEM_TIME
The SET CURRENT TEMPORAL SYSTEM_TIME statement changes the value of the CURRENT TEMPORAL
SYSTEM_TIME special register.

Invocation for SET CURRENT TEMPORAL SYSTEM_TIME
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

218 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_datetimestringrepresentation.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_castingbetweendatatypes.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_datatypesintro.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_currenttemporalbusinesstime.html

Authorization for SET CURRENT TEMPORAL SYSTEM_TIME
None required.

Syntax for SET CURRENT TEMPORAL SYSTEM_TIME

SET CURRENT TEMPORAL SYSTEM_TIME
=

NULL

expression

Description for SET CURRENT TEMPORAL SYSTEM_TIME
NULL

Specifies the null value.
expression

Specifies an expression that returns the null value or the value of one of the following built-in data
types:

• Timestamp
• Character string
• Graphic string

If the expression is a character or graphic string, it must meet the following requirements:

• It must not be a CLOB or DBCLOB.
• The value of the expression must be a valid character-string or graphic-string representation of a

timestamp.
• The result of the expression must be castable to TIMESTAMP(12).

expression can contain any of the following supported operands:

• Constant
• Special register
• Variable (host variable, SQL parameter, SQL variable, or global variable)
• Scalar function whose arguments are supported operands
• Scalar function whose arguments are supported operands. The scalar function must not be

AI_ANALOGY, AI_COMMONALITY, AI_SEMANTIC_CLUSTER or AI_SIMILARITY.
• CAST specification where the cast operand is a supported operand
• Expression that uses arithmetic operators and operands

For more information, see:

String representations of datetime values (Db2 SQL)
Casting between data types (Db2 SQL)

Notes for SET CURRENT TEMPORAL SYSTEM_TIME
Transactions

The SET CURRENT TEMPORAL SYSTEM_TIME statement is not a committable operation. The
ROLLBACK statement has no effect on CURRENT TEMPORAL SYSTEM_TIME.

Effects on other special registers
The setting of the CURRENT TEMPORAL SYSTEM_TIME special register does not affect other special
registers, such as the CURRENT DATE and CURRENT TIMESTAMP special registers.

Chapter 9. Db2 SQL statements for SQL DI 219

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_datetimestringrepresentation.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_castingbetweendatatypes.html

Examples for SET CURRENT TEMPORAL SYSTEM_TIME
Example of setting the special register to a valid value

Both of the following statements set the CURRENT TEMPORAL SYSTEM_TIME special register to
'2008-01-06-00.00.00.000000000000'.

SET CURRENT TEMPORAL SYSTEM_TIME = TIMESTAMP('2008-01-01') + 5 DAYS;
SET CURRENT TEMPORAL SYSTEM_TIME = '2008-01-06-00.00.00.000000000000';

Example of setting the special register so that it does not affect subsequent SQL statements
The following statement sets the CURRENT TEMPORAL SYSTEM_TIME special register to the null
value. Subsequent SQL statements that reference system-period temporal tables are not affected by
the CURRENT TEMPORAL SYSTEM_TIME special register.

SET CURRENT TEMPORAL SYSTEM_TIME = NULL

Related concepts
Data types (Db2 SQL)
Related reference
CURRENT TEMPORAL SYSTEM_TIME (Db2 SQL)

UPDATE
The UPDATE statement updates the values of specified columns in rows of a table or view. Updating a row
of a view updates a row of its base table if no INSTEAD OF UPDATE trigger is defined for this view. If such
a trigger is defined, the trigger is activated instead.

The table or view can exist at the current server or at any Db2 subsystem with which the current server
can establish a connection.

There are two forms of this statement:

• The searched UPDATE form is used to update one or more rows optionally determined by a search
condition.

• The positioned UPDATE form specifies that one or more rows corresponding to the current cursor
position are to be updated.

Invocation for UPDATE
This statement can be embedded in an application program or issued interactively. A positioned UPDATE
can be embedded in an application program. Both forms are executable statements that can be
dynamically prepared.

Authorization for UPDATE
Authority requirements depend on whether the object identified in the statement is a user-defined table,
a catalog table for which updates are allowed, or a view, and whether SQL standard rules are in effect:

When a user-defined table is identified: The privilege set must include at least one of the following:

• DATAACCESS authority
• The UPDATE privilege on the table
• The UPDATE privilege on each column to be updated
• Ownership of the table
• DBADM authority on the database that contains the table
• SYSADM authority

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

220 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_datatypesintro.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_currenttemporalsystemtime.html

When a catalog table is identified: The privilege set must include at least one of the following:

• ACCESSCTRL authority
• DATAACCESS authority
• The UPDATE privilege on each column to be updated
• DBADM authority on the catalog database
• Installation SYSOPR authority
• SYSCTRL authority
• SYSADM authority
• SYSADM authority
• System DBADM authority

When a view is identified: The privilege set must include at least one of the following:

• DATAACCESS authority
• SYSADM authority
• UPDATE privilege on the view
• UPDATE privilege on each column to be updated

If the expression in the assignment-clause contains a reference to a column of the table or view, or if the
search-condition in a searched UPDATE contains a reference to a column of the table or view, the privilege
set must include at least one of the following:

• The SELECT privilege on the table or view
• Ownership of the table or view
• DBADM authority on the database that contains the table, if the target is a table and that table that is

not a catalog table
• DATAACCESS
• SYSADM authority

When FOR PORTION OF BUSINESS_TIME is specified: The privilege set must include at least one of the
following:

• The UPDATE privilege on the columns of the BUSINESS_TIME period
• The UPDATE privilege on the table
• Ownership of the table or view
• DBADM authority on the database that contains the table, if the target is a table and that table that is

not a catalog table
• DATAACCESS
• SYSADM authority

If the search-condition in a searched UPDATE includes a subquery, or if the assignment-clause includes
a scalar-fullselect or a row-fullselect, see Authorization for queries (Db2 SQL) for an explanation of the
authorization required.

The owner of a view, unlike the owner of a table, might not have UPDATE authority on the view (or might
have UPDATE authority without being able to grant it to others). The nature of the view itself can preclude
its use for UPDATE. For more information, see the discussion of authority in CREATE VIEW (Db2 SQL).

If the statement attempts to update a row in the SYSIBM.SYSAUDITPOLICIES catalog table that is subject
to a tamper-proof audit policy, additional RACF authorization is required. During statement execution,
the primary authorization ID or one of the groups associated with the primary authorization ID must
be authorized to access the tamper-proof audit policy profile in RACF. For more information on the
authorization rules, see Db2 audit policy (Managing Security).

Chapter 9. Db2 SQL statements for SQL DI 221

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_queriesauthorization.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createview.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/seca/src/tpc/db2z_auditpolicy.html

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the statement is dynamically prepared, the
privilege set is determined by the DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is
summarized in Dynamic preparation and execution (Db2 SQL). (For more information on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them, see Authorization IDs and
dynamic SQL (Db2 SQL)).

searched update:

UPDATE table-name

view-name period-clause correlation-name

include-column

SET assignment-clause

WHERE search-condition

1

isolation-clause

SKIP LOCKED DATA

QUERYNO integer

Notes:
1 The same clause must not be specified more than one time.

positioned update:

UPDATE table-name

view-name correlation-name

SET assignment-clause

WHERE CURRENT OF cursor-name

FOR ROW host-variable

integer-constant

OF ROWSET

period-clause:

FOR PORTION OF BUSINESS_TIME FROM value1 TO value2

BETWEEN value1 AND value2

include-column:

INCLUDE (

,

column-name data-type)

data-type:

222 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_dynamicprepandexecution.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authidsdynamicsql.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_authidsdynamicsql.html

built-in-type

distinct-type

built-in-type:

Chapter 9. Db2 SQL statements for SQL DI 223

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

FOR BIT DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC ( integer)

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

assignment clause:

224 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

,

column-name = expression

DEFAULT

NULL

(

,

column-name) = (

,
1

expression

DEFAULT

NULL

row-fullselect
2

UNPACK-function-invocation
3

)

Notes:
1 The number of expressions, DEFAULT, and NULL keywords must match the number of column-names.
Expressions must not refer to UNPACK-function-invocation..
2 The number of columns in the select list must match the number of column-names.
3 The number of items returned from UNPACK-function-invocation must match the number of column
names.

isolation-clause:

WITH RR

RS

CS

Description for UPDATE
table-name or view-name

Identifies the object of the UPDATE statement. The name must identify a table or view that exists at
the Db2 subsystem that is identified by the implicitly or explicitly specified location name. The name
must not identify one of the following tables:

• An auxiliary table
• A created temporary table or a view of a created temporary table
• A catalog table with no updatable columns or a view of a catalog table with no updatable columns
• A directory table
• A read-only view that has no INSTEAD OF trigger defined for its update operations. (For a

description of a read-only view, see CREATE VIEW (Db2 SQL).)
• A system-maintained materialized query table
• A table that is implicitly created for an XML column
• An archive-enabled table if any of the following conditions are true:

– The SYSIBMADM.MOVE_TO_ARCHIVE global variable is set to Y.
– The SYSIBMADM.GET_ARCHIVE global variable is set to Y, the ARCHIVESENSITIVE bind option is

set to YES, and the operation is a positioned update.

Chapter 9. Db2 SQL statements for SQL DI 225

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createview.html

In an IMS or CICS application, the Db2 subsystem that contains the identified table or view must be a
remote server that supports two-phase commit.

A catalog table or a view of a catalog table can be identified if every column identified in the
SET clause is an updatable column. If a column of a catalog table is updatable, its description
in Db2 catalog tables (Db2 SQL) indicates that the column can be updated. If the object table
is SYSIBM.SYSSTRINGS, any column other than IBMREQD can be updated, but the rows that are
selected for update must be rows that are provided by the user (the value of the IBMREQD column
is N) and only certain values can be specified as explained in How an entry in SYSIBM.SYSSTRINGS
works with character conversion (Db2 Installation and Migration).

period-clause
Specifies that a period clause applies to the target of the update operation. The same period name
must not be specified more than one time. If the target of the update operation is a view:

• The FROM clause of the outer fullselect of the view definition must include a reference, directly or
indirectly, to an application-period temporal table.

• The result table of the outer fullselect of the view definition must include, explicitly or implicitly, the
start and end columns of the BUSINESS_TIME period.

• An INSTEAD OF trigger must not be defined for the view.

FOR PORTION OF BUSINESS_TIME
Specifies that the update only applies to row values for the portion of the BUSINESS_TIME period
in the row that is specified by the period clause. BUSINESS_TIME must be a period that is defined
on the table.

FOR PORTION OF BUSINESS_TIME must not be specified if the value of the CURRENT TEMPORAL
BUSINESS_TIME special register is not NULL when the BUSTIMESENSITIVE bind option is set to
YES.

FROM value1 TO value2
Specifies that the update applies to rows for the period that is specified from value1 to value2. No
rows are updated if value1 is greater than or equal to value2 or if value1 or value2 is the null value.

This clause must not be specified for an inclusive-inclusive period.

For the period condition that is specified with FROM value1 TO value2, the period that is specified
with period-name in a row of the target update:

• Overlaps the beginning of the specified period if the value of the begin column is less than
value1 and the value of the end column is greater than value1.

• Overlaps the end of the specified period if the value of the end column is greater than or equal to
value2 and the value of the begin column is less than value2.

• Is fully contained within the specified period if the value for the begin column is greater than or
equal to value1 and the value for the end column is less than or equal to value2.

• Is not contained in the period if both columns of period-name are less than value1 or greater
than or equal to value2.

• Is partially contained in the specified period if the period in the row overlaps the beginning of
the specified period or the end of the specified period, but not both.

• Fully overlaps the specified period if the period in the row overlaps both the beginning and the
end of the specified period.

If the period, period-name in a row is not contained in the specified period, the row is not updated.
Otherwise, the update is applied based on the specification of PORTION OF and how the values in
the columns of period-name overlap the specified period as follows:

• If the period, period-name in a row is fully contained within the specified period, the row is
updated and the values of the begin column and end column of period-name are unchanged.

• If the period, period-name in a row is partially contained in the specified period and overlaps the
beginning of the specified period:

226 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/cattab/src/tpc/db2z_catalogtablesintro.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_charconvertsysstrings.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/inst/src/tpc/db2z_charconvertsysstrings.html

– The row is updated. In the updated row, the value of the begin column is set to value1 and the
value of the end column is the original value of the end column.

– An additional row is inserted using the original values from the row, except that the end
column is set to value1, and new values are used for other generated columns.

• If the period, period-name in a row is partially contained in the specified period and overlaps the
end of the specified period:

– The row is updated. In the updated row, the value of the begin column is the original value of
the begin column and the end column is set to value2.

– An additional row is inserted using the original values from the row, except that the begin
column is set to value2, and new values are used for other generated columns.

• If the period, period-name in a row fully overlaps the specified period:

– The row is updated. In the updated row, the value of the begin column is set to value1 and the
value of the end column is set to value2.

– An additional row is inserted using the original values from the row, except that the end
column is set to value1, a column defined as DATA CHANGE OPERATION is set to 'I', and new
values are used for other generated columns.

– An additional row is inserted using the original values from the row, except that the begin
column is set to value2, a column defined as DATA CHANGE OPERATION is set to 'I', and new
values are used for other generated columns.

Any existing update triggers are activated for the updated rows and any existing insert triggers are
activated for rows that are implicitly inserted.

BETWEEN value1 AND value2
Specifies that the update operation applies to rows for the period that is specified from value1
up to and including value2. No rows are updated if value1 is greater than value2, or if value1 or
value2 is the null value. This clause must not be specified for an inclusive-exclusive period.

For the period clause that is specified with BETWEEN value1 AND value2, period period-name in a
row in the target of the update operation:

• Overlaps the beginning of the specified period if the value of the begin column is less than
value1 and the value of the end column is greater than value1.

• Overlaps the end of the specified period if the value of the end column is greater than or equal to
value2 and the value of the begin column is less than value2.

• Is fully contained within the specified period if the value for the begin column for period-name in
the row is greater than or equal to value1 and the value for the corresponding end column in the
row is less than or equal to value2.

• Is partially contained in the specified period if the row overlaps the beginning of the specified
period or the end of the specified period, but not both.

• Fully overlaps the specified period if the period in the row overlaps the beginning of the specified
period and overlaps the end of the specified period.

• Is not contained in the period if both columns of period-name are less than value1 or greater
than value2.

If the period period-name in a row is not contained in the specified period, the row is not updated.
Otherwise, the update operation is based on the following items:

• The specification of the PORTION OF clause.
• How the values in the columns of period-name overlap the specified period.
• spu (smallest period unit), which depends on the data type of the columns of the period as

follows:

– For a period containing DATE columns, spu is 1 day.
– For a period containing TIMESTAMP(6) columns, spu is 1 microsecond.

Chapter 9. Db2 SQL statements for SQL DI 227

Based on those items, the update operation is applied as follows:

• If the period period-name in a row is fully contained within the specified period, the row is
updated and the values of the begin column and end column of period-name are unchanged.

• If the period period-name in a row is partially contained in the specified period and overlaps the
beginning of the specified period:

– The row is updated. In the updated row the value of the begin column is set to value1 and the
value of the end column is the original value of the end column.

– A row is inserted using the original values from the row, except that the end column is set to
value1 - spu, and new values are used for other generated columns.

• If the period period-name in a row is partially contained in the specified period and overlaps the
end of the specified period:

– The row is updated. In the updated row the value of the begin column is the original value of
the begin column and the end column is set to value2

– A row is inserted using the original values from the row, except that the begin column is set to
value2 + spu, and new values are used for other generated columns.

• If the period period-name in a row fully overlaps the specified period:

– The row is updated. In the updated row the value of the begin column is set to value1 and the
value of the end column is set to value2.

– A row is inserted using the original values from the row, except that the end column is set to
value1 - spu, a column defined as DATA CHANGE OPERATION is set to 'I', and new values are
used for other generated columns.

– An additional row is inserted using the original values from the row, except that the begin
column is set to value2 + spu, a column defined as DATA CHANGE OPERATION is set to 'I', and
new values are used for other generated columns.

value1, value2
Specifies expressions that return a value of a built-in data type. The result of each expression
must be comparable to the data type of the columns of the specified period. See the comparison
rules described in Assignment and comparison (Db2 SQL). Each expression can contain any of the
following supported operands:

• A constant
• A special register
• A variable
• An array element specification
• A built-in scalar function whose arguments are supported operands. The scalar function must

not be AI_ANALOGY, AI_COMMONALITY, AI_SEMANTIC_CLUSTER, or AI_SIMILARITY.
• A CAST specification where the cast operand is a supported operand
• An expression that uses arithmetic operators and operands

Each expression must not have a timestamp precision that is greater than the precision of the
columns for the period.

If the begin and end columns of the period are defined as TIMESTAMP WITHOUT TIME ZONE,
each expression must not return a value of a timestamp with a time zone.

A period clause for a view must not contain an untyped parameter marker.

correlation-name
Can be used within search-condition or assignment-clause to designate the table or view. (For an
explanation of correlation-name, see Correlation names (Db2 SQL).)

include-column
Specifies a set of columns that are included, along with the columns of table-name or view-name, in
the result table of the UPDATE statement when it is nested in the FROM clause of the outer fullselect

228 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_assignmentandcomparison.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_correlationnames.html

that is used in a subselect, SELECT statement, or in a SELECT INTO statement. The included columns
are appended to the end of the list of columns that is identified by table-name or view-name. If no
value is assigned to a column that is specified by an include-column, a NULL value is returned for that
column.
INCLUDE

Introduces a list of columns that are to be included in the result table of the UPDATE statement.
The included columns are only available if the UPDATE statement is nested in the FROM clause of
a SELECT statement or a SELECT INTO statement.

column-name
Specifies the name for a column of the result table of the UPDATE statement that is not the same
name as another included column nor a column in the table or view that is specified in table-name
or view-name.

data-type
Specifies the data type of the included column. The included columns are nullable.
built-in-type

Specifies a built-in data type. See CREATE TABLE (Db2 SQL) for a description of each built-in
type.

The CCSID 1208 and CCSID 1200 clauses must not be specified for an INCLUDE column.

distinct-type
Specifies a distinct type. Any length, precision, or scale attributes for the column are those of
the source type of the distinct type as specified by using the CREATE TYPE statement.

SET
Introduces the assignment of values to column names.
assignment-clause

If row-fullselect is specified, the number of columns in the result of row-fullselect must match
the number of column-names that are specified. If row-fullselect is not specified, the number of
expressions, and NULL and DEFAULT keywords must match the number of column-names that are
specified.

column-name
Identifies a column that is to be updated. column-name must identify a column of the specified
table or view. If extended indicators are not enabled, that column must be an updatable column.
The column must not identify a generated column or a view column where the column is derived
from a scalar function, constant, or expression. column-name can also identify an INCLUDE
column that must not be qualified. The same column name must not be specified more than
once.

A column that is defined as part of a BUSINESS_TIME period must not be specified if the UPDATE
statement contains a period-clause.

Assignments to included columns are only processed when the UPDATE statement is nested in
the FROM clause of a SELECT statement or a SELECT INTO statement. There must be at least one
assignment clause that specifies a column-name that is not an INCLUDE column. The null value is
returned for an included column that is not set by using an explicit SET clause.

For a positioned update, allowable column names can be further restricted to those in a certain
list. This list appears in the FOR UPDATE clause of the SELECT statement for the associated cursor.
The clause can be omitted by using the conditions that are described in Positioned updates of
columns (Db2 SQL).

A view column that is derived from the same column as another column of the view can be
updated, but both columns cannot be updated in the same UPDATE statement.

expression
Indicates the new value of the column. The expression is any expression of the type described in
Expressions (Db2 SQL). It must not include an aggregate function.

Chapter 9. Db2 SQL statements for SQL DI 229

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_positionedcolumnupdates.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_positionedcolumnupdates.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_expressionsintro.html

A column-name in an expression must identify a column of the table or view. For each row that is
updated, the value of the column in the expression is the value of the column in the row before the
row is updated.

If expression is a single host variable, the host variable can include an indicator with an extended
indicator value. If extended indicators are enabled, and an expression in the assignment clause is
not a single host variable, the extended indicator values of DEFAULT and UNASSIGNED must not
be used.

A CAST specification can be used if either of the following is true:

• The target column is defined as nullable.
• The target column is defined as NOT NULL with a non-null default, the source of the CAST
specification is a single host variable, and the data attributes (data type, length, precision, and
scale) of the host variable are the same as the result of the cast specification.

DEFAULT
Specifies that the default value is used based on how the corresponding column is defined in the
table. DEFAULT must not be specified for a ROWID column. The value that is assigned depends on
how the column is defined.

• If the column is a generated expression, the column value will be generated by the Db2
subsystem based on the result of the expression.

• If the column is an identity column, row change timestamp column, row-begin column, row-end
column, or transaction-start-ID column, the Db2 subsystem will generate a new value.

• If the column is defined using the WITH DEFAULT clause, the value is set to the default that is
defined for the column.

• If the column is defined without specifying the WITH DEFAULT clause, the GENERATED clause,
or the NOT NULL clause, the value is NULL.

• If the column is specified in the INCLUDE column list, the column value is set to null.

DEFAULT must be specified for a column that was defined as GENERATED ALWAYS. A valid value
can be specified for a column that was defined as GENERATED BY DEFAULT.

If the column is defined using the NOT NULL clause and the GENERATED clause is not used, or the
WITH DEFAULT clause is not used, the DEFAULT keyword cannot be specified for that column.

NULL
Specifies the null value as the new value of the column. Specify NULL only for nullable columns.

row-fullselect
Specifies a fullselect that returns a single row. The column values are assigned to each of the
corresponding column-names. If the fullselect returns no rows, the null value is assigned to each
column; an error occurs if any column to be updated is not nullable. An error also occurs if there is
more than one row in the result.

For a positioned update, if the table or view that is the object of the UPDATE statement is used in
the fullselect, a column from the instance of the table or view in the fullselect cannot be the same
as column-name, a column being updated.

If the fullselect refers to columns to be updated, the value of such a column in the fullselect is the
value of the column in the row before the row is updated.

UNPACK-function-invocation
Specifies an invocation of the UNPACK built-in function. The number of fields that are returned by
the UNPACK function invocation must be the same as the number of column-names.

WHERE
Specifies the rows to be updated. You can omit the clause, give a search condition, or specify a cursor.
If you omit the clause, all rows of the table or view are updated.

230 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

search-condition
Specifies any search condition described in Language elements (Db2 SQL). Each column-name in
the search condition, other than in a subquery, must identify a column of the table or view.

The search-condition is applied to each row of the table or view and the updated rows are those
for which the result of the search-condition is true. If the unique key or primary key is a parent key,
the constraints are effectively checked at the end of the operation.

If the search condition contains a subquery, the subquery can be thought of as being executed
each time the search condition is applied to a row, and the results used in applying the search
condition. In actuality, a subquery with no correlated references is executed just once, whereas it
is possible that a subquery with a correlated reference must be executed once for each row.

WHERE CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. cursor-name must identify a declared cursor
as explained in the description of the DECLARE CURSOR statement in DECLARE CURSOR (Db2 SQL).
If the UPDATE statement is embedded in a program, the DECLARE CURSOR statement must include
select-statement rather than statement-name.

The object of the UPDATE statement must also be identified in the FROM clause of the SELECT
statement of the cursor. The columns to be updated can be identified in the FOR UPDATE clause of
that SELECT statement though they do not have to be identified. If the columns are not specified, the
columns that can be updated include all the updatable columns of the table or view that is identified
in the first FROM clause of the fullselect.

The result table of the cursor must not be read-only. For an explanation of read-only result tables, see
Read-only cursors. Note that the object of the UPDATE statement must not be identified as the object
of the subquery in the WHERE clause of the SELECT statement of the cursor.

When the UPDATE statement is executed, the cursor must be open and positioned on a row or rowset
of the result table.

• If the cursor is positioned on a single row, that row is the one updated.
• If the cursor is positioned on a rowset, all rows corresponding to the rows of the current rowset are

updated.

A positioned UPDATE must not be specified for a cursor that references a view on which an instead of
update trigger is defined, even if the view is an updatable view.

FOR ROW n OF ROWSET
Specifies which row of the current rowset is to be updated. The corresponding row of the rowset is
updated, and the cursor remains positioned on the current rowset.

host-variable or integer-constant is assigned to an integral value k. If host-variable is specified, it must
be an exact numeric type with scale zero, must not include an indicator variable, and k must be in the
range 1 - 32767.

The cursor must be positioned on a rowset, and the specified value must be a valid value for the
set of rows most recently retrieved for the cursor. If the specified row cannot be updated, an error
is returned. It is possible that the specified row is within the bounds of the rowset most recently
requested, but the current rowset contains less than the number of rows that were implicitly or
explicitly requested when that rowset was established.

If this clause is not specified, the cursor position determines the rows that will be affected. If the
cursor is positioned on a single row, that row is the one updated. In the case where the most recent
FETCH statement returned multiple rows of data (but not as a rowset), this position would be on the
last row of data that was returned. If the cursor is positioned on a rowset, all rows corresponding to
the current rowset are updated. The cursor position remains unchanged.

It is possible for another application process to update a row in the base table of the SELECT
statement so that the specified row of the cursor no longer has a corresponding row in the base table.
An attempt to update such a row results in an error.

Chapter 9. Db2 SQL statements for SQL DI 231

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_langelementsoverview.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_declarecursor.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_declarecursor.html

isolation-clause
Specifies the isolation level used when locating the rows to be updated by the statement.
WITH

Introduces the isolation level, which may be one of the following:
RR

Repeatable read
RS

Read stability
CS

Cursor stability

The default isolation level of the statement is the isolation level of the package or plan in which the
statement is bound, with the package isolation taking precedence over the plan isolation. When a
package isolation is not specified, the plan isolation is the default.

SKIP LOCKED DATA
Specifies that rows are skipped when incompatible locks are held on the row by other transactions.
These rows can belong to any accessed table that is specified in the statement. SKIP LOCKED DATA
can be used only when isolation CS or RS is in effect and applies only to row level or page level locks.

SKIP LOCKED DATA can be specified only in the searched UPDATE statement (or the searched
update operation of a MERGE statement). SKIP LOCKED DATA is ignored if it is specified when the
isolation level that is in effect is repeatable read (WITH RR) or uncommitted read (WITH UR). The
default isolation level of the statement depends on the isolation level of the package or plan with
which the statement is bound, with the package isolation taking precedence over the plan isolation.
When a package isolation is not specified, the plan isolation is the default.

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output and trace records. The
number is used for the QUERYNO column of the plan table for the rows that contain information about
this SQL statement. This number is also used in the QUERYNO column of the SYSIBM.SYSSTMT and
SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number associated with the SQL statement is the statement number
assigned during precompilation. Thus, if the application program is changed and then precompiled,
that statement number might change.

Using the QUERYNO clause to assign unique numbers to the SQL statements in a program is helpful:

• For simplifying the use of optimization hints for access path selection
• For correlating SQL statement text with EXPLAIN output in the plan table

For more information about enabling and using optimization hints, see Influencing access path
selection (Db2 Performance)

For information on accessing the plan table, see Investigating SQL performance by using EXPLAIN
(Db2 Performance).

Notes for UPDATE

Update rules:
Update values must satisfy the following rules. If they do not, or if other errors occur during the
execution of the UPDATE statement, no rows are updated and the position of the cursors are not
changed.

• Assignment. Update values are assigned to columns using the assignment rules described in
Language elements (Db2 SQL).

• Validity. Updates must obey the following rules. If they do not, or if any other errors occur during the
execution of the UPDATE statement, no rows are updated.

232 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/perf/src/tpc/db2z_influenceaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/perf/src/tpc/db2z_influenceaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_langelementsoverview.html

– Fullselects: The row-fullselect and expressions that contain a scalar-fullselect must return no
more than one row.

– Unique constraints and unique indexes: If the identified table (or base table of the identified view)
has any unique indexes or unique constraints, each row that is updated in the table must conform
to the limitations that are imposed by those indexes and constraints.

All uniqueness checks are effectively made at the end of the statement. In the case of a multi-row
update, this validation occurs after all the rows are updated.

– Check constraints: If the identified table (or base table of the identified view) has any check
constraints, each check constraint must be true or unknown for each row that is updated in the
table.

All checks constraints are effectively validated at the end of the statement. In the case of a
multi-row update, this validation occurs after all the rows are updated.

– Views and the WITH CHECK OPTION. For views defined with WITH CHECK OPTION, an updated
row must conform to the definition of the view. If the view you name is dependent on other views
whose definitions include WITH CHECK OPTION, the updated rows must also conform to the
definitions of those views. For an explanation of the rules governing this situation, see CREATE
VIEW (Db2 SQL).

For views that are not defined with WITH CHECK OPTION, you can change the rows so that they
no longer conform to the definition of the view. Such rows are updated in the base table of the
view and no longer appear in the view.

– Field and validation procedures. The updated rows must conform to any constraints imposed by
any field or validation procedures on the identified table (or on the base table of the identified
view).

• Referential constraints. The value of the parent key in a parent row must not be changed. If the
update value produces a foreign key that is nonnull, the foreign key must be equal to some value of
the parent key of the parent table of the relationship.

All referential constraints are effectively checked at the end of the statement. In the case of a
multi-row update, this validation occurs after all the rows are updated.

• Indexes with VARBINARY columns. If the identified table has an index on a VARBINARY column or
a column that is a distinct type that is based on VARBINARY data type, that index column cannot
specify the DESC attribute. To use the SQL data change operation on the identified table, either drop
the index or alter the data type of the column to BINARY and then rebuild the index.

• Triggers. An UPDATE statement might cause triggers to activate. A trigger might cause other
statements to be executed or raise error conditions based on the update values. If an UPDATE
statement for a view causes an instead of trigger to activate, validity, referential integrity, and check
constraints are checked against the data changes that are performed in the trigger and not against
the view that causes the trigger to activate or its underlying base tables.

Number of rows updated:
Normally, after an UPDATE statement completes execution, the value of SQLERRD(3) in the SQLCA is
the number of rows updated. (For a complete description of the SQLCA, including exceptions to the
preceding sentence, see SQL communication area (SQLCA) (Db2 SQL).)

Nesting user-defined functions or stored procedures:
An UPDATE statement can implicitly or explicitly refer to user-defined functions or stored procedures.
This is known as nesting of SQL statements. A user-defined function or stored procedure that is
nested within the UPDATE must not access the table being updated.

Locking:
Unless appropriate locks already exist, one or more exclusive locks are acquired by the execution
of a successful update operation. Until a commit or rollback operation releases the locks, only the
application process that performed the insert can access the updated row. If LOBs are not updated,
application processes that are running with uncommitted read can also access the updated row. The
locks can also prevent other application processes from performing operations on the table. However,
application processes that are running with uncommitted read can access locked pages and rows.

Chapter 9. Db2 SQL statements for SQL DI 233

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createview.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createview.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sqlcommunicationsareaintro.html

Locks are not acquired on declared temporary tables.

Datetime representation when using datetime registers:
As explained under Datetime special registers, when two or more datetime registers are implicitly or
explicitly specified in a single SQL statement, they represent the same point in time. This is also true
when multiple rows are updated.

Rules for positioned UPDATE with a SENSITIVE STATIC scrollable cursor:
When a SENSITIVE STATIC scrollable cursor has been declared, the following rules apply:

• Update attempt of delete holes. If, with a positioned update against a SENSITIVE STATIC scrollable
cursor, an attempt is made to update a row that has been identified as a delete hole, an error occurs.

• Update operations. Positioned update operations with SENSITIVE STATIC scrollable cursors perform
as follows:

1. The SELECT list items in the target row of the base table of the cursor are compared with the
values in the corresponding row of the result table (that is, the result table must still agree with
the base table). If the values are not identical, then the update operation is rejected, and an
error occurs. The operation may be attempted again after a successful FETCH SENSITIVE has
occurred for the target row.

2. The WHERE clause of the SELECT statement is re-evaluated to determine whether the current
values in the base table still satisfy the search criteria. The values in the SELECT list are
compared to determine that these values have not changed. If the WHERE clause evaluates as
true, and the values in the SELECT have not changed, the update operation is allowed to proceed.
Otherwise, the update operation is rejected, an error occurs, and an update hole appears in the
cursor.

• Update of update holes. Update holes are not permanent. It is possible for another process, or a
searched update in the same process, to update an update hole row so that it is no longer an update
hole. Update holes become visible with a FETCH SENSITIVE for positioned updates and positioned
deletes.

• Result table. After the base table is updated, the row is re-evaluated and updated in the temporary
result table. At this time, it is possible that the positioned update changed the data such that the
row does not qualify the search condition, in which case the row is marked as an update hole for
subsequent FETCH operations.

Referencing columns that will be updated:
If a cursor uses FETCH statements to retrieve columns that will be updated later, specify FOR UPDATE
OF when you select the columns. Then specify WHERE CURRENT OF in the subsequent UPDATE
or DELETE statements. These clauses prevent Db2 from selecting access through an index on the
columns that are being updated, which might otherwise cause Db2 to read the same row more than
once.

For more information, see Updating previously retrieved data (Db2 Application programming and
SQL).

Updating rows in a table with multilevel security:
When you update rows in a table with multilevel security, Db2 compares the security label of the user
(the primary authorization ID) to the security label of the row. The update proceeds according to the
following rules:

• If the security label of the user and the security label of the row are equivalent, the row is updated
and the value of the security label is determined by whether the user has write-down privilege:

– If the user has write-down privilege or write-down control is not enabled, the user can set the
security label of the row to any valid security label. The value that is specified for the security
label column must be assignable to a column that is defined as CHAR(8) FOR SBCS DATA NOT
NULL.

– If the user does not have write-down privilege and write-down control is enabled, the security
label of the row is set to the value of the security label of the user.

234 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_rules4specialregisters.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/apsg/src/tpc/db2z_updateretrieveddata.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/apsg/src/tpc/db2z_updateretrieveddata.html

• If the security label of the user dominates the security label of the row, the result of the UPDATE
statement is determined by whether the user has write-down privilege:

– If the user has write-down privilege or write-down control is not enabled, the row is updated and
the user can set the security label of the row to any valid security label.

– If the user does not have write-down privilege and write-down control is enabled, the row is not
updated.

• If the security label of the row dominates the security label of the user, the row is not updated.

Updating rows in a table for which row or column access control is enforced:
When an UPDATE statement is issued for a table for which row or column access control is enforced,
the rules specified in the enabled row permissions or column masks determine whether the row
can be updated. Typically those rules are based on the authorization ID or role of the process. The
following describes how enabled row permissions and column masks are used during UPDATE:

• Row permissions are used to identify the set of rows to be updated.

When multiple enabled row permissions are defined for a table, a row access control search
condition is derived by application of the logical OR operator to the search condition in each enabled
permission. This row access control search condition is applied to the table to determine which
rows are accessible to the authorization ID or role of the UPDATE statement. If the WHERE clause is
specified in the UPDATE statement, the user-specified predicates are applied on the accessible rows
to determine the rows to be updated. If there is no WHERE clause, the accessible rows are the rows
to be updated.

Column masks are not applicable in this step.

If the table is not enforced by row access control, the WHERE clause determines the rows to be
updated, otherwise all rows in the table are to be updated.

• If there are rows to be updated, the following rules determine whether those rows can be updated:

– For every column to be updated, the new value of the column must not be affected by enabled
column masks whose columns are referenced when deriving the new value.

When a column is referenced while deriving the values of a new row, if the column has an enabled
column mask, the masked value is used to derive the new values. If the object table is also
column access control activated, the column mask applied to derive the new values must ensure
the evaluation of the access control rules defined in the column mask resolves the column to
itself, not to a constant or an expression. If the column mask does not mask the column to itself,
the new value cannot be used for update and an error is returned at run time.

– If the rows are updatable, and there is a BEFORE UPDATE trigger for the table, the trigger is
activated.

Within the trigger actions, the new values for update might be modified in transition variables.
When the final values are returned from the trigger, the new values are used for the update.

– The rows that are to be updated must conform to the enabled row permissions:

For each row that is to be updated, the old values are replaced with the new values that were
specified in the UPDATE statement. A row that conforms to the enabled row permissions is a row
that, if updated, can be retrieved using the derived row access control search condition.

– If the rows are updatable, and there is an AFTER UPDATE trigger for the table, the trigger is
activated.

The above rules are not applicable to the included columns. The included columns are subject to the
rules for the select list because they are not the columns of the object table of the UPDATE statement.

Extended indicators usage:
When extended indicators are enabled, indicator values other than positive values and 0 (zero)
through -7 must not be specified. The DEFAULT and UNASSIGNED extended indicator values must not
appear in contexts where they are not supported.

Chapter 9. Db2 SQL statements for SQL DI 235

Extended indicators:
Specifying an indicator value with the extended indicator value of UNASSIGNED has the same effect
as if the column had not been specified in the statement. Assigning an extended indicator value of
DEFAULT assigns the default value to the column, and must only be specified for a column that is
defined with a default value.

If a target column is not updatable, such as an identity column that is defined as GENERATED
ALWAYS, it must be assigned the extended indicator value of UNASSIGNED.

An UPDATE statement must not specify the extended indicator value of UNASSIGNED for all target
columns.

Extended indicators and update triggers:
If the indicator value for a target column is UNASSIGNED, that column is not considered to have been
updated. That column is treated as if it had not been specified in the OF column-name list of any
update trigger that is defined on the target table or view.

Extended indicators and deferred error checks:
When extended indicators are enabled, validation that would normally be done during statement
preparation to recognize an insert into a non-updatable column is deferred until the statement is
executed.

Considerations for a generated column:
A generated column that is defined as GENERATED ALWAYS should not be specified as the target of an
assignment clause unless the value that is to be assigned is specified with the DEFAULT keyword or an
extended indicator that specifies that a default value is to be assigned.

Considerations for a system-period temporal table:
When a row of a system-period temporal table is updated, Db2 updates the values of the row-begin
and transaction-start-ID columns as follows:

• A row-begin column is assigned a value for the data type of the column. If the value of
the SYSIBM. TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the time of
the update is null, the value is generated using a reading of the time-of-day clock during
execution of the first data change statement in the unit of work that requires a value to be
assigned to a row-begin column or transaction-start-ID column in a table, or a row in a system-
period temporal table is deleted. Otherwise, the row-begin column is assigned the value of the
SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the time of the insert.

• A transaction-start-ID column is assigned a unique timestamp value per unit of work or the null
value. The null value is assigned to the transaction-start-ID column if the column is nullable.
Otherwise, the value is generated by using the time-of-day clock during execution of the first data
change statement in the unit of work that requires a value to be assigned to a row-begin column
or transaction-start-ID column in a table. This also occurs when a row in a system-period temporal
table is deleted. If multiple rows are updated within a single SQL unit of work, the values for the
transaction-start-ID column are the same for all the rows and are unique from the values that are
generated for the column for another unit of work.

If the UPDATE statement has a search condition that contains a correlated subquery that references
historical rows (explicitly referencing the name of the history table or implicitly referenced through
the use of a period specification in the FROM clause), the old version of the updated rows that are
inserted as historical rows (into the history table) are potentially visible to update operations for the
rows that are subsequently processed for the statement.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value, the underlying
target of the UPDATE statement cannot be a system-period temporal table. This restriction applies
regardless of whether the system-period temporal table is directly or indirectly referenced.

Considerations for a history table:
When a row of a system-period temporal table is updated, a historical copy of the row is inserted
into the corresponding history table and the end timestamp of the historical row is captured in the
form of a system determined value that corresponds to the time of the data change operation. Db2
generates the value by using the time-of-day clock during the execution of the first data change
statement in the transaction that requires a value to be assigned to a row-begin or transaction-start-

236 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

ID column in a table. This also occurs when a row in a system-period temporal table is deleted.
If the value of the SYSIBM. TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at
the time of the data change operation is null, the value is generated using a reading of the
time-of-day clock during execution of the first data change statement in the unit of work that
requires a value to be assigned to a row-begin column or transaction-start-ID column in a table,
or a row in a system-period temporal table is deleted. Otherwise, the value is assigned from the
SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the time of the data
change operation.

Considerations for an application-period temporal table:
An UPDATE statement that contains a FOR PORTION OF BUSINESS_TIME clause for an application-
period temporal table indicates the two points in time between which the specified updates are
effective.

Suppose that FOR PORTION OF BUSINESS_TIME is specified, and the period value for a row is only
partially contained in the period that is specified from value1 up to value2 or between value1 and
value2. (The period value for a row is specified by the values of the begin column and end column for
the BUSINESS_TIME period.) In this case, the row is updated and one or two rows are automatically
inserted to represent the portion of the row that is not changed. For each row that is automatically
inserted as a result of an update operation on the table, new values are generated for each generated
column in the application-period temporal table. If a generated column is defined as part of a unique
or primary key, parent key in a referential constraint, or unique index, an automatic insert might
violate a constraint or index. In this case, an error is returned.

When an application-period table is the target of an UPDATE statement and the value in effect for the
CURRENT TEMPORAL BUSINESS_TIME special register is not the null value, Db2 adds the following
additional predicates to the statement:

• inclusive-exclusive period:

 bt_begin <= CURRENT TEMPORAL BUSINESS_TIME AND
bt_end > CURRENT TEMPORAL BUSINESS_TIME

• inclusive-inclusive period:

 bt_begin <= CURRENT TEMPORAL BUSINESS_TIME AND
bt_end >= CURRENT TEMPORAL BUSINESS_TIME

In the preceding code, bt_begin and bt_end are the begin and end columns of the BUSINESS_TIME
period of the target table of the UPDATE statement.

Archive-enabled tables:
A reference to an archive-enabled table as the target of the UPDATE statement does not affect rows in
the associated archive table.

A data change statement must not reference an archive-enabled table when a system-period
temporal table or application-period temporal table is also referenced.

Other SQL statements in the same unit of work:
The following statements cannot follow an UPDATE statement in the same unit of work:

• An ALTER TABLE statement that changes the data type of a column (ALTER COLUMN SET DATA
TYPE)

• An ALTER INDEX statement that changes the padding attribute of an index with varying-length
columns (PADDED to NOT PADDED or vice versa)

• A CREATE TABLE statement that creates an accelerator-only table.
• An INSERT, UPDATE, or DELETE statement that updates accelerator-only tables from a different

accelerator.

Using UPDATE to reset AREO* status on a table:
An UPDATE statement will reset the AREO* state of a table if all conditions are true:

Chapter 9. Db2 SQL statements for SQL DI 237

• The statement is a searched UPDATE statement. An UPDATE statement within a SELECT statement
will not reset the AREO* state.

• The expression in the SET clause is not a scalar-fullselect or row-fullselect
• The update operation is against a table in a universal table space
• The table does not have row access control activated
• The SKIP LOCKED DATA clause is not specified
• The WHERE clause is not specified
• A resource unavailable condition is not encountered.

No error or warning SQLCODE is returned if a resource unavailable condition is encountered. Only a
resource unavailable console message will be displayed.

A DISPLAY DATABASE command can be used to determine if AREO* is reset.

Examples for UPDATE

Example 1
Change employee 000190's telephone number to 3565 in DSN8D10.EMP.

 UPDATE DSN8D10.EMP
 SET PHONENO='3565'
 WHERE EMPNO='000190';

Example 2
Give each member of department D11 a 100-dollar raise.

 UPDATE DSN8D10.EMP
 SET SALARY = SALARY + 100
 WHERE WORKDEPT = 'D11';

Example 3
Employee 000250 is going on a leave of absence. Set the employee's pay values (SALARY, BONUS,
and COMMISSION) to null.

 UPDATE DSN8D10.EMP
 SET SALARY = NULL, BONUS = NULL, COMM = NULL
 WHERE EMPNO='000250';

Alternatively, the statement could also be written as follows:

 UPDATE DSN8D10.EMP
 SET (SALARY, BONUS, COMM) = (NULL, NULL, NULL)
 WHERE EMPNO='000250';

Example 4
Assume that a column named PROJSIZE has been added to DSN8D10.EMP. The column records
the number of projects for which the employee's department has responsibility. For each employee
in department E21, update PROJSIZE with the number of projects for which the department is
responsible.

 UPDATE DSN8D10.EMP
 SET PROJSIZE = (SELECT COUNT(*)
 FROM DSN8D10.PROJ
 WHERE DEPTNO = 'E21')
 WHERE WORKDEPT = 'E21';

Example 5
Double the salary of the employee represented by the row on which the cursor C1 is positioned.

 EXEC SQL UPDATE DSN8D10.EMP
 SET SALARY = 2 * SALARY
 WHERE CURRENT OF C1;

238 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Example 6
Assume that employee table EMP1 was created with the following statement:

 CREATE TABLE EMP1
 (EMP_ROWID ROWID GENERATED ALWAYS,
 EMPNO CHAR(6),
 NAME CHAR(30),
 SALARY DECIMAL(9,2),
 PICTURE BLOB(250K),
 RESUME CLOB(32K));

Assume that host variable HV_EMP_ROWID contains the value of the ROWID column for employee
with employee number '350000'. Using that ROWID value to identify the employee and user-defined
function UPDATE_RESUME, increase the employee's salary by $1000 and update that employee's
resume.

 EXEC SQL UPDATE EMP1
 SET SALARY = SALARY + 1000,
 RESUME = UPDATE_RESUME(:HV_RESUME)
 WHERE EMP_ROWID = :HV_EMP_ROWID;

Example 7
In employee table X, give each employee whose salary is below average a salary increase of 10%.

 EXEC SQL UPDATE EMP X
 SET SALARY = 1.10 * SALARY
 WHERE SALARY < (SELECT AVG(SALARY) FROM EMP Y
 WHERE X.JOBCODE = Y.JOBCODE);

Example 8
Raise the salary of the employees in department 'E11' whose salary is below average to the average
salary.

 EXEC SQL UPDATE EMP T1
 SET SALARY = (SELECT AVG(T2.SALARY) FROM EMP T2)
 WHERE WORKDEPT = 'E11' AND
 SALARY < (SELECT AVG(T3.SALARY) FROM EMP T3);

Example 9
Give the employees in department 'E11' a bonus equal to 10% of their salary.

 EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT BONUS
 FROM DSN8710.EMP
 WHERE WORKDEPT = 'E12'
 FOR UPDATE OF BONUS;
 EXEC SQL
 UPDATE DSN8710.EMP
 SET BONUS = (SELECT .10 * SALARY FROM DSN8710.EMP Y
 WHERE EMPNO = Y.EMPNO)
 WHERE CURRENT OF C1;

Example 10
Assuming that cursor CS1 is positioned on a rowset consisting of 10 rows in table T1, update all 10
rows in the rowset.

EXEC SQL UPDATE T1 SET C1 = 5 WHERE CURRENT OF CS1;

Example 11
Assuming that cursor CS1 is positioned on a rowset consisting of 10 rows in table T1, update the
fourth row of the rowset.

short ind1, ind2;

int n, updt_value;

stmt = 'UPDATE T1 SET C1 = ? WHERE CURRENT OF CS1 FOR ROW ? OF ROWSET'

Chapter 9. Db2 SQL statements for SQL DI 239

ind1 = 0;

ind2 = 0;

n = 4;

updt_value = 5;

...

strcpy(my_sqlda.sqldaid,"SQLDA");

my_sqlda.sqln = 2;

my_sqlda.sqld = 2;

my_sqlda.sqlvar[0].sqltype = 497;
my_sqlda.sqlvar[0].sqllen = 4;
my_sqlda.sqlvar[0].sqldata = (int *) &updt_value;
my_sqlda.sqlvar[0].sqlind = (short *) &ind1;

my_sqlda.sqlvar[1].sqltype = 497;
my_sqlda.sqlvar[1].sqllen = 4;
my_sqlda.sqlvar[1].sqldata = (int *) &n;
my_sqlda.sqlvar[1].sqlind = (short *) &ind2;

EXEC SQL PREPARE S1 FROM :stmt;

EXEC SQL EXECUTE S1 USING DESCRIPTOR :my_sqlda;

Example 12
Assume that table POLICY exists and that it is defined with a single inclusive-exclusive period,
BUSINESS_TIME. The table contains a row where column BK has a value of 'P138', column CLIENT
has a value of 'C882', column TYPE has a value of 'PPO', and the period has value ('2013-01-01',
'2020-12-31'). Update the portion of the row beginning from '2014-01-01' to set the TYPE column to
'HMO':

UPDATE POLICY
 FOR PORTION OF BUSINESS_TIME
 FROM '2014-01-01' TO '9999-12-31'
 SET TYPE='HMO'
 WHERE BK='P138', CLIENT='C882';

After the UPDATE statement is processed, the table contains 2 rows in place of the original row. One
row with period value ('2013-01-01', '2014-01-01') represents a value of 'PPO' for the TYPE column
(the value before the update) and the other row with period value ('2014-01-01', '2020-12-31')
represents a value of 'HMO' for the TYPE column (that began with the UPDATE statement).

Example 13
Suppose that the INTARRAY and CHARARRAY array types, the INTA, CHARA, and SI variables, and the
T1 table are defined as follows:

CREATE TYPE INTARRAY AS INTEGER ARRAY [6];
CREATE TYPE CHARARRAY AS CHAR(20) ARRAY [7];
CREATE VARIABLE INTA AS INTARRAY;
CREATE VARIABLE CHARA AS CHARARRAY;
CREATE VARIABLE SI INT;
CREATE TABLE T1 (COL1 CHAR(7), COL2 INT);

Assign values to CHARA, INTA, and SI.

SET CHARA = ARRAY ['a', 'b', 'c'];
SET INTA = ARRAY [1, 2, 3, 4, 5];
SET SI = 1;

Insert a row into table T1, and then update the row values using values from the CHARA and INTA
arrays, which are indexed by the value of variable SI.

INSERT INTO T1 VALUES ('abc', 10);
UPDATE T1
 SET COL1 = CHARA[SI],
 COL2 = INTA[SI];

240 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

In the table row, COL1 now contains 'a', and COL2 contains 1.

Set the value of column COL2 for all rows to the cardinality of array INTA.

UPDATE T1
 SET COL2 = CARDINALITY(INTA);

In the table row, COL2 now contains 5.

Example 14
Assume that table POLICY exists and that it is defined with a single inclusive-inclusive period,
BUSINESS_TIME. The table contains a row where column BK has a value of 'P138', column CLIENT
has a value of 'C882', column TYPE has a value of 'PPO', and period has value ('2013-01-01',
'2020-12-31'). Suppose that you issue the following UPDATE statement:

UPDATE POLICY
FOR PORTION OF BUSINESS_TIME
BETWEEN '2014-01-01' AND '9999-12-31'
SET TYPE='HMO'
WHERE BK='P138', CLIENT='C882';

After the UPDATE statement is processed, the table contains 2 rows in place of the original row. One
row with period value ('2013-01-01', '2013-12-31') has a value of 'PPO' for the TYPE column (the
value before the update) and the other row with period value ('2014-01-01', '2020-12-31') has a
value of 'HMO' for the TYPE column.

Chapter 9. Db2 SQL statements for SQL DI 241

242 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Chapter 10. Db2 queries for SQL DI
Db2 updates the following subselects of the SELECT statement to support SQL DI.

table-reference
A table-reference specifies a result table as either a table or view, or an intermediate table.

table-reference:

single-table-reference

single-view-reference

nested-table-expression

data-change-table-reference

table-function-reference

table-locator-reference

xmltable-expression

collection-derived-table

joined-table

single-table-reference:

table-name

period-specification correlation-clause

single-view-reference:

view-name

period-specification correlation-clause

period-specification:

FOR SYSTEM_TIME
1

BUSINESS_TIME
2

AS OF value

FROM value1 TO value2

BETWEEN value1 AND value2

Notes:
1 AS OF TIMESTAMP can be specified as an alternative and is treated as if FOR SYSTEM_TIME AS OF had
been specified.
2 SYSTEM_TIME and BUSINESS_TIME cannot be specified more than one time per table.

© Copyright IBM Corp. 2022, 2023 243

nested-table-expression:

TABLE

( fullselect)

correlation-clause

data-change-table-reference:

FINAL TABLE ( INSERT statement)

FINAL

OLD

TABLE ( searched UPDATE statement)

OLD TABLE ( searched DELETE statement)

FINAL TABLE ( MERGE statement)

correlation-clause

table-function-reference:

TABLE ( function-name (
,

expression

TABLE transition-table-name

)

table-UDF-cardinality-clause

)

correlation-clause

typed-correlation-clause
1

Notes:
1 The typed-correlation-clause is required for generic table functions. This clause cannot be specified for
any other table functions.

table-UDF-cardinality-clause:

CARDINALITY integer-constant

CARDINALITY MULTIPLIER numeric-constant

table-locator-reference:

TABLE (table-locator-variable LIKE table-name)

correlation-name

xmltable-expression:

xmltable-function

correlation clause

A table-reference specifies an intermediate result table.

• If a single-table-reference is specified and it is not an archive-enabled table or a temporal table,
the intermediate result table is the specified table. If a period-specification is also specified, the

244 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

intermediate result table consists of the rows of the temporal table where the period matches the
specification.

• If a single-table-reference is specified and it is an archive-enabled table, the setting of the
SYSIBMADM.GET_ARCHIVE global variable and the ARCHIVESENSITIVE bind option determine the
contents of the intermediate result table. If the global variable is set to Y and the bind option is set
to YES, the intermediate result table includes the rows in the associated archive table. Otherwise, the
intermediate result table does not include rows in the associated archive table.

• If a single-view-reference is specified without a period-specification, the intermediate result table is that
view. If a period-specification is specified, temporal table references in the view consider only the rows
where the period matches the specification.

• If a nested-table-expression is specified, the result table is the result of the specified fullselect. The
columns of the result do not need unique names, but a column with a non-unique name cannot be
explicitly referenced.

• If a data-change-table-reference is specified, the intermediate result table is the set of rows that are
directly affected by the data change statement.

• If a table-function-reference is specified, the intermediate result table is the set of rows that are
returned by the table function.

• If a table-locator-reference is specified, the host variable represents the intermediate result table. The
intermediate result table has the same structure as the table identified in table-name.

• If a collection-derived-table is specified, the intermediate result table is a set of rows from one or more
array values. For more information, see collection-derived-table (Db2 SQL).

• If an xmltable-expression is specified, the intermediate result table is the set of rows that are returned
by the XMLTABLE (Db2 SQL) function.

• If a joined-table is specified, the intermediate result table is the result of one or more join operations.
For more information, see joined-table (Db2 SQL).

Each table-name or view-name specified in every FROM clause of the same SQL statement must identify a
table or view that exists at the same Db2 subsystem. If a FROM clause is specified in a subquery of a basic
predicate, a view that includes GROUP BY or HAVING must not be identified.

A table-reference must not identify a table that was implicitly created for an XML column.

table-locator-variable
table-locator-variable must specify a variable with a table locator type. The only way to assign a value
to a table locator is to pass the old or new transition table of a trigger to a user-defined function or
stored procedure. A table locator host variable must not have a null indicator. A table locator variable
must not be a parameter marker. In addition, a table locator can be used only in a manipulative SQL
statement. table-locator-reference must not be specified in the body of a trigger.

table-name must refer to an EBCDIC table with a Unicode column if the transition table that is
identified by table-locator-variable is for a trigger that is defined on an EBCDIC table with a Unicode
column.

nested-table-expression
A fullselect in parentheses is called a nested table expression. If a nested table expression is specified,
the result table is the result of that nested-table-expression. The columns of the result do not need
unique names, but a column with a non-unique name cannot be referenced. At any time, the table
consists of the rows that would result if the fullselect were executed.

table-function-reference
If a function-name is specified, the result table is the set of rows returned by the table function.

expression must not contain a scalar fullselect, a function, or a reference to a column.

Each function-name, together with the types of its arguments, must resolve to a table function that
exists at the same Db2 subsystem. An algorithm called function resolution, which is described in
Function resolution (Db2 SQL), uses the function name and the arguments to determine the exact
function to use. Unless given column names in the correlation-clause, the column names for a table

Chapter 10. Db2 queries for SQL DI 245

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_collectionderivedtable.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_bif_xmltable.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_joinedtable.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_functionresolution.html

function are those specified on the RETURNS clause of the CREATE FUNCTION statement. This is
analogous to the column names of a table, which are defined in the CREATE TABLE statement.

If a column mask is used to mask the column values in the final result table, and if the result of the
table function is used to derive the final result table, the column mask cannot be applied to a column
that is specified in the argument of the table function.

table-UDF-cardinality-clause
The table-UDF-cardinality-clause can be specified to each user-defined table function reference
within the table spec of the FROM clause in a subselect. This option indicates the expected
number of rows to be returned only for the SELECT statement that contains it.

CARDINALITY integer-constant specifies an estimate of the expected number of rows returned
by the reference to the user-defined function. The value of integer-constant must range 0 -
2147483647.

The value set in the CARDINALITY field of SYSIBM.SYSROUTINES for the table function name is
used as the reference cardinality value. The product of the specified CARDINALITY MULTIPLIER
numeric-constant and the reference cardinality value are used by Db2 as the expected number of
rows returned by the table function reference.

In this case, the numeric-constant can be in the integer, decimal, or floating-point format. The
value must be greater than or equal to zero. If the decimal number notation is used, the number
of digits can be up to 31. An integer value is treated as a decimal number with no fraction. The
maximum value allowed for a floating-point number is about 7.237E + 75. If no value has been
set in the CARDINALITY field of SYSIBM.SYSROUTINES, its default value is used as the reference
cardinality value. If zero is specified or the computed cardinality is less than 1, Db2 assumes that
the cardinality of the reference to the user-defined table function is 1.

Only a numeric constant can follow the keyword CARDINALITY or CARDINALITY MULTIPLIER.
No host variable or parameter marker is allowed in a cardinality option. Specifying a cardinality
option in a table function reference does not change the corresponding CARDINALITY field in
SYSIBM.SYSROUTINES. The CARDINALITY field value in SYSIBM.SYSROUTINES can be initialized
by the CARDINALITY option in the CREATE FUNCTION (external table) statement when a user-
defined table function is created. It can be changed by the CARDINALITY option in the ALTER
FUNCTION statement or by a direct update operation to SYSIBM.SYSROUTINES.

data-change-table-reference
A data-change-table-reference clause specifies an intermediate result table. This table is based on the
rows that are directly changed by the SQL data change statement that is included in the clause. A
data-change-table-reference can only be specified as the only table-reference in the FROM clause of
the outer fullselect that is used in a select-statement and that fullselect must be in a subselect, or
a SELECT INTO statement. A data-change-table-reference in a SELECT statement of a cursor makes
the cursor read only. The target table or view of the SQL data change statement is a table or view
that is reference in the query. The privileges that are held by the authorization ID of the statement
must include the SELECT privilege on that target table or view. The encoding scheme of the result
table of the SELECT must be the same as the encoding scheme of the target table or view of the
data-change-table-reference.

If row access control is enforced for the target of the data change statement, the rows in the
intermediate result table already satisfy the rules that are specified in the enabled row permissions.
If column access control is enforced for the target of the data change statement, the enabled column
masks are applied to the outermost select list. For more information, see select-clause (Db2 SQL).
If an INCLUDE clause is specified as part of the SQL data change statement, and these additional
columns appear in the outermost select list, the column values must not be derived from columns for
which column masks are defined.

Expressions in the select list of a view in a table reference can only be selected if OLD TABLE is
specified or if the expression does not include any of the following objects:

• a function that is defined to read or modify SQL data
• a function that is defined as not deterministic or has an external action

246 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_selectclause.html

• a NEXT VALUE expression for a sequence

FINAL TABLE
Specifies that the rows of the intermediate result table represent the set of rows that are changed
by the SQL data change statement as they appear at the completion of the SQL data change
statement. If there are AFTER triggers that result in further operations on the table that is the
target of the SQL data change statement, an error is returned. If the target of the SQL data change
statement is a view that is defined with an INSTEAD OF trigger for the type of data change, an
error is returned.

OLD TABLE
The rows of the intermediate result table represent the set of affected rows as they exist prior to
the application of the SQL data change statement.

INSERT statement
Specifies an INSERT statement as described in INSERT (Db2 SQL). A fullselect in the INSERT
statement cannot contain correlated references to columns that are outside of the fullselect of
the INSERT statement. The target of the INSERT statement must be a base table, a view that
is defined with the WITH CASCADED CHECK clause, or a view where the view definition has
no WHERE clause. If there are input variables elsewhere in the fullselect, the INSERT statement
cannot be a multiple row not atomic insert, or a multiple row atomic insert that specifies the
USING DESCRIPTOR clause.

MERGE statement
Specifies a MERGE statement as described in MERGE (Db2 SQL). The MERGE statement must
conform to the following rules:

• The target of the MERGE statement must be a base table, a view that is defined with the WITH
CASCADED CHECK clause, or a view where the view definition has no WHERE clause.

• The target table or view of the MERGE statement must not have a column with a ROWID data
type. Additionally, when NOT ATOMIC CONTINUE ON SQLEXCEPTION is specified, the target
table or view of the MERGE statement must not have a column with a LOB or XML data type.

• If table-reference is specified in the MERGE statement, it must not contain correlated references
to columns that are outside of the table reference in the MERGE statement.

• If table-reference is specified in the MERGE statement, AFTER triggers that result in further
operations on the target table must not exist.

• When NOT ATOMIC CONTINUE ON SQLEXCEPTION is specified in the MERGE statement, or
the NOT ATOMIC CONTINUE ON SQLEXCEPTION clause is not specified, and source-values
(VALUES) is specified, the MERGE statement must not include a delete operation.

searched UPDATE statement
Specifies a searched UPDATE statement as described in UPDATE (Db2 SQL). A WHERE clause or
a SET clause in the UPDATE statement cannot contain correlated referenced to columns that are
outside of the UPDATE statement. The target of the UPDATE statement must be a base table, a
symmetric view, or a view where the view definition has no WHERE clause.

If the searched UPDATE statement is used in the SELECT statement and the UPDATE statement
references a view, the view must be defined using the WITH CASCADED CHECK OPTION clause.

A searched UPDATE statement in a SELECT statement will not clear the AREO* status of a table.

AFTER triggers that result in further operations on the target table cannot exist on the target table.

searched DELETE statement
Specifies a searched DELETE statement as described in DELETE (Db2 SQL). A WHERE clause in
the DELETE statement cannot contain correlated references to columns that are outside of the
DELETE statement. The target of the DELETE statement must be a base table, a symmetric view,
or a view where the view definition has no WHERE clause.

If the searched DELETE statement is used in the SELECT statement and the DELETE statement
references a view, the view must be defined using the WITH CASCADED CHECK OPTION clause.

AFTER triggers that result in further operations on the target table cannot exist on the target table.

Chapter 10. Db2 queries for SQL DI 247

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_insert.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_merge.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_update.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_delete.html

The content of the intermediate result table for a table reference that contains an SQL data change
statement is determined when the cursor is opened. The intermediate result table includes a column
for each of the columns of the target table (including implicitly hidden columns) or view. All of the
columns of the target table or view of an SQL data change statement are accessible by using the
names of the columns from the target table or view unless the columns are renamed by using the
correlation clause. If an INCLUDE clause is specified as part of the SQL data change statement, the
intermediate result table will contain these additional columns.

correlation-clause
Each correlation-name in a correlation-clause defines a designator for the immediately preceding
result table, which can be used to qualify references to the columns of the table. For more
information, see correlation-clause (Db2 SQL).

The exposed names of all table references in the FROM clause should be unique. An exposed name is
considered to be any of the following names:

• A correlation-name
• A table-name that is not followed by a correlation-name
• A view-name that is not followed by a correlation-name
• A function-name that is not followed by a correlation-name
• The table name that is specified after LIKE when a table-locator is not followed by a correlation-

name
• The target table or view name for a data-change-table-reference that is not followed by a

correlation-name
• An alias-name that is not followed by a correlation-name
• A synonym-name that is not followed by a correlation-name

If a correlation-clause clause does not follow an xmltable-expression reference, a nested-table-
expression reference, or a collection-derived-table-reference, there is no exposed name for that table
reference.

Any qualified reference to a column must use the exposed name. If the same name is specified
twice, at least one specification should be followed by a correlation-name. The correlation-name is
used to qualify references to the columns of the table or view. When a correlation-name is specified,
column names can also be specified to give names to the columns of the table reference. If the
correlation-clause does not include column names, the exposed column names are determined as
follows:

• Column names of the referenced table or view when the table-reference is table-name, view-name,
alias-name, or synonym-name

• Column names specified in the RETURNS clause of the CREATE FUNCTION statement when the
table-reference is a function-name reference

• Column names of the table referenced after LIKE when the table-reference is a table-locator
• Column names specified in the COLUMNS clause of the xmltable-expression when the table-

reference is an xmltable-expression
• Column names returned by the fullselect when the table-reference is a nested-table-expression
• Column names from the target table of the data change statement, along with any defined INCLUDE

columns, when the table-reference is a data-change-table-reference

Otherwise, there are no exposed names for the columns of that table reference.

typed-correlation-clause
A typed-correlation-clause defines the appearance and contents of the table generated by a generic
table function. This clause must be specified when the table-function-reference is a generic table
function and cannot be specified for any other table reference. For more information, see typed-
correlation-clause (Db2 SQL).

248 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_correlationclause.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_typedcorrelationclause.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_typedcorrelationclause.html

xmltable-expression
Specifies an invocation of the built-in XMLTABLE function. For more information, see XMLTABLE (Db2
SQL).

If a column mask is used to mask the column values in the final result table, and if the result of the
XMLTABLE function is used to derive the final result table, the column mask cannot be applied to a
column that is specified in the PASSING clause of the XMLTABLE function.

collection-derived-table
A collection-derived-table is used to convert the elements of one or more arrays into column values in
separate rows of an intermediate result table, as explained in collection-derived-table (Db2 SQL).

joined-table
If a joined-table is specified, the result table is the result of one or more join operations as explained
in joined-table (Db2 SQL).

period-specification
Specifies that a period specification applies to the table-reference. The same period name
(SYSTEM_TIME or BUSINESS_TIME) must not be specified more than one time for the same table.
If the table reference specifies a view, the definition of that view must not reference a user-defined
function.

The rows of the table reference are derived by application of the specified period specification. The
intermediate result table does not include rows in the associated history table that were added for the
ON DELETE ADD EXTRA ROW attribute in the system-period temporal table definition.

Note: History tables are intended to include only rows that Db2 stores to record the history of the
associated system-period temporal table. However, if the history table contains other rows with
the same value in the two columns that correspond to the row-begin and row-end columns in the
system-period temporal table, the intermediate result table might include these rows. These rows
might be included in the following cases:

• The system-period temporal table is defined with the ON DELETE ADD EXTRA ROW attribute, the
table contains a DATA CHANGE OPERATION column, and the value of the corresponding column in
the history table is not 'D'.

• The system-period temporal table is not defined with the ON DELETE ADD EXTRA ROW attribute.

The rows of a view reference are derived by application of the specified period specifications to all of
the temporal tables that are accessed when computing the result table of the view. If the view does
not access any temporal tables, the period specification has no effect on the result table of the view.

If the table is a bitemporal table and a period-specification is not specified for both SYSTEM_TIME or
BUSINESS_TIME, the table reference includes all current rows of the table and does not include any
historical rows of the table.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a value other than the null value,
a period-specification for a table or view cannot reference SYSTEM_TIME. This restriction applies
even if the view body does not reference a system-period temporal table. The exception is if the
value in effect for the SYSTIMESENSITIVE bind option is NO. In this case, the period-specification can
reference SYSTEM_TIME.

If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a value other than the null
value, a period-specification for a table or view cannot reference BUSINESS_TIME. This restriction
applies even if the view body does not reference an application-period temporal table. The exception
is if the value in effect for the BUSTIMESENSITIVE bind option is NO. In this case, the period-
specification can reference BUSINESS_TIME.

For more information, see:

CURRENT TEMPORAL BUSINESS_TIME (Db2 SQL)
CURRENT TEMPORAL SYSTEM_TIME (Db2 SQL)

Chapter 10. Db2 queries for SQL DI 249

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_bif_xmltable.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_bif_xmltable.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_collectionderivedtable.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_joinedtable.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_currenttemporalbusinesstime.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_currenttemporalsystemtime.html

FOR SYSTEM_TIME
Specifies that the SYSTEM_TIME period is used for the period-specification. The table reference
must be a system-period temporal table or a view.

Do not specify FOR SYSTEM_TIME if the value of the CURRENT TEMPORAL SYSTEM_TIME special
register is not NULL and the SYSTIMESENSITIVE bind option is set to YES .

FOR BUSINESS_TIME
Specifies that the BUSINESS_TIME period is used for the period-specification. The table reference
must be an application-period temporal table or a view.

Do not specify FOR BUSINESS_TIME if the value of the CURRENT TEMPORAL BUSINESS_TIME
special register is not NULL and the BUSTIMESENSITIVE bind option is set to YES .

AS OF value
Specifies that the table-reference includes rows that exist at the time that is specified by value as
follows:

• For an inclusive-exclusive period, a row is included if the begin value for the specified period is
less than or equal to value, and the end value for the period is greater than value. If value is the
null value, the table reference is an empty table.

• For an inclusive-inclusive period, a row is included if the begin value for the specified period is
less than or equal to value, and the end value for the period is greater than or equal to value. If
value is the null value, the table reference is an empty table.

value
Specifies an expression that returns a value of a built-in data type. The result of the expression
must be comparable to the data type of the columns of the specified period according to the
comparison rules specified in Assignment and comparison (Db2 SQL).

The expression must not have a timestamp precision that is greater than the precision of the
columns for the period.

If the begin and end columns of the period are defined as TIMESTAMP WITHOUT TIME ZONE,
the expression must not return a value of a timestamp with a time zone.

The expression can contain any of the following supported operands:

• A constant
• A special register
• A variable
• An array element specification
• A built-in scalar function whose arguments are supported operands

Note: The scalar function must not be AI_ANALOGY, AI_COMMONALITY,
AI_SEMANTIC_CLUSTER, or AI_SIMILARITY.

• A CAST specification where the cast operand is a supported operand
• An expression that uses arithmetic operators and operands

A period specification for a view must not contain an untyped parameter marker.

FROM value1 TO value2
Specifies that the table-reference includes rows that exist for the period that is specified from
value1 up to value2.

• For an inclusive-exclusive period, a row is included in the table-reference if the start value for
the period in the row is less than value2, and the end value for the period in the row is greater
than value1. The table-reference contains zero rows if value1 is greater than or equal to value2.
If value1 or value2 is the null value, the table reference is an empty table.

• For an inclusive-inclusive period, a row is included in the table-reference if the start value for
the period in the row is less than value2, and the end value for the period in the row is greater

250 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_assignmentandcomparison.html

than or equal to value1. The table-reference contains zero rows if value1 is greater than or equal
tovalue2. If value1 or value2 is the null value, the table reference is an empty table.

value1 or value2
Specifies an expression that returns a value of a built-in data type. The result of the expression
must be comparable to the data type of the columns of the specified period according to the
comparison rules specified in Assignment and comparison (Db2 SQL).

The expression must not have a timestamp precision that is greater than the precision of the
columns for the period.

If the begin and end columns of the period are defined as TIMESTAMP WITHOUT TIME ZONE,
the expression must not return a value of a timestamp with a time zone.

The expression can contain any of the following supported operands:

• A constant
• A special register
• A variable
• An array element specification
• A built-in scalar function whose arguments are supported operands

Note: The scalar function must not be AI_ANALOGY, AI_COMMONALITY,
AI_SEMANTIC_CLUSTER, or AI_SIMILARITY.

• A CAST specification where the cast operand is a supported operand
• An expression that uses arithmetic operators and operands

A period specification for a view must not contain an untyped parameter marker.

BETWEEN value1 AND value2
Specifies that the table-reference includes rows in which the specified period overlaps at any point
in time between value1 and value2.

• For an inclusive-exclusive period, a row is included in the table-reference if the start value for
the period in the row is less than or equal to value2 and the end value for the period in the row
is greater than value1. The table-reference contains zero rows if value1 is greater than value2.
If value1 = value2, the expression is equivalent to AS OF value1. If value1 or value2 is the null
value, the table-reference is an empty table.

• For an inclusive-inclusive period, a row is included in the table-reference if the start value for the
period in the row is less than or equal to value2 and the end value for the period in the row is
greater than or equal to value1. The table-reference contains zero rows if value1 is greater than
value2. If value1 = value2, the expression is equivalent to AS OF value1. If value1 or value2 is
the null value, the table-reference is an empty table.

value1 or value2
Specifies an expression that returns a value of a built-in data type. The result of the expression
must be comparable to the data type of the columns of the specified period according to the
comparison rules specified in Assignment and comparison (Db2 SQL).

The expression must not have a timestamp precision that is greater than the precision of the
columns for the period.

If the begin and end columns of the period are defined as TIMESTAMP WITHOUT TIME ZONE,
the expression must not return a value of a timestamp with a time zone.

The expression can contain any of the following supported operands:

• A constant
• A special register
• A variable
• An array element specification

Chapter 10. Db2 queries for SQL DI 251

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_assignmentandcomparison.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_assignmentandcomparison.html

• A built-in scalar function whose arguments are supported operands

Note: The scalar function must not be AI_ANALOGY, AI_COMMONALITY,
AI_SEMANTIC_CLUSTER, or AI_SIMILARITY.

• A CAST specification where the cast operand is a supported operand
• An expression that uses arithmetic operators and operands

A period specification for a view must not contain an untyped parameter marker.

Notes
Correlated references in table-reference:

In general, nested table expressions and table functions can be specified in any FROM clause.
Columns from the nested table expressions and table functions can be referenced in the select list
and in the rest of the fullselect using the correlation name. The scope of this correlation name is the
same as correlation names for other table or view names in the FROM clause. The basic rule that
applies for both these cases is that the correlated reference must be from a table-reference at a higher
level in the hierarchy of subqueries.

Nested table expressions can be used in place of a view to avoid creating a view when general use of
the view is not required. They can also be used when the result table is based on host variables.

For table functions, an additional capability exists. A table function can contain one or more correlated
references to other tables in the same FROM clause if the referenced tables precede the reference in
the left-to-right order of the tables in the FROM clause. The same capability exists for nested table
expressions if the optional keyword TABLE is specified; otherwise, only references to higher levels in
the hierarchy of subqueries is allowed.

A nested table expression or table function that contains correlated references to other tables in the
same FROM clause:

• Cannot participate in a FULL OUTER JOIN or a RIGHT OUTER JOIN
• Can participate in LEFT OUTER JOIN or an INNER JOIN if the referenced tables precede the

reference in the left-to-right order of the tables in the FROM clause

The following table shows some examples of valid and invalid correlated references. TABF1 and
TABF2 represent table functions.

Table 21. Examples of correlated references

Subselect Valid Reason

SELECT T.C1, Z.C5
FROM TABLE(TABF1(T.C2)) AS Z, T
WHERE T.C3 = Z.C4;

No T.C2 cannot be resolved because T
does not precede TABF1 in FROM

SELECT T.C1, Z.C5
FROM T, TABLE(TABF1(T.C2)) AS Z
WHERE T.C3 = Z.C4;

Yes T precedes TABF1 in FROM, making
T.C2 known

SELECT A.C1, B.C5
FROM TABLE(TABF2(B.C2)) AS A,
 TABLE(TABF1(A.C6)) AS B
WHERE A.C3 = B.C4;

No B in B.C2 cannot be resolved
because the table function that
would resolve it, TABF1, follows its
reference in TABF2 in FROM

252 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Table 21. Examples of correlated references (continued)

Subselect Valid Reason

SELECT D.DEPTNO, D.DEPTNAME,
 EMPINFO.AVGSAL, EMPINFO.EMPCOUNT
FROM DEPT D,
 (SELECT AVG(E.SALARY) AS AVGSAL,
 COUNT(*) AS EMPCOUNT
 FROM EMP E
 WHERE E.WORKDEPT = D.DEPTNO)
 AS EMPINFO;

No DEPT precedes nested table
expression, but keyword TABLE is
not specified, making D.DEPTNO
unknown

SELECT D.DEPTNO, D.DEPTNAME,
 EMPINFO.AVGSAL, EMPINFO.EMPCOUNT
FROM DEPT D,
 TABLE (SELECT AVG(E.SALARY) AS AVGSAL,
 COUNT(*) AS EMPCOUNT
 FROM EMP E
 WHERE E.WORKDEPT = D.DEPTNO)
 AS EMPINFO;

Yes DEPT precedes nested table
expression and keyword TABLE is
specified, making D.DEPTNO known

Affects of special registers:
The setting of the CURRENT TEMPORAL BUSINESS_TIME and CURRENT TEMPORAL SYSTEM_TIME
special registers might affect the result of a query, as described in the following situations:

• Assume the following conditions:

– A table reference is an application-period temporal table.
– The columns of the BUSINESS_TIME period are defined as TIMESTAMP(6).
– The CURRENT TEMPORAL BUSINESS_TIME special register is set to a non-null value.

In this case, a query is executed as if it contained the following specification:

FOR BUSINESS_TIME AS OF CURRENT TEMPORAL BUSINESS_TIME

• Assume the following conditions:

– A table reference is an application-period temporal table.
– The columns of the BUSINESS_TIME period are defined as DATE.
– The CURRENT TEMPORAL BUSINESS_TIME special register is set to a non-null value.

In this case, a query is executed as if it contained the following specification:

FOR BUSINESS_TIME AS OF CAST(CURRENT TEMPORAL BUSINESS_TIME AS DATE)

• If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value, a query is
executed as if it contained the following specification:

FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME

Related reference
Examples of subselects (Db2 SQL)

Chapter 10. Db2 queries for SQL DI 253

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_subselectexamples.html

254 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Chapter 11. Db2 SQL codes for SQL DI
Db2 updates the following SQL codes to support SQL DI.

-154 THE STATEMENT FAILED BECAUSE
VIEW OR TABLE DEFINITION IS
NOT VALID

Explanation
The CREATE VIEW or DECLARE GLOBAL TEMPORARY
TABLE statement is not valid for one of the following
reasons:

• The CREATE VIEW or DECLARE GLOBAL
TEMPORARY TABLE statement references a remote
object.

• The CREATE VIEW statement references one of the
following scalar functions:

– AI_ANALOGY
– AI_COMMONALITY
– AI_SEMATIC_CLUSTER
– AI_SIMILARITY
– UNPACK

System action
The statement cannot be processed. The specified
object is not defined.

Programmer response
The implied function is not supported.

SQLSTATE
42909

Related reference
CREATE TABLE (Db2 SQL)
CREATE VIEW (Db2 SQL)
DECLARE GLOBAL TEMPORARY TABLE (Db2
SQL)

-356 COLUMN OR KEY EXPRESSION
expression-number IS NOT VALID,
REASON CODE = reason-code

Explanation
The CREATE INDEX statement cannot be processed
because a column or key expression is not valid.

expression-number
The number of the invalid column or key
expression.

reason-code
A numeric value that indicates the reason for the
failure.
1

Contains a subquery.
2

Does not contain at least one reference to a
column.

3
References a special register.

4
Includes a CASE expression.

5
Includes a user-defined function.

6
Appears more than once in the index.

7
References a qualified column name.

8
References a column that is defined with a
FIELDPROC.

9
References the LOWER or UPPER function
without a locale name or the input string-
expression is FOR BIT DATA.

10
References the TRANSLATE function without
an output translation table.

11
The encoding scheme of the result of a column
or key expression is different than the CCSID
encoding scheme of the table.

12
The SUBSTR built-in function is allowed to
reference the inline portion of a LOB column
in the specified context. In addition, the
START and LENGTH arguments of the SUBSTR
function must be constants.

13
References one of the following built-in
functions:

• VERIFY_GROUP_FOR_USER
• VERIFY_TRUSTED_CONTEXT_

ROLE_FOR_USER

© Copyright IBM Corp. 2022, 2023 255

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createview.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_declareglobaltemptable.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_declareglobaltemptable.html

• VERIFY_ROLE_FOR_USER.

14
Contains an expression that requires the use of
an implicit time zone value. For example, the
key expression might include an explicit cast of
a TIMESTAMP WITHOUT TIME ZONE value to a
TIMESTAMP WITH TIME ZONE value.

15
References a global variable.

25
A specification for an index on an EBCDIC table
includes one or more Db2 11 Unicode columns
and one or more Db2 12 or later Unicode
columns. For more information, see Unicode
columns in EBCDIC tables (Db2 SQL).

116
In an invocation of the JSON_VAL built-in
function in a key-expression for an index, the
third argument of the function must end in ':na',
to indicate that the first argument does not
contain a JSON array.

117
In an invocation of the JSON_VAL built-in
function in a key-expression for an index, if
the first argument of the function is a column,
that column must be contained in a table in a
partition-by-growth table space.

118
If there is an invocation of the JSON_VAL built-
in function in a key-expression for an index, the
CREATE INDEX statement must not reference a
LOB column other than the LOB column that is
the argument to the JSON_VAL function. Such
a CREATE INDEX statement can refer only to a
single LOB column.

119
If a key-expression for an index contains
an invocation of the JSON_VAL function, the
invocation must be the outermost expression
for key-expression.

120
The key-expression must not reference one of
the following built-in functions:

• AI_ANALOGY
• AI_COMMONALITY
• AI_SEMANTIC_CLUSTER
• AI_SIMILARITY

System action
The statement cannot be processed.

Programmer response
Correct the error in the key expression, and reissue the
statement.

SQLSTATE
429BX

-390 OBJECT object-name, SPECIFIC
NAME specific-name, IS NOT
VALID IN THE CONTEXT WHERE IT
IS USED

Explanation
One of the following situations occurred:

• A function resolved to a specific function that is not
valid in the context where it is used.

• UNNEST was used in a context in which it is not
allowed.

object-name
The name of the object.

specific-name
The specific name. If specific-name is an empty
string, then the function resolved to the built-in
function identified by function-name.

If the error is for an invalid use of UNNEST,
specific-name is *N.

Possible causes for this error include:

• A scalar or aggregate function is referenced where
only a table function is allowed (such as in the FROM
clause of a query).

• A table function is referenced where only a scalar
or aggregate function is allowed (such as in an
expression).

• A function is referenced in a SOURCE clause of a
CREATE FUNCTION statement, but a source function
cannot be defined on that function (or on that
specific function signature).

• Function XMLMODIFY is referenced where it is not
the topmost expression on the right side of the SET
assignment clause in an update.

• A generic table function is referenced, but a typed-
correlation-clause is not specified.

• A typed-correlation-clause is specified, but the
referenced function is not a generic table function.

• UNNEST was specified in an unsupported context.
• A CORRELATION, COVARIANCE,

COVARIANCE_SAMP or ARRAY_AGG set function is
referenced where a CUBE, ROLLUP or GROUPING
SETS clause exists in the same SQL statement.

256 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_unicodecolinebcdictable.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_unicodecolinebcdictable.html

• ARRAY_AGG is referenced in a fullselect that
includes an ORDER BY clause or a DISTINCT clause.

• LISTAGG is referenced in a fullselect that includes a
DISTINCT clause.

• AI_ANALOGY, AI_SEMATIC_CLUSTER, or
AI_SIMILARITY is referenced in one of the following
statements where they are not allowed:

– CREATE FUNCTION (sourced)
– CREATE FUNCTION (inlined SQL scalar)
– CREATE FUNCTION (SQL table)

System action
The statement cannot be processed.

Programmer response
For a function, ensure that the correct function name
and arguments are specified and that the SQL path
includes the schema where the correct function is
defined. You might need to change the function name,
arguments, or SQL path (using SET CURRENT PATH or
the PATH bind option), or change the context in which
the function is used.

SQLSTATE
42887

Related concepts
Functions (Db2 SQL)
Related reference
table-reference (Db2 SQL)

-20058 THE FULLSELECT SPECIFIED FOR
MATERIALIZED QUERY TABLE
table-name IS NOT VALID.

Explanation
The materialized query table definition has specific
rules regarding the contents of the fullselect, and the
fullselect that was specified did not conform to these
rules.

table-name
The name of the materialized query table.

General restrictions: The following restrictions apply:

• The length of each result column of the fullselect
must not be 0.

• The fullselect cannot contain a column of a LOB or
XML data type.

• No more than one table in the fullselect can contain
a security label column.

• The fullselect must not contain a period
specification.

• The object that is specified in the FROM clause of the
fullselect cannot be a view with columns of length 0.

• The fullselect cannot contain a reference to a
created global temporary table, a declared global
temporary table, an accelerator-only table, or
another materialized query table.

• The fullselect cannot directly or indirectly reference
a base table that has been activated for the row or
column access control or a base table for which a
row permission or a column mask has been defined.

• The fullselect must not refer to host variables or
include parameter markers.

• The fullselect must not refer to global variables.
• The fullselect must not include the following

built-in functions: AI_ANALOGY, AI_COMMONALITY,
AI_SEMANTIC_CLUSTER, or AI_SIMILARITY.

Additional restrictions when ENABLE QUERY
OPTIMIZATION is in effect:

• The fullselect must be a subselect.
• The outermost SELECT list of the subselect must not

reference data that is encoded with different CCSID
sets.

• The subselect cannot include the following:

– A special register
– A scalar fullselect
– A row change timestamp column
– A ROW CHANGE expression
– An expression for which implicit time zone values

apply (for example, cast a timestamp to a
timestamp with time zone)

– The RAND built-in function
– The RID built-in function
– A user-defined scalar or table function that is not

deterministic or that has external actions
– Any predicates that include a subquery
– A row-value-expression in a predicate
– A join using the INNER JOIN syntax, or an outer

join
– A lateral correlation
– a nested table expression or view that requires

temporary materialization
– A direct or indirect reference to a table that uses

activated row or column access controls, or a
table for which row or column access controls
have been defined.

– A FETCH FIRST clause

Chapter 11. Db2 SQL codes for SQL DI 257

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_functionsoverview.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_tablereference.html

– A reference to a global variable
– A collection-derived table (UNNEST)
– A GROUPING SETS or super-groups clause
– A reference to the LISTAGG, MEDIAN,

PERCENTILE_CONT, or PERCENTILE_DISC
function

• If a table with a security label is referenced, the
security label column must be referenced in the
outer select list of the subselect.

• If the subselect references a view, the fullselect in
the view definition must satisfy all other restrictions.

System action
The statement cannot be processed.

Programmer response
Change the fullselect in the CREATE TABLE or ALTER
TABLE statement so that it conforms to the rules listed
above.

SQLSTATE
428EC

Related reference
CREATE TABLE (Db2 SQL)
ALTER TABLE (Db2 SQL)

-20474 PERMISSION OR MASK CANNOT
BE CREATED FOR THE object-name
OBJECT OF THE object-type TYPE.
REASON CODE reason-code.

Explanation
The CREATE PERMISSION or CREATE MASK statement
cannot be processed.

object-name
The name of the object.

object-type
The type of object.

reason-code
The reason for the message or SQL code, indicated
by one of the following values:
1

The definition references the table for which
the row permission or the column mask is
being defined.

2
The definition references a table function or a
collection-derived table (UNNEST).

3
The definition references a user-defined
function that is not secure.

4
The definition references one of the following
functions:

• A function that is defined as not deterministic
• A function that is defined to have an external

action
• A function that is defined with the MODIFIES

SQL DATA option

5
The definition references an OLAP
specification.

6
The definition references an XMLEXISTS
predicate.

7
The definition references a ROW CHANGE
expression.

8
The definition references a sequence
reference.

9
The definition references a created or declared
temporary table.

10
The definition references a table that was
implicitly created for an XML column.

11
The definition references * or name.* in a
SELECT clause.

12
The definition references a column that is
defined with a FIELDPROC.

13
The definition references a language element
that requires multiple encoding scheme
processing.

14
The definition references an ordinary SQL
identifier that contains a dash (-).

16
The body of a row permission or column mask
includes a period specification.

17
One of the following situations occurred:

• An attempt was made to create a row
permission or column mask on one of the
following table types:

– A table that is defined with a period

258 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_altertable.html

– A history table
– An archive-enabled table
– An archive table
– An accelerator-only table

You cannot create row permissions or
column masks on these types of tables.

• An attempt was made to implicitly create a
default row permission for an ACTIVATE ROW
ACCESS CONTROL specification.

18
The definition references a Db2 11 Unicode
column in an EBCDIC table.

19
A column mask cannot be defined for a Db2 11
Unicode column in an EBCDIC table.

32
The column for which the mask is defined was
done so with a field procedure (FIELDPROC).

33
The data type of the return expression is not
the same as the data type of the column on
which the column mask is defined.

34
The length attribute of the return expression
is not the same as the length attribute of the
column on which the column mask is defined.

35
The null attribute of the return expression
is not the same as the null attribute of the
column on which the column mask is defined.

36
The subtype, encoding scheme, or CCSID of
the return expression is not the same as
the corresponding attribute of the column on
which the column mask is defined.

37
An attribute of the return expression is not
the same as the corresponding attribute of the
column on which the column mask is defined.
The attribute is not one of the attributes that
are described in reason codes 33-36.

39
The definition references an accelerator-only
table.

51
A row permission cannot be created for a table
that has a security label column.

52
A row permission cannot reference a table that
has a security label column.

53
GROUPING SETS or super-groups cannot be
specified in the definition of a column mask or
a row permission control.

54
The definition references the AI_ANALOGY,
AI_COMMONALITY, AI_SEMANTIC_CLUSTER,
or AI_SIMILARITY function.

System action
The statement cannot be processed.

Programmer response
Correct the syntax, and reissue the statement.

SQLSTATE
428HB

Related concepts
Column mask (Managing Security)
Row permission (Managing Security)
Temporal tables and data versioning (Db2
Administration Guide)
Archive-enabled tables and archive tables
(Introduction to Db2 for z/OS)
Related reference
CREATE MASK (Db2 SQL)
CREATE PERMISSION (Db2 SQL)

-20524 INVALID PERIOD SPECIFICATION
OR PERIOD CLAUSE FOR PERIOD
period-name. REASON CODE =
reason-code.

Explanation
A period specification or period clause is invalid.

period-name
The period that is invalid.

reason-code
A numeric value that indicates why the period is
invalid:
1

The period name was specified more than one
time for the table reference.

2
The SYSTEM_TIME period was specified, but
the table is not a system-period temporal
table.

3
period-name violated the following
requirement: each expression must return a

Chapter 11. Db2 SQL codes for SQL DI 259

https://www.ibm.com/docs/en/SSEPEK_13.0.0/seca/src/tpc/db2z_columnmask.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/seca/src/tpc/db2z_rowpermission.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_temporaltables.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_temporaltables.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/intro/src/tpc/db2z_archivetables.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/intro/src/tpc/db2z_archivetables.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createmask.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_sql_createpermission.html

value of a built-in data type and can contain
any of the following supported operands:

• A constant
• A special register
• A variable, which can be either a host

variable, an SQL variable, an SQL parameter,
a transition variable, or a global variable

• A parameter marker
• A CAST specification, where the cast operand

is a supported operand
• An expression that uses arithmetic operators

and operands
• A scalar function whose arguments are

supported operands (Nested function
invocations are not permitted.)

These rules have the following exceptions:

• A period specification or period clause for a
view must not contain an untyped parameter
marker.

• The source expression of SET CURRENT
TEMPORAL BUSINESS_TIME and SET
CURRENT TEMPORAL SYSTEM_TIME
statements must not contain a parameter
marker or a transition variable.

• The scalar functions must not
be AI_ANALOGY, AI_COMMONALITY,
AI_SEMANTIC_CLUSTER, or AI_SIMILARITY.

4
The period specification or period clause was
specified for a view where the view definition
includes a user-defined function.

5
The precision of an expression must be greater
than the precision of the columns of the period.
If the expression is a string, it is first converted
to a timestamp, and the value must not contain
more significant fractional seconds digits than
the precision of the column.

6
FOR SYSTEM_TIME was specified. However,
the value of the CURRENT TEMPORAL
SYSTEM_TIME special register is not null, and
the SYSTIMESENSITIVE bind option is set
to YES. Therefore, you cannot also explicitly
specify FOR SYSTEM_TIME.

7
FOR BUSINESS_TIME was specified. However,
the value of the CURRENT TEMPORAL
BUSINESS_TIME special register is not null,
and the BUSTIMESENSITIVE bind option is set
to YES. Therefore, you cannot also explicitly
specify FOR BUSINESS_TIME.

8
The period specification or period clause was
specified for one of the following items:

• A table that is not an application-period
temporal table

• A view for which an application-period
temporal table is not referenced in the
outermost FROM clause of the view
definition, or an INSTEAD OF trigger is
defined on the view.

9
An expression must not return a value with
a time zone if the begin and end columns of
the specified period are defined as timestamp
without time zone.

System action
The statement cannot be processed.

User response
Correct the syntax and resubmit the statement.

SQLSTATE
428HY

Related tasks
Querying temporal tables (Db2 Administration
Guide)
Related reference
CURRENT TEMPORAL BUSINESS_TIME (Db2
SQL)
CURRENT TEMPORAL SYSTEM_TIME (Db2 SQL)

-20577 SQL DATA INSIGHTS HAS NOT
BEEN CONFIGURED IN Db2,
REASON reason-code.

Explanation
An attempt was made to use an SQL Data Insights
function, but failed due to one or more of the following
reasons:

reason-code
3

SQL DI is not configured for this Db2.
4

SQL DI detects an incompatible SQL DI table.
5

SQL DI detects invalid values in the SQL DI
tables.

260 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_queryingtemporaltables.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/admin/src/tpc/db2z_queryingtemporaltables.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_currenttemporalbusinesstime.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_currenttemporalbusinesstime.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/sqlref/src/tpc/db2z_currenttemporalsystemtime.html

6
SQL DI detects an incompatible code in z/OS.

System action
• For RC 3, run the DSNTIJAI job to configure this Db2

system to use SQL DI. Make sure that you have the
database administrator authority.

• For RC 4, check that your Db2 code level is
compatible with your SQL DI catalog tables. Update
your Db2 by following the ++HOLD instructions in the
latest PTF and retrain the model.

• For RC 5, verify that you have applied the latest PTFs
for your SQL DI UI and z/OS. Retrain the model after
both PTFs are successfully applied.

• For RC 6, check that the code levels of your Db2 and
z/OS systems are compatible. Apply the latest z/OS
PTF and retrain the model.

SQLSTATE
0A502

-20578 MODEL COLUMNS CANNOT BE
DETERMINED FOR FUNCTION
function-name.

Explanation
No model columns can be determined for the
arguments of the SQL Data Insights function.

function-name
The name of the SQL Data Insights function.

Arguments of the SQL Data Insights functions must
specify model columns. If the argument is a column
name, the model column is that column name. The
model column may also be specified on the function
invocation using the USING MODEL COLUMN clause.
Some SQL Data Insights functions infer the model
column of arguments from other arguments of the
function. Refer to the documentation of the specific
function being invoked to understand how the model
column of the arguments are determined.

System action
The statement that contains the function cannot be
processed.

Programmer response
Correct the invocation of the function to ensure that
the arguments have specified a model column or that
they specify the arguments such that Db2 is able
to infer the model columns. Once the corrections
to the SQL are made, reissue the statement. Refer

to the documentation of the specific function being
invoked to understand how the model column of the
arguments are determined.

SQLSTATE
428ID

-20579 IN FUNCTION function-name
MODEL COLUMN column-name
FROM MODEL model-name
CANNOT BE USED, REASON
reason-code.

Explanation
In an invocation of an SQL Data Insights function, a
model column or model was not found or found to be
not usable.

function-name
The name of the SQL Data Insights function
in which model-name and column-name is
referenced.

column-name
The model column that is not included in the
model. column-name may be indicated as *N when
it cannot be determined for some of reasons
below.

model-name
The model table that does not include the model
column column-name.

reason-code
A numeric value which indicates why the model or
column cannot be used:
1

There is no model indicated by model-name.

2

The model model-name exists, but column-
name is not a configured column in model-
name.

3

The model model-name is not enabled.

4

The model model-name is incomplete.

5

The model columns specified in function-name
are from different models. model-name and
column-name indicate one model column
that is different from other model columns
specified in the function.

Chapter 11. Db2 SQL codes for SQL DI 261

6

Illegal use of model column qualifier in
column-name. The qualifier must refer to a
table name or view name, or an alias to a
table name or view name. It may not refer to
a synonym name, or the correlation name of a
table expression.

7

One argument to AI_SIMILARITY has a model
column that was indicated as a primary key
column during model training, and the other
argument specifies a different model column.

8

For AI_ANALOGY, arguments source-1 and
source-2 must use the same model column,
and arguments target-1 and target-2 must use
the same model column.

System action
The statement that contains the function cannot be
processed.

Programmer response
Review the reason indicated by reason-code and
ensure that the model and model column referenced
in the SQL Data Insights function refers to a model that
has completed training. Correct the usage of the model
columns in the function, if necessary.

SQLSTATE
428ID

-20580 IN AI FUNCTION function-name,
ARGUMENT n IS NOT USABLE,
REASON reason-code.

Explanation
An SQL Data Insights function specified an argument
that cannot be used.

function-name
The name of the SQL DI function.

n
The numeric position of the argument that cannot
be used.

reason-code
10

The source-1 and source-2 arguments to
AI_ANALOGY must not be the same value. If
the SQL DI data types of the model columns
for source-1 and source-2 are numeric, their
values, though different, may be treated as the
same because they may belong to the same
cluster during model training. See the Model
details page of the SQL DI UI for more
information how numeric values in a cluster are
processed in function arguments.

SQLSTATE
428ID

262 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Information resources for Db2 for z/OS and related
products

You can find the online product documentation for Db2 13 for z/OS and related products in IBM
Documentation.

For all online product documentation for Db2 13 for z/OS, see IBM Documentation (https://
www.ibm.com/docs/en/db2-for-zos/13).

For other PDF manuals, see PDF format manuals for Db2 13 for z/OS (https://www.ibm.com/docs/en/
db2-for-zos/13?topic=zos-pdf-format-manuals-db2-13).

© Copyright IBM Corp. 2022, 2023 263

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_13.0.0/home/src/tpc/db2z_13_prodhome.html
https://www.ibm.com/docs/en/db2-for-zos/13
https://www.ibm.com/docs/en/db2-for-zos/13
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/db2-for-zos/13?topic=zos-pdf-format-manuals-db2-13
https://www.ibm.com/docs/en/db2-for-zos/13?topic=zos-pdf-format-manuals-db2-13

264 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

© Copyright IBM Corp. 2022, 2023 265

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as shown below:

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. (enter the year or years).

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at: http://www.ibm.com/legal/copytrade.shtml.

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions:

Applicability: These terms and conditions are in addition to any terms of use for the IBM website.

Personal use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Rights: Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

266 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

http://www.ibm.com/legal/copytrade.shtml

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”
and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Notices 267

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy

268 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Glossary

The glossary is available in IBM Documentation

For definitions of Db2 for z/OS terms, see Db2 glossary (Db2 Glossary).

© Copyright IBM Corp. 2022, 2023 269

https://www.ibm.com/docs/en/SSEPEK_13.0.0/glossary/src/gloss/db2z_gloss.html

270 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

Index

A
accelerator tables 169
accessibility

keyboard vi
shortcut keys vi

adding
AI object 22
object 22

administeringSQL Data Insights 29
AI object

adding 22
AI query 22, 26

AI query
enabling 22, 26
running 25

AI_ANALOGY scalar function 43
AI_COMMONALITY scalar function 45
AI_SEMANTIC_CLUSTER scalar function 49
AI_SIMILARITY scalar function 47
APPEND

clause of CREATE TABLE statement 175
AS clause

CREATE VIEW statement 196
AS IDENTITY clause

CREATE TABLE statement 150
AS LOCATOR clause

CREATE FUNCTION statement 55
AS SECURITY LABEL clause

CREATE TABLE statement 154
ASC clause

CREATE INDEX statement 87
CREATE TABLE statement 170

AUDIT
clause of CREATE TABLE statement 172

auditing
CREATE TABLE statement 172

B
BIGINT

data type
CREATE TABLE statement 138

BINARY
data type 138

BLOB (binary large object)
data type 138

BLOB LARGE OBJECT data type 138
BUFFERPOOL

clause of CREATE TABLE statement 176
BUFFERPOOL clause

CREATE INDEX statement 99

C
CALLED ON NULL INPUT clause

CREATE FUNCTION (inlined SQL scalar) statement 68

capturing changed data
CREATE TABLE statement 173

CARDINALITY clause 246
CARDINALITY MULTIPLIER clause 246
CASCADE delete rule

CREATE TABLE statement 159
catalog name

VCAT clause
CREATE INDEX statement 93

CCSID
clause of CREATE FUNCTION (inlined SQL scalar)
statement 66
clause of CREATE FUNCTION statement 54
clause of CREATE TABLE statement 173

CHAR LARGE OBJECT data type 138
CHAR VARYING data type 138
CHARACTER data type

CREATE TABLE statement 138
CHARACTER LARGE OBJECT data type 138
CHARACTER VARYING data type 138
CHECK

clause of CREATE TABLE statement 160
CLOB (character large object)

description 138
CLOSE

clause of CREATE INDEX statement
description 99

CLUSTER clause
CREATE INDEX statement 92

column
derived

CREATE VIEW statement 196
DELETE statement 209
UPDATE statement 229

column masks
creating 108

COMPRESS NO
clause of CREATE TABLE statement 175

COMPRESS NO clause
CREATE INDEX statement 97

COMPRESS YES
clause of CREATE TABLE statement 175

COMPRESS YES clause
CREATE INDEX statement 97

configuration
verifying 16

configuring
Db2

configuring 13
keyring 12
keystore 12
roadmap 5
setup user ID 9
SQL Data Insights

configuring 13
SSL certificate 12
user authentication 12

Index 271

configuring (continued)
z/OS system environment
9

connection
creating 21

CONSTRAINT
clause of CREATE TABLE statement 160

CONSTRAINT clause
CREATE TABLE statement 143, 156, 157

CONTAINS SQL clause
CREATE FUNCTION (inlined SQL scalar) statement 68

COPY
clause of CREATE INDEX statement 101

CREATE FUNCTION (inlined SQL scalar) statement
description 62
example 70

CREATE FUNCTION (sourced) statement
description 51
example 61

CREATE FUNCTION (SQL table) statement
description 71
examples 78

CREATE INDEX statement
description 79
example 107

CREATE MASK statement
description 108
examples 115

CREATE PERMISSION statement
description 117
examples 123

CREATE TABLE statement
description 124
example 190
materialized query table 124

CREATE VIEW statement
description 193
example 200

creating
connection 21
started task

Spark 31
SQL DI 30

CURRENT TEMPORAL BUSINESS_TIME special register
assigning a value 217

CURRENT TEMPORAL SYSTEM_TIME special register
assigning a value 218

cursor
closing

error in UPDATE 232

D
DATA CAPTURE clause

CREATE TABLE statement 173
data type

CREATE TABLE statement 138
DATE

data type
CREATE TABLE statement 138

DBCLOB (double-byte character large object)
data type 138

DECFLOAT
data type

DECFLOAT (continued)
data type (continued)

CREATE TABLE statement 138
DECIMAL

data type
CREATE TABLE statement 138

declare default element namespace clause
CREATE INDEX statement 89

declare namespace clause
CREATE INDEX statement 89

DEFER
clause of CREATE INDEX statement 99

DEFINE clause
CREATE INDEX statement 96

DEFINITION ONLY clause
CREATE TABLE statement 190

DELETE
statement

description 200
example 216

delete rules 211
deleting

rows from a table 200
DESC clause

CREATE INDEX statement 87
CREATE TABLE statement 170

DETERMINISTIC clause
CREATE FUNCTION (inlined SQL scalar) statement 67

disability vi
distinct type

CREATE TABLE statement 142
DOUBLE data type

CREATE TABLE statement 138
DOUBLE PRECISION data type

CREATE TABLE statement 138
DSNTIP81 installation panel 41
DSSIZE

clause of CREATE INDEX statement 99
clause of CREATE TABLE statement 176

E
edit routine

named in CREATE TABLE statement 172
specified by EDITPROC option 172

EDITPROC clause
CREATE TABLE statement 172

ENABLE QUERY OPTIMIZATION clause
CREATE TABLE statement 160

enabling
AI object 22, 26
AI query 22, 26

ENDING AT clause
CREATE INDEX statement 98
CREATE TABLE statement 171

ENFORCED clause
CREATE TABLE statement 160

ERASE clause
CREATE INDEX statement 94

error
during update 232

EXCLUDING COLUMN DEFAULTS clause
CREATE TABLE statement 164

EXCLUDING IDENTITY COLUMN ATTRIBUTES clause

272 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

EXCLUDING IDENTITY COLUMN ATTRIBUTES clause (continued)
CREATE TABLE statement 163

EXCLUDING ROW CHANGE TIMESTAMP COLUMN
ATTRIBUTES clause

CREATE TABLE statement 163
exit routine

named in CREATE TABLE statement 153
EXTERNAL ACTION clause

CREATE FUNCTION (inlined SQL scalar) statement 67

F
field procedure

named in CREATE TABLE statement 153
FIELDPROC clause

CREATE TABLE statement 153
FINAL TABLE clause

FROM clause 247
FLOAT

data type
CREATE TABLE statement 138

FOR
clause of CREATE TABLE statement 138

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
clause

CREATE TABLE statement 148
FOR ROW n OF ROWSET clause

DELETE statement 210
UPDATE statement 231

FOREIGN KEY clause
CREATE TABLE statement 157

free space
index 95

FREEPAGE
clause of CREATE INDEX statement

description 95
FROM clause

DELETE statement 205
fullselect

CREATE VIEW statement 196
functions

scalar
AI_ANALOGY 43
AI_COMMONALITY 45
AI_SEMANTIC_CLUSTER 49
AI_SIMILARITY 47

G
GBPCACHE clause

CREATE INDEX statement 96
GENERATE KEY USING clause

CREATE INDEX statement 89
GENERATED clause

CREATE TABLE statement 147
GRAPHIC

data type
CREATE TABLE statement 138

GROUP BY clause
cannot join view 199

H
hardware requirements

planning 6, 8

I
identity column

CREATE TABLE statement 150
IMPLICITLY HIDDEN clause

CREATE TABLE statement 154
IN

clause of CREATE TABLE statement 168, 169
INCLUDE clause

DELETE statement 208
UPDATE statement 229

INCLUDING COLUMN DEFAULTS clause
CREATE TABLE statement 164

INCLUDING IDENTITY COLUMN ATTRIBUTES clause
CREATE TABLE statement 163

INCLUDING ROW CHANGE TIMESTAMP COLUMN
ATTRIBUTES clause

CREATE TABLE statement 163
INCLUSIVE clause

CREATE INDEX statement 99
CREATE TABLE statement 171

index
creating with CREATE INDEX statement 79
partitioning 98
SQL DI table 33

INDEX clause
CREATE INDEX statement 85

INLINE LENGTH clause
CREATE TABLE statement 154

installation
verifying 16

installing
roadmap 5
SQL Data Insights 14

INTEGER
data type

CREATE TABLE statement 138
integrated catalog facility

CREATE INDEX statement 95
isolation level

control by SQL statement
DELETE statement 211
UPDATE statement 232

isolation-clause
DELETE statement 211
UPDATE statement 232

K
key

length
partitioning index 98, 229

primary
defining on a single column 143

key-expression clause
CREATE INDEX statement 86

keyring
configuring 12

Index 273

keyring-based keystore
configuring 12

keystore
configuring 12

L
LANGUAGE SQL clause

CREATE FUNCTION (inlined SQL scalar) statement 66
LIKE clause

CREATE TABLE statement 161
links

non-IBM Web sites
266

lock
during update 232

LOGGED
clause of CREATE TABLE statement 174

LONG VARCHAR data type 180
LONG VARGRAPHIC data type 180

M
materialized-query-definition

CREATE TABLE statement 166
MAX AI DATA CACHING field of DSNTIP81 41
MAXVALUE

clause of CREATE TABLE statement 151
MEMBER CLUSTER

clause of CREATE TABLE statement 176
MINVALUE

clause of CREATE TABLE statement 151
model

viewing 24
modifying

settings 29
SQL DI 29

MXAIDTCACH subsystem parameter 41

N
nested table expressions 245
network requirements

planning 6, 8
NO ACTION delete rule

CREATE TABLE statement 159
NO EXTERNAL ACTION clause

CREATE FUNCTION (inlined SQL scalar) statement 67
NO MAXVALUE

clause of CREATE TABLE statement 151
NO MINVALUE

clause of CREATE TABLE statement 151
NO ORDER

clause of CREATE TABLE statement 153
NOCACHE clause

CREATE TABLE statement 190
NOCYCLE clause

CREATE TABLE statement 190
NOMAXVALUE clause

CREATE TABLE statement 190
NOMINVALUE clause

CREATE TABLE statement 190
NOORDER clause

NOORDER clause (continued)
CREATE TABLE statement 190

NOT CLUSTER clause
CREATE INDEX statement 92

NOT DETERMINISTIC clause
CREATE FUNCTION (inlined SQL scalar) statement 67

NOT ENFORCED clause
CREATE TABLE statement 160

NOT LOGGED
clause of CREATE TABLE statement 174

NOT NULL clause
CREATE TABLE statement

description 142
NOT PADDED clause

CREATE INDEX statement 92
NOT VOLATILE

clause of CREATE TABLE statement 174
NULLS LAST clause

CREATE TABLE statement 170
NUMERIC data type

CREATE TABLE statement 138

O
OBID

clause of CREATE TABLE statement 173
object

adding 22
OLD TABLE clause

FROM clause 247
ON clause

CREATE INDEX statement 85
ON DELETE clause

CREATE TABLE statement 159
ORDER

clause of CREATE TABLE statement 153
overview

SQL Data Insights 1

P
PADDED clause

CREATE INDEX statement 92
PAGENUM

clause of CREATE TABLE statement 176
PARAMETER CCSID clause

CREATE FUNCTION (inlined SQL scalar) statement 67
CREATE FUNCTION statement 56

PART clause
CREATE INDEX statement 106
CREATE TABLE statement 190

PARTITION
clause of CREATE INDEX statement 98

PARTITION BY RANGE
clause of CREATE INDEX statement 97

PARTITION BY RANGE clause
CREATE TABLE statement 170

PARTITION BY SIZE clause
CREATE TABLE statement 169

PARTITION clause
CREATE TABLE statement 170

partition-by-clause
CREATE TABLE statement 169

274 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

PARTITIONED clause
CREATE INDEX statement 92

PCTFREE
clause of CREATE INDEX statement 95

PIECESIZE clause
CREATE INDEX statement 100

planning
hardware 6, 8
installation 6, 8
network 6, 8
roadmap 5
software 6, 8
system capacity 6, 8

port
planning 6, 8

PRIMARY KEY clause
CREATE TABLE statement 143, 156

PRIQTY clause
CREATE INDEX statement 93

Q
QUERYNO clause

DELETE statement 211
UPDATE statement 232

R
RACF

keyring 12
keystore 12

read-only
view 199

READS SQL DATA clause
CREATE FUNCTION (inlined SQL scalar) statement 68

REAL data type
CREATE TABLE statement 138

referential constraint
CREATE TABLE statement 157

Remote Recovery Data Facility (RRDF) 173
RESTRICT

delete rule
CREATE TABLE statement 159

RETURN-statement clause
CREATE FUNCTION (inlined SQL scalar) statement 69

RETURNS clause
CREATE FUNCTION (inlined SQL scalar) statement 66

RETURNS clause of CREATE FUNCTION statement 55
roadmap

configuring 5
installing 5
planning 5

row
deleting 200
updating 220

row change timestamp column
CREATE TABLE statement 148

row ID
data type 138

row permission
creating 117

ROWID
data type

ROWID (continued)
data type (continued)

CREATE TABLE statement 138
RRDF (Remote Recovery Data Facility)

creating a table for 173
running

AI query 25
started task

Spark 31
SQL DI 30

S
search condition

DELETE statement 209
UPDATE statement 230

SECQTY clause
CREATE INDEX statement 94

SET clause
DELETE statement 209

SET clause of UPDATE statement 229
SET CURRENT TEMPORAL BUSINESS_TIME statement

description 217
SET CURRENT TEMPORAL SYSTEM_TIME statement

description 218
SET NULL delete rule

CREATE TABLE statement 159
settings

modifying 29
setup user ID

configuring 9
shortcut keys

keyboard vi
SKIP LOCKED DATA clause

DELETE statement 211
UPDATE statement 232

software requirements
planning 6, 8

SOURCE clause of CREATE FUNCTION statement 56
Spark

started task 31
SPECIFIC clause

CREATE FUNCTION (inlined SQL scalar) statement 66
CREATE FUNCTION statement 56

SQL Data Insights
administering 29
configuring 14
installing 14
overview 1
upgrading 19

SQL DI
started task 30

SQL DI table
index 33
tablespace 33

SQL statements
CREATE FUNCTION (inlined SQL scalar) 62
CREATE FUNCTION (sourced) 51
CREATE FUNCTION (SQL table) 71
CREATE INDEX 79
CREATE MASK 108
CREATE PERMISSION 117
CREATE TABLE 124
CREATE VIEW 193

Index 275

SQL statements (continued)
DELETE

description 200
example 216

SET CURRENT TEMPORAL BUSINESS_TIME 217
SET CURRENT TEMPORAL SYSTEM_TIME 218
UPDATE

description 220
example 238

SQLCA (SQL communication area)
entry changed by UPDATE 232

SSL certificate
configuring 12

started task
creating 30, 31
running 30, 31
Spark 31
SQL DI 30

STATIC DISPATCH clause
CREATE FUNCTION (inlined SQL scalar) statement 68
CREATE FUNCTION statement 77

STOGROUP
clause of CREATE INDEX statement 93, 95

SYSAIDB.SYSAICOLUMNCENTERSSQL DI table 33
SYSAIDB.SYSAICOLUMNCONFIGSQL DI table 33
SYSAIDB.SYSAICONFIGURATIONSSQL DI table 33
SYSAIDB.SYSAIMODELSSQL DI table 33
SYSAIDB.SYSAIOBJECTSSQL DI table 33
SYSAIDB.SYSAITRAININGJOBSSQL DI table 33
system capacity

planning 6, 8

T
table

creating
CREATE TABLE statement 124

table check constraint
defining

CREATE TABLE statement 160
deleting rows 212
updating rows 233

table function reference 245
TABLE LIKE clause

CREATE FUNCTION statement 55
table locator variable 245
table space

creating
implicitly 168

tablespaceSQL DI table 33
TIME

data type
CREATE TABLE statement 138

TIMESTAMP
data type

CREATE TABLE statement 138
TRACKMOD NO

clause of CREATE TABLE statement 176
TRACKMOD YES

clause of CREATE TABLE statement 176

U
UNIQUE clause

CREATE INDEX statement 85
CREATE TABLE statement 143, 156

UPDATE
statement

description 220
example 238

update rule 232
updating

rows in a table 220
upgrading

SQL Data Insights 19
user authentication

configuring 12
user-defined function

creating with CREATE FUNCTION (inlined SQL scalar)
statement 62
creating with CREATE FUNCTION statement 51, 71

USING clause
CREATE INDEX statement 93, 94

USING TYPE DEFAULTS clause
CREATE TABLE statement 164

V
validation routine

VALIDPROC clause 172
VALIDPROC clause

CREATE TABLE statement 172
VALUES clause

CREATE INDEX statement 106
CREATE TABLE statement 190

VARCHAR
data type

CREATE TABLE statement 138
VARGRAPHIC

data type
CREATE TABLE statement 138

VCAT
USING clause

CREATE INDEX statement 93, 95
verifying

configuration 16
installation 16

view
creating

CREATE VIEW statement 193
using

read-only 199
VIEW clause

CREATE VIEW statement 193
viewing

AI query 24
model 24

VOLATILE
clause of CREATE TABLE statement 174

VSAM (virtual storage access method)
catalog 95

276 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

W
WHERE clause

DELETE statement 209
UPDATE statement 230

WHERE CURRENT OF clause
DELETE statement 210
UPDATE statement 231

WITH CHECK OPTION clause of CREATE VIEW statement
196
WITH common-table-expression clause of CREATE VIEW
statement 196

X
XML

data type
CREATE TABLE statement 138

XML pattern expression clause
CREATE INDEX statement 89

XMLPATTERN clause
CREATE INDEX statement 89

XMLSCHEMA
data type

CREATE TABLE statement 138

Index 277

278 Db2 13 for z/OS: SQL Data Insights User Guide (Last updated: 2024-02-19)

IBM®

Product Number: 5698-DB2
 5698-DBV

	Contents
	About this information
	Who should read this information
	Terminology and citations
	Accessibility features for Db2 for z/OS
	How to send comments

	Chapter 1. Overview of SQL Data Insights
	Chapter 2. Installing and configuring SQL DI (Roadmap)
	Preparing SQL DI installation
	Configuring system resources for SQL DI
	Configuring network ports for SQL DI
	Configuring setup user ID for SQL DI
	Configuring a keyring-based keystore (JCERACFKS) for SQL DI
	Configuring Db2 for SQL DI
	Installing SQL DI
	Verifying the installation and configuration of SQL DI

	Chapter 3. Upgrading SQL DI
	Chapter 4. Enabling and running AI queries
	Creating a connection to Db2
	Adding an AI object
	Enabling AI query
	Viewing an AI object model
	Running an AI query
	Analyzing data

	Chapter 5. Administering SQL DI
	Modifying your SQL DI settings
	Creating a started task for the SQL DI application
	Creating started tasks for the Spark cluster

	Chapter 6. Db2 tables for SQL DI
	Chapter 7. Db2 subsystem parameter for SQL DI
	DSNTIP81: Performance and optimization panel 2
	MAX AI DATA CACHING field (MXAIDTCACH subsystem parameter)

	Chapter 8. Db2 built-in functions for SQL DI
	AI_ANALOGY
	AI_COMMONALITY
	AI_SIMILARITY
	AI_SEMANTIC_CLUSTER

	Chapter 9. Db2 SQL statements for SQL DI
	CREATE FUNCTION (sourced)
	CREATE FUNCTION (inlined SQL scalar)
	CREATE FUNCTION (SQL table)
	CREATE INDEX
	CREATE MASK
	CREATE PERMISSION
	CREATE TABLE
	CREATE VIEW
	DELETE
	SET CURRENT TEMPORAL BUSINESS_TIME
	SET CURRENT TEMPORAL SYSTEM_TIME
	UPDATE

	Chapter 10. Db2 queries for SQL DI
	table-reference

	Chapter 11. Db2 SQL codes for SQL DI
	Information resources for Db2 for z/OS and related products
	Notices
	Trademarks
	Terms and conditions for product documentation
	Privacy policy considerations

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

