Db2 12 for z/OS

Application Programming and SQL Guide
Last updated: 2024-04-15

.||I

Notes

Before using this information and the product it supports, be sure to read the general information under
"Notices" at the end of this information.

Subsequent editions of this PDF will not be delivered in IBM Publications Center. Always download the
latest edition from IBM Documentation.

2024-04-15 edition

This edition applies to Db2° 12 for z/0S® (product number 5650-DB2), Db2 12 for z/0S Value Unit Edition (product
number 5770-AF3), and to any subsequent releases until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright International Business Machines Corporation 1983, 2022.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html

Contents

ADbOUt this INFOrMAtION...cccieiiiieiritiierieretereetereseasesessasesessesessssesessssesessssessssssessssnsese Xi

Who should read this iNfOrmMation.........ceeiciiececceeee e e e re e e ae e e are e s aae e enes Xii
DD2 ULILItIES SUILE FOI Z/OS... ettt tee et e e e te e e et e e e s tae e sbaeeeataeeenbaeesabaeesnsaeesnseseansanans Xii
Terminology and CITATIONS.c.uii ittt e e e te e e et e e st e e s steesesteeessteesesteeensteesestaesassesensseennns xii
Accessibility features for DD2 for Z/OS...... e e e et et e e Xiii
[(oL Lo Y=Ta Ve IoTo] 0 01 41T 01 £ S USSS Xii
HOW 10 read SYNtaX dia8ramS. ...cccuiieeciieeeiieeeiie e et e esite e e ctte e e ee e e sta e e e aseeesaeeesaeeesaeessseessseesnsseesnsseessseenn Xiv

Chapter 1. Planning for and designing Db2 applications.......cccccceviiuiieiienieicecencennnn. 1

Application and SQL release inCoOmMPatibilities.......cccueeeciieeiiieeeecceecce e et 1
SUBSTR built-in function always returns an error message for invalid input.......ccccccveeeieeieceececieeennee. 2
CREATE TABLESPACE and CREATE INDEX statements with no space-level USING clause fail if

the storage group specified when the containing database was created does not exist................ 2
New maximum number of parameter markers or host variables in a single SQL statement............... 3
Result change for SQL statement EXPLAIN PACKAGE..........uiiciieieieeecieecetee e eeteeeevee e vee e veeeeavee s 3
Result change for SQL statement EXPLAIN STABILIZED DYNAMIC QUERY....ccccoviiecieeeiieeeieeeeieeens 3
SYSCOPY catalog table DSVOLSER column ChangeS......uviieiieeciieceiee ettt ettt et 3
Application compatibility levels apply to data definition and data control statements..........c.ccceueenee 4
Automatic rebind of plans and packages created before DB2 10........cccoceeecieiccieiccieecceeecee e 4
KEEPDYNAMIC(YES) bind option support for ROLLBACK.......c..ieeeiieeeieeeeree ettt eevee e 5
Alterations to index compression are pending changes for universal table spaces.........ccccceeeveeneen. 5
Data types of output arguments from a stored procedure call in a Java application.......c.cccecceervennnen. 6
SELECT INTO statements with UNION Or UNION ALL......ciiciriiciieeciee et ctee e evte e ere e evee e vee e 6
Change in SQLCODE when the POWER built-in function result is out of range........ccceveeercverieennennne. 7
CHAR9 and VARCHARS9 functions for compatibility with pre-DB2 10 string formatting of

AECIMALAALA .eeiviieieiieerte ettt st e s e e e be e saa e sbe e saae s beesaeesaseessaesaseenseesaseensaesnsesnses 8
Subsystem parameter BIF_COMPATIBILITY and SQL schemas for compatibility with pre-DB2

10 string formatting of deCimal datacueeeciieeiiieceeece e e e e e e 8
EBCDIC mixed string input to the RTRIM, TRIM, LTRIM, and STRIP built-in functions must be

VAL ettt ettt ettt s bt et st e e bt e et e e ba e e st e et e e aee st e e bae e be e bae e bt e baesate s teenaaesateebaesaren 9
Maximum number of user-defined external scalar functions running in a Db2 thread is no

longer unlimited (APAR PHZAZAB33)....ccciiieieieiieseeieseesteseesteeeesreesesseessesseessesssessssssessesssesssessenns 10
O] I C=Y Y= VLT IV oY (e F TR 10
Built-in function and existing user-defined fUNCLIONS........coociiiiciiicciecceeeee e 10
SQOLCODE ChANZES. ... utiiiciieeciiee ettt e ettt e te e e ctte e eetee e s ebee e ebee e sbaeeebaeesbaeesssaeesasaeesnsasaansaeeanseeesnseesnnses 13

Determining the value of any SQL processing options that affect the design of your program.............. 14

Changes that iNValidate PACKAZES.ccuueiciieeciie ettt et eete e et e e s e e e s teesebee s sbeeesssaeesnsaeesnseeennseeaan 14

Identifying invalidated PACKAZES.....ccciuiiiciieeiiieecee et e s e e e s be e e s bee e e nbee e e baeesneeas 18

Changes that might require package rebiNdS......ui it e e srae e 19

Determining the value of any bind options that affect the design of your program..........cccccveeevveenneen. 19

Programming applications for PErforManCe.......c..uiiciieeciieiiiie ettt eseab e e s aaeeas 20

Designing your appliCation fOr FECOVEIY.....uiii ittt ete e e e rtre e e stae e e saae e e sta e e e saaeeesbeesseeeenneeean 21
UNIt Of WOTPK IN TSO.uciiiiiiiiiiiiieeite sttt ettt s te st este st esatesbaessee s beesaaesaseessaesaseensaesaseenseesssesseenes 22
UNit Of WOTPK I CICS..uiiiiiiitieieerite ettt ettt ste st s st e s te e saeesve s baesase e baesabessbaesssesaseenssesnseenseessseenseen 22
Planning for program recovery in IMS Programs........cccceececieeeerieeeeiieeeeieeesteeesseeessesessesssssesssssessnnees 23
Undoing selected changes within a unit of work by using savepoints........ccceeeveeeceeeccee e 29
Planning for recovery of table spaces that are Nnot logged.........coecverecieeciieeceecee e, 30

Designing your application to access distributed data........cccceceeeeveeiciee e 31
Remote servers and distributed data.......cccoceeriiiiiiniiiiee e e 32
Preparing for coordinated updates to two or more data SOUICES.......cccceeeeieeecieeecieecciee e e 33

Forcing restricted system rules in YOUr PrOSraMi. . cccicceeeieieeinieeeeieessieesseeessieesesseeessseesssseesssseesssnens 33

Chapter 2. Connecting to Db2 from your application program..........cccceerverernnneens. 35

Invoking the call attachment faCility.. .. e ee e sbe e e svae e saes 36
(OF 11 E= 1 ¢= (ol a1 A =Y o) o 2= Vo | 1 S 38
Making the CAF language interface (DSNALI) available........cceeeecieciicciecee e 41
Requirements for programs that USE CAF ...ttt e e e s sbaesssaesssaeeas 43
How CAF modifies the CONteNt Of r@ZISTOIS. ...ttt e 43
B0 0] o1 1 ol A ole] Y aT=Yot o] g T o TN O 2 SRR 44
CALL DSNALI statement parameter LiSt.. .. ittt e e eee e e e nre e e e e s nre e e e s e srreee s 44
SUMMATY OF CAF DENAVION.ccci ittt e e e e e e e bee e e e e rae e e s eesaeeeeeeensteeeeennenns 46
072\ 2ol] al a =Tos T] o It 111 ot Ao] o 1< JOU PP a7
TUINING ON @ CAF TrACE . uttiiiite ettt ettt et stt e e st e s st e s sbe e e s baessbeessabaeessbaeesssaessssaesssaessssaesnnes 58
CAF return codes and reaSON COUES.....uuimiiiiiiirriiierrite ettt sttt esteessrteesstaeesbaessssaeessaeessseesssaesssssesns 59
SAMPLE CAF SCENAIIOS. .. uutiieiiectieeeeeeittee e eectteeeeeetareeeeesttreeeessteeseesasbteaeesasstsseeassssesesaanssssessenssnsessanssens 60
EXampPLles Of INVOKING CAFttt ettt te e s eate e s sate e ssate e sente e ssateessseaessseeesseaesnneaesanes 61

Invoking the Resource Recovery Services attachment facility......ccceveevriieiniienniiennieceecee e, 66
Resource Recovery Services attachment facility.......cceeeecieer e 68
Making the RRSAF language interface (DSNRLI) available.......cccueeieeceeniecieesee e 71
Requirements for programs that USE RRSAF.......cu ittt ettt s s s 72
How RRSAF modifies the content Of regiSTers. ...ttt 73
IMPLCit CONNECHIONS 10 RRSAF ...ttt ettt e e e erte e e e e tee e e e e e ate e e e seabeeeessnsaeeeeessseneesanns 73
CALL DSNRLI statement parameter LiSt.. . cciee ettt tre e s e e cvee e e e evre e e e e neee e e s e nreeeeeens 74
SUMMArY Of RRSAF DENAVION....iiiii ettt e e e ree e e e e ee e e e e beae e e e e neeeeeeeenneens 75
RRSAF CONNECTION fUNCIIONS...ciitiiiieiiiee ettt sttt sree e s iee e sae e e sbee s sbee s sbee s ssneeesseessasaessnsens 76
RRSAF return codes and reasOn COUES.......uiiriiiiriieiiiieiriee et et e s steesste e s et e s saeeessaeeessseeessaeaesaeas 108
SAMPLE RRSAF SCENAIMIOS. cciicuitiieeeeciieeeeecitee e e ecittee e e eetteeeesestteeeesesbasesessssteasassasseeeeseanstesesssnsssnesssnnses 109
Program examples fOr RRSAF ... ittt ettt et s et e st e e s sase e s sabeesnabeessaneas 111

Universal language interface (DSNULI)......uicciieieeeieeceeeie et eseeesteeseeeteesseesteesseessseeseesssessseesssesnsessseens 113
Link-editing an application With DSNULL.........cooiviiiriiiiiierieeeieesit e see e sre e s sbe e s e s svae s 114

Controlling the CICS attachment facility from an appliCation........ccceecieircieiniieencieeeeeeeee e 115
Detecting whether the CICS attachment facility is operational....c..ccccceecveeriviiiinieiiniieeenieecree e, 116
Improving thread reuse in CICS appliCatioNS......ccueiicieiriieiniieiree ettt e s sae e s 117

Chapter 3. Db2 SQL programming.......ccccccceeceecrecresresresrsssasacsscsessessessessesssssascaes 119

Creating and modifying Db2 objects from application programs.......c..cccceeceeeevieernieeenieeesseessseessseeeens 119
Creating tables from appliCation ProgramsS.....ccciicciiiirieeiniee ettt see e s see e s see e s saee e ssaeas 119
Providing a unique Key fOr @ table. ..t 139
Fixing tables with incomplete defiNitioNS.......ccui i 139
RENAME TABLE in a table Maintenance SCENANIO......uucviiirciieiriieieieeerieeeeiee st e e seeeeseeesseeesseeesnnes 140
Dol o] o 1 aT=0 €=V o] L= 3PP PPRRTR 141
DETINING @ VIEW..etiiiiieiiiiee ittt ettt seite e eite s site s st e e stte s sbe e s sbe e e sae e e sabeessasaessabaeesaseessnseessssaesssseesnnseesnnses 141
DIOPPING @ VIEBW . utttiiitieeieiteeiitieeeeiteeseteesstteesssteesasteesasseesssseesasseesssseesasseessssessssseesssseesssseesssseessseessseesns 143
Creating @a commON table EXPreSSION.....uiiiciiiiriieerseeeeee ettt e sre e e sbe e s s bee s sbeessbeesssbeessasaesnnns 143
(00 U a T oY== I ==L PRSPPI 149
Y= Lo [U]=T aTet =N o] o] [T o €TSS USSRt 166
Db2 object relational EXtENSIONS.....c..uiiiiieccieee et e e e e e e e e e e e e b ee e e s s nseeeeeeennsaneeeean 168
Creating @ diSTINCE LY PE. ittt s s e s s bee e st e e s bee e sbee e s seeesseaesnneaesnneas 168
Creating a user-defined fUNCIION.....c.iii ittt ee e s see e s ste e s ssbeessaeaeenns 176
Creating StOred PrOCEAUIES......cicciiirtieeetteeete ettt ssee s sbe e s sbee e s beeessbee e sbeeesbeeesssteesssaesnseaesnnsens 211

Adding and modifying data in tables from application programs.......ccccccevcveeriieeriieeriieenseeesseeesseeens 330
Inserting data INtO TABLES ...oiiiiii e s s e e 330
Adding data to the end Of @ 1able.. .. s 345
Storing data that does not have a tabular format......ccccceveciiiiiiiiciie e 345
O oTe AT a8 = o] (=N I | - T PP 345
Deleting data from tableS. ... e st e st e s be e s essarae s 348

Accessing data in tables from application ProgramsS......cceicuieieiieirieeirieeereeesee et see e sree e 350

Determining which tables you have aCCeSS t0. .ttt 350

Displaying information about the columns for a given table.......ccccvveiniiiiniieinieeeee e, 351
Retrieving data by using the SELECT Statement.......ccvciiiiiiiiiiiieiiee et sre e sireesree e 352
Retrieving a set of rOWS DY USING @ CUMSON...ccuuiiiiiiiiiieieiieceiteceee ettt see e s see e s 396
Specifying direct row access by USING FOW IDS....ccccuiiiriiiiniiieiniieinieesrieessieessieesseeesseeesseeessseeesnns 426
Ways 10 manipulate LOB data........ceeiecuiiieiieciiee ettt e e e estte e e e te e e s senrae e s s e nsae e e e e nnaneeeean 428
Referencing @ SEQUENCE ODJECT....iiciiiiiieiiieicte ettt ettt e s s e e s sbe e s s be e s s be e s saaaesnaeas 441
Retrieving thoUSANAS OF FOWS....cccuuiiiiiiiriiecitee ettt st e st e s s e e s sabeessaneas 441
Determining when a row Was Changed........occiiiriiiiriiiinieeeie ettt saee e s saee e s saeeas 442
Checking whether an XML column contains a certain value.......cccceeveieeiiieeniieeniiee e scree e 442
Accessing Db2 data that is N0t iN @ table.. i 443
Ensuring that queries perform SUFfICIENTLY.....oociiiriieiiieceee e 443
Items to include in @ batCh DL/ Programi. ... i eeicieeeiieesiieessieessieessieesseeessseesseeessssaesssseessnseenas 444
Invoking a user-defined fUNCTION. ...ttt s e st e s ee e ssbeessnbeessaseess 446
How Db2 determines the authorization for invoking user-defined functions.......c.cccccecveeriveennnneen. 447
Ensuring that Db2 executes the intended user-defined funNCtioN.......ccccovveeiiviiinveiincec e 448
HOW DD2 reSOlVEeS FUNCTIONS. ...iiviiiiieieeee ettt sttt st e s e n e snee s 449
Checking how Db2 resolves functions by using DSN_FUNCTION_TABLEccccccevvvierniierniieennneen. 451
Restrictions when passing arguments with distinct types to functions........ccocceevvveeniciieinieennineenn. 452
Cases when Db2 casts arguments for a user-defined fuNCLION.......ccevvviiiriiiiniieeeiec e 453

Chapter 4. Embedded SQL programming.......ccccceteeininecnecnecrecnecsecrascasaccsecsecsecses 455

Overview of programming applications that access Db2 for z/OS data.....cccccceveverriieinniienniecsnieeeneen 455
Declaring table and VIEW defiNITiONS.....cuiiiiiiiiiiieieiiecite sttt e s e e s re e e sbe e s sbaeessaeeas 457
DCLGEN (declarations SENEIAtON)....uiiieeceereeerieeseeeieestesreeesteeseessseesseesseessesssseesseesssessseessessnseessenn 458
Generating table and view declarations by USINg DCLGEN........ccccccevrvieiriieiniieeneeeneeeseeesvee e 458
Including declarations from DCLGEN in YOUT PrOSraMi....ccceeeceeereeeereeessneeessreessseesssseesssseesssseessnnes 466
Example: Adding DCLGEN declarations t0 @ library.......cceecveeeeciieieiiiinieeinieeceieeesiec e ssieesseee e 466
Defining the items that your program can use to check whether an SQL statement executed
E] U [T oL Y13 11] 7SR 469
Defining SQL descriptor areas (SQLDA)iiciiiieeeceereeeieectteete st eseesteeseesteesseessseesseesssessseesssesnsessseenn 470
Declaring host variables and indicator Variables. ... ieiiieieieiiecce et 471
01 V- LT o] (=TT PRSP 471
(o V=Y o LYY - V£ PUR 472
HOST STFUCTUIES. ...ttt e et e e st e e e et e e e e s s st e e e e s aneeeeesenneeaeesenreaeeaaannes 473
Indicator variables, arrays, anNd STFIUCTUIES.cuiiccuiieeecciiee et e rre e e e ree e e s e bee e e e e sraeeeeeas 474
Setting the CCSID for host Variables.. ...ttt s 476
Determining what caused an error when retrieving data into a host variable......c.cccccoccveeeiiiennnnn. 477
Accessing an application defaults MOAULE......c.uii i se e saee e 478
Compatibility of SQL and language data tYPeS.....cuuciieecieeriiieriiteerie ettt srte e ssre e s saeeessaeeessseeessaeee s 478
Using host variables in SQL StatemMENTS. ..ottt ssee e s e ssaee e s aeee s 481
Retrieving a single row of data into host variables........couiiiiiiniiiiieeeeeeee e 482
Determining whether a retrieved value in a host variable is null or truncated.........ccceccveervuveennnenn. 484
Updating data by uUSing hoSt Variables.......c.iiiiiiiiiiiiiecciece e 485
Inserting a single row by using a host variable..........iiiiiiii e 486
Using host-variable arrays in SQL STtatemMeENtS.....ccccivcieiiiieiiieiciee ettt see s sae e 487
Retrieving multiple rows of data into host-variable arrays.......cccceeereeiieiinieeinieee e 487
Inserting multiple rows of data from host-variable arrays.......cccccvecveiriieiniiennieccecce e 488
Inserting null values into columns by using indicator variables or arrays.......ccceccceeeveiinveennveesnseee e 489
Retrieving a single row of data into @ oSt STrUCTUIE......cocciiiiiiiiiieeee e 490
Including dynamic SQL iN YOUE PrOSIaM. .. c.ueeicueereieerireesarieesaeeesseeesaeesssseesssseessaseesssssessaseessseessseessnn 490
Differences between static and dynamic SOQL.......cooccuiiiiicciiiee et e e e 491
Possible host languages for dynamic SQL appliCationS.....c..cevcviiiiieiiiieeiiieeniieesciee e e seeeeseneee e 495
Including dynamic SQL for non-SELECT statements in your Program.......cceeceeeeeveeesieeessseeesssneessnnes 495
Including dynamic SQL for fixed-list SELECT statements in your programccceceeeevveersvveessneens 496
Including dynamic SQL for varying-list SELECT statements in your program......cccccceeeecveeriveennnnnns 498
Dynamically executing an SQL statement by using EXECUTE IMMEDIATE......c.cccccvvvieinieeeniveennnne 513

vi

Dynamically executing an SQL statement by using PREPARE and EXECUTE........cccceeveevivieerivieennne 515

Dynamically executing a data change statement........cvivciiiriiiiicieee e 517
Dynamically executing a statement with parameter markers by using the SQLDA..........ccceeuveennen. 520
Checking the execution of SQL StatemMENTS....cccuiiiiiiiiiiie ittt essbe e ssabeessaeaesas 521
Checking the execution of SQL statements by using the SQLCA........covvviirriiiiiniieiee e 522
Checking the execution of SQL statements by using SQLCODE and SQLSTATE........ccccoevverrveernnnen. 526
Checking the execution of SQL statements by using the WHENEVER statement........cccccccevvueenee. 527
Checking the execution of SQL statements by using the GET DIAGNOSTICS statement 528
Data types for GET DIAGNOSTICS ItEIMS...uuiiiicciiieeiecieeeeeeiteeeeeecteeeeseestteeeeessnseeeessessasessesnsenessennnns 530
HanNdLiNG SQL EITOI COUBS...uuiiiiiiiiiiieiritt ettt eetteserte e st e s ste e s sbeessbeeesteesssbaessssaessssaessssaesssaesssseessseesnnes 534
ArithmetiC aNd CONVEISION BITOIS....iiiiiiiiiieeieieeerieesrreeesteessteessteessseeesstesssseesssseeessseessnseesssseasssens 535
Writing applications that enable users to create and modify tables.......ccociiviviinriiiniiienieeeeee 535
Saving SQL statements that are translated from USEr reqUESTES.....coccevirviiiriee it 536
XML data in embedded SOL appliCatioNS.....ccccccviieiieiiiiee ettt e e eeree e e e vree e e s e srae e e e e sanaaeeeean 536
Host variable data types for XML data in embedded SQL applications.........ccccceeeeeciviieeecccieeeeeeennns 537
XML column updates in embedded SQL appliCationS.....ccccuuiiiiecciieeeeccieee et 542
XML data retrieval in embedded SQL appliCatioNS.......cccecciieeeeecciieee e cectree e eeevere e e eree e e e 544
Example programs that call Stored proCeAUIES.......civciiiiciiiiciee ettt seee e ssree e saeeesans 547
Assembler applications that issue SQL StatemMENTS........ueiiiecciiiieieciiiee et 547
Assembler programming EXAMPLES.....civciii ittt sttt sre e st e s srreessraeessseeessseeessseaesseeenn 550
Defining the SQL communications area, SQLSTATE, and SQLCODE in assembler........cccoevveereieennns 550
Defining SQL descriptor areas (SQLDA) in @SSEMDLET......cccieiiirciecie et 551
Declaring host variables and indicator variables in assembler.....cccccvvieiniienniienniiececeeeen 552
Equivalent SQL and assembler data tyYPesS. ... iiiee et ecrre et e e eeare e e e e enre e e s e aaeeeeenas 559
Macros for assembler apPliCATIONS.uiii i e e e e e s ee e e e e erre e e e e nraeeeeeas 566
Handling SQL error codes in assembler appliCationS......c.cceveieiiiieeiiienniieesee e see e 566
C and C++ applications that issue SQL StatemMENTS.....cccccuiiieeiciiiiee et e e erree e e veee e e e ennes 567
C and C++ programming @XAMPLES.....ccuiiieiiiiriieieiteieiee et e ssteessteessteesseeessteesssseessseesssssessssaessnes 569
Defining the SQL communications area, SQLSTATE, and SQLCODE in C and CH++...ccoccveeveieerinennne 578
Defining SQL descriptor areas (SQLDA) in € and CH+..iouiuiiieeierieeeeseeieseesieseesseseeseeseseesessnenns 579
Declaring host variables and indicator variables in Cand CH+.....cocciviiiiiiiiienniienieeeeeeeeee e 579
Equivalent SQL and C data Y PeS. i cciiiee e cccitee et e ettt e e s e cbtee e s e s arae e e s snbaeee s sennraeessennseneeeean 607
Handling SQL error codes in C and C++ appliCationS......cccueieiieiriieiriieeniieesseeesiee e sseeesseeessaees 614
COBOL applications that issue SQL StateMENTS.....cccccuiiieieiiiie et e e e rree e e e e nreeee s 616
COBOL programming €XaMPLES.....cecueiiiieeriiieriieeriieessieessteesseeessseeessseesssseesssseesssseesssseesssseesssseesns 620
Defining the SQL communications area, SQLSTATE, and SQLCODE in COBOL......cccccccvvvveerrveernnnen. 645
Defining SQL descriptor areas (SQLDA) iN COBOL....cuuiicuiirieeieeeieeieeeieesieeseesaeeveeseesseesseeseeens 646
Declaring host variables and indicator variables in COBOL.......ccccccvvriieriieennieennieeenieeeseeeeseee e 647
Equivalent SQL and COBOL data tYPES...ceecccuuiieeecciieeeeeciieee e ecteee s eesrteeeeeesteeesesanseeesseensaeessesnssnessenns 674
Object-oriented extensions iN COBOL.........uiiiiiciiieeiccieee et eecteee e e eiree e e e esbee e e s senbteee s sesseaeesennnes 680
Handling SQL error codes in Cobol appliCationS........cueiviieiniieiniiieinie et see s ssee e 680
Fortran applications that issue SQL STatemMENTS.....cccuuiiiiieciieececceee e e e e e 682
Defining the SQL communications area, SQLSTATE, and SQLCODE in Fortran......cccccceeevveeeieeennnen. 684
Defining SQL descriptor areas in (SQLDA) FOItran......ccuceeeceereeeieeseesteesieeseesseeeseeesseeseeesseeeseesnns 685
Declaring host variables and indicator variables in FOrtran......ccoccccvvvieiniieiniieinieecnee e 685
Equivalent SQL and FOrtran data tYPeS.. e uiiieeiciiiiee ettt e eecte e eecre e e e e vtee e s e asae e e e e snsaeeeseennsneee s 690
PL/I applications that issue SQL Stat@MENTS......cciicciiiie et e e e e e e e rree e e e e enreee e e eanns 693
PL/I Programming EXamIPLES......ciccieiiiieiriieieitieesitesstteesiteesseteesaee s steessbeessbeesssseesssseesssseessnsaesnnses 696
Defining the SQL communications area, SQLSTATE, and SQLCODE in PL/L.....ccccccevvveeinieennireennnnen. 701
Defining SQL descriptor areas (SQLDA) iN PL/L...uiiiiiieeeeeieeeeseesteeseeste e see e e seeesreesnaesee e 702
Declaring host variables and indicator variables in PL/L......ccccceviiiiiiiieiniienrieeeieeenee e esee e 702
Equivalent SQL and PL/T data tyPeS..cccuiieieeciieieecciiiee e eectiee e eee e e e s eeatee e e seabeee s sensaeeessensseeeessnseneeean 717
REXX applications that issue SQL StatemMENTS....cccccuiieeiieciiee et e e e ree e e s e ree e e e eeanes 723
REXX Programming €XAMPLES.....cccueiieieiiriee ittt esieessteesseeessieeessseeeseneeessseesssseesssseessssessssseessssessssens 725
Defining the SQL communications area, SQLSTATE, and SQLCODE in REXX.....ccccvvveevrvieerniveennnnen. 740
Defining SQL descriptor areas (SQLDA) iN REXX....uuiictiivierieerieecieesreessieesreesaeesseeseessseessessssesssessnnes 741
Equivalent SQL and REXX data tYPeS....uuuiiecuiiieiiciiieeeeettee e settre e s eettee e s e enteee e s snreeeesenssanessensenaesens 741
Accessing the Db2 REXX language support application programming interfaces........ccccoevveevnunen. 743

Ensuring that Db2 correctly interprets character input data in REXX programs.........ccceeeveeeevieennne 745

Passing the data type of an input data type to Db2 for REXX programs.....c..cccceeeveerceersceesscveennnnes 745
Setting the isolation level of SQL statements in @ REXX Program.......cccceecueerevieeinvieeensieesnnieessseeesnnee 746
Retrieving data from Db2 tables in REXX Programs.....cciccuieircieeniiiesniieesieeesieeeseeesssseeessseesssseesnnne 747
Cursors and statement NAmMES iN REXXottt iee s saee s s saee e s saee e ssaee s 748
Handling SQL error codes in REXX appliCatioNs.......civcieiriieiiiiieiiieeneee et see e svee s svee s 748

Chapter 5. Calling a stored procedure from your application........c.cceeevieceecnecnes. 751

Passing large output parameters to stored procedures by using indicator variables........c.ccccoeueenneen. 756
Data types for calling Stored ProCEAUIES.occuiiiiiiie ettt e s saee e s beessaeeessanas 756
Calling a stored procedure from a REXX PrOoCEAUIE.......civciiiriieiiiieerciieeseiteesciteeseieeesrteesereeessreeessvneesans 757
Preparing a client program that calls a remote stored proCedure.......ccovieirveeirceeiriee et 760
How Db2 determines which stored procedure 10 FUN......ccuuieeiecciiiee ettt e e e vaee e e 761
Calling different versions of a stored procedure from a single application......ccccccevevevinveeiiveeinieeenee 761
Invoking multiple instances of @ Stored ProCEAUIE.......cuiiiiiiireiieeeeetee e s 762
Designating the active version of a native SQL proCedUIe........ouciiieiieiriieenieeeee e ee e eee e 763
Temporarily overriding the active version of a native SQL procedure.......ccccveveereiericieeniiieessieeseieenane 764
Specifying the number of stored procedures that can run concurrently.......ccocceevviiiiiiieniiieniieennneen. 764
Retrieving the ProCeAUIE STATUS......iiiciiieieicee ettt ste e s sbe e s ste e s saee e ssateessaeeessaeeas 765
Writing a program to receive the result sets from a stored procedure......cccccevveveeriieiriveenicieenseee e 766

Chapter 6. Coding methods for distributed data.......cccccceeivirnirnirniiniiniiniincinccnnnn 771

Accessing distributed data by using three-part table NamMeSs.......ccocccvvirviiirieeiree e, 771
Accessing remote declared temporary tables by using three-part table names........cccccoccveevcnenns 773
Accessing distributed data by using explicit CONNECT statementsS....ccccccevrveeirvieeinieeenieeeneesseee e 773
Specifying a location alias name for MULLIPLe SItES......iivriiiriiiirieeeeee e 774
R LT Ry Lot o] a 1= Lot A o] o 1= F O RTTN 775
TransSMItiNG MIXEA AT . uiiiiiieiiiiee e st e s te e s ateessaeeesesteessstaessneaesnnseesnes 775
Identifying the SErver at FUN TIME. . ittt e s e st e s be e s sbe e s s baessaraess 776
SOL limitations at diSSimMILar SEBIVEIS.....cuuureieiieieie ettt e e e e e eeeesarrrrerreeeeeeeesesssssssssseeseeeesesesennns 776
Support for executing long SQL statements in a distributed environment........cccoecevvriienniiennieenncieenn. 776
Distributed queries against ASCII or Unicode tables.....uuiiiiiiiiiiniieiiiecritecees e 777
Restrictions when using scrollable cursors to access distributed data......c.ccccvvveeiiviiinieeinieeiniee e, 777
Restrictions when using rowset-positioned cursors to access distributed data........cceceeerceeerieennnnen. 778
IBM MQ WIth DDB2...ceeeee ettt sttt et s e et e st s b e st e s b e e s beesab e e beesaeeebeesmeesareenneeens 778
IBM MO MBS SAZES. . eeeeieuetteeeeeitteeeeerttteeeeetrtteeeeasete e e e s srteeeeanreeeeeaeuseteeesanneteessansatessaansneeesassseeeeannnne 778
Db2 MQ functions and Db2 MQ XML stored proCeAUIES.......cccccciieeeeeciieeeeccieee e eecrere e eeerree e e e enreeas 780
Generating XML documents from existing tables and sending them to an MQ message queue.... 783
Shredding XML documents from an MQ mMeSSage QUEUE........utieiieerriieeriieeeiteeeeseeesseeessneeessseeessnees 783
DD2 MO 1ADLES.cuiiiiiiiiiieeectteeee e ettt e e e e e e e e e e e se e bbb rara e aaeeeee e e e ararrarraraaaaeeeas 783
Basic messaging With IBM MQ......cccuuiiiiiiiiiieiieeeniteesite sttt e st e s ste e s stae s sabeesssaessaseesnnee 792
Sending messages With IBM MO...cocuiiiiiiiiiiiinieceiececte ettt ite e st e st e s saae e sbaeesseeesneee s 793
Retrieving messages With IBM MO.......uiiiiiiiiiieniiieeieessiee sttt e st s e s s e e s s e e s sabeessseessans 794
Application to application connectivity With IBM MQ.....ccccuuiiiieciieee ettt 795
Asynchronous messaging in DD2 fOr Z/OS.......uiiiiiiiieeeeteeee e ee s s 796

Chapter 7. Db2 as a web services consumer and provider........ccccccecrecenieceecenceee.. 809

Deprecated: The SOAPHTTPV and SOAPHTTPC user-defined functions.......cccceeeeeccieeeecccieeeceeciieeeen, 809
The SOAPHTTPNV and SOAPHTTPNC user-defined fUNCHIONS.......cooocciiiieicciiee e 811
SQLSTATES for Db2 as a WED SEIVICES CONSUMIEBTuuvrreiieeieeeeeeieeiiiirirteeeeeeeeeeeeeessssssseererseeeeeeeessssssssses 811

Chapter 8. Application compatibility levels in Db2 12.........cccccceevecreirecrecreccanenes. 815

V12R1Mnnn application compatibility LEVELS.....ccccueiiiii et ecree e e e e e 817
Setting application compatibility levels for data server clients and drivers.......ccccvcveevrceeinceeenieennnen, 817
01 1 OSSP 819
1S 1 1 U 822

vii

viii

Using profile tables to control which Db2 for z/OS application compatibility levels to use for

specific data server client aPPLiCATIONS....ciiicciiieee e e e eree e e e e eaae e e e eans 824
V11R1 application compatibility LOVEL......cco it e e e e baee e e e ennes 826
V10R1 application compatibility LOVEL......cco it e e e ee e e e brae e e e enees 826
Managing application iNCOMPAtiDIlITIES.....ciiiiiiiiiieieeeee e e s ee s e e s aes 829
Enabling default application compatibility with function level 500 or higher.......cccocceiviveiniieenrceennne 830

Chapter 9. Preparing an application to run on Db2 for z/0S.......ccccceerecrnirenrecrancans 833
Setting the DB 2T defaullS....ciiiiiieiiieiiieecieeeite ettt sttt e ssbe e s be e s s abe e s s beeesabeeesaseessans 836
Processing SQL statements for program preparation.........u.eeceereeereieeesieeeseeeseeesseeesseeessseeessnees 838

Processing SQL statements by using the DD2 COPrOCESSON.....ccivviiiriiiiiriieirieeerieeesiee et e seeeesaeees 839
Processing SQL statements by using the Db2 preCoOmMPiler.....ccccvcieiicieeiiieeniieencieesciee e e seeee e 843
Differences between the Db2 coprocessor and the Db2 precompiler.......ccceveeeccieeeecccieeeeeccieenn. 851
Translating command-level statements in @ CICS Program......cccceecveeeveeeeiieeniieenneeesieeessseeesseeeens 852
Options for SQL StatemMeNnt PrOCESSING....ccuuiieiiireiiiirireeerteeeste e st esseeesseeessaeeessreeesseeessseeesssenesnsees 853
Compiling and link-editing an apPliCatiON......iiiciiiieeeeeeteee e e ar e e s rae e s baee s 865
Binding application packages and PlanS.........eiu it s s 866
Creating @ PACKAZE VEISION.....iiiiiieieieeerite ettt sttt e st e s st e s s bt essbe e s s beeessbeesssbeessssaeesssaeesssaesssseeesseeenn 868
Binding a DBRM that is in an HFS file to a package or colleCtion........ccovcevircieeinieeinieecnee e, 868
Binding an appliCation PLan.....c.iii ittt a e e e e e e s neeenn 871
Bind ProCess fOr FEMOTE ACCESS. . uuuiiiiiiiiieeeectiee e eecte e e e e ctr e e e eectee e e e e sbaeeeesssteeeeessbeeeesennseaaessnsseneas 875
Binding @ batCh Program.. ..o ittt e st e st e s s be e s s abe e s aba e s abeesnasaesan 879
Conversion of DBRMs that are bound to a plan to DBRMs that are bound to a package................. 879
Converting an existing plan into packages to run remotely.....cccccevvieeriiieniieeniieenrieesiee e 880
Setting the Program LEVELuui ittt e s ee e s ate e ssate e s ateessnteesnee 881
Dynamic rules options for dynamic SQL statements......cccuuiiieeciiiiee et e 881
D)=L a T Tol o] E= T JET=Y =Tt o o PSS 883
REDINAING APPLICATIONS. . eiiiiieiiiiei ettt ettt e st e e st e e s sbae e sbte s sbaeesbaeesabaeessaeesnseessnsaessnns 885
REDINAING @ PACKAZE. . et ittt ettt e st e e s ba e e s be e e s baeesabaeessbaeesaseaean 885
Phase-in of Package rebiNaS.....ii ettt e e saa e e sbe e e sba e e sbaeesaee 887
[oYl a o [T aY = 1 o1 F- 1 PSPPSR 889
Rebinding lists of plans and PaCKaZEeS......cccuiiiciiiiiiiiiiecee et 889
Generating lists of REBIND COMMANUS.....cuttiiiiiiiiieeiiieeeitee et e sieessieessreeesreessreessaeessareessaseesnans 889
AULOMATIC FEDINAS. ..etiiiiiiicie ettt e s ae e s sbe e s s te e s s abeeessbaessaeeesnsseessseaesnes 894
Specifying the rules that apply to SQL behavior at run time........coeciiieiiiiniieinieeceece e 896
Input and output data sets for DL/I batCh JODS......uuiiii e 897
Db2-supplied JCL procedures for preparing an appliCation........coccueeeiieiriienniieinieeseeeesieeeesieeseeeeen 899
JCL to include the appropriate interface code when using the Db2-supplied JCL procedures...... 899
Tailoring Db2-supplied JCL procedures for preparing CICS programs........ccceeeveerrveersveessveessneens 900
DB2I panels that are used for program preparation..........c ettt sseeessee e see e seeesseeessaees 902
Db2 Program Preparation PAneLl...... i e icieeiiieeeeieeseieessiieeseiteessieeeseseeessneeeseseeessseesssseesssseessaseessane 903
DB2I DefaUults Pan@l L...cueiiieiiiiiieiieeseiee ettt st s st e s st e s ste e s st e e saba e s sbaeesasaeessbaessasaessaseesnasaens 907
DB2I DEfaUlEs Pan@L 2...ueeiiiiieiiieeite ettt sttt sttt s st e st s st s st e e s be e s sasaeessbaeesabaeesasaeenasaeas 909
g EoTol0] 3 T o1 L= o = U= SRR 910
BinNd PaCKage PAnEl....ciiciiiieiiiieiieieiie ettt sttt e st e st e s s te e s sate e s s taesssteesssbaessataessstaeesstaesaneaeenn 912
= aTe I F-Y o T o= o 1= SRR 914
Defaults for Bind Package and Defaults for Rebind Package panels........cccceceeirveeinieeinceenniieennnnen. 917
Defaults for Bind Plan and Defaults for Rebind Plan panels.........ccccevieeciieiiecciieee e 919
System ConNECtiON TYPES PANEL..uuiiiiicciiieeieeciiee et e e e e e e e ree e e e e eaer e e e eenteeeesenraeeeesnnsenees 921
Panels for entering ListS Of VAlUES......coiviiiiiiiiiieceteceee ettt see e st e s see e s saeaeens 923
Program Preparation: Compile, Link, and RUN PaNEl......ccciiiiiiiiiiiineeirieeciee et 924
DB2I panels that are used to rebind and free plans and packages.........ccccvvveeiriieirieeinieenncee e 925
Bind/Rebind/Free SeleCtion PANEL...... .. ettt e e e e e reee e e rae e e e e nraeeeeean 926
REDINA PACKAZE PANEL..c..utiiiiiiiiiieiteete ettt e s st e s ba e e s be e e sbaeesbaessbaeesasaeenn 927
Rebind Trigger Package Pan€lu ... i ittt ettt sttt are e st e e sba e e s baeesneee s 929
=T T aTe Il ol =T g I o =Y =Y USSRt 930
Free PaCKage PANEL.ii ittt ettt s s e e st e e st e e st e e s aee e s aee e s aee e s aeaesnees 932

TN o = T I o = o =Y SR 933

Chapter 10. Running an application on Db2 for z/0S.......cccccicvieiiniincrecnecrecrencenns 935
DSN COMMANGT PrOCESSON..ceiiicutiiieeeeeiteeeeeeiireeeeeitteeeeeasseeeeeeaassaseseeasssseesaassaseessasssssssssssessesssssessssnasssnees 935
D] 7 {0 o T oY= = SRS 936
Running a program in TSO fOr@8roUNG.......cueiiiieiiiiiiniieercie ettt sete e setee e seiee e seree e seateessraeesseeesreaesans 937
RUNNINg @ DD2 REXX @PPLiCAtION. c..tiiicieiicieeiciee sttt ste s ste e siee s sree s sbee e sbee s sbeessbeeesneessaseessanens 938
Invoking programs through the Interactive System Productivity Facility......ccccoeveeiniiiinieeiniieinieennee, 938

LS P ettt ettt ettt et h bt et e bt et s h e et e e h e et e e a e e b e et e ehe et e eh e e beeat e bt eateehe et e she e besaeebeeas 938
Invoking a single SQL program through ISPF and DSN......ccccciiriieiniieiniiecneecsee e 940
Invoking multiple SQL programs through ISPF and DSN.......ccccciiirviiiiiiiienniieeiiieeerieeseieesseeesseee e 940
Loading and running a batCh Program.........cciiiiiieiieeeieeeee st e st e s e s be e s baessbaeeas 941
Authorization for running a batCh DL/I Programi.....cceecceeeecieeniieeniieesciieesieeesveeesseeesveeessseessssneesns 942
Restarting @ batCh Programi.. .. ettt s st e s st e s s e e s s e e s s beessabeessans 943
Running stored procedures from the command line ProCESSOr....cccviiviiieriiieriiieriee et 944
Command line processor CALL StAtEMENT......cii ettt e et e e e e e e s erae e e e e snaeeeeean 945
Example of running a batch Db2 application in TSO.....cuiiiciiiiiiiiriieerieccrees et see e s saae s 946
Example of calling applications in @ cOmMmMand ProCEAUIE......cutiiiieiieiieercieereieercreesereesereeesereeesereeesans 947

Chapter 11. Testing and debugging an application program on Db2 for z/0S........ 949

Designing a teSt data STIUCTUIE....uiii ittt s e st e e s sabe e s ase e s aaeessaeas 949
Analyzing application data NEEUS....c.cuiiv ittt e s s s bee s s e e e s beeesbeas 949
Authorization for test tables and appPliCatioNS........uiiii i e 951
Example SQL statements to create a comprehensive test StruCture......ccccoecvveeeeeccieeeecccveee e, 951

Populating the test tables With data........cciiiiiiii e e 952

Methods for teSting SQL StatEMENTS....ciiiiiiiiiieeceterte e s s e s be e e s e e e sbaeesseeas 952

Executing SQL by USING SPUFL.......ciiiiiiiieieiiteecite ettt st e e e s siae e s siae e ssaee e ssaeeesbeaessseaessseeesnssnesnnens 953
Content of @ SPUFT INPUL AtA SET..uiiiiiiiiiieiceciieee ettt eectre e e eeee e e e are e e e e sbae e e s e nrae e e s enrees 956
LTSI T R V1 N oY= 1= O USRS 957
Changing SPUFT defaultS....ciuciiiiiieiiiiiieiieeeieeett sttt ettt ssaee e s saee e ssaae e ssaeeessaeaessasaesnnsaesnnsnas 958
Setting the SQL terminator character in a SPUFIL input data Set.......ccoecvevriieiniieeniieeniieceee e 963
Controlling toleration of warnings in SPUFL......ccccciiiiiiiiiiiiinieieieeeee st ssee e saee e s saee e s 964
(O T0) 01Uk o] a IR o U 1 SR 964

Testing an external user-defined fUNCHION......oociii i s eas 966
Testing a user-defined function by Using zZ/OS DEbUZEET.......cvviiiiiiiiiiirieieecee et 966
Testing a user-defined function by routing the debugging messages to SYSPRINT........ccccceeveuveen. 968
Testing a user-defined function by using driver applications........cccvveviiiriieiniieireceeee e 968
Testing a user-defined function by using SQL INSERT statements.......cccccvvveeirveeinieennieennieeennie 968

Debugging StOred PrOCEAUIES.ciiciiiieieeeciee sttt e st e s st e st essteessbe e s s sbeesssbaessabeesssseesssseessssaessssaesas 968
Debugging stored procedures by using the Unified DEbUZZET.......ccovveiiiiiiiiiiiiiriieieeceee e 969
Debugging stored procedures with z/OS DEDUZEET.......ccuiiriiiiriiiiiriieeeiecree et ve e 970
Recording stored procedure debugging messages in @ file......ccccvvciiirciiiiiiiiniieecieeseeeeee e 972
Driver applications for debugging ProCeAUIES........ccuiiiriiiiriiiiieeeeeeeesre e s re e s sae e 972
Db2 tables that contain debugging INformMation.........cccvieviiiriiiiiiecce e 972

Debugging an appliCation PrOSrami.. .. i ieeieieeiiiee st et e st e st e sseeesseeeseseeessateessseeesssseesssseesssseesnnes 973
Locating the problem in an appliCatioN......cuiieciiiiiieiiieeetee e sse e srae e 973
Techniques for debugging Programs iN TSO......uiiciiiriieiriieeeiieeeire et e e sree e see e s see e s sareessaeeesaeas 977
Techniques for debugging programs iN IMS........co it ssre e s sree e sreeesaee 978
Techniques for debugging programs in CICS.......ccciiiriiiiriieiriee et ssee e s ee e s see e s saee e s saeas 979

Finding a violated referential or check CONSTraiNt.......ccciiviiiiiiiiie e 982

Chapter 12. Sample data and applications supplied with Db2 for z/0S................ 985

(D] o T2 F=T g Y o] (=T =Y o1 L= S 985
ACtiIVity 1able (DSNBCLO.ACT) .eii i iiieeciieeeciteeeiteee ettt e e ctteeeetteeestreeeesteeeesseeessseasasseesasseeaassassassaessseesansens 985
Department table (DSNBCLO.DEPT)....uuii ettt ee e e tee e te e et e e re e e abae e e beeeeareeeeaneeeennes 986
Employee table (DSNBCLO.EMP)....co ettt et tee e tee e et e e e tee e e aeeeebee e e baeeenseeasseeeennens 988
Employee photo and resume table (DSN8C10.EMP_PHOTO_RESUME)......cccccoovieciieeciieeciee e 992

Project table (DSNBCILO.PROJ).....ccccuiieiieeeieeeeieeeetee e tee e te e e teeesaree e sbee e seeeeasesessseeesssesesnsesannseeann 993

Project activity table (DSNBCLO.PROJACT)....uiiiciiiecitieeeitteeeteeeesieeeecteeeeteeeeeaeeeeseeeesaeesseeeenneeeenneas 994
Employee-to-project activity table (DSN8CL0.EMPPROJACT).....uieeiieeeeieeeceeeeeteeeeeee et e e e 995
Unicode sample table (DSN8C10.DEMO_UNICODE)........ceiciuireeiieeeieeecieeecteeeeteeeereeesasee e nseeeenneeas 996
Relationships among the sample tables......oii i 997

Views 0N the SAMIPLE TABLIES....cui e e s e ebre e e e ae e e e e nnaees 998
Storage of sample application tablES. ... 1002
SYSDUMMYX 1aDLES .. etiiiiiiicitee ettt e st e e sbee e sbte e sbae e sbeeesbteesbeeesaseeesareeenane 1005

Db2 productivity-aid SAmMPLle PrOSIramS... ... uiiirciiiiiiieeriieeeiteseireesrreeesrreessaeesssreessseeessaessseesssseesnnns 1006
DSNTIAUL SAMPLE PrOSrami..ccccieeiceeerereesiieessieessteesateessseesssseesssseesssseesssseessseesssseesssseesssseessssaesns 1007
DSNTIAD SaMPLE PrOSIaM i ceieeicieereiieeritieesiteesitessstesssseesssseeessseesssseessaseeessseesssseesssseesssseesssseessssees 1012
DSNTEP2 and DSNTEPZ SampPle PrOSramS.....cccueieceeerreeeriieesieeesseeesseeesssesesssesessssnssssssesssssssssens 1015
Sample applications supplied With DB2 fOr Z/OS........uuiiiiieceeee et e e 1022
Types of SAMPLE APPLICAIONS...cii et e e e e e e e e sbe e e e e e abreee e eeseaneeeennnes 1022
Application languages and environments for the sample applications.......cceccevvciiieiienniiennineenn. 1024
Sample appliCatioNS iN TSO......uiiiii et e e e errrre e e e s tree e e e senseeeeeeenstaeeseessaseesennseneensan 1025
Sample appliCatioNS INIMS e e e e e s te e e e e et e e e s enbe e e e senbaeeeeennsraneas 1344
Sample applications iN CICS.... ..o eree e e cree e e s et te e e s e e nte e e s sesabeeeeeesasreeeesensseneanan 1390
Information resources for Db2 for z/0S and related products.......ccccccceeeveraennens 1451
0 4o - N 1453
Programming interface iNfOrmMation.... ... iei et sbe e 1454
BIE= e (=10 =T O SPOTSRTSTI 1454
Terms and conditions for product doCUMENTAtION........ciiiieciiie e 1455

e EAVZ: (oY oYo] o3Vt] a1 T =T =X 4T IS 1455
GlOSSANY . cuieuiuinienreieitereetentecatessscassacassassecassesssssssssasssssssasssssssassssassesassassssassasans 1457

About this information

This information discusses how to design and write application programs that access Db2 for z/OS (Db2),
a highly flexible relational database management system (DBMS).

Throughout this information, "Db2" means "Db2 12 for z/OS". References to other Db2 products use
complete names or specific abbreviations.

Important: To find the most up to date content for Db2 12 for z/0S, always use IBM® Documentation
or download the latest PDF file from PDF format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM
Documentation).

Most documentation topics for Db2 12 for z/OS assume that the highest available function level is
activated and that your applications are running with the highest available application compatibility level,
with the following exceptions:

« The following documentation sections describe the Db2 12 migration process and how to activate new
capabilities in function levels:

— Migrating to Db2 12 (Db2 Installation and Migration)
— What's new in Db2 12 (Db2 for z/OS What's New?)
— Adopting new capabilities in Db2 12 continuous delivery (Db2 for z/OS What's New?)

« FL 501 A label like this one usually marks documentation changed for function level 500 or higher,
with a link to the description of the function level that introduces the change in Db2 12. For more
information, see How Db2 function levels are documented (Db2 for z/OS What's New?).

The availability of new function depends on the type of enhancement, the activated function level, and
the application compatibility levels of applications. In the initial Db2 12 release, most new capabilities are
enabled only after the activation of function level 500 or higher.

Virtual storage enhancements
Virtual storage enhancements become available at the activation of the function level that introduces
them or higher. Activation of function level 100 introduces all virtual storage enhancements in
the initial Db2 12 release. That is, activation of function level 500 introduces no virtual storage
enhancements.

Subsystem parameters
New subsystem parameter settings are in effect only when the function level that introduced them or
a higher function level is activated. Many subsystem parameter changes in the initial Db2 12 release
take effect in function level 500. For more information about subsystem parameter changes in Db2
12, see Subsystem parameter changes in Db2 12 (Db2 for z/OS What's New?).

Optimization enhancements
Optimization enhancements become available after the activation of the function level that introduces
them or higher, and full prepare of the SQL statements. When a full prepare occurs depends on the
statement type:

« For static SQL statements, after bind or rebind of the package

« For non-stabilized dynamic SQL statements, immediately, unless the statement is in the dynamic
statement cache

- For stabilized dynamic SQL statements, after invalidation, free, or changed application compatibility
level

Activation of function level 100 introduces all optimization enhancements in the initial Db2 12
release. That is, function level 500 introduces no optimization enhancements.

SQL capabilities
New SQL capabilities become available after the activation of the function level that introduces them
or higher, for applications that run at the equivalent application compatibility level or higher. New SQL
capabilities in the initial Db2 12 release become available in function level 500 for applications that

© Copyright IBM Corp. 1983, 2022 xi

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_migrdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_wnew.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_managenewcapability.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m501.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_aboutflinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_subsysparmchanges.html

run at the equivalent application compatibility level or higher. You can continue to run SQL statements
compatibly with lower function levels, or previous Db2 releases, including Db2 11 and DB2°® 10. For
details, see Chapter 8, “Application compatibility levels in Db2 12,” on page 815

Who should read this information

This information is for Db2 application developers who are familiar with Structured Query Language (SQL)
and who know one or more programming languages that Db2 supports.

Db2 Utilities Suite for z/0S

Important: Db2 Utilities Suite for z/OS is available as an optional product. You must separately order
and purchase a license to such utilities, and discussion of those utility functions in this publication is not
intended to otherwise imply that you have a license to them.

Db2 12 utilities can use the DFSORT program regardless of whether you purchased a license for DFSORT
on your system. For more information about DFSORT, see https://www.ibm.com/support/pages/dfsort.

Db2 utilities can use IBM Db2 Sort for z/OS as an alternative to DFSORT for utility SORT and MERGE
functions. Use of Db2 Sort for z/OS requires the purchase of a Db2 Sort for z/OS license. For more
information about Db2 Sort for z/OS, see Db2 Sort for z/OS documentation.

Related concepts
Db2 utilities packaging (Db2 Utilities)

Terminology and citations

When referring to a Db2 product other than Db2 for z/OS, this information uses the product's full name to
avoid ambiguity.

The following terms are used as indicated:

Db2
Represents either the Db2 licensed program or a particular Db2 subsystem.

IBM rebranded DB2 to Db2, and Db2 for z/OS is the new name of the offering that was previously
known as "DB2 for z/OS". For more information, see Revised naming for IBM Db2 family products on
IBM z/0S platform. As a result, you might sometimes still see references to the original names, such
as "DB2 for z/0S" and "DB2", in different IBM web pages and documents. If the PID, Entitlement
Entity, version, modification, and release information match, assume that they refer to the same
product.

IBM OMEGAMON?® for Db2 Performance Expert on z/0S
Refers to any of the following products:
- IBM IBM OMEGAMON for Db2 Performance Expert on z/0S
« IBM Db2 Performance Monitor on z/0S
- IBM Db2 Performance Expert for Multiplatforms and Workgroups
« IBM Db2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CIcs®
Represents CICS Transaction Server for z/OS.

IMS
Represents the IMS Database Manager or IMS Transaction Manager.

MvsS™
Represents the MVS element of the z/OS operating system, which is equivalent to the Base Control
Program (BCP) component of the z/OS operating system.

xii About this information

https://www.ibm.com/support/pages/dfsort
https://www.ibm.com/docs/en/db2-sort-for-zos
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utlpackaging.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html

RACF®
Represents the functions that are provided by the RACF component of the z/OS Security Server.

Accessibility features for Db2 for z/0S

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products, including Db2 for z/OS. These
features support:

« Keyboard-only operation.

- Interfaces that are commonly used by screen readers and screen maghnifiers.

« Customization of display attributes such as color, contrast, and font size

Tip: IBM Documentation (which includes information for Db2 for z/OS) and its related publications are

accessibility-enabled for the IBM Home Page Reader. You can operate all features using the keyboard
instead of the mouse.

Keyboard navigation

For information about navigating the Db2 for z/OS ISPF panels using TSO/E or ISPF, refer to the z/0S
TSO/E Primer, the z/0S TSO/E User's Guide, and the z/OS ISPF User's Guide. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information about the commitment
that IBM has to accessibility.

How to send your comments about Db2 for z/OS documentation

Your feedback helps IBM to provide quality documentation.

Send any comments about Db2 for z/OS and related product documentation by email to
db2zinfo@us.ibm.com.

To help us respond to your comment, include the following information in your email:
e The product name and version

« The address (URL) of the page, for comments about online documentation

- The book name and publication date, for comments about PDF manuals

« The topic or section title

 The specific text that you are commenting about and your comment

Related concepts

About Db2 12 for z/OS product documentation (Db2 for z/OS in IBM Documentation)

Related reference
PDF format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM Documentation)

About this information xiii

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/cmn/db2z_cmn_aboutinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html

How to read syntax diagrams

Certain conventions apply to the syntax diagrams that are used in IBM documentation.
Apply the following rules when reading the syntax diagrams that are used in Db2 for z/OS documentation:
- Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The » ~—— symbol indicates the beginning of a statement.

The —» symbol indicates that the statement syntax is continued on the next line.

The »~—— symbol indicates that a statement is continued from the previous line.

The —~ < symbol indicates the end of a statement.
« Required items appear on the horizontal line (the main path).

»— required_item -»<

« Optional items appear below the main path.
»— required_item >«
L optional_item —J

If an optional item appears above the main path, that item has no effect on the execution of the
statement and is used only for readability.

f_ optional_item T
»— required_item >

« If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.
»— required_item T required_choicel j—N
required_choice2
If choosing one of the items is optional, the entire stack appears below the main path.
»— required_item <
toptional_choicel j
optional_choice2

If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

f_ default_choice T
»— required_item >«
toptional_choice j
optional_choice
- An arrow returning to the left, above the main line, indicates an item that can be repeated.

»— required_item L repeatable_item ln

If the repeat arrow contains a comma, you must separate repeated items with a comma.

xiv About this information

»— required_item L repeatable_item ln

A repeat arrow above a stack indicates that you can repeat the items in the stack.

Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the
main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

fragment-name

»— required_item »><
L optional_name —J

For some references in syntax diagrams, you must follow any rules described in the description for that
diagram, and also rules that are described in other syntax diagrams. For example:

— For expression, you must also follow the rules described in Expressions (Db2 SQL).

— For references to fullselect, you must also follow the rules described in fullselect (Db2 SQL).

— For references to search-condition, you must also follow the rules described in Search conditions
(Db2 SQL).

With the exception of XPath keywords, keywords appear in uppercase (for example, FROM). Keywords
must be spelled exactly as shown.

XPath keywords are defined as lowercase names, and must be spelled exactly as shown.

Variables appear in all lowercase letters (for example, column-name). They represent user-supplied
names or values.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must
enter them as part of the syntax.

Related concepts
Commands in Db2 (Db2 Commands)

Db2 online utilities (Db2 Utilities)

Db2 stand-alone utilities (Db2 Utilities)

About this information xv

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_expressionsintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_fullselect.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_searchconditionssql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_searchconditionssql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_aboutcommands.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_onlineutilities.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_standaloneutilities.html

xvi Db2 12 for z/0OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Chapter 1. Planning for and designhing Dh2
applications

Before you write or run your program, you need to make some planning and design decisions. These
decisions need to be made whether you are writing a new Db2 application or migrating an existing
application from a previous release of Db2.

About this task

If you are migrating an existing application from a previous release of Db2, read the application and SQL
release incompatibilities and make any necessary changes in the application.

If you are writing a new Db2 application, first determine the following items:

- the value of some of the SQL processing options
« the binding method
« the value of some of the bind options

Then make sure that your program implements the appropriate recommendations so that it promotes
concurrency, can handle recovery and restart situations, and can efficiently access distributed data.

Related concepts

Tools and IDEs for developing Db2 applications (Introduction to Db2 for z/OS)

Related tasks

Programming applications for performance (Db2 Performance)

Programming for concurrency (Db2 Performance)

Writing efficient SQL queries (Db2 Performance)

Improving performance for applications that access distributed data (Db2 Performance)
Related reference

BIND and REBIND options for packages, plans, and services (Db2 Commands)

Application and SQL release incompatibilities

When you migrate to or apply maintenance in Db2 12, be aware of and plan for application and SQL
release incompatibilities that might affect your Db2 environment.
GUPI

The following incompatible changes apply at any Db2 12 function level, including when you first migrate
to Db2 12. For incompatible changes that might impact your Db2 12 environment when you activate
function levels 501 and higher, see Incompatible changes summary for function levels 501 and higher
(Db2 for z/OS What's New?).

SQL capabilities
New SQL capabilities become available after the activation of the function level that introduces them
or higher, for applications that run at the equivalent application compatibility level or higher. New SQL
capabilities in the initial Db2 12 release become available in function level 500 for applications that
run at the equivalent application compatibility level or higher. You can continue to run SQL statements
compatibly with lower function levels, or previous Db2 releases, including Db2 11 and DB2 10. For
details, see Chapter 8, “Application compatibility levels in Db2 12,” on page 815

Release incompatibilities that were changed or added since the first edition of this Db2 12 publication are
indicated by a vertical bar in the left margin. In other areas of this publication, a vertical bar in the margin
indicates a change or addition that has occurred since the Db2 11 release of this publication.

© Copyright IBM Corp. 1983, 2022 1

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_applicationdevelopmenttools.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_programapplicationperformance.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_programapps4concurrency.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_programsqlperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tunedistributedapps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_incompatchangefl.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_incompatchangefl.html

SUBSTR built-in function always returns an error message for invalid input

Previously, during execution of the SUBSTR built-in function, Db2 sometimes incorrectly returned a result
for invalid input instead of issuing an appropriate error message. After the PTF for APAR PH36071 is
applied and Db2 12 function level 500 or higher is activated, the SUBSTR_COMPATIBILITY subsystem
parameter is set to PREVIOUS by default and Db2 continues to behave as before the PTF was applied. If
the SUBSTR_COMPATIBILITY subsystem parameter is set to CURRENT, Db2 always enforces the rules for
the SUBSTR built-in function that are documented in the SQL Reference and returns an SQL error code if
the rules are not met.

For example, if the SUBSTR_COMPATIBILITY subsystem parameter is set to CURRENT, the following
query returns an SQL error code:

SELECT SUBSTR('ABCD', 2+1, 3) FROM SYSIBM.SYSDUMMY1;

Previously, this query incorrectly returned the result 'CD '.

Before you set the SUBSTR_COMPATIBILITY subsystem parameter to CURRENT, you might need to
modify some of your applications to handle this change.

Actions to take

In Db2 12, before you set the SUBSTR_COMPATIBILITY subsystem parameter to CURRENT, identify
applications that are incompatible with this change by starting a trace for IFCID 0376 and then running
the applications. Review the trace output for incompatible changes with the identifier 14. Correct affected
applications so that they will be compatible if the SUBSTR_COMPATIBILITY subsystem parameter is set
to CURRENT in the future.

Related reference
SUBSTR COMPATIBILITY field (SUBSTR_COMPATIBILITY subsystem parameter) (Db2 Installation and
Migration)

CREATE TABLESPACE and CREATE INDEX statements with no space-level
USING clause fail if the storage group specified when the containing
database was created does not exist

Starting in Db2 12 at function level 500, Db2 records the default storage group for a table space or index
in the Db2 catalog. However, Db2 also does not validate the existence of a storage group specified in

the STOGROUP clause of a CREATE DATABASE statement. As a result, a CREATE TABLESPACE or CREATE
INDEX statement that omits the USING clause at the table space or index level now fails with SQLCODE
-204, if the storage group specified when the containing database was created does not exist.

Actions to take

If the storage group specified in a CREATE DATABASE statement does not exist, take one of the following
actions:

« Specify a USING clause at the table space or index level in any CREATE TABLESPACE or CREATE INDEX
statement that creates a table space or index in that database.

- Issue an ALTER DATABASE statement and specify STOGROUP clause that identifies a storage group that
exists.

Related reference

CREATE TABLESPACE (Db2 SQL)
CREATE INDEX (Db2 SQL)
CREATE DATABASE (Db2 SQL)
ALTER DATABASE (Db2 SQL)

2 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_substrcompatibility.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_substrcompatibility.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createdatabase.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_alterdatabase.html

New maximum number of parameter markers or host variables in a single
SQL statement

Db2 12 enforces the maximum number of parameter markers or host variables in a single SQL statement.
Starting in function level 100, Db2 12 issues SQLCODE -101 for any SQL statement that contains more
than 16,000 parameter markers or host variables.

Actions to take

Identify and modify any existing SQL statement that contains more than 16,000 parameter markers or
host variables.

Related reference
Limits in Db2 for z/OS (Db2 SQL)

Result change for SQL statement EXPLAIN PACKAGE

When Db2 processes the SQL statement EXPLAIN PACKAGE, the HINT_USED column in the PLAN_TABLE
is populated with EXPLAIN PACKAGE: copy. The copy field in the HINT_USED column will be one of the
following values:

« "CURRENT" - the current copy
« "PREVIOUS" - the previous copy
« "ORIGINAL" - the original copy

This change supports the new rebind phase-in capability that is introduced by function level 505.
However, the change takes effect immediately when you migrate to Db2 12.

Actions to take

Change the expected output for queries that reference this column.

Result change for SQL statement EXPLAIN STABILIZED DYNAMIC QUERY

When Db2 processes the SQL statement EXPLAIN STABILIZED DYNAMIC QUERY, the HINT_USED column
in the PLAN_TABLE is populated with EXPLAIN PACKAGE: copy. The copy field in the HINT_USED
column will be one of the following values:

« "CURRENT" - the current copy
« "INVALID" - the invalid copy

This change supports the new rebind phase-in capability that is introduced by function level 505.
However, the change takes effect immediately when you migrate to Db2 12.

Actions to take

Change the expected output for queries that reference this column.

SYSCOPY catalog table DSVOLSER column changes

Db2 12 introduces a new capability to delete only FlashCopy image copies if equivalent sequential image
copies exist, for an efficient backup procedure that uses minimal disk space. In support of this capability,
the possible values for the DSVOLSER column in the SYSIBM.SYSCOPY catalog table have changed.
Previously, the DSVOLSER column value was an empty string for cataloged, sequential, full image copies.
Some applications might assume that if the length attribute of the DSVOLSER value is zero, the image
copy is cataloged. In Db2 12, that assumption is no longer correct. For cataloged, sequential, full image
copies that are created from a FlashCopy image copy with consistency, and also had uncommitted units of
work backed out, the DSVOLSER column now contains Db2 checkpoint information.

Chapter 1. Planning for and designing Db2 applications 3

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_limits.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m505.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m505.html

For more information about this new capability, see Ability to delete only FlashCopy image copies.

Actions to take

Modify any applications that use the DSVOLSER column in the SYSCOPY catalog table to tolerate the
checkpoint information for cataloged, sequential, full image copies. For details, see the description of
DSVOLSER in SYSCOPY catalog table.

Application compatibility levels apply to data definition and data control
statements

After the activation of function level 500 or higher in Db2 12, application compatibility levels also

control syntax, semantics, default values, and option validation for most data definition statements and
data control statements. Data definition statements (sometimes abbreviated as DDL) include various
CREATE and ALTER statements. Data control statements (sometimes abbreviated as DCL) include various
GRANT and REVOKE statements. Only application compatibility levels V12R1M509 and higher control the
behavior of any data definition or data control statements.

The APPLCOMPAT bind option for a package applies to most static SQL data definition and data control
statements. The CURRENT APPLICATION COMPATIBILITY special register applies to most dynamic SQL
data definition and data control statements.

For implicit regeneration of an object, the application compatibility level that was in effect for the previous
CREATE or ALTER statement for that object is used.

For materialization of pending data definition changes, the application compatibility level of the pending
ALTER statement is used.

You can specify the USING APPLICATION COMPATIBILITY clause of certain ALTER statements to
regenerate an object with a specific application compatibility level.

Related concepts
Function levels and related levels in Db2 12 (Db2 for z/OS What's New?)

Application compatibility levels in Db2

The application compatibility level of your applications controls the adoption and use of new capabilities
and enhancements, and the impact of incompatible changes. The advantage is that you can complete the
Db2 12 migration process without the need to update your applications immediately.

Related reference
APPLCOMPAT bind option (Db2 Commands)
CURRENT APPLICATION COMPATIBILITY special register (Db2 SQL)

Automatic rebind of plans and packages created before DB2 10

Migration-related automatic binds (also called "autobinds") occur in Db2 12 because it cannot use
runtime structures from a plan or package that was last bound in a release earlier than DB2 10. Plans and
packages that were bound in Db2 11 can run in Db2 12, without the risk of migration-related autobinds.
However, plans and packages that are bound in Db2 12 cannot run on Db2 11 members without an
autobind in Db2 11.

If you specify YES or COEXIST for the ABIND subsystem parameter, Db2 12 automatically rebinds plans
and packages that were bound before DB2 10 when Db2 executes the packages. The result of the
automatic bind creates a new package and discards the current copy. Db2 does not move the current copy
to the previous or original copy because Db2 12 cannot use it. If a regression occurs, REBIND SWITCH
PREVIOUS and REBIND SWITCH ORIGINAL are not available.

If you specify NO for the ABIND subsystem parameter, negative SQLCODEs are returned for each attempt
to run a package or plan that was bound before DB2 10. SQLCODE -908, SQLSTATE 23510 is returned for
packages, and SQLCODE -923, SQLSTATE 57015 is returned for plans until they are rebound in Db2 12.

4 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_enhancements2019.html#ph04023
https://www.ibm.com/docs/en/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsyscopytable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_functionlevels.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptapplcompat.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_currentapplicationcompatibility.html

Actions to take

By preparing for migration to Db2 12 in Db2 11, you can reduce the change and risk for packages that
are subject to automatic binds in Db2 12. To do that, you rebind all packages that were last bound
before DB2 10 in Db2 11, before you migrate to Db2 12. For more information about the impacts that
migration-related automatic rebinds can have in your Db2 environment and actions that you can take to
avoid them, see Rebind old plans and packages in Db2 11 to avoid disruptive autobinds in Db2 12 (Db2
Installation and Migration).

Related reference

AUTO BIND field (ABIND subsystem parameter) (Db2 Installation and Migration)
Related information

-908 (Db2 Codes)

-923 (Db2 Codes)

KEEPDYNAMIC(YES) bind option support for ROLLBACK

In Db2 12, when the APPLCOMPAT value is V12R1M500, the KEEPDYNAMIC(YES) bind option affects
both COMMIT and ROLLBACK statements. With KEEPDYNAMIC(YES), the dynamic SQL statements in the
package are retained after COMMIT or ROLLBACK, and those statements can run again without another
PREPARE.

Prior to Db2 12, the KEEPDYNAMIC(YES) bind option applied only to COMMIT statements. After a
ROLLBACK statement, another PREPARE was required so that the dynamic SQL statements could run.
This situation is also true in Db2 12 if application compatibility is set to V11R1 or earlier.

In Db2 12, when the APPLCOMPAT value is V12R1M500 or higher, after a ROLLBACK statement is issued,
the behavior is different than in prior versions:

« An OPEN statement without a preceding PREPARE statement does not receive an SQLCODE -514.
- An EXECUTE statement without a preceding PREPARE statement does not receive an SQLCODE -518.

An application that was written in Db2 11 and that was bound with KEEPDYNAMIC(YES) was required
to prepare dynamic SQL statement again after a ROLLBACK was issued. In Db2 12 when application
compatibility is set to V12R1M500 or higher, those extra PREPARE statements are unnecessary.

Actions to take

As you migrate to Db2 12, review packages that use the KEEPDYNAMIC(YES) bind option. You can

make dynamic SQL programs that are bound with KEEPDYNAMIC(YES) run more efficiently by removing
PREPARE statements that prepare SQL statements again, following execution of ROLLBACK statements.
Do not take this action until you are sure that you no longer need to run the programs in Db2 11 or earlier.
After migrating to Db2 12, if you take this action (to remove PREPARE statements after ROLLBACK),
programs will not work properly if you subsequently set application compatibility to V11R1 or earlier.

Related reference
KEEPDYNAMIC bind option (Db2 Commands)

Alterations to index compression are pending changes for universal table
spaces

When the application compatibility level is V12R1M500 or higher, altering to use index compression for

indexes in universal table spaces is a pending change that places the index in advisory REORG-pending

(AREOR) status. The LOAD REPLACE and REBUILD INDEX utilities no longer materialize the change. You
must use an online REORG to materialize the new value for the COMPRESS attribute in the ALTER INDEX
statement.

In releases before Db2 12, any alteration to use index compression placed the index in REBUILD-pending
(RBDP) status. You needed to use the REBUILD INDEX utility to rebuild the index, or use the REORG utility
to reorganize the table space that corresponds to the index.

Chapter 1. Planning for and designing Db2 applications 5

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_avoidautobindmigr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_avoidautobindmigr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_abind.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/n908.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/n923.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptkeepdynamic.html

Actions to take

For indexes in universal table spaces, use an online REORG to materialize the new value for the
COMPRESS attribute in the ALTER INDEX statement.

Related tasks

Compressing indexes (Db2 Performance)

Related reference

ALTER INDEX (Db2 SQL)

Data types of output arguments from a stored procedure call in a Java
application

In function level 500 or higher with application compatibility set to VA1R1, when a Java™ application that
uses the IBM Data Server Driver for JDBC and SQLJ calls a stored procedure, the data types of stored
procedure output arguments match the data types of the parameters in the stored procedure definition.

Explanation

Before DB2 10, if a Java client called a Db2 for z/OS stored procedure, the data types of output arguments
matched the data types of the corresponding CALL statement arguments. Starting in DB2 10, the data
types of the output arguments match the data types of the parameters in the stored procedure definition.

In Db2 12, when application compatibility is set to V10R1, you can set the DDF_COMPATIBILITY
subsystem parameter to SP_PARMS_JV to keep the behavior that existed before DB2 10. However, when
application compatibility is set to V11R1 or V12R1M100, or to V12R1M500 or higher, SP_PARMS_JV is no
longer supported.

In Db2 12 with application compatibility set to V11R1 or V12R1M100, or to V12R1M500 or higher,
if the version of the IBM Data Server Driver for JDBC and SQLJ is lower than 3.63 or 4.13, a
java.lang.ClassCastException might be thrown when an output argument value is retrieved.

Actions to take
Take one of the following actions:

« Upgrade the IBM Data Server Driver for JDBC and SQLJ to version 3.63 or 4.13, or later.

« Modify the data types in CallableStatement.registerOutParameter method calls to match
the parameter data types in the stored procedure definitions. You can set application compatibility
to V10R1 and run a trace for IFCID 0376 to identify affected applications. Trace records for those
applications have a QW0376FN field value of 8.

Related concepts

Application compatibility levels in Db2

The application compatibility level of your applications controls the adoption and use of new capabilities
and enhancements, and the impact of incompatible changes. The advantage is that you can complete the
Db2 12 migration process without the need to update your applications immediately.

SELECT INTO statements with UNION or UNION ALL

A UNION or UNION ALL is not allowed in the outermost from-clause of a SELECT INTO statement.
However, releases before Db2 12 inadvertently tolerate SQL statements that contain this invalid syntax.

The behavior is controlled by the DISALLOW_SEL_INTO_UNION subsystem parameter. In Db2 11, the
default setting tolerates the invalid syntax. In Db2 12 the default setting disallows the invalid syntax.

An application that uses the invalid SQL syntax fails at BIND or REBIND with SQLCODE -109.

6 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_compressindexes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_alterindex.html

Actions to take

Identify any packages that use UNION or UNION ALL in the from-clause of a SELECT INTO statement and
correct them as necessary. You can temporarily specify that Db2 continues to tolerate the invalid syntax
NO for the DISALLOW_SEL_INTO_UNION subsystem parameter. However, this subsystem parameter is
deprecated and expected to be removed in the future.

You can identify affected packages while DISALLOW_SEL_INTO_UNION is set to NO by binding suspected
packages into a dummy collection ID with EXPLAIN(ONLY) and monitoring IFCID 0376 records. Trace
records for the affected applications have a QW0376FN field value of 11.

Use the following procedure:

1. Issue the following SQL statement to generate a list of BIND commands.

SELECT 'BIND PACKAGE(DUMMYCOL) COPY(' ||

COLLID || '.' || NAME || ') ' |

CASE WHEN (VERSION <> '')
THEN 'COPYVER(' || VERSION || ')
ELSE '' END ||

"EXPLAIN(ONLY) '

FROM SYSIBM.SYSPACKSTMT
WHERE STATEMENT LIKE '9%SELECT%INTO%UNION%'
OR STATEMENT LIKE '%SELECT%UNION%INTO%';

The statement generates output similar to the following BIND subcommand:
BIND PACKAGE (DUMMYCOL) COPY (DSN_DEFAULT_COLLID_PLAYO1.PLAY®1) EXPLAIN(ONLY)
2. Copy the results of the SELECT statement into a bind job. If any BIND subcommands are longer than
72 bytes, formatting is required.
3. Start and collect a trace for IFCID 0376.
4. Run the bind job that you created.
5. Stop the IFCID 0376 trace and analyze the output.
Related reference
DISALLOW_SEL_INTO_UNION in macro DSN6SPRM (Db2 Installation and Migration)

Related information
-109 (Db2 Codes)

Change in SQLCODE when the POWER built-in function result is out of range

After the activation of function level 500 or higher in Db2 12, the SQLCODE that is returned when the
result of the POWER® built-in function is out of range is changed in some cases.

Previously, when Db2 executed the POWER built-in function, and the result was a DOUBLE data type that
was out of range, Db2 returned SQLCODE -802. In Db2 12 with function level 500 or higher activated,
SQLCODE +802 is returned.

For example, the following query returns SQLCODE +802:

SELECT POWER(DOUBLE(2.0E38), DOUBLE(2.0))
FROM SYSIBM.SYSDUMMY1;

Invocations of the POWER function that have DOUBLE arguments and return out-of-range results return
SQLCODE +802 instead of SQLCODE -802.

Actions to take

In Db2 12, before function level 500 or higher is activated, identify applications with this incompatibility
by starting a trace for IFCID 0376, and then running the applications. Review the trace output for
incompatible changes with the identifier 1201. Adjust error processing to account for the change in the
returned SQLCODE from an error to a warning.

Chapter 1. Planning for and designing Db2 applications 7

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_disallowselintounion.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/n109.html

Related tasks

Managing application incompatibilities

Before you move an application to a new application compatibility level, you need to find application
incompatibilities, adjust your applications for those incompatibilities, and verify that the incompatibilities
no longer exist.

Related reference
POWER or POW (Db2 SQL)

CHAR9 and VARCHAR®9 functions for compatibility with pre-DB2 10 string
formatting of decimal data
DB2 10 changed the formatting of decimal data by the CHAR and VARCHAR built-in functions and CAST

specifications with a CHAR or VARCHAR result type. In Db2 12 you can use alternative functions for
compatibility with applications that require decimal to string output in the pre-DB2 10 formats:

« CHAR9 (Db2 SQL)
« VARCHAR9 (Db2 SQL)

Important: For portable applications that might run on platforms other than Db2 for z/OS, do not use the
CHAR9 and VARCHAR9 functions. Other Db2 family products do not support the these functions.

Actions to take

Review your setting for the BIF_COMPATIBILITY subsystem parameter. If the value is not CURRENT, and
you have applications that require decimal to string output in the pre-DB2 10 format, you can rewrite SQL
statements to use the CHAR9 and VARCHARO functions instead. This approach enables the development
of new applications that can accept the current string formatting of decimal data.

To modify your applications to take advantage of the CHAR9, VARCHARO9 functions:

1. Use an IFCID 0376 trace to identify applications that depend on the pre-DB2 10 formats.

2. Rewrite the SQL statements in the identified applications to use the CHAR9 and VARCHAR9 functions
instead of the CHAR and VARCHAR functions.

3. Set the BIF_COMPATIBILITY value to CURRENT.

Related reference
BIF COMPATIBILITY field (BIF_COMPATIBILITY subsystem parameter) (Db2 Installation and Migration)

Subsystem parameter BIF_ COMPATIBILITY and SQL schemas for
compatibility with pre-DB2 10 string formatting of decimal data
DB2 10 changed the formatting of decimal data by the CHAR and VARCHAR built-in functions and CAST
specifications with a CHAR or VARCHAR result type. You can temporarily override these changes on
a subsystem level by setting the BIF_ COMPATIBILITY subsystem parameter to one of the pre-DB2 10
settings. You can also temporarily override these changes on an application level by adding schema

SYSCOMPAT_V9 to the front of the PATH bind option or CURRENT PATH special register. The latter
approach works for CHAR and VARCHAR functions and does not affect CAST specifications.

The recommended approach is to modify your applications to handle the DB2 10 and later behavior for
these functions, as described in the following steps.

Actions to take
To modify your applications to handle the DB2 10 and later behavior for CHAR, VARCHAR, and CAST:

1. Identify applications that need to be modified to handle this change. Run a trace for IFCID 0376 to
identify affected applications.

2. Ensure that the BIF_COMPATIBILITY subsystem parameter is set to V9_DECIMAL_VARCHAR.

8 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_power.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_char9.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_varchar9.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_bifcompatibility.html

To handle the change for the CHAR function only, you can set BIF_ COMPATIBILITY to V9, and complete
the following steps for the CHAR function.

3. Change any affected applications to handle the DB2 10 and later CHAR and VARCHAR behavior,
including stored procedures, non-inline user-defined functions, and trigger packages. Rewrite affected
CAST specifications with the appropriate CHAR or VARCHAR function and a CAST to the correct length
if needed.

4. Rebind and prepare packages with the PATH(SYSCURRENT,SYSIBM) rebind option. Putting the
SYSCURRENT schema at the beginning of the SQL path causes the DB2 10 and later behavior to
be used for the CHAR and VARCHAR built-in functions.

Repeat this step for native stored procedures (SQLPL) and non-inline SQL scalar functions.

5. For views that reference these casts or built-in functions, determine whether the view
needs to be changed to have the expected output. Drop and re-create the views with the
PATH(SYSCURRENT,SYSIBM) rebind option only if necessary. Rebind any applications that reference
the views with the PATH(SYSCURRENT,SYSIBM) option to use the DB2 10 and later CHAR and
VARCHAR built-in functions. Repeat this step for inline SQL scalar functions.

6. For materialized query tables or indexes on expressions that reference these casts or built-in
functions, drop and re-create the materialized query tables or indexes on expressions with the
PATH(SYSCURRENT,SYSIBM) rebind option. Issue the REFRESH TABLE statement for materialized
guery tables. Rebind any applications that reference the materialized query tables or indexes on
expressions with the PATH(SYSCURRENT,SYSIBM) option to use the DB2 10 and later CHAR and
VARCHAR built-in functions.

7. Change the value of the BIF_COMPATIBILITY subsystem parameter to CURRENT. When the subsystem
parameter value is CURRENT, new applications, rebinds, and CREATE statements use the DB2 10 and
later CHAR, VARCHAR, and CAST behavior.

Materialized query tables and expression-based indexes use the CHAR, VARCHAR, and CAST behavior
that is specified during its creation. If a reference statement has a different behavior that is specified by
the BIF_COMPATIBILITY parameter or a different path, the materialized query table or expression-based
index is not used.

Related reference
BIF COMPATIBILITY field (BIF_ COMPATIBILITY subsystem parameter) (Db2 Installation and Migration)

EBCDIC mixed string input to the RTRIM, TRIM, LTRIM, and STRIP built-in
functions must be valid

Starting at application compatibility level V12R1M500 or higher, Db2 12 applies more validation checking
for EBCDIC mixed-string input to the RTRIM, TRIM, LTRIM, and STRIP built-in functions.

Generally, Db2 has required valid EBCDIC mixed-string data for input to these functions since version 10,
but Db2 12 now detects more cases than earlier releases.

With the new validation checking, when Db2 12 performs a trim operation, and the string-expression
argument of the RTRIM, TRIM, LTRIM, or STRIP built-in function contains invalid EBCDIC mixed data, Db2
issues SQLCODE -171.

Actions to take

Check whether EBCDIC mixed data that is specified for the string-expression argument of an RTRIM,
TRIM, LTRIM, or STRIP built-in function is valid, and resolve the invalid data.

In valid mixed data, the double-byte portions of the input strings begin with X'OE' (shift-out character),
end with X'OF' (shift-in character), and have an even number of bytes between the X'OE' and X'OF'
characters. Data that does not meet these criteria is invalid mixed data. When invalid mixed data is
specified for the string-expression argument of an RTRIM, TRIM, LTRIM, or STRIP built-in function,
SQLCODE -171 is returned in some cases. If Db2 trims the specified characters before it reaches an
invalid portion of a mixed string, the trim operation is successful.

Chapter 1. Planning for and designing Db2 applications 9

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_bifcompatibility.html

Setting an application compatibility of VA2R1M100 or lower (if PTF for APAR PH25783 is applied) might
avoid the error while you resolve the invalid data. At the lower application compatibility levels, Db2 12
attempts to tolerate the invalid mixed data identified by the new validation checking, and it allows the
trim operation to complete if possible. However, if Db2 is still unable to perform the trim operation,
SQLCODE -171 is issued.

Maximum number of user-defined external scalar functions running in a Db2
thread is no longer unlimited (APAR PH44833)

Starting at application compatibility level V12R1M100 (if the PTF for APAR PH44833 is applied), Db2 12
introduces the MAX_UDF subsystem parameter. MAX_UDF controls the maximum number of user-defined
external scalar functions that can run concurrently in a Db2 thread. The maximum value of MAX_UDF

is 99999. Before the introduction of MAX_UDF, the maximum number of user-defined external scalar
functions that could run concurrently in a Db2 thread was unlimited.

Actions to take

If an application contains SQL statements that invoke user-defined external scalar functions, and one of
those SQL statements is rejected with SQLCODE -904 and reason code 00E70082, increase the MAX_UDF
subsystem parameter value, or change the application to run fewer functions concurrently in a Db2
thread.

Related reference

MAX UDFS field (MAX_UDF subsystem parameter) (Db2 Installation and Migration)
Related information

00E70082 (Db2 Codes)

SQL reserved words

PSPI

Db2 12 introduces several new SQL reserved words, which are listed in Reserved words in Db2 for z/OS
(Db2 SQL).

In some cases, the use of these reserved words might cause an incompatibility before new function is
activated in Db2 12, regardless of the setting of the APPLCOMPAT flag.

Actions to take

Collect IFCID 0376 trace records in Db2 11. Values 4, 5, and 6 for the QW0376FN field indicate instances
of reserved words in applications that will cause an incompatibility in Db2 12. Adjust these applications
by changing the reserved word to a delimited identifier or by using a word that is not reserved in Db2

12. PSPI

Built-in function and existing user-defined functions

For built-in and user-defined functions the combination of the function name and the parameter list form
the signature that Db2 uses to identify the function. If the signatures of new or changed built-in functions
in Db2 12 match the signatures existing user-defined functions, applications with unqualified references
to the existing user-defined functions might start invoking the new or changed built-in functions instead of
the user-defined functions. Db2 12 introduces the following built-in function changes:

Db2 12 introduces or changes the following built-in functions.

Important information about existing user-defined functions: When a new application compatibility
level introduces a new or changed built-in function that has the same name and signature as an existing
user-defined function, unqualified references to the user-defined function might resolve incorrectly.
Applications that have unqualified references to the user-defined function might fail. To avoid this

10 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_maxudf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/00e70082.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_reservedwords.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_reservedwords.html

situation, modify applications to explicitly qualify references to user-defined functions with the same
name and signature as the new or changed built-in functions.

GUPI

APPLCOMPA | Function name Change introduced Incompatibl
T level e change?

V12R1M507 | Various The following functions are newly No
supported in Db2 for z/OS as passthrough-
only expressions, which are passed through
to IBM Db2 Analytics Accelerator for z/0OS.

. ADD_DAYS (Db2 SOL)

« BTRIM (Db2 SQL)

- DAYS_BETWEEN (Db2 SQL)
« NEXT_MONTH (Db2 SOQL)

« REGR_AVGX

. REGR_AVGY

« REGR_COUNT

« REGR_INTERCEPT or REGR_ICPT
. REGR_R2

« REGR_SLOPE

« REGR_SXX

« REGR_SXY

« REGR_SYY

« ROUND_TIMESTAMP (Dbh2 SQL) if invoked
with a date expression

V12R1M506 |HASH (Db2 SQL) New built-in function. No

V12R1IM506 |CHARACTER_LENGTH or CHAR_LENGTH is now supported as an No
CHAR_LENGTH (Db2 SQL) alternative function name.

V12R1M506 |CLOB (Db2 SQL) TO_CLOB is now supported as an No
alternative function name.

V12R1M506 | COVAR_POP or COVAR_POP is now supported as an No
COVARIANCE or COVAR alternative function name.
(Db2 SQL)

V12R1M506 |LEFT (Db2 SQL) STRLEFT is now supported as an alternative | No
function name.

V12R1M506 [POWER or POW (Db2 SQL) [POW is now supported as an alternative No
function name.

V12R1M506 |POSSTR (Db2 SQL) STRPOS is now supported as an alternative | No
function name.

V12R1M506 | RANDOM or RAND (Db2 RANDOM is now supported as an No
SQL) alternative function name.

V12R1M506 |RIGHT (Db2 SQL) STRRIGHT is now supported as an No
alternative function name.

V12R1M506 |TIMESTAMP_FORMAT (Db2 |TO_TIMESTAMP is now supported as an No
SQL) alternative function name.

Chapter 1. Planning for and designing Db2 applications 11

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_adddays.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_btrim.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_daysbetween.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_nextmonth.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_regr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_regr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_regr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_regr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_regr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_regr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_regr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_regr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_regr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_roundtimestamp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_hash.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_characterlength.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_characterlength.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_clob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_covarpop.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_covarpop.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_covarpop.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_left.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_power.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_posstr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_random.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_random.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_right.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_timestampformat.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_timestampformat.html

APPLCOMPA | Function name Change introduced Incompatibl
T level e change?
V12R1M505 |DECRYPT_DATAKEY_INTEG | New built-in functions. No
ER,
DECRYPT_DATAKEY_BIGINT
DECRYPT_DATAKEY_DECIM
AL,
DECRYPT_DATAKEY_VARCH
AR,
DECRYPT_DATAKEY_CLOB,
DECRYPT_DATAKEY_VARGR
APHIC,
DECRYPT_DATAKEY_DBCLO
B, and
DECRYPT_DATAKEY_BIT
V12R1M505 | ENCRYPT_DATAKEY New built-in function. No
V12R1M504 | Various The following functions are newly No
supported in Db2 for z/OS as passthrough-
only expressions, which are passed through
to IBM Db2 Analytics Accelerator for z/OS.
« CUME_DIST
« CUME_DIST (aggregate) (Db2
SQL)FIRST_VALUE
« LAG
« LAST_VALUE
« LEAD
« NTH_VALUE
« NTILE
« PERCENT_RANK
- PERCENT_RANK (aggregate) (Db2 SQL)
« RATIO TO_REPORT
« REGEXP_COUNT (Db2 SQL)
« REGEXP_INSTR (Db2 SQL)
« REGEXP_LIKE (Db2 SQL)
« REGEXP_REPLACE (Db2 SQL)
« REGEXP_SUBSTR (Db2 SQL)
V12R1M502 | GRAPHIC (Db2 SQL) The first argument now accepts numeric No
data types, including SMALLINT, INTEGER,
BIGINT, DECIMAL, REAL, DOUBLE, FLOAT,
and DECFLOAT.
V12R1M502 |VARGRAPHIC (Db2 SQL) The first argument accepts numeric data No
types, including SMALLINT, INTEGER,
BIGINT, DECIMAL, REAL, DOUBLE, FLOAT,
and DECFLOAT.
V12R1M501 [LISTAGG (Db2 SQL) New built-in function. No

12 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m505.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_decryptdatakey.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_decryptdatakey.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_decryptdatakey.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_decryptdatakey.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_decryptdatakey.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_decryptdatakey.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_decryptdatakey.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_decryptdatakey.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_decryptdatakey.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_decryptdatakey.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_decryptdatakey.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_decryptdatakey.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_decryptdatakey.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_decryptdatakey.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m505.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_encryptdatakey.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_olapspecification.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_cumedist.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_cumedist.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_olapspecification.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_olapspecification.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_olapspecification.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_olapspecification.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_olapspecification.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_olapspecification.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_olapspecification.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_percentrank.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_olapspecification.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_regexpcount.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_regexpinstr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_regexplike.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_regexpreplace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_regexpsubstr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_graphic.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_vargraphic.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m501.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_listagg.html

APPLCOMPA | Function name Change introduced Incompatibl
T level e change?
V12R1M500 [ARRAY_AGG (Db2 SQL) Newly supported built-in function when No
used for associative array aggregation.
V12R1M500 | GENERATE_UNIQUE_BINAR [New built-in function. No
Y
V12R1M500 [HASH_CRC32, HASH_MD5, |New built-in functions. No
HASH_SHA1, and
HASH_SHA256
V12R1M500 |LOWER (Db2 SQL) The following locales can now be specified:
« UNI_60
- UNI_90
V12R1M500 |[PERCENTILE_CONT New built-in function. No
V12R1M500 |PERCENTILE_DISC New built-in function. No
V12R1M500 | TRANSLATE (Db2 SQL) The following locales can now be specified: | No
- UNI_60
« UNI_90
V12R1M500 | UPPER (Db2 SQL) The following locales can now be specified: [No
« UNIL_60
- UNI_90
V12R1M500 |WRAP (Db2 SQL) New built-in function. No
V12R1M100 |BLOCKING_THREADS (Db2 | New built-in function.
SQL)
GUPI

Actions to take

To continue to execute a user-defined function with the same name or signature as a new built-in
function or signature, qualify the name of the existing user defined function in your application. For more
information about Db2 resolves qualified and unqualified references to functions, see Function resolution
(Db2 SQL).

SQLCODE changes

Some SQLCODE numbers and message text might have changed in Db2 12. Also, the conditions under
which some SQLCODEs are issued might have changed. For more information, see New, changed, and
deleted codes (Db2 Codes).

GUPI

Chapter 1. Planning for and designing Db2 applications 13

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_arrayagg.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_generateunique.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_generateunique.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_hash_algo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_hash_algo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_hash_algo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_lower.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_percentilecont.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_percentiledisc.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_translate.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_upper.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_wrap.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_blockingthreads.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_blockingthreads.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_functionresolution.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_functionresolution.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_codeschangelist.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_codeschangelist.html

Determining the value of any SQL processing options that affect
the design of your program

When you process SQL statements in an application program, you can specify options that describe the
basic characteristics of the program. You can also indicate how you want the output listings to look.
Although most of these options do not affect how you design or code the program, a few options do.

About this task

SQL processing options specify program characteristics such as the following items:

« The host language in which the program is written
e The maximum precision of decimal numbers in the program
« How many lines are on a page of the precompiler listing

In many cases, you may want to accept the default value provided.

Procedure

Review the list of SQL processing options and decide the values for any options that affect the way that
you write your program.

For example, you need to know if you are using NOFOR or STDSQL(YES) before you begin coding.

Related tasks

Processing SQL statements for program preparation

The first step in preparing an SQL application to run is to process the SQL statements in the program.
To process the statements, use the Db2 coprocessor or the Db2 precompiler. During this step, the SQL
statements are replaced with calls to Db2 language interface modules, and a DBRM is created.

Related reference

Descriptions of SQL processing options

You can specify any SQL processing options regardless of whether you use the Db2 precompiler or the
Db2 coprocessor. However, the Db2 coprocessor might ignore certain options because host language
compiler options exist that provide the same information.

Changes that invalidate packages

Changes to your program or database objects can invalidate packages.

A change to your program probably invalidates one or more of your packages. For some changes, you
must bind a new object. For others, rebinding is sufficient. A package can also become invalid for reasons
that do not depend on operations in your program. For example, when an index is dropped that is used in
an access path by one of your queries, a package can become invalid.

Db2 might rebind invalid packages automatically the next time that the package is run. For more
information, see “Automatic rebinds” on page 894.

How Db2 marks invalid packages

In most cases, Db2 marks a package that must be automatically rebound as invalid by setting VALID='N'
in the SYSIBM.SYSPLAN and SYSIBM.SYSPACKAGE catalog tables.

Actions that cause Db2 to invalidate packages

Db2 marks packages invalid when they depend on the target object, and sometimes on related objects
that are affected by cascading effects, of the actions that are listed in the following table.

14 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Object or operation Changes that invalidate packages

Tables « Adding a TIME, TIMESTAMP, or DATE column when the default value for
added rows is CURRENT DATE, CURRENT TIME, CURRENT TIMESTAMP
(p) WITHOUT TIME ZONE, or CURRENT TIMESTAMP (p) WITH TIME ZONE
respectively

» Adding a constraint with a delete rule of SET NULL or CASCADE. Packages
that depend on tables that cascade deletes to the altered parent table are
also invalidated.

« Adding a security label
« Altering a column

« Renaming a column (Cascading effects apply. See “Cascading effects on
packages of renaming a column” on page 17.)

- Altering a table column such that a view cannot regenerate
« Altering the AUDIT attribute.

» Dropping a column. For pending definition changes, the package
invalidation occurs when the pending definition change is applied to the
table.

« Altering for hash organization, or dropping hash organization

« Adding or removing a BUSINESS_TIME period for temporal versioning

» Enabling or disabling transparent archiving

« Adding, altering, or dropping a materialized query table (MQT) definition
« Dropping a clone table

» Activating or deactivating row-level access control for a table

« Activating column-level access control if the table has an enabled column,
or deactivating column-level access control

« For created temporary tables, adding a column

Table spaces » Changing the SBCS CCSID attribute
 Increasing the MAXPARTITIONS attribute

» Changing the SEGSIZE attribute to convert the table space to a partition-by-
range (UTS) table space

= Changing the DSSIZE attribute of a partitioned table space
= Changing the buffer pool page size

= Materializing pending definition changes to table spaces with the REORG
TABLESPACE utility. For more information, see Pending data definition
changes (Db2 Administration Guide).

« Altering partitions of partition-by-range (PBR) or partitioned (non-UTS)
table spaces, including: adding partitions, altering limit keys, or rotating

partitions.

Partitions « Altering partitions of partition-by-range (PBR) or partitioned (non-UTS)
table spaces, including: adding partitions, altering limit keys, or rotating
partitions.

Indexes « Adding a column

- Altering an index to regenerate it
« Altering the PADDED or NOT PADDED attribute

Chapter 1. Planning for and designing Db2 applications 15

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html

Object or operation

Changes that invalidate packages

Altering a limit key value of a partitioning index

Specifying NOT CLUSTER for the partitioning index of a table that uses
index-controlled partitioning, to convert the table to use table controlled
partitioning

Materializing pending definition changes to indexes with the REORG INDEX
utility. For more information, see Pending data definition changes (Db2
Administration Guide).

Views « Altering a view to regenerate it

- Altering a table column such that a view cannot regenerate
Packages « Dropping the package

» Dropping a package that provides the execute privilege for a plan
Routines

Regenerating procedures. For more information, see the information about
invalidation of packages in ALTER PROCEDURE (SQL - native) (Db2 SQL).

Altering an external function

Altering an inlined SQL scalar function

Altering a version of a compiled SQL scalar function to change certain
options that are specified for the active version. For more information,
see the information about invalidation of packages in ALTER FUNCTION
(compiled SQL scalar) (Db2 SQL).

Altering a procedure with the ACTIVATE VERSION routine-version-id option,
if the value of routine-version-id is different from the current active

version of the procedure. For more information, see the information about
invalidation of packages in ALTER PROCEDURE (SQL - native) (Db2 SQL).

Altering SQL table functions:
— Altering the SECURED or NOT SECURED attribute

— Altering the DETERMINISTIC or NOT DETERMINISTIC attribute,
regardless of whether RESTRICT is specified

— Regenerating a table function

Dropping objects

Dropping the package
Dropping a package that provides the execute privilege for a plan

Dropping objects such as aliases, functions, global variables, indexes,
materialized query tables, roles, sequences, synonyms, tables, table
spaces, triggers, views

Dropping a clone table

Dropping a column. For pending definition changes, the package
invalidation occurs when the pending definition change is applied to the
table.

Dropping row permissions or column masks if column access control is
enforced for a table

Authorization and
access control changes

Revoking authorization from the package owner to access a table, index, or
view

16 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_alterproceduresqlnative.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_alterfunctionsqlscalar.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_alterfunctionsqlscalar.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_alterproceduresqlnative.html

Object or operation Changes that invalidate packages

« Revoking authorization from the package owner to execute a stored
procedure, if the package uses the CALL procedure-name form of the CALL
statement to call the stored procedure

» Enabling or disabling masks if column access control is in effect
» Dropping a package that provides the execute privilege for a plan

« Dropping row permissions or column masks if column access control is
enforced for a table

» Activating or deactivating row-level access control for a table

« Activating column-level access control if the table has an enabled column,
or deactivating column-level access control

Utility operations « Materializing pending definition changes to table spaces with the REORG
TABLESPACE utility. For more information, see Pending data definition
changes (Db2 Administration Guide).

Materializing pending definition changes to indexes with the REORG INDEX
utility. For more information, see Pending data definition changes (Db2
Administration Guide).

Running the REORG utility with the REBALANCE keyword
Running the REPAIR utility on a database with the DBD REBUILD option

Tip: Some alterations do not invalidate packages that depend on the required objects. However, you
might sometimes still need to rebind packages for the application to pick up the changes. For more
information, see “Changes that might require package rebinds” on page 19.

Cascading effects on packages of renaming a column

ALTER TABLE RENAME COLUMN invalidates any package that depends on the table in which the column is
renamed. Any attempt to execute the invalidated package triggers an automatic rebind of the package.

The automatic rebind fails if the column is referenced in the package because the referenced column
no longer exists in the table. In this case, applications that reference the package need to be modified,
recompiled, and rebound to return the expected result.

The automatic rebind succeeds in either of the following cases:

- The package does not reference the column. In this case, the renaming of the column does not affect
the query results that are returned by the package. The application does not need to be modified as a
result of renaming the column.

« The package does reference the column, but after the column is renamed, another column with the
name of the original column is added to the table. In this case, any query that references the name
of the original column might return a different result set. In order to restore the expected results, the
application would need to be modified to specify the new column name.

The following scenario shows how renaming a column can cause a package to return unexpected results:

CREATE TABLE MYTABLE (MYCOL1 INT);
INSERT INTO TABLE MYTABLE
VALUES (1);
SELECT MYCOL1 FROM MYTABLE -- this is the statement in
-- the package MYPACKAGE,
-- the query returns
-- a value of 1
ALTER TABLE MYTABLE
RENAME COLUMN
MYCOL1 TO MYCOL2; -- MYPACKAGE is invalidated
-- and automatic rebind
-- of MYPACKAGE will fail
-- at this point

Chapter 1. Planning for and designing Db2 applications 17

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html

ALTER TABLE MYTABLE
ADD COLUMN MYCOL1 VARCHAR(10); -- automatic rebind
-- of MYPACKAGE
-- will be successful
INSERT INTO TABLE MYTABLE (MYCOL1)
VALUES ('ABCD');

At this point an application executes MYPACKAGE, which results in a successful automatic rebind.
However, the statement in the package will return 'ABCD ' instead of the expected '1".

Related concepts

Automatic rebinds

Automatic rebinds (sometimes called "autobinds") occur when an authorized user runs a package or
plan and the runtime structures in the plan or package cannot be used. This situation usually results
from changes to the attributes of the data on which the package or plan depends, or changes to the
environment in which the package or plan runs.

“Trigger packages” on page 159
A trigger package is a special type of package that is created only when you execute a CREATE TRIGGER
statement. A trigger package executes only when the associated trigger is activated.

Invalidation of cached dynamic statements (Db2 Performance)
Related tasks

Identifying packages with characteristics that affect performance, concurrency, or the ability to run (Db2
Performance)

“Rebinding applications” on page 885

You must rebind applications to change bind options. You also need to rebind applications when you make
changes that affect the plan or package, such as creating an index, but you have not changed the SQL
statements.

Related reference

Invalid and inoperative packages (Managing Security)
Related information

00E30305 (Db2 Codes)

Identifying invalidated packages

You can identify packages that will become invalidated when certain changes are made to objects.

About this task

Certain changes to objects invalidate packages. By identifying these invalidated packages before you
make the changes, you can prepare necessary rebind operations accordingly.

Procedure

To identify all packages that will be invalidated by a change to a specific object, run the following query:

SELECT DISTINCT DCOLLID, DNAME, DTYPE

FROM SYSIBM.SYSPACKDEP

WHERE BQUALIFIER = object_qualifier
AND BNAME = object_name
AND BTYPE = object_type

ORDER BY DCOLLID, DNAME;
object_qualifier
The qualifier of the object

object_name
The name of the object

object_type
The type of object

18 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_dynamicsqlcacheinvalidation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_check4invalidplanspackages.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_check4invalidplanspackages.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_invalidinoperativeplanpackage.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/00e30305.html

Results
The query returns a table that contains package information based on the selected values in the query.
For details about the selected values, see SYSPACKDEP catalog table (Db2 SQL).

Changes that might require package rebinds

Some changes to database objects that do not cause packages to be invalidated might still require a
rebind for the changes to take effect for the application.

The following SQL statements cause Db2 to set the VALID column value to 'A" in the SYSIBM.SYSPACKAGE
catalog table. This value indicates that an SQL statement changed the description of the table or base
table of a view that the package references. These changes do not invalidate the package. However, a
rebind might be required for the package to pick up the changes from the statement.

« ALTER TABLE statements with the following clauses:

— ADD COLUMN (except for cases that invalidate packages; see “Changes that invalidate packages” on

page 14)
— ADD or DROP FOREIGN KEY

— ADD or DROP UNIQUE
— DROP constraint
— ADD PARTITIONING KEY
— ADD or DROP CHECK
— VALIDPROC
— VOLATILE or NOT VOLATILE
— APPEND YES or NO
« EXCHANGE statements

Related concepts

Changes that invalidate packages
Changes to your program or database objects can invalidate packages.

Related reference

SYSPACKAGE catalog table (Db2 SQL)
ALTER TABLE (Db2 SQL)

EXCHANGE (Db2 SQL)

Determining the value of any bind options that affect the design of
your program

Several options of the BIND PACKAGE and BIND PLAN commands can affect your program design. For
example, you can use a bind option to ensure that a package or plan can run only from a particular CICS
connection or IMS region. Your code does not need to enforce this situation.

Procedure

Review the list of bind options and decide the values for any options that affect the way that you write
your program.

For example, you should decide the values of the ACQUIRE and RELEASE options before you write your
program. These options determine when your application acquires and releases locks on the objects it
uses.

Related reference

BIND and REBIND options for packages, plans, and services (Db2 Commands)

Chapter 1. Planning for and designing Db2 applications 19

https://www.ibm.com/docs/en/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsyspackdeptable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsyspackagetable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_exchange.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html

Programming applications for performance

You can achieve better Db2 performance by considering performance as you program and deploy your
applications.

Procedure

To improve the performance of application programs that access data in Db2, use the following
approaches when writing and preparing your programs:

« Program your applications for concurrency.
The goal is to program and prepare applications in a way that:

— Protects the integrity of the data that is being read or updated from being changed by other
applications.

— Minimizes the length of time that other access to the data is prevented.

For more information about data concurrency in Db2 and recommendations for improving concurrency
in your application programs, see the following topics:

Programming for concurrency (Db2 Performance)

Designing databases for concurrency (Db2 Performance)

Concurrency and locks (Db2 Performance)

Improving concurrency (Db2 Performance)

Improving concurrency in data sharing environments (Db2 Data Sharing Planning and
Administration)

- Write SQL statements that access data efficiently.
The predicates, subqueries, and other structures in SQL statements affect the access paths that Db2
uses to access the data.
For information about how to write SQL statements that access data efficiently, see the following
topics:
— Ways to improve query performance (Introduction to Db2 for z/0S)
— Writing efficient SQL queries (Db2 Performance)

« Use EXPLAIN or SQL optimization tools to analyze the access paths that Db2 chooses to process your
SOL statements.

By analyzing the access path that Db2 uses to access the data for an SQL statement, you can discover
potential problems. You can use this information to modify your statement to perform better.

For information about how you can use EXPLAIN tables to analyze the access paths for your SQL
statements, see the following topics:

Investigating access path problems (Db2 Performance)

00C200A4 (Db2 Codes)

Investigating SQL performance by using EXPLAIN (Db2 Performance)
Interpreting data access by using EXPLAIN (Db2 Performance)

EXPLAIN tables (Db2 Performance)

EXPLAIN (Db2 SQL)

« Consider performance in the design of applications that access distributed data.

The goal is to reduce the amount of network traffic that is required to access the distributed data, and
to manage the use of system resources such as distributed database access threads and connections.

For information about improving the performance of applications that access distributed data, see the
following topics:

— Ways to reduce network traffic (Introduction to Db2 for z/0S)

20 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_programapps4concurrency.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_designdb4concurrency.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_concurrencyandlocksdefined.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_recommend4concurrency.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/dshare/src/tpc/db2z_tuninguseoflocks.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/dshare/src/tpc/db2z_tuninguseoflocks.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_improvequeryperformance.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_programsqlperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_investigateaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/00c200a4.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_interpretdataaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_explaintables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_explain.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_waystoreducenetworktraffic.html

— Managing Db2 threads (Db2 Performance)
— Improving performance for applications that access distributed data (Db2 Performance)

— Improving performance for SQL statements in distributed applications (Db2 Performance)

« Use stored procedures to improve performance, and consider performance when creating stored
procedures.

For information about stored procedures and Db2 performance, see the following topics:

— Implementing Db2 stored procedures (Stored procedures provided by Db2)

— Improving the performance of stored procedures and user-defined functions (Db2 Performance)

Related concepts

Query and application performance analysis (Introduction to Db2 for z/0S)
Programming for the instrumentation facility interface (IFI) (Db2 Performance)
Related tasks

Overview of programming applications that access Db2 for z/OS data
Applications that interact with Db2 must first connect to Db2. They can then read, add, or modify data or
manipulate Db2 objects.

Setting limits for system resource usage by using the resource limit facility (Db2 Performance)

Planning for and designing Db2 applications

Before you write or run your program, you need to make some planning and design decisions. These
decisions need to be made whether you are writing a new Db2 application or migrating an existing
application from a previous release of Db2.

Designing your application for recovery

If your application fails or Db2 terminates abnormally, you need to ensure the integrity of any data that
was manipulated in your application. You should consider possible recovery situations when you design
your application.

Procedure

To design your application for recovery:

1. Put any changes that logically need to be made at the same time in the same unit of work. This action
ensures that in case Db2 terminates abnormally or your application fails, the data is left in a consistent
state.

A unit of work is a logically distinct procedure that contains steps that change the data. If all the steps
complete successfully, you want the data changes to become permanent. But, if any of the steps fail,
you want all modified data to return to the original value before the procedure began. For example,
suppose two employees in the sample table DSN8C10.EMP exchange offices. You need to exchange
their office phone numbers in the PHONENO column. You need to use two UPDATE statements to
make each phone number current. Both statements, taken together, are a unit of work. You want both
statements to complete successfully. For example, if only one statement is successful, you want both
phone numbers rolled back to their original values before attempting another update.

2. Consider how often you should commit any changes to the data.

If your program abends or the system fails, Db2 backs out all uncommitted data changes. Changed
data returns to its original condition without interfering with other system activities.

For IMS and CICS applications, if the system fails, Db2 data does not always return to a consistent
state immediately. Db2 does not process indoubt data (data that is neither uncommitted nor
committed) until you restart IMS or the CICS attachment facility. To ensure that Db2 and IMS are
synchronized, restart both Db2 and IMS. To ensure that Db2 and CICS are synchronized, restart both
Db2 and the CICS attachment facility.

3. Consider whether your application should intercept abends.

Chapter 1. Planning for and designing Db2 applications 21

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_managethreads.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tunedistributedapps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_sqloptions4dist.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_implementstoredprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_improvestoreprocudfperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_queryandapplicationperformanceanalysis.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_program4ifi.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_setsystemresourcelimit.html

If your application intercepts abends, Db2 commits work, because it is unaware that an abend has
occurred. If you want Db2 to roll back work automatically when an abend occurs in your program, do
not let the program or run time environment intercept the abend. If your program uses Language
Environment®, and you want Db2 to roll back work automatically when an abend occurs in the
program, specify the run time options ABTERMENC(ABEND) and TRAP(ON).

4. For TSO applications only: Issue COMMIT statements before you connect to another DBMS.

If the system fails at this point, Db2 cannot know whether your transaction is complete. In this case,
as in the case of a failure during a one-phase commit operation for a single subsystem, you must make
your own provision for maintaining data integrity.

5. For TSO applications only: Determine if you want to provide an abend exit routine in your program.

If you provide this routine, it must use tracking indicators to determine if an abend occurs during
Db2 processing. If an abend does occur when Db2 has control, you must allow task termination to
complete. Db2 detects task termination and terminates the thread with the ABRT parameter. Do not
re-run the program.

Allowing task termination to complete is the only action that you can take for abends that are caused
by the CANCEL command or by DETACH. You cannot use additional SQL statements at this point. If
you attempt to execute another SQL statement from the application program or its recovery routine,
unexpected errors can occur.

Related concepts
Unit of work (Introduction to Db2 for z/OS)

Unit of work in TSO

Applications that use the TSO attachment facility can explicitly define units of work by using the SQL
COMMIT and ROLLBACK statements.

In TSO applications, a unit of work starts when the first updates of a Db2 object occur. A unit of work ends
when one of the following conditions occurs:

« The program issues a subsequent COMMIT statement. At this point in the processing, your program
has determined that the data is consistent; all data changes that were made since the previous commit
point were made correctly.

« The program issues a subsequent ROLLBACK statement. At this point in the processing, your program
has determined that the data changes were not made correctly and, therefore, should not be
permanent. A ROLLBACK statement causes any data changes that were made since the last commit
point to be backed out.

- The program terminates and returns to the DSN command processor, which returns to the TSO Terminal
Monitor Program (TMP).

The first and third conditions in the preceding list are called a commit point. A commit point occurs when
you issue a COMMIT statement or your program terminates normally.

Related reference

COMMIT (Db2 SQL)

ROLLBACK (Db2 SQL)

Unit of work in CICS

CICS applications can explicitly define units of work by using the CICS SYNCPOINT command.
Alternatively, units of work are defined implicitly by several logic-breaking points.

All the processing that occurs in your program between two commit points is known as a logical unit of
work (LUW) or unit of work. In CICS applications, a unit of work is marked as complete by a commit or
synchronization (sync) point, which is defined in one of following ways:

« Implicitly at the end of a transaction, which is signaled by a CICS RETURN command at the highest
logical level.

22 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_unitofwork.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_commit.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_rollback.html

« Explicitly by CICS SYNCPOINT commands that the program issues at logically appropriate points in the
transaction.

« Implicitly through a DL/I PSB termination (TERM) call or command.

« Implicitly when a batch DL/I program issues a DL/I checkpoint call. This call can occur when the batch
DL/I program shares a database with CICS applications through the database sharing facility.

For example, consider a program that subtracts the quantity of items sold from an inventory file and then
adds that quantity to a reorder file. When both transactions complete (and not before) and the data in the
two files is consistent, the program can then issue a DL/I TERM call or a SYNCPOINT command. If one of
the steps fails, you want the data to return to the value it had before the unit of work began. That is, you
want it rolled back to a previous point of consistency. You can achieve this state by using the SYNCPOINT
command with the ROLLBACK option.

By using a SYNCPOINT command with the ROLLBACK option, you can back out uncommitted data
changes. For example, a program that updates a set of related rows sometimes encounters an error after
updating several of them. The program can use the SYNCPOINT command with the ROLLBACK option to
undo all of the updates without giving up control.

The SQL COMMIT and ROLLBACK statements are not valid in a CICS environment. You can coordinate Db2
with CICS functions that are used in programs, so that Db2 and non-Db2 data are consistent.

Planning for program recovery in IMS programs

To be prepared for recovery situations for IMS programs that access Db2 data, you need to make
several design decisions that are specific to IMS programs. These decisions are in addition to the general
recommendations that you should follow when designing your application for recovery.

About this task

Both IMS and Db2 handle recovery in an IMS application program that accesses Db2 data. IMS
coordinates the process, and Db2 handles recovery for Db2 data.

Procedure

To plan for program recovery in IMS programs:

1. For a program that processes messages as its input, decide whether to specify single-mode or
multiple-mode transactions on the TRANSACT statement of the APPLCTN macro for the program.

Single-mode
Indicates that a commit point in Db2 occurs each time the program issues a call to retrieve a new
message. Specifying single-mode can simplify recovery; if the program abends, you can restart
the program from the most recent call for a new message. When IMS restarts the program, the
program starts by processing the next message.

Multiple-mode
Indicates that a commit point occurs when the program issues a checkpoint call or when it
terminates normally. Those two events are the only times during the program that IMS sends the
program's output messages to their destinations. Because fewer commit points are processed in
multiple-mode programs than in single-mode programs, multiple-mode programs could perform
slightly better than single-mode programs. When a multiple-mode program abends, IMS can
restart it only from a checkpoint call. Instead of having only the most recent message to reprocess,
a program might have several messages to reprocess. The number of messages to process
depends on when the program issued the last checkpoint call.

Db2 does some processing with single- and multiple-mode programs. When a multiple-mode program
issues a call to retrieve a new message, Db2 performs an authorization check and closes all open
cursors in the program.

2. Decide whether to issue checkpoint calls (CHKP) and if so, how often to issue them.

Each call indicates to IMS that the program has reached a sync point and establishes a place in the
program from which you can restart the program.

Chapter 1. Planning for and designing Db2 applications 23

Consider the following factors when deciding when to use checkpoint calls:

- How long it takes to back out and recover that unit of work. The program must issue checkpoints
frequently enough to make the program easy to back out and recover.

« How long database resources are locked in Db2 and IMS.

« For multiple-mode programs: How you want the output messages grouped. Checkpoint calls
establish how a multiple-mode program groups its output messages. Programs must issue
checkpoints frequently enough to avoid building up too many output messages.

Restriction: You cannot use SQL COMMIT and ROLLBACK statements in the Db2 DL/I batch support
environment, because IMS coordinates the unit of work.

3. Issue CLOSE CURSOR statements before any checkpoint calls or GU calls to the message queue, not
after.

4. After any checkpoint calls, set the value of any special registers that were reset if their values are
needed after the checkpoint:

A CHKP call causes IMS to sign on to Db2 again, which resets the special registers that are shown in
the following table.

Table 1. Special registers that are reset by a checkpoint call.

Special register Value to which it is reset after a checkpoint call
CURRENT PACKAGESET blanks

CURRENT SERVER blanks

CURRENT SQLID blanks

CURRENT DEGREE 1

5. After any commit points, reopen the cursors that you want and re-establish positioning
6. Decide whether to specify the WITH HOLD option for any cursors.

This option determines whether the program retains the position of the cursor in the Db2 database
after you issue IMS CHKP calls. You always lose the program database positioning in DL/I after an IMS
CHKP call.

The program database positioning in Db2 is affected according to the following criteria:

« If you do not specify the WITH HOLD option for a cursor, you lose the position of that cursor.

« If you specify the WITH HOLD option for a cursor and the application is message-driven, you lose the
position of that cursor.

« If you specify the WITH HOLD option for a cursor and the application is operating in DL/I batch or
DL/I BMP, you retain the position of that cursor.

7. Use IMS rollback calls, ROLL and ROLB, to back out Db2 and DL/I changes to the last commit point.
These options have the following differences:

ROLL
Specifies that all changes since the last commit point are to be backed out and the program is to
be terminated. IMS terminates the program with user abend code U0778 and without a storage
dump.

When you issue a ROLL call, the only option you supply is the call function, ROLL.

ROLLB
Specifies that all changes since the last commit point are to be backed out and control is to be
returned to the program so that it can continue processing.

A ROLB call has the following options:

» The call function, ROLB
« The name of the I/O PCB

24 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

How ROLL and ROLB calls effect DL/I changes in a batch environment depends on the IMS system log

and back out options that are specified, as shown in the following table.

Table 2. Effects of ROLL and ROLLB calls on DL/I changes in a batch environment

Options specified

Rollback call System log option

Backout option

Result

ROLL tape

any

disk

BKO=NO

DL/I does not back

out updates, and abend
U0778 occurs. Db2
backs out updates

to the previous
checkpoint.

disk

BKO=YES

DL/I backs out updates,
and abend U0778
occurs. Db2 backs out
updates to the previous
checkpoint.

ROLB tape

any

disk

BKO=NO

DL/I does not back out
updates, and an AL
status code is returned
in the PCB. Db2 backs
out updates to the
previous checkpoint.
The Db2 DL/I support
causes the application
program to abend when
ROLB fails.

disk

BKO=YES

DL/I backs out
database updates, and
control is passed back
to the application
program. Db2 backs out
updates to the previous
checkpoint.

Restriction: You cannot
specify the address of
an I/O area as one

of the options on the
call; if you do, your
program receives an AD
status code. However,
you must have an I/O
PCB for your program.
Specify CMPAT=YES on
the CMPAT keyword in
the PSBGEN statement
for your program's PSB.

Related concepts
Checkpoints in IMS programs

Chapter 1. Planning for and designing Db2 applications 25

Issuing checkpoint calls releases locked resources and establishes a place in the program from which you
can restart the program. The decision about whether your program should issue checkpoints (and if so,
how often) depends on your program.

Unit of work in IMS online programs

IMS applications can explicitly define units of work by using a CHKP, SYNC, ROLL, or ROLB call, or, for
single-mode transactions, a GU call.

In IMS, a unit of work starts when one of the following events occurs:

« When the program starts
« After a CHKP, SYNC, ROLL, or ROLB call has completed
« For single-mode transactions, when a GU call is issued to the I/O PCB

A unit of work ends when one of the following events occurs:

« The program issues either a subsequent CHKP or SYNC call, or, for single-mode transactions, a GU call
to the I/O PCB. At this point in the processing, the data is consistent. All data changes that were made
since the previous commit point are made correctly.

« The program issues a subsequent ROLB or ROLL call. At this point in the processing, your program
has determined that the data changes are not correct and, therefore, that the data changes should not
become permanent.

« The program terminates.
Restriction: The SQL COMMIT and ROLLBACK statements are not valid in an IMS environment.
A commit point occurs in a program as the result of any one of the following events:

- The program terminates normally. Normal program termination is always a commit point.

« The program issues a checkpoint call. Checkpoint calls are a program's means of explicitly indicating to
IMS that it has reached a commit point in its processing.

« The program issues a SYNC call. A SYNC call is a Fast Path system service call to request commit-point
processing. You can use a SYNC call only in a non-message-driven Fast Path program.

« For a program that processes messages as its input, a commit point can occur when the program
retrieves a new message. This behavior depends on the mode that you specify in the APPLCTN macro
for the program:

— If you specify single-mode transactions, a commit point in Db2 occurs each time the program issues
a call to retrieve a new message.

— If you specify multiple-mode transactions or you do not specify a mode, a commit point occurs when
the program issues a checkpoint call or when it terminates normally.

At the time of a commit point, the following actions occur:

- IMS and Db2 can release locks that the program has held since the last commit point. Releasing these
locks makes the data available to other application programs and users.

« Db2 closes any open cursors that the program has been using.
« IMS and Db2 make the program's changes to the database permanent.

- If the program processes messages, IMS sends the output messages that the application program
produces to their final destinations. Until the program reaches a commit point, IMS holds the program's
output messages at a temporary destination.

If the program abends before reaching the commit point, the following actions occur:

« Both IMS and Db2 back out all the changes the program has made to the database since the last
commit point.

« IMS deletes any output messages that the program has produced since the last commit point (for
nonexpress PCBs).

26 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

- If the program processes messages, people at terminals and other application programs receive
information from the terminating application program.

If the system fails, a unit of work resolves automatically when Db2 and IMS batch programs reconnect.
Any indoubt units of work are resolved at reconnect time.

Specifying checkpoint frequency in IMS programs

A checkpoint indicates a commit point in IMS programs. You should specify checkpoint frequency in your
program in a way that allows it to easily be changed, in case the frequency that you initially specify is not
appropriate.

Procedure

To specify checkpoint frequency in IMS programs:

1. Use a counter in your program to keep track of one of the following items:
« Elapsed time
« The number of root segments that your program accesses

e The number of updates that your program performs
2. Issue a checkpoint call after a certain time interval, number of root segments, or number of updates.

Checkpoints in IMS programs

Issuing checkpoint calls releases locked resources and establishes a place in the program from which you
can restart the program. The decision about whether your program should issue checkpoints (and if so,
how often) depends on your program.

Generally, the following types of programs should issue checkpoint calls:

« Multiple-mode programs
« Batch-oriented BMPs

« Nonmessage-driven Fast Path programs. (These programs can use a special Fast Path call, but they can
also use symbolic checkpoint calls.)

« Most batch programs

« Programs that run in a data sharing environment. (Data sharing makes it possible for online and batch
application programs in separate IMS systems, in the same or separate processors, to access databases
concurrently. Issuing checkpoint calls frequently in programs that run in a data sharing environment is
important, because programs in several IMS systems access the database.)

You do not need to issue checkpoints in the following types of programs:

Single-mode programs

Database load programs

Programs that access the database in read-only mode (defined with the processing option GO during a
PSBGEN) and are short enough to restart from the beginning

- Programs that, by their nature, must have exclusive use of the database
A CHKP call causes IMS to perform the following actions:

« Inform Db2 that the changes that your program made to the database can become permanent. Db2
makes the changes to Db2 data permanent, and IMS makes the changes to IMS data permanent.

- Send a message that contains the checkpoint identification that is given in the call to the system
console operator and to the IMS master terminal operator (MTO).

« Return the next input message to the program's I/O area if the program processes input messages. In
MPPs and transaction-oriented BMPs, a checkpoint call acts like a call for a new message.

« Sign on to Db2 again.

Chapter 1. Planning for and designing Db2 applications 27

Programs that issue symbolic checkpoint calls can specify as many as seven data areas in the program
that is to be restored at restart. Db2 always recovers to the last checkpoint. You must restart the program
from that point.

If you use symbolic checkpoint calls, you can use a restart call (XRST) to restart a program after an
abend. This call restores the program's data areas to the way they were when the program terminated
abnormally, and it restarts the program from the last checkpoint call that the program issued before
terminating abnormally.

Restriction: For BMP programs that process Db2 databases, you can restart the program only from the
latest checkpoint and not from any checkpoint, as in IMS.

Checkpoints in MPPs and transaction-oriented BMPs

In single-mode programs, checkpoint calls and message retrieval calls (called get-unique calls) both
establish commit points. The checkpoint calls retrieve input messages and take the place of get-unique
calls. BMPs that access non-DL/I databases and MPPs can issue both get unique calls and checkpoint
calls to establish commit points. However, message-driven BMPs must issue checkpoint calls rather than
get-unique calls to establish commit points, because they can restart from a checkpoint only. If a program
abends after issuing a get-unique call, IMS backs out the database updates to the most recent commit
point, which is the get-unique call.

In multiple-mode BMPs and MPPs, the only commit points are the checkpoint calls that the program
issues and normal program termination. If the program abends and it has not issued checkpoint calls,
IMS backs out the program's database updates and cancels the messages that it has created since
the beginning of the program. If the program has issued checkpoint calls, IMS backs out the program's
changes and cancels the output messages it has created since the most recent checkpoint call.

Checkpoints in batch-oriented BMPs

If a batch-oriented BMP does not issue checkpoints frequently enough, IMS can abend that BMP or
another application program for one of the following reasons:

« Other programs cannot get to the data that they need within a specified amount of time.

If a BMP retrieves and updates many database records between checkpoint calls, it can monopolize
large portions of the databases and cause long waits for other programs that need those segments. (The
exception to this situation is a BMP with a processing option of GO; IMS does not enqueue segments for
programs with this processing option.) Issuing checkpoint calls releases the segments that the BMP has
enqueued and makes them available to other programs.

« Not enough storage is available for the segments that the program has read and updated.

If IMS is using program isolation enqueuing, the space that is needed to enqueue information about
the segments that the program has read and updated must not exceed the amount of storage that

is defined for the IMS system. (The amount of storage available is specified during IMS system
definition.) If a BMP enqueues too many segments, the amount of storage that is needed for the
enqueued segments can exceed the amount of available storage. In that case, IMS terminates the
program abnormally. You then need to increase the program's checkpoint frequency before rerunning
the program.

When you issue a DL/I CHKP call from an application program that uses Db2 databases, IMS processes
the CHKP call for all DL/I databases, and Db2 commits all the Db2 database resources. No checkpoint
information is recorded for Db2 databases in the IMS log or the Db2 log. The application program must
record relevant information about Db2 databases for a checkpoint, if necessary. One way to record such
information is to put it in a data area that is included in the DL/I CHKP call.

Performance might be slowed by the commit processing that Db2 does during a DL/I CHKP call, because
the program needs to re-establish position within a Db2 database. The fastest way to re-establish a
position in a Db2 database is to use an index on the target table, with a key that matches one-to-one with
every column in the SQL predicate.

28 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Recovering data in IMS programs

Online IMS systems handle recovery and restart. For a batch region, the operational procedures control
recovery and restart for your location.

Procedure
Take one or more of the following actions depending on the type of program:
Program type Recommended action
DL/I batch applications Use the DL/I batch backout utility to back out DL/I changes. Db2
automatically backs out changes whenever the application program
abends.
Applications that use Use a restart call (XRST) to restart a program after an abend. This
symbolic checkpoints call restores the program's data areas to the way they were when the

program terminated abnormally, and it restarts the program from the last
checkpoint call that the program issued before terminating abnormally.

BMP programs that access | Restart the program from the latest checkpoint.

Db2 databases Restriction: You can restart the program only from the latest checkpoint

and not from any checkpoint, as in IMS.

Applications that use online | No action needed. Recovery and restart are part of the IMS system
IMS systems

Applications that reside in | Follow your location's operational procedures to control recovery and
the batch region restart.

Undoing selected changes within a unit of work by using savepoints

Savepoints enable you to undo selected changes within a unit of work. Your application can set any
number of savepoints and then specify a specific savepoint to indicate which changes to undo within the
unit of work.

Procedure

To undo selected changes within a unit of work by using savepoints:
1. Set any savepoints by using SQL SAVEPOINT statements.
Savepoints set a point to which you can undo changes within a unit of work.

Consider the following abilities and restrictions when setting savepoints:

« You can set a savepoint with the same name multiple times within a unit of work. Each time that you
set the savepoint, the new value of the savepoint replaces the old value.

- If you do not want a savepoint to have different values within a unit of work, use the UNIQUE option
in the SAVEPOINT statement. If an application executes a SAVEPOINT statement with the same
name as a savepoint that was previously defined as unique, an SQL error occurs.

« If you set a savepoint before you execute a CONNECT statement, the scope of that savepoint is
the local site. If you set a savepoint after you execute the CONNECT statement, the scope of that
savepoint is the site to which you are connected.

« When savepoints are active, which they are until the unit of work completes, you cannot access
remote sites by using three-part names or aliases for three-part names. You can, however, use DRDA
access with explicit CONNECT statements.

« You cannot use savepoints in global transactions, triggers, user-defined functions, or stored
procedures that are nested within triggers or user-defined functions.

2. Specify the changes that you want to undo within a unit of work by using the SQL ROLLBACK TO
SAVEPOINT statement.

Chapter 1. Planning for and designing Db2 applications 29

Db2 undoes all changes since the specified savepoint. If you do not specify a savepoint name, Db2
rolls back work to the most recently created savepoint.

3. Optional: If you no longer need a savepoint, delete it by using the SQL RELEASE SAVEPOINT
statement.

Recommendation: If you no longer need a savepoint before the end of a transaction, release it.
Otherwise, savepoints are automatically released at the end of a unit of work. Releasing savepoints is
essential if you need to use three-part names to access remote locations, because you cannot perform
this action while savepoints are active.

Examples

Example: Rolling back to the most recently created savepoint
When the ROLLBACK TO SAVEPOINT statement is executed in the following code, Db2 rolls back work

to savepoint B.

EXEC SQL SAVEPOINT A;
EXEC SQL SAVEPOINT B;
EXEC SOL ROLLBACK TO SAVEPOINT;

Example: Setting savepoints during distributed processing
An application performs the following tasks:

1. Sets savepoint C1.

2. Does some local processing.

3. Executes a CONNECT statement to connect to a remote site.
4. Sets savepoint C2.

Because savepoint C1 is set before the application connects to a remote site, savepoint C1 is known
only at the local site. However, because savepoint C2 is set after the application connects to the
remote site, savepoint C2 is known only at the remote site.

Setting multiple savepoints with the same name
Suppose that the following actions occur within a unit of work:
1. Application A sets savepoint S.
2. Application A calls stored procedure P.
3. Stored procedure P sets savepoint S.
4. Stored procedure P executes the following statement: ROLLBACK TO SAVEPOINT S

When Db2 executes the ROLLBACK statement, Db2 rolls back work to the savepoint that was set in
the stored procedure, because that value is the most recent value of savepoint S.

Related reference

RELEASE SAVEPOINT (Db2 SQL)
ROLLBACK (Db2 SQL)
SAVEPOINT (Db2 SQL)

Planning for recovery of table spaces that are not logged

To suppress logging, you can specify the NOT LOGGED option when you create or alter a table space.
However, because logs are generally used in recovery, planning for recovery of table spaces for which
changes are not logged requires some additional planning.

About this task

Although you can plan for recovery, you still need to take some corrective actions after any system
failures to recover the data and fix any affected table spaces. For example, if a table space that is not
logged was open for update at the time that Db2 terminates, the subsequent restart places that table

30 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_releasesavepoint.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_rollback.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_savepoint.html

space in LPL and marks it with RECOVER-pending status. You need to take corrective action to clear the
RECOVER-pending status.

Procedure

To plan for recovery of table spaces that are not logged:
1. Ensure that you can recover lost data by performing one of the following actions:
« Ensure that you have a data recovery source that does not rely on a log record to re-create any lost
data.
« Limit modifications that are not logged to easily repeatable changes that can be quickly repeated.
2. Avoid placing a table space that is not logged in a RECOVER-pending status.
The following actions place a table space in RECOVER-pending status:
« Issuing a ROLLBACK statement or ROLLBACK TO SAVEPOINT statement after modifying a table in a
table space that is not logged.
« Causing duplicate keys or referential integrity violations when you modify a table space that is not
logged.
If the table space is placed in RECOVER-pending status, it is unavailable until you manually fix it.
3. For table spaces that are not logged and have associated LOB or XML table spaces, take image copies
as a recovery set.

This action ensures that the base table space and all the associated LOB or XML table spaces are
copied at the same point in time. A subsequent RECOVER TO LASTCOPY operation for the entire set
results in consistent data across the base table space and all of the associated LOB and XML table
spaces.

Related tasks

Clearing the RECOVER-pending status (Db2 Administration Guide)
Related reference

RECOVER (Db2 Utilities)

Designing your application to access distributed data

You can design applications that access data on another database management system (DBMS) other
than your local system. You should consider the limitations and recommendations for such programs
when designing them.

Procedure

To design your application to access distributed data:

1. Ensure that the appropriate authorization ID has been granted authorization at the remote server to
connect to that server and use resources from it.

2. If your application contains SQL statements that run at the requester, include at the requester a
database request module (DBRM) that is bound directly into a package that is included in the plan's
package list.

3. Copy the requester package to any remote server that is accessed by the application via a bind
package copy command and include the remote packages in the application plan's package list.

Recommendation: Specify an asterisk (*) instead of a specific name in the location name of any
package entry of a plan so that the plan does not have to be rebound whenever a new location is
accessed by the application or a different location is to be accessed.

4. For TSO and batch applications that update data at a remote server, ensure that one of the following
conditions is true:

« No other connections exist.

Chapter 1. Planning for and designing Db2 applications 31

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_restorerecoverpending.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_recover.html

- All existing connections are to servers that are restricted to read-only operations.

Restriction: If neither of these conditions are met, the application is restricted to read-only
operations.

If one of these conditions is met, and if the first connection in a logical unit of work is to a server that
supports two-phase commit, that server and all servers that support two-phase commit can update
data. However, if the first connection is to a server that does not support two-phase commit, only that
server is allowed to update data.

5. For programs that access at least one restricted system, ensure that your program does not violate any
of the limitations for accessing restricted systems.

A restricted system is a DBMS that does not implement two-phase commit processing.
Accessing restricted systems has the following limitations:

 For programs that access CICS or IMS, you cannot update data on restricted systems.

« Within a unit of work, you cannot update a restricted system after updating a non-restricted system.
« Within a unit of work, if you update a restricted system, you cannot update any other systems.

If you are accessing a mixture of systems, some of which might be restricted, you can perform the
following actions:

« Read from any of the systems at any time.

« Update any one system many times in one unit of work.

« Update many systems, including CICS or IMS, in one unit of work, provided that none of themis a

restricted system. If the first system you update in a unit of work is not restricted, any attempt to
update a restricted system in that unit of work returns an error.

- Update one restricted system in a unit of work, provided that you do not try to update any other
system in the same unit of work. If the first system you update in a unit of work is restricted, any
attempt to update any other system in that unit of work returns an error.

Related concepts

Phase 6: Accessing data at a remote site (Db2 Installation and Migration)

Related tasks

Improving performance for applications that access distributed data (Db2 Performance)

Remote servers and distributed data

Distributed data is data that resides on a database management system (DBMS) other than your local
system. Your local DBMS is the one on which you bind your application plan. All other DBMSs are remote.

If you are requesting services from a remote DBMS, that DBMS is a server, and your local system is a
requester or client.

Your application can be connected to many DBMSs at one time; the one that is currently performing work
is the current server. When the local system is performing work, it also is called the current server.

A remote server can be physically remote, or it can be another subsystem of the same operating system
that your local DBMS runs under. A remote server might be an instance of Db2 for z/OS, or it might be an
instance of one of another product.

A DBMS, whether local or remote, is known to your Db2 system by its location name. The location name of
a remote DBMS is recorded in the communications database.

Related tasks
Choosing names for the local subsystem (Db2 Installation and Migration)

32 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntej6x.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tunedistributedapps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_choosevtamnamessubsys.html

Preparing for coordinated updates to two or more data sources

Two or more updates are coordinated if they must all commit or all roll back in the same unit of work.

About this task

This situation is common in banking. Suppose that an amount is subtracted from one account and added
to another. The two actions must either both commit or both roll back at the end of the unit of work.

Procedure

Ensure that all systems that your program accesses implement two-phase commit processing. This
processing ensures that updates to two or more DBMSs are coordinated automatically.

For example, Db2 and IMS, and Db2 and CICS, jointly implement a two-phase commit process. You can
update an IMS database and a Db2 table in the same unit of work. If a system or communication failure
occurs between committing the work on IMS and on Db2, the two programs restore the two systems to a
consistent point when activity resumes.

You cannot do true coordinated updates within a DBMS that does not implement two-phase commit
processing, because Db2 prevents you from updating such a DBMS and any other system within the same
unit of work. In this context, update includes the statements INSERT, UPDATE, MERGE, DELETE, CREATE,
ALTER, DROP, GRANT, REVOKE, RENAME, COMMENT, and LABEL.

However, if you cannot implement two-phase commit processing on all systems that your program
accesses, you can simulate the effect of coordinated updates by performing the following actions:

a. Update one system and commit that work.
b. Update the second system and commit its work.

c. Ensure that your program has code to undo the first update if a failure occurs after the first update is
committed and before the second update is committed. No automatic provision exists for bringing the
two systems back to a consistent point.

Related concepts
Two-phase commit process (Db2 Administration Guide)

Forcing restricted system rules in your program

A restricted system is a DBMS that does not implement two-phase commit processing. These systems
have a number of update restrictions. You can restrict your program completely to the rules for these
restricted systems, regardless of whether the program is accessing restricted systems or non-restricted
systems.

About this task

Accessing restricted systems has the following limitations:

« For programs that access CICS or IMS, you cannot update data on restricted systems.
« Within a unit of work, you cannot update a restricted system after updating a non-restricted system.
« Within a unit of work, if you update a restricted system, you cannot update any other systems.

Procedure

When you prepare your program, specify the SQL processing option CONNECT(1).
This option applies type 1 CONNECT statement rules.

Restriction: Do not use packages that are precompiled with the CONNECT(1) option and packages that
are precompiled with the CONNECT(2) option in the same package list. The first CONNECT statement that
is executed by your program determines which rules are in effect for the entire execution: type 1 or type

Chapter 1. Planning for and designing Db2 applications 33

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_twophasecommit.html

2. If your program attempts to execute a later CONNECT statement that is precompiled with the other
type, Db2 returns an error.

Related concepts

Options for SQL statement processing

Use SQL processing options to specify how the Db2 precompiler and the Db2 coprocessor interpret and
process input, and how they present output.

34 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Chapter 2. Connecting to Db2 from your application
program

Application programs communicate with Db2 through an attachment facility. You must invoke an
attachment facility, either implicitly or explicitly, before your program can interact with Db2.

About this task
You can use the following attachment facilities in a z/OS environment:

CICS attachment facility
Use this facility to access Db2 from CICS application programs.

IMS attachment facility
Use this facility to access Db2 from IMS application programs.

Time Sharing Option (TSO) attachment facility
Use this facility in a TSO or batch environment to communicate to a local Db2 subsystem. This facility
invokes the DSN command processor.

Call attachment facility (CAF)
Use this facility as an alternative to the TSO attachment facility when your application needs tight
control over the session environment.

Resource Recovery Services attachment facility (RRSAF)
Use this facility for stored procedures that run in a WLM-established address space or as an

alternative to the CAF. RRSAF provides support for z/OS RRS as the recovery coordinator and supports
other capabilities not present in CAF

For distributed applications, use the distributed data facility (DDF).

Requirement: Ensure that any application that requests Db2 services satisfies the following environment
characteristics, regardless of the attachment facility that you use:

« The application must be running in TCB mode. SRB mode is not supported.

« An application task cannot have any Enabled Unlocked Task (EUT) functional recovery routines (FRRs)
active when requesting Db2 services. If an EUT FRR is active, the Db2 functional recovery can fail, and
your application can receive some unpredictable abends.

« Different attachment facilities cannot be active concurrently within the same address space.
Specifically, the following requirements exist:

— An application must not use CAF or RRSAF in an CICS or IMS address space.

— An application that runs in an address space that has a CAF connection to Db2 cannot connect to Db2
by using RRSAF.

— An application that runs in an address space that has an RRSAF connection to Db2 cannot connect to
Db2 by using CAF.

— An application cannot invoke the z/OS AXSET macro after executing the CAF CONNECT call and
before executing the CAF DISCONNECT call.

« One attachment facility cannot start another. For example, your CAF or RRSAF application cannot use
DSN, and a DSN RUN subcommand cannot call your CAF or RRSAF application.

- The language interface modules for CAF and RRSAF, DSNALI and DSNRLI, are shipped with the linkage
attributes AMODE(31) and RMODE(ANY). If your applications load CAF or RRSAF below the 16-MB line,
you must link-edit DSNALI or DSNRLI again.

Related concepts
Db2 attachment facilities (Introduction to Db2 for z/OS)
Distributed data facility (Introduction to Db2 for z/OS)

© Copyright IBM Corp. 1983, 2022 35

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_db2attachmentfacilities.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_distributeddatafacility.html

Invoking the call attachment facility

Invoke the call attachment facility (CAF) when you want your application program to establish and control
its own connection to Db2. Applications that use CAF can explicitly control the state of their connections
to Db2 by using connection functions that CAF supplies.

Before you begin
Before you can invoke CAF, perform the following actions:

 Ensure that the CAF language interface (DSNALI) is available.

« Ensure that your application satisfies the requirements for programs that access CAF.

« Ensure that your application satisfies the general environment characteristics for connecting to Db2.
« Ensure that you are familiar with the following z/OS concepts and facilities:

The CALL macro and standard module linkage conventions
Program addressing and residency options (AMODE and RMODE)

Creating and controlling tasks; multitasking

Functional recovery facilities such as ESTAE, ESTAI, and FRRs

Asynchronous events and TSO attention exits (STAX)

Synchronization techniques such as WAIT/POST.

About this task

Applications that use CAF can be written in assembler language, C, COBOL, Fortran, and PL/I. When
choosing a language to code your application in, consider the following restrictions:

« If you need to use z/OS macros (ATTACH, WAIT, POST, and so on), use a programming language that
supports them or embed them in modules that are written in assembler language.

« The CAF TRANSLATE function is not available in Fortran. To use this function, code it in a routine that is
written in another language, and then call that routine from Fortran.

Recommendations: For IMS and DSN applications, consider the following recommendations:

 For IMS batch applications, do not use CAF. Instead use the Db2 DL/I batch support. Although it
is possible for IMS batch applications to access Db2 databases through CAF, that method does not
coordinate the commitment of work between the IMS and Db2 systems.

« For DSN applications, do not use CAF unless you provide an application controller to manage the DSN
application and replace any needed DSN functions. You might also have to change the application to
communicate connection failures to the controller correctly. Running DSN applications with CAF is not
advantageous, and the loss of DSN services can affect how well your program runs.

Procedure
Perform one of the following actions:

 Explicitly invoke CAF by including in your program CALL DSNALI statements with the appropriate
options.

The first option is a CAF connection function, which describes the action that you want CAF to take. The
effect of any function depends in part on what functions the program has already run.

Requirement: For C and PL/I applications, you must also include in your program the compiler
directives that are listed in the following table, because DSNALI is an assembler language program.

36 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Table 3. Compiler directives to include in C and PL/I applications that contain CALL DSNALI statements

Language Compiler directive to include
C #pragma linkage(dsnali, 0S)
C++ extern "0S" §

int DSNALI(
char = functn,

200)5 §

PL/I DCL DSNALI ENTRY OPTIONS(ASM,INTER,RETCODE;

« Implicitly invoke CAF by including SQL statements or IFI calls in your program just as you would in any
program. The CAF facility establishes the connections to Db2 with the default values for the subsystem
name and plan name.

Restriction: If your program can make its first SQL call from different modules with different DBRMs,
you cannot use a default plan name and thus, you cannot implicitly invoke CAF. Instead, you must
explicitly invoke CAF by using the OPEN function.

Requirement: If your application includes both SQL and IFI calls, you must issue at least one SQL call
before you issue any IFI calls. This action ensures that your application uses the correct plan.

Although doing so is not recommended, you can run existing DSN applications with CAF by allowing
them to make implicit connections to Db2. For Db2 to make an implicit connection successfully, the
plan name for the application must be the same as the member name of the database request module
(DBRM) that Db2 produced when you precompiled the source program that contains the first SQL call.
You must also substitute the DSNALI language interface module for the TSO language interface module,
DSNELI.

If you do not specify the return code and reason code parameters in your CAF calls or you invoked CAF
implicitly, CAF puts a return code in register 15 and a reason code in register O.

To determine if an implicit connection was successful, the application program should examine the return
and reason codes immediately after the first executable SQL statement in the application program by
performing one of the following actions:

« Examining registers 0 and 15 directly.

« Examining the SQLCA, and if the SQLCODE is -991, obtain the return and reason code from the message
text. The return code is the first token, and the reason code is the second token.

If the implicit connection was successful, the application can examine the SQLCODE for the first, and
subsequent, SQL statements.

Examples

Example of a CAF configuration
The following figure shows an conceptual example of invoking and using CAF. The application contains
statements to load DSNALI, DSNHLI2, and DSNWLI2. The application accesses Db2 by using the CAF
Language Interface. It calls DSNALI to handle CAF requests, DSNWLI to handle IFI calls, and DSNHLI
to handle SQL calls.

Chapter 2. Connecting to Db2 from your application program 37

Application Load CAF CAF
LOAD DSNALI Language Mainline

LOAD DSNHLI2 Interface Code
LOAD DSNWLI2

O
L

CALL DSNALI
(CONNECT)
(OPEN)
(CLOSE)
(DISCONNECT)

DSNALI

YY VY

CALL DSNWLI —
(IFI calls) (Process

CALL DSNHLI — connection
(SQL calls) requests)

DSNHLI (dummy Db2
application
entry point)

CALL DSNHLI2 DSNHLI2 >
(Transfer calls (Process

to real CAF SQL SQL stmts)
entry point)

DSNWLI (dummy
application
entry point)

—» CALL DSNWLI2 DSNWLI >
(Transfer calls
to real CAF
IFI)

Sample programs that use CAF
You can find a sample assembler program (DSN8CA) and a sample COBOL program (DSN8CC) that
use the CAF in library prefix. SDSNSAMP. A PL/T application (DSN8SPM) calls DSN8CA, and a COBOL
application (DSN8SCM) calls DSN8CC.

Related concepts

Sample applications supplied with Db2 for z/OS

Db2 provides sample applications to help you with Db2 programming techniques and coding practices
within each of the four environments: batch, TSO, IMS, and CICS. The sample applications contain various
applications that might apply to managing a company.

Related reference

CAF connection functions
A CAF connection function specifies the action that you want CAF to take. You specify these functions
when you invoke CAF through CALL DSNALI statements.

Call attachment facility

An attachment facility enables programs to communicate with Db2. The call attachment facility (CAF)
provides such a connection for programs that run in z/OS batch, TSO foreground, and TSO background.
The CAF needs tight control over the session environment.

A program that uses CAF can perform the following actions:

« Access Db2 from z/0OS address spaces where TSO, IMS, or CICS do not exist.
» Access Db2 from multiple z/OS tasks in an address space.

« Access the Db2 IFI.

e Run when Db2 is down.

Restriction: The application cannot run SQL when Db2 is down.

38 Db2 12 for z/0OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

« Run with or without the TSO terminal monitor program (TMP).
« Run without being a subtask of the DSN command processor or of any Db2 code.
« Run above or below the 16-MB line. (The CAF code resides below the line.)

- Establish an explicit connection to Db2, through a CALL interface, with control over the exact state of
the connection.

- Establish an implicit connection to Db2, by using SQL statements or IFI calls without first calling CAF,
with a default plan name and subsystem identifier.

« Verify that the application is using the correct release of Db2.
« Supply event control blocks (ECBs), for Db2 to post, that signal startup or termination.
- Intercept return codes, reason codes, and abend codes from Db2 and translate them into messages.

Any task in an address space can establish a connection to Db2 through CAF. Only one connection

can exist for each task control block (TCB). A Db2 service request that is issued by a program that is
running under a given task is associated with that task's connection to Db2. The service request operates
independently of any Db2 activity under any other task.

Each connected task can run a plan. Multiple tasks in a single address space can specify the same plan,
but each instance of a plan runs independently from the others. A task can terminate its plan and run a
different plan without fully breaking its connection to Db2.

CAF does not generate task structures.

When you design your application, consider that using multiple simultaneous connections can increase
the possibility of deadlocks and Db2 resource contention.

A tracing facility provides diagnostic messages that aid in debugging programs and diagnosing errors in
the CAF code. In particular, attempts to use CAF incorrectly cause error messages in the trace stream.

Restriction: CAF does not provide attention processing exits or functional recovery routines. You can
provide whatever attention handling and functional recovery your application needs, but you must use
ESTAE/ESTAI type recovery routines and not Enabled Unlocked Task (EUT) FRR routines.

Properties of CAF connections
Call attachment facility (CAF) enables programs to communicate with Db2.

The connection that CAF makes with Db2 has the basic properties that are listed in the following table.

Table 4. Properties of CAF connections

Property Value Comments

Connection name DB2CALL You can use the DISPLAY
THREAD command to list CAF
applications that have the
connection name DB2CALL.

Connection type BATCH BATCH connections use a single
phase commit process that is
coordinated by Db2. Application
programs can also control when
statements are committed by
using the SQL COMMIT and
ROLLBACK statements.

Chapter 2. Connecting to Db2 from your application program 39

Table 4. Properties of CAF connections (continued)

Property Value Comments

Authorization IDs Authorization IDs that are Db2 establishes authorization IDs
associated with the address for each task's connection when
space it processes that connection. For

the BATCH connection type, Db2
creates a list of authorization
IDs based on the authorization
ID that is associated with the
address space. This list is the
same for every task. A location
can provide a Db2 connection
authorization exit routine to
change the list of IDs.

Scope CAF processes connections as none
if each task is entirely isolated.
When a task requests a function,
the CAF passes the functions
to Db2 and is unaware of the
connection status of other tasks
in the address space. However,
the application program and the
Db2 subsystem are aware of
the connection status of multiple
tasks in an address space.

If a connected task terminates normally before the CLOSE function deallocates the plan, Db2 commits
any database changes that the thread made since the last commit point. If a connected task abends
before the CLOSE function deallocates the plan, Db2 rolls back any database changes since the last
commit point. In either case, Db2 deallocates the plan, if necessary, and terminates the task's connection
before it allows the task to terminate.

If Db2 abnormally terminates while an application is running, the application is rolled back to the last
commit point. If Db2 terminates while processing a commit request, Db2 either commits or rolls back
any changes at the next restart. The action taken depends on the state of the commit request when Db2
terminates.

Related concepts
Connection routines and sign-on routines (Managing Security)

Attention exit routines for CAF

An attention exit routine enables you to regain control from Db2 during long-running or erroneous
requests. Call attachment facility (CAF) has no attention exit routines, but you can provide your own if
necessary.

An attention exit routine works by detaching the TCB that is currently waiting on an SQL or IFI request
to complete. After the TCB is detached, Db2 detects the resulting abend and performs termination
processing for that task. The termination processing includes any necessary rollback of transactions.

You can provide your own attention exit routines. However, your routine might not get control if you
request attention while Db2 code is running, because Db2 uses enabled unlocked task (EUT) functional
recovery routines (FRRs).

40 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_connectionsignonroutine.html

Recovery routines for CAF

You can use abend recovery routines and functional recovery routines (FRRs) to handle unexpected
errors. An abend recovery routine controls what happens when an abend occurs while Db2 has control. A
functional recovery routine can obtain information about and recover from program errors.

The CAF has no abend recovery routines, but you can provide your own. Any abend recovery routines that
you provide must use tracking indicators to determine if an abend occurred during Db2 processing. If an
abend occurs while Db2 has control, the recovery routine can take one of the following actions:

« Allow task termination to complete. Do not try the program again. Db2 detects task termination and
terminates the thread with the ABRT parameter. You lose all database changes back to the last sync
point or commit point.

This action is the only action that you can take for abends that are caused by the CANCEL command

or by DETACH. You cannot use additional SQL statements. If you attempt to execute another SQL
statement from the application program or its recovery routine, you receive a return code of +256 and a
reason code of X'00F30083".

« Inan ESTAE routine, issue a CLOSE function call with the ABRT parameter followed by a DISCONNECT
function call. The ESTAE exit routine can try again so that you do not need to reinstate the application
task.

FRRs must comply with the following requirements and restrictions:

« You can use only enabled unlocked task (EUT) FRRs in your routines that call Db2. The standard z/0S
functional recovery routines (FRRs) apply to only code that runs in service request block (SRB) mode,
and Db2 does not support calls from SRB mode routines.

« Do not have an EUT FRR active when using CAF, processing SQL requests, or calling IFI. With z/OS, if
you have an active EUT FRR, all Db2 requests fail, including the initial CONNECT or OPEN request. The
requests fail because Db2 always creates an ARR-type ESTAE, and z/OS does not allow the creation of
ARR-type ESTAEs when an FRR is active.

« An EUT FRR cannot retry failing Db2 requests. An EUT FRR retry bypasses ESTAE routines from Db2.
The next Db2 request of any type, including a DISCONNECT request, fails with a return code of +256
and a reason code of X'00F30050".

Making the CAF language interface (DSNALI) available

Before you can invoke the call attachment facility (CAF), you must first make DSNALI available.

About this task

Part of CAF is a Db2 load module, DSNALI, which is also known as the CAF language interface. DSNALI
has the alias names DSNHLI2 and DSNWLI2. The module has five entry points: DSNALI, DSNHLI,
DSNHLI2, DSNWLI, and DSNWLI2. These entry points serve the following functions:

« Entry point DSNALI handles explicit Db2 connection service requests.

« DSNHLI and DSNHLI2 handle SQL calls. Use DSNHLI if your application program link-edits DSNALI. Use
DSNHLI2 if your application program loads DSNALI.

« DSNWLI and DSNWLI2 handle IFI calls. Use DSNWLI if your application program link-edits DSNALI. Use
DSNWLI2 if your application program loads DSNALI.

Procedure

To make DSNALI available:
1. Decide which of the following methods you want to use to make DSNALI available:

- Explicitly issuing LOAD requests when your program runs.

Chapter 2. Connecting to Db2 from your application program 41

By explicitly loading the DSNALI module, you beneficially isolate the maintenance of your application
from future IBM maintenance to the language interface. If the language interface changes, the
change will probably not affect your load module.

« Including the DSNALI module in your load module when you link-edit your program.

If you do not need explicit calls to DSNALI for CAF functions, link-editing DSNALI into your load
module has some advantages. When you include DSNALI during the link-edit, you do not need to
code a dummy DSNHLI entry point in your program or specify the precompiler option ATTACH.
Module DSNALI contains an entry point for DSNHLI, which is identical to DSNHLI2, and an entry
point DSNWLI, which is identical to DSNWLI2.

A disadvantage to link-editing DSNALI into your load module is that any IBM maintenance to DSNALI
requires a new link-edit of your load module.

Alternatively, if using explicit connections via CALL DSNALI, you can link-edit your program with
DSNULI, the Universal Language Interface.

2. Depending on the method that you chose in step 1, perform one of the following actions:
- If you want to explicitly issue LOAD requests when your program runs:

In your program, issue z/OS LOAD service requests for entry points DSNALI and DSNHLI2. If you use
IFI services, you must also load DSNWLI2. The entry point addresses that LOAD returns are saved
for later use with the CALL macro. Indicate to Db2 which entry point to use in one of the following
two ways:

— Specify the precompiler option ATTACH(CAF).
This option causes Db2 to generate calls that specify entry point DSNHLI2.

Restriction: You cannot use this option if your application is written in Fortran.
— Code a dummy entry point named DSNHLI within your load module.

If you do not specify the precompiler option ATTACH, the Db2 precompiler generates calls to entry
point DSNHLI for each SQL request. The precompiler does not know about and is independent

of the different Db2 attachment facilities. When the calls generated by the Db2 precompiler pass
control to DSNHLI, your code that corresponds to the dummy entry point must preserve the option
list that was passed in R1 and specify the same option list when it calls DSNHLI2.

« If you want to include the DSNALI module in your load module when you link-edit your program:

Include DSNALI in your load module during a link-edit step. The module must be in a load module
library, which is included either in the SYSLIB concatenation or another INCLUDE library that is
defined in the linkage editor JCL. Because all language interface modules contain an entry point
declaration for DSNHLI, the linkage editor JCL must contain an INCLUDE linkage editor control
statement for DSNALI; for example, INCLUDE SYSLIB(DSNALI). By coding these options, you
avoid inadvertently picking up the wrong language interface module.

Related concepts

LOB file reference variables

In a host application, you can use a file reference variable to insert a LOB or XML value from a file into a
Db2 table. You can also use a file reference variable to select a LOB or XML value from a Db2 table into a
file.

Examples of invoking CAF

The call attachment facility (CAF) enables programs to communicate with Db2. If you explicitly invoke
CAF in your program, you can use the CAF connection functions to control the state of the connection.

“Universal language interface (DSNULI)” on page 113

The universal language interface (DSNULI) subcomponent determines the runtime environment and
dynamically loads and branches to the appropriate language interface module.

Related tasks

Link-editing an application with DSNULI

42 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

To create a single load module that can be used in more than one attachment environment, you can
link-edit your program or stored procedure with the Universal Language Interface module (DSNULI)
instead of with one of the environment-specific language interface modules (DSNELI, DSNALI, DSNRLI,
DSNCLI, or DFSLI000).

Saving storage when manipulating LOBs by using LOB locators

LOB locators let you manipulate LOB data without retrieving the data from the Db2 table. By using
locators, you avoid needing to allocate the large amounts of storage that are needed for host variables to
hold LOB data.

Requirements for programs that use CAF

The call attachment facility (CAF) enables programs to communicate with Db2. Before you invoke CAF in
your program, ensure that your program satisfies any requirements for using CAF.

When you write programs that use CAF, ensure that they meet the following requirements:

« The program accounts for the size of the CAF code. The CAF code requires about 16 KB of virtual
storage per address space and an additional 10 KB for each TCB that uses CAF.

« If your local environment intercepts and replaces the z/OS LOAD SVC that CAF uses, you must ensure
that your version of LOAD manages the load list element (LLE) and contents directory entry (CDE) chains
like the standard z/OS LOAD macro. CAF uses z/OS SVC LOAD to load two modules as part of the
initialization after your first service request. Both modules are loaded into fetch-protected storage that
has the job-step protection key.

« If you use CAF from IMS batch, you must write data to only one system in any one unit of work. If you
write to both systems within the same unit, a system failure can leave the two databases inconsistent
with no possibility of automatic recovery. To end a unit of work in Db2, execute the SQL COMMIT
statement. To end a unit of work in IMS, issue the SYNCPOINT command.

You can prepare application programs to run in CAF similar to how you prepare applications to run in
other environments, such as CICS, IMS, and TSO. You can prepare a CAF application either in the batch
environment or by using the Db2 program preparation process. You can use the program preparation
system either through DB2I or through the DSNH CLIST.

Related tasks

Preparing an application to run on Db2 for z/0OS
To prepare and run applications that contain embedded static SQL statements or dynamic SQL
statements, you must process, compile, link-edit, and bind the SQL statements.

How CAF modifies the content of registers

If you do not specify the return code and reason code parameters in your CAF function calls or if you
invoke CAF implicitly, CAF puts a return code in register 15 and a reason code in register 0. The contents
of registers 2 through 14 are preserved across calls.

The following table lists the standard calling conventions for registers R1, R13, R14, and R15.

Table 5. Standard usage of registers R1, R13, R14, and R15

Register Usage

R1 CALL DSNALI parameter list pointer
R13 Address of caller's save area

R14 Caller's return address

R15 CAF entry point address

Your CAF program should respect these register conventions.

CAF also supports high-level languages that cannot examine the contents of individual registers.

Chapter 2. Connecting to Db2 from your application program 43

Related concepts

CALL DSNALI statement parameter list

The CALL DSNALI statement explicitly invokes CAF. When you include CALL DSNALI statements in your
program, you must specify all parameters that come before the return code parameter.

Implicit connections to CAF

If the CAF language interface (DSNALI) is available and you do not explicitly specify CALL DSNALI
statements in your application, CAF initiates implicit CONNECT and OPEN requests to Db2. These
requests are subject to the same Db2 return codes and reason codes as explicitly specified requests.

Implicit connections use the following defaults:
Subsystem name

The default name that is specified in the module DSNHDECP. CAF uses the installation default
DSNHDECP, unless your own DSNHDECP module is in a library in a STEPLIB statement of a JOBLIB
concatenation or in the link list. In a data sharing group, the default subsystem name is the group
attachment name.

Implicit connections to CAF always use DSNHDECP as the user-specified application defaults module.

Be certain that you know what the default name is and that it names the specific Db2 subsystem you
want to use.

Plan name
The member name of the database request module (DBRM) that Db2 produced when you
precompiled the source program that contains the first SQL call.

Different types of implicit connections exist. The simplest is for an application to call neither the
CONNECT nor OPEN functions. You can also use the CONNECT function only or the OPEN function only.
Each of these calls implicitly connects your application to Db2. To terminate an implicit connection, you
must use the proper calls.

Related concepts

Summary of CAF behavior

The effect of any CAF function depends in part on what functions the program has already run. You should
plan the CAF function calls that your program makes to avoid any errors and major structural problems in
your application.

CALL DSNALI statement parameter list

The CALL DSNALI statement explicitly invokes CAF. When you include CALL DSNALI statements in your
program, you must specify all parameters that come before the return code parameter.

For CALL DSNALI statements, use a standard z/OS CALL parameter list. Register 1 points to a list of
fullword addresses that point to the actual parameters. The last address must containa 1 in the high-
order bit.

In CALL DSNALI statements, you cannot omit any of parameters that come before the return code
parameter by coding zeros or blanks. No defaults exist for those parameters for explicit connection
requests. Defaults are provided for only implicit connections. All parameters starting with the return code
parameter are optional.

When you want to use the default value for a parameter but specify subsequent parameters, code the
CALL DSNALI statement as follows:

 For C-language, when you code CALL DSNALI statements in C, you need to specify the address of every
required parameter, using the "address of" operator (&), and not the parameter itself. For example, to
pass the startecb parameter on CONNECT, specify the address of the 4-byte integer (&sech).

char functn[13] = "CONNECT "
char ssid[5] = "DB2A";

int tecb 0;

int sech 0;

44 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

ptr ribptr;
int retcode;
int reascode;
ptr eibptr;

fnret = dsnali(&functn[0], &ssid[0], &tech, &sech, &ribptr, &retcode, &reascode,
NULL, &eibptr);

- For other languages except assembler language, code zero for that parameter in the CALL DSNALI
statement. For example, suppose that you are coding a CONNECT call in a COBOL program, and you
want to specify all parameters except the return code parameter. You can write a statement similar to
the following statement:

CALL 'DSNALI' USING FUNCTN SSID TECB SECB RIBPTR
BY CONTENT ZERO BY REFERENCE REASCODE SRDURA EIBPTR.

« For assembler language, code a comma for that parameter in the CALL DSNALI statement. For example,
to specify all optional parameters except the return code parameter write a statement similar to the
following statement:

CALL DSNALI, (FUNCTN,SSID,TERMECB,STARTECB,RIBPTR, ,REASCODE, SRDURA, EIBPTR,
GROUPOVERRIDE)

The following figure shows a sample parameter list structure for the CONNECT function.

' 12-byte area
Register 1 » CONNECT that contains the

function name

Parameter
list ————% DSN Subsystem name
> 0 Termination event
" control block (ECB)
nglaonieters » 0 Startup ECB
1— 1
or CAF puts the address
1— 1 > of the release information
3 or block (RIB) here
—> 1 ———————————
or
4— 1 - N Return code
or
5——m 1 —
or
6— 1] > Reason code

Effect of value in
CURRENT DEGREE
special register

v

CAF puts the address of
the environment information
block (EIB) here

Whether the value in the
subsystem name field

can be a group attachment
name

v

v

Figure 1. The parameter list for a CONNECT call
The preceding figure illustrates how you can omit parameters for the CALL DSNALI statement to control

the return code and reason code fields after a CONNECT call. You can terminate the parameter list at any
of the following points. These termination points apply to all CALL DSNALI statement parameter lists.

Chapter 2. Connecting to Db2 from your application program 45

1. Terminates the parameter list without specifying the parameters retcode, reascodeand srdura and
places the return code in register 15 and the reason code in register 0.

Terminating the parameter list at this point ensures compatibility with CAF programs that require a
return code in register 15 and a reason code in register 0.

2. Terminates the parameter list after the parameter retcode and places the return code in the parameter
list and the reason code in register 0.
Terminating the parameter list at this point enables the application program to take action, based on
the return code, without further examination of the associated reason code.

3. Terminates the parameter list after the parameter reascode and places the return code and the reason
code in the parameter list.

Terminating the parameter list at this point provides support to high-level languages that are unable to
examine the contents of individual registers.

If you code your CAF application in assembler language, you can specify the reason code parameter
and omit the return code parameter.

4. Terminates the parameter list after the parameter srdura.
If you code your CAF application in assembler language, you can specify this parameter and omit the
retcode and reascode parameters.

5. Terminates the parameter list after the parameter eibptr.
If you code your CAF application in assembler language, you can specify this parameter and omit the
retcode, reascode, or srdura parameters.

6. Terminates the parameter list after the parameter groupoverride.

If you code your CAF application in assembler language, you can specify this parameter and omit the
retcode, reascode,srdura, or eibptr parameters.

Even if you specify that the return code be placed in the parameter list, it is also placed in register 15 to
accommodate high-level languages that support special return code processing.

Related concepts

How CAF modifies the content of registers

If you do not specify the return code and reason code parameters in your CAF function calls or if you
invoke CAF implicitly, CAF puts a return code in register 15 and a reason code in register 0. The contents
of registers 2 through 14 are preserved across calls.

Summary of CAF behavior

The effect of any CAF function depends in part on what functions the program has already run. You should
plan the CAF function calls that your program makes to avoid any errors and major structural problems in
your application.

The following table summarizes CAF behavior after various inputs from application programs. The top

row lists the possible CAF functions that programs can call. The first column lists the task's most recent
history of connection requests. For example, the value "CONNECT followed by OPEN" in the first column
means that the task issued CONNECT and then OPEN with no other CAF calls in between. The intersection
of a row and column shows the effect of the next call if it follows the corresponding connection history.
For example, if the call is OPEN and the connection history is CONNECT, the effect is OPEN; the OPEN
function is performed. If the call is SQL and the connection history is empty (meaning that the SQL

call is the first CAF function the program), the effect is that implicit CONNECT and OPEN functions are
performed, followed by the SQL function.

46 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Table 6. Effects of CAF calls, as dependent on connection history

Previous Next function
function
CONNECT OPEN SQL CLOSE DISCONNECT TRANSLATE

Empty: first call CONNECT OPEN CONNECT, Error 2031 Error 2041 Error 2052
OPEN, followed
by the SQL or
IFI call

CONNECT Error 201% OPEN OPEN, followed Error203* DISCONNECT TRANSLATE
by the SQL or
IFI call

CONNECT Error 2011 Error 2021 The SQLorIFI CLOSE? DISCONNECT TRANSLATE

followed by call

OPEN

CONNECT Error 2011 Error 2021 The SQLorIFI CLOSE? DISCONNECT TRANSLATE

followed by SQL call

or IFI call

OPEN Error 2011 Error 2021 The SQLorIFI CLOSE? Error 2041 TRANSLATE
call

SQL or IFI call Error 2011 Error 2021 The SQLorIFI CLOSE? Error 2041 TRANSLATE3
call

Notes:

1. An error is shown in this table as Error nnn. The corresponding reason code is X'00C10nnn'. The
message number is DSNAnnnI or DSNAnnnE.

2. The task and address space connections remain active. If the CLOSE call fails because Db2 was down,
the CAF control blocks are reset, the function produces return code 4 and reason code X'00C10824',
and CAF is ready for more connection requests when Db2 is up.

3. ATRANSLATE request is accepted, but in this case it is redundant. CAF automatically issues a
TRANSLATE request when an SQL or IFI request fails.

Related reference

CAF return codes and reason codes

CAF provides the return codes either to the corresponding parameters that are specified in a CAF function
call or, if you choose not to use those parameters, to registers 15 and 0.

CAF connection functions

A CAF connection function specifies the action that you want CAF to take. You specify these functions
when you invoke CAF through CALL DSNALI statements.

You can specify the following CAF functions in a CALL DSNALI statement:

CONNECT
Establishes the task (TCB) as a user of the named Db2 subsystem. When the first task within an
address space issues a connection request, the address space is also initialized as a user of Db2.

OPEN
Allocates a Db2 plan. You must allocate a plan before Db2 can process SQL statements. If you did not
request the CONNECT function, the OPEN function implicitly establishes the task, and optionally the
address space, as a user of Db2.

Chapter 2. Connecting to Db2 from your application program 47

CLOSE
Commits or abnormally terminates any database changes and deallocates the plan. If the OPEN
function implicitly requests the CONNECT function, the CLOSE function removes the task, and
possibly the address space, as a user of Db2.

DISCONNECT
Removes the task as a user of Db2 and, if this task is the last or only task in the address space with a
Db2 connection, terminates the address space connection to Db2.

TRANSLATE
Returns an SQL code and printable text that describe a Db2 hexadecimal error reason code. This
information is returned to the SQLCA.

Restriction: You cannot call the TRANSLATE function from the Fortran language.

Recommendation: Because the effect of any CAF function depends on what functions the program has
already run, carefully plan the calls that your program makes to these CAF connection functions. Read
about the summary of CAF behavior and make these function calls accordingly.

Related concepts

Summary of CAF behavior

The effect of any CAF function depends in part on what functions the program has already run. You should
plan the CAF function calls that your program makes to avoid any errors and major structural problems in
your application.

CALL DSNALI statement parameter list
The CALL DSNALI statement explicitly invokes CAF. When you include CALL DSNALI statements in your
program, you must specify all parameters that come before the return code parameter.

CONNECT function for CAF

The CAF CONNECT function initializes a connection to Db2. This function is different than the SQL
CONNECT statement that accesses a remote location within Db2.

The CONNECT function establishes the caller's task as a user of Db2 services. If no other task in the
address space currently holds a connection with the specified subsystem, the CONNECT function also
initializes the address space for communication to the Db2 address spaces. The CONNECT function
establishes the address space's cross memory authorization to Db2 and builds address space control
blocks. You can issue a CONNECT request from any or all tasks in the address space, but the address
space level is initialized only once when the first task connects.

Using the CONNECT function is optional. If you do not call the CONNECT function, make an implicit
connection by calling neither the CONNECT function nor the OPEN function. In a program that does
not contain the CONNECT or OPEN functions, when the first SQL statement is executed, the implicit
connection is made to the default Db2 subsystem. The default Db2 subsystem name is the subsystem
name that is specified by the SSID=xxxx parameter in installation job DSNTIJUA. Job DSNTIJUA
assembles the Db2 data-only application defaults module.

If you do not call the CONNECT function, the first request from a task, either an OPEN request or an
SQL or IFI call, causes CAF to issue an implicit CONNECT request. If a task is connected implicitly, the
connection to Db2 is terminated either when you call the CLOSE function or when the task terminates.

Call the CONNECT function in all of the following situations:

« You need to specify a particular subsystem name (ssnm) other than the default subsystem name.
 You need the value of the CURRENT DEGREE special register to last as long as the connection (srdura).

« You need to monitor the Db2 startup ECB (startecb), the Db2 termination ECB (termecb), or the Db2
release level.

« You plan to have multiple tasks in the address space open and close plans or a single task in the
address space open and close plans more than once.

Establishing task and address space level connections involves significant overhead. Using the
CONNECT function to establish a task connection explicitly minimizes this overhead by ensuring that

48 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

the connection to Db2 remains after the CLOSE function deallocates a plan. In this case, the connection
terminates only when you use the DISCONNECT function or when the task terminates.

The CONNECT function also enables the caller to learn the following items:

« That the operator has issued a STOP DB2 command. When this event occurs, Db2 posts the termination
ECB, termecb. Your application can either wait on or just look at the ECB.

- That Db2 is abnormally terminating. When this event occurs happens, Db2 posts the termination ECB,
termecb.

- That Db2 is available again after a connection attempt that failed because Db2 was down. Your
application can either wait or look at the startup ECB, startecb. Db2 ignores this ECB if it was active
at the time of the CONNECT request.

« The current release level of Db2. To find this information, access the RIBREL field in the release
information block (RIB). If RIBREL is '999', the actual version, release, and modification level of Db2 is
indicated in the RIBRELX field and its subfields.

Restriction: Do not issue CONNECT requests from a TCB that already has an active Db2 connection.

Recommendation: Do not mix explicit CONNECT and OPEN requests with implicitly established
connections in the same address space. Either explicitly specify which Db2 subsystem you want to use or
allow all requests to use the default subsystem.

The following diagram shows the syntax for the CONNECT function.

DSNALI CONNECT function

»»— CALL DSNALI — (— function, ssnm, termecb, startecbh, ribptr —»

L ,retcode I
L ,reascode J
L ,srdura J
L ,eibptr J
L ,groupoverride I
L ,decpptr —J

>
>

—) »a

Parameters point to the following areas:

function
A 12-byte area that contains CONNECT followed by five blanks.

ssnm
A 4-byte Db2 subsystem name or group attachment or subgroup attachment name (if used in a data
sharing group) to which the connection is made.

If ssnm is less than four characters long, pad it on the right with blanks to a length of four characters.

termech
A 4-byte integer representing the application's event control block (ECB) for Db2 termination. Db2
posts this ECB when the operator enters the STOP DB2 command or when Db2 is abnormally
terminating. The ECB indicates the type of termination by a POST code, as shown in the following
table:

Table 7. POST codes and related termination types

POST code Termination type
8 QUIESCE
12 FORCE

Chapter 2. Connecting to Db2 from your application program 49

Table 7. POST codes and related termination types (continued)

POST code Termination type
16 ABTERM

Before you check termecbh in your CAF application program, first check the return code and reason
code from the CONNECT call to ensure that the call completed successfully.

startech
A 4-byte integer representing the application's startup ECB. If Db2 has not yet started when the
application issues the call, Db2 posts the ECB when it successfully completes its startup processing.
Db2 posts at most one startup ECB per address space. The ECB is the one associated with the most
recent CONNECT call from that address space. Your application program must examine any nonzero
CAF and Db2 reason codes before issuing a WAIT on this ECB.

If ssnm is a group attachment or subgroup attachment name, the first Db2 subsystem that starts on
the local z/OS system and matches the specified group attachment name posts the ECB.

ribptr
A 4-byte area in which CAF places the address of the release information block (RIB) after the call.
You can determine what release level of Db2 you are currently running by examining the RIBREL
field. If RIBREL is '999', the actual version, release, and modification level of Db2 is indicated in the
RIBRELX field and its subfields.You can determine the modification level within the release level by
examining the RIBCNUMB and RIBCINFO fields. If the value in the RIBCNUMB field is greater than
zero, check the RIBCINFO field for modification levels.

If the RIB is not available (for example, if you name a subsystem that does not exist), Db2 sets the
4-byte area to zeros.

The area to which ribptr points is below the 16-MB line.

Your program does not have to use the release information block, but it cannot omit the ribptr
parameter.

Macro DSNDRIB maps the release information block (RIB). It can be found in
prefix. SDSNMACS(DSNDRIB).

retcode
A 4-byte area in which CAF places the return code.

This field is optional. If you do not specify retcode, CAF places the return code in register 15 and the
reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code.

This field is optional. If you do not specify reascode, CAF places the reason code in register 0. If you
specify reascode, you must also specify retcode.

srdura
A 10-byte area that contains the string 'SRDURA(CD)'". This field is optional. If you specify srdura, the
value in the CURRENT DEGREE special register stays in effect from the time of the CONNECT call until
the time of the DISCONNECT call. If you do not specify srdura, the value in the CURRENT DEGREE
special register stays in effect from the time of the OPEN call until the time of the CLOSE call. If you
specify this parameter in any language except assembler, you must also specify retcode and reascode.
In assembler language, you can omit these parameters by specifying commas as placeholders.

eibptr
A 4-byte area in which CAF puts the address of the environment information block (EIB). The EIB
contains information that you can use if you are connecting to a Db2 subsystem that is part of a data
sharing group. For example, you can determine the name of the data sharing group, the member to
which you are connecting, and whether new functions are activated on the subsystem. If the Db2
subsystem that you connect to is not part of a data sharing group, the fields in the EIB that are related

50 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

to data sharing are blank. If the EIB is not available (for example, if you name a subsystem that does
not exist), Db2 sets the 4-byte area to zeros.

The area to which eibptr points is above the 16-MB line.
You can omit this parameter when you make a CONNECT call.

If you specify this parameter in any language except assembler, you must also specify retcode,
reascode, and srdura. In assembler language, you can omit retcode, reascode, and srdura by
specifying commas as placeholders.

Macro DSNDEIB maps the EIB. It can be found in prefix. SDSNMACS(DSNDEIB).

groupoverride
An 8-byte area that the application provides. This parameter is optional. If you do not want group
attach to be attempted, specify 'NOGROUP'. This string indicates that the subsystem name that is
specified by ssnm is to be used as a Db2 subsystem name, even if ssnm matches a group attachment
or subgroup attachment name. If groupoverride is not provided, ssnm is used as the group attachment
or subgroup attachment name if it matches a group attachment or subgroup attachment name.

If you specify this parameter in any language except assembler, you must also specify retcode,
reascode, srdura, and eibptr. In assembler language, you can omit retcode, reascode, srdura, and
eibptr by specifying commas as placeholders.

Recommendation: Avoid using the groupoverride parameter when possible, because it limits the
ability to do dynamic workload routing in a Parallel Sysplex®. However, you should use this parameter
in a data sharing environment when you want to connect to a specific member of a data sharing
group, and the subsystem name of that member is the same as the group attachment or subgroup
attachment name.

decpptr
A 4-byte area in which CAF is to put the address of the DSNHDECP control block or user-specified
application defaults module that was loaded by subsystem ssnm when that subsystem was started.
This 4-byte area is a 31-bit pointer. If ssnm is not found, the 4-byte area is set to 0.

The area to which decpptr points may be above the 16-MB line.

If you specify this parameter in any language except assembler, you must also specify the
retcode, reascode, srdura, eibptr, and groupoverride parameters. In assembler language, you can
omit the retcode, reascode, srdura, eibptr, and groupoverride parameters by specifying commas as
placeholders.

Example of CAF CONNECT function calls
The following table shows a CONNECT call in each language.

Table 8. Examples of CAF CONNECT function calls

Language Call example

Assembler AL

DSNALI, (FUNCTN,SSID, TERMECB,STARTECB,RIBPTR,RETCODE, REASCODE, SRDURA,
EIBPTR, GRPOVER)

1
c fnret=dsnali(&functn[0],&ssid[0], &tecb, &secb,&ribptr,&retcode, &reascode,
&srdural0O],
&eibptr, &grpover[0]);
COBOL

CALL 'DSNALI' USING FUNCTN SSID TERMECB STARTECB RIBPTR RETCODE REASCODE SRDURA
EIBPTR GRPOVER.

Chapter 2. Connecting to Db2 from your application program 51

Table 8. Examples of CAF CONNECT function calls (continued)

Language Call example

Fortran AL

DSNALI(FUNCTN,SSID, TERMECB, STARTECB,RIBPTR,RETCODE, REASCODE, SRDURA,
EIBPTR,GRPOVER)

1
PL/T CALL

DSNALI (FUNCTN,SSID,TERMECB,STARTECB,RIBPTR, RETCODE, REASCODE, SRDURA,
EIBPTR,GRPOVER)

Note:

« For C and PL/I applications, you must include the appropriate compiler directives, because DSNALI is
an assembler language program. These compiler directives are described in the instructions for invoking
CAF.

Related concepts

Examples of invoking CAF

The call attachment facility (CAF) enables programs to communicate with Db2. If you explicitly invoke
CAF in your program, you can use the CAF connection functions to control the state of the connection.

Related tasks

Invoking the call attachment facility

Invoke the call attachment facility (CAF) when you want your application program to establish and control
its own connection to Db2. Applications that use CAF can explicitly control the state of their connections
to Db2 by using connection functions that CAF supplies.

Related reference
Synchronizing Tasks (WAIT, POST, and EVENTS Macros) (MVS Programming: Assembler Services Guide)

OPEN function for CAF

The OPEN function allocates Db2 resources that are needed to run the specified plan or to issue IFI
requests. If the requesting task does not already have a connection to the named Db2 subsystem, the
OPEN function establishes it.

Using the OPEN function is optional. If you do not call the OPEN function, the actions that the OPEN
function perform occur implicitly on the first SQL or IFI call from the task.

Restriction: Do not use the OPEN function if the task already has a plan allocated.

The following diagram shows the syntax for the OPEN function.

DSNALI OPEN function

»»— CALL DSNALI — (— function, ssnm, plan —»

>) -><
L , — retcode J
L , — reascode J
L , — groupoverride J

Parameters point to the following areas:

function
A 12-byte area that contains the word OPEN followed by eight blanks.

52 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieaa600/tasks.htm

ssnm
A 4-byte Db2 subsystem name or group attachment or subgroup attachment name (if used in a data
sharing group). The OPEN function allocates the specified plan to this Db2 subsystem. Also, if the
requesting task does not already have a connection to the named Db2 subsystem, the OPEN function
establishes it.

You must specify the ssnm parameter, even if the requesting task also issues a CONNECT call. If a
task issues a CONNECT call followed by an OPEN call, the subsystem names for both calls must be the
same.

If ssnm is less than four characters long, pad it on the right with blanks to a length of four characters.

plan
An 8-byte Db2 plan name.

retcode
A 4-byte area in which CAF places the return code.

This field is optional. If you do not specify retcode,CAF places the return code in register 15 and the
reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code.

This field is optional. If you do not specify reascode, CAF places the reason code in register 0. If you
specify reascode, you must also specify retcode.

groupoverride
An 8-byte area that the application provides. This field is optional. If you do not want group attach to
be attempted, specify 'NOGROUP'. This string indicates that the subsystem name that is specified by
ssnm is to be used as a Db2 subsystem name, even if ssnm matches a group attachment or subgroup
attachment name. If you do not specify groupoverride, ssnm is used as the group attachment and
subgroup attachment name if it matches a group attachment or subgroup attachment name. If you
specify this parameter in any language except assembler, you must also specify retcode and reascode.
In assembler language, you can omit these parameters by specifying commas as placeholders.

Recommendation: Avoid using the groupoverride parameter when possible, because it limits the
ability to do dynamic workload routing in a Parallel Sysplex. However, you should use this parameter
in a data sharing environment when you want to connect to a specific member of a data sharing
group, and the subsystem name of that member is the same as the group attachment or subgroup
attachment name.

Examples of CAF OPEN calls

The following table shows an OPEN call in each language.

Table 9. Examples of CAF OPEN calls

Language Call example

Assembler

CALL DSNALI, (FUNCTN,SSID,PLANNAME, RETCODE,REASCODE,GRPOVER)

1
c fnret=dsnali(&functn[0],&ssid[0], &planname[0],&retcode, &reascode,&grpover[0]);
COBOL . .
CALL DSNALI' USING FUNCTN SSID PLANNAME RETCODE REASCODE GRPOVER.
Fortran
CALL DSNALI(FUNCTN,SSID,PLANNAME, RETCODE,REASCODE,GRPOVER)
PL/I1

CALL DSNALI(FUNCTN,SSID,PLANNAME, RETCODE,REASCODE,GRPOVER) ;

Chapter 2. Connecting to Db2 from your application program 53

Note:

« For C and PL/I applications, you must include the appropriate compiler directives, because DSNALI is
an assembler language program. These compiler directives are described in the instructions for invoking
CAF.

Related concepts

Implicit connections to CAF

If the CAF language interface (DSNALI) is available and you do not explicitly specify CALL DSNALI
statements in your application, CAF initiates implicit CONNECT and OPEN requests to Db2. These
requests are subject to the same Db2 return codes and reason codes as explicitly specified requests.

Related tasks

Invoking the call attachment facility

Invoke the call attachment facility (CAF) when you want your application program to establish and control
its own connection to Db2. Applications that use CAF can explicitly control the state of their connections
to Db2 by using connection functions that CAF supplies.

CLOSE function for CAF

The CAF CLOSE function deallocates the plan that was created either explicitly by a call to the OPEN
function or implicitly at the first SQL call. Optionally, the CLOSE function also disconnects the task, and
possibly the address space, from Db2.

If you did not issue an explicit CONNECT call for the task, the CLOSE function deletes the task's
connection to Db2. If no other task in the address space has an active connection to Db2, Db2 also
deletes the control block structures that were created for the address space and removes the cross
memory authorization.

Using the CLOSE function is optional. Consider the following rules and recommendations about when to
use and not use the CLOSE function:

Do not use the CLOSE function when your current task does not have a plan allocated.

« If you want to use a new plan, you must issue an explicit CLOSE call, followed by an OPEN call with the
new plan name.

« When shutting down your application you can improve the performance of this shut down by explicitly
calling the CLOSE function before the task terminates. If you omit the CLOSE call, Db2 performs an
implicit CLOSE. In this case, Db2 performs the same actions when your task terminates, by using the
SYNC parameter if termination is normal and the ABRT parameter if termination is abnormal.

« If Db2 terminates, issue an explicit CLOSE call for any task that did not issue a CONNECT call. This
action enables CAF to reset its control blocks to allow for future connections. This CLOSE call returns
the reset accomplished return code (+004) and reason code X'00C10824". If you omit the CLOSE call in
this case, when Db2 is back on line, the task's next connection request fails. You get either the message
YOUR TCB DOES NOT HAVE A CONNECTION, with X'00F30018' in register O, or the CAF error message
DSNA201I or DSNA202I, depending on what your application tried to do. The task must then issue a
CLOSE call before it can reconnect to Db2.

« Atask that issued an explicit CONNECT call should issue a DISCONNECT call instead of a CLOSE call.
This action causes CAF to reset its control blocks when Db2 terminates.

The following diagram shows the syntax for the CLOSE function.

DSNALI CLOSE function

»»— CALL DSNALI — (— function, termop

Parameters point to the following areas:

54 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

function
A 12-byte area that contains the word CLOSE followed by seven blanks.

termop
A 4-byte terminate option, with one of the following values:

SYNC
Specifies that Db2 is to commit any modified data.

ABRT
Specifies that Db2 is to roll back data to the previous commit point.

retcode
A 4-byte area in which CAF is to place the return code.

This field is optional. If you do not specify retcode, CAF places the return code in register 15 and the
reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code.

This field is optional. If you do not specify reascode, CAF places the reason code in register 0. If you
specify reascode, you must also specify retcode.
Examples of CAF CLOSE calls

The following table shows a CLOSE call in each language.

Table 10. Examples of CAF CLOSE calls

Language Call example
Assembler CALL DSNALI, (FUNCTN, TERMOP,RETCODE, REASCODE)
Cl

fnret=dsnali(&functn[0], &termop[@], &retcode,&reascode);
COBOL CALL 'DSNALI' USING FUNCTN TERMOP RETCODE REASCODE.
Fortran CALL DSNALI(FUNCTN,TERMOP, RETCODE,REASCODE)
PL/12

CALL DSNALI(FUNCTN,TERMOP, RETCODE,REASCODE);

Note:

« For C and PL/I applications, you must include the appropriate compiler directives, because DSNALI is
an assembler language program. These compiler directives are described in the instructions for invoking
CAF.

Related tasks

Invoking the call attachment facility

Invoke the call attachment facility (CAF) when you want your application program to establish and control
its own connection to Db2. Applications that use CAF can explicitly control the state of their connections
to Db2 by using connection functions that CAF supplies.

DISCONNECT function for CAF
The CAF DISCONNECT function terminates a connection to Db2.

DISCONNECT removes the calling task's connection to Db2. If no other task in the address space has an
active connection to Db2, Db2 also deletes the control block structures that were created for the address
space and removes the cross memory authorization.

Chapter 2. Connecting to Db2 from your application program 55

If an OPEN call is in effect, which means that a plan is allocated, when the DISCONNECT call is issued,
CAF issues an implicit CLOSE with the SYNC parameter.

Using the DISCONNECT function is optional. Consider the following rules and recommendations about
when to use and not use the DISCONNECT function:

« Only those tasks that explicitly issued a CONNECT call can issue a DISCONNECT call. If a CONNECT call
was not used, a DISCONNECT call causes an error.

« When shutting down your application you can improve the performance of this shut down by explicitly
calling the DISCONNECT function before the task terminates. If you omit the DISCONNECT call, Db2
performs an implicit DISCONNECT. In this case, Db2 performs the same actions when your task
terminates.

« If Db2 terminates, any task that issued a CONNECT call must issue a DISCONNECT call to reset the
CAF control blocks. The DISCONNECT function returns the reset accomplished return codes and reason
codes (+004 and X'00C10824"). This action ensures that future connection requests from the task work
when Db2 is back on line.

« A task that did not explicitly issue a CONNECT call must issue a CLOSE call instead of a DISCONNECT
call. This action resets the CAF control blocks when Db2 terminates.

The following diagram shows the syntax for the DISCONNECT function.

DSNALI DISCONNECT function

»— CALL DSNALI — (— function L J) >«
— retcode

The single parameter points to the following area:

function
A 12-byte area that contains the word DISCONNECT followed by two blanks.

retcode
A 4-byte area in which CAF places the return code.

This field is optional. If you do not specify retcode, CAF places the return code in register 15 and the
reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code.

This field is optional. If you do not specify reascode, CAF places the reason code in register 0. If you
specify reascode, you must also specify retcode.

Examples of CAF DISCONNECT calls
The following table shows a DISCONNECT call in each language.

Table 11. Examples of CAF DISCONNECT calls

Language Call example

Assembler CALL DSNALI(,FUNCTN,RETCODE,REASCODE)

Cl

fnret=dsnali(&functn[0], &retcode, &reascode);

COBOL CALL 'DSNALI' USING FUNCTN RETCODE REASCODE.

56 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Table 11. Examples of CAF DISCONNECT calls (continued)

Language Call example

Fortran

CALL DSNALI(FUNCTN,RETCODE,REASCODE)

PL/1L

CALL DSNALI(FUNCTN,RETCODE,REASCODE) ;

Note:

« For C and PL/I applications, you must include the appropriate compiler directives, because DSNALI is
an assembler language program. These compiler directives are described in the instructions for invoking
CAF.

Related tasks

Invoking the call attachment facility

Invoke the call attachment facility (CAF) when you want your application program to establish and control
its own connection to Db2. Applications that use CAF can explicitly control the state of their connections
to Db2 by using connection functions that CAF supplies.

TRANSLATE function for CAF

The TRANSLATE function converts a Db2 hexadecimal error reason code from a failed OPEN request into
an SQL error code and printable error message text. Db2 places the information into the SQLCODE and
SQLSTATE host variables or related fields of the SQLCA of the caller.

The Db2 error reason code that is converted is read from register 0. The TRANSLATE function does not
change the contents of registers 0 and 15, unless the TRANSLATE request fails; in that case, register O is
set to X'C10205" and register 15 is set to 200.

Consider the following rules and recommendations about when to use and not use the TRANSLATE
function:

 You cannot call the TRANSLATE function from the Fortran language.

« The TRANSLATE function is useful only if you used an explicit CONNECT call before an OPEN
request that fails. For errors that occur during SQL or IFI requests, the TRANSLATE function performs
automatically.

« The TRANSLATE function can translate those codes that begin with X'00F3', but it does not translate
CAF reason codes that begin with X'00C1".

If you receive error reason code X'00F30040' (resource unavailable) after an OPEN request, the
TRANSLATE function returns the name of the unavailable database object in the last 44 characters of
the SQLERRM field.

If the TRANSLATE function does not recognize the error reason code, it returns SQLCODE -924 (SQLSTATE
'58006') and places a printable copy of the original Db2 function code and the return and error reason
codes in the SQLERRM field.

The following diagram shows the syntax for the TRANSLATE function.

DSNALI TRANSLATE function

»— CALL DSNALI — (— function, sqlca L J) >«
— retcode

Parameters point to the following areas:

Chapter 2. Connecting to Db2 from your application program 57

function
A 12-byte area the contains the word TRANSLATE followed by three blanks.

sqlca
The program's SQL communication area (SQLCA).

retcode
A 4-byte area in which CAF places the return code.

This field is optional. If you do not specify retcode, CAF places the return code in register 15 and the
reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code.

This field is optional. If you do not specify reascode, CAF places the reason code in register 0. If you
specify reascode, you must also specify retcode.

Examples of CAF TRANSLATE calls

The following table shows a TRANSLATE call in each language.

Table 12. Examples of CAF TRANSLATE calls

Language Call example

Assembler CALL DSNALI, (FUNCTN,SQLCA,RETCODE, REASCODE)

1

c fnret=dsnali(&functn[0], &sqlca, &retcode, &reascode);
COBOL CALL 'DSNALI' USING FUNCTN SQLCA RETCODE REASCODE.
PL/I:L

CALL DSNALI(FUNCTN,SQLCA,RETCODE, REASCODE);

Note:

« For C and PL/I applications, you must include the appropriate compiler directives, because DSNALI is
an assembler language program. These compiler directives are described in the instructions for invoking
CAF.

Related tasks

Invoking the call attachment facility

Invoke the call attachment facility (CAF) when you want your application program to establish and control
its own connection to Db2. Applications that use CAF can explicitly control the state of their connections
to Db2 by using connection functions that CAF supplies.

Turning on a CAF trace

CAF does not capture any diagnostic trace messages unless you tell it to by turning on a trace.

Procedure

Allocate a DSNTRACE data set either dynamically or by including a DSNTRACE DD statement in your JCL.

CAF writes diagnostic trace messages to that data set. The trace message numbers contain the last three
digits of the reason codes.

Related concepts
Examples of invoking CAF

58 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

The call attachment facility (CAF) enables programs to communicate with Db2. If you explicitly invoke
CAF in your program, you can use the CAF connection functions to control the state of the connection.

CAF return codes and reason codes

CAF provides the return codes either to the corresponding parameters that are specified in a CAF function

call or, if you choose not to use those parameters, to registers 15 and O.

When the reason code begins with X'00F3' except for X'00F30006', you can use the CAF TRANSLATE
function to obtain error message text that can be printed and displayed. These reason codes are issued
by the subsystem support for allied memories, a part of the Db2 subsystem support subcomponent that
services all Db2 connection and work requests.

For SQL calls, CAF returns standard SQL codes in the SQLCA. CAF returns IFI return codes and reason
codes in the instrumentation facility communication area (IFCA).

The following table lists the CAF return codes and reason codes.

Table 13. CAF return codes and reason codes

Return code

Reason code

Explanation

0 X'00000000" Successful completion.

4 X'00C10824' CAF reset complete. CAF is ready to make a new connection.

8 X'00C10831" Release level mismatch between Db2 and the CAF code.

2001 X'00C102071" Received a second CONNECT request from the same TCB. The
first CONNECT request could have been implicit or explicit.

2001 X'00C10202' Received a second OPEN request from the same TCB. The first
OPEN request could have been implicit or explicit.

2001 X'00C10203" CLOSE request issued when no active OPEN request exists.

2001 X'00C10204' DISCONNECT request issued when no active CONNECT request
exists, or the AXSET macro was issued between the CONNECT
request and the DISCONNECT request.

2001 X'00C10205' TRANSLATE request issued when no connection to Db2 exists.

2001 X'00C10206' Incorrect number of parameters was specified or the end-of-list
bit was off.

2001 X'00C10207" Unrecognized function parameter.

2001 X'00C10208' Received requests to access two different Db2 subsystems from
the same TCB.

204 2 CAF system error. Probable error in the attach or Db2.

Notes:

1. A CAF error probably caused by errors in the parameter lists from the application programs. CAF errors
do not change the current state of your connection to Db2; you can continue processing with a corrected

request.

2. System errors cause abends. If tracing is on, a descriptive message is written to the DSNTRACE data set just

before the abend.

Chapter 2. Connecting to Db2 from your application program 59

Sample CAF scenarios

One or more tasks can use call attachment facility (CAF) to connect to Db2. This connection can be made
either implicitly or explicitly. For explicit connections, a task calls one or more of the CAF connection
functions.

A single task with implicit connections

The simplest connection scenario is a single task that makes calls to Db2 without using explicit CALL
DSNALI statements. The task implicitly connects to the default subsystem name and uses the default
plan name.

When the task terminates, the following events occur:

- If termination was normal, any database changes are committed.

- If termination was abnormal, any database changes are rolled back.
« The active plan and all database resources are deallocated.

« The task and address space connections to Db2 are terminated.

A single task with explicit connections

The following example pseudocode illustrates a more complex scenario with a single task.

CONNECT
OPEN allocate a plan
SQL or IFI call
CLOSE deallocate the current plan
OPEN allocate a new plan
SQL or IFI call
CLOSE
DISCONNECT

A task can have a connection to only one Db2 subsystem at any point in time. A CAF error occurs if the
subsystem name in the OPEN call does not match the subsystem name in the CONNECT call. To switch to
a different subsystem, the application must first disconnect from the current subsystem and then issue a
connect request with a new subsystem name.

Multiple tasks

In the following scenario, multiple tasks within the address space use Db2 services. Each task must
explicitly specify the same subsystem name on either the CONNECT function request or the OPEN
function request. Task 1 makes no SQL or IFI calls. Its purpose is to monitor the Db2 termination and
startup ECBs and to check the Db2 release level.

TASK 1 TASK 2 TASK 3 TASK n

CONNECT
OPEN OPEN OPEN
sQL sQL sQL
CLOSE CLOSE CLOSE
OPEN OPEN OPEN
sQL sQL sQL
CLOSE CLOSE CLOSE

DISCONNECT

60 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Examples of invoking CAF

The call attachment facility (CAF) enables programs to communicate with Db2. If you explicitly invoke
CAF in your program, you can use the CAF connection functions to control the state of the connection.

Example JCL for invoking CAF

The following sample JCL shows how to use CAF in a batch (non-TSO) environment. The DSNTRACE
statement in this example is optional.

//jobname JoB 2/0S_jobcard_information
//CAFJCL EXEC PGM=CAF_application_program
//STEPLIB DD DSN=application_load_Llibrary
// DD DSN=DB2_load_Llibrary
//SYSPRINT DD SYSOUT=x*

//DSNTRACE DD SYSOUT=x*

//SYSUDUMP DD SYSOUT=%

Example of assembler code that invokes CAF

The following examples show parts of a sample assembler program that uses CAF. They demonstrate the
basic techniques for making CAF calls, but do not show the code and z/OS macros needed to support
those calls. For example, many applications need a two-task structure so that attention-handling routines
can detach connected subtasks to regain control from Db2. This structure is not shown in the following
code examples. Also, these code examples assume the existence of a WRITE macro. Wherever this macro
is included in the example, substitute code of your own. You must decide what you want your application
to do in those situations; you probably do not want to write the error messages shown.

Example of loading and deleting the CAF language interface

The following code segment shows how an application can load entry points DSNALI and DSNHLI2 for the
CAF language interface. Storing the entry points in variables LIALI and LISQL ensures that the application
has to load the entry points only once. When the module is done with Db2, you should delete the entries.

*xkkkkkkkkkhkkkhkkkhkxkkxkkxkkxk*xx GET LANGUAGE INTERFACE ENTRY ADDRESSES

LOAD EP=DSNALI Load the CAF service request EP
ST RO, LIALI Save this for CAF service requests
LOAD EP=DSNHLI2 Load the CAF SQL call Entry Point

ST RO, LISQL Save this for SQL calls

*

Insert connection service requests and SQL calls here

bELETE EP=DSNALI Correctly maintain use count
DELETE EP=DSNHLI2 Correctly maintain use count

Example of connecting to Db2 with CAF

The following example code shows how to issue explicit requests for certain actions, such as CONNECT,
OPEN, CLOSE, DISCONNECT, and TRANSLATE, and uses the CHEKCODE subroutine to check the return
reason codes from CAF.

*hkkkkkkkhkkkkkkhkhkkkkkkkkkkkkkkkxk CONNECT *kkhhkkkkkhkhkhkkkkkkhkhkhkkkkkkhkkkkkkx

L R15,LIALI Get the Language Interface address
MVC FUNCTN, CONNECT Get the function to call

CALL (25), (FUNCTN,SSID,TECB,SECB,RIBPTR),VL,MF=(E,CAFCALL)
BAL R14,CHEKCODE Check the return and reason codes
CLC CONTROL,CONTINUE Is everything still OK

BNE EXIT If CONTROL not 'CONTINUE', stop loop
USING R8,RIB Prepare to access the RIB

L R8,RIBPTR Access RIB to get DB2 release level
CLC RIBREL,RIBR999 DB2 V10 or later?

BE USERELX If RIBREL = '999', use RIBRELX
WRITE 'The current DB2 release level is' RIBREL

B OPEN Continue with signon

USERELX WRITE 'The current DB2 release level is' RIBRELX

Chapter 2. Connecting to Db2 from your application program 61

OPEN skokkkkokkkokokokkok koo ok ook ook

OPEN L R15,LIALI Get the Language Interface address

MVC FUNCTN, OPEN Get the function to call

CALL (15), (FUNCTN,SSID,PLAN),VL,MF=(E,CAFCALL)

BAL R14, CHEKCODE Check the return and reason codes
------------------------------ SOL kskokk koo ko ko koo k ko ok ok ko ok ok ok ok ok
* Insert your SQL calls here. The DB2 Precompiler
* generates calls to entry point DSNHLI. You should
* specify the precompiler option ATTACH(CAF), or code
* a dummy entry point named DSNHLI to intercept
* all SQL calls. A dummy DSNHLI is shown below.
""""""""""""""" CLOSE Kk kkskkskkskk sk sk sk sk o ko ko ok ke ok ok ok ok ok ok ke ok

CLC CONTROL, CONTINUE Is everything still OK?

BNE EXIT If CONTROL not 'CONTINUE', shut down

MVC TRMOP, ABRT Assume termination with ABRT parameter

L R4 ,SQLCODE Put the SQLCODE into a register

C R4 ,CODE® Examine the SQLCODE

BZ SYNCTERM If zero, then CLOSE with SYNC parameter

© R4 ,CODE100 See if SQLCODE was 100

BNE DISC If not 100, CLOSE with ABRT parameter
SYNCTERM MVC TRMOP,SYNC Good code, terminate with SYNC parameter
DISC DS OH Now build the CAF parmlist

L R15,LIALI Get the Language Interface address

MVC FUNCTN, CLOSE Get the function to call

CALL (15), (FUNCTN,TRMOP) ,VL,MF=(E,CAFCALL)

BAL R14,CHEKCODE Check the return and reason codes
*kkkkkkkkkkkkkkhkkkkkkkkkkkkkkxkkx DISCONNECT ,kkkkkkkhkkkkkkhkhkkkkkhkhkkkkkkx

CLC CONTROL , CONTINUE Is everything still OK

BNE EXIT If CONTROL not 'CONTINUE', stop loop

L R15,LIALI Get the Language Interface address

MVC FUNCTN, DISCON Get the function to call

CALL (25), (FUNCTN),VL,MF=(E,CAFCALL)

BAL R14, CHEKCODE Check the return and reason codes

This example code does not show a task that waits on the Db2 termination ECB. If you want such a task,
you can code it by using the z/OS WAIT macro to monitor the ECB. You probably want this task to detach
the sample code if the termination ECB is posted. That task can also wait on the Db2 startup ECB. This
sample waits on the startup ECB at its own task level.

This example code assumes that the variables in the following table are already set:

Table 14. Variables that preceding example assembler code assumes are set

Variable Usage

LIALI The entry point that handles Db2 connection
service requests.

LISQL The entry point that handles SQL calls.

SSID The Db2 subsystem identifier.

TECB The address of the Db2 termination ECB.

SECB The address of the Db2 startup ECB.

RIBPTR A fullword that CAF sets to contain the RIB
address.

PLAN The plan name to use in the OPEN call.

CONTROL This variable is used to shut down processing

because of unsatisfactory return or reason codes.
The CHECKCODE subroutine sets this value.

CAFCALL List-form parameter area for the CALL macro.

62 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Example of checking return codes and reason codes when using CAF

The following example code illustrates a way to check the return codes and the Db2 termination ECB after
each connection service request and SQL call. The routine sets the variable CONTROL to control further
processing within the module.

* CHEKCODE PSEUDOCODE *
*khkkkhkkkhkhkkhhkkhkhkkkhhkhhkkhkhkhkkhhkhhkkhkhkhkkhhkhhkkhkhhkhhkhhkkhkhhkhhkhhkkhkhkhkhhkhhkkhkhkhkhhkhhkhkhkhkhhkhhkhkhkkk
*IF TECB is POSTed with the ABTERM or FORCE codes

THEN

*

* CONTROL = 'SHUTDOWN'

* WRITE 'DB2 found FORCE or ABTERM, shutting down'

* ELSE /* Termination ECB was not POSTed =*/
* SELECT (RETCODE) /* Look at the return code */
* WHEN (0) ; /* Do nothing; everything is OK */
* WHEN (4) ; /* Warning */
* SELECT (REASCODE) /* Look at the reason code */
* WHEN ('00C10824'X) /* Ready for another CAF call */
* CONTROL = 'RESTART' /% Start over, from the top */
* OTHERWISE

* WRITE 'Found unexpected RO when R15 was 4'

* CONTROL = 'SHUTDOWN'

* END INNER-SELECT

* WHEN (8,12) /* Connection failure */
* SELECT (REASCODE) /* Look at the reason code */
* WHEN ('00C10831'X) /* DB2 / CAF release level mismatchx/
* WRITE 'Found a mismatch between DB2 and CAF release levels'
* WHEN ('0OF30002'X, /* These mean that DB2 is down but */
* '00F30012'X) /> will POST SECB when up again */
* DO

* WRITE 'DB2 is unavailable. I'll tell you when it is up.'
* WAIT SECB /* Wait for DB2 to come up */
* WRITE 'DB2 is now available.'

* END

* /**/
* /* Insert tests for other DB2 connection failures here. */
* /* CAF Externals Specification lists other codes you can */
* /* receive. Handle them in whatever way is appropriate */
* /* for your application. */
* [Fkokk ek k ok ok ko k ok ok ok ko okok ok ok ok ok kok ok ok ok ok ok ok ok ok ok ok ok k ok ok ok ok kok ok ok ok ko k ok ok ok
* OTHERWISE /* Found a code we're not ready forx/
* WRITE 'Warning: DB2 connection failure. Cause unknown'

* CALL DSNALI ('TRANSLATE',SQLCA) /* Fill in SQLCA */
* WRITE SQLCODE and SQLERRM

* END INNER-SELECT

* WHEN (200)

* WRITE 'CAF found user error. See DSNTRACE data set'

* WHEN (204)

* WRITE 'CAF system error. See DSNTRACE data set'

* OTHERWISE

* CONTROL = 'SHUTDOWN'

* WRITE 'Got an unrecognized return code'

* END MAIN SELECT

* IF (RETCODE > 4) THEN /* Was there a connection problem?x/
* CONTROL = 'SHUTDOWN'

* END CHEKCODE

* Subroutine CHEKCODE checks return codes from DB2 and Call Attach.
* When CHEKCODE receives control, R13 should point to the caller's
* save area.
ek kek ok ok o ok kok ok ok e ok ok ok ok ok ek ok ok ok ok ok ke ok ok ok ok ok e ke ok kok ok ok ek ok ok ok ok ok ek ok ok ok ok ok ke ok kok ok ok ok ke ok kok ok ok ke ok
CHEKCODE DS OH
STM R14,R12,12(R13)
ST R15,RETCODE
ST RO, REASCODE
LA R15, SAVEAREA
ST R13,4(,R15)

Prolog
Save the return code
Save the reason code
Get save area address
Chain the save areas
ST R15,8(,R13) Chain the save areas
LR R13,R15 Put save area address in R13
* *kkkkkkkkkkkkrkxkkxkk*x HUNT FOR FORCE OR ABTERM *kkkkkkkkkhkkhhx
™ TECB,POSTBIT See if TECB was POSTed
BZ DOCHECKS Branch if TECB was not POSTed
CLC TECBCODE(3),QUIESCE Is this "STOP DB2 MODE=FORCE"
BE DOCHECKS If not QUIESCE, was FORCE or ABTERM
MVC CONTROL , SHUTDOWN Shutdown
WRITE 'Found found FORCE or ABTERM, shutting down'
B ENDCCODE Go to the end of CHEKCODE

Chapter 2. Connecting to Db2 from your application program 63

DOCHECKS DS OH Examine RETCODE and REASCODE

* kkkkkkkkkkkkk ko k ko ko HUNT FOR © *kkkskokhskk ks hskk ks hkkhkk ke kk ko
CLC RETCODE, ZERO Was it a zero?
BE ENDCCODE Nothing to do in CHEKCODE for zero
KRR R AR A A A A KA HUNT FOR 4 sokkkkokkkk koo kkokkokkoxkox A
CLC RETCODE, FOUR Was it a 4?
BNE HUNTS8 If not a 4, hunt eights
CLC REASCODE, C10831 Was it a release level mismatch?
BNE HUNT824 Branch if not an 831
WRITE 'Found a mismatch between DB2 and CAF release levels'
B ENDCCODE We are done. Go to end of CHEKCODE
HUNT824 DS OH Now look for 'CAF reset' reason code
CLC REASCODE, C10824 Was it 4? Are we ready to restart?
BNE UNRECOG If not 824, got unknown code

WRITE 'CAF is now ready for more input'

MVC CONTROL , RESTART Indicate that we should re-CONNECT

B ENDCCODE We are done. Go to end of CHEKCODE
UNRECOG DS OH

WRITE 'Got RETCODE = 4 and an unrecognized reason code'

MVC CONTROL , SHUTDOWN Shutdown, serious problem

B ENDCCODE We are done. Go to end of CHEKCODE
* kkkkkkkkkkkkkkkkkkkkk HUNT FOR 8 kokskokokokokskk sk skk sk sk sk e ke ke ok ke ok ke ok
HUNT8 DS OH

CLC RETCODE, EIGHT Hunt return code of 8

BE GOT80R12

CLC RETCODE, TWELVE Hunt return code of 12

BNE HUNT200
GOT80R12 DS OH Found return code of 8 or 12

WRITE 'Found RETCODE of 8 or 12'
CLC REASCODE, F30002 Hunt for X'GOF30002'
BE DB2DOWN

CLC REASCODE, F30012 Hunt for X'OOF30012'
BE DB2DOWN
WRITE 'DB2 connection failure with an unrecognized REASCODE'

CLC SQLCODE, ZERO See if we need TRANSLATE
BNE A4TRANS If not blank, skip TRANSLATE
ko koo ko ok ok ok ok ok ok TRANSLATE unrecognized RETCODES *xxxxxx%
WRITE 'SQLCODE O but R15 not, so TRANSLATE to get SQLCODE'
L R15,LIALI Get the Language Interface address
CALL (15), (TRANSLAT,SQLCA),VL,MF=(E,CAFCALL)
C RO, C10205 Did the TRANSLATE work?
BNE A4TRANS If not C10205, SQLERRM now filled in
WRITE 'Not able to TRANSLATE the connection failure'
B ENDCCODE Go to end of CHEKCODE
A4TRANS DS OH SQLERRM must be filled in to get here
* Note: your code should probably remove the X'FF'
* separators and format the SQLERRM feedback area.
* Alternatively, use DB2 Sample Application DSNTIAR
* to format a message.
WRITE 'SQLERRM is:' SQLERRM
B ENDCCODE We are done. Go to end of CHEKCODE
DB2DOWN DS OH Hunt return code of 200
WRITE 'DB2 is down and I will tell you when it comes up'
WAIT ECB=SECB Wait for DB2 to come up

WRITE 'DB2 is now available'
MVC CONTROL , RESTART Indicate that we should re-CONNECT

B ENDCCODE
KRR KRR A A A HUNT FOR 200 skkskkkkkk ok dkkkkkkkxkk ks
HUNT200 DS OH Hunt return code of 200

CLC RETCODE, NUM206O Hunt 200

BNE HUNT204
WRITE 'CAF found user error, see DSNTRACE data set'

B ENDCCODE We are done. Go to end of CHEKCODE
* kkkkkkkkkokkkk ok k ok ok ok ok HUNT FOR 204 kxkkkkkkhhhhhhkhhkhkxkkrk
HUNT204 DS OH Hunt return code of 204

CLC RETCODE,NUM204 Hunt 204

BNE WASSAT If not 204, got strange code

WRITE 'CAF found system error, see DSNTRACE data set'

B ENDCCODE We are done. Go to end of CHEKCODE
* kkkkkkkkkokkkk ok ok k ok ok ko UNRECOGNIZED RETCODE *#%*kkkkshkkhkkkkkk

WASSAT DS OH
WRITE 'Got an unrecognized RETCODE'
MVC CONTROL , SHUTDOWN Shutdown

BE ENDCCODE We are done. Go to end of CHEKCODE
ENDCCODE DS OH Should we shut down?
L R4 ,RETCODE Get a copy of the RETCODE
C R4 ,FOUR Have a look at the RETCODE
BNH BYEBYE If RETCODE <= 4 then leave CHEKCODE
MVC CONTROL , SHUTDOWN Shutdown
BYEBYE DS OH Wrap up and leave CHEKCODE

64 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

L R13,4(,R13) Point to caller's save area
RETURN (14,12) Return to the caller

Example of invoking CAF when you do not specify the precompiler option ATTACH(CAF)

Each of the four Db2 attachment facilities contains an entry point named DSNHLI. When you use CAF

but do not specify the precompiler option ATTACH(CAF), SQL statements result in BALR instructions to
DSNHLI in your program. To find the correct DSNHLI entry point without including DSNALI in your load
module, code a subroutine with entry point DSNHLI that passes control to entry point DSNHLI2 in the
DSNALI module. DSNHLI2 is unique to DSNALI and is at the same location in DSNALI as DSNHLI. DSNALI
uses 31-bit addressing. If the application that calls this intermediate subroutine uses 24-bit addressing,
this subroutine should account for the difference.

In the following example, LISQL is addressable because the calling CSECT used the same register 12 as
CSECT DSNHLI. Your application must also establish addressability to LISQL.

ek ke ok ok ok ok ke ok ok ok e ok ok ok ok ok ek ok ok ok ok ok ke ok ok ok ok ok e ke ok ok ok ok ke ke ok kok ok ok ke ok ok ok ok ok ke ok ke ok ok ok ok ok ok ok ok ok ke ok
* Subroutine DSNHLI intercepts calls to LI EP=DSNHLI

DS oD
DSNHLI CSECT Begin CSECT
STM R14,R12,12(R13) Prologue
LA R15,SAVEHLI Get save area address
ST R13,4(,R15) Chain the save areas
ST R15,8(,R13) Chain the save areas
LR R13,R15 Put save area address in R13
L R15,LISQL Get the address of real DSNHLI
BASSM R14,R15 Branch to DSNALI to do an SQL call
* DSNALI is in 31-bit mode, so use
* BASSM to assure that the addressing
* mode is preserved.
L R13,4(,R13) Restore R13 (caller's save area addr)
L R14,12(,R13) Restore R14 (return address)
RETURN (1,12) Restore R1-12, NOT RO and R15 (codes)

Example of variable declarations when using CAF

The following example code shows declarations for some of the variables that were used in the previous
subroutines.

*hkkkkkkkkkkkkkkhkkkkkkkkkkkkkkxkkx VARIABLES ,kkkkkkkhkhkkkkkhkhkhkhkkkkkkhkkkkkkx

SECB DS F DB2 Startup ECB

TECB DS F DB2 Termination ECB

LIALI DS F DSNALI Entry Point address

LISQL DS F DSNHLI2 Entry Point address

SSID DS CL4 DB2 Subsystem ID. CONNECT parameter
PLAN DS CL8 DB2 Plan name. OPEN parameter

TRMOP DS CL4 CLOSE termination option (SYNC|ABRT)
FUNCTN DS CL12 CAF function to be called

RIBPTR DS F DB2 puts Release Info Block addr here
RETCODE DS F Chekcode saves R15 here

REASCODE DS F Chekcode saves RO here

CONTROL DS CL8 GO, SHUTDOWN, or RESTART

SAVEAREA DS 18F Save area for CHEKCODE
*kkkkkhhkhhkhhkrkhhkrkhhkrkhhkrkkhrkkdkkx CONSTANTS Hhkkhhhkkhhrkhhrkhhrkhhrkhhhhhhrhrrik
SHUTDOWN DC CL8'SHUTDOWN ' CONTROL value: Shutdown execution
RESTART DC CL8'RESTART ' CONTROL value: Restart execution
CONTINUE DC CL8'CONTINUE' CONTROL value: Everything OK, cont
CODEO DC F'o' SQLCODE of ©

CODE100 DC F'100' SQLCODE of 100

QUIESCE DC XL3'000008' TECB postcode: STOP DB2 MODE=QUIESCE

CONNECT DC CL12'CONNECT ' Name of a CAF service. Must be CL12!
OPEN DC CL12'0OPEN ' Name of a CAF service. Must be CL12!
CLOSE DC CL12'CLOSE ' Name of a CAF service. Must be CL12!
DISCON DC CL12'DISCONNECT ‘' Name of a CAF service. Must be CL12!
TRANSLAT DC CL12'TRANSLATE ' Name of a CAF service. Must be CL12!

SYNC DC CL4'SYNC' Termination option (COMMIT)

ABRT DC CL4'ABRT' Termination option (ROLLBACK)
""""""""""""""""" RETURN CODES (R15) FROM CALL ATTACH **xx*
ZERO DC F'o' 0

FOUR DC F'4' 4

EIGHT DC F'8' 8

TWELVE DC F'12' 12 (Call Attach return code in R15)
NUM200 DC F'200' 200 (User error)

Chapter 2. Connecting to Db2 from your application program 65

NUM204 DC F'204' 204 (Call Attach system error)
------------------------------ REASON CODES (ROO) FROM CALL ATTACH #x+x

C10205 DC XL4'00C10205" Call attach could not TRANSLATE
C10831 DC XL4'00C10831" Call attach found a release mismatch
C10824 DC XL4'00C10824" Call attach ready for more input
F30002 DC XL4'O0F30002' DB2 subsystem not up

F30011 DC XL4'OOF30011" DB2 subsystem not up

F30012 DC XL4'0OF30012" DB2 subsystem not up

F30025 DC XL4'0OOF30025' DB2 is stopping (REASCODE)

*

* Insert more codes here as necessary for your application

"""""""""""""""""" SQLCA and RIB *kkkskskskkkkskkskkhhkkkkkhkk
EXEC SQL INCLUDE SQLCA
DSNDRIB Get the DB2 Release Information Block
"""""""""""""""""" CALL macro parm 1ist ks ks kkkkkk
CAFCALL CALL ,(*,*,%,%,%,%,%,%,%),VL,MF=L

Invoking the Resource Recovery Services attachment facility

The Resource Recovery Services attachment facility (RRSAF) enables your program to communicate with
Db2. Invoke RRSAF as an alternative to invoking CAF or when using stored procedures that runin a
WLM-established address space. RRSAF has more capabilities than CAF.

Before you begin
Before you invoke RRSAF, perform the following actions:

« Ensure that the RRSAF language interface load module, DSNRLI, is available.
« Ensure that your application satisfies the requirements for programs that access RRSAF.
« Ensure that your application satisfies the general environment characteristics for connecting to Db2.
« Ensure that you are familiar with the following z/OS concepts and facilities:
— The CALL macro and standard module linkage conventions
— Program addressing and residency options (AMODE and RMODE)
— Creating and controlling tasks; multitasking
— Functional recovery facilities such as ESTAE, ESTAI, and FRRs
— Synchronization techniques such as WAIT/POST
— z/0S RRS functions, such as SRRCMIT and SRRBACK

About this task

Applications that use RRSAF can be written in assembler language, C, COBOL, Fortran, and PL/I. When
choosing a language to code your application in, consider the following restrictions:

« If you use z/OS macros (ATTACH, WAIT, POST, and so on), choose a programming language that
supports them.

« The RRSAF TRANSLATE function is not available in Fortran. To use this function, code it in a routine that
is written in another language, and then call that routine from Fortran.

Procedure

To invoke RRSAF:
1. Perform one of the following actions:

- Explicitly invoke RRSAF by including in your program CALL DSNRLI statements with the appropriate
options.

The first option is an RRSAF connection function, which describes the action that you want RRSAF
to take. The effect of any function depends in part on what functions the program has already
performed.

66 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

To code RRSAF functions in C, COBOL, Fortran, or PL/I, follow the individual language's rules for
making calls to assembler language routines. Specify the return code and reason code parameters in
the parameter list for each RRSAF call.

Requirement: For C, C++, and PL/I applications, you must also include in your program the compiler
directives that are listed in the following table, because DSNRLI is an assembler language program.

Table 15. Compiler directives to include in C, C++, and PL/I applications that contain CALL DSNRLI

statements
Language Compiler directive to include
C f#tpragma linkage(dsnrli, 0S)
C++ extern "0S" §

int DSNRLI(

char = functn,
20)3 B

PL/I DCL DSNRLI ENTRY OPTIONS(ASM,INTER,RETCODE);

« Implicitly invoke RRSAF by including SQL statements or IFI calls in your program just as you would
in any program. The RRSAF facility establishes the connection to Db2 with the default values for the
subsystem name, plan name and authorization ID.

Restriction: If your program can make its first SQL call from different modules with different DBRMs,
you cannot use a default plan name and thus, you cannot implicitly invoke RRSAF. Instead, you must
explicitly invoke RRSAF by calling the CREATE THREAD function.

Requirement: If your application includes both SQL and IFI calls, you must issue at least one SQL
call before you issue any IFI calls. This action ensures that your application uses the correct plan.

2. If you implicitly invoked RRSAF, determine if the implicit connection was successful by examining
the return code and reason code immediately after the first executable SQL statement within the
application program. Your program can check these codes by performing one of the following actions:

« Examine registers 0 and 15 directly.

« Examine the SQLCA, and if the SQLCODE is -981, obtain the return and reason code from the
message text. The return code is the first token, and the reason code is the second token.

If the implicit connection is successful, the application can examine the SQLCODE for the first, and
subsequent, SQL statements.

Example of an RRSAF configuration
The following figure shows an conceptual example of invoking and using RRSAF.

Chapter 2. Connecting to Db2 from your application program 67

Application Load RRSAF

language
LOADDSNRLI = == === === ———— » interface
LOAD DSNWLIR = = === =—===—=—— >
LOADDSNRLIR = == === == ——— — > RRSAF
mainline
CALL DSNRLI Call code
(CIDENTIFY’) >
(SWITCH TO’) >
('SIGNON’) >
(AUTH SIGNON’) ————————» DSNALI
('SET_ID") »
(SET_CLIENT_ID)) — 8 - 5

(CONTEXT SIGNON') ——
(CREATE THREAD) —
(FIND_DB2_SYSTEMS) ——
(TERMINATE THREAD) ————»
(TERMINATE IDENTIFY)) ——

CALL DSNWLI (Process
CALL DSNHLI connection
(SQL calls) requests)

— l

DSNHLI (dummy Db2

application
entry point)

CALL DSNHLIR DSNHLIR —mm
(Transfer calls (Process
to real RRSAF SQL stmts)

SQL entry point)

DSNWLI (dummy
application
entry point)

L5 CALL DSNWLIR » DSNWLIR

(Transfer calls to I
real RRSAF IFI)

Resource Recovery Services attachment facility

An attachment facility enables programs to communicate with Db2. The Resource Recovery Services
attachment facility (RRSAF) provides such a connection for programs that run in z/OS batch, TSO
foreground, and TSO background. The RRSAF is an alternative to CAF and has more functionality.

An application program using RRSAF can perform the following actions:

Use Db2 to process SQL statements, commands, or instrumentation facility interface (IFI) calls.

Coordinate Db2 updates with updates made by all other resource managers that also use z/OS RRS in
an z/0S system.

Use the z/OS System Authorization Facility and an external security product, such as RACF, to sign on to
Db2 with the authorization ID of a user.

Sign on to Db2 using a new authorization ID and an existing connection and plan.
Access Db2 from multiple z/OS tasks in an address space.

Switch a Db2 thread among z/0S tasks within a single address space.

Access the Db2 IFI.

Run with or without the TSO terminal monitor program (TMP).

Run without being a subtask of the DSN command processor (or of any Db2 code).
Run above or below the 16-MB line.

Establish an explicit connection to Db2, through a call interface, with control over the exact state of the
connection.

Establish an implicit connection to Db2 (with a default subsystem identifier and a default plan name) by
using SQL statements or IFI calls without first calling RRSAF.

68 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

« Supply event control blocks (ECBs), for Db2 to post, that signal start-up or termination.

- Intercept return codes, reason codes, and abend codes from Db2 and translate them into messages as
required.

RRSAF uses z/0S Transaction Management and Recoverable Resource Manager Services (z/OS RRS).

Any task in an address space can establish a connection to Db2 through RRSAF. Each task control block
(TCB) can have only one connection to Db2. A Db2 service request that is issued by a program that

runs under a given task is associated with that task's connection to Db2. The service request operates
independently of any Db2 activity under any other task.

Each connected task can run a plan. Tasks within a single address space can specify the same plan,
but each instance of a plan runs independently from the others. A task can terminate its plan and run a
different plan without completely breaking its connection to Db2.

RRSAF does not generate task structures.

When you design your application, consider that using multiple simultaneous connections can increase
the possibility of deadlocks and Db2 resource contention.

Restriction: RRSAF does not provide attention processing exits or functional recovery routines. You can
provide whatever attention handling and functional recovery your application needs, but you must use
ESTAE/ESTAI type recovery routines only.

A tracing facility provides diagnostic messages that help you debug programs and diagnose errors in the
RRSAF code. The trace information is available only in a SYSABEND or SYSUDUMP dump.

To commit work in RRSAF applications, use the CPIC SRRCMIT function or the Db2 COMMIT statement.
To roll back work, use the CPIC SRRBACK function or the Db2 ROLLBACK statement.

Use the following guidelines to decide whether to use the Db2 statements or the CPIC functions for
commit and rollback operations:

« Use Db2 COMMIT and ROLLBACK statements when all of the following conditions are true:

— The only recoverable resource that is accessed by your application is Db2 data that is managed by a
single Db2 instance.

Db2 COMMIT and ROLLBACK statements fail if your RRSAF application accesses recoverable
resources other than Db2 data that is managed by a single Db2 instance.

— The address space from which syncpoint processing is initiated is the same as the address space that
is connected to Db2.

- If your application accesses other recoverable resources, or syncpoint processing and Db2 access are
initiated from different address spaces, use SRRCMIT and SRRBACK.

Related reference

COMMIT (Db2 SOL)

ROLLBACK (Db2 SQL)

Related information

Using Protected Resources (MVS Programming: Callable Services for High-Level Languages)

Properties of RRSAF connections
RRSAF enables programs to communicate with Db2 to process SQL statements, commands, or IFI calls.

Restriction: Do not mix RRSAF connections with other connection types in a single address space. The
first connection that is made from an address space to Db2 determines the type of connection allowed.

The connection that RRSAF makes with Db2 has the basic properties that are listed in the following table.

Chapter 2. Connecting to Db2 from your application program 69

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_commit.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_rollback.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieac100/rrstxt.htm

Table 16. Properties of RRSAF connections

Property Value Comments
Connection name RRSAF You can use the DISPLAY
THREAD command to list RRSAF
applications that have the
connection name RRSAF.
Connection type RRSAF None.
Authorization ID Authorization IDs that are A connection must have a
associated with each Db2 primary ID and can have one
connection or more secondary IDs. Those

identifiers are used for the
following purposes:

- Validating access to Db2

» Checking privileges on Db2
objects

« Assigning ownership of Db2
objects

« Identifying the user of
a connection for audit,
performance, and accounting
traces.

RRSAF relies on the z/0OS
System Authorization Facility
(SAF) and a security product,
such as RACF, to verify and
authorize the authorization IDs.
An application that connects

to Db2 through RRSAF must
pass those identifiers to SAF
for verification and authorization
checking. RRSAF retrieves the
identifiers from SAF.

A location can provide an
authorization exit routine for

a Db2 connection to change

the authorization IDs and to
indicate whether the connection
is allowed. The actual values that
are assigned to the primary and
secondary authorization IDs can
differ from the values that are
provided by a SIGNON or AUTH
SIGNON request. A site's Db2
signon exit routine can access
the primary and secondary
authorization IDs and can modify
the IDs to satisfy the site's
security requirements. The exit
routine can also indicate whether
the signon request should be
accepted.

70 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Table 16. Properties of RRSAF connections (continued)

Property Value Comments

Scope RRSAF processes connections as None.
if each task is entirely isolated.
When a task requests a function,
RRSAF passes the function to
Db2, regardless of the connection
status of other tasks in the
address space. However, the
application program and the Db2
subsystem have access to the
connection status of multiple
tasks in an address space.

If an application that is connected to Db2 through RRSAF terminates normally before the TERMINATE
THREAD or TERMINATE IDENTIFY functions deallocate the plan, RRS commits any changes made after
the last commit point. If the application terminates abnormally before the TERMINATE THREAD or
TERMINATE IDENTIFY functions deallocate the plan, z/OS RRS rolls back any changes made after the
last commit point. In either case, Db2 deallocates the plan, if necessary, and terminates the application's
connection.

If Db2 abends while an application is running, Db2 rolls back changes to the last commit point. If Db2
terminates while processing a commit request, Db2 either commits or rolls back any changes at the next
restart. The action taken depends on the state of the commit request when Db2 terminates.

Making the RRSAF language interface (DSNRLI) available

Before you can invoke the Resource Recovery Services attachment facility (RRSAF), you must first make
available the RRSAF language interface load module, DSNRLI.

About this task

Part of RRSAF is a Db2 load module, DSNRLI, which is also known as the RRSAF language interface
module. DSNRLI has the alias names DSNHLIR and DSNWLIR. The module has five entry points: DSNRLI,
DSNHLI, DSNHLIR, DSNWLI, and DSNWLIR. These entry points serve the following functions:

- Entry point DSNRLI handles explicit Db2 connection service requests.

e DSNHLI and DSNHLIR handle SQL calls. Use DSNHLI if your application program link-edits RRSAF. Use
DSNHLIR if your application program loads RRSAF.

« DSNWLI and DSNWLIR handle IFI calls. Use DSNWLI if your application program link-edits RRSAF. Use
DSNWLIR if your application program loads RRSAF.

Procedure

To make DSNRLI available:
1. Decide which of the following methods you want to use to make DSNRLI available:
« Explicitly issuing LOAD requests when your program runs.

By explicitly loading the DSNRLI module, you can isolate the maintenance of your application from
future IBM maintenance to the language interface. If the language interface changes, the change will
probably not affect your load module.

« Including the DSNRLI module in your load module when you link-edit your program.

A disadvantage of link-editing DSNRLI into your load module is that if IBM makes a change to
DSNRLI, you must link-edit your program again.

Chapter 2. Connecting to Db2 from your application program 71

Alternatively, if using explicit connections via CALL DSNALI, you can link-edit your program with
DSNULI, the Universal Language Interface.

2. Depending on the method that you chose in step 1, perform one of the following actions:
« If you want to explicitly issue LOAD requests when your program runs:

In your program, issue z/OS LOAD service requests for entry points DSNRLI and DSNHLIR. If you use
IFI services, you must also load DSNWLIR. Save the entry point address that LOAD returns and use it
in the CALL macro.

Indicate to Db2 which entry point to use in one of the following two ways:
— Specify the precompiler option ATTACH(RRSAF).
This option causes Db2 to generate calls that specify entry point DSNHLIR.

Restriction: You cannot use this option if your application is written in Fortran.
— Code a dummy entry point named DSNHLI within your load module.

If you do not specify the precompiler option ATTACH, the Db2 precompiler generates calls to entry
point DSNHLI for each SQL request. The precompiler does not know about and is independent of
the different Db2 attachment facilities. When the calls that are generated by the Db2 precompiler
pass control to DSNHLI, your code that corresponds to the dummy entry point must preserve the
option list that is passed in register 1 and call DSNHLIR with the same option list.

« If you want to include the DSNRLI module in your load module when you link-edit your program:

Include DSNRLI in your load module during a link-edit step. For example, you can use a linkage
editor control statement that is similar to the following statement in your JCL:

INCLUDE DB2LIB(DSNRLI).

By coding this statement, you avoid inadvertently picking up the wrong language interface module.

When you include the DSNRLI module during the link-edit, do not include a dummy DSNHLI entry
point in your program or specify the precompiler option ATTACH. Module DSNRLI contains an entry
point for DSNHLI, which is identical to DSNHLIR, and an entry point for DSNWLI, which is identical to
DSNWLIR.

Related concepts

Program examples for RRSAF
The Resource Recovery Services attachment facility (RRSAF) enables programs to communicate with
Db2. You can use RRSAF as an alternative to CAF.

“Universal language interface (DSNULI)” on page 113

The universal language interface (DSNULI) subcomponent determines the runtime environment and
dynamically loads and branches to the appropriate language interface module.

Related tasks

Making the CAF language interface (DSNALI) available
Before you can invoke the call attachment facility (CAF), you must first make DSNALI available.

Link-editing an application with DSNULI

To create a single load module that can be used in more than one attachment environment, you can
link-edit your program or stored procedure with the Universal Language Interface module (DSNULI)
instead of with one of the environment-specific language interface modules (DSNELI, DSNALI, DSNRLI,
DSNCLI, or DFSLI000).

Requirements for programs that use RRSAF

The Resource Recovery Services attachment facility (RRSAF) enables programs to communicate with
Db2. Before you invoke RRSAF in your program, ensure that your program satisfies any requirements for
using RRSAF.

When you write programs that use RRSAF, ensure that they meet the following requirements:

72 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

« The program accounts for the size of the RRSAF code. The RRSAF code requires about 10 KB of virtual
storage per address space and an additional 10 KB for each TCB that uses RRSAF.

« If your local environment intercepts and replaces the z/OS LOAD SVC that RRSAF uses, you must ensure
that your version of LOAD manages the load list element (LLE) and contents directory entry (CDE)
chains like the standard z/OS LOAD macro. RRSAF uses z/0OS SVC LOAD to load a module as part of the
initialization after your first service request. The module is loaded into fetch-protected storage that has
the job-step protection key.

You can prepare application programs to run in RRSAF similar to how you prepare applications to run
in other environments, such as CICS, IMS, and TSO. You can prepare an RRSAF application either in
the batch environment or by using the Db2 program preparation process. You can use the program
preparation system either through DB2I or through the DSNH CLIST.

Related tasks

Preparing an application to run on Db2 for z/OS
To prepare and run applications that contain embedded static SQL statements or dynamic SQL
statements, you must process, compile, link-edit, and bind the SQL statements.

How RRSAF modifies the content of registers

If you do not specify the return code and reason code parameters in your RRSAF function calls or ifyou
invoke RRSAF implicitly, RRSAF puts a return code in register 15 and a reason code in register 0. RRSAF
preserves the contents of registers 2 through 14.

If you specify the return code and reason code parameters, RRSAF places the return code in register 15
and in the return code parameter to accommodate high-level languages that support special return code
processing.

The following table summarizes the register conventions for RRSAF calls.

Table 17. Register conventions for RRSAF calls

Register Usage

R1 Parameter list pointer

R13 Address of caller's save area
R14 Caller's return address

R15 RRSAF entry point address

Implicit connections to RRSAF

Resource Recovery Services attachment facility (RRSAF) establishes an implicit connection to Db2 under
certain situations. The connection is established if the following are true: the RRSAF language interface
load module (DSNRLI) is available, you do not explicitly specify the IDENTIFY function in a CALL DSNRLI
statement in your program, and the application includes SQL statements or IFI calls.

An implicit connection causes RRSAF to initiate implicit IDENTIFY and CREATE THREAD requests to
Db2. These requests are subject to the same Db2 return codes and reason codes as explicitly specified
requests.

Implicit connections use the following defaults:

Subsystem name
The default name that is specified in the module DSNHDECP. RRSAF uses the installation default
DSNHDECP, unless your own DSNHDECP module is in a library in a STEPLIB statement of the JOBLIB
concatenation or in the link list. In a data sharing group, the default subsystem name is the group
attachment name.

Be certain that you know what the default name is and that it names the specific Db2 subsystem that
you want to use.

Chapter 2. Connecting to Db2 from your application program 73

Plan name
The member name of the database request module (DBRM) that Db2 produced when you
precompiled the source program that contains the first SQL call.

Authorization ID
The 7-byte user ID that is associated with the address space, unless an authorized function has built
an Accessor Environment Element (ACEE) for the address space. If an authorized function has built an
ACEE, Db2 passes the 8-byte user ID from the ACEE.

For an implicit connection request, your application should not explicitly specify either the IDENTIFY
function or the CREATE THREAD function. Your application can execute other explicit RRSAF calls after
the implicit connection is made. An implicit connection does not perform any SIGNON processing. Your
application can execute the SIGNON function at any point of consistency. To terminate an implicit
connection, you must use the proper function calls.

For implicit connection requests, register 15 contains the return code, and register 0 contains the reason
code. The return code and reason code are also in the message text for SQLCODE -981.

Related concepts

Summary of RRSAF behavior

The effect of any Resource Recovery Services attachment facility (RRSAF) function depends in part on
what functions the program has already run. You should plan the RRSAF function calls that your program
makes to avoid any errors and major structural problems in your application.

Related information
-981 (Db2 Codes)

CALL DSNRLI statement parameter list

The CALL DSNRLI statement explicitly invokes RRSAF. When you include CALL DSNRLI statements in your
program, you must specify all parameters that precede the return code parameter.

In CALL DSNRLI statements, you cannot omit any of parameters that come before the return code
parameter by coding zeros or blanks. No defaults exist for those parameters for explicit connection
requests. Defaults are provided for only implicit connections. All parameters starting with the return code
parameter are optional.

When you want to use the default value for a parameter but specify subsequent parameters, code the
CALL DSNRLI statement as follows:

 For C-language, when you code CALL DSNRLI statements in C, you need to specify the address of every
parameter, using the "address of" operator (&), and not the parameter itself. For example, to pass the
pklistptr parameter on the "CREATE THREAD" specify the address of the 4-byte pointer to the structure
(&pklistptr):

fnret=dsnrli(&crthrdfn[0], &plan[0], &collid[0], &reuse[O],
&retcode, &reascode, &pklistptr);

« Forall languages except assembler language, code zero for that parameter in the CALL DSNRLI
statement. For example, suppose that you are coding an IDENTIFY call in a COBOL program, and you
want to specify all parameters except the return code parameter. You can write a statement similar to
the following statement:

CALL 'DSNRLI' USING IDFYFN SSNM RIBPTR EIBPTR TERMECB STARTECB
BY CONTENT ZERO BY REFERENCE REASCODE.

« For assembler language, code a comma for that parameter in the CALL DSNRLI statement. For example,
suppose that you are coding an IDENTIFY call, and you want to specify all parameters except the return
code parameter. You can write a statement similar to the following statement:

CALL DSNRLI, (IDFYFN,SSNM,RIBPTR,EIBPTR, TERMECB,STARTECB, ,REASCODE)

74 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/n981.html

For assembler programs that invoke RRSAF, use a standard parameter list for an z/OS CALL. Register 1
must contain the address of a list of pointers to the parameters. Each pointer is a 4-byte address. The last
address must contain the value 1 in the high-order bit.

Summary of RRSAF behavior

The effect of any Resource Recovery Services attachment facility (RRSAF) function depends in part on
what functions the program has already run. You should plan the RRSAF function calls that your program
makes to avoid any errors and major structural problems in your application.

The following tables summarize RRSAF behavior after various inputs from application programs. The
contents of each table cell indicate the result of calling the function in the first column for that row
followed by the function in the current column heading. For example, if you issue TERMINATE THREAD
and then IDENTIFY, RRSAF returns reason code X'00C12201'. Use these tables to understand the order

in which your application must issue RRSAF calls, SQL statements, and IFI requests.

The RRSAF FIND_DB2_SYSTEMS function is omitted from these tables, because it does not affect the
operation of any of the other functions

The following table summarizes RRSAF behavior when the next call is to the IDENTIFY function, the
SWITCH TO function, the SIGNON function, or the CREATE THREAD function.

Table 18. Effect of call order when next call is IDENTIFY, SWITCH TO, SIGNON, or CREATE THREAD

Next function

IDENTIFY SWITCH TO SIGNON, AUTH SIGNON, CREATE THREAD
Previous function or CONTEXT SIGNON
Empty: first call IDENTIFY X'00C12205'1 X'00C12204'1 X'00C12204'1
IDENTIFY X'00F30049'T Switchtossnm Signon 2 X'00C12217'1
SWITCH TO IDENTIFY Switchto ssnm Signon 2 CREATE THREAD
SIGNON, AUTH SIGNON, X'00F30049'1 Switchtossnm Signon 2 CREATE THREAD
or CONTEXT SIGNON
CREATE THREAD X'00F30049' Switch to ssnm Signon 2 X'00C12202'1
TERMINATE THREAD X'00C12201't Switch to ssnm Signon 2 CREATE THREAD
IFI X'00F30049'1 Switchtossnm Signon 2 X'00C12202'1
SQL X'00F30049'T Switch to ssnm X'00F30092'13 X'00C12202'1
SRRCMIT or SRRBACK X'00F30049'1 Switchtossnm Signon 2 X'00C12202'1
Notes:

1. Errors are identified by the Db2 reason code that RRSAF returns.
2. Signon means either the SIGNON function, the AUTH SIGNON function, or the CONTEXT SIGNON function.

3. The SIGNON, AUTH SIGNON, or CONTEXT SIGNON functions are not allowed if any SQL operations are
requested after the CREATE THREAD function or after the last SRRCMIT or SRRBACK request.

The following table summarizes RRSAF behavior when the next call is an SQL statement or an IFI call or
to the TERMINATE THREAD function, the TERMINATE IDENTIFY function, or the TRANSLATE function.

Chapter 2. Connecting to Db2 from your application program 75

Table 19. Effect of call order when next call is SQL or IFI, TERMINATE THREAD, TERMINATE IDENTIFY, or

TRANSLATE

Next function

Previous function SQL or IFI TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE
Empty: first call SQLorIFIcall* X'00C12204' X'00C12204'1 X'00C12204'1
IDENTIFY SQLorIFIcall* X'00C12203'1 TERMINATE IDENTIFY TRANSLATE
SWITCH TO SQLorIFIcall* TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE
SIGNON, AUTH SIGNON, SQLorIFIcall* TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE
or CONTEXT SIGNON

CREATE THREAD SOLorIFIcall® TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE
TERMINATE THREAD SQLorIFIcall* X'00C122031 TERMINATE IDENTIFY TRANSLATE
IFI SQLorIFIcall* TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE
SQL SQLorIFIcall* X'00F30093'12 X'00F30093'13 TRANSLATE
SRRCMIT or SRRBACK SQLorIFIcall* TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE
Notes:

1. Errors are identified by the Db2 reason code that RRSAF returns.

2. TERMINATE THREAD is not allowed if any SQL operations are requested after the CREATE THREAD function
or after the last SRRCMIT or SRRBACK request.

3. TERMINATE IDENTIFY is not allowed if any SQL operations are requested after the CREATE THREAD
function or after the last SRRCMIT or SRRBACK request.

4. If you are using an implicit connection to RRSAF and issue SQL or IFI calls, RRSAF issues implicit IDENTIFY
and CREATE THREAD requests. If you continue with explicit RRSAF statements, you must follow the
standard order of explicit RRSAF calls. Implicitly connecting to RRSAF does not cause an implicit SIGNON
request. Therefore, you might need to issue an explicit SIGNON request to satisfy the standard order
requirement. For example, an SQL statement followed by an explicit TERMINATE THREAD request results in
an error. You must issue an explicit SIGNON request before issuing the TERMINATE THREAD request.

Related concepts

X'C1......' codes (Db2 Codes)

X'F3...... codes (Db2 Codes)

RRSAF connection functions

An Resource Recovery Services attachment facility (RRSAF) connection function specifies the action that
you want RRSAF to take. You specify these functions when you invoke RRSAF through CALL DSNRLI

statements.
Related concepts

CALL DSNRLI statement parameter list

The CALL DSNRLI statement explicitly invokes RRSAF. When you include CALL DSNRLI statements in your
program, you must specify all parameters that precede the return code parameter.

Summary of RRSAF behavior

76 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_00c1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_00f3.html

The effect of any Resource Recovery Services attachment facility (RRSAF) function depends in part on
what functions the program has already run. You should plan the RRSAF function calls that your program
makes to avoid any errors and major structural problems in your application.

IDENTIFY function for RRSAF
The RRSAF IDENTIFY function initializes a connection to Db2.

The IDENTIFY function establishes the caller's task as a user of Db2 services. If no other task in the
address space currently is connected to the specified subsystem, the IDENTIFY function also initializes
the address space to communicate with the Db2 address spaces. The IDENTIFY function establishes the
cross-memory authorization of the address space to Db2 and builds address space control blocks.

The following diagram shows the syntax for the IDENTIFY function.

DSNRLI IDENTIFY function

»»— CALL DSNRLI — (— function — , — ssnm — , — ribptr — , — eibptr — , — termecb — , —»

»— startecb —»

L , — retcode J
L — reascode J
L , — groupoverride J
L , — decpptr J

»
>

—) >«

Parameters point to the following areas:

function
An 18-byte area that contains IDENTIFY followed by 10 blanks.

ssnm
A 4-byte Db2 subsystem name, or group attachment or subgroup attachment name (if used in a data
sharing group) to which the connection is made. If ssnm is less than four characters long, pad it on the
right with blanks to a length of four characters.

ribptr
A 4-byte area in which RRSAF places the address of the release information block (RIB) after the call.
You can use the RIB to determine the release level of the Db2 subsystem to which the application
is connected. You can determine the modification level within the release level by examining the
RIBCNUMB and RIBCINFO fields. If the value in the RIBCNUMB field is greater than zero, check the
RIBCINFO field for modification levels.

If the RIB is not available (for example, if ssnm names a subsystem that does not exist), Db2 sets the
4-byte area to zeros.

The area to which ribptr points is below the 16-MB line.

This parameter is required. However, the application does not need to refer to the returned
information.

eibptr
A 4-byte area in which RRSAF places the address of the environment information block (EIB) after the
call. The EIB contains environment information, such as the data sharing group, the name of the Db2
member to which the IDENTIFY request was issued, and whether new functions are activated in the
subsystem. If the Db2 subsystem is not in a data sharing group, RRSAF sets the data sharing group
and member names to blanks. If the EIB is not available (for example, if ssnm names a subsystem
that does not exist), RRSAF sets the 4-byte area to zeros.

Chapter 2. Connecting to Db2 from your application program 77

The area to which eibptr points is above the 16-MB line.

This parameter is required. However, the application does not need to refer to the returned
information.

termech
The address of the application's event control block (ECB) that is used for Db2 termination. Db2
posts this ECB when the system operator enters the STOP DB2 command or when Db2 is terminating
abnormally. Specify a value of 0 if you do not want to use a termination ECB.

The ECB is ignored when Db2 is already stopped. The application program must examine any nonzero
RRSAF or Db2 reason codes before issuing a WAIT request on this ECB.

RRSAF puts a POST code in the ECB to indicate the type of termination as shown in the following
table.

Table 20. Post codes for types of Db2 termination

POST code Termination type
8 QUIESCE
12 FORCE
16 ABTERM
startecb

The address of the application's startup ECB. If Db2 has not started when the application issues the
IDENTIFY call, Db2 posts the ECB when Db2 has started. If Db2 is already started, the startup ECB
is ignored. and is not applied to the next Db2 startup. If Db2 is not started, and the startup ECB is
gueued, the termination ECB is ignored.

Enter a value of zero if you do not want to use a startup ECB. Db2 posts no more than one startup
ECB per address space. The ECB that is posted is associated with the most recent IDENTIFY call from
that address space. The application program must examine any nonzero RRSAF or Db2 reason codes
before issuing a WAIT request on this ECB.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the return code in register 15
and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places a reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the reason code in register 0.

If you specify reascode, you must also specify retcode or its default. You can specify a default for
retcode by specifying a comma or zero, depending on the language.

groupoverride
An 8-byte area that the application provides. This parameter is optional. If you do not want group
attach to be attempted, specify 'NOGROUP'. This string indicates that the subsystem name that is
specified by ssnm is to be used as a Db2 subsystem name, even if ssnm matches a group attachment
or subgroup attachment name. If groupoverride is not provided, ssnm is used as the group attachment
or subgroup attachment name if it matches a group attachment or subgroup attachment name.

If you specify this parameter in any language except assembler, you must also specify the retcode and
reascode parameters. In assembler language, you can omit the retcode and reascode parameters by
specifying commas as place-holders.

Recommendation: Avoid using the groupoverride parameter when possible, because it limits the
ability to do dynamic workload routing in a Parallel Sysplex. However, you should use this parameter
in a data sharing environment when you want to connect to a specific member of a data sharing

78 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

group, and the subsystem name of that member is the same as the group attachment or subgroup
attachment name.

decpptr

A 4-byte area in which RRSAF is to put the address of the DSNHDECP or a user-specified application
defaults module that was loaded by subsystem ssnm when that subsystem was started. This 4-byte
area is a 31-bit pointer. If ssnm is not found, the 4-byte area is set to 0.

The area to which decpptr points is above the 16-MB line.

If you specify this parameter in any language except assembler, you must also specify the retcode,
reascode, and groupoverride parameters. In assembler language, you can omit the retcode, reascode,
and groupoverride parameters by specifying commas as placeholders.

Example of RRSAF IDENTIFY function calls

The following table shows an IDENTIFY call in each language.

Table 21. Examples of RRSAF IDENTIFY calls

Language Call example

Assembler CALL DSNRLI, (IDFYFN,SSNM,RIBPTR,EIBPTR,TERMECB,STARTECB,
RETCODE, REASCODE , GRPOVER, DECPPTR)

Cl
fnret=dsnrli(&idfyfn[0],&ssnm[0], &ribptr, &eibptr, &termechb, &startech, &retcode,
&reascode, &grpover[0],&decpptr);

COBOL , ,
CALL DSNRLI' USING IDFYFN SSNM RIBTPR EIBPTR TERMECB STARTECB RETCODE REASCODE
GRPOVER
DECPPTR.

Fortran CALL DSNRLI(IDFYFN,SSNM,RIBPTR,EIBPTR,TERMECB,STARTECB,
RETCODE, REASCODE, GRPOVER, DECPPTR)

PL/I1
CALL DSNRLI(IDFYFN,SSNM,RIBPTR,EIBPTR,TERMECB,STARTECB,
RETCODE, REASCODE , GRPOVER, DECPPTR) ;

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler directives, because

DSNRLI is an assembler language program. These compiler directives are described in the instructions
for invoking RRSAF.

Internal processing for the IDENTIFY function

When you call the IDENTIFY function, Db2 performs the following steps:

1. Db2 determines whether the user address space is authorized to connect to Db2. Db2 invokes the

z/OS SAF and passes a primary authorization ID to SAF. That authorization ID is the 7-byte user ID that
is associated with the address space, unless an authorized function has built an ACEE for the address
space. If an authorized function has built an ACEE, Db2 passes the 8-byte user ID from the ACEE.

SAF calls an external security product, such as RACF, to determine if the task is authorized to use the
following items:

« The Db2 resource class (CLASS=DSNR)
« The Db2 subsystem (SUBSYS=ssnm)
« Connection type RRSAF

Chapter 2. Connecting to Db2 from your application program 79

2. If that check is successful, Db2 calls the Db2 connection exit routine to perform additional verification
and possibly change the authorization ID.

3. Db2 searches for a matching trusted context in the system cache and then the catalog based on the
following criteria:

« The primary authorization ID matches a trusted context SYSTEM AUTHID.

« The job or started task name matches the JOBNAME attribute that is defined for the identified
trusted context.

If a trusted context is defined, Db2 checks if SECURITY LABEL is defined in the trusted context. If
SECURITY LABEL is defined, Db2 verifies the SECURITY LABEL with RACF by using the RACROUTE
VERIFY request. This security label is used to verify multi-level security for SYSTEM AUTHID.

If a matching trusted context is defined, Db2 establishes the connection as trusted. Otherwise, the
connection is established without any additional privileges.
4. Db2 then sets the connection name to RRSAF and the connection type to RRSAF.

Related tasks

Invoking the Resource Recovery Services attachment facility

The Resource Recovery Services attachment facility (RRSAF) enables your program to communicate with
Db2. Invoke RRSAF as an alternative to invoking CAF or when using stored procedures that runin a
WLM-established address space. RRSAF has more capabilities than CAF.

SWITCH TO function for RRSAF

The RRSAF SWITCH TO function directs RRSAF, SQL, or IFI requests to a specified Db2 subsystem. Use
the SWITCH TO function to establish connections to multiple Db2 subsystems from a single task.

The SWITCH TO function is useful only after a successful IDENTIFY call. If you have established a
connection with one Db2 subsystem, you must issue a SWITCH TO call before you make an IDENTIFY call
to another Db2 subsystem. Otherwise, Db2 returns return code X'200' and reason code X'00C12201".

The first time that you make a SWITCH TO call to a new Db2 subsystem, Db2 returns return code 4 and
reason code X'00C12205' as a warning to indicate that the current task has not yet been identified to the
new Db2 subsystem.

The following diagram shows the syntax for the SWITCH TO function.

DSNRLI SWITCH TO function

»»— CALL DSNRLI — (— function,ssnm —»

>) >«
L , — retcode J
L , — reascode J
L , — groupoverride J

Parameters point to the following areas:

function
An 18-byte area that contains SWITCH TO followed by nine blanks.

ssnm
A 4-byte Db2 subsystem name, or group attachment or subgroup attachment name (if used in a data
sharing group) to which the connection is made. If ssnm is less than four characters long, pad it on the
right with blanks to a length of four characters.

retcode
A 4-byte area in which RRSAF places the return code.

80 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

This parameter is optional. If you do not specify retcode, RRSAF places the return code in register 15
and the reason code in register 0.

reascode

A 4-byte area in which RRSAF places the reason code.
This parameter is optional. If you do not specify reascode, RRSAF places the reason code in register 0.

If you specify this parameter, you must also specify retcode.

groupoverride

An 8-byte area that the application provides. This parameter is optional. If you do not want group
attach to be attempted, specify 'NOGROUP'. This string indicates that the subsystem name that is
specified by ssnm is to be used as a Db2 subsystem name, even if ssnm matches a group attachment
or subgroup attachment name. If groupoverride is not provided, ssnm is used as the group attachment
or subgroup attachment name if it matches a group attachment or subgroup attachment name.

If you specify this parameter in any language except assembler, you must also specify the retcode and
reascode parameters. In assembler language, you can omit the retcode and reascode parameters by
specifying commas as place-holders.

Recommendation: Avoid using the groupoverride parameter when possible, because it limits the
ability to do dynamic workload routing in a Parallel Sysplex. However, you should use this parameter
in a data sharing environment when you want to connect to a specific member of a data sharing
group, and the subsystem name of that member is the same as the group attachment or subgroup
attachment name.

Examples of RRSAF SWITCH TO calls

The following table shows a SWITCH TO call in each language.

Table 22. Examples of RRSAF SWITCH TO calls

Language Call example
Assembler CALL DSNRLI, (SWITCHFN,SSNM,RETCODE,REASCODE,GRPOVER)
Cl
fnret=dsnrli(&switchfn[0], &ssnm[@], &retcode,
&reascode, &grpover[0]);
COBOL CALL 'DSNRLI' USING SWITCHFN RETCODE REASCODE GRPOVER.
Fortran CALL DSNRLI(SWITCHFN,RETCODE,REASCODE,GRPOVER)
PL/I:L

CALL DSNRLI(SWITCHFN,RETCODE,REASCODE,GRPOVER);

1. For C, C++, and PL/I applications, you must include the appropriate compiler directives, because

DSNRLI is an assembler language program. These compiler directives are described in the instructions
for invoking RRSAF.

Example of using the SWITCH TO function to interact with multiple Db2 subsystems

The following example shows how you can use the SWITCH TO function to interact with three Db2
subsystems.

RRSAF calls for subsystem db21:

IDENTIFY
SIGNON
CREATE THREAD

Execute SQL on subsystem db21
SWITCH TO db22

Chapter 2. Connecting to Db2 from your application program 81

IF retcode = 4 AND reascode = '00C12205'X THEN
DO;
RRSAF calls on subsystem db22:
IDENTIFY
SIGNON
CREATE THREAD
END;
Execute SQL on subsystem db22
SWITCH TO db23
IF retcode = 4 AND reascode = '00C12205'X THEN
DO;
RRSAF calls on subsystem db23:
IDENTIFY
SIGNON
CREATE THREAD
END;
Execute SQL on subsystem 23
SWITCH TO db21
Execute SQL on subsystem 21
SWITCH TO db22
Execute SQL on subsystem 22
SWITCH TO db21
Execute SQL on subsystem 21
SRRCMIT (to commit the UR)
SWITCH TO db23
Execute SQL on subsystem 23
SWITCH TO db22
Execute SQL on subsystem 22
SWITCH TO db21
Execute SQL on subsystem 21
SRRCMIT (to commit the UR)

Related tasks

Invoking the Resource Recovery Services attachment facility

The Resource Recovery Services attachment facility (RRSAF) enables your program to communicate with
Db2. Invoke RRSAF as an alternative to invoking CAF or when using stored procedures that runin a
WLM-established address space. RRSAF has more capabilities than CAF.

SIGNON function for RRSAF

The RRSAF SIGNON function establishes a primary authorization ID and, optionally, one or more
secondary authorization IDs for a connection.

Requirement: Your program does not need to be an authorized program to issue the SIGNON call. For
that reason, before you issue the SIGNON call, you must issue the RACF external security interface macro
RACROUTE REQUEST=VERIFY to perform the following actions:

« Define and populate an ACEE to identify the user of the program.
 Associate the ACEE with the user's TCB.
« Verify that the user is defined to RACF and authorized to use the application.

Generally, you issue a SIGNON call after an IDENTIFY call and before a CREATE THREAD call. You can also
issue a SIGNON call if the application is at a point of consistency, and one of the following conditions is
true:

« The value of reuse in the CREATE THREAD call was RESET.

« The value of reuse in the CREATE THREAD call was INITIAL, no held cursors are open, the package or
plan is bound with KEEPDYNAMIC(NO), and all special registers are at their initial state. If open held
cursors exist or the package or plan is bound with KEEPDYNAMIC(YES), you can issue a SIGNON call
only if the primary authorization ID has not changed.

After you issue a SIGNON call, subsequent SQL statements return an error (SQLCODE -900) if the both of
following conditions are true:

« The connection was established as trusted when it was initialized.

« The primary authorization ID that was used when you issued the SIGNON call is not allowed to use the
trusted connection.

82 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

If a trusted context is defined, Db2 checks if SECURITY LABEL is defined in the trusted context. If
SECURITY LABEL is defined, Db2 verifies the security label with RACF by using the RACROUTE VERIFY
request. This security label is used to verify multi-level security for SYSTEM AUTHID.

The following diagram shows the syntax for the SIGNON function.

DSNRLI SIGNON function

»— CALL DSNRLI — (— function, correlation-id, — accounting-token, accounting-interval —»

; L‘,elme L,reasoode L I I J"
,user L o L I J
" L Xid J
L ,accounting-string —J

user-length, user-longname T T appl-length, appl-longname TN
ws-length, ws-longname T T correlation-length, correlation-longname T) >«
0,0

Parameters point to the following areas:

»—,

»—,

—
—

function
An 18-byte area that contains SIGNON followed by twelve blanks.

correlation-id
A 12-byte area in which you can put a Db2 correlation ID. The correlation ID is displayed in Db2
accounting and statistics trace records. You can use the correlation ID to correlate work units. This
token appears in the output from the DISPLAY THREAD command. If you do not want to specify a
correlation ID, fill the 12-byte area with blanks.

accounting-token
A 22-byte area in which you can put a value for a Db2 accounting token. This value is displayed in
Db2 accounting and statistics trace records in the QWHCTOKN field, which is mapped by DSNDQWHC
DSECT. Setting the value of the accounting token sets the value of the CURRENT CLIENT_ACCTNG
special register. If accounting-token is less than 22 characters long, you must pad it on the right with
blanks to a length of 22 characters. If you do not want to specify an accounting token, fill the 22-byte
area with blanks.

Alternatively, you change the value of the Db2 accounting token with RRSAF functions AUTH SIGNON,
CONTEXT SIGNON or SET_CLIENT_ID. You can retrieve the Db2 accounting token with the CURRENT
CLIENT_ACCTNG special register only if the DDF accounting string is not set.

accounting-interval
A 6-byte area that specifies when Db2 writes an accounting record.

If you specify COMMIT in that area, Db2 writes an accounting record each time that the application
issues SRRCMIT. This accounting record is written at the end of the second phase of a two-phase
commit. If the accounting interval is COMMIT, and an SRRCMIT is issued while a held cursor is open,
the accounting interval spans that commit and ends at the next valid accounting interval end point
(such as the next SRRCMIT that is issued without open held cursors, application termination, or
SIGNON with a new authorization ID).

If you specify any other value, Db2 writes an accounting record when the application terminates or
when you call the SIGNON function with a new authorization ID.

Chapter 2. Connecting to Db2 from your application program 83

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the return code in register 15
and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the reason code in register 0.
If you specify this parameter, you must also specify retcode.

user
A 16-byte area that contains the user ID of the client user. You can use this parameter to provide
the identity of the client user for accounting and monitoring purposes. Db2 displays this user ID in
the output from the DISPLAY THREAD command and in Db2 accounting and statistics trace records.
Setting the user ID sets the value of the CURRENT CLIENT_USERID special register. If user is less than
16 characters long, you must pad it on the right with blanks to a length of 16 characters.

This parameter is optional. If you specify user, you must also specify retcode and reascode. If you do
not specify user, no user ID is associated with the connection.

appl
A 32-byte area that contains the application or transaction name of the user's application. You can
use this parameter to provide the identity of the client user for accounting and monitoring purposes.
Db2 displays the application name in the output from the DISPLAY THREAD command and in Db2
accounting and statistics trace records. Setting the application name sets the value of the CURRENT
CLIENT_APPLNAME special register. If appl is less than 32 characters long, you must pad it on the
right with blanks to a length of 32 characters.

This parameter is optional. If you specify appl, you must also specify retcode, reascode, and user. If
you do not specify appl, no application or transaction is associated with the connection.

ws
An 18-byte area that contains the workstation name of the client user. You can use this parameter
to provide the identity of the client user for accounting and monitoring purposes. Db2 displays
the workstation name in the output from the DISPLAY THREAD command and in Db2 accounting
and statistics trace records. Setting the workstation name sets the value of the CURRENT
CLIENT_WRKSTNNAME special register. If ws is less than 18 characters long, you must pad it on
the right with blanks to a length of 18 characters.

This field is optional. If you specify ws, you must also specify retcode, reascode, user, and appl. If you
do not specify ws, no workstation name is associated with the connection.

xid
A 4-byte area that indicates whether the thread is part of a global transaction. A Db2 thread that is
part of a global transaction can share locks with other Db2 threads that are part of the same global
transaction and can access and modify the same data. A global transaction exists until one of the
threads that is part of the global transaction is committed or rolled back.

You can specify one of the following values for xid:

0
Indicates that the thread is not part of a global transaction. The value 0 must be specified as a
binary integer.

Indicates that the thread is part of a global transaction and that Db2 should retrieve the global
transaction ID from RRS. If a global transaction ID already exists for the task, the thread becomes
part of the associated global transaction. Otherwise, RRS generates a new global transaction ID.
The value 1 must be specified as a binary integer. Alternatively, if you want Db2 to return the
generated global transaction ID to the caller, specify an address instead of 1.

84 Db2 12 for z/0S: Application Programming and SQL Guide (Last updated: 2024-04-15)

address
The 4-byte address of an area in which you enter a global transaction ID for the thread. If the
global transaction ID already exists, the thread becomes part of the associated global transaction.
Otherwise, RRS creates a new global transaction with the ID that you specify.

Alternatively, if you want Db2 to generate and return a global transaction ID, pass the address of

a null global transaction ID by setting the format ID field of the global transaction ID to binary -1
('FFFFFFF'X). Db2 then replaces the contents of the area with the generated transaction ID. The
area at the specified address must be in writable storage and have a length of at least 140 bytes to
accommodate the largest possible transaction ID value.

The following table shows the format of a global transaction ID.

Table 23. Format of a user-created global transaction ID

Field description Length in bytes Data type
Format ID 4 Integer
Global transaction ID length (1 4 Integer

- 64)

Branch qualifier length (1 - 64) 4 Integer
Global transaction ID 1to 64 Character
Branch qualifier Oto 64 Character

accounting-string
A one-byte length field and a 255-byte area in which you can put a value for a Db2 accounting string.
This value is placed in the DDF accounting trace records in the QMDASQLI field, which is mapped by
DSNDQMDA DSECT. If accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA DSECT.

This parameter is optional. If you specify accounting-string, you must also specify retcode, reascode,
user, appl and xid. If you do not specify accounting-string, no accounting string is associated with the
connection.

You can also change the value of the accounting string with RRSAF functions AUTH SIGNON,
CONTEXT SIGNON, or SET_CLIENT_ID.

You can retrieve the DDF suffix portion of the accounting string with the CURRENT CLIENT_ACCTNG
special register. The suffix portion of accounting-string can contain a maximum of 200 characters.
The QMDASFLN field contains the accounting suffix length, and the QMDASUFX field contains the
accounting suffix value. If the DDF accounting string is set, you cannot query the accounting token
with the CURRENT CLIENT_ACCTNG special register.

The following parameters are optional and positional. These parameters override values specified earlier
in the parameter list. To provide a value for a length, value pair, you must provide a value or specify a 0
length for previous parameters in the parameter list.

user-length, user-longname
A pair of parameters that consist of a 2-byte integer length and 128-byte string area. A comma
separates the parameters. You can provide the user ID of the client user for accounting and
monitoring purposes in user-longname. Db2 displays this user ID in the output from the DISPLAY
THREAD command and in Db2 accounting and statistics trace records. Setting the user ID sets
the value of the CURRENT CLIENT_USERID special register. Trailing blanks in user-longname are
truncated and the length in user-length is updated.

These parameters are optional, to specify them you must also specify a value for accounting-string. A
value of 0 in user-length skips processing of user-longname.

Important: These parameters override any value that is provided in user.

Chapter 2. Connecting to Db2 from your application program 85

appl-length, appl-longname
A pair of parameters that consist of a 2-byte integer length and 255-byte string area. A comma
separates the parameters.You can provide the application or transaction name of the client user for
accounting and monitoring purposes in appl-longname. Db2 displays this application name in the
output from the DISPLAY THREAD command and in Db2 accounting and statistics trace records.
Setting the application name sets the value of the CURRENT CLIENT_APPLNAME special register.
Trailing blanks in appl-longname are truncated and the length in appl-length is updated.

These parameters are optional, to specify them you must also specify a value for user-length, user-
longname. A value of 0 in app!-length skips processing of appl-longname.

Important: These parameters override any value that is provided in appl.

ws-length, ws-longname
A pair of parameters that consist of a 2-byte integer length and 255-byte string area. A comma
separates the parameters. You can provide the workstation name of the client user for accounting
and monitoring purposes in ws-longname. Db2 displays this workstation name in the output from
the DISPLAY THREAD command and in Db2 accounting and statistics trace records. Setting the
workstation name sets the value of the CURRENT CLIENT_WRKSTNNAME special register. Trailing
blanks in ws-longname are truncated and the length in ws-length is updated.

These parameters are optional, to specify them you must also specify a value for appl-length, app!-
longname. A value of 0 in ws-length skips processing of ws-longname.

Important: These parameters override any value that is provided in ws.

correlation-length, correlation-longname
A pair of parameters that consist of a 2-byte integer length and 255-byte string area. A comma
separates the parameters. You can provide a unique value to correlate your business process names
with Db2 threads in correlation-longname. Db2 displays this correlation token in the output from the
DISPLAY THREAD DETAIL command. The CURRENT CLIENT_CORR_TOKEN special register contains
the client correlation token. Trailing blanks in correlation-longname are truncated and the length in
correlation-length is updated.

These parameters are optional, to specify them you must also specify a value for ws-length, ws-
longname. A value of 0 in correlation-length skips processing of correlation-longname.

You can also change the value of the client correlation token with the RRSAF AUTH SIGNON function
and the SET_CLIENT_ID function.

Example of RRSAF SIGNON calls
The following table shows a SIGNON call in each language.

Table 24. Examples of RRSAF SIGNON calls

Language Call example

assembler CALL DSNRLI, (SGNONFN,CORRID,ACCTTKN,ACCTINT,
RETCODE, REASCODE , USERID, APPLNAME , WSNAME , XIDPTR)

Cl
fnret=dsnrli(&sgnonfn[0], &corrid[0], &accttkn[0], &acctint[0], &retcode, &reascode,
&userid[0], &applname[0], &wsname[0], &xidptzr);

COBOL . .
CALL DSNRLI' USING SGNONFN CORRID ACCTTKN ACCTINT RETCODE REASCODE USERID APPLNAME
WSNAME
XIDPTR.

Fortran

CALL DSNRLI(SGNONFN,CORRID,ACCTTKN,ACCTINT,
RETCODE, REASCODE, USERID, APPLNAME, WSNAME , XIDPTR)

86 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Table 24. Examples of RRSAF SIGNON calls (continued)

Language Call example

PL/TL

CALL DSNRLI(SGNONFN,CORRID,ACCTTKN,ACCTINT,
RETCODE, REASCODE , USERID, APPLNAME , WSNAME , XIDPTR) ;

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler directives, because
DSNRLI is an assembler language program. These compiler directives are described in the instructions
for invoking RRSAF.

The following example shows a SIGNON call in C 1 with all parameters passed in. Parameters that are
numbers are passed in as integers and strings as character arrays. In this example, if &useridlen is
larger than 0, then the value of CURRENT CLIENT_USERID special register is the value that is stored in
&luserid[0].

fnret=dsnrli(&sgnonfn[0],&corrid[0],&accttkn[0],&acctint[0],&retcode,&reascode,
&userid[0],&applname[0] ,&wsname[0] ,&xidptr,&lacctngid[0],
&useridlen,&luserid[0],&applidlen, &lapplid[0],&wsidlen, &lwsid[0],

&corrtkidlen, &lcorrtkid[0]);

Note:

1. For C applications, you must include the appropriate compiler directives, because DSNRLI is an
assembler language program. These compiler directives are described in the instructions for invoking
RRSAF.

Related tasks

Invoking the Resource Recovery Services attachment facility

The Resource Recovery Services attachment facility (RRSAF) enables your program to communicate with
Db2. Invoke RRSAF as an alternative to invoking CAF or when using stored procedures that runin a
WLM-established address space. RRSAF has more capabilities than CAF.

Related reference
RACROUTE REQUEST=VERIFY (standard form) (Security Server RACROUTE Macro Reference)

AUTH SIGNON function for RRSAF
The RRSAF AUTH SIGNON function enables an APF authorization program to pass an ID to Db2.

An APF-authorized program can pass to Db2 either a primary authorization ID and, optionally, one or
more secondary authorization IDs, or an ACEE that is used for authorization checking. These IDs are then
associated with the connection.

Generally, you issue an AUTH SIGNON call after an IDENTIFY call and before a CREATE THREAD call. You
can also issue an AUTH SIGNON call if the application is at a point of consistency, and one of the following
conditions is true:

« The value of reuse in the CREATE THREAD call was RESET.

« The value of reuse in the CREATE THREAD call was INITIAL, no held cursors are open, the package or
plan is bound with KEEPDYNAMIC(NO), and all special registers are at their initial state. If open held
cursors exist or the package or plan is bound with KEEPDYNAMIC(YES), a SIGNON call is permitted only
if the primary authorization ID has not changed.

The following diagram shows the syntax for the AUTH SIGNON function.

Chapter 2. Connecting to Db2 from your application program 87

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ichc600/rrversf.htm

DSNRLI AUTH SIGNON function

»»— CALL DSNRLI — (— function, correlation-id, accounting-token, —»

»— accounting-interval, primary-authid, — ACEE-address, secondary-authid —»

" L,relcode J)
L,reascode L I J
L = J J
" L xid J
L,acoounting—sﬂing J

»— ,T user-length, user-longname T T appl-length, appl-longname TN
»—, T ws-length, ws-longname T T correlation-length, correlation-longname T) >«
0,0

Parameters point to the following areas:

function
An 18-byte area that contains AUTH SIGNON followed by seven blanks.

correlation-id
A 12-byte area in which you can put a Db2 correlation ID. The correlation ID is displayed in Db2
accounting and statistics trace records. You can use the correlation ID to correlate work units. This
token appears in output from the DISPLAY THREAD command. If you do not want to specify a
correlation ID, fill the 12-byte area with blanks.

accounting-token
A 22-byte area in which you can put a value for a Db2 accounting token. This value is displayed in
Db2 accounting and statistics trace records in the QWHCTOKN field, which is mapped by DSNDQWHC
DSECT. Setting the value of the accounting token sets the value of the CURRENT CLIENT_ACCTNG
special register. If accounting-token is less than 22 characters long, you must pad it on the right with
blanks to a length of 22 characters. If you do not want to specify an accounting token, fill the 22-byte
area with blanks.

You can also change the value of the Db2 accounting token with RRSAF functions SIGNON,
CONTEXT SIGNON, or SET_CLIENT_ID. You can retrieve the Db2 accounting token with the CURRENT
CLIENT_ACCTNG special register only if the DDF accounting string is not set.

accounting-interval
A 6-byte area with that specifies when Db2 writes an accounting record.

If you specify COMMIT in that area, Db2 writes an accounting record each time that the application
issues SRRCMIT. This accounting record is written at the end of the second phase of a two-phase
commit. If the accounting interval is COMMIT, and an SRRCMIT is issued while a held cursor is open,
the accounting interval spans that commit and ends at the next valid accounting interval end point
(such as the next SRRCMIT that is issued without open held cursors, application termination, or
SIGNON with a new authorization ID).

If you specify any other value, Db2 writes an accounting record when the application terminates or
when you call the SIGNON function with a new authorization ID.

primary-authid
An 8-byte area in which you can put a primary authorization ID. If you are not passing the
authorization ID to Db2 explicitly, put X'00' or a blank in the first byte of the area.

88 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

ACEE-address
The 4-byte address of an ACEE that you pass to Db2. If you do not want to provide an ACEE, specify O
in this field.

secondary-authid
An 8-byte area in which you can put a secondary authorization ID. If you do not pass the authorization
ID to Db2 explicitly, put X'00' or a blank in the first byte of the area. If you enter a secondary
authorization ID, you must also enter a primary authorization ID.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the return code in register 15
and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the reason code in register 0.
If you specify reascoder, you must also specify retcode.

user
A 16-byte area that contains the user ID of the client user. You can use this parameter to provide
the identity of the client user for accounting and monitoring purposes. Db2 displays this user ID in
the output from the DISPLAY THREAD command and in Db2 accounting and statistics trace records.
Setting the user ID sets the value of the CURRENT CLIENT_USERID special register. If user is less than
16 characters long, you must pad it on the right with blanks to a length of 16 characters.

This parameter is optional. If you specify user, you must also specify retcode and reascode. If you do
not specify this parameter, no user ID is associated with the connection.

appl
A 32-byte area that contains the application or transaction name of the user's application. You can
use this parameter to provide the identity of the client user for accounting and monitoring purposes.
Db2 displays the application name in the output from the DISPLAY THREAD command and in Db2
accounting and statistics trace records. Setting the application name sets the value of the CURRENT
CLIENT_APPLNAME special register. If appl is less than 32 characters long, you must pad it on the
right with blanks to a length of 32 characters.

This parameter is optional. If you specify appl, you must also specify retcode, reascode, and user. If
you do not specify this parameter, no application or transaction is associated with the connection.

ws
An 18-byte area that contains the workstation name of the client user. You can use this parameter
to provide the identity of the client user for accounting and monitoring purposes. Db2 displays
the workstation name in the output from the DISPLAY THREAD command and in Db2 accounting
and statistics trace records. Setting the workstation name sets the value of the CURRENT
CLIENT_WRKSTNNAME special register. If ws is less than 18 characters long, you must pad it on
the right with blanks to a length of 18 characters.

This parameter is optional. If you specify ws, you must also specify retcode, reascode, user, and appl.
If you do not specify this parameter, no workstation name is associated with the connection.

You can also change the value of the workstation name with RRSAF functions SIGNON,
CONTEXT SIGNON, or SET_CLIENT_ID. You can retrieve the workstation name with the CURRENT
CLIENT_WRKSTNNAME special register.

xid
A 4-byte area that indicates whether the thread is part of a global transaction. A Db2 thread that is
part of a global transaction can share locks with other Db2 threads that are part of the same global
transaction and can access and modify the same data. A global transaction exists until one of the
threads that is part of the global transaction is committed or rolled back.

You can specify one of the following values for xid:

Chapter 2. Connecting to Db2 from your application program 89

Indicates that the thread is not part of a global transaction. The value 0 must be specified as a
binary integer.

Indicates that the thread is part of a global transaction and that Db2 should retrieve the global
transaction ID from RRS. If a global transaction ID already exists for the task, the thread becomes
part of the associated global transaction. Otherwise, RRS generates a new global transaction ID.
The value 1 must be specified as a binary integer. Alternatively, if you want Db2 to return the
generated global transaction ID to the caller, specify an address instead of 1.

address
The 4-byte address of an area into which you enter a global transaction ID for the thread. If the
global transaction ID already exists, the thread becomes part of the associated global transaction.
Otherwise, RRS creates a new global transaction with the ID that you specify.

Alternatively, if you want Db2 to generate and return a global transaction ID, pass the address of

a null global transaction ID by setting the format ID field of the global transaction ID to binary -1
('FFFFFFF'X). Db2 then replaces the contents of the area with the generated transaction ID. The
area at the specified address must be in writable storage and have a length of at least 140 bytes to
accommodate the largest possible transaction ID value.

The format of a global transaction ID is shown in the description of the RRSAF SIGNON function.

accounting-string
A 1-byte length field and a 255-byte area in which you can put a value for a Db2 accounting string.
This value is placed in the DDF accounting trace records in the QMDASQLI field, which is mapped by
DSNDQMDA DSECT. If accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA DSECT.

This parameter is optional. If you specify this accounting-string, you must also specify retcode,
reascode, user, app!, and xid. If you do not specify this parameter, no accounting string is associated
with the connection.

You can also change the value of the accounting string with RRSAF functions AUTH SIGNON,
CONTEXT SIGNON, or SET_CLIENT_ID.

You can retrieve the DDF suffix portion of the accounting string with the CURRENT CLIENT_ACCTNG
special register. The suffix portion of accounting-string can contain a maximum of 200 characters.
The QMDASFLN field contains the accounting suffix length, and the QMDASUFX field contains the
accounting suffix value. If the DDF accounting string is set, you cannot query the accounting token
with the CURRENT CLIENT_ACCTNG special register.

The following parameters are optional and positional. These parameters override values specified earlier
in the parameter list. To provide a value for a length, value pair, you must provide a value or specify a 0
length for previous parameters in the parameter list.

user-length, user-longname
A pair of parameters that consist of a 2-byte integer length and 128-byte string area. A comma
separates the parameters. You can provide the user ID of the client user for accounting and
monitoring purposes in user-longname. Db2 displays this user ID in the output from the DISPLAY
THREAD command and in Db2 accounting and statistics trace records. Setting the user ID sets
the value of the CURRENT CLIENT_USERID special register. Trailing blanks in user-longname are
truncated and the length in user-length is updated.

These parameters are optional, to specify them you must also specify a value for accounting-string. A
value of 0 in user-length skips processing of user-longname.

Important: These parameters override any value that is provided in user.

appl-length, appl-longname
A pair of parameters that consist of a 2-byte integer length and 255-byte string area. A comma
separates the parameters. You can provide the application or transaction name of the client user
for accounting and monitoring purposes in appl-longname. Db2 displays this application name in

90 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

the output from the DISPLAY THREAD command and in Db2 accounting and statistics trace records.
Setting the application name sets the value of the CURRENT CLIENT_APPLNAME special register.
Trailing blanks in appl-longname are truncated and the length in appl-length is updated.

These parameters are optional, to specify them you must also specify a value for user-length, user-
longname. A value of 0 in app!l-length skips processing of app!-longname.

Important: These parameters override any value that is provided in appl.

ws-length, ws-longname
A pair of parameters that consist of a 2-byte integer length and 255-byte string area. A comma
separates the parameters. You can provide the workstation name of the client user for accounting
and monitoring purposes in ws-longname. Db2 displays this workstation name in the output from
the DISPLAY THREAD command and in Db2 accounting and statistics trace records. Setting the
workstation name sets the value of the CURRENT CLIENT_WRKSTNNAME special register. Trailing
blanks in ws-longname are truncated and the length in ws-length is updated.

These parameters are optional, to specify them you must also specify a value for appl-length, app!-
longname. A value of 0 in ws-length skips processing of ws-longname.

Important: These parameters override any value that is provided in ws.

correlation-length, correlation-longname
A pair of parameters that consist of a 2-byte integer length and 255-byte string area. A comma
separates the parameters. You can provide a unique value to correlate your business process names
with Db2 threads in correlation-longname. Db2 displays this correlation token in the output from the
DISPLAY THREAD DETAIL command. The CURRENT CLIENT_CORR_TOKEN special register contains
the client correlation token. Trailing blanks in correlation-longname are truncated and the length in
correlation-length is updated.

These parameters are optional, to specify them you must also specify a value for ws-length, ws-
longname. A value of 0 in correlation-length skips processing of correlation-longname.

You can also change the value of the client correlation token with the RRSAF AUTH SIGNON function
and the SET_CLIENT_ID function.

Example of RRSAF AUTH SIGNON calls
The following table shows a AUTH SIGNON call in each language.

Table 25. Examples of RRSAF AUTH SIGNON calls

Languag
e Call example

Assembl
ssemb CALL DSNRLI, (ASGNONFN,CORRID,ACCTTKN,ACCTINT,PAUTHID,ACEEPTR, SAUTHID,RETCODE,REASCODE,
er USERID, APPLNAME , WSNAME , XIDPTR)

1

c fnret=dsnrli(&asgnonfn[0], &corrid[0], &accttkn[0], &acctint[0], &pauthid[0], &aceeptr,
&sauthid[0], &retcode, &reascode, &userid[0], &applname[0], &wsname[0], &xidptr);

COBOL , ,
CALL DSNRLI' USING ASGNONFN CORRID ACCTTKN ACCTINT PAUTHID ACEEPTR SAUTHID RETCODE
REASCODE
USERID APPLNAME WSNAME XIDPTR.

Fortran

CALL DSNRLI(ASGNONFN,CORRID,ACCTTKN,ACCTINT,PAUTHID,ACEEPTR,
SAUTHID,RETCODE, REASCODE, USERID,
APPLNAME , WSNAME , XIDPTR)

Chapter 2. Connecting to Db2 from your application program 91

Table 25. Examples of RRSAF AUTH SIGNON calls (continued)

Languag
e Call example
PL/TL
CALL DSNRLI(ASGNONFN,CORRID,ACCTTKN,ACCTINT,PAUTHID,ACEEPTR,
SAUTHID, RETCODE, REASCODE, USERID,
APPLNAME, WSNAME , XIDPTR) ;
Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler directives, because
DSNRLI is an assembler language program. These compiler directives are described in the instructions
for invoking RRSAF.

The following example shows an AUTH SIGNON call in C 1 with all parameters passed in. Parameters that
are numbers are passed in as integers and strings as character arrays. In this example, if &useridlen is
larger than 0, then the value of CURRENT CLIENT_USERID special register is the value that is stored in
&luserid[0].

fnret = dsnrli(&authsgnfn[0],&corrid[0],&acctkn[0],&accint[0],&pauthid[0],
&aceeptr,&sauthid[0],&retcode, &reascode, &userid[0],&applname[0],

&wsname [0] ,&xidptr,&lacctngid[0],&useridlen,&luserid[0],&applidlen,
&lapplid[0],&wsidlen, &lwsid[0],&corrtkidlen,&lcorrtkid[0]);

Note:

1. For C applications, you must include the appropriate compiler directives, because DSNRLI is an
assembler language program. These compiler directives are described in the instructions for invoking
RRSAF.

Related tasks

Invoking the Resource Recovery Services attachment facility

The Resource Recovery Services attachment facility (RRSAF) enables your program to communicate with
Db2. Invoke RRSAF as an alternative to invoking CAF or when using stored procedures that runin a
WLM-established address space. RRSAF has more capabilities than CAF.

Related reference

SIGNON function for RRSAF

The RRSAF SIGNON function establishes a primary authorization ID and, optionally, one or more
secondary authorization IDs for a connection.

CONTEXT SIGNON function for RRSAF

The RRSAF CONTEXT SIGNON function establishes a primary authorization ID and one or more secondary
authorization IDs for a connection.

Requirement: Before you invoke CONTEXT SIGNON, you must have called the RRS context services
function Set Context Data (CTXSDTA) to store a primary authorization ID and optionally, the address of an
ACEE in the context data whose context key you supply as input to CONTEXT SIGNON.

The CONTEXT SIGNON function uses the context key to retrieve the primary authorization ID from data
that is associated with the current RRS context. Db2 uses the RRS context services function Retrieve
Context Data (CTXRDTA) to retrieve context data that contains the authorization ID and ACEE address.
The context data must have the following format:

Version number
A 4-byte area that contains the version number of the context data. Set this area to 1.

Server product name
An 8-byte area that contains the name of the server product that set the context data.

ALET
A 4-byte area that can contain an ALET value. Db2 does not reference this area.

92 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

ACEE address
A 4-byte area that contains an ACEE address or O if an ACEE is not provided. Db2 requires that the
ACEE is in the home address space of the task.

If you pass an ACEE address, the CONTEXT SIGNON function uses the value in ACEEGRPN as the
secondary authorization ID if the length of the group name (ACEEGRPL) is not O.

primary-authid
An 8-byte area that contains the primary authorization ID to be used. If the authorization ID is less
than 8 bytes in length, pad it on the right with blank characters to a length of 8 bytes.

If the new primary authorization ID is not different than the current primary authorization ID (which
was established when the IDENTIFY function was invoked or at a previous SIGNON invocation), Db2
invokes only the signon exit. If the value has changed, Db2 establishes a new primary authorization ID
and new SQL authorization ID and then invokes the signon exit.

Generally, you issue a CONTEXT SIGNON call after an IDENTIFY call and before a CREATE THREAD call.
You can also issue a CONTEXT SIGNON call if the application is at a point of consistency, and one of the
following conditions is true:

« The value of reuse in the CREATE THREAD call was RESET.

« The value of reuse in the CREATE THREAD call was INITIAL, no held cursors are open, the package or
plan is bound with KEEPDYNAMIC(NO), and all special registers are at their initial state. If open held
cursors exist or the package or plan is bound with KEEPDYNAMIC(YES), a SIGNON call is permitted only
if the primary authorization ID has not changed.

The following diagram shows the syntax for the CONTEXT SIGNON function.

DSNRLI CONTEXT SIGNON function

»— CALL DSNRLI — (— function, — correlation-id, — accounting-token, — accounting-interval, —»

»— context-key —»

] L,/elcode J]
L,reaswde L I J
R -~ . J
" L xid I
, L,accounting—sﬂing J

) >«

Parameters point to the following areas:

function
An 18-byte area that contains CONTEXT SIGNON followed by four blanks.

correlation-id
A 12-byte area in which you can put a Db2 correlation ID. The correlation ID is displayed in Db2
accounting and statistics trace records. You can use the correlation ID to correlate work units. This
token appears in output from the DISPLAY THREAD command. If you do not want to specify a
correlation ID, fill the 12-byte area with blanks.

accounting-token
A 22-byte area in which you can put a value for a Db2 accounting token. This value is displayed in
Db2 accounting and statistics trace records in the QWHCTOKN field, which is mapped by DSNDQWHC
DSECT. Setting the value of the accounting token sets the value of the CURRENT CLIENT_ACCTNG
special register. If accounting-token is less than 22 characters long, you must pad it on the right with
blanks to a length of 22 characters. If you do not want to specify an accounting token, fill the 22-byte
area with blanks.

Chapter 2. Connecting to Db2 from your application program 93

You can also change the value of the Db2 accounting token with RRSAF functions SIGNON,
AUTH SIGNON, or SET_CLIENT_ID. You can retrieve the Db2 accounting token with the CURRENT
CLIENT_ACCTNG special register only if the DDF accounting string is not set.

accounting-interval
A 6-byte area that specifies when Db2 writes an accounting record.

If you specify COMMIT in that area, Db2 writes an accounting record each time that the application
issues SRRCMIT. This accounting record is written at the end of the second phase of a two-phase
commit. If the accounting interval is COMMIT, and an SRRCMIT is issued while a held cursor is open,
the accounting interval spans that commit and ends at the next valid accounting interval end point
(such as the next SRRCMIT that is issued without open held cursors, application termination, or
SIGNON with a new authorization ID).

If you specify any other value, Db2 writes an accounting record when the application terminates or
when you call the SIGNON function with a new authorization ID.

context-key
A 32-byte area in which you put the context key that you specified when you called the RRS Set
Context Data (CTXSDTA) service to save the primary authorization ID and an optional ACEE address.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the return code in register 15
and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the reason code in register 0.
If you specify reascode, you must also specify retcode.

user
A 16-byte area that contains the user ID of the client user. You can use this parameter to provide
the identity of the client user for accounting and monitoring purposes. Db2 displays this user ID in
the output from the DISPLAY THREAD command and in Db2 accounting and statistics trace records.
Setting the user ID sets the value of the CURRENT CLIENT_USERID special register. If user is less than
16 characters long, you must pad it on the right with blanks to a length of 16 characters.

This parameter is optional. If you specify user, you must also specify retcode and reascode. If you do
not specify user, no user ID is associated with the connection.

appl
A 32-byte area that contains the application or transaction name of the user's application. You can
use this parameter to provide the identity of the client user for accounting and monitoring purposes.
Db2 displays the application name in the output from the DISPLAY THREAD command and in Db2
accounting and statistics trace records. Setting the application name sets the value of the CURRENT
CLIENT_APPLNAME special register. If appl is less than 32 characters long, you must pad it on the
right with blanks to a length of 32 characters.

This parameter is optional. If you specify appl, you must also specify retcode, reascode, and user. If
you do not specify appl, no application or transaction is associated with the connection.

ws
An 18-byte area that contains the workstation name of the client user. You can use this parameter
to provide the identity of the client user for accounting and monitoring purposes. Db2 displays
the workstation name in the output from the DISPLAY THREAD command and in Db2 accounting
and statistics trace records. Setting the workstation name sets the value of the CURRENT
CLIENT_WRKSTNNAME special register. If ws is less than 18 characters long, you must pad it on
the right with blanks to a length of 18 characters.

This parameter is optional. If you specify ws, you must also specify retcode, reascode, user, and app!.
If you do not specify ws, no workstation name is associated with the connection.

94 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

You can also change the value of the workstation name with the RRSAF functions SIGNON, AUTH
SIGNON, or SET_CLIENT_ID. You can retrieve the workstation name with the CLIENT_WRKSTNNAME
special register.

xid
A 4-byte area that indicates whether the thread is part of a global transaction. A Db2 thread that is
part of a global transaction can share locks with other Db2 threads that are part of the same global
transaction and can access and modify the same data. A global transaction exists until one of the
threads that is part of the global transaction is committed or rolled back.

You can specify one of the following values for xid:

0
Indicates that the thread is not part of a global transaction. The value 0 must be specified as a
binary integer.

Indicates that the thread is part of a global transaction and that Db2 should retrieve the global
transaction ID from RRS. If a global transaction ID already exists for the task, the thread becomes
part of the associated global transaction. Otherwise, RRS generates a new global transaction ID.
The value 1 must be specified as a binary integer. Alternatively, if you want Db2 to return the
generated global transaction ID to the caller, specify an address instead of 1.

address
The 4-byte address of an area into which you enter a global transaction ID for the thread. If the
global transaction ID already exists, the thread becomes part of the associated global transaction.
Otherwise, RRS creates a new global transaction with the ID that you specify.

Alternatively, if you want Db2 to generate and return a global transaction ID, pass the address of

a null global transaction ID by setting the format ID field of the global transaction ID to binary -1
('FFFFFFF'X). Db2 then replaces the contents of the area with the generated transaction ID. The
area at the specified address must be in writable storage and have a length of at least 140 bytes to
accommodate the largest possible transaction ID value.

The format of a global transaction ID is shown in the description of the RRSAF SIGNON function.

accounting-string
A one-byte length field and a 255-byte area in which you can put a value for a Db2 accounting string.
This value is placed in the DDF accounting trace records in the QMDASQLI field, which is mapped by
DSNDQMDA DSECT. If accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA DSECT.

This parameter is optional. If you specify this accounting-string, you must also specify retcode,
reascode, user, app! and xid. If you do not specify this parameter, no accounting string is associated
with the connection.

You can also change the value of the accounting string with RRSAF functions AUTH SIGNON,
CONTEXT SIGNON, or SET_CLIENT_ID.

You can retrieve the DDF suffix portion of the accounting string with the CURRENT CLIENT_ACCTNG
special register. The suffix portion of accounting-string can contain a maximum of 200 characters.
The QMDASFLN field contains the accounting suffix length, and the QMDASUFX field contains the
accounting suffix value. If the DDF accounting string is set, you cannot query the accounting token
with the CURRENT CLIENT_ACCTNG special register.

Example of RRSAF CONTEXT SIGNON calls
The following table shows a CONTEXT SIGNON call in each language.

Chapter 2. Connecting to Db2 from your application program 95

Table 26. Examples of RRSAF CONTEXT SIGNON calls

Language Call example

Assembler CALL DSNRLI, (CSGNONFN,CORRID,ACCTTKN,ACCTINT,CTXTKEY, RETCODE,REASCODE,USERID,APPLNAME,
WSNAME , XIDPTR)

Cl
fnret=dsnrli(&csgnonfn[0], &corrid[0], &accttkn[0], &acctint[0], &ctxtkey[0], &retcode,
&reascode, &userid[0], &applname[Q], &wsname[Q], &xidptr);

COBOL . .
CALL DSNRLI' USING CSGNONFN CORRID ACCTTKN ACCTINT CTXTKEY RETCODE REASCODE USERID
APPLNAME
WSNAME XIDPTR.

Fortran
CALL DSNRLI(CSGNONFN,CORRID,ACCTTKN,ACCTINT,CTXTKEY, RETCODE,REASCODE, USERID,APPLNAME,
WSNAME , XIDPTR)

PL/I1
CALL DSNRLI(CSGNONFN,CORRID,ACCTTKN,ACCTINT,CTXTKEY, RETCODE,REASCODE,USERID,APPLNAME,
WSNAME , XIDPTR) ;

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler directives, because
DSNRLI is an assembler language program. These compiler directives are described in the instructions
for invoking RRSAF.

Related tasks

Invoking the Resource Recovery Services attachment facility

The Resource Recovery Services attachment facility (RRSAF) enables your program to communicate with
Db2. Invoke RRSAF as an alternative to invoking CAF or when using stored procedures that runin a
WLM-established address space. RRSAF has more capabilities than CAF.

Related reference

SIGNON function for RRSAF

The RRSAF SIGNON function establishes a primary authorization ID and, optionally, one or more
secondary authorization IDs for a connection.

SET_ID function for RRSAF

The RRSAF SET_ID function sets a new value for the client program ID that can be used to identify the
user. The function then passes this information to Db2 when the next SQL request is processed.

The following diagram shows the syntax of the SET_ID function.

DSNRLI SET_ID function

»»— CALL DSNRLI — (— function, — program-id L J) >«
— retcode

Parameters point to the following areas:

function
An 18-byte area that contains SET_ID followed by 12 blanks.

program-id
An 80-byte area that contains the caller-provided string to be passed to Db2. If program-id is less
than 80 characters, you must pad it with blanks on the right to a length of 80 characters.

96 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Db2 places the contents of program-id into IFCID 316 records, along with other statistics, so that you
can identify which program is associated with a particular SQL statement.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode RRSAF places the return code in register 15
and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the reason code in register 0.

If you specify reascode, you must also specify retcode.

Example of RRSAF SET_ID calls

The following table shows a SET_ID call in each language.

Table 27. Examples of RRSAF SET_ID calls

Language Call example
Assembler CALL DSNRLI, (SETIDFN,PROGID,RETCODE,REASCODE)
Cl

fnret=dsnrli(&setidfn[0], &progid[0], &retcode, &reascode);
COBOL CALL 'DSNRLI' USING SETIDFN PROGID RETCODE REASCODE.
Fortran CALL DSNRLI(SETIDFN,PROGID,RETCODE,REASCODE)
PL/1L

CALL DSNRLI(SETIDFN,PROGID,RETCODE,REASCODE);

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler directives, because
DSNRLI is an assembler language program. These compiler directives are described in the instructions
for invoking RRSAF.

Related tasks

Invoking the Resource Recovery Services attachment facility

The Resource Recovery Services attachment facility (RRSAF) enables your program to communicate with
Db2. Invoke RRSAF as an alternative to invoking CAF or when using stored procedures that runin a
WLM-established address space. RRSAF has more capabilities than CAF.

SET_CLIENT_ID function for RRSAF

The RRSAF SET_CLIENT_ID function sets new values for the client user ID, the application program name,
the workstation name, the accounting token, the DDF client accounting string, the correlation token, and
the long name. The function then passes this information to Db2 when the next SQL request is processed.

These values can be used to identify the end user. The calling program defines the contents of these
parameters. Db2 places the parameter values in the output from the DISPLAY THREAD command and in
Db2 accounting and statistics trace records.

The following diagram shows the syntax of the SET_CLIENT_ID function.

Chapter 2. Connecting to Db2 from your application program 97

DSNRLI SET_CLIENT_ID function

»»— CALL DSNRLI — (— function — , accounting-token , user , —>
0 J L 0 —J

Tppl , ws , P4
S |

retcode , reascode , accounting-string B corr-token , »
B S B U , L T Cengrame J

—) >

Parameters point to the following areas:

function
An 18-byte area that contains SET_CLIENT_ID followed by 5 blanks.

accounting-token
A 22-byte area in which you can put a value for a Db2 accounting token. This value is placed in the
Db2 accounting and statistics trace records in the QWHCTOKN field, which is mapped by DSNDQWHC
DSECT. If accounting-token is less than 22 characters long, you must pad it on the right with blanks to
a length of 22 characters.

You can omit this parameter by specifying a value of O in the parameter list.

Alternatively, you can change the value of the Db2 accounting token with the RRSAF functions
SIGNON, AUTH SIGNON, or CONTEXT SIGNON. You can retrieve the Db2 accounting token with the
CURRENT CLIENT_ACCTNG special register only if the DDF accounting string is not set.

user
A 16-byte or 128-byte area that contains the user ID of the client end user. You can use this
parameter to provide the identity of the client end user for accounting and monitoring purposes.
Db2 places this user ID in the output from the DISPLAY THREAD command and in Db2 accounting and
statistics trace records. If user is less than 16 characters long, you must pad it on the right with blanks
to a length of 16 characters.

You can omit this parameter by specifying a value of O in the parameter list.

If the long-name parameter is specified, the maximum length of the user parameter is 128 bytes. If
user is less than 128 characters long, you must pad it on the right with blanks to a length of 128
characters.

You can also change the value of the client user ID with the RRSAF functions SIGNON, AUTH SIGNON,
or CONTEXT SIGNON. You can retrieve the client user ID with the CLIENT_USERID special register.

appl
An 32-byte or 255-byte area that contains the application or transaction name of the end user's
application. You can use this parameter to provide the identity of the client end user for accounting
and monitoring purposes. Db2 places the application name in the output from the DISPLAY THREAD
command and in Db2 accounting and statistics trace records. If app! is less than 32 characters, you
must pad it on the right with blanks to a length of 32 characters.

You can omit this parameter by specifying a value of O in the parameter list.

If the long-name parameter is specified, the maximum length of the appl parameter is 255 bytes. If
app!is less than 255 characters long, you must pad it on the right with blanks to a length of 255
characters.

You can also change the value of the application name with the RRSAF functions SIGNON, AUTH
SIGNON, or CONTEXT SIGNON. You can retrieve the application name with the CLIENT_APPLNAME
special register.

98 Db2 12 for z/0OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

ws
An 18-byte or 255-byte area that contains the workstation name of the client end user. You can use
this parameter to provide the identity of the client end user for accounting and monitoring purposes.
Db2 places this workstation name in the output from the DISPLAY THREAD command and in Db2
accounting and statistics trace records. If ws is less than 18 characters, you must pad it on the right
with blanks to a length of 18 characters.

You can omit this parameter by specifying a value of 0 in the parameter list.

If the long-name parameter is specified, the maximum length of the ws parameter is 255 bytes. If
ws is less than 255 characters long, you must pad it on the right with blanks to a length of 255
characters.

You can also change the value of the workstation name with the RRSAF functions SIGNON,
AUTH SIGNON, or CONTEXT SIGNON. You can retrieve the workstation name with the
CLIENT_WRKSTNNAME special register.

retcode
A 4-byte area in which RRSAF places the return code.

You can omit this parameter by specifying a value of O in the parameter list.

This parameter is optional. If you do not specify retcode, RRSAF places the return code in register 15
and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

You can omit this parameter by specifying a value of O in the parameter list.
This parameter is optional. If you do not specify reascode, RRSAF places the reason code in register 0.
If you specify reascode, you must also specify retcode.

accounting-string
A one-byte length field and a 255-byte area in which you can put a value for a Db2 accounting string.
This value is placed in the DDF accounting trace records in the QMDASUFX field, which is mapped by
DSNDQMDA DSECT. If accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA DSECT.

You can omit this parameter by specifying a value of O in the parameter list.

This parameter is optional. If you specify this accounting-string, you must also specify retcode,
reascode, user, and appl. If you do not specify this parameter, no accounting string is associated
with the connection.

You can also change the value of the accounting string with RRSAF functions AUTH SIGNON,
CONTEXT SIGNON, or SET_CLIENT_ID.

You can retrieve the DDF suffix portion of the accounting string with the CURRENT CLIENT_ACCTNG
special register. The suffix portion of accounting-string can contain a maximum of 200 characters.
The QMDASFLN field contains the accounting suffix length, and the QMDASUFX field contains the
accounting suffix value. If the DDF accounting string is set, you cannot query the accounting token
with the CURRENT CLIENT_ACCTNG special register.

corr-token
An 255-byte area where you specify a client correlation token. You can specify a unique value to
correlate your business process within Db2 and your entire business enterprise. The value of corr-
token is displayed by the DISPLAY THREAD DETAIL command. The CURRENT CLIENT_CORR_TOKEN
special register contains the client correlation token. If corr-token is less than 255 characters, you
must pad it on the right with blanks to a length of 255 bytes.

You can omit this parameter by specifying a value of 0 in the parameter list. If you specify corr-token
you must also specify long-name.

You can also change the value of the client correlation token with the RRSAF SIGNON function.

Chapter 2. Connecting to Db2 from your application program 99

long-name
An 8-byte area that contains the value LONGNAME.

This optional parameter is used to indicate to the RRSAF function that the input parameters user,
app!, ws, accounting-string, and corr-token can accept longer lengths. You cannot selectively associate
the long-name parameter with any individual parameter.

Example of RRSAF SET_CLIENT_ID calls
The following table shows a SET_CLIENT_ID call in each language.

Table 28. Examples of RRSAF SET_CLIENT_ID calls

Language Call example

Assembler CALL DSNRLI, (SECLIDFN,ACCT,USER,APPL,WS,RETCODE,REASCODE,
ACCOUNTINGSTRING, CORRTOKEN, LONGNAME)

Cl
fnret=dsnrli(&seclidfn[0], &acct[0], &user[0], &appl[0], &ws[0], &retcode,
&reascode, &accountingstring[0], &corrtoken[0], &longname[0]);

COBOL , ,
CALL DSNRLI' USING SECLIDFN ACCT USER APPL WS RETCODE REASCODE
ACCOUNTING-STRING CORR-TOKEN LONG-NAME.

Fortran CALL DSNRLI(SECLIDFN,ACCT,USER,APPL,WS,RETCODE,REASCODE,
ACCOUNTINGSTRING, CORRTOKEN, LONGNAME)

PL/I1
CALL DSNRLI(SECLIDFN,ACCT,USER,APPL,WS,RETCODE,REASCODE,
ACCOUNTINGSTRING, CORRTOKEN, LONGNAME) ;

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler directives, because
DSNRLI is an assembler language program. These compiler directives are described in the instructions
for invoking RRSAF.

Related tasks

Invoking the Resource Recovery Services attachment facility

The Resource Recovery Services attachment facility (RRSAF) enables your program to communicate with
Db2. Invoke RRSAF as an alternative to invoking CAF or when using stored procedures that runin a
WLM-established address space. RRSAF has more capabilities than CAF.

SET_REPLICATION function for RRSAF

The RRSAF SET_REPLICATION function enables an APF authorized program to identify to Db2 as a
replication program.

Calling the SET_REPLICATION function is optional. If you do not call it, Db2 treats the application
normally. The SET_REPLICATION function allows the application to perform insert, update, and delete
operations then the tablespace or database is started access RREPL.

The following diagram shows the syntax for the SET REPLICATION function.

DSNRLI SET_REPLICATION function
»— CALL DSNRLI — (— function — ,) >
L , — retcode J

L , — reascode J

100 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Parameters point to the following areas:

function
An 18-byte area that contains SET_REPLICATION.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the return code in register 15
and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places a reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the reason code in register 0.
If you specify reascode, you must also specify retcode.

Related tasks

Invoking the Resource Recovery Services attachment facility

The Resource Recovery Services attachment facility (RRSAF) enables your program to communicate with
Db2. Invoke RRSAF as an alternative to invoking CAF or when using stored procedures that runin a
WLM-established address space. RRSAF has more capabilities than CAF.

CREATE THREAD function for RRSAF

The RRSAF CREATE THREAD function allocates the Db2 resources that are required for an application
to issue SQL or IFI requests. This function must complete before the application can execute SQL
statements or IFI requests.

The following diagram shows the syntax of the CREATE THREAD function.

DSNRLI CREATE THREAD function

»»— CALL DSNRLI — (— function, plan, collection, reuse —»

Parameters point to the following areas:

function
An 18-byte area that contains CREATE THREAD followed by five blanks.

plan
An 8-byte Db2 plan name. RRSAF allocates the named plan.

If you provide a collection name instead of a plan name, specify the question mark character (?) in the
first byte of this field. Db2 then allocates a special plan named ?RRSAF and uses the value that you
specify for collection . When Db2 allocates a plan named ?RRSAF, Db2 checks authorization to execute
the package in the same way as it checks authorization to execute a package from a requester other
than Db2 for z/0OS.

If you do not provide a collection name in the collection field, you must enter a valid plan name in this
field.

collection
An 18-byte area in which you enter a collection name. Db2 uses the collection names to locate a
package that is associated with the first SQL statement in the program.

When you provide a collection name and put the question mark character (?) in the plan field, Db2
allocates a plan named ?RRSAF and a package list that contains the following two entries:

Chapter 2. Connecting to Db2 from your application program 101

» The specified collection name.

« An entry that contains * for the location, collection name, and package name. (This entry lets
the application access remote locations and access packages in collections other than the default
collection that is specified at create thread time.)

The application can use the SET CURRENT PACKAGESET statement to change the collection ID that
Db2 uses to locate a package.

If you provide a plan name in the plan field, Db2 ignores the value in the collection field.

reuse
An 8-byte area that controls the action that Db2 takes if a SIGNON call is issued after a CREATE
THREAD call. Specify one of the following values in this field:

RESET
Releases any held cursors and reinitializes the special registers

INITIAL
Does not allow the SIGNON call

This parameter is required. If the 8-byte area does not contain either RESET or INITIAL, the default
value is INITIAL.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the return code in register 15
and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the reason code in register 0.
If you specify reascode, you must also specify retcode.

pklistptr
A 4-byte field that contains a pointer to a user-supplied data area that contains a list of collection
IDs. A collection ID is an SQL identifier of 1 to 128 letters, digits, or the underscore character that
identifies a collection of packages. The length of the data area is a maximum of 2050 bytes. The data
area contains a 2-byte length field, followed by up to 2048 bytes of collection ID entries, separated by
commas.

When you specify pklistptr and the question mark character (?) in the plan field, Db2 allocates a
special plan named ?RRSAF and a package list that contains the following entries:

« The collection names that you specify in the data area to which pklistptr points
« An entry that contains * for the location, collection ID, and package name

If you also specify collection, Db2 ignores that value.

Each collection entry must be of the form collection-ID.*, *.collection-ID*, or **.*. collection-ID and
must follow the naming conventions for a collection ID, as described in the description of the BIND
and REBIND options.

Db2 uses the collection names to locate a package that is associated with the first SQL statement
in the program. The entry that contains *** lets the application access remote locations and access
packages in collections other than the default collection that is specified at create thread time.

The application can use the SET CURRENT PACKAGESET statement to change the collection ID that
Db2 uses to locate a package.

This parameter is optional. If you specify this parameter, you must also specify retcode and reascode.
If you provide a plan name in the plan field, Db2 ignores the pklistptr value.

Recommendation: Using a package list can have a negative impact on performance. For better
performance, specify a short package list.

102 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Example of RRSAF CREATE THREAD calls
The following table shows a CREATE THREAD call in each language.

Table 29. Examples of RRSAF CREATE THREAD calls

Languag
e Call example
I:\ssemble CALL DSNRLI, (CRTHRDFN,PLAN,COLLID,REUSE,RETCODE,REASCODE,PKLISTPTR)
Cl
fnret=dsnrli(&crthrdfn[0], &plan[0], &collid[0], &reuse[0], &retcode, &reascode,
&pklistptr);
COBOL , ,
CALL DSNRLI' USING CRTHRDFN PLAN COLLID REUSE RETCODE REASCODE PKLSTPTR.
Fortran
CALL DSNRLI(CRTHRDFN,PLAN,COLLID,REUSE,RETCODE,REASCODE,PKLSTPTR)
pL/12
CALL DSNRLI(CRTHRDFN,PLAN,COLLID,REUSE,RETCODE,REASCODE,PKLSTPTR);
Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler directives, because
DSNRLI is an assembler language program. These compiler directives are described in the instructions
for invoking RRSAF.

Related tasks

Invoking the Resource Recovery Services attachment facility

The Resource Recovery Services attachment facility (RRSAF) enables your program to communicate with
Db2. Invoke RRSAF as an alternative to invoking CAF or when using stored procedures that runin a
WLM-established address space. RRSAF has more capabilities than CAF.

Authorizing plan or package access through applications (Managing Security)

Related reference

BIND and REBIND options for packages, plans, and services (Db2 Commands)

TERMINATE THREAD function for RRSAF

The RRSAF TERMINATE THREAD function deallocates Db2 resources that are associated with a plan
and were previously allocated for an application by the CREATE THREAD function. You can then use the
CREATE THREAD function to allocate another plan with the same connection.

If you call the TERMINATE THREAD function and the application is not at a point of consistency, RRSAF
returns reason code X'00C12211".

The following diagram shows the syntax of the TERMINATE THREAD function.

DSNRLI TERMINATE THREAD function

»— CALL DSNRLI — (— function, L J) >«
— retcode

' L — reascode —J

Parameters point to the following areas:

function
An 18-byte area the contains TERMINATE THREAD followed by two blanks.

Chapter 2. Connecting to Db2 from your application program 103

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_accesscontrolbyapp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the return code in register 15
and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the reason code in register 0.

If you specify reascode, you must also specify retcode.

Example of RRSAF TERMINATE THREAD calls
The following table shows a TERMINATE THREAD call in each language.

Table 30. Examples of RRSAF TERMINATE THREAD calls

Language Call example
Assembler CALL DSNRLI, (TRMTHDFN,RETCODE,REASCODE)
Cl

fnret=dsnrli(&trmthdfn[0], &retcode, &reascode);
COBOL CALL 'DSNRLI' USING TRMTHDFN RETCODE REASCODE.
Fortran CALL DSNRLI(TRMTHDFN,RETCODE,REASCODE)
PL/I1

CALL DSNRLI(TRMTHDFN,RETCODE,REASCODE) ;

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler directives, because
DSNRLI is an assembler language program. These compiler directives are described in the instructions
for invoking RRSAF.

Related tasks

Invoking the Resource Recovery Services attachment facility

The Resource Recovery Services attachment facility (RRSAF) enables your program to communicate with
Db2. Invoke RRSAF as an alternative to invoking CAF or when using stored procedures that runin a
WLM-established address space. RRSAF has more capabilities than CAF.

TERMINATE IDENTIFY function for RRSAF

The RRSAF TERMINATE IDENTIFY function terminates a connection to Db2. Calling the TERMINATE
IDENTIFY function is optional. If you do not call it, Db2 performs the same functions when the task
terminates.

If Db2 terminates, the application must issue TERMINATE IDENTIFY to reset the RRSAF control blocks.
This action ensures that future connection requests from the task are successful when Db2 restarts.

The TERMINATE IDENTIFY function removes the calling task's connection to Db2. If no other task in the
address space has an active connection to Db2, Db2 also deletes the control block structures that were
created for the address space and removes the cross-memory authorization.

If the application is not at a point of consistency when you call the TERMINATE IDENTIFY function, RRSAF
returns reason code X'00C12211".

104 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

If the application allocated a plan, and you call the TERMINATE IDENTIFY function without first calling the
TERMINATE THREAD function, Db2 deallocates the plan before terminating the connection.

The following diagram shows the syntax of the TERMINATE IDENTIFY function.

DSNRLI TERMINATE IDENTIFY function

»— CALL DSNRLI — (— function L I) >«
, — retcode

L , — reascode J

Parameters point to the following areas:

function
An 18-byte area that contains TERMINATE IDENTIFY.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the return code in register 15
and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the reason code in register 0.

If you specify reascode, you must also specify retcode.

Example of RRSAF TERMINATE IDENTIFY calls
The following table shows a TERMINATE IDENTIFY call in each language.

Table 31. Examples of RRSAF TERMINATE IDENTIFY calls

Language Call example

Assembler

CALL DSNRLI, (TMIDFYFN,RETCODE, REASCODE)

ct fnret=dsnrli(&tmidfyfn[0], &retcode, &reascode);
COBOL CALL 'DSNRLI' USING TMIDFYFN RETCODE REASCODE.
Fortran CALL DSNRLI(TMIDFYFN,RETCODE,REASCODE)

PL/TL

CALL DSNRLI(TMIDFYFN,RETCODE,REASCODE) ;

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler directives, because
DSNRLI is an assembler language program. These compiler directives are described in the instructions
for invoking RRSAF.

Related tasks

Invoking the Resource Recovery Services attachment facility

Chapter 2. Connecting to Db2 from your application program 105

The Resource Recovery Services attachment facility (RRSAF) enables your program to communicate with
Db2. Invoke RRSAF as an alternative to invoking CAF or when using stored procedures that runin a
WLM-established address space. RRSAF has more capabilities than CAF.

TRANSLATE function for RRSAF

The RRSAF TRANSLATE function converts a hexadecimal reason code for a Db2 error into a signed integer
SQL code and a printable error message. The SQL code and message text are placed in the SQLCODE and
SQLSTATE host variables or related fields of the SQLCA.

Consider the following rules and recommendations about when to use and not use the TRANSLATE
function:

» You cannot call the TRANSLATE function from the Fortran language.

« Call the TRANSLATE function only after a successful IDENTIFY operation. For errors that occur during
SQL or IFI requests, the TRANSLATE function performs automatically.

- The TRANSLATE function translates codes that begin with X'00F3', but it does not translate RRSAF
reason codes that begin with X'00C1".

If you receive error reason code X'00F30040' (resource unavailable) after an OPEN request, the
TRANSLATE function returns the name of the unavailable database object in the last 44 characters of
the SQLERRM field.

If the TRANSLATE function does not recognize the error reason code, it returns SQLCODE -924 (SQLSTATE
'58006") and places a printable copy of the original Db2 function code and the return and error reason
codes in the SQLERRM field. The contents of registers 0 and 15 do not change, unless TRANSLATE fails. In
this case, register 0 is set to X'00C12204', and register 15 is set to 200.

The following diagram shows the syntax of the TRANSLATE function.

DSNRLI TRANSLATE function

»»— CALL DSNRLI — (— function, sqlca

Parameters point to the following areas:

function
An 18-byte area that contains the word TRANSLATE followed by nine blanks.

sqlca
The program's SQL communication area (SQLCA).

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the return code in register 15
and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the reason code in register 0.

If you specify reascode, you must also specify retcode.

Example of RRSAF TRANSLATE calls
The following table shows a TRANSLATE call in each language.

106 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Table 32. Examples of RRSAF TRANSLATE calls

Language Call example

Assembler CALL DSNRLI, (XLATFN,SQLCA,RETCODE,REASCODE)

1
c fnret=dsnrli(&connfn[0], &sqlca, &retcode, &reascode);
COBOL CALL 'DSNRLI' USING XLATFN SQLCA RETCODE REASCODE.
PL/12

CALL DSNRLI(XLATFN,SQLCA,RETCODE,REASCODE) ;

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler directives, because
DSNRLI is an assembler language program. These compiler directives are described in the instructions
for invoking RRSAF.

Related tasks

Invoking the Resource Recovery Services attachment facility

The Resource Recovery Services attachment facility (RRSAF) enables your program to communicate with
Db2. Invoke RRSAF as an alternative to invoking CAF or when using stored procedures that runin a
WLM-established address space. RRSAF has more capabilities than CAF.

FIND_DB2_SYSTEMS function for RRSAF
The RRSAF FIND_DB2_SYSTEMS function identifies all active Db2 subsystems on a z/OS LPAR.
The following diagram shows the syntax of the FIND_DB2_SYSTEMS function.

DSNRLI FIND_DB2_SYSTEMS function

»— CALL DSNRLI — (— function — ,— ssnma — , — activea — , — arraysz — , —»

Parameters point to the following areas:

function
An 18-byte area that contains FIND_DB2_SYSTEMS followed by two blanks.

ssnma
A storage area for an array of 4-byte character strings into which RRSAF places the names of all the
Db2 subsystems (SSIDs) that are defined for the current LPAR. You must provide the storage area. If
the array is larger than the number of Db2 subsystems, RRSAF returns the value ' ' (four blanks) in
all unused array members.

activea
A storage area for an array of 4-byte values into which RRSAF returns an indication of whether a
defined subsystem is active. Each value is represented as a fixed 31-bit integer. The value 1 means
that the subsystem is active. The value 0 means that the subsystem is not active. The size of this
array must be the same as the size of the ssnma array. If the array is larger than the number of Db2
subsystems, RRSAF returns the value -1 in all unused array members.

The information in the activea array is the information that is available at the point in time that you
requested it and might change at any time.

Chapter 2. Connecting to Db2 from your application program 107

arraysz
A 4-byte area, represented as a fixed 31-bit integer, that specifies the number of entries for the
ssnma and activea arrays. If the number of array entries is insufficient to contain all of the subsystems
defined on the current LPAR, RRSAF uses all available entries and returns return code 4.

retcode
A 4-byte area in which RRSAF is to place the return code for this call to the FIND_DB2_SYSTEMS
function.

This parameter is optional. If you do not retcode, RRSAF places the return code in register 15 and the
reason code in register 0.

reascode
A 4-byte area in which RRSAF is to place the reason code for this call to the FIND_DB2_SYSTEMS
function.

This parameter is optional. If you do not specify reascode, RRSAF places the reason code in register 0.

Example values that the FIND_DB2_SYSTEMS function returns

Assume that two subsystems are defined on the current LPAR. Subsystem DB2A is active, and subsystem
DB2B is stopped. Suppose that you invoke RRSAF with the function FIND_DB2_SYSTEMS and a value of 3
for arraysz. The ssnma array and activea array are set to the following values:

Table 33. Example values returned in the ssnma and activeaarrays

Array element number Values in ssnma array Values in activea array
1 DB2A 1

2 DB2B 0

3 (four blanks) -1

Related tasks

Invoking the Resource Recovery Services attachment facility

The Resource Recovery Services attachment facility (RRSAF) enables your program to communicate with
Db2. Invoke RRSAF as an alternative to invoking CAF or when using stored procedures that runin a
WLM-established address space. RRSAF has more capabilities than CAF.

RRSAF return codes and reason codes

If you specify return code and reason code parameters in an Resource Recovery Services attachment
facility (RRSAF) function call, RRSAF returns the return code and reason code in those parameters. If you
do not specify those parameters or implicitly invoke RRSAF, RRSAF puts the return code in register 15 and
the reason code in register O.

When the reason code begins with X'00F3', except for X'O0F30006', you can use the RRSAF TRANSLATE
function to obtain error message text that can be printed and displayed.

For SQL calls, RRSAF returns standard SQL return codes in the SQLCA. RRSAF returns IFI return codes
and reason codes in the instrumentation facility communication area (IFCA).

The following table lists the RRSAF return codes.

Table 34. RRSAF return codes

Return code Explanation
0 The call completed successfully.
4 Status information is available. See the reason

code for details.

>4 The call failed. See the reason code for details.

108 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Related reference

TRANSLATE function for RRSAF

The RRSAF TRANSLATE function converts a hexadecimal reason code for a Db2 error into a signed integer
SQL code and a printable error message. The SQL code and message text are placed in the SQLCODE and
SQLSTATE host variables or related fields of the SQLCA.

Sample RRSAF scenarios

One or more tasks can use Resource Recovery Services attachment facility (RRSAF) to connect to Db2.
This connection can be made either implicitly or explicitly. For explicit connections, a task calls one or
more of the RRSAF connection functions.

A single task

The following example pseudocode illustrates a single task running in an address space that explicitly
connects to Db2 through RRSAF. z/OS RRS controls commit processing when the task terminates
normally.

IDENTIFY
SIGNON

CREATE THREAD
SQL or IFI

TERMINATE IDENTIFY

Multiple tasks

In the following scenario, multiple tasks in an address space explicitly connect to Db2 through RRSAF.
Task 1 executes no SQL statements and makes no IFI calls. Its purpose is to monitor Db2 termination and
startup ECBs and to check the Db2 release level.

TASK 1 TASK 2 TASK 3 TASK n
IDENTIFY IDENTIFY IDENTIFY IDENTIFY
STGNON STGNON STGNON
CREATE THREAD CREATE THREAD CREATE THREAD
sQL sQL sQL
SRRCMIT SRRCMIT SRRCMIT
sQL sQL sQL

SRRCMIT SRRCMIT SRRCMIT
TERMINATE IDENTIFY o o

Reusing a Db2 thread

The following example pseudocode shows a Db2 thread that is reused by another user at a point of
consistency. When the application calls the SIGNON function for user B, Db2 reuses the plan that is
allocated by the CREATE THREAD function for user A.

IDENTIFY
SIGNON user A
CREATE THREAD
SQL
SRRCMIT
SIGNON user B
SQL

SRRCMIT

Chapter 2. Connecting to Db2 from your application program 109

Switching Db2 threads between tasks

The following scenario shows how you can switch the threads for four users (A, B, C, and D) among two

tasks (1 and 2).

Task 1

CTXBEGC (create context a)
CTXSWCH(a,0)
IDENTIFY
SIGNON user A
CREATE THREAD (Plan A)
SQL

CTXSWCH(@,a)

CTXBEGC (create context c)
CTXSWCH(c,0)
IDENTIFY
SIGNON user C
CREATE THREAD (plan C)
SQL

CTXSWCH (b, ¢)
SQL (plan B)

Task 2

CTXBEGC (create context b)
CTXSWCH(b,0)
IDENTIFY
SIGNON user B
CREATE THREAD (plan B)
SQL

CTXSWCH (@, b)

CTXBEGC (create context d)
CTXSWCH(d,0)
IDENTIFY
SIGNON user D
CREATE THREAD (plan D)
SQL

CTXSWCH (0, d)
CTXSWCH(a, 0)

SQL (plan A)

The applications perform the following steps:

- Task 1 creates context a, switches contexts so that context a is active for task 1, and calls the IDENTIFY
function to initialize a connection to a subsystem. A task must always call the IDENTIFY function before
a context switch can occur. After the IDENTIFY operation is complete, task 1 allocates a thread for user
A, and performs SQL operations.

At the same time, task 2 creates context b, switches contexts so that context b is active for task 2, calls
the IDENTIFY function to initialize a connection to the subsystem, allocates a thread for user B, and
performs SQL operations.

When the SQL operations complete, both tasks perform RRS context switch operations. Those
operations disconnect each Db2 thread from the task under which it was running.

« Task 1 then creates context c, calls the IDENTIFY function to initialize a connection to the subsystem,
switches contexts so that context c is active for task 1, allocates a thread for user C, and performs SQL
operations for user C.

Task 2 does the same operations for user D.

« When the SQL operations for user C complete, task 1 performs a context switch operation to perform
the following actions:

— Switch the thread for user C away from task 1.
— Switch the thread for user B to task 1.

For a context switch operation to associate a task with a Db2 thread, the Db2 thread must have
previously performed an IDENTIFY operation. Therefore, before the thread for user B can be associated
with task 1, task 1 must have performed an IDENTIFY operation.

 Task 2 performs two context switch operations to perform the following actions:

— Disassociate the thread for user D from task 2.
— Associate the thread for user A with task 2.

110 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Program examples for RRSAF

The Resource Recovery Services attachment facility (RRSAF) enables programs to communicate with
Db2. You can use RRSAF as an alternative to CAF.

Example JCL for invoking RRSAF

The following sample JCL shows how to use RRSAF in a batch environment. The DSNRRSAF DD statement
starts the RRSAF trace. Use that DD statement only if you are diagnosing a problem.

//jobname JoB 2/0S_jobcard_information
//RRSJCL EXEC PGM=RRS_application_program
//STEPLIB DD DSN=application_load_Llibrary
// DD DSN=DB2_load_Llibrary
//SYSPRINT DD SYSOUT=x*

/ /DSNRRSAF DD DUMMY

//SYSUDUMP DD SYSOUT=%

Example of loading and deleting the RRSAF language interface

The following code segment shows how an application loads entry points DSNRLI and DSNHLIR of

the RRSAF language interface. Storing the entry points in variables LIRLI and LISQL ensures that the
application loads the entry points only once. Delete the loaded modules when the application no longer
needs to access Db2.

*kkkkkhhkhhkkhhkkkhkrxkkkkkkkkxxxx GET LANGUAGE INTERFACE ENTRY ADDRESSES

LOAD EP=DSNRLI Load the RRSAF service request EP
ST RO, LIRLI Save this for RRSAF service requests
LOAD EP=DSNHLIR Load the RRSAF SQL call Entry Point

ST RO, LISQL Save this for SQL calls

*

Insert connection service requests and SQL calls here

DELETE EP=DSNRLI Correctly maintain use count
DELETE EP=DSNHLIR Correctly maintain use count

Example of using dummy entry point DSNHLI for RRSAF

Each of the Db2 attachment facilities contains an entry point named DSNHLI. When you use RRSAF but
do not specify the ATTACH(RRSAF) precompiler option, the precompiler generates BALR instructions to
DSNHLI for SQL statements in your program. To find the correct DSNHLI entry point without including
DSNRLI in your load module, code a subroutine, with entry point DSNHLI, that passes control to entry
point DSNHLIR in the DSNRLI module. DSNHLIR is unique to DSNRLI and is at the same location

as DSNHLI in DSNRLI. DSNRLI uses 31-bit addressing. If the application that calls this intermediate
subroutine uses 24-bit addressing, the intermediate subroutine must account for the difference.

In the following example, LISQL is addressable because the calling CSECT used the same register 12 as
CSECT DSNHLI. Your application must also establish addressability to LISQL.

* Subroutine DSNHLI intercepts calls to LI EP=DSNHLI
ek ok ek ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ke ko ok ok ok ok ke ko ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ke kok ok ok ok ok ok ok

DS oD
DSNHLI CSECT Begin CSECT

STM R14,R12,12(R13) Prologue

LA R15,SAVEHLI Get save area address

ST R13,4(,R15) Chain the save areas

ST R15,8(,R13) Chain the save areas

LR R13,R15 Put save area address in R13

L R15,LISQL Get the address of real DSNHLI

BASSM R14,R15 Branch to DSNRLI to do an SQL call
* DSNRLI is in 31-bit mode, so use
* BASSM to assure that the addressing
* mode is preserved.

L R13,4(,R13) Restore R13 (caller's save area addr)

Chapter 2. Connecting to Db2 from your application program 111

L R14,12(,R13) Restore R14 (return address)
RETURN (1,12) Restore R1-12, NOT RO and R15 (codes)

Example of connecting to Db2 with RRSAF

This example uses the variables that are declared in the following code.

*kkkkkkkkkkkkkxkkx VARIABLES SET BY APPLICATION *kkkkkkkhkkhhhhhhhhhrik

LIRLI DS F DSNRLI entry point address

LISQL DS F DSNHLIR entry point address

SSNM DS CL4 DB2 subsystem name for IDENTIFY
CORRID DS CL12 Correlation ID for SIGNON

ACCTTKN DS CL22 Accounting token for SIGNON

ACCTINT DS CL6 Accounting interval for SIGNON

PLAN DS CL8 DB2 plan name for CREATE THREAD
COLLID DS CL18 Collection ID for CREATE THREAD. If
* PLAN contains a plan name, not used.
REUSE DS CL8 Controls SIGNON after CREATE THREAD
CONTROL DS CL8 Action that application takes based
* on return code from RRSAF
*kkkkkkkkkkkkkkkkk VARIABLES SET BY DB2 s kkkkkkkkhkhkkkkkhkhkhkhkkkkkkhkkkkkkx
STARTECB DS F DB2 startup ECB

TERMECB DS F DB2 termination ECB

EIBPTR DS F Address of environment info block
RIBPTR DS F Address of release info block
*kkkkkkhkhhkhhkxhhkrxkhkrkhhkrkkkrkkhkkx CONSTANTS Hhkkhhhkdhhrkhhrkhrhhrhhhhhhhhrrik
CONTINUE DC CL8'CONTINUE' CONTROL value: Everything OK

IDFYFN DC CL18'IDENTIFY ' Name of RRSAF service

SGNONFN DC CL18'SIGNON ' Name of RRSAF service

CRTHRDFN DC CL18'CREATE THREAD ' Name of RRSAF service

TRMTHDFN DC CL18'TERMINATE THREAD ' Name of RRSAF service

TMIDFYFN DC CL18'TERMINATE IDENTIFY' Name of RRSAF service

*kkkkkkkkkhkkkhkkkkrkkkkkkkkkkkkkx SQLCA and RIB ,kkkkkkkkkkhhhhhhhkkhkkhkkk
EXEC SQL INCLUDE SQLCA

DSNDRIB Map the DB2 Release Information Block
*kkkkkkkkkkkkkkxk*x Parameter 1list for RRSAF calls xkx*xxkkkkkkkkkkkkkkkk

RRSAFCLL CALL

o (kpk % %, % %, %, %), VL, MF=L

The following example code shows how to issue requests for the RRSAF functions IDENTIFY, SIGNON,
CREATE THREAD, TERMINATE THREAD, and TERMINATE IDENTIFY. This example does not show a task
that waits on the Db2 termination ECB. You can code such a task and use the z/OS WAIT macro to monitor
the ECB. The task that waits on the termination ECB should detach the sample code if the termination
ECB is posted. That task can also wait on the Db2 startup ECB. This example waits on the startup ECB at
its own task level.

kkkkkkkkkkkkkkkkkkkkkkkrxkkkxkk IDENTIFY *kkkkokkhkokkhskkhkkkdkkhkhkkhkhkkhkhkkkkk

L R15,LIRLI Get the Language Interface address
CALL (15), (IDFYFN,SSNM,RIBPTR,EIBPTR, TERMECB,STARTECB) ,VL,MF=X
(E,RRSAFCLL)

BAL R14,CHEKCODE Call a routine (not shown) to check
* return and reason codes

CLC CONTROL,CONTINUE Is everything still OK

BNE EXIT If CONTROL not 'CONTINUE', stop loop

USING R8,RIB Prepare to access the RIB

L R8,RIBPTR Access RIB to get DB2 release level

CLC RIBREL,RIBR999 DB2 V10 or later?

BE USERELX If RIBREL = '999', use RIBRELX

WRITE 'The current DB2 release level is' RIBREL

B SIGNON Continue with signon USERELX

WRITE 'The current DB2 release level is' RIBRELX
ok kkk ok STGNON skok ok
SIGNON L R15,LIRLI Get the Language Interface address

CALL (15), (SGNONFN,CORRID,ACCTTKN,ACCTINT),VL,MF=(E,RRSAFCLL)

BAL R14,CHEKCODE Check the return and reason codes
*hkkkkkkkkkkkkkkkkkkkkkkkkkk CREATE THREAD *kkkkkkhkhkkkkkkhkhkkkkkkkhkkkkkkx

L R15,LIRLI Get the Language Interface address

CALL (15), (CRTHRDFN,PLAN,COLLID,REUSE),VL,MF=(E,RRSAFCLL)

BAL R14,CHEKCODE Check the return and reason codes
""""""""""""""" SQL ekedeskkokoke s s sk ke ok ke e s sk ok ok ok ke e sk ok ke ok ke e ek oke ok ok ke e
* Insert your SQL calls here. The DB2 Precompiler
* generates calls to entry point DSNHLI. You should
* code a dummy entry point of that name to intercept
* all SQL calls. A dummy DSNHLI is shown in the following
* section.

"""""""""""" TERMINATE THREAD ks skokskok ko ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

CLC CONTROL,CONTINUE Is everything still OK?

112 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

BNE EXIT If CONTROL not 'CONTINUE', shut down
L R15,LIRLI Get the Language Interface address
CALL (15), (TRMTHDFN) ,VL,MF=(E,RRSAFCLL)

BAL R14,CHEKCODE Check the return and reason codes

*hkkkkkkkkkkkkkkkkxkxkxkx TERMINATE IDENTIFY s kkkkhkhkhkhhhkkhkhkhkhkkhkkk

CLC CONTROL,CONTINUE Is everything still OK

BNE EXIT If CONTROL not 'CONTINUE', stop loop
L R15,LIRLI Get the Language Interface address
CALL (15), (TMIDFYFN),VL,MF=(E,RRSAFCLL)

BAL R14,CHEKCODE Check the return and reason codes

Universal language interface (DSNULI)

The universal language interface (DSNULI) subcomponent determines the runtime environment and
dynamically loads and branches to the appropriate language interface module.

The following figure shows the general structure of DSNULI and a program that uses it:

DSNALI
CAF
— DSNALI
> DSNHLI2
> DSNWLI2
Application program
or stored procedure DSNRLI
RRSAF
DSNULI L, DSNRLI
///// |, DSNHLIR
~ DSNALI — . DSNWLIR
DSNELI
~ DSNRLI
TSO
> DSNHLI
DSNHLI2 //////
> penHR <=2 > DSNWLI
DSNHLI
DSNCLI
cics
DSNWLI2 /
> DSNWLIR ST | » DSNHLI
DSNWLI —
> DSNWLI
DFSLI000
PLITDLI
DFSPLI IMS
|, CBLTDLI

DFSCOBOL > PLTDL

ASMTDLI 5\\\\\\\\\\

Rl > DFSPLI
™ CBLTDLI
> DFSCOBOL
~ ASMTDLI
> DFSASM

Figure 2. Application program or stored procedure linked with DSNULI

The Db2 load module, DSNULI, is the Universal Language Interface module. DSNULI has no aliases.

Chapter 2. Connecting to Db2 from your application program 113

DSNULI has the following entry points:

DSNALI

For explicit Db2 Call Attach Facility connection service requests
DSNRLI

For explicit Db2 Resource Recovery Services Attach Facility connection service requests
DSNCLI

For link-editing with CICS
DSNHLI

For generic SQL calls from applications that are designed to run in any environment.
DSNHLI2

For explicit SQL calls by way of the Call Attachment Facility
DSNHLIR

For explicit SQL calls by way of the Resource Recovery Services Attachment Facility
DSNWLI

For generic IFI calls from applications that are designed to run in any environment.
DSNWLI2

For explicit IFI calls by way of the Call Attachment Facility.
DSNWLIR

For explicit IFI call by way of the Resource Recovery Services Attachment Facility
PLITDLI

For PL/I specific IMS database access
DFSPLI

For PL/I specific IMS database access
CBLTDLI

For COBOL specific IMS database access
DFSCOBOL

For COBOL specific IMS database access
ASMTDLI

For assembler specific IMS database access
DFSASM

For assembler specific IMS database access

DSNULI dynamically loads and branches to the appropriate language interface module, which is based on
the entry point name (for attachment-specific entry points), or based on the current environment (for the
generic entry points DSNHLI and DSNWLI).

Related tasks

Link-editing an application with DSNULI

To create a single load module that can be used in more than one attachment environment, you can
link-edit your program or stored procedure with the Universal Language Interface module (DSNULI)
instead of with one of the environment-specific language interface modules (DSNELI, DSNALI, DSNRLI,
DSNCLI, or DFSLI0O00).

Link-editing an application with DSNULI

To create a single load module that can be used in more than one attachment environment, you can
link-edit your program or stored procedure with the Universal Language Interface module (DSNULI)

114 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

instead of with one of the environment-specific language interface modules (DSNELI, DSNALI, DSNRLI,
DSNCLI, or DFSLI000).

About this task

DSNULI should be link-edited with TSO, CAF, RRSAF applications (including Stored Procedures), CICS
applications and IMS applications. DSNULI determines the run time environment, then dynamically
loads and branches to the appropriate language interface module (DSNELI, DSNALI, DSNRLI, DSNCLI,
or DFSLI000).

The following considerations apply:

« If maximum performance is the primary requirement, link-edit with DSNELI, DSNALI, DSNRLI, DSNCLI,
or DFSLIO0O rather than DSNULI. If maintaining a single copy of a load module is the primary
requirement, link-edit with DSNULI.

« If CAF implicit connect functionality is required, link-edit your application with DSNALI instead of with
DSNULI. DSNULI defaults to RRSAF implicit connections if an attachment environment has not been
established upon entry to DSNHLI. Attachment environments are established by calling DSNRLI or
DSNALI initially, or by running an SQL application under the TSO command processor or under CICS or
IMS.

« DSNULI will not explicitly delete the loaded DSNELI, DSNALI, DSNRLI or DSNCLI. If an application
cannot tolerate having these modules deleted only at task termination, use DSNELI, DSNALI, DSNRLI or
DSNCLI instead of DSNULI.

« DSNULI is shipped with the linkage attributes AMODE(31) and RMODE(ANY) and must be entered in
AMODE(31).

Procedure

You can include DSNULI when you link-edit your load module. For example, you can use a linkage editor
control statement like this in your JCL:

INCLUDE SYSLIB(DSNULI)

Results
By coding this statement, you avoid linking to one of the environment-specific language interface
modules.

Controlling the CICS attachment facility from an application
Use the CICS attachment facility to access Db2 from CICS application programs.

About this task

You can start and stop the CICS attachment facility from within an application program.

Procedure

To control the CICS attachment facility:
1. To start the CICS attachment facility, perform one of the following actions:

« Include the following statement in your application:
EXEC CICS LINK PROGRAM('DSN2COM@"')

 Use the system programming interface SET DB2CONN for the CICS Transaction Server.
2. To stop the CICS attachment facility, perform one of the following actions:

« Include the following statement in your application:

Chapter 2. Connecting to Db2 from your application program 115

EXEC CICS LINK PROGRAM('DSN2COM2"')

 Use the system programming interface SET DB2CONN for the CICS Transaction Server.

Related information
SET DB2CONN (CICS Transaction Server for z/OS)

Detecting whether the CICS attachment facility is operational

Before you execute SQL statements in a CICS program, you should determine if the CICS attachment
facility is available. You do not need to do this test if the CICS attachment facility is started and you are
using standby mode.

About this task

When an SQL statement is executed, and the CICS attachment facility is in standby mode, the attachment
issues SQLCODE -923 with a reason code that indicates that Db2 is not available.

Procedure
Use the INQUIRE EXITPROGRAM command for the CICS Transaction Server in your application.

The following example shows how to use this command. In this example, the INQUIRE EXITPROGRAM
command tests whether the resource manager for SQL, DSNCSQL, is up and running. CICS returns the
results in the EIBRESP field of the EXEC interface block (EIB) and in the field whose name is the argument
of the CONNECTST parameter (in this case, STST). If the EIBRESP value indicates that the command
completed normally and the STST value indicates that the resource manager is available, you can then
execute SQL statements.

STST DS F
ENTNAME DS CL8
EXITPROG DS CL8

MVC ENTNAME,=CL8'DSNCSQL'
MvC EXITPROG,=CL8'DSN2EXT1"
EXEC CICS INQUIRE EXITPROGRAM(EXITPROG) X
ENTRYNAME (ENTNAME) CONNECTST (STST) NOHANDLE
CLC EIBRESP,DFHRESP (NORMAL)
BNE NOTREADY
CLC STST,DFHVALUE (CONNECTED)
BNE NOTREADY
UPNREADY DS OH
attach is up
NOTREADY DS OH
attach is not up yet

If you use the INQUIRE EXITPROGRAM command to avoid AEY9 abends and the CICS attachment facility
is down, the storm drain effect can occur. The storm drain effect is a condition that occurs when a system
continues to receive work, even though that system is down.

Related concepts

Storm-drain effect (Db2 Installation and Migration)

Related information

INQUIRE EXITPROGRAM (CICS Transaction Server for z/0OS)
-923 (Dbh2 Codes)

116 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/cics-ts/5.6?topic=commands-set-db2conn
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_stormdraineffectds.html
https://www.ibm.com/docs/en/cics-ts/5.6?topic=commands-inquire-exitprogram
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/n923.html

Improving thread reuse in CICS applications

Having transactions reuse threads is generally recommended because each thread creation is associated
with a high processor cost.

Procedure

Close all cursors that are declared with the WITH HOLD option before each sync point.

Db2 does not automatically close them. A thread for an application that contains an open cursor cannot
be reused. You should close all cursors immediately after you finish using them.

Related concepts

Held and non-held cursors

A held cursor does not close after a commit operation. A cursor that is not held closes after a commit
operation. You specify whether you want a cursor to be held or not held by including or omitting the WITH
HOLD clause when you declare the cursor.

Chapter 2. Connecting to Db2 from your application program 117

118 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Chapter 3. Db2 SQL programming

You can use the SQL language to write a statement that describes what you want to do with the data in a

database and under what conditions you want to do it.

Structured Query Language (SQL) is a standardized language based on the relational model of data that
is used for defining and manipulating data in a relational database. SQL statements can be contained in
user-defined functions, user-defined procedures, or triggers, embedded in high-level language programs,

dynamically prepared and run, or run interactively.

For information about embedded SQL, see Chapter 4, “Embedded SQL programming,” on page 455.

Creating and modifying Db2 objects from application programs

Your application program can create and manipulate Db2 objects, such as tables, views, triggers, distinct
types, user-defined functions, and stored procedures. You must have the appropriate authorizations to

create such objects.

Creating tables from application programs

Creating a table provides a logical place to store related data on a Db2 subsystem.

Procedure

Use a CREATE TABLE statement that includes the following elements:

« The name of the table. See Guidelines for table names (Db2 Administration Guide).

« Alist of the columns that make up the table. Separate each column description from the next with a
comma, and enclose the entire list of column descriptions in parentheses.

For each column, specify the following information:

— The name of the column (for example, SERIAL). See Column names (Db2 SQL).

— The data type and length attribute (for example, CHAR(8)). See Data types of columns (Introduction

to Db2 for z/OS).

— Optionally, specify a default value, or a constraint on the value. You can use the following values:

Keyword Result

NOT NULL Specifies the column cannot contain null values

UNIQUE The value for each row must be unique, and the
column cannot contain null values.

DEFAULT The column has one of the following Db2-

assigned default values:

For numeric columns, O (zero) is the default
value.

For character or graphic fixed-length strings,
blank is the default value.

For binary fixed-length strings, a set of
hexadecimal zeros is the default value.

For variable-length strings, including LOB
strings, the empty string (a string of zero-
length) is the default value.

© Copyright IBM Corp. 1983, 2022

119

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_guidelinesfortablenames.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_columnnamesintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_datatypes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_datatypes.html

Keyword Result

- For datetime columns, the current value of the
associated special register is the default value.

DEFAULT value The default value is specified as one of the
following values:

- A constant
- NULL

- SESSION_USER, which specifies the value of
the SESSION_USER special register at the time
when a default value is needed for the column

- CURRENT SQLID, which specifies the value of
the CURRENT SQLID special register at the
time when a default value is needed for the
column

- The name of a cast function that casts a
default value (of a built-in data type) to the
distinct type of a column

— Optionally, specify the partitioning method for the data in the table. Db2 uses size-based partitions
by default if you do not specify how to partition the data when you create the table. For more
information, see Partitioning data in Db2 tables (Db2 Administration Guide).

— Optionally, a referential constraint or check constraint. For more information, see “Check constraints”

on page 127 and “Referential constraints” on page 128.

Example
For example, the following SQL statement creates a table named PRODUCT:

CREATE TABLE PRODUCT

(SERIAL CHAR(8) NOT NULL,
DESCRIPTION VARCHAR(60) DEFAULT,
MFGCOST DECIMAL(8,2),

MFGDEPT CHAR(3),

MARKUP SMALLINT,

SALESDEPT CHAR(3),

CURDATE DATE DEFAULT) ;

Related concepts

Db2 tables (Introduction to Db2 for z/0S)

Related tasks

Creating base tables (Db2 Administration Guide)

Related reference

CREATE TABLE (Db2 SQL)

Related information

Lesson 1.2: Creating a table (Introduction to Db2 for z/0S)

Data types of columns

When you create a Db2 table, you define each column to have a specific data type. The data type of a
column determines what you can and cannot do with the column.

When you perform operations on columns, the data must be compatible with the data type of the
referenced column. For example, you cannot insert character data, such as a last name, into a column
whose data type is numeric. Similarly, you cannot compare columns that contain incompatible data types.

120 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_partitiontabledata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_tables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_creatingbasetables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_tut_createtable.html

The data type for a column can be a distinct type, which is a user-defined data type, or a Db2 built-in
data type. As shown in the following figure, Db2 built-in data types have four general categories: datetime,
string, numeric, and row identifier (ROWID).

Built-indata types

datetime string signed numeric row identifier extensible
markup
’—’—‘ ROWID language
XML
time timestamp date
TIME DATE ‘ ‘ ‘
exact a decimal approximate
. . . t t
timestamp without timestamp oating poin ‘
time zone with time zone DECFLOAT A .
floating point
TIMESTAMP TIMESTAMP

WITHOUT TIME ZONE WITH TIME ZONE

‘ ‘ ‘ single double
precision precision

character graphic binary REAL DOUBLE
] —
fixed varyin i i
length lenygthg fixed length varying length
CHAR BINARY
VARCHAR CLOB VARBINARY BLOB ‘ ‘
fixed varyin binary integer decimal
length len\fgthg YINEE
GRAPHIC ‘
16 bit 32 bit 64 bit packed
VARGRAPHIC DBCLOB SMALLINT INTEGER BIGINT DECIMAL

Figure 3. Db2 built-in data types

Related concepts

Assignment and comparison (Db2 SQL)
Casting between data types (Db2 SQL)
Rules for result data types (Db2 SQL)

Distinct types
A distinct type is a user-defined data type that shares its internal representation with a built-in data type
(its source type), but is considered to be a separate and incompatible data type for most operations.

Data types (Db2 SQL)

Storing LOB data in Db2 tables

Db2 handles LOB data differently than other kinds of data. As a result, you sometimes need to take
additional actions when you define LOB columns and insert the LOB data.

Before you begin

Db2 sometimes implicitly creates the LOB table space, auxiliary table, and index on the auxiliary table for
each LOB column in a table or partition. For more information, see LOB table space implicit creation (Db2
Administration Guide).

If Db2 does not implicitly create the LOB table spaces, auxiliary tables, and indexes on the auxiliary
tables, you must create these objects by issuing CREATE TABLESPACE, CREATE AUXILIARY TABLE, and
CREATE INDEX statements.

About this task

Large object and LOB refer to Db2 objects that you can use to store large amounts of data. ALOB is a
varying-length character string that can contain up to 2 GB - 1 byte of data. Db2 supports the following
LOB data types:

Binary large object (BLOB)
Use a BLOB to store binary data such as pictures, voice, and mixed media.

Chapter 3. Db2 SQL programming 121

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_assignmentandcomparison.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_castingbetweendatatypes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_rules4resultdatatypes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_datatypesintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html

Character large object (CLOB)
Use a CLOB to store SBCS or mixed character data, such as documents.

Double-byte character large object (DBCLOB)
Use a DBCLOB to store data that consists of only DBCS data.

For more information about LOB data types, see Large objects (LOBs) (Db2 SQL).

You can use Db2 to store LOB data, but this data is stored differently than other kinds of data.

Although a table can have a LOB column, the actual LOB data is stored in a another table, which called the
auxiliary table. This auxiliary table exists in a separate table space called a LOB table space. One auxiliary
table must exist for each LOB column. The table with the LOB column is called the base table. The base
table has a ROWID column that Db2 uses to locate the data in the auxiliary table. The auxiliary table must
have exactly one index.

Procedure

To store LOB data in Db2, complete the following steps:

1. Optional: Define at most one ROWID column when you create or alter the table, even if the table is
going to have multiple LOB columns. If you do not create a ROWID column before you define a LOB
column, Db2 implicitly creates a ROWID column with the IMPLICITLY HIDDEN attribute and appends it
as the last column of the table.

If you add a ROWID column after you add a LOB column, the table has two ROWID columns: the
implicitly-created column and the explicitly-created column. In this case, Db2 ensures that the values
of the two ROWID columns are always identical.

2. Define one or more columns of the appropriate LOB type column by issuing a CREATE TABLE
statement or one or more ALTER TABLE statements.

3. Create table spaces and auxiliary tables for the LOB data, unless Db2 creates them implicitly for you.
For more information, see LOB table space implicit creation (Db2 Administration Guide).

You must create one LOB table space for each table partition and one auxiliary table for each LOB
column. For example, if your base table has three partitions, you must create three LOB table spaces
and three auxiliary tables for each LOB column. Use the following statements to create these objects:
CREATE LOB TABLESPACE (Db2 SQL) and CREATE AUXILIARY TABLE (Db2 SQL).

The privilege set must include the following privileges:

« The USE privilege on the buffer pool and the storage group that is used by the LOB objects
- If the base table space is explicitly created, CREATETS is also required on the database that contains
the table (DSNDBOA4 if the database is implicitly created)
4. Create one index for each auxiliary table by using the CREATE INDEX statement. Each auxiliary table
must have exactly one index in which each index entry refers to a LOB.
5. Insert the LOB data into Db2 by using one of the following techniques:

« If the total length of a LOB column and the base table row is less than 32 KB, use the LOAD utility
and specify the base table.

« Otherwise, use INSERT, UPDATE, or MERGE statements and specify the base table. If you use the
INSERT statement, ensure that you application has enough storage available to hold the entire value
that is to be put into the LOB column.

Example

Suppose that you want to add a resume for each employee to the employee table. The employee resumes
are no more than 5 MB in size. Because the employee resumes contain single-byte characters, you can
define the resumes to Db2 as CLOBs. You therefore need to add a column of data type CLOB with a length
of 5 MB to the employee table. If you want to define a ROWID column explicitly, you must define it before
you define the CLOB column.

122 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_lobsintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createlobtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createauxiliarytable.html

First, execute an ALTER TABLE statement to add the ROWID column, and then execute another ALTER
TABLE statement to add the CLOB column. The following statements create these columns:

ALTER TABLE EMP
ADD ROW_ID ROWID NOT NULL GENERATED ALWAYS;
COMMIT;
ALTER TABLE EMP
ADD EMP_RESUME CLOB(5M);
COMMIT;

If you explicitly created the table space for this table and the CURRENT RULES special register is not set
to STD, you then need to define a LOB table space and an auxiliary table to hold the employee resumes.
You also need to define an index on the auxiliary table. You must define the LOB table space in the same
database as the associated base table. The following statements create these objects:

CREATE LOB TABLESPACE RESUMETS
IN DSNSD12A
LOG NO

COMMIT;

CREATE AUXILIARY TABLE EMP_RESUME_TAB
IN DSN8SD12A.RESUMETS
STORES DSNSC10.EMP
COLUMN EMP_RESUME;

CREATE UNIQUE INDEX XEMP_RESUME
ON EMP_RESUME_TAB;

COMMIT;

You can then load your employee resumes into Db2. In your application, you can define a host variable
to hold the resume, copy the resume data from a file into the host variable, and then execute an UPDATE
statement to copy the data into Db2. Although the LOB data is stored in the auxiliary table, your UPDATE
statement specifies the name of the base table. The following code declares a host variable to store the
resume in the C language:

SQL TYPE is CLOB (5M) resumedata;

The following UPDATE statement copies the data into Db2:

UPDATE EMP SET EMP_RESUME=:resumedata
WHERE EMPNO=:employeenum;

In this statement, employeenumis a host variable that identifies the employee who is associated with a
resume.

Related concepts

Large objects (LOBs) (Db2 SQL)

Related tasks

Creating large objects (Introduction to Db2 for z/0S)
Related reference

CREATE TABLE (Db2 SQL)

CREATE AUXILIARY TABLE (Db2 SQL)

CREATE LOB TABLESPACE (Db2 SQL)

CREATE INDEX (Db2 SQL)

Identity columns

An identity column contains a unique numeric value for each row in the table. Db2 can automatically
generate sequential numeric values for this column as rows are inserted into the table. Thus, identity
columns are ideal for primary key values, such as employee numbers or product numbers.

Using identity columns as keys

If you define a column with the AS IDENTITY attribute, and with the GENERATED ALWAYS and NO CYCLE
attributes, Db2 automatically generates a monotonically increasing or decreasing sequential number for

Chapter 3. Db2 SQL programming 123

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_lobsintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoflargeobjects.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createauxiliarytable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createlobtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html

the value of that column when a new row is inserted into the table. However, for Db2 to guarantee that the
values of the identity column are unique, you should define a unique index on that column.

You can use identity columns for primary keys that are typically unique sequential numbers, for example,
order numbers or employee numbers. By doing so, you can avoid the concurrency problems that can
result when an application generates its own unique counter outside the database.

Recommendation: Set the values of the foreign keys in the dependent tables after loading the parent
table. If you use an identity column as a parent key in a referential integrity structure, loading data into
that structure could be quite complicated. The values for the identity column are not known until the table
is loaded because the column is defined as GENERATED ALWAYS.

You might have gaps in identity column values for the following reasons:

- If other applications are inserting values into the same identity column
« If Db2 terminates abnormally before it assigns all the cached values
« If your application rolls back a transaction that inserts identity values

Defining an identity column
You can define an identity column as either GENERATED BY DEFAULT or GENERATED ALWAYS:

« If you define the column as GENERATED BY DEFAULT, you can insert a value, and Db2 provides a default
value if you do not supply one.

« If you define the column as GENERATED ALWAYS, Db2 always generates a value for the column, and
you cannot insert data into that column. If you want the values to be unique, you must define the
identity column with GENERATED ALWAYS and NO CYCLE and define a unique index on that column.

The values that Db2 generates for an identity column depend on how the column is defined. The START
WITH option determines the first value that Db2 generates. The values advance by the INCREMENT BY
value in ascending or descending order.

The MINVALUE and MAXVALUE options determine the minimum and maximum values that Db2
generates. However, the The CYCLE or NO CYCLE option determines whether Db2 wraps values when

it has generated all values between the START WITH value and MAXVALUE if the values are ascending, or
between the START WITH value and MINVALUE if the values are descending. MINVALUE and MAXVALUE
do not constrain a START WITH or RESTART WITH value.

Example: Using GENERATED ALWAYS and CYCLE
Suppose that table T1 is defined with GENERATED ALWAYS and CYCLE:

CREATE TABLE T1

(CHARCOL1 CHAR(1),

IDENTCOL1 SMALLINT GENERATED ALWAYS AS IDENTITY
(START WITH -1,
INCREMENT BY 1,
CYCLE,
MINVALUE -3,
MAXVALUE 3));

Now suppose that you execute the following INSERT statement eight times:
INSERT INTO T1 (CHARCOL1) VALUES ('A');

When Db2 generates values for IDENTCOL1Z, it starts with -1 and increments by 1 until it reaches the
MAXVALUE of 3 on the fifth INSERT. To generate the value for the sixth INSERT, Db2 cycles back to
MINVALUE, which is -3. T1 looks like this after the eight INSERT statements are executed:

CHARCOL1 IDENTCOL1

=1l
0
1
2

> > >

124 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

3
=8
-2
-1

>> >

The value of IDENTCOL1 for the eighth INSERT repeats the value of IDENTCOL1 for the first INSERT.

Example: START WITH or RESTART WITH values outside the range for cycling

The MINVALUE and MAXVALUE options do not constrain the START WITH value. That is, the START WITH
clause can be used to start the generation of values outside the range that is used for cycles. However, the
next generated value after the specified START WITH value is MNVALUE for an ascending identity column
or MAXVALUE for a descending identity column. The same is true if you alter the identity column and
specify a RESTART WITH value.

Consider T1 from the previous example, and suppose that you alter the table with a statement that
specifies the following keywords.

ALTER TABLE T1
ALTER COLUMN IDENTCOL1 SET GENERATED ALWAYS RESTART WITH 99;

Now suppose that you execute the following INSERT statement three times:
INSERT INTO T1 (CHARCOL1) VALUES ('B');

When Db2 generates the IDENTCOL1 value, it starts with 99. However, for the next generated value, Db2
again cycles back to MINVALUE, which is -3. T1 looks like this after the three INSERT statements are
executed:

CHARCOL1 IDENTCOL1

=1l
0
1
2
3
=&
-2
=4l
99
=8
-2

WOWE>>>>>>>>

Identity columns as primary keys

The SELECT from INSERT statement enables you to insert a row into a parent table with its primary key
defined as a Db2-generated identity column, and retrieve the value of the primary or parent key. You can
then use this generated value as a foreign key in a dependent table.

In addition, you can use the IDENTITY_VAL_LOCAL function to return the most recently assigned value for
an identity column.

Example: Using SELECT from INSERT
Suppose that an EMPLOYEE table and a DEPARTMENT table are defined in the following way:

CREATE TABLE EMPLOYEE

(EMPNO INTEGER GENERATED ALWAYS AS IDENTITY
PRIMARY KEY NOT NULL,

NAME CHAR(30) NOT NULL,

SALARY DECIMAL(7,2) NOT NULL,

WORKDEPT ~ SMALLINT);
CREATE TABLE DEPARTMENT

(DEPTNO SMALLINT NOT NULL PRIMARY KEY,
DEPTNAME VARCHAR(30),
MGRNO INTEGER NOT NULL,

CONSTRAINT REF_EMPNO FOREIGN KEY (MGRNO)

Chapter 3. Db2 SQL programming 125

REFERENCES EMPLOYEE (EMPNO) ON DELETE RESTRICT);

ALTER TABLE EMPLOYEE ADD
CONSTRAINT REF_DEPTNO FOREIGN KEY (WORKDEPT)
REFERENCES DEPARTMENT (DEPTNO) ON DELETE SET NULL;

When you insert a new employee into the EMPLOYEE table, to retrieve the value for the EMPNO column,
you can use the following SELECT from INSERT statement:

EXEC SQL
SELECT EMPNO INTO :hv_empno
FROM FINAL TABLE (INSERT INTO EMPLOYEE (NAME, SALARY, WORKDEPT)
VALUES ('New Employee', 75000.00, 11));

The SELECT statement returns the Db2-generated identity value for the EMPNO column in the host
variable :hv_empno.

You can then use the value in :hv_empno to update the MGRNO column in the DEPARTMENT table with
the new employee as the department manager:

EXEC SQL
UPDATE DEPARTMENT
SET MGRNO = :hv_empno
WHERE DEPTNO = 11;

Related concepts

Rules for inserting data into an identity column
An identity column contains a unique numeric value for each row in the table. Whether you can insert data
into an identity column and how that data gets inserted depends on how the column is defined.

Related tasks

Selecting values while inserting data
When you insert rows into a table, you can also select values from the inserted rows at the same time.

Related reference
IDENTITY_ VAL LOCAL (Db2 SOL)

Creating tables for data integrity

To ensure that only valid data is added to your tables, you can use constraints, triggers, and unique
indexes. For example, you might need to ensure that all items in your inventory table have valid item
numbers and to prevent items without valid item numbers from being added.

About this task
Introductory concepts

Creation of relationships with referential constraints (Introduction to Db2 for z/0S)

Related concepts

Creation of relationships with referential constraints (Introduction to Db2 for z/0S)

Related tasks

Altering a table for referential integrity (Db2 Administration Guide)

Creating indexes to improve referential integrity performance for foreign keys (Db2 Performance)

Creating tables for data integrity

To ensure that only valid data is added to your tables, you can use constraints, triggers, and unique
indexes. For example, you might need to ensure that all items in your inventory table have valid item
numbers and to prevent items without valid item numbers from being added.

Using referential integrity for data consistency (Managing Security)

126 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_identityvallocal.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_relationshipswithreferentialconstraints.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_relationshipswithreferentialconstraints.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_altertableforreferential.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_createindexri.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_usereferential4consistent.html

Ways to maintain data integrity
When you add or modify data in a Db2 table, you need to ensure that the data is valid. Two techniques
that you can use to ensure valid data are constraints and triggers.

Constraints are rules that limit the values that you can insert, delete, or update in a table. There are two
types of constraints:

« Check constraints determine the values that a column can contain. Check constraints are discussed in
“Check constraints” on page 127.

- Referential constraints preserve relationships between tables. Referential constraints are discussed
in “Referential constraints” on page 128. A specific type of referential constraints, the informational
referential constraint, is discussed in “Informational referential constraints” on page 130.

To maintain data integrity Db2 enforces check constraints and referential constraints on data in a table.
When these types of constraints are violated or might be violated, Db2 places the table space or partition
that contains the table in CHECK-pending status.

Triggers are a series of actions that are invoked when a table is updated. Triggers are discussed in
“Creating a trigger” on page 149.

Related reference
CHECK-pending status (Db2 Utilities)

Check constraints

A check constraint is a rule that specifies the values that are allowed in one or more columns of every row
of a base table. For example, you can define a check constraint to ensure that all values in a column that
contains ages are positive numbers.

Check constraints designate the values that specific columns of a base table can contain, providing
you a method of controlling the integrity of data entered into tables. You can create tables with check
constraints using the CREATE TABLE statement, or you can add the constraints with the ALTER TABLE
statement. However, if the check integrity is compromised or cannot be guaranteed for a table, the
table space or partition that contains the table is placed in a check pending state. Check integrity is the
condition that exists when each row of a table conforms to the check constraints defined on that table.

For example, you might want to make sure that no salary can be below 15000 dollars. To do this, you can
create the following check constraint:

CREATE TABLE EMPSAL
(ID INTEGER NOT NULL,
SALARY INTEGER CHECK (SALARY >= 15000));

Using check constraints makes your programming task easier, because you do not need to enforce those
constraints within application programs or with a validation routine. Define check constraints on one or
more columns in a table when that table is created or altered.

Check constraint considerations

The syntax of a check constraint is checked when the constraint is defined, but the meaning of the
constraint is not checked. The following examples show mistakes that are not caught. Column C1 is
defined as INTEGER NOT NULL.

Allowable but mistaken check constraints:

« A self-contradictory check constraint:
CHECK (C1 > 5 AND C1 < 2)
« Two check constraints that contradict each other:

CHECK (C1 > 5)
CHECK (C1 < 2)

Chapter 3. Db2 SQL programming 127

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_checkpendingstatus.html

« Two check constraints, one of which is redundant:

CHECK (C1 > 0)
CHECK (C1 >= 1)

« A check constraint that contradicts the column definition:
CHECK (C1 IS NULL)
« A check constraint that repeats the column definition:

CHECK (C1 IS NOT NULL)

A check constraint is not checked for consistency with other types of constraints. For example, a column
in a dependent table can have a referential constraint with a delete rule of SET NULL. You can also define
a check constraint that prohibits nulls in the column. As a result, an attempt to delete a parent row fails,
because setting the dependent row to null violates the check constraint.

Similarly, a check constraint is not checked for consistency with a validation routine, which is applied to
a table before a check constraint. If the routine requires a column to be greater than or equal to 10 and
a check constraint requires the same column to be less than 10, table inserts are not possible. Plans and
packages do not need to be rebound after check constraints are defined on or removed from a table.

When check constraints are enforced
After check constraints are defined on a table, any change must satisfy those constraints if it is made by:

« The LOAD utility with the option ENFORCE CONSTRAINT
« An SQL insert operation
« An SQL update operation

A row satisfies a check constraint if its condition evaluates either to true or to unknown. A condition can
evaluate to unknown for a row if one of the named columns contains the null value for that row.

Any constraint defined on columns of a base table applies to the views defined on that base table.

When you use ALTER TABLE to add a check constraint to already populated tables, the enforcement of the
check constraint is determined by the value of the CURRENT RULES special register as follows:

« If the value is STD, the check constraint is enforced immediately when it is defined. If a row does not
conform, the check constraint is not added to the table and an error occurs.

« If the value is Db2, the check constraint is added to the table description but its enforcement is
deferred. Because there might be rows in the table that violate the check constraint, the table is placed
in CHECK-pending status.

Referential constraints

A referential constraint is a rule that specifies that the only valid values for a particular column are those
values that exist in another specified table column. For example, a referential constraint can ensure that
all customer IDs in a transaction table exist in the ID column of a customer table.

A table can serve as the "master list" of all occurrences of an entity. In the sample application, the
employee table serves that purpose for employees; the numbers that appear in that table are the only
valid employee numbers. Likewise, the department table provides a master list of all valid department
numbers; the project activity table provides a master list of activities performed for projects; and so on.

The following figure shows the relationships that exist among the tables in the sample application. Arrows
point from parent tables to dependent tables.

128 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

l CASCADE

— DEPT —
SET SET
NULL NULL
RETRICT EMP
RETRICT
I CASCADE ACT
. PROJ —
lRETRICT RETRICT
‘ » PROJACT
RETRICT
lRETRICT
EMPPROJACT «—

Figure 4. Relationships among tables in the sample application

When a table refers to an entity for which there is a master list, it should identify an occurrence of the
entity that actually appears in the master list; otherwise, either the reference is invalid or the master list is
incomplete. Referential constraints enforce the relationship between a table and a master list.

Restrictions on cycles of dependent tables

A cycle is a set of two or more tables. The tables are ordered so that each is a dependent of the one before
it, and the first is a dependent of the last. Every table in the cycle is a descendent of itself. Db2 restricts
certain operations on cycles.

In the sample application, the employee and department tables are a cycle; each is a dependent of the
other.

Db2 does not allow you to create a cycle in which a delete operation on a table involves that same table.
Enforcing that principle creates rules about adding a foreign key to a table:

« Inacycle of two tables, neither delete rule can be CASCADE.

« In acycle of more than two tables, two or more delete rules must not be CASCADE. For example, in a
cycle with three tables, two of the delete rules must be other than CASCADE. This concept is illustrated
in The following figure. The cycle on the left is valid because two or more of the delete rules are not
CASCADE. The cycle on the right is invalid because it contains two cascading deletes.

Valid Invalid
L
cycle TABLEL < cycle TABLEL <
RESTRICT CASCADE CASCADE CASCADE
» TABLE TABLE2 —» TABLE
VL= SETNULL 3 SET NULL 3

Figure 5. Valid and invalid delete cycles

Alternatively, a delete operation on a self-referencing table must involve the same table, and the delete
rule there must be CASCADE or NO ACTION.

Chapter 3. Db2 SQL programming 129

Recommendation: Avoid creating a cycle in which all the delete rules are RESTRICT and none of the
foreign keys allows nulls. If you do this, no row of any of the tables can ever be deleted.

Referential constraints on tables with multilevel security with row-level granularity
You cannot use referential constraints on a security label column, which is used for multilevel security
with row-level granularity. However, you can use referential constraints on other columns in the row.

Db2 does not enforce multilevel security with row-level granularity when it is already enforcing referential
constraints. Referential constraints are enforced when the following situations occur:
« Aninsert operation is applied to a dependent table.

« An update operation is applied to a foreign key of a dependent table, or to the parent key of a parent
table.

- A delete operation is applied to a parent table. In addition to all referential constraints being enforced,
the Db2 system enforces all delete rules for all dependent rows that are affected by the delete
operation. If all referential constraints and delete rules are not satisfied, the delete operation will not
succeed.

« The LOAD utility with the ENFORCE CONSTRAINTS option is run on a dependent table.
« The CHECK DATA utility is run.

Related concepts
Multilevel security (Managing Security)

Informational referential constraints

An informational referential constraint is a referential constraint that Db2 does not enforce during normal
operations. Use these constraints only when referential integrity can be enforced by another means, such
as when retrieving data from other sources. These constraints might improve performance by enabling
the query to qualify for automatic query rewrite.

Db2 ignores informational referential constraints during insert, update, and delete operations. Some
utilities ignore these constraints; other utilities recognize them. For example, CHECK DATA and LOAD
ignore these constraints. QUIESCE TABLESPACESET recognizes these constraints by quiescing all table
spaces related to the specified table space.

You should use this type of referential constraint only when an application process verifies the datain a
referential integrity relationship. For example, when inserting a row in a dependent table, the application
should verify that a foreign key exists as a primary or unique key in the parent table. To define an
informational referential constraint, use the NOT ENFORCED option of the referential constraint definition
in a CREATE TABLE or ALTER TABLE statement.

Informational referential constraints are often useful, especially in a data warehouse environment, for
several reasons:

 To avoid the overhead of enforcement by Db2.

Typically, data in a data warehouse has been extracted and cleansed from other sources. Referential
integrity might already be guaranteed. In this situation, enforcement by Db2 is unnecessary.

« To allow more queries to qualify for automatic query rewrite.

Automatic query rewrite is a process that examines a submitted query that references source tables
and, if appropriate, rewrites the query so that it executes against a materialized query table that

has been derived from those source tables. This process uses informational referential constraints to
determine whether the query can use a materialized query table. Automatic query rewrite results in a
significant reduction in query run time, especially for decision-support queries that operate over huge
amounts of data.

Related tasks

Using materialized query tables to improve SQL performance (Db2 Performance)
Related reference

CREATE TABLE (Db2 SQL)

130 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_mls.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_usemqtimprovesqlperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html

Defining a parent key and unique index

A parent key is either a primary key or a unique key in the parent table of a referential constraint. The
values of a parent key determine the valid values of the foreign key in the constraint. You must create a
unique index on a parent key.

About this task

The primary key of a table, if one exists, uniquely identifies each occurrence of an entity in the table. The
PRIMARY KEY clause of the CREATE TABLE or ALTER TABLE statements identifies the column or columns
of the primary key. Each identified column must be defined as NOT NULL.

Another way to allow only unique values in a column is to specify the UNIQUE clause when you create or
alter a table.

A table that is to be a parent of dependent tables must have a primary or a unique key; the foreign keys
of the dependent tables refer to the primary or unique key. Otherwise, a primary key is optional. Consider
defining a primary key if each row of your table does pertain to a unique occurrence of some entity. If you
define a primary key, an index must be created (the primary index) on the same set of columns, in the
same order as those columns. If you are defining referential constraints for Db2 to enforce, takes steps to
maintain data integrity read before creating or altering any of the tables involved.

A table can have no more than one primary key. A primary key has the same restrictions as index keys:
- The key can include no more than 64 columns.

« You cannot specify a column name twice.

« The sum of the column length attributes cannot be greater than 2000.

You define a list of columns as the primary key of a table with the PRIMARY KEY clause in the CREATE
TABLE statement.

Procedure

Use the PRIMARY KEY clause in an ALTER TABLE statement. In this case, a unique index must already
exist.

Consider the following items when you plan for primary keys:

« The theoretical model of a relational database suggests that every table should have a primary key to
uniquely identify the entities it describes. However, you must weigh that model against the potential
cost of index maintenance overhead. Db2 does not require you to define a primary key for tables with no
dependents.

« Choose a primary key whose values will not change over time. Choosing a primary key with persistent
values enforces the good practice of having unique identifiers that remain the same for the lifetime of
the entity occurrence.

« A primary key column should not have default values unless the primary key is a single TIMESTAMP
column.

« Choose the minimum number of columns to ensure uniqueness of the primary key.

« Aview that can be updated that is defined on a table with a primary key should include all columns of
the key. Although this is necessary only if the view is used for inserts, the unique identification of rows
can be useful if the view is used for updates, deletes, or selects.

« Drop a primary key later if you change your database or application using SQL.

Related concepts

Ways to maintain data integrity
When you add or modify data in a Db2 table, you need to ensure that the data is valid. Two techniques
that you can use to ensure valid data are constraints and triggers.

Related reference
ALTER TABLE (Db2 SQL)

Chapter 3. Db2 SQL programming 131

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertable.html

CREATE TABLE (Db2 SQL)

Parent key columns

A parent key is either a primary key or a unique key in the parent table of a referential constraint. This
key consists of a column or set of columns. The values of a parent key determine the valid values of the
foreign key in the constraint.

If every row in a table represents relationships for a unique entity, the table should have one column or a
set of columns that provides a unique identifier for the rows of the table. This column (or set of columns)
is called the parent key of the table. To ensure that the parent key does not contain duplicate values, you
must create a unique index on the column or columns that constitute the parent key. Defining the parent
key is called entity integrity, because it requires each entity to have a unique key.

In some cases, using a timestamp as part of the key can be helpful, for example when a table does not
have a "natural" unique key or if arrival sequence is the key.

Primary keys for some of the sample tables are:

Table
Key Column

Employee table
EMPNO

Department table
DEPTNO

Project table
PROJNO

Table 35 on page 132 shows part of the project table which has the primary key column, PROJNO.

Table 35. Part of the project table with the primary key column, PROINO

PROJNO PROJNAME DEPTNO
MA2100 WELD LINE AUTOMATION D01
MA2110 W L PROGRAMMING D11

Table 36 on page 132 shows part of the project activity table, which has a primary key that contains
more than one column. The primary key is a composite key, which consists of the PRONNO, ACTNO, and
ACSTDATE columns.

Table 36. Part of the Project activities table with a composite primary key

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE
AD3100 10 .50 1982-01-01 1982-07-01
AD3110 10 1.00 1982-01-01 1983-01-01
AD3111 60 .50 1982-03-15 1982-04-15

Defining a foreign key

Use foreign keys to enforce referential relationships between tables. A foreign key is a column or set of

columns that references the parent key in the parent table.

Before you begin

The following prerequisites are met:

 The privilege set must include the ALTER or the REFERENCES privilege on the columns of the parent

key.

« A unique index exists on the parent key columns of the parent table.

132 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html

Procedure

To define a foreign key, use one of the following approaches:
« Issue a CREATE TABLE statement and specify a FOREIGN KEY clause.
a) Choose a constraint name for the relationship that is defined by a foreign key.

If you do not choose a name, Db2 generates one from the name of the first column of the foreign
key, in the same way that it generates the name of an implicitly created table space.

For example, the names of the relationships in which the employee-to-project activity table is a
dependent would, by default, be recorded (in column RELNAME of SYSIBM.SYSFOREIGNKEYS) as
EMPNO and PROJNO.

The name is used in error messages, queries to the catalog, and DROP FOREIGN KEY statements.
Hence, you might want to choose one if you are experimenting with your database design and have
more than one foreign key that begins with the same column (otherwise Db2 generates the name).

b) Specify column names that identify the columns of the parent key.

A foreign key can refer to either a unique or a primary key of the parent table. If the foreign key
refers to a non-primary unique key, you must specify the column names of the key explicitly. If the
column names of the key are not specified explicitly, the default is to refer to the column names of
the primary key of the parent table.
« Issue an ALTER TABLE statement and specify the FOREIGN KEY clause.

You can add a foreign key to an existing table; in fact, that is sometimes the only way to proceed. To

make a table self-referencing, you must add a foreign key after creating it. When a foreign key is added

to a populated table, the table space is put into CHECK-pending status.

Example

The following example shows a CREATE TABLE statement that specifies constraint names REPAPA and
REPAE for the foreign keys in the employee-to-project activity table.

CREATE TABLE DSN8C10.EMPPROJACT

(EMPNO CHAR(6) NOT NULL,
PROJINO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,

CONSTRAINT REPAPA FOREIGN KEY (PROJNO, ACTNO)
REFERENCES DSN8C10.PROJACT ON DELETE RESTRICT,
CONSTRAINT REPAE FOREIGN KEY (EMPNO)
REFERENCES DSN8C10.EMP ON DELETE RESTRICT)
IN DATABASE DSN8D12A;

What to do next
If rows of the parent table are often deleted, it is best to create an index on the foreign key.

Related tasks

Adding parent keys and foreign keys (Db2 Administration Guide)
Related reference

CREATE TABLE (Db2 SQL)

ALTER TABLE (Db2 SQL)

SYSFOREIGNKEYS catalog table (Db2 SQL)

Maintaining referential integrity when using data encryption
If you use encrypted data in a referential constraint, the primary key of the parent table and the foreign
key of the dependent table must have the same encrypted value.

About this task

The encrypted value should be extracted from the parent table (the primary key) and used for the
dependent table (the foreign key). You can do this in one of the following two ways:

Chapter 3. Db2 SQL programming 133

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_createindexri.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_addkeys.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsysforeignkeystable.html

« Use the FINAL TABLE clause on a SELECT from UPDATE, SELECT from INSERT, or SELECT from MERGE
statement.

« Use the ENCRYPT_TDES function to encrypt the foreign key using the same password as the primary
key. The encrypted value of the foreign key will be the same as the encrypted value of the primary key.

The SET ENCRYPTION PASSWORD statement sets the password that will be used for the ENCRYPT_TDES
function.

Related reference
ENCRYPT_TDES or ENCRYPT (Db2 SQL)
ENCRYPTION PASSWORD special register (Db2 SQL)

Creating work tables for the EMP and DEPT sample tables

Before testing SQL statements that insert, update, and delete rows in the DSN8C10.EMP and
DSN8C10.DEPT sample tables, you should create duplicates of these tables. Create duplicates so that
the original sample tables remain intact. These duplicate tables are called work tables.

About this task

This topic shows how to create the department and employee work tables and how to fill a work table
with the contents of another table:

Each of these topics assumes that you logged on by using your own authorization ID. The authorization ID
gualifies the name of each object that you create. For example, if your authorization ID is SMITH, and you
create table YDEPT, the name of the table is SMITH.YDEPT. If you want to access table DSN8C10.DEPT,
you must refer to it by its complete name. If you want to access your own table YDEPT, you need only to
refer to it as YDEPT.

Use the following statements to create a new department table called YDEPT, modeled after the existing
table, DSN8C10.DEPT, and an index for YDEPT:

CREATE TABLE YDEPT
LIKE DSN8C10.DEPT;

CREATE UNIQUE INDEX YDEPTX
ON YDEPT (DEPTNO);

If you want DEPTNO to be a primary key, as in the sample table, explicitly define the key. Use an ALTER
TABLE statement, as in the following example:

ALTER TABLE YDEPT
PRIMARY KEY (DEPTNO) ;

You can use an INSERT statement to copy the rows of the result table of a fullselect from one table to
another. The following statement copies all of the rows from DSN8C10.DEPT to your own YDEPT work
table:

INSERT INTO YDEPT
SELECT *
FROM DSN8C10.DEPT;

For information about using the INSERT statement, see “Inserting rows by using the INSERT statement”
on page 331.

You can use the following statements to create a new employee table called YEMP:

CREATE TABLE YEMP

(EMPNO CHAR(6) PRIMARY KEY NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) REFERENCES YDEPT

ON DELETE SET NULL,
PHONENO CHAR(4) UNIQUE NOT NULL,

134 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_encrypttdes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_encryptionpassword.html

HIREDATE DATE

JOB CHAR(8)
EDLEVEL SMALLINT
SEX CHAR(1)

BIRTHDATE DATE 7
SALARY DECIMAL (9, 2) 0
BONUS DECIMAL (9, 2) 0
COMM DECIMAL (9, 2));

’

This statement also creates a referential constraint between the foreign key in YEMP (WORKDEPT) and
the primary key in YDEPT (DEPTNO). It also restricts all phone numbers to unique numbers.

If you want to change a table definition after you create it, use the ALTER TABLE statement with a
RENAME clause. If you want to change a table name after you create it, use the RENAME statement.

You can change a table definition by using the ALTER TABLE statement only in certain ways. For example,
you can add and drop constraints on columns in a table. You can also change the data type of a column
within character data types, within numeric data types, and within graphic data types. You can add a
column to a table. However, you cannot use the ALTER TABLE statement to drop a column from a table.
Related tasks

Altering Db2 tables (Db2 Administration Guide)

Related reference

ALTER TABLE (Db2 SQL)

RENAME (Db2 SQL)

Creating created temporary tables

Use created temporary tables when you need to store data for only the life of an application process, but
you want to share the table definition.

About this task

Db2 does not perform logging and locking operations for created temporary tables. Therefore, SQL
statements that use these tables can execute queries efficiently.

Each application process has its own instance of the created temporary table.

An instance of a created temporary table exists at the current server until one of the following actions
occurs:

« The application process ends.
- The remote server connection through which the instance was created terminates.

« The unit of work in which the instance was created completes.

When you run a ROLLBACK statement, Db2 deletes the instance of the created temporary table. When
you run a COMMIT statement, Db2 deletes the instance of the created temporary table unless a cursor
for accessing the created temporary table is defined with the WITH HOLD clause and is open.

You create the definition of a created temporary table using the SQL CREATE GLOBAL TEMPORARY TABLE
statement.

Procedure

To create a created temporary table:

1. Define the table by issuing CREATE GLOBAL TEMPORARY TABLE statement.
For example, the following statement creates the definition of a table called TEMPPROD:

CREATE GLOBAL TEMPORARY TABLE TEMPPROD

(SERIAL CHAR(8) NOT NULL,
DESCRIPTION VARCHAR(60) NOT NULL,
MFGCOST DECIMAL(8,2),

MFGDEPT CHAR(3),

MARKUP SMALLINT,

Chapter 3. Db2 SQL programming 135

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_altertables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_rename.html

SALESDEPT CHAR(3),
CURDATE DATE NOT NULL);

You can also create this same definition by copying the definition of a base table (hamed PROD) by
using the LIKE clause:

CREATE GLOBAL TEMPORARY TABLE TEMPPROD LIKE PROD;

Restriction: You cannot use the MERGE statement with created temporary tables.

The SQL statements in the examples create identical definitions for the TEMPPROD table, but these
tables differ slightly from the PROD sample table PROD. The PROD sample table contains two
columns, DESCRIPTION and CURDATE, that are defined as NOT NULL WITH DEFAULT. Because
created temporary tables do not support non-null default values, the DESCRIPTION and CURDATE
columns in the TEMPPROD table are defined as NOT NULL and do not have defaults.

After you run one of the two CREATE statements, the definition of TEMPPROD exists, but no instances
of the table exist.
2. Create an instance of the created temporary table by using it in an application.
Db2 creates an instance of the table when it is specified in one of the following SQL statements:
- OPEN
« SELECT
- INSERT
- DELETE

For example, suppose that you defined TEMPROD as described the previous step and then run an
application that contains the following statements:

EXEC SQL DECLARE C1 CURSOR FOR SELECT = FROM TEMPPROD;
EXEC SQL INSERT INTO TEMPPROD SELECT * FROM PROD;
EXEC SQL OPEN C1;

EXEC SQL COMMIT;
EXEC SOQL CLOSE C1;

When you run the INSERT statement, Db2 creates an instance of TEMPPROD and populates that
instance with rows from table PROD. When the COMMIT statement runs, Db2 deletes all rows
from TEMPPROD. However, assume that you change the declaration of cursor C1 to the following
declaration:

EXEC SQL DECLARE C1 CURSOR WITH HOLD
FOR SELECT * FROM TEMPPROD;

In this case, Db2 does not delete the contents of TEMPPROD until the application ends because C1, a
cursor that is defined with the WITH HOLD clause, is open when the COMMIT statement runs. In either
case, Db2 drops the instance of TEMPPROD when the application ends.

3. When the table is no longer needed, issue a DROP statement .
For example, to drop the definition of TEMPPROD, you must run the following statement:

DROP TABLE TEMPPROD;

Related reference
CREATE GLOBAL TEMPORARY TABLE (Db2 SQL)
DROP (Db2 SQL)

136 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createglobaltemptable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_drop.html

Temporary tables

Use temporary tables when you need to store data for only the duration of an application process.
Depending on whether you want to share the table definition, you can create a created temporary table or
a declared temporary table.

The two kinds of temporary tables are:

 Created temporary tables, which you define using a CREATE GLOBAL TEMPORARY TABLE statement

« Declared temporary tables, which you define using a DECLARE GLOBAL TEMPORARY TABLE statement
SQL statements that use temporary tables can run faster because of the following reasons:

« For created temporary tables, Db2 provides no logging. For declared temporary tables, Db2 provides
limited logging that can be further limited by the NOT LOGGED option of the DECLARE GLOBAL
TEMPORARY TABLE statement.

« For created temporary tables, Db2 provides no locking. For declared temporary tables, Db2 provides
limited locking.

Temporary tables are especially useful when you need to sort or query intermediate result tables that
contain a large number of rows, but you want to store only a small subset of those rows permanently.

Temporary tables can also return result sets from stored procedures. The following topics provide more
details about created temporary tables and declared temporary tables:

« “Creating created temporary tables” on page 135

« “Creating declared temporary tables” on page 137

For more information, see “Writing an external procedure to return result sets to a distributed client” on

page 274.

Creating declared temporary tables

Use declared temporary tables when you need to store data for only the life of an application process
and do not need to share the table definition. The definition of this table exists only while the application
process runs. Db2 performs limited logging and locking operations for declared temporary tables.

Before you begin

Before you can define declared temporary tables, you must have a WORKFILE database that has at least
one table space with a 32-KB page size.

About this task

You create an instance of a declared temporary table by using the SQL DECLARE GLOBAL TEMPORARY
TABLE statement. That instance is known only to the application process in which the table is declared,
so you can declare temporary tables with the same name in different applications. The qualifier for a
declared temporary table is SESSION.

To create a declared temporary table, specify the DECLARE GLOBAL TEMPORARY TABLE statement.
In that statement, specify the columns that the table is to contain by performing one of the following
actions:

Procedure

To create a declared temporary table:
1. Issue a DECLARE GLOBAL TEMPORARY TABLE statement.

In that statement, you an specify the columns that the table is to contain by performing one of the
following actions:

Chapter 3. Db2 SQL programming 137

« Specify all the columns in the table. For example, the following statement defines a declared
temporary table called TEMPPROD by explicitly specifying the columns.

DECLARE GLOBAL TEMPORARY TABLE TEMPPROD
(SERIAL CHAR(8) NOT NULL WITH DEFAULT '99999999',
DESCRIPTION VARCHAR(60) NOT NULL,
PRODCOUNT INTEGER GENERATED ALWAYS AS IDENTITY,

MFGCOST DECIMAL(8,2),

MFGDEPT CHAR(3),

MARKUP SMALLINT,

SALESDEPT CHAR(3),

CURDATE DATE NOT NULL);

Unlike columns of created temporary tables, columns of declared temporary tables can include the
WITH DEFAULT clause.

« Use a LIKE clause to copy the definition of a base table, created temporary table, or view. For
example, the following statement defines a declared temporary table called TEMPPROD by copying
the definition of a base table. The base table has an identity column that the declared temporary
table also uses as an identity column.

DECLARE GLOBAL TEMPORARY TABLE TEMPPROD LIKE BASEPROD
INCLUDING IDENTITY COLUMN ATTRIBUTES;

« If the base table, created temporary table, or view from which you select columns has identity
columns, you can specify that the corresponding columns in the declared temporary table are also
identity columns. To include these identity columns, specify the INCLUDING IDENTITY COLUMN
ATTRIBUTES clause when you define the declared temporary table.

If the source table has a row change timestamp column, you can specify that those column
attributes are inherited in the declared temporary table by specifying INCLUDING ROW CHANGE
TIMESTAMP COLUMN ATTRIBUTES.

« Use afullselect to choose specific columns from a base table, created temporary table, or view.
For example, the following statement defines a declared temporary table called TEMPPROD by
selecting columns from a view. The view has an identity column that the declared temporary table
also uses as an identity column. The declared temporary table inherits its default column values
from the default column values of a base table on which the view is based.

DECLARE GLOBAL TEMPORARY TABLE TEMPPROD
AS (SELECT x FROM PRODVIEW)
DEFINITION ONLY
INCLUDING IDENTITY COLUMN ATTRIBUTES
INCLUDING COLUMN DEFAULTS;

If you want the declared temporary table columns to inherit the defaults for columns of the table or
view that is named in the fullselect, specify the INCLUDING COLUMN DEFAULTS clause. If you want
the declared temporary table columns to have default values that correspond to their data types,
specify the USING TYPE DEFAULTS clause.

Db2 creates an empty instance of a declared temporary table.
2. Complete one of the following actions:

« Populate the declared temporary table by using INSERT statements.
= Modify the table using searched or positioned UPDATE or DELETE statements.
e Query the table using SELECT statements.

« Create indexes on the declared temporary table. Creating such an index that specifies a buffer pool
or storage group that is different than the default index buffer pool or default storage group of the
work file database, requires additional USE authorization privileges for the buffer pool or storage
group.

3. After you run a DECLARE GLOBAL TEMPORARY TABLE statement, the definition of the declared
temporary table exists as long as the application process runs. If you need to delete the definition
before the application process completes, issue a DROP TABLE statement.

For example, to drop the definition of TEMPPROD, run the following statement:

138 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

DROP TABLE SESSION.TEMPPROD;

Example

The ON COMMIT clause that you specify in the DECLARE GLOBAL TEMPORARY TABLE statement
determines whether Db2 keeps or deletes all the rows from the table when you run a COMMIT statement
in an application with a declared temporary table. ON COMMIT DELETE ROWS, which is the default,
causes all rows to be deleted from the table at a commit point, unless a held cursor is open on the table at
the commit point. ON COMMIT PRESERVE ROWS causes the rows to remain past the commit point.

For example Suppose that you run the following statement in an application program:

EXEC SQL DECLARE GLOBAL TEMPORARY TABLE TEMPPROD
AS (SELECT * FROM BASEPROD)
DEFINITION ONLY
INCLUDING IDENTITY COLUMN ATTRIBUTES
INCLUDING COLUMN DEFAULTS
ON COMMIT PRESERVE ROWS;
EXEC SQL INSERT INTO SESSION.TEMPPROD SELECT * FROM BASEPROD;

EXEC SQL COMMIT;

When Db2 runs the preceding DECLARE GLOBAL TEMPORARY TABLE statement, Db2 creates an empty
instance of TEMPPROD. The INSERT statement populates that instance with rows from table BASEPROD.
The qualifier, SESSION, must be specified in any statement that references TEMPPROD. When Db2
executes the COMMIT statement, Db2 keeps all rows in TEMPPROD because TEMPPROD is defined with
ON COMMIT PRESERVE ROWS. When the program ends, Db2 drops TEMPPROD.

Related reference
DECLARE GLOBAL TEMPORARY TABLE (Db2 SQL)

Providing a unique key for a table

Use ROWID columns or identity columns to store unique values for each row in a table.

About this task
Question: How can I provide a unique identifier for a table that has no unique column?

Answer: Add a column with the data type ROWID or an identity column. ROWID columns and identity
columns contain a unique value for each row in the table. You can define the column as GENERATED
ALWAYS, which means that you cannot insert values into the column, or GENERATED BY DEFAULT, which
means that Db2 generates a value if you do not specify one. If you define the ROWID or identity column as
GENERATED BY DEFAULT, you need to define a unique index that includes only that column to guarantee
uniqueness.

Fixing tables with incomplete definitions

If a table has an incomplete definition, you cannot load the table, insert data, retrieve data, update
data, or delete data. You can however drop the table, create the primary index, and drop or create other
indexes.

Before you begin

To check if a table has an incomplete definition, look at the STATUS column in SYSIBM.SYSTABLES. The
value I indicates that the definition is incomplete.

About this task

A table definition is incomplete in any of the following circumstances:

Chapter 3. Db2 SQL programming 139

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_declareglobaltemptable.html

« If the table is defined with a primary or unique key and all of the following conditions are true:

— The table space for the table was explicitly created.
— The statement is not being run with schema processor.
— The table does not have a primary or unique index for the defined primary or unique key.

« If the table has a ROWID column that is defined as generated by default and all of the following
conditions are true:

— The table space for the table was explicitly created.
— The SET CURRENT RULES special register is not set to STD.
— No unique index is defined on the ROWID column.
- If the table has a LOB column and all of the following conditions are true:

— The table space for the table was explicitly created.
— The SET CURRENT RULES special register is not set to STD.
— No all auxiliary LOB objects are defined for the LOB column.

Procedure
To complete the definition of a table, use one of the following actions:

« Create a primary index or alter the table to drop the primary key.

- Create a unique index on the unique key or alter the table to drop the unique key.
« Defining a unique index on the ROWID column.

« Create the necessary LOB objects.

Example

To create the primary index for the project activity table, issue the following SQL statement:

CREATE UNIQUE INDEX XPROJAC1
ON DSN8C10.PROJACT (PROJINO, ACTNO, ACSTDATE);

RENAME TABLE in a table maintenance scenario

The RENAME TABLE statement is useful when you need to temporarily take a table offline for
maintenance that involves structural changes to the table. Applications can continue to run against
another copy of the table until maintenance is complete.

One way of accomplishing this is refer to the name of the table as an unqualified name in all applications.
The unqualified table name is implicitly qualified by the content of the CURRENT SCHEMA special register.
You set CURRENT SCHEMA to the schema of the real table to cause applications to access the real table.
Before you take the real table offline, you change the CURRENT SCHEMA special register to the name of
the schema for the alternate copy of the table. When all applications are running with the alternate copy
of the table, the real table can be modified. An example of such a modification is adding a column to the
table.

Later, when table maintenance is complete, you can set the CURRENT SCHEMA special register to the
name of the schema for the real table to cause all applications to switch back to using the real table.
Related reference

RENAME (Db2 SQL)

CURRENT SCHEMA special register (Db2 SQL)

140 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_rename.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_currentschema.html

Dropping tables

When you drop a table, you delete the data and the table definition. You also delete all synonyms, views,
indexes, referential constraints, and check constraints that are associated with that table.

About this task
The following SQL statement drops the YEMP table:

DROP TABLE YEMP;

Use the DROP TABLE statement with care: Dropping a table is not equivalent to deleting all its rows.
When you drop a table, you lose more than its data and its definition. You lose all synonyms, views,
indexes, and referential and check constraints that are associated with that table. You also lose all
authorities that are granted on the table.

Related reference
DROP (Db2 SQL)

Defining a view

A view is a named specification of a result table. Use views to control which users have access to certain
data or to simplify writing SQL statements.

About this task

Use the CREATE VIEW statement to define a view and give the view a name, just as you do for a table.
The view that is created with the following statement shows each department manager's name with the
department data in the DSN8C10.DEPT table.

CREATE VIEW VDEPTM AS
SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT
FROM DSN8C10.DEPT, DSN8C10.EMP
WHERE DSN8C10.EMP.EMPNO = DSN8C10.DEPT.MGRNO;

When a program accesses the data that is defined by a view, Db2 uses the view definition to return a set
of rows that the program can access with SQL statements.

To see the departments that are administered by department DO1 and the managers of those
departments, run the following statement, which returns information from the VDEPTM view:

SELECT DEPTNO, LASTNAME
FROM VDEPTM
WHERE ADMRDEPT = 'DO1°';

When you create a view, you can reference the SESSION_USER and CURRENT SQLID special registers

in the CREATE VIEW statement. When referencing the view, Db2 uses the value of the SESSION_USER

or CURRENT SQLID special register that belongs to the user of the SQL statement (SELECT, UPDATE,
INSERT, or DELETE) rather than the creator of the view. In other words, a reference to a special register in
a view definition refers to its run time value.

You can specify a period specification for a view, subject to certain restrictions. Also, for a view that
references an application-period temporal table or a bitemporal table, you can specify a period clause for
an update or delete operation on the view.

A column in a view might be based on a column in a base table that is an identity column. The column in
the view is also an identity column,except under any of the following circumstances:

« The column appears more than once in the view.

« The view is based on a join of two or more tables.

« The view is based on the union of two or more tables.

« Any column in the view is derived from an expression that refers to an identity column.

Chapter 3. Db2 SQL programming 141

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_drop.html

You can use views to limit access to certain kinds of data, such as salary information. Alternatively, you
can use the IMPLICITLY HIDDEN clause of a CREATE TABLE statement define a column of a table to be
hidden from some operations.

You can also use views for the following actions:

« Make a subset of a table's data available to an application. For example, a view based on the employee
table might contain rows only for a particular department.

« Combine columns from two or more tables and make the combined data available to an application. By
using a SELECT statement that matches values in one table with those in another table, you can create a
view that presents data from both tables. However, you can only select data from this type of view. You
cannot update, delete, or insert data using a view that joins two or more tables.

« Combine rows from two or more tables and make the combined data available to an application. By
using two or more subselects that are connected by a set operator such as UNION, you can create a
view that presents data from several tables. However, you can only select data from this type of view.
You cannot update, delete, or insert data using a view that contains UNION operations.

- Present computed data, and make the resulting data available to an application. You can compute such
data using any function or operation that you can use in a SELECT statement.

Related tasks

Changing data by using views that reference temporal tables (Db2 Administration Guide)

Related reference

CREATE VIEW (Db2 SQL)

Related information

Implementing Db2 views (Db2 Administration Guide)

Views

A view does not contain data; it is a stored definition of a set of rows and columns. A view can present any
or all of the data in one or more tables.

Although you cannot modify an existing view, you can drop it and create a new one if your base tables
change in a way that affects the view. Dropping and creating views does not affect the base tables or their
data.

Restrictions when changing data through a view

Some views are read-only and thus cannot be used to update the table data. For those views that are
updatable, several restrictions apply.

Consider the following restrictions when changing data through a view:

« You must have the appropriate authorization to insert, update, or delete rows using the view.

« When you use a view to insert a row into a table, the view definition must specify all the columns in the
base table that do not have a default value. The row that is being inserted must contain a value for each
of those columns.

 Views that you can use to update data are subject to the same referential constraints and check
constraints as the tables that you used to define the views.

You can use the WITH CHECK option of the CREATE VIEW statement to specify the constraint that every
row that is inserted or updated through the view must conform to the definition of the view. You can
select every row that is inserted or updated through a view that is created with the WITH CHECK option.

« For an update operation on a view that references an application-period temporal table or a bitemporal
table, the result table of the outer fullselect of the view definition, explicitly or implicitly, must include
the start and end columns of the BUSINESS_TIME period.

« For an update or delete operation on a view that references an application-period temporal table or a
bitemporal table, the view must not be defined with an INSTEAD OF trigger.

142 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_alteringviewstemporal.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createview.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_viewimplementation.html

For complex views, you can make insert, update and delete operations possible by defining INSTEAD OF
triggers.

Related tasks

Inserting, updating, and deleting data in views by using INSTEAD OF triggers

INSTEAD OF triggers are triggers that execute instead of the INSERT, UPDATE, or DELETE statement that
activates the trigger. You can define these triggers on views only. Use INSTEAD OF triggers to insert,
update, and delete data in complex views.

Changing data by using views that reference temporal tables (Db2 Administration Guide)
Related reference
CREATE VIEW (Db2 SQL)

Dropping a view

When you drop a view, you also drop all views that are defined on that view. The base table is not
affected.

Example
The following SQL statement drops the VDEPTM view:

DROP VIEW VDEPTM;

Creating a common table expression

Creating a common table expression saves you the overhead of creating and dropping a regular view that
you need to use only once. Also, during statement preparation, Db2 does not need to access the catalog
for the view, which saves you additional overhead.

About this task

Use the WITH clause to create a common table expression.

Procedure

To created a common table expression use one of the following approaches:

« Specify a WITH clause at the beginning of a SELECT statement.
For example, the following statement finds the department with the highest total pay. The query
involves two levels of aggregation. First, you need to determine the total pay for each department by
using the SUM function and order the results by using the GROUP BY clause. You then need to find the
department with highest total pay based on the total pay for each department.

WITH DTOTAL (workdept, totalpay) AS
(SELECT deptno, sum(salary+bonus)
FROM DSN8810.EMP
GROUP BY workdept)
SELECT workdept
FROM DTOTAL
WHERE totalpay = (SELECT max(totalpay)
FROM DTOTAL);

The result table for the common table expression, DTOTAL, contains the department number and total
pay for each department in the employee table. The fullselect in the previous example uses the result
table for DTOTAL to find the department with the highest total pay. The result table for the entire
statement looks similar to the following results:

WORKDEPT

« Use common table expressions by specifying WITH before a fullselect in a CREATE VIEW statement.

Chapter 3. Db2 SQL programming 143

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_alteringviewstemporal.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createview.html

This technique is useful if you need to use the results of a common table expression in more than one
query.

For example, the following statement finds the departments that have a greater-than-average total pay
and saves the results as the view RICH_DEPT:

CREATE VIEW RICH_DEPT (workdept) AS
WITH DTOTAL (workdept, totalpay) AS
(SELECT workdept, sum(salary+bonus)
FROM DSN8C10.EMP
GROUP BY workdept)
SELECT workdept
FROM DTOTAL
WHERE totalpay > (SELECT AVG(totalpay)
FROM DTOTAL);

The fullselect in the previous example uses the result table for DTOTAL to find the departments that
have a greater-than-average total pay. The result table is saved as the RICH_DEPT view and looks
similar to the following results:

WORKDEPT

« Use common table expressions by specifying WITH before a fullselect in an INSERT statement.
For example, the following statement uses the result table for VITALDEPT to find the manager's
number for each department that has a greater-than-average number of senior engineers. Each
manager's number is then inserted into the vital_mgr table.

INSERT INTO vital_mgr (mgzrno)
WITH VITALDEPT (workdept, se_count) AS
(SELECT workdept, count(x)
FROM DSN8C10.EMP
WHERE job = 'senior engineer'
GROUP BY workdept)
SELECT d.manager
FROM DSN8C10.DEPT d, VITALDEPT s
WHERE d.workdept = s.workdept
AND s.se_count > (SELECT AVG(se_count)
FROM VITALDEPT);

Related reference
common-table-expression (Db2 SQL)

Common table expressions

A common table expression is like a temporary view that is defined and used for the duration of an SQL
statement.

You can define a common table expression wherever you can have a fullselect statement. For example,
you can include a common table expression in a SELECT, INSERT, SELECT INTO, or CREATE VIEW
statement.

Each common table expression must have a unique name and be defined only once. However, you can

reference a common table expression many times in the same SQL statement. Unlike regular views or

nested table expressions, which derive their result tables for each reference, all references to common
table expressions in a given statement share the same result table.

You can use a common table expression in the following situations:

- When you want to avoid creating a view (when general use of the view is not required, and positioned
updates or deletes are not used)

« When the result table is based on host variables
« When the same result table needs to be shared in a fullselect
« When the results need to be derived using recursion

144 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_commontableexpression.html

Related reference
common-table-expression (Db2 SQL)

Examples of recursive common table expressions
Recursive SQL is very useful in bill of materials (BOM) applications.

Consider a table of parts with associated subparts and the quantity of subparts required by each part.
For more information about recursive SQL, refer to “Creating recursive SQL by using common table
expressions” on page 383.

For the examples in this topic, create the following table:

CREATE TABLE PARTLIST
(PART VARCHAR(8),
SUBPART VARCHAR(8),
QUANTITY INTEGER);

Assume that the PARTLIST table is populated with the values that are in the following table:

Table 37. PARTLIST table

PART SUBPART QUANTITY
00 01 5
00 05 3
01 02 2
01 03 3
01 04 4
01 06 3
02 05 7
02 06 6
03 07 6
04 08 10
04 09 11
05 10 10
05 11 10
06 12 10
06 13 10
07 14 8
07 12 8

Example 1: Single level explosion:

Single level explosion answers the question, "What parts are needed to build the part identified by '01'?".
The list will include the direct subparts, subparts of the subparts and so on. However, if a part is used
multiple times, its subparts are only listed once.

WITH RPL (PART, SUBPART, QUANTITY) AS
(SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = '01'
UNION ALL

Chapter 3. Db2 SQL programming 145

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_commontableexpression.html

SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART)
SELECT DISTINCT PART, SUBPART, QUANTITY
FROM RPL
ORDER BY PART, SUBPART, QUANTITY;

The preceding query includes a common table expression, identified by the name RPL, that expresses the
recursive part of this query. It illustrates the basic elements of a recursive common table expression.

The first operand (fullselect) of the UNION, referred to as the initialization fullselect, gets the direct
subparts of part '01'. The FROM clause of this fullselect refers to the source table and will never refer to
itself (RPL in this case). The result of this first fullselect goes into the common table expression RPL. As in
this example, the UNION must always be a UNION ALL.

The second operand (fullselect) of the UNION uses RPL to compute subparts of subparts by using the
FROM clause to refer to the common table expression RPL and the source table PARTLIST with a join of a
part from the source table (child) to a subpart of the current result contained in RPL (parent). The result
goes then back to RPL again. The second operand of UNION is used repeatedly until no more subparts
exist.

The SELECT DISTINCT in the main fullselect of this query ensures the same part/subpart is not listed
more than once.

The result of the query is shown in the following table:

Table 38. Result table for example 1

PART SUBPART QUANTITY
01 02 2
01 03 3
01 04 4
01 06 3
02 05 7
02 06 6
03 07 6
04 08 10
04 09 11
05 10 10
05 11 10
06 12 10
06 13 10
07 12 8
07 14 8

Observe in the result that part '01' contains subpart '02' which contains subpart '06' and so on. Further,
notice that part '06' is reached twice, once through part '01' directly and another time through part '02".
In the output, however, the subparts of part '06' are listed only once (this is the result of using a SELECT
DISTINCT).

146 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Remember that with recursive common table expressions it is possible to introduce an infinite loop. In
this example, an infinite loop would be created if the search condition of the second operand that joins
the parent and child tables was coded as follows:

WHERE PARENT.SUBPART = CHILD.SUBPART

This infinite loop is created by not coding what is intended. You should carefully determining what to code
so that there is a definite end of the recursion cycle.

The result produced by this example could be produced in an application program without using a
recursive common table expression. However, such an application would require coding a different query
for every level of recursion. Furthermore, the application would need to put all of the results back in the
database to order the final result. This approach complicates the application logic and does not perform
well. The application logic becomes more difficult and inefficient for other bill of material queries, such as
summarized and indented explosion queries.

Example 2: Summarized explosion:

A summarized explosion answers the question, "What is the total quantity of each part required to build
part '01'?" The main difference from a single level explosion is the need to aggregate the quantities. A
single level explosion indicates the quantity of subparts required for the part whenever it is required. It
does not indicate how many of each subpart is needed to build part '01".

WITH RPL (PART, SUBPART, QUANTITY) AS

SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = '01'
UNION ALL
SELECT PARENT.PART, CHILD.SUBPART,
PARENT.QUANTITY*CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

)
SELECT PART, SUBPART, SUM(QUANTITY) AS "Total QTY Used"
FROM RPL
GROUP BY PART, SUBPART
ORDER BY PART, SUBPART;

In the preceding query, the select list of the second operand of the UNION in the recursive common table
expression, identified by the name RPL, shows the aggregation of the quantity. To determine how many
of each subpart is used, the quantity of the parent is multiplied by the quantity per parent of a child. If

a part is used multiple times in different places, it requires another final aggregation. This is done by the
grouping the parts and subparts in the common table expression RPL and using the SUM column function
in the select list of the main fullselect.

The result of the query is shown in the following table:

Table 39. Result table for example 2

PART SUBPART Total QTY Used
01 02 2

01 03 3

01 04 4

01 05 14

01 06 15

01 07 18

01 08 40

01 09 44

Chapter 3. Db2 SQL programming 147

Table 39. Result table for example 2 (continued)

PART SUBPART Total QTY Used
01 10 140
01 11 140
01 12 294
01 13 150
01 14 144

Consider the total quantity for subpart '06'. The value of 15 is derived from a quantity of 3 directly for part
'01' and a quantity of 6 for part '02' which is needed two times by part ‘01",

Example 3: Controlling depth:

You can control the depth of a recursive query to answer the question, "What are the first two levels of
parts that are needed to build part '01'?" For the sake of clarity in this example, the level of each part is
included in the result table.

WITH RPL (LEVEL, PART, SUBPART, QUANTITY) AS
(

SELECT 1, ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = '0O1'

UNION ALL

SELECT PARENT.LEVEL+1, CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

AND PARENT.LEVEL < 2

)
SELECT PART, LEVEL, SUBPART, QUANTITY
FROM RPL;

This query is similar to the query in example 1. The column LEVEL is introduced to count the level each
subpart is from the original part. In the initialization fullselect, the value for the LEVEL column is initialized
to 1. In the subsequent fullselect, the level from the parent table increments by 1. To control the number
of levels in the result, the second fullselect includes the condition that the level of the parent must be less
than 2. This ensures that the second fullselect only processes children to the second level.

The result of the query is shown in the following table:

Table 40. Result table for example 3

PART LEVEL SUBPART QUANTITY
01 1 02 2
01 1 03 3
01 1 04 4
01 1 06 3
02 2 05 7
02 2 06 6
03 2 07 6
04 2 08 10
04 2 09 11
06 2 12 10

148 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Table 40. Result table for example 3 (continued)

PART LEVEL SUBPART QUANTITY
06 2 13 10
Creating a trigger

A trigger is a set of SQL statements that execute when a certain event occurs in a table or view. Use
triggers to control changes in Db2 databases. Triggers are more powerful than constraints because they
can monitor a broader range of changes and perform a broader range of actions. This topic describes
support for advanced triggers.

About this task
Using triggers for active data:

For example, a constraint can disallow an update to the salary column of the employee table if the new
value is over a certain amount. A trigger can monitor the amount by which the salary changes, as well as
the salary value. If the change is above a certain amount, the trigger might substitute a valid value and call
a user-defined function to send a notice to an administrator about the invalid update.

Triggers also move application logic into Db2, which can result in faster application development and
easier maintenance. For example, you can write applications to control salary changes in the employee
table, but each application program that changes the salary column must include logic to check those
changes. A better method is to define a trigger that controls changes to the salary column. Then Db2 does
the checking for any application that modifies salaries.

Example of creating and using a trigger:

Triggers automatically execute a set of SQL statements whenever a specified event occurs. These SQL
statements can perform tasks such as validation and editing of table changes, reading and modifying
tables, or invoking functions or stored procedures that perform operations both inside and outside Db2.

You create triggers using the CREATE TRIGGER statement. The following figure shows an example of a
CREATE TRIGGER statement.

[1]
CREATE TRIGGER REORDER
E El [4 |
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
=

REFERENCING NEW AS N_ROW

| 6 |

FOR EACH ROW

| 7]

WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED)

| 8 |

BEGIN ATOMIC

CALL ISSUE_SHIP_REQUEST (N_ROW.MAX_STOCKED -
N_ROW.ON_HAND,

N_ROW.PARTNO) ;
END

The parts of this trigger are:
Trigger name (REORDER)
H
Trigger activation time (AFTER)
E
Triggering event (UPDATE)
4]
Subject table name (PARTS)

Chapter 3. Db2 SQL programming 149

New transition variable correlation name (N_ROW)

Granularity (FOR EACH ROW)

E B O

Trigger condition (WHEN...)

Trigger body (BEGIN ATOMIC...END;)

When you execute this CREATE TRIGGER statement, Db2 creates a trigger package called REORDER and
associates the trigger package with table PARTS. Db2 records the timestamp when it creates the trigger.
If you define other triggers on the PARTS table, Db2 uses this timestamp to determine which trigger to
activate first when the triggering event occurs. The trigger is now ready to use.

After Db2 updates columns ON_HAND or MAX_STOCKED in any row of table PARTS, trigger REORDER is
activated. The trigger calls a stored procedure called ISSUE_SHIP_REQUEST if, after a row is updated, the
quantity of parts on hand is less than 10% of the maximum quantity stocked. In the trigger condition, the
qualifier N_ROW represents a value in a modified row after the triggering event.

When you no longer want to use trigger REORDER, you can delete the trigger by executing the statement:

DROP TRIGGER REORDER;

Executing this statement drops trigger REORDER and its associated trigger package named REORDER.
If you drop table PARTS, Db2 also drops trigger REORDER and its trigger package.

Parts of a trigger:

A trigger contains the following parts:

- trigger name

subject table

trigger activation time

triggering event

- granularity

- correlation names for transition variables and transition tables

- triggered action that consists of an optional search condition and a trigger body

Trigger name:

Specify a name for your trigger. You can use a qualifier or let Db2 determine the qualifier. When Db2
creates a trigger package for the trigger, it uses the same qualifier as the collection ID of the trigger
package.

Subject table or view:

When you perform an insert, update, or delete operation on this table or view, the trigger is activated.
You must name a local table or view in the CREATE TRIGGER statement. You cannot define a trigger on a
catalog table.

Trigger activation time:

The choices for trigger activation time are BEFORE, AFTER, and INSTEAD OF. BEFORE and AFTER triggers
can be defined for a table. INSTEAD OF triggers can be defined for a view.

BEFORE means that the trigger is activated before Db2 makes any changes to the subject table, and that
the triggered action does not activate any other triggers. AFTER means that the trigger is activated after
Db2 makes changes to the subject table and can activate other triggers. INSTEAD OF means that the
trigger is activated when there is an attempt to change the subject view. Triggers with an activation time
of BEFORE are known as before triggers. Triggers with an activation time of AFTER are known as after
triggers. Triggers with an activation time of INSTEAD OF are known as instead of triggers.

150 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Triggering event:

Every trigger is associated with an event. A trigger is activated when the triggering event occurs in the
subject table or view. The triggering event is one of the following SQL operations:

« insert
« update
« delete

A triggering event can also be an update or delete operation that occurs as the result of a referential
constraint with ON DELETE SET NULL or ON DELETE CASCADE.

A trigger can be activated by a MERGE statement for delete, insert, and update operations.

Triggers are not activated as the result of updates made to tables by Db2 utilities, with the exception of
the LOAD utility when it is specified with the RESUME YES and SHRLEVEL CHANGE options.

When the triggering event for a trigger is an update operation, the trigger is called an update trigger.
Similarly, triggers for insert operations are called insert triggers, and triggers for delete operations are
called delete triggers.

The SQL statement that performs the triggering SQL operation is called the triggering SQL statement.
Each triggering event is associated with one subject table or view and one SQL operation.

The following trigger is defined with an insert triggering event:

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMP
FOR EACH ROW
BEGIN ATOMIC
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END

If the triggering SQL operation is an update operation, the event can be associated with specific columns
of the subject table. In this case, the trigger is activated only if the update operation updates any of the
specified columns.

The following trigger, PAYROLL1, which invokes user-defined function named PAYROLL_LOG, is activated
only if an update operation is performed on the SALARY or BONUS column of table PAYROLL:

CREATE TRIGGER PAYROLL1
AFTER UPDATE OF SALARY, BONUS ON PAYROLL
FOR EACH STATEMENT
BEGIN ATOMIC
VALUES (PAYROLL_LOG (USER, 'UPDATE', CURRENT TIME, CURRENT DATE));
END

Granularity:

The triggering SQL statement might modify multiple rows in the table. The granularity of the trigger
determines whether the trigger is activated only once for the triggering SQL statement or once for every
row that the SQL statement modifies. The granularity values are:

« FOR EACH ROW

The trigger is activated once for each row that Db2 modifies in the subject table or view. If the triggering
SQL statement modifies no rows, the trigger is not activated. However, if the triggering SQL statement
updates a value in a row to the same value, the trigger is activated. For example, if an UPDATE trigger is
defined on table COMPANY_STATS, the following SQL statement will activate the trigger.

UPDATE COMPANY_STATS SET NBEMP = NBEMP;

« FOR EACH STATEMENT

The trigger is activated once when the triggering SQL statement executes. The trigger is activated even if
the triggering SQL statement modifies no rows.

Chapter 3. Db2 SQL programming 151

Triggers with a granularity of FOR EACH ROW are known as row triggers. Triggers with a granularity of FOR
EACH STATEMENT are known as statement triggers. Statement triggers can only be after triggers.

The following statement is an example of a row trigger:

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMP
FOR EACH ROW
BEGIN ATOMIC
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END

Trigger NEW_HIRE is activated once for every row inserted into the employee table.
Transition variables:

When you code a row trigger, you might need to refer to the values of columns in each updated row of the
subject table or view. To do this, specify a correlation name (to use when referencing transition variables)
in the REFERENCING clause of your CREATE TRIGGER statement. The two types of transition variables
are:

- Old transition variables capture the values of columns before the triggering SQL statement updates
them. You can use the REFERENCING OLD clause to define a correlation name for referencing old
transition variables for update and delete triggers.

« New transition variables capture the values of columns after the triggering SQL statement updates
them. You can use the REFERENCING NEW clause to define a correlation name for referencing new
transition variables for update and insert triggers.

Transition variables can be referenced anywhere in an SQL statement where an expression or variable can
be specified in triggers. See References to SQL parameters and variables in SQL PL (Db2 SQL) for more
information.

The following example uses transition variables and invocations of the IDENTITY_VAL_LOCAL function to
access values that are assigned to identity columns.

Suppose that you have created tables T and S, with the following definitions:

CREATE TABLE T
(ID SMALLINT GENERATED BY DEFAULT AS IDENTITY (START WITH 100),
C2 SMALLINT,
C3 SMALLINT,
C4 SMALLINT);

CREATE TABLE S
(ID SMALLINT GENERATED ALWAYS AS IDENTITY,
C1 SMALLINT);

Define a before insert trigger on T that uses the IDENTITY_VAL_LOCAL built-in function to retrieve the
current value of identity column ID, and uses transition variables to update the other columns of T with
the identity column value.

CREATE TRIGGER TR1
NO CASCADE BEFORE INSERT
ON T REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
SET N.C3 =N.ID;
SET N.C4 =IDENTITY_VAL_LOCAL();
SET N.ID =N.C2 %10;
SET N.C2 =IDENTITY_VAL_LOCAL();
END

Now suppose that you execute the following INSERT statement:

INSERT INTO S (C1) VALUES (5);

This statement inserts a row into S with a value of 5 for column C1 and a value of 1 for identity column ID.
Next, suppose that you execute the following SQL statement, which activates trigger TR1:

152 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_refs2parmsandvarsinnativesqlpl.html

INSERT INTO T (C2)
VALUES (IDENTITY_VAL_LOCAL());

This insert statement, and the subsequent activation of trigger TR1, have the following results:

« The INSERT statement obtains the most recent value that was assigned to an identity column (1), and
inserts that value into column C2 of table T. 1 is the value that Db2 inserted into identity column ID of
table S.

« When the INSERT statement executes, Db2 inserts the value 100 into identity column ID column of C2.

« The first statement in the body of trigger TR1 inserts the value of transition variable N.ID (100) into
column C3. N.ID is the value that identity column ID contains after the INSERT statement executes.

« The second statement in the body of trigger TR1 inserts the null value into column C4. By definition, the
result of the IDENTITY_VAL_LOCAL function in the triggered action of a before insert trigger is the null
value.

- The third statement in the body of trigger TR1 inserts 10 times the value of transition variable N.C2
(10*1) into identity column ID of table T. N.C2 is the value that column C2 contains after the INSERT is
executed.

« The fourth statement in the body of trigger TR1 inserts the null value into column C2. By definition, the
result of the IDENTITY_VAL_LOCAL function in the triggered action of a before insert trigger is the null
value.

Transition tables:

If you want to refer to the entire set of rows that a triggering SQL statement modifies, rather than

to individual rows, use a transition table. Like transition variables, a correlation name (to refer to the
columns of the transition table) can appear in the REFERENCING clause of a CREATE TRIGGER statement.
The names for those columns are the same as the name of the column in the table or view that the trigger
is defined for. Transition tables are valid for both row triggers and statement triggers. The two types of
transition tables are:

« Old transition tables, specified with the OLD TABLE transition-table-name clause, capture the values
of columns before the triggering SQL statement updates them. You can define old transition tables for
update and delete triggers.

- New transition tables, specified with the NEW TABLE transition-table-name clause, capture the values
of columns after the triggering SQL statement updates them. You can define new transition variables for
update and insert triggers.

The scope of old and new transition table names is the trigger body. If correlation names are specified for
both old and new transition variables in the trigger, a reference to a transition variable must be qualified
with the associated correlation name. The name of a transition variable can also be the same as the name
of an SQL variable or global variable, or the name of a column in a table or view that is referenced in

the trigger. Names that are the same should be explicitly qualified. Qualifying a name can clarify whether
the name refers to a column, global variable, SQL variable, SQL parameter, or transition variable. To avoid
ambiguity, qualify a transition variable with the correlation name specified in the REFERENCING clause in
the CREATE TRIGGER or ALTER TRIGGER statement that defined the trigger.

The following example accesses a new transition table to capture the set of rows that are inserted into the
INVOICE table:

CREATE TRIGGER LRG_ORDR

AFTER INSERT ON INVOICE

REFERENCING NEW TABLE AS N_TABLE

FOR EACH STATEMENT

BEGIN ATOMIC
SELECT LARGE_ORDER_ALERT(CUST_NO,
TOTAL_PRICE, DELIVERY_DATE)
FROM N_TABLE WHERE TOTAL_PRICE > 10000;

END

The SELECT statement in LRG_ORDER causes user-defined function LARGE_ORDER_ALERT to execute for
each row in transition table N_TABLE that satisfies the WHERE clause (TOTAL_PRICE > 10000).

Chapter 3. Db2 SQL programming 153

Triggered action:

When a trigger is activated, a triggered action occurs. Every trigger has one triggered action, which
consists of an optional trigger condition and a trigger body.

Trigger condition:

If you want the triggered action to occur only when certain conditions are true, code a trigger condition. A
trigger condition is similar to a predicate in a SELECT, except that the trigger condition begins with WHEN,
rather than WHERE. If you do not include a trigger condition in your triggered action, the trigger body
executes every time the trigger is activated.

For a row trigger, Db2 evaluates the trigger condition once for each modified row of the subject table.
For a statement trigger, Db2 evaluates the trigger condition once for each execution of the triggering SQL
statement.

If the trigger condition of a before trigger has a fullselect, the fullselect cannot reference the subject
table.

The following example shows a trigger condition that causes the trigger body to execute only when the
number of ordered items is greater than the number of available items:

CREATE TRIGGER CK_AVAIL
BEFORE INSERT ON ORDERS
REFERENCING NEW AS NEW_ORDER
FOR EACH ROW
WHEN (NEW_ORDER.QUANTITY >
(SELECT ON_HAND FROM PARTS
WHERE NEW_ORDER.PARTNO=PARTS.PARTNO))
BEGIN ATOMIC
VALUES (ORDER_ERROR (NEW_ORDER.PARTNO,
NEW_ORDER.QUANTITY)) ;
END

Trigger body:

In the trigger body, you code the SQL statements that you want to execute whenever the trigger condition
is true. The trigger body can include a single SQL-control-statement, including a compound statement, or
triggered-SQL-statement that is to be executed for the triggered-action. The statements that you can use
in a trigger body depend on the activation time of the trigger. See CREATE TRIGGER (advanced) (Db2 SQL)
and SQL procedural language (SQL PL) (Db2 SQL) for more information about defining SQL triggers. Use
control statements to develop triggers that contain logic.

Because you can include INSERT, DELETE, UPDATE, and MERGE statements in your trigger body,
execution of the trigger body might cause activation of other triggers. See “Trigger cascading” on page
160 for more information.

Examples

Example 1
Define a trigger to increment the count of employees when a new employee is hired. The following
example also explains how to determine why an SQL statement is allowed in the trigger.

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END

The UPDATE statement () is an SQL statement that is allowed because it is listed in the syntax
diagram for triggered-SQL-statement.

Example 2
Define a trigger to return an error condition and back out any changes that are made by the trigger, as
well as actions that result from referential constraints on the subject table. Use the SIGNAL statement
to indicate the error information to be returned. When Db2 executes the SIGNAL statement, it returns

154 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtriggeradvanced.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sqlplnativeintro.html

an SQLCA to the application with SQLCODE -438. The SQLCA also includes the following values, which
you supply in the SIGNAL statement:

« A 5-character value that Db2 uses as the SQLSTATE
« An error message that Db2 places in the SQLERRMC field

In the following example, the SIGNAL statement causes Db2 to return an SQLCA with SQLSTATE
75001 and terminate the salary update operation if an employee's salary increase is over 20%:

CREATE TRIGGER SAL_ADJ
BEFORE UPDATE OF SALARY ON EMP
REFERENCING OLD AS OLD_EMP
NEW AS NEW_EMP
FOR EACH ROW
WHEN (NEW_EMP.SALARY > (OLD_EMP.SALARY * 1.20))
BEGIN ATOMIC
SIGNAL SQLSTATE '75001'
('Invalid Salary Increase - Exceeds 20%');
END

Example 3
Define a trigger to assign the current date to the HIRE_DATE column when a row is inserted into
the EMP table. Because before triggers operate on rows of a table before those rows are modified,
you cannot perform operations in the body of a before trigger that directly modify the subject
table. You can, however, use the SET assignment-statement statement to modify the values in a
row before those values go into the table. For example, this trigger uses a new transition variable
(NEW_VAR.HIRE_DATE) to assign today's date for the new employee's hire date:

CREATE TRIGGER HIREDATE
NO CASCADE BEFORE INSERT ON EMP
REFERENCING NEW AS NEW_VAR
FOR EACH ROW
BEGIN ATOMIC
SET NEW_VAR.HIRE_DATE = CURRENT_DATE;
END

Example 4
In the following example, table CLASS_SCHED contains a row for the class schedule of each class at a
school. When a class schedule row is added to the table, trigger VALIDATE_SCHED is activated. In the
trigger, SQL control statements are used to check for and respond to the following errors in the class
start and end times:

Type of error Response

End time is null Make the ending time one hour after the starting
time

End time is later than 9:00 p.m. Issue an error message

Start day is on a weekend Issue an error message

CREATE TRIGGER VALIDATE_SCHED
BEFORE INSERT ON CLASS_SCHED
REFERENCING NEW AS N
FOR EACH ROW
VS: BEGIN

IF (N.ENDING IS NULL) THEN
SET N.ENDING = N.STARTING + 1 HOUR;
END IF;
IF (N.ENDING > '21:00') THEN
SIGNAL SQLSTATE '80000' SET MESSAGE_TEXT =
‘CLASS ENDING TIME IS AFTER 9 PM';
ELSEIF (N.DAY=1 OR N.DAY=7) THEN
SIGNAL SQLSTATE '80001' SET MESSAGE_TEXT =
'CLASS CANNOT BE SCHEDULED ON A WEEKEND';
END IF;
END VS

The SQL trigger has the following statements:

Chapter 3. Db2 SQL programming 155

« The IF statements (Fi) and the SIGNAL statements () are SQL control statements.
« The SET assighment statement is an SQL control statement that assigns values to variables.

Related tasks

Obfuscating source code of SQL procedures, SQL functions, and triggers (Db2 Administration Guide)
Related reference

CREATE TRIGGER (advanced) (Db2 SQL)

CREATE TRIGGER (basic) (Db2 SQL)

LOAD (Db2 Utilities)

Invoking a stored procedure or user-defined function from a trigger

A trigger body can include only SQL statements. To perform actions or use logic that is not available in
SQL statements, create user-defined functions or stored procedures. Then invoke them from within the
trigger body.

About this task
Introductory concepts
Triggers (Introduction to Db2 for z/OS)

Restriction: You cannot include INSERT, UPDATE, DELETE, or MERGE statements in stored procedures or
user-defined functions that are invoked by a BEFORE TRIGGER. These actions are not allowed, because
BEFORE triggers must not modify any table.

Procedure

To invoke a stored procedure or user-defined function from a trigger:
1. Ensure that the stored procedure or user-defined function is defined before the trigger is defined.

- Define procedures by using the CREATE PROCEDURE statement.
- Define triggers by using the CREATE FUNCTION statement.
2. Invoke the user-defined function or stored procedure by performing one of the following actions:

« To invoke a user-defined function, include the user-defined function in one of the following
statements in the trigger:

SELECT statement
Use a SELECT statement to execute the function conditionally. The number of times that the
user-defined function executes depends on the number of rows in the result table of the SELECT
statement. For example, in the following trigger, the SELECT statement invokes user-defined
function LARGE_ORDER_ALERT. This function executes once for each row in transition table
N_TABLE with an order price of more than 10000:

CREATE TRIGGER LRG_ORDR
AFTER INSERT ON INVOICE
REFERENCING NEW TABLE AS N_TABLE
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC
SELECT LARGE_ORDER_ALERT(CUST_NO, TOTAL_PRICE, DELIVERY_DATE)
FROM N_TABLE WHERE TOTAL_PRICE > 10000;
END

VALUES statement
Use the VALUES statement to execute a function unconditionally. The function executes once
for each execution of a statement trigger or once for each row in a row trigger. In the following
example, user-defined function PAYROLL_LOG executes every time the trigger PAYROLL1 is
activated. This trigger is activated when an update operation occurs.

CREATE TRIGGER PAYROLL1
AFTER UPDATE ON PAYROLL

156 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_obfuscateroutinetrigger.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtriggeradvanced.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtrigger.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_load.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_triggers.html

FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC
VALUES (PAYROLL_LOG(USER, 'UPDATE',
CURRENT TIME, CURRENT DATE));
END

]

« To invoke a stored procedure, include a CALL statement in the trigger. The parameters of this stored
procedure call must be constants, transition variables, table locators, or expressions.

If the parameter is a transition variable or table locator, and the CALL statement is in a BEFORE or
AFTER trigger, Db2 returns a warning.

3. To pass transition tables from the trigger to the user-defined function or stored procedure, use table
locators.

When you call a user-defined function or stored procedure from a trigger, you might want to give the
function or procedure access to the entire set of modified rows. In this case, use table locators to pass
a pointer to the old or new transition table.

Most of the code for using a table locator is in the function or stored procedure that receives the
locator.

To pass the transition table from a trigger, specify the parameter TABLE transition-table-name when
you invoke the function or stored procedure. This parameter causes Db2 to pass a table locator for

the transition table to the user-defined function or stored procedure. For example, the following trigger
passes a table locator for a transition table NEWEMPS to stored procedure CHECKEMP:

CREATE TRIGGER EMPRAISE
AFTER UPDATE ON EMP
REFERENCING NEW TABLE AS NEWEMPS
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC
CALL CHECKEMP(TABLE NEWEMPS);
END

Related concepts

Steps to creating and using a user-defined function

A user-defined function is similar to a host language subprogram or function. However, a user-defined
function is often the better choice for an SQL application because you can invoke it in an SQL statement.

Related tasks

Accessing transition tables in a user-defined function or stored procedure

If you want to refer to the entire set of rows that a triggering SQL statement modifies, rather than to
individual rows, use a transition table. You can reference a transition table in user-defined functions and
procedures that are invoked from a trigger.

Creating stored procedures
A stored procedure is executable code that can be called by other programs. The process for creating one
depends on the type of procedure.

Creating a user-defined function
You can extend the SQL functionality of Db2 by adding your own or third party vendor function definitions.

Related reference

CALL (Db2 SQL)

CREATE FUNCTION (Db2 SQL)
CREATE PROCEDURE (Db2 SQL)
select-statement (Db2 SQL)
VALUES (Db2 SQL)

Chapter 3. Db2 SQL programming 157

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_call.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunction.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_selectstatement.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_values.html

Inserting, updating, and deleting data in views by using INSTEAD OF triggers

INSTEAD OF triggers are triggers that execute instead of the INSERT, UPDATE, or DELETE statement that
activates the trigger. You can define these triggers on views only. Use INSTEAD OF triggers to insert,
update, and delete data in complex views.

About this task

Complex views are those views that are defined on expressions or multiple tables. In some cases, those
views are read only. In these cases, INSTEAD OF triggers make the insert, update and delete operations
possible. If the complex view is not read only, you can request an insert, update, or delete operation.
However, Db2 automatically decides how to perform that operation on the base tables that are referenced
in the view. With INSTEAD OF triggers, you can define exactly how Db2 is to execute an insert, update, or
delete operation on the view. You no longer leave the decision to Db2.

Procedure

To insert, update, or delete data in a view by using INSTEAD OF triggers:
1. Define one or more INSTEAD OF triggers on the view by using a CREATE TRIGGER statement.

You can create one trigger for each of the following operations: INSERT, UPDATE, and DELETE. These
triggers define the action that Db2 is to take for each of these operations.

2. Submit a INSERT, UPDATE, or DELETE statement on the view.
Db2 executes the appropriate INSTEAD OF trigger.

Example
Suppose that you create the following view on the sample tables DSN8C10.EMP and DSN8C10.DEPT:

CREATE VIEW EMPV (EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO, HIREDATE,DEPTNAME)
AS SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO, HIREDATE, DEPTNAME
FROM DSN8C10.EMP, DSN8C10.DEPT WHERE DSN8C10.EMP.WORKDEPT
= DSN8C10.DEPT.DEPTNO

Suppose that you also define the following three INSTEAD OF triggers:

CREATE TRIGGER EMPV_INSERT INSTEAD OF INSERT ON EMPV

REFERENCING NEW AS NEWEMP

FOR EACH ROW MODE DB2SQL

INSERT INTO DSN8C10.EMP (EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT,
PHONENO, HIREDATE)
VALUES (NEWEMP .EMPNO, NEWEMP.FIRSTNME, NEWEMP.MIDINIT, NEWEMP.LASTNAME,
COALESCE((SELECT D.DEPTNO FROM DSN8C10.DEPT AS D
WHERE D.DEPTNAME = NEWEMP.DEPTNAME),
RAISE_ERROR('70001', 'Unknown department name')),

NEWEMP.PHONENO, NEWEMP.HIREDATE)

CREATE TRIGGER EMPV_UPDATE INSTEAD OF UPDATE ON EMPV
REFERENCING NEW AS NEWEMP OLD AS OLDEMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
UPDATE DSN8C10.EMP AS E
SET (E.FIRSTNME, E.MIDINIT, E.LASTNAME, E.WORKDEPT, E.PHONENO,
E.HIREDATE)
= (NEWEMP.FIRSTNME, NEWEMP.MIDINIT, NEWEMP.LASTNAME,
COALESCE ((SELECT D.DEPTNO FROM DSN8C10.DEPT AS D
WHERE D.DEPTNAME = OLDEMP.DEPTNAME),
RAISE_ERROR ('70001', 'Unknown department name'))
NEWEMP . PHONENO, NEWEMP.HIREDATE)
WHERE NEWEMP.EMPNO = E.EMPNO;
UPDATE DSN8C10.DEPT D SET D.DEPTNAME=NEWEMP.DEPTNAME
WHERE D.DEPTNAME=0LDEMP.DEPTNAME;
END

CREATE TRIGGER EMPV_DELETE INSTEAD OF DELETE ON EMPV
REFERENCING OLD AS OLDEMP
FOR EACH ROW MODE DB2SQL

DELETE FROM DSN8C10.EMP AS E WHERE E.EMPNO = OLDEMP.EMPNO

158 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Because the view is on a query with an inner join, the view is read only. However, the INSTEAD OF triggers
makes insert, update, and delete operations possible.

The following table describes what happens for various insert, update, and delete operations on the EMPV
view.

Table 41. Results of INSTEAD OF triggers

SQL statement Result

The EMPV_INSERT trigger is activated. This trigger
inserts the row into the base table DSN8C10.EMP
if the department name matches a value in the
WORKDEPT column in the DSN8C10.DEPT table.
Otherwise, an error is returned. If a query had been
used instead of a VALUES clause on the INSERT
statement, the trigger body would be processed for
each row from the query.

i — The EMPV_UPDATE trigger is activated. This
SET DEPTNAME='PLANNING & STRATEGY' trigger updates the DEPTNAME column in the
WHERE DEPTNAME='PLANNING' DSN8C10.DEPT for the any qualifying rows.

INSERT INTO EMPV VALUES (...)

The EMPV_DELETE trigger is activated. This trigger
DEEEEEEFEQEEE,T?L '1910-01-01" deletes the qualifying rows from the DSN8C10.EMP
table.

Related reference
CREATE TRIGGER (basic) (Db2 SQL)

Errors encountered in a trigger
An SQL statement in a trigger body may fail during trigger execution, causing an error to occur.

Assuming that no handlers are defined in the trigger, if any SQL statement in the trigger body fails during
trigger execution, Db2 rolls back all changes that are made by the triggering SQL statement and the
triggered SQL statements. However, if the trigger body executes actions that are outside of the control of
Db2, or are not under the same commit coordination as the Db2 subsystem in which the trigger executes,
Db2 cannot undo those actions. Examples of external actions that are not under the control of Db2 are:

« Performing updates that are not under RRS commit control
« Sending an electronic mail message

If the trigger executes external actions that are under the same commit coordination as the Db2
subsystem under which the trigger executes, and an error occurs during trigger execution, Db2 places

the application process that issued the triggering statement in a must-rollback state. The application must
then execute a rollback operation to roll back those external actions. Examples of external actions that
are under the same commit coordination as the triggering SQL operation are:

« Executing a distributed update operation

« From a user-defined function or stored procedure, executing an external action that affects an external
resource manager that is under RRS commit control.

Trigger packages

A trigger package is a special type of package that is created only when you execute a CREATE TRIGGER
statement. A trigger package executes only when the associated trigger is activated.

As with any other package, Db2 marks a trigger package invalid when you drop a table, index, or view
on which the trigger package depends. Db2 executes an automatic rebind the next time the trigger is
activated. However, if the automatic rebind fails, Db2 does not mark the trigger package as inoperative.

Chapter 3. Db2 SQL programming 159

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtrigger.html

Unlike other packages, a trigger package is freed if you drop the table on which the trigger is defined, so
you can re-create the trigger package only by recreating the table and the trigger.

Db2 supports basic and advanced triggers. You use a different REBIND subcommand for each type.

« For basic trigger packages, use the REBIND TRIGGER PACKAGE subcommand . You can also use
REBIND TRIGGER PACKAGE to change a limited subset of the default bind options that Db2 used when
creating the package. You can identify basic triggers by querying the SYSIBM.SYSTRIGGERS catalog
table. Blank values in the SQLPL column identify basic triggers.

« For advanced trigger packages, use the REBIND PACKAGE subcommand. You can use the ALTER
TRIGGER statement to change the option values with which Db2 originally bound the trigger package.
You can identify advanced triggers by querying the SYSIBM.SYSTRIGGERS catalog table. 'Y' values in
the SQLPL column identify advanced triggers.

If you issue a REBIND PACKAGE command against a package for an advanced trigger, the only bind
options that you can change are EXPLAIN (but EXPLAIN(ONLY) is not accepted), FLAG, PLANMGMT, and
CONCENTRATESTMT. If you try to change other bind options, the command will fail and return message
DSNT215I.

Related reference
REBIND TRIGGER PACKAGE (DSN) (Db2 Commands)
REBIND PACKAGE subcommand (DSN) (Db2 Commands)

Trigger cascading

When a trigger performs an SQL operation, it might modify the subject table or other tables with triggers,
therefore Db2 also activates those triggers. This situation is called trigger cascading.

A trigger that is activated as the result of another trigger can be activated at the same level as the original
trigger or at a different level. Two triggers, A and B, are activated at different levels if trigger B is activated
after trigger A is activated and completes before trigger A completes. If trigger B is activated after trigger
Ais activated and completes after trigger A completes, then the triggers are at the same level.

For example, in these cases, trigger A and trigger B are activated at the same level:

- Table X has two triggers that are defined on it, A and B. A is a before trigger and B is an after trigger. An
update to table X causes both trigger A and trigger B to activate.

« Trigger A updates table X, which has a referential constraint with table Y, which has trigger B defined on
it. The referential constraint causes table Y to be updated, which activates trigger B.

In these cases, trigger A and trigger B are activated at different levels:

« Trigger A is defined on table X, and trigger B is defined on table Y. Trigger B is an update trigger. An
update to table X activates trigger A, which contains an UPDATE statement on table Y in its trigger body.
This UPDATE statement activates trigger B.

« Trigger A calls a stored procedure. The stored procedure contains an INSERT statement for table X,
which has insert trigger B defined on it. When the INSERT statement on table X executes, trigger B is
activated.

When triggers are activated at different levels, it is called trigger cascading. Trigger cascading can occur
only for after triggers because Db2 does not support cascading of before triggers.

To prevent the possibility of endless trigger cascading, Db2 supports only 16 levels of cascading of
triggers, stored procedures, and user-defined functions. If a trigger, user-defined function, or stored
procedure at the 17th level is activated, Db2 returns SQLCODE -724 and backs out all SQL changes in the
16 levels of cascading. However, as with any other SQL error that occurs during trigger execution, if any
action occurs that is outside the control of Db2, that action is not backed out.

You can write a monitor program that issues IFI READS requests to collect Db2 trace information about
the levels of cascading of triggers, user-defined functions, and stored procedures in your programs.

Related tasks
Invoking IFI from a monitor program (Db2 Performance)

160 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_rebindtriggerpackage.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_rebindpackage.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_ififromprogram.html

Activation order of multiple triggers

You can create multiple triggers for the same subject table, event, and activation time. The order in which
those triggers are activated is the order in which the triggers were created.

Db2 records the timestamp when each CREATE TRIGGER statement executes. When an event occurs in a
table that activates more than one trigger, Db2 uses the stored timestamps to determine which trigger to
activate first.

Db2 always activates all before triggers that are defined on a table before the after triggers that are
defined on that table, but within the set of before triggers, the activation order is by timestamp, and within
the set of after triggers, the activation order is by timestamp.

In this example, triggers NEWHIREL1 and NEWHIRE2 have the same triggering event (INSERT), the same
subject table (EMP), and the same activation time (AFTER). Suppose that the CREATE TRIGGER statement
for NEWHIREX is run before the CREATE TRIGGER statement for NEWHIRE2:

CREATE TRIGGER NEWHIRE1
AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END

CREATE TRIGGER NEWHIRE2
AFTER INSERT ON EMP
REFERENCING NEW AS N_EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
UPDATE DEPTS SET NBEMP = NBEMP + 1
WHERE DEPT_ID = N_EMP.DEPT_ID;
END

When an insert operation occurs on table EMP, Db2 activates NEWHIRE1 first because NEWHIREL was
created first. Now suppose that someone drops and re-creates NEWHIREL. NEWHIREL now has a later
timestamp than NEWHIREZ2, so the next time an insert operation occurs on EMP, NEWHIRE?2 is activated
before NEWHIREL.

If two row triggers are defined for the same action, the trigger that was created earlier is activated

first for all affected rows. Then the second trigger is activated for all affected rows. In the previous
example, suppose that an INSERT statement with a fullselect inserts 10 rows into table EMP. NEWHIRE1
is activated for all 10 rows, then NEWHIRE?2 is activated for all 10 rows.

Related reference
CREATE TRIGGER (advanced) (Db2 SQL)
CREATE TRIGGER (basic) (Db2 SQL)

Interactions between triggers and referential constraints

When you create triggers, you need to understand the interactions among the triggers and constraints on
your tables. You also need to understand the effect that the order of processing of those constraints and
triggers can have on the results.

In general, the following steps occur when triggering SQL statement S1 performs an insert, update, or
delete operation on table T1:

1. Db2 determines the rows of T1 to modify. Call that set of rows M1. The contents of M1 depend on the
SQL operation:

« For a delete operation, all rows that satisfy the search condition of the statement for a searched
delete operation, or the current row for a positioned delete operation

« For an insert operation, the row identified by the VALUES statement, or the rows identified by the
result table of a SELECT clause within the INSERT statement

« For an update operation, all rows that satisfy the search condition of the statement for a searched
update operation, or the current row for a positioned update operation

Chapter 3. Db2 SQL programming 161

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtriggeradvanced.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtrigger.html

2. Db2 processes all before triggers that are defined on T1, in order of creation.

Each before trigger executes the triggered action once for each row in M1. If M1 is empty, the triggered
action does not execute.

If an error occurs when the triggered action executes, Db2 rolls back all changes that are made by S1.

3. Db2 makes the changes that are specified in statement S1 to table T1, unless an INSTEAD OF trigger
is defined for that action. If an appropriate INSTEAD OF trigger is defined, Db2 executes the trigger
instead of the statement and skips the remaining steps in this list.

If an error occurs, Db2 rolls back all changes that are made by S1.
4. If M1 is not empty, Db2 applies all the following constraints and checks that are defined on table T1:

« Referential constraints
« Check constraints
« Checks that are due to updates of the table through views defined WITH CHECK OPTION

Application of referential constraints with rules of DELETE CASCADE or DELETE SET NULL are activated
before delete triggers or before update triggers on the dependent tables.

If any constraint is violated, Db2 rolls back all changes that are made by constraint actions or by
statement S1.

5. Db2 processes all after triggers that are defined on T1, and all after triggers on tables that are modified
as the result of referential constraint actions, in order of creation.

Each after row trigger executes the triggered action once for each row in M1. If M1 is empty, the
triggered action does not execute.

Each after statement trigger executes the triggered action once for each execution of S1, even if M1 is
empty.

If any triggered actions contain SQL insert, update, or delete operations, Db2 repeats steps 1 through 5
for each operation.

If an error occurs when the triggered action executes, or if a triggered action is at the 17th level of trigger
cascading, Db2 rolls back all changes that are made in step 5 and all previous steps.

For example, table DEPT is a parent table of EMP, with these conditions:

« The DEPTNO column of DEPT is the primary key.
« The WORKDEPT column of EMP is the foreign key.
« The constraint is ON DELETE SET NULL.

Suppose the following trigger is defined on EMP:

CREATE TRIGGER EMPRAISE
AFTER UPDATE ON EMP
REFERENCING NEW TABLE AS NEWEMPS
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC
VALUES (CHECKEMP (TABLE NEWEMPS)) ;
END

Also suppose that an SQL statement deletes the row with department number E21 from DEPT. Because
of the constraint, Db2 finds the rows in EMP with a WORKDEPT value of E21 and sets WORKDEPT in
those rows to null. This is equivalent to an update operation on EMP, which has update trigger EMPRAISE.
Therefore, because EMPRAISE is an after trigger, EMPRAISE is activated after the constraint action sets
WORKDEPT values to null.

162 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Interactions between triggers and tables that have multilevel security with
row-level granularity

A BEFORE trigger affects the value of the transition variable that is associated with a security label
column.

If a subject table has a security label column, the column in the transition table or transition variable that
corresponds to the security label column in the subject table does not inherit the security label attribute.
This means that the multilevel security check with row-level granularity is not enforced for the transition
table or the transition variable. If you add a security label column to a subject table using the ALTER
TABLE statement, the rules are the same as when you add any column to a subject table because the
column in the transition table or the transition variable that corresponds to the security label column does
not inherit the security label attribute.

If the ID you are using does not have write-down privilege and you execute an insert or update operation,
the security label value of your ID is assigned to the security label column for the rows that you are
inserting or updating.

When a BEFORE trigger is activated, the value of the transition variable that corresponds to the security
label column is the security label of the ID if either of the following conditions is true:

« The user does not have write-down privilege
« The value for the security label column is not specified

If the user does not have write-down privilege, and the trigger changes the transition variable that
corresponds to the security label column, the value of the security label column is changed back to the
security label value of the user before the row is written to the page.

Related concepts
Multilevel security (Managing Security)

Triggers that return inconsistent results

When you create triggers and write SQL statements that activate those triggers, you need to ensure that
executing those statements always produces the same results.

Two common reasons that you can get inconsistent results are:

- Positioned UPDATE or DELETE statements that use uncorrelated subqueries cause triggers to operate
on a larger result table than you intended.

- Db2 does not always process rows in the same order, so triggers that propagate rows of a table can
generate different result tables at different times.

The following examples demonstrate these situations.

Example: Effect of an uncorrelated subquery on a triggered action: Suppose that tables T1 and T2 look
like this:

Table T1 Table T2
Al B1
1 1
2 2

The following trigger is defined on T1:

CREATE TRIGGER TR1
AFTER UPDATE OF T1
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC
DELETE FROM T2 WHERE Bl = 2;
END

Now suppose that an application executes the following statements to perform a positioned update
operation:

Chapter 3. Db2 SQL programming 163

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_mls.html

EXEC SQL BEGIN DECLARE SECTION;
long hvil;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE C1 CURSOR FOR
SELECT A1 FROM T1
WHERE A1 IN (SELECT B1 FROM T2)
FOR UPDATE OF A1;

EXEC SQL OPEN C1;
while (SQLCODE>=@ && SQLCODE!=100)
1

EXEC SQL FETCH C1 INTO :hvi;
UPDATE T1 SET Al1=5 WHERE CURRENT OF C1;
¥

When Db2 executes the FETCH statement that positions cursor C1 for the first time, Db2 evaluates the
subselect, SELECT B1 FROM T2, to produce a result table that contains the two rows of column T2:

1
2

When Db2 executes the positioned UPDATE statement for the first time, trigger TR1 is activated. When
the body of trigger TR1 executes, the row with value 2 is deleted from T2. However, because SELECT B1
FROM T2 is evaluated only once, when the FETCH statement is executed again, Db2 finds the second row
of T1, even though the second row of T2 was deleted. The FETCH statement positions the cursor to the
second row of T4, and the second row of T1 is updated. The update operation causes the trigger to be
activated again, which causes Db2 to attempt to delete the second row of T2, even though that row was
already deleted.

To avoid processing of the second row after it should have been deleted, use a correlated subquery in the
cursor declaration:

DCL C1 CURSOR FOR
SELECT A1 FROM T1 X
WHERE EXISTS (SELECT B1 FROM T2 WHERE X.Al = B1)
FOR UPDATE OF A1;

In this case, the subquery, SELECT B1 FROM T2 WHERE X.Al = B1, is evaluated for each FETCH
statement. The first time that the FETCH statement executes, it positions the cursor to the first row of T1.
The positioned UPDATE operation activates the trigger, which deletes the second row of T2. Therefore,
when the FETCH statement executes again, no row is selected, so no update operation or triggered action
occurs.

Example: Effect of row processing order on a triggered action: The following example shows how the
order of processing rows can change the outcome of an after row trigger.

Suppose that tables T1, T2, and T3 look like this:

Table T1 Table T2 Table T3
Al B1 C1
% (empty) (empty)

The following trigger is defined on T1:

CREATE TRIGGER TR1
AFTER UPDATE ON T1
REFERENCING NEW AS N
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC
INSERT INTO T2 VALUES(N.C1);
INSERT INTO T3 (SELECT B1 FROM T2);
END

Now suppose that a program executes the following UPDATE statement:

164 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

UPDATE T1 SET Al = Al + 1;
The contents of tables T2 and T3 after the UPDATE statement executes depend on the order in which Db2
updates the rows of T1.

If Db2 updates the first row of T1 first, after the UPDATE statement and the trigger execute for the first
time, the values in the three tables are:

Table T1 Table T2 Table T3
Al B1 Cc1
2 2 2
2

After the second row of T1 is updated, the values in the three tables are:

Table T1 Table T2 Table T3
Al Bl C1
2 2 2
3 3 2
3

However, if Db2 updates the second row of T1 first, after the UPDATE statement and the trigger execute
for the first time, the values in the three tables are:

Table T1 Table T2 Table T3
Al Bl C1
1 3 3
3

After the first row of T1 is updated, the values in the three tables are:

Table T1 Table T2 Table T3
Al B1 Cc1
2 3 3
3 2 3
2

Converting existing triggers to support advanced capabilities

You can convert existing basic triggers to take advantage of advanced capabilities, including support for
more SQL statements, including SQL PL in the trigger body, support for more variable types, and other
advantages.

Before you begin
Advanced triggers are supported at application compatibility level V12R1M500 or higher.

You can identify basic triggers by querying the SYSIBM.SYSTRIGGERS catalog table. Blank values in the
SQLPL column identify basic triggers.

About this task
Advanced triggers offer the following advantages over basic triggers:

« Inthe trigger definition, an advanced trigger can:

Include more types of SQL statements, including SQL PL control statements, dynamic SQL
statements, and SQL comments.

Define and reference more types of variables, including SQL variables and global variables.

Explicitly specify bind options.

Define multiple versions of the trigger.

Chapter 3. Db2 SQL programming 165

« All transition variables are nullable.
« ALTER TRIGGER statements can change options, and change or regenerate the trigger body.

« The OR REPLACE clause can be used in CREATE TRIGGER (advanced) statements. It enables the use of
a single CREATE statement to either define a new trigger or trigger version, or update an existing trigger
or trigger version if it already exists.

For more information about the differences between basic and advanced triggers, see Triggers
(Introduction to Db2 for z/0S).

Procedure

To change an existing basic trigger into an advanced trigger, complete the following steps:

1. Modify the original CREATE TRIGGER statement into a CREATE TRIGGER (advanced) statement by
removing any of the following items:
« The MODE DB2SQL clause. Db2 attempts to creates a basic trigger if that clause is included.

« Stand-alone fullselect or VALUES statements. You can use SELECT INTO statement or VALUES INTO
statements instead.

2. Use one of the following approaches to convert to the new advanced trigger definition:

« Issue the modified CREATE TRIGGER (advanced) statement with the OR REPLACE clause.

« Issue a DROP statement for the original trigger and then issue the new CREATE TRIGGER
statement.

The existing trigger is effectively dropped, and an advanced trigger is defined. If multiple triggers are
defined on the associated table, the trigger activation order changes.

What to do next

If multiple triggers are defined on the associated table, you might need to restore the original the
activation order of the triggers. To do that, you must drop and re-create any triggers that were created
after the converted trigger was originally created, in the same order that they were originally created. For
more information about the activation order of multiple triggers, see “Activation order of multiple triggers”
on page 161.

Related reference

DROP (Db2 SOL)

CREATE TRIGGER (advanced) (Db2 SQL)
SYSTRIGGERS catalog table (Db2 SQL)

Sequence objects

A sequence is a user-defined object that generates a sequence of numeric values according to the
specification with which the sequence was created. Sequences, unlike identity columns, are not
associated with tables. Applications refer to a sequence object to get its current or next value.

The sequence of numeric values is generated in a monotonically ascending or descending order. The
relationship between sequences and tables is controlled by the application, not by Db2.

Your application can reference a sequence object and coordinate the value as keys across multiple rows
and tables. However, a table column that gets its values from a sequence object does not necessarily
have unique values in that column. Even if the sequence object has been defined with the NO CYCLE
clause, some other application might insert values into that table column other than values you obtain by
referencing that sequence object.

Db2 always generates sequence numbers in order of request. However, in a data sharing group where the
sequence values are cached by multiple Db2 members simultaneously, the sequence value assignments
might not be in numeric order. Additionally, you might have gaps in sequence number values for the
following reasons:

166 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_triggers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_triggers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_drop.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtriggeradvanced.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsystriggerstable.html

- If Db2 terminates abnormally before it assigns all the cached values
- If your application rolls back a transaction that increments the sequence
- If the statement containing NEXT VALUE fails after it increments the sequence

You create a sequence object with the CREATE SEQUENCE statement, alter it with the ALTER SEQUENCE
statement, and drop it with the DROP SEQUENCE statement. You grant access to a sequence with

the GRANT (privilege) ON SEQUENCE statement, and revoke access to the sequence with the REVOKE
(privilege) ON SEQUENCE statement.

The values that Db2 generates for a sequence depend on how the sequence is created. The START WITH
option determines the first value that Db2 generates. The values advance by the INCREMENT BY value in
ascending or descending order.

The MINVALUE and MAXVALUE options determine the minimum and maximum values that Db2
generates. The CYCLE or NO CYCLE option determines whether Db2 wraps the generated values when it
reaches the maximum value for an ascending sequence or the minimum value in a descending sequence.

Keys across multiple tables: You can use the same sequence number as a key value in two separate
tables by first generating the sequence value with a NEXT VALUE expression to insert the first row in the
first table. You can then reference this same sequence value with a PREVIOUS VALUE expression to insert
the other rows in the second table.

Example: Suppose that an ORDERS table and an ORDER_ITEMS table are defined in the following way:

CREATE TABLE ORDERS

(ORDERNO INTEGER NOT NULL,
ORDER_DATE DATE DEFAULT,
CUSTNO SMALLINT

PRIMARY KEY (ORDERNO));

CREATE TABLE ORDER_ITEMS
(ORDERNO INTEGER NOT NULL,
PARTNO INTEGER NOT NULL,
QUANTITY SMALLINT NOT NULL,
PRIMARY KEY (ORDERNO,PARTNO),
CONSTRAINT REF_ORDERNO FOREIGN KEY (ORDERNO)
REFERENCES ORDERS (ORDERNO) ON DELETE CASCADE);

You create a sequence named ORDER_SEQ to use as key values for both the ORDERS and ORDER_ITEMS
tables:

CREATE SEQUENCE ORDER_SEQ AS INTEGER
START WITH 1
INCREMENT BY 1
NO MAXVALUE
NO CYCLE
CACHE 20;

You can then use the same sequence number as a primary key value for the ORDERS table and as part of
the primary key value for the ORDER_ITEMS table:

INSERT INTO ORDERS (ORDERNO, CUSTNO)
VALUES (NEXT VALUE FOR ORDER_SEQ, 12345);

INSERT INTO ORDER_ITEMS (ORDERNO, PARTNO, QUANTITY)
VALUES (PREVIOUS VALUE FOR ORDER_SEQ, 987654, 2);

The NEXT VALUE expression in the first INSERT statement generates a sequence number value for
the sequence object ORDER_SEQ. The PREVIOUS VALUE expression in the second INSERT statement
retrieves that same value because it was the sequence number most recently generated for that
sequence object within the current application process.

Chapter 3. Db2 SQL programming 167

Db2 object relational extensions

With the object extensions of Db2, you can incorporate object-oriented concepts and methodologies into
your relational database by extending Db2 with richer sets of data types and functions.

With those extensions, you can store instances of object-oriented data types in columns of tables and
operate on them using functions in SQL statements. In addition, you can control the types of operations
that users can perform on those data types.

The object extensions that Db2 provides are:
- Large objects (LOBs)

The VARCHAR, VARGRAPHIC, and VARBINARY data types have a storage limit of 32 KB. Although this
might be sufficient for small- to medium-size text data, applications often need to store large text
documents. They might also need to store a wide variety of additional data types such as audio, video,
drawings, mixed text and graphics, and images. Db2 provides three data types to store these data
objects as strings of up to 2 GB - 1 in size. The three data types are binary large objects (BLOBs),
character large objects (CLOBs), and double-byte character large objects (DBCLOBS).

For a detailed discussion of LOBs, see “Storing LOB data in Db2 tables” on page 121 and Large objects
(LOBs) (Db2 SQL).

« Distinct types

A distinct type is a user-defined data type that shares its internal representation with a built-in data
type but is considered to be a separate and incompatible type for semantic purposes. For example, you
might want to define a picture type or an audio type, both of which have quite different semantics, but
which use the built-in data type BLOB for their internal representation.

For a detailed discussion of distinct types, see “Distinct types” on page 169.

« User-defined functions

The built-in functions that are supplied with Db2 are a useful set of functions, but they might not satisfy
all of your requirements. For those cases, you can use user-defined functions. For example, a built-in
function might perform a calculation you need, but the function does not accept the distinct types

you want to pass to it. You can then define a function based on a built-in function, called a sourced
user-defined function, that accepts your distinct types. You might need to perform another calculation
in your SQL statements for which no built-in function exists. In that situation, you can define and write
an SQL function or an external function.

For a detailed discussion of user-defined functions, see “Steps to creating and using a user-defined
function” on page 183.

Creating a distinct type

Distinct types are useful when you want Db2 to handle certain data differently than other data of the same
data type. For example, even though all currencies can be declared as type DECIMAL, you do not want
euros to be compared to Japanese yen.

Procedure

Issue the CREATE DISTINCT TYPE statement.
For example, you can create distinct types for euros and yen by issuing the following SQL statements:

CREATE DISTINCT TYPE EURO AS DECIMAL(9,2);
CREATE DISTINCT TYPE JAPANESE_YEN AS DECIMAL(9,2);

Related reference
CREATE TYPE (distinct) (Db2 SQL)

168 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_lobsintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_lobsintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtypedistinct.html

Distinct types

A distinct type is a user-defined data type that shares its internal representation with a built-in data type
(its source type), but is considered to be a separate and incompatible data type for most operations.

Each distinct type has the same internal representation as a built-in data type.

Suppose you want to define some audio and video data in a Db2 table. You can define columns for both
types of data as BLOB, but you might want to use a data type that more specifically describes the data.
To do that, define distinct types. You can then use those types when you define columns in a table or
manipulate the data in those columns. For example, you can define distinct types for the audio and video
data like this:

CREATE DISTINCT TYPE AUDIO AS BLOB (1M);
CREATE DISTINCT TYPE VIDEO AS BLOB (1M);

Then, your CREATE TABLE statement might look like this:

CREATE TABLE VIDEO_CATALOG;
(VIDEO_NUMBER CHAR(6) NOT NULL,
VIDEO_SOUND AUDIO,
VIDEO_PICS VIDEO,
ROW_ID ROWID NOT NULL GENERATED ALWAYS);

For more information on LOB data, see “Storing LOB data in Db2 tables” on page 121 and Large objects
(LOBs) (Db2 SQL).

After you define distinct types and columns of those types, you can use those data types in the same way
you use built-in types. You can use the data types in assignments, comparisons, function invocations, and
stored procedure calls. However, when you assign one column value to another or compare two column
values, those values must be of the same distinct type. For example, you must assign a column value of
type VIDEO to a column of type VIDEO, and you can compare a column value of type AUDIO only to a
column of type AUDIO. When you assign a host variable value to a column with a distinct type, you can
use any host data type that is compatible with the source data type of the distinct type. For example, to
receive an AUDIO or VIDEO value, you can define a host variable like this:

SQL TYPE IS BLOB (1M) HVAV;

When you use a distinct type as an argument to a function, a version of that function that accepts
that distinct type must exist. For example, if function SIZE takes a BLOB type as input, you cannot
automatically use a value of type AUDIO as input. However, you can create a sourced user-defined
function that takes the AUDIO type as input. For example:

CREATE FUNCTION SIZE(AUDIO)
RETURNS INTEGER
SOURCE SIZE(BLOB(1M));

Using distinct types in application programs: The main reason to use distinct types is because
Db2 enforces strong typing for distinct types. Strong typing ensures that only functions, procedures,
comparisons, and assignments that are defined for a data type can be used.

For example, if you have defined a user-defined function to convert U.S. dollars to euro currency, you do
not want anyone to use this same user-defined function to convert Japanese yen to euros because the
U.S. dollars to euros function returns the wrong amount. Suppose you define three distinct types:

CREATE DISTINCT TYPE US_DOLLAR AS DECIMAL(9,2);
CREATE DISTINCT TYPE EURO AS DECIMAL(9,2);
CREATE DISTINCT TYPE JAPANESE_YEN AS DECIMAL(9,2);

If a conversion function is defined that takes an input parameter of type US_DOLLAR as input, Db2 returns
an error if you try to execute the function with an input parameter of type JAPANESE_YEN.

Chapter 3. Db2 SQL programming 169

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_lobsintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_lobsintro.html

Example of distinct types, user-defined functions, and LOBs
You can create and use a distinct type based on a LOB data type.
The example in this topic demonstrates the following concepts:

 Creating a distinct type based on a LOB data type

« Defining a user-defined function with a distinct type as an argument

« Creating a table with a distinct type column that is based on a LOB type

« Defining a LOB table space, auxiliary table, and auxiliary index

« Inserting data from a host variable into a distinct type column based on a LOB column
« Executing a query that contains a user-defined function invocation

« Casting a LOB locator to the input data type of a user-defined function

Suppose that you keep electronic mail documents that are sent to your company in a Db2 table. The Db2
data type of an electronic mail document is a CLOB, but you define it as a distinct type so that you can
control the types of operations that are performed on the electronic mail. The distinct type is defined like
this:

CREATE DISTINCT TYPE E_MAIL AS CLOB(5M);

You have also defined and written user-defined functions to search for and return the following
information about an electronic mail document:

» Subject

- Sender

» Date sent

« Message content

« Indicator of whether the document contains a user-specified string

The user-defined function definitions look like this:

CREATE FUNCTION SUBJECT(E_MAIL)
RETURNS VARCHAR(200)
EXTERNAL NAME 'SUBJECT'
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION;

CREATE FUNCTION SENDER(E_MAIL)
RETURNS VARCHAR (200)
EXTERNAL NAME 'SENDER'
LANGUAGE C
PARAMETER STYLE SOQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION;

CREATE FUNCTION SENDING_DATE (E_MAIL)
RETURNS DATE
EXTERNAL NAME 'SENDDATE'
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION;

CREATE FUNCTION CONTENTS(E_MAIL)
RETURNS CLOB(1M)
EXTERNAL NAME 'CONTENTS'
LANGUAGE C
PARAMETER STYLE SQL
NO SQL

170 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

DETERMINISTIC
NO EXTERNAL ACTION;

CREATE FUNCTION CONTAINS(E_MAIL, VARCHAR (200))
RETURNS INTEGER
EXTERNAL NAME 'CONTAINS'
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION;

The table that contains the electronic mail documents is defined like this:

CREATE TABLE DOCUMENTS
(LAST_UPDATE_TIME TIMESTAMP,
DOC_ROWID ROWID NOT NULL GENERATED ALWAYS,
A_DOCUMENT E_MAIL);

Because the table contains a column with a source data type of CLOB, the table requires an associated
LOB table space, auxiliary table, and index on the auxiliary table. Use statements like this to define the
LOB table space, the auxiliary table, and the index:

CREATE LOB TABLESPACE DOCTSLOB
LOG YES
GBPCACHE SYSTEM;

CREATE AUX TABLE DOCAUX_TABLE
IN DOCTSLOB
STORES DOCUMENTS COLUMN A_DOCUMENT;

CREATE INDEX A_IX_DOC ON DOCAUX_TABLE;

To populate the document table, you write code that executes an INSERT statement to put the first part
of a document in the table, and then executes multiple UPDATE statements to concatenate the remaining
parts of the document. For example:

EXEC SQL BEGIN DECLARE SECTION;
char hv_current_time[26];
SQL TYPE IS CLOB (1M) hv_doc;
EXEC SQL END DECLARE SECTION;
/* Determine the current time and put this value x/

/* into host variable hv_current_time. */
/* Read up to 1 MB of document data from a file =«/
/* into host variable hv_doc. */

/* Insert the time value and the first 1 MB of */

/* document data into the table. */

EXEC SQL INSERT INTO DOCUMENTS
VALUES(:hv_current_time, DEFAULT, E_MAIL(:hv_doc));

/* Although there is more document data in the */
/* file, read up to 1 MB more of data, and then =x/

/* use an UPDATE statement like this one to */
/* concatenate the data in the host variable */
/* to the existing data in the table. */

EXEC SQL UPDATE DOCUMENTS
SET A_DOCUMENT = A_DOCUMENT || E_MAIL(:hv_doc)
WHERE LAST_UPDATE_TIME = :hv_current_time;

Now that the data is in the table, you can execute queries to learn more about the documents. For
example, you can execute this query to determine which documents contain the word "performance":

SELECT SENDER(A_DOCUMENT), SENDING_DATE(A_DOCUMENT),
SUBJECT (A_DOCUMENT)
FROM DOCUMENTS
WHERE CONTAINS(A_DOCUMENT, 'performance') = 1;

Because the electronic mail documents can be very large, you might want to use LOB locators to

manipulate the document data instead of fetching all of a document into a host variable. You can use
a LOB locator on any distinct type that is defined on one of the LOB types. The following example shows

Chapter 3. Db2 SQL programming 171

how you can cast a LOB locator as a distinct type, and then use the result in a user-defined function that
takes a distinct type as an argument:

EXEC SQL BEGIN DECLARE SECTION

long hv_len;

char hv_subject[200];

SQL TYPE IS CLOB_LOCATOR hv_email_locator;
EXEC SQL END DECLARE SECTION

/* Select a document into a CLOB locator. */
EXEC SQL SELECT A_DOCUMENT, SUBJECT(A_DOCUMENT)
INTO :hv_email_locator, :hv_subject
FROM DOCUMENTS
WHERE LAST_UPDATE_TIME = :hv_current_time;

/* Extract the subject from the document. The */
/* SUBJECT function takes an argument of type */
/* E_MAIL, so cast the CLOB locator as E_MAIL. */
EXEC SQL SET :hv_subject =
SUBJECT(CAST(:hv_email_locator AS E_MAIL));

Arrays in SQL statements

An array is an ordered set of elements of a single built-in data type. An array can have an associated
user-defined array type, or it can be the result of an SQL operation that returns an array value without an
associated user-defined array type.

Arrays can be ordinary arrays and associative arrays.

Ordinary arrays have a user-defined upper bound. Elements in the array can be accessed and modified
by their index value. Array elements are referenced in SQL statements by using one-based indexing; for
example, MYARRAY[1], MYARRAY[2], and so on.

Associative arrays have no upper bound. Associative arrays contain an ordered set of zero or more
elements, where each element in the array is ordered by and can be referenced by an associated index
value. The data type of the index values can be an integer or a character string, but all index values for the
array have the same data type.

Arrays can be used only in the following contexts:

« Parameters to SQL functions
- RETURN data types from SQL functions
« Parameters to SQL procedures

SQL variables that are declared in SQL functions
« SQL variables that are declared in SQL procedures

You can create an array by creating an array type, and then defining an array variable of that type. For
example:

-- CREATE ORDINARY ARRAY TYPE INTARRAY

CREATE TYPE INTARRAY AS INTEGER ARRAY[100];

-- IN AN SQL PROCEDURE, DEFINE ARRAY INTA OF THE INTARRAY TYPE
DECLARE INTA INTARRAY;

-- CREATE ASSOCIATIVE ARRAY TYPE CHARARRAY

CREATE TYPE CHARARRAY AS CHAR(10) ARRAY[VARCHAR(10)];

-- IN AN SQL PROCEDURE, DEFINE ARRAY CHARA OF THE CHARARRAY TYPE
DECLARE CHARA CHARARRAY;

You cannot retrieve the contents of a column directly into an array. You need to use the ARRAY_AGG
function to create an array that is the intermediate result of a SELECT statement, and then retrieve the
contents of that array into an SQL array variable or parameter. For example:

-- INTB IS AN OUT PARAMETER OF ORDINARY ARRAY TYPE INTARRAY.

-- COL2 IS AN INTEGER COLUMN.

-- ARRAY_AGG RETRIEVES THE VALUES FROM COL2, AND PUTS THEM INTO AN ARRAY.
SELECT ARRAY_AGG(COL2) INTO INTB FROM TABLEZ1;

172 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

You can retrieve data from an array by using the UNNEST specification to assign array elements to an
intermediate result table. For example:

-- IDS AND NAMES ARE ARRAYS OF TYPE INTARRAY.
INSERT INTO PERSONS(ID, NAME)
(SELECT T.I, T.N FROM UNNEST(IDS, NAMES) AS T(I, N));

To populate arrays, you use array constructors.

For example, this statement populates an ordinary array:
SET CHARA = ARRAY['1','2','3','4','5','6'];

For example, these statements populate an associative array, which must be populated one element at a
time:

SET CANADACAPITALS['Alberta'] = 'Edmonton';
SET CANADACAPITALS['Manitoba'] = 'Winnipeg';
SET CANADACAPITALS['Ontario'] = 'Toronto';

SET CANADACAPITALS['Nova Scotia'] = 'Halifax';

A number of built-in functions are available for manipulating arrays. They are:

ARRAY_DELETE
Deletes elements from an array.

ARRAY_FIRST
Returns the minimum array index value of an array.

ARRAY_LAST
Returns the maximum array index value of an array.

ARRAY_NEXT
Returns the next larger array index value, relative to a specified array index value.

ARRAY_PRIOR

Returns the next smaller array index value, relative to a specified array index value.
CARDINALITY

Returns the number of elements in an array.

MAX_CARDINALITY
Returns the maximum number of elements that an array can contain.

TRIM_ARRAY

Deletes elements from the end of an ordinary array.
Related concepts
User-defined type comparisons (Db2 SQL)
User-defined type assignments (Db2 SQL)
Array types (Db2 SQL)
Related reference
Array constructor (Db2 SQL)
ARRAY_AGG (Db2 SOL)
ARRAY_DELETE (Db2 SQL)
ARRAY_FIRST (Db2 SQL)
ARRAY_NEXT (Db2 SOL)
ARRAY_PRIOR (Db2 SQL)
CARDINALITY (Db2 SQL)
MAX_CARDINALITY (Db2 SQL)
TRIM_ARRAY (Db2 SQL)

Chapter 3. Db2 SQL programming 173

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_userdefinedtypecomparisons.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_userdefinedtypeassignments.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_arraytypes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_arrayconstructor.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_arrayagg.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_arraydelete.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_arrayfirst.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_arraynext.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_arrayprior.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_cardinality.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_maxcardinality.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_trimarray.html

Example of using arrays in an SQL procedure
An example demonstrates many of the ways that you can use arrays in a native SQL procedure.

The example demonstrates how to:

« Create an associative array type.

« Create an ordinary array type.

« Create a stored procedure with arrays as parameters.
« Define arrays as SQL variables.

« Use the ARRAY_AGG built-in function in a cursor declaration, to assign the rows of a single-column
result table to elements of an array. Use the cursor to retrieve the array into an SQL out parameter.

« Use an array constructor to initialize an array.
- Assign a constant or an expression to an array element.

« Use the UNNEST specification to generate the intermediate result table from an array for a subselect
within an INSERT statement.

« Use the ARRAY_AGG built-in function to assign the rows of a single column result table to elements of
an array, and then assign that array to an array SQL OUT parameter.

« Use the CARDINALITY built-in function to determine how many times to execute a WHILE loop.

« Use a parameter marker for an array variable and an array index in the WHERE clause of a SELECT
statement.

e Use the ARRAY_AGG built-in function in the SELECT list of a SELECT INTO statement, and assign the
resulting array to an array SQL OUT parameter.

« Update column values with array elements.

In this example, the pound sign (#) is used as the SQL terminator character.

-- CREATE ASSOCIATIVE ARRAY TYPES
CREATE TYPE CHARARRAY AS CHAR(10) ARRAY[VARCHAR(3)]1#
CREATE TYPE BIGINTARRAY AS BIGINT ARRAY[INTEGER]#

-- CREATE ORDINARY ARRAY TYPES
CREATE TYPE INTARRAY AS INTEGER ARRAY[100]#
CREATE TYPE STRINGARRAY AS VARCHAR(10) ARRAY[100]#

-- CREATE TABLES THAT ARE USED IN SQL PROCEDURE PROCESSPERSONS
CREATE TABLE PERSONS (ID INTEGER, NAME VARCHAR(10))i#
CREATE TABLE ARRAYTEST (CHARCOL CHAR(10), INTCOL INT)#

-- SQL PROCEDURE PROCESSPERSONS HAS THREE ARRAY PARAMETERS:

-- OUTSETARRAY IS AN OUT PARAMETER OF ORDINARY ARRAY TYPE STRINGARRAY.
-- OUTSELECTWITHCURSOR IS AN OUT PARAMETER OF ORDINARY ARRAY TYPE STRINGARRAY.
-- OUTSELECTWITHARRAYAGG IS AN OUT PARAMETER OF ORDINARY ARRAY TYPE INTARRAY.
CREATE PROCEDURE PROCESSPERSONS(OUT OUTSETARRAY STRINGARRAY,

INOUT INTO INT,
OUT OUTSELECTWITHCURSOR STRINGARRAY,
OUT OUTMAXCARDINALITY BIGINT,
OUT OUTSELECTWITHARRAYAGG INTARRAY)

ARRAYDEMO: BEGIN

-- DECLARE SQL VARIABLES OF ORDINARY ARRAY TYPES

DECLARE IDS_ORDARRAYVAR INTARRAY;

DECLARE INT_ORDARRAYVAR INTARRAY;

DECLARE NAMES_ORDARRAYVAR STRINGARRAY;

-- DECLARE SQL VARIABLES OF ASSOCIATIVE ARRAY TYPES

DECLARE CHAR_ASSOCARRAYVAR CHARARRAY;

DECLARE BIGINT_ASSOCARRAYVAR BIGINTARRAY;

-- DECLARE SCALAR SQL VARIABLES

DECLARE DECFLOAT_VAR DECFLOAT;

DECLARE BIGINT_VAR BIGINT;

DECLARE SMALLINT_VAR SMALLINT;

DECLARE INT_VAR INT DEFAULT 1;

DECLARE STMT_VAR CHAR(100);

-- DECLARE A CURSOR

DECLARE C2 CURSOR FOR S1;

174 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

-- THE RESULT TABLE OF CURSOR C1 IS AN ARRAY THAT IS POPULATED BY

-- RETRIEVING THE VALUES OF THE NAME COLUMN FROM TABLE PERSONS,

-- ORDERING THE VALUES BY ID, AND USING THE ARRAY_AGG FUNCTION

-- TO ASSIGN THE VALUES TO AN ARRAY.

DECLARE C1 CURSOR FOR SELECT ARRAY_AGG(NAME ORDER BY ID) FROM PERSONS
WHERE NAME LIKE 'J%';

-- USE ARRAY CONSTRUCTORS TO INITIALIZE ARRAYS

SET IDS_ORDARRAYVAR = ARRAY[5,6,7];

SET NAMES_ORDARRAYVAR = ARRAY['BOB', 'ANN', 'SUE'];
SET CHAR_ASSOCARRAYVAR['001']="'1";

SET CHAR_ASSOCARRAYVAR['002']="'2";

SET CHAR_ASSOCARRAYVAR['003']='3";

SET CHAR_ASSOCARRAYVAR['004']="'4";

SET CHAR_ASSOCARRAYVAR['005']='5";

SET CHAR_ASSOCARRAYVAR['006']='6";

SET INT_ORDARRAYVAR = ARRAY[1,INTEGER(2),3+0,4,5,6] ;
SET BIGINT_ASSOCARRAYVAR[1]

’

SET BIGINT_ASSOCARRAYVAR[3] = 10;
SET BIGINT_ASSOCARRAYVAR[5] = 11;
SET BIGINT_ASSOCARRAYVAR[7] = 12;
SET BIGINT_ASSOCARRAYVAR[9] = 13;

-- ASSIGN A CONSTANT TO AN ARRAY ELEMENT.

SET IDS_ORDARRAYVAR[4] = 8;

-- ASSIGN AN EXPRESSION TO AN ARRAY ELEMENT.

SET IDS_ORDARRAYVAR[5] = 8 * 4 ;
-- ASSIGN AN ARRAY ELEMENT TO ANOTHER ARRAY ELEMENT. USE AN EXPRESSION
-- TO IDENTIFY THE TARGET ARRAY ELEMENT.

SET NAMES_ORDARRAYVAR[1+INT_VAR] = NAMES_ORDARRAYVAR[5] ;
-- POPULATE THE PERSONS TABLE WITH AN INSERT STATEMENT WITH A SUBSELECT:
-- - USE UNNEST TO RETRIEVE VALUES FROM AN ARRAY INTO AN INTERMEDIATE RESULT
= TABLE.
-- - INSERT THE VALUES FROM THE INTERMEDIATE RESULT TABLE INTO
o THE PERSONS TABLE.
INSERT INTO PERSONS(ID, NAME)

(SELECT T.I, T.N FROM UNNEST (IDS_ORDARRAYVAR, NAMES_ORDARRAYVAR) AS T(I, N));
-- USE THE ARRAY_AGG FUNCTION TO CREATE AN ARRAY FROM THE RESULT
-- TABLE OF A SELECT. THEN ASSIGN THAT ARRAY TO AN SQL OUT PARAMETER.
SET OUTSETARRAY = (SELECT ARRAY_AGG(NAME ORDER BY ID)

FROM PERSONS

WHERE NAME LIKE '9%0%');
-- USE THE CARDINALITY FUNCTION TO CONTROL THE NUMBER OF TIMES THAT
-- AN INSERT STATEMENT IS EXECUTED TO POPULATE TABLE ARRAYTEST
-- WITH ARRAY ELEMENTS.
SET SMALLINT_VAR = 1;
WHILE SMALLINT_VAR <= CARDINALITY (INT_ORDARRAYVAR) DO

INSERT INTO ARRAYTEST VALUES

(CHAR_ASSOCARRAYVAR[SMALLINT_VAR],

INT_ORDARRAYVAR[SMALLINT_VAR]);

SET SMALLINT_VAR = SMALLINT_VAR+1;
END WHILE;
-- DYNAMICALLY EXECUTE AN SQL SELECT STATEMENT WITH A PARAMETER MARKER
-- FOR AN ARRAY, AND A PARAMETER MARKER FOR THE ARRAY INDEX.
SET INT_VAR = 3;
SET STMT_VAR =

'SELECT INTCOL FROM ARRAYTEST WHERE INTCOL = ' ||

'CAST(? AS INTARRAY)[?]';
PREPARE S1 FROM STMT_VAR;
OPEN C2 USING INT_ORDARRAYVAR, INT_VAR;
FETCH C2 INTO INTO;
CLOSE C2;
-- USE A CURSOR TO FETCH AN ARRAY THAT IS CREATED WITH THE ARRAY_AGG FUNCTION
-- INTO AN ARRAY SQL OUT PARAMETER.

Chapter 3. Db2 SQL programming 175

OPEN C1;

FETCH C1 INTO OUTSELECTWITHCURSOR;

CLOSE C1;

-- RETURN THE MAXIMUM CARDINALITY OF AN ARRAY USING THE MAX_CARDINALITY
-- FUNCTION, AND STORE THE VALUE IN AN SQL VARIABLE.

SET OUTMAXCARDINALITY = MAX_CARDINALITY (INT_ORDARRAYVAR);

-- IN A SELECT INTO STATEMENT, USE THE ARRAY_AGG FUNCTION TO
-- ASSIGN THE VALUES OF COLUMN INTCOL TO ARRAY ELEMENTS, AND ASSIGN
-- THOSE ELEMENTS TO ARRAY OUT PARAMETER OUTSELECTWITHARRAYAGG.

SELECT ARRAY_AGG(INTCOL) INTO OUTSELECTWITHARRAYAGG FROM ARRAYTEST;

-- IN AN UPDATE STATEMENT, ASSIGN ARRAY ELEMENTS TO COLUMNS.

SET SMALLINT_VAR = 1;
WHILE SMALLINT_VAR <= CARDINALITY (INT_ORDARRAYVAR) DO
UPDATE ARRAYTEST
SET CHARCOL =
CHAR_ASSOCARRAYVAR[SMALLINT_VAR], INTCOL = INT_ORDARRAYVAR[SMALLINT_VAR];
SET SMALLINT_VAR = SMALLINT_VAR +1;
END WHILE;
END#F

Related concepts

User-defined type comparisons (Db2 SQL)
User-defined type assignments (Db2 SQL)
Related reference

Array constructor (Db2 SQL)

ARRAY_AGG (Db2 SQL)

CARDINALITY (Db2 SQL)
MAX_CARDINALITY (Db2 SQL)

Creating a user-defined function

You can extend the SQL functionality of Db2 by adding your own or third party vendor function definitions.

Before you begin
Set up the environment for user-defined functions, as described in Installation step 21: Configure Db2 for
running stored procedures and user-defined functions (Db2 Installation and Migration).

About this task

A user-defined function is a small program that you can write to perform an operation, similar to a host
language subprogram or function. However, a user-defined function is often the better choice for an SQL
application because you can invoke it in an SQL statement. User-defined functions are created using the
CREATE FUNCTION statement and registered to Db2 in the catalog.

A user-defined function is denoted by a function name followed by zero or more operands that are
enclosed in parentheses. Like a built-in function, a user-defined function represents a relationship
between a set of input values and a set of result values. The input values to a function are called
parameters in the function definition. The input values to a function are called arguments when the
function is invoked. For example, a function can be passed with two input arguments that have date and
time data types and return a value with a timestamp data type as the result.

You can create several different types of user-defined functions, including external, SQL, and sourced
user-defined functions. User-defined functions can also be categorized as scalar functions, which return
a single value, or table functions, which return a table. Specifically, you can create the following types of
user-defined functions:

External scalar
The function is written in a programming language and returns a scalar value. The external executable
routine (package) is registered with a database server along with various attributes of the function.

176 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_userdefinedtypecomparisons.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_userdefinedtypeassignments.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_arrayconstructor.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_arrayagg.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_cardinality.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_maxcardinality.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html

Each time that the function is invoked, the package executes one or more times. See CREATE
FUNCTION (external scalar) (Db2 SQL).

External table
The function is written in a programming language. It returns a table to the subselect from which
it was started by returning one row at a time, each time that the function is started. The external
executable routine (package) is registered with a database server along with various attributes of the
function. Each time that the function is invoked, the package executes one or more times. See CREATE
FUNCTION (external table) (Db2 SQL).

Sourced
‘ The function is implemented by invoking another function (either built-in, external, SQL, or sourced)

that exists at the server. The function inherits the attributes of the underlying source function. A
sourced function does not have an associated package. See CREATE FUNCTION (sourced) (Db2 SQL).

SQL scalar
The function is written exclusively in SQL statements and returns a scalar value. The body of an SQL
scalar function is written in the SQL procedural language (SQL PL). The function is defined at the
current server along with various attributes of the function.

Db2 supports two types of SQL scalar functions, inlined and compiled:

« Inlined SQL scalar functions contain a single RETURN statement, which returns the value of a
simple expression. The function is not invoked as part of a query; instead, the expression in the
RETURN statement of the function is copied (inlined) into the query itself. Therefore, a package is
not generated for an inlined SQL scalar function.

« Compiled SQL scalar functions support a larger set of functionality, including all of the SQL PL
statements. A package is generated for a compiled SQL scalar function. It contains the body of the
function, including control statements. It might also contain statements generated by Db2. Each
time that the function is invoked, the package executes one or more times.

When a CREATE FUNCTION statement for an SQL scalar function is processed, Db2 attempts to create
an inlined SQL scalar function. If the function cannot be created as an inlined function, Db2 attempts
to create a compiled SQL scalar function. For more information on the syntax and rules for these types
of functions, see CREATE FUNCTION (inlined SQL scalar) (Db2 SQL) and CREATE FUNCTION (compiled
SQL scalar) (Db2 SQL).

To determine what type of SQL scalar function is created, refer to the INLINE column of the
SYSIBM.SYSROUTINES catalog table.

SQL table
The function is written exclusively as an SQL RETURN statement and returns a set of rows. The body
of an SQL table function is written in the SQL procedural language. The function is defined at the
current server along with various attributes. The function is not invoked as part of a query. Instead,
the expression in the RETURN statement of the function is copied (inlined) into the query itself.
Therefore, a package is not generated for an SQL table function. See CREATE FUNCTION (SQL table)
(Db2 SQL).

The environment for user-defined functions includes application address space, from which a program
invokes a user-defined function; a Db2 system, where the packages from the user-defined function are
run; and a WLM-established address space, where the user-defined function may be executed; as shown
in the following figure.

Chapter 3. Db2 SQL programming 177

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunctionexternalscalar.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunctionexternalscalar.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunctionexternaltable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunctionexternaltable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunctionsourced.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfuncinlinesqlscalar.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunctionsqlscalar.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunctionsqlscalar.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunctionsqltable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunctionsqltable.html

WLM-Established

Application program stored procedures
address space Db2 system address space
Invoking program Package A Function program
Program A > SELECT » ProgramB
. F1(ARG1,ARG2) .
: FROM TB1; :
EXEC SQL EXEC SQL
SELECT SELECT ...
Fl(ARGl,A.RGZ) Package B - = .
FROIV.I TB1; SELECT ...

Figure 6. The user-defined function environment

For information on Java user-defined functions, see Java stored procedures and user-defined functions
(Db2 Application Programming for Java). For user-defined functions in other languages, see the following
instructions.

Procedure

To create a user-defined function:

1. Write and prepare the user-defined function, as described in “Writing an external user-defined
function” on page 183.

This step is necessary only for an external user-defined function.

2. Define the user-defined function to Db2 by issuing a CREATE FUNCTION statement that specifies the
type of function that you want to create.

For more information, see CREATE FUNCTION (Db2 SQL).

3. Invoke the user-defined function from an SQL application, as described in “Invoking a user-defined
function” on page 446.

Definition for an SQL user-defined scalar function

You can define an SQL user-defined function to calculate the tangent of a value by using the existing
built-in SIN and COS functions:

CREATE FUNCTION TAN (X DOUBLE)
RETURNS DOUBLE
LANGUAGE SQL
CONTAINS SQL
DETERMINISTIC
RETURN SIN(X)/COS(X);

The logic of the function is contained in the function definition as the following statement:

RETURN SIN(X)/COS(X)

What to do next

If you discover after you define the function that you need to change a part of the definition, you can

use an ALTER FUNCTION statement to change the definition. You cannot use ALTER FUNCTION to change
some of the characteristics of a user-defined function definition.

Related concepts

Sample user-defined functions (Db2 SQL)

Related tasks

Controlling user-defined functions (Db2 Administration Guide)

178 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javaroutines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javaroutines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunction.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sampleuserdefinedfunctionsintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_controludfs.html

Related reference
CREATE FUNCTION (Db2 SQL)

External functions

An external user-defined function is a function that is written in a programming language. An external
function is defined to the database with a reference to an external program that contains the logic that is
executed when the function is invoked.

An external user-defined function that returns a single value is a scalar function. An external user-defined
function that returns a table is a table function.

You can write an external user-defined function in assembler, C, C++, COBOL, PL/I, or Java. User-defined
functions that are written in COBOL can include object-oriented extensions, just as other Db2 COBOL
programs can. User-defined functions that are written in Java follow coding guidelines and restrictions
specific to Java. For information about writing Java user-defined functions, see Java stored procedures
and user-defined functions (Db2 Application Programming for Java).

Examples

Example 1: Definition for an external user-defined scalar function
A programmer develops a user-defined function that searches for a string of maximum length 200
in a CLOB value whose maximum length is 500 KB. This CREATE FUNCTION statement defines the
user-defined function:

CREATE FUNCTION FINDSTRING (CLOB(500K), VARCHAR(200))
RETURNS INTEGER
CAST FROM FLOAT
SPECIFIC FINDSTRINGCLOB
EXTERNAL NAME 'FINDSTR'
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION;

The function returns a status code as an integer. The CAST FROM clause is specified because the
function operation results in a floating point value, and users are expecting an integer result for their
SQL statements. The user-defined function is written in C and contains no SQL statements.

Suppose that you want a FINDSTRING user-defined function to work on BLOB data types, as well as
CLOB types. You can define another instance of a FINDSTRING user-defined function that specifies a
BLOB type as input:

CREATE FUNCTION FINDSTRING (BLOB(500K), VARCHAR(200))
RETURNS INTEGER
CAST FROM FLOAT
SPECIFIC FINDSTRINGBLOB
EXTERNAL NAME 'FNDBLOB'
LANGUAGE C
PARAMETER STYLE SOQL
NO SQL
DETERMINISTIC;

Each instance of FINDSTRING uses a different application program to implement the logic for the
user-defined function.

Example 2: Definition for an external user-defined scalar function
A programmer has written a user-defined function for division. That is, this user-defined function is
invoked when an application program executes a statement using the division operator (/), such as the
following statement:

UPDATE TABLE1 SET INTCOL1="/"(INTCOL2,INTCOL3);

The user-defined function takes two integer values as input. The output from the user-defined
function is of type integer. The user-defined function is in the MATH schema, is written in assembler,

Chapter 3. Db2 SQL programming 179

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunction.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javaroutines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javaroutines.html

and contains no SQL statements. This CREATE FUNCTION statement defines the user-defined
function:

CREATE FUNCTION MATH."/" (INT, INT)
RETURNS INTEGER
SPECIFIC DIVIDE
EXTERNAL NAME 'DIVIDE'
LANGUAGE ASSEMBLE
PARAMETER STYLE SOQL
NO SQL
DETERMINISTIC;

Example 3: Definition for an external user-defined table function
An application programmer develops a user-defined function that receives two input values and
returns a table. The two input values are:

« A character string of maximum length 30 that describes a subject
« A character string of maximum length 255 that contains text to search for

The user-defined function scans documents on the subject for the search string and returns a list
of documents that match the search criteria, with an abstract for each document. The list is in
the form of a two-column table. The first column is a character column of length 16 that contains
document IDs. The second column is a varying-character column of maximum length 5000 that
contains document abstracts.

The user-defined function is written in COBOL, uses SQL only to perform queries, and always
produces the same output for given input. The CARDINALITY option specifies that you should expect
an invocation of the user-defined function to return about 20 rows.

The following CREATE FUNCTION statement defines the user-defined function:

CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))
RETURNS TABLE (DOC_ID CHAR(16), DOC_ABSTRACT VARCHAR(5000))
EXTERNAL NAME 'DOCMTCH'
LANGUAGE COBOL
PARAMETER STYLE SQL
READS SQL DATA
DETERMINISTIC
CARDINALITY 20;

SQL scalar functions

An SOQL scalar function is a user-defined function written in SQL and it returns a single value each time it
is invoked. SQL scalar functions contain the source code for the user-defined function in the user-defined
function definition. There are two kinds of SQL scalar functions, inlined and compiled.

All SQL scalar functions that were created prior to DB2 10 are inlined SQL scalar functions. Beginning with
DB2 10, SQL scalar functions may be created as either inlined or compiled.

Db2 determines whether an SQL scalar function is inlined or compiled according to whether or not the

CREATE FUNCTION statement that defines the function makes use of enhanced features. See CREATE

FUNCTION (inlined SQL scalar) (Db2 SQL) and CREATE FUNCTION (compiled SQL scalar) (Db2 SQL) for
more information.

An inlined SQL scalar function has a body with a single RETURN statement. The RETURN statement can
return either a NULL value or a simple expression that does not reference a scalar fullselect. No package
will be generated for an inlined SQL scalar function. During the preparation of an SQL statement that
references the function (when the function is invoked), the expression specified in the RETURN statement
of the function is simply inlined into that SQL statement.

A compiled SQL scalar function can have a body with logic written in SQL PL language. It can make use
of any of the enhanced features for the CREATE FUNCTION statement including the support for TABLE
LOCATOR data type for parameters, various options, and an enhanced RETURN statement that allows
reference to a scalar fullselect. A package is created for a compiled SQL scalar function.

180 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfuncinlinesqlscalar.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfuncinlinesqlscalar.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunctionsqlscalar.html

Compiled SQL scalar functions include support for versions and source code management. You can use
compiled SQL scalar functions for the following tasks:

« Define multiple versions of an SQL scalar function, where one version is considered the "active" version.

- Activate a particular version of an SQL scalar function.

« Alter the routine options that are associated with a version of an SQL scalar function.

« Define a new version of an SQL scalar function by specifying the same function signature as the current
version, and different routine options and function body.

« Replace the definition of an existing version by specifying the same function signature as the current
version, and different routine options and function body.

« Drop a version of an SQL scalar function.

- Fall back to a previous version without requiring an explicit rebind or recompile, by activating the
previous version.

You can deploy compiled SQL scalar functions to multiple servers to allow a wider community to use
functions that have been thoroughly tested, without the risk of changing the logic in the routine body.
Use the Unified Debugger to remotely debug compiled SQL scalar functions that execute on Db2 for z/OS
servers.

To prepare an SQL scalar function for execution, you execute the CREATE FUNCTION statement, either
statically or dynamically.

Example: Definition for a compiled SQL scalar user-defined function

The following example defines a scalar function that returns the text of an input string, in reverse order.
The example also explains how to determine why various SQL statements are allowed in a compiled SQL
scalar function.

A compiled SQL scalar CREATE FUNCTION statement contains an SQL-routine-body, as defined in CREATE
FUNCTION (compiled SQL scalar) (Db2 SQL). The syntax diagram for SQL-routine-body defines the
function body as a single SQL control statement. The syntax diagram for SQL-control-statement in SQL
procedural language (SQL PL) (Db2 SQL) identifies the control statements that can be specified, including
a RETURN statement.

An SQL function can contain multiple SQL statements if the outermost SQL statement is an SQL-
control-statement that includes other SQL statements. These statements are defined as SQL procedure
statements. The syntax diagram in SQL-procedure-statement (SQL PL) (Db2 SQL) identifies the SQL
statements that can be specified within a control statement. The syntax notes for SQL-procedure-
statement clarify the SQL statements that are allowed in an SQL function.

CREATE FUNCTION REVERSE (INSTR VARCHAR(4000))
RETURNS VARCHAR (4000)
DETERMINISTIC NO EXTERNAL ACTION
CONTAINS SQL
BEGIN
DECLARE REVSTR, RESTSTR VARCHAR(4000) DEFAULT ''; IEH
DECLARE LEN INT; IEH
IF INSTR IS NULL THEN
RETURN NULL; IBH
END IF;
SET (RESTSTR, LEN) = (INSTR, LENGTH(INSTR));
WHILE LEN > 0 DO
SET (REVSTR, RESTSTR, LEN)
= (SUBSTR(RESTSTR, 1, 1) CONCAT REVSTR,
SUBSTR(RESTSTR, 2, LEN - 1),
LEN - 1);
END WHILE;
RETURN REVSTR; DN

END#

The SQL function has the following keywords and statements:

« The BEGIN and END keywords indicate the beginning and the end of a compound statement.

Chapter 3. Db2 SQL programming 181

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunctionsqlscalar.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunctionsqlscalar.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sqlplnativeintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sqlplnativeintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sqlprocedurestatement4nativesqlpl.html

« The DECLARE statements ([8]) are components of a compound statement, and define SQL variables
within the compound statement. For more information on compound statements, see compound-
statement (Db2 SQL).

« The IF statement ([d), the RETURN statements ([8)), and the WHILE statement (@) are SQL control
statements.

» The SET assignment statements (&) are SQL control statements that assign values to SQL variables.

SQL variables can be referenced anywhere in the compound statement in which they are declared,
including any SQL statement that is directly or indirectly nested within that compound statement. See
References to SQL parameters and variables in SQL PL (Db2 SQL) for more information.

Related tasks

Creating a user-defined function
You can extend the SQL functionality of Db2 by adding your own or third party vendor function definitions.

Related reference
CREATE FUNCTION (Db2 SQL)

SQL table functions

An SQL table function is a function that is written exclusively in SQL statements and returns a single result
table.

An SQL table function can define a parameter as a distinct type, define a parameter for a transition table
(for example, the TABLE LIKE ... AS LOCATOR syntax), and include a single SQL PL RETURN statement that
returns a result table

The CREATE statement for an SQL table function is an executable statement that can be dynamically
prepared only if DYNAMICRULES run behavior is implicitly or explicitly specified.

The ALTER statement for an SQL table function can be embedded in an application program or issued
interactively. The ALTER statement is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Sourced functions

A sourced function is a function that invokes another function that already exists at the server. The
function inherits the attributes of the underlying source function. The source function can be built-in,
external, SQL, or sourced. Sourced functions can be used to extend built-in aggregate and scalar
functions for use on distinct types.

You can use sourced functions to build upon existing built-in functions or other user-defined functions.
Sourced functions are useful to extend built-in aggregate and scalar functions for use on distinct types.

To implement a sourced function, issue a CREATE FUNCTION statement and identify the function upon
which you want to base the sourced function in the SOURCE clause.

Example: Definition of a sourced user-defined function

Suppose you need a user-defined function that finds a string in a value with a distinct type of BOAT. BOAT
is a distinct type based on a BLOB data type. User-defined function FINDSTRINGBLOB has already been
defined to take a BLOB data type as input and perform the required function, but it cannot be invoked with
a value of the BOAT data type. The specific name for FINDSTRING is FINDSTRINGBLOB.

You can define a sourced user-defined function based on FINDSTRING to do the string search on values
of type BOAT. Db2 implicitly casts the BOAT argument to a BLOB when the source function, FINDSTRING
that accepts a BLOB value, is invoked. This CREATE FUNCTION statement defines the sourced user-
defined function:

CREATE FUNCTION FINDSTRING (BOAT, VARCHAR(200))
RETURNS INTEGER
SPECIFIC FINDSTRINGBOAT
SOURCE SPECIFIC FINDSTRINGBLOB;

182 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_compoundstatement4nativesqlpl.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_compoundstatement4nativesqlpl.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_refs2parmsandvarsinnativesqlpl.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunction.html

Related reference
CREATE FUNCTION (sourced) (Db2 SQL)

Steps to creating and using a user-defined function

A user-defined function is similar to a host language subprogram or function. However, a user-defined
function is often the better choice for an SQL application because you can invoke it in an SQL statement.

This section contains information that applies to all user-defined functions and specific information about
user-defined functions in languages other than Java.

Creating and using a user-defined function involves these steps:
- Setting up the environment for user-defined functions

A systems administrator probably performs this step. The user-defined function environment is shown

in the following figure.
WLM-Established

Application program stored procedures
address space Db2 system address space
Invoking program Package A Function program
Program A SELECT Program B
e —> F1(ARG1,ARG2) — > ''O8"
: FROM TB1; :
EXEC SQL EXEC SQL
SELECT SELECT ...
Fl(ARG:L,/—\.RGZ) Package B — :
FROMTBL; SELECT ...

Figure 7. The user-defined function environment

It contains an application address space, from which a program invokes a user-defined function; a Db2
system, where the packages from the user-defined function are run; and a WLM-established address
space, where the user-defined function is executed. The steps for setting up and maintaining the
user-defined function environment are the same as for setting up and maintaining the environment for
stored procedures in WLM-established address spaces.

- Writing and preparing the user-defined function
This step is necessary only for an external user-defined function.

The person who performs this step is called the user-defined function implementer.
« Defining the user-defined function to Db2

The person who performs this step is called the user-defined function definer.
« Invoking the user-defined function from an SQL application

The person who performs this step is called the user-defined function invoker.

Related concepts
Java stored procedures and user-defined functions (Db2 Application Programming for Java)

Writing an external user-defined function

An external user-defined function is written in a programming language and is similar to other SQL
programs. You can include static or dynamic SQL statements, IFI calls, and Db2 commands that are
issued through IFI calls.

Procedure

You can write an external user-defined function in assembler, C, C++, COBOL, PL/I, or Java.

Chapter 3. Db2 SQL programming 183

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunctionsourced.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javaroutines.html

User-defined functions that are written in COBOL can include object-oriented extensions, just as other
Db2 COBOL programs can. User-defined functions that are written in Java follow coding guidelines and
restrictions specific to Java.

Your user-defined function can also access remote data by using DRDA access using CONNECT or SET
CONNECTION statements.

Restrictions on user-defined function programs
Observe these restrictions when you write a user-defined function:

« Because Db2 uses the Resource Recovery Services attachment facility (RRSAF) as its interface with
your user-defined function, you must not include RRSAF calls in your user-defined function. Db2
rejects any RRSAF calls that it finds in a user-defined function.

- If your user-defined function is not defined with parameters SCRATCHPAD or EXTERNAL ACTION,
the user-defined function is not guaranteed to execute under the same task each time it is invoked.

 You cannot execute COMMIT or ROLLBACK statements in your user-defined function.

« You must close all cursors that were opened within a user-defined scalar function. Db2 returns
an SQL error if a user-defined scalar function does not close all cursors that it opened before it
completes.

« When you choose the language in which to write a user-defined function program, be aware
of restrictions on the number of parameters that can be passed to a routine in that language.
User-defined table functions in particular can require large numbers of parameters. Consult the
programming guide for the language in which you plan to write the user-defined function for
information about the number of parameters that can be passed.

« You cannot pass LOB file reference variables as parameters to user-defined functions.
« User-defined functions cannot return LOB file reference variables.

You cannot pass parameters with the type XML to user-defined functions. You can specify tables
or views that contain XML columns as table locator parameters. However, you cannot reference the
XML columns in the body of the user-defined function.

Coding your user-defined function as a main program or as a subprogram
You can code your user-defined function as either a main program or a subprogram. The way that
you code your program must agree with the way you defined the user-defined function: with the
PROGRAM TYPE MAIN or PROGRAM TYPE SUB parameter. The main difference is that when a main
program starts, Language Environment allocates the application program storage that the external
user-defined function uses. When a main program ends, Language Environment closes files and
releases dynamically allocated storage.

If you code your user-defined function as a subprogram and manage the storage and files yourself,
you can get better performance. The user-defined function should always free any allocated storage
before it exits. To keep data between invocations of the user-defined function, use a scratchpad.

You must code a user-defined table function that accesses external resources as a subprogram. Also
ensure that the definer specifies the EXTERNAL ACTION parameter in the CREATE FUNCTION or
ALTER FUNCTION statement. Program variables for a subprogram persist between invocations of the
user-defined function, and use of the EXTERNAL ACTION parameter ensures that the user-defined
function stays in the same address space from one invocation to another.

Parallelism considerations
If the definer specifies the parameter ALLOW PARALLEL in the definition of a user-defined scalar
function, and the invoking SQL statement runs in parallel, the function can run under a parallel task.
Db2 executes a separate instance of the user-defined function for each parallel task. When you write
your function program, you need to understand how the following parameter values interact with
ALLOW PARALLEL so that you can avoid unexpected results:

» SCRATCHPAD

When an SQL statement invokes a user-defined function that is defined with the ALLOW PARALLEL
parameter, Db2 allocates one scratchpad for each parallel task of each reference to the function.
This can lead to unpredictable or incorrect results.

184 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

For example, suppose that the user-defined function uses the scratchpad to count the number of
times it is invoked. If a scratchpad is allocated for each parallel task, this count is the number of
invocations done by the parallel task and not for the entire SQL statement, which is not the result
that is wanted.

FINAL CALL

If a user-defined function performs an external action, such as sending a note, for each final call to
the function, one note is sent for each parallel task instead of once for the function invocation.

EXTERNAL ACTION

Some user-defined functions with external actions can receive incorrect results if the function is
executed by parallel tasks.

For example, if the function sends a note for each initial call to the function, one note is sent for each
parallel task instead of once for the function invocation.

NOT DETERMINISTIC

A user-defined function that is non-deterministic can generate incorrect results if it is run under a
parallel task.

For example, suppose that you execute the following query under parallel tasks:
SELECT % FROM T4 WHERE C1 = COUNTER();

COUNTER is a user-defined function that increments a variable in the scratchpad every time it is
invoked. Counter is non-deterministic because the same input does not always produce the same
output. Table T1 contains one column, C1, that has the following values:

POV~ WNE

o

When the query is executed with no parallelism, Db2 invokes COUNTER once for each row of table
T4, and there is one scratchpad for counter, which Db2 initializes the first time that COUNTER
executes. COUNTER returns 1 the first time it executes, 2 the second time, and so on. The result
table for the query has the following values:

PO wWNE

(o}

Now suppose that the query is run with parallelism, and Db2 creates three parallel tasks. Db2
executes the predicate WHERE C1 = COUNTER() for each parallel task. This means that each
parallel task invokes its own instance of the user-defined function and has its own scratchpad. Db2
initializes the scratchpad to zero on the first call to the user-defined function for each parallel task.

If parallel task 1 processes rows 1 to 3, parallel task 2 processes rows 4 to 6, and parallel task 3
processes rows 7 to 10, the following results occur:

— When parallel task 1 executes, C1 has values 1, 2, and 3, and COUNTER returns values 1, 2, and
3, so the query returns values 1, 2, and 3.

Chapter 3. Db2 SQL programming 185

— When parallel task 2 executes, C1 has values 4, 5, and 6, but COUNTER returns values 1, 2, and 3,
so the query returns no rows.

— When parallel task 3, executes, C1 has values 7, 8, 9, and 10, but COUNTER returns values 1, 2,
3, and 4, so the query returns no rows.

Thus, instead of returning the 10 rows that you might expect from the query, Db2 returns only 3
rows.

Related concepts
Java stored procedures and user-defined functions (Db2 Application Programming for Java)

Parameters for external user-defined functions

To receive parameters from and pass parameters to an invoker of an external user-defined function, you
must understand the structure of the parameter list. You must also understand the meaning of each
parameter, and whether Db2 or your user-defined function sets the value of each parameter.

The following figure shows the structure of the parameter list that Db2 passes to a user-defined function.
An explanation of each parameter follows.

186 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javaroutines.html

Register 1 ———p-Addresses of: Data:

Parameter 1 data

v

Parameter 1

v

Parameter 2 data

Parameter 2

Result1’ » Result 1 data
Result 2 » Result 2 data
Indicator 1 » Indicator 1
Indicator 2 » Indicator 2
Result X p Result indicator 1
indicator 1
Regult » Result indicator 2
indicator 2
SQLSTATE » SQLSTATE
Procedure ~
name » Procedure name
Specific -
. » Specific name
Message »
text P Message text
2

Scratchpad D> Scratchpad
Call type3 > Calltype

4,5
DBINFO > DBINFO

1. For a user-defined scalar function, only one result and one result indicator are passed.

2. Passed if the SCRATCHPAD option is specificed in the user-defined function definition.

3. Passed if the FINAL CALL option is specified in a user-defined scalar function definition;
always passed for a user-defined table function.

4. For PL/I, this value is the address of a pointer to the DBINFO data.

5. Passed if the DBINFO option is specified in the user-defined function definition.

Figure 8. Parameter conventions for a user-defined function

Input parameter values

Db2 obtains the input parameters from the invoker's parameter list, and your user-defined function
receives those parameters according to the rules of the host language in which the user-defined function
is written. The number of input parameters is the same as the number of parameters in the user-defined
function invocation. If one of the parameters in the function invocation is an expression, Db2 evaluates
the expression and assigns the result of the expression to the parameter.

For all data types except LOBs, ROWIDs, locators, and VARCHAR (with the C language), see the tables
listed in “Compatibility of SQL and language data types” on page 478 for the host data types that are
compatible with the data types in user-defined function definitions.

Chapter 3. Db2 SQL programming 187

For LOBs, ROWIDs, and locators, see the tables listed in the following table for the host data types that
are compatible with the data types in user-defined function definitions.

Table 42. Listing of tables of compatible data types for LOBS, ROWID, and locators

Language Location of compatible data types table

Assembler “Equivalent SQL and assembler data types” on page 559
C “Equivalent SQL and C data types” on page 607

COBOL “Equivalent SQL and COBOL data types” on page 674
PL/I “Equivalent SQL and PL/I data types” on page 717

Result parameters: Set these values in your user-defined function before exiting. For a user-defined
scalar function, you return one result parameter. For a user-defined table function, you return the same
number of parameters as columns in the RETURNS TABLE clause of the CREATE FUNCTION statement.
Db2 allocates a buffer for each result parameter value and passes the buffer address to the user-defined
function. Your user-defined function places each result parameter value in its buffer. You must ensure that
the length of the value you place in each output buffer does not exceed the buffer length. Use the SQL
data type and length in the CREATE FUNCTION statement to determine the buffer length.

See “Parameters for external user-defined functions” on page 186 to determine the host data type to use
for each result parameter value. If the CREATE FUNCTION statement contains a CAST FROM clause, use a
data type that corresponds to the SQL data type in the CAST FROM clause. Otherwise, use a data type that
corresponds to the SQL data type in the RETURNS or RETURNS TABLE clause.

To improve performance for user-defined table functions that return many columns, you can pass values
for a subset of columns to the invoker. For example, a user-defined table function might be defined to
return 100 columns, but the invoker needs values for only two columns. Use the DBINFO parameter to
indicate to Db2 the columns for which you will return values. Then return values for only those columns.
See DBINFO for information about how to indicate the columns of interest.

Input parameter indicators: These are SMALLINT values, which Db2 sets before it passes control to the
user-defined function. You use the indicators to determine whether the corresponding input parameters
are null. The number and order of the indicators are the same as the number and order of the input
parameters. On entry to the user-defined function, each indicator contains one of these values:

0
The input parameter value is not null.

negative
The input parameter value is null.

Code the user-defined function to check all indicators for null values unless the user-defined function is
defined with RETURNS NULL ON NULL INPUT. A user-defined function defined with RETURNS NULL ON
NULL INPUT executes only if all input parameters are not null.

Result indicators: These are SMALLINT values, which you must set before the user-defined function ends
to indicate to the invoking program whether each result parameter value is null. A user-defined scalar
function has one result indicator. A user-defined table function has the same number of result indicators
as the number of result parameters. The order of the result indicators is the same as the order of the
result parameters. Set each result indicator to one of these values:

0 or positive
The result parameter is not null.

negative
The result parameter is null.

SQLSTATE value: This CHAR(5) value represents the SQLSTATE that is passed in to the program from the
database manager. The initial value is set to ‘00000". Although the SQLSTATE is usually not set by the
program, it can be set as the result SQLSTATE that is used to return an error or a warning. Returned values
that start with anything other than ‘00", ‘01", or ‘02" are error conditions.

188 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

User-defined function name: Db2 sets this value in the parameter list before the user-defined function
executes. This value is VARCHAR(257): 128 bytes for the schema name, 1 byte for a period, and 128
bytes for the user-defined function name. If you use the same code to implement multiple versions of a
user-defined function, you can use this parameter to determine which version of the function the invoker
wants to execute.

Specific name: Db2 sets this value in the parameter list before the user-defined function executes.

This value is VARCHAR(128) and is either the specific name from the CREATE FUNCTION statement

or a specific name that Db2 generated. If you use the same code to implement multiple versions of a
user-defined function, you can use this parameter to determine which version of the function the invoker
wants to execute.

Diagnostic message: Your user-defined function can set this CHAR or VARCHAR value to a character
string of up to 1000 bytes before exiting. Use this area to pass descriptive information about an error or
warning to the invoker.

Db2 allocates a buffer for this area and passes you the buffer address in the parameter list. At least

the first 17 bytes of the value you put in the buffer appear in the SQLERRMC field of the SQLCA that is
returned to the invoker. The exact number of bytes depends on the number of other tokens in SQLERRMC.
Do not use X'FF' in your diagnostic message. Db2 uses this value to delimit tokens.

Scratchpad: If the definer specified SCRATCHPAD in the CREATE FUNCTION statement, Db2 allocates
a buffer for the scratchpad area and passes its address to the user-defined function. Before the user-
defined function is invoked for the first time in an SQL statement, Db2 sets the length of the scratchpad
in the first 4 bytes of the buffer and then sets the scratchpad area to X'00'. Db2 does not reinitialize the
scratchpad between invocations of a correlated subquery.

You must ensure that your user-defined function does not write more bytes to the scratchpad than the
scratchpad length.

Call type: For a user-defined scalar function, if the definer specified FINAL CALL in the CREATE
FUNCTION statement, Db2 passes this parameter to the user-defined function. For a user-defined table
function, Db2 always passes this parameter to the user-defined function.

On entry to a user-defined scalar function, the call type parameter has one of the following values:

-1
This is the first call to the user-defined function for the SQL statement. For a first call, all input
parameters are passed to the user-defined function. In addition, the scratchpad, if allocated, is set to
binary zeros.

This is a normal call. For a normal call, all the input parameters are passed to the user-defined
function. If a scratchpad is also passed, Db2 does not modify it.

This is a final call. For a final call, no input parameters are passed to the user-defined function. If a
scratchpad is also passed, Db2 does not modify it.

This type of final call occurs when the invoking application explicitly closes a cursor. When a value of 1
is passed to a user-defined function, the user-defined function can execute SQL statements.

255
This is a final call. For a final call, no input parameters are passed to the user-defined function. If a
scratchpad is also passed, Db2 does not modify it.

This type of final call occurs when the invoking application executes a COMMIT or ROLLBACK
statement, or when the invoking application abnormally terminates. When a value of 255 is passed to
the user-defined function, the user-defined function cannot execute any SQL statements, except for
CLOSE CURSOR. If the user-defined function executes any close cursor statements during this type of
final call, the user-defined function should tolerate SQLCODE -501 because Db2 might have already
closed cursors before the final call.

During the first call, your user-defined scalar function should acquire any system resources it needs.
During the final call, the user-defined scalar function should release any resources it acquired during

Chapter 3. Db2 SQL programming 189

the first call. The user-defined scalar function should return a result value only during normal calls. Db2
ignores any results that are returned during a final call. However, the user-defined scalar function can set
the SQLSTATE and diagnostic message area during the final call.

If an invoking SQL statement contains more than one user-defined scalar function, and one of those
user-defined functions returns an error SQLSTATE, Db2 invokes all of the user-defined functions for a final
call, and the invoking SQL statement receives the SQLSTATE of the first user-defined function with an
error.

On entry to a user-defined table function, the call type parameter has one of the following values:

-2
This is the first call to the user-defined function for the SQL statement. A first call occurs only if
the FINAL CALL keyword is specified in the user-defined function definition. For a first call, all input
parameters are passed to the user-defined function. In addition, the scratchpad, if allocated, is set to
binary zeros.

This is the open call to the user-defined function by an SQL statement. If FINAL CALL is not specified
in the user-defined function definition, all input parameters are passed to the user-defined function,
and the scratchpad, if allocated, is set to binary zeros during the open call. If FINAL CALL is specified
for the user-defined function, Db2 does not modify the scratchpad.

This is a fetch call to the user-defined function by an SQL statement. For a fetch call, all input
parameters are passed to the user-defined function. If a scratchpad is also passed, Db2 does not
modify it.

This is a close call. For a close call, no input parameters are passed to the user-defined function. If a
scratchpad is also passed, Db2 does not modify it.

This is a final call. This type of final call occurs only if FINAL CALL is specified in the user-defined
function definition. For a final call, no input parameters are passed to the user-defined function. If a
scratchpad is also passed, Db2 does not modify it.

This type of final call occurs when the invoking application executes a CLOSE CURSOR statement.

255
This is a final call. For a final call, no input parameters are passed to the user-defined function. If a
scratchpad is also passed, Db2 does not modify it.

This type of final call occurs when the invoking application executes a COMMIT or ROLLBACK
statement, or when the invoking application abnormally terminates. When a value of 255 is passed to
the user-defined function, the user-defined function cannot execute any SQL statements, except for
CLOSE CURSOR. If the user-defined function executes any close cursor statements during this type of
final call, the user-defined function should tolerate SQLCODE -501 because Db2 might have already
closed cursors before the final call.

If a user-defined table function is defined with FINAL CALL, the user-defined function should allocate any
resources it needs during the first call and release those resources during the final call that sets a value of
2.

If a user-defined table function is defined with NO FINAL CALL, the user-defined function should allocate
any resources it needs during the open call and release those resources during the close call.

During a fetch call, the user-defined table function should return a row. If the user-defined function has
no more rows to return, it should set the SQLSTATE to 02000.

During the close call, a user-defined table function can set the SQLSTATE and diagnostic message area.

If a user-defined table function is invoked from a subquery, the user-defined table function receives a
CLOSE call for each invocation of the subquery within the higher level query, and a subsequent OPEN call
for the next invocation of the subquery within the higher level query.

190 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

DBINFO: If the definer specified DBINFO in the CREATE FUNCTION statement, Db2 passes the DBINFO
structure to the user-defined function. DBINFO contains information about the environment of the user-
defined function caller. It contains the following fields, in the order shown:

Location name length
An unsigned 2-byte integer field. It contains the length of the location name in the next field.

Location name
A 128-byte character field. It contains the name of the location to which the invoker is currently
connected.

Authorization ID length
An unsigned 2-byte integer field. It contains the length of the authorization ID in the next field.

Authorization ID
A 128-byte character field. It contains the authorization ID of the application from which the user-
defined function is invoked, padded on the right with blanks. If this user-defined function is nested
within other user-defined functions, this value is the authorization ID of the application that invoked
the highest-level user-defined function.

Subsystem code page
A 48-byte structure that consists of 10 integer fields and an eight-byte reserved area. These fields
provide information about the CCSIDs of the subsystem from which the user-defined function is
invoked.

Table qualifier length
An unsigned 2-byte integer field. It contains the length of the table qualifier in the next field. If the
table name field is not used, this field contains 0.

Table qualifier
A 128-byte character field. It contains the qualifier of the table that is specified in the table name
field.

Table name length
An unsigned 2-byte integer field. It contains the length of the table name in the next field. If the table
name field is not used, this field contains 0.

Table name
A 128-byte character field. This field contains the name of the table for the update or insert operation
if the reference to the user-defined function in the invoking SQL statement is in one of the following
places:

e Theright side of a SET clause in an update operation
« Inthe VALUES list of an insert operation

Otherwise, this field is blank.

Column name length
An unsigned 2-byte integer field. It contains the length of the column name in the next field. If no
column name is passed to the user-defined function, this field contains 0.

Column name
A 128-byte character field. This field contains the name of the column that the update or insert
operation modifies if the reference to the user-defined function in the invoking SQL statement is in
one of the following places:

« Theright side of a SET clause in an update operation
« Inthe VALUES list of an insert operation

Otherwise, this field is blank.

Product information
An 8-byte character field that identifies the product on which the user-defined function executes.

The product identifier (PRDID) value is an 8-byte character value in pppvvrrm format, where: ppp is a
3-letter product code; vv is the version;rr is the release; and m is the modification level. In Db2 12 for
z/0S, the modification level indicates a range of function levels:

Chapter 3. Db2 SQL programming 191

DSN12015 for VA2R1M500 or higher.
DSN12010 for V12R1M100.

For more information, see Product identifier (PRDID) values in Db2 for z/OS (Db2 Administration
Guide).

Reserved area
2 bytes.

Operating system
A 4-byte integer field. It identifies the operating system on which the program that invokes the
user-defined function runs. The value is one of these:

0

Unknown

1
0S/2

Windows
AIX®
Windows NT
HP-UX
Solaris

z/0S
13
Siemens Nixdorf

15
Windows 95

16
SCO UNIX

18
Linux®
19
DYNIX/ptx®

24
Linux for S/390°

25
Linux on IBM zSystems

26
Linux/IA64

27
Linux/PPC

28
Linux/PPC64

29
Linux/AMD64

400°
iSeries

192 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prdidvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prdidvalues.html

Number of entries in table function column list
An unsigned 2-byte integer field.

Reserved area
26 bytes.

Table function column list pointer
If a table function is defined, this field is a pointer to an array that contains 1000 2-byte integers. Db2
dynamically allocates the array. If a table function is not defined, this pointer is null.

Only the first n entries, where n is the value in the field entitled number of entries in table function
column list, are of interest. n is greater than or equal to 0 and less than or equal to the number

result columns defined for the user-defined function in the RETURNS TABLE clause of the CREATE
FUNCTION statement. The values correspond to the numbers of the columns that the invoking
statement needs from the table function. A value of 1 means the first defined result column, 2 means
the second defined result column, and so on. The values can be in any order. If nis equal to 0, the
first array element is 0. This is the case for a statement like the following one, where the invoking
statement needs no column values.

SELECT COUNT(*) FROM TABLE(TF(..)) AS QQ

This array represents an opportunity for optimization. The user-defined function does not need to
return all values for all the result columns of the table function. Instead, the user-defined function can
return only those columns that are needed in the particular context, which you identify by number in
the array. However, if this optimization complicates the user-defined function logic enough to cancel
the performance benefit, you might choose to return every defined column.

Unique application identifier
This field is a pointer to a string that uniquely identifies the application's connection to Db2. The string
is regenerated for each connection to Db2.

The string is the LUWID, which consists of a fully-qualified LU network name followed by a period and
an LUW instance number. The LU network name consists of a 1- to 8-character network ID, a period,
and a 1- to 8-character network LU name. The LUW instance number consists of 12 hexadecimal
characters that uniquely identify the unit of work.

Reserved area
20 bytes.

If you write your user-defined function in C or C++, you can use the declarations in member SQLUDF of
DSN1210.SDSNC.H for many of the passed parameters. To include SQLUDF, make these changes to your
program:

« Put this statement in your source code:
#include <sqludf.h>

« Include the DSN1210.SDSNC.H data set in the SYSLIB concatenation for the compiler step of your
program preparation job.

« Specify the NOMARGINS and NOSEQUENCE options in the compiler step of your program preparation
job.

Examples of receiving parameters in a user-defined function:

The following examples show how a user-defined function that is written in each of the supported host
languages receives the parameter list that is passed by Db2.

These examples assume that the user-defined function is defined with the SCRATCHPAD, FINAL CALL,
and DBINFO parameters.

Assembler: The follow figure shows the parameter conventions for a user-defined scalar function that
is written as a main program that receives two parameters and returns one result. For an assembler

Chapter 3. Db2 SQL programming 193

language user-defined function that is a subprogram, the conventions are the same. In either case, you

must include the CEEENTRY and CEEEXIT macros.

MYMAIN CEEENTRY AUTO0=PROGSIZE,MAIN=YES,PLIST=0S
USING PROGAREA,R13
L R7,0(R1) GET POINTER TO PARM1
MvC PARM1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF PARM1
L R7,4(R1) GET POINTER TO PARM2
MvC PARM2 (4) ,0(R7) MOVE VALUE INTO LOCAL COPY OF PARM2
L R7,12(R1) GET POINTER TO INDICATOR 1
MvC F_IND1(2),0(R7) MOVE PARM1 INDICATOR TO LOCAL STORAGE
LH R7,F_IND1 MOVE PARM1 INDICATOR INTO R7
LTR R7,R7 CHECK IF IT IS NEGATIVE
BM NULLIN IF SO, PARM1 IS NULL
L R7,16(R1) GET POINTER TO INDICATOR 2
MvC F_IND2(2),0(R7) MOVE PARM2 INDICATOR TO LOCAL STORAGE
LH R7,F_IND2 MOVE PARM2 INDICATOR INTO R7
LTR R7,R7 CHECK IF IT IS NEGATIVE
BM NULLIN IF SO, PARM2 IS NULL
NULLIN L R7,8(R1) GET ADDRESS OF AREA FOR RESULT
MvC 0(9,R7),RESULT MOVE A VALUE INTO RESULT AREA
L R7,20(R1) GET ADDRESS OF AREA FOR RESULT IND
MvC 0(2,R7),=H'0' MOVE A VALUE INTO INDICATOR AREA
CEETERM RC=0
* VARIABLE DECLARATIONS AND EQUATES *
B R T S S e
R1 EQU 1 REGISTER 1
R7 EQU 7 REGISTER 7
PPA CEEPPA , CONSTANTS DESCRIBING THE CODE BLOCK

LTORG , PLACE LITERAL POOL HERE
PROGAREA DSECT
ORG *+CEEDSASZ
PARM1 DS F
PARM2 DS F
RESULT DS CL9
F_IND1 DS H
F_IND2 DS H
F_INDR DS H

LEAVE SPACE FOR DSA FIXED PART
PARAMETER 1

PARAMETER 2

RESULT

INDICATOR FOR PARAMETER 1
INDICATOR FOR PARAMETER 2
INDICATOR FOR RESULT

PROGSIZE EQU *-PROGAREA
CEEDSA MAPPING OF THE DYNAMIC SAVE AREA
CEECAA , MAPPING OF THE COMMON ANCHOR AREA
END MYMAIN

Cor C++: For C or C++ user-defined functions, the conventions for passing parameters are different for
main programs and subprograms.

For subprograms, you pass the parameters directly. For main programs, you use the standard argc and
argv variables to access the input and output parameters:

« The argv variable contains an array of pointers to the parameters that are passed to the user-defined
function. All string parameters that are passed back to Db2 must be null terminated.

— argv[0] contains the address of the load module name for the user-defined function.
— argv[1] through argv[n] contain the addresses of parameters 1 through n.
- The argc variable contains the number of parameters that are passed to the external user-defined
function, including argv[0].
The following figure shows the parameter conventions for a user-defined scalar function that is written as
a main program that receives two parameters and returns one result.

#include <stdlib.h>
f##include <stdio.h>

main(argc,argv)
int argc;
char *argv([];

/* Assume that the user-defined function invocationx/
/* included 2 input parameters in the parameter *x/

194 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

/* list. Also assume that the definition includes =%/
/* the SCRATCHPAD, FINAL CALL, and DBINFO options, */

/* so DB2 passes the scratchpad, calltype, and */
/* dbinfo parameters. */
/* The argv vector contains these entries: */
/* argv[0] 1 load module name */
/* argv[1-2] 2 input parms */
/* argv[3] 1 result parm */
/* argv[4-5] 2 null indicators */
/* argv([6] 1 result null indicator =%/
/* argv([7] 1 SQLSTATE variable */
/* argv([8] 1 qualified func name x/
/* argv([9] 1 specific func name */
/* argv[10] 1 diagnostic string */
/* argv[11] 1 scratchpad */
/* argv[12] 1 call type */
/* argv[13] + 1 dbinfo */
e e x/
/* 14 for the argc variable %/

/
if arge<>14
3

/**/

/* This section would contain the code executed if the

*/

/* user-defined function is invoked with the wrong number */

/* of parameters.

*/

3
/***/
/* Assume the first parameter is an integer. */
/* The following code shows how to copy the integerx/
/* parameter into the application storage. */
||| /
int parmil;
parml = x(int *) argv[1];
[HRER AR AR AR AR AR SRS SI SRR AR AR AR ARSI SRS /
/* Access the null indicator for the first */
/* parameter on the invoked user-defined function =*/
/> as follows: */

[ek e ek keok ok o e e ko ok o ke ko ok ok ok e ke ok ok ok ok ok ke ke ok kok ok o ke ok ok okok ok ok ko k ok o/
short int ind1;
indl = % (short int %) argv[4];

[HREAH A A A AFIFEFE SRS A AFAFAFEFERE ISR AR AR /
/* Use the following expression to assign */
/* 'xxxxx' to the SQLSTATE returned to caller on */
/* the SQL statement that contains the invoked */
/* user-defined function. */

/***/
strcpy(argv[7], "xxxxx");

/***/
/* 0Obtain the value of the qualified function */
/* name with this expression. */
/***/
char f_func[28];

strcpy(f_func,argv([8]);
/***/
/* 0Obtain the value of the specific function */
/* name with this expression. */
/***/
char f_spec[19];

strcpy(f_spec,argv([9]);

[HRERER AR AR AR RIS S SRR REREFAFAR AR SRS SRS /
/* Use the following expression to assign */
/> 'yyyyyyyy' to the diagnostic string retuzrned */
/* in the SQLCA associated with the invoked */
/* user-defined function. */

/***/
strcpy(argv[10], "yyyyyyyy");

/***/
/* Use the following expression to assign the */
/* result of the function. */
/***/
char 1_result[11];

strcpy(argv([3],1_result);

Chapter 3. Db2 SQL programming 195

.

The following figure shows the parameter conventions for a user-defined scalar function writtenasa C
subprogram that receives two parameters and returns one result.

#pragma runopts(plist(os))
##include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sqludf.h>

void myfunc(long *parml, char parm2[11], char result[11],
short *f_ind1l, short xf_ind2, short xf_indr,
char udf_sqlstate[6], char udf_fname[138],
char udf_specname[129], char udf_msgtext[71],
struct sqludf_scratchpad *udf_scratchpad,
long xudf_call_type,
struct sql_dbinfo xudf_dbinfo);

/***/
/* Declare local copies of parameters */

int 1_p1;

char 1_p2[11];

short int 1_ind1;

short int 1_ind2;

char ludf_sqlstate[6]; /* SQLSTATE */
char ludf_fname[138]; /* function name */
char ludf_specname[129]; /* specific function name %/
char ludf_msgtext[71] /* diagnostic message textx/
sqludf_scratchpad *ludf_scratchpad; /* scratchpad */
long *ludf_call_type; /* call type */
sqludf_dbinfo xludf_dbinfo /% dbinfo */
[HREXK SR AFAFAFEFRERE RS AIAFAFA R R RS S SRS AR A /
/* Copy each of the parameters in the parameter */
/* list into a local variable to demonstrate */
/* how the parameters can be referenced. */
/***/

1_pl = %parml;

strcpy(1l_p2,parm2);

1_indl = *f_ind1;

1_indl = *xf_ind2;
strcpy(ludf_sqglstate,udf_sqlstate);

strcpy (ludf_fname,udf_fname);

strcpy (ludf_specname,udf_specname);

1_udf_call_type = xudf_call_type;

strcpy (ludf_msgtext,udf_msgtext);

memcpy (&ludf_scratchpad,udf_scratchpad,sizeof(ludf_scratchpad));
memcpy (&ludf_dbinfo,udf_dbinfo,sizeof(ludf_dbinfo));

%

The following figure shows the parameter conventions for a user-defined scalar function that is written
as a C++ subprogram that receives two parameters and returns one result. This example demonstrates
that you must use an extern "C" modifier to indicate that you want the C++ subprogram to receive
parameters according to the C linkage convention. This modifier is necessary because the CEEPIPI
CALL_SUB interface, which Db2 uses to call the user-defined function, passes parameters using the C
linkage convention.

{#pragma runopts(plist(os))
#include <stdlib.h>
#include <stdio.h>
#include <sqludf.h>

extern "C" void myfunc(long *parml, char parm2[11],
char result[11], short xf_indl, short xf_ind2, short *f_indr,
char udf_sqlstate[6], char udf_fname[138],
char udf_specname[129], char udf_msgtext[71],
struct sqludf_scratchpad *udf_scratchpad,
long xudf_call_type,
struct sql_dbinfo *udf_dbinfo);

196 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

/* Define local copies of parameters. */

[RS SR AR AFH R R SRS AAFARAFA R R RS S RS SRR /
int 1_p1;

char 1_p2[11];

short int 1_ind1;

short int 1_ind2;

char ludf_sqlstate[6]; /* SQLSTATE */

char ludf_fname[138]; /* function name */

char ludf_specname[129]; /* specific function name %/

char ludf_msgtext[71] /* diagnostic message textx/
sqludf_scratchpad *ludf_scratchpad; /* scratchpad */
long *ludf_call_type; /* call type */
sqludf_dbinfo xludf_dbinfo /% dbinfo */
[RS SR AFAFAFEFRERE SRS RFARAFA R R RS S SRS AR A /

/* Copy each of the parameters in the parameter */

/* list into a local variable to demonstrate */

/* how the parameters can be referenced. */

/***/
1_pl = xparml;

strcpy(l_p2,parm2);

1 indl = %xf_ind1;

1_indl = *xf_ind2;

strcpy(ludf_sqglstate,udf_sqglstate);

strcpy (ludf_fname,udf_fname);

strcpy (ludf_specname,udf_specname);

1 _udf_call_type = xudf_call_type;

strcpy (ludf_msgtext,udf_msgtext);

memcpy (&ludf_scratchpad,udf_scratchpad,sizeof(ludf_scratchpad));
memcpy (&ludf_dbinfo,udf_dbinfo,sizeof(ludf_dbinfo));

%
COBOL: The following figure shows the parameter conventions for a user-defined table function that

is written as a main program that receives two parameters and returns two results. For a COBOL user-
defined function that is a subprogram, the conventions are the same.

CBL APOST,RES,RENT
IDENTIFICATION DIVISION.

DATA DIVISION.
LINKAGE SECTION.

01 UDFPARM1 PIC S9(9) USAGE COMP.
01 UDFPARM2 PIC X(10).

01 UDFRESULT1 PIC X(10).
01 UDFRESULT2 PIC X(10).

01 UDF-IND1 PIC S9(4) USAGE COMP.
01 UDF-IND2 PIC S9(4) USAGE COMP.

01 UDF-RIND1 PIC S9(4) USAGE COMP.
01 UDF-RIND2 PIC S9(4) USAGE COMP.

* Declare the SQLSTATE that can be set by the *
* user-defined function *

* Declare the qualified function name *
*khkkkhkkkhkhkkhhkkkhkkkhhkkhhkkhhkkkhhkkhhkkhkhkhkhhkhhkkhkhkkhhkhhkkhkhkhkhhkkhhkkkhkhkhhkkhkkkhkkkk
01 UDF-FUNC.

49 UDF-FUNC-LEN PIC 9(4) USAGE BINARY.

49 UDF-FUNC-TEXT PIC X(137).
* Declare the specific function name *
*khkkkhkkkhhkkhhkkkhkkkhhkkhhkkhhkkkhhkhhkkhkhkkhhkhhkkhkhkkkhhkhhkkhkhkkkhhkkhhkkhkhkkkhhkhkkkhkkkkx

Chapter 3. Db2 SQL programming 197

01 UDF-SPEC.
49 UDF-SPEC-LEN PIC 9(4) USAGE BINARY.
49 UDF-SPEC-TEXT PIC X(128).

* Declare SQL diagnostic message token *
*khkkkkkkhkhkkhhkkhkkkhhkkhhkkhkhkkkhhkkhhkkhkhhkkhhkhhkkhkhkhkhhkhhkkhkhkhkhhkhhkkhkhkhkhhkhkkkhkkkkx
01 UDF-DIAG.

49 UDF-DIAG-LEN PIC 9(4) USAGE BINARY.
49 UDF-DIAG-TEXT PIC X(1000).

01 UDF-SCRATCHPAD.
49 UDF-SPAD-LEN PIC 9(9) USAGE BINARY.
49 UDF-SPAD-TEXT PIC X(100).

01 UDF-CALL-TYPE PIC 9(9) USAGE BINARY.

ok ok
* CONSTANTS FOR DB2-EBCODING-SCHEME. *
77 SQLUDF-ASCII PIC 9(9) VALUE 1.

77 SQLUDF-EBCDIC PIC 9(9) VALUE 2.

77 SQLUDF-UNICODE PIC 9(9) VALUE 3.

ok ok

* Structure used for DBINFO *
01 SQLUDF-DBINFO.
* location name length

05 DBNAMELEN PIC 9(4) USAGE BINARY.
* location name

05 DBNAME PIC X(128).
* authorization ID length

05 AUTHIDLEN PIC 9(4) USAGE BINARY.
* authorization ID

05 AUTHID PIC X(128).
* environment CCSID information

05 CODEPG PIC X(48).
05 CDPG-DB2 REDEFINES CODEPG.
10 DB2-CCSIDS OCCURS 3 TIMES.
15 DB2-SBCS PIC 9(9) USAGE BINARY.
15 DB2-DBCS PIC 9(9) USAGE BINARY.
15 DB2-MIXED PIC 9(9) USAGE BINARY.
10 ENCODING-SCHEME PIC 9(9) USAGE BINARY.
10 RESERVED PIC X(8).
other platform-specific deprecated CCSID structures not included here

*

* schema name length
05 TBSCHEMALEN PIC 9(4) USAGE BINARY.
* schema name
05 TBSCHEMA PIC X(128).
* table name length
05 TBNAMELEN PIC 9(4) USAGE BINARY.
* table name
05 TBNAME PIC X(128).
* column name length
05 COLNAMELEN PIC 9(4) USAGE BINARY.
* column name
05 COLNAME PIC X(128).
* product information
05 VER-REL PIC X(8).
* reserved for expansion
05 RESDO PIC X(2).
* platform type
05 PLATFORM PIC 9(9) USAGE BINARY.
* number of entries in tfcolumn list array (tfcolumn, below)

05 NUMTFCOL PIC 9(4) USAGE BINARY.

* reserved for expansion
05 RESD1 PIC X(26).
* tfcolumn will be allocated dynamically if TF is defined
* otherwise this will be a null pointer
05 TFCOLUMN USAGE IS POINTER.
* Application identifier
05 APPL-ID USAGE IS POINTER.
* reserved for expansion

05 RESD2 PIC X(20).

198 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

*
PROCEDURE DIVISION USING UDFPARM1, UDFPARM2, UDFRESULTZ1,
UDFRESULT2, UDF-IND1, UDF-IND2,
UDF-RIND1, UDF-RIND2,
UDF-SQLSTATE, UDF-FUNC, UDF-SPEC,
UDF-DIAG, UDF-SCRATCHPAD,
UDF-CALL-TYPE, SQLUDF-DBINFO.

PL/I: The following figure shows the parameter conventions for a user-defined scalar function that is
written as a main program that receives two parameters and returns one result. For a PL/I user-defined

function that is a subprogram, the conventions are the same.

*PROCESS SYSTEM(MVS) ;
MYMAIN: PROC(UDF_PARM1, UDF_PARM2, UDF_RESULT,
UDF_IND1, UDF_IND2, UDF_INDR,

UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,

UDF_DIAG_MSG, UDF_SCRATCHPAD,
UDF_CALL_TYPE, UDF_DBINFO)
OPTIONS(MAIN NOEXECOPS REENTRANT);

DCL UDF_PARM1 BIN FIXED(31); /* first parameter */
DCL UDF_PARM2 CHAR(10); /* second parameter */
DCL UDF_RESULT CHAR(10); /* result parameter */
DCL UDF_IND1 BIN FIXED(15); /* indicator for 1st parm */
DCL UDF_IND2 BIN FIXED(15); /* indicator for 2nd parm */
DCL UDF_INDR BIN FIXED(15); /* indicator for result */
DCL UDF_SQLSTATE CHAR(5); /* SQLSTATE returned to DB2 */
DCL UDF_NAME CHAR(137) VARYING; /% Qualified function name */
DCL UDF_SPEC_NAME CHAR(128) VARYING; /% Specific function name «/
DCL UDF_DIAG_MSG CHAR(70) VARYING; /% Diagnostic string */
DCL 01 UDF_SCRATCHPAD /* Scratchpad */

03 UDF_SPAD_LEN BIN FIXED(31),

03 UDF_SPAD_TEXT CHAR(100);
DCL UDF_CALL_TYPE BIN FIXED(31); /x Call Type
DCL DBINFO PTR;

/* CONSTANTS FOR DB2_ENCODING_SCHEME %/

DCL SQLUDF_ASCII BIN FIXED(15) INIT(1);
DCL SQLUDF_EBCDIC BIN FIXED(15) INIT(2);
DCL SQLUDF_MIXED BIN FIXED(15) INIT(3);

DCL 01 UDF_DBINFO BASED(DBINFO), /* Dbinfo */
03 UDF_DBINFO_LLEN BIN FIXED(15), /* location length */
03 UDF_DBINFO_LOC CHAR(128), /* location name */
03 UDF_DBINFO_ALEN BIN FIXED(15), /* auth ID length */
03 UDF_DBINFO_AUTH CHAR(128), /* authorization ID */
03 UDF_DBINFO_CDPG, /* environment CCSID info =%/

05 DB2_CCSIDS(3),
07 R1 BIN FIXED(15), /% Reserved */
07 DB2_SBCS BIN FIXED(15), * SBCS CCSID */
07 R2 BIN FIXED(15), /* Reserved */
07 DB2_DBCS BIN FIXED(15), /* DBCS CCSID */
07 R3 BIN FIXED(15), /* Reserved */
07 DB2_MIXED BIN FIXED(15), /* MIXED CCSID */
05 DB2_ENCODING_SCHEME BIN FIXED(31),
05 DB2_CCSID_RESERVED CHAR(8),
03 UDF_DBINFO_SLEN BIN FIXED(15), /* schema length */
03 UDF_DBINFO_SCHEMA CHAR(128), /* schema name */
03 UDF_DBINFO_TLEN BIN FIXED(15), /* table length */
03 UDF_DBINFO_TABLE CHAR(128), /* table name */
03 UDF_DBINFO_CLEN BIN FIXED(15), /* column length */
03 UDF_DBINFO_COLUMN CHAR(2128), /* column name */
03 UDF_DBINFO_RELVER CHAR(8), /* DB2 release level */
03 UDF_DBINFO_RESERVO CHAR(2), /* reserved */
03 UDF_DBINFO_PLATFORM BIN FIXED(31), /* database platform */
03 UDF_DBINFO_NUMTFCOL BIN FIXED(15), /* # of TF columns used =*/
03 UDF_DBINFO_RESERV1 CHAR(26), /* reserved */
03 UDF_DBINFO_TFCOLUMN PTR, /* -> TFcolumn list */
03 UDF_DBINFO_APPLID PTR, /* -> application id */
03 UDF_DBINFO_RESERV2 CHAR(20); /* reserved */

Related reference
CREATE FUNCTION (external scalar) (Db2 SQL)

Chapter 3. Db2 SQL programming 199

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createfunctionexternalscalar.html

Making a user-defined function reentrant

A reentrant user-defined function is a function for which a single copy of the function can be used
concurrently by two or more processes.

Procedure

Compiling and link-editing your user-defined function as reentrant is recommended. (For an assembler
program, you must also code the user-defined function to be reentrant.)

Reentrant user-defined functions have the following advantages:

« The operating system does not need to load the user-defined function into storage every time the
user-defined function is called.

 Multiple tasks in a WLM-established stored procedures address space can share a single copy of the
user-defined function. This decreases the amount of virtual storage that is needed for code in the
address space.

If your user-defined function consists of several programs, you must bind each program that contains
SQL statements into a separate package. The definer of the user-defined function must have EXECUTE
authority for all packages that are part of the user-defined function.

When the primary program of a user-defined function calls another program, Db2 uses the CURRENT
PACKAGE PATH special register to determine the list of collections to search for the called program's
package. The primary program can change this collection ID by executing the statement SET CURRENT
PACKAGE PATH.

If the value of CURRENT PACKAGE PATH is blank or an empty string, Db2 uses the CURRENT
PACKAGESET special register to determine the collection to search for the called program's package.
The primary program can change this value by executing the statement SET CURRENT PACKAGESET.

If both special registers CURRENT PACKAGE PATH and CURRENT PACKAGESET contain a blank value,
Db2 uses the method described in “Binding an application plan” on page 871 to search for the package.

Special registers in a user-defined function or a stored procedure

You can use all special registers in a user-defined function or a stored procedure. However, you can
modify only some of those special registers.

After a user-defined function or a stored procedure completes, Db2 restores all special registers to the
values they had before invocation.

The following table shows information that you need when you use special registers in a user-defined
function or stored procedure.

Table 43. Characteristics of special registers in a user-defined function or a stored procedure

Special register Initial value when INHERIT Initial value when DEFAULT Routine can
SPECIAL REGISTERS option SPECIAL REGISTERS option use SET
is specified is specified statement to
modify?
CURRENT ACCELERATOR Inherited from the invoking The ACCELERATOR bind Yes
application®; otherwise, no option value if specified for
preferred acceleratoris used the user-defined function or
and Db2 will determine the stored procedure package;
target accelerator otherwise, no preferred

accelerator is used and Db2
will determine the target
accelerator

200 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Table 43. Characteristics of special registers in a user-defined function or a stored procedure (continued)

Special register Initial value when INHERIT Initial value when DEFAULT Routine can
SPECIAL REGISTERS option SPECIAL REGISTERS option use SET
is specified is specified statement to
modify?
CURRENT APPLICATION The value of bind option The value of bind option Yes
COMPATIBILITY APPLCOMPAT for the user- APPLCOMPAT for the user-
defined function or stored defined function or stored
procedure package procedure package
CURRENT APPLICATION The value of bind option The value of bind option Yes
ENCODING SCHEME ENCODING for the user- ENCODING for the user-
defined function or stored defined function or stored
procedure package procedure package
CURRENT CLIENT_ACCTNG Inherited from the invoking Inherited from the invoking Not
application application applicable®
CURRENT CLIENT_APPLNAME Inherited from the invoking Inherited from the invoking Not
application application applicable®
CURRENT CLIENT_USERID Inherited from the invoking Inherited from the invoking Not
application application applicable®
CURRENT Inherited from the invoking Inherited from the invoking Not
CLIENT_WRKSTNNAME application application applicable®
CURRENT DATE New value for each SQL New value for each SQL Not
statement in the user-defined statement in the user-defined applicable®
function or stored procedure function or stored procedure
packagel packagel
CURRENT DEBUG MODE Inherited from the invoking DISALLOW Yes
application
CURRENT DECFLOAT Inherited from the invoking The value of bind option Yes
ROUNDING MODE application ROUNDING for the user-
defined function or stored
procedure package
CURRENT DEGREE CURRENT DEGREE? The value of field CURRENT Yes
DEGREE on installation panel
DSNTIP8
CURRENT EXPLAIN MODE Inherited from the invoking NO Yes
application
CURRENT Inherited from the invoking The GETACCELARCHIVE bind Yes
GET_ACCEL_ARCHIVE application®; otherwise, the option value if specified for
subsystem parameter value the user-defined function or
will be used stored procedure package;
otherwise, the subsystem
parameter value will be used
CURRENT LOCALE LC_CTYPE Inherited from the invoking The value of field CURRENT Yes
application LC_CTYPE on installation panel
DSNTIPF
CURRENT MAINTAINED TABLE Inherited from the invoking System default value Yes

TYPES FOR OPTIMIZATION

application

Chapter 3. Db2 SQL programming 201

Table 43. Characteristics of special registers in a user-defined function or a stored procedure (continued)

Special register

Initial value when INHERIT

Initial value when DEFAULT

Routine can

SPECIAL REGISTERS option SPECIAL REGISTERS option use SET
is specified is specified statement to
modify?
CURRENT MEMBER New value for each SET host- New value for each SET host- Not
variable=sCURRENT MEMBER variable=CURRENT MEMBER applicable®
statement statement
CURRENT OPTIMIZATION The value of bind option The value of bind option Yes
HINT OPTHINT for the user-defined OPTHINT for the user-defined
function or stored procedure function or stored procedure
package or inherited from the package
invoking application®
CURRENT PACKAGE PATH An empty string if the routine An empty string, regardless of Yes
was defined with a COLLID whether a COLLID value was
value; otherwise, inherited specified for the routine®
from the invoking application®
CURRENT PACKAGESET Inherited from the invoking Inherited from the invoking Yes
application3 application3
CURRENT PATH The value of bind option PATH The value of bind option PATH Yes
for the user-defined function for the user-defined function
or stored procedure package or stored procedure package
or inherited from the invoking
application®
CURRENT PRECISION Inherited from the invoking The value of field DECIMAL Yes
application ARITHMETIC on installation
panel DSNTIP4
CURRENT QUERY Inherited from the invoking The QUERYACCELERATION Yes
ACCELERATION application®; otherwise, the bind option value if specified
subsystem parameter value for the user-defined function
will be used or stored procedure package;
otherwise, the subsystem
parameter value will be used
CURRENT QUERY Inherited from the invoking The Yes
ACCELERATION application®; otherwise, the ACCELERATIONWAITFORDAT
WAITFORDATA subsystem parameter value A bind option value if specified
will be used for the user-defined function
or stored procedure package;
otherwise, the subsystem
parameter value will be used
CURRENT REFRESH AGE Inherited from the invoking System default value Yes
application
CURRENT ROUTINE VERSION Inherited from the invoking The empty string Yes
application
CURRENT RULES Inherited from the invoking The value of bind option Yes

application

SQLRULES for the plan
that invokes a user-defined
function or stored procedure

202 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Table 43. Characteristics of special registers in a user-defined function or a stored procedure (continued)

Special register

Initial value when INHERIT

Initial value when DEFAULT

Routine can

SPECIAL REGISTERS option SPECIAL REGISTERS option use SET
is specified is specified statement to
modify?
CURRENT SCHEMA Inherited from the invoking The value of CURRENT Yes
application SCHEMA when the routine is
entered
CURRENT SERVER Inherited from the invoking Inherited from the invoking Yes
application application
CURRENT SQLID The primary authorization ID The primary authorization ID Yes8
of the application process or of the application process
inherited from the invoking
application?
CURRENT TEMPORAL Inherited from the invoking NULL Yes
BUSINESS_TIME application
CURRENT TEMPORAL Inherited from the invoking NULL Yes
SYSTEM_TIME application
CURRENT TIME New value for each SQL New value for each SQL Not
statement in the user-defined statement in the user-defined applicable®
function or stored procedure function or stored procedure
packagel packagel
CURRENT TIMESTAMP New value for each SQL New value for each SQL Not
statement in the user-defined statement in the user-defined applicable®
function or stored procedure function or stored procedure
packagel packagel
CURRENT TIMESTAMP WITH New value for each SQL New value for each SQL Not
TIME ZONE statement in the user-defined statement in the user-defined applicable®
function or stored procedure function or stored procedure
packagel packagel
CURRENT TIME ZONE Inherited from the invoking Inherited from the invoking Not
application application applicable®
ENCRYPTION PASSWORD Inherited from the invoking Inherited from the invoking Yes
application application
SESSION TIME ZONE Inherited from the invoking The value of CURRENT TIME Yes
application ZONE when the routine is
entered
SESSION_USER or USER Primary authorization ID of the Primary authorization ID of the Not
application process application process applicable®

Chapter 3. Db2 SQL programming 203

Table 43. Characteristics of special registers in a user-defined function or a stored procedure (continued)

Special register Initial value when INHERIT Initial value when DEFAULT Routine can
SPECIAL REGISTERS option SPECIAL REGISTERS option use SET
is specified is specified statement to
modify?
Notes:

1. If the user-defined function or stored procedure is invoked within the scope of a trigger, Db2 uses the
timestamp for the triggering SQL statement as the timestamp for all SQL statements in the package.

2. Db2 allows parallelism at only one level of a nested SQL statement. If you set the value of the CURRENT
DEGREE special register to ANY, and parallelism is disabled, Db2 ignores the CURRENT DEGREE value.

3. If the routine definition includes a specification for COLLID, Db2 sets CURRENT PACKAGESET to the value
of COLLID. If both CURRENT PACKAGE PATH and COLLID are specified, the CURRENT PACKAGE PATH value
takes precedence and COLLID is ignored.

4. 1f the function definition includes a specification for PACKAGE PATH, Db2 sets CURRENT PACKAGE PATH to
the value of PACKAGE PATH.

5. Not applicable because no SET statement exists for the special register.

6. If a program within the scope of the invoking program issues a SET statement for the special register before
the user-defined function or stored procedure is invoked, the special register inherits the value from the
SET statement. Otherwise, the special register contains the value that is set by the bind option for the
user-defined function or stored procedure package.

7. If a program within the scope of the invoking program issues a SET CURRENT SQLID statement before the
user-defined function or stored procedure is invoked, the special register inherits the value from the SET
statement. Otherwise, CURRENT SQLID contains the authorization ID of the application process.

8. If the user-defined function or stored procedure package uses a value other than RUN for the
DYNAMICRULES bind option, the SET CURRENT SQLID statement can be executed. However, it does not
affect the authorization ID that is used for the dynamic SQL statements in the package. The DYNAMICRULES
value determines the authorization ID that is used for dynamic SQL statements.

Related concepts

Dynamic rules options for dynamic SQL statements
The DYNAMICRULES bind option and the runtime environment determine the rules for the dynamic SQL
attributes.

Related reference
BIND and REBIND options for packages, plans, and services (Db2 Commands)
Special registers (Db2 SQL)

Accessing transition tables in a user-defined function or stored procedure

If you want to refer to the entire set of rows that a triggering SQL statement modifies, rather than to
individual rows, use a transition table. You can reference a transition table in user-defined functions and
procedures that are invoked from a trigger.

About this task

This topic describes how to access transition variables in a user-defined function, but the same
techniques apply to a stored procedure.

To access transition tables in a user-defined function, use table locators, which are pointers to the
transition tables. You declare table locators as input parameters in the CREATE FUNCTION statement
using the TABLE LIKE table-name AS LOCATOR clause.

204 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_specialregistersintro.html

Procedure

To access transition tables in a user-defined function or stored procedure:

1. Declare input parameters to receive table locators. You must define each parameter that receives a
table locator as an unsigned 4-byte integer.

2. Declare table locators. You can declare table locators in assembler, C, C++, COBOL, PL/I, and in an SQL
procedure compound statement.

3. Declare a cursor to access the rows in each transition table.
4. Assign the input parameter values to the table locators.
5. Access rows from the transition tables using the cursors that are declared for the transition tables.

Results

The following examples show how a user-defined function that is written in C, C++, COBOL, or PL/I
accesses a transition table for a trigger. The transition table, NEWEMP, contains modified rows of the
employee sample table. The trigger is defined like this:

CREATE TRIGGER EMPRAISE
AFTER UPDATE ON EMP
REFERENCING NEW TABLE AS NEWEMPS
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC
VALUES (CHECKEMP (TABLE NEWEMPS));
END;

The user-defined function definition looks like this:

CREATE FUNCTION CHECKEMP(TABLE LIKE EMP AS LOCATOR)
RETURNS INTEGER
EXTERNAL NAME 'CHECKEMP'
PARAMETER STYLE SQL
LANGUAGE language;

Assembler: The following example shows how an assembler program accesses rows of transition table
NEWEMPS.

CHECKEMP CSECT

SAVE (14,12) ANY SAVE SEQUENCE
LR R12,R15 CODE ADDRESSABILITY
USING CHECKEMP,R12 TELL THE ASSEMBLER
LR R7,R1 SAVE THE PARM POINTER
USING PARMAREA,R7 SET ADDRESSABILITY FOR PARMS
USING SQLDSECT,R8 ESTABLISH ADDRESSIBILITY TO SQLDSECT
L R6,PROGSIZE GET SPACE FOR USER PROGRAM
GETMAIN R,LV=(6) GET STORAGE FOR PROGRAM VARIABLES
LR R10,R1 POINT TO THE ACQUIRED STORAGE
LR R2,R10 POINT TO THE FIELD
LR R3,R6 GET ITS LENGTH
SR R4 ,R4 CLEAR THE INPUT ADDRESS
SR R5,R5 CLEAR THE INPUT LENGTH
MVCL R2,R4 CLEAR OUT THE FIELD
ST R13,FOUR(R10) CHAIN THE SAVEAREA PTRS
ST R10,EIGHT(R13) CHAIN SAVEAREA FORWARD
LR R13,R10 POINT TO THE SAVEAREA
USING PROGAREA,R13 SET ADDRESSABILITY
ST R6,GETLENTH SAVE THE LENGTH OF THE GETMAIN
* Declare table locator host variable TRIGTBL *

ok ok
TRIGTBL SQL TYPE IS TABLE LIKE EMP AS LOCATOR

* Declare a cursor to retrieve rows from the transition *
* table *
EXEC SQL DECLARE C1 CURSOR FOR X
SELECT LASTNAME FROM TABLE(:TRIGTBL LIKE EMP) X

WHERE SALARY > 100000
*hkkkkkkhkkhkkhkkhkhkhkkhkkhhkkhkkhkhkhkkhhhkkhkkhkhhkkhkkhhhkkhkhhkkhkkhhhkkhkhhkkhkkhhhkkhkhhhkkhhhkkhkkhhhkkhhik
* Copy table locator for trigger transition table *

Chapter 3. Db2 SQL programming 205

L R2,TABLOC GET ADDRESS OF LOCATOR
L R2,0(0,R2) GET LOCATOR VALUE

ST R2, TRIGTBL

EXEC SQL OPEN C1

EXEC SQL FETCH C1 INTO :NAME

EXEC SOL CLOSE C1

\PROGAREA DSECT WORKING STORAGE FOR THE PROGRAM
SAVEAREA DS 18F THIS ROUTINE'S SAVE AREA
GETLENTH DS A GETMAIN LENGTH FOR THIS AREA
NAME DS CL24

' DS @D

PROGSIZE EQU %-PROGAREA DYNAMIC WORKAREA SIZE

PARMAREA DSECT

TABLOC DS A INPUT PARAMETER FOR TABLE LOCATOR
' END CHECKEMP

C or C++: The following example shows how a C or C++ program accesses rows of transition table
NEWEMPS.

int CHECK_EMP(int trig_tbl_id)
1

|| /
/* Declare table locator host variable trig_tbl_id x/
[HRHR AR AR E SRS SR FERERERARAR AR A SRS AI SRR /
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS TABLE LIKE EMP AS LOCATOR trig_tbl_id;

char name[25];
EXEC SQL END DECLARE SECTION;
N e e S e Sl /
/* Declare a cursor to retrieve rows from the transition =/
/* table */
R /
EXEC SQL DECLARE C1 CURSOR FOR

SELECT NAME FROM TABLE(:trig_tbl_id LIKE EMPLOYEE)

WHERE SALARY > 100000;

|| /
/* Fetch a row from transition table */

|| /

EXEC SQL OPEN C1;
EXEC SQL FETCH C1 INTO :name;

EXEC SQL CLOSE C1;
¥

COBOL: The following example shows how a COBOL program accesses rows of transition table
NEWEMPS.

IDENTIFICATION DIVISION.
PROGRAM-ID. CHECKEMP.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 NAME PIC X(24).

LINKAGE SECTION.

01 TRIG-TBL-ID SQL TYPE IS TABLE LIKE EMP AS LOCATOR.

PROCEDURE DIVISION USING TRIG-TBL-ID.

*khkkkhkkkhkhkkhhkkhkkkhhkkhhkkhkhkkhhkhhkkhkhkkhhkhhkkhkhkkkhhkhhkkhkhkkkhhkhhkkkhkkkhhkhkkkkkkx
* Declare cursor to retrieve rows from transition table =
EXEC SQL DECLARE C1 CURSOR FOR
SELECT NAME FROM TABLE(:TRIG-TBL-ID LIKE EMP)
WHERE SALARY > 100000 END-EXEC.
*khkkkhkkkhkhkkhhkkhkhkkkhhkkhhkkhhkkkhhkkhhkkhkhkhkhhkhhkkhkhkkkhhkhhkkhkhkkkhhkhhkkkhkhkhhkhkkkkkkx
* Fetch a row from transition table *

206 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

EXEC SQL OPEN C1 END-EXEC.
EXEC SQL FETCH C1 INTO :NAME END-EXEC.

EXEC SQL CLOSE C1 END-EXEC.

PROG-END.
GOBACK.

PL/I: The following example shows how a PL/I program accesses rows of transition table NEWEMPS.

CHECK_EMP: PROC(TRIG_TBL_ID) RETURNS(BIN FIXED(31))
OPTIONS(MAIN NOEXECOPS REENTRANT);

/* Declare table locator host variable TRIG_TBL_ID =*/

/**/

DECLARE TRIG_TBL_ID SQL TYPE IS TABLE LIKE EMP AS LOCATOR;

DECLARE NAME CHAR(24);

|| /
/* Declare a cursor to retrieve rows from the */
/* transition table */

|| /
EXEC SQL DECLARE C1 CURSOR FOR

SELECT NAME FROM TABLE(:TRIG_TBL_ID LIKE EMP)

WHERE SALARY > 100000;
e /
/* Retrieve rows from the transition table */

|| /

/
EXEC SQL OPEN C1;
EXEC SQL FETCH C1 INTO :NAME;

EXEC SQL CLOSE C1;
END CHECK_EMP;

Preparing an external user-defined function for execution

Because an external user-defined function is written in a programming language, preparing it is similar to
the way that you prepare any other application program.

Procedure

To prepare an external user-defined function for execution:

1. Precompile the user-defined function program and bind the DBRM into a package. You need to do this
only if your user-defined function contains SQL statements. You do not need to bind a plan for the
user-defined function.

2. Compile the user-defined function program and link-edit it with Language Environment and RRSAF.

You must compile the program with a compiler that supports Language Environment and link-edit
the appropriate Language Environment components with the user-defined function. You must also
link-edit the user-defined function with RRSAF.

The program preparation JCL samples DSNHASM, DSNHC, DSNHCPP, DSNHICOB, and DSNHPLI show
you how to precompile, compile, and link-edit assembler, C, C++, COBOL, and PL/I Db2 programs. For
object-oriented programs in C++, see JCL sample DSNHCPP2 for program preparation hints.

3. For a user-defined function that contains SQL statements, grant EXECUTE authority on the user-
defined function package to the function definer.

Abnormal termination of an external user-defined function

If an external user-defined function abnormally terminates, your program receives SQLCODE -430 for
invoking the statement.

Db2 also performs the following actions:

- Places the unit of work that contains the invoking statement in a must-rollback state.
« Stops the user-defined function, and subsequent calls fail, in either of the following situations:

Chapter 3. Db2 SQL programming 207

— The number of abnormal terminations equals the STOP AFTER n FAILURES value for the user-defined
function.

— Ifthe STOP AFTER n FAILURES option is not specified, the number of abnormal terminations equals
the default MAX ABEND COUNT value for the subsystem.

You should include code in your program to check for a user-defined function abend and to roll back the
unit of work that contains the user-defined function invocation.

Saving information between invocations of a user-defined function by using a
scratchpad

If you create a scratchpad for a reentrant user-defined function, Db2 can use it to preserve information
between invocations of the function.

About this task

You can use a scratchpad to save information between invocations of a user-defined function. To indicate
that a scratchpad should be allocated when the user-defined function executes, the function definer
specifies the SCRATCHPAD parameter in the CREATE FUNCTION statement.

The scratchpad consists of a 4-byte length field, followed by the scratchpad area. The definer can
specify the length of the scratchpad area in the CREATE FUNCTION statement. The specified length
does not include the length field. The default size is 100 bytes. Db2 initializes the scratchpad for each
function to binary zeros at the beginning of execution for each subquery of an SQL statement and does
not examine or change the content thereafter. On each invocation of the user-defined function, Db2
passes the scratchpad to the user-defined function. You can therefore use the scratchpad to preserve
information between invocations of a reentrant user-defined function.

The following example demonstrates how to enter information in a scratchpad for a user-defined function
defined like this:

CREATE FUNCTION COUNTER()
RETURNS INT
SCRATCHPAD
FENCED
NOT DETERMINISTIC
NO SQL
NO EXTERNAL ACTION
LANGUAGE C
PARAMETER STYLE SQL
EXTERNAL NAME 'UDFCTR';

The scratchpad length is not specified, so the scratchpad has the default length of 100 bytes, plus 4 bytes
for the length field. The user-defined function increments an integer value and stores it in the scratchpad
on each execution.

#pragma linkage(ctr,fetchable)

#include <stdlib.h>

f#include <stdio.h>

/* Structure scr defines the passed scratchpad for function ctr %/
struct scr §

long len;

long countr;

char not_used[96];

}I
||| /
/* Function ctr: Increments a counter and reports the value */
/* from the scratchpad. */
/* */
/* Input: None */
/* Output: INTEGER out the value from the scratchpad =*/
||| /
void ctr(
long =out, /* Output answer (counter) =x/
short *outnull, /* Output null indicator */
char *sqlstate, /* SQLSTATE */
char xfuncname, /* Function name */
char *specname, /> Specific function name x/

208 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

char x*mesgtext, /* Message text insert */

struct scr *scratchptr) /* Scratchpad */
out = ++scratchptr->countr; / Increment counter and */

/* copy to output variable x/
outnull = O; / Set output null indicatorx/
return;

/* end of user-defined function ctr %/

Example of creating and using a user-defined scalar function
You can create a user-defined scalar function that gets input from a table and puts the output in a table.

Suppose that your organization needs a user-defined scalar function that calculates the bonus that each
employee receives. All employee data, including salaries, commissions, and bonuses, is kept in the
employee table, EMP. The input fields for the bonus calculation function are the values of the SALARY and
COMM columns. The output from the function goes into the BONUS column. Because this function gets
its input from a Db2 table and puts the output in a Db2 table, a convenient way to manipulate the data is
through a user-defined function.

The user-defined function's definer and invoker determine that this new user-defined function should
have these characteristics:

» The user-defined function name is CALC_BONUS.

« The two input fields are of type DECIMAL(9,2).

« The output field is of type DECIMAL(9,2).

« The program for the user-defined function is written in COBOL and has a load module name of CBONUS.

Because no built-in function or user-defined function exists on which to build a sourced user-defined
function, the function implementer must code an external user-defined function. The implementer
performs the following steps:

« Writes the user-defined function, which is a COBOL program

Precompiles, compiles, and links the program

Binds a package if the user-defined function contains SQL statements
Tests the program thoroughly

« Grants execute authority on the user-defined function package to the definer

The user-defined function definer executes this CREATE FUNCTION statement to register CALC_BONUS
to Db2:

CREATE FUNCTION CALC_BONUS(DECIMAL(9,2),DECIMAL(9,2))
RETURNS DECIMAL(9,2)
EXTERNAL NAME 'CBONUS'
PARAMETER STYLE SQL
LANGUAGE COBOL;

The definer then grants execute authority on CALC_BONUS to all invokers.

User-defined function invokers write and prepare application programs that invoke CALC_BONUS. An
invoker might write a statement like this, which uses the user-defined function to update the BONUS field
in the employee table:

UPDATE EMP
SET BONUS = CALC_BONUS (SALARY,COMM) ;

An invoker can execute this statement either statically or dynamically.

Chapter 3. Db2 SQL programming 209

User-defined function samples that ship with Db2

To assist you in defining, implementing, and invoking your user-defined functions, Db2 provides
a number of sample user-defined functions. All sample user-defined function code is in data set
DSN1210.SDSNSAMP.

The following table summarizes the characteristics of the sample user-defined functions.

Table 44. User-defined function samples shipped with Db2

User-defined function Language

Member that

Purpose

name contains source
code

ALTDATE? C DSN8DUAD Converts the current date to a user-specified
format

ALTDATE? DSN8DUCD Converts a date from one format to another

ALTTIMES C DSN8DUAT Converts the current time to a user-specified
format

ALTTIME# C DSN8DUCT Converts a time from one format to another

DAYNAME C++ DSN8S8EUDN Returns the day of the week for a user-specified
date

HDFS_READ C++ DSN8HDFS Reads data from a delimiter-separated file in the
Hadoop Distributed File System (HDFS)

JAQL_SUBMIT C++ DSN8JAQL Invokes an IBM InfoSphere® BigInsights® Jaql
query

MONTHNAME C++ DSNS8EUMN Returns the month for a user-specified date

CURRENCY C DSN8DUCY Formats a floating-point number as a currency
value

TABLE_NAME C DSN8DUTI Returns the unqualified table name for a table,
view, or alias

TABLE_QUALIF C DSN8DUTI Returns the qualifier for a table, view, or alias

TABLE_LOCATION C DSN8DUTI Returns the location for a table, view, or alias

WEATHER C DSN8DUWF Returns a table of weather information from a
EBCDIC data set

Notes:

1. This version of ALTDATE has one input parameter, of type VARCHAR(13).

2. This version of ALTDATE has three input parameters, of type VARCHAR(17), VARCHAR(13), and
VARCHAR(13).

3. This version of ALTTIME has one input parameter, of type VARCHAR(14).

4. This version of ALTTIME has three input parameters, of type VARCHAR(11), VARCHAR(14), and
VARCHAR(14).

Member DSN8DUWC contains a client program that shows you how to invoke the WEATHER user-defined
table function.

Member DSNTEJBI shows you how to define and prepare the IBM InfoSphere Biglnsights sample user-
defined functions.

Member DSNTEJ2U shows you how to define and prepare the other sample user-defined functions and
the client program.

210 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Related concepts

Job DSNTEJBI (Db2 Installation and Migration)
Job DSNTEJ2U (Db2 Installation and Migration)
Sample user-defined functions (Db2 SQL)

Creating stored procedures

A stored procedure is executable code that can be called by other programs. The process for creating one
depends on the type of procedure.

Before you begin

You must complete some configuration tasks for the Db2 environment before you can use any of the
following types of procedures:

« External stored procedures
 Native SQL procedures that satisfy any of the following conditions:
— Calls at least one external stored procedure, external SQL procedure, or user-defined function.
— Defined with ALLOW DEBUG MODE or DISALLOW DEBUG MODE.
« External SQL procedures (deprecated)
« Db2-supplied stored procedures
For instructions, see Installation step 21: Configure Db2 for running stored procedures and user-defined

functions (Db2 Installation and Migration) or Migration step 23: Configure Db2 for running stored
procedures and user-defined functions (optional) (Db2 Installation and Migration).

Procedure

Follow the process for the type of stored procedure that you want to create, and issue a CREATE
PROCEDURE statement to register the stored procedure with a database server.

You can create the following types of stored procedures:

Native SQL procedures
The procedure body is written exclusively in SQL statements, including SQL procedural language (SQL
PL) statements. The procedure body is contained and specified in the procedure definition along with
various attributes of the procedure. A package is generated for a native SQL procedure. It contains the
procedure body, including control statements. It might sometimes also include statements generated
by Db2. Each time that the procedure is invoked, the package executes one or more times.

All SQL procedures that are created with a CREATE PROCEDURE statement that does not specify

the FENCED or EXTERNAL options are native SQL procedures. More capabilities are supported for
native SQL procedures, they usually perform better than external SQL procedures, and no associated
C program is generated for them.

For more information, see “Creating native SQL procedures” on page 226.

External stored procedures
The procedure body is an external program that is written in a programming language such as C,
C++, COBOL, or Java and it can contain SQL statements. The source code for an external stored
procedure is separate from the procedure definition and is bound into a package. The name of the
external executable is specified as part of the procedure definition along with various attributes of
the procedure. All programs must be designed to run using Language Environment. Your COBOL and
C++ stored procedures can contain object-oriented extensions. Each time that the stored procedure is
invoked, the logic in the procedure controls whether the package executes and how many times.

For more information, see “Creating external stored procedures” on page 252.

Chapter 3. Db2 SQL programming 211

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntejbi.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntej2u.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sampleuserdefinedfunctionsintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html

External SQL procedures (deprecated)
The procedure body is written exclusively in SQL statements, including SQL procedural language
(SQL PL) statements. The procedure body is specified in the procedure definition along with various
attributes of the procedure. A C program and an associated package are generated for an external
SQL procedure. It contains the procedure body, including control statements. It might sometimes also
include statements generated by Db2.Each time that the procedure is invoked, the package executes
one or more times.

Native SQL procedures are more fully supported, easier to maintain, and typically perform better than
external SQL procedures, which are deprecated.

For more information, see “Creating external SQL procedures (deprecated)” on page 286.

GUPI

Related concepts

Stored procedures

A stored procedure is a compiled program that can execute SQL statements and is stored at a local or
remote Db2 server. You can invoke a stored procedure from an application program or from the command
line processor. A single call to a stored procedure from a client application can access the database at the
server several times.

External stored procedures
An external stored procedure is a procedure that is written in a host language and can contain SQL
statements. The source code for external procedures is separate from the definition.

SQL procedures

An SQL procedure is a stored procedure that contains only SQL statements.

Related tasks

Obfuscating source code of SQL procedures, SQL functions, and triggers (Db2 Administration Guide)
Related reference

CREATE PROCEDURE (Db2 SQL)

Db2 for z/OS Exchange

Related information

Db2 for z/OS Stored Procedures: Through the CALL and Beyond (IBM Redbooks)

Stored procedures

A stored procedure is a compiled program that can execute SQL statements and is stored at a local or
remote Db2 server. You can invoke a stored procedure from an application program or from the command
line processor. A single call to a stored procedure from a client application can access the database at the
server several times.

A typical stored procedure contains two or more SQL statements and some manipulative or logical
processing in a host language or SQL procedure statements. You can call stored procedures from other
applications or from the command line. Db2 provides some stored procedures, but you can also create
your own.

A stored procedure provides a common piece of code that is written only once and is maintained in

a single instance that can be called from several different applications. Host languages can easily call
procedures that exist on a local system, and SQL can call stored procedures that exist on remote systems.
In fact, a major benefit of procedures in SQL is that they can be used to enhance the performance
characteristics of distributed applications. With stored procedures, you can avoid network transfer of
large amounts of data obtained as part of intermediate results in a long sequence of queries.

The following diagram illustrates the processing for an application that does not use stored procedures.
The client application embeds SQL statements and communicates with the server separately for each
statement. This application design results in increased network traffic and processor costs.

212 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_obfuscateroutinetrigger.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createprocedure.html
http://www.ibm.com/developerworks/software/exchange/db2zos
http://www.redbooks.ibm.com/abstracts/sg247604.html

Client Db2 for z/OS
EXEC SQL SELECT

> Perform SQL processing

A

EXEC SQL UPDATE

> Perform SQL processing

A

EXEC SQL INSERT

Perform SQL processing

A

Figure 9. Processing without stored procedures

The following diagram illustrates the processing for an application that uses stored procedures. Because a
stored procedure is used on the server, a series of SQL statements can be executed with a single send and
receive operation, reducing network traffic and the cost of processing these statements.

z/OS system

Db2 stored
Client EXEC SQL Db2 procedures region
CALL PROCX
—— » Schedule PROC¥—— EXEC SQL
DECLARE C1...
«—— EXECSQL
Perform SQL OPEN C1...
OPEN —
+«——— EXECSOQL
Perform SQL UPDATE...
UPDATE >
<«—— EXECSOQL
Perform SQL INSERT...
INSERT —
<« Returnvalues «——— PROCXend
and result set
to client

Figure 10. Processing with stored procedures

Stored procedures are useful for client/server applications that do at least one of the following things:

« Execute multiple remote SQL statements. Remote SQL statements can create many network send and
receive operations, which results in increased processor costs. Stored procedures can encapsulate
many of your application's SQL statements into a single message to the Db2 server, reducing network
traffic to a single send and receive operation for a series of SQL statements. Locks on Db2 tables are not
held across network transmissions, which reduces contention for resources at the server.

« Access tables from a dynamic SQL environment where table privileges for the application that is running
are undesirable. Stored procedures allow static SQL authorization from a dynamic environment.

« Access host variables for which you want to guarantee security and integrity. Stored procedures
remove SQL applications from the workstation, which prevents workstation users from manipulating
the contents of sensitive SQL statements and host variables.

- Create a result set of rows to return to the client application.

Stored procedures that are written in embedded static SQL provide the following additional advantages:

« Better performance because static SQL is prepared at precompile time and has no run time overhead for
access plan (package) generation.

« Encapsulation enables programmers to write applications that access data without knowing the details
of database objects.

- Improved security because access privileges are encapsulated within the packages that are associated
with the stored procedures. You can grant access to run a stored procedure that selects data from
tables, without granting SELECT privilege to the user.

Chapter 3. Db2 SQL programming 213

You can create the following types of stored procedures:

Native SQL procedures
The procedure body is written exclusively in SQL statements, including SQL procedural language (SQL
PL) statements. The procedure body is contained and specified in the procedure definition along with
various attributes of the procedure. A package is generated for a native SQL procedure. It contains the
procedure body, including control statements. It might sometimes also include statements generated
by Db2. Each time that the procedure is invoked, the package executes one or more times.

All SQL procedures that are created with a CREATE PROCEDURE statement that does not specify

the FENCED or EXTERNAL options are native SQL procedures. More capabilities are supported for
native SQL procedures, they usually perform better than external SQL procedures, and no associated
C program is generated for them.

For more information, see “Creating native SQL procedures” on page 226.

External stored procedures
The procedure body is an external program that is written in a programming language such as C,
C++, COBOL, or Java and it can contain SQL statements. The source code for an external stored
procedure is separate from the procedure definition and is bound into a package. The name of the
external executable is specified as part of the procedure definition along with various attributes of
the procedure. All programs must be designed to run using Language Environment. Your COBOL and
C++ stored procedures can contain object-oriented extensions. Each time that the stored procedure is
invoked, the logic in the procedure controls whether the package executes and how many times.

For more information, see “Creating external stored procedures” on page 252.

External SQL procedures (deprecated)
The procedure body is written exclusively in SQL statements, including SQL procedural language
(SQL PL) statements. The procedure body is specified in the procedure definition along with various
attributes of the procedure. A C program and an associated package are generated for an external
SQL procedure. It contains the procedure body, including control statements. It might sometimes also
include statements generated by Db2.Each time that the procedure is invoked, the package executes
one or more times.

Native SQL procedures are more fully supported, easier to maintain, and typically perform better than
external SQL procedures, which are deprecated.

For more information, see “Creating external SQL procedures (deprecated)” on page 286.

Db2 also provides a set of stored procedures that you can call in your application programs to perform a
number of utility, application programming, and performance management functions. These procedures
are called supplied stored procedures. Typically, you create these procedures during installation or
migration.

Related concepts

Common SQL API stored procedures (Db2 Administration Guide)

Related tasks

Implementing Db2 stored procedures (Stored procedures provided by Db2)
Related reference

Procedures that are supplied with Db2 (Db2 SQL)

Stored procedure parameters

You can pass information between a stored procedure and the calling application program by using
parameters. Applications pass the required parameters in the SQL CALL statement. Optionally, the
application can also include an indicator variable with each parameter to allow for null values or to pass
large output parameter values.

You define the stored procedure parameters as part of the stored procedure definition in the CREATE
PROCEDURE statement. The stored procedure parameters can be one of the following types:

IN
Input-only parameters, which provide values to the stored procedure.

214 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_commonsqlapisp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_implementstoredprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_suppliedstoredprocedures.html

ouT
Output-only parameters, which return values from the stored procedure to the calling program.

INOUT
Input and output parameters, which provide values to and return values from the stored procedure.

If a stored procedure fails to set one or more of the OUT or INOUT parameters, Db2 does not return
an error. Instead, Db2 returns the output parameters to the calling program, with the values that were
established on entry to the stored procedure.

Within a procedure body, the following rules apply to IN, OUT, and INOUT parameters:

 You can use a parameter that you define as IN on the left side or right side of an assignment statement.
However, if you assign a value to an IN parameter, you cannot pass the new value back to the caller. The
IN parameter has the same value before and after the SQL procedure is called.

 You can use a parameter that you define as OUT on the left side or right side of an assignment
statement. The last value that you assign to the parameter is the value that is returned to the caller. The
starting value of an OUT parameter is NULL.

 You can use a parameter that you define as INOUT on the left side or right side of an assighment
statement. The caller determines the first value of the INOUT parameter, and the last value that you
assign to the parameter is the value that is returned to the caller.

Restrictions:

« You cannot pass file reference variables as stored procedure parameters.

« You cannot pass parameters with the type XML to stored procedures. You can specify tables or views
that contain XML columns as table locator parameters. However, you cannot reference the XML columns
in the body of the stored procedure.

Related tasks

Calling a stored procedure from your application
To run a stored procedure, you can either call it from a client program or invoke it from the command line
processor.

Passing large output parameters to stored procedures by using indicator variables
If any output parameters occupy a large amount of storage, passing the entire storage area to a stored
procedure can degrade performance.

Related reference
CALL (Db2 SOL)
CREATE PROCEDURE (Db2 SQL)

Example of a simple stored procedure
When an application that runs on a workstation calls a stored procedure on a Db2 server, the stored
procedure updates a table based on the information that it receives from the application.

Suppose that an application runs on a workstation client and calls a stored procedure A on the Db2 server
at location LOCA. Stored procedure A performs the following operations:

1. Receives a set of parameters containing the data for one row of the employee to project activity table
(DSNB8C10.EMPPROJACT). These parameters are input parameters in the SQL statement CALL:

« EMP: employee number

« PRJ: project number

« ACT: activity ID

« EMT: percent of employee's time required
« EMS: date the activity starts

« EME: date the activity is due to end

2. Declares a cursor, C1, with the option WITH RETURN, that is used to return a result set containing all
rows in EMPPROJACT to the workstation application that called the stored procedure.

Chapter 3. Db2 SQL programming 215

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_call.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createprocedure.html

3. Queries table EMPPROJACT to determine whether a row exists where columns PROINO, ACTNO,
EMSTDATE, and EMPNO match the values of parameters PRJ, ACT, EMS, and EMP. (The table has a
unique index on those columns. There is at most one row with those values.)

4. If the row exists, executes an SQL statement UPDATE to assign the values of parameters EMT and EME
to columns EMPTIME and EMENDATE.?

5. If the row does not exist (SQLCODE +100), executes an SQL statement INSERT to insert a new row
with all the values in the parameter list.2

6. Opens cursor C1. This causes the result set to be returned to the caller when the stored procedure
ends.

7. Returns two parameters, containing these values:

« A code to identify the type of SQL statement last executed: UPDATE or INSERT.
« The SQLCODE from that statement.

Note:
1. Alternatively, steps 4 and 5 can be accomplished with a single MERGE statement.

The following figure illustrates the steps that are involved in executing this stored procedure.

Notes User Workstation Db2 System Db2 stored procedures
address space

Stored procedure A
1 EXEC SQL "

CONNECT TO
2 LoCS; 4———— (Create thread

3 EXEC SQL
CALL AG:EMP,
:PRJ,:ACT,:EMT,
:EMS,:EME,
:TYPE,:CODE);
4 Get information
from SYSIBM.
SYSROUTINES

5 Prepare - »
parameter list and
pass control to
stored procedure

6 EXEC SQL
DECLARE C1 CURSOR
WITH RETURN
FOR SELECT * FROM
EMPPROJACT;

<+—— USE SOL UPDATE to

——* update EMPPROJACT
with input parameter
values

4+—— If SQLCODE=+100,

—— " useSQLINSERT to
add a row with the
values in the
parameter list

«—— EXEC SQL OPEN C1;

7 <+— Return output parameters
:TYPE and :CODE and
aresult set that contains
all rows in EMPPROJACT

«-—
8 Control returns
to application

9 EXEC SQL —_—
COMMIT; Result of
(or ROLLBACK) COMMIT or
ROLLBACK
10 Receive result set

Figure 11. Stored procedure overview

216 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Notes:

10.

. The workstation application uses the SQL CONNECT statement to create a conversation with Db2.
. Db2 creates a Db2 thread to process SQL requests.
. The SQL statement CALL tells the Db2 server that the application is going to run a stored procedure.

The calling application provides the necessary parameters.

. The plan for the client application contains information from catalog table SYSIBM.SYSROUTINES

about stored procedure A.

. Db2 passes information about the request to the stored procedures address space, and the stored

procedure begins execution.

. The stored procedure executes SQL statements.

Db2 verifies that the owner of the package or plan containing the SQL statement CALL has EXECUTE
authority for the package associated with the Db2 stored procedure.

One of the SQL statements opens a cursor that has been declared WITH RETURN. This causes a
result set to be returned to the workstation application when the procedure ends.

Any SQLCODE that is issued within an external stored procedure is not returned to the workstation
application in the SQLCA (as the result of the CALL statement).

. If an error is not encountered, the stored procedure assigns values to the output parameters and

exits.

Control returns to the Db2 stored procedures address space, and from there to the Db2 system. If the
stored procedure definition contains COMMIT ON RETURN NO, Db2 does not commit or roll back any
changes from the SQL in the stored procedure until the calling program executes an explicit COMMIT
or ROLLBACK statement. If the stored procedure definition contains COMMIT ON RETURN YES,

and the stored procedure executed successfully, Db2 commits all changes. The COMMIT statement
closes the cursor unless it is declared with the WITH HOLD option.

. Control returns to the calling application, which receives the output parameters and the result set.

Db2 then:

« Closes all cursors that the stored procedure opened, except those that the stored procedure
opened to return result sets.

 Discards all SQL statements that the stored procedure prepared.

« Reclaims the working storage that the stored procedure used.

The application can call more stored procedures, or it can execute more SQL statements. Db2

receives and processes the COMMIT or ROLLBACK request. The COMMIT or ROLLBACK operation

covers all SQL operations, whether executed by the application or by stored procedures, for that unit
of work.

If the application involves IMS or CICS, similar processing occurs based on the IMS or CICS sync
point rather than on an SQL COMMIT or ROLLBACK statement.

. Db2 returns a reply message to the application describing the outcome of the COMMIT or ROLLBACK

operation.

The workstation application executes the following steps to retrieve the contents of table
EMPPROJACT, which the stored procedure has returned in a result set:

a. Declares a result set locator for the result set being returned.

b. Executes the ASSOCIATE LOCATORS statement to associate the result set locator with the result
set.

c. Executes the ALLOCATE CURSOR statement to associate a cursor with the result set.

d. Executes the FETCH statement with the allocated cursor multiple times to retrieve the rows in the
result set.

e. Executes the CLOSE statement to close the cursor.

Chapter 3. Db2 SQL programming 217

SOL procedures

An SQL procedure is a stored procedure that contains only SQL statements.

The source code for these procedures (the SQL statements) is specified in CREATE PROCEDURE
statement. The part of the CREATE PROCEDURE statement that contains SQL statements is called the
procedure body.

Types of SQL procedures

Db2 for z/OS supports the following types of SQL procedures:

Native SQL procedures
The procedure body is written exclusively in SQL statements, including SQL procedural language (SQL
PL) statements. The procedure body is contained and specified in the procedure definition along with
various attributes of the procedure. A package is generated for a native SQL procedure. It contains the
procedure body, including control statements. It might sometimes also include statements generated
by Db2. Each time that the procedure is invoked, the package executes one or more times.

All SQL procedures that are created with a CREATE PROCEDURE statement that does not specify

the FENCED or EXTERNAL options are native SQL procedures. More capabilities are supported for
native SQL procedures, they usually perform better than external SQL procedures, and no associated
C program is generated for them.

For more information, see “Creating native SQL procedures” on page 226.

External SQL procedures (deprecated)
The procedure body is written exclusively in SQL statements, including SQL procedural language
(SQL PL) statements. The procedure body is specified in the procedure definition along with various
attributes of the procedure. A C program and an associated package are generated for an external
SQL procedure. It contains the procedure body, including control statements. It might sometimes also
include statements generated by Db2.Each time that the procedure is invoked, the package executes
one or more times.

Native SQL procedures are more fully supported, easier to maintain, and typically perform better than
external SQL procedures, which are deprecated.

For more information, see “Creating external SQL procedures (deprecated)” on page 286.

Native SQL procedures

A native SQL procedure is a procedure whose body is written entirely in SQL. The body is written

in the SQL procedural language (SQL PL). A native SQL procedure is created by issuing a single SQL
statement, CREATE PROCEDURE. Native SQL procedures do not require any other program preparation,
such as precompiling, compiling, or link-editing source code. Native SQL procedures are executed as SQL
statements that are bound in a Db2 package. Native SQL procedures do not have an associated external
application program. Native SQL procedures are more fully supported, easier to maintain, and typically
perform better than external SQL procedures, which are deprecated.

Native SQL procedures have the following advantages:

« You can create them in one step.

« They do not run in a WLM environment.

- They might be eligible for zIIP redirect if they are invoked remotely through a DRDA client.

« They usually perform better than external SQL procedures.

- They support more capabilities, such as nested compound statements, than external SQL procedures.
« Db2 can manage multiple versions of these procedures for you.

« You can specify that the SQL procedure commits autonomously, without committing the work of the
calling application.

218 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

All SQL procedures that are created without the FENCED or EXTERNAL options in the CREATE
PROCEDURE statement are native SQL procedures.

External SQL procedures (deprecated)

An external SQL procedure is a procedure whose body is written entirely in SQL. The body is written in
the SQL procedural language (SQL PL). However, an external SQL procedure is created, implemented, and
executed like other external stored procedures.

Deprecated function: External SQL procedures are deprecated and not as fully supported as native
SQL procedures. For best results, create native SQL procedures instead. For more information, see
“Creating native SQL procedures” on page 226 and “Migrating an external SQL procedure to a native
SQL procedure” on page 287.

AlL SQL procedures that were created prior to DB2 9 are external SQL procedures. Starting in Version
DB2 9, you can create an external SQL procedure by specifying FENCED or EXTERNAL in the CREATE
PROCEDURE statement.

SQL procedure body
The body of an SQL procedure contains one or more SQL statements. In the SQL procedure body, you can
also declare and use variables, conditions, return codes, statements, cursors, and handlers.

Statements that you can include in an SQL procedure body

A CREATE PROCEDURE statement for a native SQL procedure contains an SQL-routine-body, as defined
in CREATE PROCEDURE (SQL - native) (Db2 SQL). The syntax diagram for SQL-routine-body defines the
procedure body as a single SQL statement. The SQL statement can be one of the SQL statements that are
shown in the syntax diagram for SQL-routine-body, or an SQL control statement. The syntax diagram for
SQL-control-statement in SQL procedural language (SQL PL) (Db2 SQL) identifies the control statements
that can be specified.

A native SQL procedure can contain multiple SQL statements if the outermost SQL statement is

an SQL-control-statement that includes other SQL statements. These statements are defined as SQL
procedure statements. The syntax diagram in SQL-procedure-statement (SQL PL) (Db2 SQL) identifies
the SQL statements that can be specified within a control statement. The syntax notes for SQL-procedure-
statement clarify the SQL statements that are allowed in a native SQL procedure.

Examples

The following examples show how to determine whether an SQL statement is allowed in an SQL
procedure.

The syntax diagrams for the control statements indicate where semicolons are needed in an SQL
procedure. If the procedure contains a single statement that is not a control statement, such as Example
1, then no semicolons are in the CREATE PROCEDURE statement. If the procedure consists of multiple
statements, such as Example 2, use semicolons to separate SQL statements within the SQL procedure. Do
not put a semicolon after the outermost control statement.

Example 1

CREATE PROCEDURE UPDATE_SALARY_1
(IN EMPLOYEE_NUMBER CHAR(10),
IN RATE DECIMAL(6,2))

LANGUAGE SQL

MODIFIES SQL DATA

DETERMINISTIC

COMMIT ON RETURN YES
UPDATE EMP
SET SALARY = SALARY * RATE
WHERE EMPNO = EMPLOYEE_NUMBER

Chapter 3. Db2 SQL programming 219

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createproceduresqlnative.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sqlplnativeintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sqlprocedurestatement4nativesqlpl.html

The UPDATE statement (iY) is an SQL statement that is allowed because it is listed in the syntax
diagram for SQL-routine-body.

Example 2

CREATE PROCEDURE GETWEEKENDS(IN MYDATES DATEARRAY, OUT WEEKENDS DATEARRAY)
BEGIN
-~ ARRAY INDEX VARIABLES
DECLARE DATEINDEX, WEEKENDINDEX INT DEFAULT 1; IEH
-- VARIABLE TO STORE THE ARRAY LENGTH OF MYDATES,
-~ INITIALIZED USING THE CARDINALITY FUNCTION.
DECLARE DATESCOUNT INT; IEH
SET DATESCOUNT = CARDINALITY(MYDATES);
-- FOR EACH DATE IN MYDATES, IF THE DATE IS A SUNDAY OR SATURDAY,
-- ADD IT TO THE OUTPUT ARRAY NAMED "WEEKENDS"
WHILE DATEINDEX <= DATESCOUNT DO [DN
IF DAYOFWEEK (MYDATES[DATEINDEX]) IN (1, 7) THEN
SET WEEKENDS[WEEKENDINDEX] = MYDATES[DATEINDEX];
SET WEEKENDINDEX = WEEKENDINDEX + 1;
END IF;
SET DATEINDEX = DATEINDEX + 1;
END WHILE;

END

The SQL procedure has the following keywords and statements:

« The BEGIN and END keywords indicate the beginning and the end of a compound statement.

» The DECLARE statements (&J) are components of a compound statement, and define SQL variables
within the compound statement.

» The SET assignment statements (8 are SQL control statements that assign values to SQL variables.
« The WHILE statement (J8)) and the IF statement (J&@) are SQL control statements.

A compound statement is an SQL control statement. SQL control statements are allowed in the SQL
procedure body because SQL-control-statement is listed in the syntax diagram for SQL-routine-body of
a CREATE PROCEDURE (SQL - native) statement.

Related concepts

Nested compound statements in native SQL procedures

Nested compound statements are blocks of SQL statements that are contained by other blocks of SQL
statements in native SQL procedures. Use nested compound statements to define condition handlers that
execute more than one statement and to define different scopes for variables and condition handlers.

Stored procedure parameters

You can pass information between a stored procedure and the calling application program by using
parameters. Applications pass the required parameters in the SQL CALL statement. Optionally, the
application can also include an indicator variable with each parameter to allow for null values or to pass
large output parameter values.

Promotion of data types (Db2 SQL)
Related reference
compound-statement (Db2 SQL)

Variables in SQL procedures

For data that you use only within an SQL procedure, you can declare SQL variables and store the values in
the variables. SQL variables are similar to host variables in external stored procedures. SQL variables can
be defined with the same data types and lengths as SQL procedure parameters.

An SQL variable declaration has the following form:
DECLARE SQL-variable-name data-type;

An SQL variable is defined in a compound statement. SQL variables can be referenced anywhere in the
compound statement in which they are declared, including any SQL statement that is directly or indirectly
nested within that compound statement. For more information, see References to SQL parameters and
variables in SQL PL (Db2 SQL).

220 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_promotionofdatatypes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_compoundstatement4nativesqlpl.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_refs2parmsandvarsinnativesqlpl.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_refs2parmsandvarsinnativesqlpl.html

You can perform any operations on SQL variables that you can perform on host variables in SQL
statements.

Related concepts

Host variables
Use host variables to pass a single data item between Db2 and your application.

Using host variables in SQL statements
Use scalar host variables in embedded SQL statements to represent a single value. Host variables are
useful for storing retrieved data or for passing values that are to be assigned or used for comparisons.

Related tasks

Controlling the scope of variables in an SQL procedure

Use nested compound statements within an SQL procedure to define the scope of SQL variables. You
can reference the variable only within the compound statement in which it was declared and within any
nested statements.

Examples of SQL procedures

You can use CASE statements, compound statements, and nested statements within an SQL procedure
body.

Example: CASE statement: The following SQL procedure demonstrates how to use a CASE statement.
The procedure receives an employee's ID number and rating as input parameters. The CASE statement
modifies the employee's salary and bonus, using a different UPDATE statement for each of the possible
ratings.

CREATE PROCEDURE UPDATESALARY2
(IN EMPNUMBR CHAR(6),
IN RATING INT)
LANGUAGE SQL
MODIFIES SQL DATA
CASE RATING
WHEN 1 THEN
UPDATE CORPDATA.EMPLOYEE
SET SALARY = SALARY % 1.10, BONUS = 1000
WHERE EMPNO = EMPNUMBR;
WHEN 2 THEN
UPDATE CORPDATA.EMPLOYEE

SET SALARY = SALARY * 1.05, BONUS = 500
WHERE EMPNO = EMPNUMBR;

ELSE

UPDATE CORPDATA.EMPLOYEE
SET SALARY = SALARY * 1.03, BONUS = 0O

WHERE EMPNO = EMPNUMBR;
END CASE

Example: Compound statement with nested IF and WHILE statements: The following example shows a
compound statement that includes an IF statement, a WHILE statement, and assignment statements. The
example also shows how to declare SQL variables, cursors, and handlers for classes of error codes.

The procedure receives a department number as an input parameter. A WHILE statement in the
procedure body fetches the salary and bonus for each employee in the department, and uses an SQL
variable to calculate a running total of employee salaries for the department. An IF statement within the
WHILE statement tests for positive bonuses and increments an SQL variable that counts the number of
bonuses in the department. When all employee records in the department have been processed, a NOT
FOUND condition occurs. ANOT FOUND condition handler makes the search condition for the WHILE
statement false, so execution of the WHILE statement ends. Assighment statements then assign the total
employee salaries and the number of bonuses for the department to the output parameters for the stored
procedure.

If any SQL statement in the compound statement P1 receives an error, the SQLEXCEPTION handler
receives control. The handler action sets the output parameter DEPTSALARY to NULL. After the handler
action has completed successfully, the original error condition is resolved (SQLSTATE '00000', SQLCODE

Chapter 3. Db2 SQL programming 221

0). Because this handler is an EXIT handler, execution passes to the end of the compound statement, and
the SQL procedure ends.

CREATE PROCEDURE RETURNDEPTSALARY
(IN DEPTNUMBER CHAR(3),
OUT DEPTSALARY DECIMAL(15,2),
OUT DEPTBONUSCNT INT)
LANGUAGE SOQL
READS SQL DATA
P1: BEGIN
DECLARE EMPLOYEE_SALARY DECIMAL(9,2);
DECLARE EMPLOYEE_BONUS DECIMAL(9,2):
DECLARE TOTAL_SALARY DECIMAL(15,2) DEFAULT O;
DECLARE BONUS_CNT INT DEFAULT 0;
DECLARE END_TABLE INT DEFAULT 0;
DECLARE C1 CURSOR FOR
SELECT SALARY, BONUS FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = DEPTNUMBER;
DECLARE CONTINUE HANDLER FOR NOT FOUND
SET END_TABLE = 1;
DECLARE EXIT HANDLER FOR SQLEXCEPTION
SET DEPTSALARY = NULL;
OPEN C1;
FETCH C1 INTO EMPLOYEE_SALARY, EMPLOYEE_BONUS;
WHILE END_TABLE = 0 DO
SET TOTAL_SALARY = TOTAL_SALARY + EMPLOYEE_SALARY + EMPLOYEE_BONUS;
IF EMPLOYEE_BONUS > O THEN
SET BONUS_CNT = BONUS_CNT + 1;
END IF;
FETCH C1 INTO EMPLOYEE_SALARY, EMPLOYEE_BONUS;
END WHILE;
CLOSE C1;
SET DEPTSALARY =
SET DEPTBONUSCNT
END P1

TOTAL_SALARY;
= BONUS_CNT;

Example: Compound statement with dynamic SQL statements: The following example shows a
compound statement that includes dynamic SQL statements.

The procedure receives a department number (P_DEPT) as an input parameter. In the compound
statement, three statement strings are built, prepared, and executed:

« The first statement string executes a DROP statement to ensure that the table to be created does not
already exist. The table name is the concatenation of the TABLE_PREFIX constant value, the P_DEPT
parameter value, and the TABLE_SUFFIX constant value.

« The next statement string executes a CREATE statement to create DEPT_deptno_T.
« The third statement string inserts rows for employees in department deptno into DEPT_deptno_T.

Just as statement strings that are prepared in host language programs cannot contain host variables,
statement strings in SQL procedures cannot contain SQL variables or stored procedure parameters.
Therefore, the third statement string contains a parameter marker that represents P_DEPT. When the
prepared statement is executed, parameter P_DEPT is substituted for the parameter marker.

CREATE PROCEDURE CREATEDEPTTABLE (IN P_DEPT CHAR(3))
LANGUAGE SQL
BEGIN
DECLARE STMT CHAR(1000);
DECLARE MESSAGE CHAR(20);
DECLARE TABLE_NAME CHAR(30);
DECLARE TABLE_PREFIX VARCHAR(15) CONSTANT 'DEPT_';
DECLARE TABLE_SUFFIX VARCHAR(15) CONSTANT '_T';
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SET MESSAGE = 'ok';
SET TABLE_NAME = TABLE_PREFIX||P_DEPT||TABLE_SUFFIX;
SET STMT = 'DROP TABLE '||TABLE_NAME;
PREPARE S1 FROM STMT;
EXECUTE S1;
SET STMT = 'CREATE TABLE '||TABLE_NAME] |
"(EMPNO CHAR(6) NOT NULL, "[|
'"FIRSTNME VARCHAR(6) NOT NULL, '[]
'"MIDINIT CHAR(1) NOT NULL, '[|
"LASTNAME CHAR(15) NOT NULL, '[]
"SALARY DECIMAL(9,2))';
PREPARE S2 FROM STMT;

222 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

EXECUTE S2;

SET STMT = 'INSERT INTO TABLE '||TABLE_NAME ||
'"SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY '||
'FROM EMPLOYEE '| |
'"WHERE WORKDEPT = ?°';

PREPARE S3 FROM STMT;

EXECUTE S3 USING P_DEPT;

END

Autonomous procedures
Autonomous procedures execute under their own units of work, separate from the calling program, and
commit when they finish without committing the work of the calling program.

Autonomous procedures execute as separate units of work that are independent from the calling
application programs. Autonomous procedures follow the rules of the COMMIT ON RETURN YES option
for their changes before returning to the caller. However, their commit does not impact changes
completed by the calling application program. The calling application program controls when its own
updates are committed or rolled back.

If the calling application rolls back its own changes, the committed changes of the autonomous procedure
are not affected. Therefore, autonomous procedures are useful for logging information about error
conditions encountered by an application program. When the application encounters the error and rolls
back its own changes, the committed changes of the autonomous procedure remain available.

Autonomous procedures can be called by normal application programs, other stored procedures, user-
defined functions or triggers. Autonomous procedures can complete the following types of work:

« Execute SQL statements

« Invoke another procedure, function, or trigger, as long as the number of nested levels does not exceed
64, and the called procedure is not autonomous.

« Execute COMMIT and ROLLBACK statements that apply to the SQL operations executed by nested
processes within the autonomous procedure.

The following restrictions apply to autonomous procedures:

 Only native SQL procedures can be defined as autonomous.

- Autonomous procedures and nested procedure, triggers, and functions within autonomous procedures
cannot invoke other autonomous procedures.

- Autonomous procedures cannot see uncommitted changes from the calling application.
« When multiple versions of a procedure exist, all versions must be defined as autonomous.

- Autonomous procedures do not share locks with the calling application, meaning that the autonomous
procedure might timeouts because of lock contention with the calling application.

« Parallelism is disabled for autonomous procedures. All statements in an autonomous procedure and for
any nested levels within are run in sequential processing mode.

« DYNAMIC RESULT SETS 0 must be specified when autonomous procedures are used.

- Stored procedure parameters must not be defined as a LOB data type, or any distinct data type that is
based on a LOB or XML value.

Related tasks
Controlling autonomous procedures (Db2 Administration Guide)

External stored procedures
An external stored procedure is a procedure that is written in a host language and can contain SQL
statements. The source code for external procedures is separate from the definition.

An external stored procedure is much like any other SQL application. It can include static or dynamic

SQL statements, IFI calls, and Db2 commands that are issued through IFI. You prepare external stored
procedures as you would normally prepare application programs. You precompile, compile, and link-edit
them. Then, you bind the DBRM into a package. You also need to define the procedure to Db2 by using the

Chapter 3. Db2 SQL programming 223

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_controlautonomousprocedure.html

CREATE PROCEDURE statement. Thus, the source code for an external stored procedure is separate from
the definition for the stored procedure.

Language requirements for the external stored procedure and its caller

You can write an external stored procedure in Assembler, C, C++, COBOL, Java, REXX, or PL/I. All
programs must be designed to run using Language Environment. Your COBOL and C++ stored procedures
can contain object-oriented extensions.

The program that calls the stored procedure can be in any language that supports the SQL CALL
statement. ODBC applications can use an escape clause to pass a stored procedure call to Db2.

Related concepts

Object-oriented extensions in COBOL

When you use object-oriented extensions in a COBOL application, you need to consider where to place
SQL statements, the SQLCA, the SQLDA, and host variable declarations. You also need to consider the
rules for host variables.

REXX stored procedures

A REXX stored procedure is similar to any other REXX procedure and follows the same rules as stored
procedures in other languages. A REXX stored procedure receives input parameters, executes REXX
commands, optionally executes SQL statements, and returns at most one output parameter. However, a
few differences exist.

Java stored procedures and user-defined functions (Db2 Application Programming for Java)

Differences between native SQL procedures and external procedures

SQL procedures are written entirely in SQL statements. External procedures are written in a host language
and can contain SQL statements. You can invoke both types of procedures with an SQL CALL statement.
However, you should consider several important differences in behavior and preparation.

Native SQL procedures and external procedures differ in the following ways:
How they handles errors

« For an SQL procedure, Db2 automatically returns SQL conditions in the SQLCA when the procedure
does not include a RETURN statement or a handler. For information about the various ways to
handle errors in an SQL procedure, see “Handling SQL conditions in an SQL procedure” on page 232.

« For an external stored procedure, Db2 does not return SQL conditions in the SQLCA to the invoking
application. If you use PARAMETER STYLE SQL when you define an external procedure, you can set
SQLSTATE to indicate an error before the procedure ends. For valid SQLSTATE values, see SQLSTATE
values and common error codes (Db2 Codes).

How they specify the code for the stored procedure
SQL procedure definitions contain the source code for the stored procedure. An external stored
procedure definition specifies the name of the stored procedure program.

How you define the stored procedure.
For both native SQL procedures and external procedures, you define the stored procedure to Db2
by executing the CREATE PROCEDURE statement. For external procedures, you must also separately
bind the source code for procedure into a package. You can do this before or after you issue the
CREATE PROCEDURE statement to define the external procedure.

Examples

Creating a native SQL procedure
The following example shows a definition for an SQL procedure.

CREATE PROCEDURE UPDATESALARY1
(IN EMPNUMBR CHAR(10),

IN RATE DECIMAL(6,2))
LANGUAGE SQL

UPDATE EMP

EE S5

224 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javaroutines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_sqlstatevalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_sqlstatevalues.html

SET SALARY = SALARY * RATE
WHERE EMPNO = EMPNUMBR

Notes:

(1]
The stored procedure name is UPDATESALARY1.

H
The two parameters have data types of CHAR(10) and DECIMAL(6,2). Both are input parameters.

H
LANGUAGE SQL indicates that this is an SQL procedure, so a procedure body follows the other
parameters.

4]

The procedure body consists of a single SQL UPDATE statement, which updates rows in the
employee table.

Creating an external stored procedure
The following example shows a definition for an equivalent external stored procedure that is written in
COBOL. The stored procedure program, which updates employee salaries, is called UPDSAL.

CREATE PROCEDURE UPDATESALARY1
(IN EMPNUMBR CHAR(10),
IN RATE DECIMAL(6,2))
LANGUAGE COBOL
EXTERNAL NAME UPDSAL;
Notes:
The stored procedure name is UPDATESALARY1.
H
The two parameters have data types of CHAR(10) and DECIMAL(6,2). Both are input parameters.
E

LANGUAGE COBOL indicates that this is an external procedure, so the code for the stored
procedure is in a separate, COBOL program.

The name of the load module that contains the executable stored procedure program is UPDSAL.
Related reference
CREATE PROCEDURE (Db2 SQL)
CREATE PROCEDURE (external) (Db2 SQL)
CREATE PROCEDURE (SQL - native) (Db2 SQL)

COMMIT and ROLLBACK statements in a stored procedure
When you issue COMMIT or ROLLBACK statements in your stored procedure, Db2 commits or rolls back
all changes within the unit of work.

For procedures that are not defined as autonomous, the committed or rolled back changes include
changes that the client application made before it called the stored procedure and Db2 work that the
stored procedure does. For autonomous procedures, the committed or rolled back changes include only
work done by the stored unit of work for the stored procedure.

If your stored procedure includes COMMIT or ROLLBACK statements, define it with the one of the
following clauses:

« CONTAINS SQL
« READS SQL DATA
+ MODIFIES SQL DATA

The COMMIT ON RETURN clause in a stored procedure definition has no effect on the COMMIT or
ROLLBACK statements in the stored procedure code. If you specify COMMIT ON RETURN YES when you

Chapter 3. Db2 SQL programming 225

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createprocedureexternal.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createproceduresqlnative.html

define the stored procedure, Db2 issues a COMMIT statement when control returns from the stored
procedure. This action occurs regardless of whether the stored procedure contains COMMIT or ROLLBACK
statements.

If you specify AUTONOMOUS when you define the stored procedure, the autonomous procedure is a
separate unit of work from the calling application. Db2 issues a COMMIT statement when control returns
from the stored procedure, but only changes completed by the autonomous procedure are committed.
Similarly, COMMIT or ROLLBACK statements in the autonomous procedure code also have no effect on
work done by the calling application.

A ROLLBACK statement has the same effect on cursors in a stored procedure as it has on cursors in
stand-alone programs. A ROLLBACK statement closes all open cursors. A COMMIT statement in a stored
procedure closes cursors that are not declared WITH HOLD and leaves open those cursors that are
declared WITH HOLD. The effect of COMMIT or ROLLBACK on cursors applies to cursors that are declared
in the calling application and to cursors that are declared in the stored procedure.

Restriction: You cannot include COMMIT or ROLLBACK statements in a stored procedure if any of the
following conditions are true:

« The stored procedure is nested within a trigger or user-defined function.
« The stored procedure is called by a client that uses two-phase commit processing.

- The client program uses a type 2 connection to connect to the remote server that contains the stored
procedure.

* Db2 is not the commit coordinator.

If a COMMIT or ROLLBACK statement in a stored procedure violates any of these conditions, Db2 puts the
transaction in a must-rollback state. Also, in this case, the CALL statement fails.

Related reference
CALL (Db2 SQL)
COMMIT (Db2 SQL)
ROLLBACK (Db2 SQL)

Special registers in a stored procedure

You can use all special registers in a stored procedure. However, you can modify only some of those
special registers. After a stored procedure completes, Db2 restores all special registers to the values that
they had before invocation.

Creating native SQL procedures

A native SQL procedure is a procedure whose body is written entirely in SQL and is created by issuing a
single SQL statement, CREATE PROCEDURE.

Before you begin

Before you create a native SQL procedure, Configure Db2 for running stored procedures and user-defined
functions during installation or Configure Db2 for running stored procedures and user-defined functions
during migration if the native SQL procedure satisfies at least one of the following conditions:

« The native SQL procedure calls at least one external stored procedure, external SQL procedure, or
user-defined function.

« The native SQL procedure is defined with ALLOW DEBUG MODE or DISALLOW DEBUG MODE. If you
specify DISABLE DEBUG MODE, you do not need to set up the stored procedure environment.

About this task

A native SQL procedure is a procedure whose body is written entirely in SQL. The body is written

in the SQL procedural language (SQL PL). A native SQL procedure is created by issuing a single SQL
statement, CREATE PROCEDURE. Native SQL procedures do not require any other program preparation,
such as precompiling, compiling, or link-editing source code. Native SQL procedures are executed as SQL

226 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_call.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_commit.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_rollback.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html

statements that are bound in a Db2 package. Native SQL procedures do not have an associated external
application program. Native SQL procedures are more fully supported, easier to maintain, and typically
perform better than external SQL procedures, which are deprecated.

Procedure

To create a native SQL procedure, perform one of the following actions:

« Useatool such as Db2 Developer Extension to specify the source statements for the SQL procedure
and deploy the SQL procedure to Db2. For more information, see IBM Db2 for z/OS Developer
Extension for Visual Studio Code.

« Use IBM Data Studio to specify the source statements for the SQL procedure and deploy the SQL
procedure to Db2.

IBM Data Studio also allows you to create copies of the procedure package as needed and to deploy
the procedure to remote servers.

« Manually deploy the native SQL procedure by completing the following steps:
a) Issue the CREATE PROCEDURE statement:

— Include a procedure body written entirely in the SQL procedural language (SQL PL). For more
information about what you can do within the procedure body, see SQL-routine-body in CREATE
PROCEDURE (SQL - native) (Db2 SQL), SQL-control-statement in SQL procedural language (SQL
PL) (Db2 SQL), and the following information:

- “Controlling the scope of variables in an SQL procedure” on page 228

- “Declaring cursors in an SQL procedure with nested compound statements” on page 231

- “Handling SQL conditions in an SQL procedure” on page 232

- “Raising a condition within an SQL procedure by using the SIGNAL or RESIGNAL statements”
on page 241

— Do not include the FENCED or EXTERNAL keywords, which specify the creation of an external
SQL procedures, which are deprecated.

— You can specify the AUTONOMOUS keyword to enable the procedure to commit without
committing the work of the calling application. Autonomous procedures cannot see uncommitted
changes of the calling application, and they cannot call other autonomous procedures.

When you issue this CREATE PROCEDURE statement, the first version of this procedure is defined
to Db2, and a package is implicitly bound with the options that you specify on the CREATE
PROCEDURE statement.

b) If the native SQL procedure contains one or more of the following statements or references, make
copies of the native SQL procedure package, as needed:

CONNECT
SET CURRENT PACKAGESET
SET CURRENT PACKAGE PATH

A table reference with a three-part name that refers to a location other than the current server or
refers to an alias that resolves to such a name.

c¢) If you plan to call the native SQL procedure at another Db2 server, deploy the procedure to another
Db2 for z/OS server. You can customize the bind options at the same time.

d) Authorize the appropriate users to call the stored procedure.

What to do next

After you create a native SQL procedure, you can create additional versions of the procedure as needed.
For more information, see “Creating new versions of native SQL procedures” on page 246.

Related concepts

SQL procedures

Chapter 3. Db2 SQL programming 227

https://marketplace.visualstudio.com/items?itemName=ibm.db2forzosdeveloperextension
https://marketplace.visualstudio.com/items?itemName=ibm.db2forzosdeveloperextension
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createproceduresqlnative.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createproceduresqlnative.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sqlplnativeintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sqlplnativeintro.html

An SQL procedure is a stored procedure that contains only SQL statements.

SQL procedure body

The body of an SQL procedure contains one or more SQL statements. In the SQL procedure body, you can
also declare and use variables, conditions, return codes, statements, cursors, and handlers.

Related tasks

Implementing Db2 stored procedures (Db2 Administration Guide)

Developing database routines (IBM Data Studio, IBM Optim Database Administrator, IBM infoSphere Data
Architect, IBM Optim Development Studio)

Related reference
CREATE PROCEDURE (SQL - native) (Db2 SQL)

Controlling the scope of variables in an SQL procedure

Use nested compound statements within an SQL procedure to define the scope of SQL variables. You
can reference the variable only within the compound statement in which it was declared and within any
nested statements.

Procedure

To control the scope of a variable in an SQL procedure:

1. Declare the variable within the compound statement in which you want to reference it. Ensure that the
variable name is unique within the compound statement, not including any nested statements. You can
define variables with the same name in other compound statements in the same SQL procedure.

2. Reference the variable within that compound statement or any nested statements.

Recommendation: If multiple variables with the same name exist within an SQL procedure, qualify the
variable with the label from the compound statement in which it was declared. Otherwise, you might
accidentally reference the wrong variable.

If the variable name is unqualified and multiple variables with that name exist within the same scope,
Db2 uses the variable in the innermost compound statement.

Example

The following example contains three declarations of the variable A. One instance is declared in the

outer compound statement, which has the label OUTER1. The other instances are declared in the inner
compound statements with the labels INNER1 and INNER2. In the INNER1 compound statement, Db2
presumes that the unqualified references to A in the assignment statement and UPDATE statement refer
to the instance of A that is declared in the INNER1 compound statement. To refer to the instance of A that
is declared in the OUTER1 compound statement, qualify the variable as OUTER1.A.

CREATE PROCEDURE P2 ()
LANGUAGE SQL

-- Outermost compound statement ------------------------
OUTER1: BEGIN
DECLARE A INT DEFAULT 100;
-- Inner compound statement with label INNER1 ---
INNER1: BEGIN
DECLARE A INT DEFAULT NULL;
DECLARE W INT DEFAULT NULL;
SET A = A + OUTER1.A;

UPDATE T1 SET T1.B = 5
WHERE T1.B = A;

SET OUTER1.A = 100;
SET INNER1.A = 200;
END INNERZ;
-- End of inner compound statement INNER1 ------

-- Inner compound statement with label INNER2 ---

228 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_storedprocedureimplementation.html
https://www.ibm.com/docs/en/search/developing%20database%20routines
https://www.ibm.com/docs/en/search/developing%20database%20routines
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createproceduresqlnative.html

INNER2: BEGIN JEN
DECLARE A INT DEFAULT NULL;
DECLARE Z INT DEFAULT NULL;
SET A = A + OUTERL.A;

END INNER2;
-- End of inner compound statement INNER2 ------

SET OUTERL.A = 100;
END OUTER1

The preceding example has the following parts:

1. The beginning of the outermost compound statement, which has the label OUTER1.

2. The beginning of the inner compound statement with the label INNER1.

3. The unqualified variable A refers to INNER1.A.

4. The unqualified variable A refers to INNER1.A.

5. OUTER1.A is a valid reference, because this variable is referenced in a nested compound statement.

6. INNER1.A is a valid reference, because this variable is referenced in the same compound statement
in which it is declared. You cannot reference INNER2.A, because this variable is not in the scope of
this compound statement.

7. The end of the inner compound statement with the label INNER1.

8. The beginning of the inner compound statement with the label INNER2.
9. The end of the inner compound statement with the label INNER2.

10. OUTER1.A is a valid reference, because this variable is referenced in the same compound statement
in which it is declared. You cannot reference INNERZ1.A, because this variable is declared in a nested
statement and cannot be referenced in the outer statement.

11. The end of the outermost compound statement, which has the label OUTER1.

Related concepts

Variables in SQL procedures

For data that you use only within an SQL procedure, you can declare SQL variables and store the values in
the variables. SQL variables are similar to host variables in external stored procedures. SQL variables can
be defined with the same data types and lengths as SQL procedure parameters.

References to SQL parameters and variables in SQL PL (Db2 SQL)

Nested compound statements in native SQL procedures

Nested compound statements are blocks of SQL statements that are contained by other blocks of SQL
statements in native SQL procedures. Use nested compound statements to define condition handlers that
execute more than one statement and to define different scopes for variables and condition handlers.

The following pseudo code shows a basic structure of an SQL procedure with nested compound
statements:

CREATE PROCEDURE. ..
OUTERMOST: BEGIN

""INNER1: BEGIN
" "INNERMOST: BEGIN
END INNERMOST;

END INNERZ1;
INNER2: BEGIN

END INNER2:
END OUTERMOST

Chapter 3. Db2 SQL programming 229

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_refs2parmsandvarsinnativesqlpl.html

In the preceding code, the OUTERMOST compound statement contains two nested compound
statements: INNER1 and INNER2. INNER1 contains one nested compound statement: INNERMOST.

Related concepts

Handlers in an SQL procedure

If an error occurs when an SQL procedure executes, the procedure ends unless you include statements to
tell the procedure to perform some other action. These statements are called handlers.

Related tasks

Defining condition handlers that execute more than one statement
A condition handler defines the action that an SQL procedure takes when a particular condition occurs.
You must specify the action as a single SQL procedure statement.

Statement labels for nested compound statements in native SQL procedures

You can define a label for each compound statement in an SQL procedure. This label enables you to
reference this block of statements in other statements such as the GOTO, LEAVE, and ITERATE SOL
PL control statements. You can also use the label to qualify a variable when necessary. Labels are not
required.

A label name must meet the following criteria:

- Be unique within the compound statement, including any compound statements that are nested within
the compound statement.

» Not be the same as the name of the SQL procedure.

You can reference a label within the compound statement in which it is defined, including any compound
statements that are nested within that compound statement.

Example of statement labels: The following example shows several statement labels and their scope:

CREATE PROCEDURE P1 ()
LANGUAGE SQL

--Outermost compound statement ------------------------
OUTER1: BEGIN

--Inner compound statement with label INNER1 ---
INNER1: BEGIN
IF...
ABC: LEAVE INNERZ1;
ELSEIF
XYZ: LEAVE OUTER1;
END IF

END INNERZ;
--End of inner compound statement INNER1 ------

--Inner compound statement with label INNER2---
INNER2: BEGIN
XYZ:...statement KM
END INNER2;
-- End of inner compound statement INNER2 -----

END OUTER1

The preceding example has the following parts:

1. The beginning of the outermost compound statement, which is labeled OUTER1
2. The beginning of an inner compound statement that is labeled INNER1

3. ALEAVE statement that is defined with the label ABC. This LEAVE statement specifies that Db2 is to
terminate processing of the compound statement INNERZ1 and begin processing the next statement,
which is INNER2. This LEAVE statement cannot specify INNER2, because that label is not within the
scope of the INNER1 compound statement.

4. A LEAVE statement that is defined with the label XYZ. This LEAVE statement specifies that Db2 is to
terminate processing of the compound statement OUTER1 and begin processing the next statement, if
one exists. This example does not show the next statement.

230 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

5. The beginning of an inner compound statement that is labeled INNER2.

6. A statement that is defined with the label XYZ. This label is acceptable even though another statement
in this procedure has the same label, because the two labels are in different scopes. Neither label is
contained within the scope of the other.

7. The end of the outermost compound statement that is labeled OUTER1.
The following examples show valid and invalid uses of labels:

Invalid example of labels:

L1: BEGIN
L2: SET A = B;
L1: GOTO L2: --This duplicate use of the label L1 causes an error, because
--the same label is already used in the same scope.
END L1;

Valid example of labels:

L1: BEGIN
L2: BEGIN
L4: BEGIN --This line contains the first use of the label L4
DECLARE A CHAR(5);
SET A = B;
END L4;
END L2;

L3: BEGIN
L4: BEGIN --This second use of the label L4 is valid, because
--it is used in a different scope.
DECLARE A CHAR(5);
SET A = B;
END L4;
END L3;
END L1;

Declaring cursors in an SQL procedure with nested compound statements

When you declare a cursor in an SQL procedure that has nested compound statements, you cannot
necessarily reference the cursor anywhere in the procedure. The scope of the cursor is constrained to the
compound statement in which you declare it.

Procedure

Specify the DECLARE CURSOR statement within the compound statement in which you want to reference
the cursor. Use a cursor name that is unique within the SQL procedure.

You can reference the cursor within the compound statement in which it is declared and within any nested
statements. If the cursor is declared as a result set cursor, even if the cursor is not declared in the
outermost compound statement, any calling application can reference it.

Example

In the following example, cursor X is declared in the outer compound statement. This cursor can be
referenced within the outer block in which it was declared and within any nested compound statements.

CREATE PROCEDURE SINGLE_CSR
(INOUT IR1 INT, INOUT JR1 INT, INOUT IR2 INT, INOUT JR2 INT)
LANGUAGE SQL
DYNAMIC RESULT SETS 2
BEGIN
DECLARE I INT;
DECLARE J INT;
DECLARE X CURSOR WITH RETURN FOR --outer declaration for X
SELECT * FROM CSRT1;

SUB: BEGIN
OPEN X; --references X in outer block
FETCH X INTO I,3J; --references X in outer block
SET IR1 = I;

Chapter 3. Db2 SQL programming 231

SET JR1 = J;
END;

FETCH X INTO I,3J; --references X in outer block
SET IR2 = I;

SET JR2 = j;

CLOSE X;

END

Related reference
CREATE PROCEDURE (SQL - native) (Db2 SQL)
DECLARE CURSOR (Db2 SQL)

Handling SQL conditions in an SQL procedure
In an SQL procedure, you can specify how the program should handle certain SQL errors and SQL
warnings.

About this task

If you do not include a handler or a RETURN statement in the SQL procedure, Db2 automatically returns
any SQL conditions to the caller in the SQLCA.

Procedure

To handle SQL conditions, use one of the following techniques:

« Include statements called handlers to tell the procedure to perform some other action when an error
or warning occurs.

e Include a RETURN statement in an SQL procedure to return an integer status value to the caller.

« Include a SIGNAL statement or a RESIGNAL statement to raise a specific SQLSTATE and to define the
message text for that SQLSTATE.

« Force a negative SQLCODE to be returned by a procedure if a trigger calls the procedure.

Handlers in an SQL procedure
If an error occurs when an SQL procedure executes, the procedure ends unless you include statements to
tell the procedure to perform some other action. These statements are called handlers.

Handlers are similar to WHENEVER statements in external SQL application programs. Handlers tell the
SQL procedure what to do when an error or warning occurs, or when no more rows are returned from a
query. In addition, you can declare handlers for specific SQLSTATEs. You can refer to an SQLSTATE by its
number in a handler, or you can declare a name for the SQLSTATE and then use that name in the handler.

The general form of a handler declaration is:

DECLARE handler-type HANDLER FOR condition SQL-procedure-statement;

In general, the way that a handler works is that when an error occurs that matches condition, the
SQL-procedure-statement executes. When the SQL-procedure-statement completes, Db2 performs the
action that is indicated by handler-type.

Types of handlers

The handler type determines what happens after the completion of the SQL-procedure-statement. You can
declare the handler type to be either CONTINUE or EXIT:

CONTINUE
Specifies that after SQL-procedure-statement completes, execution continues with the statement after
the statement that caused the error.

EXIT
Specifies that after SQL-procedure-statement completes, execution continues at the end of the
compound statement that contains the handler.

232 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createproceduresqlnative.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_declarecursor.html

Example: CONTINUE handler: This handler sets flag at_end when no more rows satisfy a query. The
handler then causes execution to continue after the statement that returned no rows.

DECLARE CONTINUE HANDLER FOR NOT FOUND SET at_end=1;

Example: EXIT handler: This handler places the string 'Table does not exist' into output parameter
OUT_BUFFER when condition NO_TABLE occurs. NO_TABLE is previously declared as SQLSTATE 42704
(name is an undefined name). The handler then causes the SQL procedure to exit the compound
statement in which the handler is declared.

DECLARE NO_TABLE CONDITION FOR '42704';

bECLARE EXIT HANDLER FOR NO_TABLE
SET OUT_BUFFER='Table does not exist';

Defining condition handlers that execute more than one statement
A condition handler defines the action that an SQL procedure takes when a particular condition occurs.
You must specify the action as a single SQL procedure statement.

Procedure

To define a condition handler that executes more than one statement when the specified condition
occurs, specify a compound statement within the declaration of that handler.

Examples

Example
The following example shows a condition handler that captures the SQLSTATE value and sets a local
flag to TRUE.

BEGIN
DECLARE SQLSTATE CHAR(5);
DECLARE PrvSQLState CHAR(5) DEFAULT 'G0000';
DECLARE ExceptState INT;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
BEGIN
SET PrvSQLState
SET ExceptState

SQLSTATE;
TRUE;

END;

END...

Example
The following example declares a condition handler for SQLSTATE 72822. The subsequent SIGNAL
statement is within the scope of this condition handler and thus activates this handler. The condition
handler tests the value of the SQL variable VAR with an IF statement. Depending on the value of VAR,
the SQLSTATE is changed and the message text is set.

DECLARE EXIT HANDLER FOR SQLSTATE '72822'
IF (VAR = 'OK') THEN
RESIGNAL SQLSTATE '72623'
SET MESSAGE_TEXT = 'Got SQLSTATE 72822';
ELSE
RESIGNAL SQLSTATE '72319'
SET MESSAGE_TEXT = VAR;
END IF;

SIGNAL SQLSTATE '72822';

Related reference
compound-statement (Db2 SQL)

Chapter 3. Db2 SQL programming 233

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_compoundstatement4nativesqlpl.html

Controlling how errors are handled within different scopes in an SQL procedure

You can use nested compound statements in an SQL procedure to specify that errors be handled
differently within different scopes. You can also ensure that condition handlers are checked only with
a particular compound statement.

Procedure

To control how errors are handled within different scopes in an SQL procedure:

1. Optional: Declare a condition by specifying a DECLARE CONDITION statement within the compound
statement in which you want to reference it. You can reference a condition in the declaration of a
condition handler, a SIGNAL statement, or a RESIGNAL statement.

Restriction: If multiple conditions with that name exist within the same scope, you cannot explicitly
refer to a condition that is not the most local in scope. Db2 uses the condition in the innermost
compound statement.

2. Declare a condition handler by specifying a DECLARE HANDLER statement within the compound
statement to which you want the condition handler to apply. Within the declaration of the condition
handler, you can specify a previously defined condition.

Restriction: Condition handlers that are declared in the same compound statement cannot handle
conditions encountered in each other or themselves.

Examples

Example
In the following example, a condition with the name ABC is declared twice, and a condition named
XYZ is declared once.

CREATE PROCEDURE. ..
DECLARE ABC CONDITION...

DECLARE XYZ CONDITION...
BEGIN
DECLARE ABC CONDITION...
SIGNAL ABC;
END;

SIGNAL ABC;

The following notes refer to the preceding example:

1. ABC refers to the condition that is declared in the innermost block. If this statement were changed
to SIGNAL XYZ, XYZ would refer to the XYZ condition that is declared in the outermost block.

2. ABC refers to the condition that is declared in the outermost block.

Example
The following example contains multiple declarations of a condition with the name FOO, and a single
declaration of a condition with the name GORP.

CREATE PROCEDURE MYTEST (INOUT A CHAR(1), INOUT B CHAR(1))
L1: BEGIN
DECLARE GORP CONDITION
FOR SQLSTATE '33333'; -- defines a condition with the name GORP for SQLSTATE 33333

DECLARE EXIT HANDLER FOR GORP --defines a condition handler for SQLSTATE 33333
L2: BEGIN
DECLARE FOO CONDITION
FOR SQLSTATE '12345'; --defines a condition with the name FOO0 for SQLSTATE 12345
DECLARE CONTINUE HANDLER FOR FOO --defines a condition handler for SQLSTATE 12345
L3: BEGIN
SET A = 'A';
...more statements...
END L3;
SET B = 'B';

IF

SIGNAL FOO; --raises SQLSTATE 12345
ELSETF

234 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

SIGNAL GORP; --raises SQLSTATE 33333
END IF;

END L2;
L4: BEGIN

DECLARE FOO CONDITION
FOR SQLSTATE '54321' --defines a condition with the name FOO for SQLSTATE 54321

DECLARE EXIT HANDLER FOR F0O...; --defines a condition handler for SQLSTATE 54321
SIGNAL FOO SET MESSAGE_TEXT = '...'; --raises SQLSTATE 54321
L5: BEGIN
DECLARE FOO CONDITION
FOR SQLSTATE '99999'; --defines a condition with the name FOO for SQLSTATE 99999
...more statements. ..
END L5;
END L4;

--At this point, the procedure cannot reference F00, because this condition is not defined
--in this outer scope

END L1

Example
In the following example, the compound statement with the label OUTER contains two other
compound statements: INNER1A and INNER1B. The INNER1A compound statement contains
another compound statement, which has the label INNER1A2, and the declaration for a condition
handler HINNER1A. The body of the condition handler HINNER1A contains another compound
statement, which defines another condition handler, HINNER1A_HANDLER.

OUTER:
BEGIN R —
-- Handler for OUTER
DECLARE ... HANDLER -- HOUTER
BEGIN <---.

ENb; -- End of handler <---.

-- Level 1 - first compound statement
INNER1A:
BEGIN <--------- .
-- Handler for INNER1A
DECLARE ... HANDLER -- HINNER1A
BEGIN <------ .
-- Handler for handler HINNER1A
DECLARE. . .HANDLER --HINNER1A_HANDLER
BEGIN <---.

ENb; -- End of handler LI
-- stmt that gets condition

|

|

|

|

|

I
: -- more statements in handler |
END; -- End of HINNER1A handler<------ .
BEGIN <--.
DECLARE ... HANDLER...-- HINNER1A2
BEGIN; <---.

g |

END; -- End of handler <---.

-- statement that gets condition

|
|
|
|
|
|
|
|
|
|
|
|
I
INNER1A2: |
|
[
|
|
[
|
|
[
-- statement after statement |

: -- that encountered condition | |
END INNER1A2; <--' |
|

: -- statements in INNER1A
END INNER1A; <--mmmm--- '
-- Level 1 - second compound statement
INNER1B:

BEGIN CSECIEIECIECs .

-- Handler for handler INNER1B

Chapter 3. Db2 SQL programming 235

DECLARE ...HANDLER -- HINNER1B
BEGIN Comme- O
-- Handler for HINNER1B --
DECLARE ...HANDLER --HINNER1B_HANDLER
BEGIN <.
g |
END; -- End of handler <---.

; -- statements in handler
END; -- End of HINNER1B handler<------- .

: |
: -- statements in INNER1B
END INNER1B; o .

: -- statements in OUTER
END OUTER; O

The following notes apply to the preceding example:

1. If an exception, warning, or NOT FOUND condition occurs within the INNER1A2 compound
statement, the most appropriate handler within that compound statement is activated to handle
the condition. Then, one of the following actions occurs depending on the type of condition
handler:

« If the condition handler (HINNER1A?2) is an exit handler, control is returned to the end of the
compound statement that contained the condition handler.

« If the condition handler (HINNER1A2) is a continue handler, processing continues with the
statement after the statement that encountered the condition.

If no appropriate handler exists in the INNER1A2 compound statement, Db2 considers the
following handlers in the specified order:

a. The most appropriate handler within the INNER1A compound statement.
b. The most appropriate handler within the OUTER compound statement.

If no appropriate handler exists in the OUTER compound statement, the condition is an unhandled
condition. If the condition is an exception condition, the procedure terminates and returns an
unhandled condition to the invoking application. If the condition is a warning or NOT FOUND
condition, the procedure returns the unhandled warning condition to the invoking application.

2. If an exception, warning, or NOT FOUND condition occurs within the body of the condition handler
HINNERZ1A, and the condition handler HINNER1A_HANDLER is the most appropriate handler for
the exception, that handler is activated. Otherwise, the most appropriate handler within the OUTER
compound statement handles the condition. If no appropriate handler exists within the OUTER
compound statement, the condition is treated as an unhandled condition.

Example
In the following example, when statement2 results in a NOT FOUND condition, the appropriate
condition handler is activated to handle the condition. When the condition handler completes, the
compound statement that contains that condition handler terminates, because the condition handler
is an EXIT handler. Processing then continues with statement4.

BEGIN
DECLARE EXIT HANDLER FOR NOT FOUND
SET OUT_OF_DATA_FLAG = ON;
statementl. ..
statement2... --assume that this statement results in a NOT FOUND condition
statement3. ..
END;

statement4

236 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Example
In the following example, Db2 checks for SQLSTATE 22H11 only for statements inside the INNER
compound statement. Db2 checks for SQLEXCEPTION for all statements in both the OUTER and
INNER blocks.

OUTER: BEGIN
DECLARE varl INT;
DECLARE EXIT HANDLER FOR SQLEXCEPTION
RETURN -3;

INNER: BEGIN
DECLARE EXIT HANDLER FOR SQLSTATE '22H11'
RETURN -1;
DECLARE C1 CURSOR FOR SELECT coll FROM tableil;
OPEN C1;
CLOSE C1;

. -- more statements
END INNER;

-- more statements

Example
In the following example, Db2 checks for SQLSTATE 42704 only for statements inside the A
compound statement.

CREATE PROCEDURE EXIT_TEST ()
LANGUAGE SQL
BEGIN
DECLARE OUT_BUFFER VARCHAR(80) ;
DECLARE NO_TABLE CONDITION FOR SQLSTATE '42704';

A: BEGIN
DECLARE EXIT HANDLER FOR NO_TABLE
BEGIN
SET OUT_BUFFER ='Table does not exist';
END;
-- Drop potentially nonexistent table:
DROP TABLE JAVELIN;
B: SET OUT_BUFFER ='Table dropped successfully’;
END;
-- Copy OUT_BUFFER to some message table:
C: INSERT INTO MESSAGES VALUES (OUT_BUFFER);

The following notes describe a possible flow for the preceding example:

1. A nested compound statement with label A confines the scope of the NO_TABLE exit handler to the
statements that are specified in the A compound statement.

. If the table JAVELIN does not exist, the DROP statement raises the NO_TABLE condition.
. The exit handler for NO_TABLE is activated.
. The variable OUT_BUFFER is set to the string 'Table does not exist.'

. Execution continues with the INSERT statement. No more statements in the A compound
statement are processed.

o b~ W N

Example

The following example illustrates the scope of different condition handlers.

CREATE PROCEDURE ERROR_HANDLERS(IN PARAM INTEGER)
LANGUAGE SQL
OUTER: BEGIN
DECLARE I INTEGER;
DECLARE SQLSTATE CHAR(5) DEFAULT '00000';

DECLARE EXIT HANDLER FOR
SQLSTATE VALUE '38H02',
SQLSTATE VALUE '38H04',
SQLSTATE VALUE '38HI4',
SQLSTATE VALUE '38H06'

Chapter 3. Db2 SQL programming 237

OUTER_HANDLER: BEGIN
DECLARE TEXT VARCHAR(70);
SET TEXT = SQLSTATE ||
" RECEIVED AND MANAGED BY OUTER ERROR HANDLER' ;
RESIGNAL SQLSTATE VALUE '38HEO'
SET MESSAGE_TEXT = TEXT;
END OUTER_HANDLER;

INNER: BEGIN
DECLARE EXIT HANDLER FOR SQLSTATE VALUE '38H03'
RESIGNAL SQLSTATE VALUE '38HI3'
SET MESSAGE_TEXT = '38H03 MANAGED BY INNER ERROR HANDLER';

DECLARE EXIT HANDLER FOR SQLSTATE VALUE '38H04'
RESIGNAL SQLSTATE VALUE '38HI4'
SET MESSAGE_TEXT = '38H04 MANAGED BY INNER ERROR HANDLER';

DECLARE EXIT HANDLER FOR SQLSTATE VALUE '38HO5'
RESIGNAL SQLSTATE VALUE '38HI5'
SET MESSAGE_TEXT = '38H05 MANAGED BY INNER ERROR HANDLER';

CASE PARAM
WHEN 1 THEN -- (1)
SIGNAL SQLSTATE VALUE '38H01'
SET MESSAGE_TEXT =
"EXAMPLE 1: ERROR SIGNALED FROM INNER COMPOUND STMT';

WHEN 2 THEN)
SIGNAL SQLSTATE VALUE '38H02'
SET MESSAGE_TEXT =
"EXAMPLE 2: ERROR SIGNALED FROM INNER COMPOUND STMT';

WHEN 3 THEN -- (3)
SIGNAL SQLSTATE VALUE '38H03'
SET MESSAGE_TEXT =
'"EXAMPLE 3: ERROR SIGNALED FROM INNER COMPOUND STMT';

WHEN 4 THEN -- (4)
SIGNAL SQLSTATE VALUE '38H04'
SET MESSAGE_TEXT =
"EXAMPLE 4: ERROR SIGNALED FROM INNER COMPOUND STMT';

ELSE
SET I = 1; /*Do not do anything %/
END CASE;
END INNER;

CASE PARAM
WHEN 5 THEN -- (5)
SIGNAL SQLSTATE VALUE '38H05'
SET MESSAGE_TEXT =
"EXAMPLE 5: ERROR SIGNALED FROM OUTER COMPOUND STMT';
WHEN 6 THEN -- (6)
SIGNAL SQLSTATE VALUE '38H06'
SET MESSAGE_TEXT =
"EXAMPLE 6: ERROR SIGNALED FROM OUTER COMPOUND STMT';
ELSE -- (7)
SET I = 1; /%*Do not do anything =%/
END CASE;
END OUTER

The following table summarizes the behavior of the preceding example:

Input

value

for

PARM Expected behavior

1 SQLSTATE 38HO01 is signaled from the INNER compound statement. Because no

appropriate handler exists, the procedure terminates and returns the unhandled exception
condition, 38H01 with SQLCODE -438, to the calling application.

238 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Input
value
for

PARM

Expected behavior

SQLSTATE 38HO02 is signaled from the INNER compound statement. The condition handler
in the OUTER compound statement is activated. A RESIGNAL statement, with SQLSTATE
38HEQ, is issued from within the body of the condition handler. This exception causes
control to be returned to the end of the OUTER compound statement with exception
condition 38HEO and SQLCODE -438. The procedure terminates and returns the unhandled
condition to the calling application.

SQLSTATE 38H03 is signaled from the INNER compound statement. A condition handler
within the INNER compound statement is activated. A RESIGNAL statement, with
SQLSTATE 38HI3, is issued from within the body of the condition handler. Because no
appropriate handler exists, the procedure terminates and returns the unhandled exception
condition, 38HI3 with SQLCODE -438, to the calling application.

SQLSTATE 38HO04 is signaled from the INNER compound statement. A condition handler
within the INNER compound statement is activated. A RESIGNAL statement, with
SQLSTATE 38HI4, is issued from within the body of the condition handler. A condition
handler in the OUTER compound statement is activated. A RESIGNAL statement, with
SQLSTATE 38HEQ, is issued from within the body of the condition handler. This exception
causes control to be returned to the end of the OUTER compound statement with
exception condition 38HEO and SQLCODE -438. The procedure terminates and returns
the unhandled condition to the calling application.

SQLSTATE 38HO05 is signaled from the OUTER compound statement. Because no
appropriate handler exists, the procedure terminates and returns the unhandled exception
condition, 38H05 with SQLCODE -438, to the calling application.

SQLSTATE 38HO06 is signaled from the OUTER compound statement. A condition handler

in the OUTER compound statement is activated. A RESIGNAL statement, with SQLSTATE
38HEQ, is issued from within the body of the condition handler. This exception causes
control to be returned to the end of the OUTER compound statement with exception
condition 38HEQ and SQLCODE -438. The procedure terminates and returns the unhandled
condition to the calling application.

The ELSE clause of the CASE statement executes and processes the SET statement. A
successful completion code is returned to the calling application.

Example

In the following example SQL procedure, the condition handler for exceptionl is not within the scope
of the condition handler for exception0. If exception condition exceptionl is raised in the body of the
condition handler for exception0, no appropriate handler exists, and the procedure terminates with an
unhandled exception.

CREATE PROCEDURE divide (.....)
LANGUAGE SQL CONTAINS SQL

BEGIN

DECLARE dn_too_long CHAR(5) DEFAULT 'abcde';

-- Declare condition names --------------------------
DECLARE exception® CONDITION FOR SQLSTATE '22001';
DECLARE exceptionl CONDITION FOR SQLSTATE 'xxxxx';

== DEELATR CUESEES s-scscscoscsosososcosososososoasas
DECLARE cursorl CURSOR WITH RETURN FOR

SELECT * FROM dept;

aampeclarelhandlers e EEE SR E SRR
DECLARE CONTINUE HANDLER FOR exception®

BEGIN

some SQL statement that causes an error 'xxxxx'

END

Chapter 3. Db2 SQL programming 239

DECLARE CONTINUE HANDLER FOR exceptionl
BEGIN
END

-- Mainline of procedure ----------------------------
INSERT INTO DEPT (DEPTNO) VALUES (dn_too_long);
-- Assume that this statement results in SQLSTATE '22001'

OPEN CURSOR1;
END

Retrieving diagnostic information by using GET DIAGNOSTICS in a handler
Handlers specify the action that an SQL procedure takes when a particular error or condition occurs. In
some cases, you want to retrieve additional diagnostic information about the error or warning condition.

About this task

Procedure

You can include a GET DIAGNOSTICS statement in a handler to retrieve error or warning information.
If you include GET DIAGNOSTICS, it must be the first statement that is specified in the handler.

Example: Using GET DIAGNOSTICS to retrieve message text

Suppose that you create an SQL procedure, named dividel, that computes the result of the division of
two integers. You include GET DIAGNOSTICS to return the text of the division error message as an output
parameter:

CREATE PROCEDURE dividel
(IN numerator INTEGER, IN denominator INTEGER,
OUT divide_result INTEGER, OUT divide_error VARCHAR(1000))
LANGUAGE SQL
BEGIN
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
GET DIAGNOSTICS CONDITION 1 divide_error = MESSAGE_TEXT;
SET divide_result = numerator / denominator;
END

Ignoring a condition in an SQL procedure
You can specify that you want to ignore errors or warnings within a particular scope of statements in an
SQL procedure. However, do so with caution.

Procedure

Declare a condition handler that contains an empty compound statement.

Example

The following example shows a condition handler that is declared as a way of ignoring a condition.
Assume that your SQL procedure inserts rows into a table that has a unique column. If the value to be
inserted for that column already exists in the table, the row is not inserted. However, in this case, you do
not want Db2 to notify the application about this condition, which is indicated by SQLSTATE 23505.

DECLARE CONTINUE HANDLER FOR SQLSTATE '23505'
BEGIN -- ignore error for duplicate value
END;

Related concepts
Handlers in an SQL procedure

240 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

If an error occurs when an SQL procedure executes, the procedure ends unless you include statements to
tell the procedure to perform some other action. These statements are called handlers.

Related reference
SQLSTATE values and common error codes (Db2 Codes)

Raising a condition within an SQL procedure by using the SIGNAL or RESIGNAL

statements
Within an SQL procedure, you can force a particular condition to occur with a specific SQLSTATE and
message text.

About this task

You can use either a SIGNAL or RESIGNAL statement to raise a condition with a specific SQLSTATE and
message text within an SQL procedure. The SIGNAL and RESIGNAL statements differ in the following
ways:

 You can use the SIGNAL statement anywhere within an SQL procedure. You must specify the SQLSTATE
value. In addition, you can use the SIGNAL statement in a trigger body. For information about using the
SIGNAL statement in a trigger, see “Creating a trigger” on page 149.

« You can use the RESIGNAL statement only within a handler of an SQL procedure. If you do not specify
the SQLSTATE value, Db2 uses the same SQLSTATE value that activated the handler.

You can use any valid SQLSTATE value in a SIGNAL or RESIGNAL statement, except an SQLSTATE class
with '00' as the first two characters.

The following table summarizes the differences between issuing a RESIGNAL or SIGNAL statement within
the body of a condition handler. For each row in the table, assume that the diagnostics area contains the
following information when the RESIGNAL or SIGNAL statement is issued:

RETURNED_SQLSTATE XXXXX
MESSAGE_TEXT 'this is my message'

Table 45. Example RESIGNAL and SIGNAL statements

Specify
Specify a new | message Example RESIGNAL |Example SIGNAL
condition? text? statement... statement... Result
No — Not possible RETURNED_SQLSTATE xxxxx
1 MESSAGE_TEXT 'this is my
message'
No RESIGNAL '98765' SIGNAL '98765' RETURNED_SQLSTATE 98765
5 MESSAGE_TEXT 'APPLICATION
RAISED ERROR WITH
DIAGNOSTIC TEXT: this is my
message'
No Yes Not possible Not possible NA
Yes Yes RESIGNAL '98765' SIGNAL '98765" RETURNED_SQLSTATE 98765
SET MESSAGE_TEXT SET
= 'xyz' - MESSAGE_TEXT MESSAGE_TEXT 'APPLICATION
= 'xyz' RAISED ERROR WITH
3 5 DIAGNOSTIC TEXT: xyz'

Note:

Chapter 3. Db2 SQL programming 241

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_sqlstatevalues.html

1. This statement raises the current condition with the existing SQLSTATE, SQLCODE, message text, and
tokens.

2. This statement raises a new condition (SQLSTATE '98765"). Existing message text and tokens are
reset. The SQLCODE is set to -438 for an error or 438 for a warning.

3. This statement raises a new condition (SQLSTATE '98765") with new message text ('xyz'). The
SQLCODE is set to -438 for an error or 438 for a warning.

Example of the SIGNAL statement in an SQL procedure
You can use the SIGNAL statement anywhere within an SQL procedure to raise a particular condition.

The following example uses an ORDERS table and a CUSTOMERS table that are defined in the following

way:
CREATE TABLE ORDERS
(ORDERNO INTEGER NOT NULL,
PARTNO INTEGER NOT NULL,
ORDER_DATE DATE DEFAULT,
CUSTNO INTEGER NOT NULL,

QUANTITY SMALLINT NOT NULL,

CONSTRAINT REF_CUSTNO FOREIGN KEY (CUSTNO)
REFERENCES CUSTOMERS (CUSTNO) ON DELETE RESTRICT,

PRIMARY KEY (ORDERNO,PARTNO));

CREATE TABLE CUSTOMERS
(CUSTNO INTEGER NOT NULL,
CUSTNAME VARCHAR(30),
CUSTADDR VARCHAR (80) ,
PRIMARY KEY (CUSTNO));

Example: Using SIGNAL to set message text

Suppose that you have an SQL procedure for an order system that signals an application error when a
customer number is not known to the application. The ORDERS table has a foreign key to the CUSTOMERS
table, which requires that the CUSTNO exist in the CUSTOMERS table before an order can be inserted:

CREATE PROCEDURE submit_order
(IN ONUM INTEGER, IN PNUM INTEGER,
IN CNUM INTEGER, IN QNUM INTEGER)
LANGUAGE SQL
MODIFIES SQL DATA
BEGIN
DECLARE EXIT HANDLER FOR SQLSTATE VALUE '23503'
SIGNAL SQLSTATE '75002'
SET MESSAGE_TEXT = 'Customer number is not known';
INSERT INTO ORDERS (ORDERNO, PARTNO, CUSTNO, QUANTITY)
VALUES (ONUM, PNUM, CNUM, QNUM);
END

In this example, the SIGNAL statement is in the handler. However, you can use the SIGNAL statement to
invoke a handler when a condition occurs that will result in an error.

Related concepts
Example of the RESIGNAL statement in a handler

242 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

You can use the RESIGNAL statement in an SQL procedure to assign a different value to the condition that
activated the handler. T

Example of the RESIGNAL statement in a handler
You can use the RESIGNAL statement in an SQL procedure to assign a different value to the condition that
activated the handler. T

Example: Using RESIGNAL to set an SQLSTATE valu

Suppose that you create an SQL procedure, named divide2, that computes the result of the division of two
integers. You include SIGNAL to invoke the handler with an overflow condition that is caused by a zero
divisor, and you include RESIGNAL to set a different SQLSTATE value for that overflow condition:

CREATE PROCEDURE divide2
(IN numerator INTEGER, IN denominator INTEGER,
OUT divide_result INTEGER)
LANGUAGE SQL
BEGIN
DECLARE overflow CONDITION FOR SQLSTATE '22003';
DECLARE CONTINUE HANDLER FOR overflow
RESIGNAL SQLSTATE '22375';
IF denominator = O THEN
SIGNAL overflow;
ELSE
SET divide_result = numerator / denominator;
END IF;
END

Example: RESIGNAL in a nested compound statement

If the following SQL procedure is invoked with argument values 1, 0, and 0, the procedure returns a value
of 2 for RC and sets the oparmi1 parameter to 650.

CREATE PROCEDURE resigd
(IN iparml INTEGER, INOUT oparml INTEGER, INOUT rc INTEGER)
LANGUAGE SQL
Al: BEGIN
DECLARE c1 INT DEFAULT 1;
DECLARE CONTINUE HANDLER FOR SQLSTATE VALUE 'O1ABX'

BEGIN
.... some other statements
SET RC = 3; [6 |
END;
A2: SET oparml = 5;
A3: BEGIN
DECLARE c1 INT DEFAULT 1;
DECLARE CONTINUE HANDLER
FOR SQLSTATE VALUE 'O1ABC'
BEGIN
SET RC = 1;
RESIGNAL SQLSTATE VALUE 'O1ABX'
SET MESSAGE_TEXT = 'get out of here';
SET RC = 2;
END;
A7: SET oparml = oparml + 110;
SIGNAL SQLSTATE VALUE 'O1ABC'
SET MESSAGE_TEXT = 'yikes';
SET oparml = oparml + 215; [8 |
END;
SET oparml = oparml + 320;

END

The following notes refer to the preceding example:

1. oparml is initially set to 5.
2. oparmlis incremented by 110. The value of oparm1 is now 115.

Chapter 3. Db2 SQL programming 243

3. The SIGNAL statement causes the condition handler that is contained in the A3 compound statement
to be activated.

4. In this condition handler, RC is set to 1.

5. The RESIGNAL statement changes the SQLSTATE to 01ABX. This value causes the continue handler in
the A1 compound statement to be activated.

6. RCis set to 3 in this condition handler. Because this condition handler is a continue handler, when the
handler action completes, control returns to the SET statement after the RESIGNAL statement.

7. RCis set to 2 in this condition handler. Because this condition handler is a continue handler, control
returns to the SET statement that follows the SIGNAL statement that caused the condition handler to
be activated.

8. oparm1l is incremented by 215. The value of oparm is now 330.
9. oparm1 is incremented by 320. The value of oparm is now 650.

How SIGNAL and RESIGNAL statements affect the diagnostics area
When you issue a SIGNAL statement, a new logical diagnostics area is created. When you issue a
RESIGNAL statement, the current diagnostics area is updated.

When you issue a SIGNAL statement, a new diagnostics area is logically created. In that diagnostics area,
RETURNED_SQLSTATE is set to the SQLSTATE or condition name specified. If you specified message text
as part of the SIGNAL statement, MESSAGE_TEXT in the diagnostics area is also set to the specified value.

When you issue a RESIGNAL statement with a SQLSTATE value, condition name, or message text, the
current diagnostics area is updated with the specified information.

Making copies of a package for a native SQL procedure

When you create a native SQL procedure, a package is implicitly bound with the options that you specified
on the CREATE PROCEDURE statement. If the native SQL procedure performs certain actions, you need to
explicitly make copies of that package.

About this task

If the native SQL procedure performs one or more of the following actions, you need to create copies of
the package for that procedure:
« Uses a CONNECT statement to connect to a database server.

- Refers to a table with a three part name that includes a location other than the current server or refers
to an alias that resolves to such a name.

« Sets the CURRENT PACKAGESET special register to control which package is invoked for that version of
the procedure.

» Sets the CURRENT PACKAGE PATH special register to control which package is invoked for that version
of the procedure.

The package for a version of a procedure has the following name: location.collection-id.package-
id.version-id where these variables have the following values:

location
Value of the CURRENT SERVER special register

collection-id
Schema qualifier of the procedure

package-id
Procedure name

version-id
Version identifier

To make copies of a package for a native SQL procedure, specify the BIND PACKAGE command with the
COPY option. For copies that are created on the current server, specify a different schema qualifier, which

244 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

is the collection ID. For the first copy that is created on a remote server, you can specify the same schema
qualifier. For other copies on that remote server, specify a different schema qualifier.

If you later change the native SQL procedure, you might need to explicitly rebind any local or remote
copies of the package that exist for that version of the procedure.

Examples

Example
Because the following native SQL procedure contains a CONNECT statement, you must create a copy
of the package at the target server, which in this case is at location SAN_JOSE. The subsequent
BIND command creates a copy of the package for version ABC of the procedure TEST.MYPROC. This
package is created at location SAN_JOSE and is used by Db2 when this procedure is executed.

CREATE PROCEDURE TEST.MYPROC VERSION ABC LANGUAGE SQL ...
BEGIN

CONNECT TO SAN_JOSE
END
BIND PACKAGE (SAN_JOSE.TEST) COPY(TEST.MYPROC) COPYVER(ABC) ACTION(ADD)

Example
The following native SQL procedure sets the CURRENT PACKAGESET special register to ensure that
Db2 uses the package with the collection ID COLL2 for this version of the procedure. Consequently,
you must create such a package. The subsequent BIND command creates this package with collection
ID COLL2. This package is a copy of the package for version ABC of the procedure TEST.MYPROC. Db2
uses this package to process the SQL statements in this procedure.

CREATE PROCEDURE TEST.MYPROC VERSION ABC LANGUAGE SQL ...
BEGIN

SET CURRENT PACKAGESET = 'COLL2'

END

BIND PACKAGE (COLL2) COPY(TEST.MYPROC) COPYVER(ABC)
ACTION(ADD) QUALIFIER(XYZ)

Related tasks

Regenerating an existing version of a native SQL procedure

When you apply Db2 maintenance that changes how native SQL procedures are generated, you need
to regenerate any affected procedures. When you regenerate a version of a native SQL procedure, Db2
rebinds the associated package for that version of the procedure.

Replacing copies of a package for a version of a native SQL procedure

When you change a version of a native SQL procedure and the ALTER PROCEDURE REPLACE statement
contains certain options, you must replace any local or remote copies of the package that exist for that
version of the procedure.

Related reference
ALTER PROCEDURE (SQL - native) (Db2 SQL)

Replacing copies of a package for a version of a native SQL procedure

When you change a version of a native SQL procedure and the ALTER PROCEDURE REPLACE statement
contains certain options, you must replace any local or remote copies of the package that exist for that
version of the procedure.

About this task
If you specify any of the following ALTER PROCEDURE options, you must replace copies of the package:

« REPLACE VERSION
+ REGENERATE

Chapter 3. Db2 SQL programming 245

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_alterproceduresqlnative.html

- DISABLE DEBUG MODE

« QUALIFIER

« PACKAGE OWNER

- DEFER PREPARE

- NODEFER PREPARE

« CURRENT DATA

- DEGREE

« DYNAMICRULES

« APPLICATION ENCODING SCHEME
« WITH EXPLAIN

« WITHOUT EXPLAIN

« WITH IMMEDIATE WRITE

« WITHOUT IMMEDIATE WRITE

. ISOLATION LEVEL

« WITH KEEP DYNAMIC

« WITHOUT KEEP DYNAMIC

« OPTHINT

« SQL PATH

« RELEASE AT COMMIT

- RELEASE AT DEALLOCATE

. REOPT

« VALIDATE RUN

« VALIDATE BIND

« ROUNDING

- DATE FORMAT

. DECIMAL

« FOR UPDATE CLAUSE OPTIONAL
« FOR UPDATE CLAUSE REQUIRED
. TIME FORMAT

To replace copies of a package for a version of a native SQL procedure, specify the BIND COPY
ACTION(REPLACE) command with the appropriate package name and version ID.

Creating new versions of native SQL procedures
A new version of a native SQL procedure can have different parameter names, procedure options, or
procedure body.

About this task

All versions of a procedure must have the same procedure signature. Therefore, each version of the
procedure must have the same of the following items:

- Schema name

« Procedure name

« Number of parameters

« Data types for corresponding parameters

When any single version of a procedure is defined as autonomous, all versions must be defined as
autonomous.

246 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Important: Do not create additional versions of procedures that are supplied with Db2 by specifying the
VERSION keyword. Only versions that are supplied with Db2 are supported. Additional versions of such
routines cause the installation and configuration of the supplied routines to fail.

Procedure
To create a new version of a procedure, issue one of the following:
« FL507 The CREATE PROCEDURE statement with the following items:

— The OR REPLACE clause.
— The VERSION clause with a new version identifier.
« The ALTER PROCEDURE statement with the following items:

— The ADD VERSION clause with a name for the new version.

For either statement, you must include the following:

« The name of the native SQL procedure for which you want to create a new version.

- The parameter list of the procedure that you want to change. For ALTER PROCEUDRE ADD VERSION,
this parameter list must be the same as the original procedure.

« Any procedure options. These options can be different than the options for other versions of this
procedure. If you do not specify a value for a particular option, the default value is used, regardless of
the value that is used by the current active version of this procedure.

« A procedure body. This body can be different than the procedure body for other versions of this
procedure.

Examples
Example 1

For example, the following CREATE PROCEDURE statement defines a new native SQL procedure called
UPDATE_BALANCE. The version of the procedure is V1, and it is the active version.

CREATE PROCEDURE
UPDATE_BALANCE

(IN CUSTOMER_NO INTEGER,

IN AMOUNT DECIMAL(9,2))
VERSION V1

LANGUAGE SQL

READS SQL DATA

BEGIN

DECLARE CUSTOMER_NAME CHAR(20);
SELECT CUSTNAME

INTO CUSTOMER_NAME

FROM ACCOUNTS

WHERE CUSTNO = CUSTOMER_NO;
END

Example 2

The following ALTER PROCEDURE statement creates a new version of the UPDATE_BALANCE
procedure. The version name of the new version is V2. This new version has a different procedure
body.

ALTER PROCEDURE
UPDATE_BALANCE

ADD VERSION V2

(IN CUSTOMER_NO INTEGER,
IN AMOUNT DECIMAL (9,2))
MODIFIES SQL DATA

BEGIN

UPDATE ACCOUNTS

SET BAL = BAL + AMOUNT
WHERE CUSTNO = CUSTOMER_NO;
END

Chapter 3. Db2 SQL programming 247

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

Example 3:
FL 507

The following CREATE PROCEDURE statement with the OR REPLACE clause creates a new version

of the UPDATE_BALANCE procedure, assuming that version V3 does not already exist (if V3 already
exists, this statement would replace the existing definition). This version changes the procedure body
in the same way as in Example 2:

CREATE OR REPLACE PROCEDURE
UPDATE_BALANCE

(IN CUSTOMER_NO INTEGER,

IN AMOUNT DECIMAL(9,2))
VERSION V3

LANGUAGE SQL

MODIFIES SQL DATA

BEGIN

UPDATE ACCOUNTS

SET BAL = BAL + AMOUNT
WHERE CUSTNO = CUSTOMER_NO;
END

What to do next

After you create a new version, if you want that version to be invoked by all subsequent calls to this
procedure, you need to make that version the active version. You can use the ACTIVATE VERSION clause
on either an ALTER PROCEDURE statement or a CREATE PROCEDURE statement with the OR REPLACE
clause.

Related reference

ALTER PROCEDURE (SQL - native) (Db2 SQL)

CREATE PROCEDURE (SQL - native) (Db2 SQL)

Multiple versions of native SQL procedures
You can define multiple versions of a native SQL procedure. Db2 maintains this version information for
you.

One or more versions of a procedure can exist at any point in time at the current server, but only one
version of a procedure is considered the active version. When you first create a procedure, that initial
version is considered the active version of the procedure.

Using multiple versions of a native SQL procedure has the following advantages:

» You can keep the existing version of a procedure active while you create another version. When the
other version is ready, you can make it the active one.

« When you make another version of a procedure active, you do not need to change any existing calls to
that procedure.

« You can easily switch back to a previous version of a procedure if the version that you switched to does
not work as planned.

« You can drop an unneeded version of a procedure.
A new version of a native SQL procedure can have different values for the following items:

» Parameter names

« Procedure options (except for the AUTONOMOUS option, which must be specified for all versions or
none)

» Procedure body
Restrictions:
- A new version of a native SQL procedure cannot have different values for the following items:

— Number of parameters
— Parameter data types
— Parameter attributes for character data

248 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_alterproceduresqlnative.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createproceduresqlnative.html

— Parameter CCSIDs
— Whether a parameter is an input or output parameter, as defined by the IN, OUT, and INOUT options

If you need to specify different values for any of the preceding items, create a new native SQL
procedure, instead of a new version.

« When the AUTONOMOUS option is specified for one version of a procedure, it must be specified for
every version of that procedure.

Deploying a native SQL procedure to another Db2 for z/0S server
When deploying a native SQL procedure to another Db2 for z/OS server, you can change the bind options
to better match the deploying environment. The procedure logic remains the same.

Before you begin

Deprecated function: The DEPLOY bind option is deprecated. For best results, deploy compiled SQL
functions and native SQL procedures to multiple environments by issuing the same CREATE or ALTER
statements separately in each Db2 environment.

Requirements:

- The remote server must be properly defined in the communications database of the Db2 subsystem
from which you deploy the native SQL procedure.

« The target Db2 subsystem must be operating at a PTF level that is compatible with the PTF level of the
local Db2 subsystem.

Procedure

Issue the BIND PACKAGE command with the following options:

DEPLOY
Specify the name of the procedure whose logic you want to use on the target server.

Tip: When specifying the parameters for the DEPLOY option, consider the following naming rules for
native SQL procedures:

« The collection ID is the same as the schema name in the original CREATE PROCEDURE statement.

- The package ID is the same as the procedure name in the original CREATE PROCEDURE statement.
COPYVER

Specify the version of the procedure whose logic you want to use on the target server.

ACTION(ADD) or ACTION(REPLACE)
Specify whether you want Db2 to create a new version of the native SQL procedure and its associated
package or to replace the specified version.

Optionally, you can also specify the bind options QUALIFIER or OWNER if want to change them.

Examples

Deploying the same version of a procedure at another location
The following BIND command creates a native SQL procedure with the name PRODUCTION.MYPROC
at the CHICAGO location. This procedure is created from the procedure TEST.MYPROC at the current
site. Both native SQL procedures have the same content and version, ABC. However, the package for
the procedure CHICAGO.PRODUCTION.MYPROC has XYZ as its qualifier.

CREATE PROCEDURE TEST.MYPROC VERSION ABC LANGUAGE SQL ...
BEGIN

END
BIND PACKAGE (CHICAGO.PRODUCTION) DEPLOY(TEST.MYPROC) COPYVER(ABC)
ACTION(ADD) QUALIFIER(XYZ)

Chapter 3. Db2 SQL programming 249

Replacing a version of a procedure at another location
The following BIND command replaces version ABC of the procedure PRODUCTION.MYPROC at the
CHICAGO location with version ABC of the procedure TEST.MYPROC at the current site.

BIND PACKAGE (CHICAGO.PRODUCTION) DEPLOY(TEST.MYPROC) COPYVER(ABC)
ACTION(REPLACE) REPLVER(ABC)

Related concepts

Communications database for the server (Managing Security)

Related reference

BIND and REBIND options for packages, plans, and services (Db2 Commands)
BIND PACKAGE subcommand (DSN) (Db2 Commands)

Related information

Db2 for z/OS Stored Procedures: Through the CALL and Beyond (IBM Redbooks)

Removing an existing version of a native SQL procedure
You can drop a particular version of a native SQL procedure without dropping the other versions of the
procedure.

Before you begin
Before you remove an existing version of a native SQL procedure, ensure that the version is not active. If
the version is the active version, designate a different active version before proceeding.

Procedure

Issue the ALTER PROCEDURE statement with the DROP VERSION clause and the name of the version that
you want to drop. If you instead want to drop all versions of the procedure, use the DROP statement.

Examples

Example of dropping a version that is not active
The following statement drops the OLD_PRODUCTION version of the P1 procedure.

ALTER PROCEDURE P1 DROP VERSION OLD_PRODUCTION

Example of dropping an active version
Assume that the OLD_PRODUCTION version of the P1 procedure is the active version. The
following example first switches the active version to NEW_PRODUCTION and then drops the
OLD_PRODUCTION version.

ALTER PROCEDURE P1 ACTIVATE VERSION NEW_PRODUCTION;
ALTER PROCEDURE P1 DROP VERSION OLD_PRODUCTION;

Related tasks

Designating the active version of a native SQL procedure
When a native SQL procedure is called, Db2 uses the version that is designated as the active version.

Regenerating an existing version of a native SQL procedure

When you apply Db2 maintenance that changes how native SQL procedures are generated, you need
to regenerate any affected procedures. When you regenerate a version of a native SQL procedure, Db2
rebinds the associated package for that version of the procedure.

About this task

ALTER PROCEDURE REGENERATE is different than the REBIND PACKAGE command. When you specify
REBIND PACKAGE, Db2 rebinds only the non-control SQL statements. Use this command when you think
rebinding will improve the access path. When you specify ALTER PROCEDURE REGENERATE, Db2 rebinds
the SQL control statements as well as the non-control statements.

250 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_cdb4server.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_bindpackage.html
http://www.redbooks.ibm.com/abstracts/sg247604.html

Procedure

To regenerate an existing version of a native SQL procedure:

1. Issue the ALTER PROCEDURE statement with the REGENERATE clause and specify the version to be
regenerated.

2. If copies of the package for the specified version of the procedure exist at remote sites, replace those
packages. Issue the BIND PACKAGE command with the COPY option and appropriate location for each
remote package.

3. If copies of the package for the specified version of the procedure exist locally with different schema
names, replace those packages. Issue the BIND PACKAGE command with the COPY option and
appropriate schema for each local package.

Example
The following ALTER PROCEDURE statement regenerates the active version of the UPDATE_SALARY_1
procedure.

ALTER PROCEDURE UPDATE_SALARY_1
REGENERATE ACTIVE VERSION

Changing an existing version of a native SQL procedure

You can change an option or the procedure body for a particular version of a native SQL procedure. If you
want to keep a copy of that stored procedure, consider creating a new version instead of changing the
existing version.

Procedure
To change an existing version of a native SQL procedure, issue one of the following statements:

« FL507The CREATE PROCEDURE statement with the OR REPLACE and the VERSION clause that
identifies the version to be replaced.

« The ALTER PROCEDURE statement with the REPLACE VERSION clause.

Any option that you do not explicitly specify inherits the system default values. This inheritance occurs
even if those options were explicitly specified for a prior version by using a CREATE PROCEDURE
statement, ALTER PROCEDURE statement, or REBIND command.

Examples

Example 1
The following ALTER PROCEDURE statement updates version V2 of the UPDATE_BALANCE procedure.

ALTER PROCEDURE
TEST.UPDATE_BALANCE
REPLACE VERSION V2

(IN CUSTOMER_NO INTEGER,
IN AMOUNT DECIMAL(9,2))
MODIFIES SQL DATA
ASUTIME LIMIT 100

BEGIN

UPDATE ACCOUNTS

SET BAL = BAL + AMOUNT
WHERE CUSTNO CUSTOMER_NO
AND CUSTSTAT ‘Al

END

Example 2
FL 507

The following CREATE PROCEDURE statement will replace the version V2 of the UPDATE_BALANCE
procedure if version V2 already exists or will create it if version V2 has not yet been defined:

CREATE OR REPLACE PROCEDURE
TEST.UPDATE_BALANCE

Chapter 3. Db2 SQL programming 251

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

(IN CUSTOMER_NO INTEGER,
IN AMOUNT DECIMAL(9,2))
VERSION V2

MODIFIES SQL DATA
ASUTIME LIMIT 100

BEGIN

UPDATE ACCOUNTS

SET BAL = BAL + AMOUNT
WHERE CUSTNO CUSTOMER_NO
AND CUSTSTAT ‘A,

END

Related tasks

Creating new versions of native SQL procedures

A new version of a native SQL procedure can have different parameter names, procedure options, or
procedure body.

Related reference

REBIND PACKAGE subcommand (DSN) (Db2 Commands)
ALTER PROCEDURE (SQL - native) (Db2 SQL)

CREATE PROCEDURE (SQL - native) (Db2 SQL)

Creating external stored procedures

An external stored procedure is a procedure that is written in a host language and can contain SQL
statements. The source code for external procedures is separate from the definition.

Before you begin

Before you create an external procedure, Configure Db2 for running stored procedures and user-defined
functions during installation or Configure Db2 for running stored procedures and user-defined functions
during migration.

About this task

Restriction: These instructions do not apply to Java stored procedures. The process for creating a Java
stored procedure is different. The preparation process varies depending on what the procedure contains.

Procedure

To create an external stored procedure:
1. Write the external stored procedure body in assembler, C, C++, COBOL, REXX, or PL/I.

Ensure that the procedure body that you write follows the guidelines for external stored procedures
that are described in the following information:

« “Accessing other sites in an external procedure” on page 272

« “Accessing non-Db2 resources in your stored procedure” on page 272

« “Writing an external procedure to access IMS databases” on page 273

- “Writing an external procedure to return result sets to a distributed client” on page 274

 “Restrictions when calling other programs from an external stored procedure” on page 275

« “External stored procedures as main programs and subprograms” on page 276

« “Data types in stored procedures” on page 278
« “COMMIT and ROLLBACK statements in a stored procedure” on page 225

Restrictions:

« Do not include explicit attachment facility calls. External stored procedures that run in a WLM-
established address space use Resource Recovery Services attachment facility (RRSAF) calls
implicitly. If an external stored procedure makes an explicit attachment facility call, Db2 rejects
the call.

252 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_rebindpackage.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_alterproceduresqlnative.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createproceduresqlnative.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javaroutines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javaroutines.html

« Do not include SRRCMIT or SRRBACK service calls. If an external stored procedure invokes either
SRRCMIT or SRRBACK, Db2 puts the transaction in a state where a rollback operation is required and
the CALL statement fails.

For REXX procedures, continue with step “3” on page 253.

2. For assembler, C, C++, COBOL, or PL/I stored procedures, prepare the external procedure by
completing the following tasks:

a) Precompile, compile, and link-edit the application by using one of the following techniques:
« The Db2 precompiler and JCL instructions to compile and link-edit the program
« The SQL statement coprocessor
Recommendation: Compile and link-edit code as reentrant.

Link-edit the application by using DSNRLI, the language interface module for the Resource
Recovery Services attachment facility, or DSNULI, the Universal language interface module. You
must specify the parameter AMODE(31) when you link-edit the application with either of these
modules. (24-bit applications are not supported.)

If you want to make the stored procedure reentrant, see “Creating an external stored procedure as
reentrant” on page 276

If you want to run your procedure as a z/OS-authorized program, you must also perform the
following tasks when you link-edit the application:

« Indicate that the load module can use restricted system services by specifying the parameter
value AC=1.

 Put the load module for the stored procedure in an APF-authorized library.

You can compile COBOL stored procedures with either the DYNAM or NODYNAM COBOL compiler

options. If you use DYNAM, ensure that the correct Db2 language interface module is loaded

dynamically by performing one of the following actions:

« Specify the ATTACH(RRSAF) SQL processing option.

« Copy the DSNRLI module into a load library that is concatenated in front of the Db2 libraries. Use
the member name DSNHLI.

b) Bind the DBRM into a Db2 package by issuing the BIND PACKAGE command.

If you want to control access to a stored procedure package, specify the ENABLE bind option with
the system connection type of the calling application.

Stored procedures require only a package. You do not need to bind a plan for the stored procedure
or bind the stored procedure package to the plan for the calling application. For remote access
scenarios, you need a package at both the requester and server sites.

For more information about stored procedure packages, see “Packages for external stored
procedures” on page 271.

The following example BIND PACKAGE command binds the DBRM EMPDTL1P to the collection
DEVL7083.

BIND PACKAGE (DEVL7083) -
MEMBER (EMPDTL1P) ACT(REP) ISO(UR) ENCODING(EBCDIC) -
OWNER (DEVL7083) LIBRARY('SG247083.DEVL.DBRM")

3. Define the stored procedure to Db2 by issuing the CREATE PROCEDURE statement with the EXTERNAL
option. Use the EXTERNAL NAME clause to specify the name of the load module for the program that
runs when this procedure is called.

If you want to run your procedure as a z/OS-authorized program, specify an appropriate environment
with the WLM ENVIRONMENT option. The stored procedure must run in an address space with a
startup procedure in which all libraries in the STEPLIB concatenation are APF-authorized.

Chapter 3. Db2 SQL programming 253

If you want environment information to be passed to the stored procedure when it is invoked, specify
the DBINFO and PARAMETER STYLE SQL options in the CREATE PROCEDURE statement. When the
procedure is invoked, Db2 passes the DBINFO structure, which contains environment information,

to the stored procedure. For more information about PARAMETER STYLE, see “Defining the linkage
convention for an external stored procedure” on page 255.

If you compiled the stored procedure as reentrant, specify the STAY RESIDENT YES option in the
CREATE PROCEDURE statement. This option makes the procedure remain resident in storage.

4. Authorize the appropriate users to use the stored procedure by issuing the GRANT EXECUTE
statement.
For example, the following statement allows an application that runs under the authorization ID JONES
to call stored procedure SPSCHEMA.STORPRCA:

GRANT EXECUTE ON PROCEDURE SPSCHEMA.STORPRCA TO JONES;

Example of defining a C stored procedure
Suppose that you have written and prepared a stored procedure that has the following characteristics:

« The name of the stored procedure is B.
« The stored procedure has the following two parameters:

— Aninteger input parameter that is named V1
— A character output parameter of length 9 that is named V2
« The stored procedure is written in the C language.
« The stored procedure contains no SQL statements.
« The same input always produces the same output.
« The load module name is SUMMOD.
« The package collection name is SUMCOLL.
 The stored procedure is to run for no more than 900 CPU service units.
« The parameters can have null values.
« The stored procedure is to be deleted from memory when it completes.
« The stored procedure needs the following Language Environment runtime options:

MSGFILE (OUTFILE),RPTSTG(ON),RPTOPTS(ON)

 The stored procedure is part of the WLM application environment that is named PAYROLL.
« The stored procedure runs as a main program.

« The stored procedure does not access non-Db2 resources, so it does not need a special RACF
environment.

 The stored procedure can return at most 10 result sets.
« When control returns to the client program, Db2 does not commit updates automatically.

The following CREATE PROCEDURE statement defines the stored procedure to Db2:

CREATE PROCEDURE B(IN V1 INTEGER, OUT V2 CHAR(9))
LANGUAGE C
DETERMINISTIC
NO SQL
EXTERNAL NAME SUMMOD
COLLID SUMCOLL
ASUTIME LIMIT 900
PARAMETER STYLE GENERAL WITH NULLS
STAY RESIDENT NO
RUN OPTIONS 'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT PAYROLL
PROGRAM TYPE MAIN
SECURITY DB2

254 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

DYNAMIC RESULT SETS 10
COMMIT ON RETURN NO;

What to do next

You can now invoke the stored procedure from an application program or command line processor.
Related concepts

“Universal language interface (DSNULI)” on page 113

The universal language interface (DSNULI) subcomponent determines the runtime environment and
dynamically loads and branches to the appropriate language interface module.

Java stored procedures and user-defined functions (Db2 Application Programming for Java)
Related tasks

Implementing Db2 stored procedures (Db2 Administration Guide)

Related reference

BIND and REBIND options for packages, plans, and services (Db2 Commands)

CREATE PROCEDURE (external) (Db2 SQL)

GRANT (function or procedure privileges) (Db2 SQL)

Related information

Db2 for z/OS Stored Procedures: Through the CALL and Beyond (IBM Redbooks)

Defining the linkage convention for an external stored procedure

A linkage convention specifies the rules for the parameter list that is passed by the program that calls the
external stored procedure. For example, the convention can specify whether the calling program can pass
null values for input parameters.

Procedure

When you define the stored procedure with the CREATE PROCEDURE statement, specify one of the
following values for the PARAMETER STYLE option:

« GENERAL

« GENERAL WITH NULLS
.« SOL

SQL is the default.

Linkage conventions for external stored procedures
The linkage convention for a stored procedure can be either GENERAL, GENERAL WITH NULLS, or SQL.
These linkage conventions apply to only external stored procedures.

GENERAL
Specify the GENERAL linkage convention when you do not want the calling program to pass null
values for input parameters (IN or INOUT) to the stored procedure. If you specify GENERAL, ensure
that the stored procedure contains a variable declaration for each parameter that is passed in the
CALL statement.

The following figure shows the structure of the parameter list for PARAMETER STYLE GENERAL.

Registerl A ddresses of: Data:
Parameter 1 > Parameter 1 data
Parameter 2 » Parameter 2 data
Parameter 7 > Parameterndata

Figure 12. Parameter convention GENERAL for a stored procedure

Chapter 3. Db2 SQL programming 255

https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javaroutines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_storedprocedureimplementation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createprocedureexternal.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_grantfunctionorprocedureprivileges.html
http://www.redbooks.ibm.com/abstracts/sg247604.html

GENERAL WITH NULLS
Specify the GENERAL WITH NULLS linkage convention when you want to allow the calling program to
supply a null value for any parameter that is passed to the stored procedure. If you specify GENERAL
WITH NULLS, ensure that the stored procedure performs the following tasks:

« Declares a variable for each parameter that is passed in the CALL statement.

 Declares a null indicator structure that contains an indicator variable for each parameter.

« On entry, examines all indicator variables that are associated with input parameters to determine
which parameters contain null values.

- On exit, assigns values to all indicator variables that are associated with output variables. If the
output variable returns a null value to the caller, assign the associated indicator variable a negative
number. Otherwise, assign a value of 0 to the indicator variable.

In the CALL statement in the calling application, follow each parameter with its indicator variable. Use
one of the following forms:

« host-variable :indicator-variable
« host-variable INDICATOR :indicator-variable

The following figure shows the structure of the parameter list for PARAMETER STYLE GENERAL WITH
NULLS.

Registerl — pAddresses of: Data:

Parameter 1 » Parameter 1 data

Parameter 2

\ 4

Parameter 2 data

Parameter n > Parameterndata
Indicator » Indicator 1
array
Indicator 2
Indicatorn

Figure 13. Parameter convention GENERAL WITH NULLS for a stored procedure

sQL

Specify the SQL linkage convention when you want both of the following conditions:

« The calling program to be able to supply a null value for any parameter that is passed to the stored
procedure.

« Db2 to pass input and output parameters to the stored procedure that contain the following
information:

The SQLSTATE that is to be returned to Db2. This value is a CHAR(5) parameter that represents
the SQLSTATE that is passed into the program from the database manager. The initial value is set
to ‘00000". Although the SQLSTATE is usually not set by the program, it can be set as the result
SQLSTATE that is used to return an error or a warning. Returned values that start with anything
other than ‘00", ‘01", or ‘02" are error conditions.

The qualified name of the stored procedure. This is a VARCHAR(128) value.

The specific name of the stored procedure. The specific name is a VARCHAR(128) value that is
the same as the unqualified name.

The SQL diagnostic string that is to be returned to Db2. This is a VARCHAR(1000) value. Use this
area to pass descriptive information about an error or warning to the caller.

Restriction: You cannot use the SQL linkage convention for a REXX language stored procedure.

The following figure shows the structure of the parameter list for PARAMETER STYLE SQL.

256 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Registerl — pAddresses of: Data:

Parameter 1 data

v

Parameter 1

h 4

Parameter 2 Parameter 2 data

Parameter » Parameter ndata

Indicator 1 » Indicator 1

Indicator 2 » Indicator 2

Indicator n > Indicatorn

SQLSTATE > SOQLSTATE

Flesseiits » Procedure name

name

Specific | o

name > Specific name

Diagnostic ; :

ki » Diagnostic data
1,2

DBINFO > DBINFO

* For PL/1, this value is the address of a pointer to the DBINFO data.
? Passed if the DBINFO option is specified in the user-defined function definition.

Figure 14. Parameter convention SQL for a stored procedure

Related concepts

Example programs that call stored procedures

Examples can be used as models when you write applications that call stored procedures. In

addition, prefix. SDSNSAMP contains sample jobs DSNTEJ6P and DSNTEJ6S and programs DSN8EP1 and
DSNS8EP2, which you can run.

Related reference
CREATE PROCEDURE (external) (Db2 SQL)
SQLSTATE values and common error codes (Db2 Codes)

Example of GENERAL linkage convention
Specify the GENERAL linkage convention when you do not want the calling program to pass null values for
input parameters (IN or INOUT) to the stored procedure.

Examples

The following examples demonstrate how an assembler, C, COBOL, or PL/I stored procedure uses the
GENERAL linkage convention to receive parameters.

For these examples, assume that a COBOL application has the following parameter declarations and CALL
statement:

01 V1 PIC S9(9) USAGE COMP.
01 V2 PIC X(9).

EXEC SQL CALL A (:V1, :V2) END-EXEC.
In the CREATE PROCEDURE statement, the parameters are defined as follows:

IN V1 INT, OUT V2 CHAR(9)

Chapter 3. Db2 SQL programming 257

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createprocedureexternal.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_sqlstatevalues.html

Assembler example

The following example shows how a stored procedure that is written in assembler language receives
these parameters

* CODE FOR AN ASSEMBLER LANGUAGE STORED PROCEDURE THAT USES *
* THE GENERAL LINKAGE CONVENTION. *
A CEEENTRY AUTO0=PROGSIZE,MAIN=YES,PLIST=0S

USING PROGAREA,R13
* BRING UP THE LANGUAGE ENVIRONMENT. *
ok ok

* GET THE PASSED PARAMETER VALUES. THE GENERAL LINKAGE CONVENTIONx*
* FOLLOWS THE STANDARD ASSEMBLER LINKAGE CONVENTION: *
* ON ENTRY, REGISTER 1 POINTS TO A LIST OF POINTERS TO THE *
* PARAMETERS. *
L R7,0(R1) GET POINTER TO V1
MVC LOCV1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF Vi
L R7,4(R1) GET POINTER TO V2

MVC 0(9,R7),LOCV2 MOVE A VALUE INTO OUTPUT VAR V2

CEETERM RC=0
B R S S e

* VARIABLE DECLARATIONS AND EQUATES *
R1 EQU 1 REGISTER 1
R7 EQU 7 REGISTER 7
PPA CEEPPA CONSTANTS DESCRIBING THE CODE BLOCK
LTORG , PLACE LITERAL POOL HERE
PROGAREA DSECT
ORG *+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART
LoCVL DS F LOCAL COPY OF PARAMETER V1
LoCv2 DS cL9 LOCAL COPY OF PARAMETER V2
PROGSIZE EQU *-PROGAREA
CEEDSA MAPPING OF THE DYNAMIC SAVE AREA
CEECAA MAPPING OF THE COMMON ANCHOR AREA
END A
C example

The following figure shows how a stored procedure that is written in the C language receives these
parameters.

{#pragma runopts(PLIST(0S))
#pragma options(RENT)
#include <stdlib.h>
#include <stdio.h>

... /
/* Code for a C language stored procedure that uses the */
/* GENERAL linkage convention. */
[FF KK Sk kg ok kKK hk kK Fhk kK hk k& Fohk kK ok k& dokk kK dokk ok dkkk ok dokk kK kokk ok Kok /
main(argc,argv)

int argc; /* Number of parameters passed */

char xargv([]; /* Array of strings containing x*/

/* the parameter values */

{
long int locvi; /* Local copy of Vi1 */
char locv2[10]; /* Local copy of V2 */
/* (null-terminated) */

[Fkokok ke kkok ok ok ek ke kok ok ok ok ok ok ok ok ok okok ok ok ok ke ok kok ok ok ok ok ok ok ok ok ok ok ok ok ok ko k ok ok ok ok ok k ok /
/* Get the passed parameters. The GENERAL linkage convention */

/* follows the standard C language parameter passing */
/* conventions: */
/* - argc contains the number of parameters passed */
/* - argv[0O] is a pointer to the stored procedure name */
/* - argv[1l] to argv[n] are pointers to the n parameters */

;* in the SQL statement CALL. *;
if(arge==3) /* Should get 3 parameters: */

258 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

/* procname, V1, V2 */
locvl = *(int %) argv[1];
/* Get local copy of Vi */

étrcpy(argv[2],locv2);
/* Assign a value to V2 */

COBOL example

The following figure shows how a stored procedure that is written in the COBOL language receives these
parameters.

CBL RENT

IDENTIFICATION DIVISION.
B S S e S
* CODE FOR A COBOL LANGUAGE STORED PROCEDURE THAT USES THE =*

* GENERAL LINKAGE CONVENTION. *
B S S e S

PROGRAM-ID. A.
DATA DIVISION.

LINKAGE SECTION.
B S S e S
* DECLARE THE PARAMETERS PASSED BY THE SQL STATEMENT *
* CALL HERE. *
B S S S e S

01 V1 PIC S9(9) USAGE COMP.

01 V2 PIC X(9).

PROCEDURE DIVISION USING Vi, V2.

* THE USING PHRASE INDICATES THAT VARIABLES V1 AND V2 *
* WERE PASSED BY THE CALLING PROGRAM. *

B S S S T e

* ASSIGN A VALUE TO OUTPUT VARIABLE V2 =*

B S T S e
MOVE '123456789' TO V2.

PL/I example

The following figure shows how a stored procedure that is written in the PL/I language receives these
parameters.

*PROCESS SYSTEM(MVS) ;
A: PROC(V1, V2) OPTIONS(MAIN NOEXECOPS REENTRANT);

/* Code for a PL/I language stored procedure that uses the */
/* GENERAL linkage convention. */
[HRERERAR AR SRS SRR RERERARAR AR AR SRS S SRR TR AR AR /
AR R AR AR AR SR SRS SRR RAR IR AR SRS S SRR AR AR AR /
/* Indicate on the PROCEDURE statement that two parameters */
/* were passed by the SQL statement CALL. Then declare the */
/* parameters in the following section. */

[Fhkk kK Kk hhkkkhhhhkkkkhhhhkkkhhhhkkkkhhhhkkkkhhkhkkkkkhhkhkkkkkkkkk kK kxk* /
DCL V1 BIN FIXED(31),
V2 CHAR(9);

V2 = '123456789"'; /* Assign a value to output variable V2 x/

Chapter 3. Db2 SQL programming 259

Example of GENERAL WITH NULLS linkage convention
Specify the GENERAL WITH NULLS linkage convention when you want to allow the calling program to
supply a null value for any parameter that is passed to the stored procedure.

Examples

The following examples demonstrate how an assembler, C, COBOL, or PL/I stored procedure uses the
GENERAL WITH NULLS linkage convention to receive parameters.

For these examples, assume that a C application has the following parameter declarations and CALL
statement:

/**/

/* Parameters for the SQL statement CALL */
[Fkokk ke ke kokok ok ke kok ok ok ok ek kok ok ok ok ok kok ok ok ok ok ok ok ok ok ok kok ok ok ko kok ok ok ko ok ok ok ok /
long int vi;
char v2[10]; /* Allow an extra byte for */
/* the null terminator */
/**/
/* Indicator structure */

[Fkokk ke ke kokok ok ok ke kok ok ok ok ek kok ok ok ok ok kok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ko ok ok ok o/
struct indicators $
short int ind1;
short int ind2;
¥ indstruc;
indstruc.indl = 0; /* Remember to initialize the =*/
/* input parameter's indicatorx/
/* variable before executing =/
*

/* the CALL statement
EXEC SQL CALL B (:v1l :indstruc.indl, :v2 :indstruc.ind2);

In the CREATE PROCEDURE statement, the parameters are defined as follows:

IN V1 INT, OUT V2 CHAR(9)

Assembler example

The following figure shows how a stored procedure that is written in assembler language receives these

parameters.
* CODE FOR AN ASSEMBLER LANGUAGE STORED PROCEDURE THAT USES *
* THE GENERAL WITH NULLS LINKAGE CONVENTION. *
B CEEENTRY AUTO=PROGSIZE,MAIN=YES,PLIST=0S

USING PROGAREA,R13

* BRING UP THE LANGUAGE ENVIRONMENT. *
B R T S S e

* GET THE PASSED PARAMETER VALUES. THE GENERAL WITH NULLS LINKAGE=*
% CONVENTION IS AS FOLLOWS: *
* ON ENTRY, REGISTER 1 POINTS TO A LIST OF POINTERS. IF N *
* PARAMETERS ARE PASSED, THERE ARE N+1 POINTERS. THE FIRST *
* N POINTERS ARE THE ADDRESSES OF THE N PARAMETERS, JUST AS *
* WITH THE GENERAL LINKAGE CONVENTION. THE N+1ST POINTER IS *
* THE ADDRESS OF A LIST CONTAINING THE N INDICATOR VARIABLE *
* VALUES. *

L R7,0(R1) GET POINTER TO V1

MVC LOCV1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF Vi1

L R7,8(R1) GET POINTER TO INDICATOR ARRAY

MVC LOCIND(2%2),0(R7) MOVE VALUES INTO LOCAL STORAGE

LH R7,LOCIND GET INDICATOR VARIABLE FOR V1

LTR R7,R7 CHECK IF IT IS NEGATIVE

BM NULLIN IF SO, V1 IS NULL

L R7,4(R1) GET POINTER TO V2

MVC 0(9,R7),L0OCV2 MOVE A VALUE INTO OUTPUT VAR V2

L R7,8(R1) GET POINTER TO INDICATOR ARRAY

MVC 2(2,R7),=H(0) MOVE ZERO TO V2'S INDICATOR VAR

260 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

CEETERM RC=0
B R S T S S e

* VARIABLE DECLARATIONS AND EQUATES *
R1 EQU 1 REGISTER 1
R7 EQU 7 REGISTER 7
PPA CEEPPA CONSTANTS DESCRIBING THE CODE BLOCK
LTORG , PLACE LITERAL POOL HERE
PROGAREA DSECT
ORG %+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART
Locv1 DS F LOCAL COPY OF PARAMETER V1
LOCV2 DS CL9 LOCAL COPY OF PARAMETER V2
LOCIND DS 2H LOCAL COPY OF INDICATOR ARRAY
PROGSIZE EQU x-PROGAREA
CEEDSA MAPPING OF THE DYNAMIC SAVE AREA
CEECAA MAPPING OF THE COMMON ANCHOR AREA
END B
C example

The following figure shows how a stored procedure that is written in the C language receives these
parameters.

#pragma options(RENT)
#pragma runopts(PLIST(0S))
#include <stdlib.h>
#include <stdio.h>

||| /
/* Code for a C language stored procedure that uses the */
/* GENERAL WITH NULLS linkage convention. */
R L T /
main(argc,argv)
int argc; /* Number of parameters passed %/
char xargv[]; /* Array of strings containing =/
/* the parameter values */
i
long int locvi; /* Local copy of V1 */
char locv2[10]; /* Local copy of V2 */
/* (null-terminated) */
short int locind[2]; /* Local copy of indicator */
/* variable array */
short int *xtempint; /* Used for receiving the */

/* indicator variable array */

I/***/
/* Get the passed parameters. The GENERAL WITH NULLS linkage */

/* convention is as follows: */
/* - argc contains the number of parameters passed */
/* - argv[0] is a pointer to the stored procedure name */
/* - argv[l] to argv[n] are pointers to the n parameters */

/* in the SQL statement CALL. */
/* - argv[n+1l] is a pointer to the indicator variable array */
e /
if(argc==4) /* Should get 4 parameters: */
3 /* procname, V1, V2, */

/* indicator variable array */
locvl = x(int *) argv[1];

/* Get local copy of V1 */
tempint = argv([3]; /* Get pointer to indicator */
/* variable array */

locind[0] = xtempint;

/* Get 1st indicator variable =*/
locind[1] = *(++tempint);

/* Get 2nd indicator variable =*/

if(locind[0]<0) /* If 1st indicator variable */
i /* is negative, V1 is null %/
$
étrcpy(argv[Z],loch);
/* Assign a value to V2 */
(++tempint) = 0; / Assign 0 to V2's indicator =/
/* variable */
3
¥

Chapter 3. Db2 SQL programming 261

COBOL example

The following figure shows how a stored procedure that is written in the COBOL language receives these
parameters.

CBL RENT

IDENTIFICATION DIVISION.
ok ok
* CODE FOR A COBOL LANGUAGE STORED PROCEDURE THAT USES THE *

* GENERAL WITH NULLS LINKAGE CONVENTION. *
B e e e

PROGRAM-ID. B.
DATA DIVISION.

LINKAGE SECTION.
ok ok
* DECLARE THE PARAMETERS AND THE INDICATOR ARRAY THAT *
* WERE PASSED BY THE SQL STATEMENT CALL HERE. *
ok ok
01 V1 PIC S9(9) USAGE COMP.

01 V2 PIC X(9).
*

01 INDARRAY.

10 INDVAR PIC S9(4) USAGE COMP OCCURS 2 TIMES.

PROCEDURE DIVISION USING V1, V2, INDARRAY.
* THE USING PHRASE INDICATES THAT VARIABLES V1, V2, AND *
* INDARRAY WERE PASSED BY THE CALLING PROGRAM. *

* TEST WHETHER V1 IS NULL =*

ok ok
IF INDARRAY(1) < ©

PERFORM NULL-PROCESSING.

* ASSIGN A VALUE TO OUTPUT VARIABLE V2 =*
* AND ITS INDICATOR VARIABLE *
MOVE '123456789' TO V2.
MOVE ZERO TO INDARRAY(2).

PL/I example

The following figure shows how a stored procedure that is written in the PL/I language receives these
parameters.

*PROCESS SYSTEM(MVS) ;
A: PROC(V1, V2, INDSTRUC) OPTIONS(MAIN NOEXECOPS REENTRANT);
[k dkk K kokkkkok Kk okkkk ok kkkkk ok k ok ko k ok k ok ok k ok kkkkkokkkkkkkkkkkkkkkkx /
/* Code for a PL/I language stored procedure that uses the */
/* GENERAL WITH NULLS linkage convention. */
[k dkkdkkkkkok K kokkkk ok kkkkk ok Kk ok kkk ok k ok ko k ok k ok kkk ok kkkkkkkkkkkkkk Kk /
/***/
/* Indicate on the PROCEDURE statement that two parameters */
/> and an indicator variable structure were passed by the SQL %/
/* statement CALL. Then declare them in the following section.x/
/* For PL/I, you must declare an indicator variable structure, */
/* not an array. */
/***/
DCL V1 BIN FIXED(31),
V2 CHAR(9);
DCL
01 INDSTRUC,
02 IND1 BIN FIXED(15),
02 IND2 BIN FIXED(15);

IF IND1 < O THEN

CALL NULLVAL; /* If indicator variable is negative */
_ /* then V1 is null */
V2 = '123456789"'; /* Assign a value to output variable V2 x/
IND2 = 0; /* Assign 0 to V2's indicator variable =x/

262 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Example of SQL linkage convention
Specify the SQL linkage convention when you want diagnostic information to be passed in the parameters
and allow null values.

Examples

The following examples demonstrate how an assembler, C, COBOL, or PL/I stored procedure uses the SQL
linkage convention to receive parameters. These examples also show how a stored procedure receives
the DBINFO structure.

For these examples, assume that a C application has the following parameter declarations and CALL
statement:

/**/

/* Parameters for the SQL statement CALL */
[Fkokk ke ke kokok ok ok ek kok ok ok ok ek kok ok ok ok ko kok ok ok ok ok ok ok ok ok ok ok kok ok ok ko ok ok ok ko ok ok ok o/
long int vi;
char v2[10]; /* Allow an extra byte for */
/* the null terminator */
/**/
/* Indicator variables */

[Fkokk ke ke kokok ok ok ke kok ok ok ok ok kok ok ok ok ke ok kok ok ok ok ok kok ok ok ok ok ok ok ok ok ok kok ok ok ko ok ok ok o/
shoxrt int ind1;
short int ind2;

indl = 0; /* Remember to initialize the =«/
/* dinput parameter's indicatorx/
/* variable before executing */
/* the CALL statement */
EXEC SQL CALL B (:vl1 :indl1, :v2 :ind2);

In the CREATE PROCEDURE statement, the parameters are defined as follows:

IN V1 INT, OUT V2 CHAR(9)

Assembler example

The following figure shows how a stored procedure that is written in assembler language receives these
parameters.

* CODE FOR AN ASSEMBLER LANGUAGE STORED PROCEDURE THAT USES
*

* THE SQL LINKAGE CONVENTION. *
ok ok
B CEEENTRY AUTO0=PROGSIZE,MAIN=YES,PLIST=0S

USING PROGAREA,R13
B R S S e
* BRING UP THE LANGUAGE ENVIRONMENT.

*
B R S S S e

GET THE PASSED PARAMETER VALUES. THE SQL LINKAGE *
CONVENTION IS AS FOLLOWS:

ON ENTRY, REGISTER 1 POINTS TO A LIST OF POINTERS. IF N
PARAMETERS ARE PASSED, THERE ARE 2N+4 POINTERS. THE FIRST

N POINTERS ARE THE ADDRESSES OF THE N PARAMETERS, JUST AS
WITH THE GENERAL LINKAGE CONVENTION. THE NEXT N POINTERS ARE
THE ADDRESSES OF THE INDICATOR VARIABLE VALUES. THE LAST

4 POINTERS (5, IF DBINFO IS PASSED) ARE THE ADDRESSES OF
INFORMATION ABOUT THE STORED PROCEDURE ENVIRONMENT AND
EXECUTION RESULTS.

Ok Ok ok % ok Ok ok X ok %k Ok ok X ok F F *

Chapter 3. Db2 SQL programming 263

L R7,0(R1) GET POINTER TO V1

MvC LOCV1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF Vi
L R7,8(R1) GET POINTER TO 1ST INDICATOR VARIABLE
MvC LOCI1(2),0(R7) MOVE VALUE INTO LOCAL STORAGE
L R7,20(R1) GET POINTER TO STORED PROCEDURE
NAME
MvC LOCSPNM(20) ,0(R7) MOVE VALUE INTO LOCAL STORAGE
L R7,24(R1) GET POINTER TO DBINFO
MvC LOCDBINF (DBINFLN),0(R7)
* MOVE VALUE INTO LOCAL STORAGE
LH R7,LOCI1 GET INDICATOR VARIABLE FOR V1
LTR R7,R7 CHECK IF IT IS NEGATIVE
BM NULLIN IF SO, V1 IS NULL
L R7,4(R1) GET POINTER TO V2
MvC 0(9,R7),L0OCV2 MOVE A VALUE INTO OUTPUT VAR V2
L R7,12(R1) GET POINTER TO INDICATOR VAR 2
MvC 0(2,R7),=H'0' MOVE ZERO TO V2'S INDICATOR VAR
L R7,16 (R1) GET POINTER TO SQLSTATE

MvC 0(5,R7),=CL5"xxxxx"' MOVE xxxxx TO SQLSTATE
CEETERM RC=0

B R S S e
* VARIABLE DECLARATIONS AND EQUATES

*
B R S T S e

R1 EQU 1 REGISTER 1

R7 EQU 7 REGISTER 7

PPA CEEPPA CONSTANTS DESCRIBING THE CODE BLOCK
LTORG , PLACE LITERAL POOL HERE

PROGAREA DSECT
ORG *+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART

LoCvl DS F LOCAL COPY OF PARAMETER V1

LOCv2 DS CL9 LOCAL COPY OF PARAMETER V2

LOCI1 DS H LOCAL COPY OF INDICATOR 1

LOCI2 DS H LOCAL COPY OF INDICATOR 2

LOCSQST DS CL5 LOCAL COPY OF SQLSTATE

LOCSPNM DS H,CL27 LOCAL COPY OF STORED PROC NAME

LOCSPSNM DS H,CL18 LOCAL COPY OF SPECIFIC NAME

LOCDIAG DS H,CL1000 LOCAL COPY OF DIAGNOSTIC DATA

LOCDBINF DS OH LOCAL COPY OF DBINFO DATA

DBNAMELN DS H DATABASE NAME LENGTH

DBNAME DS CL128 DATABASE NAME

AUTHIDLN DS H APPL AUTH ID LENGTH

AUTHID DS CL128 APPL AUTH ID

ASC_SBCS DS F ASCII SBCS CCSID

ASC_DBCS DS F ASCII DBCS CCSID

ASC_MIXD DS F ASCII MIXED CCSID

EBC_SBCS DS F EBCDIC SBCS CCSID

EBC_DBCS DS F EBCDIC DBCS CCSID

EBC_MIXD DS F EBCDIC MIXED CCSID

UNI_SBCS DS F UNICODE SBCS CCSID

UNI_DBCS DS F UNICODE DBCS CCSID

UNI_MIXD DS F UNICODE MIXED CCSID

ENCODE DS F PROCEDURE ENCODING SCHEME

RESERVO DS CL20 RESERVED

TBQUALLN DS H TABLE QUALIFIER LENGTH

TBQUAL DS CL128 TABLE QUALIFIER

TBNAMELN DS H TABLE NAME LENGTH

TBNAME DS CL128 TABLE NAME

CLNAMELN DS H COLUMN NAME LENGTH

COLNAME DS CL128 COLUMN NAME

RELVER DS CL8 DBMS RELEASE AND VERSION

RESERV1 DS CL2 RESERVED

PLATFORM DS F DBMS OPERATING SYSTEM

NUMTFCOL DS H NUMBER OF TABLE FUNCTION COLS USED

RESERV2 DS CL26 RESERVED

TFCOLNUM DS A POINTER TO TABLE FUNCTION COL LIST

APPLID DS A POINTER TO APPLICATION ID

RESERV3 DS CL20 RESERVED

DBINFLN EQU *-LOCDBINF LENGTH OF DBINFO

PROGSIZE EQU *-PROGAREA
CEEDSA MAPPING OF THE DYNAMIC SAVE AREA
CEECAA MAPPING OF THE COMMON ANCHOR AREA
END B

264 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

C example

The following figure shows how a stored procedure that is written as a main program in the C language
receives these parameters.

#pragma runopts(plist(os))
f##include <;stdlib.h>
#include <;stdio.h>

main(argc,argv)

3

int argc;
char xargv[];

int parml;

short int ind1;
char p_proc[28];
char p_spec[19];
/

||| /
/* Assume that the SQL CALL statement included */
/* 3 input/output parameters in the parameter list.x/
/* The argv vector will contain these entries: */
/* argv[0] 1 contains load module */
/* argv[1-3] 3 input/output parms */
/* argv([4-6] 3 null indicators */
/* argv([7] 1 SQLSTATE variable */
/* argv([8] 1 qualified proc name %/
/* argv([9] 1 specific proc name */
/* argv[10] 1 diagnostic string */
/* argv[11] + 1 dbinfo */
R %/
/* 12 for the argc variable x/

/***/
if arge<>12 {

7* We end up here when invoked with wrong number of parms x*/

[HRER AR AR ER ARSI SR SIS R R AR R AR AR AR SRS SRS /
/* Assume the first parameter is an integer. */
/* The following code shows how to copy the integerx/
/* parameter into the application storage. */

/***/
parml = x(int %) argv[1];

||| /
/* We can access the null indicator for the first =«/
/* parameter on the SQL CALL as follows: */
||| /
indl = x(short int *) argv([4];
||| /
/* We can use the following expression */
/* to assign 'xxxxx' to the SQLSTATE returned to */
/* caller on the SQL CALL statement. */
||| /
strcpy(argv[7], "xxxxx/0");
||| /
/* We obtain the value of the qualified procedure */
/* name with this expression. */
||| /

strcpy(p_proc,argv([8]);

/***/
/* We obtain the value of the specific procedure */
/* name with this expression. */
/***/

strcpy (p_spec,argv[9]);
/

/* We can use the following expression to assign */
/* 'yyyyyyyy' to the diagnostic string returned */
/* in the SQLDA associated with the CALL statement.x/
/***/

strcpy(argv[10], "yyyyyyyy/0");

The following figure shows how a stored procedure that is written as a subprogram in the C language
receives these parameters.

#pragma linkage (myproc,fetchable)
#include <stdlib.h>

Chapter 3. Db2 SQL programming 265

#include <stdio.h>
#include <sqludf.h>

void myproc(*parml int, /* assume INT for PARM1
j/ parm2 char[11], /* assume CHAR(10) parm2

*

: *p_ind1l short int, /* null indicator for parml
*j *p_ind2 short int, /* null indicator for parm2
*

: p_sqlstate char[6], /* SQLSTATE returned to DB2
* p_proc char[28], /* Qualified stored proc name

/ p_spec char[19], / Specific stored proc name
* p_diag char[1001], /* Diagnostic string

* struct sqludf_dbinfo xudf_dbinfo); /* DBINFO

{*/

int 1_p1;

char[11] 1_p2;

short int 1_ind1;

short int 1_ind2;

char[6] 1_sqlstate;
char[28] 1_proc;

char[19] 1_spec;

char[71] 1_diag;
sqludf_dbinfo *ludf_dbinfo;

[HRES SR AFAFI RIS SRS SRAIAFAFARER RS SRS SRR A /
/* Copy each of the parameters in the parameter */
/* list into a local variable, just to demonstrate x/
/* how the parameters can be referenced. */

/***/
1_pl = xparml;

strcpy (1_p2,parm2);

1_indl = xp_ind1;

1_ind1l = %p_ind2;
strcpy(l_sqglstate,p_sqglstate);
strcpy(l_proc,p_proc);
strcpy(1l_spec,p_spec);

strcpy(l_diag,p_diag);
memcpy (&ludf_dbinfo,udf_dbinfo,sizeof(ludf_dbinfo));

COBOL example

The following figure shows how a stored procedure that is written in the COBOL language receives these
parameters.

CBL RENT
_ IDENTIFICATION DIVISION.

_DATA DIVISION.

LINKAGE SECTION.
* Declare each of the parameters
01 PARM1 ..

01 PARM2 ..

* Declare a null indicator for each parameter
01 P-IND1 PIC S9(4) USAGE COMP.
01 P-IND2 PIC S9(4) USAGE COMP.

* Declare the SQLSTATE that can be set by stored proc
01 P-SQLSTATE PIC X(5).

266 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

* Declare the qualified procedure name
01 P-PROC.
49 P-PROC-LEN PIC 9(4) USAGE BINARY.
49 P-PROC-TEXT PIC X(27).
* Declare the specific procedure name
01 P-SPEC.
49 P-SPEC-LEN PIC 9(4) USAGE BINARY.
49 P-SPEC-TEXT PIC X(18).
* Declare SQL diagnostic message token
01 P-DIAG.
49 P-DIAG-LEN PIC 9(4) USAGE BINARY.
49 P-DIAG-TEXT PIC X(1000).
* Structure used for DBINFO *
*hkkkkkkhkkhkkhkkhkhkkhkkhhkkhkkhkhhkkhkkhhkhkkhhhkhkkhhhkkhkkhhhkkhhhkkhkkhhhkkhhkhkkhkkhhhkkhkhhkkhhik
01 SQLUDF-DBINFO.
* Location name length
05 DBNAMELEN PIC 9(4) USAGE BINARY.

* Location name
05 DBNAME PIC X(128).
* authorization ID length
05 AUTHIDLEN PIC 9(4) USAGE BINARY.
* authorization ID
05 AUTHID PIC X(128).
* environment CCSID information

05 CODEPG PIC X(48).
05 CDPG-DB2 REDEFINES CODEPG.
10 DB2-CCSIDS OCCURS 3 TIMES.
15 DB2-SBCS PIC 9(9) USAGE BINARY.
15 DB2-DBCS PIC 9(9) USAGE BINARY.
15 DB2-MIXED PIC 9(9) USAGE BINARY.
10 ENCODING-SCHEME PIC 9(9) USAGE BINARY.
10 RESERVED PIC X(20).

* other platform-specific
deprecated CCSID structures not included here

* schema name length
05 TBSCHEMALEN PIC 9(4) USAGE BINARY.
* schema name
05 TBSCHEMA PIC X(128).
* table name length
05 TBNAMELEN PIC 9(4) USAGE BINARY.
* table name
05 TBNAME PIC X(128).
* column name length
05 COLNAMELEN PIC 9(4) USAGE BINARY.
* column name
05 COLNAME PIC X(128).
* product information
05 VER-REL PIC X(8).
* reserved
05 RESDO PIC X(2).
* platform type
05 PLATFORM PIC 9(9) USAGE BINARY.
* number of entries in the TF column list array (tfcolumn, below)
05 NUMTFCOL PIC 9(4) USAGE BINARY.
* reserved
05 RESD1 PIC X(26).
* tfcolumn will be allocated dynamically of it is defined
* otherwise this will be a null pointer
05 TFCOLUMN USAGE IS POINTER.
* application identifier
05 APPL-ID USAGE IS POINTER.
* reserved

05 RESD2 PIC X(20).
*

PROCEDURE DIVISION USING PARM1, PARM2,
P-IND1, P-IND2,
P-SQLSTATE, P-PROC, P-SPEC, P-DIAG,
SQLUDF-DBINFO.

Chapter 3. Db2 SQL programming 267

PL/I example

The following figure shows how a stored procedure that is written in the PL/I language receives these
parameters.

*PROCESS SYSTEM(MVS) ;
MYMAIN: PROC(PARM1, PARM2, ...,
P_IND1, P_IND2, ...,
P_SQLSTATE, P_PROC, P_SPEC, P_DIAG, DBINFO)
OPTIONS(MAIN NOEXECOPS REENTRANT);

DCL PARM1 ... /* first parameter =«/
_DCL PARM2 ... /* second parameter */

'DCL P_IND1 BIN FIXED(15);/* indicator for 1st parm */
_DCL P_IND2 BIN FIXED(15);/* indicator for 2nd parm */

'DCL P_SQLSTATE CHAR(5): /* SQLSTATE to return to DB2 */
DCL 01 P_PROC CHAR(27) /% Qualified procedure name x/

VARYING;

DCL 01 P_SPEC CHAR(18) /% Specific stored proc */
VARYING;

DCL 01 P_DIAG CHAR(1000) /x Diagnostic string */
VARYING;

DCL DBINFO PTR;

DCL 01 SP_DBINFO BASED(DBINFO),
*/

/* Dbinfo
03 UDF_DBINFO_LLEN BIN FIXED(15), /* location length */
03 UDF_DBINFO_LOC CHAR(128), /* location name */
03 UDF_DBINFO_ALEN BIN FIXED(15), /* auth ID length */
03 UDF_DBINFO_AUTH CHAR(128), /* authorization ID */
03 UDF_DBINFO_CCSID, /* CCSIDs for DB2 for z/0S =%/
05 R1 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_ASBCS BIN FIXED(15), /% ASCII SBCS CCSID =*/
05 R2 BIN FIXED(15), /% Reserved */
05 UDF_DBINFO_ADBCS BIN FIXED(15), /% ASCII DBCS CCSID =«/
05 R3 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_AMIXED BIN FIXED(15), /% ASCII MIXED CCSID =%/
05 R4 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_ESBCS BIN FIXED(15), /% EBCDIC SBCS CCSID =/
05 R5 BIN FIXED(15), /% Reserved */
05 UDF_DBINFO_EDBCS BIN FIXED(15), /* EBCDIC DBCS CCSID =/
05 R6 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_EMIXED BIN FIXED(15), /* EBCDIC MIXED CCSID*
05 R7 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_USBCS BIN FIXED(15), /% Unicode SBCS CCSID

*/
05 R8 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_UDBCS BIN FIXED(15), /% Unicode DBCS CCSID

*/
05 R9 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_UMIXED BIN FIXED(15), /* Unicode MIXED CCSID=/
05 UDF_DBINFO_ENCODE BIN FIXED(31), /* SP encode scheme =*/
05 UDF_DBINFO_RESERVO CHAR(0G8), /* reserved

*/
03 UDF_DBINFO_SLEN BIN FIXED(15), /* schema length */
03 UDF_DBINFO_SCHEMA CHAR(128), /* schema name */
03 UDF_DBINFO_TLEN BIN FIXED(15), /* table length */
03 UDF_DBINFO_TABLE CHAR(128), /* table name */
03 UDF_DBINFO_CLEN BIN FIXED(15), /* column length */
03 UDF_DBINFO_COLUMN CHAR(128), /* column name */
03 UDF_DBINFO_RELVER CHAR(8), /* DB2 release level %/
03 UDF_DBINFO_RESERVO CHAR(2), /* reserved */

03 UDF_DBINFO_PLATFORM BIN FIXED(31), /* database platformx/
03 UDF_DBINFO_NUMTFCOL BIN FIXED(15), /* # of TF cols usedx*/

03 UDF_DBINFO_RESERV1 CHAR(26), /* reserved */
03 UDF_DBINFO_TFCOLUMN PTR, /* -> table fun col list x/
03 UDF_DBINFO_APPLID PTR, /* -> application id */
03 UDF_DBINFO_RESERV2 CHAR(20); /* reserved */

268 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

DBINFO structure

Use the DBINFO structure to pass environment information to user-defined functions and stored
procedures. Some fields in the structure are not used for stored procedures.

DBINFO is a structure that contains information such as the name of the current server, the application
run time authorization ID and identification of the version and release of the database manager that
invoked the procedure.

The DBINFO structure includes the following information:

Location name length
An unsigned 2-byte integer field. It contains the length of the location name in the next field.

Location name
A 128-byte character field. It contains the name of the location to which the invoker is currently
connected.

Authorization ID length
An unsigned 2-byte integer field. It contains the length of the authorization ID in the next field.

Authorization ID
A 128-byte character field. It contains the authorization ID of the application from which the stored
procedure is invoked, padded on the right with blanks. If this stored procedure is nested within
other routines (user-defined functions or stored procedures), this value is the authorization ID of the
application that invoked the highest-level routine.

Subsystem code page
A 48-byte structure that consists of 10 integer fields and an eight-byte reserved area. These fields
provide information about the CCSIDs of the subsystem from which the stored procedure is invoked.

Table qualifier length

An unsigned 2-byte integer field. This field contains O.
Table qualifier

A 128-byte character field. This field is not used for stored procedures.
Table name length

An unsigned 2-byte integer field. This field contains O.

Table name
A 128-byte character field. This field is not used for stored procedures.

Column name length
An unsigned 2-byte integer field. This field contains O.

Column name
A 128-byte character field. This field is not used for stored procedures.

Product information
An 8-byte character field that identifies the product on which the stored procedure executes.

The product identifier (PRDID) value is an 8-byte character value in pppvvrrm format, where: ppp is a
3-letter product code; vv is the version;rr is the release; and m is the modification level. In Db2 12 for
z/0S, the modification level indicates a range of function levels:

DSN12015 for VA2R1M500 or higher.
DSN12010 for V12R1M100.

For more information, see Product identifier (PRDID) values in Db2 for z/OS (Db2 Administration
Guide).

Reserved area
2 bytes.

Operating system
A 4-byte integer field. It identifies the operating system on which the program that invokes the
user-defined function runs. The value is one of these:

Chapter 3. Db2 SQL programming 269

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prdidvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prdidvalues.html

Unknown
0Ss/2
Windows
AIX
Windows NT
HP-UX
Solaris

z/0S
13

Siemens Nixdorf
15

Windows 95

16
SCO UNIX

18
Linux
19
DYNIX/ptx
24
Linux for S/390
25
Linux for IBM zSystems
26
Linux/IA64
27
Linux/PPC
28
Linux/PPC64
29
Linux/AMD64
400
iSeries
Number of entries in table function column list
An unsigned 2-byte integer field. This field contains O.
Reserved area
26 bytes.
Table function column list pointer
This field is not used for stored procedures.

Unique application identifier
This field is a pointer to a string that uniquely identifies the application's connection to Db2. The string
is regenerated at for each connection to Db2.

270 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

The string is the LUWID, which consists of a fully-qualified LU network name followed by a period
and an LUW instance number. The LU network name consists of a one- to eight-character network ID,
a period, and a one- to eight-character network LU name. The LUW instance number consists of 12
hexadecimal characters that uniquely identify the unit of work.

Reserved area
20 bytes.

Packages for external stored procedures
An external stored procedure must have an associated package.

As part of the process of creating an external stored procedure, you prepare the procedure, which means
that you precompile, compile, link-edit, and bind the application. The result of this process is a Db2
package. You do not need to create a Db2 plan for an external procedure. The procedure runs under the
caller's thread and uses the plan from the client program that calls it.

The calling application can use a Db2 package or plan to execute the CALL statement.

Both the stored procedure package and the calling application plan or package must exist on the server
before you run the calling application.

The following figure shows this relationship between a client program and a stored procedure. In the
figure, the client program, which was bound into package A, issues a CALL statement to program B.
Program B is an external stored procedure in a WLM address space. This external stored procedure was
bound into package B.

Client Program Db2 System Address Space
User ID = yyyy User ID = yyyy User ID =xxxx
Program A
0 Package
EXEC SQL B
CALLB l
Package Program
A ———— B
CALLB

»
»

Figure 15. Stored procedure run time environment

You can control access to the stored procedure package by specifying the ENABLE bind option when you
bind the package.

In the following situations, the stored procedure might use more than one package:

 You bind a DBRM several times into several versions of the same package, all of which have the same
package name but reside in different package collections. Your stored procedure can switch from one
version to another by using the SET CURRENT PACKAGESET statement.

« The stored procedure calls another program that contains SQL statements. This program has an
associated package. This package must exist at the location where the stored procedure is defined
and at the location where the SQL statements are executed.

Related reference

BIND and REBIND options for packages, plans, and services (Db2 Commands)

BIND PACKAGE subcommand (DSN) (Db2 Commands)

SET CURRENT PACKAGESET (Db2 SOL)

Chapter 3. Db2 SQL programming 271

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_bindpackage.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_setcurrentpackageset.html

Accessing other sites in an external procedure
External procedures can access tables at other Db2 locations.

About this task

Stored procedures can access tables at other Db2 locations by using three-part object names or
CONNECT statements.

Related concepts

Accessing distributed data by using three-part table names
You can use three-part table names to access data at a remote location through DRDA access.

Accessing non-Db2 resources in your stored procedure

Applications that run in a stored procedures address space can access any resources that are available to
z/OS address spaces. For example, they can access VSAM files, flat files, APPC/MVS conversations, and
IMS or CICS transactions.

About this task

Accessing these resources from a stored procedure can be useful if you want to update older applications.
Suppose that you have existing applications that access non-Db2 resources, but you want to use newer
Db2 applications to access the same data. You do not need to rewrite the application or migrate the data
to Db2. Instead, you can use stored procedures to execute the existing program or access the non-Db2
data directly.

When a stored procedure runs, the stored procedure uses the Recoverable Resource Manager Services
(RRS) for commitment control. When Db2 commits or rolls back work, Db2 coordinates all updates that
are made to recoverable resources by other RRS compliant resource managers in the z/OS system.

Procedure

To access non-Db2 resources in your stored procedure:
1. Consider serializing access to non-Db2 resources within your application.

Not all non-Db2 resources can tolerate concurrent access by multiple TCBs in the same address space.
2. To access CICS, use one of the following methods:

« Stored procedure DSNACICS

« Message Queue Interface (MQI) for asynchronous execution of CICS transactions

« External CICS interface (EXCI) for synchronous execution of CICS transactions

« Advanced Program-to-Program Communication (APPC), using the Common Programming Interface
Communications (CPI Communications) application programming interface

If your system is running a release of CICS that uses z/OS RRS, z/OS RRS controls commitment of all
resources.

3. To access IMS DL/I data, use one of the following methods
« Open Database Access interface (ODBA)
 Stored procedures DSNAIMS and DSNAIMS2

If your system is not running a release of IMS that uses z/OS RRS, take one of the following actions:

« Use the CICS EXCI interface to run a CICS transaction synchronously. That CICS transaction can, in
turn, access DL/I data.

« Invoke IMS transactions asynchronously using the MQI.

« Use APPC through the Common Programming Interface (CPI) Communications application
programming interface.

4. Determine which of the following authorization IDs you want to use to access the non-Db2 resources.

272 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Table 46. Authorization IDs for accessing non-Db2 resources from a stored procedure

ID that you want to use to access the non-Db2 SECURITY value to specify in the CREATE
resources PROCEDURE statement

The authorization ID that is associated with the SECURITY Db2
stored procedures address space

The authorization ID under which the CALL SECURITY USER
statement is executed

The authorization ID under which the CREATE SECURITY DEFINER
PROCEDURE statement is executed

5. Issue the CREATE PROCEDURE statement with the appropriate SECURITY option that you determined
in the previous step.

Results

When the stored procedure runs, Db2 establishes a RACF environment for accessing non-Db2 resources
and uses the specified authorization ID to access protected z/OS resources.

Related tasks

Calling a stored procedure from your application

To run a stored procedure, you can either call it from a client program or invoke it from the command line
processor.

Implementing RRS for stored procedures during installation (Db2 Installation and Migration)
Controlling stored procedure access to non-Db2 resources by using RACF (Managing Security)
Related reference

DSNACICS stored procedure (Db2 SQL)

DSNAIMS stored procedure (Db2 SQL)

DSNAIMS?2 stored procedure (Db2 SQL)

CREATE PROCEDURE (SQL - external) (deprecated) (Db2 SQL)

APPC/MVS Configuration (Multiplatform APPC Configuration Guide)

Related information

Db2 for z/OS Stored Procedures: Through the CALL and Beyond (IBM Redbooks)

External CICS interface (EXCI) (CICS Transaction Server for z/0S)

Writing an external procedure to access IMS databases
IMS Open Database Access (ODBA) support lets a Db2 stored procedure connect to an IMS DBCTL or IMS
DB/DC system and issue DL/I calls to access IMS databases.

About this task

ODBA support uses RRS for syncpoint control of Db2 and IMS resources. Therefore, stored procedures
that use ODBA can run only in WLM-established stored procedures address spaces.

When you write a stored procedure that uses ODBA, follow the rules for writing an IMS application
program that issues DL/I calls.

IMS work that is performed in a stored procedure is in the same commit scope as the stored procedure.
As with any other stored procedure, the calling application commits work.

A stored procedure that uses ODBA must issue a DPSB PREP call to deallocate a PSB when all IMS work
under that PSB is complete. The PREP keyword tells IMS to move inflight work to an indoubt state. When
work is in the indoubt state, IMS does not require activation of syncpoint processing when the DPSB

call is executed. IMS commits or backs out the work as part of RRS two-phase commit when the stored
procedure caller executes COMMIT or ROLLBACK.

A sample COBOL stored procedure and client program demonstrate accessing IMS data using the ODBA
interface. The stored procedure source code is in member DSN8EC1 and is prepared by job DSNTEJ61.

Chapter 3. Db2 SQL programming 273

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_implementrrs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2nondb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sp_admindsnacics.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sp_admindsnaims.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sp_dsnaims2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createproceduresqlexternal.html
http://www.redbooks.ibm.com/abstracts/GG244485.html
http://www.redbooks.ibm.com/abstracts/sg247604.html
https://www.ibm.com/docs/en/cics-ts/5.6?topic=intercommunication-external-cics-interface-exci

The calling program source code is in member DSN8EC1 and is prepared and executed by job DSNTEJ62.
All code is in data set DSN1210.SDSNSAMP.

The startup procedure for a stored procedures address space in which stored procedures that use ODBA
run must include a DFSRESLB DD statement and an extra data set in the STEPLIB concatenation.

Related concepts

Installation step 21: Configure Db2 for running stored procedures and user-defined functions (Db2
Installation and Migration)

Migration step 23: Configure Db2 for running stored procedures and user-defined functions (optional)
(Db2 Installation and Migration)

Related information
Application programming design

Writing an external procedure to return result sets to a distributed client
An external procedure can return multiple query result sets to a distributed client if the value of DYNAMIC
RESULT SETS in the stored procedure definition is greater than 0.

Procedure

« For each result set you want returned, your stored procedure must complete the following steps:
a) Declare a cursor with the option WITH RETURN.
b) Open the cursor.

c¢) If the cursor is scrollable, ensure that the cursor is positioned before the first row of the result
table.

d) Leave the cursor open.

For example, suppose you want to return a result set that contains entries for all employees in
department D11. First, declare a cursor that describes this subset of employees:

EXEC SQL DECLARE C1 CURSOR WITH RETURN FOR
SELECT * FROM DSN8C10.EMP
WHERE WORKDEPT='D11"';

Then, open the cursor:

EXEC SQL OPEN C1;

Db2 returns the result set and the name of the SQL cursor for the stored procedure to the client.
When the stored procedure ends, Db2 returns the rows in the query result set to the client.

Db2 does not return result sets for cursors that are closed before the stored procedure terminates.
The stored procedure must execute a CLOSE statement for each cursor associated with a result set
that should not be returned to the DRDA client.

« Use meaningful cursor names for returning result sets.
The name of the cursor that is used to return result sets is made available to the client application
through extensions to the DESCRIBE statement.
Use cursor names that are meaningful to the DRDA client application, especially when the stored
procedure returns multiple result sets.

« You can use any of these objects in the SELECT statement that is associated with the cursor for a result
set:

Tables, synonyms, views, created temporary tables, declared temporary tables, and aliases defined at
the local Db2 subsystem.

« Return a subset of rows to the client by issuing FETCH statements with a result set cursor. does not
return the fetched rows to the client program.

274 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html
https://www.ibm.com/docs/en/ims/15.2.0?topic=programming-application-design

Db2 does not return the fetched rows to the client program. For example, if you declare a cursor
WITH RETURN and then execute the statements OPEN, FETCH, and FETCH, the client receives data
beginning with the third row in the result set. If the result set cursor is scrollable and you fetch rows
with it, you need to position the cursor before the first row of the result table after you fetch the rows
and before the stored procedure ends.

« You can use a created temporary table or declared temporary table to return result sets from a stored
procedure.
This capability can be used to return non-relational data to a DRDA client. For example, you can access
IMS data from a stored procedure by using the following process:
a) Use APPC/MVS to issue an IMS transaction.
b) Receive the IMS reply message, which contains data that should be returned to the client.
¢) Insert the data from the reply message into a temporary table.
d) Open a cursor against the temporary table. When the stored procedure ends, the rows from the
temporary table are returned to the client.
Related tasks

Writing a program to receive the result sets from a stored procedure

You can write a program to receive results set from a stored procedure for either a fixed number of result
sets, for which you know the contents, or a variable number of result sets, for which you do not know the
contents.

Restrictions when calling other programs from an external stored procedure

An external procedure can consist of more than one program, each with its own package. Your stored
procedure can call other programs, stored procedures, or user-defined functions. Use the facilities of your
programming language to call other programs.

If the stored procedure calls other programs that contain SQL statements, each of those called programs
must have a Db2 package. The owner of the package or plan that contains the CALL statement must have
EXECUTE authority for all packages that the other programs use.

When a stored procedure calls another program, Db2 determines which collection the package of the
called program belongs to in one of the following ways:

« If the stored procedure definition contains PACKAGE PATH with a specified list of collection IDs, Db2
uses those collection IDs. If you also specify COLLID, Db2 ignores that clause.

« If the stored procedure definition contains COLLID collection-id, Db2 uses collection-id.

« If the stored procedure executes SET CURRENT PACKAGE PATH and contains the NO COLLID option,
Db2 uses the CURRENT PACKAGE PATH special register. The package of the called program comes
from the list of collections in the CURRENT PACKAGE PATH special register. For example, assume that
CURRENT PACKAGE PATH contains the list COLL1, COLL2, COLL3, COLL4. Db2 searches for the first
package (in the order of the list) that exists in these collections.

« If the stored procedure does not execute SET CURRENT PACKAGE PATH and instead executes SET
CURRENT PACKAGESET, Db2 uses the CURRENT PACKAGESET special register. The package of the
called program comes from the collection that is specified in the CURRENT PACKAGESET special
register.

« If both of the following conditions are true, Db2 uses the collection ID of the package that contains the
SQL statement CALL:

— the stored procedure does not execute SET CURRENT PACKAGE PATH or SET CURRENT PACKAGESET
— the stored procedure definition contains the NO COLLID option

When control returns from the stored procedure, the value of the CURRENT PACKAGESET special
register is reset.Db2 restores the value of the CURRENT PACKAGESET special register to the value that
it contained before the client program executed the SQL statement CALL.

Chapter 3. Db2 SQL programming 275

Creating an external stored procedure as reentrant
Reentrant code is code for which a single copy can be used concurrently by two or more processes. For
improved performance, prepare your stored procedures to be reentrant whenever possible

About this task

Reentrant stored procedures can improve performance for the following reasons:

« Areentrant stored procedure does not need to be loaded into storage every time that it is called.

« Asingle copy of the stored procedure can be shared by multiple tasks in the stored procedures
address space. This sharing decreases the amount of virtual storage that is used for code in the stored
procedures address space.

Procedure

To create an external stored procedure as reentrant:
1. Compile the procedure as reentrant and link-edit it as reentrant and reusable.

For instructions on compiling programs to be reentrant, see the information for the programming
language that you are using. For C and C++ procedures, you can use the z/OS binder to produce
reentrant and reusable load modules.

If your stored procedure cannot be reentrant, link-edit it as non-reentrant and non-reusable. The
non-reusable attribute prevents multiple tasks from using a single copy of the stored procedure at the
same time.

2. Specify STAY RESIDENT YES in the CREATE PROCEDURE or ALTER PROCEDURE statement for the
stored procedure. This option makes a reentrant stored procedure remain in storage.

A non-reentrant stored procedure must not remain in storage. You therefore need to specify STAY
RESIDENT NO in the CREATE PROCEDURE or ALTER PROCEDURE statement for a non-reentrant stored
procedure. STAY RESIDENT NO is the default.

Related concepts

Making programs reentrant (Enterprise COBOL for z/OS Programming Guide)

Related reference

Compiler options (COBOL) (Enterprise COBOL for z/OS Programming Guide)

ALTER PROCEDURE (external) (Db2 SQL)

CREATE PROCEDURE (external) (Db2 SQL)

Binder options reference (MVS Program Management: User's Guide and Reference)
Language restricted (Enterprise PL/I for z/OS Compiler and Runtime Migration Guide)
Compile-time option descriptions (PL/I) (Enterprise PL/I for z/OS Programming Guide:)
Reentrancy (XL C/C++ User's Guide)

External stored procedures as main programs and subprograms

A stored procedure that runs in a WLM-established address space and uses Language Environment
Release 1.7 or a subsequent release can be either a main program or a subprogram. A stored procedure
that runs as a subprogram can perform better because Language Environment does less processing for it.

In general, a subprogram must do the following extra tasks that Language Environment performs for a
main program:

« Initialization and cleanup processing
- Allocating and freeing storage
« Closing all open files before exiting

When you code stored procedures as subprograms, follow these rules:

« Follow the language rules for a subprogram. For example, you cannot perform I/O operations in a PL/I
subprogram.

276 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/cobol-zos/6.4?topic=subprograms-making-programs-reentrant
https://www.ibm.com/docs/cobol-zos/6.4?topic=program-compiler-options
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_alterprocedureexternal.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createprocedureexternal.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieab100/pmbopts.htm
https://www.ibm.com/docs/epfz/6.1?topic=compiler-language-restricted
https://www.ibm.com/docs/epfz/6.1?topic=facilities-compile-time-option-descriptions
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cbcux01/reentrancy.htm

 Avoid using statements that terminate the Language Environment enclave when the program ends.
Examples of such statements are STOP or EXIT in a PL/I subprogram, or STOP RUN in a COBOL
subprogram. If the enclave terminates when a stored procedure ends, and the client program calls
another stored procedure that runs as a subprogram, Language Environment must build a new enclave.
As a result, the benefits of coding a stored procedure as a subprogram are lost.

« In COBOL stored procedures that are defined as PROGRAM TYPE SUB and STAY RESIDENT YES, if you
use stored procedure parameters as host variables, set the SQL-INIT-FLAG variable to 0. This variable
is generated by the Db2 precompiler. Setting it to 0 ensures that the SQLDA is updated with the current
addresses.

The following table summarizes the characteristics that define a main program and a subprogram.

Table 47. Characteristics of main programs and subprograms

Language Main program Subprogram

Assembler MAIN=YES is specified in the invocation MAIN=NO is specified in the invocation
of the CEEENTRY macro. of the CEEENTRY macro.

C Contains a main() function. Pass A fetchable function. Pass parameters to
parameters to it through argc and argv. it explicitly.

COBOL A COBOL program that ends with A dynamically loaded subprogram that
GOBACK ends with GOBACK

PL/I Contains a procedure declared with A procedure declared with
OPTIONS(MAIN) OPTIONS(FETCHABLE)

The following code shows an example of coding a C stored procedure as a subprogram.

|| /
/* This C subprogram is a stored procedure that uses linkage */
/* convention GENERAL and receives 3 parameters. */
|| /
#pragma linkage(cfunc,fetchable)
#include <stdlib.h>
void cfunc(char p1[11],long *p2,short *p3)
1
[HHKFAAFAFIIKKEFFAFFIKKEEAFFIIKKEEAAAFFIKEEAAAFIIAXAAAAFFIA XA KA KK A /

/* Declare variables used for SQL operations. These variables x/
/* are local to the subprogram and must be copied to and from */
/* the parameter list for the stored procedure call. */

/

EXEC SQL BEGIN DECLARE SECTION;
char parmi[11];
long int parm2;
short int parm3;

EXEC SQL END DECLARE SECTION;

[HRES A AFARAFERE R RS S A AFAFARE R RS SE ARSI AFAFA TR RS SHA /

/* Receive input parameter values into local variables. */

[HHEHH A A A EFEFE R RS RR AR AT T RIS RS AFAFA TR RS A KA /

strcpy(parml,pl);

parm2 = *p2;

parm3 = *p3;

[HREXH S A ERAFAFA R RS SAFAFAFARE R RS SSR AR AFAFI R RS SRS /

/* Perform operations on local variables. */

[HHEHH AR A AFHFH TR SRS AAFAFEFE RIS RS A AT TR RS SRS /

/***/

/* Set values to be passed back to the caller. */

[HEREXR SR AFAFE RIS SRR ARAFERE RS SRS AR AR TR RS SHS /

strcpy(parml, "SETBYSP") ;

parm2 = 100;

parm3 = 200;

/***/

/* Copy values to output parameters. */
||| /

strcpy(pl,parml);
*p2 = parm2;

Chapter 3. Db2 SQL programming 277

*p3 = parm3;

The following code shows an example of coding a C++ stored procedure as a subprogram.

/**/
/* This C++ subprogram is a stored procedure that uses linkage */
/* convention GENERAL and receives 3 parameters. *
/* The extern statement is required. */

/

extern "C" void cppfunc(char p1[11],long *p2,short *p3);
#pragma linkage(cppfunc,fetchable)

#include <stdlib.h>

EXEC SQL INCLUDE SQLCA;

void cppfunc(char pl1[11],long *p2,short *p3)

1

/* Declare variables used for SQL operations. These variables x/
/* are local to the subprogram and must be copied to and from =x/
/* the parameter list for the stored procedure call. */
/**/
EXEC SQL BEGIN DECLARE SECTION;

char parm1[11];

long int parm2;

short int parm3;
EXEC SQL END DECLARE SECTION;

/***/

/* Receive input parameter values into local variables. */

[RS AR AFEREFE RS SRS AR AFARE RS SRS AF AR R RS SHA /

strcpy(parml,pl);

parm2 = *p2;

parm3 = *p3;

/***/

/* Perform operations on local variables. */
... /
... /

/* Set values to be passed back to the caller. */

/***/
strcpy (parml, "SETBYSP") ;

parm2 = 100;

parm3 = 200;
||| /

/* Copy values to output parameters. */

/***/
strcpy (pl,parml);

*p2 = parm2;

*p3 = parm3;

Data types in stored procedures

A stored procedure that is written in any language except REXX must declare each parameter that is
passed to it. The definition for that stored procedure must also contain a compatible SQL data type
declaration for each parameter.

For languages other than REXX

For all data types except LOBs, ROWIDs, locators, and VARCHARSs (for C language), see the tables listed in
the following table for the host data types that are compatible with the data types in the stored procedure
definition. You cannot have XML parameters in an external procedure.

For LOBs, ROWIDs, VARCHARs, and locators, the following table shows compatible declarations for the
assembler language.

278 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Table 48. Compatible assembler language declarations for LOBs, ROWIDs, and locators

SQL data type in definition Assembler declaration

TABLE LOCATOR DS FL4
BLOB LOCATOR

CLOB LOCATOR

DBCLOB LOCATOR

BLOB(n) If n <= 65535:
var DS OFL4
var_length DS FL4
var_data DS CLn
If n > 65535:
var DS OFL4
var_length DS FL4
var_data DS CL65535
ORG var_data+(n-65535)

CLOB(n) If n <= 65535:
var DS OFL4
var_length DS FL4
var_data DS CLn
If n > 65535:
var DS OFL4
var_length DS FL4
var_data DS CL65535
ORG var_data+(n-65535)

DBCLOB(n) If m (=2%n) <= 65534:
var DS OFL4
var_length DS FL4
var_data DS CLm
If m > 65534:
var DS OFL4
var_length DS FL4
var_data DS CL65534
ORG var_data+(m-65534)

ROWID DS HL2,CL40
VARCHAR(n) If PARAMETER VARCHAR NULTERM is specified or
implied:

char data[n+1];

If PARAMETER VARCHAR STRUCTURE is specified:

struct

{short len;
char datal[n];
3 var;

Note:

1. This row does not apply to VARCHAR(n) FOR BIT DATA. BIT DATA is always passed in a structured
representation.

For LOBs, ROWIDs, and locators, the following table shows compatible declarations for the C language.

Chapter 3. Db2 SQL programming 279

Table 49. Compatible C language declarations for LOBs, ROWIDs, and locators

SQL data type in definition C declaration

TABLE LOCATOR unsigned long
BLOB LOCATOR

CLOB LOCATOR

DBCLOB LOCATOR

BLOB(n) struct

iunsigned long length;
char data[n];
% var;

CLOB(n) struct

iunsigned long length;
char var_data[n];
t var;

DBCLOB(n) struct

iunsigned long length;
sqldbchar data[n];
% var;

ROWID struct

ishort int length;
char data[40];
t var;

For LOBs, ROWIDs, and locators, the following table shows compatible declarations for COBOL.

Table 50. Compatible COBOL declarations for LOBs, ROWIDs, and locators

SQL data type in definition COBOL declaration

TABLE LOCATOR 01 var PIC S9(9) COMP-5.
BLOB LOCATOR

CLOB LOCATOR
DBCLOB LOCATOR

BLOB(n) 01 var.

49 var-LENGTH PIC S9(9) COMP-5.
49 var-DATA PIC X(n).

CLOB(n) 01 var.

49 var-LENGTH PIC S9(9) COMP-5.
49 var-DATA PIC X(n).

DBCLOB(n) B .

49 var-LENGTH PIC S9(9) COMP-5.
49 var-DATA PIC G(n) DISPLAY-1.

ROWID 01 var.

49 var-LEN PIC S9(4) COMP-5.
49 var-DATA PIC X(40).

For LOBs, ROWIDs, and locators, the following table shows compatible declarations for PL/I.

280 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

Table 51. Compatible PL/I declarations for LOBs, ROWIDs, and locators

SQL data type in definition

PL/I

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

BIN FIXED(31)

BLOB(n)

If n<=32767:

01 var,
03 var_LENGTH
BIN FIXED(31),
03 var_DATA
CHAR(n);

If n>32767:

01 var,
02 var_LENGTH
BIN FIXED(31),
02 var_DATA,
03 var_DATA1(n)
CHAR(32767),
03 var_DATA2
CHAR (mod (n,32767));

CLOB(n)

If n<=32767:

01 var,
03 var_LENGTH
BIN FIXED(31),
03 var_DATA
CHAR(n) ;

If n>32767:

01 var,
02 var_LENGTH
BIN FIXED(31),
02 var_DATA,
03 var_DATA1(n)
CHAR(32767),
03 var_DATA2
CHAR (mod (n,32767));

DBCLOB(n)

If n<=16383:

01 var,
03 var_LENGTH
BIN FIXED(31),
03 var_DATA
GRAPHIC(n);

If n>16383:

01 var,
02 var_LENGTH
BIN FIXED(31),
02 var_DATA,
03 var_DATA1(n)
GRAPHIC(16383),
03 var_DATA2

GRAPHIC (mod(n,16383));

ROWID

CHAR(40) VAR

Chapter 3. Db2 SQL programming 281

Tables of results: Each high-level language definition for stored procedure parameters supports only

a single instance (a scalar value) of the parameter. There is no support for structure, array, or vector
parameters. Because of this, the SQL statement CALL limits the ability of an application to return some
kinds of tables. For example, an application might need to return a table that represents multiple
occurrences of one or more of the parameters passed to the stored procedure. Because the SQL
statement CALL cannot return more than one set of parameters, use one of the following techniques
to return such a table:

 Put the data that the application returns in a Db2 table. The calling program can receive the data in one
of these ways:

— The calling program can fetch the rows from the table directly. Specify FOR FETCH ONLY or FOR
READ ONLY on the SELECT statement that retrieves data from the table. A block fetch can retrieve the
required data efficiently.

— The stored procedure can return the contents of the table as a result set. See “Writing an external
procedure to return result sets to a distributed client” on page 274 and “Writing a program to receive
the result sets from a stored procedure” on page 766 for more information.

- Convert tabular data to string format and return it as a character string parameter to the calling
program. The calling program and the stored procedure can establish a convention for interpreting the
content of the character string. For example, the SQL statement CALL can pass a 1920-byte character
string parameter to a stored procedure, which enables the stored procedure to return a 24x80 screen
image to the calling program.

Related concepts

Compatibility of SQL and language data types

The host variable data types that are used in SQL statements must be compatible with the data types of
the columns with which you intend to use them.

Installation step 21: Configure Db2 for running stored procedures and user-defined functions (Db2
Installation and Migration)

Migration step 23: Configure Db2 for running stored procedures and user-defined functions (optional)
(Db2 Installation and Migration)

REXX stored procedures

A REXX stored procedure is similar to any other REXX procedure and follows the same rules as stored
procedures in other languages. A REXX stored procedure receives input parameters, executes REXX
commands, optionally executes SQL statements, and returns at most one output parameter. However, a
few differences exist.

A REXX stored procedure is different from other REXX procedures in the following ways:

« A REXX stored procedure must not execute any of the following DSNREXX commands that are used for
the Db2 subsystem thread attachment:

ADDRESS DSNREXX CONNECT
ADDRESS DSNREXX DISCONNECT
CALL SQLDBS ATTACH TO

CALL SQLDBS DETACH

When you execute SQL statements in your stored procedure, Db2 establishes the connection for you.
« A REXX stored procedure must run in a WLM-established stored procedures address space.

 Alanguage REXX stored procedure executes in a background TSO/E REXX environment provided by the
TSO/E environment service IKJTSOEV.

Unlike other stored procedures, you do not prepare REXX stored procedures for execution. REXX stored
procedures run using one of four packages that are bound during the installation of Db2 REXX Language
Support. The current isolation level at which the stored procedure runs depends on the package that Db2
uses when the stored procedure runs:

Package name
Isolation level

282 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html

DSNREXRR
Repeatable read (RR)

DSNREXRS
Read stability (RS)

DSNREXCS
Cursor stability (CS)

DSNREXUR
Uncommitted read (UR)

This topic shows an example of a REXX stored procedure that executes Db2 commands. The stored
procedure performs the following actions:

» Receives one input parameter, which contains a Db2 command.
« Calls the IFI COMMAND function to execute the command.

- Extracts the command result messages from the IFI return area and places the messages in a created
temporary table. Each row of the temporary table contains a sequence number and the text of one
message.

« Opens a cursor to return a result set that contains the command result messages.
« Returns the unformatted contents of the IFI return area in an output parameter.

The following example shows the definition of the stored procedure.

CREATE PROCEDURE COMMAND(IN CMDTEXT VARCHAR(254), OUT CMDRESULT VARCHAR(32704))
LANGUAGE REXX
EXTERNAL NAME COMMAND
NO COLLID
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL
STAY RESIDENT NO
RUN OPTIONS 'TRAP(ON)'
WLM ENVIRONMENT WLMENV1
SECURITY DB2
DYNAMIC RESULT SETS 1
COMMIT ON RETURN NO;

The following example shows the COMMAND stored procedure that executes Db2 commands.

/* REXX %/

PARSE UPPER ARG CMD /* Get the DB2 command text =/

/* Remove enclosing quotation marks =*/

IF LEFT(CMD,1) = "'" & RIGHT(CMD,1) = "'" THEN

CMD = SUBSTR(CMD,2,LENGTH(CMD)-2)

ELSE

IF LEFT(CMD,1) = '"' & RIGHT(CMD,1) = '"' THEN

CMD = SUBSTR(CMD,2,LENGTH(CMD)-2)

COMMAND = SUBSTR("COMMAND",1,18," ")
/**/
/* Set up the IFCA, return area, and output area for the */
/* IFI COMMAND call. */

[Fkkkkdkok ok ko sk ok ok ok ok sk kok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok sk ok ok ok ko ok ok sk ok k ok ok kok
IFCA = SUBSTR('00'X,1,180, '00'X)
IFCA OVERLAY (D2C (LENGTH(IFCA),2),IFCA,1+0)
IFCA = OVERLAY("IFCA",IFCA,4+1)
RTRNAREASIZE = 262144 /%*1048572x%/
RTRNAREA = D2C (RTRNAREASIZE+4,4)LEFT(' ',RTRNAREASIZE,' ')
OUTPUT = D2C(LENGTH(CMD)+4,2) || '0000'X| |CMD
BUFFER = SUBSTR(" ",1,16," ")

|| /
/* Make the IFI COMMAND call. */
[EREF AR AR AR AR SRS SRS FARERAR AR SRS SIS R REFAF AR AR S RS /
ADDRESS LINKPGM "DSNWLIR COMMAND IFCA RTRNAREA OUTPUT"
WRC = RC
RTRN= SUBSTR(IFCA,12+1,4)
REAS= SUBSTR(IFCA,16+1,4)
TOTLEN = C2D(SUBSTR(IFCA,20+1,4))
|| /
/* Set up the host command environment for SQL calls. */
/**/
"SUBCOM DSNREXX" /* Host cmd env available? =*/

Chapter 3. Db2 SQL programming 283

IF RC THEN /* No--add host cmd env */
S_RC = RXSUBCOM('ADD', 'DSNREXX"', 'DSNREXX")

/**/
/* Set up SQL statements to insert command output messages */
/* 1into a temporary table. */
/**/

SQLSTMT="'INSERT INTO SYSIBM.SYSPRINT(SEQNO,TEXT) VALUES(?,?)'

ADDRESS DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"

IF SQLCODE -= © THEN CALL SQLCA

ADDRESS DSNREXX "EXECSQL PREPARE S1 FROM :SQLSTMT"

IF SQLCODE -= O THEN CALL SQLCA
/**/
/* Extract messages from the return area and insert them into */

/* the temporary table. */
[% dkk ok dk ok ko k ok ok ok ok k ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok k k& ok ok kA ko
SEQNO = 0
OFFSET = 4+1

DO WHILE (OFFSET < TOTLEN)
LEN = C2D(SUBSTR(RTRNAREA,OFFSET,2))
SEQNO = SEQNO + 1
TEXT = SUBSTR(RTRNAREA,OFFSET+4,LEN-4-1)
ADDRESS DSNREXX "EXECSQL EXECUTE S1 USING :SEQNO,:TEXT"
IF SQLCODE -= O THEN CALL SQLCA
OFFSET = OFFSET + LEN

END
.. /
/* Set up a cursor for a result set that contains the command */
/* output messages from the temporary table. */
A e R /
SQLSTMT="'SELECT SEQNO,TEXT FROM SYSIBM.SYSPRINT ORDER BY SEQNO'
ADDRESS DSNREXX "EXECSQL DECLARE C2 CURSOR FOR S2"
IF SQLCODE -= O THEN CALL SQLCA
ADDRESS DSNREXX "EXECSQL PREPARE S2 FROM :SQLSTMT"
IF SQLCODE -= 0 THEN CALL SQLCA
.. /
/* Open the cursor to return the message output result set to */
/* the caller. */
.. /

/
ADDRESS DSNREXX "EXECSQL OPEN C2"
IF SQLCODE -= O THEN CALL SQLCA
S_RC = RXSUBCOM('DELETE"', 'DSNREXX', 'DSNREXX') /* REMOVE CMD ENV %/
EXIT SUBSTR(RTRNAREA,1,TOTLEN+4)

/ || /

/* Routine to display the SQLCA */

/**/
SQLCA:

SAY 'SQLCODE ='SQLCODE
SAY 'SQLERRMC ='SQLERRMC
SAY 'SQLERRP ='SQLERRP

SAY 'SQLERRD ='SQLERRD.1'
| SOLERRD.2'
| SOLERRD.3'
| SQLERRD.4'
| SOLERRD.5'
| SOLERRD.6
='SOLWARN.Q'
| SOLWARN.Z1'
| SOLWARN.2'
|
|
|
|
|
|
|
|

|
|
|
|
SAY 'SQLWARN

SQLWARN. 3"
SQLWARN. 4"
SQLWARN.5"
SQLWARN.6"
SQLWARN. 7"
SQLWARN.8'
SQLWARN.9"
SQLWARN. 10
SAY 'SQLSTATE='SQLSTATE
SAY 'SQLCODE ='SQLCODE
EXIT 'SQLERRMC ='SQLERRMC
| "SQLERRP ='SQLERRP';'
| "SQLERRD ='SQLERRD.1'
|| SOLERRD.2'
|| SOLERRD.3'
|| SQLERRD.4'
[
[l

SQLERRD.5'

SQLERRD. 6"

|| 'SOLWARN ='SQLWARN.O'
|| SOLWARN.1'

284 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

|| SOLWARN.2',
|| SQLWARN.3',
|| SOLWARN.4',
|| SOLWARN.5',
|| SQLWARN.6',
|| SOLWARN.7',
|| SOLWARN.8',
|| SQLWARN.9',

|| SOLWARN.10';' ,
|| 'SQLSTATE='SQLSTATE';'

Related reference

Calling a stored procedure from a REXX procedure
The format of the parameters that you pass in the CALL statement in a REXX procedure must be
compatible with the data types of the parameters in the CREATE PROCEDURE statement.

TSO/E services available under IKJTSOEV (TSO/E Programming Services)

Modifying an external stored procedure definition
You can modify the definition of an external stored procedure or the stored procedure source code. In
either case, you need to prepare the stored procedure again.

Procedure
To modify an external stored procedure definition:
1. Issue one of the following:

« FL507The CREATE PROCEDURE statement with the OR REPLACE clause and the SPECIFIC clause
in the following cases:

— When the parameter list of the existing procedure includes a table parameter.

— When the CREATE statement specifies changes to the parameter list other than parameter
names.

« The ALTER PROCEDURE statement with the appropriate options.

This new definition replaces the existing definition.

2. Prepare the external stored procedure again, as you did when you originally created the external
stored procedure.

Example

Suppose that an existing C stored procedure was defined with the following statement:

CREATE PROCEDURE B(IN V1 INTEGER, OUT V2 CHAR(9))
LANGUAGE C
DETERMINISTIC
NO SQL
EXTERNAL NAME SUMMOD
COLLID SuUMCOLL
ASUTIME LIMIT 900
PARAMETER STYLE GENERAL WITH NULLS
STAY RESIDENT NO
RUN OPTIONS 'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT PAYROLL
PROGRAM TYPE MAIN
SECURITY DB2
DYNAMIC RESULT SETS 10
COMMIT ON RETURN NO;

Assume that you need to make the following changes to the stored procedure definition:

« The stored procedure selects data from Db2 tables but does not modify Db2 data.
- The parameters can have null values, and the stored procedure can return a diagnostic string.
« The length of time that the stored procedure runs is unlimited.

Chapter 3. Db2 SQL programming 285

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ikjb700/sotsa.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

« If the stored procedure is called by another stored procedure or a user-defined function, the stored
procedure uses the WLM environment of the caller.

Either of the following statements can make these changes:

CREATE OR REPLACE PROCEDURE B(IN V1 INTEGER, OUT V2 CHAR(9))
LANGUAGE C
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME SUMMOD
COLLID SuMCOLL
ASUTIME NO LIMIT
PARAMETER STYLE SQL
STAY RESIDENT NO
RUN OPTIONS 'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)'
WLM ENVIRONMENT (PAYROLL,*)
PROGRAM TYPE MAIN
SECURITY DB2
DYNAMIC RESULT SETS 10
COMMIT ON RETURN NO;

ALTER PROCEDURE B
READS SQL DATA
ASUTIME NO LIMIT
PARAMETER STYLE SQL
WLM ENVIRONMENT (PAYROLL,x);

Related tasks

Creating external stored procedures

An external stored procedure is a procedure that is written in a host language and can contain SQL
statements. The source code for external procedures is separate from the definition.

Related reference
ALTER PROCEDURE (external) (Db2 SQL)

Creating external SQL procedures (deprecated)

An external SQL procedure is a procedure whose body is written entirely in SQL. The body is written in

the SQL procedural language (SQL PL). However, an external SQL procedure is created, implemented, and
executed like other external stored procedures. All SQL procedures that were created prior to DB2 9 are
external SQL procedures.

Before you begin

Deprecated function: External SQL procedures are deprecated and not as fully supported as native
SQL procedures. For best results, create native SQL procedures instead. For more information, see
“Creating native SQL procedures” on page 226 and “Migrating an external SQL procedure to a native
SQL procedure” on page 287.

Before you create an external SQL procedure, Configure Db2 for running stored procedures and user-
defined functions during installation or Configure Db2 for running stored procedures and user-defined
functions during migration.

If you plan to use the Db2 stored procedure debugger or the Unified Debugger, do not use JCL. Use
DSNTPSMP instead.

If you plan to use DSNTPSMP, you must set up support for external SQL procedures.

Procedure

To create an external SQL procedure:
1. Use one of the following methods to create the external SQL procedure:
- IBM Data Studio. See Developing database routines (IBM Data Studio, IBM Optim Database
Administrator, IBM infoSphere Data Architect, IBM Optim Development Studio).
« Use JCL

286 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_alterprocedureexternal.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_enableextsqlstprocs.html
https://www.ibm.com/docs/en/search/developing%20database%20routines
https://www.ibm.com/docs/en/search/developing%20database%20routines

« Use the Db2 for z/OS SQL procedure processor (DSNTPSMP)

The preceding methods that you use to create an external SQL procedure perform the following
actions:

- Convert the external SQL procedure source statements into a C language program by using the Db2
precompiler

- Create an executable load module and a Db2 package from the C language program.
« Define the external SQL procedure to Db2 by issuing a CREATE PROCEDURE statement either
statically or dynamically.

2. Authorize the appropriate users to use the stored procedure by issuing the GRANT EXECUTE
statement.

Example

For examples of how to prepare and run external SQL procedures, see “Sample programs to help you
prepare and run external SQL procedures” on page 302.
Related concepts

SQL procedures

An SQL procedure is a stored procedure that contains only SQL statements.
Related tasks

Implementing Db2 stored procedures (Db2 Administration Guide)

Related reference

CREATE PROCEDURE (SQL - external) (deprecated) (Db2 SQL)

GRANT (function or procedure privileges) (Db2 SQL)

Migrating an external SQL procedure to a native SQL procedure

You can migrate an existing external SQL procedure, which is deprecated, to a native SQL procedure by
dropping the existing procedure and creating it again as a native SQL procedure. Native SQL procedures
are more fully supported, easier to maintain, and typically perform better than external SQL procedures,
which are deprecated.

Before you begin

If you created the external SQL procedure in a previous release of Db2, consider the release
incompatibilities for applications that use stored procedures, examine your external SQL procedure
source code, and make any necessary adjustments. See Application and SQL release incompatibilities
(Db2 for z/OS What's New?).

About this task

A native SQL procedure is a procedure whose body is written entirely in SQL. The body is written

in the SQL procedural language (SQL PL). A native SQL procedure is created by issuing a single SQL
statement, CREATE PROCEDURE. Native SQL procedures do not require any other program preparation,
such as precompiling, compiling, or link-editing source code. Native SQL procedures are executed as SQL
statements that are bound in a Db2 package. Native SQL procedures do not have an associated external
application program. Native SQL procedures are more fully supported, easier to maintain, and typically
perform better than external SQL procedures, which are deprecated.

An external SQL procedure is a procedure whose body is written entirely in SQL. The body is written in
the SQL procedural language (SQL PL). However, an external SQL procedure is created, implemented, and
executed like other external stored procedures.

Procedure

To migrate an external SQL procedure to a native SQL procedure, complete the following steps:

1. Find and save the existing CREATE PROCEDURE and GRANT EXECUTE statements for the existing
external SQL procedure.

Chapter 3. Db2 SQL programming 287

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_storedprocedureimplementation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createproceduresqlexternal.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_grantfunctionorprocedureprivileges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_relincompatapplsqlfromv11.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_relincompatapplsqlfromv11.html

2. Drop the existing external SQL procedure by using the DROP PROCEDURE statement.

3. Re-create the procedure as a native SQL procedure by using the same CREATE PROCEDURE statement
that you used to originally create the procedure, with both of the following changes:

- If the procedure was defined with the options FENCED or EXTERNAL, remove these keywords.
 Either remove the WLM ENVIRONMENT keyword, or add the FOR DEBUG MODE clause.

« If the procedure body contains statements with unqualified names that could refer to either a
column or an SQL variable or parameter, qualify these names. Otherwise, you might need to change
the statement.

Db2 resolves these names differently depending on whether the procedure is an external SQL
procedure or a native SQL procedure. For external SQL procedures, Db2 first treats the name as a
variable or parameter if one exists with that name. For native SQL procedures, Db2 first treats the
name as a column if a column exists with that name. For example, consider the following statement:

CREATE PROCEDURE P1 (INOUT C1 INT) ... SELECT C1 INTO xx FROM T1

In the preceding example, if P1 is an external SQL procedure, C1 is a parameter. For native SQL
procedures, C1is a column in table T1. If such a column does not exist, C1 is a parameter.

4. Issue the same GRANT EXECUTE statements that you used to originally grant privileges for this stored
procedure.

5. Increase the value of the TIME parameter on the job statement for applications that call stored
procedures.

Important: This change is necessary because time for SQL external stored procedures is charged to
the WLM address space, while time for native SQL stored procedures is charged to the address space
of the task.

6. Test your new native SQL procedure.

Related tasks

Using the Db2 precompiler to assist you in converting an external SQL procedure to a native SQL
procedure

The Db2 precompiler can be useful when considering any conversion of an external SQL procedure to a
native SQL procedure.

Creating native SQL procedures

A native SQL procedure is a procedure whose body is written entirely in SQL and is created by issuing a
single SQL statement, CREATE PROCEDURE.

Related reference

CREATE PROCEDURE (SQL - native) (Db2 SQL)

GRANT (function or procedure privileges) (Db2 SQL)

DROP (Db2 SQL)

Using the Db2 precompiler to assist you in converting an external SQL procedure to a native SQL procedure
The Db2 precompiler can be useful when considering any conversion of an external SQL procedure to a
native SQL procedure.

About this task

Use the Db2 precompiler to inspect the SQL procedure source from a native SQL PL perspective. A
listing is produced that helps to isolate problems and incompatibilities between external and native SQL
procedure coding. Source changes can then be made before making any changes in Db2.

Procedure

To inspect the quality of native SQL PL source coding using the Db2 precompiler:

1. Copy the original SQL PL source code to a FB80 data set. Reformat the source as needed to fit within
the precompiler margins.

288 Db2 12 for z/OS: Application Programming and SQL Guide (Last updated: 2024-04-15)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createproceduresqlnative.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_grantfunctionorprocedureprivileges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_drop.html

2. Precompile the SQL PL source by executing program DSNHPSM with the HOST(SQLPL) option.
3. Inspect the produced listing (SYSPRINT). Pay attention to error and warning messages.
4. Modify the SQL PL source to address coding problems that are identified by messages in the listing.

5. Repeat steps “1” on page 288 - “4” on page 289 until all error and warning messages are resolved.
Then address informational messages as needed.

6. Copy the modified SQL PL source file back to its original source format, reformatting as needed.

Results

Sample JCL DSNTEJ67 demonstrates this process for an external SQL procedure that was produced using
the Db2 SQL procedure processor DSNTPSMP.

Related tasks

Migrating an external SQL procedure to a native SQL procedure

You can migrate an existing external SQL procedure, which is deprecated, to a native SQL procedure by
dropping the existing procedure and creating it again as a native SQL procedure. Native SQL procedures
are more fully supported, easier to maintain, and typically perform better than external SQL procedures,
which are deprecated.

Related reference

Sample programs to help you prepare and run external SQL procedures

Db2 provides sample jobs to help you prepare and run external SQL procedures. All samples are in data
set DSN1210.SDSNSAMP. Before you can run the samples, you must customize them for your installation.

Creating an external SQL procedure by using DSNTPSMP

The SQL procedure processor, DSNTPSMP, is one of several methods that you can use to create and
prepare an external SQL procedure. DSNTPSMP is a REXX stored procedure that you can invoke from your
application program.

Before you begin

Deprecated function: External SQL procedures are deprecated and not as fully supported as native
SQL procedures. For best results, create native SQL procedures instead. For more information, see
“Creating native SQL procedures” on page 226 and “Migrating an external SQL procedure to a native
SQL procedure” on page 287.

Set up support for external SQL procedures. For more information, see Setting up support for external SQL
procedures (Db2 Installation and Migration).

Also ensure that you have the required authorizations, as indicated in the following table, for invoking
DSNTPSMP.

Table 52. Required authorizations for invoking DSNTPSMP

Required authorization Associated syntax for the authorization

Procedure privilege to run application programs EXECUTE ON PROCEDURE SYSPROC.DSNTPSMP
that invoke the stored procedure.

Collection privilege to use BIND to create packages CREATE ON COLLECTION collection-id
in the specified collection. You can use an asterisk
(*) as the identifier for a collection.

Package privilege to use BIND or REBIND to bind BIND ON PACKAGE collection-id *
packages in the specified collection.

System privilege to use BIND with the ADD option BINDADD
to create packages and plans.

Chapter 3. Db2 SQL programming 289

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_enableextsqlstprocs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_enableextsqlstprocs.html

Table 52. Required authorizations for invoking DSNTPSMP (continued)

Required authorization Associated syntax for the authorization
Schema privilege to create, alter, or drop CREATEIN, ALTERIN, DROPIN ON SCHEMA
stored procedures in the specified schema. The schema-name

BUILDOWNER authorization ID must have the
CREATEIN privilege on the schema. You can use an
asterisk (*) as the identifier for a schema.

Table privileges to select or delete from, insert into, SELECT ON TABLE SYSIBM.SYSROUTINES
or update the specified catalog tables. SELECT ON TABLE SYSIBM.SYSPARMS

SELECT, INSERT, UPDATE, DELETE ON TABLE
SYSIBM.SYSROUTINES_SRC

SELECT, INSERT, UPDATE, DELETE ON TABLE
SYSIBM.SYSROUTINES_OPTS

ALL ON TABLE SYSIBM.SYSPSMOUT

Any privileges that are required for the SQL Syntax varies depending on the SQL procedure
statements and that are contained within the body

SQL procedure body. These privileges must be

associated with the OWNER authorization-id that

is specified in your bind options. The default owner

is the user that is invoking DSNTPSMP.

Procedure

To create an external SQL procedure by using DSNTPSMP:
1. Write an application program that calls DSNTPSMP. Include the following items in your program:

« A CLOB host variable that contains a CREATE PROCEDURE statement for the external SQL procedure.
That statement should include the FENCED keyword or the EXTERNAL keyword, and the procedure
body, which is written in SQL.

Alternatively, instead of defining a host variable for the CREATE PROCEDURE statement, you can
store the statement in a data set member.

« An SQL CALL statement with the BUILD function. The CALL statement should use the proper syntax
for invoking DSNTPSMP.

Pass the SQL procedure source to DSNTPSMP as one of the following input parameters:

SQL-procedure-source
Use this parameter if you defined a host variable in your application to contain the CREATE
PROCEDURE statement.

source-data-set-name
Use this parameter if you stored the CREATE PROCEDURE statement in a data set.

Based on the return value from the CALL statement, issue either an SQL COMMIT or a ROLLBACK
statement. If the return value is 0 or 4, issue a COMMIT statement. Otherwise, issue a ROLLBACK
statement.

You must process the result set before issuing the COMMIT or