
IBM XL Fortran for Linux, V15.1.3

Optimization and Programming Guide
for Little Endian Distributions
Version 15.1.3

SC27-6600-02

IBM

IBM XL Fortran for Linux, V15.1.3

Optimization and Programming Guide
for Little Endian Distributions
Version 15.1.3

SC27-6600-02

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 325.

First edition

This edition applies to IBM XL Fortran for Linux, V15.1.3 (Program 5765-J10; 5725-C75) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition
for the level of the product.

© Copyright IBM Corporation 1990, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document vii
Who should read this document vii
How to use this document vii
How this document is organized vii
Conventions viii
Related information xii

IBM XL Fortran information. xii
Standards and specifications xiii
Other IBM information xiv

Technical support xiv
How to send your comments xiv

Chapter 1. Optimizing your applications 1
Distinguishing between optimization and tuning . . 1
Steps in the optimization process 2
Basic optimization 2

Optimizing at level 0 3
Optimizing at level 2 3

Advanced optimization 4
Optimizing at level 3 5
An intermediate step: adding -qhot suboptions at
level 3 6
Optimizing at level 4 7
Optimizing at level 5 8

Specialized optimization techniques 8
High-order transformation (HOT) 9
Interprocedural analysis (IPA) 11
Profile-directed feedback 15
Vector technology 23
Using compiler reports to diagnose optimization
opportunities 27

Tracing procedures in your code 29
Getting more performance 33
Beyond performance: effective programming
techniques 34

Chapter 2. Tuning XL compiler
applications 35
Tuning for your target architecture 35

Using -qarch 35
Using -qtune 36
Using -qcache 37
Before you finish tuning 37

Further option driven tuning 37
Options for providing application characteristics 38
Options to control optimization transformations 40
Options to assist with performance analysis . . 41
Options that can inhibit performance 42

Chapter 3. Advanced optimization
concepts 43
Aliasing 43
Inlining. 43

Finding the right level of inlining 44

Chapter 4. Managing code size 47
Steps for reducing code size 48
Compiler option influences on code size. 48

The -qipa compiler option 48
The -qinline inlining option 48
The -qhot compiler option 49
The -qcompact compiler option 49

Other influences on code size 49
High activity areas 49
Computed GOTOs and CASE constructs . . . 49
Code size with dynamic or static linking . . . 50

Chapter 5. Debugging optimized code 53
Understanding different results in optimized
programs 53
Debugging in the presence of optimization 54

Chapter 6. Compiler-friendly
programming techniques 57
General practices 57
Variables and pointers 57
Arrays 58
Choosing appropriate variable sizes 58
Submodules (Fortran 2008) 59

Chapter 7. High performance libraries 63
Using the Mathematical Acceleration Subsystem
(MASS) libraries 63

Using the scalar library 64
Using the vector libraries 66
Using the SIMD libraries 70
Compiling and linking a program with MASS . . 74

Using the Basic Linear Algebra Subprograms –
BLAS 75

BLAS function syntax 76
Linking the libxlopt library 78

Chapter 8. Parallel programming with
XL Fortran 79
Compiling your parallelized code 79

The _OPENMP C preprocessor macro and
conditional compilation 79

Setting runtime options 80
XLSMPOPTS 80
Environment variables for OpenMP 85

Optimizing your SMP code 99
Developing and running SMP applications . . . 99

An introduction to parallelization directives . . . 100
Parallel region construct 100
Work-sharing constructs 100
Combined parallel work-sharing constructs . . 101
Synchronization constructs 101
Other OpenMP directives 101
Non-OpenMP SMP directives 101

© Copyright IBM Corp. 1990, 2015 iii

Deprecated directive 101
Detailed descriptions of parallelization directives 102

ATOMIC 102
BARRIER. 108
CRITICAL / END CRITICAL 109
DO / END DO 111
DO SERIAL 114
FLUSH 115
MASTER / END MASTER 117
ORDERED / END ORDERED 119
PARALLEL / END PARALLEL 121
PARALLEL DO / END PARALLEL DO . . . 123
PARALLEL SECTIONS / END PARALLEL
SECTIONS 127
PARALLEL WORKSHARE / END PARALLEL
WORKSHARE 130
SCHEDULE 130
SECTIONS / END SECTIONS. 133
SINGLE / END SINGLE 137
TASK / END TASK 140
TASKWAIT 142
TASKYIELD 143
THREADLOCAL 143
THREADPRIVATE 145
WORKSHARE / END WORKSHARE 151

Data sharing attribute rules. 153
Directive clauses 155

COLLAPSE 156
COPYIN 158
COPYPRIVATE 160
DEFAULT 161
FINAL 163
FIRSTPRIVATE 163
IF 164
LASTPRIVATE 165
MERGEABLE 167
NUM_THREADS 168
ORDERED 168
PRIVATE 169
PROC_BIND 171
REDUCTION 172
SCHEDULE 175
SHARED 177
UNTIED 179

Routines for OpenMP 179
omp_destroy_lock(svar) 181
omp_destroy_nest_lock(nvar) 182
omp_get_active_level() 182
omp_get_ancestor_thread_num(level) 183
omp_get_dynamic() 183
omp_get_level() 183
omp_get_max_active_levels() 184
omp_get_max_threads() 184
omp_get_nested() 185
omp_get_num_places() 185
omp_get_num_procs() 186
omp_get_num_threads() 186
omp_get_partition_num_places() 187
omp_get_partition_place_nums(place_nums) 188
omp_get_place_num() 188
omp_get_place_num_procs(place_num). . . . 189

omp_get_place_proc_ids(place_num, ids) . . . 189
omp_get_proc_bind() 190
omp_get_schedule(kind, modifier) 190
omp_get_team_size(level) 191
omp_get_thread_limit() 192
omp_get_thread_num() 192
omp_get_wtick() 193
omp_get_wtime() 194
omp_in_final() 194
omp_in_parallel() 195
omp_init_lock(svar) 196
omp_init_nest_lock(nvar) 196
omp_set_dynamic(enable_expr) 197
omp_set_lock(svar) 198
omp_set_max_active_levels(max_levels) . . . 199
omp_set_nested(enable_expr) 199
omp_set_nest_lock(nvar) 200
omp_set_num_threads(number_of_threads_expr) 201
omp_set_schedule(kind, modifier) 202
omp_test_lock(svar) 203
omp_test_nest_lock(nvar) 203
omp_unset_lock(svar) 204
omp_unset_nest_lock(nvar) 205

Pthreads Library Module 206
Pthreads data structures, functions, and
subroutines 206
f_maketime(delay). 209
f_pthread_attr_destroy(attr). 209
f_pthread_attr_getdetachstate(attr, detach) . . . 210
f_pthread_attr_getguardsize(attr, guardsize) . . 210
f_pthread_attr_getinheritsched(attr, inherit) . . 211
f_pthread_attr_getschedparam(attr, param) . . 212
f_pthread_attr_getschedpolicy(attr, policy) . . . 212
f_pthread_attr_getscope(attr, scope) 213
f_pthread_attr_getstack(attr, stackaddr, ssize) 213
f_pthread_attr_init(attr) 214
f_pthread_attr_setdetachstate(attr, detach) . . . 214
f_pthread_attr_setguardsize(attr, guardsize) . . 215
f_pthread_attr_setinheritsched(attr, inherit) . . 216
f_pthread_attr_setschedparam(attr, param) . . 216
f_pthread_attr_setschedpolicy(attr, policy) . . . 217
f_pthread_attr_setscope(attr, scope) 218
f_pthread_attr_setstack(attr, stackaddr, ssize) 218
f_pthread_attr_t 219
f_pthread_cancel(thread) 219
f_pthread_cleanup_pop(exec) 220
f_pthread_cleanup_push(cleanup, flag, arg) . . 220
f_pthread_cond_broadcast(cond) 222
f_pthread_cond_destroy(cond). 222
f_pthread_cond_init(cond, cattr) 223
f_pthread_cond_signal(cond) 223
f_pthread_cond_t 224
f_pthread_cond_timedwait(cond, mutex,
timeout) 224
f_pthread_cond_wait(cond, mutex) 225
f_pthread_condattr_destroy(cattr). 225
f_pthread_condattr_getpshared(cattr, pshared) 226
f_pthread_condattr_init(cattr) 226
f_pthread_condattr_setpshared(cattr, pshared) 227
f_pthread_condattr_t 228
f_pthread_create(thread, attr, flag, ent, arg) . . 228

iv XL Fortran: Optimization and Programming Guide for Little Endian Distributions

f_pthread_detach(thread) 229
f_pthread_equal(thread1, thread2) 230
f_pthread_exit(ret) 230
f_pthread_getconcurrency() 231
f_pthread_getschedparam(thread, policy, param) 232
f_pthread_getspecific(key, arg) 232
f_pthread_join(thread, ret) 233
f_pthread_key_create(key, dtr) 234
f_pthread_key_delete(key) 234
f_pthread_key_t 235
f_pthread_kill(thread, sig) 235
f_pthread_mutex_destroy(mutex) 236
f_pthread_mutex_init(mutex, mattr) 236
f_pthread_mutex_lock(mutex) 237
f_pthread_mutex_t 237
f_pthread_mutex_trylock(mutex) 238
f_pthread_mutex_unlock(mutex) 238
f_pthread_mutexattr_destroy(mattr) 239
f_pthread_mutexattr_getpshared(mattr, pshared) 239
f_pthread_mutexattr_gettype(mattr, type) . . . 240
f_pthread_mutexattr_init(mattr) 241
f_pthread_mutexattr_setpshared(mattr, pshared) 241
f_pthread_mutexattr_settype(mattr, type) . . . 242
f_pthread_mutexattr_t 243
f_pthread_once(once, initr) 243
f_pthread_once_t 244
f_pthread_rwlock_destroy(rwlock) 244
f_pthread_rwlock_init(rwlock, rwattr) 244
f_pthread_rwlock_rdlock(rwlock) 245
f_pthread_rwlock_t 246
f_pthread_rwlock_tryrdlock(rwlock) 246
f_pthread_rwlock_trywrlock(rwlock) 246
f_pthread_rwlock_unlock(rwlock) 247
f_pthread_rwlock_wrlock(rwlock) 247
f_pthread_rwlockattr_destroy(rwattr) 248
f_pthread_rwlockattr_getpshared(rwattr,
pshared) 248
f_pthread_rwlockattr_init(rwattr) 249
f_pthread_rwlockattr_setpshared(rwattr,
pshared) 250
f_pthread_rwlockattr_t 251
f_pthread_self(). 251
f_pthread_setcancelstate(state, oldstate) 251
f_pthread_setcanceltype(type, oldtype) 252
f_pthread_setconcurrency(new_level) 253
f_pthread_setschedparam(thread, policy, param) 253
f_pthread_setspecific(key, arg) 254
f_pthread_t 255
f_pthread_testcancel() 255
f_sched_param 255
f_sched_yield() 256
f_timespec 256

Chapter 9. Interlanguage calls 257
Conventions for XL Fortran external names . . . 257
Mixed-language input and output 258
Mixing Fortran and C++ 258
Making calls to C functions work. 260
Passing data from one language to another . . . 261

Passing arguments between languages 261
Passing global variables between languages . . 262

Passing character types between languages . . 263
Passing arrays between languages 264
Passing pointers between languages 265
Passing arguments by reference or by value . . 265
Passing COMPLEX values to/from gcc 267
Returning values from Fortran functions . . . 267
Arguments with the OPTIONAL attribute . . . 268

Assembler-level subroutine linkage conventions 268
The stack 270
The Linkage Area and Minimum Stack Frame 271
The input parameter area 272
The register save area 272
The local stack area 272
The output parameter area 272

Linkage convention for argument passing 272
Argument passing rules (by value) 273
Order of arguments in argument list 274

Linkage convention for function calls 275
Pointers to functions 275
Function values 276
The stack floor 276
Stack overflow 276

Prolog and epilog 277
Traceback. 277

Chapter 10. Implementation details of
XL Fortran Input/Output (I/O). 279
Implementation details of file formats 279
File names 280
Preconnected and Implicitly Connected Files . . . 281
File positioning. 282
I/O redirection 282
How XL Fortran I/O interacts with pipes, special
files, and links 283
Default record lengths 283
File permissions 283
Selecting error messages and recovery actions . . 284
Flushing I/O buffers 284
Choosing locations and names for Input/Output
files 285

Naming files that are connected with no explicit
name 285
Naming scratch files 285

Asynchronous I/O 286
Execution of an asychronous data transfer
operation 287
Usage 287
Performance. 289
Compiler-generated temporary I/O items . . . 290
Error handling 290

XL Fortran thread-safe I/O library 291
Synchronization of I/O operations 291
Parallel I/O issues. 291
Use of I/O statements in signal handlers . . . 293

Asynchronous thread cancellation 294

Chapter 11. Implementation details of
XL Fortran floating-point processing . 295
IEEE floating-point overview 295

Compiling for strict IEEE conformance 295

Contents v

IEEE single-precision and double-precision
values 296
IEEE extended-precision values 296
Infinities and NaNs 296
Exception-handling model 297

Hardware-specific floating-point overview. . . . 298
Single-precision and double-precision values 298
Extended-precision values 299

How XL Fortran rounds floating-point calculations 300
Selecting the rounding mode 300
Minimizing rounding errors 302
Minimizing overall rounding 302
Delaying rounding until run time 302
Ensuring that the rounding mode is consistent 302

Duplicating the floating-point results of other
systems 303
Maximizing floating-point performance 303
Detecting and trapping floating-point exceptions 304

Compiler features for trapping floating-point
exceptions 304
Installing an exception handler 305
Producing a core file 306
Controlling the floating-point status and control
register 306
xlf_fp_util procedures 307
fpgets and fpsets subroutines 307
Sample programs for exception handling . . . 309
Causing exceptions for particular variables . . 309
Minimizing the performance impact of
floating-point exception trapping 309

Chapter 12. Porting programs to XL
Fortran 311
Outline of the porting process 311

Portability of directives 311
Common industry extensions that XL Fortran
supports 312

Mixing data types in statements 314
Date and time routines 314
Other libc routines 314
Changing the default sizes of data types . . . 314
Name conflicts between your procedures and
XL Fortran intrinsic procedures 314
Reproducing results from other systems . . . 314

Chapter 13. Vector element order
toggling. 315
Program migration from big endian systems . . . 318

Chapter 14. Sample Fortran programs 319
Example 1 - XL Fortran source file 319
Example 2 - valid C routine source file 319
Example 3 - valid Fortran SMP source file 322
Example 4 - invalid Fortran SMP source file . . . 322
Programming examples using the Pthreads library
module 323

Notices 325
Trademarks 327

Index 329

vi XL Fortran: Optimization and Programming Guide for Little Endian Distributions

About this document

This document is part of the IBM® XL Fortran for Linux, V15.1.3 information suite.
It provides both reference information and practical tips for using the optimization
and tuning capabilities of XL Fortran to maximize application performance, as well
as expanding on programming concepts such as I/O and interlanguage calls.

Who should read this document
This document is for anyone who wants to exploit the capabilities of XL Fortran
for optimizing and tuning Fortran programs. Readers should be familiar with their
Linux operating system and have extensive Fortran programming experience with
complex applications. However, users new to XL Fortran can still use this
information to help them understand how the compiler's features can be used for
effective program optimization.

How to use this document
This guide focuses on specific programming and compilation techniques that can
maximize XL Fortran application performance. It covers optimization and tuning
strategies, recommended programming practices, and compilation procedures,
debugging, and information about using XL Fortran advanced language features.
This guide also contains cross-references to relevant topics of other reference
guides in the XL Fortran information suite.

Topics not described in this information are available as follows:
v Installation, system requirements, last-minute updates: see the XL Fortran

Installation Guide and product README file.
v Overview of XL Fortran features: see the Getting Started with XL Fortran book.
v Syntax, semantics, and implementation of the XL Fortran programming

language: see the XL Fortran Language Reference book.
v Compiler setup, compiling and running programs, compiler options, diagnostics:

see the XL Fortran Compiler Reference book.
v Operating system commands related to the use of the compiler: consult the man

page help and information of your Linux distribution.

How this document is organized
This guide includes the following topics:
v Chapter 1, “Optimizing your applications,” on page 1 provides an overview of

the optimization process.
v Chapter 2, “Tuning XL compiler applications,” on page 35 discusses the compiler

options available for optimizing and tuning code.
v Chapter 3, “Advanced optimization concepts,” on page 43, Chapter 4, “Managing

code size,” on page 47, and Chapter 5, “Debugging optimized code,” on page 53
discuss advanced techniques, such as optimizing loops and inlining code, and
debug considerations for optimized code.

© Copyright IBM Corp. 1990, 2015 vii

v The following sections contain information about how to write optimization
friendly and portable XL Fortran code that is interoperable with other languages.
Also included is a description of XL Fortran support for OpenMP and SMP with
guidelines for writing parallel code.
– Chapter 6, “Compiler-friendly programming techniques,” on page 57
– Chapter 7, “High performance libraries,” on page 63
– Chapter 8, “Parallel programming with XL Fortran,” on page 79
– Chapter 9, “Interlanguage calls,” on page 257

v The following sections contain information about XL Fortran and its
implementation that can be useful for new and experienced users alike, as well
as those who want to move their existing Fortran applications to the XL Fortran
compiler:
– Chapter 10, “Implementation details of XL Fortran Input/Output (I/O),” on

page 279
– Chapter 11, “Implementation details of XL Fortran floating-point processing,”

on page 295
– Chapter 12, “Porting programs to XL Fortran,” on page 311
– Chapter 13, “Vector element order toggling,” on page 315

v Chapter 14, “Sample Fortran programs,” on page 319 provides coding examples
for XL Fortran.

Conventions
Typographical conventions

The following table shows the typographical conventions used in the IBM XL
Fortran for Linux, V15.1.3 information.

Table 1. Typographical conventions

Typeface Indicates Example

lowercase
bold

Invocation commands, executable
names, and compiler options.

The compiler provides basic
invocation commands, xlf, along with
several other compiler invocation
commands to support various Fortran
language levels and compilation
environments.

The default file name for the
executable program is a.out.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Examples of program code,
reference to program code, file
names, path names, command
strings, or user-defined names.

To compile and optimize
myprogram.f, enter: xlf myprogram.f
-O3.

viii XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Table 1. Typographical conventions (continued)

Typeface Indicates Example

UPPERCASE
bold

Fortran programming keywords,
statements, directives, and intrinsic
procedures. Uppercase letters may
also be used to indicate the
minimum number of characters
required to invoke a compiler
option/suboption.

The ASSERT directive applies only to
the DO loop immediately following
the directive, and not to any nested
DO loops.

Qualifying elements (icons and bracket separators)

In descriptions of language elements, this information uses icons and marked
bracket separators to delineate the Fortran language standard text as follows:

Table 2. Qualifying elements

Icon
Bracket
separator text Meaning

F2008

F2008

Fortran 2008
begins /
Fortran 2008
ends

The text describes an IBM XL Fortran implementation of
the Fortran 2008 standard.

Fortran 2003
begins /
Fortran 2003
ends

The text describes an IBM XL Fortran implementation of
the Fortran 2003 standard, and it applies to all later
standards.

IBM extension
begins / IBM
extension ends

The text describes a feature that is an IBM XL Fortran
extension to the standard language specifications.

TS 29113

TS 29113

TS 29113
begins / TS
29113 ends

The text describes an IBM XL Fortran implementation of
Technical Specification 29113, referred to as TS 29113.

Note: If the information is marked with a Fortran language standard icon or
bracket separators, it applies to this specific Fortran language standard and all later
ones. If it is not marked, it applies to all Fortran language standards.

Syntax diagrams

Throughout this information, diagrams illustrate XL Fortran syntax. This section
helps you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.

About this document ix

Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.
IBM XL Fortran extensions are marked by a number in the syntax diagram with
an explanatory note immediately following the diagram.
Program units, procedures, constructs, interface blocks and derived-type
definitions consist of several individual statements. For such items, a box
encloses the syntax representation, and individual syntax diagrams show the
required order for the equivalent Fortran statements.

v Required items are shown on the horizontal line (the main path):

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([
and]). For example, [UNIT=]u

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

If choosing one of the items is optional, the entire stack is shown below the
main path.

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values. If a variable or user-specified name ends in _list, you can
provide a list of these terms separated by commas.

x XL Fortran: Optimization and Programming Guide for Little Endian Distributions

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following is an example of a syntax diagram with an interpretation:

How to read syntax statements

Syntax statements are read from left to right:
v Individual required arguments are shown with no special notation.
v When you must make a choice between a set of alternatives, they are enclosed

by { and } symbols.
v Optional arguments are enclosed by [and] symbols.
v When you can select from a group of choices, they are separated by | characters.
v Arguments that you can repeat are followed by ellipses (...).

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.
v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.

►►
(1)

EXAMPLE char_constant a
b c

d

▼

,

e name_list ►◄

Notes:

1 IBM extension

Interpret the diagram as follows:

v Enter the keyword EXAMPLE.

v EXAMPLE is an IBM extension.

v Enter a value for char_constant.

v Enter a value for a or b, but not for both.

v Optionally, enter a value for c or d.

v Enter at least one value for e. If you enter more than one value, you must put a
comma between each.

v Enter the value of at least one name for name_list. If you enter more than one value,
you must put a comma between each. (The _list syntax is equivalent to the previous
syntax for e.)

About this document xi

v Optionally, enter the value of at least one name for name_list. If you enter more
than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Notes on the terminology used

Some of the terminology in this information is shortened as follows:
v The term free source form format often appears as free source form.
v The term fixed source form format often appears as fixed source form.
v The term XL Fortran often appears as XLF.

Related information
The following sections provide related information for XL Fortran:

IBM XL Fortran information
XL Fortran provides product information in the following formats:
v Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL Fortran for Linux, V15.1.3. It is located by default in the XL Fortran directory
and in the \quickstart directory of the installation DVD.

v README files
README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL Fortran directory, and in the root directory and subdirectories of the
installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL Fortran for Linux, V15.1.3 Installation
Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.3/
com.ibm.compilers.linux.doc/welcome.html.

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27036672.
The following files comprise the full set of XL Fortran product information:

xii XL Fortran: Optimization and Programming Guide for Little Endian Distributions

http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.3/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.3/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27036672
http://www.ibm.com/support/docview.wss?uid=swg27036672

Table 3. XL Fortran PDF files

Document title
PDF file
name Description

IBM XL Fortran for Linux,
V15.1.3 Installation Guide,
GC27-6580-02

install.pdf Contains information for installing XL Fortran
and configuring your environment for basic
compilation and program execution.

Getting Started with IBM
XL Fortran for Linux,
V15.1.3, SC27-6620-02

getstart.pdf Contains an introduction to the XL Fortran
product, with information about setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL Fortran for Linux,
V15.1.3 Compiler Reference,
SC27-6610-02

compiler.pdf Contains information about the various
compiler options and environment variables.

IBM XL Fortran for Linux,
V15.1.3 Language Reference,
SC27-6590-02

langref.pdf Contains information about the Fortran
programming language as supported by IBM,
including language extensions for portability
and conformance to nonproprietary standards,
compiler directives and intrinsic procedures.

IBM XL Fortran for Linux,
V15.1.3 Optimization and
Programming Guide,
SC27-6600-02

proguide.pdf Contains information on advanced
programming topics, such as application
porting, interlanguage calls, floating-point
operations, input/output, application
optimization and parallelization, and the XL
Fortran high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL Fortran, including IBM Redbooks® publications,
white papers, and other articles, is available on the web at http://www.ibm.com/
support/docview.wss?uid=swg27036672.

For more information about Fortran, see the Fortran café at https://
www.ibm.com/developerworks/mydeveloperworks/groups/service/html/
communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa.

Standards and specifications
XL Fortran is designed to support the following standards and specifications. You
can refer to these standards and specifications for precise definitions of some of the
features found in this information.
v American National Standard Programming Language FORTRAN, ANSI X3.9-1978.
v American National Standard Programming Language Fortran 90, ANSI X3.198-1992.
v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
v Federal (USA) Information Processing Standards Publication Fortran, FIPS PUB 69-1.
v Information technology - Programming languages - Fortran, ISO/IEC 1539-1:1991.

(This information uses its informal name, Fortran 90.)
v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:1997. (This information uses its informal name, Fortran 95.)
v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:2004. (This information uses its informal name, Fortran 2003.)

About this document xiii

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036672
http://www.ibm.com/support/docview.wss?uid=swg27036672
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa

v Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:2010. (This information uses its informal name, Fortran 2008. We
currently provide partial support to this standard.)

v Information technology - Further interoperability of Fortran with C, ISO/IEC TS
29113:2012. (This information uses its informal name, Technical specification
29113, referred to as TS 29113. We currently provide partial support to this
specification.)

v Military Standard Fortran DOD Supplement to ANSI X3.9-1978, MIL-STD-1753
(United States of America, Department of Defense standard). Note that XL
Fortran supports only those extensions documented in this standard that have
also been subsequently incorporated into the Fortran 90 standard.

v OpenMP Application Program Interface Version 3.1 (full support), OpenMP
Application Program Interface Version 4.0 (partial support), and OpenMP Application
Program Interface Version 4.5 (partial support), available at http://
www.openmp.org

Other IBM information
v ESSL product documentation available at http://www.ibm.com/support/

knowledgecenter/SSFHY8/essl_welcome.html?lang=en

Technical support
Additional technical support is available from the XL Fortran Support page at
http://www.ibm.com/support/entry/portal/product/rational/
xl_fortran_for_linux. This page provides a portal with search capabilities to a large
selection of Technotes and other support information.

If you cannot find what you need, you can send an email to
compinfo@cn.ibm.com.

For the latest information about XL Fortran, visit the product information site at
http://www.ibm.com/software/products/en/xlfortran-linux.

How to send your comments
Your feedback is important in helping us to provide accurate and high-quality
information. If you have any comments about this information or any other XL
Fortran information, send your comments to compinfo@cn.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL Fortran, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

xiv XL Fortran: Optimization and Programming Guide for Little Endian Distributions

http://www.openmp.org
http://www.openmp.org
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html?lang=en
http://www.ibm.com/support/entry/portal/product/rational/xl_fortran_for_linux
http://www.ibm.com/support/entry/portal/product/rational/xl_fortran_for_linux
http://www.ibm.com/software/products/en/xlfortran-linux

Chapter 1. Optimizing your applications

The XL compilers enable development of high performance applications by
offering a comprehensive set of performance enhancing techniques that exploit the
multilayered PowerPC® architecture. These performance advantages depend on
good programming techniques, thorough testing and debugging, followed by
optimization, and tuning.

Distinguishing between optimization and tuning
You can use optimization and tuning separately or in combination to increase the
performance of your application. Understanding the difference between them is the
first step in understanding how the different levels, settings, and techniques can
increase performance.

Optimization

Optimization is a compiler-driven process that searches for opportunities to
restructure your source code and give your application better overall performance
at run time, without significantly impacting development time. The XL compiler
optimization suite, which you control using compiler options and directives,
performs best on well-written source code that has already been through a
thorough debugging and testing process. These optimization transformations can
bring the following benefits:
v Reduce the number of instructions that your application executes to perform

critical operations.
v Restructure your object code to make optimal use of the PowerPC architecture.
v Improve memory subsystem usage.
v Exploit the ability of the architecture to handle large amounts of shared memory

parallelization.

Each basic optimization technique can result in a performance benefit, although
not all optimizations can benefit all applications. Consult the “Steps in the
optimization process” on page 2 for an overview of the common sequence of steps
that you can use to increase the performance of your application.

Tuning

Tuning is a user-driven process where you experiment with changes, for example
to source code or compiler options, to make the compiler better optimize your
program. While optimization applies general transformations designed to improve
the performance of any application in any supported environment, tuning offers
you opportunities to adjust specific characteristics or target execution environments
of your application to improve its performance. Even at low optimization levels,
tuning for your application and target architecture can have a positive impact on
performance. With proper tuning, the compiler can make the following
improvements:
v Select more efficient machine instructions.
v Generate instruction sequences that are more relevant to your application.
v Select from more focussed optimizations to improve your code.

© Copyright IBM Corp. 1990, 2015 1

For instructions, see Tuning XL compiler applications.

Steps in the optimization process
When you begin the optimization process, consider that not all optimization
techniques suit all applications. Trade-offs sometimes occur between an increase in
compile time, a reduction in debugging capability, and the improvements that
optimization can provide.

Learning about and experimenting with different optimization techniques can help
you strike the right balance for your XL compiler applications while achieving the
best possible performance. Also, though it is unnecessary to hand-optimize your
code, compiler-friendly programming can be extremely beneficial to the
optimization process. Unusual constructs can obscure the characteristics of your
application and make performance optimization difficult. Use the steps in this
section as a guide for optimizing your application.
1. The Basic optimization step begins your optimization processes at levels 0 and

2.
2. The Advanced optimization step exposes your application to more intense

optimizations at levels 3, 4, and 5.
3. The High-order transformation (HOT) step can help you reduce loop execution

time.
4. The Interprocedural analysis (IPA) step can optimize your entire application at

once.
5. The Profile-directed feedback (PDF) step focuses optimizations on specific

characteristics of your application.
6. The Debugging optimized code step can help you identify issues and problems

that can occur with optimized code.
7. The Getting more performance section offers other strategies and tuning

alternatives to compiler-driven optimization.

The section Compiler-friendly programming techniques contains tips for writing
more easily optimized source code.

Basic optimization
The XL compiler supports several levels of optimization, with each option level
building on the levels below through increasingly aggressive transformations and
consequently using more machine resources.

Ensure that your application compiles and executes properly at low optimization
levels before you try more aggressive optimizations. This topic discusses two
optimizations levels, listed with complementary options in Table 4. The table also
includes a column for compiler options that can have a performance benefit at that
optimization level for some applications.

Table 4. Basic optimizations

Optimization level
Additional options
implied by default

Complementary
options

Other options with
possible benefits

-O0 None -qarch None

-O2 -qmaxmem=8192 -qarch
-qtune

-qmaxmem=-1
-qhot=level=0

2 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Note: Specifying -O without including a level implies -O2.

Optimizing at level 0
Benefits at level 0
v Provides minimal performance improvement with minimal impact on machine

resources
v Exposes some source code problems that can be helpful in the debugging

process

Begin your optimization process at -O0, which the compiler already specifies by
default. This level performs basic analytical optimization by removing obviously
redundant code, and it can result in better compile time. It also ensures your code
is algorithmically correct so you can move forward to more complex optimizations.
-O0 also includes some redundant instruction elimination and constant folding. The
-qfloat=nofold option can be used to suppress folding floating-point operations.
Optimizing at this level accurately preserves all debugging information and can
expose problems in existing code, such as uninitialized variables.

Additionally, specifying -qarch at this level targets your application for a particular
machine and can significantly improve performance by ensuring that your
application takes advantage of all applicable architectural benefits.

Note: For SMP programs, you need to add an additional option -qsmp=noopt.

For more information about tuning, consult Tuning for Your Target Architecture.

See "-O" in the XL Fortran Compiler Reference for information about the -O level
syntax.

Related information in the XL Fortran Compiler Reference

-qarch

Optimizing at level 2
Benefits at level 2
v Eliminates redundant code
v Performs basic loop optimization
v Structures code to take advantage of -qarch and -qtune settings

After you successfully compile, execute, and debug your application using -O0,
recompiling at -O2 opens your application to a set of comprehensive low-level
transformations that apply to subprogram or compilation unit scopes and can
include some inlining. Optimizations at -O2 attain a relative balance between
increasing performance while limiting the impact on compilation time and system
resources. You can increase the memory available to some of the optimizations in
the -O2 portfolio by providing a larger value for the -qmaxmem option. Specifying
-qmaxmem=-1 allows the optimizer to use memory as needed without checking for
limits but does not change the transformations the optimizer applies to your
application at -O2.

Starting to tune at level 2

Choosing the right hardware architecture target or family of targets becomes even
more important at -O2 and higher. By targeting the proper hardware, the optimizer
can make the best use of the available hardware facilities. If you choose a family of

Chapter 1. Optimizing your applications 3

hardware targets, the -qtune option can direct the compiler to emit code that is
consistent with the architecture choice and that can execute optimally on the
chosen tuning hardware target. With this option, you can compile for a general set
of targets and have the code run best on a particular target.

For details on the -qarch and -qtune options, see Chapter 2, “Tuning XL compiler
applications,” on page 35.

The -O2 option can perform a number of additional optimizations as follows:
v Common subexpression elimination: Eliminates redundant instructions
v Constant propagation: Evaluates constant expressions at compile time
v Dead code elimination: Eliminates instructions that a particular control flow

does not reach or that generate an unused result
v Dead store elimination: Eliminates unnecessary variable assignments
v Global register allocation: Globally assigns user variables to registers
v Value numbering: Simplifies algebraic expressions by eliminating redundant

computations
v Instruction scheduling for the target machine
v Loop unrolling and software pipelining
v Moving loop-invariant code out of loops
v Simplifying control flow
v Strength reduction and effective use of addressing modes
v Widening: Merges adjacent load/stores and other operations
v Pointer aliasing improvements to enhance other optimizations

Even with -O2 optimizations, some useful information about your source code is
made available to the debugger if you specify -g. Using a higher -g level increases
the information provided to the debugger but reduces the optimization that can be
done. Conversely, higher optimization levels can transform code to an extent to
which debugging information is no longer accurate.

The section on Chapter 5, “Debugging optimized code,” on page 53 discusses other
debugging strategies in detail.

See "-O" in the XL Fortran Compiler Reference for information on the -O level syntax.

Advanced optimization
Higher optimization levels can have a tremendous impact on performance, but
some trade-offs can occur in terms of code size, compile time, resource
requirements, and numeric or algorithmic precision.

After applying “Basic optimization” on page 2 and successfully compiling and
executing your application, you can apply more powerful optimization tools. The
XL compiler optimization portfolio includes many options for directing advanced
optimization, and the transformations that your application undergoes are largely
under your control. The discussion of each optimization level in Table 5 on page 5
includes information on the performance benefits and the possible trade-offs and
information on how you can help guide the optimizer to find the best solutions for
your application.

4 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Table 5. Advanced optimizations

Optimization Level
Additional options
implied

Complementary
options

Options with
possible benefits

-O3 -qnostrict
-qmaxmem=-1
-qhot=level=0

-qarch
-qtune

-qpdf

-O4 -qnostrict
-qmaxmem=-1
-qhot
-qipa
-qarch=auto
-qtune=auto
-qcache=auto

-qarch
-qtune
-qcache

-qpdf
-qsmp=auto

-O5 All of -O4
-qipa=level=2

-qarch
-qtune
-qcache

-qpdf
-qsmp=auto

When you compile programs with any of the following sets of options:
v -qhot -qnostrict

v -O3 -qhot

v -O4

v -O5

the compiler automatically attempts to vectorize calls to system math functions by
calling the equivalent vector functions in the Mathematical Acceleration Subsystem
libraries (MASS), with the exceptions of functions vatan2, vsatan2, vdnint, vdint,
vcosisin, vscosisin, vqdrt, vsqdrt, vrqdrt, vsrqdrt, vpopcnt4, and vpopcnt8. If the
compiler cannot vectorize, it automatically tries to call the equivalent MASS scalar
functions. For automatic vectorization or scalarization, the compiler uses versions
of the MASS functions contained in the system library libxlopt.a.

In addition to any of the preceding sets of options, when the -qipa option is in
effect, if the compiler cannot vectorize, it tries to inline the MASS scalar functions
before deciding to call them.

Optimizing at level 3
Benefits at level 3
v In-depth “Aliasing” on page 43 analysis
v Better loop scheduling
v High-order loop analysis and transformations (-qhot=level=0)
v Inlining of small procedures within a compilation unit by default
v Eliminating implicit compile-time memory usage limits

Specifying -O3 initiates more intense low-level transformations that remove many
of the limitations present at -O2. For instance, the optimizer no longer checks for
memory limits, by setting the default to -qmaxmem=-1. Additionally, optimizations
encompass larger program regions and attempt more in-depth analysis. Although
not all applications contain opportunities for the optimizer to provide a measurable
increase in performance, most applications can benefit from this type of analysis.

Chapter 1. Optimizing your applications 5

Potential trade-offs at level 3

With the in-depth analysis of -O3 comes a trade-off in terms of compilation time
and memory resources. Also, because -O3 implies -qnostrict, the optimizer can
alter certain floating-point semantics in your application to gain execution speed.
This typically involves precision trade-offs as follows:
v Reordering of floating-point computations
v Reordering or elimination of possible exceptions, such as division by zero or

overflow
v Using alternative calculations that might give slightly less precise results or not

handle infinities or NaNs in the same way

You can still gain most of the -O3 benefits while preserving precise floating-point
semantics by specifying -qstrict. Compiling with -qstrict is necessary if you
require the same absolute precision in floating-point computational accuracy as
you get with -O0, -O2, or -qnoopt results. The option -qstrict=ieeefp also ensures
adherence to all IEEE semantics for floating-point operations. If your application is
sensitive to floating-point exceptions or the order of evaluation for floating-point
arithmetic, compiling with -qstrict, -qstrict=exceptions, or -qstrict=order
helps to ensure accurate results. You should also consider the impact of the
-qstrict=precision suboption group on floating-point computational accuracy.
The precision suboption group includes the individual suboptions: subnormals,
operationprecision, association, reductionorder, and library (described in the
-qstrict option in the XL Fortran Compiler Reference).

Without -qstrict, the difference in computation for any one source-level operation
is very small in comparison to “Basic optimization” on page 2. Although a small
difference can be compounded if the operation is in a loop structure where the
difference becomes additive, most applications are not sensitive to the changes that
can occur in floating-point semantics.

For information about the -O level syntax, see "-O" in the XL Fortran Compiler
Reference .

An intermediate step: adding -qhot suboptions at level 3
At -O3, the optimization includes minimal -qhot loop transformations at level=0 to
increase performance. To further increase your performance benefit from -qhot,
increase the optimization aggressiveness by increasing the optimization level of
-qhot. Try specifying -qhot without any suboptions or -qhot=level=1.

The following -qhot suboptions can also provide additional performance benefits,
depending on the characteristics of your application:
v -qhot=vector to enable long vectorization
v -qhot=arraypad to enable array padding
v -qhot=fastmath to enable the replacement of math routines with those from the

XLOPT library

For more information about -qhot, see “High-order transformation (HOT)” on
page 9.

Conversely, if the application does not use loops processing arrays, which -qhot
improves, you can improve compile speed significantly, usually with minimal
performance loss by using -qnohot after -O3.

6 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Optimizing at level 4
Benefits at level 4
v Propagation of global and argument values between compilation units
v Inlining code from one compilation unit to another
v Reorganization or elimination of global data structures
v An increase in the precision of aliasing analysis

Optimizing at -O4 builds on -O3 by triggering -qipa=level=1, which performs
interprocedural analysis (IPA), optimizing your entire application as a unit. This
option is particularly pertinent to applications that contain a large number of
frequently used routines.

To make full use of IPA optimizations, you must specify -O4 on the compilation
and link steps of your application build as interprocedural analysis occurs in
stages at both compile time and link time.

Beyond -qipa, -O4 enables other optimization options:
v -qhot

Enables more aggressive HOT transformations to optimize loop constructs and
array language.

v -qhot=vector

Optimizes array data to run mathematical operations in parallel where
applicable.

v -qarch=auto and -qtune=auto
Optimizes your application to execute on a hardware architecture identical to
your build machine. If the architecture of your build machine is incompatible
with the execution environment of your application, you must specify a different
-qarch suboption after the -O4 option. This overrides -qtune=auto.

v -qcache=auto

Optimizes your cache configuration for execution on specific hardware
architecture. The auto suboption assumes that the cache configuration of your
build machine is identical to the configuration of your execution architecture.
Specifying a cache configuration can increase program performance, particularly
loop operations by blocking them to process only the amount of data that can fit
into the data cache at a time.
If you want to execute your application on a different machine, specify correct
cache values.

Potential trade-offs at level 4

In addition to the trade-offs already mentioned for -O3, specifying -qipa can
significantly increase compilation time, especially at the link step.

See "-O" in the XL Fortran Compiler Reference for information about the -O level
syntax.

The IPA process
1. At compile time optimizations occur on a file-by-file basis, as well as

preparation for the link stage. IPA writes analysis information directly into the
object files the compiler produces.

2. At the link stage, IPA reads the information from the object files and analyzes
the entire application.

Chapter 1. Optimizing your applications 7

3. This analysis guides the optimizer on how to rewrite and restructure your
application and apply appropriate -O3 level optimizations.

The “Interprocedural analysis (IPA)” on page 11 section contains more information
about IPA including details on IPA suboptions.

Optimizing at level 5
Benefits at level 5
v Makes most aggressive optimizations available
v Makes full use of loop optimizations and “Interprocedural analysis (IPA)” on

page 11

As the highest optimization level, -O5 includes all -O4 optimizations and deepens
whole program analysis by increasing the -qipa level to 2. Compiling with -O5 also
increases how aggressively the optimizer pursues aliasing improvements.
Additionally, if your application contains a mix of C/C++ and Fortran code that
you compile using the XL compilers, you can increase performance by compiling
and linking your code with the -O5 option.

Potential trade-offs at level 5

Compiling at -O5 requires more compilation time and machine resources than any
other optimization levels, particularly if you include -O5 on the IPA link step.
Compile at -O5 as the final phase in your optimization process after successfully
compiling and executing your application at -O4.

See "-O" in the XL Fortran Compiler Reference for information on the -O level syntax.

Specialized optimization techniques
While some optimization techniques are active at advanced optimization levels,
certain types of applications can receive a performance benefit even when you
apply only basic optimizations.

Table 6. Specialized optimization techniques

Technique Benefit

HOT Minimizes loop execution time which is
beneficial to most applications that contain
large loops, or many small loops. HOT also
improves memory access patterns in your
application.

IPA Performs whole program analysis, providing
the optimization suite with a complete view
of your entire application. This applies
performance enhancements with more focus
and robustness.

PDF Targets the code paths your application
executes most frequently for optimization.

8 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Table 6. Specialized optimization techniques (continued)

Technique Benefit

Vector technology Vector technology is a PowerPC technology
for accelerating the performance-driven,
high-bandwidth communications and
computing applications. You can use the
vector technology to get dramatic
performance improvement for your
applications.

Compiler reports You can use the -qlistfmt option to
generate a compiler report in XML 1.0
format that indicates some of the details of
how your program was optimized. You can
use this information to understand your
application code and to tune your code for
better performance.

High-order transformation (HOT)
As part of the XL compiler optimization suite, the HOT transformations focus
specifically on loops which typically account for the majority of the execution time
for most applications. HOT transformations perform in-depth loop analysis to
minimize their execution time.

Loop optimization analysis includes:
v Interchange
v Fusion
v Unrolling loop nests
v Reducing the use of temporary arrays

The goals of these optimizations include:
v Reducing memory access costs through effective cache use and translation

look-aside buffers (TLBs). Increasing memory locality reduces cache and TLB
misses.

v Overlapping computation and memory access through effective utilization of the
hardware data prefetching capabilities.

v Improving processor resource utilization by reordering and balancing the use of
instructions with complementary resource requirements. Loop computation
balance typically involves creating an equitable relationship between load/store
operations and floating-point computations.

Compiling with -O3 and higher triggers HOT transformations by default. You can
also see performance benefits by specifying -qhot with -O2, or adding more -qhot
optimizations than the default level=0 at -O3 .

You can see particular -qhot benefits if your application contains Fortran 90-style
array language constructs, as HOT transformations include elimination of
intermediate temporary variables and statement fusion.

You can also use directives to assist in loop analysis. Assertive directives such as
INDEPENDENT or CNCALL allow you to describe important loop characteristics
or behaviors that HOT transformations can exploit. Prescriptive directives such as
UNROLL or PREFETCH allow you to direct the HOT transformations on a
loop-by-loop basis. You can also specify the -qreport compiler option to generate

Chapter 1. Optimizing your applications 9

information about loop transformations. The report can assist you in deciding
where best to include directives to improve the performance of your application.
For example, you can use this section of the listing to identify non-stride-one
references that may prevent loop vectorization.

You can use the -qreport option in conjunction with -qhot or any optimization
option that implies -qhot to produce a pseudo-Fortran report showing how the
loops were transformed. The LOOP TRANSFORMATION SECTION of the listing file also
contains information about data prefetch insertion locations.

When used with -qsmp, -qhot=level=2 instructs the compiler to perform the
transformations of -qhot=level=1 plus some additional transformation on nested
loops. The resulting loop analysis and transformations can lead to more cache
reuse and loop parallelization. If you use -qhot=level=2 and -qsmp together with
-qreport or -qlistfmt, you can see this information on aggressive loop analysis
performed on loop nests in the LOOP TRANSFORMATION SECTION of the listing file or
compiler report.

When you use -qprefetch=assistthread to generate prefetching assist threads, a
message Assist thread for data prefetching was generated also appears in the
LOOP TRANSFORMATION SECTION of the listing file. For details, see -qprefetch in the
XL Fortran Compiler Reference.

With the -qassert=refalign suboption, the compiler might generate more efficient
code. This assertion is particularly useful when you target a Single Instruction
Multiple Data (SIMD) architecture with -qhot=level=0 or -qhot=level=1 with the
-qsimd=auto option.

In addition to general loop transformation, -qhot supports suboptions that you can
specify to enable additional transformations detailed in this section.

HOT short vectorization
When you are targeting a PowerPC processor that supports Vector Multimedia
Extension (VMX) or Vector Scalar Extension (VSX), you can specify -qsimd=auto to
enable the compiler to transform code into VMX or VSX instructions. These
machine instructions can execute up to sixteen operations in parallel. This
transformation mostly applies to the loops that iterate over contiguous array data
and perform calculations on each element. You can use the NOSIMD directive to
prevent the transformation of a particular loop.

HOT long vectorization
When you specify any of the following:
v -O4 and higher
v -qhot with -qnostrict

you enable -qhot=vector by default. Specifying -qnostrict with optimizations
other than -O4 and -O5 ensures that the compiler looks for long vectorization
opportunities. This can optimize loops in source code for operations on array data
by ensuring that operations run in parallel where applicable. The compiler uses
standard machine registers for these transformations and does not restrict vector
data size; supporting both single- and double-precision floating-point vectorization.
Often, HOT vectorization involves transformations of loop calculations into calls to
specialized mathematical routines supplied with the compiler such as the
Mathematical Acceleration Subsystem (MASS) libraries. These mathematical
routines use algorithms that calculate results more efficiently than executing the
original loop code.

10 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

For more information about optimization levels like -O4 and the other compiler
options they imply, see “Advanced optimization” on page 4.

HOT array size adjustment
An array dimension that is a power of two can lead to a decrease in cache
utilization. The -qhot=arraypad suboption allows the compiler to increase the
dimensions of arrays where doing so could improve the efficiency of
array-processing loops. Using this suboption can reduce cache misses and page
faults that slow your array processing programs. The HOT transformations will not
necessarily pad all arrays, and can pad different arrays by different amounts in
order to gain performance. You can specify a padding factor to apply to all arrays.
This value is typically a multiple of the largest array element size.

Use -qhot=arraypad with discretion as array padding uses more memory and the
performance trade-off does not benefit all applications. Also, these HOT
transformations do not include checks for array data overlay, as with Fortran
EQUIVALENCE, or array shaping operations.

HOT fast scalar math routines
The XLOPT library contains faster versions of certain math functions that are
normally provided by the operating system or in the default run time. With
-qhot=fastmath, the compiler replaces calls to the math functions with their faster
counterparts in XLOPT library. This option requires -qstrict=nolibrary in effect.

Interprocedural analysis (IPA)
Interprocedural Analysis (IPA) can analyze and optimize your application as a
whole, rather than on a file-by-file basis.

Run during the link step of an application build, the entire application, including
linked libraries, is available for interprocedural analysis. This whole program
analysis opens your application to a powerful set of transformations available only
when more than one file or compilation unit is accessible. IPA optimizations are
also effective on mixed language applications.

Chapter 1. Optimizing your applications 11

The following are some of the link-time transformations that IPA can use to
restructure and optimize your application:
v Inlining between compilation units.
v Complex data flow analyses across subprogram calls to eliminate parameters or

propagate constants directly into called subprograms.
v Improving parameter usage analysis, or replacing external subprogram calls to

system libraries with more efficient inline code.
v Restructuring data structures to maximize access locality.
v Cloning subprograms where calls pass constant parameters to allow optimizing

expressions using those parameters.

In order to maximize IPA link-time optimization, you must use IPA at both the
compile and link step. Objects you do not compile with IPA can only provide
minimal information to the optimizer, and receive minimal benefit. However when
IPA is active on the compile step, the resulting object file contains program
information that IPA can read during the link step. The program information is
invisible to the system linker, and you can still use the object file and link without
invoking IPA. The IPA optimizations use hidden information to reconstruct the
original compilation and can completely analyze the subprograms the object
contains in the context of their actual usage in your application.

During the link step, IPA restructures your application, partitioning it into distinct
logical code units. After IPA optimizations are complete, IPA applies the same
low-level compilation-unit transformations as the -O2 and -O3 base optimizations
levels. Following those transformations, the compiler creates one or more object
files and linking occurs with the necessary libraries through the system linker.

It is important that you specify a set of compilation options as consistent as
possible when compiling and linking your application. This includes all compiler
options, not just -qipa suboptions. When possible, specify identical options on all
compilations and repeat the same options on the IPA link step. Incompatible or

PDF info Libraries

IPA

Partitions

Low-level

optimizer

System

Linker

Optimized

Objects

IPA Objects

Other Objects
EXE

DLL

Figure 1. IPA at the link step

12 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

conflicting options that you specify to create object files, or link-time options in
conflict with compile-time options can reduce the effectiveness of IPA
optimizations.

Notes:

v XL C/C++ and XL Fortran provide backwards compatibility with IPA objects
that are created by earlier compiler versions. If IPA object files that are compiled
with newer versions of compilers are linked by an earlier version, errors occur
during the link step. For example, if IPA object file a.o is compiled by XL
C/C++, V13.1.3 and is to be linked with IPA object file b.o that is compiled by
XL Fortran, V15.1.0, then you must use a compiler whose version is XL C/C++,
V13.1.3 or later.

v XL C/C++ and XL Fortran versions released at the same time produce matching
IPA level information and can be linked together. For example, the IPA for XL
C/C++, V13.1.3 matches with the IPA for XL Fortran, V15.1.3, because these
compilers are released at the same time. For example, the IPA level for XL
C/C++, V13.1.3 matches with the IPA for XL Fortran, V15.1.3. The following
table lists some matching XL C/C++ and XL Fortran releases:

Table 7. Compiler versions and release dates

Compiler version General availability (Release date)

XL C/C++ for Linux, V13.1.3

XL Fortran for Linux, V15.1.3

11-Dec-2015

XL C/C++ for Linux, V13.1.0

XL Fortran for Linux, V15.1.0

06-Jun-2014

XL C/C++ for Linux, V12.1.0

XL Fortran for Linux, V14.1.0

18-May-2012

For more information about the release dates of compiler products, see
http://www.ibm.com/software/support/lifecycle/index_x.html
If your compiler version has two release dates on the Support Lifecycle web site,
determine the date based on your product ID.

Using IPA on the compile step only

IPA can still perform transformations if you do not specify IPA on the link step.
Using IPA on the compile step initiates optimizations that can improve
performance for an individual object file even if you do not link the object file
using IPA. The primary focus of IPA is link-step optimization, but using IPA only
on the compile-step can still be beneficial to your application without incurring the
costs of link-time IPA.

Chapter 1. Optimizing your applications 13

http://www.ibm.com/software/support/lifecycle/index_x.html

IPA Levels and other IPA suboptions
You can control many IPA optimization functions using the -qipa option and
suboptions. The most important part of the IPA optimization process is the level at
which IPA optimization occurs. Default compilation does not invoke IPA. If you
specify -qipa without a level, or specify -O4, IPA optimizations are at level one. If
you specify -O5, IPA optimizations are at level two.

Table 8. The levels of IPA

IPA Level Behaviors

qipa=level=0 v Automatically recognizes standard library functions

v Localizes statically bound variables and procedures

v Organizes and partitions your code according to call affinity,
expanding the scope of the -O2 and -O3 low-level compilation unit
optimizer

v Lowers compilation time in comparison to higher levels, though
limits analysis

qipa=level=1 v Level 0 optimizations

v Performs procedure inlining across compilation units

v Organizes and partitions static data according to reference affinity

Low-level

optimizer

IPA Object

C++ Front End Fortran Front End

Array Language

Processor

C Front End

IPA

Figure 2. IPA at the compile step

14 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Table 8. The levels of IPA (continued)

IPA Level Behaviors

qipa=level=2 v Level 0 and level 1 optimizations

v Performs whole program alias analysis which removes ambiguity
between pointer references and calls, while refining call side effect
information

v Propagates interprocedural constants

v Eliminates dead code

v Performs pointer analysis

v Performs procedure cloning

v Optimizes intraprocedural operations, using specifically:
– Value numbering
– Code propagation and simplification
– Code motion, into conditions and out of loops
– Redundancy elimination techniques

v Performs data reorganization

IPA includes many suboptions that can help you guide IPA to perform
optimizations important to the particular characteristics of your application.
Among the most relevant to providing information on your application are:
v lowfreq, with which you can specify a list of procedures that are likely to be

called infrequently during the course of a typical program run. Performance can
increase because optimization transformations will not focus on these
procedures.

v partition, with which you can specify the size of the regions within the program
to analyze. Larger partitions contain more procedures, which result in better
interprocedural analysis but require more storage to optimize.

v threads, with which you can specify the number of parallel threads available to
IPA optimizations. This can provide an increase in compilation-time performance
on multi-processor systems.

Using IPA across the XL compiler family

The XL compiler family shares optimization technology. Object files you create
using IPA on the compile step with the XL C, C++, and Fortran compilers can
undergo IPA analysis during the link step. Where program analysis shows that
objects were built with compatible options, such as -qnostrict, IPA can perform
transformations such as inlining C functions into Fortran code, or propagating C++
constant data into C function calls.

Profile-directed feedback
You can use profile-directed feedback (PDF) to tune the performance of your
application for a typical usage scenario. The compiler optimizes the application
based on an analysis of how often branches are taken and blocks of code are run.

Use the PDF process as one of the last steps of optimization before putting the
application into production. Optimization at all levels from -O2 up can benefit from
PDF. Other optimizations such as the -qipa option and optimization levels -O4 and
-O5 can also benefit from PDF process.

The following diagram illustrates the PDF process.

Chapter 1. Optimizing your applications 15

Compile with
-qpdf1

Compile with
-qpdf2

Source
code

Instrumented
executable

Profile data

Optimized
executable

Sample runs

To use the PDF process to optimize your application, follow these steps:
1. Compile some or all of the source files in a program with the -qpdf1 option.

You must specify at least the -O2 optimization level.

Notes:

v A PDF map file is generated at this step. It is used for the showpdf utility to
display part of the profiling information in text or XML format. For details,
see “Viewing profiling information with showpdf” on page 19. If you do not
need to view the profiling information, specify the -qnoshowpdf option at this
step so that the PDF map file is not generated. For details of -qnoshowpdf,
see -qshowpdf in the XL Fortran Compiler Reference.

v Although you can specify PDF optimization (-qpdf) as early in the
optimization level as -O2, PDF optimization is recommended at -O4 and
higher.

v You do not have to compile all of the files of the programs with the -qpdf1
option. In a large application, you can concentrate on those areas of the code
that can benefit most from the optimization.

v When option -O4, -O5, or any level of option -qipa is in effect, and you
specify the -qpdf1 option at the link step but not at the compile step, the
compiler issues a warning message. The message indicates that you must
recompile your program to get all the profiling information.

Restriction: When you run an application that is compiled with -qpdf1, you
must end the application using normal methods, including reaching the end of
the execution for the main function. System calls exit(), _Exit(), and abort()
are considered abnormal termination methods and are not supported. Using
abnormal program termination might result in incomplete instrumentation data
generated by using the PDF file or PDF data not being generated at all.

2. Run the resulting application with a typical data set. When the application
exits, profile information is written to one or more PDF files. You can train the
resulting application multiple times with different data sets. The profiling
information is accumulated to provide a count of how often branches are taken
and blocks of code are run, based on the input data used. This step is called the
PDF training step. By default, the PDF file is named ._pdf, and it is placed in
the current working directory or the directory specified by the PDFDIR
environment variable. If the PDFDIR environment variable is set but the

Figure 3. Profile-directed feedback

16 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

specified directory does not exist, the compiler issues a warning message. To
override the defaults, use the -qpdf1=pdfname or -qpdf1=exename option.
If you recompile your program with the -qpdf1 option, the compiler removes
the existing PDF file or files whose names and locations are the same as the file
or files that will be created in the training step before generating a new
application.

Notes:

v When you compile your program with the -qpdf1 or -qpdf2 option, by
default, the -qipa option is also invoked with level=0.

v To avoid wasting compile and run time, make sure that the PDFDIR
environment variable is set to an absolute path. Otherwise, you might run
the application from a wrong directory, and the compiler cannot locate the
profiling information files. When it happens, the program might not be
optimized correctly or might be stopped by a segmentation fault. A
segmentation fault might also happen if you change the value of the PDFDIR
environment variable and run the application before the PDF process
finishes.

v Avoid using atypical data. Otherwise, it might distort the analysis of
infrequently executed code paths.

3. If you have several PDF files, use the mergepdf utility to combine these PDF
files into one PDF file. For example, if you produce three PDF files that
represent usage patterns that occur 53%, 32%, and 15% of the time respectively,
you can use this command:

mergepdf -r 53 file_path1 -r 32 file_path2 -r 15 file_path3 -o file_path4

where file_path1, file_path2, and file_path3 specify the directories and names of
the PDF files that are to be merged, and file_path4 specifies the directory and
name of the output PDF file.

Notes:

v Avoid mixing the PDF files created by different versions or PTF levels of the
XL Fortran compiler.

v You cannot edit PDF files that are generated by the resulting application.
Otherwise, the performance or function of the generated executable
application might be affected.

4. Recompile your program using the same compiler options as before, but
change -qpdf1 to -qpdf2. In this second compilation, the accumulated profiling
information is used to fine-tune the optimizations. The resulting program
contains no profiling overhead and runs at full speed.
It is recommended that you use the -qpdf2 option to link the object files that
are created during the -qpdf1 phase without recompiling your program. Using
this approach, you can save considerable compilation time and achieve the
same optimization result as if you had recompiled your program during the
-qpdf2 phase.

Notes:

v If the compiler cannot read any PDF files in this step, the compiler issues
error message 1586-401 but continues the compilation. If you want the
compiler to stop the compilation, specify -qhaltonmsg=1586-401.

v You are highly recommended to use the same optimization level at all
compilation steps for a particular program. Otherwise, the PDF process

Chapter 1. Optimizing your applications 17

cannot optimize your program correctly and might even slow it down. All
compiler settings that affect optimization must be the same, including any
supplied by configuration files.

v You can modify your source code and use the -qpdf1 and -qpdf2 options to
compile your program. Old profiling information can still be preserved and
used during the second stage of the PDF process. The compiler issues a list
of warnings but the compilation does not stop. An information message is
also issued with a number in the range of 0 - 100 to indicate how outdated
the old profiling information is.

v When option -O4, -O5, or any level of option -qipa is in effect, and you
specify the -qpdf2 option at the link step but not at the compile step, the
compiler issues a warning message. The message indicates that you must
recompile your program to get all the profiling information.

v When using the -qreport option with the -qpdf2 option, you can get
additional information in your listing file to help you tune your program.
This information is written to the PDF Report section.

5. If you want to erase the PDF information, use the cleanpdf utility.

Examples

The following example demonstrates that you can concentrate on compiling with
-qpdf1 only the code that can benefit most from the optimization, instead of
compiling all the code with the -qpdf1 option:
#Set the PDFDIR variable
export PDFDIR=$HOME/project_dir

#Compile most of the files with -qpdf1
xlf -qpdf1 -O3 -c file1.f file2.f file3.f

#This file does not need optimization
xlf -c file4.f

#Non-PDF object files such as file4.o can be linked
xlf -qpdf1 -O3 file1.o file2.o file3.o file4.o

#Run several times with different input data
./a.out < polar_orbit.data
./a.out < elliptical_orbit.data
./a.out < geosynchronous_orbit.data

#Link all the object files into the final application
xlf -qpdf2 -O3 file1.o file2.o file3.o file4.o

The following example bypasses recompiling the source with the -qpdf2 option:
#Compile source with -qpdf1
xlf -c -qpdf1 -O3 file1.f file2.f

#Link object files
xlf -qpdf1 -O3 file1.o file2.o

#Run with one set of input data
./a.out < sample.data

#Link object files
xlf -qpdf2 -O3 file1.o file2.o

Related information in the XL Fortran Compiler Reference

-qpdf1, -qpdf2

18 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

-O, -qoptimize

PDF environment variables

Viewing profiling information with showpdf
With the showpdf utility, you can view the following types of profiling
information that is gathered from your application:
v Block-counter profiling
v Call-counter profiling
v Value profiling
v Cache-miss profiling, if you specified the -qpdf1=level=2 option during the

-qpdf1 phase.

You can view the first two types of profiling information in either text or XML
format. However, you can view value profiling and cache-miss profiling
information only in XML format.

Syntax

►► showpdf
pdfdir -f pdfname -m pdfmapdir -xml

►◄

Parameters

pdfdir
Is the directory that contains the profile-directed feedback (PDF) file. If the
PDFDIR environment variable is not changed after the -qpdf1 phase, the PDF
map file is also contained in this directory. If this parameter is not specified,
the compiler uses the value of the PDFDIR environment variable as the name
of the directory.

pdfname
Is the name of the PDF file. If this parameter is not specified, the compiler uses
._pdf as the name of the PDF file.

pdfmapdir
Is the directory that contains the PDF map file. If this parameter is not
specified, the compiler uses the value of the PDFDIR environment variable as
the name of the directory.

-xml
Determines the display format of the PDF information. If this parameter is
specified, the PDF information is displayed in XML format; otherwise, it is
displayed in text format. Because value profiling and cache-miss profiling
information can be displayed only in XML format, the PDF report in XML
format contains more information than the report in text format.

Usage

A PDF map file that contains static information is generated during the -qpdf1
phase, and a PDF file is generated during the execution of the resulting
application. The showpdf utility needs both the PDF and PDF map files to display
PDF information in either text or XML format.

By default, the PDF file is named ._pdf, and the PDF map file is named ._pdf_map.
If the PDFDIR environment variable is set, the compiler places the PDF and PDF

Chapter 1. Optimizing your applications 19

map files in the directory specified by PDFDIR. Otherwise, the compiler places
these files in the current working directory. If the PDFDIR environment variable is
set but the specified directory does not exist, the compiler issues a warning
message. To override the defaults, use the -qpdf1=pdfname option to specify the
paths and names for the PDF and PDF map files. For example, if you specify the
-qpdf1=pdfname=/home/joe/func option, the resulting PDF file is named func, and
the PDF map file is named func_map. Both of the files are placed in the /home/joe
directory.

If the PDFDIR environment variable is changed between the -qpdf1 phase and the
execution of the resulting application, the PDF and PDF map files are generated in
separate directories. In this case, you must specify the directories for both of these
files to the showpdf utility.

Notes:

v PDF and PDF map files must be generated from the same compilation instance.
Otherwise, the compiler issues an error.

v PDF and PDF map files must be generated during the same profiling process.
This means that you cannot mix and match PDF and PDF map files that are
generated from different profiling processes.

v You must use the same version and PTF level of the compiler to generate the
PDF file and the PDF map file.

v The showpdf utility accepts only PDF files that are in binary format.
v You can use the PDF_WL_ID environment variable to distinguish the multiple

sets of PDF counters that are generated by multiple training runs of the user
program.

The following example shows how to use the showpdf utility to view the profiling
information for a Hello World application:

The source for the program file hello.f is as follows:
PROGRAM P

CALL HelloWorld()

CONTAINS

SUBROUTINE HelloWorld()
PRINT *, "Hello World"
END SUBROUTINE HelloWorld

END PROGRAM P
END

1. Compile the source file.
xlf2008 -qpdf1 -O hello.f

2. Run the resulting executable program using a typical data set or several typical
data sets.

3. If you want to view the profiling information for the executable file in text
format, run the showpdf utility without any parameters.
showpdf

The result is as follows:
...

p(63): 1 (hello.f)

Call Counters:
2 | 1 @2@helloworld(64)

20 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

2 | 1 _xlfExit(65)

Call coverage = 100% (2/2)

Block Counters:
1-10 | 1
10 |

Block coverage = 100% (1/1)

@2@helloworld(64): 1 (hello.f)

Call Counters:
7 | 1 _xlfBeginIO(66)
7 | 1 _xlfWriteLDChar(67)
7 | 1 _xlfEndIO(68)

Call coverage = 100% (3/3)

Block Counters:
6-7 | 1
8 |
8 | 1

Block coverage = 100% (2/2)

_xlfExit(65): 1 undefined node

_xlfBeginIO(66): 1 undefined node

_xlfWriteLDChar(67): 1 undefined node

_xlfEndIO(68): 1 undefined node

Total Call coverage = 100% (5/5)

Total Block coverage = 100% (3/3)

If you want to view the profiling information in XML format, run the showpdf
utility with the -xml parameter.
showpdf -xml

The result is as follows:
<?xml version="1.0" encoding="UTF-8" ?>
- <XLTransformationReport xmlns="http://www.ibm.com/2010/04/CompilerTransformation" version="1.0">
- <CompilationStep name="showpdf">

<StepDetails>
...
<Detail>
<FieldTitle>Total Call coverage</FieldTitle>
<FieldValue>100% (5/5)</FieldValue>

</Detail>
<Detail>
<FieldTitle>Total Block coverage</FieldTitle>
<FieldValue>100% (3/3)</FieldValue>

</Detail>
</StepDetails>
<ProgramHierarchy>
<FileList>
<File id="1" name="hello.f">

<RegionList>
<Region id="63" name="p" startLineNumber="1"/>

Chapter 1. Optimizing your applications 21

<Region id="64" name="@2@helloworld" startLineNumber="6"/>
</RegionList>
</File>

</FileList>
</ProgramHierarchy>
<TransformationHierarchy/>
<ProfilingReports>
<BlockCounterList>
<BlockCounter regionId="63" execCount="1" coveredBlock="1" totalBlock="1">
<BlockList>
<Block index="3" execCount="1" startLineNumber="1" endLineNumber="10"/>

</BlockList>
</BlockCounter>
<BlockCounter regionId="64" execCount="1" coveredBlock="2" totalBlock="2">
<BlockList>
<Block index="3" execCount="1" startLineNumber="6" endLineNumber="7"/>
<Block index="4" execCount="1" startLineNumber="8" endLineNumber="8"/>

</BlockList>
</BlockCounter>

</BlockCounterList>
<CallCounterList>
<CallCounter regionId="63" execCount="1" coveredCall="2" totalCall="2">
<CallList>
<Call name="@2@helloworld" execCount="1" lineNumber="2"/>
<Call name="_xlfExit" execCount="1" lineNumber="2"/>

</CallList>
</CallCounter>
<CallCounter regionId="64" execCount="1" coveredCall="3" totalCall="3">
<CallList>
<Call name="_xlfBeginIO" execCount="1" lineNumber="7"/>
<Call name="_xlfWriteLDChar" execCount="1" lineNumber="7"/>
<Call name="_xlfEndIO" execCount="1" lineNumber="7"/>

</CallList>
</CallCounter>

</CallCounterList>
</ProfilingReports>

</CompilationStep>
</XLTransformationReport>

Related information in the XL Fortran Compiler Reference

-qpdf1, -qpdf2

-qshowpdf

Object level profile-directed feedback
About this task

In addition to optimizing entire executables, profile-directed feedback (PDF) can
also be applied to specific object files. This can be an advantage in applications
where patches or updates are distributed as object files or libraries rather than as
executables. Also, specific areas of functionality in your application can be
optimized without the process of relinking the entire application. In large
applications, you can save the time and trouble that otherwise need to be spent
relinking the application.

The process for using object level PDF is essentially the same as the standard PDF
process but with a small change to the -qpdf2 step. For object level PDF, compile
your program using the -qpdf1 option, execute the resulting application with
representative data, compile the program again with the -qpdf2 option, but now
also use the -qnoipa option so that the linking step is skipped.

The steps below outline this process:
1. Compile your program using the -qpdf1 option. For example:

xlf -c -O3 -qpdf1 file1.f file2.f file3.f

In this example, we are using the optimization level -O3 to indicate that we
want a moderate level of optimization.

2. Link the object files to get an instrumented executable:

22 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

xlf -O3 -qpdf1 file1.o file2.o file3.o

3. Run the instrumented executable with sample data that is representative of the
data you want to optimize for.
a.out < sample_data

4. Compile the program again using the -qpdf2 option. Specify the -qnoipa option
so that the linking step is skipped and PDF optimization is applied to the
object files rather than to the entire executable.
xlf -c -O3 -qpdf2 -qnoipa file1.f file2.f file3.f

The resulting output of this step are object files optimized for the sample data
processed by the original instrumented executable. In this example, the
optimized object files would be file1.o, file2.o, and file3.o. These can be linked
by using the system loader ld or by omitting the -c option in the -qpdf2 step.

Notes:

v You must use the same optimization level in all the steps. In this example, the
optimization level is -O3.

v If you want to specify a file name for the profile that is created, use the pdfname
suboption in both the -qpdf1 and -qpdf2 steps. For example:
xlf -O3 -qpdf1=pdfname=myprofile file1.f file2.f file3.f

Without the pdfname suboption, by default the file name is ._pdf; the location of
the file is the current working directory or whatever directory you have set
using the PDFDIR environment variable. If the PDFDIR environment variable is
set but the specified directory does not exist, the compiler issues a warning
message.

v Because the -qnoipa option needs to be specified in the -qpdf2 step so that
linking of your object files is skipped, you cannot use interprocedural analysis
(IPA) optimizations and object level PDF at the same time.

For details, see -qpdf1, -qpdf2 in the XL Fortran Compiler Reference.

Vector technology
Vector technology is a PowerPC technology for accelerating the
performance-driven, high-bandwidth communications and computing applications.
You can use the vector technology to get dramatic performance improvement for
your applications.

There are two ways of using the vector technology: hand coding and automatic
vectorization. Automatic vectorization often brings the best performance when you
write the code in the right way, but appropriate hand coding can provide
additional performance improvement.

The following example shows the difference between a simple array element
addition and a vectorized version of the same loop.

Array element addition without using the vector technology:
subroutine myadd(n)

integer :: i, n
real(4), dimension(n) :: a, b, c

do i=1, n
a(i) = b(i) + c(i)

enddo
end subroutine

Chapter 1. Optimizing your applications 23

Modified array element addition utilizing the vector technology:
subroutine myadd_vector(n)

integer :: j, n
! vector_size is a constant; for real(4) it must be 16/4 = 4
! n must be a multiple of vector_size

vector(real(4)), dimension(n/vector_size) :: v_a, v_b, v_c

do j=1, n/vector_size
v_a(j) = vec_add(v_b(j), v_c(j))

enddo
end subroutine

In the vectorized version of the code, the data type is replaced by the vector data
type. The loop range is reduced from n to n/vector_size. With the vector
technology, the operation, v_a(j)=vec_add(v_b(j), v_c(j)), is executed in a single
machine instruction for each vector. Without the vector technology, the same
operation requires multiple instructions costing several processor clock cycles.
Therefore, the vector technology can improve the performance of an application.

This section provides general information about vector technology with the
following three subsections:
v “Vector technology information”
v “Explicitly calling vector libraries for vectorization” on page 25
v “Auto-vectorization limitations” on page 26

Vector technology information

This section provides links to all of the information about the vector technology
and categorize them into the following types:
v Using vector technology with hand coding
v Using vector technology with auto-vectorization

Using vector technology with hand coding

The following table lists the information about using the vector technology with
hand coding and provides the links to the detailed information in different
documents.

Table 9. Language features for using vector technology with hand coding:

Information you need Sections you can read

Intrinsic data types Vector (IBM extension) in XL Fortran
Language Reference

Vector type declaration statement VECTOR (IBM extension) in XL Fortran
Language Reference

Vector intrinsic procedures Vector intrinsic procedures (IBM extension)
in XL Fortran Language Reference

Using the vector libraries Using the vector libraries

Using vector technology with auto-vectorization

The following table lists the information about compiler options for
auto-vectorization and provides the links to the detailed information in different
documents.

24 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Table 10. Information about compiler options for auto-vectorization

To do... Read...

Enable automatic generation of vector
instructions for processors that support
them.

-qsimd in XL Fortran Compiler Reference

Perform high-order transformations (HOT)
during optimization.

-qhot in XL Fortran Compiler Reference

Produce listing files and understand how
sections of code have been optimized.

v -qlistfmt in XL Fortran Compiler Reference

v -qreport in

v Using compiler reports to diagnose
optimization opportunities

v Parsing compiler reports with
development tools

Ensure that optimizations done by default,
do not alter certain program semantics
related to strict IEEE floating-point
conformance.

-qstrict in XL Fortran Compiler Reference

Tuning for your target architecture using
-qarch and -qtune.

v Tuning for your target architecture

v Using -qtune

The following table lists the directive and compiler option that you can use to
prohibit auto-vectorization and provides the links to the detailed information in
different documents.

Table 11. Directive and compiler option for auto-vectorization

To do... Read...

Prohibit the compiler from auto-vectorizing
the loop immediately following the directive.

NOVECTOR in XL Fortran Language
Reference

Disable auto-vectorization. -qsimd in XL Fortran Compiler Reference

Some optimization processes are related to auto-vectorization, you can use
compiler options to control these optimizations. The following table lists these
optimization processes and provides the links to the detailed information in
different documents.

Table 12. Optimizations related to auto-vectorization

To learn about... Read...

The High-order transformation (HOT) v High-order transformation (HOT)

v An intermediate step: adding -qhot
suboptions at level 3

The Interprocedural analysis (IPA) The IPA process

Explicitly calling vector libraries for vectorization

To use the vector technology in your applications, you can either rewrite the
algorithm manually or rely on the automatic vectorization of the compiler.
Although automatic vectorization can provide the highest performing solution,
proper hand coding can also bring good performance.

Chapter 1. Optimizing your applications 25

The following example shows how to explicitly call the vector libraries to make
use of the vector functionality provided by the target hardware.
function dotp(x,y,n) result(s)

real*8 x(*),y(*),s
vector(real(8)) sv,xv,yv
integer i,n

sv = vec_splats(0.0D0)
do i=1,n,2

xv = vec_xld2(0,x(i))
yv = vec_xld2(0,y(i))
sv = vec_madd(xv,yv,sv)

enddo
s = vec_extract(sv,0)+vec_extract(sv,1)
if (mod(n,2) .eq. 1) then

s = s + x(n)*y(n)
endif

end function

program dot
real*8 x(100),y(100),s
integer i
do i=1,100

x(i)=0.5*i
y(i)=2.0

enddo
s = dotp(x,y,100)
print *,s

end

The program performs the dot product for two arrays of REAL. At each iteration,
two elements from the arrays are loaded into two REAL vector variables. The
program then uses a multiply add operation to calculate the product of the two
vectors and add the product with the previous sum. At the end of the loop the two
elements of the vector that hold the partial sums are added to form the complete
sum value. If the size of the input vectors do not evenly fit in the vector variables,
a single scalar product is performed to complete the dot product computation.

Auto-vectorization limitations

When you use the auto-vectorization, you might find that some transformations
cannot be performed. If you compile with -qhot and -qlistfmt=xml=transforms or
-qlistfmt=xml=all, you can get a compiler report that lists the reasons why some
transformations were not performed. For detailed information about the possible
reasons, see Using compiler reports to diagnose optimization opportunities.

This section uses two code examples to illustrate why auto-vectorization cannot be
performed under certain situations.

Example 1:
program try

real*8 x(100)
integer i
x(1)=9
do i=2,100

x(i)=x(i-1)
enddo

end

26 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

The x(i)=x(i-1) statement violates the restriction that "a loop cannot be
automatically parallelized if one of its variables carries a dependency". x(i) and
x(i-1) depend on each other in this sample, which makes the loop
non-vectorizable.

Example 2:
program try

real*8 x(100)
integer i
do i=1,100,5

x(i)=i + 8;
x(i+1)=i + 9;
x(i+2)=i + 12;
x(i+3)=i + 15;

enddo
end

The following statements violate the restriction that auto-vectorization cannot be
performed if the loop contains a non stride one store.

x(i)=i + 8;
x(i+1)=i + 9;
x(i+2)=i + 12;
x(i+3)=i + 15;

In each iteration of the loop, four elements in the array x are accessed and one
element is skipped. This continues until the end of the loop, which makes the loop
non-vectorizable.

Using compiler reports to diagnose optimization opportunities
You can use the -qlistfmt option to generate a compiler report in XML or HTML
format. It provides information about how your program is optimized. You can
also use the genhtml utility to convert an existing XML report to HTML format.
This information helps you understand your application codes and tune codes for
better performance.

The compiler report in XML format can be viewed in a browser that supports
XSLT. If you compile with the stylesheet suboption, for example,
-qlistfmt=xml=all:stylesheet=xlstyle.xsl, the report contains a link to a
stylesheet that renders the XML readable. By reading the report, you can detect
opportunities to further optimize your code. You can also create tools to parse this
information.

By default, the name of the report is a.xml for XML format, and a.html for HTML
format. You can use the -qlistfmt=xml=filename or -qlistfmt=html=filename
option to override the default name.

Inline reports

If you compile with -qinline and one of -qlistfmt=xml=inlines,
-qlistfmt=html=inlines, -qlistfmt=xml, or -qlistfmt=html, the generated
compiler report includes a list of inline attempts during compilation. The report
also specifies the type of attempt and its outcome.

For each function that the compiler has attempted to inline, there is an indication
of whether the inline was successful. The report might contain any number of
reasons why a named function has not been successfully inlined. Some examples of
these reasons are as follows:

Chapter 1. Optimizing your applications 27

v FunctionTooBig - The function is too big to be inlined.
v RecursiveCall - The function is not inlined because it is recursive.
v ProhibitedByUser - Inlining was not performed because of a user-specified

pragma or directive.
v CallerIsNoopt - No inlining was performed because the caller was compiled

without optimization.
v WeakAndNotExplicitlyInline - The calling function is weak and not marked as

inline.

For a complete list of the possible reasons, see the Inline optimization types
section of the XML schema help file named XMLContent.html in the
/opt/ibm/xlf/15.1.3/listings/ directory. The Japanese and Chinese versions of
the help file, XMLContent-Japanese.utf8.html and XMLContent-Chinese.utf8.html,
are included in this directory as well.

Loop transformations

If you compile with -qhot and one of -qlistfmt=xml=transforms,
-qlistfmt=html=transforms, -qlistfmt=xml or -qlistfmt=html, the generated
compiler report includes a list of the transformations performed on all loops in the
file during compilation. The report also lists the reasons why transformations were
not performed in some cases:
v Reasons why a loop cannot be automatically parallelized
v Reasons why a loop cannot be unrolled
v Reasons why SIMD vectorization failed

For a complete list of the possible transformation problems, see the Loop
transformation types section of the XML schema help file named XMLContent.html
in the /opt/ibm/xlf/15.1.3/listings/ directory.

Data reorganizations

If you compile with -qhot and one of -qlistfmt=xml=data, -qlistfmt=html=data,
-qlistfmt=xml, or -qlistfmt=html, the generated compiler report includes a list of
data reorganizations performed on the program during compilation. Here are some
examples of data reorganizations:
v Array splitting
v Array coalescing
v Array interleaving
v Array transposition
v Common block splitting
v Memory merge

For each of these reorganizations, the report contains details about the name of the
data, file names, line numbers, and the region names.

Profile-directed feedback reports

If you compile with -qpdf2 and one of -qlistfmt=xml=pdf, -qlistfmt=html=pdf,
-qlistfmt=xml, or -qlistfmt=html, the generated compiler report includes the
following information:
v Loop iteration counts

28 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

v Block and call counts
v Cache misses (if compiled with -qpdf1=level=2)
Related information:

-qlistfmt

Parsing compiler reports with development tools
You can write tools to parse the compiler reports produced in XML format to help
you find opportunities to improve application performance.

The compiler includes an XML schema that you can use to create a tool to parse
the compiler reports and display aspects of your code that might represent
performance improvement opportunities. The schema, xllisting.xsd, is located in
the /opt/ibm/xlf/15.1.3/listings/ directory. This schema helps present the
information from the report in a tree structure.

You can also find a schema help file named XMLContent.html that helps you
understand the schema details. The Japanese and Chinese versions of the help file,
XMLContent-Japanese.utf8.html and XMLContent-Chinese.utf8.html, are in the
same directory.

Tracing procedures in your code
You can instruct the compiler to insert calls to the tracing procedures that you have
defined to aid in debugging or timing the execution of other procedures.

To trace procedures in your program, you must specify which procedures to trace.
You must also provide your own tracing procedures. If you enable tracing without
providing tracing procedures, you will get linker errors about undefined symbols
called __func_trace_enter, __func_trace_exit, and possibly __func_trace_catch.

Specifying which procedures to trace

The -qfunctrace compiler option controls tracing for all non-inlined user-defined
procedures and all outlined compiler-generated procedures in your program. If
you are interested in tracing specific external or modules procedures, you can use
the -qfunctrace+ and -qfunctrace- compiler options. You can also specify the
NOFUNCTRACE directive to disable the tracing of entire modules, external
procedures, module procedures, or internal procedures.

What can be traced

Tracing applies to programs, external procedures, non-intrinsic module procedures,
and internal procedures.

Compiler-generated procedures are not traced unless they were generated for
outlined user code, such as an OpenMP program. In those cases, the name of the
outlined procedure contains the name of the original user procedure as a prefix.

Inlined procedures and statement functions cannot be traced because they do not
exist in the executable.

To avoid infinite recursion, user-defined tracing procedures cannot be traced.
Similarly, tracing must be disabled for procedures called from user-defined tracing
procedures.

Chapter 1. Optimizing your applications 29

How to write tracing procedures

You can implement the tracing procedures in Fortran, C, or C++.

To implement the tracing procedures in Fortran, the characteristics of the
procedures must be the same as those specified in the following interface:
SUBROUTINE routine_name(procedure_name, file_name, line_number, id)

USE, INTRINSIC :: iso_c_binding
CHARACTER(*), INTENT(IN) :: procedure_name
CHARACTER(*), INTENT(IN) :: file_name
INTEGER(C_INT), INTENT(IN) :: line_number
TYPE(C_PTR), INTENT(INOUT) :: id

END SUBROUTINE

where routine_name is the name of an external or module procedure.

You must then tell the compiler to use your subroutine as a tracing procedure in
one of the following ways:
v Using the -qfunctrace_xlf_enter, -qfunctrace_xlf_exit, or

-qfunctrace_xlf_catch compiler options.
v Using the FUNCTRACE_XLF_ENTER, FUNCTRACE_XLF_EXIT, or

FUNCTRACE_XLF_CATCH directives.

When you specify these options or directives, XL Fortran generates wrapper
procedures called __func_trace_enter, __func_trace_exit, and
__func_trace_catch that call your corresponding tracing procedure. These
wrappers allow interoperability with C and C++ by converting the dummy
arguments from the C prototype to the interface described earlier. routine_name
must therefore not be named __func_trace_enter, __func_trace_exit, or
__func_trace_catch. In addition, your program must not contain more than one of
each of the tracing procedures.

Writing the tracing procedures in C or C++ requires that you provide the
__func_trace_enter, __func_trace_exit, and __func_trace_catch procedures
directly. They must have the following prototypes:
v void __func_trace_enter(const char *const procedure_name, const char

*const file_name, int line_number, void **const id);

v void __func_trace_exit(const char *const procedure_name, const char
*const file_name, int line_number, void **const id);

v void __func_trace_catch(const char *const procedure_name, const char
*const file_name, int line_number, void **const id);

Note: If you write the tracing procedures in C++, they must be declared extern
"C".

XL Fortran inserts calls to your tracing procedures on procedure entry and exit. It
passes the name of the procedure being traced, the name of the file containing the
entry or exit point being traced, and the line number. It also passes the address of
a static pointer that is initialized to C_NULL_PTR at the beginning of the program.
This pointer allows you to store arbitrary data in the entry tracing procedure and
access this data in the exit and catch procedures. See the Examples section for
detail. Because this pointer resides in static memory, extra steps might be needed
when tracing threaded or recursive procedures.

30 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Sample tracing procedures

XL Fortran provides sample tracing procedures in the /opt/ibm/xlf/15.1.0/
samples/functrace directory. You can use these procedures for simple tracing, or
you can modify them for more complex tracing.
v tracing_routines.c: Provides tracing procedures written in C. This file is useful

when you do not require access to Fortran modules, and when there is a
possibility of recursive input / output.

v tracing_routines.f90: Provides tracing procedures written in Fortran. This file
is useful when you need access to Fortran modules or intrinsics in your tracing
procedures.

The following example illustrates the use of the samples for simple tracing:
> cat helloworld.f
print *, ’hello world’
end
> cc -c /opt/ibm/xlf/15.1.0/samples/functrace/tracing_routines.c
> xlf95 helloworld.f -qfunctrace tracing_routines.o
** _main === End of Compilation 1 ===
1501-510 Compilation successful for file helloworld.f.
> ./a.out
{ _main (helloworld.f:1)
hello world
} _main (helloworld.f:2)

>

Tracing limitations

The procedure tracing functionality has the following limitations:
v A procedure cannot be traced separately from its ENTRY points. Either all are

traced or none are. The name of the procedure is passed to the tracing procedure
even when tracing the ENTRY point. The line number helps distinguish what is
being traced in this case.

v The Fortran standard requires pure procedures to have no side effects. The
compiler uses this assumption when optimizing your program. If you enable
tracing of a pure procedure, your tracing procedure must not change the
program state in a way that creates a side effect.

v The Fortran standard imposes limits on recursive input/output. If you write
your tracing procedures in Fortran, you must be careful not to break these rules.
The following example has a print statement where an I/O item is the result of
a function call (foo). It is illegal for the tracing procedure in this case to have
I/O on an external file:
> cat recursive.f
integer function test()

test = 1
end function

integer test
print *, test() ! test must not have I/O on external unit
end
> xlf95 -c /opt/ibm/xlf/15.1.0/samples/functrace/tracing_routines.f90
** my__func_trace_enter === End of Compilation 1 ===
** my__func_trace_exit === End of Compilation 2 ===
** my__func_trace_catch === End of Compilation 3 ===
1501-510 Compilation successful for file tracing_routines.f90.
> xlf95 recursive.f tracing_routines.o -qfunctrace
** test === End of Compilation 1 ===
** _main === End of Compilation 2 ===

Chapter 1. Optimizing your applications 31

1501-510 Compilation successful for file recursive.f.
> ./a.out
{ _main (recursive.f:6)
XL Fortran (I/O initialization): I/O recursion detected.
Aborted
>

Note: You can work around this by writing the tracing procedure in C. For an
example, see the tracing_routines.c sample file described in section “Sample
tracing procedures” on page 31.

v When optimizing your program, the compiler reorders code and removes dead
code. As a result, the line number passed to the tracing procedure might not be
accurate when optimization is enabled.

Examples

In the following example, -qfunctrace is used to measure the time spent in each
external procedure. The FUNCTRACE_XLF_ENTER and FUNCTRACE_XLF_EXIT
directives are used to specify procedures my_enter and my_exit as the tracing
procedures. The NOFUNCTRACE directive is used to disable tracing of
main_program:
> cat example.f
! Designate my_enter as a tracing procedure that should be called
! on procedure entry
!ibm* functrace_xlf_enter
subroutine my_enter(procedure_name, file_name, line_number, id)

use, intrinsic :: iso_c_binding
use, intrinsic :: xlfutility
character(*), intent(in) :: procedure_name, file_name
integer(c_int), intent(in) :: line_number
type(c_ptr), intent(inout) :: id

integer(kind=time_size), pointer :: enter_count

! Store the time we entered the procedure being traced into id.
if (.not. c_associated(id)) then
allocate(enter_count)
enter_count = time_()
id = c_loc(enter_count)

end if

print *, ’Entered procedure ’, procedure_name, ’ at (’, &
file_name, ’ :’, line_number, ’).’

end subroutine

! Designate my_exit as a tracing procedure that should be called
! on procedure exit
!ibm* functrace_xlf_exit
subroutine my_exit(procedure_name, file_name, line_number, id)

use, intrinsic :: iso_c_binding
use, intrinsic :: xlfutility
character(*), intent(in) :: procedure_name, file_name
integer(c_int), intent(in) :: line_number
type(c_ptr), intent(inout) :: id

integer(kind=time_size), pointer :: enter_count
integer(kind=time_size) exit_count, duration

! id should have been associated in my_enter with the time we
! entered the procedure being traced. Find the elapsed time.
if (c_associated(id)) then
exit_count = time_()
call c_f_pointer(id, enter_count)

32 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

duration = exit_count - enter_count
else
stop "error!"

endif

print *, ’Leaving procedure ’, procedure_name, ’ at (’, &
file_name, ’ :’, line_number, ’).’

print *, ’Spent’, duration, ’seconds in ’, procedure_name, ’.’
end subroutine

! sub2 will be traced
subroutine sub2

call sleep_(3)
end subroutine

! sub1 will be traced
subroutine sub1

call sleep_(5)
call sub2

end subroutine

! Do not want to trace main_program
!ibm* nofunctrace
program main_program

call sub1
end program
> xlf95 example.f -qfunctrace
** my_enter === End of Compilation 1 ===
** my_exit === End of Compilation 2 ===
** sub2 === End of Compilation 3 ===
** sub1 === End of Compilation 4 ===
** main_program === End of Compilation 5 ===
1501-510 Compilation successful for file example.f.
> ./a.out
Entered procedure sub1 at (example.f : 59).
Entered procedure sub2 at (example.f : 54).
Leaving procedure sub2 at (example.f : 55).
Spent 3 seconds in sub2.
Leaving procedure sub1 at (example.f : 61).
Spent 8 seconds in sub1.
>

Related information
v For details about the -qfunctrace compiler option, see -qfunctrace in the XL

Fortran Compiler Reference.
v For details about -qfunctrace_xlf_catch, -qfunctrace_xlf_enter, or

-qfunctrace_xlf_exit compiler options, see the Detailed descriptions of the XL
Fortran compiler options section in the XL Fortran Compiler Reference.

v For details about the FUNCTRACE_XLF_CATCH, FUNCTRACE_XLF_ENTER, and
FUNCTRACE_XLF_EXIT directives, see Detailed directive descriptions section in the
XL Fortran Language Reference.

v For details about the NOFUNCTRACE directive, see NOFUNCTRACE in the XL
Fortran Language Reference.

Getting more performance
The XL compiler family offers other strategies and tuning alternatives for
increasing performance.

Whether you are already optimizing at -O5, or you are looking for more
opportunities to increase performance without the resource costs of optimizing at
higher levels, the XL compiler family offers other strategies and tuning alternatives.
For more information, see the following topics:

Chapter 1. Optimizing your applications 33

v Tuning XL compiler applications
v Advanced optimization concepts
v Optimizing your SMP code

Beyond performance: effective programming techniques
Applications that perform well begin with applications that are written well. See
the following topics for information about writing better code; whether your goal
is to make your code more portable, more easily optimized, or interoperable with
other languages.
v Chapter 4, “Managing code size,” on page 47
v Chapter 6, “Compiler-friendly programming techniques,” on page 57
v Chapter 8, “Parallel programming with XL Fortran,” on page 79
v Chapter 9, “Interlanguage calls,” on page 257

34 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Chapter 2. Tuning XL compiler applications

Included as part of the XL Fortran optimization suite are options you can use to
instruct the compiler to generate code that executes optimally on a given processor
or architecture family, and to instruct the compiler on the execution characteristics
of your application.

The better you can convey those characteristics, the more precisely the compiler
can tune and optimize your application. This section assumes that you have
already begun optimizing your application using the strategies found in
Optimizing your applications.

Tuning for your target architecture
By default, the compiler generates code that runs on all supported systems, though
this code does not run optimally on all supported systems. By selecting options to
target the appropriate architectures, you can optimize your application to suit the
broadest possible selection of relevant processors, a range of processors within a
given family, or a specific processor.

The compiler options in the Options for targeting your architecture table introduce
how you can control optimizations affecting individual aspects of your target
architecture. This section also goes into further detail on how you can use some of
those options to ensure your application provides the best possible performance on
those targets.

Table 13. Options for targeting your architecture

Option Behavior

-qarch Selects a family of processor architectures, or a specific architecture
that the compiler will generate machine instructions for. If you specify
multiple architecture settings, only the last architecture is considered
valid.

-qtune Focuses optimizations for execution on a given processor without
restricting the processor architectures that your application can execute
on. If you specify multiple architecture settings, only the last
architecture is considered valid. You can also use -qtune to specify the
processor SMT level that the program will execute on.

-qcache Defines a specific cache or memory geometry. Selecting a predefined
optimization level like -O2 sets default values for -qcache suboptions.

In addition to targeting the correct architecture for your application, it is important
to select the right level of optimization. Combining the appropriate architecture
settings with an optimization level that fits your application can vastly enhance
performance. If you have not already done so, consult Optimizing your
applications in addition to this section.

Using -qarch
Using -qarch you can select a machine architecture or a family of architectures on
which you can run your application. Selecting the correct -qarch suboption is
crucial to influencing chip-level optimization as the choice of -qarch suboption
controls:

© Copyright IBM Corp. 1990, 2015 35

v The list of machine instructions available to the compiler when generating object
code.

v The characteristics and capabilities of the hardware the compiler will model
when optimizing.

v Optimization trade-offs and opportunities in individual instruction selection and
instruction sequence selection

v The default setting of the -qtune option.

Architecture selection is important at all optimization levels. Even at low
optimization levels like -O0 and -O2, specifying the correct target architecture can
be beneficial to performance. Specifying the correct target allows the compiler to
select more efficient machine instructions and generate instruction sequences that
perform best for a particular machine.

The -qarch suboptions allow you to specify individual processors or a family of
processors with common instruction sets or subsets. The choice of processor gives
you the flexibility of compiling your application to execute optimally on a
particular machine, or to execute on a wide variety of machines while still
applying as much architecture-specific optimization as possible. The less specific
your choice of architecture, the fewer machine instructions available to the
compiler when generating code. A less specific choice can also limit the number of
hardware intrinsic functions available to your application. A more specific choice of
architecture, can make available more instructions and hardware intrinsic
functions. The XL Fortran Compiler Reference details the specific chip architectures
and architecture families available.

When compiling your application, using a consistent or compatible -qarch setting
for all files will ensure that you are getting the most from your architecture targets.
If you are using -qipa link-time optimizations, the architecture setting you specify
on the link step overrides the compile step setting.

You must ensure that your application executes only on machines that support
your -qarch settings. Executing your application on other machines can produce
incorrect results, even if your application appears to run without trapping.

Using -qtune
The -qtune option focuses optimizations for execution on a given processor
without restricting the processor architectures that your application can execute on,
generating machine instructions consistent with your -qarch architecture choice.
Using -qtune also guides the optimizer in performing transformations, such as
instruction scheduling, so that the resulting code executes most efficiently on your
chosen -qtune architecture. The -qtune option tunes code to run on one particular
processor architecture, and includes only specific processors as suboptions. The
-qtune option does not support suboptions representing families of processors.

Use -qtune to specify the most common or critical processor where your
application executes.

If you need to create a single binary file that runs on a range of PowerPC
hardware, consider using the -qtune=balanced option. With this option in effect,
optimization decisions made by the compiler are not targeted to a specific version
of hardware. Instead, tuning decisions try to include features that are generally
helpful across a broad range of hardware and avoid those optimizations that may
be harmful on some hardware. Note that you should verify the performance of
code compiled with the -qtune=balanced option before distributing it.

36 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

You can also use -qtune to specify the processor SMT level that the program will
execute on.

You can also use -qtune to specify the processor SMT level that the program will
execute on.

Using -qcache
The -qcache option allows you to instruct the optimizer on the memory cache
layout of your target architecture. There are several suboptions you can specify to
describe cache characteristics such as:
v The types of cache available
v The cache size
v Cache-miss penalties

The -qcache option is only effective if you understand the cache characteristics of
the execution environment of your application. Before using -qcache, look at the
options section of the listing file with the -qlist option to see if the current cache
settings are acceptable. The settings appear in the listing when you compile with
-qlistopt. If you are unsure about how to interpret this information, do not use
-qcache, and allow the compiler to use default cache settings.

If you do not specify -qcache, the compiler makes cache assumptions based on
your -qarch and -qtune settings. If you compile with the -qcache=auto suboption,
the default at optimization levels -O4 and -O5, the compiler detects the cache
characteristics of your compilation machine and tunes cache optimizations for that
cache layout. If you do specify -qcache, also specify -qhot, or an option such as
-O4 that implies -qhot. The optimizations that -qhot performs are designed to take
advantage of your -qcache settings.

Before you finish tuning
Consult the following list to ensure that you are getting the most out of your target
machine options.
v Do not specify a -qarch option that is incompatible with your hardware. This

can produce unexpected results.
v Specify a -qarch setting that represents the largest common instruction set

available to the machines that your application will execute on.
v If you are executing your application on multiple machines, choose the -qtune

suboption that aligns with the machine you expect your application to run on
most frequently or where performance is most important.

v If compiling with -qcache, specify -qhot as well, which can take advantage of
your cache settings.

Further option driven tuning
You can use options to convey the characteristics of your application to the
compiler, tuning the optimizations that the compiler will apply. Option driven
tuning is a process that can require experimentation to find the right combination
of options to increase the performance of your application.

The XL compilers support many options that allow you to assert that your
application will not follow certain standard language rules in some instances. The
compiler assumes language standard compliance and can perform unsafe
optimizations if your application is not compliant. Standards-conforming

Chapter 2. Tuning XL compiler applications 37

applications are more easily optimized and more portable, but when full
compliance is not possible, use the appropriate options to ensure your code is
optimized safely.

For complete compiler option syntax, see the XL Fortran Compiler Reference.

Options for providing application characteristics
This section provides a list of options that can dictate a wide variety of
characteristics about your application to the compiler including floating-point and
loop behaviors.

Option Description

-qalias
Supports several suboptions that can help the compiler analyze the
characteristics of your application. For more information on aliasing, see
Advanced optimization concepts.

noaryovrlp
Asserts that your application contains no array assignments
between storage associated (overlapping) arrays.

nointptr
Asserts that your application does not make use of integer (Cray)
pointers.

nopteovrlp
Asserts that your application does not contain pointee variables
that refer to any data objects that are not pointee variables. Also,
that your application does not contain two pointee variables that
can refer to the same storage location.

std Asserts that your application follows all language rules for variable
aliasing. This is the default compiler setting. Specify -qalias=nostd
if your application does not follow all variable aliasing rules.

-qassert
Includes the following suboptions that can be useful for providing some
loop characteristics of your application.

nodeps
Asserts that the loops in your application do not contain loop
carried dependencies.

itercnt=number
Gives the optimizer a value to use when estimating the number of
iterations for loops where it cannot determine that value.

-qddim
Forces the compiler to reevaluate the bounds of a pointee array each time
the application references the array. Specify this option only if your
application performs dynamic dimensioning of pointee arrays.

-qdirectstorage
Asserts that your application accesses write-through-enabled or
cache-inhibited storage.

-qfloat
Provides the compiler with floating-point characteristics for your
application. The following suboptions are particularly useful.

nans Asserts that your application makes use of signaling NaN

38 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

(not-a-number) floating-point values. Normal floating-point
operations do not create these values, your application must create
signalling NaNs.

rrm Prohibits optimization transformations that assume the
floating-point rounding mode must be the default setting
round-to-nearest. If your application changes the rounding mode in
any way, specify this option.

-qflttrap
Controls various aspects of floating-point exception handling that your
application can require if it attempts to detect or handle such exceptions. If
your application enables floating point trapping without using -qflttrap,
you must use the -qfloat=fenv option.

-qieee Specifies the floating-point rounding mode when evaluating expressions at
compile time. This option is important if your application requires a
non-default rounding mode in order to have consistency between
compile-time evaluation and runtime evaluation.

You can also specify -y to set the compile-time floating-point rounding
mode.

-qlibansi
Asserts that any external function calls in your compilation that have the
same name as standard C library function calls, such as malloc or memcpy,
are in fact those functions and are not a user-written function with that
name.

-qlibmpi
Asserts that all functions with Message Passing Interface (MPI) names are
in fact MPI functions and not a user function with different semantics.

-qonetrip
Asserts that all DO loops in your application will execute at least one
iteration. You can also specify this behavior with -1.

-qnostrictieeemod
Relaxes certain rules required by the Fortran 2003 standard related to the
use of the IEEE intrinsic modules. Specify this option if your application
does not use these modules.

-qstrict_induction
Prevents optimization transformations that would be unsafe if DO loop
integer iteration count variables overflow and become negative. Few
applications contain algorithms that require this option.

-qthreaded
Informs the compiler that your application will execute in a
multithreaded/SMP environment. Using an _r invocation, like xlf_r, adds
this option automatically.

-qnounwind
Informs the compiler that the stack will not be unwound while any routine
in your application is active. The -qnounwind option enables prologue
tailoring optimization, which reduces the number of saves and restores of
nonvolatile registers.

-qnozerosize
Asserts that this application does not require checking for zero-sized arrays
when performing array operations.

Chapter 2. Tuning XL compiler applications 39

Options to control optimization transformations
There are many options available to you in addition to the base set found in the
Optimizing your applications section. Some of these options prevent an
optimization that can be unsafe for certain applications or enable one that is safe
for your application, but is not normally available as part of the optimization
process.

Option Description

-qcompact
Chooses a reduction of final code size over a reduction in execution time.
You can use this option to constrain the optimizations of -O2 and higher.
For more information on restriction code size, see the Managing code size
section.

-qfdpr Prepares your object code for additional optimization by the FDPR® object
code optimizer.

-qsimd=auto
Makes use of the vector capabilities of processors.

-qfloat
This option provides a number of suboptions for controlling the
optimizations to your floating-point calculations.

norsqrt
Prevents the replacement of the division of the result of a
square-root calculation with a multiplication by the reciprocal of
the square root.

nostrictmaf
Prevents certain floating-point multiply-and-add instructions where
the sign of signed zero value would not be preserved and
rounding is in the wrong direction.

-qipa Includes many suboptions that can assist the IPA optimizations while
analyzing your application. If you are using the -qipa option or higher
optimization levels that imply IPA, it is to your benefit to examine the
suboptions available.

-qmaxmem
Limits the memory available to certain memory-intensive optimizations at
low levels. Specify -qmaxmem=-1 to remove these memory limits.

-qnoprefetch
Prevents the insertion of prefetching machine instructions into your
application during optimization.

-qinline
Exerts control over inlining optimization transformations. For more
information on inlining, see the Advanced optimization concepts section.

-qsmallstack
Instructs the compiler to limit the use of stack storage in your application.
This can increase heap usage.

-qsmp Produces code for an SMP system. This option also searches for
opportunities to increase performance by automatically parallelizing your
code. The Parallel programming with XL Fortran section contains more
information on writing parallel code.

40 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

-qstacktemp
Limits certain compiler temporaries allocated on the stack. Those not
allocated on the stack will be allocated on the heap. This option is useful
for applications that use enough stack space to exceed stack user or system
limits.

-qstrict
Limits optimizations to strict adherence to implied program semantics.
This often prevents the compiler from ignoring certain little-used rules in
the IEEE floating-point specification that few applications require for
correct behavior. For example, reordering or reassociating a sequence of
floating-point calculations can cause floating-point exceptions at an
unexpected location or mask them completely. The -qstrict option
includes suboptions that refine the control of the transformations
performed by the optimizers. Do not use this option unless your
application requires strict adherence as -qstrict and its suboptions can
severely inhibit optimization.

-qunroll
Independently controls loop unrolling. At -O3 and higher, -qunroll is a
default setting.

Options to assist with performance analysis
The compiler provides a set of options that can help you analyze the performance
aspects of your application. These options are most useful when you are selecting
your level of optimization and tuning the optimization process to the particular
characteristics of your application.

-d Informs the compiler that you want to preserve the preprocessed versions
of your compilation files. Typically these files would have a .F extension.

-g Inserts debugging information into your object code. You can use different
-g levels to balance between debug capability and compiler optimization.

-p Inserts appropriate profiling information into your object code to make
using tools for performance analysis possible. You can also specify this
behavior with -pg.

-qlinedebug
An option similar to -g, this option inserts only minimal debugging
information into your object code such as function names and line number
information.

-qlist Produces a listing file containing a pseuo-assembly listing of your object
code.

-qlistfmt
Creates a compiler report to assist with finding optimization opportunities.

-qreport
Inserts information in the listing file showing the transformations done by
certain optimizations.

-S Produces a .s file containing the assembly version of the .o file produced
by the compilation.

-qshowpdf
Enables the optimization process to insert additional profiling information
into the compiled application. You can use the showpdf utility to view

Chapter 2. Tuning XL compiler applications 41

part of the profiling information of your application in text or XML format.
For more information about profile-directed feedback (PDF), see
Profile-directed feedback.

-qtbtable
Limits the amount of debugging traceback information in object files,
which reduces the size of the program. Use -qtbtable=full if you intend
to analyze your application with a profiling utility.

Options that can inhibit performance
Some compiler options are necessary for some applications to produce correct or
repeatable results. Usually, these options instruct the compiler to enforce very strict
language semantics that few applications require. Others are supported by the
compiler to allow compilation of code that does not conform to language
standards. Avoid these options if you are trying to increase the runtime
performance of your application. In cases where these options are enabled by
default, you must disable them to increase performance. You can specify -qlistopt
to show, in the listing file, the settings of each of these options.

The following list summarizes the options that can inhibit performance. Each
option is described in the XL Fortran Compiler Reference.
v -qalias=nostd
v -qcompact
v -qfloat=nosqrt, -qfloat=nostrictmaf, -qfloat=rrm
v -qsimd=noauto
v -qnoprefetch
v -qnounroll
v -qsmallstack
v -qstacktemp=[value other than 0 or -1]
v -qstrict
v -qstrict_induction
v -qstrictieeemod
v -qunwind
v -qxlf2008=checkpresence
v -qzerosize
v -qnoinline

42 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Chapter 3. Advanced optimization concepts

After you apply command-line optimizations and tuning that are appropriate to
your application and the constraints of your development cycle, you have
opportunities to further improve the performance of your application through
aliasing and inlining.

Aliasing
An alias occurs when different variables point directly or indirectly to a single area
of storage. Aliasing refers to assumptions made during optimization about which
variables can point to or occupy the same storage area.

When an alias exists, or the potential for an alias occurs during the optimization
process, pessimistic aliasing occurs. This can inhibit optimizations like dead store
elimination and loop transformations on aliased variables. Also, pessimistic
aliasing can generate additional loads and stores as the compiler must ensure that
any changes to the variable that occur through the alias are not lost.

When aliasing occurs there is less opportunity for optimization transformations to
occur on and around aliased variables than variables where no aliasing has taken
place. For example, if variables A, B, and C are all aliased, any optimization must
assume that a store into or a use of A is also a store or a use of B and C, even if
that is not the case. Some of the highest optimization levels can improve alias
analysis and remove some pessimistic aliases. However, in all cases, when it is not
proven during an optimization transformation that an alias can be removed that
alias must be left in place.

Where possible, avoid programming techniques that lead to pessimistic aliasing
assumptions. These aliasing assumptions are the single most limiting factor to
optimization transformations. The following situations can lead to pessimistic
aliasing:
v When you assign a pointer the address of any variable, the pointer can be

aliased with globally visible variables and with static variables visible in the
pointer's scope.

v When you call a procedure that has dummy arguments passed by reference,
aliasing occurs for variables used as actual arguments, and for global variables.

v The compiler will make several worst-case aliasing assumptions concerning
variables in common blocks and modules. These assumptions can inhibit
optimization.

Some compiler options like -qalias can affect aliasing directly. For more
information on how to tune the aliasing behavior in your application, see “Options
for providing application characteristics” on page 38.

Inlining
Inlining is the process of replacing a subroutine or function call at the call site with
the body of the subroutine or function being called. This eliminates call-linkage
overhead and can expose significant optimization opportunities.

© Copyright IBM Corp. 1990, 2015 43

For example, with inlining, the compiler can replace the subroutine parameters in
the function body with the actual arguments passed. Inlining trade-offs can include
code bloat and an increase in the difficulty of debugging your source code.

If your application contains many calls to small procedures, the procedure call
overhead can sometimes increase the execution time of the application
considerably. Specifying the -qinline compiler option can reduce this overhead.
Additionally, you can use the -p or -pg options and profiling tools to determine
which subprograms your application calls most frequently, and use -qinline to list
their names to ensure inlining.

The -qinline option can perform inlining where the calling and called procedures
are in different compilation units. This applies to optimization level -O5 only.
Let the compiler decide what to inline.
xlf95 -O3 -qinline inline.f

Encourage the compiler to inline particular subprograms.
xlf95 -O3 -qinline+called_100_times:called_1000_times inline.f

Note: -qipa=inline is deprecated and no longer supported; it is replaced by
-qinline.

Finding the right level of inlining
A common occurrence in application optimization is excessive inlining. This can
actually lead to a decrease in performance because running larger programs can
cause more frequent cache misses and page faults. Because the XL compilers
contain safeguards to prevent excessive inlining, this can lead to situations where
subprograms you want to inline are not automatically inlined when you specify
-qinline.

Some common conditions that prevent -qinline from inlining particular
subprograms are:
v The calling and called procedures are in different compilation units. If so, you

can use the -qinline option in the link step to enable cross-file inlining. This
applies to optimization level -O5 only.

v After inlining expands a subprogram to a particular limit, the optimizer does not
inline subsequent calls to that subprogram.

v Any interface errors, such as different numbers, sizes, or types of arguments or
return values, can prevent inlining for a subprogram call. You can also use
interface blocks for the procedures being called.

v Actual or potential aliasing of dummy arguments or automatic variables can
limit inlining. Consider the following cases:
– There are more than 31 arguments to the procedure your application is

calling.
– Any automatic variables in the called procedures are involved in an

EQUIVALENCE statement
– The same variable argument is passed more than once in the same call. For

example, CALL SUB(X,Y,X).
v Some procedures that use computed GO TO statements, where any of the

corresponding statement labels are also used in an ASSIGN statement.

To change the size limits that control inlining, you can specify -qinline=level=n,
where n is 0 through 10. Larger values allow more inlining.

44 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

It is possible to inline C/C++ functions into Fortran programs and Fortran
functions into C/C++ programs during link time optimizations. You must compile
the C/C++ code using the IBM XL C/C++ compilers with -qinline and a
compatible option set to that used in the IBM XL Fortran compilation.

Chapter 3. Advanced optimization concepts 45

46 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Chapter 4. Managing code size

Code size is often not a detriment to performance for most XL compiler
programmers. For some however, generating compact object code can be as
important as generating efficient code.

Oversized programs can affect overall performance by creating a conflict for real
storage between pages of virtual storage containing code, and pages of virtual
storage containing data. On systems with a small, combined instruction and data
cache, cache collisions between code and data can also reduce performance. This
section provides suggestions on how to achieve a balance between code efficiency
and object-module size, while identifying compiler options that can affect
object-module size. Code size tuning is most effective once you have built a stable
application and run optimization at -O2 or higher.

Reasons for tuning for code size include:
v Your application design calls for an implementation with limited real memory,

instruction-cache space, or disk space.
v When loading your application, it uses enough memory to create a conflict

between code areas and data areas in real memory, and both code and data are
frequently paged in and out.

v There are high activity areas in your code large enough that instruction cache
and instruction Translation Lookaside Buffer (TLB) misses have a major effect on
performance.

v You intend your application to run on a host that serves end users, or in a batch
environment with limits on real memory.

Before tuning for code size, it is important for you to determine whether code size
is the actual problem. Very large applications tend to have small clusters of high
activity and large sections of infrequently accessed code. If a particular code page
is not accessed in a particular run, that page is never loaded into memory, and has
no negative impact on performance. If you are tuning for code size due to the high
activity code segments that cause instruction cache and instruction TLB misses that
have a major effect on performance, this can be symptomatic of a program
structure that requires improvement or hardware not suited to the resource
requirements of the application.

If your data takes up more real storage than is available, reducing code size can
improve performance by ensuring that fewer pages of data are paged out as code
is paged in. However, data blocking strategies are likely to prove both more
effective and easier to implement. Processing data in each page as completely as
possible before moving on to the next page can reduce the number of data page
misses.

If you are coding an application for a machine with a combined instruction and
data cache, you can improve performance by applying the techniques described
later in this section, but tuning for data cache management can yield better results
than code-size tuning. Also note that highly tuning your code for the cache
characteristics of one system can lead to undesirable performance results if you
execute your application elsewhere.

© Copyright IBM Corp. 1990, 2015 47

Steps for reducing code size
Reducing the code size of your application can have a positive effect on the
performance of your application

Consider the following steps for reducing code size:
v Ensure that you have built a stable application that compiles at -O2 or higher.
v Use performance analysis tools to isolate high activity code segments and tune

for performance where appropriate. Basing decisions for code size tuning on an
application that has already undergone performance analysis will give you more
information on where your application could benefit from code size tuning.

v Use compiler options like -qcompact to help reduce code size. See Compiler
option influences on code size for more information. Also see the following
options in the XL Fortran Compiler Reference:
– -qinline.
– The partition parameter for -qipa.
– -qunroll.

Be aware that optimization can cause code to expand significantly through loop
unrolling, invariant IF floating, inlining, and other optimizations. The higher your
optimization level, the more code size can increase. For more information on
finding an optimization level appropriate for your application, see Chapter 1,
“Optimizing your applications,” on page 1.

Compiler option influences on code size
High optimization levels can increase code size. You can use other compiler
options to influence the size of your code and improve performance.

The -qipa compiler option
The -qipa option enables interprocedural analysis (IPA) by the compiler.
Interprocedural analysis analyzes the relationships between procedures and the
code that references those procedures, so that more optimizations within
procedures and across procedure references can take place. Interprocedural analysis
can decrease code size and improve performance at the same time. In some cases
however, IPA inlining can increase code size. Use with discretion.
Related reference:

See interprocedural analysis (IPA) in the Compiler Reference

The -qinline inlining option
Using the -qinline compiler option, you can specify that the compiler consider all
procedures, or a particular list of procedures for inlining. Inlining procedures can
increase the performance of your application. However, if your program references
a procedure from many different locations in the source code, inlining that
procedure can increase code size dramatically. You can use -qnoinline to disable
procedure inlining entirely. You can also partially disable inlining with
-qinline-<procedure_name>.

Do not assume that all inlining increases code size. When your source code
references a very small procedure many times, inlining can reduce code size,
because inlining eliminates control transfer and data interface code. In addition,
inlining code facilitates other optimizations at the point of inlining, by providing

48 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

information on the values of arguments referencing the procedure. If a procedure is
very small and is referenced from a number of places, inlining can also increase
code locality and reduce code paging.

For details about the -qinline compiler option, see -qinline in the XL Fortran
Compiler Reference.

The -qhot compiler option
The loop analysis and optimization available when you specify -qhot can increase
code size. If your application contains many large loops and loop optimization
opportunities exist, -qhot can increase code size significantly along with
performance. Specifying -qhot=level=0 will perform minimal high-order
transformations if code size is an issue. The topic High-order transformation
contains more information on using -qhot effectively.

The -qcompact compiler option
The -qcompact compiler option instructs the compiler to avoid certain optimizing
transformations that expand the object code. Compiling with -qcompact, disables
many transformations, including:
v Loop unrolling
v Expansion of fixed-point multiply by more than one instruction
v Inline expansion of some string and memory manipulation functions. In some

cases -qcompact will avoid inlining opportunities entirely.

Specifying -qcompact creates a trade-off between the performance of individual
routines in your application, and overall system performance. Suppressing
transformations degrades the performance of individual routines, while overall
system performance can increase as a more compact program can provide some or
all of the following:
v Fewer instruction-cache misses
v Fewer TLB misses for pages of application code
v Fewer page faults for application code

Other influences on code size
In addition to compiler options, there are a number of ways programming and
analysis can influence the size of your source code.

High activity areas
Once you apply the techniques discussed earlier in this section, your strategy for
further code size reduction depends on your objective. Use profiling tools to locate
hot spots in your program; then follow one of the following guidelines:
v If you want to reduce code size to reduce program paging, concentrate on

minimizing branches and procedure references within those hot spots.
v If you want to reduce code size to reduce the size of your program's files on

disk, concentrate on areas that are not hot spots. Remove any expansive
optimizations from code that does not contain hot spots.

Computed GOTOs and CASE constructs
A sparse computed GOTO can increase code size considerably. In a sparse
computed GOTO, most statement labels point to the default. Consider the
following example where label 10 is the default:

Chapter 4. Managing code size 49

GOTO (10,10,10,10,20,10,10,10,10,30,20,10,10,10,10,
+10,20,10,20,10,20,30,30,10,10,10,10,10,10,20,10,10,...
+10,20,30,10,10,10,30,10,10,10,10,10,10,10,20,10,30) IA(I)

GOTO 10
30 CONTINUE

! ...
GOTO 10

20 CONTINUE
! ...

10 CONTINUE

Although fewer cases are shown, the following CASE construct is functionally
equivalent to the example above. N is the value of the largest integer that the
computed GOTO or CASE construct is testing.

INTEGER IA(10000)
SELECT CASE (IA(I))
CASE DEFAULT

GOTO 10
CASE (5)

GOTO 20
CASE (10)

GOTO 30
CASE (11)

GOTO 20
! ...
CASE (N-10)

GOTO 30
CASE (N-2)

GOTO 20
CASE (N)

GOTO 30
END SELECT

In both examples, the compiler builds a branch table in the object file that contains
one entry for each possibility from 1 to N, where N is the largest integer value
tested. The data section of the program stores this branch table. If N is very large,
the table can increase both the size of the object file and the effects of data-cache
misses.

If you use a CASE construct with a small number of cases and wide gaps between
the test values of the cases, the compiler selects a different algorithm to dispatch to
the appropriate location, and the resulting code can be more compact than a
functionally equivalent computed GOTO. The compiler cannot determine that a
computed GOTO has a default branch point, so the compiler assumes that any
value in the range will be selected. In a CASE construct, the compiler assumes that
cases you do not specify in the construct are handled as default.

Code size with dynamic or static linking
Dynamic or static linking each affect the size of your code, and the resulting
performance of your application.

Dynamic linking and code size

When linking your programs, dynamic linking often ensures more compact code
than linking statically. Dynamic linking does not include library procedures in your
object file. Instead, a reference at run time causes the operating system to locate the
dynamic library that contains the procedure, and reference that procedure from the
library on the system. Only one copy of the procedure is in memory, even if
several programs, or copies of a single program, are accessing the procedure

50 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

simultaneously. This can reduce paging overhead. However, any libraries your
program references must be present in your application's execution environment.

Note that if your program references high performance libraries like BLAS or
ESSL, these procedures are dynamically linked to your program by default.

Static linking and code size

Static linking binds library procedures into your application's object file. This can
increase the size of your object file. If your program references only a small portion
of the procedures available in a library, static linking can eliminate the need to
provide the library to your users. However, static linking ties your application to
one version of the library which can be detrimental in situations where your
application will execute in different environments, such as different levels of the
operating system.

Chapter 4. Managing code size 51

52 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Chapter 5. Debugging optimized code

Debugging optimized programs presents special usability problems. Optimization
can change the sequence of operations, add or remove code, change variable data
locations, and perform other transformations that make it difficult to associate the
generated code with the original source statements.

For example:

Data location issues
With an optimized program, it is not always certain where the most
current value for a variable is located. For example, a value in memory
might not be current if the most current value is being stored in a register.
Most debuggers cannot follow the removal of stores to a variable, and to
the debugger it appears as though that variable is never updated, or
possibly even never set. This contrasts with no optimization where all
values are flushed back to memory and debugging can be more effective
and usable.

Instruction scheduling issues
With an optimized program, the compiler might reorder instructions. That
is, instructions might not be executed in the order you would expect based
on the sequence of lines in the original source code. Also, the sequence of
instructions for a statement might not be contiguous. As you step through
the program with a debugger, the program might appear as if it is
returning to a previously executed line in the code (interleaving of
instructions).

Consolidating variable values
Optimizations can result in the removal and consolidation of variables. For
example, if a program has two expressions that assign the same value to
two different variables, the compiler might substitute a single variable.
This can inhibit debug usability because a variable that a programmer is
expecting to see is no longer available in the optimized program.

There are a couple of different approaches you can take to improve debug
capabilities while also optimizing your program:

Debug non-optimized code first
Debug a non-optimized version of your program first, and then recompile
it with your desired optimization options. See “Debugging in the presence
of optimization” on page 54 for some compiler options that are useful in
this approach.

Use -g level
Use the -g level suboption to control the amount of debugging information
made available. Increasing it improves debug capability but prevents some
optimizations. For more information, see -g.

Understanding different results in optimized programs
Here are some reasons why an optimized program might produce different results
from one that has not undergone the optimization process:
v Optimized code can fail if a program contains code that is not valid. For

example, failure can occur if the program passes an actual argument that also

© Copyright IBM Corp. 1990, 2015 53

appears in a common block in the called procedure, or if two or more dummy
arguments are associated with the same actual argument. The optimization
process relies on your application conforming to language standards.

v If a program that works without optimization fails when you optimize, check
the cross-reference listing and the execution flow of the program for variables
that are used before they are initialized. Compile with the -qinitauto=hex_value
or -qinitalloc=hex_value option to try to produce the incorrect results
consistently. For example, using -qinitauto=FF gives REAL and COMPLEX
variables an initial value of "negative not a number" (-NAN). Any operations on
these variables will also result in NAN values. Other bit patterns (hex_value)
might yield different results and provide further clues as to what is going on.
Programs with uninitialized variables can appear to work properly when
compiled without optimization because of the default assumptions the compiler
makes, but such programs might fail when you optimize. Similarly, a program
can appear to execute correctly after optimization, but it fails at lower
optimization levels or when it is run in a different environment. You can also
use the -qcheck=unset option and -qinfo=unset option to detect variables that
are not or might not be initialized.

v Referring to an automatic-storage variable by its address after the owning
function has gone out of scope leads to a reference to a memory location that
can be overwritten as other auto variables come into scope as new functions are
called.

Use with caution debugging techniques that rely on examining values in storage,
unless the -g8 or -g9 option is in effect and the optimization level is -O2. The
compiler might have deleted or moved a common expression evaluation. It might
have assigned some variables to registers so that they do not appear in storage at
all.

Debugging in the presence of optimization
Debug and compile your program with your desired optimization options. Test the
optimized program before placing it into production. If the optimized code does
not produce the expected results, you can attempt to isolate the specific
optimization problems in a debugging session.

The following list presents options that provide specialized information, which can
be helpful during the debugging of optimized code:

-qlist Instructs the compiler to emit an object listing. The object listing includes
hex and pseudo-assembly representations of the generated instructions,
traceback tables, and text constants.

-qreport
Instructs the compiler to produce a report of the loop transformations it
performed, how the program was parallelized, what inlining was done,
and some other transformations. To generate a listing file, you must specify
the -qreport option with at least one optimization option such as -qhot,
-qsmp, -qinline, or -qsimd.

-qinfo=HOSTASSOCiation
Issues an informational message for an entity that is accessed by host
association for the first time. For details, see -qinfo.

-qinfo=mt
Reports potential synchronization issues in parallel code. For details, see
-qinfo.

54 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

-qinfo=unset
Detects automatic variables that are used before they are set, and flags
them with informational messages at compile time. For details, see -qinfo.

-qipa=list
Instructs the compiler to emit an object listing that provides information
for IPA optimization.

-qcheck
Generates code that performs certain types of runtime checking.

-qsmp=noopt
If you are debugging SMP code, -qsmp=noopt ensures that the compiler
performs only the minimum transformations necessary to parallelize your
code and preserves maximum debug capability.

-qkeepparm
Ensures that procedure parameters are stored on the stack even during
optimization. This can negatively impact execution performance. The
-qkeepparm option then provides access to the values of incoming
parameters to tools, such as debuggers, simply by preserving those values
on the stack.

-qinitalloc
Instructs the compiler to emit code that initializes all allocatable and
pointer variables that are allocated but not initialized to a given value.

-qinitauto
Instructs the compiler to emit code that initializes all automatic variables to
a given value.

-g, -qdbg
Generates debugging information to be used by a symbolic debugger. You
can use different -g or -qdbg levels to debug optimized code by viewing or
possibly modifying accessible variables at selected source locations in the
debugger. Higher -g or -qdbg levels provide a more complete debug
support, while lower levels provide higher runtime performance. For
details, see -g or -qdbg.

In addition, you can also use the SNAPSHOT directive to ensure that certain
variables are visible to the debugger at points in your application. For details, see
SNAPSHOT.

Chapter 5. Debugging optimized code 55

56 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Chapter 6. Compiler-friendly programming techniques

Writing compiler-friendly code, with both the optimizer and portability in mind,
can be as important to the performance of your application as the compilation
options that you specify.

General practices
It is not necessary to hand-optimize your code, as hand-optimizing can introduce
unusual constructs that can obscure the intentions of your application from the
compiler and limit optimization opportunities.

Avoid breaking your program into too many small functions, as this can increase
the percentage of time the program spends in dealing with call overhead. If you
choose to use many small functions, compiling with -qipa can help minimize the
impact on performance. Attempting to optimize an application with many small
functions without the benefit of -qipa can severely limit the scope of other
optimizations.

Use command invocations like xlf90 and xlf95, which use -qnosave. The -qnosave
option sets the default storage class of all variables to automatic. This provides
more opportunities for optimization. When the xlf invocation command is used to
compile the .f, .F, .f77, or .F77 files, the default is -qsave. The f77 and fort77
invocation commands also use -qsave by default. All the other invocation
commands use -qnosave by default.

Use modules to group related subroutines and functions.

Use module variables instead of common blocks for global storage.

Mark all code that accesses or manipulates data objects by independent I/O
processes and independent, asynchronously interrupting processes as VOLATILE.
For example, mark code that accesses shared variables and pointers to shared
variables. Mark your code carefully however, as VOLATILE is a barrier to
optimization as accessing a VOLATILE object forces the compiler to always load
the value from storage. This prevents powerful optimizations such as constant
propagation or invariant code motion.

The XL compilers support high performance libraries that can provide significant
advantages over custom implementations or generic libraries.

Variables and pointers
The effective use of aliasing and of variables and pointers provides opportunities
for improved performance and further optimization.

Obey all aliasing rules. Avoid specifying -qalias=nostd. For more information on
aliasing and how it can affect performance, see “Aliasing” on page 43.

Avoid unnecessary use of global variables and pointers, including module
variables and common blocks. When using global variables and pointers in a loop,
load them into a local variable before the loop and store them back after. If you do
not use the local variable somewhere other than in the loop body, the optimization

© Copyright IBM Corp. 1990, 2015 57

process can usually recognize what you are doing and expose more optimization
opportunities. Replacing a global variable in a loop with a local variable reduces
the possibilities for aliasing.

Use the INTENT statement to describe the usage of dummy arguments.

Limit the use of ALLOCATABLE objects and POINTER variables to situations
demanding dynamic memory allocation.

Arrays
Where possible, use local variables instead of global variables for loop index
variables and bounds.

Whenever possible, ensure references to arrays or array sections refer to contiguous
blocks of storage. Noncontiguous memory array references, when passed as
parameters, lead to copy-in and copy-out operations.

F2008 When declaring an array pointer or an assumed-shape array, you can use
the CONTIGUOUS attribute to ensure that the array elements in order are stored
in contiguous memory and not separated by other data objects. An array pointer
with the CONTIGUOUS attribute can only be pointer associated with a
contiguous target. An assumed-shape array with the CONTIGUOUS attribute is
always contiguous; however, the corresponding actual argument can be contiguous
or noncontiguous. If it is noncontiguous, the compiler makes it contiguous by
creating a temporary contiguous argument. When the CONTIGUOUS attribute is
used, the compiler can perform appropriate semantic check and detect invalid
codes, which helps you write more optimized codes and enables the compiler to
further optimize the runtime performance and storage layout. F2008

Keep your array expressions simple so that the optimizer can deduce access
patterns more easily and reuse index calculations in whole or in part.

Frequent use of array-to-array assignment and WHERE constructs can impact
performance by increasing temporary storage and creating loops. Using -qlist or
-qreport can help you understand the performance characteristics of your code,
and where applying -qhot could be beneficial. If you are already optimizing with
-qipa, ensure you are using the list=filename option, so that the -qlist listing file is
not overwritten.

Related information
v F2008 The CONTIGUOUS attribute F2008

Choosing appropriate variable sizes
Improve the efficiency of your application by choosing the appropriate variable
sizes.

When programming SMP applications, use the CONTAINS statement only to
share thread local storage.

In most cases using INTEGER(8) for scalars improves the efficiency of DO loops,
subscripting, mathematical calculations and calling conventions when passing
objects. However, if your code contains large arrays with values that can fit in an
INTEGER(4), using smaller kind parameters can actually improve memory
efficiency by reducing memory traffic to load or store data.

58 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Use the lowest floating-point precision appropriate to your application. Higher
precisions can reduce performance, so use the REAL(16), or COMPLEX(16) data
types only when you require extremely high precision.

On systems with VMX, using REAL(4) and -qsimd=auto provides opportunities for
short vectorization that is not available with larger floating-point types. On
systems with VSX, -qsimd=auto provides opportunities for vectorization on the
REAL(8) type.

Submodules (Fortran 2008)
The submodule feature provides more structural facilities for modules.

When you compile a source file that contains submodules, a submodule symbol
file named ancestormodulename_submodulename.smod is generated for each
submodule. These output .smod files are to be used as input when you compile the
descendant submodules.

You can use a module to declare the interfaces of module procedures and the
descendant submodules to implement those module procedures. If the
implementation of the procedures is changed, but their interfaces remain the same,
you are not required to recompile the file that contains the module. An .smod file
of a submodule is the prerequisite of its descendant submodules only.

A submodule extends a module or another submodule and can have its
descendant submodules. You can put entities at intermediate levels that are shared
by the descendant submodules at lower levels. Changing these entities cannot
change the interpretation of anything that is accessible from the module by use
association. Users of modules that embody large complicated concepts can
organize components of the concept into submodules. At the same time, they can
prevent the privacy of entities that is shared by the submodules and that is not to
be displayed to the module users. In addition, putting these shared entities at an
intermediate level also prevents cascades of reprocessing and testing if some of
them are changed.

Because submodules cannot be accessed by use association, two submodules of
different modules can access the ancestor module of each other through use
association without causing circular dependency.

Example

The following example illustrates four modules with their descendant submodules
and a main program.
v A module m1, which has a submodule m1sub.
v A module m2, which has a submodule m2sub, which in turn has a submodule

m2sub2.
v Modules m3 and m4, which do not have descendant submodules.

The module m1, m2, and m4 are defined as follows. Both m2 and m4 use m1 in host
associated scope.
MODULE m1

TYPE Base
INTEGER :: i

END TYPE

INTERFACE

Chapter 6. Compiler-friendly programming techniques 59

MODULE SUBROUTINE sub1(i, b) ! Module procedure interface body for sub1
INTEGER, INTENT(IN) :: i
TYPE(Base), INTENT(IN) :: b

END SUBROUTINE
END INTERFACE

END MODULE

MODULE m2
USE m1 ! Use association of module m1

INTERFACE
REAL MODULE FUNCTION func1() ! Module procedure interface body for func1
END FUNCTION

MODULE FUNCTION func2(b) ! Module procedure interface body for func2
TYPE(Base) :: b
TYPE(Base) :: func2

END FUNCTION
END INTERFACE

END MODULE

MODULE m4
USE m1 ! Use association of module m1
TYPE, EXTENDS(Base) :: NewType
REAL :: j

END TYPE
END MODULE

The submodule m1sub, which extends module m1, and submodule m2sub, which
extends module m2, are defined as follows. The use association of module m4 in
m1sub does not cause circular reference.
SUBMODULE (m1) m1sub

USE m4 ! Use association of module m4

CONTAINS
MODULE SUBROUTINE sub1(i, b) ! Implementation of sub1 declared in m1

INTEGER, INTENT(IN) :: i
TYPE(Base), INTENT(IN) :: b
PRINT *, "sub1", i, b

END SUBROUTINE
END SUBMODULE

SUBMODULE (m2) m2sub

CONTAINS
REAL MODULE FUNCTION func1() ! Implementation of func1 declared in m2

func1 = 20
END FUNCTION

END SUBMODULE

The third level submodule m2sub2, which extends its parent submodule m2sub, is
defined as follows.
SUBMODULE (m2:m2sub) m2sub2

CONTAINS
MODULE FUNCTION func2(b) ! Implementation of func2 declared in m2

TYPE(Base) :: b
TYPE(Base) :: func2
func2 = b

END FUNCTION
END SUBMODULE

The module m3 is defined as follows. Type Base is still accessible by host
association of m1 in m2.

60 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

MODULE m3
INTERFACE
SUBROUTINE interfaceSub1(i, b)

USE m1
INTEGER, INTENT(IN) :: i
TYPE(Base), INTENT(IN) :: b

END SUBROUTINE

REAL FUNCTION interfaceFunc1()
END FUNCTION

FUNCTION interfaceFunc2(b)
USE m1
TYPE(Base) :: b
TYPE(Base) :: interfaceFunc2

END FUNCTION
END INTERFACE

TYPE Container
PROCEDURE(interfaceSub1), NOPASS, POINTER :: pp1
PROCEDURE(interfaceFunc1), NOPASS, POINTER :: pp2
PROCEDURE(interfaceFunc2), NOPASS, POINTER :: pp3

END TYPE
END MODULE

The program example, which uses m1, m2, and m3, is defined as follows.
PROGRAM example

USE m1
USE m2
USE m3
TYPE(Container) :: c1
c1%pp1 => sub1
c1%pp2 => func1
c1%pp3 => func2

CALL c1%pp1(10, Base(11))
PRINT *, "func1", int(c1%pp2())
PRINT *, "func2", c1%pp3(Base(5))

END PROGRAM

When you compile the source files that contain the submodules m1sub, m2sub, and
m2sub2, the following submodule symbol files are generated:
m1_m1sub.smod
m2_m2sub.smod
m2_m2sub2.smod

Related information
v Submodules
v The SUBMODULE statement
v XL Fortran input files
v XL Fortran output files

Chapter 6. Compiler-friendly programming techniques 61

62 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Chapter 7. High performance libraries

XL Fortran is shipped with the following set of libraries for high-performance
mathematical computing:
v Mathematical Acceleration Subsystem (MASS). It is a set of libraries of tuned

mathematical intrinsic routines that provide improved performance over the
corresponding standard system math library routines. MASS is described in
“Using the Mathematical Acceleration Subsystem (MASS) libraries.”

v Basic Linear Algebra Subprograms (BLAS). They are a subset of routines from
IBM's Engineering and Scientific Subroutine Library (ESSL) library, which
provides matrix/vector multiplication functions tuned for PowerPC
architectures. The BLAS functions are described in “Using the Basic Linear
Algebra Subprograms – BLAS” on page 75.

Note that if you are going to link your application with the ESSL libraries, using
-qessl and IPA allows the optimizer to automatically use ESSL routines.

Using the Mathematical Acceleration Subsystem (MASS) libraries
XL Fortran is shipped with a set of Mathematical Acceleration Subsystem (MASS)
libraries for high-performance mathematical computing.

The MASS libraries consist of a library of scalar Fortran routines described in
“Using the scalar library” on page 64, a set of vector libraries tuned for specific
architectures described in “Using the vector libraries” on page 66, and a set of
SIMD libraries tuned for specific architectures described in “Using the SIMD
libraries” on page 70. The functions contained in both scalar and vector libraries
are automatically called at certain levels of optimization, but you can also call
them explicitly in your programs. Note that accuracy and exception handling
might not be identical in MASS functions and system library functions.

The MASS functions must run with the default rounding mode and floating-point
exception trapping settings.

When you compile programs with any of the following sets of options:
v -qhot -qnostrict

v -qhot -O3 -qstrict=nolibrary

v -qhot -O3

v -O4

v -O5

the compiler automatically attempts to vectorize calls to system math functions by
calling the equivalent MASS vector functions (with the exceptions of functions
vatan2, vsatan2, vdnint, vdint, vcosisin, vscosisin, vqdrt, vsqdrt, vrqdrt,
vsrqdrt, vpopcnt4, vpopcnt8, vexp2, vexp2m1, vsexp2, vsexp2m1, vlog2, vlog21p,
vslog2, and vslog21p). If it cannot vectorize, it automatically tries to call the
equivalent MASS scalar functions. For automatic vectorization or scalarization, the
compiler uses versions of the MASS functions contained in the XLOPT library
libxlopt.a.

© Copyright IBM Corp. 1990, 2015 63

In addition to any of the preceding sets of options, when the -qipa option is in
effect, if the compiler cannot vectorize, it tries to inline the MASS scalar functions
before deciding to call them.

“Compiling and linking a program with MASS” on page 74 describes how to
compile and link a program that uses the MASS libraries, and how to selectively
use the MASS scalar library functions in conjunction with the regular system
libraries.

Related external information

Mathematical Acceleration Subsystem website, available at
http://www.ibm.com/software/awdtools/mass/

Using the scalar library
The MASS scalar library libmass.a contains an accelerated set of frequently used
math intrinsic functions that provide improved performance over the
corresponding standard system library functions. The MASS scalar functions are
used when you explicitly link libmass.a.

If you want to explicitly call the MASS scalar functions, you can take the following
steps:
1. Link the MASS scalar library libmass.a with your application. For instructions,

see “Compiling and linking a program with MASS” on page 74
2. All the MASS scalar routines, except those listed in step 3 are recognized by XL

Fortran as intrinsic functions, so no explicit interface block is needed. To
provide an interface block for the functions listed in step 3, include
mass.include in your source file.

3. Include mass.include in your source file for the following functions:
v acosf, acoshf, asinf, asinhf, atan2f, atanf, atanhf, cbrt, cbrtf, copysign,

copysignf, cosf, coshf, cosisin, erff, erfcf, expf, expm1f, hypotf, lgammaf,
logf, log10f, log1pf, rsqrt, sinf, sincos, sinhf, tanf, tanhf, and x**y

The MASS scalar functions accept double-precision parameters and return a
double-precision result, or accept single-precision parameters and return a
single-precision result, except sincos which gives 2 double-precision results. They
are summarized in Table 14.

Table 14. MASS scalar functions

Double-
precision
function

Single-
precision
function

Arguments Description

acos acosf (x) Returns the arccosine of x

acosh acoshf (x) Returns the hyperbolic arccosine of x

anint (x) Returns the rounded integer value of x

asin asinf (x) Returns the arcsine of x

asinh asinhf (x) Returns the hyperbolic arcsine of x

atan2 atan2f (x,y) Returns the arctangent of x/y

atan atanf (x) Returns the arctangent of x

atanh atanhf (x) Returns the hyperbolic arctangent of x

cbrt cbrtf (x) Returns the cube root of x

copysign copysignf (x,y) Returns x with the sign of y

64 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

http://www.ibm.com/software/awdtools/mass/
http://www.ibm.com/software/awdtools/mass/

Table 14. MASS scalar functions (continued)

Double-
precision
function

Single-
precision
function

Arguments Description

cos cosf (x) Returns the cosine of x

cosh coshf (x) Returns the hyperbolic cosine of x

cosisin (x) Returns a complex number with the real
part the cosine of x and the imaginary
part the sine of x.

dnint (x) Returns the nearest integer to x (as a
double)

erf erff (x) Returns the error function of x

erfc erfcf (x) Returns the complementary error function
of x

exp expf (x) Returns the exponential function of x

expm1 expm1f (x) Returns (the exponential function of x) - 1

hypot hypotf (x,y) Returns the square root of x2 + y2

lgamma lgammaf (x) Returns the natural logarithm of the
absolute value of the Gamma function of
x

log logf (x) Returns the natural logarithm of x

log10 log10f (x) Returns the base 10 logarithm of x

log1p log1pf (x) Returns the natural logarithm of (x + 1)

rsqrt (x) Returns the reciprocal of the square root
of x

sin sinf (x) Returns the sine of x

sincos (x,s,c) Sets s to the sine of x and c to the cosine
of x

sinh sinhf (x) Returns the hyperbolic sine of x

sqrt (x) Returns the square root of x

tan tanf (x) Returns the tangent of x

tanh tanhf (x) Returns the hyperbolic tangent of x

x**y (x,y) Returns x raised to the power y

The MASS library interfaces include the following features:
v The scalar functions have generic interfaces so that the same name (the name

used for the real*8 function in previous versions) can be called with either real*4
or real*8 arguments.

v The scalar functions are marked pure. You can call them from pure procedures.
v The scalar functions are marked elemental. You can call them with an array

argument and apply them to all the array elements.
v The intent of the argument is specified to assist in compiler error checking.

The following example shows the XL Fortran interface declaration of the acos and
acosf scalar functions:
INTERFACE acos

PURE ELEMENTAL REAL*8 FUNCTION acos (x)
REAL*8, value :: x

Chapter 7. High performance libraries 65

END FUNCTION

PURE ELEMENTAL REAL*4 FUNCTION acosf (x)
REAL*4, value :: x

END FUNCTION
END INTERFACE

The following example shows the XL Fortran interface declaration for the rsqrt
scalar function:
INTERFACE

! Returns the reciprocal of the square root of x.
REAL(8) FUNCTION rsqrt(x)
REAL(8), value :: x

END FUNCTION
END INTERFACE

Although most of the scalar MASS functions have separate implementations tuned
for optimal performance with real*4 and real*8 arguments, the functions cosisin,
rsqrt, and sincos have only real*8 versions. These functions have only the real*8
interface in mass.include, but they can be called with real*4 or real*8 arguments
and will operate correctly.

Notes:

v The trigonometric functions (sin, cos, tan) return NaN (Not-a-Number) for large
arguments (where the absolute value is greater than 250pi).

v In some cases, the MASS functions are not as accurate as the ones in the libm.a
library, and they might handle edge cases differently (sqrt(Inf), for example).

v For accuracy comparisons with libm.a, see Product documentation (manuals) in
the Product support content section of the Mathematical Acceleration Subsystem
website.
Related external information

Mathematical Acceleration Subsystem website, available at
http://www.ibm.com/software/awdtools/mass/

Using the vector libraries
If you want to explicitly call any of the MASS vector functions, you can do so by
including massv.include in your source files and linking your application with the
appropriate vector library. Information about linking is provided in “Compiling
and linking a program with MASS” on page 74.

The vector libraries shipped with XL Fortran are listed below:

libmassv.a
The generic vector library that runs on any supported POWER® processor.
Unless your application requires this portability, use the appropriate
architecture-specific library below for maximum performance.

libmassvp8.a
Contains functions that are tuned for the POWER8® architecture.

The single-precision and double-precision floating-point functions contained in the
vector libraries are summarized in Table 15 on page 67. The integer functions
contained in the vector libraries are summarized in Table 16 on page 68.

With the exception of a few functions (described in the following paragraph), all of
the floating-point functions in the vector libraries accept three arguments:

66 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

http://www-03.ibm.com/software/products/us/en/mathaccesubsfami/
http://www-03.ibm.com/software/products/us/en/mathaccesubsfami/
http://www.ibm.com/software/awdtools/mass/
http://www.ibm.com/software/awdtools/mass/

v A double-precision (for double-precision functions) or single-precision (for
single-precision functions) vector output argument.

v A double-precision (for double-precision functions) or single-precision (for
single-precision functions) vector input argument.

v An integer vector-length argument.

The functions are of the form
function_name (y,x,n)

where y is the target vector, x is the source vector, and n is the vector length. The
arguments y and x are assumed to be double-precision for functions with the
prefix v, and single-precision for functions with the prefix vs. As an example, the
following code outputs a vector y of length 500 whose elements are exp(x(i)),
where i=1,...,500:
include ’massv.include’

real(8) x(500), y(500)
integer n
n = 500
...
call vexp (y, x, n)

The functions vdiv, vsincos, vpow, and vatan2 (and their single-precision versions,
vsdiv, vssincos, vspow, and vsatan2) take four arguments. The functions vdiv,
vpow, and vatan2 take the arguments (z,x,y,n). The function vdiv outputs a vector z
whose elements are x(i)/y(i), where i=1,...,n. The function vpow outputs a vector z
whose elements are x(i)y(i), where i=1,..,n. The function vatan2 outputs a vector z
whose elements are atan(x(i)/y(i)), where i=1,..,n. The function vsincos takes the
arguments (y,z,x,n), and outputs two vectors, y and z, whose elements are sin(x(i))
and cos(x(i)), respectively.

In vcosisin(y,x,n) and vscosisin(y,x,n), x is a vector of n elements and the
function outputs a vector y of n complex(8)(for vcosisin) or complex(4)(for
vscosisin) elements of the form (cos(x(i)),sin(x(i))).

Table 15. MASS floating-point vector library functions

Double-precision
function

Single-precision
function Arguments Description

vacos vsacos (y,x,n) Sets y(i) to the arc cosine of x(i), for i=1,..,n

vacosh vsacosh (y,x,n) Sets y(i) to the hyperbolic arc cosine of x(i), for
i=1,..,n

vasin vsasin (y,x,n) Sets y(i) to the arc sine of x(i), for i=1,..,n

vasinh vsasinh (y,x,n) Sets y(i) to the arc hyperbolic sine of x(i), for i=1,..,n

vatan2 vsatan2 (z,x,y,n) Sets z(i) to the arc tangent of x(i)/y(i), for i=1,..,n

vatanh vsatanh (y,x,n) Sets y(i) to the arc hyperbolic tangent of x(i), for
i=1,..,n

vcbrt vscbrt (y,x,n) Sets y(i) to the cube root of x(i), for i=1,..,n

vcos vscos (y,x,n) Sets y(i) to the cosine of x(i), for i=1,..,n

vcosh vscosh (y,x,n) Sets y(i) to the hyperbolic cosine of x(i), for i=1,..,n

vcosisin vscosisin (y,x,n) Sets the real part of y(i) to the cosine of x(i) and the
imaginary part of y(i) to the sine of x(i), for i=1,..,n

vdint (y,x,n) Sets y(i) to the integer truncation of x(i), for i=1,..,n

vdiv vsdiv (z,x,y,n) Sets z(i) to x(i)/y(i), for i=1,..,n

Chapter 7. High performance libraries 67

Table 15. MASS floating-point vector library functions (continued)

Double-precision
function

Single-precision
function Arguments Description

vdnint (y,x,n) Sets y(i) to the nearest integer to x(i), for i=1,..,n

verf vserf (y,x,n) Sets y(i) to the error function of x(i), for i=1,..,n

verfc vserfc (y,x,n) Sets y(i) to the complimentary error function of x(i),
for i=1,..,n

vexp vsexp (y,x,n) Sets y(i) to the exponential function of x(i), for i=1,..,n

vexp2 vsexp2 (y,x,n) Sets y(i) to 2 raised to the power of x(i), for i=1,..,n

vexpm1 vsexpm1 (y,x,n) Sets y(i) to (the exponential function of x(i)) -1, for
i=1,..,n

vexp2m1 vsexp2m1 (y,x,n) Sets y(i) to (2 raised to the power of x(i)) -1, for
i=1,..,n

vhypot vshypot (z,x,y,n) Sets z(i) to the square root of the sum of the squares
of x(i) and y(i), for i=1,..,n

vlog vslog (y,x,n) Sets y(i) to the natural logarithm of x(i), for i=1,..,n

vlog2 vslog2 (y,x,n) Sets y(i) to the base-2 logarithm of x(i), for i=1,..,n

vlog10 vslog10 (y,x,n) Sets y(i) to the base-10 logarithm of x(i), for i=1,..,n

vlog1p vslog1p (y,x,n) Sets y(i) to the natural logarithm of (x(i)+1), for
i=1,..,n

vlog21p vslog21p (y,x,n) Sets y(i) to the base-2 logarithm of (x(i)+1), for i=1,..,n

vpow vspow (z,x,y,n) Sets z(i) to x(i) raised to the power y(i), for i=1,..,n

vqdrt vsqdrt (y,x,n) Sets y(i) to the 4th root of x(i), for i=1,..,n

vrcbrt vsrcbrt (y,x,n) Sets y(i) to the reciprocal of the cube root of x(i), for
i=1,..,n

vrec vsrec (y,x,n) Sets y(i) to the reciprocal of x(i), for i=1,..,n

vrqdrt vsrqdrt (y,x,n) Sets y(i) to the reciprocal of the 4th root of x(i), for
i=1,..,n

vrsqrt vsrsqrt (y,x,n) Sets y(i) to the reciprocal of the square root of x(i), for
i=1,..,n

vsin vssin (y,x,n) Sets y(i) to the sine of x(i), for i=1,..,n

vsincos vssincos (y,z,x,n) Sets y(i) to the sine of x(i) and z(i) to the cosine of
x(i), for i=1,..,n

vsinh vssinh (y,x,n) Sets y(i) to the hyperbolic sine of x(i), for i=1,..,n

vsqrt vssqrt (y,x,n) Sets y(i) to the square root of x(i), for i=1,..,n

vtan vstan (y,x,n) Sets y(i) to the tangent of x(i), for i=1,..,n

vtanh vstanh (y,x,n) Sets y(i) to the hyperbolic tangent of x(i), for i=1,..,n

Integer functions are of the form function_name (x, n), where x is a vector of 4-byte
(for vpopcnt4) or 8-byte (for vpopcnt8) numeric objects (integer or floating-point),
and n is the vector length.

Table 16. MASS integer vector library functions

Function Description Interface

vpopcnt4 Returns the total number of 1 bits in the concatenation of
the binary representation of x(i), for i=1,...,n, where x is
vector of 32-bit objects

integer*4 function vpopcnt4 (x, n)
integer*4 x(*), n

68 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Table 16. MASS integer vector library functions (continued)

Function Description Interface

vpopcnt8 Returns the total number of 1 bits in the concatenation of
the binary representation of x(i), for i=1,...,n, where x is
vector of 64-bit objects

integer*4 function vpopcnt8 (x, n)
integer*8 x(*)
integer*4 n

The following example shows XL Fortran interface declarations for some of the
MASS single-precision and double-precision functions:
INTERFACE vsqrt

! Sets y(i) to the square root of x(i), for i=1,...,n
PURE SUBROUTINE vsqrt (y, x, n)
REAL*8, INTENT(OUT) :: y(*)
REAL*8, INTENT(IN) :: x(*)
INTEGER*4, INTENT(IN) :: n

END SUBROUTINE

PURE SUBROUTINE vssqrt (y, x, n)
REAL*4, INTENT(OUT) :: y(*)
REAL*4, INTENT(IN) :: x(*)
INTEGER*4, INTENT(IN) :: n

END SUBROUTINE
END INTERFACE

Overlap of input and output vectors

In most applications, the MASS vector functions are called with disjoint input and
output vectors; that is, the two vectors do not overlap in memory. Another
common usage scenario is to call them with the same vector for both input and
output parameters (for example, vsin (y, y, n)). Other kinds of overlap (where
input and output vectors are neither disjoint nor identical) should be avoided,
since they might produce unexpected results:
v For calls to vector functions that take one input and one output vector (for

example, vsin (y, x, n)):
The vectors x(1:n) and y(1:n) must be either disjoint or identical, or
unexpected results might be obtained.

v For calls to vector functions that take two input vectors (for example, vatan2 (y,
x1, x2, n)):
The previous restriction applies to both pairs of vectors y,x1 and y,x2. That is,
y(1:n) and x1(1:n) must be either disjoint or identical; and y(1:n) and x2(1:n)
must be either disjoint or identical.

v For calls to vector functions that take two output vectors (for example, vsincos
(y1, y2, x, n)):
The above restriction applies to both pairs of vectors y1,x and y2,x. That is,
y1(1:n) and x(1:n) must be either disjoint or identical; and y2(1:n) and x(1:n)
must be either disjoint or identical. Also, the vectors y1(1:n) and y2(1:n) must
be disjoint.

Alignment of input and output vectors

To get the best performance from the POWER8 vector libraries, align the input and
output vectors on 8-byte (or better, 16-byte) boundaries.

Chapter 7. High performance libraries 69

Consistency of MASS vector functions

All the functions in the MASS vector libraries are consistent, in the sense that a
given input value will always produce the same result, regardless of its position in
the vector, and regardless of the vector length.

Related external information

Mathematical Acceleration Subsystem website, available at
http://www.ibm.com/software/awdtools/mass/

Using the SIMD libraries
The MASS SIMD library libmass_simdp8.a contains a set of frequently used math
intrinsic functions that provide improved performance over the corresponding
standard system library functions. If you want to use the MASS SIMD functions,
you can do so as follows:
1. Provide the interfaces for the functions by including mass_simd.include in your

source files.
2. Link the MASS SIMD library libmass_simdp8.a with your application. For

instructions, see “Compiling and linking a program with MASS” on page 74.

The single-precision MASS SIMD functions accept single-precision arguments and
return single-precision results. Likewise, the double-precision MASS SIMD
functions accept double-precision arguments and return double-precision results.
They are summarized in Table 17.

Table 17. MASS SIMD functions

Double-
precision
function

Single-
precision
function

Description Double-precision function interface Single-precision function interface

acosd2 acosf4 Computes the
arc cosine of
each element of
vx.

vector(real(8)) function acosd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function acosf4(vx)
vector(real(4)), value :: vx

acoshd2 acoshf4 Computes the
arc hyperbolic
cosine of each
element of vx.

vector(real(8)) function acoshd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function acoshf4(vx)
vector(real(4)), value :: vx

asind2 asinf4 Computes the
arc sine of each
element of vx.

vector(real(8)) function asind2(vx)
vector(real(8)), value :: vx

vector(real(4)) function asinf4(vx)
vector(real(4)), value :: vx

asinhd2 asinhf4 Computes the
arc hyperbolic
sine of each
element of vx.

vector(real(8)) function asinhd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function asinhf4(vx)
vector(real(4)), value :: vx

atand2 atanf4 Computes the
arc tangent of
each element of
vx.

vector(real(8)) function atand2(vx)
vector(real(8)), value :: vx

vector(real(4)) function atanf4(vx)
vector(real(4)), value :: vx

atan2d2 atan2f4 Computes the
arc tangent of
each element of
vx/vy.

vector(real(8)) function atan2d2(vx,vy)
vector(real(8)), value :: vx, vy

vector(real(4)) function atan2f4(vx,vy)
vector(real(4)), value :: vx, vy

70 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

http://www.ibm.com/software/awdtools/mass/
http://www.ibm.com/software/awdtools/mass/

Table 17. MASS SIMD functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function interface Single-precision function interface

atanhd2 atanhf4 Computes the
arc hyperbolic
tangent of each
element of vx.

vector(real(8)) function atanhd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function atanhf4(vx)
vector(real(4)), value :: vx

cbrtd2 cbrtf4 Computes the
cube root of
each element of
vx

vector(real(8)) function cbrtd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function cbrtf4(vx)
vector(real(4)), value :: vx

cosd2 cosf4 Computes the
cosine of each
element of vx.

vector(real(8)) function cosd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function cosf4(vx)
vector(real(4)), value :: vx

coshd2 coshf4 Computes the
hyperbolic
cosine of each
element of vx.

vector(real(8)) function coshd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function coshf4(vx)
vector(real(4)), value :: vx

cosisind2 cosisinf4 Computes the
cosine and sine
of each element
of x, and stores
the results in y
and z as
follows:

cosisind2 (x,
y, z) sets the
elements of y
to cos(x1),
sin(x1), and
the elements of
z to cos(x2),
sin(x2),
where x1, x2
are the
elements of x.

cosisinf4
(x,y,z) sets
the elements of
y to cos(x1),
sin(x1),
cos(x2),
sin(x2), and
the elements of
z to cos(x3),
sin(x3),
cos(x4),
sin(x4), where
x1, x2, x3, x4
are the
elements of x.

subroutine cosisind2 (x, y, z)
vector(real(8)), value :: x
vector(real(8)) y, z

subroutine cosisinf4 (x, y, z)
vector(real(4)), value :: x
vector(real(4)) y, z

divd2 divf4 Computes the
quotient vx/vy.

vector(real(8)) function divd2(vx, vy)
vector(real(8)), value :: vx, vy

vector(real(4)) function divf4(vx, vy)
vector(real(4)), value :: vx, vy

Chapter 7. High performance libraries 71

Table 17. MASS SIMD functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function interface Single-precision function interface

erfcd2 erfcf4 Computes the
complementary
error function
of each element
of vx.

vector(real(8)) function erfcd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function erfcf4(vx)
vector(real(4)), value :: vx

erfd2 erff4 Computes the
error function
of each element
of vx.

vector(real(8)) function erfd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function erff4(vx)
vector(real(4)), value :: vx

expd2 expf4 Computes the
exponential
function of
each element of
vx.

vector(real(8)) function expd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function expf4(vx)
vector(real(4)), value :: vx

exp2d2 exp2f4 Computes 2
raised to the
power of each
element of vx.

vector(real(8)) function exp2d2(vx)
vector(real(8)), value :: vx

vector(real(4)) function exp2f4(vx)
vector(real(4)), value :: vx

expm1d2 expm1f4 Computes (the
exponential
function of
each element of
vx) - 1.

vector(real(8)) function expm1d2(vx)
vector(real(8)), value :: vx

vector(real(4)) function exp2m1f4(vx)
vector(real(4)), value :: vx

exp2m1d2 exp2m1f4 Computes (2
raised to the
power of each
element of vx) -
1.

vector(real(8)) function exp2m1d2(vx)
vector(real(8)), value :: vx

vector(real(4)) function exp2m1f4(vx)
vector(real(4)), value :: vx

hypotd2 hypotf4 For each
element of vx
and the
corresponding
element of vy,
computes
sqrt(vx*vx
+vy*vy).

vector(real(8)) function hypotd2(vx,vy)
vector(real(8)), value :: vx, vy

vector(real(4)) function hypotf4(vx,vy)
vector(real(4)), value :: vx, vy

lgammad2 lgammaf4 Computes the
natural
logarithm of
the absolute
value of the
Gamma
function of
each element of
vx .

vector(real(8)) function lgammad2(vx)
vector(real(8)), value :: vx

vector(real(4)) function lgammaf4(vx)
vector(real(4)), value :: vx

logd2 logf4 Computes the
natural
logarithm of
each element of
vx.

vector(real(8)) function logd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function logf4(vx)
vector(real(4)), value :: vx

72 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Table 17. MASS SIMD functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function interface Single-precision function interface

log2d2 log2f4 Computes the
base-2
logarithm of
each element of
vx.

vector(real(8)) function log2d2(vx)
vector(real(8)), value :: vx

vector(real(4)) function log2f4(vx)
vector(real(4)), value :: vx

log10d2 log10f4 Computes the
base-10
logarithm of
each element of
vx.

vector(real(8)) function log10d2(vx)
vector(real(8)), value :: vx

vector(real(4)) function log10f4(vx)
vector(real(4)), value :: vx

log1pd2 log1pf4 Computes the
natural
logarithm of
each element of
(vx +1).

vector(real(8)) function log1pd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function log1pf4(vx)
vector(real(4)), value :: vx

log21pd2 log21pf4 Computes the
base-2
logarithm of
each element of
(vx +1).

vector(real(8)) function log21pd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function log21pf4(vx)
vector(real(4)), value :: vx

powd2 powf4 Computes each
element of vx
raised to the
power of the
corresponding
element of vy.

vector(real(8)) function powd2(vx, vy)
vector(real(8)), value :: vx, vy

vector(real(4)) function powf4(vx, vy)
vector(real(4)), value :: vx, vy

qdrtd2 qdrtf4 Computes the
quad root of
each element of
vx.

vector(real(8)) function qdrtd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function qdrtf4(vx)
vector(real(4)), value :: vx

rcbrtd2 rcbrtf4 Computes the
reciprocal of
the cube root
of each element
of vx.

vector(real(8)) function rcbrtd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function rcbrtf4(vx)
vector(real(4)), value :: vx

recipd2 recipf4 Computes the
reciprocal of
each element of
vx.

vector(real(8)) function recipd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function recipf4(vx)
vector(real(4)), value :: vx

rqdrtd2 rqdrtf4 Computes the
reciprocal of
the quad root
of each element
of vx.

vector(real(8)) function rqdrtd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function rqdrtf4(vx)
vector(real(4)), value :: vx

rsqrtd2 rsqrtf4 Computes the
reciprocal of
the square root
of each element
of vx.

vector(real(8)) function rsqrtd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function rsqrtf4(vx)
vector(real(4)), value :: vx

Chapter 7. High performance libraries 73

Table 17. MASS SIMD functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function interface Single-precision function interface

sincosd2 sincosf4 Computes the
sine and cosine
of each element
of vx.

subroutine sincosd2(vx, vs, vc)
vector(real(8)), value :: vx
vector(real(8)) vs, vc

subroutine sincosf4(vx, vs, vc)
vector(real(4)), value :: vx
vector(real(4)) vs, vc

sind2 sinf4 Computes the
sine of each
element of vx.

vector(real(8)) function sind2(vx)
vector(real(8)), value :: vx

vector(real(4)) function sinf4(vx)
vector(real(4)), value :: vx

sinhd2 sinhf4 Computes the
hyperbolic sine
of each element
of vx.i

vector(real(8)) function sinhd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function sinhf4(vx)
vector(real(4)), value :: vx

sqrtd2 sqrtf4 Computes the
square root of
each element of
vx.

vector(real(8)) function sqrtd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function sqrtf4(vx)
vector(real(4)), value :: vx

tand2 tanf4 Computes the
tangent of each
element of vx.

vector(real(8)) function tand2(vx)
vector(real(8)), value :: vx

vector(real(4)) function tanf4(vx)
vector(real(4)), value :: vx

tanhd2 tanhf4 Computes the
hyperbolic
tangent of each
element of vx.

vector(real(8)) function tanhd2(vx)
vector(real(8)), value :: vx

vector(real(4)) function tanhf4(vx)
vector(real(4)), value :: vx

The MASS SIMD library interfaces include the following features:
v The SIMD functions are marked pure. You can call them from pure procedures.
v The intent of the argument is specified to assist in compiler error checking.

The following example shows the XL Fortran interface declarations of some of
MASS SIMD library functions:
INTERFACE

PURE VECTOR(REAL*4) FUNCTION acosf4 (x)
VECTOR(REAL*4), value :: x

END FUNCTION

PURE VECTOR(REAL*4) FUNCTION atan2f4 (x,y)
VECTOR(REAL*4), value :: x,y

END FUNCTION

PURE SUBROUTINE sincosf4 (x,s,c)
VECTOR(REAL*4), value :: x
VECTOR(REAL*4), INTENT(OUT) :: s,c
END SUBROUTINE

END INTERFACE

Compiling and linking a program with MASS
To compile an application that calls the functions in the following MASS libraries,
specify the corresponding library names on the -l link option.

Table 18. The scalar, vector, and SIMD MASS library

MASS library Library name

Scalar library mass

74 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Table 18. The scalar, vector, and SIMD MASS library (continued)

MASS library Library name

Vector library massv or massvp8

SIMD library mass_simdp8

For example, if the MASS libraries are installed in the default directory, you can
use one of the following commands:

Link object file progf with scalar library libmass.a and vector library libmassv.a
xlf progf.f -o progf -lmass -lmassv

Link object file progf with SIMD library libmass_simdp8.a
xlf progf.f -o progf -lmass_simdp8

Using libmass.a with the math system library
If you want to use the libmass.a scalar library for some functions and the normal
math library libm.a for other functions, follow this procedure to compile and link
your program:
1. Use the ar command to extract the object files of the wanted functions from

libmass.a. For most functions, the object file name is the function name
followed by .s64.o.1 For example, to extract the object file for the tan function,
the command would be:
ar -x tan.s64.o libmass.a

2. Archive the extracted object files into another library:
ar -qv libfasttan.a tan.s64.o
ranlib libfasttan.a

3. Create the final executable using xlf, specifying -lfasttan instead of -lmass:
xlf sample.f -o sample -Ldir_containing_libfasttan -lfasttan

This links only the tan function from MASS (now in libfasttan.a) and the
remainder of the math functions from the standard system library.

Exceptions:

1. The sin and cos functions are both contained in the object file sincos.s64.o. The
cosisin and sincos functions are both contained in the object file cosisin.s64.o.

2. The XL Fortran ** (exponentiation) operator is contained in the object file
dxy.s64.o.

Note: The cos and sin functions will both be exported if either one is exported.
cosisin and sincos will both be exported if either one is exported.

Using the Basic Linear Algebra Subprograms – BLAS
Four Basic Linear Algebra Subprograms (BLAS) functions are shipped with XL
Fortran in the libxlopt library.

The functions consist of the following:
v SGEMV (single-precision) and DGEMV (double-precision), which compute the

matrix-vector product for a general matrix or its transpose
v SGEMM (single-precision) and DGEMM (double-precision), which perform

combined matrix multiplication and addition for general matrices or their
transposes

Chapter 7. High performance libraries 75

Note: Some error-handling code has been removed from the BLAS functions in
libxlopt, and no error messages are emitted for calls to the these functions.

“BLAS function syntax” describes the interfaces for the XL Fortran BLAS functions,
which are similar to those of the equivalent BLAS functions shipped in IBM's
Engineering and Scientific Subroutine Library (ESSL); for more detailed
information and examples of usage of these functions, you may want to consult
the Engineering and Scientific Subroutine Library Guide and Reference, available at the
Engineering and Scientific Subroutine Library (ESSL) and Parallel ESSL web page.

“Linking the libxlopt library” on page 78 describes how to link to the XL Fortran
libxlopt library if you are also using a third-party BLAS library.

BLAS function syntax
The interfaces for the SGEMV and DGEMV functions are as follows:
CALL SGEMV(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

CALL DGEMV(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

The parameters are as follows:

trans
is a single character indicating the form of the input matrix a, where:
v ’N’ or ’n’ indicates that a is to be used in the computation
v ’T’ or ’t’ indicates that the transpose of a is to be used in the computation

m represents:
v the number of rows in input matrix a
v the length of vector y, if ’N’ or ’n’ is used for the trans parameter
v the length of vector x, if ’T’ or ’t’ is used for the trans parameter

The number of rows must be greater than or equal to zero, and less than or
equal to the leading dimension of the matrix a (specified in lda)

n represents:
v the number of columns in input matrix a
v the length of vector x, if ’N’ or ’n’ is used for the trans parameter
v the length of vector y, if ’T’ or ’t’ is used for the trans parameter

The number of columns must be greater than or equal to zero.

alpha
is the scaling constant α

a is the input matrix of single-precision (for SGEMV) or double-precision (for
DGEMV) real values

lda
is the leading dimension of the array specified by a. The number of rows must
be greater than or equal to zero, and less than the leading dimension of the
matrix a (specified in lda).

x is the input vector of single-precision (for SGEMV) or double-precision (for
DGEMV) real values.

incx
is the stride for vector x. It can have any value.

76 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl.doc/esslbooks.html

beta
is the scaling constant β

y is the output vector of single-precision (for SGEMV) or double-precision (for
DGEMV) real values.

incy
is the stride for vector y. It must not be zero.

Note: Vector y must have no common elements with matrix a or vector x;
otherwise, the results are unpredictable.

The prototypes for the SGEMM and DGEMM functions are as follows:
CALL SGEMM(transa, transb, l, n, m, alpha, a, lda, b, ldb, beta, c, ldc)

CALL DGEMM(transa, transb, l, n, m, alpha, a, lda, b, ldb, beta, c, ldc)

The parameters are as follows:

transa
is a single character indicating the form of the input matrix a, where:
v ’N’ or ’n’ indicates that a is to be used in the computation
v ’T’ or ’t’ indicates that the transpose of a is to be used in the computation

transb
is a single character indicating the form of the input matrix b, where:
v ’N’ or ’n’ indicates that b is to be used in the computation
v ’T’ or ’t’ indicates that the transpose of b is to be used in the computation

l represents the number of rows in output matrix c. The number of rows must
be less than or equal to the leading dimension of c.

n represents the number of columns in output matrix c. The number of columns
must be greater than or equal to zero.

m represents:
v the number of columns in matrix a, if ’N’ or ’n’ is used for the transa

parameter
v the number of rows in matrix a, if ’T’ or ’t’ is used for the transa parameter

and:
v the number of rows in matrix b, if ’N’ or ’n’ is used for the transb

parameter
v the number of columns in matrix b, if ’T’ or ’t’ is used for the transb

parameter

m must be greater than or equal to zero.

alpha
is the scaling constant α

a is the input matrix a of single-precision (for SGEMM) or double-precision (for
DGEMM) real values

lda
is the leading dimension of the array specified by a. The leading dimension
must be greater than zero. If transa is specified as ’N’ or ’n’, the leading
dimension must be greater than or equal to 1. If transa is specified as ’T’ or
’t’, the leading dimension must be greater than or equal to the value specified
in m.

Chapter 7. High performance libraries 77

b is the input matrix b of single-precision (for SGEMM) or double-precision (for
DGEMM) real values.

ldb
is the leading dimension of the array specified by b. The leading dimension
must be greater than zero. If transb is specified as ’N’ or ’n’, the leading
dimension must be greater than or equal to the value specified in m. If transa is
specified as ’T’ or ’t’, the leading dimension must be greater than or equal to
the value specified in n.

beta
is the scaling constant β

c is the output matrix c of single-precision (for SGEMM) or double-precision (for
DGEMM) real values.

ldc
is the leading dimension of the array specified by c. The leading dimension
must be greater than zero. If transb is specified as ’N’ or ’n’, the leading
dimension must be greater than or equal to the value specified in l.

Note: Matrix c must have no common elements with matrices a or b; otherwise,
the results are unpredictable.

Linking the libxlopt library
By default, the libxlopt library is linked with any application you compile with
XL Fortran. However, if you are using a third-party BLAS library, but want to use
the BLAS routines shipped with libxlopt, you must specify the libxlopt library
before any other BLAS library on the command line at link time. For example, if
your other BLAS library is called libblas, you would compile your code with the
following command:
xlf app.f -lxlopt -lblas

The compiler will call the SGEMV, DGEMV, SGEMM, and DGEMM functions from
the libxlopt library, and all other BLAS functions in the libblas library.

78 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Chapter 8. Parallel programming with XL Fortran

Parallel programming with XL Fortran involves a combination of compiling,
setting of runtime options, and optimization of your code, by incorporating SMP
directives and by using the pthreads library module.

XL Fortran supports the OpenMP specification, as understood and interpreted by
IBM as well as the POSIX 1003.1-1996 standard.

Note: IBM implementation of OpenMP in XL Fortran is an extension to the
standard Fortran language.

Compiling your parallelized code
To compile parallelized code, you must specify the -qsmp compiler option. When
compiling with -qsmp, the driver links the libraries found on the smplibraries line
in the active stanza of your configuration file.

If you specify -qsmp, you must use an appropriate invocation command. Use any
of the following invocations to compile SMP code or to ensure that the compiler
links threadsafe libraries:
v xlf_r
v xlf90_r
v xlf95_r
v xlf2003_r
v xlf2008_r

Related reference:

See -qsmp in the Compiler Reference

The _OPENMP C preprocessor macro and conditional
compilation

You can use sentinels to mark specific lines of an XL Fortran program for
conditional compilation. This allows you to port code that contains statements that
are only valid or applicable in an SMP environment to a non-SMP environment.
You can do this using conditional compilation lines, or the _OPENMP C
preprocessor macro. This macro is defined when the C preprocessor is invoked and
you specify the -qsmp=omp compiler option. See Passing Fortran files through the C
preprocessor in the Editing, Compiling, Linking, and Running XL Fortran Programs
section of the XL Fortran Compiler Reference for an example of using this macro.

The following example uses conditional compilation lines to hide OpenMP runtime
routines. You cannot easily compile code that calls OpenMP runtime routines in a
non-OpenMP environment without using conditional compilation. Since calls to the
runtime routines are not directives, they cannot be hidden by the !$OMP trigger. If
you do not compile the example with -qsmp=omp, the variable that stores the
number of threads is assigned the value of 8.

Example of conditional compilation lines
PROGRAM PAR_MAT_MUL

!$ USE OMP_LIB
IMPLICIT NONE

© Copyright IBM Corp. 1990, 2015 79

INTEGER(KIND=8) ::I,J,NTHREADS
INTEGER(KIND=8),PARAMETER ::N=60
INTEGER(KIND=8),DIMENSION(N,N) ::AI,BI,CI
INTEGER(KIND=8) ::SUMI

COMMON/DATA/ AI,BI,CI
!$OMP THREADPRIVATE (/DATA/)

!$OMP PARALLEL
FORALL(I=1:N,J=1:N) AI(I,J) = (I-N/2)**2+(J+N/2)
FORALL(I=1:N,J=1:N) BI(I,J) = 3-((I/2)+(J-N/2)**2)

!$OMP MASTER
NTHREADS=8

!$ NTHREADS=OMP_GET_NUM_THREADS()
!$OMP END MASTER
!$OMP END PARALLEL

!$OMP PARALLEL DEFAULT(PRIVATE),COPYIN(AI,BI),SHARED(NTHREADS)
!$OMP DO

DO I=1,NTHREADS
CALL IMAT_MUL(SUMI)
ENDDO

!$OMP END DO
!$OMP END PARALLEL

END

For information on using sentinels, see Conditional compilation in the XL Fortran
Language Reference.

Setting runtime options
When you write parallel code, set the necessary XLSMPOPTS environment
variables, and the environment variables for OpenMP.

XLSMPOPTS
The XLSMPOPTS environment variable allows you to specify options that affect
SMP execution. You can declare XLSMPOPTS by using the following bash
command format:

►► ▼

:

XLSMPOPTS= runtime_option_name = option_setting
" "

►◄

You can specify option names and settings in uppercase or lowercase. You can add
blanks before and after the colons and equal signs to improve readability.
However, if the XLSMPOPTS option string contains imbedded blanks, you must
enclose the entire option string in double quotation marks (").

You can specify the following runtime options with the XLSMPOPTS environment
variable:

Scheduling options
When the SMP run time is used to divide the iteration space of a loop through
auto-parallelization, a scheduling algorithm is used to assign iterations to the
threads in the parallel region. Each thread receives and executes a contiguous
range of iterations, which is called a block or a chunk. Threads might finish
their blocks of work at different speeds. After completing the assigned work,

80 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

threads can be assigned more work or go to sleep. The chunk size can be
controlled in some algorithms; doing so is a trade-off between overhead and
load balancing.

Note: Use the OMP_SCHEDULE environment variable for loops that are
explicitly assigned to runtime schedule type with the OpenMP schedule
clause.

schedule=static[=n]
The iteration space is divided into blocks of n contiguous iterations.
The final block might have fewer than n iterations. If n is unspecified,
its default value is FLOOR(number_of_iterations /
number_of_threads). The first REMAINDER(number_of_iterations/
number_of_threads) chunks have one more iteration. Each thread is
assigned a separate chunk.

The blocks are assigned in a round-robin fashion to threads in the
parallel region until there are no remaining blocks. A thread that
completes all its blocks goes to sleep. This is also known as
block-cyclic scheduling, or cyclic scheduling when n has the value 1.

schedule=dynamic[=n]
The iteration space is divided into chunks that contain n contiguous
iterations each. The final chunk might contain fewer than n iterations.
If n is not specified, the chunk contains one iteration.

Each thread is initially assigned one chunk. After threads complete
their assigned chunks, they are assigned remaining chunks on a
"first-come, first-do" basis.

schedule=affinity[=n]
The iteration space is divided into number-of-thread-in-parallel-
region partitions. Each partition has CEILING(number-of-iterations /
number-of-thread-in-parallel-region) contiguous iterations. The final
partition might have fewer iterations. The partitions are further
divided into blocks, each with n iterations. If n is unspecified, its
default value is CEILING(number-of-iterations-in-partition / 2);
that is, each partition is divided into two blocks.

Each thread is assigned a partition. Each thread completes blocks
within its local partition until no blocks remain in its partition. If
blocks remain in other partitions, but a thread completes all blocks in
its local partition, the thread might complete blocks in another thread's
partition. A thread goes to sleep if it completes its blocks and no blocks
remain.

Note: This option has been deprecated and might be removed in a
future release. Instead, you can use the guided option.

schedule=guided[=n]
The iteration space is divided into blocks of successively smaller size.
Each block is sized to the larger of n and CEILING(
number-of-iterations-remaining / number-of-thread-in-parallel-
region). The final chunk might contain fewer than n iterations. If n is
unspecified, its default value is 1.

Each thread is initially assigned one block. As threads complete their
work, they are assigned remaining blocks on a "first-come, first-serve"
basis. A thread goes to sleep if it completes its blocks and no blocks
remain.

Chapter 8. Parallel programming with XL Fortran 81

schedule=auto
The compiler and runtime might select any algorithm to assign work
to threads. A different algorithm might be selected for different loops.
In addition, a different algorithm might be selected if the run time is
updated.

The OMP_SCHEDULE environment variable affects only the constructs with a
schedule (runtime) clause specified.

Parallel execution options

parthds=num
Specifies the number of threads (num) to be used for parallel execution
of code that you compiled with the -qsmp option. By default, this is
equal to the number of online processors. There are some applications
that cannot use more than some maximum number of processors.
There are also some applications that can achieve performance gains if
they use more threads than there are processors.

This option allows you full control over the number of execution
threads. The default value for num is 1 if you did not specify -qsmp.
Otherwise, it is the number of online processors on the machine. For
more information, see the NUM_PARTHDS intrinsic function in the
XL Fortran Language Reference.

Note: This option has been deprecated and might be removed in a
future release.

usrthds=num
Specifies the maximum number of threads (num) that you expect your
code will explicitly create if the code does explicit thread creation. The
default value for num is 0. For more information, see the
NUM_PARTHDS intrinsic function in the XL Fortran Language
Reference.

Note: This option has been deprecated and might be removed in a
future release.

stack=num
Specifies the largest amount of space in bytes (num) that a thread's
stack will need. The default value for num is 4194304.

Set stack=num so it is within the acceptable upper limit. num can be up
to the limit imposed by system resources or the stack size ulimit,
whichever is smaller. An application that exceeds the upper limit may
cause a segmentation fault.

Note: This option has been deprecated and might be removed in a
future release. Instead, you can use the OMP_STACKSIZE
environment variable.

stackcheck[=num]
Enables stack overflow checking for worker threads at runtime. num is
the size in bytes that you specify, and it must be a nonnull positive
number. When the remaining stack size is less than num, a runtime
warning message is issued. If you do not specify a value for num, the
default value is 4096 bytes. Note that this option only has an effect
when -qsmp=stackcheck has also been specified at compile time. See
-qsmp in the XL Fortran Compiler Reference for more information.

82 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

startproc=cpu_id
Enables thread binding and specifies the cpu_id to which the first
thread binds. If the value provided is outside the range of available
processors, the SMP run time issues a warning message and no threads
are bound.

Note: This option has been deprecated and might be removed in a
future release. Instead, you can use the OMP_PLACES environment
variable.

procs=cpu_id[,cpu_id,...]
Enables thread binding and specifies a list of cpu_id to which the
threads are bound.

Note: This option has been deprecated and might be removed in a
future release. Instead, you can use the OMP_PLACES environment
variable.

stride=num
Specifies the increment used to determine the cpu_id to which
subsequent threads bind. num must be greater than or equal to 1. If the
value provided causes a thread to bind to a CPU outside the range of
available processors, a warning message is issued and no threads are
bound.

Note: This option has been deprecated and might be removed in a
future release. Instead, you can use the OMP_PLACES environment
variable.

Performance tuning options
When a thread completes its work and there is no new work to do, it can go
into either a "busy-wait" state or a "sleep" state. In "busy-wait", the thread
keeps executing in a tight loop looking for additional new work. This state is
highly responsive but harms the overall utilization of the system. When a
thread sleeps, it completely suspends execution until another thread signals it
that there is work to do. This state provides better utilization of the system but
introduces extra overhead for the application.

The xlsmp runtime library routines use both "busy-wait" and "sleep" states in
their approach to waiting for work. You can control these states with the spins,
yields, and delays options.

During the busy-wait search for work, the thread repeatedly scans the work
queue up to num times, where num is the value that you specified for the
option spins. If a thread cannot find work during a given scan, it intentionally
wastes cycles in a delay loop that executes num times, where num is the value
that you specified for the option delays. This delay loop consists of a single
meaningless iteration. The length of actual time this takes will vary among
processors. If the value spins is exceeded and the thread still cannot find work,
the thread will yield the current time slice (time allocated by the processor to
that thread) to the other threads. The thread will yield its time slice up to num
times, where num is the number that you specified for the option yields. If this
value num is exceeded, the thread will go to sleep.

In summary, the ordered approach to looking for work consists of the
following steps:
1. Scan the work queue for up to spins number of times. If no work is found

in a scan, then loop delays number of times before starting a new scan.

Chapter 8. Parallel programming with XL Fortran 83

2. If work has not been found, then yield the current time slice.
3. Repeat the above steps up to yields number of times.
4. If work has still not been found, then go to sleep.

The syntax for specifying these options is as follows:

spins[=num]
where num is the number of spins before a yield. The default value for
spins is 100.

yields[=num]
where num is the number of yields before a sleep. The default value
for yields is 10.

delays[=num]
where num is the number of delays while busy-waiting. The default
value for delays is 500.

Zero is a special value for spins and yields, as it can be used to force complete
busy-waiting. Normally, in a benchmark test on a dedicated system, you
would set both options to zero. However, you can set them individually to
achieve other effects.

For instance, on a dedicated 8-way SMP, setting these options to the following:
parthds=8 : schedule=dynamic=10 : spins=0 : yields=0

results in one thread per CPU, with each thread assigned chunks consisting of
10 iterations each, with busy-waiting when there is no immediate work to do.

Options to enable and control dynamic profiling
You can use dynamic profiling to reevaluate the compiler's decision to
parallelize loops in a program. The three options you can use to do this are:
parthreshold, seqthreshold, and profilefreq.

parthreshold=num
Specifies the time, in milliseconds, below which each loop must
execute serially. If you set parthreshold to 0, every loop that has been
parallelized by the compiler will execute in parallel. The default setting
is 0.2 milliseconds, meaning that if a loop requires fewer than 0.2
milliseconds to execute in parallel, it should be serialized.

Typically, parthreshold is set to be equal to the parallelization
overhead. If the computation in a parallelized loop is very small and
the time taken to execute these loops is spent primarily in the setting
up of parallelization, these loops should be executed sequentially for
better performance.

seqthreshold=num
Specifies the time, in milliseconds, beyond which a loop that was
previously serialized by the dynamic profiler should revert to being a
parallel loop. The default setting is 5 milliseconds, meaning that if a
loop requires more than 5 milliseconds to execute serially, it should be
parallelized.

seqthreshold acts as the reverse of parthreshold.

profilefreq=num
Specifies the frequency with which a loop should be revisited by the
dynamic profiler to determine its appropriateness for parallel or serial
execution. Loops in a program can be data dependent. The loop that
was chosen to execute serially with a pass of dynamic profiling may

84 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

benefit from parallelization in subsequent executions of the loop, due
to different data input. Therefore, you need to examine these loops
periodically to reevaluate the decision to serialize a parallel loop at run
time.

The allowed values for this option are the numbers from 0 to 32. If you
set profilefreq to one of these values, the following results will occur.
v If profilefreq is 0, all profiling is turned off, regardless of other

settings. The overheads that occur because of profiling will not be
present.

v If profilefreq is 1, loops parallelized automatically by the compiler
will be monitored every time they are executed.

v If profilefreq is 2, loops parallelized automatically by the compiler
will be monitored every other time they are executed.

v If profilefreq is greater than or equal to 2 but less than or equal to
32, each loop will be monitored once every nth time it is executed.

v If profilefreq is greater than 32, then 32 is assumed.

It is important to note that dynamic profiling is not applicable to
user-specified parallel loops (for example, loops for which you
specified the PARALLEL DO directive).

Related information:

“OMP_PLACES” on page 91
“OMP_STACKSIZE” on page 97

-qsmp

Environment variables for OpenMP
The following environment variables, which are included in the OpenMP standard,
allow you to control the execution of parallel code.

Note: If you specify both the XLSMPOPTS environment variable and an OpenMP
environment variable, the OpenMP environment variable takes precedence.

OMP_DISPLAY_ENV
When a program that uses the OpenMP runtime is invoked and the
OMP_DISPLAY_ENV environment variable is set, the OpenMP runtime displays
the values of the internal control variables (ICVs) associated with the environment
variables and the build-specific information about the runtime library.

OMP_DISPLAY_ENV is useful in the following cases:
v When the runtime library is statically linked with an OpenMP program, you can

use OMP_DISPLAY_ENV to check the version of the library that is used during
link time.

v When the runtime library is dynamically linked with an OpenMP program, you
can use OMP_DISPLAY_ENV to check the library that is used at run time.

v You can use OMP_DISPLAY_ENV to check the current setting of the runtime
environment.

By default, no information is displayed.

The syntax of this environment variable is as follows:

Chapter 8. Parallel programming with XL Fortran 85

►► OMP_DISPLAY_ENV = TRUE
FALSE
VERBOSE

►◄

Note: The values TRUE, FALSE, VERBOSE are not case-sensitive.

TRUE
Displays the OpenMP version number defined by the _OPENMP macro and the
initial ICV values for the OpenMP environment variables.

FALSE
Instructs the runtime environment not to display any information.

VERBOSE
Displays build-specific information, ICV values associated with OpenMP
environment variables, and the setting of the XLSMPOPTS environment
variable.

Usage

When OMP_DISPLAY_ENV is TRUE, the initial ICV values for the OpenMP
environment variables are displayed. If OMP_PLACES is set to cores or threads,
the OMP_PLACES value is displayed in the format of cores or threads followed
by the number of places in brackets; for example, OMP_PLACES='cores(4)'. For
custom OMP_PLACES, each resource is displayed individually in each place,
followed by the keyword custom; for example,
OMP_PLACES='{4,5,6,7},{8,9,10,11}' custom.

When OMP_DISPLAY_ENV is VERBOSE, the output includes a section that is
delineated by the lines OPENMP DISPLAY AFFINITY BEGIN and OPENMP DISPLAY
AFFINITY END. This section includes a verbose display of the OMP_PLACES value,
where each resource for each place is displayed individually, followed by cores,
threads, or custom as appropriate. This section also displays information on
THREADS_PER_PLACE in the format of a comma-separated list of the individual
THREADS_PER_PLACE value for each place; for example,
THREADS_PER_PLACE='{2},{2}'.

Examples

Example 1

If you enter the export OMP_DISPLAY_ENV=TRUE command, you get output similar to
the following example:
OPENMP DISPLAY ENVIRONMENT BEGIN

OMP_DISPLAY_ENV=’TRUE’

_OPENMP=’201107’
OMP_DYNAMIC=’FALSE’
OMP_MAX_ACTIVE_LEVELS=’5’
OMP_NESTED=’FALSE’
OMP_NUM_THREADS=’96’
OMP_PROC_BIND=’FALSE’
OMP_SCHEDULE=’STATIC,0’
OMP_STACKSIZE=’4194304’
OMP_THREAD_LIMIT=’96’
OMP_WAIT_POLICY=’PASSIVE’

OPENMP DISPLAY ENVIRONMENT END

Example 2

86 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

If you enter the export OMP_DISPLAY_ENV=VERBOSE command, you will get output
that is similar to the following example:
OPENMP DISPLAY AFFINITY BEGIN
OMP_PLACES=’{0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10}’ cores
THREADS_PER_PLACE=’{1},{1},{1},{1},{1},{1},{1},{1},{1},{1},{1}’
OPENMP DISPLAY AFFINITY END

Related information

“XLSMPOPTS” on page 80

“OMP_PLACES” on page 91

“OMP_PROC_BIND” on page 92

OMP_DYNAMIC
The OMP_DYNAMIC environment variable controls dynamic adjustment of the
number of threads available for the execution of parallel regions.

►►
TRUE

OMP_DYNAMIC= FALSE ►◄

When OMP_DYNAMIC is set to TRUE, the number of threads that are created
and then assigned to a place must not exceed the value of
THREADS_PER_PLACE. The thread number includes the currently allocated
threads of all active parallel regions. Under a given OMP_PROC_BIND policy,
THREADS_PER_PLACE takes precedence in all situations.

When OMP_DYNAMIC is set to FALSE, if an application requires more threads
than the value of THREADS_PER_PLACE in any place under a given
OMP_PROC_BIND policy, the excess threads beyond the value of
THREADS_PER_PLACE for all such places are assigned with priority to the
following places:
1. Places that have not reached THREADS_PER_PLACE.
2. Places where the master thread is not running.

Examples

Example 1

Suppose OMP_THREAD_LIMIT=48 and
OMP_PLACES={0,1,2,3,4,5,6,7},{8,9,10,11,12,13,14,15},{16,17,18,19}, the
THREADS_PER_PLACE values are calculated as follows:

P0={0,1,2,3,4,5,6,7}: size = 8, total size = 20, THREADS_PER_PLACE =
floor((8/20)*48) = floor(19.2) = 19

P1={8,9,10,11,12,13,14,15}: size = 8, total size = 20, THREADS_PER_PLACE =
floor((8/20)*48) = floor(19.2) = 19

P2={16,17,18,19}: size = 4, total size = 20, THREADS_PER_PLACE =
floor((4/20)*48) = floor(9.6) = 9

The number of total allocated threads is 47. Threads are allocated by place size.
Because P0 and P1 have the same largest size and P0 comes first in

Chapter 8. Parallel programming with XL Fortran 87

OMP_PLACES, threads are allocated starting with P0. The thread allocation order
is: P0, P1, P2. Only one thread is unallocated, so it is allocated to P0. Therefore,
THREADS_PER_PLACE={20},{19},{9}.

Example 2

Suppose OMP_THREAD_LIMIT=17 and
OMP_PLACES={0,1,2,3,0,1,2,3},{4,5,6,7,},{8,9,10,11}, the
THREADS_PER_PLACE values are calculated as follows:

P0={0,1,2,3,0,1,2,3}: size = 8, total size = 16, THREADS_PER_PLACE =
floor((8/16)*17) = floor(8.5) = 8

P1={4,5,6,7}: size = 4, total size = 16, THREADS_PER_PLACE = floor((4/16)*17) =
floor(4.25) = 4

P2={8,9,10,11}: size = 4, total size = 16, THREADS_PER_PLACE = floor((4/16)*17)
= floor(4.25) = 4

The number of total allocated threads is 16. Threads are allocated by place size, so
the thread allocation order is: P0, P1, P2. Only one thread is unallocated, so it is
allocated to P0. Therefore, THREADS_PER_PLACE={9},{4},{4}.

Example 3

Suppose OMP_THREAD_LIMIT=394 and
OMP_PLACES={0,1},{2,3,4,5},{6,7,8,9,10,11},{12,13,14,15},{16,17,18,19,20,21,22,23},
the THREADS_PER_PLACE values are calculated as follows:

P0={0,1}: size = 2, total size = 24, THREADS_PER_PLACE = floor((2/24)*394) =
floor(32.8) = 32

P1={2,3,4,5}: size = 4, total size = 24, THREADS_PER_PLACE = floor((4/24)*394)
= floor(65.7) = 65

P2={6,7,8,9,10,11}: size = 6, total size = 24, THREADS_PER_PLACE =
floor((6/24)*394) = floor(98.5) = 98

P3={12,13,14,15}: size = 4, total size = 24, THREADS_PER_PLACE =
floor((4/24)*394) = floor(65.7) = 65

P4={16,17,18,19,20,21,22,23}: size = 8, total size = 24, THREADS_PER_PLACE =
floor((8/24)*394) = floor(131.3) = 131

The number of total allocated threads is 391. Threads are allocated by place size, so
the thread allocation order is: P4, P2, P1, P3, P0. Three threads are unallocated, so
the THREADS_PER_PLACE values of P4, P2, and P1 are increased by one each.
Therefore, THREADS_PER_PLACE={32},{66},{99},{65},{132}.

Related information

“OMP_PLACES” on page 91

“OMP_PROC_BIND” on page 92

88 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

OMP_MAX_ACTIVE_LEVELS
The OMP_MAX_ACTIVE_LEVELS environment variable controls the maximum
number of nested active parallel regions. The syntax is as follows:

►► OMP_MAX_ACTIVE_LEVELS= n ►◄

n is the maximum number of nested active parallel regions. It must be a positive
scalar integer. The maximum number that you can specify is 5.

OMP_NESTED
The OMP_NESTED environment variable enables or disables nested parallelism.
The syntax is as follows:

►►
FALSE

OMP_NESTED= TRUE ►◄

If you set this environment variable to TRUE, nested parallelism is enabled, which
means that the runtime environment might deploy extra threads to form the team
of threads for the nested parallel region. If you set this environment variable to
FALSE, nested parallelism is disabled, which means nested parallel regions are
serialized and run in the current thread.

The default value for OMP_NESTED is FALSE.

The setting of the omp_set_nested subroutine overrides the OMP_NESTED
setting.

Note: If the number of threads from all regions exceeds the number of available
processors, your program might suffer performance degradation.

OMP_NUM_THREADS
The OMP_NUM_THREADS environment variable sets the number of threads to
use for parallel regions. The syntax of the environment variable is as follows:

►► OMP_NUM_THREADS= num_list ►◄

num_list
A list of one or more positive integer values separated by commas.

If you do not set the OMP_NUM_THREADS environment variable, the number of
processors available is the default value to form a new team for the first
encountered parallel construct. By default, any nested constructs are run by one
thread.

If num_list contains a single value, dynamic adjustment of the number of threads is
enabled (OMP_DYNAMIC is set to true), a parallel construct without a
NUM_THREADS clause is encountered, the value is the maximum number of
threads that can be used to form a new team for the encountered parallel
construct.

If num_list contains a single value, dynamic adjustment of the number of threads is
not enabled (OMP_DYNAMIC is set to false), a parallel construct without a
NUM_THREADS clause is encountered, the value is the exact number of threads
that can be used to form a new team for the encountered parallel construct.

Chapter 8. Parallel programming with XL Fortran 89

If num_list contains multiple values, dynamic adjustment of the number of threads
is enabled (OMP_DYNAMIC is set to true), a parallel construct without a
NUM_THREADS clause is encountered, the first value is the maximum number of
threads that can be used to form a new team for the encountered parallel
construct. After the encountered construct is entered, the first value is removed
and the remaining values form a new num_list. The new num_list is in turn used in
the same way for any closely nested parallel constructs inside the encountered
parallel construct.

If num_list contains multiple values, dynamic adjustment of the number of threads
is not enabled (OMP_DYNAMIC is set to false), a parallel construct without a
NUM_THREADS clause is encountered, the first value is the exact number of
threads that can be used to form a new team for the encountered parallel
construct. After the encountered construct is entered, the first value is removed
and the remaining values form a new num_list. The new num_list is in turn used in
the same way for any closely nested parallel constructs inside the encountered
parallel construct.

Note: If the number of parallel regions is equal to or greater than the number of
values in num_list, the omp_get_max_threads routine returns the last value of
num_list in the parallel region.

If the number of threads requested exceeds the system resources available, the
program stops.

The omp_set_num_threads routine sets the first value of num_list. The
omp_get_max_threads routine returns the first value of num_list.

If you specify the number of threads for a given parallel region more than once
with different settings, the compiler uses the following precedence order to
determine which setting takes effect:
1. The number of threads set using the NUM_THREADS clause takes precedence

over that set using the omp_set_num_threads routine.
2. The number of threads set using the omp_set_num_threads routine takes

precedence over that set using the OMP_NUM_THREADS environment
variable.

3. The number of threads set using the OMP_NUM_THREADS environment
variable takes precedence over that set using the PARTHDS suboption of the
XLSMPOPTS environment variable.

Note: The PARTHDS suboption of the XLSMPOPTS environment variable is
deprecated.

Note: In a given parallel region, the omp_get_max_threads routine returns the first
value of num_list, even though the actual number of threads running that parallel
region might be different from the first value of num_list.

The following example shows how you can set the OMP_NUM_THREADS
environment variable.
export OMP_NUM_THREADS=5,10
export OMP_DYNAMIC=false

! OMP_GET_MAX_THREADS() returns 5 threads
!$omp parallel
! OMP_GET_MAX_THREADS() returns 10 threads

!$omp parallel

90 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

! OMP_GET_MAX_THREADS() returns 10 threads
!$omp parallel
! OMP_GET_MAX_THREADS() returns 10 threads
!$omp end parallel

!$omp end parallel
!$omp end parallel

OMP_PLACES
The OMP_PLACES environment variable specifies a list of places that are available
when the OpenMP program is executed. The value of OMP_PLACES can be either one
of the following values:
v An abstract name that describes a set of places
v An explicit list of places that are described by non-negative numbers

OMP_PLACES syntax

►► OMP_PLACES= place_list
place_name

►◄

where place_list takes one of the following syntax forms:

place_list syntax: form 1

►► ▼

▼

,
!

{ lower_bound : length }
: stride

,

num

►◄

place_list syntax: form 2

►►
!

{ lower_bound : length } : num_places : multiplier ►◄

where lower_bound, length, stride, num, num_places, and multiplier are positive
integers that represent the units of execution that are exposed to the execution
environment. The thread number in each place starts with the value that is a
multiple of multiplier. An exclusion operator ! excludes the number or place that
follows the operator immediately.

place_name syntax

►►
cores
threads

(num_places)
►◄

threads
Each place contains a hardware thread.

cores Each place contains a core. If OMP_PLACES is not set, the default setting is
cores.

num_places
Is the number of places.

Chapter 8. Parallel programming with XL Fortran 91

Usage

When requested places are fewer than that are available on the system, the
execution environment assigns places in the order of the place list at run time.
When requested places are more than that are available on the system, the
execution environment assigns the maximum number of places that the system
supports at run time.

For a program that contains both OpenMP and OpenMPI code, the OpenMP
runtime detects the existence of OpenMPI code by the presence of the
OMPI_COMM_WORLD_RANK environment variable. If you do not set OMP_PLACES
explicitly, the compiler sets OMP_PLACES to cores and removes any unavailable
resources from OMP_PLACES based on the OpenMPI affinity policy. In addition,
OMP_PROC_BIND is set to TRUE.

For examples on how to set the OMP_PLACES environment variable, see examples in
OMP_PROC_BIND.

OMP_PROC_BIND
The OMP_PROC_BIND environment variable controls the thread affinity policy and
whether OpenMP threads can be moved between places. With the thread affinity
feature, you can have a fine-grained control of how threads are bound and
distributed to places. Three thread affinity policies exist: MASTER, CLOSE, and SPREAD.

OMP_PROC_BIND syntax

►►

▼

OMP_PROC_BIND= TRUE
FALSE

,

MASTER
CLOSE
SPREAD

►◄

TRUE
Binds the threads to places.

FALSE
Allows threads to be moved between places and disables thread affinity.

MASTER
Instructs the execution environment to assign the threads in the team to the
same place as the master thread.

CLOSE
Instructs the execution environment to assign the threads in the team to the
places that are close to the place of the parent thread. The place partition is not
changed by this policy. Each implicit task inherits the place-partition-var ICV of
the parent implicit task. Suppose T threads in the team are assigned to P places
in the parent’s place partition, the threads are assigned as follows:
v If T is less than or equal to P, the master thread executes on the place of the

parent thread. The thread with the next smallest thread number executes on
the next place in the place partition, and so on, with wrap around with
respect to the place partition of the master thread.

v If T is greater than P, each place contains at least S = floor(T/P) consecutive
threads. The first S threads with the smallest thread number (including the
master thread) are assigned to the place of the parent thread. The next S

92 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

threads with the next smallest thread numbers are assigned to the next place
in the place partition, and so on, with wrap around with respect to the place
partition of the master thread. When P does not divide T evenly, each
remaining thread is assigned to a subpartition in the order of the place list.

SPREAD
Instructs the execution environment to spread a set of T threads as evenly as
possible among P places of the parent's place partition at run time. The thread
distribution mechanism is as follows:
v If T is less than or equal to P, the parent partition is divided into T

subpartitions, where each subpartition contains at least S=floor(P/T)
consecutive places. A single thread is assigned to each subpartition. The
master thread executes on the place of the parent thread and is assigned to
the subpartition that includes that place. The thread with the next smallest
thread number is assigned to the first place in the next subpartition, and so
on, with wrap around with respect to the original place partition of the
master thread.

v If T is greater than P, the parent's partition is divided into P subpartitions,
where each subpartition contains a single place. Each place contains at least
S = floor(T/P) consecutive threads. The first S threads with the smallest
thread number (including the master thread) are assigned to the subpartition
that contains the place of the parent thread. The next S threads with the next
smallest thread numbers are assigned to the next place in the place partition,
and so on, with wrap around with respect to the original place partition of
the master thread. When P does not divide T evenly, each remaining thread
is assigned to a subpartition in the order of the place list.

where,

Place
is a hardware unit that holds an unordered set of processors on which one or
more threads can execute.

Place list
is an ordered list that describes all places that are available to the applications.

Place partition
is an ordered list that corresponds to a contiguous interval in the place list. The
places in the partition are available for a given parallel region.

When OMP_PROC_BIND is set to TRUE, MASTER, CLOSE, or SPREAD, a place can be
assigned with up to THREADS_PER_PLACE threads. Each remaining thread is assigned
to a place in the order of the place list.

For each place in OMP_PLACES, THREADS_PER_PLACE is a positive integer and is
calculated in the following way:

THREADS_PER_PLACE = floor((the number of resources in that place
/ the total number of resources (including duplicated resources)) * OMP_THREAD_LIMIT)

After THREADS_PER_PLACE is calculated for each place in this manner, if the sum of
all the THREADS_PER_PLACE values is less than OMP_THREAD_LIMIT, each
THREADS_PER_PLACE is increased by one, starting from the largest place to the
smallest place, until OMP_THREAD_LIMIT is reached. Places that are equivalent
in size are ordered according to their order in OMP_PLACES.

Chapter 8. Parallel programming with XL Fortran 93

Usage

By default, the OMP_PROC_BIND environment variable is not set.

If the initial thread cannot be bound to the first place in the OpenMP place list, the
runtime execution environment issues a message and assigns threads according to
the default place list.

The OMP_PROC_BIND and XLSMPOPTS environment variables interact with each other
according to the following rules:

Table 19. Thread binding rule summary

OMP_PROC_BIND settings XLSMPOPTS settings Thread binding results

OMP_PROC_BIND is not set XLSMPOPTS is not set Threads are not bound.

XLSMPOPTS is set to
startproc/stride or procs2

Threads are bound
according to the settings
in XLSMPOPTS.

XLSMPOPTS setting is invalid Threads are not bound.

OMP_PROC_BIND = TRUE XLSMPOPTS is not set Threads are bound.

XLSMPOPTS is set to
startproc/stride or procs2

Threads are bound
according to the settings
in XLSMPOPTS1.

XLSMPOPTS setting is invalid Threads are bound.

OMP_PROC_BIND = FALSE XLSMPOPTS is not set Threads are not bound.

XLSMPOPTS is set (startproc/stride
or procs2)

XLSMPOPTS setting is invalid

Note:

1. If procs is set and the number of CPU IDs specified is smaller than the number of
threads that are used by the program, the remaining threads are also bound to the
listed CPU IDs but not in any particular order. If XLSMPOPTS=startproc is used, the
value specified by startproc is smaller than the number of CPUs, and the value that is
specified by stride causes a thread to bind to a CPU outside the range of available
places, some of the threads are bound and some are not.

2. The startproc/stride and procs suboptions of XLSMPOPTS are deprecated.

The OMP_PROC_BIND environment variable provides a portable way to control
whether OpenMP threads can be migrated. The startproc/stride or procs
suboption of the XLSMPOPTS environment variable, which is an IBM extension,
provides a finer control to bind OpenMP threads to places. If portability of your
application is important, use only the OMP_PROC_BIND environment variable to
control thread binding.

When OMP_PROC_BIND is set to MASTER, CLOSE, or SPREAD, the suboption settings
startproc/stride or procs of XLSMPOPTS are ignored.

For a program that contains both OpenMP and OpenMPI code, the OpenMP
runtime detects the existence of OpenMPI code by the presence of the
OMPI_COMM_WORLD_RANK environment variable. If you do not set OMP_PLACES
explicitly, the compiler sets OMP_PROC_BIND to be TRUE.

94 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Examples

The following examples demonstrate the thread binding and thread affinity results
when you compile myprogram.f with different environment variable settings.

myprogram.f
PROGRAM MYPROGRAM

!... ...
END PROGRAM MYPROGRAM

Environment variable settings 1
OMP_NUM_THREADS=4;
OMP_PROC_BIND=MASTER;
OMP_PLACES=’{0:4},{4:4},{8:4},{12:4},{16:4},{20:4},{24:4},{28:4}’

Results 1: Every thread in the team is assigned to the place on which the master
executes. Four threads are assigned to place 0.

Environment variable settings 2
OMP_NUM_THREADS=4;
OMP_PROC_BIND=close;
OMP_PLACES=’{0:4},{4:4},{8:4},{12:4},{16:4},{20:4},{24:4},{28:4}’

Results 2: The thread is assigned to a place that is close to the place of the parent
thread. The thread assignment is as follows:
v OMP thread 0 is assigned to place 0
v OMP thread 1 is assigned to place 1
v OMP thread 2 is assigned to place 2
v OMP thread 3 is assigned to place 3

Environment variable settings 3
OMP_NUM_THREADS=4;
OMP_PROC_BIND=spread;
OMP_PLACES=’{0:4},{4:4},{8:4},{12:4},{16:4},{20:4},{24:4},{28:4}’

Results 3: The number of threads 4 is smaller than the number of places 8, so four
subpartitions are formed. 8 is evenly divided by 4, so the thread assignment is as
follows:
v OMP thread 0 is assigned to place 0
v OMP thread 1 is assigned to place 2
v OMP thread 2 is assigned to place 4
v OMP thread 3 is assigned to place 6

Environment variable settings 4
OMP_NUM_THREADS=5;
OMP_PROC_BIND=spread;
OMP_PLACES=’{0:4},{4:4},{8:4},{12:4},{16:4},{20:4},{24:4},{28:4}’

Results 4: The number of threads 5 is smaller than the number of places 8, so five
subpartitions are formed. 8 is not evenly divided by 5, so threads are assigned to
the places in order. The thread assignment is as follows:
v OMP thread 0 is assigned to place 0
v OMP thread 1 is assigned to place 2
v OMP thread 2 is assigned to place 4

Chapter 8. Parallel programming with XL Fortran 95

v OMP thread 3 is assigned to place 6
v OMP thread 4 is assigned to place 7

Environment variable settings 5
OMP_NUM_THREADS=8;
OMP_PROC_BIND=spread;
OMP_PLACES=’{0:4},{4:4},{8:4},{12:4}’

Results 5: The number of threads 8 is greater than the number of places 4, so four
subpartitions are formed. 8 is evenly divided by 4, so two threads are assigned to
each subpartition. The thread assignment is as follows:
v OMP thread 0 and thread 1 are assigned to place 0
v OMP thread 2 and thread 3 are assigned to place 1
v OMP thread 4 and thread 5 are assigned to place 2
v OMP thread 6 and thread 7 are assigned to place 3

Environment variable settings 6
OMP_NUM_THREADS=7;
OMP_PROC_BIND=spread;
OMP_PLACES=’{0:4},{4:4},{8:4},{12:4}’

Results 6: The number of threads 7 is greater than the number of places 4, so four
subpartitions are formed. 7 is not evenly divided by 4, so one thread
(floor(7/4)=1) is assigned to each subpartition. The thread assignment is as
follows:
v OMP thread 0 is assigned to place 0
v OMP thread 1 and thread 2 are assigned to place 1
v OMP thread 3 and thread 4 are assigned to place 2
v OMP thread 5 and thread 6 are assigned to place 3
Related reference:
“PROC_BIND” on page 171
“omp_get_proc_bind()” on page 190
Related information:
“XLSMPOPTS” on page 80
“OMP_PLACES” on page 91

OMP_SCHEDULE
The OMP_SCHEDULE environment variable applies to the PARALLEL DO and
work-sharing DO directives that have a schedule type of RUNTIME. The syntax is
as follows:

►► OMP_SCHEDULE= sched_type
, chunk_size

►◄

sched_type
is either AUTO, DYNAMIC, GUIDED, or STATIC. See the “SCHEDULE”
on page 175 clause for a description of these scheduling parameters.

chunk_size
is a positive, scalar integer that represents the chunk size.

This environment variable is ignored for the PARALLEL DO and work-sharing
DO directives that have a schedule type other than RUNTIME.

96 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

If you do not specify a schedule type either at compile time through a directive, or
at run time through the OMP_SCHEDULE environment variable or the
SCHEDULE option of the XLSMPOPTS environment variable, the default
schedule type is AUTO, which delegates scheduling decision to the compiler and
runtime system. You cannot specify chunk_size when the schedule type is set to
AUTO.

If you specify both the SCHEDULE option of the XLSMPOPTS environment
variable and the OMP_SCHEDULE environment variable, the OMP_SCHEDULE
environment variable takes precedence.

The following examples show how you can set the OMP_SCHEDULE
environment variable:
export OMP_SCHEDULE="DYNAMIC"
export OMP_SCHEDULE="GUIDED,4"
export OMP_SCHEDULE="STATIC"
export OMP_SCHEDULE="AUTO"

OMP_STACKSIZE
The OMP_STACKSIZE environment variable specifies the size of the stack for
threads created by the OpenMP run time. The syntax is as follows:

►► OMP_STACKSIZE= size
sizeB
sizeK
sizeM
sizeG

►◄

size is a positive integer that specifies the size of the stack for threads that are
created by the OpenMP run time.

"B", "K", "M", "G"
are letters that specify whether the given size is in Bytes, Kilobytes,
Megabytes, or Gigabytes.

If only size is specified and none of "B", "K", "M", "G" is specified, size is in
Kilobytes by default. This environment variable does not control the size of the
stack for the initial thread.

The value assigned to the OMP_STACKSIZE environment variable is case
insensitive and might have leading and trailing white space. The following
examples show how you can set the OMP_STACKSIZE environment variable.
export OMP_STACKSIZE="10M"
export OMP_STACKSIZE=" 10 M "

If the value of OMP_STACKSIZE is not set, the initial value is set to the default
value. (up to the limit that is imposed by system resources).

If the compiler cannot deliver the stack size specified by the environment variable,
or if OMP_STACKSIZE does not conform to the valid format, the compiler sets
the environment variable to the default value.

The OMP_STACKSIZE environment variable takes precedence over the stack
suboption of the XLSMPOPTS environment variable.

Chapter 8. Parallel programming with XL Fortran 97

OMP_THREAD_LIMIT
The OMP_THREAD_LIMIT environment variable sets the number of OpenMP
threads to use for the whole program. The syntax is as follows:

►► OMP_THREAD_LIMIT = n ►◄

n The number of OpenMP threads to use for the whole program. It must be a
positive scalar integer that is less than 65536.

Usage

When OMP_THREAD_LIMIT=1, the parallel regions are run sequentially rather
than in parallel. However, when OMP_THREAD_LIMIT is much smaller than the
number of threads that are required in the program, the parallel region might still
run in parallel but with less number of threads. When there are nested parallel
regions, some parallel regions might run in parallel, some might run sequentially,
and some might run in parallel but with threads that are recycled from other
regions.

If OMP_THREAD_LIMIT is not defined and OMP_NESTED=TRUE, the default
value of OMP_THREAD_LIMIT is the greater value of either the multiplication of
all OMP_NUM_THREADS levels or the number of total resources in
OMP_PLACES.

If OMP_THREAD_LIMIT is not defined and OMP_NESTED=FALSE, the default
value of OMP_THREAD_LIMIT is the greater value of either the first level of
OMP_NUM_THREADS or the number of total resources in OMP_PLACES.

If neither OMP_THREAD_LIMIT nor OMP_NESTED is defined, the default value
of OMP_THREAD_LIMIT is the number of total resources in OMP_PLACES.

Examples

Suppose OMP_THREAD_LIMIT is not defined and
OMP_PLACES={0,1,2,3,4,5,6,7},{8,9,10,11,12,13,14,15}. The number of total
resources in OMP_PLACES is 16.

Example 1

When OMP_NESTED=TRUE and OMP_NUM_THREADS=2,12, the default value
of OMP_THREAD_LIMIT is 24, because the multiplication of all
OMP_NUM_THREADS levels is 24 and 24 is greater than 16.

Example 2

When OMP_NESTED=FALSE and OMP_NUM_THREADS=2,4, the default value
of OMP_THREAD_LIMIT is 16, because the first level of OMP_NUM_THREADS
is 2 and 16 is greater than 2.

Related information

“OMP_PLACES” on page 91

“OMP_NUM_THREADS” on page 89

98 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

“OMP_NESTED” on page 89

OMP_WAIT_POLICY
The OMP_WAIT_POLICY environment variable provides hints about the preferred
behavior of waiting threads during program execution. The syntax is as follows:

►►
PASSIVE

OMP_WAIT_POLICY= ACTIVE ►◄

Use ACTIVE if you want waiting threads to mostly be active. That is, the threads
consume processor cycles while waiting. For example, waiting threads can spin
while waiting. The ACTIVE wait policy is recommended for maximum
performance on the dedicated machine.

Use PASSIVE if you want waiting threads to mostly be passive. That is, the
threads do not consume processor cycles while waiting. For example, waiting
threads can sleep or yield the processor to other threads.

The default value of OMP_WAIT_POLICY is PASSIVE.

Note: If you set the OMP_WAIT_POLICY environment variable and specify the
SPINS, YIELDS, or DELAYS suboptions of the XLSMPOPTS environment
variable, OMP_WAIT_POLICY takes precedence.

Optimizing your SMP code
Most IBM processors are capable of shared-memory parallel processing. Compile
with -qsmp to generate the threaded code needed to exploit this capability. The
option implies a -O2 optimization level. The default behavior for the option
without suboptions is to do automatic parallelization with optimization.

The most commonly used -qsmp suboptions are summarized in the following table.

Commonly used -qsmp suboptions
Suboption Behavior
auto Instructs the compiler to automatically generate parallel code where

possible without user assistance. This option also recognizes all the SMP
directives.

omp Enforces compliance with the OpenMP API for specifying explicit
parallelism.

opt Instructs the compiler to optimize as well as parallelize. The
optimization is equivalent to -O2 –qhot in the absence of other
optimization options. The default setting of -qsmp is
-qsmp=auto:noomp:opt.

suboptions Other values for the suboption provide control over thread scheduling,
nested parallelism, locking, and so on.

Developing and running SMP applications
v By default, the parallelization performed is both user-directed and automatic.

Use -qsmp=omp:noauto if you are compiling an OpenMP program and do not
want automatic parallelization.

v Before using -qsmp with automatic parallelization, test your programs using
optimization and -qhot in a single-threaded manner.

v Always use the reentrant compiler invocations (the _r command invocations, like
xlf_r) when using -qsmp.

Chapter 8. Parallel programming with XL Fortran 99

compiler#opt_smp
compiler#opt_hot

v By default, the run time uses all available processors. Do not set the
XLSMPOPTS=PARTHDS or OMP_NUM_THREADS variables unless you want
to use fewer than the number of available processors. You might want to set the
number of executing threads to a small number or to 1 to ease debugging.

Note: The XLSMPOPTS=PARTHDS variable is deprecated.
v If you are using a dedicated machine or node, consider setting

OMP_WAIT_POLICY to ACTIVE or setting the SPINS and YIELDS variables
(suboptions of XLSMPOPTS) to 0. Doing so prevents the operating system from
intervening in the scheduling of threads across synchronization boundaries such
as barriers.

v When debugging an SMP program, try using -qsmp=noopt (without -O) to make
the debugging information produced by the compiler more precise. You can also
use the SNAPSHOT directive to create additional program points for storage
visibility by flushing registers to memory.

An introduction to parallelization directives
These directives allow you to exert control over parallelization. For example, the
PARALLEL DO directive specifies that the loop immediately following the
directive should be run in parallel. All parallelization directives are comment form
directives.

For more information on rules and syntax for comment form directives, see
Comment and noncomment form directives in the XL Fortran Language Reference.

XL Fortran supports a number of SMP directives, divided as follows. To ensure the
greatest portability of code, OpenMP directives are recommended where possible.
Use the OpenMP trigger_constant, $OMP for OpenMP directives, but do not use
this trigger_constant with any other directive. OpenMP directives must not appear
in PURE and ELEMENTAL procedures.

Parallel region construct
Parallel constructs form the foundation of OpenMP based parallel execution in XL
Fortran. The PARALLEL/END PARALLEL directive pair forms a basic parallel
construct. Each time an executing thread enters a parallel region, it creates a team
of threads and becomes master of that team. This allows parallel execution to take
place within that construct by the threads in that team. The following directives are
necessary for a parallel region:

PARALLEL END PARALLEL

Work-sharing constructs
Work-sharing constructs divide the execution of code enclosed by the construct
between threads in a team. For work-sharing to take place, the construct must be
enclosed within the dynamic extent of a parallel region. For further information on
work-sharing constructs, see the following directives:

DO END DO

SECTIONS END SECTIONS

WORKSHARE END WORKSHARE

SINGLE END SINGLE

100 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Combined parallel work-sharing constructs
A combined parallel work-sharing construct allows you to specify a parallel region
that already contains a single work-sharing construct. These combined constructs
are semantically identical to specifying a parallel construct enclosing a single
work-sharing construct. For more information on implementing combined
constructs, see the following directives:

PARALLEL DO END PARALLEL DO

PARALLEL SECTIONS END PARALLEL SECTIONS

PARALLEL WORKSHARE END PARALLEL WORKSHARE

Synchronization constructs
The following directives allow you to synchronize the execution of a parallel
region by multiple threads in a team:

ATOMIC

BARRIER

CRITICAL END CRITICAL

FLUSH

ORDERED END ORDERED

TASKWAIT

Other OpenMP directives
The following OpenMP directives provide additional SMP functionality:

MASTER END MASTER

TASK END TASK

THREADPRIVATE

Non-OpenMP SMP directives
The following directives provide additional SMP functionality:

DO SERIAL THREADLOCAL

SCHEDULE

Deprecated directive
The SMP directive listed in the following table has been deprecated and might be
removed in a future release. Use the corresponding OpenMP directive or clause to
obtain the same behavior.

Table 20. Deprecated SMP directive

SMP directive name OpenMP directive/clause name

SCHEDULE SCHEDULE

The following example shows how to replace the deprecated SMP SCHEDULE
directive with the OpenMP SCHEDULE clause.

Chapter 8. Parallel programming with XL Fortran 101

The original code that uses the SMP SCHEDULE directive is as follows:
program loop
integer, parameter :: N=500
integer :: i

!SMP$ SCHEDULE(STATIC)
real :: arr(N)

!SMP$ parallel do
do i=1, N
arr(i) = real(i-1)

enddo
end program

To obtain the same behavior, you can use the OpenMP SCHEDULE clause, as
shown below:

program loop
integer, parameter :: N=500
integer :: i
real :: arr(N)

!$OMP parallel do schedule(static)
do i=1, N
arr(i) = real(i-1)

enddo
end program

Detailed descriptions of parallelization directives
This section lists, in alphabetical order, all parallelization directives supported by
XL Fortran.

For information about directive clauses, see “Directive clauses” on page 155.

ATOMIC
Purpose

You can use the ATOMIC directive to access a specific memory location safely
within a parallel region. When you use the ATOMIC directive, the compiler
generates code to ensure that only one thread is accessing the memory location at
a time to avoid errors that might occur from simultaneous reads or writes to the
same memory location.

Atomic operations are useful when you create multithreaded or concurrent
algorithms and data structures. Using atomic constructs, you can write more
efficient concurrent algorithms with fewer locks.

An atomic construct supports the following kinds of atomic access:
v Atomic update

Updates the value of a variable atomically. Allows only one thread to write to a
shared variable at a time, avoiding errors from simultaneous writes to the same
variable.

v Atomic read
Reads the value of a variable atomically. The value of a shared variable can be
read safely, avoiding the danger of reading an intermediate value of the variable
when it is accessed simultaneously by a concurrent thread.

v Atomic write

102 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Writes the value of a variable atomically. The value of a shared variable can be
written exclusively to avoid errors from simultaneous writes.

v Atomic capture
Updates the value of a variable while capturing the original or final value of the
variable atomically.

The ATOMIC directive takes effect only if you specify the -qsmp compiler option.

Note: The atomic operations are not interoperable between V15.1.1 and V15.1.2.
The atomic implementation of V15.1.2 is more efficient.

Syntax

Atomic update

►►
UPDATE

ATOMIC
seq_cst

►◄

►► atomic_update_statement ►◄

►►
END ATOMIC

►◄

Atomic read

►► ATOMIC READ
seq_cst

►◄

►► atomic_capture_statement ►◄

►►
END ATOMIC

►◄

Chapter 8. Parallel programming with XL Fortran 103

Atomic write

►► ATOMIC WRITE
seq_cst

►◄

►► atomic_write_statement ►◄

►►
END ATOMIC

►◄

104 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

where:

atomic_update_statement
is one of the following forms:

Atomic capture

►► ATOMIC CAPTURE
seq_cst

►◄

►► atomic_update_statement ►◄

►► atomic_capture_statement ►◄

►► END ATOMIC ►◄

Or

►► ATOMIC CAPTURE
seq_cst

►◄

►► atomic_capture_statement ►◄

►► atomic_update_statement ►◄

►► END ATOMIC ►◄

Or

►► ATOMIC CAPTURE
seq_cst

►◄

►► atomic_capture_statement ►◄

►► atomic_write_statement ►◄

►► END ATOMIC ►◄

Note: The last form is to support atomic swap operations.

Chapter 8. Parallel programming with XL Fortran 105

update_variable = update_variable operator expression
update_variable = expression operator update_variable
update_variable = intrinsic(update_variable, expression_list)
update_variable = intrinsic(expression_list, update_variable)

atomic_write_statement
has the following form:
update_variable = expression

atomic_capture_statement
has the following form:
capture_variable = update_variable

seq_cst
is a clause that supports sequentially atomic operations. It forces atomically
performed operations to include an implicit flush operation without a list.

where:

update_variable, capture_variable
are both nonpointer, nonallocatable scalar variables of intrinsic type.

intrinsic
is one of MAX, MIN, IAND, IOR or IEOR.

operator
is one of +, -, *, /, .AND., .OR., .EQV., .NEQV. or .XOR..

expression
is a scalar expression that does not reference update_variable.

expression_list
is a comma-separated, non-empty list of scalar expressions that do not
reference update_variable.

Note: If the intrinsic is IAND, IOR, or IEOR, expression_list can only
contain one expression.

Rules

An ATOMIC directive without a clause is equivalent to atomic update, and applies
only to the statement that immediately follows it.

All accesses to a certain storage location throughout a concurrent program must be
atomic. A non-atomic access to a memory location might break the expected atomic
behavior of all atomic accesses to that storage location.

The expression in an atomic statement is not evaluated atomically. You must ensure
that no race conditions exist in the calculation.

Within the entire program, if you use the ATOMIC directive to make references to
the storage location of an update_variable, all these references must have the same
type and type parameters.

capture_variable, expression, and expression_list must not access the same storage
location as update_variable.

For atomic capture access, the operation of writing the captured value to the
storage location represented by capture_variable is not atomic.

106 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

The function intrinsic, the operator operator, and the assignment must be the
intrinsic function, operator and assignment, and not a redefined intrinsic function,
defined operator or defined assignment.

Examples

Example 1: In this example, multiple threads are updating a counter. ATOMIC is
used to ensure that no updates are lost.
PROGRAM P

R = 0.0
!$OMP PARALLEL DO SHARED(R)

DO I = 1, 10
!$OMP ATOMIC

R = R + 1.0
END DO
PRINT *,R

END PROGRAM P

Expected output:
10.0

Example 2: In this example, an ATOMIC directive is required, because it is
uncertain which element of array Y is updated in each iteration.
PROGRAM P

INTEGER, DIMENSION(10) :: Y, INDEX
INTEGER B

Y = 5
READ(*,*) INDEX, B

!$OMP PARALLEL DO SHARED(Y)
DO I = 1, 10

!$OMP ATOMIC
Y(INDEX(I)) = MIN(Y(INDEX(I)),B)

END DO
PRINT *, Y

END PROGRAM P

Input data:
10 10 8 8 6 6 4 4 2 2 4

Expected output:
5 4 5 4 5 4 5 4 5 4

Example 3: This example demonstrates the usage of atomic capture.
FUNCTION fnc(upper) RESULT(ret)

INTEGER, INTENT(IN) :: upper
INTEGER :: ret
INTEGER, SAVE :: iter = 0

!$OMP ATOMIC CAPTURE
iter = iter + 1
ret = iter

!$OMP END ATOMIC

IF (ret .GT. upper) THEN
ret = -1

ENDIF
END FUNCTION fnc

Related reference:
“CRITICAL / END CRITICAL” on page 109

Chapter 8. Parallel programming with XL Fortran 107

“PARALLEL / END PARALLEL” on page 121

See -qsmp in the Compiler Reference

BARRIER
Purpose

The BARRIER directive enables you to synchronize all threads of a team. When a
thread encounters a BARRIER directive, it will not execute beyond the BARRIER
until all other threads in the team complete all explicit tasks in the region.

Type

The BARRIER directive only takes effect if you specify the -qsmp compiler option.

Syntax

Rules

A BARRIER region binds to the closest enclosing PARALLEL region.

A BARRIER region must not be closely nested inside a CRITICAL, MASTER,
ORDERED, TASK or work-sharing region.

All threads of the team which are executing the binding parallel region must
execute the BARRIER region, and they must not continue execution beyond the
BARRIER until they complete execution of all explicit tasks that are bound to this
parallel region.

All BARRIER regions and work-sharing region must be encountered in the same
order by all threads in the team.

Each BARRIER region must be encountered by all threads in a team or by none at
all.

In addition to synchronizing the threads in a team, the BARRIER directive implies
the FLUSH directive without the variable_name_list.

Examples

An example of the BARRIER construct binding to the PARALLEL construct. Note:
To calculate C, we need to ensure that A and B have been completely assigned to,
so threads need to wait.

SUBROUTINE SUB1
INTEGER A(1000), B(1000), C(1000)

!$OMP PARALLEL
!$OMP DO

DO I = 1, 1000
A(I) = SIN(I*2.5)

END DO
!$OMP END DO NOWAIT
!$OMP DO

►► BARRIER ►◄

108 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

DO J = 1, 10000
B(J) = X + COS(J*5.5)

END DO
!$OMP END DO NOWAIT

...
!$OMP BARRIER

C = A + B
!$OMP END PARALLEL

END

Related reference:
“FLUSH” on page 115
“PARALLEL / END PARALLEL” on page 121

See -qsmp in the Compiler Reference

CRITICAL / END CRITICAL
Purpose

The CRITICAL construct allows you to define independent blocks of code that are
to be run by at most one thread at a time. It includes a CRITICAL directive that is
followed by a block of code and ends with an END CRITICAL directive.

Type

The CRITICAL and END CRITICAL directives only take effect if you specify the
-qsmp compiler option.

Syntax

lock_name
provides a way of distinguishing different CRITICAL constructs of code.

block represents the block of code to be executed by at most one thread at a
time.

Rules

The optional lock_name is a name with global scope. You must not use the
lock_name to identify any other global entity in the same executable program.

If you specify the lock_name on the CRITICAL directive, you must specify the
same lock_name on the corresponding END CRITICAL directive.

►► CRITICAL
(lock_name)

►◄

►► block ►◄

►► END CRITICAL
(lock_name)

►◄

Chapter 8. Parallel programming with XL Fortran 109

If you specify the same lock_name for more than one CRITICAL construct, the
compiler will allow only one thread to execute any one of these CRITICAL
constructs at any one time. CRITICAL constructs that have different lock_names
may be run in parallel.

The same lock protects all CRITICAL constructs that do not have an explicit
lock_name. In other words, the compiler will assign the same lock_name, thereby
ensuring that only one thread enters any unnamed CRITICAL construct at a time.

The lock_name must not share the same name as any local entity of Class 1.

It is illegal to branch into or out of a CRITICAL construct.

The CRITICAL construct may appear anywhere in a program.

Although it is possible to nest a CRITICAL construct within a CRITICAL region, a
deadlock situation may result. The -qsmp=rec_locks compiler option can be used
to prevent deadlocks. See the XL Fortran Compiler Reference for more information.
The OpenMP API does not allow nested CRITICAL regions to have the same
name.

CRITICAL and END CRITICAL directives imply the FLUSH directive without the
variable_name_list.

F2008 A CYCLE statement must not appear within a CRITICAL construct if it
belongs to an outer construct.

An EXIT statement must not appear within a CRITICAL construct if it belongs to
that construct or an outer construct. F2008

Examples

Example 1: This example illustrates the use of a CRITICAL construct to update a
shared variable inside a parallel region. The CRITICAL construct restricts only one
thread to execute the code at a time.

EXPR=0
!$OMP PARALLEL DO PRIVATE (I)

DO I = 1, 100
!$OMP CRITICAL

EXPR = EXPR + A(I) * I
!$OMP END CRITICAL

END DO

Example 2: An example specifying a lock_name on the CRITICAL construct.
!$OMP PARALLEL DO PRIVATE(T)

DO I = 1, 100
T = B(I) * B(I-1)

!$OMP CRITICAL (LOCK)
SUM = SUM + T

!$OMP END CRITICAL (LOCK)
END DO

Related reference:
“ATOMIC” on page 102
“FLUSH” on page 115

See Global entity in the Language Reference

110 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

See Local entity in the Language Reference
“PARALLEL / END PARALLEL” on page 121

See -qsmp in the Compiler Reference

DO / END DO
Purpose

The DO (work-sharing) construct enables you to divide the execution of the loop
among the members of the team that encounter it. The END DO directive enables
you to indicate the end of a DO loop that is specified by the DO (work-sharing)
directive.

The DO (work-sharing) and END DO directives only take effect when you specify
the -qsmp compiler option.

Syntax

where do_clause is:

collapse_clause
See — “COLLAPSE” on page 156.

firstprivate_clause
See — “FIRSTPRIVATE” on page 163.

lastprivate_clause
See — “LASTPRIVATE” on page 165.

►► ▼DO
do_clause

,

►◄

►► do_loop ►◄

►►
END DO

NOWAIT

►◄

►► collapse_clause
firstprivate_clause
lastprivate_clause
ordered_clause
private_clause
reduction_clause
schedule_clause

►◄

Chapter 8. Parallel programming with XL Fortran 111

ordered_clause
See — “ORDERED” on page 168

private_clause
See — “PRIVATE” on page 169.

reduction_clause
See — “REDUCTION” on page 172

schedule_clause
See — “SCHEDULE” on page 175

Rules

The first noncomment line (not including other directives) that follows the DO
(work-sharing) directive must be a DO loop. This line cannot be an infinite DO or
DO WHILE loop. The DO (work-sharing) directive applies only to the DO loop
that is immediately following the directive, and not to any nested DO loops,
unless the COLLAPSE clause is specified.

The END DO directive is optional. If you use the END DO directive, it must
immediately follow the end of the DO loop.

You may have a DO construct that contains several DO statements. If the DO
statements share the same DO termination statement, and an END DO directive
follows the construct, you can only specify a work-sharing DO directive for the
outermost DO statement of the construct.

If you specify NOWAIT on the END DO directive, a thread that completes its
iterations of the loop early will proceed to the instructions following the loop. The
thread will not wait for the other threads of the team to complete the DO loop. If
you do not specify NOWAIT on the END DO directive, each thread will wait for
all other threads within the same team at the end of the DO loop.

If you do not specify the NOWAIT clause, the END DO directive implies the
FLUSH directive without the variable_name_list.

All threads in the team must encounter the DO (work-sharing) directive if any
thread encounters it. A DO loop must have the same loop boundary and step
value for each thread in the team. All work-sharing constructs and BARRIER
directives that are encountered must be encountered in the same order by all
threads in the team.

A DO (work-sharing) directive must not appear within a CRITICAL, MASTER, or
ORDERED region. In addition, it must not appear within a work-sharing region or
a TASK region unless it is bound to another parallel region.

You cannot follow a DO (work-sharing) directive by another DO (work-sharing)
directive. You can only specify one DO (work-sharing) directive for a given DO
loop.

The DO (work-sharing) directive cannot appear with either an INDEPENDENT or
DO SERIAL directive for a given DO loop.

To ensure that the same assignment of logical iteration numbers to threads is used
in two work-sharing loop regions, you can use the STATIC schedule of the
SCHEDULE clause. For details, see “SCHEDULE” on page 175.

112 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Examples

Example 1: An example of several independent DO loops within a PARALLEL
construct. No synchronization is performed after the first work-sharing DO loop,
because NOWAIT is specified on the END DO directive.
!$OMP PARALLEL
!$OMP DO

DO I = 2, N
B(I)= (A(I) + A(I-1)) / 2.0

END DO
!$OMP END DO NOWAIT
!$OMP DO

DO J = 2, N
C(J) = SQRT(REAL(J*J))

END DO
!$OMP END DO

C(5) = C(5) + 10
!$OMP END PARALLEL

END

Example 2: An example of SHARED, and SCHEDULE clauses.
!$OMP PARALLEL SHARED(A)
!$OMP DO SCHEDULE(STATIC,10)

DO I = 1, 1000
A(I) = I * 4

END DO
!$OMP END DO
!$OMP END PARALLEL

Example 3: An example of both a MASTER and a DO (work-sharing) directive
that bind to the closest enclosing PARALLEL directive.
!$OMP PARALLEL DEFAULT(PRIVATE), SHARED(X)

Y = 100
!$OMP MASTER

PRINT *, Y
!$OMP END MASTER
!$OMP DO

DO I = 1, 10
X(I) = I
X(I) = X(I) + Y

END DO
!$OMP END PARALLEL

END

Example 4: An example of both the FIRSTPRIVATE and the LASTPRIVATE
clauses on DO (work-sharing) directives.

X = 100

!$OMP PARALLEL PRIVATE(I), SHARED(X,Y)
!$OMP DO FIRSTPRIVATE(X), LASTPRIVATE(X)

DO I = 1, 80
Y(I) = X + I
X = I

END DO
!$OMP END PARALLEL

END

Related reference:
“COLLAPSE” on page 156

See DO in the Language Reference
“DO SERIAL” on page 114

Chapter 8. Parallel programming with XL Fortran 113

“FLUSH” on page 115

See INDEPENDENT in the Language Reference
“ORDERED / END ORDERED” on page 119
“PARALLEL / END PARALLEL” on page 121
“PARALLEL DO / END PARALLEL DO” on page 123

DO SERIAL
Purpose

The DO SERIAL directive indicates to the compiler that the DO loop that is
immediately following the directive must not be parallelized. This directive is
useful in blocking automatic parallelization for a particular DO loop. The DO
SERIAL directive only takes effect if you specify the -qsmp compiler option.

Syntax

Rules

The first noncomment line (not including other directives) that is following the DO
SERIAL directive must be a DO loop. The DO SERIAL directive applies only to
the DO loop that immediately follows the directive and not to any loops that are
nested within that loop.

You can only specify one DO SERIAL directive for a given DO loop. The DO
SERIAL directive must not appear with the DO (work-sharing), or PARALLEL
DO directive on the same DO loop.

White space is optional between DO and SERIAL.

You should not use the OpenMP trigger constant with this directive.

Examples

Example 1: An example with nested DO loops where the inner loop (the J loop) is
not parallelized.
!$OMP PARALLEL DO PRIVATE(S,I), SHARED(A)

DO I=1, 500
S=0
!SMP$ DOSERIAL
DO J=1, 500

S=S+1
ENDDO
A(I)=S+I

ENDDO

Example 2: An example with the DOSERIAL directive applied in nested loops. In
this case, if automatic parallelization is enabled the I or K loop may be
parallelized.

►► DO SERIAL ►◄

114 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

DO I=1, 100
!SMP$ DOSERIAL

DO J=1, 100
DO K=1, 100

ARR(I,J,K)=I+J+K
ENDDO

ENDDO
ENDDO

Related reference:
“DO / END DO” on page 111

See DO in the Language Reference
“PARALLEL DO / END PARALLEL DO” on page 123

See -qdirective in the Compiler Reference

See -qsmp in the Compiler Reference

FLUSH
Purpose

The FLUSH directive ensures that each thread has access to data generated by
other threads. This directive is required because the compiler may keep values in
processor registers if a program is optimized. The FLUSH directive ensures that
the memory images that each thread views are consistent.

The FLUSH directive only takes effect if you specify the -qsmp compiler option.

You might be able to improve the performance of your program by using the
FLUSH directive instead of the VOLATILE attribute. The VOLATILE attribute
causes variables to be flushed after every update and before every use, while
FLUSH causes variables to be written to or read from memory only when
specified.

Syntax

Rules

You can specify this directive anywhere in your code; however, if you specify it
outside a parallel region, it is ignored.

If you specify a variable_name_list, only the variables in that list are written to or
read from memory (assuming that they have not been written or read already). All
variables in the variable_name_list must be at the current scope and must be thread
visible. Thread visible variables can be any of the following:
v Globally visible variables (common blocks and module data)
v Local and host-associated variables with the SAVE attribute
v Local variables without the SAVE attribute that are specified in a SHARED

clause in a parallel region within the subprogram

►► FLUSH
(variable_name_list)

►◄

Chapter 8. Parallel programming with XL Fortran 115

v Local variables without the SAVE attribute that have had their addresses taken
v All pointer dereferences
v Dummy arguments

If an item or a subobject of an item in the variable_name_list has the POINTER
attribute, the allocation and association status of the POINTER item is flushed, but
the pointer target is not.

If an item in the variable_name_list is an integer pointer, the pointer is flushed, but
the object to which it points is not.

If an item in the variable_name_list has the ALLOCATABLE attribute and the item
is allocated, the allocated object is flushed; otherwise, the allocation status is
flushed.

If an item in the variable_name_list is of type C_PTR, the variable is flushed, but the
storage that corresponds to that address is not flushed.

If you do not specify a variable_name_list, all thread visible variables are written to
or read from memory.

When a thread encounters the FLUSH directive, it writes into memory the
modifications to the affected variables. The thread also reads the latest copies of
the variables from memory if it has local copies of those variables: for example, if
it has copies of the variables in registers.

It is not mandatory for all threads in a team to use the FLUSH directive. However,
to guarantee that all thread visible variables are current, any thread that modifies a
thread visible variable should use the FLUSH directive to update the value of that
variable in memory. If you do not use FLUSH or one of the directives that implies
FLUSH (see below), the value of the variable might not be the most recent one.

The FLUSH directive does not imply any ordering between the directive and
operations on variables not in the variable_name_list. The FLUSH directive does not
imply any ordering between two or more FLUSH constructs if the constructs do
not have any variables in common in the variable_name_list.

Note that FLUSH is not atomic. You must FLUSH shared variables that are
controlled by a shared lock variable with one directive and then FLUSH the lock
variable with another. This guarantees that the shared variables are written before
the lock variable.

The following directives imply a FLUSH directive without the variable_name_list
unless you specify a NOWAIT clause for those directives to which it applies:
v BARRIER

v CRITICAL/END CRITICAL

v END DO

v END SECTIONS

v END SINGLE

v END WORKSHARE

v PARALLEL/END PARALLEL

v PARALLEL DO/END PARALLEL DO

v PARALLEL SECTIONS/END PARALLEL SECTIONS

116 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

v PARALLEL WORKSHARE/END PARALLEL WORKSHARE

v ORDERED/END ORDERED

The ATOMIC directive implies a FLUSH directive with the variable_name_list. The
variable_name_list contains only the object updated in the ATOMIC construct

The following routines imply a FLUSH directive without the variable_name_list:
v During OMP_SET_LOCK, and OMP_UNSET_LOCK regions.
v During OMP_TEST_LOCK, OMP_SET_NEST_LOCK,

OMP_UNSET_NEST_LOCK and OMP_TEST_NEST_LOCK regions, if the
region causes the lock to be set or unset.

Examples

In the following example, two threads perform calculations in parallel and are
synchronized when the calculations are complete:

PROGRAM P
USE OMP_LIB
INTEGER INSYNC(0:1), IAM

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(INSYNC) NUM_THREADS(2)"
IAM = OMP_GET_THREAD_NUM()
INSYNC(IAM) = 0

!$OMP BARRIER
CALL WORK

!$OMP FLUSH(INSYNC)
INSYNC(IAM) = 1 ! Each thread sets a flag

! once it has
!$OMP FLUSH(INSYNC) ! completed its work.

DO WHILE (INSYNC(1-IAM) .eq. 0) ! One thread waits for
! another to complete

!$OMP FLUSH(INSYNC) ! its work.
END DO

!$OMP END PARALLEL

END PROGRAM P

SUBROUTINE WORK ! Each thread does indep-
! endent calculations.

! ...
!$OMP FLUSH ! flush work variables

! before INSYNC
! is flushed.

END SUBROUTINE WORK

MASTER / END MASTER
Purpose

The MASTER construct enables you to define a block of code that will be run by
only the master thread of the team. It includes a MASTER directive that precedes
a block of code and ends with an END MASTER directive.

The MASTER and END MASTER directives only take effect if you specify the
-qsmp compiler option.

Chapter 8. Parallel programming with XL Fortran 117

Syntax

block represents the block of code that will be run by the master thread of the
team.

Rules

It is illegal to branch into or out of a MASTER construct.

A MASTER directive binds to the closest enclosing PARALLEL region, if one
exists.

A MASTER directive cannot appear within a work-sharing region or a TASK
region.

No implied barrier exists on entry to, or exit from, the MASTER construct.

Examples

Example 1: An example of the MASTER directive binding to the PARALLEL
directive.
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP MASTER

Y = 10.0
X = 0.0
DO I = 1, 4

X = X + COS(Y) + I
END DO

!$OMP END MASTER
!$OMP BARRIER
!$OMP DO PRIVATE(J)

DO J = 1, 10000
A(J) = X + SIN(J*2.5)

END DO
!$OMP END DO
!$OMP END PARALLEL

END

Related reference:

See -qsmp in the Compiler Reference
“PARALLEL / END PARALLEL” on page 121
“DO / END DO” on page 111

►► MASTER ►◄

►► block ►◄

►► END MASTER ►◄

118 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

ORDERED / END ORDERED
Purpose

The ORDERED / END ORDERED directives cause the iterations of a block of
code within a parallel loop to be executed in the order that the loop would execute
in if it was run sequentially. You can force the code inside the ORDERED
construct to run in a predictable order while code outside of the construct runs in
parallel.

The ORDERED and END ORDERED directives only take effect if you specify the
-qsmp compiler option.

Syntax

block represents the block of code that will be executed in sequence.

Rules

The ORDERED directive can only appear in the dynamic extent of a DO or
PARALLEL DO directive. It is illegal to branch into or out of an ORDERED
construct.

The ORDERED directive binds to the nearest dynamically enclosing DO or
PARALLEL DO directive. You must specify the ORDERED clause on the DO or
PARALLEL DO directive to which the ORDERED construct binds.

ORDERED constructs that bind to different DO directives are independent of each
other.

Only one thread can execute an ORDERED construct at a time. Threads enter the
ORDERED construct in the order of the loop iterations. A thread will enter the
ORDERED construct if all of the previous iterations have either executed the
construct or will never execute the construct.

Each iteration of a parallel loop with an ORDERED construct can only execute
that ORDERED construct once. Each iteration of a parallel loop can execute at
most one ORDERED directive. An ORDERED construct cannot appear within the
dynamic extent of a CRITICAL construct.

The END ORDERED directive implies the FLUSH directive without the
variable_name_list

►► ORDERED ►◄

►► block ►◄

►► END ORDERED ►◄

Chapter 8. Parallel programming with XL Fortran 119

Examples

Example 1: In this example, an ORDERED parallel loop counts down.
PROGRAM P

!$OMP PARALLEL DO ORDERED
DO I = 3, 1, -1

!$OMP ORDERED
CALL C_PRINT(I) ! print I using routine written in C

!$OMP END ORDERED
END DO
END PROGRAM P

The expected output of this program is:
3
2
1

Example 2: This example shows a program with two ORDERED constructs in a
parallel loop. Each iteration can only execute a single section.

PROGRAM P
!$OMP PARALLEL DO ORDERED

DO I = 1, 3
IF (MOD(I,2) == 0) THEN

!$OMP ORDERED
CALL C_PRINT(I*10) ! print I*10 using routine written in C

!$OMP END ORDERED
ELSE

!$OMP ORDERED
CALL C_PRINT(I) ! print I using routine written in C

!$OMP END ORDERED
END IF

END DO
END PROGRAM P

The expected output of this program is:
1
20
3

Example 3: In this example, the program computes the sum of all elements of an
array that are greater than a threshold. ORDERED is used to ensure that the
results are always reproducible: roundoff will take place in the same order every
time the program is executed, so the program will always produce the same
results.

PROGRAM P
REAL :: A(1000)
REAL :: THRESHOLD = 999.9
REAL :: SUM = 0.0

!$OMP PARALLEL DO ORDERED
DO I = 1, 1000

IF (A(I) > THRESHOLD) THEN
!$OMP ORDERED

SUM = SUM + A(I)
!$OMP END ORDERED

END IF
END DO

END PROGRAM P

120 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Note: To avoid bottleneck situations when using the ORDERED clause, you can
try using DYNAMIC scheduling or STATIC scheduling with a small chunk size.
For more information on scheduling parameters, see the “SCHEDULE” on page
175 clause.
Related reference:

See -qsmp in the Compiler Reference
“PARALLEL DO / END PARALLEL DO” on page 123
“DO / END DO” on page 111
“CRITICAL / END CRITICAL” on page 109

PARALLEL / END PARALLEL
Purpose

The PARALLEL construct enables you to define a block of code that can be
executed by a team of threads concurrently. The PARALLEL construct includes a
PARALLEL directive that is followed by one or more blocks of code, and ends
with an END PARALLEL directive.

The PARALLEL and END PARALLEL directives only take effect if you specify the
-qsmp compiler option.

Syntax

where parallel_clause is:

copyin clause
See — “COPYIN” on page 158

►► ▼PARALLEL
parallel_clause

,

►◄

►► block ►◄

►► END PARALLEL ►◄

►► copyin
default
firstprivate
if
num_threads
private
proc_bind
reduction
shared

►◄

Chapter 8. Parallel programming with XL Fortran 121

default clause
See — “DEFAULT” on page 161

if clause
See — “IF” on page 164

firstprivate clause
See — “FIRSTPRIVATE” on page 163.

num_threads clause
See — “NUM_THREADS” on page 168.

private clause
See — “PRIVATE” on page 169.

proc_bind clause
See — “PROC_BIND” on page 171.

reduction clause
See — “REDUCTION” on page 172

shared clause
See — “SHARED” on page 177

Rules

It is illegal to branch into or out of a PARALLEL construct.

The IF and DEFAULT clauses can appear at most once in a PARALLEL directive.

You should be careful when you perform input/output operations in a parallel
region. If multiple threads execute a Fortran I/O statement on the same unit, you
should make sure that the threads are synchronized. If you do not, the behavior is
undefined. See “Parallel I/O issues” on page 291 for more information. Also note
that although in the XL Fortran implementation each thread has exclusive access to
the I/O unit, the OpenMP specification does not require exclusive access.

Directives that bind to a parallel region will bind to that parallel region even if it is
serialized.

The END PARALLEL directive implies the FLUSH directive without the
variable_name_list and a BARRIER directive.

Examples

Example 1: An example of an outer PARALLEL directive with the PRIVATE clause
enclosing the PARALLEL construct. Note: The SHARED clause is present on the
inner PARALLEL construct.
!$OMP PARALLEL PRIVATE(X)
!$OMP DO

DO I = 1, 10
X(I) = I

!$OMP PARALLEL SHARED (X,Y)
!$OMP DO

DO K = 1, 10
Y(K,I)= K * X(I)

END DO
!$OMP END DO

122 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

!$OMP END PARALLEL
END DO

!$OMP END DO
!$OMP END PARALLEL

Example 2: This example demonstrates the use of the COPYIN clause. Each thread
created by the PARALLEL directive has its own copy of the common block
BLOCK. The COPYIN clause causes the initial value of FCTR to be copied into the
threads that execute iterations of the DO loop.

PROGRAM TT
COMMON /BLOCK/ FCTR
INTEGER :: I, FCTR

!$OMP THREADPRIVATE(/BLOCK/)
INTEGER :: A(100)

FCTR = -1
A = 0

!$OMP PARALLEL COPYIN(FCTR)
!$OMP DO

DO I=1, 100
FCTR = FCTR + I
CALL SUB(A(I), I)

ENDDO
!$OMP END PARALLEL

PRINT *, A
END PROGRAM

SUBROUTINE SUB(AA, J)
INTEGER :: FCTR, AA, J
COMMON /BLOCK/ FCTR

!$OMP THREADPRIVATE(/BLOCK/) ! EACH THREAD GETS ITS OWN COPY
! OF BLOCK.

AA = FCTR
FCTR = FCTR - J
END SUBROUTINE SUB

The expected output is:
0 1 2 3 ... 96 97 98 99

Related reference:
“FLUSH” on page 115
“PARALLEL DO / END PARALLEL DO”

See INDEPENDENT in the Language Reference
“THREADPRIVATE” on page 145
“DO / END DO” on page 111

See -qdirective in the Compiler Reference

See -qsmp in the Compiler Reference

PARALLEL DO / END PARALLEL DO
Purpose

The PARALLEL DO directive enables you to specify which loops the compiler
should parallelize. This is semantically equivalent to:

Chapter 8. Parallel programming with XL Fortran 123

!$OMP PARALLEL
!$OMP DO
...
!$OMP ENDDO
!$OMP END PARALLEL

and is a convenient way of parallelizing loops. The END PARALLEL DO directive
allows you to indicate the end of a DO loop that is specified by the PARALLEL
DO directive.

The PARALLEL DO and END PARALLEL DO directives only take effect if you
specify the -qsmp compiler option.

Syntax

where parallel_do_clause is:

collapse_clause
See — “COLLAPSE” on page 156

copyin_clause
See — “COPYIN” on page 158

default_clause
See — “DEFAULT” on page 161

if_clause
See — “IF” on page 164.

►► ▼PARALLEL DO
parallel_do_clause

,

►◄

►► parallel_do_loop ►◄

►►
END PARALLEL DO

►◄

►► collapse_clause
copyin_clause
default_clause
firstprivate_clause
IF (scalar_logical_expr)
lastprivate_clause
num_threads_clause
ordered_clause
private_clause
reduction_clause
SCHEDULE (sched_type)

,n
shared_clause

►◄

124 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

firstprivate_clause
See — “FIRSTPRIVATE” on page 163.

lastprivate_clause
See — “LASTPRIVATE” on page 165.

num_threads_clause
See — “NUM_THREADS” on page 168.

ordered_clause
See — “ORDERED” on page 168

private_clause
See — “PRIVATE” on page 169

reduction_clause
See — “REDUCTION” on page 172

schedule_clause
See — “SCHEDULE” on page 175

shared_clause
See — “SHARED” on page 177

Rules

The first noncomment line (not including other directives) that is following the
PARALLEL DO directive must be a DO loop. This line cannot be an infinite DO
or DO WHILE loop. The PARALLEL DO directive applies only to the DO loop
that is immediately following the directive, and not to any nested DO loops,
unless the COLLAPSE clause is specified.

If you specify a DO loop by a PARALLEL DO directive, the END PARALLEL DO
directive is optional. If you use the END PARALLEL DO directive, it must
immediately follow the end of the DO loop.

You may have a DO construct that contains several DO statements. If the DO
statements share the same DO termination statement, and an END PARALLEL
DO directive follows the construct, you can only specify a PARALLEL DO
directive for the outermost DO statement of the construct.

You must not follow the PARALLEL DO directive by a DO (work-sharing) or DO
SERIAL directive. You can specify only one PARALLEL DO directive for a given
DO loop.

All work-sharing constructs and BARRIER directives that are encountered must be
encountered in the same order by all threads in the team.

The PARALLEL DO directive must not appear with the INDEPENDENT directive
for a given DO loop.

Note: You should use the PARALLEL DO directive for maximum portability
across multiple vendors. The PARALLEL DO directive is a prescriptive directive,
while the INDEPENDENT directive is an assertion about the characteristics of the
loop. (See the INDEPENDENT directive in the XL Fortran Language Reference for
more information.)

The IF clause may appear at most once in a PARALLEL DO directive.

Chapter 8. Parallel programming with XL Fortran 125

An IF expression is evaluated outside of the context of the parallel construct. Any
function reference in the IF expression must not have side effects.

By default, a nested parallel loop is serialized, regardless of the setting of the IF
clause. You can change this default by using the -qsmp=nested_par compiler
option.

If the REDUCTION variable of an inner DO loop appears in the PRIVATE or
LASTPRIVATE clause of an enclosing DO loop or PARALLEL SECTIONS
construct, the variable must be initialized before the inner DO loop.

A variable that appears in the REDUCTION clause of an INDEPENDENT
directive of an enclosing DO loop must not also appear in the data_scope_entity_list
of the PRIVATE or LASTPRIVATE clause.

Within a PARALLEL DO construct, variables that do not appear in the PRIVATE
clause are assumed to be shared by default.

You should be careful when you perform input/output operations in a parallel
region. If multiple threads execute a Fortran I/O statement on the same unit, you
should make sure that the threads are synchronized. If you do not, the behavior is
undefined. Also note that although in the XL Fortran implementation each thread
has exclusive access to the I/O unit, the OpenMP specification does not require
exclusive access.

Directives that bind to a parallel region will bind to that parallel region even if it is
serialized.

The END PARALLEL DO directive implies the FLUSH directive without the
variable_name_list and a BARRIER directive.

Examples

Example 1: A valid example with the LASTPRIVATE clause.
!$OMP PARALLEL DO PRIVATE(I), LASTPRIVATE (X)

DO I = 1,10
X = I * I
A(I) = X * B(I)

END DO
PRINT *, X ! X has the value 100

Example 2: A valid example with the REDUCTION clause.
!$OMP PARALLEL DO PRIVATE(I), REDUCTION(+:MYSUM)

DO I = 1, 10
MYSUM = MYSUM + IARR(I)

END DO

Example 3: A valid example where more than one thread accesses a variable that is
marked as SHARED, but the variable is used only in a CRITICAL construct.
!$OMP PARALLEL DO SHARED (X)

DO I = 1, 10
A(I) = A(I) * I

!$OMP CRITICAL
X = X + A(I)

!$OMP END CRITICAL
END DO

Example 4: A valid example of the END PARALLEL DO directive.

126 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

REAL A(100), B(2:100), C(100)
!$OMP PARALLEL DO

DO I = 2, 100
B(I) = (A(I) + A(I-1))/2.0

END DO
!$OMP END PARALLEL DO
!$OMP PARALLEL DO

DO J = 1, 100
C(J) = X + COS(J*5.5)

END DO
!$OMP END PARALLEL DO

END

Related reference:
“COLLAPSE” on page 156

See -qdirective in the Compiler Reference

See -qsmp in the Compiler Reference

See DO in the Language Reference
“DO / END DO” on page 111

See INDEPENDENT in the Language Reference
“ORDERED / END ORDERED” on page 119
“PARALLEL / END PARALLEL” on page 121
“PARALLEL SECTIONS / END PARALLEL SECTIONS”
“SCHEDULE” on page 130
“THREADPRIVATE” on page 145

PARALLEL SECTIONS / END PARALLEL SECTIONS
Purpose

The PARALLEL SECTIONS construct provides a short form method for including
SECTIONS directive inside a PARALLEL construct.

The PARALLEL SECTIONS, SECTION and END PARALLEL SECTIONS
directives only take effect if you specify the -qsmp compiler option.

Chapter 8. Parallel programming with XL Fortran 127

Syntax

where parallel_sections_clause is:

copyin clause
See — “COPYIN” on page 158

default clause
See — “DEFAULT” on page 161

firstprivate clause
See — “FIRSTPRIVATE” on page 163.

if clause
See — “IF” on page 164

lastprivate clause
See — “LASTPRIVATE” on page 165.

num_threads clause
See — “NUM_THREADS” on page 168.

private clause
See — “PRIVATE” on page 169.

proc_bind clause
See — “PROC_BIND” on page 171.

reduction clause
See — “REDUCTION” on page 172

►► ▼PARALLEL SECTIONS
parallel_sections_clause

,

►◄

►► ▼block
SECTION SECTION block

►◄

►► END PARALLEL SECTIONS ►◄

►► copyin
default
firstprivate
if
lastprivate
num_threads
private
proc_bind
reduction
shared

►◄

128 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

shared clause
See — “SHARED” on page 177

Rules

See the Rules section in “SECTIONS / END SECTIONS” on page 133.

In a PARALLEL SECTIONS construct, a variable that appears in the
REDUCTION clause of an INDEPENDENT directive or the PARALLEL DO
directive of an enclosing DO loop must not also appear in the data_scope_entity_list
of the PRIVATE clause.

If the REDUCTION variable of the inner PARALLEL SECTIONS construct
appears in the PRIVATE clause of an enclosing DO loop or PARALLEL
SECTIONS construct, the variable must be initialized before the inner PARALLEL
SECTIONS construct.

Examples

Example 1:
!$OMP PARALLEL SECTIONS
!$OMP SECTION

DO I = 1, 10
C(I) = MAX(A(I),A(I+1))

END DO
!$OMP SECTION

W = U + V
Z = X + Y

!$OMP END PARALLEL SECTIONS

Example 2: In this example, the index variable I is declared as PRIVATE. Note also
that the first optional SECTION directive has been omitted.
!$OMP PARALLEL SECTIONS PRIVATE(I)

DO I = 1, 100
A(I) = A(I) * I

END DO
!$OMP SECTION

CALL NORMALIZE (B)
DO I = 1, 100

B(I) = B(I) + 1.0
END DO

!$OMP SECTION
DO I = 1, 100

C(I) = C(I) * C(I)
END DO

!$OMP END PARALLEL SECTIONS

Related reference:
“PARALLEL / END PARALLEL” on page 121
“SECTIONS / END SECTIONS” on page 133

See INDEPENDENT in the Language Reference

See -qdirective in the Compiler Reference

See -qsmp in the Compiler Reference

Chapter 8. Parallel programming with XL Fortran 129

PARALLEL WORKSHARE / END PARALLEL WORKSHARE
Purpose

The PARALLEL WORKSHARE construct provides a short form method for
including a WORKSHARE directive inside a PARALLEL construct.

The PARALLEL WORKSHARE / END PARALLEL WORKSHARE directives only
take effect if you specify the -qsmp compiler option

Syntax

where parallel_workshare_clause is any of the directives accepted by either the
PARALLEL or WORKSHARE directives.
Related reference:
“PARALLEL / END PARALLEL” on page 121
“WORKSHARE / END WORKSHARE” on page 151

SCHEDULE
Purpose

Note: The SCHEDULE directive has been deprecated and might be removed in a
future release. Use the corresponding OpenMP SCHEDULE clause. For more
information about the deprecated SMP directives and deprecation examples, see
“Deprecated directive” on page 101.

The SCHEDULE directive allows the user to specify the chunking method for
parallelization. Work is assigned to threads in different manners depending on the
scheduling type or chunk size used.

The SCHEDULE directive only takes effect if you specify the -qsmp compiler
option.

Syntax

n n must be a positive, specification expression. You must not specify n for
the sched_type RUNTIME.

►► ▼PARALLEL WORKSHARE
parallel_workshare_clause

,

►◄

►► block ►◄

►► END PARALLEL WORKSHARE ►◄

►► SCHEDULE (sched_type)
, n

►◄

130 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

sched_type
is AFFINITY, DYNAMIC, GUIDED, RUNTIME, or STATIC

For more information on sched_type parameters, see the SCHEDULE clause.

number_of_iterations
is the number of iterations in the loop to be parallelized.

number_of_threads
is the number of threads used by the program.

Rules

The SCHEDULE directive must appear in the specification part of a scoping unit.

Only one SCHEDULE directive may appear in the specification part of a scoping
unit.

The SCHEDULE directive applies to the situation when all loops in the scoping
unit do not already have explicit scheduling types specified. Individual loops can
have scheduling types specified using the SCHEDULE clause of the PARALLEL
DO directive.

Any dummy arguments appearing or referenced in the specification expression for
the chunk size n must also appear in the SUBROUTINE or FUNCTION statement
and in all ENTRY statements appearing in the given subprogram.

If the specified chunk size n is greater than the number of iterations, the loop will
not be parallelized and will execute on a single thread.

If you specify more than one method of determining the chunking algorithm, the
compiler will follow, in order of precedence:
1. SCHEDULE clause to the PARALLEL DO directive.
2. SCHEDULE directive.
3. schedule suboption to the -qsmp compiler option. See the -qsmp option in the

XL Fortran Compiler Reference.
4. XLSMPOPTS runtime option. See “XLSMPOPTS” on page 80.
5. runtime default (that is, STATIC).

Examples

Example 1. Given the following information:
number of iterations = 1000
number of threads = 4

and using the GUIDED scheduling type, the chunk sizes would be as follows:
250 188 141 106 79 59 45 33 25 19 14 11 8 6 4 3 3 2 1 1 1 1

The iterations would then be divided into the following chunks:
chunk 1 = iterations 1 to 250
chunk 2 = iterations 251 to 438
chunk 3 = iterations 439 to 579
chunk 4 = iterations 580 to 685
chunk 5 = iterations 686 to 764
chunk 6 = iterations 765 to 823
chunk 7 = iterations 824 to 868
chunk 8 = iterations 869 to 901

Chapter 8. Parallel programming with XL Fortran 131

chunk 9 = iterations 902 to 926
chunk 10 = iterations 927 to 945
chunk 11 = iterations 946 to 959
chunk 12 = iterations 960 to 970
chunk 13 = iterations 971 to 978
chunk 14 = iterations 979 to 984
chunk 15 = iterations 985 to 988
chunk 16 = iterations 989 to 991
chunk 17 = iterations 992 to 994
chunk 18 = iterations 995 to 996
chunk 19 = iterations 997 to 997
chunk 20 = iterations 998 to 998
chunk 21 = iterations 999 to 999
chunk 22 = iterations 1000 to 1000

A possible scenario for the division of work could be:
thread 1 executes chunks 1 5 10 13 18 20
thread 2 executes chunks 2 7 9 14 16 22
thread 3 executes chunks 3 6 12 15 19
thread 4 executes chunks 4 8 11 17 21

Example 2. Given the following information:
number of iterations = 100
number of threads = 4

and using the AFFINITY scheduling type, the iterations would be divided into the
following partitions:
partition 1 = iterations 1 to 25
partition 2 = iterations 26 to 50
partition 3 = iterations 51 to 75
partition 4 = iterations 76 to 100

The partitions would be divided into the following chunks:
chunk 1a = iterations 1 to 13
chunk 1b = iterations 14 to 19
chunk 1c = iterations 20 to 22
chunk 1d = iterations 23 to 24
chunk 1e = iterations 25 to 25

chunk 2a = iterations 26 to 38
chunk 2b = iterations 39 to 44
chunk 2c = iterations 45 to 47
chunk 2d = iterations 48 to 49
chunk 2e = iterations 50 to 50

chunk 3a = iterations 51 to 63
chunk 3b = iterations 64 to 69
chunk 3c = iterations 70 to 72
chunk 3d = iterations 73 to 74
chunk 3e = iterations 75 to 75

chunk 4a = iterations 76 to 88
chunk 4b = iterations 89 to 94
chunk 4c = iterations 95 to 97
chunk 4d = iterations 98 to 99
chunk 4e = iterations 100 to 100

A possible scenario for the division of work could be:
thread 1 executes chunks 1a 1b 1c 1d 1e 4d
thread 2 executes chunks 2a 2b 2c 2d
thread 3 executes chunks 3a 3b 3c 3d 3e 2e
thread 4 executes chunks 4a 4b 4c 4e

132 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

In this scenario, thread 1 finished executing all the chunks in its partition and then
grabbed an available chunk from the partition of thread 4. Similarly, thread 3
finished executing all the chunks in its partition and then grabbed an available
chunk from the partition of thread 2.

Example 3. Given the following information:
number of iterations = 1000
number of threads = 4

and using the DYNAMIC scheduling type and chunk size of 100, the chunk sizes
would be as follows:
100 100 100 100 100 100 100 100 100 100

The iterations would be divided into the following chunks:
chunk 1 = iterations 1 to 100
chunk 2 = iterations 101 to 200
chunk 3 = iterations 201 to 300
chunk 4 = iterations 301 to 400
chunk 5 = iterations 401 to 500
chunk 6 = iterations 501 to 600
chunk 7 = iterations 601 to 700
chunk 8 = iterations 701 to 800
chunk 9 = iterations 801 to 900
chunk 10 = iterations 901 to 1000

A possible scenario for the division of work could be:
thread 1 executes chunks 1 5 9
thread 2 executes chunks 2 8
thread 3 executes chunks 3 6 10
thread 4 executes chunks 4 7

Example 4. Given the following information:
number of iterations = 100
number of threads = 4

and using the STATIC scheduling type, the iterations would be divided into the
following chunks:
chunk 1 = iterations 1 to 25
chunk 2 = iterations 26 to 50
chunk 3 = iterations 51 to 75
chunk 4 = iterations 76 to 100

A possible scenario for the division of work could be:
thread 1 executes chunks 1
thread 2 executes chunks 2
thread 3 executes chunks 3
thread 4 executes chunks 4

Related reference:

See DO in the Language Reference

SECTIONS / END SECTIONS
Purpose

The SECTIONS construct defines distinct blocks of code to be executed in parallel
by threads in the team.

Chapter 8. Parallel programming with XL Fortran 133

The SECTIONS and END SECTIONS directives only take effect if you specify the
-qsmp compiler option.

Syntax

where sections_clause is:

firstprivate_clause
See — “FIRSTPRIVATE” on page 163.

lastprivate_clause
See — “LASTPRIVATE” on page 165.

private_clause
See — “PRIVATE” on page 169.

reduction_clause
See — “REDUCTION” on page 172

Rules

The SECTIONS construct must be encountered by all threads in a team or by none
of the threads in a team. All work-sharing constructs and BARRIER directives that
are encountered must be encountered in the same order by all threads in the team.

The SECTIONS construct includes the delimiting directives, and the blocks of code
they enclose. At least one block of code must appear in the construct.

You must specify the SECTION directive at the beginning of each block of code
except for the first. The end of a block is delimited by either another SECTION
directive or by the END SECTIONS directive.

►► ▼SECTIONS
sections_clause

,

►◄

►► ▼block
SECTION SECTION block

►◄

►► END SECTIONS
NOWAIT

►◄

►► firstprivate_clause
lastprivate_clause
private_clause
reduction_clause

►◄

134 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

It is illegal to branch into or out of any block of code that is enclosed in the
SECTIONS construct. All SECTION directives must appear within the lexical
extent of the SECTIONS/END SECTIONS directive pair.

The scheduling of structured blocks among threads in the team is set so that the
first thread arriving is the first thread to execute the block. The compiler
determines how to divide the work among the threads based on a number of
factors, such as the number of threads in the team and the number of sections to
be executed in parallel. In a SECTIONS construct, a single thread might execute
more than one SECTION. It is also possible that a thread in the team might not
execute any SECTION.

In order for the directive to execute in parallel, you must place the
SECTIONS/END SECTIONS pair within a parallel region. Otherwise, the blocks
will be executed serially.

If you specify NOWAIT on the SECTIONS directive, a thread that completes its
sections early will proceed to the instructions following the SECTIONS construct.
If you do not specify the NOWAIT clause, each thread will wait for all of the other
threads in the same team to reach the END SECTIONS directive. However, there
is no implied BARRIER at the start of the SECTIONS construct.

You cannot specify a SECTIONS directive within the dynamic extent of a
CRITICAL, MASTER, ORDERED, or TASK directive.

You cannot nest SECTIONS, DO or SINGLE directives that bind to the same
PARALLEL directive.

BARRIER and MASTER directives are not permitted in the dynamic extent of a
SECTIONS directive.

The END SECTIONS directive implies the FLUSH directive.

Examples

Example 1: This example shows a valid use of the SECTIONS construct within a
PARALLEL region.

INTEGER :: I, B(500), S, SUM
! ...

S = 0
SUM = 0

!$OMP PARALLEL SHARED(SUM), FIRSTPRIVATE(S)
!$OMP SECTIONS REDUCTION(+: SUM), LASTPRIVATE(I)
!$OMP SECTION

S = FCT1(B(1::2)) ! Array B is not altered in FCT1.
SUM = SUM + S

! ...
!$OMP SECTION

S = FCT2(B(2::2)) ! Array B is not altered in FCT2.
SUM = SUM + S

! ...
!$OMP SECTION

DO I = 1, 500 ! The local copy of S is initialized
S = S + B(I) ! to zero.

END DO
SUM = SUM + S

! ...
!$OMP END SECTIONS
! ...

Chapter 8. Parallel programming with XL Fortran 135

!$OMP DO REDUCTION(-: SUM)
DO J=I-1, 1, -1 ! The loop starts at 500 -- the last

! value from the previous loop.
SUM = SUM - B(J)

END DO

!$OMP MASTER
SUM = SUM - FCT1(B(1::2)) - FCT2(B(2::2))

!$OMP END MASTER
!$OMP END PARALLEL
! ...

! Upon termination of the PARALLEL
! region, the value of SUM remains zero.

Example 2: This example shows a valid use of nested SECTIONS.
!$OMP PARALLEL
!$OMP MASTER

CALL RANDOM_NUMBER(CX)
CALL RANDOM_NUMBER(CY)
CALL RANDOM_NUMBER(CZ)

!$OMP END MASTER

!$OMP SECTIONS
!$OMP SECTION
!$OMP PARALLEL
!$OMP SECTIONS PRIVATE(I)
!$OMP SECTION

DO I=1, 5000
X(I) = X(I) + CX

END DO
!$OMP SECTION

DO I=1, 5000
Y(I) = Y(I) + CY

END DO
!$OMP END SECTIONS
!$OMP END PARALLEL

!$OMP SECTION
!$OMP PARALLEL SHARED(CZ,Z)
!$OMP DO

DO I=1, 5000
Z(I) = Z(I) + CZ

END DO
!$OMP END DO
!$OMP END PARALLEL
!$OMP END SECTIONS NOWAIT

! The following computations do not
! depend on the results from the
! previous section.

!$OMP DO
DO I=1, 5000
T(I) = T(I) * CT

END DO
!$OMP END DO
!$OMP END PARALLEL

Related reference:
“PARALLEL / END PARALLEL” on page 121
“BARRIER” on page 108
“PARALLEL DO / END PARALLEL DO” on page 123

See INDEPENDENT in the Language Reference
“THREADPRIVATE” on page 145

136 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

See -qdirective in the Compiler Reference

See -qsmp in the Compiler Reference

SINGLE / END SINGLE
Purpose

You can use the SINGLE / END SINGLE directive construct to specify that the
enclosed code should only be executed by one thread in the team.

The SINGLE directive only takes effect if you specify the –qsmp compiler option.

Syntax

where single_clause is:

private_clause
See — “PRIVATE” on page 169.

firstprivate_clause
See — “FIRSTPRIVATE” on page 163.

where end_single_clause is:

NOWAIT

copyprivate_clause
See — “COPYPRIVATE” on page 160.

►► ▼SINGLE
single_clause

,

►◄

►► block ►◄

►► END SINGLE
NOWAIT
end_single_clause

►◄

►► private_clause
firstprivate_clause

►◄

►► ▼ copyprivate_clause
,

►◄

Chapter 8. Parallel programming with XL Fortran 137

Rules

It is illegal to branch into or out of a block that is enclosed within the SINGLE
construct.

The SINGLE construct must be encountered by all threads in a team or by none of
the threads in a team. The first thread to encounter the SINGLE construct will
execute it. All work-sharing constructs and BARRIER directives that are
encountered must be encountered in the same order by all threads in the team.

If you specify NOWAIT on the END SINGLE directive, the threads that are not
executing the SINGLE construct will proceed to the instructions following the
SINGLE construct. If you do not specify the NOWAIT clause, each thread will
wait at the END SINGLE directive until the thread executing the construct reaches
the END SINGLE directive. You may not specify NOWAIT and COPYPRIVATE as
part of the same END SINGLE directive.

There is no implied BARRIER at the start of the SINGLE construct. If you do not
specify the NOWAIT clause, the BARRIER directive is implied at the END
SINGLE directive.

You cannot nest work-sharing constructs inside one another if they bind to the
same PARALLEL directive.

SINGLE directives are not permitted within the CRITICAL, MASTER,
ORDERED, or TASK regions. BARRIER and MASTER directives are not
permitted within the SINGLE regions.

If you have specified a variable as PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION in the PARALLEL construct which encloses your SINGLE construct,
you cannot specify the same variable in the PRIVATE or FIRSTPRIVATE clause of
the SINGLE construct.

The SINGLE directive binds to the closest enclosing PARALLEL region, if one
exists.

Examples

Example 1: In this example, the BARRIER directive is used to ensure that all
threads finish their work before entering the SINGLE construct.

REAL :: X(100), Y(50)
! ...
!$OMP PARALLEL DEFAULT(SHARED)

CALL WORK(X)

!$OMP BARRIER
!$OMP SINGLE

CALL OUTPUT(X)
CALL INPUT(Y)

!$OMP END SINGLE

CALL WORK(Y)
!$OMP END PARALLEL

Example 2: In this example, the SINGLE construct ensures that only one thread is
executing a block of code. In this case, array B is initialized in the DO
(work-sharing) construct. After the initialization, a single thread is employed to
perform the summation.

138 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

INTEGER :: I, J
REAL :: B(500,500), SM

! ...

J = ...
SM = 0.0

!$OMP PARALLEL
!$OMP DO PRIVATE(I)

DO I=1, 500
CALL INITARR(B(I,:), I) ! initialize the array B

ENDDO
!$OMP END DO

!$OMP SINGLE ! employ only one thread
DO I=1, 500
SM = SM + SUM(B(J:J+1,I))

ENDDO
!$OMP END SINGLE

!$OMP DO PRIVATE(I)
DO I=500, 1, -1
CALL INITARR(B(I,:), 501-I) ! re-initialize the array B

ENDDO
!$OMP END PARALLEL

Example 3: This example shows a valid use of the PRIVATE clause. Array X is
PRIVATE to the SINGLE construct. If you were to reference array X immediately
following the construct, it would be undefined.

REAL :: X(2000), A(1000), B(1000)

!$OMP PARALLEL
! ...
!$OMP SINGLE PRIVATE(X)

CALL READ_IN_DATA(X)
A = X(1::2)
B = X(2::2)

!$OMP END SINGLE
! ...
!$OMP END PARALLEL

Example 4: In this example, the LASTPRIVATE variable I is used in allocating
TMP, the PRIVATE variable in the SINGLE construct.

SUBROUTINE ADD(A, UPPERBOUND)
INTEGER :: A(UPPERBOUND), I, UPPERBOUND
INTEGER, ALLOCATABLE :: TMP(:)

! ...
!$OMP PARALLEL
!$OMP DO LASTPRIVATE(I)

DO I=1, UPPERBOUND
A(I) = I + 1

ENDDO
!$OMP END DO

!$OMP SINGLE FIRSTPRIVATE(I), PRIVATE(TMP)
ALLOCATE(TMP(0:I-1))
TMP = (/ (A(J),J=I,1,-1) /)

! ...
DEALLOCATE(TMP)

!$OMP END SINGLE
!$OMP END PARALLEL
! ...

END SUBROUTINE ADD

Chapter 8. Parallel programming with XL Fortran 139

Example 5: In this example, a value for the variable I is entered by the user. This
value is then copied into the corresponding variable I for all other threads in the
team using a COPYPRIVATE clause on an END SINGLE directive.

INTEGER I
!$OMP PARALLEL PRIVATE (I)
! ...
!$OMP SINGLE

READ (*, *) I
!$OMP END SINGLE COPYPRIVATE (I) ! In all threads in the team, I

! is equal to the value
! ... ! that you entered.
!$OMP END PARALLEL

Example 6: In this example, variable J with a POINTER attribute is specified in a
COPYPRIVATE clause on an END SINGLE directive. The value of J, not the value
of the object that it points to, is copied into the corresponding variable J for all
other threads in the team. The object itself is shared among all the threads in the
team.

INTEGER, POINTER :: J
!$OMP PARALLEL PRIVATE (J)
! ...
!$OMP SINGLE

ALLOCATE (J)
READ (*, *) J

!$OMP END SINGLE COPYPRIVATE (J)
!$OMP ATOMIC

J = J + OMP_GET_THREAD_NUM()
!$OMP BARRIER
!$OMP SINGLE

WRITE (*, *) ’J = ’, J ! The result is the sum of all values added to
! J. This result shows that the pointer object
! is shared by all threads in the team.

DEALLOCATE (J)
!$OMP END SINGLE
!$OMP END PARALLEL

Related reference:
“BARRIER” on page 108
“CRITICAL / END CRITICAL” on page 109
“FLUSH” on page 115
“MASTER / END MASTER” on page 117
“PARALLEL / END PARALLEL” on page 121

TASK / END TASK
Purpose

The TASK directive instructs the compiler to run a block of code in parallel with
the code outside the task region. The TASK directive can be useful for parallelizing
irregular algorithms such as pointer chasing or recursive algorithms. The TASK
directive takes effect only if you specify the -qsmp compiler option.

140 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Syntax

where task_clause is:

default_clause
See “DEFAULT” on page 161.

final_clause
See “FINAL” on page 163.

firstprivate_clause
See “FIRSTPRIVATE” on page 163.

if_clause
See “IF” on page 164.

mergeable_clause
See “MERGEABLE” on page 167.

private_clause
See “PRIVATE” on page 169.

shared_clause
See “SHARED” on page 177.

untied_clause
See “UNTIED” on page 179.

Rules

A final task is a task that makes all its child tasks become final and included tasks.
A final task is generated when either of the following conditions is true:
v A FINAL clause is specified on a task construct and the FINAL clause

expression evaluates to .TRUE..

►►

▼

TASK
,

task_clause

►◄

►► block ►◄

►► END TASK ►◄

►► default_clause
final_clause
firstprivate_clause
if_clause
mergeable_clause
private_clause
shared_clause
untied_clause

►◄

Chapter 8. Parallel programming with XL Fortran 141

v The generated task is a child task of a final task.

An undeferred task is a task whose execution is not deferred with respect to its
generating task region. In other words, the generating task region is suspended
until the undeferred task has finished running. An undeferred task is generated
when an IF clause is specified on a task construct and the IF clause expression
evaluates to .FALSE..

An included task is a task whose execution is sequentially included in the
generating task region. In other words, an included task is undeferred and
executed immediately by the encountering thread. An included task is generated
when the generated task is a child task of a final task.

A merged task is a task that has the same data environment as that of its
generating task region. A merged task might be generated when both the following
conditions are true:
v A MERGEABLE clause is specified on a task construct.
v The generated task is an undeferred task or an included task.

The following rules are true if no DEFAULT clause is specified with the enclosing
TASK construct:
v If the enclosing TASK construct is not lexically enclosed by a parallel region,

dummy arguments that do not appear in any PRIVATE, FIRSTPRIVATE,
LASTPRIVATE, or SHARED clause of the enclosing TASK construct are
firstprivate.

v A variable that is private in the innermost enclosing parallel construct is
firstprivate in the TASK construct.

v Local variables of a routine are firstprivate if there is no enclosing parallel
construct.

v A variable that is determined to be shared in all of the enclosing constructs, up
to and including the innermost enclosing parallel construct, is shared.

The IF clause expression and the FINAL clause expression are evaluated outside of
the task construct, and the evaluation order is not specified.
Related reference:
“FINAL” on page 163
“FIRSTPRIVATE” on page 163
“IF” on page 164
“MERGEABLE” on page 167
“DEFAULT” on page 161
“PRIVATE” on page 169
“SHARED” on page 177
“TASKWAIT”
“UNTIED” on page 179

TASKWAIT
Purpose

The TASKWAIT directive specifies a wait for child tasks to be completed that are
generated by the current task.

142 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Syntax

Related reference:
“TASK / END TASK” on page 140

TASKYIELD
Purpose

The TASKYIELD directive instructs the compiler that it can suspend the current
task in favor of running a different task. The TASKYIELD region includes an
explicit task scheduling point in the current task region.

Syntax

THREADLOCAL
Purpose

You can use the THREADLOCAL directive to declare thread-specific common
data. It is a possible method of ensuring that access to data that is contained
within COMMON blocks is serialized.

In order to make use of this directive it is not necessary to specify the -qsmp
compiler option, but the invocation command must be xlf_r, xlf90_r, xlf95_r,
xlf2003_r, or xlf2008_r to link the necessary libraries.

Syntax

Rules

You can only declare named blocks as THREADLOCAL. All rules and constraints
that normally apply to named common blocks apply to common blocks that are
declared as THREADLOCAL. See the COMMON statement in the XL Fortran
Language Reference for more information on the rules and constraints that apply to
named common blocks.

The THREADLOCAL directive must appear in the specification_part of the scoping
unit. If a common block appears in a THREADLOCAL directive, it must also be

►► TASKWAIT ►◄

►► TASKYIELD ►◄

►► ▼

,

THREADLOCAL / common_block_name /
::

►◄

Chapter 8. Parallel programming with XL Fortran 143

declared within a COMMON statement in the same scoping unit. The
THREADLOCAL directive may occur before or after the COMMON statement.
See Main program in the XL Fortran Language Reference for more information on the
specification_part of the scoping unit.

A common block cannot be given the THREADLOCAL attribute if it is declared
within a PURE subprogram.

Members of a THREADLOCAL common block must not appear in NAMELIST
statements.

A common block that is use-associated must not be declared as THREADLOCAL
in the scoping unit that contains the USE statement.

Any pointers declared in a THREADLOCAL common block are not affected by the
-qinit=f90ptr compiler option.

Objects within THREADLOCAL common blocks may be used in parallel loops
and parallel sections. However, these objects are implicitly shared across the
iterations of the loop, and across code blocks within parallel sections. In other
words, within a scoping unit, all accessible common blocks, whether declared as
THREADLOCAL or not, have the SHARED attribute within parallel loops and
sections in that scoping unit.

If a common block is declared as THREADLOCAL within a scoping unit, any
subprogram that declares or references the common block, and that is directly or
indirectly referenced by the scoping unit, must be executed by the same thread
executing the scoping unit. If two procedures that declare common blocks are
executed by different threads, then they would obtain different copies of the
common block, provided that the common block had been declared
THREADLOCAL. Threads can be created in one of the following ways:
v Explicitly, via pthreads library calls
v Implicitly by the compiler for parallel loop execution
v Implicitly by the compiler for parallel section execution.

If a common block is declared to be THREADLOCAL in one scoping unit, it must
be declared to be THREADLOCAL in every scoping unit that declares the
common block.

If a THREADLOCAL common block that does not have the SAVE attribute is
declared within a subprogram, the members of the block become undefined at
subprogram RETURN or END, unless there is at least one other scoping unit in
which the common block is accessible that is making a direct or indirect reference
to the subprogram.

You cannot specify the same common_block_name for both a THREADLOCAL
directive and a THREADPRIVATE directive.

Example 1: The following procedure "FORT_SUB" is invoked by two threads:
SUBROUTINE FORT_SUB(IARG)

INTEGER IARG

CALL LIBRARY_ROUTINE1()
CALL LIBRARY_ROUTINE2()
...

END SUBROUTINE FORT_SUB

144 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

SUBROUTINE LIBRARY_ROUTINE1()
COMMON /BLOCK/ R ! The SAVE attribute is required for the
SAVE /BLOCK/ ! common block because the program requires

! that the block remain defined after
!IBM* THREADLOCAL /BLOCK/ ! library_routine1 is invoked.
R = 1.0
...

END SUBROUTINE LIBRARY_ROUTINE1

SUBROUTINE LIBRARY_ROUTINE2()
COMMON /BLOCK/ R
SAVE /BLOCK/
!IBM* THREADLOCAL /BLOCK/

... = R

...
END SUBROUTINE LIBRARY_ROUTINE2

Example 2: "FORT_SUB" is invoked by multiple threads. This is an invalid example
because "FORT_SUB" and "ANOTHER_SUB" both declare /BLOCK/ to be
THREADLOCAL. They intend to share the common block, but they are executed
by different threads.
SUBROUTINE FORT_SUB()

COMMON /BLOCK/ J
INTEGER :: J
!IBM* THREADLOCAL /BLOCK/ ! Each thread executing FORT_SUB

! obtains its own copy of /BLOCK/
INTEGER A(10)

...
!IBM* INDEPENDENT
DO INDEX = 1,10
CALL ANOTHER_SUB(A(I))

END DO
...

END SUBROUTINE FORT_SUB

SUBROUTINE ANOTHER_SUB(AA) ! Multiple threads are used to execute ANOTHER_SUB
INTEGER AA
COMMON /BLOCK/ J ! Each thread obtains a new copy of the
INTEGER :: J ! common block /BLOCK/
!IBM* THREADLOCAL /BLOCK/
...
AA = J ! The value of ’J’ is undefined.

END SUBROUTINE ANOTHER_SUB

Related reference:

See -qdirective in the Compiler Reference

See -qinit in the Compiler Reference

See COMMON in the Language Reference

See Main program in the Language Reference

THREADPRIVATE
Purpose

The THREADPRIVATE directive allows you to specify named common blocks and
named variables as private to a thread but global within that thread. Once you
declare a common block or variable THREADPRIVATE, each thread in the team
maintains a separate copy of that common block or variable. Data written to a

Chapter 8. Parallel programming with XL Fortran 145

THREADPRIVATE common block or variable remains private to that thread and
is not visible to other threads in the team.

In the serial and MASTER sections of a program, only the master thread's copy of
the named common block and variable is accessible.

Use the COPYIN clause on the PARALLEL, PARALLEL DO, PARALLEL
SECTIONS or PARALLEL WORKSHARE directives to specify that upon entry
into a parallel region, data in the master thread's copy of a named common block
or named variable is copied to each thread's private copy of that common block or
variable.

The THREADPRIVATE directive only takes effect if you specify the -qsmp
compiler option.

Syntax

common_block_name
is the name of a common block to be made private to a thread.

variable_name
is the name of a variable to be made private to a thread.

Rules

You cannot specify a THREADPRIVATE variable, common block, or the variables
that comprise that common block in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE,
SHARED, or REDUCTION clause.

A THREADPRIVATE variable must have the SAVE attribute. For variables or
common blocks declared in the scope of a module, the SAVE attribute is implied.
If you declare the variable outside of the scope of the module, the SAVE attribute
must be specified.

In THREADPRIVATE directives, you can only specify named variables and named
common blocks.

A variable can only appear in a THREADPRIVATE directive in the scope in which
it is declared, and a THREADPRIVATE variable or common block may only
appear once in a given scope. The variable must not be an element of a common
block, or be declared in an EQUIVALENCE statement.

►► THREADPRIVATE (threadprivate_entity_list) ►◄

where threadprivate_entity_list is:

►► ▼

,

variable_name
/ common_block_name /

►◄

146 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

You cannot specify the same common_block_name for both a THREADPRIVATE
directive and a THREADLOCAL directive.

All rules and constraints that apply to named common blocks also apply to
common blocks declared as THREADPRIVATE. See the COMMON statement in
the XL Fortran Language Reference.

If you declare a common block as THREADPRIVATE in one scoping unit, you
must declare it as THREADPRIVATE in all other scoping units in which it is
declared.

If you declare a THREADPRIVATE variable or a THREADPRIVATE common
block with the BIND attribute, you must specify the corresponding C entities in a
THREADPRIVATE directive in the C program. See Example 4 for the detailed
usage information.

On entry into any parallel region, a THREADPRIVATE variable, or a variable in a
THREADPRIVATE common block specified in a COPYIN clause is subject to the
criteria stated in the Rules section for the COPYIN clause.

On entry into the first parallel region of the program, THREADPRIVATE variables
or variables within a THREADPRIVATE common block not specified in a
COPYIN clause are subject to the following criteria:
v If the variable has the ALLOCATABLE attribute, the initial allocation status of

each copy of that variable is not currently allocated.
v If the variable has the POINTER attribute, and that pointer is disassociated

through either explicit or default initialization, the association status of each
copy of that variable is disassociated. Otherwise, the association status of the
pointer is undefined.

v If the variable has neither the ALLOCATABLE nor the POINTER attribute and
is defined through either explicit or default initialization, then each copy of that
variable is defined. If the variable is undefined, then each copy of that variable
is undefined.

On entry into subsequent parallel regions of the program, THREADPRIVATE
variables, or variables within a THREADPRIVATE common block not specified in
a COPYIN clause, are subject to the following criteria:
v If you are using the OMP_DYNAMIC environment variable, or the

omp_set_dynamic subroutine to enable dynamic threads and:
– If the number of threads is smaller than the number of threads in the

previous region, and if a THREADPRIVATE object is referenced in both
regions, then threads with the same thread number in their respective regions
will reference the same copy of that variable.

– If the number of threads is larger than the number of threads in the previous
region, then the definition and association status of a THREADPRIVATE
object is undefined, and the allocation status is undefined.

v If dynamic threads are disabled, the definition, association, or allocation status
and definition, if the thread's copy of the variable was defined, is retained.

You cannot access the name of a common block by use association or host
association. Thus, a named common block can only appear on a
THREADPRIVATE directive if the common block is declared in the scoping unit
that contains the THREADPRIVATE directive. However, you can access the

Chapter 8. Parallel programming with XL Fortran 147

variables in the common block by use association or host association. For more
information, see Host and Use association in the XL Fortran Language Reference.

The -qinit=f90ptr compiler option does not affect pointers that you have declared
in a THREADPRIVATE common block.

The DEFAULT clause does not affect variables in THREADPRIVATE common
blocks.

Examples

Example 1: In this example, the PARALLEL DO directive invokes multiple threads
that call SUB1. The common block BLK in SUB1 shares the data that is specific to
the thread with subroutine SUB2, which is called by SUB1.

PROGRAM TT
INTEGER :: I, B(50)

!$OMP PARALLEL DO SCHEDULE(STATIC, 10)
DO I=1, 50

CALL SUB1(I, B(I)) ! Multiple threads call SUB1.
ENDDO

END PROGRAM TT

SUBROUTINE SUB1(J, X)
INTEGER :: J, X, A(100)
COMMON /BLK/ A

!$OMP THREADPRIVATE(/BLK/) ! Array a is private to each thread.
! ...

CALL SUB2(J)
X = A(J) + A(J + 50)

! ...
END SUBROUTINE SUB1

SUBROUTINE SUB2(K)
INTEGER :: C(100)
COMMON /BLK/ C

!$OMP THREADPRIVATE(/BLK/)
! ...

C = K
! ... ! Since each thread has its own copy of

! common block BLK, the assignment of
! array C has no effect on the copies of
! that block owned by other threads.

END SUBROUTINE SUB2

Example 2: In this example, each thread has its own copy of the common block
ARR in the parallel section. If one thread initializes the common block variable
TEMP, the initial value is not visible to other threads.

PROGRAM ABC
INTEGER :: I, TEMP(100), ARR1(50), ARR2(50)
COMMON /ARR/ TEMP

!$OMP THREADPRIVATE(/ARR/)
INTERFACE

SUBROUTINE SUBS(X)
INTEGER :: X(:)

END SUBROUTINE
END INTERFACE

! ...
!$OMP PARALLEL SECTIONS
!$OMP SECTION ! The thread has its own copy of the
! ... ! common block ARR.

TEMP(1:100:2) = -1
TEMP(2:100:2) = 2

148 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

CALL SUBS(ARR1)
! ...
!$OMP SECTION ! The thread has its own copy of the
! ... ! common block ARR.

TEMP(1:100:2) = 1
TEMP(2:100:2) = -2
CALL SUBS(ARR2)

! ...
!$OMP END PARALLEL SECTIONS
! ...

PRINT *, SUM(ARR1), SUM(ARR2)
END PROGRAM ABC

SUBROUTINE SUBS(X)
INTEGER :: K, X(:), TEMP(100)
COMMON /ARR/ TEMP

!$OMP THREADPRIVATE(/ARR/)
! ...

DO K = 1, UBOUND(X, 1)
X(K) = TEMP(K) + TEMP(K + 1) ! The thread is accessing its

! own copy of
! the common block.

ENDDO
! ...

END SUBROUTINE SUBS

The expected output for this program is:
50 -50

Example 3: In the following example, local variables outside of a common block
are declared as THREADPRIVATE.

MODULE MDL
INTEGER :: A(2)
INTEGER, POINTER :: P
INTEGER, TARGET :: T

!$OMP THREADPRIVATE(A, P)
END MODULE MDL

PROGRAM MVAR
USE OMP_LIB
USE MDL

INTEGER :: I

CALL OMP_SET_NUM_THREADS(2)
A = (/1, 2/)
T = 4
P => T

!$OMP PARALLEL PRIVATE(I) COPYIN(A, P)
I = OMP_GET_THREAD_NUM()
IF (I .EQ. 0) THEN
A(1) = 100
T = 5

ELSE IF (I .EQ. 1) THEN
A(2) = 200

END IF
!$OMP END PARALLEL

!$OMP PARALLEL PRIVATE(I)
I = OMP_GET_THREAD_NUM()
IF (I .EQ. 0) THEN
PRINT *, ’A(2) = ’, A(2)

ELSE IF (I .EQ. 1) THEN

Chapter 8. Parallel programming with XL Fortran 149

PRINT *, ’A(1) = ’, A(1)
PRINT *, ’P => ’, P

END IF
!$OMP END PARALLEL

END PROGRAM MVAR

If dynamic threads mechanism is disabled, the expected output is:
A(2) = 2
A(1) = 1
P => 5
or
A(1) = 1
P => 5
A(2) = 2

Example 4: In this example, the C interoperable variable NUMVAR is declared as
THREADPRIVATE. Changes made by thread 1 to the private copy of NUMVAR
does not affect the copy of the master thread.

Fortran source file
MODULE M
USE, INTRINSIC :: ISO_C_BINDING
INTEGER(C_INT), BIND(C) :: NUMVAR(10)

!$OMP THREADPRIVATE(NUMVAR)
END MODULE M

PROGRAM P
USE M
USE OMP_LIB
INTERFACE

SUBROUTINE INIT_NUM() BIND(C)
END SUBROUTINE INIT_NUM

SUBROUTINE PRINT_NUM() BIND(C)
END SUBROUTINE PRINT_NUM

END INTERFACE
INTEGER TNUM
CALL INIT_NUM()

CALL OMP_SET_NUM_THREADS(2)

!$OMP PARALLEL COPYIN(NUMVAR)
TNUM = OMP_GET_THREAD_NUM()
IF (TNUM .EQ. 0) THEN

! PROCESS NUMVAR
ELSE IF (TNUM .EQ. 1) THEN

NUMVAR = NUMVAR * 4
CALL PRINT_NUM()
! PROCESS NUMVAR

END IF
!$OMP END PARALLEL

CALL PRINT_NUM()
END PROGRAM P

Related reference:

See COMMON in the Language Reference
“OMP_DYNAMIC” on page 87
“omp_set_dynamic(enable_expr)” on page 197
“PARALLEL / END PARALLEL” on page 121
“PARALLEL DO / END PARALLEL DO” on page 123
“PARALLEL SECTIONS / END PARALLEL SECTIONS” on page 127

150 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

WORKSHARE / END WORKSHARE
Purpose

The WORKSHARE directive allows you to parallelize the execution of array
operations. A WORKSHARE directive divides the tasks associated with an
enclosed block of code into units of work. When a team of threads encounters a
WORKSHARE directive, the threads in the team share the tasks, so that each unit
of work executes exactly once.

The WORKSHARE directive only takes effect if you specify the -qsmp compiler
option.

Syntax

block is a structured block of statements that allows work sharing within the
lexical extent of the WORKSHARE construct. The execution of statements
are synchronized so that statements whose result is a dependent on
another statement are evaluated before that result is required. The block can
contain any of the following:
v Array assignment statements
v ATOMIC directives
v CRITICAL constructs
v FORALL constructs
v FORALL statements
v PARALLEL constructs
v PARALLEL DO constructs
v PARALLEL SECTION constructs
v PARALLEL WORKSHARE constructs
v Scalar assignment statements
v WHERE constructs
v WHERE statements

The transformational intrinsic functions you can use as part of an array
operation are:

v ALL
v ANY
v COUNT
v CSHIFT
v DOT_PRODUCT
v EOSHIFT

v MATMUL
v MAXLOC
v MAXVAL
v MINLOC
v MINVAL
v PACK

v PRODUCT
v RESHAPE
v SPREAD
v SUM
v TRANSPOSE
v UNPACK

►► WORKSHARE ►◄

►► block ►◄

►► END WORKSHARE
NOWAIT

►◄

Chapter 8. Parallel programming with XL Fortran 151

The block can also contain statements bound to lexically enclosed
PARALLEL constructs. These statements are not restricted.

Any user–defined function calls within the block must be elemental.

Statements enclosed in a WORKSHARE directive are divided into units of work.
The definition of a unit of work varies according to the statement evaluated. A unit
of work is defined as follows:
v Array expressions: Evaluation of each element of an array expression is a unit of

work. Any of the transformational intrinsic functions listed above may be
divided into any number of units of work.

v Assignment statements: In an array assignment statement, the assignment of
each element in the array is a unit of work. For scalar assignment statements, the
assignment operation is a unit of work.

v Constructs: Evaluation of each CRITICAL construct is a unit of work. Each
PARALLEL construct contained within a WORKSHARE construct is a single
unit of work. New teams of threads execute the statements contained within the
lexical extent of the enclosed PARALLEL constructs. In FORALL constructs or
statements, the evaluation of the mask expression, expressions occurring in the
specification of the iteration space, and the masked assignments are units of work.
In WHERE constructs or statements, the evaluation of the mask expression and
the masked assignments are units of work.

v Directives: The update of each scalar variable for an ATOMIC directive and its
assignments is a unit of work.

v ELEMENTAL functions: If the argument to an ELEMENTAL function is an
array, then the application of the function to each element of an array is a unit of
work.

If none of the above definitions apply to a statement within the block, then that
statement is a unit of work.

Rules

In order to ensure that the statements within a WORKSHARE construct execute in
parallel, the construct must be enclosed within a parallel region. Threads
encountering a WORKSHARE construct outside the dynamic extent of a parallel
region will evaluate the statements within the construct serially.

A WORKSHARE directive binds to the closest enclosing PARALLEL region if one
exists.

You must not nest work-sharing regions that bind to the same PARALLEL region.

You must not specify a WORKSHARE directive within the CRITICAL, MASTER,
or ORDERED regions.

You must not specify BARRIER, MASTER, or ORDERED directives within a
WORKSHARE region.

If an array assignment, scalar assignment, a masked array assignment or a
FORALL assignment assigns to a private variable in the block, the result is
undefined.

152 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

If an array expression in the block references the value, association status or
allocation status of private variables, the value of the expression is undefined
unless each thread computes the same value.

If you do not specify a NO WAIT clause at the end of a WORKSHARE construct,
a BARRIER directive is implied.

A WORKSHARE construct must be encountered by all threads in the team or by
none at all.

Examples

Example 1: In the following example, the WORKSHARE directive evaluates the
masked expressions in parallel.
!$OMP WORKSHARE

FORALL (I = 1 : N, AA(1, I) == 0) AA(1, I) = I
BB = TRANSPOSE(AA)
CC = MATMUL(AA, BB)

!$OMP ATOMIC
S = S + SUM(CC)

!$OMP END WORKSHARE

Example 2: The following example includes a user defined ELEMENTAL as part of
a WORKSHARE construct.
!$OMP WORKSHARE

WHERE (AA(1, :) /= 0.0) AA(1, :) = 1 / AA(1, :)
DD = TRANS(AA(1, :))

!$OMP END WORKSHARE

ELEMENTAL REAL FUNCTION TRANS(ELM) RESULT(RES)
REAL, INTENT(IN) :: ELM
RES = ELM * ELM + 4
END FUNCTION

Related reference:
“ATOMIC” on page 102
“BARRIER” on page 108
“CRITICAL / END CRITICAL” on page 109
“PARALLEL WORKSHARE / END PARALLEL WORKSHARE” on page 130

See -qsmp in the Compiler Reference

Data sharing attribute rules
The rules of data sharing attributes determine the attributes of variables that are
referenced in PARALLEL and TASK directives, and work-sharing regions.

Data sharing attribute rules for variables referenced in a
construct

The data sharing attributes of variables that are referenced in a construct can be
classified into the following categories:
v Predetermined data sharing attributes
v Explicitly determined data sharing attributes
v Implicitly determined data sharing attributes

Chapter 8. Parallel programming with XL Fortran 153

Specifying a variable in a FIRSTPRIVATE, LASTPRIVATE, or REDUCTION
clause of an enclosed construct initiates an implicit reference to the variable in the
enclosing construct. Such implicit references also follow the data sharing attribute
rules.

Some variables and objects have predetermined data sharing attributes as follows:
v Variables and common blocks specified in the THREADPRIVATE directive are

threadprivate.
v The loop iteration variables in the associated DO loops of a DO or PARALLEL

DO construct are private.
v Loop iteration variables for a sequential loop in a PARALLEL or TASK construct

are private in the innermost such construct that encloses the loop.
v Implied-DO indices and FORALL indices are private.
v Integer pointees inherit the data sharing attributes of the storage with which

their integer pointers are associated.
v Assumed-size arrays are shared.

Variables with predetermined data sharing attributes cannot be specified in data
sharing attribute clauses. However, in the following situations, specifying a
predetermined variable in a data sharing attribute clause is allowed and overrides
the variable's predetermined data sharing attributes.
v The loop iteration variables in the associated DO loops of a DO or PARALLEL

DO construct can be specified in a PRIVATE or LASTPRIVATE clause.
v Variables used as loop iteration variables in sequential loops within a

PARALLEL or TASK construct can be specified in data sharing clauses on the
construct itself, and on enclosed constructs, subject to other restrictions.

v Assumed-size arrays can be specified in a SHARED clause.

Variables that meet the following conditions have explicitly determined data
sharing attributes:
v The variables are referenced in a construct.
v The variables are specified in a data sharing attribute clause on the construct.

Variables that meet all the following conditions have implicitly determined data
sharing attributes:
v The variables are referenced in a construct.
v The variables do not have predetermined data sharing attributes.
v The variables are not specified in a data sharing attribute clause on the

construct.

Rules for variables that have implicitly determined data sharing attributes are as
follows:
v In a PARALLEL or TASK construct, the data sharing attributes of the variables

are determined by the DEFAULT clause, if present.
v In a PARALLEL construct, if no DEFAULT clause is present, the variables are

shared.
v For constructs other than TASK, if no DEFAULT clause is present, the variables

inherit their data sharing attributes from the enclosing context.
v In a TASK construct, if no DEFAULT clause is present, a variable that is

determined to be shared in the enclosing context by all implicit tasks bound to
the current team is shared.

154 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

v In an orphaned TASK construct, if no DEFAULT clause is present, dummy
arguments are firstprivate.

v In a TASK construct, if no DEFAULT clause is present, variables whose data
sharing attributes are not determined by the rules above are firstprivate.

Data sharing attribute rules for variables referenced in a region
but not in a construct

The data sharing attributes of variables that are referenced in a region, but not in a
construct, are determined as follows:
v For local variables declared in called routines in the region, if the variables have

the save attribute or are data initialized, then they are shared unless they are
specified in a THREADPRIVATE directive.

v Variables that belong to common blocks, or declared in modules, and referenced
in called procedures in the region are shared unless they are specified in a
THREADPRIVATE directive.

v Dummy arguments of called procedures in the region that are passed by
reference inherit the data sharing attributes of the associated actual argument.

v Integer pointees inherit the data sharing attribute of the storage with which their
integer pointers are associated.

v Implied-DO indices, FORALL indices, and other local variables declared in
procedures in the region are private.

Directive clauses
You can use directive clauses to specify additional information to directives.

Global rules for directive clauses

You must not specify a variable or common block name more than once in a
clause.

A variable, common block name, or variable name that is a member of a common
block must not appear in more than one clause on the same directive, with the
following exceptions:
v You can define a named common block or named variable as FIRSTPRIVATE

and LASTPRIVATE for the same directive.
v A variable appearing in a NUM_THREADS clause can appear in another clause

for the same directive.
v A variable appearing in a IF clause can appear in another clause for the same

directive.

If you do not specify a clause that changes the scope of a variable, the default
scope for variables affected by a directive is SHARED.

A local variable with the SAVE or STATIC attribute declared in a procedure
referenced a parallel region has an implicit SHARED attribute. A local variable
without the SAVE or STATIC attribute declared in a procedure referenced a
parallel region has an implicit PRIVATE attribute.

Members of common blocks and variables of modules declared in a procedure
referenced within the dynamic extent of a parallel region have an implicit
SHARED attribute, unless they are THREADLOCAL or THREADPRIVATE
common blocks and module variables.

Chapter 8. Parallel programming with XL Fortran 155

While a parallel or work-sharing construct is running, a variable or variable
subobject used in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE or REDUCTION
clause of the directive must not be referenced, become defined, become undefined,
have its association status or allocation status changed, or appear as an actual
argument:
v In a scoping unit other than the one in which the directive construct appears
v In a variable format expression

You can declare a variable as PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION, even if that variable is already storage associated with other
variables. Storage association may exist for variables declared in EQUIVALENCE
statements or in COMMON blocks. If a variable is storage associated with a
PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or REDUCTION variable, then:
v The contents, allocation status and association status of the variable that is

storage associated with the PRIVATE, FIRSTPRIVATE, LASTPRIVATE or
REDUCTION variable are undefined on entry to the parallel construct.

v The allocation status, association status and the contents of the associated
variable become undefined if you define the PRIVATE, FIRSTPRIVATE,
LASTPRIVATE or REDUCTION variable or if you define that variable's
allocation or association status.

v The allocation status, association status and the contents of the PRIVATE,
FIRSTPRIVATE, LASTPRIVATE or REDUCTION variable become undefined if
you define the associated variable or if you define the associated variable's
allocation or association status.

Pointers and OpenMP API

OpenMP API allows a variable or variable subobject of a PRIVATE clause to have
the POINTER or ALLOCATABLE attribute. The association status of the pointer is
undefined at thread creation and when the thread is destroyed.

See the following topics for more information about the directive clauses:

COLLAPSE
COPYIN
COPYPRIVATE
DEFAULT
IF

FIRSTPRIVATE
LASTPRIVATE
NUM_THREADS
ORDERED

PRIVATE
REDUCTION
SCHEDULE
SHARED
UNTIED

COLLAPSE
Purpose

Specifying the COLLAPSE clause allows you to parallelize multiple loops in a nest
without introducing nested parallelism.

Syntax

n is a positive constant integer expression

►► COLLAPSE (n) ►◄

156 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Rules
v Only one collapse clause is allowed on a worksharing DO or PARALLEL DO

directive
v The specified number of loops must be present lexically. That is, none of the

loops can be in a called subroutine.
v The loops must form a rectangular iteration space and the bounds and stride of

each loop must be invariant over all the loops.
v If the loop indices are of different size, the index with the largest size will be

used for the collapsed loop.
v The loops must be perfectly nested; that is, there is no intervening code nor any

OpenMP directive between the loops which are collapsed.
v The associated do-loops must be structured blocks. Their execution must not be

terminated by an EXIT statement.
v If multiple loops are associated with the loop construct, only an iteration of the

innermost associated loop may be curtailed by a CYCLE statement. If multiple
loops are associated with the loop construct, there must be no branches to any of
the loop termination statements except for the innermost associated loop.

Ordered construct
During execution of an iteration of a loop or a loop nested within a loop
region, the executing thread must not execute more than one ordered
region which binds to the same loop region. As a consequence, if multiple
loops are associated with the loop construct by a collapse clause, the
ordered construct has to be located inside all associated loops.

LASTPRIVATE clause
When a LASTPRIVATE clause appears on the directive that identifies a
work-sharing construct, the value of each new list item from the
sequentially last iteration of the associated loops is assigned to the original
list item even if a collapse clause is associated with the loop

Other SMP and performance directives
The STREAM_UNROLL, UNROLL, UNROLL_AND_FUSE, and
NOUNROLL_AND_FUSE directives cannot be used for any of the loops
associated with the COLLAPSE clause loop nest. The INDEPENDENT
directive can be used for any of the loops associated with the COLLAPSE
clause.

Examples

In Example 1 and Example 2 the loops over k and j are collapsed and their
iteration space is executed by all threads of the current team.

Example 1
!$omp do collapse(2) private(i,j,k)

do k = kl, ku, ks
do j = jl, ju, js
do i = il, iu, is

call bar(a,i,j,k)
enddo

enddo
enddo

!$omp end do

Example 2

Chapter 8. Parallel programming with XL Fortran 157

program test
!$omp parallel
!$omp do private(j,k) collapse(2) lastprivate(jlast, klast)

do k = 1,2
do j = 1,3

jlast=j
klast=k

enddo
enddo

!$omp end do
!$omp single

print *, klast, jlast
!$omp end single
!$omp end parallel
end program test

Output:
2 3

Example 3

As both loops are collapsed into one, the ordered construct has to be inside all
loops associated with the for construct. As an iteration may not execute more than
one ordered region, this program would be incorrect without the collapse(2)
clause.
program test
!$omp parallel num_threads(2)
!$omp do collapse(2) ordered private(j,k) schedule(static,3)

do k = 1,3
do j = 1,2

!$omp ordered
print *, k, j

!$omp end ordered
enddo

enddo
!$omp end do
!$omp end parallel
end program test

Output:
1 1
1 2
2 1
2 2
3 1
3 2

Related reference:
ORDERED / END ORDERED
DO / END DO
PARALLEL DO / END PARALLEL DO

COPYIN
Purpose

If you specify the COPYIN clause, the master thread's copy of each variable, or
common block declared in the copyin_entity_list is duplicated at the beginning of a
parallel region. Each thread in the team that will execute within that parallel region
receives a private copy of all entities in the copyin_entity_list. All variables declared
in the copyin_entity_list must be THREADPRIVATE or members of a common

158 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

block that appears in a THREADPRIVATE directive.

Syntax

copyin_entity

variable
is a THREADPRIVATE variable, or THREADPRIVATE variable in
a common block.

common_block_name
is a THREADPRIVATE common block name.

Rules

If you specify a COPYIN clause, you cannot:
v specify the same entity name more than once in a copyin_entity_list.
v specify the same entity name in separate COPYIN clauses on the same directive.
v specify both a common block name and any variable within that same named

common block in a copyin_entity_list.
v specify both a common block name and any variable within that same named

common block in different COPYIN clauses on the same directive.
v specify a variable that contains ALLOCATABLE components.

When the master thread of a team of threads reaches a directive containing the
COPYIN clause, each thread's private copy of a variable or common block
specified in the COPYIN clause will have the same value as the master thread's
copy.

On entry into any parallel region, a THREADPRIVATE variable, or a variable in a
THREADPRIVATE common block is subject to the following criteria when
declared in a COPYIN clause:
v If the variable has the POINTER attribute and the master thread's copy of the

variable is associated with a target, then each copy of that variable is associated
with the same target. If the master thread's pointer is disassociated, then each
copy of that variable is disassociated. If the master thread's copy of the variable
has an undefined association status, then each copy of that variable has an
undefined association status.

v Each copy of a variable without the POINTER attribute becomes defined with
the value of the master thread's copy as if by intrinsic assignment.

►► COPYIN (copyin_entity_list) ►◄

►► ▼

,

variable_name
/ common_block_name /

►◄

Chapter 8. Parallel programming with XL Fortran 159

If an allocatable array is specified in a COPYIN clause and it is allocated on entry
into a parallel region, each thread copy of that array must be allocated with the
same bounds and rank.
Related reference:
PARALLEL / END PARALLEL
PARALLEL DO / END PARALLEL DO
PARALLEL SECTIONS / END PARALLEL SECTIONS
PARALLEL WORKSHARE / END PARALLEL WORKSHARE

COPYPRIVATE
Purpose

If you specify the COPYPRIVATE clause, the value of a private variable or pointer
to a shared object from one thread in a team is copied into the corresponding
variables of all other threads in that team. If the variable in copyprivate_entity_list is
not a pointer, then the corresponding variables of all threads within that team are
defined with the value of that variable. If the variable is a pointer, then the
corresponding variables of all threads within that team are defined with the
association status of the pointer. Integer pointers and assumed-size arrays must not
appear in copyprivate_entity_list.

Syntax

copyprivate_entity

variable
is a private variable within the enclosing parallel region

common_block_name
is a THREADPRIVATE common block name

Rules

If a common block is part of the copyprivate_entity_list, then it must appear in a
THREADPRIVATE directive. Furthermore, the COPYPRIVATE clause treats a
common block as if all variables within its object_list were specified in the
copyprivate_entity_list.

A COPYPRIVATE clause must occur on an END SINGLE directive at the end of a
SINGLE construct. The compiler evaluates a COPYPRIVATE clause before any
threads have passed the implied BARRIER directive at the end of that construct.

►► COPYPRIVATE (copyprivate_entity_list) ►◄

►► ▼

,

variable
/ common_block_name /

►◄

160 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

The variables you specify in copyprivate_entity_list must not appear in a PRIVATE
or FIRSTPRIVATE clause for the SINGLE construct. If the END SINGLE directive
occurs within the dynamic extent of a parallel region, the variables you specify in
copyprivate_entity_list must be private within that parallel region.

A COPYPRIVATE clause must not appear on the same END SINGLE directive as
a NOWAIT clause.

A THREADLOCAL common block, or members of that common block, are not
permitted as part of a COPYPRIVATE clause.

If an allocatable array appears on a COPYPRIVATE clause, it must have an
allocation status of allocated with the same bounds and rank in all threads that are
affected by the COPYPRIVATE clause.
Related reference:
SINGLE / END SINGLE

DEFAULT
Purpose

If you specify the DEFAULT clause, all variables in the lexical extent of the parallel
construct will have a scope attribute of default_scope_attr.

If you specify DEFAULT(NONE), there is no default scope attribute. Therefore,
you must explicitly list each variable you use in the lexical extent of the parallel
construct in a data scope attribute clause on the parallel construct, unless the
variable is:
v THREADPRIVATE

v A member of a THREADPRIVATE common block.
v A pointee
v A loop iteration variable used only as a loop iteration variable for:

– Sequential loops in the lexical extent of the parallel region, or,
– Parallel do loops that bind to the parallel region

v A variable that is only used in work-sharing constructs that bind to the parallel
region, and is specified in a data scope attribute clause for each of the
work-sharing constructs.

The DEFAULT clause specifies that all variables in the parallel construct share the
same default scope attribute of either FIRSTPRIVATE, PRIVATE, SHARED, or no
default scope attribute.

Syntax

default_scope_attr
is one of FIRSTPRIVATE, PRIVATE, SHARED, or NONE

►► DEFAULT (default_scope_attr) ►◄

Chapter 8. Parallel programming with XL Fortran 161

Rules

If you specify DEFAULT(NONE) on a directive you must specify all named
variables and all the leftmost names of referenced array sections, array elements,
structure components, or substrings in the lexical extent of the directive construct
in a FIRSTPRIVATE, LASTPRIVATE, PRIVATE, REDUCTION, or SHARED
clause.

If you specify DEFAULT(FIRSTPRIVATE) on a directive, all named variables and
all leftmost names of referenced array sections, array elements, structure
components, or substrings in the lexical extent of the directive construct, including
common block and use associated variables, but excluding POINTEEs and
THREADLOCAL common blocks, have a FIRSTPRIVATE attribute to a thread as
if they were listed explicitly in a FIRSTPRIVATE clause.

If you specify DEFAULT(PRIVATE) on a directive, all named variables and all
leftmost names of referenced array sections, array elements, structure components,
or substrings in the lexical extent of the directive construct, including common
block and use associated variables, but excluding POINTEEs and
THREADLOCAL common blocks, have a PRIVATE attribute to a thread as if they
were listed explicitly in a PRIVATE clause.

If you specify DEFAULT(SHARED) on a directive, all named variables and all
leftmost names of referenced array sections, array elements, structure components,
or substrings in the lexical extent of the directive construct, excluding POINTEEs
have a SHARED attribute to a thread as if they were listed explicitly in a
SHARED clause.

The default behavior will be DEFAULT(SHARED) if you do not explicitly indicate
a DEFAULT clause on a directive.

Example for OpenMP

The following example demonstrates the use of DEFAULT(NONE) for OpenMP,
and some of the rules for specifying the data scope attributes of variables in the
parallel region.
PROGRAM MAIN

COMMON /COMBLK/ abc(10), def

! The loop iteration variable, i, is not required to be
! in data scope attribute clause.

$OMP PARALLEL DEFAULT(NONE) SHARED(ABC)

! def is specified on the work-sharing DO, and is not required to be
! specified in a data scope attribute clause on the parallel region.

!$OMP DO FIRSTPRIVATE(def)
DO i = 1,10
ABC(i) = def

END DO
!$OMP END PARALLEL
END PROGRAM

Related reference:
PARALLEL / END PARALLEL
PARALLEL DO / END PARALLEL DO
PARALLEL SECTIONS / END PARALLEL SECTIONS
PARALLEL WORKSHARE / END PARALLEL WORKSHARE
“TASK / END TASK” on page 140

162 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

FINAL
Purpose

The FINAL clause is used with the TASK directive. If you specify a FINAL clause
and the scalar_logical_expr evaluates to .TRUE., the generated task is a final task. All
task constructs encountered inside a final task create final and included tasks.

Syntax

Rules

You can specify only one FINAL clause on the TASK directive.

Related reference

“TASK / END TASK” on page 140

FIRSTPRIVATE
Purpose

If you use the FIRSTPRIVATE clause, each thread has its own initialized local
copy of the variables and common blocks in data_scope_entity_list.

The FIRSTPRIVATE clause can be specified for the same variables as the PRIVATE
clause, and functions in a manner similar to the PRIVATE clause. The exception is
the status of the variable upon entry into the directive construct; the
FIRSTPRIVATE variable exists and is initialized for each thread entering the
directive construct.

Syntax

Rules

A variable in a FIRSTPRIVATE clause must not be any of the following elements:
v A pointee
v An assumed-size array
v A THREADLOCAL common block
v A THREADPRIVATE common block or its members
v A THREADPRIVATE variable
v An allocatable scalar object

You cannot specify a variable in a FIRSTPRIVATE clause of a parallel construct if
both the following conditions are true:

►► FINAL (scalar_logical_expr) ►◄

►► FIRSTPRIVATE (data_scope_entity_list) ►◄

Chapter 8. Parallel programming with XL Fortran 163

v The variable appears in a namelist statement, variable format expression or in an
expression for a statement function definition.

v You reference the statement function, the variable format expression through
formatted I/O, or the namelist through namelist I/O, within the parallel
construct.

For a variable specified in the FIRSTPRIVATE clause, the status of the private
copies is determined as follows:
v If the variable has the POINTER attribute, the private copies of the

FIRSTPRIVATE variable receive the same association status as the original copy
as if by pointer assignment.

v If the variable does not have the POINTER attribute, the initialization of the
private copies occurs as if by intrinsic assignment. However, if the original
variable is not currently allocated, the private copies have the same allocation
status as the original copy.

If an allocatable array appears on a FIRSTPRIVATE clause, it must have an
allocation status of allocated upon entrance into the parallel construct that contains
the FIRSTPRIVATE clause.

When individual members of a common block are privatized, the storage of the
specified variable is no longer associated with the storage of the common block.

Any variable that is storage associated with a FIRSTPRIVATE variable is
undefined on entrance into the parallel construct.

If one of the entities involved in an asynchronous I/O operation is a
FIRSTPRIVATE variable, a subobject of a FIRSTPRIVATE variable, or a pointer
that is associated with a FIRSTPRIVATE variable, the matching implied wait or
WAIT statement must be executed before the end of the thread.

If a directive construct contains a FIRSTPRIVATE argument to a Message Passing
Interface (MPI) routine performing non-blocking communication, the MPI
communication must complete before the end of the construct.
Related reference:
DO / END DO
PARALLEL / END PARALLEL
PARALLEL DO / END PARALLEL DO
PARALLEL SECTIONS / END PARALLEL SECTIONS
PARALLEL WORKSHARE / END PARALLEL WORKSHARE
SECTIONS / END SECTIONS
SINGLE / END SINGLE
“TASK / END TASK” on page 140

IF
Purpose

If you specify the IF clause, the runtime environment evaluates whether the
scalar_logical_expression is true or false. If scalar_logical_expression is:
v true, the block is run in parallel.
v false, the containing region is suspended and the generated task is immediately

run as though it is in a distinct task region.

164 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Note that for the TASK directive, if the IF clause is evaluated to true, the block is
not required to run in parallel.

Syntax

Rules

The IF clause can be used in the PARALLEL, PARALLEL DO, PARALLEL
SECTIONS, PARALLEL WORKSHARE, and TASK directives.

The IF clause may appear at most once in any directive.

By default, a nested parallel loop is serialized, regardless of the setting of the IF
clause. You can change this default by using the -qsmp=nested_par compiler
option.

An IF expression is evaluated outside of the context of the parallel construct. Any
function reference in the IF expression must not have side effects.
Related reference:
“PARALLEL / END PARALLEL” on page 121
“PARALLEL DO / END PARALLEL DO” on page 123
“PARALLEL SECTIONS / END PARALLEL SECTIONS” on page 127
“PARALLEL WORKSHARE / END PARALLEL WORKSHARE” on page 130
“TASK / END TASK” on page 140

LASTPRIVATE
Purpose

If you use the LASTPRIVATE clause, each variable and common block in
data_scope_entity_list is PRIVATE, and the last value of each variable in
data_scope_entity_list can be referred to outside of the construct of the directive. If
you use the LASTPRIVATE clause with DO or PARALLEL DO, the last value is
the value of the variable after the last sequential iteration of the loop. If you use
the LASTPRIVATE clause with SECTIONS or PARALLEL SECTIONS, the last
value is the value of the variable after the last SECTION of the construct. If the
last iteration of the loop or last section of the construct does not define a
LASTPRIVATE variable, the variable is undefined after the loop or construct.

The LASTPRIVATE clause functions in a manner similar to the PRIVATE clause
and you should specify it for variables that match the same criteria. The exception
is in the status of the variable on exit from the directive construct. The compiler
determines the last value of the variable, and takes a copy of that value which it
saves in the named variable for use after the construct. A LASTPRIVATE variable
is undefined on entry to the construct if it is not a FIRSTPRIVATE variable.

►► IF (scalar_logical_expression) ►◄

Chapter 8. Parallel programming with XL Fortran 165

Syntax

Rules

A variable in a LASTPRIVATE clause must not be any of the following elements:
v A pointee
v An allocatable scalar object
v An assumed-size array
v A THREADLOCAL common block
v A THREADPRIVATE common block or its members
v A THREADPRIVATE variable

You cannot specify a variable in a LASTPRIVATE clause of a parallel construct if
both the following conditions are true:
v The variable appears in a namelist statement, variable format expression or in an

expression for a statement function definition.
v You reference the statement function, the variable format expression through

formatted I/O, or the namelist through namelist I/O, within the parallel
construct.

A LASTPRIVATE variable must be definable.

For a variable specified in a LASTPRIVATE clause,
v If the variable has the POINTER attribute, the original variable is updated as if

by pointer assignment.
v If the variable does not have the POINTER attribute, the original variable is

updated as if by intrinsic assignment.

If an allocatable array appears on a LASTPRIVATE clause, its allocation status
must be allocated when it enters into the parallel construct that contains the
LASTPRIVATE clause. The private copies of the LASTPRIVATE variable in the
sequentially last iteration or lexically last section must have an allocation status of
allocated. They must have the same bounds and rank as the corresponding
LASTPRIVATE variable when they exit from that iteration or section.

When individual members of a common block are privatized, the storage of the
specified variable is no longer associated with the storage of the common block.

Any variable that is storage associated with a LASTPRIVATE variable is undefined
on entrance into the parallel construct.

If you specify a variable as LASTPRIVATE on a work-sharing directive, and you
have specified a NOWAIT clause on that directive, you cannot use that variable
between the end of the work-sharing construct and a BARRIER directive.

Variables that you specify as LASTPRIVATE to a parallel construct become defined
at the end of the construct. If you have concurrent definitions or uses of
LASTPRIVATE variables on multiple threads, you must ensure that the threads are
synchronized at the end of the construct when the variables become defined. For

►► LASTPRIVATE (data_scope_entity_list) ►◄

166 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

example, if multiple threads encounter a PARALLEL construct with a
LASTPRIVATE variable, you must synchronize the threads when they reach the
END PARALLEL directive, because the LASTPRIVATE variable becomes defined
at END PARALLEL. Therefore the whole PARALLEL construct must be enclosed
within a synchronization construct.

If one of the entities involved in an asynchronous I/O operation is a
LASTPRIVATE, a subobject of a LASTPRIVATE variable, or a pointer that is
associated with a LASTPRIVATE variable, the matching implied wait or WAIT
statement must be executed before the end of the thread.

If a directive construct contains a LASTPRIVATE argument to a Message Passing
Interface (MPI) routine performing non-blocking communication, the MPI
communication must complete before the end of that construct.

Example for OpenMP

The following example shows the proper use of a LASTPRIVATE variable after a
NOWAIT clause.
!$OMP PARALLEL
!$OMP DO LASTPRIVATE(k)
DO i = 1,10

k = i + 1
END DO

!$OMP END DO NOWAIT
k = ... **ERROR** ! The reference to k must occur after a barrier.
!$OMP BARRIER
k = ... ! this reference to k is valid.
!$OMP END PARALLEL
END

Related reference:
DO / END DO
PARALLEL DO / END PARALLEL DO
PARALLEL SECTIONS / END PARALLEL SECTIONS
SECTIONS / END SECTIONS

MERGEABLE
Purpose

The MERGEABLE clause is used with the TASK directive. If you specify a
MERGEABLE clause and the generated task is an undeferred task or an included
task, a merged task might be generated.

Syntax

Related reference

“TASK / END TASK” on page 140

►► MERGEABLE ►◄

Chapter 8. Parallel programming with XL Fortran 167

NUM_THREADS
Purpose

The NUM_THREADS clause allows you to specify the number of threads used in
a parallel region. Subsequent parallel regions are not affected. The
NUM_THREADS clause takes precedence over the number of threads specified
using the omp_set_num_threads library routine or the environment variable
OMP_NUM_THREADS.

Syntax

Rules

The value of scalar_integer_expression must be a positive integer. Evaluation of the
expression occurs outside the context of the parallel region. Any function calls that
appear in the expression and change the value of a variable referenced in the
expression will have unspecified results.

If you are using the environment variable OMP_DYNAMIC to enable dynamic
threads, scalar_integer_expression defines the maximum number of threads available
in the parallel region.

You must specify the omp_set_nested library routine or set the OMP_NESTED
environment variable when including the NUM_THREADS clause as part of a
nested parallel regions; otherwise, the execution of that parallel region is serialized.
Related reference:
PARALLEL / END PARALLEL
PARALLEL DO / END PARALLEL DO
PARALLEL SECTIONS / END PARALLEL SECTIONS
PARALLEL WORKSHARE / END PARALLEL WORKSHARE

ORDERED
Purpose

Specifying the ORDERED clause on a work–sharing construct allows you to
specify the ORDERED directive within the dynamic extent of a parallel loop.

Syntax

Rules

The ORDERED clause applies to the following directives:
v “DO / END DO” on page 111
v “PARALLEL DO / END PARALLEL DO” on page 123

►► NUM_THREADS (scalar_integer_expression) ►◄

►► ORDERED ►◄

168 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Related reference:
“DO / END DO” on page 111
“PARALLEL DO / END PARALLEL DO” on page 123

PRIVATE
Purpose

If you specify the PRIVATE clause on one of the directives listed below, each
thread in a team has its own uninitialized local copy of the variables and common
blocks in data_scope_entity_list.

You should specify a variable in the PRIVATE clause if its value is calculated by a
single thread and that value is not dependent on any other thread, if it is defined
before it is used in the construct, and if its value is not used after the construct
ends. Copies of the PRIVATE variable exist, locally, on each thread. Each thread
receives its own uninitialized copy of the PRIVATE variable. All thread variables
within the lexical extent of the directive construct have the PRIVATE attribute by
default.

Syntax

Rules

A variable in the PRIVATE clause must not be any of the following elements:
v A pointee
v An assumed-size array
v A THREADLOCAL common block
v A THREADPRIVATE common block or its members
v A THREADPRIVATE variable or the variable equivalenced with a

THREADPRIVATE variable

You cannot specify a variable in a PRIVATE clause of a parallel construct if:
v the variable appears in a namelist statement, variable format expression or in an

expression for a statement function definition, and,
v you reference the statement function, the variable format expression through

formatted I/O, or the namelist through namelist I/O, within the parallel
construct.

If one of the entities involved in an asynchronous I/O operation is a PRIVATE
variable, a subobject of a PRIVATE variable, or a pointer that is associated with a
PRIVATE variable, the matching implied wait or WAIT statement must be
executed before the end of the thread.

When individual members of a common block are privatized, the storage of the
specified variable is no longer associated with the storage of the common block.

A variable that appears in the REDUCTION clause of a parallel construct can also
appear in a PRIVATE clause on a work-sharing construct.

►► PRIVATE (data_scope_entity_list) ►◄

Chapter 8. Parallel programming with XL Fortran 169

If a directive construct contains a PRIVATE argument to a Message Passing
Interface (MPI) routine performing non-blocking communication, the MPI
communication must complete before the end of that construct.

A variable name in the data_scope_entity_list of the PRIVATE clause can be an
allocatable array. If the allocatable array is allocated on entry to a parallel region,
the private copies of the array has an allocation status of allocated and has the
same rank and bounds as the PRIVATE variable. If the allocatable array is
deallocated on entry to a parallel region, the private copies of the array has an
allocation status of deallocated.

Local variables without the SAVE or STATIC attributes in referenced subprograms
in the dynamic extent of a directive construct have an implicit PRIVATE attribute.

Examples for OpenMP

Example 1: The following example demonstrates the proper use of a PRIVATE
variable that is used to define a statement function. A commented line shows the
invalid use. Since J appears in a statement function, the statement function cannot
be referenced within the parallel construct for which J is PRIVATE.
INTEGER :: arr(10), j = 17
ISTFNC() = j

!$OMP PARALLEL DO PRIVATE(j)
DO i = 1, 10

j = i
! arr(i) = ISTFNC() **ERROR** A reference to ISTFNC would
! make the PRIVATE(J) clause invalid.
ARR(i) = j

END DO
PRINT *, arr
END

Example 2: The following example demonstrates the use of allocatable arrays on a
PRIVATE clause:
USE OMP_LIB
REAL, ALLOCATABLE :: temp(:,:)
REAL :: arr(4, 20, 20)
INTEGER :: thd

ALLOCATE(temp(20, 20))
!$OMP PARALLEL PRIVATE(thd, temp) NUM_THREADS(4)

! Private copies of "temp" are allocated with the same
! bounds and shape of the original "temp".
thd = OMP_GET_THREAD_NUM()
IF(MOD(thd, 2) .EQ. 0) THEN

temp = RESHAPE((/(i, i=1, 400)/), (/20, 20/))
ELSE

temp = RESHAPE((/(i, i=1, 800, 2)/), (/20, 20/))
ENDIF
arr(thd + 1, :, :) = temp

! Private copies of "temp" are deallocated.
!$OMP END PARALLEL
DEALLOCATE(temp)
END

Note: If the machine has less than 4 CPUs, you must set OMP_THREAD_LIMIT=4.

170 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Example 3: The following example demonstrates the persistence of the original
value of the PRIVATE variables after exit from a parallel region:
PROGRAM MAIN

INTEGER :: i, j

i = 1
j = 2

!$OMP PARALLEL PRIVATE(i, j)
i = 3
j = j + 2

!$OMP END PARALLEL
PRINT *, i, j ! Output: 1 2

END PROGRAM

Related reference:
DO / END DO
PARALLEL / END PARALLEL
PARALLEL DO / END PARALLEL DO
PARALLEL SECTIONS / END PARALLEL SECTIONS
PARALLEL WORKSHARE / END PARALLEL WORKSHARE
SECTIONS / END SECTIONS
SINGLE / END SINGLE
“TASK / END TASK” on page 140

PROC_BIND
Purpose

The PROC_BIND clause specifies a policy for binding and distributing threads to
places within the current place partition.

Syntax

MASTER
Instructs the execution environment to assign every thread in the team to
the same place as the master thread.

CLOSE
Instructs the execution environment to assign the threads to places that are
close to the place of the parent’s thread. The master thread executes on the
parent’s place. The remaining threads in the team execute on places from
the place list consecutive from the parent’s position in the list with wrap
around.

SPREAD
Instructs the compiler to spread a set of T threads as evenly as possible
among the P places of the parent's place partition at run time.

Rules
v At most one PROC_BIND clause can appear on the PARALLEL directive.

►► PROC_BIND (MASTER)
CLOSE
SPREAD

►◄

Chapter 8. Parallel programming with XL Fortran 171

v If the OMP_PROC_BIND environment variable is not set to FALSE, the PROC_BIND
clause overrides the first element in the OMP_PROC_BIND environment variable.

v If the OMP_PROC_BIND environment variable is set to FALSE, the PROC_BIND clause
has no effect.

Related reference:
PARALLEL / END PARALLEL
PARALLEL SECTIONS / END PARALLEL SECTIONS
omp_get_proc_bind
Related information:
OMP_PROC_BIND

REDUCTION
Purpose

The REDUCTION clause updates named variables declared on the clause within
the directive construct. Intermediate values of REDUCTION variables are not used
within the parallel construct, other than in the updates themselves.

Syntax

op_fnc is a reduction_op or a reduction_function that appears in all REDUCTION
statements involving this variable. You must not specify more than one
REDUCTION operator or function for a variable in the directive construct.
To maintain OpenMP API compliance, you must specify op_fnc for the
REDUCTION clause.

A REDUCTION statement can have one of the following forms:

where:

reduction_var_ref
is a variable or subobject of a variable that appears in a REDUCTION
clause

reduction_op
is one of the intrinsic operators: +, -, *, .AND., .OR., .EQV., .NEQV., or
.XOR.

►► REDUCTION (variable_name_list)
op_fnc :

►◄

►► reduction_var_ref = expr reduction_op reduction_var_ref ►◄

►► reduction_var_ref = reduction_var_ref reduction_op expr ►◄

►► reduction_var_ref = reduction_function (expr, reduction_var_ref) ►◄

►► reduction_var_ref = reduction_function (reduction_var_ref, expr) ►◄

172 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

when reduction_op is an intrinsic operator, it should be the last operation
performed on the right side.

reduction_function
is one of the intrinsic procedures: MAX, MIN, IAND, IOR, or IEOR.

expr should not contain references to reduction_var_ref

The canonical initialization value of each of the operators and intrinsics are shown
in the following table. The actual initialization value will be consistent with the
data type of your corresponding REDUCTION variable.

Intrinsic Operator Initialization

+ 0

* 1

- 0

.AND. .TRUE.

.OR. .FALSE.

.EQV. .TRUE.

.NEQV. .FALSE.

.XOR. .FALSE.

Intrinsic Procedure Initialization

MAX Smallest representable number

MIN Largest representable number

IAND All bits on

IOR 0

IEOR 0

Rules

The following rules apply to REDUCTION statements:
v A variable in the REDUCTION clause must only occur in a REDUCTION

statement within the directive construct on which the REDUCTION clause
appears.

v The two reduction_var_refs that appear in a REDUCTION statement must be
lexically identical.

v You cannot use the following form of the REDUCTION statement:
reduction_var_ref = expr operator reduction_var_ref, where operator is any operator
other than reduction_op.

When you specify individual members of a common block in a REDUCTION
clause, the storage of the specified variable is no longer associated with the storage
of the common block.

Any variable you specify in a REDUCTION clause of a work-sharing construct
must be shared in the enclosing PARALLEL construct.

A variable that appears in the REDUCTION clause of a parallel construct can also
appear in a PRIVATE clause on a work-sharing construct.

Chapter 8. Parallel programming with XL Fortran 173

If you use a REDUCTION clause on a construct that has a NOWAIT clause, the
REDUCTION variable remains undefined until a barrier synchronization has been
performed to ensure that all threads have completed the REDUCTION clause.

A REDUCTION variable must not appear in a FIRSTPRIVATE, PRIVATE, or
LASTPRIVATE clause of another construct within the dynamic extent of the
construct in which it appeared as a REDUCTION variable.

If you specify op_fnc for the REDUCTION clause, each variable in the
variable_name_list must be of intrinsic type. The variable can only appear in a
REDUCTION statement within the lexical extent of the directive construct. You
must specify op_fnc if the directive uses the trigger_constant $OMP.

The REDUCTION clause specifies named variables that appear in reduction
operations. The compiler will maintain local copies of such variables, but will
combine them upon exit from the construct. The intermediate values of the
REDUCTION variables are combined in random order, dependent on which
threads finish their calculations first. Therefore, there is no guarantee that
bit-identical results will be obtained from one parallel run to another. This is true
even if the parallel runs use the same number of threads, scheduling type, and
chunk size.

Variables that you specify as REDUCTION or LASTPRIVATE to a parallel
construct become defined at the end of the construct. If you have concurrent
definitions or uses of REDUCTION or LASTPRIVATE variables on multiple
threads, you must ensure that the threads are synchronized at the end of the
construct when the variables become defined. For example, if multiple threads
encounter a PARALLEL construct with a REDUCTION variable, you must
synchronize the threads when they reach the END PARALLEL directive, because
the REDUCTION variable becomes defined at END PARALLEL. Therefore the
whole PARALLEL construct must be enclosed within a synchronization construct.

If an allocatable array appears on a REDUCTION clause, it must have an
allocation status of allocated upon entrance into the construct that contains the
REDUCTION clause. Additionally, the private copies of the REDUCTION variable
must not be deallocated or allocated within the region.

A variable in the REDUCTION clause must be of intrinsic type. A variable in the
REDUCTION clause, or any element thereof, must not be any of the following:
v A pointee
v An assumed-size array
v A THREADLOCAL common block
v A THREADPRIVATE common block or its members
v A THREADPRIVATE variable
v An allocatable scalar object
v A Fortran 90 pointer

These rules describe the use of REDUCTION on OpenMP directives. If you are
using the REDUCTION clause on the INDEPENDENT directive, see the
INDEPENDENT directive in the XL Fortran Language Reference directive.
Related reference:
DO / END DO
PARALLEL / END PARALLEL

174 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

PARALLEL DO / END PARALLEL DO
PARALLEL SECTIONS / END PARALLEL SECTIONS
PARALLEL WORKSHARE / END PARALLEL WORKSHARE
SECTIONS / END SECTIONS

SCHEDULE
Purpose

You can use the SCHEDULE clause to specify the chunking method for
parallelization. Work is assigned to threads in different manners depending on the
scheduling type or chunk size used.

Syntax

sched_type
is one of AFFINITY, AUTO, DYNAMIC, GUIDED, RUNTIME, or
STATIC.

n must be a positive scalar integer expression; do not specify n for the
AUTO and RUNTIME schedule type. If you are using the trigger_constant
$OMP, do not specify the scheduling type AFFINITY.

AFFINITY
The iterations of a loop are initially divided into number_of_threads
partitions, containing CEILING(number_of_iterations /
number_of_threads) iterations. Each partition is initially assigned to a
thread, and is then further subdivided into chunks containing n iterations,
if n has been specified. If n has not been specified, then the chunks consist
of CEILING(number_of_iterations_remaining_in_partition / 2) loop
iterations.

When a thread becomes free, it takes the next chunk from its initially
assigned partition. If there are no more chunks in that partition, then the
thread takes the next available chunk from a partition that is initially
assigned to another thread.

Threads that are active will complete the work in a partition that is initially
assigned to a sleeping thread.

Note: This scheduling type has been deprecated and might be removed in
a future release. You can use the GUIDED scheduling type for a similar
functionality.

AUTO

The compiler and runtime system choose the most appropriate mapping of
iteration to threads for each loop.

DYNAMIC
If n has been specified, the iterations of a loop are divided into chunks
containing n contiguous iterations each except for the last chunk. If n is not
specified, the default chunk size is 1 iteration.

►► SCHEDULE (sched_type)
,n

►◄

Chapter 8. Parallel programming with XL Fortran 175

Chunks are assigned to threads on a "first-come, first-do" basis as threads
become available. Chunks of the remaining work are assigned to available
threads until all work has been assigned.

GUIDED
If you specify a value for n, the iterations of a loop are divided into chunks
such that the size of each successive chunk is exponentially decreasing. n
specifies the size of the smallest chunk, except possibly the last. If you do
not specify a value for n, the default value is 1.

The size of the initial chunk is proportional to
CEILING(number_of_iterations / number_of_threads) iterations.
Subsequent chunks are proportional to
CEILING(number_of_iterations_remaining / number_of_threads)
iterations. If n is greater than 1, each chunk must contain at least n
consecutive iterations (except for the last chunk to be assigned, which can
have fewer than n iterations. As each thread finishes a chunk, it
dynamically obtains the next available chunk.

You can use guided scheduling in a situation in which multiple threads in
a team might arrive at a DO work-sharing construct at varying times, and
each iteration requires roughly the same amount of work. For example, if
you have a DO loop preceded by one or more work-sharing SECTIONS
or DO constructs with NOWAIT clauses, you can guarantee that no thread
waits at the barrier longer than it takes another thread to execute its final
iteration, or final k iterations if a chunk size of k is specified. The GUIDED
schedule requires the fewest synchronizations of all the scheduling
methods.

An n expression is evaluated outside of the context of the DO construct.
Any function reference in the n expression must not have side effects.

The value of the n parameter on the SCHEDULE clause must be the same
for all of the threads in the team.

RUNTIME
Determine the scheduling type at run time.

At run time, the scheduling type can be specified using the environment
variable OMP_SCHEDULE. If no scheduling type is specified using that
variable, the default scheduling type used is AUTO.

STATIC
If n has been specified, the iterations of a loop are divided into chunks that
contain n iterations. Each thread is assigned chunks in a "round robin"
fashion. This is known as block cyclic scheduling. If the value of n is 1,
then the scheduling type is specifically referred to as cyclic scheduling.

If n has not been specified, the chunks will contain
FLOOR(number_of_iterations / number_of_threads) contiguous iterations.
The first REMAINDER(number_of_iterations/number_of_threads) chunks
have one more iteration. Each thread is assigned a separate chunk. This is
known as block cyclic scheduling.

If a thread is asleep and it has been assigned work, it will be awakened so
that it may complete its work.

The STATIC schedule ensures that the same logical iteration numbers are
assigned to threads in two work-sharing loop regions if the following
conditions are satisfied:
v Both loop regions have the same number of loop iterations

176 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

v Both loop regions either have the same value of n specified, or have no
n specified

v Both loop regions bind to the same parallel region

A data dependence between the same logical iterations in two such loops
is guaranteed to be satisfied to allow the safe use of the NOWAIT clause.
In addition, you must make sure that all three conditions mentioned above
are satisfied to get the correct result.

Consecutive loop constructs with STATIC schedule with NOWAIT clause
now guarantee the same iterations are being assigned to the same thread in
the constructs.

For an example of the loop constructs that satisfy all three conditions, see
“Example for OpenMP.”

Rules

You must not specify the SCHEDULE clause more than once for a particular DO
directive.

Example for OpenMP

The following example illustrates loop constructs that satisfy all three conditions
listed in the STATIC section.
!$OMP PARALLEL
!$OMP DO SCHEDULE(STATIC)

DO i = 1, n
c(i) = (a(i) + b(i)) / 2.0;

ENDDO
!$OMP END DO NOWAIT

!$OMP DO SCHEDULE(STATIC)
DO i = 1, n
z(i) = sqrt(c(i))

ENDDO
!$OMP END DO
!$OMP END PARALLEL

Related reference:
“DO / END DO” on page 111
“PARALLEL DO / END PARALLEL DO” on page 123

SHARED
Purpose

All sections use the same copy of the variables and common blocks you specify in
data_scope_entity_list.

The SHARED clause specifies variables that must be available to all threads. If you
specify a variable as SHARED, you are stating that all threads can safely share a
single copy of the variable.

Chapter 8. Parallel programming with XL Fortran 177

Syntax

data_scope_entity

named_variable
is a named variable that is accessible in the directive construct

common_block_name
is a common block name that is accessible in the directive construct

Rules

A variable in the SHARED clause must not be either:
v A pointee
v A THREADLOCAL common block.
v A THREADPRIVATE common block or its members.
v A THREADPRIVATE variable.

If a SHARED variable, a subobject of a SHARED variable, or an object associated
with a SHARED variable or subobject of a SHARED variable appears as an actual
argument in a reference to a non-intrinsic procedure and:
v The actual argument is an array section with a vector subscript; or
v The actual argument is

– An array section,
– An assumed-shape array, or,
– A pointer array

and the associated dummy argument is an explicit-shape or assumed-size array;

then any references to or definitions of the shared storage that is associated with
the dummy argument by any other thread must be synchronized with the
procedure reference. In other words, you must structure your code in such a way
that if a thread encounters a procedure reference, then the procedure call by that
thread and any reference to or definition of the shared storage by any other thread
will always occur in the same sequence. You can do this, for example, by placing
the procedure reference after a BARRIER.

Example for OpenMP

In the following example, the procedure reference with an array section actual
argument is required to be synchronized with references to the dummy argument

►► SHARED (data_scope_entity_list) ►◄

►► ▼

,

named_variable
/ common_block_name /

►◄

178 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

by placing the procedure reference in a critical section, because the associated
dummy argument is an explicit-shape array.
INTEGER :: abc(10)

i = 2
j = 5

!$OMP PARALLEL DEFAULT(NONE), SHARED(abc, i, j)
!$OMP CRITICAL
! Actual argument is an array section.
! The procedure reference must be in a critical section.
CALL sub1(abc(i: j))
!$OMP END CRITICAL
!$OMP END PARALLEL

CONTAINS
SUBROUTINE sub1(arr)

INTEGER:: arr(1: 4)
DO i = 1, 4
arr(i) = i

END DO
END SUBROUTINE

END

Related reference:
PARALLEL / END PARALLEL
PARALLEL DO / END PARALLEL DO
PARALLEL SECTIONS / END PARALLEL SECTIONS
PARALLEL WORKSHARE / END PARALLEL WORKSHARE
“TASK / END TASK” on page 140

UNTIED
Purpose

The UNTIED clause is used with the TASK directive. When a task region is
suspended, untied tasks can be resumed by any thread in a team.

Syntax

Rules

The UNTIED clause is ignored if either of the following conditions is true:
v A FINAL clause is specified on the same task construct and the FINAL clause

expression evaluates to .TRUE..
v The task is an included task.
Related reference:
“TASK / END TASK” on page 140

Routines for OpenMP
The OpenMP specification provides a number of routines that you can use to
control and query the parallel execution environment, timing, and lock.

►► UNTIED ►◄

Chapter 8. Parallel programming with XL Fortran 179

Parallel threads created by the runtime environment through the OpenMP interface
are considered independent of the threads you create and control using calls to the
Fortran Pthreads library module. References within the following descriptions to
"serial portions of the program" refer to portions of the program that are executed
by only one of the threads that have been created by the runtime environment. For
example, you can create multiple threads by using f_pthread_create. However, if
you then call omp_get_num_threads from outside of an OpenMP parallel block, or
from within a serialized nested parallel region, the function will return 1,
regardless of the number of threads that are currently executing.

OpenMP runtime library calls must not appear in PURE and ELEMENTAL
procedures.

Table 21. OpenMP execution environment routines

v omp_get_active_level

v omp_get_ancestor_thread_num

v omp_get_dynamic

v omp_get_level

v omp_get_max_active_levels

v omp_get_max_threads

v omp_get_nested

v omp_get_num_places

v omp_get_num_procs

v omp_get_num_threads

v omp_get_partition_num_places

v omp_get_partition_place_nums

v omp_get_place_num

v omp_get_place_num_procs

v omp_get_place_proc_ids

v omp_get_proc_bind

v omp_get_schedule

v omp_get_thread_num

v omp_get_team_size

v omp_get_thread_limit

v omp_in_final

v omp_in_parallel

v omp_set_dynamic

v omp_set_max_active_levels

v omp_set_nested

v omp_set_num_threads

v omp_set_schedule

Included in the OpenMP runtime library are two routines that support a portable
wall-clock timer.

Table 22. OpenMP timing routines

v omp_get_wtick v omp_get_wtime

The OpenMP runtime library also supports a set of simple and nestable lock
routines. You must only lock variables through these routines. Simple locks may
not be locked if they are already in a locked state. Simple lock variables are
associated with simple locks and may only be passed to simple lock routines.
Nestable locks may be locked multiple times by the same thread. Nestable lock
variables are associated with nestable locks and may only be passed to nestable
lock routines. Note that locks are now associated with task regions, and no longer
with threads as such, in accordance with changes in the OMP standard.

For all the routines listed below, the lock variable is an integer whose KIND type
parameter is denoted either by the symbolic constant omp_lock_kind, or by
omp_nest_lock_kind.

This variable is sized to 8.

180 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Table 23. OpenMP simple lock routines

v omp_destroy_lock

v omp_init_lock

v omp_set_lock

v omp_test_lock

v omp_unset_lock

Table 24. OpenMP nestable lock routines

v omp_destroy_nest_lock

v omp_init_nest_lock

v omp_set_nest_lock

v omp_test_nest_lock

v omp_unset_nest_lock

Note: You can define and implement your own versions of the OpenMP routines.
However, by default, the compiler will substitute the XL Fortran versions of the
OpenMP routines regardless of the existence of other implementations, unless you
specify the -qnoswapomp compiler option. For more information, see XL Fortran
Compiler Reference.

omp_destroy_lock(svar)
Purpose

The omp_destroy_lock subroutine disassociates a given lock variable from all
locks. You must use omp_init_lock to reinitialize a lock variable that was
destroyed with a call to omp_destroy_lock before using it again as a lock variable.

If you call omp_destroy_lock with an uninitialized lock variable, the result of the
call is undefined.

Class

Subroutine.

Argument Type and Attributes

svar Type integer with kind omp_lock_kind.

Result Type and Attributes

None.

Result Value

None.

Examples

In the following example, threads and their associated tasks are generated by the
parallel region, and one at a time, each task gains ownership of the lock associated
with the lock variable LCK, prints the thread ID, and releases ownership of the
lock.

USE omp_lib
INTEGER(kind=omp_lock_kind) LCK
INTEGER ID
CALL omp_init_lock(LCK)

!$OMP PARALLEL SHARED(LCK), PRIVATE(ID)

Chapter 8. Parallel programming with XL Fortran 181

ID = omp_get_thread_num()
CALL omp_set_lock(LCK)
PRINT *,’MY THREAD ID IS’, ID
CALL omp_unset_lock(LCK)

!$OMP END PARALLEL
CALL omp_destroy_lock(LCK)
END

omp_destroy_nest_lock(nvar)
Purpose

The omp_destroy_nest_lock subroutine initializes a nestable lock variable, causing
the lock variable to become undefined. The variable nvar must be an unlocked and
initialized nestable lock variable.

If you call omp_destroy_nest_lock using an uninitialized variable, the result is
undefined.

Class

Subroutine.

Argument Type and Attributes

nvar Type integer with kind omp_nest_lock_kind.

Result Type and Attributes

None.

Result Value

None.

omp_get_active_level()
Purpose

The omp_get_active_level function returns the number of nested, active parallel
regions.

Class

Function.

Argument Type and Attributes

None.

Result Type and Attributes

Default integer.

Result Value

An integer that indicates the number of nested, active parallel regions.

182 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

omp_get_ancestor_thread_num(level)
Purpose

The omp_get_ancestor_thread_num function returns the thread number of the
ancestor at a given nested level of the current thread.

Class

Function.

Argument Type and Attributes

level
Default integer.

Result Type and Attributes

Default integer.

Result Value

The thread number of the ancestor at a given nested level (level) of the current
thread. If level is outside the range of 0 and the nested level of the current thread,
as returned by the omp_get_level routine, the function returns -1.

omp_get_dynamic()
Purpose

The omp_get_dynamic function returns .TRUE. if dynamic thread adjustment by
the runtime environment is enabled. Otherwise, the omp_get_dynamic function
returns .FALSE.

Class

Function.

Argument Type and Attributes

None.

Result Type and Attributes

Default logical.

Result Value

.TRUE. if dynamic thread adjustment by the runtime environment is enabled;

.FALSE. otherwise.

omp_get_level()
Purpose

The omp_get_level function returns the number of nested parallel regions (both
active and inactive).

Chapter 8. Parallel programming with XL Fortran 183

Class

Function.

Argument Type and Attributes

None.

Result Type and Attributes

Default integer.

Result Value

The number of nested parallel regions (both active and inactive) in which the
generating task is executing, not including the implicit parallel region. Returns 0 if
it is called from the sequential part of the program. Otherwise, returns a
nonnegative integer.

omp_get_max_active_levels()
Purpose

The omp_get_max_active_levels function returns the maximum number of nested,
active parallel regions.

Class

Function.

Argument Type and Attributes

None.

Result Type and Attributes

Default integer.

Result Value

The maximum number of nested, active parallel regions that is allowed.

omp_get_max_threads()
Purpose

The omp_get_max_threads routine returns the first value of num_list for the
OMP_NUM_THREADS environment variable. This value is the maximum number
of threads that can be used to form a new team if a parallel region without a
num_threads clause is encountered.

If you use omp_set_num_threads to change the number of threads, subsequent
calls to omp_get_max_threads will return the new value.

The routine has global scope, which means that the maximum value it returns
applies to all routines, subroutines, and compilation units in the program. It
returns the same value whether executing from a serial or parallel region.

184 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

You can use omp_get_max_threads to allocate maximum-sized data structures for
each thread when you have enabled dynamic thread adjustment by passing
omp_set_dynamic an argument which evaluates to .TRUE.

Class

Function.

Argument Type and Attributes

None.

Result Type and Attributes

Default integer.

Result Value

The maximum number of threads that can execute concurrently in a single parallel
region.

omp_get_nested()
Purpose

The omp_get_nested function returns .TRUE. if nested parallelism is enabled and
.FALSE. if nested parallelism is disabled.

Class

Function

Argument Type and Attributes

None.

Result Type and Attributes

Default logical.

Result Value

.TRUE. if nested parallelism is enabled. .FALSE. otherwise.

omp_get_num_places()
Purpose

The omp_get_num_places function returns the number of places that are available
to the execution environment in the place list.

Class

Function.

Chapter 8. Parallel programming with XL Fortran 185

Argument Type and Attributes

None.

Result Type and Attributes

Default integer.

Result Value

The number of places in the place-partition-var internal control variable (ICV) in the
execution environment of the initial task.

omp_get_num_procs()
Purpose

The omp_get_num_procs function returns the number of online processors on the
machine.

Class

Function.

Argument Type and Attributes

None.

Result Type and Attributes

Default integer.

Result Value

The number of online processors on the machine.

omp_get_num_threads()
Purpose

The omp_get_num_threads function returns the number of threads in the team
currently executing the parallel region from which it is called. The function binds
to the closest enclosing PARALLEL directive.

The omp_set_num_threads subroutine and the OMP_NUM_THREADS
environment variable control the number of threads in a team. If you do not
explicitly set the number of threads, the runtime environment will use the number
of online processors on the machine by default. The number of online processors is
less than or equal to the number of physical processors actually installed in a
machine.

If you call omp_get_num_threads from a serial portion of your program or from a
nested parallel region that is serialized, the function returns 1.

Class

Function.

186 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Argument Type and Attributes

None.

Result Type and Attributes

Default integer.

Result Value

The number of threads in the team currently executing the parallel region from
which the function is called.

Examples
USE omp_lib
INTEGER N1, N2

N1 = omp_get_num_threads()
PRINT *, N1

!$OMP PARALLEL PRIVATE(N2)
N2 = omp_get_num_threads()
PRINT *, N2

!$OMP END PARALLEL
END

The omp_get_num_threads call returns 1 in the serial section of the code, so N1 is
assigned the value 1. N2 is assigned the number of threads in the team executing
the parallel region, so the output of the second print statement will be an arbitrary
number less than or equal to the value returned by omp_get_max_threads.

omp_get_partition_num_places()
Purpose

The omp_get_partition_num_places function returns the number of places in the
place partition of the innermost implicit task.

Class

Function.

Argument Type and Attributes

None.

Result Type and Attributes

Default integer.

Result Value

The number of places in the place-partition-var internal control variable (ICV).

Chapter 8. Parallel programming with XL Fortran 187

omp_get_partition_place_nums(place_nums)
Purpose

The omp_get_partition_place_nums subroutine returns the list of place numbers
corresponding to the places in the place-partition-var internal control variable (ICV)
of the innermost implicit task. The place-partition-var ICV controls the place
partition that is available to the execution environment for encountered parallel
regions. Each implicit task has one copy of the place-partition-var ICV.

Class

Subroutine.

Argument Type and Attributes

place_nums
An assumed-size array of integer type.

Result Type and Attributes

None.

Result Value

None.

Usage

The size of the array place_nums that contains place numbers must be equal to or
larger than the return value of omp_get_partition_num_places(); otherwise, the
behavior is undefined.

omp_get_place_num()
Purpose

The omp_get_place_num function returns the place number of the place to which
the encountering thread is bound.

Class

Function.

Argument Type and Attributes

None.

Result Type and Attributes

Default integer.

Result Value

The place number of the place to which the encountering thread is bound.

188 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Usage

When the encountering thread is bound to a place, the routine returns the place
number that is associated with the thread. The returned value is between -1 and
the return value of omp_get_num_places() exclusive. When the encountering
thread is not bound to a place, the routine returns -1.

omp_get_place_num_procs(place_num)
Purpose

The omp_get_place_num_procs function returns the number of processors that are
available to the execution environment in the specified place.

Class

Function.

Argument Type and Attributes

place_num
Default integer.

Result Type and Attributes

Default integer.

Result Value

The routine returns the number of processors that are associated with the place
that is numbered place_num. The routine returns zero when place_num is negative
or is equal to or larger than the result value of omp_get_num_places().

omp_get_place_proc_ids(place_num, ids)
Purpose

The omp_get_place_proc_ids subroutine returns the numerical identifiers of the
processors that are available to the execution environment in the specified place.

Class

Subroutine.

Argument Type and Attributes

place_num
Default integer.

ids
An assumed-size array of integer type.

Result Type and Attributes

None.

Chapter 8. Parallel programming with XL Fortran 189

Result Value

None.

Usage

The routine returns the non-negative numerical identifiers of each processor that is
associated with the place that is numbered place_num. The numerical identifiers are
returned in the array ids whose size must be equal to or larger than the return
value of omp_get_place_num_procs(place_num); otherwise, the behavior is
undefined. The routine has no effect when place_num is a negative value or is equal
to or larger than the return value of omp_get_num_places().

omp_get_proc_bind()
Purpose

Returns the thread affinity policy to be applied for the subsequent nested parallel
regions that do not specify a proc_bind clause.

Class

Function.

Argument Type and Attributes

None.

Result Type and Attributes

Default integer of kind omp_proc_bind_kind as defined in the omp_lib module.

Result Value

The result value is one of the following constant parameters that are defined in the
omp_lib module:
v omp_proc_bind_false

v omp_proc_bind_true

v omp_proc_bind_master

v omp_proc_bind_close

v omp_proc_bind_spread

Related information:
“OMP_PROC_BIND” on page 92

omp_get_schedule(kind, modifier)
Purpose

The omp_get_schedule subroutine returns the scheduling type that is applied
when using the runtime schedule. The argument kind returns the type of schedule
that is used. modifier represents the chunk size that is set for applicable schedule
types.

190 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Class

Subroutine.

Argument Type and Attributes

kind
Integer of kind omp_sched_kind. The value returned for kind is one of the
following constants that are defined in omp_lib module:
v omp_sched_static

v omp_sched_dynamic

v omp_sched_guided

v omp_sched_auto

v ibm_sched_affinity

where ibm_sched_affinity is not part of the OpenMP specification.

Note: ibm_sched_affinity has been deprecated and might be removed in a
future release. You can use omp_sched_guided for a similar functionality.

modifier
Default integer. For the schedule type dynamic, guided, or static, modifier is
the chunk size that is set. For the schedule type auto, modifier has no meaning.

Result Type and Attributes

None.

Result Value

None.

omp_get_team_size(level)
Purpose

The omp_get_team_size function returns the size of the thread team that the
ancestor belongs to.

Class

Function.

Argument Type and Attributes

level
Default integer. level is the nested level of the current thread.

Result Type and Attributes

Default integer.

Result Value

The size of the thread team that the ancestor belongs to. If level is outside of the
range of 0 and the nested level of the current thread, as returned by the
omp_get_level function, the function returns -1.

Chapter 8. Parallel programming with XL Fortran 191

omp_get_thread_limit()
Purpose

The omp_get_thread_limit function returns the maximum number of OpenMP
threads that are available to the program.

Class

Function.

Argument Type and Attributes

None.

Result Type and Attributes

Default integer.

Result Value

The maximum number of OpenMP threads that are available to the program.

omp_get_thread_num()
Purpose

The omp_get_thread_num function returns the number of the currently executing
thread within the team. The number returned will always be between 0 and
NUM_PARTHDS - 1. NUM_PARTHDS is the number of currently executing threads
within the team. The master thread of the team returns a value of 0.

If you call omp_get_thread_num from within a serial region, from within a
serialized nested parallel region, or from outside the dynamic extent of any parallel
region, this function will return a value of 0.

This function binds to the closest parallel region.

Class

Function.

Argument Type and Attributes

None.

Result Type and Attributes

Default integer.

Result Value

The value of the currently executing thread within the team between 0 and
NUM_PARTHDS - 1. NUM_PARTHDS is the number of currently executing threads
within the team. A call to omp_get_thread_num from a serialized nested parallel
region, or from outside the dynamic extent of any parallel region returns 0.

192 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Examples

The following example illustrates the return value of the omp_get_thread_num
routine in a PARALLEL region and a MASTER construct.

USE omp_lib
INTEGER NP
call omp_set_num_threads(4) ! 4 threads are used in the

! parallel region

!$OMP PARALLEL PRIVATE(NP)
NP = omp_get_thread_num()
CALL WORK(’in parallel’, NP)

!$OMP MASTER
NP = omp_get_thread_num()
CALL WORK(’in master’, NP)

!$OMP END MASTER
!$OMP END PARALLEL

END
SUBROUTINE WORK(msg, THD_NUM)
INTEGER THD_NUM
character(*) msg
PRINT *, msg, THD_NUM
END

Output:
in parallel 1
in parallel 3
in parallel 2
in parallel 0
in master 0

(The order may be different.)

omp_get_wtick()
Purpose

The omp_get_wtick function returns a double precision value equal to the number
of seconds between consecutive clock ticks.

Class

Function.

Argument Type and Attributes

None.

Result Type and Attributes

Double precision real.

Result Value

The number of seconds between consecutive ticks of the operating system real-time
clock.

Chapter 8. Parallel programming with XL Fortran 193

Examples
USE omp_lib
DOUBLE PRECISION WTICKS
WTICKS = omp_get_wtick()
PRINT *, ’The clock ticks ’, 10 / WTICKS, &
’ times in 10 seconds.’
END

omp_get_wtime()
Purpose

The omp_get_wtime function returns a double precision value equal to the number
of seconds since the initial value of the operating system real-time clock. The initial
value is guaranteed not to change during execution of the program.

The value returned by the omp_get_wtime function is not consistent across all
threads in the team.

Class

Function.

Argument Type and Attributes

None.

Result Type and Attributes

Double precision real.

Result Value

The number of seconds since the initial value of the operating system real-time
clock.

Examples
USE omp_lib
DOUBLE PRECISION START, END
START = omp_get_wtime()

! Work to be timed
END = omp_get_wtime()
PRINT *, ’Stuff took ’, END - START, ’ seconds.’
END

omp_in_final()
Purpose

The omp_in_final routine returns .TRUE. if the routine is called in a final task
region. Otherwise, the routine returns .FALSE..

Class

Function.

194 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Argument Type and Attributes

None.

Result Type and Attributes

Default logical.

Result Value

If the routine is called in a final task region, the result value is .TRUE.; otherwise,
the result value is .FALSE..

omp_in_parallel()
Purpose

The omp_in_parallel function returns .TRUE. if you call it from the dynamic
extent of a region executing in parallel and returns .FALSE. otherwise. If you call
omp_in_parallel from a region that is serialized but nested within the dynamic
extent of a region executing in parallel, the function will still return .TRUE..
(Nested parallel regions are serialized by default. See
“omp_set_nested(enable_expr)” on page 199 and the OMP_NESTED environment
variable for more information.)

Class

Function.

Argument Type and Attributes

None.

Result Type and Attributes

Default logical.

Result Value

.TRUE. if called from the dynamic extent of a region executing in parallel. .FALSE.
otherwise.

Examples

In the following example, the first call to omp_in_parallel returns .FALSE. because
the call is outside the dynamic extent of any parallel region. The second call
returns .TRUE., even if the nested PARALLEL DO loop is serialized, because the
call is still inside the dynamic extent of the outer PARALLEL DO loop.

USE omp_lib
INTEGER N, M
N = 4
M = 3
PRINT*, omp_in_parallel()

!$OMP PARALLEL DO
DO I = 1,N

!$OMP PARALLEL DO
DO J=1, M

PRINT *, omp_in_parallel()

Chapter 8. Parallel programming with XL Fortran 195

END DO
!$OMP END PARALLEL DO

END DO
!$OMP END PARALLEL DO

END

omp_init_lock(svar)
Purpose

The omp_init_lock subroutine initializes a lock and associates it with the lock
variable passed in as a parameter. After the call to omp_init_lock, the initial state
of the lock variable is unlocked.

If you call this routine with a lock variable that you have already initialized, the
result of the call is undefined.

Class

Subroutine.

Argument Type and Attributes

svar Integer of kind omp_lock_kind.

Result Type and Attributes

None.

Result Value

None.

Examples

In the following example, threads and their associated tasks are generated by the
parallel region, and one at a time, each task gains ownership of the lock associated
with the lock variable LCK, prints the thread ID, and releases ownership of the
lock.

USE omp_lib
INTEGER(kind=omp_lock_kind) LCK
INTEGER ID
CALL omp_init_lock(LCK)

!$OMP PARALLEL SHARED(LCK), PRIVATE(ID)
ID = omp_get_thread_num()
CALL omp_set_lock(LCK)
PRINT *,’MY THREAD ID IS’, ID
CALL omp_unset_lock(LCK)

!$OMP END PARALLEL
CALL omp_destroy_lock(LCK)
END

omp_init_nest_lock(nvar)
Purpose

The omp_init_nest_lock subroutine allows you to initialize a nestable lock and
associate it with the lock variable you specify. The initial state of the lock variable
is unlocked, and the initial nesting count is zero. The nvar must be an unitialized
nestable lock variable.

196 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

If you call omp_init_nest_lock using a variable that is already initialized, the result
is undefined.

Class

Subroutine.

Argument Type and Attributes

nvar Integer of kind omp_nest_lock_kind.

Result Type and Attributes

None.

Result Value

None.

Examples

The following example illustrates the use of a nestable lock for updating variable P
in the PARALLEL SECTIONS construct.

USE omp_lib
INTEGER P
INTEGER A
INTEGER B
INTEGER (kind=omp_nest_lock_kind) LCK
CALL omp_init_nest_lock (LCK) ! initialize the nestable lock

!$OMP PARALLEL SECTIONS
!$OMP SECTION

CALL omp_set_nest_lock (LCK)
P = P + A
CALL omp_set_nest_lock (LCK)
P = P + B
CALL omp_unset_nest_lock (LCK)
CALL omp_unset_nest_lock (LCK)

!$OMP SECTION
CALL omp_set_nest_lock (LCK)
P = P + B
CALL omp_unset_nest_lock (LCK)

!$OMP END PARALLEL SECTIONS

CALL omp_destroy_nest_lock (LCK)
END

omp_set_dynamic(enable_expr)
Purpose

The omp_set_dynamic subroutine enables or disables dynamic adjustment, by the
runtime environment, of the number of threads available to execute parallel
regions.

If enable_expr is evaluated to .TRUE., the runtime environment can automatically
adjust the number of threads that are used to execute subsequent parallel regions
to obtain the best use of system resources. The number of threads you specify
using omp_set_num_threads becomes the maximum, not exact, thread count.

Chapter 8. Parallel programming with XL Fortran 197

If enable_expr is evaluated to .FALSE., dynamic adjustment of the number of
threads is disabled. The runtime environment cannot automatically adjust the
number of threads used to execute subsequent parallel regions. The value you pass
to omp_set_num_threads becomes the exact thread count.

By default, dynamic thread adjustment is disabled. If your code depends on a
specific number of threads for correct execution, you should explicitly disable
dynamic threads.

If the routine is called from a portion of the program where the omp_in_parallel
routine returns .TRUE., the routine has no effect.

This subroutine has precedence over the OMP_DYNAMIC environment variable.

Class

Subroutine.

Argument Type and Attributes

enable_expr
Logical.

Result Type and Attributes

None.

Result Value

None.

omp_set_lock(svar)
Purpose

The omp_set_lock subroutine forces the calling task region to wait until the
specified lock is available before executing subsequent instructions. The calling task
region is given ownership of the lock when it becomes available.

If you call this routine with an uninitialized lock variable, the result of the call is
undefined. If a task region that owns a lock tries to lock it again by issuing a call
to omp_set_lock, the call produces a deadlock.

Class

Subroutine.

Argument Type and Attributes

svar Integer of kind omp_lock_kind.

Result Type and Attributes

None.

198 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Result Value

None.

Examples

In the following example, the lock variable LCK_X is used to avoid race conditions
when updating the shared variable X. By setting the lock before each update to X
and unsetting it after the update, you ensure that only one task region updates X
at a given time.

USE omp_lib
INTEGER A(100), X
INTEGER(kind=omp_lock_kind) LCK_X
X=1
CALL omp_init_lock (LCK_X)

!$OMP PARALLEL PRIVATE (I), SHARED (A, X)
!$OMP DO

DO I = 3, 100
A(I) = I * 10
CALL omp_set_lock (LCK_X)
X = X + A(I)
CALL omp_unset_lock (LCK_X)

END DO
!$OMP END DO
!$OMP END PARALLEL

CALL omp_destroy_lock (LCK_X)
END

omp_set_max_active_levels(max_levels)
Purpose

The omp_set_max_active_levels subroutine limits the number of nested, active
parallel regions. Use omp_set_max_active_levels only in serial regions of a
program. This routine has no effect in parallel regions of a program.

Class

Subroutine.

Argument Type and Attributes

max_levels
Default integer.

Result Type and Attributes

None.

Result Value

None.

omp_set_nested(enable_expr)
Purpose

The omp_set_nested subroutine enables or disables nested parallelism.

Chapter 8. Parallel programming with XL Fortran 199

If enable_expr is evaluated to .FALSE., nested parallelism is disabled. Nested
parallel regions are serialized, and they are executed by the current thread. This is
the default setting.

If enable_expr is evaluated to .TRUE., nested parallelism is enabled. Parallel
regions that are nested can deploy additional threads to the team. It is up to the
runtime environment to determine whether additional threads should be deployed.
Therefore, the number of threads used to execute parallel regions may vary from
one nested region to the next.

If the routine is called from a portion of the program where the omp_in_parallel
routine returns true, the routine has no effect.

The setting of the omp_set_nested subroutine overrides the setting of the
OMP_NESTED environment variable.

Note: If the number of threads from all regions exceeds the number of available
processors, your program might suffer performance degradation.

Class

Subroutine.

Argument Type and Attributes

enable_expr
Logical.

Result Type and Attributes

Default logical.

Result Value

None.

omp_set_nest_lock(nvar)
Purpose

The omp_set_nest_lock subroutine allows you to set a nestable lock. The task
region executing the subroutine will wait until the lock becomes available and then
set that lock, incrementing the nesting count. A nestable lock is available if it is
owned by the task region executing the subroutine, or is unlocked.

Class

Subroutine.

Argument Type and Attributes

nvar Integer of kind omp_nest_lock_kind.

Result Type and Attributes

None.

200 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Result Value

None.

Examples
USE omp_lib
INTEGER P
INTEGER A
INTEGER B
INTEGER (kind=omp_nest_lock_kind) LCK

CALL omp_init_nest_lock (LCK)

!$OMP PARALLEL SECTIONS
!$OMP SECTION
CALL omp_set_nest_lock (LCK)
P = P + A
CALL omp_set_nest_lock (LCK)
P = P + B
CALL omp_unset_nest_lock (LCK)
CALL omp_unset_nest_lock (LCK)
!$OMP SECTION
CALL omp_set_nest_lock (LCK)
P = P + B
CALL omp_unset_nest_lock (LCK)
!$OMP END PARALLEL SECTIONS

CALL omp_destroy_nest_lock (LCK)
END

omp_set_num_threads(number_of_threads_expr)
Purpose

The omp_set_num_threads routine specifies the number of threads to use for the
next parallel region by setting the first value of num_list for the
OMP_NUM_THREADS environment variable.

The number_of_threads_expr argument is evaluated, and its value is used as the
number of threads. If you have enabled dynamic adjustment of the number of
threads (see “omp_set_dynamic(enable_expr)” on page 197),
omp_set_num_threads sets the maximum number of threads to use for the next
parallel region. The runtime environment then determines the exact number of
threads to use. However, when dynamic adjustment of the number of threads is
disabled, omp_set_num_threads sets the exact number of threads to use in the
next parallel region. If the number of threads you request exceeds the number your
execution environment can support, your application will terminate.

This subroutine takes precedence over the OMP_NUM_THREADS environment
variable.

If you call this subroutine from the dynamic extent of a region executing in
parallel, the behavior of the subroutine is undefined.

Class

Subroutine.

Chapter 8. Parallel programming with XL Fortran 201

Argument Type and Attributes

number_of_threads_expr
integer

Result Type and Attributes

None.

Result Value

None.

omp_set_schedule(kind, modifier)
Purpose

The omp_set_schedule routine affects the schedule that is applied when runtime is
used as schedule kind. Use omp_set_schedule if you want to set the schedule type
separately from the OMP_SCHEDULE environment variable.

Note: You can use the omp_get_schedule to return scheduling type. For details,
see omp_get_schedule .

Class

Subroutine.

Argument Type and Attributes

kind
Type integer with kind omp_sched_kind. Must be one of the schedule types as
represented by the following constants:
v omp_sched_static

v omp_sched_dynamic

v omp_sched_guided

v omp_sched_auto

v ibm_sched_affinity

where ibm_sched_affinity is not part of the OpenMP.

Note: ibm_sched_affinity has been deprecated and might be removed in a
future release. You can use omp_sched_guided for a similar functionality.

modifier
Default integer. For the schedule type dynamic, guided, or static, modifier is
the chunk size that you want to set. Typically, it is a positive integer. If the
value is less than one, the default is used. For the schedule type auto, modifier
has no meaning. For the default setting of each schedule type, see -qsmp in the
XL Fortran Compiler Reference.

Result Type and Attributes

None.

202 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Result Value

None.

omp_test_lock(svar)
Purpose

The omp_test_lock function attempts to set the lock associated with the specified
lock variable. It returns .TRUE. if it was able to set the lock and .FALSE.
otherwise. In either case, the calling task region will continue to execute
subsequent instructions in the program.

If you call omp_test_lock with an uninitialized lock variable, the result of the call
is undefined.

Class

Function.

Argument Type and Attributes

svar Integer of kind omp_lock_kind.

Result Type and Attributes

Default logical.

Result Value

.TRUE. if the function was able to set the lock. .FALSE. otherwise.

Examples

In the following example, a task region repeatedly executes WORK_A until it can set
the lock variable, LCK. When the lock is set, the task region executes WORK_B.

USE omp_lib
INTEGER LCK
INTEGER ID
CALL omp_init_lock (LCK)

!$OMP PARALLEL SHARED(LCK), PRIVATE(ID)
ID = omp_get_thread_num()
DO WHILE (.NOT. omp_test_lock(LCK))
CALL WORK_A (ID)

END DO
CALL WORK_B (ID)
CALL omp_unset_lock (LCK)

!$OMP END PARALLEL
CALL omp_destroy_lock (LCK)
END

omp_test_nest_lock(nvar)
Purpose

The omp_test_nest_lock subroutine allows you to attempt to set a lock using the
same method as omp_set_nest_lock, but the executing task region does not wait
for confirmation that the lock is available. If the lock is successfully set, the
function will increment the nesting count and return the new nesting count. If the

Chapter 8. Parallel programming with XL Fortran 203

lock is unavailable the function returns a value of zero. Also, a child task sees a
value of zero if the parent task has already set the same lock. The result value is
always a default integer.

Class

Function.

Argument Type and Attributes

nvar Integer of kind omp_nest_lock_kind.

Result Type and Attributes

Default integer.

Result Value

The new nesting count if the lock is successfully set; otherwise, it returns zero.

omp_unset_lock(svar)
Purpose

The omp_unset_lock subroutine causes the executing task region to release
ownership of the specified lock. The lock can then be set by another task region as
required. The behavior of the omp_unset_lock subroutine is undefined if either of
the following conditions occur:
v The calling task region does not own the lock specified.
v The routine is called with an uninitialized lock variable.

Class

Subroutine.

Argument Type and Attributes

svar Integer of kind omp_lock_kind.

Result Type and Attributes

None.

Result Value

None.

Examples
USE omp_lib
INTEGER A(100)
INTEGER(kind=omp_lock_kind) LCK_X
CALL omp_init_lock (LCK_X)

!$OMP PARALLEL PRIVATE (I), SHARED (A, X)
!$OMP DO

DO I = 3, 100
A(I) = I * 10
CALL omp_set_lock (LCK_X)
X = X + A(I)

204 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

CALL omp_unset_lock (LCK_X)
END DO

!$OMP END DO
!$OMP END PARALLEL

CALL omp_destroy_lock (LCK_X)
END

In this example, the lock variable LCK_X is used to avoid race conditions when
updating the shared variable X. By setting the lock before each update to X and
unsetting it after the update, you ensure that only one task region is updating X at
a given time.

omp_unset_nest_lock(nvar)
Purpose

The omp_unset_nest_lock subroutine allows you to release ownership of a
nestable lock. The subroutine decrements the nesting count and releases the
associated task region from ownership of the nestable lock.

Class

Subroutine.

Argument Type and Attributes

nvar Integer of kind omp_lock_kind.

Result Type and Attributes

None.

Result Value

None.

Examples
USE omp_lib
INTEGER P
INTEGER A
INTEGER B
INTEGER (kind=omp_nest_lock_kind) LCK

CALL omp_init_nest_lock (LCK)

!$OMP PARALLEL SECTIONS
!$OMP SECTION
CALL omp_set_nest_lock (LCK)
P = P + A
CALL omp_set_nest_lock (LCK)
P = P + B
CALL omp_unset_nest_lock (LCK)
CALL omp_unset_nest_lock (LCK)
!$OMP SECTION
CALL omp_set_nest_lock (LCK)
P = P + B
CALL omp_unset_nest_lock (LCK)
!$OMP END PARALLEL SECTIONS

CALL omp_destroy_nest_lock (LCK)
END

Chapter 8. Parallel programming with XL Fortran 205

Pthreads Library Module
The Pthreads Library Module (f_pthread) is a Fortran 90 module that defines data
types and routines to make it easier to interface with the Linux pthreads library.
The Linux pthreads library is used to parallelize and to make your code
thread-safe.

The f_pthread library module naming convention is the use of the prefix f_ before
the corresponding Linux pthreads library routine name or type definition name.

In general, there is a one-to-one corresponding relationship between the procedures
in the Fortran 90 module f_pthread and the library routines contained in the Linux
pthreads library. However, some of the pthread routines have no corresponding
procedures in this module because they are not supported on Linux. One example
of these routines is the thread stack address option. There are also some
non-pthread interfacing routines contained in the f_pthread library module. The
f_maketime routine is one example and is included to return an absolute time in a
f_timespec derived type variable.

Most of the routines return an integer value. A return value of 0 will always
indicate that the routine call did not result in any error. Any non-zero return value
indicates an error. Each error code has a corresponding definition of a system error
code in Fortran. These error codes are available as Fortran integer constants. The
naming of these error codes in Fortran is consistent with the corresponding Linux
error code names. For example, EINVAL is the Fortran constant name of the error
code EINVAL on the system. For a complete list of these error codes, refer to the
file /usr/include/errno.h.

Note: The pthread module in XL Fortran is an extension to the standard Fortran
language.

Pthreads data structures, functions, and subroutines
Pthreads data types
v f_pthread_attr_t
v f_pthread_cond_t
v f_pthread_condattr_t
v f_pthread_key_t
v f_pthread_mutex_t
v f_pthread_mutexattr_t
v f_pthread_once_t
v f_pthread_rwlock_t
v f_pthread_rwlockattr_t
v f_pthread_t
v f_sched_param
v f_timespec

Functions that perform operations on thread attribute objects
v f_pthread_attr_destroy(attr)
v f_pthread_attr_getdetachstate(attr, detach)
v f_pthread_attr_getguardsize(attr, guardsize)
v f_pthread_attr_getinheritsched(attr, inherit)

206 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

v f_pthread_attr_getschedparam(attr, param)
v f_pthread_attr_getschedpolicy(attr, policy)
v f_pthread_attr_getscope(attr, scope)
v f_pthread_attr_getstack(attr, stackaddr, ssize)
v f_pthread_attr_init(attr)
v f_pthread_attr_setdetachstate(attr, detach)
v f_pthread_attr_setguardsize(attr, guardsize)
v f_pthread_attr_setinheritsched(attr, inherit)
v f_pthread_attr_setschedparam(attr, param)
v f_pthread_attr_setschedpolicy(attr, policy)
v f_pthread_attr_setscope(attr, scope)
v f_pthread_attr_setstack(attr, stackaddr, ssize)

Functions and subroutines that perform operations on threads
v f_pthread_cancel(thread)
v f_pthread_cleanup_pop(exec)
v f_pthread_cleanup_push(cleanup, flag, arg)
v f_pthread_create(thread, attr, flag, ent, arg)
v f_pthread_detach(thread)
v f_pthread_equal(thread1, thread2)
v f_pthread_exit(ret)
v f_pthread_getconcurrency()
v f_pthread_getschedparam(thread, policy, param)
v f_pthread_join(thread, ret)
v f_pthread_kill(thread, sig)
v f_pthread_self()
v f_pthread_setconcurrency(new_level)
v f_pthread_setschedparam(thread, policy, param)

Functions that perform operations on mutex attribute objects
v f_pthread_mutexattr_destroy(mattr)
v f_pthread_mutexattr_getpshared(mattr, pshared)
v f_pthread_mutexattr_gettype(mattr, type)
v f_pthread_mutexattr_init(mattr)
v f_pthread_mutexattr_setpshared(mattr, pshared)
v f_pthread_mutexattr_settype(mattr, type)

Functions that perform operations on mutex objects
v f_pthread_mutex_destroy(mutex)
v f_pthread_mutex_init(mutex, mattr)
v f_pthread_mutex_lock(mutex)
v f_pthread_mutex_trylock(mutex)
v f_pthread_mutex_unlock(mutex)

Chapter 8. Parallel programming with XL Fortran 207

Functions that perform operations on attribute objects of
condition variables
v f_pthread_condattr_destroy(cattr)
v f_pthread_condattr_getpshared(cattr, pshared)
v f_pthread_condattr_init(cattr)
v f_pthread_condattr_setpshared(cattr, pshared)

Functions that perform operations on condition variable objects
v f_maketime(delay)
v f_pthread_cond_broadcast(cond)
v f_pthread_cond_destroy(cond)
v f_pthread_cond_init(cond, cattr)
v f_pthread_cond_signal(cond)
v f_pthread_cond_timedwait(cond, mutex, timeout)
v f_pthread_cond_wait(cond, mutex)

Functions that perform operations on thread-specific data
v f_pthread_getspecific(key, arg)
v f_pthread_key_create(key, dtr)
v f_pthread_key_delete(key)
v f_pthread_setspecific(key, arg)

Functions and subroutines that perform operations to control
thread cancelability
v f_pthread_setcancelstate(state, oldstate)
v f_pthread_setcanceltype(type, oldtype)
v f_pthread_testcancel()

Functions that perform operations on read-write lock attribute
objects
v f_pthread_rwlockattr_destroy(rwattr)
v f_pthread_rwlockattr_getpshared(rwattr, pshared)
v f_pthread_rwlockattr_init(rwattr)
v f_pthread_rwlockattr_setpshared(rwattr, pshared)

Functions that perform operations on read-write lock objects
v f_pthread_rwlock_destroy(rwlock)
v f_pthread_rwlock_init(rwlock, rwattr)
v f_pthread_rwlock_rdlock(rwlock)
v f_pthread_rwlock_tryrdlock(rwlock)
v f_pthread_rwlock_trywrlock(rwlock)
v f_pthread_rwlock_unlock(rwlock)
v f_pthread_rwlock_wrlock(rwlock)

Functions that perform operations for one-time initialization
v f_pthread_once(once, initr)

208 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

f_maketime(delay)
Purpose

This function accepts an integer value specifying a delay in seconds and returns an
f_timespec type object containing the absolute time, which is delay seconds from
the calling moment.

Class

Function

Argument Type and Attributes

delay INTEGER(4), INTENT(IN)

Result Type and Attributes

TYPE (f_timespec)

Result Value

The absolute time, which is delay seconds from the calling moment, is returned.

f_pthread_attr_destroy(attr)
Purpose

This function must be called to destroy any previously initialized thread attribute
objects when they will no longer be used. Threads that were created with this
attribute object will not be affected in any way by this action. Memory that was
allocated when it was initialized will be recollected by the system.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(IN)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument attr is invalid.

Chapter 8. Parallel programming with XL Fortran 209

f_pthread_attr_getdetachstate(attr, detach)
Purpose

This function can be used to query the setting of the detach state attribute in the
thread attribute object attr. The current setting will be returned through argument
detach.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(IN)

detach INTEGER(4), INTENT(OUT)

Contains one of the following values:

PTHREAD_CREATE_DETACHED:
when a thread attribute object of this attribute setting is used to
create a new thread, the newly created thread will be in detached
state.

PTHREAD_CREATE_JOINABLE:
when a thread attribute object of this attribute setting is used to
create a new thread, the newly created thread will be in
undetached state.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error:

EINVAL
The argument attr is invalid.

f_pthread_attr_getguardsize(attr, guardsize)
Purpose

This function is used to get the guardsize attribute in the thread attribute object attr.
The current setting of the attribute will be returned through the argument
guardsize.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(IN)

guardsize
INTEGER(KIND=register_size), INTENT(IN)

210 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

where register_size is 8.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error:

EINVAL
The argument attr is invalid.

f_pthread_attr_getinheritsched(attr, inherit)
Purpose

This function can be used to query the inheritance scheduling attribute in the
thread attribute object attr. The current setting will be returned through the
argument inherit.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(OUT)

inherit
INTEGER(4)

On return from the function, inherit contains one of the following values:

PTHREAD_INHERIT_SCHED:
indicating that newly created threads will inherit the scheduling
property of the parent thread and ignore the scheduling property
of the thread attribute object used to create them.

PTHREAD_EXPLICIT_SCHED:
the scheduling property in the thread attribute object will be
assigned to the newly created threads when it is used to create
them.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise this function returns
the following error.

EINVAL
The argument attr is invalid.

Chapter 8. Parallel programming with XL Fortran 211

f_pthread_attr_getschedparam(attr, param)
Purpose

This function can be used to query the scheduling property setting in the thread
attribute object attr. The current setting will be returned in the argument param.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(IN)

param TYPE(f_sched_param), INTENT(OUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument attr is invalid.

f_pthread_attr_getschedpolicy(attr, policy)
Purpose

This function can be used to query the scheduling policy attribute setting in the
attribute object attr. The current setting of the scheduling policy will be returned in
the argument policy.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(IN)

policy INTEGER(4), INTENT(OUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument attr is invalid.

212 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

f_pthread_attr_getscope(attr, scope)
Purpose

This function can be used to query the current setting of the scheduling scope
attribute in the thread attribute object attr. The current setting will be returned
through the argument scope.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(IN)

scope INTEGER(4), INTENT(OUT)

On return from the function, scope will contain one of the following
values:

PTHREAD_SCOPE_SYSTEM:
the thread will compete for system resources on a system wide
scope.

PTHREAD_SCOPE_PROCESS:
the thread will compete for system resources locally within the
owning process.

scope Contains the following value:

PTHREAD_SCOPE_SYSTEM:
the thread will compete for system resources on a system wide
scope.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument attr is invalid.

f_pthread_attr_getstack(attr, stackaddr, ssize)
Purpose

Retrieves the values of the stackaddr and stacksize arguments from the thread
attribute object attr.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(IN)

Chapter 8. Parallel programming with XL Fortran 213

stackaddr
Integer pointer, INTENT(OUT)

ssize INTEGER(KIND=register_size), INTENT(OUT)

where register_size is 8.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
One or more of the supplied arguments is invalid.

f_pthread_attr_init(attr)
Purpose

This function must be called to create and initialize the pthread attribute object attr
before it can be used in any way. It will be filled with system default thread
attribute values. After it is initialized, certain pthread attributes can be changed
and/or set through attribute access procedures. Once initialized, this attribute
object can be used to create a thread with the intended attributes.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(OUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument attr is invalid.

f_pthread_attr_setdetachstate(attr, detach)
Purpose

This function can be used to set the detach state attribute in the thread attribute
object attr.

Class

Function

214 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(OUT)

detach INTEGER(4), INTENT(IN)

Must contain one of the following values:

PTHREAD_CREATE_DETACHED:
when a thread attribute object of this attribute setting is used to
create a new thread, the newly created thread will be in detached
state. This is the system default setting.

PTHREAD_CREATE_JOINABLE:
when a thread attribute object of this attribute setting is used to
create a new thread, the newly created thread will be in
undetached state.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument detach is invalid.

f_pthread_attr_setguardsize(attr, guardsize)
Purpose

This function is used to set the guardsizeattribute in the thread attributes object
attr. The new value of this attribute is obtained from the argument guardsize. If
guardsize is zero, a guard area will not be provided for threads created with attr.
If guardsize is greater than zero, a guard area of at least sizeguardsize bytes is
provided for each thread created with attr.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(INOUT)

guardsize
INTEGER(KIND=register_size), INTENT(IN)

where register_size is 8.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

Chapter 8. Parallel programming with XL Fortran 215

EINVAL
The argument attr or the argument guardsize is invalid.

f_pthread_attr_setinheritsched(attr, inherit)
Purpose

This function can be used to set the inheritance attribute of the thread scheduling
property in the thread attribute object attr.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(OUT)

inherit
INTEGER(4), INTENT(IN)

Must contain one of the following values:

PTHREAD_INHERIT_SCHED:
indicating that newly created threads will inherit the scheduling
property of the parent thread and ignore the scheduling property
of the thread attribute object used to create them.

PTHREAD_EXPLICIT_SCHED:
the scheduling property in the thread attribute object will be
assigned to the newly created threads when it is used to create
them.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument inherit is invalid.

f_pthread_attr_setschedparam(attr, param)
Purpose

This function can be used to set the scheduling property attribute in the thread
attribute object attr. Threads created with this new attribute object will assume the
scheduling property of argument param if they are not inherited from the creating
thread. The sched_priority field in argument param indicates the thread's
scheduling priority. The priority field must assume a value in the range of 1-127,
where 127 is the most favored scheduling priority while 1 is the least.

Class

Function

216 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(INOUT)

param TYPE(f_sched_param), INTENT(IN)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument param is invalid.

f_pthread_attr_setschedpolicy(attr, policy)
Purpose

After the attribute object is set by this function, threads created with this attribute
object will assume the set scheduling policy if the scheduling property is not
inherited from the creating thread.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(INOUT)

policy INTEGER(4), INTENT(IN)

Must contain one of the following values:

SCHED_FIFO:
indicating a first-in first-out thread scheduling policy.

SCHED_RR:
indicating a round-robin scheduling policy.

SCHED_OTHER:
the default scheduling policy.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following error.

EINVAL
The argument policy is invalid.

Chapter 8. Parallel programming with XL Fortran 217

f_pthread_attr_setscope(attr, scope)
Purpose

This function can be used to set the contention scope attribute in the thread
attribute object attr.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(INOUT)

scope INTEGER(4), INTENT(IN)

Must contain one of the following values:

PTHREAD_SCOPE_SYSTEM:
the thread will compete for system resources on a system wide
scope.

PTHREAD_SCOPE_PROCESS:
the thread will compete for system resources locally within the
owning process.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument scope is invalid.

f_pthread_attr_setstack(attr, stackaddr, ssize)
Purpose

Use this function to set the stack address and stack size attributes in the pthread
attribute object attr. The stackaddr argument represents the stack address as an
Integer pointer. The stacksize argument is an integer that represents the size of the
stack in bytes. When creating a thread using the attribute object attr, the system
allocates a minimum stack size of stacksize bytes.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(INOUT)

stackaddr
Integer pointer, INTENT(IN)

ssize INTEGER(KIND=register_size)

218 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

where register_size is 8.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

EINVAL
The value of one or both of the supplied arguments is invalid.

EACCES
The stack pages specified are not readable by the thread.

f_pthread_attr_t
Purpose

A derived data type whose components are all private. Any object of this type
should be manipulated only through the appropriate interfaces provided in this
module.

This data type corresponds to the POSIX pthread_attr_t, which is the type of
thread attribute object.

Class

Data Type.

f_pthread_cancel(thread)
Purpose

This function can be used to cancel a target thread. How this cancelation request
will be processed depends on the state of the cancelability of the target thread. The
target thread is identified by argument thread. If the target thread is in
deferred-cancel state, this cancelation request will be put on hold until the target
thread reaches its next cancelation point. If the target thread disables its
cancelability, this request will be put on hold until it is enabled again. If the target
thread is in async-cancel state, this request will be acted upon immediately.

Class

Function

Argument Type and Attributes

thread TYPE(f_pthread_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Chapter 8. Parallel programming with XL Fortran 219

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

ESRCH
The argument thread is invalid.

f_pthread_cleanup_pop(exec)
Purpose

This subroutine should be paired with f_pthread_cleanup_push in using the
cleanup stack for thread safety. If the supplied argument exec contains a non-zero
value, the last pushed cleanup function will be popped from the cleanup stack and
executed, with the argument arg (from the last f_pthread_cleanup_push) passed to
the cleanup function.

If exec contains a zero value, the last pushed cleanup function will be popped
from the cleanup stack, but will not be executed.

Class

Subroutine

Argument Type and Attributes

exec INTEGER(4), INTENT(IN)

Result Type and Attributes

None.

Result Value

None.

f_pthread_cleanup_push(cleanup, flag, arg)
Purpose

This function can be used to register a cleanup subroutine for the calling thread. In
case of an unexpected termination of the calling thread, the system will
automatically execute the cleanup subroutine in order for the calling thread to
terminate safely. The argument cleanup must be a subroutine expecting exactly one
argument. If it is executed, the argument arg will be passed to it as the actual
argument.

The argument arg is a generic argument that can be of any type and any rank. The
actual argument arg must be a variable, and consequently eligible as a left-value in
an assignment statement. If you pass an array section with vector subscripts to the
argument arg, the result is unpredictable.

If the actual argument arg is an array section, the corresponding dummy argument
in subroutine cleanup must be an assumed-shape array. Otherwise, the result is
unpredictable.

220 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

If the actual argument arg has the pointer attribute that points to an array or array
section, the corresponding dummy argument in subroutine cleanup must have a
pointer attribute or be an assumed-shape array. Otherwise, the result is
unpredictable.

For a normal execution path, this function must be paired with a call to
f_pthread_cleanup_pop.

The argument flag must be used to convey the property of argument arg exactly to
the system.

Class

Function

Argument Type and Attributes

cleanup
A subroutine that has one dummy argument.

flag Flag is an INTEGER(4), INTENT(IN) argument that can contain one of, or
a combination of, the following constants:

FLAG_CHARACTER:
if the entry subroutine cleanup expects an argument of type
CHARACTER in any way or any form, this flag value must be
included to indicate this fact. However, if the subroutine expects a
Fortran 90 pointer pointing to an argument of type CHARACTER,
the FLAG_DEFAULT value should be included instead.

FLAG_ASSUMED_SHAPE:
if the entry subroutine cleanup has a dummy argument that is an
assumed-shape array of any rank, this flag value must be included
to indicate this fact.

FLAG_DEFAULT:
otherwise, this flag value is needed.

arg A generic argument that can be of any type, kind, and rank.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

ENOMEM
The system cannot allocate memory to push this routine.

EAGAIN
The system cannot allocate resources to push this routine.

EINVAL
The argument flag is invalid.

Chapter 8. Parallel programming with XL Fortran 221

f_pthread_cond_broadcast(cond)
Purpose

This function will unblock all threads waiting on the condition variable cond. If
there is no thread waiting on this condition variable, the function will still succeed,
but the next caller to f_pthread_cond_wait will be blocked, and will wait on the
condition variable cond.

Class

Function

Argument Type and Attributes

cond TYPE(f_pthread_cond_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
following error.

EINVAL
The argument cond is invalid.

f_pthread_cond_destroy(cond)
Purpose

This function can be used to destroy those condition variables that are no longer
required. The target condition variable is identified by the argument cond. System
resources allocated during initialization will be recollected by the system.

Class

Function

Argument Type and Attributes

cond TYPE(f_pthread_cond_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EBUSY
The condition variable cond is being used by another thread.

222 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

f_pthread_cond_init(cond, cattr)
Purpose

This function can be used to dynamically initialize a condition variable cond. Its
attributes will be set according to the attribute object cattr, if it is provided;
otherwise, its attributes will be set to the system default. After the condition
variable is initialized successfully, it can be used to synchronize threads.

Another method of initializing a condition variable is to initialize it statically using
the Fortran constant PTHREAD_COND_INITIALIZER.

Class

Function

Argument Type and Attributes

cond TYPE(f_pthread_cond_t), INTENT(INOUT)

cattr TYPE(f_pthread_condattr_t), INTENT(IN), OPTIONAL

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

EBUSY
The condition variable is already in use. It is initialized and not destroyed.

EINVAL
The argument cond or cattr is invalid.

f_pthread_cond_signal(cond)
Purpose

This function will unblock at least one thread waiting on the condition variable
cond. If there is no thread waiting on this condition variable, the function will still
succeed, but the next caller to f_pthread_cond_wait will be blocked, and will wait
on the condition variable cond.

Class

Function

Argument Type and Attributes

cond TYPE(f_pthread_cond_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Chapter 8. Parallel programming with XL Fortran 223

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument cond is invalid.

f_pthread_cond_t
Purpose

A derived data type whose components are all private. Any object of this type
should be manipulated through the appropriate interfaces provided in this module.
In addition, objects of this type can be initialized at compile time using the Fortran
constant PTHREAD_COND_INITIALIZER.

This data type corresponds to the POSIX pthread_cond_t, which is the type of
condition variable object.

Class

Data Type.

f_pthread_cond_timedwait(cond, mutex, timeout)
Purpose

This function can be used to wait for a certain condition to occur. The argument
mutex must be locked before calling this function. The mutex is unlocked
atomically and the calling thread waits for the condition to occur. The argument
timeout specifies a deadline before which the condition must occur. If the deadline
is reached before the condition occurs, the function will return an error code. This
function provides a cancelation point in that the calling thread can be canceled if it
is in the enabled state.

The argument timeout will specify an absolute date of the form: Oct. 31 10:00:53,
1998. For related information, see f_maketime and f_timespec.

Class

Function

Argument Type and Attributes

cond TYPE(f_pthread_cond_t), INTENT(INOUT)

mutex TYPE(f_pthread_mutex_t), INTENT(INOUT)

timeout
TYPE(f_timespec), INTENT(IN)

Result Type and Attributes

INTEGER(4)

224 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Result Value

On successful completion, this function returns 0. Otherwise this function returns
one of the following errors:

EINVAL
The argument cond, mutex, or timeout is invalid.

ETIMEDOUT
The waiting deadline was reached before the condition occurred.

f_pthread_cond_wait(cond, mutex)
Purpose

This function can be used to wait for a certain condition to occur. The argument
mutex must be locked before calling this function. The mutex is unlocked
atomically, and the calling thread waits for the condition to occur. If the condition
does not occur, the function will wait until the calling thread is terminated in
another way. This function provides a cancelation point in that the calling thread
can be canceled if it is in the enabled state.

Class

Function

Argument Type and Attributes

cond TYPE(f_pthread_cond_t), INTENT(INOUT)

mutex TYPE(f_pthread_mutex_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

This function returns 0.

f_pthread_condattr_destroy(cattr)
Purpose

This function can be called to destroy the condition variable attribute objects that
are no longer required. The target object is identified by the argument cattr. The
system resources allocated when it is initialized will be recollected.

Class

Function

Argument Type and Attributes

cattr TYPE(f_pthread_condattr_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Chapter 8. Parallel programming with XL Fortran 225

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
on of the following errors.

EINVAL
The argument cattr is invalid.

EBUSY
Returns EBUSY if threads are waiting on the for the condition to occur.

f_pthread_condattr_getpshared(cattr, pshared)
Purpose

This function can be used to query the process-shared attribute of the condition
variable attributes object identified by the argument cattr. The current setting of
this attribute will be returned in the argument pshared.

Class

Function

Argument Type and Attributes

cattr TYPE(f_pthread_condattr_t), INTENT(IN)

pshared
INTEGER(4), INTENT(OUT)

On successful completion, pshared contains one of the following values:

PTHREAD_PROCESS_SHARED
The condition variable can be used by any thread that has access to
the memory where it is allocated, even if these threads belong to
different processes.

PTHREAD_PROCESS_PRIVATE
The condition variable shall only be used by threads within the
same process as the thread that created it.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument cattr is invalid.

f_pthread_condattr_init(cattr)
Purpose

Use this function to initialize a condition variable attributes object cattr with the
default value for all of the attributes defined by the implementation. Attempting to
initialize an already initialized condition variable attributes object results in
undefined behavior. After a condition variable attributes object has been used to

226 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

initialize one or more condition variables, any function affecting the attributes
object (including destruction) does not affect any previously initialized condition
variables.

Class

Function

Argument Type and Attributes

cattr TYPE(f_pthread_condattr_t), INTENT(OUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

ENOMEM
There is insufficient memory to initialize the condition variable attributes
object.

f_pthread_condattr_setpshared(cattr, pshared)
Purpose

This function is used to set the process-shared attribute of the condition variable
attributes object identified by the argument cattr. Its process-shared attribute will
be set according to the argument pshared.

Class

Function

Argument Type and Attributes

cattr TYPE(f_pthread_condattr_t), INTENT(INOUT)

pshared
is an INTEGER(4), INTENT(IN) argument that must contain one of the
following values:

PTHREAD_PROCESS_SHARED
Specifies that the condition variable can be used by any thread that
has access to the memory where it is allocated, even if these
threads belong to different processes.

PTHREAD_PROCESS_PRIVATE
Specifies that the condition variable shall only be used by threads
within the same process as the thread that created it. This is the
default setting of the attribute.

Result Type and Attributes

INTEGER(4)

Chapter 8. Parallel programming with XL Fortran 227

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The value specified by the argument cattr or pshared is invalid.

f_pthread_condattr_t
Purpose

A derived data type whose components are all private. Any object of this type
should be manipulated only through the appropriate interfaces provided in this
module.

This data type corresponds to the POSIX pthread_condattr_t, which is the type of
condition variable attribute object.

Class

Data Type

f_pthread_create(thread, attr, flag, ent, arg)
Purpose

This function is used to create a new thread in the current process. The newly
created thread will assume the attributes defined in the thread attribute object attr,
if it is provided. Otherwise, the new thread will have system default attributes.
The new thread will begin execution at the subroutine ent, which is required to
have one dummy argument. The system will pass the argument arg to the thread
entry subroutine ent as its actual argument. The argument flag is used to inform
the system of the property of the argument arg. When the execution returns from
the entry subroutine ent, the new thread will terminate automatically.

If subroutine ent was declared such that an explicit interface would be required if
it was called directly, then an explicit interface is also required when it is passed as
an argument to this function.

The argument arg is a generic argument that can be of any type and any rank. The
actual argument arg must be a variable, and consequently eligible as a left- value
in an assignment statement. If you pass an array section with vector subscripts to
the argument arg, the result is unpredictable.

If the actual argument arg is an array section, the corresponding dummy argument
in subroutine ent must be an assumed-shape array. Otherwise, the result is
unpredictable.

If the actual argument arg has the pointer attribute that points to an array or array
section, the corresponding dummy argument in subroutine ent must have a
pointer attribute or be an assumed-shape array. Otherwise, the result is
unpredictable.

Class

Function

228 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Argument Type and Attributes

thread TYPE(f_pthread_t), INTENT(OUT)

On successful completion of the function, f_pthread_create stores the ID of
the created thread in the thread.

attr TYPE(f_pthread_attr_t), INTENT(IN)

flag INTEGER(4), INTENT(IN)

The argument flag must convey the property of the argument arg exactly
to the system. The argument flag can be one of, or a combination of, the
following constants:

FLAG_CHARACTER:
if the entry subroutine ent expects an argument of type
CHARACTER in any way or any form, this flag value must be
included to indicate this fact. However, if the subroutine expects a
Fortran 90 pointer pointing to an argument of type CHARACTER,
the FLAG_DEFAULT value should be included instead.

FLAG_ASSUMED_SHAPE:
if the entry subroutine ent has a dummy argument which is an
assumed-shape array of any rank, this flag value must be included
to indicate this fact.

FLAG_DEFAULT:
otherwise, this flag value is needed.

ent A subroutine that has one dummy argument of any type, kind and rank.

arg A generic argument of any type, kind, and rank. It is passed to ent as the
only actual argument.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

EAGAIN
The system does not have enough resources to create a new thread.

EINVAL
The argument thread, attr, or flag is invalid.

ENOMEM
The system does not have sufficient memory to create a new thread.

f_pthread_detach(thread)
Purpose

This function is used to indicate to the pthreads library implementation that
storage for the thread whose thread ID is specified by the argument thread can be
claimed when this thread terminates. If the thread has not yet terminated,
f_pthread_detach shall not cause it to terminate. Multiple f_pthread_detach calls
on the same target thread cause an error.

Chapter 8. Parallel programming with XL Fortran 229

Class

Function

Argument Type and Attributes

thread TYPE(f_pthread_t), INTENT(IN)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

ESRCH
The argument thread is invalid.

f_pthread_equal(thread1, thread2)
Purpose

This function can be used to compare whether two thread ID's identify the same
thread or not.

Class

Function

Argument Type and Attributes

thread1
TYPE(f_pthread_t), INTENT(IN)

thread2
TYPE(f_pthread_t), INTENT(IN)

Result Type and Attributes

LOGICAL(4)

Result Value

TRUE The two thread ID's identify the same thread.

FALSE
The two thread ID's do not identify the same thread.

f_pthread_exit(ret)
Purpose

This subroutine can be called explicitly to terminate the calling thread before it
returns from the entry subroutine. The actions taken depend on the state of the
calling thread. If it is in non-detached state, the calling thread will wait to be
joined. If the thread is in detached state, or when it is joined by another thread, the
calling thread will terminate safely. First, the cleanup stack will be popped and
executed, and then any thread-specific data will be destructed by the destructors.

230 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Finally, the thread resources are freed and the argument ret will be returned to the
joining threads. The argument ret of this subroutine is optional. Currently,
argument ret is limited to be an Integer pointer. If it is not an Integer pointer, the
behavior is undefined. Calling f_pthread_exit will not automatically free all of the
memory allocated to a thread. To avoid memory leaks, finalization must be
handled separately from f_pthread_exit.

This subroutine never returns. If argument ret is not provided, NULL will be
provided as this thread's exit status.

Class

Subroutine

Argument Type and Attributes

ret Integer pointer, OPTIONAL, INTENT(IN)

Result Type and Attributes

None

Result Value

None

f_pthread_getconcurrency()
Purpose

This function returns the value of the concurrency level set by a previous call to
the f_pthread_setconcurrency function. If the f_pthread_setconcurrency function
was not previously called, this function returns zero to indicate that the system is
maintaining the concurrency level.

Class

Function

Argument Type and Attributes

None

Result Type and Attributes

INTEGER(4)

Result Value

This function returns the value of the concurrency level set by a previous call to
the f_pthread_setconcurrency function. If the f_pthread_setconcurrency function
was not previously called, this function returns 0.

Chapter 8. Parallel programming with XL Fortran 231

f_pthread_getschedparam(thread, policy, param)
Purpose

This function can be used to query the current setting of the scheduling property
of the target thread. The target thread is identified by argument thread. Its
scheduling policy will be returned through argument policy and its scheduling
property through argument param. The sched_priority field in param defines the
scheduling priority. The priority field will assume a value in the range of 1-127,
where 127 is the most favored scheduling priority while 1 is the least.

Class

Function

Argument Type and Attributes

thread TYPE(f_pthread_t), INTENT(IN)

policy INTEGER(4), INTENT(OUT)

param TYPE(f_sched_param), INTENT(OUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

ESRCH
The target thread is invalid or has already terminated.

EFAULT
The policy or param points are outside the process memory space

f_pthread_getspecific(key, arg)
Purpose

This function can be used to retrieve the thread-specific data associated with key.
Note that the argument arg is not optional in this function as it will return the
thread-specific data. After execution of the procedure, the argument arg holds a
pointer to the data, or NULL if there is no data to retrieve. The argument arg must
be an Integer pointer, or the result is undefined.

The actual argument arg must be a variable, and consequently eligible as a
left-value in an assignment statement. If you pass an array section with vector
subscripts to the argument arg, the result is unpredictable.

Class

Function

Argument Type and Attributes

key TYPE(f_pthread_key_t), INTENT(IN)

232 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

arg Integer pointer, INTENT(OUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument key is invalid.

f_pthread_join(thread, ret)
Purpose

This function can be called to join a particular thread designated by the argument
thread. If the target thread is in non-detached state and is already terminated, this
call will return immediately with the target thread's status returned in argument
ret if it is provided. The argument ret is optional. Currently, ret must be an Integer
pointer if it is provided.

If the target thread is in detached state, it is an error to join it.

Class

Function

Argument Type and Attributes

thread TYPE(f_pthread_t), INTENT(IN)

ret Integer pointer, INTENT(OUT), OPTIONAL

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

EDEADLK
This call will cause a deadlock, or the calling thread is trying to join itself.

EINVAL
The argument thread is invalid.

ESRCH
The argument thread designates a thread which does not exist or is in
detached state.

Chapter 8. Parallel programming with XL Fortran 233

f_pthread_key_create(key, dtr)
Purpose

This function can be used to acquire a thread-specific data key. The key will be
returned in the argument key. The argument dtr is a subroutine that will be used
to destruct the thread-specific data associated with this key when any thread
terminates after this calling point. The destructor will receive the thread-specific
data as its argument. The destructor itself is optional. If it is not provided, the
system will not invoke any destructor on the thread-specific data associated with
this key. Note that the number of thread-specific data keys is limited in each
process. It is the user's responsibility to manage the usage of the keys. The
per-process limit can be checked by the Fortran constant
PTHREAD_DATAKEYS_MAX.

Class

Function

Argument Type and Attributes

key TYPE(f_pthread_key_t), INTENT(OUT)

dtr External, optional subroutine

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

EAGAIN
The maximum number of keys has been exceeded.

EINVAL
The argument key is invalid.

ENOMEM
There is insufficient memory to create this key.

f_pthread_key_delete(key)
Purpose

This function will destroy the thread-specific data key identified by the argument
key. It is the user's responsibility to ensure that there is no thread-specific data
associated with this key. This function does not call any destructor on the thread's
behalf. After the key is destroyed, it can be reused by the system for
f_pthread_key_create requests.

Class

Function

Argument Type and Attributes

key TYPE(f_pthread_key_t), INTENT(INOUT)

234 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

EINVAL
The argument key is invalid.

EBUSY
There is still data associated with this key.

f_pthread_key_t
Purpose

A derived data type whose components are all private. Any object of this type
should be manipulated only through the appropriate interfaces provided in this
module.

This data type corresponds to the POSIX pthread_key_t, which is the type of key
object for accessing thread-specific data.

Class

Data Type

f_pthread_kill(thread, sig)
Purpose

This function can be used to send a signal to a target thread. The target thread is
identified by argument thread. The signal which will be sent to the target thread is
identified in argument sig. If sig contains value zero, error checking will be done
by the system but no signal will be sent.

Class

Function

Argument Type and Attributes

thread TYPE(f_pthread_t), INTENT(INOUT)

sig INTEGER(4), INTENT(IN)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

Chapter 8. Parallel programming with XL Fortran 235

EINVAL
The argument thread or sig is invalid.

ESRCH
The target thread does not exist.

f_pthread_mutex_destroy(mutex)
Purpose

This function should be called to destroy those mutex objects that are no longer
required. In this way, the system can recollect the memory resources. The target
mutex object is identified by the argument mutex.

Class

Function

Argument Type and Attributes

mutex TYPE(f_pthread_mutex_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

EBUSY
The target mutex is locked or referenced by another thread.

EINVAL
The argument mutex is invalid.

f_pthread_mutex_init(mutex, mattr)
Purpose

This function can be used to initialize the mutex object identified by argument
mutex. The initialized mutex will assume attributes set in the mutex attribute
object mattr, if it is provided. If mattr is not provided, the system will initialize the
mutex to have default attributes. After it is initialized, the mutex object can be
used to synchronize accesses to critical data or code. It can also be used to build
more complicated thread synchronization objects.

Another method to initialize mutex objects is to statically initialize them through
the Fortran constant PTHREAD_MUTEX_INITIALIZER. If this method of
initialization is used it is not necessary to call the function before using the mutex
objects.

Class

Function

236 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Argument Type and Attributes

mutex TYPE(f_pthread_mutex_t), INTENT(OUT)

mattr TYPE(f_pthread_mutexattr_t), INTENT(IN), OPTIONAL

Result Type and Attributes

INTEGER(4)

Result Value

This function always returns 0.

f_pthread_mutex_lock(mutex)
Purpose

This function can be used to acquire ownership of the mutex object. (In other
words, the function will lock the mutex.) If the mutex has already been locked by
another thread, the caller will wait until the mutex is unlocked. If the mutex is
already locked by the caller itself, an error will be returned to prevent recursive
locking.

Class

Function

Argument Type and Attributes

mutex TYPE(f_pthread_mutex_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

EDEADLK
The mutex is locked by the calling thread already.

EINVAL
The argument mutex is invalid.

f_pthread_mutex_t
Purpose

A derived data type whose components are all private. Any object of this type
should be manipulated through the appropriate interfaces provided in this module.
In addition, objects of this type can be initialized statically through the Fortran
constant PTHREAD_MUTEX_INITIALIZER.

This data type corresponds to the POSIX pthread_mutex_t, which is the type of
mutex object.

Chapter 8. Parallel programming with XL Fortran 237

Class

Data Type

f_pthread_mutex_trylock(mutex)
Purpose

This function can be used to acquire ownership of the mutex object. (In other
words, the function will lock the mutex.) If the mutex has already been locked by
another thread, the function returns the error code EBUSY. The calling thread can
check the return code to take further actions. If the mutex is already locked by the
caller itself, an error will be returned to prevent recursive locking.

Class

Function

Argument Type and Attributes

mutex TYPE(f_pthread_mutex_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

EBUSY
The target mutex is locked or referenced by another thread.

EINVAL
The argument mutex is invalid.

f_pthread_mutex_unlock(mutex)
Purpose

This function releases the mutex object's ownership in order to allow other threads
to lock the mutex.

Class

Function

Argument Type and Attributes

mutex TYPE(f_pthread_mutex_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

238 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

EINVAL
The argument mutex is invalid.

EPERM
The mutex is not locked by the calling thread.

f_pthread_mutexattr_destroy(mattr)
Purpose

This function can be used to destroy a mutex attribute object that has been
initialized previously. Allocated memory will then be recollected. A mutex created
with this attribute will not be affected by this action.

Class

Function

Argument Type and Attributes

mattr TYPE(f_pthread_mutexattr_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

This function always returns 0.

f_pthread_mutexattr_getpshared(mattr, pshared)
Purpose

This function is used to query the process-shared attribute in the mutex attributes
object identified by the argument mattr. The current setting of the attribute will be
returned through the argument pshared.

Class

Function

Argument Type and Attributes

mattr TYPE(f_pthread_mutexattr_t), INTENT(IN)

pshared
INTEGER(4), INTENT(IN)

On return from this function, pshared contains one of the following values:

PTHREAD_PROCESS_SHARED
The mutex can be operated upon by any thread that has access to
the memory where the mutex is allocated, even if the mutex is
allocated in memory that is shared by multiple processes.

Chapter 8. Parallel programming with XL Fortran 239

PTHREAD_PROCESS_PRIVATE
The mutex will only be operated upon by threads created within
the same process as the thread that initialized the mutex.

Result Type and Attributes

INTEGER(4)

Result Value

If this function completes successfully, value 0 is returned and the value of the
process-shared attribute is returned through the argument pshared. Otherwise, the
following error will be returned:

EINVAL
The argument mattr is invalid.

f_pthread_mutexattr_gettype(mattr, type)
Purpose

This function is used to query the mutex type attribute in the mutex attributes
object identified by the argument mattr.

If this function completes successfully, value 0 is returned and the type attribute
will be returned through the argument type.

Class

Function

Argument Type and Attributes

mattr TYPE(f_pthread_mutexattr_t), INTENT(IN)

type INTEGER(4), INTENT(OUT)

On return from this function, type contains one of the following values:

PTHREAD_MUTEX_NORMAL
This type of mutex does not detect deadlock. A thread attempting
to relock this mutex without first unlocking it will deadlock.
Attempting to unlock a mutex locked by a different thread results
in undefined behavior.

PTHREAD_MUTEX_ERRORCHECK
This type of mutex provides error checking. A thread attempting to
relock this mutex without first unlocking it will return with an
error. A thread attempting to unlock a mutex which another thread
has locked will return an error. A thread attempting to unlock an
unlocked mutex will return with an error.

PTHREAD_MUTEX_RECURSIVE
A thread attempting to relock this mutex without first unlocking it
will succeed in locking the mutex. The relocking deadlock that can
occur with mutexes of type PTHREAD_MUTEX_NORMAL cannot
occur with this type of mutex. Multiple locks of this mutex require
the same number of unlocks to release the mutex before another
thread can acquire the mutex.

240 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument is invalid.

f_pthread_mutexattr_init(mattr)
Purpose

This function can be used to initialize a mutex attribute object before it can be used
in any other way. The mutex attribute object will be returned through argument
mattr.

Class

Function

Argument Type and Attributes

mattr TYPE(f_pthread_mutexattr_t), INTENT(OUT)

Result Type and Attributes

INTEGER(4)

Result Value

This function returns 0.

f_pthread_mutexattr_setpshared(mattr, pshared)
Purpose

This function is used to set the process-shared attribute of the mutex attributes
object identified by the argument mattr.

Class

Function

Argument Type and Attributes

mattr TYPE(f_pthread_mutexattr_t), INTENT(INOUT)

pshared
INTEGER(4), INTENT(IN)

Must contain one of the following values:

PTHREAD_PROCESS_SHARED
Specifies the mutex can be operated upon by any thread that has
access to the memory where the mutex is allocated, even if the
mutex is allocated in memory that is shared by multiple processes.

Chapter 8. Parallel programming with XL Fortran 241

PTHREAD_PROCESS_PRIVATE
Specifies the mutex will only be operated upon by threads created
within the same process as the thread that initialized the mutex.
This is the default setting of the attribute.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument is invalid.

f_pthread_mutexattr_settype(mattr, type)
Purpose

This function is used to set the mutex type attribute in the mutex attributes object
identified by the argument mattr The argument type identifies the mutex type
attribute to be set.

Class

Function

Argument Type and Attributes

mattr TYPE(f_pthread_mutexattr_t), INTENT(INOUT)

type INTEGER(4), INTENT(IN)

Must contain one of the following values:

PTHREAD_MUTEX_NORMAL
This type of mutex does not detect deadlock. A thread attempting
to relock this mutex without first unlocking it will deadlock.
Attempting to unlock a mutex locked by a different thread results
in undefined behavior.

PTHREAD_MUTEX_ERRORCHECK
This type of mutex provides error checking. A thread attempting to
relock this mutex without first unlocking it will return with an
error. A thread attempting to unlock a mutex which another thread
has locked will return an error. A thread attempting to unlock an
unlocked mutex will return with an error.

PTHREAD_MUTEX_RECURSIVE
A thread attempting to relock this mutex without first unlocking it
will succeed in locking the mutex. The relocking deadlock that can
occur with mutexes of type PTHREAD_MUTEX_NORMAL cannot
occur with this type of mutex. Multiple locks of this mutex require
the same number of unlocks to release the mutex before another
thread can acquire the mutex.

PTHREAD_MUTEX_DEFAULT
The same as PTHREAD_MUTEX_NORMAL.

242 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
One of the arguments is invalid.

f_pthread_mutexattr_t
Purpose

A derived data type whose components are all private. Any object of this type
should be manipulated only through the appropriate interfaces provided in this
module.

This data type corresponds to the POSIX pthread_mutexattr_t, which is the type of
mutex attribute object.

Class

Data Type

f_pthread_once(once, initr)
Purpose

This function can be used to initialize those data required to be initialized only
once. The first thread calling this function will call initr to do the initialization.
Other threads calling this function afterwards will have no effect. Argument initr
must be a subroutine without dummy arguments.

Class

Function

Argument Type and Attributes

once TYPE(f_pthread_once_t), INTENT(INOUT)

initr A subroutine that has no dummy arguments.

Result Type and Attributes

INTEGER(4)

Result Value

This function returns 0.

Chapter 8. Parallel programming with XL Fortran 243

f_pthread_once_t
Purpose

A derived data type whose components are all private. Any object of this type
should be manipulated through the appropriate interfaces provided in this module.
However, objects of this type can only be initialized through the Fortran constant
PTHREAD_ONCE_INIT.

Class

Data Type

f_pthread_rwlock_destroy(rwlock)
Purpose

This function destroys the read-write lock object specified by the argument rwlock
and releases any resources used by the lock.

Class

Function

Argument Type and Attributes

rwlock
TYPE(f_pthread_rwlock_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

EBUSY
The target read-write object is locked.

f_pthread_rwlock_init(rwlock, rwattr)
Purpose

This function initializes the read-write lock object specified by rwlock with the
attribute specified by the argument rwattr. If the optional argument rwattr is not
provided, the system will initialize the read-write lock object with the default
attributes. After it is initialized, the lock can be used to synchronize access to
critical data. With a read-write lock, many threads can have simultaneous
read-only access to data, while only one thread can have write access at any given
time and no other readers or writers are allowed.

Another method to initialize read-write lock objects is to statically initialize them
through the Fortran constant PTHREAD_RWLOCK_INITIALIZER. If this method
of initialization is used, it is not necessary to call this function before using the
read-write lock objects.

244 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Class

Function

Argument Type and Attributes

rwlock
TYPE(f_pthread_rwlock_t), INTENT(OUT)

rwattr TYPE(f_pthread_rwlockattr_t), INTENT(IN), OPTIONAL

Result Type and Attributes

INTEGER(4)

Result Value

This function returns 0.

f_pthread_rwlock_rdlock(rwlock)
Purpose

This function applies a read lock to the read-write lock specified by the argument
rwlock. The calling thread acquires the read lock if a writer does not hold the lock
and there are no writes blocked on the lock. Otherwise, the calling thread will not
acquire the read lock. If the read lock is not acquired, the calling thread blocks
(that is, it does not return from the f_pthread_rwlock_rdlock call) until it can
acquire the lock. Results are undefined if the calling thread holds a write lock on
rwlock at the time the call is made. A thread may hold multiple concurrent read
locks on rwlock (that is, successfully call the f_pthread_rwlock_rdlock function n
times). If so, the thread must perform matching unlocks (that is, it must call the
f_pthread_rwlock_unlock function n times).

Class

Function

Argument Type and Attributes

rwlock
TYPE(f_pthread_rwlock_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

EAGAIN
The read-write lock could not be acquired because the maximum number
of read locks for rwlock has been exceeded.

EINVAL
The argument rwlock does not refer to an initialized read-write lock object.

Chapter 8. Parallel programming with XL Fortran 245

f_pthread_rwlock_t
Purpose

A derived data type whose components are all private. Any object of this type
should be manipulated only through the appropriate interfaces provided in this
module. In addition, objects of this type can be initialized statically through the
Fortran constant PTHREAD_RWLOCK_INITIALIZER.

Class

Data Type

f_pthread_rwlock_tryrdlock(rwlock)
Purpose

This function applies a read lock like the f_pthread_rwlock_rdlock function with
the exception that the function fails if any thread holds a write lock on rwlock or
there are writers blocked on rwlock. In that case, the function returns EBUSY. The
calling thread can check the return code to take further actions.

Class

Function

Argument Type and Attributes

rwlock
TYPE(f_pthread_rwlock_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

This function returns zero if the lock for reading on the read-write lock object
specified by rwlock is acquired. Otherwise, the following error will be returned:

EBUSY
The read-write lock could not be acquired for reading because a writer
holds the lock or was blocked on it.

f_pthread_rwlock_trywrlock(rwlock)
Purpose

This function applies a write lock like the f_pthread_rwlock_wrlock function with
the exception that the function fails if any thread currently holds rwlock (for
reading or writing). In that case, the function returns EBUSY. The calling thread
can check the return code to take further actions.

Class

Function

246 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Argument Type and Attributes

rwlock
TYPE(f_pthread_rwlock_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

This function returns zero if the lock for writing on the read-write lock object
specified by rwlock is acquired. Otherwise, the following error will be returned:

EBUSY
The read-write lock could not be acquired for writing because it is already
locked for reading or writing.

f_pthread_rwlock_unlock(rwlock)
Purpose

This function is used to release a lock held on the read-write lock object specified
by the argument rwlock. If this function is called to release a read lock from the
read-write lock object and there are other read locks currently held on this
read-write lock object, the read-write lock object remains in the read locked state. If
this function releases the calling thread's last read lock on this read-write lock
object, then the calling thread is no longer one of the owners of the object. If this
function releases the last read lock for this read-write lock object, the read-write
lock object will be put in the unlocked state with no owners.

Class

Function

Argument Type and Attributes

rwlock
TYPE(f_pthread_rwlock_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors.

EPERM
The current thread does not own the read-write lock.

f_pthread_rwlock_wrlock(rwlock)
Purpose

This function applies a write lock to the read-write lock specified by the argument
rwlock. The calling thread acquires the write lock if no other thread (reader or
writer) holds the read-write lock rwlock. Otherwise, the thread blocks (that is, does

Chapter 8. Parallel programming with XL Fortran 247

not return from the f_pthread_rwlock_wrlock call) until it acquires the lock.
Results are undefined if the calling thread holds the read-write lock (whether a
read or write lock) at the time the call is made.

Class

Function

Argument Type and Attributes

rwlock
TYPE(f_pthread_rwlock_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument rwlock does not refer to an initialized read-write lock object.

f_pthread_rwlockattr_destroy(rwattr)
Purpose

This function destroys a read-write lock attributes object specified by the argument
rwattr which has been initialized previously. A read-write lock created with this
attribute will not be affected by the action.

Class

Function

Argument Type and Attributes

rwattr TYPE(f_pthread_rwlockattr_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument rwattr is invalid.

f_pthread_rwlockattr_getpshared(rwattr, pshared)
Purpose

This function is used to obtain the value of the process-shared attribute from the
initialized read-write lock attributes object specified by the argument rwattr. The

248 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

current setting of this attribute will be returned in the argument pshared.

Class

Function

Argument Type and Attributes

rwattr TYPE(f_pthread_rwlockattr_t), INTENT(IN)

pshared
INTEGER(4), INTENT(OUT)

On return from this function, the value of pshared will be one of the
following values:

PTHREAD_PROCESS_SHARED
The read-write lock can be operated upon by any thread that has
access to the memory where it is allocated, even if these threads
belong to different processes.

PTHREAD_PROCESS_PRIVATE
The read-write lock shall only be used by threads within the same
process as the thread that created it.

Result Type and Attributes

INTEGER(4)

Result Value

If this function completes successfully, value 0 is returned and the value of the
process-shared attribute of rwattr is stored into the object specified by the
argument pshared. Otherwise, the following error will be returned:

EINVAL
The argument rwattr is invalid.

f_pthread_rwlockattr_init(rwattr)
Purpose

This function initializes a read-write lock attributes object specified by rwattr with
the default value for all of the attributes.

Class

Function

Argument Type and Attributes

rwattr TYPE(f_pthread_rwlockattr_t), INTENT(OUT)

Result Type and Attributes

INTEGER(4)

Chapter 8. Parallel programming with XL Fortran 249

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

ENOMEM
There is insufficient memory to initialize the read-write lock attributes
object.

f_pthread_rwlockattr_setpshared(rwattr, pshared)
Purpose

This function is used to set the process-shared attribute in an initialized read-write
lock attributes object specified by the argument rwattr, based on the value
provided by the argument pshared.

Class

Function

Argument Type and Attributes

rwattr TYPE(f_pthread_rwlockattr_t), INTENT(INOUT)

pshared
INTEGER(4), INTENT(IN)

Must be one of the following values:

PTHREAD_PROCESS_SHARED
Specifies the read-write lock can be operated upon by any thread
that has access to the memory where it is allocated, even if these
threads belong to different processes.

PTHREAD_PROCESS_PRIVATE
Specifies the read-write lock shall only be used by threads within
the same process as the thread that created it. This is the default
setting of the attribute.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors:

EINVAL
The argument rwattr is invalid.

ENOSYS
The value of pshared is equal to pthread_process_shared.

250 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

f_pthread_rwlockattr_t
Purpose

This is a derived data type whose components are all private. Any object of this
type should be manipulated only through the appropriate interfaces provided in
this module.

Class

Data Type

f_pthread_self()
Purpose

This function can be used to return the thread ID of the calling thread.

Class

Function

Argument Type and Attributes

None

Result Type and Attributes

TYPE(f_pthread_t)

Result Value

The calling thread's ID is returned.

f_pthread_setcancelstate(state, oldstate)
Purpose

This function can be used to set the thread's cancelability state. The new state will
be set according to the argument state. The old state will be returned in the
argument oldstate.

Class

Function

Argument Type and Attributes

state INTEGER(4), INTENT(IN)

Must contain one of the following values:

PTHREAD_CANCEL_DISABLE:
The thread's cancelability is disabled.

PTHREAD_CANCEL_ENABLE:
The thread's cancelability is enabled.

oldstate
INTEGER(4), INTENT(OUT)

Chapter 8. Parallel programming with XL Fortran 251

On return from this function, oldstate will contain one of the following
values:

PTHREAD_CANCEL_DISABLE:
The thread's cancelability is disabled.

PTHREAD_CANCEL_ENABLE:
The thread's cancelability is enabled.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument state is invalid.

f_pthread_setcanceltype(type, oldtype)
Purpose

This function can be used to set the thread's cancelability type. The new type will
be set according to the argument type. The old type will be returned in argument
oldtype.

Class

Function

Argument Type and Attributes

type INTEGER(4), INTENT(IN)

Must contain one of the following values:

PTHREAD_CANCEL_DEFERRED:
Cancelation request will be delayed until a cancelation point.

PTHREAD_CANCEL_ASYNCHRONOUS:
Cancelation request will be acted upon immediately. This may
cause unexpected results.

oldtype
INTEGER(4), INTENT(OUT)

On return from this procedure, oldtype will contain one of the following
values:

PTHREAD_CANCEL_DEFERRED:
Cancelation request will be delayed until a cancelation point.

PTHREAD_CANCEL_ASYNCHRONOUS:
Cancelation request will be acted upon immediately. This may
cause unexpected results.

Result Type and Attributes

INTEGER(4)

252 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
the following error.

EINVAL
The argument type is invalid.

f_pthread_setconcurrency(new_level)
Purpose

This function is used to inform the pthreads library implementation of the desired
concurrency level as specified by the argument new_level. The actual level of
concurrency provided by the implementation as a result of this function call is
unspecified.

Class

Function

Argument Type and Attributes

new_level
INTEGER(4), INTENT(IN)

Result Type and Attributes

INTEGER(4)

Result Value

This function returns 0.

f_pthread_setschedparam(thread, policy, param)
Purpose

This function can be used to dynamically set the scheduling policy and the
scheduling property of a thread. The target thread is identified by argument
thread. The new scheduling policy for the target thread is provided through
argument policy. The new scheduling property of the target thread will be set to
the value provided by argument param. The sched_priority field in param defines
the scheduling priority. Its range is 1-127.

Class

Function

Argument Type and Attributes

thread TYPE(f_pthread_t), INTENT(INOUT)

policy INTEGER(4), INTENT(IN)

param TYPE(f_sched_param), INTENT(IN)

Chapter 8. Parallel programming with XL Fortran 253

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors

ENOSYS
The POSIX priority scheduling option is not implemented on Linux.

ENOTSUP
The value of argument policy or param is not supported.

EPERM
The target thread is not permitted to perform the operation or is in a
mutex protocol already.

ESRCH
The target thread does not exist or is invalid.

f_pthread_setspecific(key, arg)
Purpose

This function can be used to set the calling thread's specific data associated with
the key identified by argument key. The argument arg, which is optional, identifies
the thread-specific data to be set. If arg is not provided, the thread-specific data
will be set to NULL, which is the initial value for each thread. Only an Integer
pointer can be passed as the arg argument. If arg is not an Integer pointer, the
result is undefined.

The actual argument arg must be a variable, and consequently eligible as a
left-value in an assignment statement. If you pass an array section with vector
subscripts to the argument arg, the result is unpredictable.

Class

Function

Argument Type and Attributes

key TYPE(f_pthread_key_t), INTENT(IN)

arg Integer pointer, INTENT(IN), OPTIONAL

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors

EINVAL
The argument key is invalid.

254 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

ENOMEM
There is insufficient memory to associate the data with the key.

f_pthread_t
Purpose

A derived data type whose components are all private. Any object of this type
should be manipulated only through the appropriate interfaces provided in this
module.

This data type corresponds to the POSIX pthread_t, which is the type of thread
object.

Class

Data Type

f_pthread_testcancel()
Purpose

This subroutine provides a cancelation point in a thread. When this subroutine is
called, any pending cancelation request will be acted upon immediately if the
cancelability state of the thread is in the enabled state.

Class

Subroutine

Argument Type and Attributes

None

Result Type and Attributes

None

f_sched_param
Purpose

This data type corresponds to the Linux system data structure sched_param, which
is a system data type.

This is a public data structure defined as:
type f_sched_param

sequence
integer sched_priority

end type f_sched_param

Class

Data Type

Chapter 8. Parallel programming with XL Fortran 255

f_sched_yield()
Purpose

This function is used to force the calling thread to relinquish the processor until it
again becomes the head of its thread list.

Class

Function

Argument Type and Attributes

None.

Result Type and Attributes

INTEGER(4)

Result Value

If this function completes successfully, value 0 is returned. Otherwise, a value of -1
will be returned.

f_timespec
Purpose

This is a Fortran definition of the Linux system data structure timespec. Within the
Fortran Pthreads module, objects of this type are used to specify an absolute date
and time. This deadline absolute date is used when waiting on a POSIX condition
variable.

f_timespec is defined as:
TYPE F_Timespec

SEQUENCE
INTEGER(4) tv_sec
INTEGER(4) pad
INTEGER(KIND=REGISTER_SIZE) tv_nsec

END TYPE F_Timespec

Class

Data Type

256 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Chapter 9. Interlanguage calls

Your Fortran application can perform interlanguage calls to routines written in a
language other than Fortran.

The guidelines assume that you are familiar with the syntax of all applicable
languages.

Conventions for XL Fortran external names
To assist you in writing mixed-language programs, XL Fortran follows a consistent
set of rules when translating the name of a global entity into an external name that
the linker can resolve.

The rules are:
v Both the underscore (_) and the dollar sign ($) are valid characters anywhere in

names.
Because names that begin with an underscore are reserved for the names of
library routines, do not use an underscore as the first character of a Fortran
external name.
To avoid conflicts between Fortran and non-Fortran function names, you can
compile the Fortran program with the -qextname option. This option adds an
underscore to the end of the Fortran names. Then use an underscore as the last
character of any non-Fortran procedures that you want to call from Fortran.

v Names can be up to 250 characters long.
v Program and symbolic names are interpreted as all lowercase by default. If you

are writing new non-Fortran code, use all-lowercase procedure names to
simplify calling the procedures from Fortran.
You can use the -U option or the @PROCESS MIXED directive if you want the
names to use both uppercase and lowercase:
@process mixed

external C_Func ! With MIXED, we can call C_Func, not just c_func.
integer aBc, ABC ! With MIXED, these are different variables.
common /xYz/ aBc ! The same applies to the common block names.
common /XYZ/ ABC ! xYz and XYZ are external names that are

! visible during linking.
end

v Names for module procedures are formed by concatenating __ (two
underscores), the module name, _IMOD_ (for intrinsic modules) or _NMOD_ (for
non-intrinsic modules), and the name of the module procedure. For example,
module procedure MYPROC in module MYMOD has the external name
__mymod_NMOD_myproc.

Note: Symbolic debuggers and other tools should account for this naming
scheme when debugging XL Fortran programs that contain module procedures.
For example, some debuggers default to lowercase for program and symbolic
names. This behavior should be changed to use mixed case when debugging XL
Fortran programs with module procedures.

v The XL compilers generate code that uses main as an external entry point name.
You can only use main as an external name in these contexts:

© Copyright IBM Corp. 1990, 2015 257

– A Fortran program or local-variable name. (This restriction means that you
cannot use main as a binding label, or for the name of an external function,
external subroutine, block data program unit, or common block. References to
such an object use the compiler-generated main instead of your own.)

– The name of the top-level main function in a C program.
v Some other potential naming conflicts may occur when linking a program. For

instructions on avoiding them, see Avoiding naming conflicts during linking in
the XL Fortran Compiler Reference.

If you are porting your application from another system and your application does
encounter naming conflicts like these, you may need to use the -qextname option.

Mixed-language input and output
To improve performance, the XL Fortran runtime library has its own buffers and
its own handling of these buffers. This means that mixed-language programs
cannot freely mix I/O operations on the same file from the different languages.

Mixing code compiled by multiple Fortran compilers, for example xlf and gfortran,
could face similar problems. The safest approach is to treat the code compiled by
another Fortran compiler as non-Fortran code. To maintain data integrity in such
cases:
v If the file position is not important, open and explicitly close the file within the

Fortran part of the program before performing any I/O operations on that file
from subprograms written in another language.

v To open a file in Fortran and manipulate the open file from another language,
call the flush_ procedure to save any buffer for that file, and then use the getfd
procedure to find the corresponding file descriptor and pass it to the
non-Fortran subprogram.
As an alternative to calling the flush_ procedure, you can use the buffering
runtime option to disable the buffering for I/O operations. When you specify
buffering=disable_preconn, XL Fortran disables the buffering for preconnected
units. When you specify buffering=disable_all, XL Fortran disables the
buffering for all logical units.

Note: After you call flush_ to flush the buffer for a file, do not do anything to
the file from the Fortran part of the program except to close it when the
non-Fortran processing is finished.

v If any XL Fortran subprograms containing WRITE statements are called from a
non-Fortran main program, explicitly CLOSE the data file, or use the flush_
subroutine in the XL Fortran subprograms to ensure that the buffers are flushed.
Alternatively, you can use the buffering runtime option to disable buffering for
I/O operations.

For more information on the flush_ and getfd procedures, see the Service and utility
procedures topic in the XL Fortran Language Reference. For more information on the
buffering runtime option, see Setting runtime options in the XL Fortran Compiler
Reference.

Mixing Fortran and C++
When mixing Fortran and C++ in the same program, you need to invoke the C++
compiler to correctly link the final program.

258 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Most of the information in this section applies to Fortran and languages with
similar data types and naming schemes. However, to mix Fortran and C++ in the
same program, you must add an extra level of indirection and pass the
interlanguage calls through C++ wrapper functions.

Because the C++ compiler mangles the names of some C++ objects, you must use
your C++ compiler's invocation command, like xlC or g++, to link the final
program and include -L and -l options for the XL Fortran library directories and
libraries.

program main

integer idim,idim1

idim = 35
idim1= 45

write(6,*) ’Inside Fortran calling first C function’
call cfun(idim)
write(6,*) ’Inside Fortran calling second C function’
call cfun1(idim1)
write(6,*) ’Exiting the Fortran program’
end

Figure 4. Main Fortran program that calls C++ (main1.f)

#include <stdio.h>
#include "cplus.h"

extern "C" void cfun(int *idim){
printf("%%Inside C function before creating C++ Object\n");
int i = *idim;
junk<int>* jj= new junk<int>(10,30);
jj->store(idim);
jj->print();
printf("%%Inside C function after creating C++ Object\n");
delete jj;
return;

}

extern "C" void cfun1(int *idim1) {
printf("%%Inside C function cfun1 before creating C++ Object\n");
int i = *idim1;
temp<double> *tmp = new temp<double>(40, 50.54);
tmp->print();
printf("%%Inside C function after creating C++ temp object\n");
delete tmp;
return;

}

Figure 5. C++ wrapper functions for calling C++ (cfun.C)

Chapter 9. Interlanguage calls 259

Compiling this program, linking it with the xlC command, and running it
produces the following output:
Inside Fortran calling first C function
%Inside C function before creating C++ Object
***Inside C++ constructor
10 30 35
%Inside C function after creating C++ Object
***Inside C++ Destructor
Inside Fortran calling second C function
%Inside C function cfun1 before creating C++ Object
***Inside C++ temp Constructor
40 50.54
%Inside C function after creating C++ temp object
***Inside C++ temp destructor
Exiting the Fortran program

Making calls to C functions work
When you pass an argument to a subprogram call, the usual Fortran convention is
to pass the address of the argument. Many C functions expect arguments to be
passed as values, however, not as addresses.

For these arguments, specify them as %VAL(argument) in the call to C, or make use
of the standards-compliant VALUE attribute. For example:

#include <iostream.h>

template<class T> class junk {

private:
int inter;
T templ_mem;
T stor_val;

public:
junk(int i,T j): inter(i),templ_mem(j)

{cout <<"***Inside C++ constructor" << endl;}

~junk() {cout <<"***Inside C++ Destructor" << endl;}

void store(T *val){ stor_val = *val;}

void print(void) {cout << inter << "\t" << templ_mem ;
cout <<"\t" << stor_val << endl; }};

template<class T> class temp {

private:
int internal;
T temp_var;

public:
temp(int i, T j): internal(i),temp_var(j)

{cout <<"***Inside C++ temp Constructor" <<endl;}

~temp() {cout <<"***Inside C++ temp destructor" <<endl;}

void print(void) {cout << internal << "\t" << temp_var << endl;}};

Figure 6. C++ code called from Fortran (cplus.h)

260 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

MEMBLK = MALLOC(1024) ! Wrong, passes the address of the constant
MEMBLK = MALLOC(N) ! Wrong, passes the address of the variable

MEMBLK = MALLOC(%VAL(1024)) ! Right, passes the value 1024
MEMBLK = MALLOC(%VAL(N)) ! Right, passes the value of the variable

See “Passing arguments by reference or by value” on page 265 and %VAL and
%REF in the XL Fortran Language Reference for more details.

Passing data from one language to another
You need to account for corresponding data types in Fortran and C when passing
data from one language to another.

The Corresponding data types in Fortran and C table shows the data types
available in the XL Fortran and C languages. Further topics detail how Fortran
arguments can be passed by reference to C programs. To use the Fortran Standard
interoperability features, see the BIND attribute and ISO_C_BINDING module in
the XL Fortran Language Reference.

Passing arguments between languages
When calling Fortran procedures, the C routines must pass arguments as pointers
to the types listed in the following table.

Table 25. Corresponding data types in Fortran and C

XL Fortran Data Types XL C/C++ Data Types

INTEGER(1), BYTE signed char

INTEGER(2) signed short

INTEGER(4) signed int

INTEGER(8) signed long long

REAL, REAL(4) float

REAL(8), DOUBLE PRECISION double

REAL(16) long double

COMPLEX, COMPLEX(4) float _Complex

COMPLEX(8), DOUBLE COMPLEX double _Complex

COMPLEX(16) long double _Complex

LOGICAL(1) unsigned char

LOGICAL(2) unsigned short

LOGICAL(4) unsigned int

LOGICAL(8) unsigned long long

CHARACTER char

CHARACTER(n) char[n]

Integer POINTER void *

Array array

Sequence-derived type structure (with C/C++ -qalign=packed
option)

Notes:

Chapter 9. Interlanguage calls 261

1. In interlanguage communication, it is often necessary to use the %VAL built-in
function, or the standards-compliant VALUE attribute, and the %REF built-in
function that are defined in “Passing arguments by reference or by value” on
page 265.

2. C programs automatically convert float values to double and short integer
values to integer when calling an unprototyped C function. Because XL Fortran
does not perform a conversion on REAL(4) quantities passed by value, you
should not pass REAL(4) and INTEGER(2) by value to a C function that you
have not declared with an explicit interface.

3. The Fortran-derived type and the C structure must match in the number, data
type, and length of subobjects to be compatible data types.

One or more sample programs under the directory /opt/ibm/xlf/15.1.0/samples
illustrate how to call from Fortran to C.

To use the Fortran Standard interoperability features provided by XL Fortran, see
the Language interoperability features section in the XL Fortran Language Reference.

Passing global variables between languages
To access a C data structure from within a Fortran program or to access a common
block from within a C program, follow these steps:
1. Create a named common block that provides a one-to-one mapping of the C

structure members. If you have an unnamed common block, change it to a
named one. Name the common block with the name of the C structure.

2. Declare the C structure as a global variable by putting its declaration outside
any function or inside a function with the extern qualifier.

3. Compile the C source file to get packed structures.
program cstruct struct mystuff {
real(8) a,d double a;
integer b,c int b,c;
. double d;
. };
common /mystuff/ a,b,c,d
. main() {
.
end }

If you do not have a specific need for a named common block, you can create a
sequence-derived type with the same one-to-one mapping as a C structure and
pass it as an argument to a C function. You must compile the C source file to get
packed structures or put #pragmas into the struct.

Common blocks that are declared THREADLOCAL are thread-specific data areas
that are dynamically allocated by compiler-generated code. A static block is still
reserved for a THREADLOCAL common block, but the compiler and the
compiler's runtime environment use it for control information. If you need to share
THREADLOCAL common blocks between Fortran and C procedures, your C
source must be aware of the implementation of the THREADLOCAL common
block. For more information, see the Directives section in the XL Fortran Language
Reference, and Chapter 14, “Sample Fortran programs,” on page 319.

Common blocks that are declared THREADPRIVATE can be accessed using a C
global variable that is declared as THREADPRIVATE.

262 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Passing character types between languages
One difficult aspect of interlanguage calls is passing character strings between
languages. The difficulty is due to the following underlying differences in the way
that different languages represent such entities:
v The only character type in Fortran is CHARACTER, which is stored as a set of

contiguous bytes, one character per byte. The length is not stored as part of the
entity. Instead, it is passed by value as an extra argument at the end of the
declared argument list when the entity is passed as an argument. The size of the
argument is 8 bytes.

v Character strings in C are stored as arrays of the type char. A null character
indicates the end of the string.

Note: To have the compiler automatically add the null character to certain
character arguments, you can use the -qnullterm option (described in the XL
Fortran Compiler Reference).

If you are writing both parts of the mixed-language program, you can make the C
routines deal with the extra Fortran length argument, or you can suppress this
extra argument by passing the string using the %REF function. If you use %REF,
which you typically would for pre-existing C routines, you need to indicate where
the string ends by concatenating a null character to the end of each character string
that is passed to a C routine:
! Initialize a character string to pass to C.

character*6 message1 /’Hello\0’/
! Initialize a character string as usual, and append the null later.

character*5 message2 /’world’/

! Pass both strings to a C function that takes 2 (char *) arguments.
call cfunc(%ref(message1), %ref(message2 // ’\0’))
end

For compatibility with C language usage, you can encode the following escape
sequences in XL Fortran character strings:

Table 26. Escape sequences for character strings

Escape Meaning

\b Backspace

\f Form feed

\n New-line

\r Carriage return

\t Tab

\0 Null

\' Apostrophe (does not terminate a string)

\" Double quotation mark (does not terminate a string)

\ \ Backslash

\x x, where x is any other character (the backslash is ignored)

If you do not want the backslash interpreted as an escape character within strings,
you can compile with the -qnoescape option.

Chapter 9. Interlanguage calls 263

Passing arrays between languages
Fortran stores array elements in ascending storage units in column-major order. C
stores array elements in row-major order. Fortran array indexes start at 1, while C
array indexes start at 0.

The following example shows how a two-dimensional array that is declared by
A(3,2) is stored in Fortran and C.

Table 27. Corresponding array layouts for Fortran and C. The Fortran array reference
A(X,Y,Z) can be expressed in C as a[Z-1][Y-1][X-1]. Keep in mind that although C
passes individual scalar array elements by value, it passes arrays by reference.

Fortran Element Name C Element Name

Lowest storage unit A(1,1) A[0][0]

A(2,1) A[0][1]

A(3,1) A[1][0]

A(1,2) A[1][1]

A(2,2) A[2][0]

Highest storage unit A(3,2) A[2][1]

To pass all or part of a Fortran array to another language, you can use Fortran
90/Fortran 95 array notation:
REAL, DIMENSION(4,8) :: A, B(10)

! Pass an entire 4 x 8 array.
CALL CFUNC(A)
! Pass only the upper-left quadrant of the array.
CALL CFUNC(A(1:2,1:4))
! Pass an array consisting of every third element of A.
CALL CFUNC(A(1:4:3,1:8))
! Pass a 1-dimensional array consisting of elements 1, 2, and 4 of B.
CALL CFUNC(B((/1,2,4/)))

Where necessary, the Fortran program constructs a temporary array and copies all
the elements into contiguous storage. In all cases, the C routine needs to account
for the column-major layout of the array.

Any array section or noncontiguous array is passed as the address of a contiguous
temporary unless an explicit interface exists where the corresponding dummy
argument is declared as an assumed-shape array or a pointer. To avoid the creation
of array descriptors (which are not supported for interlanguage calls) when calling
non-Fortran procedures with array arguments, either do not give the non-Fortran
procedures any explicit interface, or do not declare the corresponding dummy
arguments as assumed-shape or pointers in the interface:
! This explicit interface must be changed before the C function
! can be called.
INTERFACE

FUNCTION CFUNC (ARRAY, PTR1, PTR2)
INTEGER, DIMENSION (:) :: ARRAY ! Change this : to *.
INTEGER, POINTER, DIMENSION (:) :: PTR1 ! Change this : to *

! and remove the POINTER
! attribute.

REAL, POINTER :: PTR2 ! Remove this POINTER
! attribute or change to TARGET.

END FUNCTION
END INTERFACE

264 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Passing pointers between languages
Integer POINTERs always represent the address of the pointee object and must be
passed by value:
CALL CFUNC(%VAL(INTPTR))

Fortran 90 POINTERs can also be passed back and forth between languages but
only if there is no explicit interface for the called procedure or if the argument in
the explicit interface does not have a POINTER attribute or assumed-shape
declarator. You can remove any POINTER attribute or change it to TARGET and
can change any deferred-shape array declarator to be explicit-shape or
assumed-size.

Because of XL Fortran's call-by-reference conventions, you must pass even scalar
values from another language as the address of the value, rather than the value
itself. For example, a C function passing an integer value x to Fortran must pass
&x. Also, a C function passing a pointer value p to Fortran so that Fortran can use
it as an integer POINTER must declare it as void **p. A C array is an exception:
you can pass it to Fortran without the & operator.

Passing arguments by reference or by value
To call subprograms written in languages other than Fortran (for example,
user-written C programs, or operating system routines), the actual arguments may
need to be passed by a method different from the default method used by Fortran.
C routines, including those in system libraries, such as libc.so, require you to pass
arguments by value instead of by reference. (Although C passes individual scalar
array elements by value, it passes arrays by reference.)

You can change the default passing method by using the %VAL built-in function
or VALUE attribute and the %REF built-in function in the argument list of a CALL
statement or function reference. You cannot use them in the argument lists of
Fortran procedure references or with alternate return specifiers.

%REF Passes an argument by reference (that is, the called subprogram receives
the address of the argument). It is the same as the default calling method
for Fortran except that it also suppresses the extra length argument for
character strings.

%VAL Passes an argument by value (that is, the called subprogram receives an
argument that has the same value as the actual argument, but any change
to this argument does not affect the actual argument).

You can use this built-in function with actual arguments that are
CHARACTER(1), BYTE, logical, integer, real, or complex expressions or
that are sequence-derived type. Objects of derived type cannot contain
pointers, arrays, or character structure components whose lengths are
greater than one byte.

You cannot use %VAL with actual arguments that are array entities,
procedure names, or character expressions of length greater than one byte.

%VAL causes XL Fortran to pass the actual argument as 32-bit or 64-bit
intermediate values.

32-bit intermediate values

If the actual argument is one of the following:
v An integer or a logical that is shorter than 32 bits, it is

sign-extended to a 32-bit value.

Chapter 9. Interlanguage calls 265

v An integer or a logical that is longer than 32 bits, it is passed as
two 32-bit intermediate values.

v Of type real or complex, it is passed as multiple 32-bit
intermediate values.

v Of sequence-derived type, it is passed as multiple 32-bit
intermediate values.

Byte-named constants and variables are passed as if they were
INTEGER(1). If the actual argument is a CHARACTER(1), the
compiler pads it on the left with zeros to a 32-bit value, regardless
of whether you specified the -qctyplss compiler option.

64-bit intermediate values

If the actual argument is one of the following:
v An integer or a logical that is shorter than 64 bits, it is

sign-extended to a 64-bit value.
v Of type real or complex, it is passed as multiple 64-bit

intermediate values.
v Of sequence-derived type, it is passed as multiple 64-bit

intermediate values.

Byte-named constants and variables are passed as if they were
INTEGER(1). If the actual argument is a CHARACTER(1), the
compiler pads it on the left with zeros to a 64-bit value, regardless
of whether you specified the -qctyplss compiler option.

VALUE attribute
Specifies an argument association between a dummy and an actual
argument that allows you to pass the dummy argument with the value of
the actual argument. Changes to the value or definition status of the
dummy argument do not affect the actual argument.

You must specify the VALUE attribute for dummy arguments only.

You must not use the %VAL or %REF built-in functions to reference a
dummy argument with the VALUE attribute, or the associated actual
argument.

A referenced procedure that has a dummy argument with the VALUE
attribute must have an explicit interface.

You must not specify the VALUE attribute with the following:
v Arrays
v Derived types with ALLOCATABLE components
v Dummy procedures

EXTERNAL FUNC
COMPLEX XVAR
IVARB=6

CALL RIGHT2(%REF(FUNC)) ! procedure name passed by reference
CALL RIGHT3(%VAL(XVAR)) ! complex argument passed by value
CALL TPROG(%VAL(IVARB)) ! integer argument passed by value
END

Explicit interface for %VAL and %REF
You can specify an explicit interface for non-Fortran procedures to avoid coding
calls to %VAL and %REF in each argument list, as follows:

266 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

INTERFACE
FUNCTION C_FUNC(%VAL(A),%VAL(B)) ! Now you can code "c_func(a,b)"

INTEGER A,B ! instead of
END FUNCTION C_FUNC ! "c_func(%val(a),%val(b))".

END INTERFACE

Example with VALUE attribute
Program validexm1

integer :: x = 10, y = 20
print *, ’before calling: ’, x, y
call intersub(x, y)
print *, ’after calling: ’, x, y

contains
subroutine intersub(x,y)
integer, value :: x
integer y
x = x + y
y = x*y
print *, ’in subroutine after changing: ’, x, y

end subroutine
end program validexm1

Expected output:
before calling: 10 20
in subroutine after changing: 30 600
after calling: 10 600

Passing COMPLEX values to/from gcc
Passing COMPLEX values between Fortran and GCC depends on what is specified
for the -qfloat=[no]complexgcc suboption. If -qfloat=complexgcc is specified, the
compiler uses Linux conventions when passing or returning complex numbers.
-qfloat=nocomplexgcc is the default.

For -qfloat=complexgcc, COMPLEX*8 values are passed in 1 GPR, and
COMPLEX*16 in 2 GPRs. For -qfloat=nocomplexgcc, COMPLEX*8 and
COMPLEX*16 values are passed in 2 floating-point registers (FPRs). COMPLEX*32
values are always passed in 4 FPRs for both -qfloat=complexgcc and
-qfloat=nocomplexgcc (since gcc does not support COMPLEX*32).

For -qfloat=complexgcc, COMPLEX*8 values are returned in GPR3, and
COMPLEX*16 in GPR 3-GPR4. For -qfloat=nocomplexgcc, COMPLEX*8 and
COMPLEX*16 values are returned in FPR1-FPR2. For both -qfloat=complexgcc
and -qfloat=nocomplexgcc, COMPLEX*32 is always returned in FPR1-FPR4.

Returning values from Fortran functions
XL Fortran does not support calling certain types of Fortran functions from
non-Fortran procedures. If a Fortran function returns a pointer, array, or character
of nonconstant length, do not call it from outside Fortran.

You can call such a function indirectly:
SUBROUTINE MAT2(A,B,C) ! You can call this subroutine from C, and the

! result is stored in C.
INTEGER, DIMENSION(10,10) :: A,B,C
C = ARRAY_FUNC(A,B) ! But you could not call ARRAY_FUNC directly.
END

Chapter 9. Interlanguage calls 267

Arguments with the OPTIONAL attribute
When you pass an optional argument by reference, the address in the argument list
is zero if the argument is not present.

When you pass an optional argument by value, the value is zero if the argument is
not present. The compiler uses an extra register argument to differentiate that
value from a regular zero value. If the register has the value 1, the optional
argument is present; if it has the value 0, the optional argument is not present.
Related information:
“Order of arguments in argument list” on page 274

Assembler-level subroutine linkage conventions
The subroutine linkage convention specifies the machine state at subroutine entry
and exit, allowing routines that are compiled separately in the same or different
languages to be linked.

The information on subroutine linkage and system calls in the System V Application
Binary Interface: PowerPC Processor Supplement and 64–bit PowerPC ELF Application
Binary Interface Supplement are the base references on this topic. You should consult
these for full details. This section summarizes the information needed to write
mixed-language Fortran and assembler programs or to debug at the assembler
level, where you need to be concerned with these kinds of low-level details.

The system linkage convention passes arguments in registers, taking full advantage
of the large number of floating-point registers (FPRs), general-purpose registers
(GPRs), vector registers (VRs and VSRs) and minimizing the saving and restoring
of registers on subroutine entry and exit. The linkage convention allows for
argument passing and return values to be in registers (FPRs, GPRs, VRs or
multiple register types), memory, or both.

The following table lists floating-point registers and their functions. The
floating-point registers are double precision (64 bits).

Table 28. Floating-point register usage across calls

Register Preserved Across Calls Use

0 no

1 no FP parameter 1, function return 1.

2 no FP parameter 2, function return 2.

3 no FP parameter 3, function return 3,
function return complex *32.

4 no FP parameter 4, function return 4 ,
function return complex *32.

5 no FP parameter 5, function return 5.
...

...
...

8 no FP parameter 8, function return 8.

9 no FP parameter 9

10 no FP parameter 10

11 no FP parameter 11

268 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Table 28. Floating-point register usage across calls (continued)

Register Preserved Across Calls Use

12 no FP parameter 12

13 no FP parameter 13

14-31 yes local variables

The following table lists general-purpose registers and their functions.

Table 29. General-purpose register usage across calls

Register Preserved Across Calls Use

0 no

1 yes Stack pointer.

2 yes System-reserved TOC/GOT pointer.

3 no 1st word of arg list; return value 1.

4 no 2nd word of arg list; return value 2.

5 no 3rd word of arg list
...

...
...

10 no 8th word of arg list.

11-12 no

13 yes SDA (thread local storage) pointer.

14-30 no Local variables.

31 yes Local variables or “environment pointers”.

If a register is not designated as preserved, its contents may be changed during the call,
and the caller is responsible for saving any registers whose values are needed later.
Conversely, if a register is supposed to be preserved, the callee is responsible for
preserving its contents across the call, and the caller does not need any special action.

The following table lists vector register conventions.

Table 30. VMX Vector register usage across calls

Register Preserved Across Calls Use

0 no Local variables

1 no Local variables

2 no Vector parameter 1, vector
result 1

3 no Vector parameter 2, vector
result 2

4 no Vector parameter 3, vector
result 3

5 no Vector parameter 4, vector
result 4

6 no Vector parameter 5, vector
result 5

7 no Vector parameter 6, vector
result 6

Chapter 9. Interlanguage calls 269

Table 30. VMX Vector register usage across calls (continued)

Register Preserved Across Calls Use

8 no Vector parameter 7, vector
result 7

9 no Vector parameter 8, vector
result 8

10 no Vector parameter 9

11 no Vector parameter 10

12 no Vector parameter 11

13 no Vector parameter 12

14-19 no Local variables

20-31 yes Local variables

VMX vector registers VR0-31 correspond to VSX registers 32-63. FPR floating-point
registers FP0-31 correspond to the upper halves of VSX registers 0-31.

The following table lists special-purpose register conventions.

Table 31. Special-purpose register usage across calls

Register Preserved Across Calls

Condition register
Bits 0-7 (CR0,CR1)
Bits 8-22 (CR2,CR3,CR4)
Bits 23-31 (CR5,CR6,CR7)

no
yes
no

Link register no

Count register no

XER register no

FPSCR register The control flags are preserved except for
calls to functions whose purposes are to
change them. The status flags are not
preserved.

The stack
The stack is a portion of storage that is used to hold local storage, register save
areas, parameter lists, and call-chain data. The stack grows from higher addresses
to lower addresses. A stack pointer register (register 1) is used to mark the current
“top” of the stack.

A stack frame is the portion of the stack that is used by a single procedure. In
either case, the stack frame size is best defined as the difference between the
caller's stack pointer and the callee's.

The following diagram shows the storage maps of typical stack frames.

In this diagram, the current routine has acquired a stack frame that allows it to call
other functions. If the routine does not make any calls and there are no local
variables or temporaries, and it does not need to save any nonvolatile registers, the
function need not allocate a stack frame. It can use the register save area at the top
of where the callee's stack frame would have been, if needed.

270 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

The stack frame is quadword aligned.

The following diagram shows the storage map of a typical stack frame.

The Linkage Area and Minimum Stack Frame
The linkage area consists of four doublewords at offset zero from the caller's stack
pointer on entry to a procedure. The first doubleword contains the caller's back
chain (stack pointer). The first half of the second doubleword is the location where
the callee saves the Condition Register (CR) if it is needed. The third doubleword
is the location where the callee's prolog code saves the Link Register if it is needed.

LOW ADDRESS Stack grows at this end

Callee's stack pointer 0 Back chain

Reserved | Saved CR

Saved LR

Saved TOC Ptr

8 LINKAGE AREA

(callee)16

24

Space for P1-P8

might be reserved

32 OUTPUT ARGUMENT AREA

(Might be used by callee

to construct argument l ist)

Optional

P1…
Pn

Optional

P1…
Pn

Callee's stack area LOCAL STACK AREA

-8*nfprs-8*ngprs-16*nvrs

-(-8*nfprs-8*ngprs)%16 Vfirst = VR20 for full save

VR31

-8*nfprs-8*ngprs

Rfirst = R14 for full save

R31

-8*nfprs Ffirst = F14 for a full save

F31

Caller's stack pointer 0 Back chain

Reserved | Saved CR

Saved LR

Saved TOC Ptr

8

16 LINKAGE AREA (caller)

24

Space for P1-P8

might be reserved

32 INPUT ARGUMENT AREA

(Might be used by caller to

construct argument l ist)

Caller's stack area LOCAL STACK AREA

HIGH ADDRESS

Optional save area

for caller's vector registers

max 12 quadwords

Optional save area

for caller's GPRs

max 18 doublewords

Optional save area for caller's FPRs

max 18 doublewords

(Possible word and/or doubleword

skipped for alignment.)

(Possible doubleword skipped

for alignment.)

Figure 7. Runtime Stack

Chapter 9. Interlanguage calls 271

The last doubleword (doubleword 4) is where the caller's TOC pointer is saved
when the routine is called via its Global Entry Point (for example, when it is in a
shared library, or called via a pointer). The minimum stack frame size is 32 bytes..

The input parameter area
The input parameter area is a contiguous piece of storage reserved by the calling
program under specific conditions (when an overflow area is needed, or when the
callee is declared as a varargs function)to represent the register image of the input
parameters of the callee. The input parameter area is quadword aligned and is
located on the stack directly following the caller's link area. If it is allocated, this
area is at least 8 doublewords in size. If more than 8 doublewords of parameters
are passed, they are stored as register images that start at positive offset 96 from
the caller's stack pointer.

The first 8 doublewords only appear in registers at the call point, never in the
stack. Remaining words are always in the stack.

The register save area
Register save area is doubleword aligned for GPRs and FPRs and quadword
aligned for VRs. It provides the space that is needed to save all nonvolatile FPRs,
GPRs and VRs used by the callee program. The FPRs are saved next to the link
area. The FPRs are saved at the highest addresses of the stack frame. The GPRs are
saved just below (in lower addresses than) the FPRs. The VRs are saved just below
(in lower addresses than) the GPRs. The called function may save the registers here
even if it does not need to allocate a new stack frame. The system-defined stack
floor includes the maximum possible save area:

18*8 for FPRs + 18*8 for GPRs + 12*16 for VRs

For each register type, a callee needs only to save the nonvolatile registers starting
with the lowest that it actually uses, up to the highest register number; for
example, using r27 and r31 means that r27 to r31 must be saved.

The local stack area
The local stack area is the space that is allocated by the callee procedure for local
variables and temporaries.

The output parameter area
The output parameter area (P1...Pn) is optional. It must be allocated when calling a
varargs function or when more than 8 doublewords of parameters are being
passed. If more than 8 doublewords are being passed, an extension list is
constructed, which begins at offset 96 from the current stack pointer.

The first 8 doublewords only appear in registers at the call point, never in the
stack. Remaining doublewords are always in the stack, and they can also be in
registers.

Linkage convention for argument passing
The system linkage convention takes advantage of the large number of registers
available.

The linkage convention passes arguments in GPRs, FPRs and VRs. Three fixed lists,
R3-R10, FP1-FP13 and VR2-VR13, specify the GPRs, FPRs and VRs available.

272 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

When there are more argument words than available argument GPRs, FPRs and
VRs, the remaining words are passed in storage on the stack. The values in storage
are the same values as if they were in registers but are in memory format while
values in registers might be in a different format. Here are some examples. A single
precision floating-point is in double precision format when in an FPR but in single
precision format when in memory or passed in a GPR. A small struct may be right
justified when in a GPR but left justified in memory. A vector may have its element
order reversed when in a VR.

When it must be allocated, the size of the parameter area is sufficient to contain all
the arguments passed on any call statement from the procedure that is associated
with the stack frame. Although not all the arguments for a particular call actually
appear in storage, it is convenient to consider them as forming a list in this area,
each one occupying one or more doublewords.

For call by reference (as is the default for Fortran), the address of the argument is
passed in a register. The following information refers to call by value, as in C or as
in Fortran when %VAL is used. For purposes of their appearance in the list,
arguments are classified as floating-point values including homogeneous
floating-point aggregates of up to 8 single precision REAL(4)s, 4 single precision
COMPLEX(8)s, 4 double precision REAL(8)s and 2 double precision
COMPLEX(16)s, vector values including homogeneous vector aggregates of up to 8
vectors and other types that are passed in vector registers, or general values.
v All general values require one doubleword that is doubleword aligned.
v Each single-precision (REAL(4)) value and each double-precision (REAL(8))

value occupies one doubleword in the list. Each extended-precision (REAL(16))
value occupies two successive doublewords in the list.

v A COMPLEX value occupies twice as many doublewords as a REAL value with
the same kind type parameter.

v A VECTOR value occupies four words (16 bytes) in a vector register
v In Fortran and C, structure values appear in successive words as they would

anywhere in storage, satisfying all appropriate alignment requirements.
Structures are aligned to a doubleword and occupy (sizeof(struct X)+7)/8
doublewords, with any padding at the end. A structure that is smaller than a
doubleword is right-justified within its doubleword or register. Larger structures
can occupy multiple registers and may be passed partly in storage and partly in
registers.

v Other aggregate values are passed “val-by-ref”. That is, the compiler actually
passes their address and arranges for a copy to be made in the invoked
program.

v A procedure or function pointer is passed as the address of its Global Entry
Point, or in some cases as the address of its Procedure Linkage Table (PLT) stub,
which is automatically generated by the linker, or a dynamic library loader or
trampoline code for a nested routine. See “Pointers to functions” on page 275 for
more information.

Argument passing rules (by value)
From the following illustration, we state these rules:
v Ifthe called procedure treats the parameter list as a contiguous piece of storage

(for example, if the address of a parameter is taken in C), the parameter registers
are stored in the space reserved for them in the stack.

v A register image is stored on the stack, except as described in section “Linkage
convention for argument passing” on page 272.

Chapter 9. Interlanguage calls 273

v If it exists, the argument area (P1...Pn) must be large enough to hold the largest
parameter list. Unless the overflow parameter area is needed or the called
function is declared varargs, the argument area will not be allocated, and the
callee must allocate its own area or individual variables.

Here is an example of a call to a function :
f(%val(l1), %val(l2), %val(l3), %val(l4), %val(l5), %val(l6), %val(l7),

%val(d1), %val(f1), %val(c1), %val(d2), %val(s1), %val(cx2))

where:
l denotes integer(4) (fullword integer)
d denotes real(8) (double precision)
f denotes real(4) (real)
s denotes integer(2) (halfword integer)
c denotes character (one character)
cx denotes complex(8) (double complex)

Order of arguments in argument list
The argument list is constructed in the following order. Items in the same bullet
appear in the same order as in the procedure declaration, whether or not argument
keywords are used in the call.

1. There may be other items in this list during Fortran-Fortran calls. However, they will not be visible to non-Fortran procedures
that follow the calling rules in this section.

Storage Mapping of
Parm Area
On the Stack in
64-Bit EnvironmentWill Be Passed In:

R3

R4

R5

R6

R7

R8

R9

FP1

FP2

stack

stack

FP3

FP4

FP5

0

8

16

24

32

40

48

56

64

72

80

88

96

104

L1

L2

L3

L4

L5

L6

L7

D1

F1

C1

D2

CX2(real)

CX2(imaginary)

S1

R10 unused

right justified
(if language semantics specify)

right justified
(if language semantics specify)

Figure 8. Storage mapping of parm area on the stack

274 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

v All addresses or values (or both) of actual arguments 1

v “Present” indicators for optional arguments
v Length arguments for strings 1

Linkage convention for function calls
Function calls to a routine make use of its entry point symbols.

A routine has two symbols associated with it: a Global Entry Point (name) and a
Local Entry Point (name plus a small offset provided in its symbol table entry).
Calls that might need a new TOC pointer loaded use the GEP, and examples are
calls crossing shared library boundaries and calls via a pointer. Calls that share the
same TOC use the LEP, and examples are calls to a nested routine or to a statically
linked routine. When a call is made to a routine, the program branches to the entry
point directly. Excluding the loading of parameters (if any) in the proper registers,
compilers expand calls to functions to one or in general both of the following
two-instruction sequence. The special NOP is needed only if the called routine
might need a new TOC pointer loaded.

BL .foo # Branch to foo
ORI R0,R0,0x0000 # Special NOP

The linker does one of two things when it encounters a BL instruction:
1. If foo is imported (not in the same object module), the linker changes the BL to

.foo to a BL to the Procedure Linkage Table (PLT) stub for foo and inserts the
PLT stub into the object module. Also, if a NOP instruction (ORI R0,R0,0x0000)
immediately follows the BL instruction, the linker replaces the NOP instruction
with the LOAD instruction L R2, 24(R1).

2. If foo is bound in the same object module as its caller and a LOAD instruction
above, or ORI R0,R0,0 immediately follows the BL instruction, the linker
replaces the LOAD instruction with a NOP (ORI R0,R0,0).

Calls to nested routines are more complicated. Nested routines can only be
accessed from outside their parent via a pointer, which will contain the address of
a trampoline routine to provide an environment pointer for them to access their
parent's data, automatically generated by the compiler. Because trampolines require
an executable stack, pointers to nested routines should generally not be used in
programs with root security access.

Pointers to functions
A function pointer is a data type whose values range over procedure names.
Variables of this type appear in several programming languages, such as C and
Fortran. In Fortran, a dummy argument that appears in an EXTERNAL statement
is a function pointer. Fortran provides support for the use of function pointers in
contexts such as the target of a call statement or an actual argument of such a
statement.

A function pointer is a doubleword quantity that is the address of the Global Entry
Point for a function, or of a Procedure Linkage Table stub for a function, or of a
trampoline for a nested function.

Function pointers are 8 bytes long and contain a 64-bit address. For pointers to
local functions, the address contained is the Global Entry Point address of the
function in the text section. For imported functions, the address is that of the

Chapter 9. Interlanguage calls 275

function's PLT stub. Every unique and imported function will have a PLT stub in
the executable or shared library's non-lazy symbol pointer section.

Function values
Functions return their values according to type:
v INTEGER and LOGICAL of kind 1, 2, and 4 are returned (sign/zero extended)

in R3.
v INTEGER and LOGICAL of kind 8 are returned in R3.
v REAL(4) or REAL(8) are returned in FP1. REAL(16) are returned in FP1 and

FP2.
v COMPLEX(4) or COMPLEX(8) are returned in FP1 and FP2. COMPLEX(16) are

returned in FP1-FP4.
v Individual vector results and other types that are processed in vector registers

are returned in VR2. Homogeneous vector aggregates are returned in up to 8
vector registers VR2 to VR9.

v Character strings are returned in a buffer allocated by the caller. The address
and the length of this buffer are passed in R3 and R4 as hidden parameters. The
first explicit parameter doubleword is in R5, and all subsequent parameters are
moved to the next doubleword.

v Homogeneous floating-point structures are returned in up to 8 FPRs FPR1 to
FPR8. Homogeneous vector structures are returned in up to 8 VRs VR2 to VR9.
Other structures up to 2 doublewords are returned in up to 2 GPRs R3 to R4.
Other structures are returned in a buffer that is allocated by the caller. The
address is passed in R3; there is no length. The first explicit parameter is in R4.

The stack floor
Stack floor is a system-defined address below which the stack cannot grow. All
programs in the system must avoid accessing locations in the stack segment that
are below the stack floor.

All programs must maintain other system invariants that are related to the stack:
v The stack pointer must always be quadword (16 byte) aligned.
v No data is saved or accessed from an address lower than the stack floor, except

that locations within a small distance below the stack frame may be accessed
before the stack is allocated or after it is deallocated, or without it ever being
allocated.

v The stack pointer is always valid. You must take care to ensure that the stack
pointer is changed in a single instruction. When allocating a new stack frame,
the old stack pointer must be saved at the beginning of the new stack frame by
that same instruction. When an allocation is of more than 32,767 bytes, an index
register must be used instead of an immediate operand. This step ensures that
there is no timing window where a signal handler would either overlay the
stack data or erroneously appear to overflow the stack segment.

Stack overflow
The linkage convention requires no explicit inline check for overflow. The
operating system uses a storage protection mechanism to detect stores past the end
of the stack segment.

276 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Prolog and epilog
You need to consider a number of steps when entering a procedure and when
exiting a procedure.

On entry to a procedure, you might have to do some or all of the following steps:
1. Save the link register.
2. If the procedure uses any of the CR bits 8-23 (CR2, CR3, CR4), save the CR.
3. Save all nonvolatile FPRs that are used by this procedure in the FPR save area.
4. Save all nonvolatile VRs that are used by this procedure in the VR save area.
5. Save all nonvolatile GPRs that are used by this procedure in the GPR save area.
6. Atomically store the back chain and decrease the stack pointer by the size of

the stack frame. Note that if a stack overflow occurs, it will be known
immediately when the store of the back chain is done.

On exit from a procedure, you might have to perform some or all of the following
steps:
1. Restore all GPRs saved that have been modified.
2. Restore all FPRs saved that have been modified.
3. Restore all VRs saved that have been modified.
4. Restore bits 8-23 of the CR (CR2, CR3, CR4) if they were used, if necessary.
5. Atomically restore the stack pointer to the value it had on entry.
6. Return to caller.

Traceback
XL Fortran supports the traceback mechanism, which symbolic debuggers need to
unravel the call or return stack. Each object module has a traceback table in the
text segment at the end of its code. This table contains information about the object
module, including the type of object module, as well as stack frame and register
information.

Note: You can make the traceback table smaller or remove it entirely with the
-qtbtable option.

Chapter 9. Interlanguage calls 277

278 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Chapter 10. Implementation details of XL Fortran Input/Output
(I/O)

This topic describes XL Fortran support (through extensions and platform-specific
details) for the Linux file system.

See “Mixed-language input and output” on page 258 for further considerations
related to input and output operations.

Implementation details of file formats
The manner in which XL Fortran implements files is based on their file format.

Sequential-access unformatted files:
An integer that contains the length of the record precedes and follows each
record. The length of the integer is 4 bytes if you set the uwidth runtime
option to 32 (the default), and 8 bytes if you set the uwidth runtime option
to 64.

Sequential-access formatted files:
XL Fortran programs break these files into records while reading, by using
each newline character (X'0A') as a record separator.

On output, the input/output system writes a newline character at the end
of each record. Programs can also write newline characters for themselves.
This practice is not recommended because the effect is that the single
record that appears to be written is treated as more than one record when
being read or backspaced over.

Direct access files:
XL Fortran simulates direct-access files with operating system files whose
length is a multiple of the record length of the XL Fortran file. You must
specify, in an OPEN statement, the record length (RECL) of the
direct-access file. XL Fortran uses this record length to distinguish records
from each other.

For example, the third record of a direct-access file of record length 100
bytes would start at the 201st byte of the single record of a Linux file and
end at the 300th byte.

If the length of the record of a direct-access file is greater than the total
amount of data you want to write to the record, XL Fortran pads the
record on the right with blanks (X'20').

Stream-access unformatted files:
Unformatted stream files are viewed as a collection of file storage units. In
XL Fortran, a file storage unit is one byte.

A file connected for unformatted stream access has the following
properties:
v The first file storage unit has position 1. Each subsequent file storage

unit has a position that is one greater than that of the preceding one.
v For a file that can be positioned, file storage units need not be read or

written in the order of their position. Any file storage unit may be read
from the file while it is connected to a unit, provided that the file

© Copyright IBM Corp. 1990, 2015 279

storage unit has been written since the file was created, and if a READ
statement for the connection is permitted.

Stream-access formatted files:
A record file connected for formatted stream access has the following
properties:
v Some file storage units may represent record markers. The record marker

is the newline character (X'0A').
v The file will have a record structure in addition to the stream structure.
v The record structure is inferred from the record markers that are stored

in the file.
v Records can have any length up to the internal limit allowed by XL

Fortran (See XL Fortran Internal limits in the XL Fortran Compiler
Reference.)

v There may or may not be a record marker at the end of the file. If there
is no record marker at the end of the file, the final record is incomplete,
but not empty.

A file connected for formatted stream access has the following properties:
v The first file storage unit has position 1. Each subsequent file storage

unit has a position that is greater than that of the preceding one. Unlike
unformatted stream access, the positions of successive file storage units
are not always consecutive.

v The position of a file connected for formatted stream access can be
determined by the POS= specifier in an INQUIRE statement.

v For a file that can be positioned, the file position can be set to a value
that was previously identified by the POS= specifier in INQUIRE.

Related information
v The XLFRTEOPTS environment variable

File names
There are a number of considerations to be aware of when working with file
names.

You can specify file names as either relative (such as file, dir/file, or ../file) or
absolute (such as /file or /dir/file). The maximum length of a file name (the full
path name) is 4095 characters, even if you only specify a relative path name in the
I/O statement. The maximum length of a file name with no path is 255 characters.

You must specify a valid file name in such places as the following:
v The FILE= specifier of the OPEN and INQUIRE statements
v INCLUDE lines

Note: To specify a file whose location depends on an environment variable, you
can use the GET_ENVIRONMENT_VARIABLE intrinsic procedure to retrieve the
value of the environment variable:
character(100) home, name
call get_environment_variable(’HOME’, value=home)
! Now home = $HOME + blank padding.
! Construct the complete path name and open the file.
name=trim(home) // ’/remainder/of/path’
open (unit=10, file=name)
...
end

280 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Preconnected and Implicitly Connected Files
Whether files are preconnected or implicitly connected is dependent on their units
and specific statements.

Units 0, 5, and 6 are preconnected to standard error, standard input, and standard
output, respectively, before the program runs.

All other units can be implicitly connected when an ENDFILE, PRINT, READ,
REWIND, or WRITE statement is performed on a unit that has not been opened.
Unit n is implicitly connected to a file that is named fort.n. These files need not
exist, and XL Fortran does not create them unless you use the corresponding units
implicitly.

Note: Because unit 0 is preconnected for standard error, you cannot use it for the
CLOSE, ENDFILE, BACKSPACE, or REWIND statements with sequential
input/output. You cannot use unit 0 for direct or stream input/output. You can
use unit 0 in an OPEN statement only to change the values of the BLANK=,
DELIM=, DECIMAL=or PAD= specifiers.

You can also implicitly connect units 5 and 6 (and *) by using I/O statements that
follow a CLOSE of these units:

WRITE (6,10) "This message goes to stdout."
CLOSE (6)
WRITE (6,10) "This message goes in the file fort.6."
PRINT *, "Output to * now also goes in fort.6."

10 FORMAT (A)
END

The FORM= specifier of implicitly connected files has the value FORMATTED
before any READ, WRITE, or PRINT statement is performed on the unit. The first
such statement on such a file determines the FORM= specifier from that point on:
FORMATTED if the formatting of the statement is format-directed, list-directed, or
namelist; and UNFORMATTED if the statement is unformatted.

Preconnected files also have FORM='FORMATTED', STATUS='OLD', and
ACTION='READWRITE' as default specifier values.

The other properties of a preconnected or implicitly connected file are the default
specifier values for the OPEN statement. These files always use sequential access.

If you want XL Fortran to use your own file instead of the fort.n file, you can
either specify your file for that unit through an OPEN statement or create a
symbolic link before running the application. In the following example, there is a
symbolic link between myfile and fort.10:
ln -s myfile fort.10

When you run an application that uses the implicitly connected file fort.10 for
input/output, XL Fortran uses the file myfile instead. The file fort.10 exists, but
only as a symbolic link. The following command will remove the symbolic link,
but will not affect the existence of myfile:
rm fort.10

Chapter 10. Implementation details of XL Fortran Input/Output (I/O) 281

File positioning
The position of a file pointer when a file is opened with no POSITION= specifier
is summarized in the following table.

Table 32. Position of the file pointer when a file is opened with no POSITION= specifier

-qposition suboptions Implicit OPEN Explicit OPEN

STATUS =
'NEW'

STATUS = 'OLD' STATUS =
'UNKNOWN'

File
exists

File
does
not
exist

File
exists

File
does
not

exist

File
exists

File
does
not

exist

File
exists

File
does
not

exist

option not specified Start Start Error Start Start Error Start Start

appendold Start Start Error Start End Error Start Start

appendunknown Start Start Error Start Start Error End Start

appendold and appendunknown Start Start Error Start End Error End Start

I/O redirection
You can use the redirection operator on the command line to redirect input to and
output from your XL Fortran program.

How you specify and use this operator depends on which shell you are running.
Here is a bash example:

Refer to your man pages for more information on redirection.

$ cat redirect.f
write (6,*) ’This goes to standard output’
write (0,*) ’This goes to standard error’
read (5,*) i
print *,i
end

$ xlf95 redirect.f
** _main === End of Compilation 1 ===
1501-510 Compilation successful for file redirect.f.
$ # No redirection. Input comes from the terminal. Output goes to
$ # the screen.
$ a.out
This goes to standard output
This goes to standard error

4
4

$ # Create an input file.
$ echo >stdin 2
$ # Redirect each standard I/O stream.
$ a.out >stdout 2>stderr <stdin
$ cat stdout
This goes to standard output
2

$ cat stderr
This goes to standard error

282 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

How XL Fortran I/O interacts with pipes, special files, and links
You can access regular operating system files and blocked special files by using
sequential-access, direct-access, or stream-access methods.

You can only access pseudo-devices, pipes, and character special files by using
sequential-access methods, or stream-access without using the POS= specifier.

When you use symbolic link to link files together, you can use their names
interchangeably, as shown in the following example:
OPEN (4, FILE="file1")
OPEN (4, FILE="link_to_file1", PAD="NO") ! Modify connection

Do not specify the POSITION= specifier as REWIND or APPEND for pipes.

Do not specify ACTION='READWRITE' for a pipe.

Do not use the BACKSPACE statement on files that are pseudo-devices or
character special files.

Do not use the REWIND statement on files that are pseudo-devices or pipes.

Default record lengths
The default record lengths for files is dependent on the file format and on the
RECL= qualifier.

If a pseudo-device, pipe, or character special file is connected for formatted or
unformatted sequential access with no RECL= qualifier, or for formatted stream
access, the default record length is 32 768 rather than 2 147 483 647, which is the
default for sequential-access files connected to random-access devices. (See the
default_recl runtime option in the XL Fortran Compiler Reference.)

In certain cases, the default maximum record length for formatted files is larger, to
accommodate programs that write long records to standard output. If a unit is
connected to a terminal for formatted sequential access and there is no explicit
RECL= qualifier in the OPEN statement, the program uses a maximum record
length of 2 147 483 646 (2**31-2) bytes, rather than the usual default of 32 768
bytes. When the maximum record length is larger, formatted I/O has one
restriction: WRITE statements that use the T or TL edit descriptors must not write
more than 32 768 bytes. This is because the unit's internal buffer is flushed each
32 768 bytes, and the T or TL edit descriptors will not be able to move back past
this boundary.

File permissions
A file must have the appropriate permissions (read, write, or both) for the
corresponding operation being performed on it.

When a file is created, the default permissions (if the umask setting is 000) are
both read and write for user, group, and other. You can turn off individual
permission bits by changing the umask setting before you run the program.

Chapter 10. Implementation details of XL Fortran Input/Output (I/O) 283

Selecting error messages and recovery actions
There are various ways to control a program's behavior when errors are
encountered.

By default, an XL Fortran-compiled program continues after encountering many
kinds of errors, even if the statements have no ERR= or IOSTAT= specifiers. The
program performs some action that might allow it to recover successfully from the
bad data or other problem.

To control the behavior of a program that encounters errors, set the XLFRTEOPTS
environment variable, which is described in Setting runtime options in the XL
Fortran Compiler Reference, before running the program:
v To make the program stop when it encounters an error instead of performing a

recovery action, include err_recovery=no in the XLFRTEOPTS setting.
v To make the program stop issuing messages each time it encounters an error,

include xrf_messages=no.
v To disallow XL Fortran extensions to Fortran 90 at run time, include

langlvl=90std. To disallow XL Fortran extensions to Fortran 95 at run time,
include langlvl=95std. To disallow XL Fortran extensions to Fortran 2003
behavior at run time, include langlvl=2003std. To disallow XL Fortran extensions
to Fortran 2008 behavior at run time, include langlvl=2008std. These settings, in
conjunction with the -qlanglvl compiler option, can help you locate extensions
when preparing to port a program to another platform.

For example:
Switch defaults for some runtime settings.
XLFRTEOPTS="err_recovery=no:cnverr=no"
export XLFRTEOPTS

If you want a program always to work the same way, regardless of
environment-variable settings, or want to change the behavior in different parts of
the program, you can call the SETRTEOPTS procedure:
PROGRAM RTEOPTS
USE XLFUTILITY
CALL SETRTEOPTS("err_recovery=no") ! Change setting.
... some I/O statements ...
CALL SETRTEOPTS("err_recovery=yes") ! Change it back.
... some more I/O statements ...
END

Because a user can change these settings through the XLFRTEOPTS environment
variable, be sure to use SETRTEOPTS to set all the runtime options that might
affect the wanted operation of the program.

Flushing I/O buffers
To protect data from being lost if a program ends unexpectedly, you can use the
FLUSH statement or the flush_ subroutine to write any buffered data to a file.

The FLUSH statement is recommended for better portability and is used in the
following example:
INTEGER, PARAMETER :: UNIT = 10
DO I = 1, 1000000

WRITE(UNIT, *) I
CALL MIGHT_CRASH

! If the program ends in the middle of the loop, some data

284 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

! may be lost.
END DO
DO I = 1, 1000000

WRITE(UNIT, *) I
FLUSH(UNIT)
CALL MIGHT_CRASH

! If the program ends in the middle of the loop, all data written
! up to that point will be safely in the file.
END DO
END

Related information:
“Mixed-language input and output” on page 258

See FLUSH in the Compiler Reference

Choosing locations and names for Input/Output files
If you need to override the default locations and names for input/output files, you
can use the following methods without making any changes to the source code.

Naming files that are connected with no explicit name
To give a specific name to a file that would usually have a name of the form
fort.unit, you must set the runtime option unit_vars and then set an environment
variable with a name of the form XLFUNIT_unit for each scratch file. The
association is between a unit number in the Fortran program and a path name in
the file system.

For example, suppose that the Fortran program contains the following statements:
OPEN (UNIT=1, FORM=’FORMATTED’, ACCESS=’SEQUENTIAL’, RECL=1024)
...
OPEN (UNIT=12, FORM=’UNFORMATTED’, ACCESS=’DIRECT’, RECL=131072)
...
OPEN (UNIT=123, FORM=’UNFORMATTED’, ACCESS=’SEQUENTIAL’, RECL=997)

XLFRTEOPTS="unit_vars=yes" # Allow overriding default names.
XLFUNIT_1="/tmp/molecules.dat" # Use this named file.
XLFUNIT_12="../data/scratch" # Relative to current directory.
XLFUNIT_123="/home/user/data/Users/username/data" # Somewhere besides /tmp.
export XLFRTEOPTS XLFUNIT_1 XLFUNIT_12 XLFUNIT_123

Notes:

1. The XLFUNIT_number variable name must be in uppercase, and number must
not have any leading zeros.

2. unit_vars=yes might be only part of the value for the XLFRTEOPTS variable,
depending on what other runtime options you have set. See Setting runtime
options in the XL Fortran Compiler Reference for other options that might be part
of the XLFRTEOPTS value.

3. If the unit_vars runtime option is set to no or is undefined or if the applicable
XLFUNIT_number variable is not set when the program is run, the program
uses a default name (fort.unit) for the file and puts it in the current directory.

Naming scratch files
To place all scratch files in a particular directory, set the TMPDIR environment
variable to the name of the directory. The program then opens the scratch files in
this directory. You might need to do this if your /tmp directory is too small to hold
the scratch files.

Chapter 10. Implementation details of XL Fortran Input/Output (I/O) 285

To give a specific name to a scratch file, you must do the following:
1. Set the runtime option scratch_vars.
2. Set an environment variable with a name of the form XLFSCRATCH_unit for

each scratch file.

The association is between a unit number in the Fortran program and a path name
in the file system. In this case, the TMPDIR variable does not affect the location of
the scratch file.

For example, suppose that the Fortran program contains the following statements:
OPEN (UNIT=1, STATUS=’SCRATCH’, &

FORM=’FORMATTED’, ACCESS=’SEQUENTIAL’, RECL=1024)
...
OPEN (UNIT=12, STATUS=’SCRATCH’, &

FORM=’UNFORMATTED’, ACCESS=’DIRECT’, RECL=131072)
...
OPEN (UNIT=123, STATUS=’SCRATCH’, &

FORM=’UNFORMATTED’, ACCESS=’SEQUENTIAL’, RECL=997)

XLFRTEOPTS="scratch_vars=yes" # Turn on scratch file naming.
XLFSCRATCH_1="/tmp/molecules.dat" # Use this named file.
XLFSCRATCH_12="../data/scratch" # Relative to current directory.
XLFSCRATCH_123="/home/user/data/Users/username/data" # Somewhere besides /tmp.
export XLFRTEOPTS XLFSCRATCH_1 XLFSCRATCH_12 XLFSCRATCH_123

Notes:

1. The XLFSCRATCH_number variable name must be in uppercase, and number
must not have any leading zeros.

2. scratch_vars=yes might be only part of the value for the XLFRTEOPTS
variable, depending on what other runtime options you have set. See Setting
runtime options in the XL Fortran Compiler Reference for other options that might
be part of the XLFRTEOPTS value.

3. If the scratch_vars runtime option is set to no or is undefined or if the
applicable XLFSCRATCH_number variable is not set when the program is run,
the program chooses a unique file name for the scratch file and puts it in the
directory named by the TMPDIR variable or in the /tmp directory if the
TMPDIR variable is not set.

Asynchronous I/O
You may need to use asynchronous I/O for speed and efficiency in scientific
programs that perform I/O for large amounts of data. Synchronous I/O blocks the
execution of an application until the I/O operation completes. Asynchronous I/O
allows an application to continue processing while the I/O operation is performed
in the background.

You can modify applications to take advantage of the ability to overlap processing
and I/O operations. Multiple asynchronous I/O operations can also be performed
simultaneously. For a complete description of the syntax and language elements
that you require to use this feature, see the following topics in the XL Fortran
Language Reference :
v INQUIRE Statement
v OPEN Statement
v READ Statement
v WAIT Statement
v WRITE Statement

286 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Execution of an asychronous data transfer operation
The effect of executing an asynchronous data transfer operation will be as if the
following steps were performed in the order specified, with steps (6)-(9) possibly
occurring asynchronously:
1. Determine the direction of the data transfer.
2. Identify the unit.
3. Establish the format if one is present.
4. Determine whether an error condition, end-of-file condition, or end-of-record

condition has occurred.
5. Cause the variable that you specified in the IOSTAT= specifier in the data

transfer statement to become defined.
6. Position the file before you transfer data.
7. Transfer data between the file and the entities that you specified by the

input/output list (if any).
8. Determine whether an error condition, end-of-file condition, or end-of-record

condition has occurred.
9. Position the file after you transfer data.

10. Cause any variables that you specified in the IOSTAT= and SIZE= specifiers
in the WAIT statement to become defined.

Usage
You can use Fortran asynchronous READ and WRITE statements to initiate
asynchronous data transfers in Fortran. Execution continues after the asynchronous
I/O statement, regardless of whether the actual data transfer has completed.

A program may synchronize itself with a previously initiated asynchronous I/O
statement by using a WAIT statement. There are two forms of the WAIT statement:
1. In a WAIT statement without the DONE= specifier, the WAIT statement halts

execution until the corresponding asynchronous I/O statement has completed:
integer idvar
integer, dimension(1000):: a
....
READ(unit_number,ID=idvar) a
....
WAIT(ID=idvar)
....

2. In a WAIT statement with the DONE= specifier, the WAIT statement returns
the completion status of an asynchronous I/O statement:
integer idvar
logical done
integer, dimension(1000):: a
....
READ(unit_number,ID=idvar) a
....
WAIT(ID=idvar, DONE=done)
....

The variable you specified in the DONE= specifier is set to "true" if the
corresponding asynchronous I/O statement completes. Otherwise, it is set to
"false".

The actual data transfer can take place in the following cases:
v During the asynchronous READ or WRITE statement

Chapter 10. Implementation details of XL Fortran Input/Output (I/O) 287

v At any time before the execution of the corresponding WAIT statement
v During the corresponding WAIT statement

Because of the nature of asynchronous I/O, the actual completion time of the
request cannot be predicted.

You can specify asynchronous READ and WRITE statements by using the ID=
specifier. The value set for the ID= specifier by an asynchronous READ or WRITE
statement must be the same value specified in the ID= specifier in the
corresponding WAIT statement. You must preserve this value until the associated
asynchronous I/O statement has completed.

The following program shows a valid asynchronous WRITE statement:
program sample0
integer, dimension(1000):: a
integer idvar
a = (/(i,i=1,1000)/)
WRITE(10,ID=idvar) a
WAIT(ID=idvar)
end

The following program is not valid, because the value of the asynchronous I/O
identifier in variable idvar is destroyed before the associated WAIT statement:

program sample1
integer, dimension(1000):: a
integer idvar
a = (/(i,i=1,1000)/)
WRITE(10,ID=idvar) a
idvar = 999 ! Valid id is destroyed.
WAIT(ID=idvar)
end

An application that uses asynchronous I/O typically improves performance by
overlapping processing with I/O operations. The following is a simple example:

program sample2
integer (kind=4), parameter :: isize=1000000, icol=5
integer (kind=4) :: i, j, k
integer (kind=4), dimension(icol) :: handle
integer (kind=4), dimension(isize,icol), static :: a, a1

!
! Opens the file for both synchronous and asynchronous I/O.
!

open(20,form="unformatted",access="direct", &
status="scratch", recl=isize*4,asynch="yes")

!
! This loop overlaps the initialization of a(:,j) with
! asynchronous write statements.
!
! NOTE: The array is written out one column at a time.
! Since the arrays in Fortran are arranged in column
! major order, each WRITE statement writes out a
! contiguous block of the array.
!

do 200 j = 1, icol
a(:,j) = (/ (i*j,i=1,isize) /)
write(20, id=handle(j), rec=j) a(:,j)

200 end do

!
! Wait for all writes to complete before reading.
!

288 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

do 300 j = 1, icol
wait(id=handle(j))

300 end do

!
! Reads in the first record.
!

read(20, id=handle(1), rec=1) a1(:,1)

do 400 j = 2, icol
k = j - 1

!
! Waits for a previously initiated read to complete.
!

wait(id=handle(k))
!
! Initiates the next read immediately.
!

read(20, id=handle(j), rec=j) a1(:,j)
!
! While the next read is going on, we do some processing here.
!

do 350 i = 1, isize
if (a(i,k) .ne. a1(i,k)) then

print *, "(",i,",",k,") &
& expected ", a(i,k), " got ", a1(i,k)

end if
350 end do
400 end do

!
! Finish the last record.
!

wait(id=handle(icol))

do 450 i = 1, isize
if (a(i,icol) .ne. a1(i,icol)) then

print *, "(",i,",",icol,") &
& expected ", a(i,icol), " got ", a1(i,icol)

end if
450 end do

close(20)
end

Performance
To maximize the benefits of asynchronous I/O, you should only use it for large
contiguous data items.

It is possible to perform asynchronous I/O on a large number of small items, but
the overall performance will suffer. This is because extra processing overhead is
required to maintain each item for asynchronous I/O. Performing asynchronous
I/O on a larger number of small items is strongly discouraged. The following are
two examples:
1. WRITE(unit_number, ID=idvar) a1(1:100000000:2)
2. WRITE(unit_number, ID=idvar) (a2(i,j),j=1,100000000)

Performing asynchronous I/O on unformatted sequential files is less efficient. This
is because each record might have a different length, and these lengths are stored
with the records themselves. You should use unformatted direct access or
unformatted stream access, if possible, to maximize the benefits of asynchronous
I/O.

Chapter 10. Implementation details of XL Fortran Input/Output (I/O) 289

Compiler-generated temporary I/O items
There are situations when the compiler must generate a temporary variable to hold
the result of an I/O item expression. In such cases, synchronous I/O is performed
on the temporary variable, regardless of the mode of transfer that you specified in
the I/O statement. The following are examples of such cases:
1. For READ, when an array with vector subscripts appears as an input item:

a.
integer a(5), b(3)

b = (/1,3,5/)
read(99, id=i) a(b)

b.
real a(10)
read(99,id=i) a((/1,3,5/))

2. For WRITE, when an output item is an expression that is a constant or a
constant of certain derived types:
a.

write(99,id=i) 1000

b.
integer a
parameter(a=1000)

write(99,id=i) a

c.
type mytype
integer a
integer b
end type mytype

write(99,id=i) mytype(4,5)

3. For WRITE, when an output item is a temporary variable:
a.

write(99,id=i) 99+100

b.
write(99,id=i) a+b

c.
external ff
real(8) ff

write(99,id=i) ff()

4. For WRITE, when an output item is an expression that is an array constructor:
write(99,id=i) (/1,2,3,4,5/)

5. For WRITE, when an output item is an expression that is a scalarized array:
integer a(5),b(5)
write(99,id=i) a+b

Error handling
For an asynchronous data transfer, errors or end-of-file conditions might occur
either during execution of the data transfer statement or during subsequent data
transfer. If these conditions do not result in the termination of the program, you
can detect these conditions via ERR=, END= and IOSTAT= specifiers in the data
transfer or in the matching WAIT statement.

290 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Execution of the program terminates if an error condition occurs during execution
or during subsequent data transfer of an input/output statement that contains
neither an IOSTAT= nor an ERR= specifier. In the case of a recoverable error, if the
IOSTAT= and ERR= specifiers are not present, the program terminates if you set
the err_recovery runtime option to no. If you set the err_recovery runtime option
to yes, recovery action occurs, and the program continues.

If an asynchronous data transfer statement causes either of the following events, a
matching WAIT statement cannot run, because the ID= value is not defined:
v A branch to the label that you specified by ERR= or END=

v The IOSTAT= specifier to be set to a non-zero value

XL Fortran thread-safe I/O library
The XL Fortran runtime library libxlf90_r.so provides support for parallel
execution of Fortran I/O statements.

Synchronization of I/O operations
During parallel execution, multiple threads might perform I/O operations on the
same file at the same time. If they are not synchronized, the results of these I/O
operations could be shuffled or merged or both, and the application might produce
incorrect results or even terminate. The XL Fortran runtime library synchronizes
I/O operations for parallel applications. It performs the synchronization within the
I/O library, and it is transparent to application programs. The purpose of the
synchronization is to ensure the integrity and correctness of each individual I/O
operation. However, the run time does not have control over the order in which
threads execute I/O statements. Therefore, the order of records read in or written
out is not predictable under parallel I/O operations. Refer to “Parallel I/O issues”
for details.

External files
For external files, the synchronization is performed on a per-unit basis. The XL
Fortran run time ensures that only one thread can access a particular logical unit to
prevent several threads from interfering with each other. When a thread is
performing an I/O operation on a unit, other threads attempting to perform I/O
operations on the same unit must wait until the first thread finishes its operation.
Therefore, the execution of I/O statements by multiple threads on the same unit is
serialized. However, the runtime environment does not prevent threads from
operating on different logical units in parallel. In other words, parallel access to
different logical units is not necessarily serialized.

Functionality of I/O under synchronization
The XL Fortran runtime sets its internal locks to synchronize access to logical units.
This should not have any functional impact on the I/O operations performed by a
Fortran program. Also, it will not impose any additional restrictions to the
operability of Fortran I/O statements except for the use of I/O statements in a
signal handler that is invoked asynchronously. Refer to “Use of I/O statements in
signal handlers” on page 293 for details.

Parallel I/O issues
The order in which parallel threads perform I/O operations is not predictable. The
XL Fortran run time does not have control over the ordering. It will allow
whichever thread that executes an I/O statement on a particular logical unit and
obtains the lock on it first to proceed with the operation. Therefore, only use
parallel I/O in cases where at least one of the following is true:

Chapter 10. Implementation details of XL Fortran Input/Output (I/O) 291

v Each thread performs I/O on a predetermined record in direct-access files.
v Each thread performs I/O on a different part of a stream-access file. Different

I/O statements cannot use the same, or overlapping, areas of a file.
v The result of an application does not depend on the order in which records are

written out or read in.
v Each thread performs I/O on a different file.

In these cases, results of the I/O operations are independent of the order in which
threads execute. However, you might not get the performance improvements that
you expect, since the I/O library serializes parallel access to the same logical unit
from multiple threads. Examples of these cases are as follows:
v Each thread performs I/O on a pre-determined record in a direct-access file:

do i = 1, 10
write(4, ’(i4)’, rec = i) a(i)

enddo

v Each thread performs I/O on a different part of a stream-access file. Different
I/O statements cannot use the same, or overlapping, areas of a file.

do i = 1, 9
write(4, ’(i4)’, pos = 1 + 5 * (i - 1)) a(i)
! We use 5 above because i4 takes 4 file storage
! units + 1 file storage unit for the record marker.

enddo

v In the case that each thread operates on a different file, since threads share the
status of the logical units connected to the files, the thread still needs to obtain
the lock on the logical unit for either retrieving or updating the status of the
logical unit. However, the runtime allows threads to perform the data transfer
between the logical unit and the I/O list item in parallel. If an application
contains a large number of small I/O requests in a parallel region, you might
not get the expected performance because of the lock contention. Consider the
following example:

program example

use omp_lib

integer, parameter :: num_of_threads = 4, max = 5000000
character*10 file_name
integer i, file_unit, thread_id
integer, dimension(max, 2 * num_of_threads) :: aa

call omp_set_num_threads(num_of_threads)

!$omp parallel private(file_name, thread_id, file_unit, i) shared(aa)

thread_id = omp_get_thread_num()
file_name = ’file_’
file_name(6:6) = char(ichar(’0’) + thread_id)
file_unit = 10 + thread_id

open(file_unit, file = file_name, status = ’old’, action = ’read’)

do i = 1, max
read(file_unit, *) aa(i, thread_id * 2 + 1), aa(i, thread_id * 2 + 2)

end do

close(file_unit)

!$omp end parallel
end

292 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

The XL Fortran runtime synchronizes retrieving and updating the status of the
logical units while performing data transfer in parallel. In order to increase
performance, it is recommended to increase the size of data transfer per I/O
request. The do loop, therefore, should be rewritten as follows:

read(file_unit, *) a(:, thread_id * 2 + 1 : thread_id * 2 + 2)

do i = 1, max
! Do something for each element of array ’aa’.

end do

v The result does not depend on the order in which records are written out or
read in:

real a(100)
do i = 1, 10

read(4) a(i)
enddo
call qsort_(a)

v Each thread performs I/O on a different logical unit of direct access, sequential
access, or stream access:

do i = 11, 20
write(i, ’(i4)’) a(i - 10)

enddo

For multiple threads to write to or read from the same sequential-access file, or to
write to or read from the same stream-access file without using the POS= specifier,
the order of records written out or read in depends on the order in which the
threads execute the I/O statement on them. This order, as stated previously, is not
predictable. Therefore, the result of an application could be incorrect if it assumes
records are sequentially related and cannot be arbitrarily written out or read in.
For example, if the following loop is parallelized, the numbers printed out will no
longer be in the sequential order from 1 to 500 as the result of a serial execution:

do i = 1, 500
print *, i

enddo

Applications that depend on numbers being strictly in the specified order will not
work correctly.

The XL Fortran runtime option multconn=yes allows connection of the same file to
more than one logical unit simultaneously. Since such connections can only be
made for reading (ACCESS='READ'), access from multiple threads to logical units
that are connected to the same file will produce predictable results.

Use of I/O statements in signal handlers
There are basically two kinds of signals in the POSIX signal model: synchronously
and asynchronously generated signals. Signals caused by the execution of some code
of a thread, such as a reference to an unmapped, protected, or bad memory
(SIGSEGV or SIGBUS), floating-point exception (SIGFPE), execution of a trap
instruction (SIGTRAP), or execution of illegal instructions (SIGILL) are said to be
synchronously generated. Signals may also be generated by events outside the
process: for example, SIGINT, SIGHUP, SIGQUIT, SIGIO, and so on. Such
events are referred to as interrupts. Signals that are generated by interrupts are
said to be asynchronously generated.

The XL Fortran run time is asynchronous signal unsafe. This means that an XL
Fortran I/O statement cannot be used in a signal handler that is entered because of
an asynchronously generated signal. The behavior of the system is undefined when

Chapter 10. Implementation details of XL Fortran Input/Output (I/O) 293

an XL Fortran I/O statement is called from a signal handler that interrupts an I/O
statement. However, it is safe to use I/O statements in signal handlers for
synchronous signals.

Sometimes an application can guarantee that a signal handler is not entered
asynchronously. For example, an application might mask signals except when it
runs certain known sections of code. In such situations, the signal will not
interrupt any I/O statements and other asynchronous signal unsafe functions.
Therefore, you can still use Fortran I/O statements in an asynchronous signal
handler.

A much easier and safer way to handle asynchronous signals is to block signals in
all threads and to explicitly wait (using sigwait()) for them in one or more separate
threads. The advantage of this approach is that the handler thread can use Fortran
I/O statements as well as other asynchronous signal unsafe routines.

Asynchronous thread cancellation
When a thread enables asynchronous thread cancellability, any cancellation request
is acted upon immediately.

The XL Fortran runtime environment is not asynchronous thread cancellation safe.
The behavior of the system is undefined if a thread is cancelled asynchronously
while it is in the XL Fortran runtime environment.

294 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Chapter 11. Implementation details of XL Fortran
floating-point processing

This topic answers some common questions about floating-point processing.
v How can I get predictable, consistent results?
v How can I get the fastest or the most accurate results?
v How can I detect, and possibly recover from, exception conditions?
v Which compiler options can I use for floating-point calculations?

The topics describing floating-point precision make frequent reference to the
compiler options that are grouped together in Floating-point and integer control in
the XL Fortran Compiler Reference, especially the -qfloat option. The XL Fortran
compiler also provides three intrinsic modules for exception handling and IEEE
arithmetic support to help you write IEEE module-compliant code that can be
more portable. See IEEE Modules and Support in the XL Fortran Language Reference
for details.

The use of the compiler options for floating-point calculations affects the accuracy,
performance, and possibly the correctness of floating-point calculations. Although
the default values for the options were chosen to provide efficient and correct
execution of most programs, you may need to specify nondefault options for your
applications to work the way you want. We strongly advise you to read this
section before using these options.

Note: The discussions of single-precision, double-precision, and extended-precision
calculations in this section all refer to the default situation, with -qrealsize=4 and
no -qautodbl specified. If you change these settings, keep in mind that the size of
a Fortran REAL, DOUBLE PRECISION, and so on may change, but single
precision, double precision, and extended precision (in lowercase) still refer to 4-,
8-, and 16-byte entities respectively.

IEEE floating-point overview
The ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985
and IEEE Std 754-2008 and the details of how it applies to XL Fortran on specific
hardware platforms, are summarized in the following topics.

For information on the Fortran 2003 IEEE Module and arithmetic support, see the
XL Fortran Language Reference.

Compiling for strict IEEE conformance
By default, XL Fortran follows most, but not all of the rules in the IEEE standard.
To compile for strict compliance with the standard:
v Use the compiler option -qfloat=nomaf.
v If the program changes the rounding mode at run time, include rrm among the

-qfloat suboptions.
v If the data or program code contains signaling NaN values (NAN), include nans

among the -qfloat suboptions. (A signaling NaN is different from a quiet NaN;
you must explicitly code it into the program or data or create it by using the
-qinitauto or -qinitalloc compiler option.)

© Copyright IBM Corp. 1990, 2015 295

v If you are compiling with -O3, or a higher base optimization level, include the
-qstrict option after it. You can also use the -qstrict suboptions to refine the
level of control for the transformations performed by the optimizers.

Related reference:

See -qstrict in the Compiler Reference

IEEE single-precision and double-precision values
XL Fortran encodes single-precision and double-precision values in IEEE format.
For the range and representation, see Real in the XL Fortran Language Reference.

IEEE extended-precision values
The IEEE standard suggests, but does not mandate, a format for
extended-precision values. XL Fortran does not use this format.
“Extended-precision values” on page 299 describes the format that XL Fortran uses.

Infinities and NaNs
For single-precision real values:
v Positive infinity is represented by the bit pattern X'7F80 0000'.
v Negative infinity is represented by the bit pattern X'FF80 0000'.
v A signaling NaN is represented by any bit pattern between X'7F80 0001' and

X'7FBF FFFF' or between X'FF80 0001' and X'FFBF FFFF'.
v A quiet NaN is represented by any bit pattern between X'7FC0 0000' and

X'7FFF FFFF' or between X'FFC0 0000' and X'FFFF FFFF'.

For double-precision real values:
v Positive infinity is represented by the bit pattern X'7FF00000 00000000'.
v Negative infinity is represented by the bit pattern X'FFF00000 00000000'.
v A signaling NaN is represented by any bit pattern between

X'7FF00000 00000001' and X'7FF7FFFF FFFFFFFF' or between
X'FFF00000 00000001' and X'FFF7FFFF FFFFFFFF'.

v A quiet NaN is represented by any bit pattern between X'7FF80000 00000000'
and X'7FFFFFFF FFFFFFFF' or between X'FFF80000 00000000' and
X'FFFFFFFF FFFFFFFF'.

These values do not correspond to any Fortran real constants. You can generate all
of these by encoding the bit pattern directly, or by using the ieee_value function
provided in the ieee_arithmetic intrinsic module. Using the ieee_value function is
the preferred programming technique, as it is allowed by the Fortran 2003
standard and the results are portable. Encoding the bit pattern directly could cause
portability problems on machines using different bit patterns for the different
values. All except signaling NaN values can occur as the result of arithmetic
operations:

296 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Exception-handling model
The IEEE standard defines several exception conditions that can occur:

OVERFLOW
The exponent of a value is too large to be represented.

UNDERFLOW
A nonzero value is so small that it cannot be represented without an
extraordinary loss of accuracy. The value can be represented only as zero
or a subnormal number (denorm).

ZERODIVIDE
A finite nonzero value is divided by zero.

INVALID
Operations are performed on values for which the results are not defined.
These include:
v Operations on signaling NaN values
v infinity - same infinity, or infinity + opposite infinity
v 0.0 * infinity
v 0.0 / 0.0
v mod(x,y) or ieee_rem(x,y) (or other remainder functions) when x is

infinite or y is zero
v The square root of a negative number except -0.0
v Conversion of a floating-point number to an integer when the converted

value cannot be represented faithfully

$ cat fp_values.f
real plus_inf, minus_inf, plus_nanq, minus_nanq, nans
real large

data plus_inf /z’7f800000’/
data minus_inf /z’ff800000’/
data plus_nanq /z’7fc00000’/
data minus_nanq /z’ffc00000’/
data nans /z’7f800001’/

print *, ’Special values:’, plus_inf, minus_inf, plus_nanq, minus_nanq, nans

! They can also occur as the result of operations.
large = 10.0 ** 200
print *, ’Number too big for a REAL:’, large * large
print *, ’Number divided by zero:’, (-large) / 0.0
print *, ’Nonsensical results:’, plus_inf - plus_inf, sqrt(-large)

! To find if something is a NaN, compare it to itself.
print *, ’Does a quiet NaN equal itself:’, plus_nanq .eq. plus_nanq
print *, ’Does a signaling NaN equal itself:’, nans .eq. nans
! Only for a NaN is this comparison false.

end
$ xlf95 -o fp_values fp_values.f
** _main === End of Compilation 1 ===
1501-510 Compilation successful for file fp_values.f.
$ fp_values
Special values: INF -INF NAN -NAN NAN
Number too big for a REAL: INF
Number divided by zero: -INF
Nonsensical results: NAN NAN
Does a quiet NaN equal itself: F
Does a signaling NaN equal itself: F

Chapter 11. Implementation details of XL Fortran floating-point processing 297

v Comparisons involving NaN values

INEXACT
A computed value cannot be represented exactly, so a rounding error is
introduced. (This exception is very common.)

XL Fortran always detects these exceptions when they occur, but by default does
not take any special action. Calculation continues, usually with a NaN or infinity
value as the result. If you want to be automatically informed when an exception
occurs, you can turn on exception trapping through compiler options or calls to
intrinsic subprograms. However, different results, intended to be manipulated by
exception handlers, are produced:

Table 33. Results of IEEE exceptions, with and without trapping enabled

Overflow Underflow Zerodivide Invalid Inexact

Exceptions not
enabled (default)

INF Subnormal
number or zero

INF NaN Rounded result

Exceptions
enabled

Unnormalized
number with
biased exponent

Unnormalized
number with
biased exponent

No result No result Rounded result

Note: Because different results are possible, it is very important to make sure that
any exceptions that are generated are handled correctly. See “Detecting and
trapping floating-point exceptions” on page 304 for instructions on doing so.

Hardware-specific floating-point overview
Single-precision and double-precision values and extended-precision values for
hardware-specific floating-point processing are described in the following topics.

Single-precision and double-precision values
The PowerPC floating-point hardware performs calculations in either IEEE
single-precision (equivalent to REAL(4) in Fortran programs) or IEEE
double-precision (equivalent to REAL(8) in Fortran programs).

Keep the following considerations in mind:
v Double precision provides greater range (approximately 10**(-308) to 10**308)

and precision (about 15 decimal digits) than single precision (approximate range
10**(-38) to 10**38, with about 7 decimal digits of precision).

v Computations that mix single and double operands are performed in double
precision, which requires conversion of the single-precision operands to
double-precision. These conversions do not affect performance.

v Double-precision values that are converted to single-precision (such as when you
specify the SNGL intrinsic or when a double-precision computation result is
stored into a single-precision variable) require rounding operations. A rounding
operation produces the correct single-precision value, which is based on the
IEEE rounding mode in effect. The value may be less precise than the original
double-precision value, as a result of rounding error. Conversions from
double-precision values to single-precision values may reduce the performance
of your code.

v Programs that manipulate large amounts of floating-point data may run faster if
they use REAL(4) rather than REAL(8) variables. (You need to ensure that
REAL(4) variables provide you with acceptable range and precision.) The

298 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

programs may run faster because the smaller data size reduces memory traffic,
which can be a performance bottleneck for some applications.

The floating-point hardware also provides a special set of double-precision
operations that multiply two numbers and add a third number to the product.
These combined multiply-add (MAF) operations are performed at the same speed
at which either an individual multiply or add is performed. The MAF functions
provide an extension to the IEEE 754-1985 standard (but are in the 754-2008
standard) because they perform the multiply and add with one (rather than two)
rounding errors. The MAF functions are faster and more accurate than the
equivalent separate operations.

Extended-precision values
XL Fortran extended precision is not in the binary128 format suggested by the
IEEE standard. The IEEE standard suggests extended formats use more bits in the
exponent for greater range and the fraction for greater precision.

XL Fortran extended precision, equivalent to REAL(16) in Fortran programs, is
implemented in software. Extended precision provides the same range as double
precision (about 10**(-308) to 10**308) but more precision (a variable amount, about
31 decimal digits or more). The software support is restricted to round-to-nearest
mode. Programs that use extended precision must ensure that this rounding mode
is in effect when extended-precision calculations are performed. For the different
ways you can control the rounding mode, see “Selecting the rounding mode” on
page 300.

Programs that specify extended-precision values as hexadecimal, octal, binary, or
Hollerith constants must follow these conventions:
v Extended-precision numbers are composed of two double-precision numbers

with different magnitudes that do not overlap (except when the number is zero
or close to zero). That is, the binary exponents differ by at least the number of
fraction bits in a REAL(8). The high-order double-precision value (the one that
comes first in storage) must have the larger magnitude. The value of the
extended-precision number is the sum of the two double-precision values.

v For a value of NaN or infinity, you must encode one of these values within the
high-order double-precision value. The low-order value is not significant except
that it cannot be set to NaN when the high-order value is infinity.

Because an XL Fortran extended-precision value can be the sum of two values with
greatly different exponents, leaving a number of assumed zeros in the fraction, the
format actually has a variable precision with a minimum of about 31 decimal
digits. You get more precision in cases where the exponents of the two double
values differ in magnitude by more than the number of digits in a double-precision
value. This encoding allows an efficient implementation intended for applications
requiring more precision but no more range than double precision.

Note:

1. In the discussions of rounding errors because of compile-time folding of
expressions, keep in mind that this folding produces different results for
extended-precision values more often than for other precisions.

2. Special numbers, such as NaN, infinity, and negative zero, are not fully
supported by the extended-precision values. Arithmetic operations do not
necessarily propagate these numbers in extended precision.

Chapter 11. Implementation details of XL Fortran floating-point processing 299

3. XL Fortran does not always detect floating-point exception conditions (see
“Detecting and trapping floating-point exceptions” on page 304) for
extended-precision values. If you turn on floating-point exception trapping in
programs that use extended precision, XL Fortran may also generate signals in
cases where an exception condition does not really occur.

4. The exact representation is sometimes different between AIX® and Linux.
5. Not all math library functions are available for extended precision.

How XL Fortran rounds floating-point calculations
Understanding rounding operations in XL Fortran can help you get predictable,
consistent results. It can also help you make informed decisions when you have to
make tradeoffs between speed and accuracy.

In general, floating-point results from XL Fortran programs are more accurate than
those from other implementations because of MAF operations and the higher
precision used for intermediate results. If identical results are more important to
you than the extra precision and performance of the XL Fortran defaults, read
“Duplicating the floating-point results of other systems” on page 303.

Selecting the rounding mode
To change the rounding mode in a program, you can call the fpsets and fpgets
routines, which use an array of logicals named fpstat, defined in the include files
/opt/ibm/xlf/15.1.0/include/fpdt.h and /opt/ibm/xlf/15.1.0/include/fpdc.h.
The fpstat array elements correspond to the bits in the floating-point status and
control register. They correspond to the lower half of the FPSCR bits.

For floating-point rounding control, the array elements fpstat(fprn1) and
fpstat(fprn2) are set as specified in the following table:

Table 34. Rounding-mode bits to use with fpsets and fpgets

fpstat(fprn1) fpstat(fprn2) Rounding Mode Enabled

.true. .true. Round towards -infinity.

.true. .false. Round towards +infinity.

.false. .true. Round towards zero.

.false. .false. Round to nearest.

For example:
program fptest
include ’fpdc.h’

call fpgets(fpstat) ! Get current register values.
if ((fpstat(fprn1) .eqv. .false.) .and. +

(fpstat(fprn2) .eqv. .false.)) then
print *, ’Before test: Rounding mode is towards nearest’
print *, ’ 2.0 / 3.0 = ’, 2.0 / 3.0
print *, ’ -2.0 / 3.0 = ’, -2.0 / 3.0
end if

call fpgets(fpstat) ! Get current register values.
fpstat(fprn1) = .TRUE. ! These 2 lines mean round towards
fpstat(fprn2) = .FALSE. ! +infinity.
call fpsets(fpstat)
r = 2.0 / 3.0
print *, ’Round towards +infinity: 2.0 / 3.0= ’, r

300 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

call fpgets(fpstat) ! Get current register values.
fpstat(fprn1) = .TRUE. ! These 2 lines mean round towards
fpstat(fprn2) = .TRUE. ! -infinity.
call fpsets(fpstat)
r = -2.0 / 3.0
print *, ’Round towards -infinity: -2.0 / 3.0= ’, r
end

! This block data program unit initializes the fpstat array, and so on.
block data
include ’fpdc.h’
include ’fpdt.h’

end

XL Fortran also provides several procedures that allow you to control the
floating-point status and control register of the processor directly. These procedures
are more efficient than the fpsets and fpgets subroutines because they are mapped
into inlined machine instructions that manipulate the floating-point status and
control register (fpscr) directly.

XL Fortran supplies the get_round_mode() and set_round_mode() procedures in
the xlf_fp_util module. These procedures return and set the current binary
floating-point rounding mode, respectively.

For example:
program fptest
use, intrinsic :: xlf_fp_util
integer(fpscr_kind) old_fpscr
if (get_round_mode() == fp_rnd_rn) then
print *, ’Before test: Rounding mode is towards nearest’
print *, ’ 2.0 / 3.0 = ’, 2.0 / 3.0
print *, ’ -2.0 / 3.0 = ’, -2.0 / 3.0
end if

old_fpscr = set_round_mode(fp_rnd_rp)
r = 2.0 / 3.0
print *, ’Round towards +infinity: 2.0 / 3.0 = ’, r

old_fpscr = set_round_mode(fp_rnd_rm)
r = -2.0 / 3.0
print *, ’Round towards -infinity: -2.0 / 3.0 = ’, r

end

XL Fortran supplies the ieee_get_rounding_mode() and ieee_set_rounding_mode()
procedures in the ieee_arithmetic module. These portable procedures retrieve and
set the current floating-point rounding mode, respectively.

For example:
program fptest
use, intrinsic :: ieee_arithmetic
type(ieee_round_type) current_mode
call ieee_get_rounding_mode(current_mode)
if (current_mode == ieee_nearest) then
print *, ’Before test: Rounding mode is towards nearest’
print *, ’ 2.0 / 3.0 = ’, 2.0 / 3.0
print *, ’ -2.0 / 3.0 = ’, -2.0 / 3.0
end if

call ieee_set_rounding_mode(ieee_up)
r = 2.0 / 3.0
print *, ’Round towards +infinity: 2.0 / 3.0 = ’, r

Chapter 11. Implementation details of XL Fortran floating-point processing 301

call ieee_set_rounding_mode(ieee_down)
r = -2.0 / 3.0
print *, ’Round towards -infinity: -2.0 / 3.0 = ’, r

end

Notes:
1. Extended-precision floating-point values must only be used in round-to-nearest

mode.
2. For thread-safety and reentrancy, the include file /opt/ibm/xlf/15.1.0/

include/fpdc.h contains a THREADLOCAL directive that is protected by the
trigger constant IBMT. The invocation commands xlf_r, xlf90_r, xlf95_r,
xlf2003_r, and xlf2008_r turn on the -qthreaded compiler option by default,
which in turn implies the trigger constant IBMT. If you are including the file
/opt/ibm/xlf/15.1.0/include/fpdc.h in code that is not intended to be
threadsafe, do not specify IBMT as a trigger constant.

3. Compile a program that changes the rounding mode with -qfloat=rrm.

Minimizing rounding errors
There are several strategies for handling rounding errors and other unexpected,
slight differences in calculated results. You may want to consider one or more of
the following strategies:
v Minimizing the amount of overall rounding
v Delaying as much rounding as possible to run time
v Ensuring that if some rounding is performed in a mode other than

round-to-nearest, all rounding is performed in the same mode

Minimizing overall rounding
Rounding operations, especially in loops, reduce code performance and may have
a negative effect on the precision of computations. Consider using double-precision
variables instead of single-precision variables when you store the temporary results
of single-precision calculations, and delay rounding operations until the final result
is computed.

Delaying rounding until run time
The compiler evaluates floating-point expressions during compilation when it can,
so that the resulting program does not run more slowly due to unnecessary
runtime calculations. However, the results of the compiler's evaluation might not
match exactly the results of the runtime calculation. To delay these calculations
until run time, specify the nofold suboption of the -qfloat option.

The results may still not be identical; for example, calculations in DATA and
PARAMETER statements are still performed at compile time.

The differences in results due to fold or nofold are greatest for programs that
perform extended-precision calculations or are compiled with the -O option or
both.

Ensuring that the rounding mode is consistent
You can change the rounding mode from its default setting of round-to-nearest.
(See for examples.) If you do so, you must be careful that all rounding operations
for the program use the same mode:
v Specify the equivalent setting on the -qieee option, so that any compile-time

calculations use the same rounding mode.

302 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

v Specify the rrm suboption of the -qfloat option, so that the compiler does not
perform any optimizations that require round-to-nearest rounding mode to work
correctly.

For example, you might compile a program like the one in “Selecting the rounding
mode” on page 300 with this command if the program consistently uses
round-to-plus-infinity mode:
xlf95 -qieee=plus -qfloat=rrm changes_rounding_mode.f

Duplicating the floating-point results of other systems
To duplicate the double-precision results of programs on systems with different
floating-point architectures (without multiply-add instructions), specify the nomaf
suboption of the -qfloat option. This suboption prevents the compiler from
generating any multiply-add or multiply-subtract instructions except the following
cases:
v Instructions used in the COMPLEX operations
v Instructions required for multiply-add or multiply-subtract built in functions or

the fma function

This results in decreased accuracy and performance but provides strict
conformance to the IEEE standard for double-precision arithmetic.

To duplicate the results of programs where the default size of REAL items is
different from that on systems running XL Fortran, use the -qrealsize option to
change the default REAL size when compiling with XL Fortran.

If the system whose results you want to duplicate preserves full double precision
for default real constants that are assigned to DOUBLE PRECISION variables, use
the -qdpc or -qrealsize option.

If results consistent with other systems are important to you, include norsqrt and
nofold in the settings for the -qfloat option.

If you specify the option -O3, -O4, or -O5, include -qstrict and any necessary
suboptions too.
Related information:

See -qarch in the Compiler Reference

See -qfloat in the Compiler Reference

See -qrealsize in the Compiler Reference

See -qstrict in the Compiler Reference

Maximizing floating-point performance
If performance is your primary concern and you want your program to be
relatively safe but do not mind if results are slightly different (generally more
precise) from what they would be otherwise, optimize the program with the -O
option, and specify -qfloat=rsqrt:hssngl.

The following topics describe the functions of these suboptions:

Chapter 11. Implementation details of XL Fortran floating-point processing 303

v The rsqrt suboption replaces division by a square root with multiplication by the
reciprocal of the root, a faster operation that may not produce precisely the same
result.

v The hssngl suboption improves the performance of single-precision (REAL(4))
floating-point calculations by suppressing rounding operations that are required
by the Fortran language but are not necessary for correct program execution.
The results of floating-point expressions are kept in double precision where the
original program would round them to single-precision. These results are then
used in some later expressions instead of the rounded results.
To detect single-precision floating-point overflows and underflows, rounding
operations are still inserted when double-precision results are stored into
single-precision memory locations. However, if optimization removes such a
store operation, hssngl also removes the corresponding rounding operation,
possibly preventing the exception. (Depending on the characteristics of your
program, you may or may not care whether the exception happens.)
The hssngl suboption is safe for all types of programs because it always only
increases the precision of floating-point calculations. Program results may differ
because of the increased precision and because of avoidance of some exceptions.

Detecting and trapping floating-point exceptions
The IEEE standard for floating-point arithmetic defines a number of exception (or
error) conditions that might require special care to avoid or recover from. The
following topics are intended to help you make your programs work safely in the
presence of such exception conditions while sacrificing the minimum amount of
performance.

The floating-point hardware always detects a number of floating-point exception
conditions (which the IEEE standard rigorously defines): overflow, underflow,
zerodivide, invalid, and inexact.

By default, the only action that occurs is that a status flag is set. The program
continues without a problem (although the results from that point on may not be
what you expect). If you want to know when an exception occurs, you can arrange
for one or more of these exception conditions to generate a signal.

The signal causes a branch to a handler routine. The handler receives information
about the type of signal and the state of the program when the signal occurred. It
can produce a core dump, display a listing showing where the exception occurred,
modify the results of the calculation, or carry out some other processing that you
specify.

The XL Fortran compiler uses the operating system facilities for working with
floating-point exception conditions. These facilities indicate the presence of
floating-point exceptions by generating SIGFPE signals.

Compiler features for trapping floating-point exceptions
To turn on XL Fortran exception trapping, compile the program with the -qflttrap
option and some combination of suboptions that includes enable. This option uses
trap operations to detect floating-point exceptions and generates SIGFPE signals
when exceptions occur, provided that a signal handler for SIGFPE is installed.

-qflttrap also has suboptions that correspond to the names of the exception
conditions. For example, if you are only concerned with handling overflow and
underflow exceptions, you can specify a command similar to the following one:

304 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

xlf95 -qflttrap=overflow:underflow:enable compute_pi.f

You only need enable when you are compiling the main program. However, it is
very important then and does not cause any problems if you specify it for other
files, so always include it when you use -qflttrap.

An advantage of this approach is that performance impact is relatively low.
However, this approach only traps exceptions that occur in code that you compiled
with -qflttrap, which does not include system library routines.

Notes:

1. If your program depends on floating-point exceptions occurring for particular
operations, also specify -qfloat suboptions that include nofold. Otherwise, the
compiler might replace an exception-producing calculation with a constant
NaN or infinity value, or it might eliminate an overflow in a single-precision
operation.

2. The suboptions of the -qflttrap option replace an earlier technique that
required you to modify your code with calls to the fpsets and fpgets
procedures. You no longer require these calls for exception handling if you use
the appropriate -qflttrap settings.
Attention: If your code contains fpsets calls that enable checking for
floating-point exceptions and you do not use the -qflttrap option when
compiling the whole program, the program will produce unexpected results if
exceptions occur, as explained in Table 33 on page 298.

Installing an exception handler
When a program that uses the XL Fortran or Linux exception-detection facilities
encounters an exception condition, it receives a signal from the operating system.
This causes a branch to whatever handler is specified by the program.

By default, programs on Linux do not trap on floating-point exceptions unless a
signal handler is installed. To produce a core file, you can use the xl__trcedump
signal handler described below. If you want to install a SIGTRAP or SIGFPE
signal handler, use the -qsigtrap option. It allows you to specify an XL Fortran
handler that produces a traceback or to specify a handler you have written:
xlf95 -qflttrap=ov:und:en pi.f # Dump core on an exception
xlf95 -qflttrap=ov:und:en -qsigtrap pi.f # Uses the xl__trce handler
xlf95 -qflttrap=ov:und:en -qsigtrap=return_22_over_7 pi.f # Uses any other handler

You can also install an alternative exception handler, either one supplied by XL
Fortran or one you have written yourself, by calling the SIGNAL subroutine
(defined in /opt/ibm/xlf/15.1.0/include/fexcp.h):

INCLUDE ’fexcp.h’
CALL SIGNAL(SIGTRAP,handler_name)
CALL SIGNAL(SIGFPE,handler_name)

The XL Fortran exception handlers and related routines are:

xl__ieee
Produces a traceback and an explanation of the signal and continues
execution by supplying the default IEEE result for the failed computation.
This handler allows the program to produce the same results as if
exception detection was not turned on.

xl__trce
Produces a traceback and stops the program.

Chapter 11. Implementation details of XL Fortran floating-point processing 305

xl__trcedump
Produces a traceback and a core file and stops the program.

xl__sigdump
Provides a traceback that starts from the point at which it is called and
provides information about the signal. You can only call it from inside a
user-written signal handler. It does not stop the program. To successfully
continue, the signal handler must perform some cleanup after calling this
subprogram.

xl__trbk
Provides a traceback that starts from the point at which it is called. You
call it as a subroutine from your code, rather than specifying it with the
-qsigtrap option. It requires no parameters. It does not stop the program.

All of these handler names contain double underscores to avoid duplicating names
that you declared in your program. All of these routines work for both SIGTRAP
and SIGFPE signals.

You can use the -g compiler option to get line numbers in the traceback listings.
The file /opt/ibm/xlf/15.1.0/include/fsignal.h defines a Fortran derived type
similar to the ucontext_t structure in /usr/include/sys/ucontext.h system header.
You can write a Fortran signal handler that accesses this derived type.

“Sample programs for exception handling” on page 309 lists some sample
programs that illustrate how to use these signal handlers or write your own. Also
see the SIGNAL procedure in the XL Fortran Language Reference for more
information.

Producing a core file
To produce a core file, specify the xl__trcedump handler.

Controlling the floating-point status and control register
Before the introduction of -qflttrap suboptions or the -qsigtrap options, most of
the processing for floating-point exceptions required you to change your source
files to turn on exception trapping or install a signal handler. Although you can
still do so, for any new applications, we recommend that you use the options
instead.

To control exception handling at run time, compile without the enable suboption
of the -qflttrap option:

xlf95 -qflttrap compute_pi.f # Check all exceptions, but do not trap.
xlf95 -qflttrap=ov compute_pi.f # Check one type, but do not trap.

Then, inside your program, manipulate the fpstats array (defined in the include
file /opt/ibm/xlf/15.1.0/include/fpdc.h) and call the fpsets subroutine to specify
which exceptions should generate traps.

See the sample program that uses fpsets and fpgets in “Selecting the rounding
mode” on page 300.

Another method is to use the set_fpscr_flags() subroutine in the xlf_fp_util
module. This subroutine allows you to set the floating-point status and control
register flags you specify in the MASK argument. Flags that you do not specify in
MASK remain unaffected. MASK must be of type INTEGER(FPSCR_KIND). For
example:

306 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

USE, INTRINSIC :: xlf_fp_util
INTEGER(FPSCR_KIND) SAVED_FPSCR
INTEGER(FP_MODE_KIND) FP_MODE

SAVED_FPSCR = get_fpscr() ! Saves the current value of
! the fpscr register.

CALL set_fpscr_flags(TRP_DIV_BY_ZERO) ! Enables trapping of
! ... ! divide-by-zero.
SAVED_FPSCR=set_fpscr(SAVED_FPSCR) ! Restores fpscr register.

Another method is to use the ieee_set_halting_mode subroutine in the
ieee_exceptions module. This portable subroutine allows you to set the halting
(trapping) status for any FPSCR exception flags. For example:
USE, INTRINSIC :: ieee_exceptions
TYPE(IEEE_STATUS_TYPE) SAVED_FPSCR
CALL ieee_get_status(SAVED_FPSCR) ! Saves the current value of the

! fpscr register

CALL ieee_set_halting_mode(IEEE_DIVIDE_BY_ZERO, .TRUE.) ! Enabled trapping
! ... ! of divide-by-zero.

CALL IEEE_SET_STATUS(SAVED_FPSCR) ! Restore fpscr register

xlf_fp_util procedures
The xlf_fp_util procedures allow you to query and control the floating-point status
and control register (fpscr) of the processor directly. These procedures are more
efficient than the fpsets and fpgets subroutines because they are mapped into
inlined machine instructions that manipulate the floating-point status and control
register directly.

The intrinsic module, xlf_fp_util, contains the interfaces and data type definitions
for these procedures and the definitions for the named constants that are needed
by the procedures. This module enables type checking of these procedures at
compile time rather than link time. The following files are supplied for the
xlf_fp_util module:

File names File type Locations

xlf_fp_util.mod module symbol file /opt/ibm/xlf/15.1.0/include

To use the procedures, you must add a USE XLF_FP_UTIL statement to your
source file. For more information, see the USE statement in the XL Fortran
Language Reference.

When compiling with the -U option, you must code the names of these procedures
in all lowercase.

For a list of the xlf_fp_util procedures, see the Service and utility procedures section
in the XL Fortran Language Reference.

fpgets and fpsets subroutines
The fpsets and fpgets subroutines provide a way to manipulate or query the
floating-point status and control register. Instead of calling the operating system
routines directly, you pass information back and forth in fpstat, an array of
logicals. The following table shows the most commonly used array elements that
deal with exceptions:

Chapter 11. Implementation details of XL Fortran floating-point processing 307

Table 35. Exception bits to use with fpsets and fpgets

Array Element to
Set to Enable

Array Element to
Check if Exception
Occurred Exception Indicated When .TRUE.

n/a fpstat(fpfx) Floating-point exception summary

n/a fpstat(fpfex) Floating-point enabled exception summary

fpstat(fpve) fpstat(fpvx) Floating-point invalid operation exception
summary

fpstat(fpoe) fpstat(fpox) Floating-point overflow exception

fpstat(fpue) fpstat(fpux) Floating-point underflow exception

fpstat(fpze) fpstat(fpzx) Zero-divide exception

fpstat(fpxe) fpstat(fpxx) Inexact exception

fpstat(fpve) fpstat(fpvxsnan) Floating-point invalid operation exception
(signaling NaN)

fpstat(fpve) fpstat(fpvxisi) Floating-point invalid operation exception
(INF-INF)

fpstat(fpve) fpstat(fpvxidi) Floating-point invalid operation exception
(INF/INF)

fpstat(fpve) fpstat(fpvxzdz) Floating-point invalid operation exception
(0/0)

fpstat(fpve) fpstat(fpvximz) Floating-point invalid operation exception
(INF*0)

fpstat(fpve) fpstat(fpvxvc) Floating-point invalid operation exception
(invalid compare)

n/a fpstat(fpvxsoft) Floating-point invalid operation exception
(software request), PowerPC only

n/a fpstat(fpvxsqrt) Floating-point invalid operation exception
(invalid square root), PowerPC only

n/a fpstat(fpvxcvi) Floating-point invalid operation exception
(invalid integer convert), PowerPC only

To explicitly check for specific exceptions at particular points in a program, use
fpgets and then test whether the elements in fpstat have changed. Once an
exception has occurred, the corresponding exception bit (second column in the
preceding table) is set until it is explicitly reset, except for fpstat(fpfx), fpstat(fpvx),
and fpstat(fpfex), which are reset only when the specific exception bits are reset.

An advantage of using the fpgets and fpsets subroutines (as opposed to
controlling everything with suboptions of the -qflttrap option) includes control
over granularity of exception checking. For example, you might only want to test if
an exception occurred anywhere in the program when the program ends.

The disadvantages of this approach include the following:
v You have to change your source code.
v These routines differ from what you may be accustomed to on other platforms.

308 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

For example, to trap floating-point overflow exceptions but only in a certain
section of the program, you would set fpstat(fpoe) to .TRUE. and call fpsets.
After the exception occurs, the corresponding exception bit, fpstat(fpox), is
.TRUE. until the program runs:

call fpgets(fpstat)
fpstat(fpox) = .FALSE.
call fpsets(fpstat) ! resetting fpstat(fpox) to .FALSE.

Sample programs for exception handling
Sample programs contained in /opt/ibm/xlf/15.1.0/samples/floating_point
illustrate different aspects of exception handling:

flttrap_handler.c and flttrap_test.f
A sample exception handler that is written in C and a Fortran program
that uses it.

xl__ieee.F and xl__ieee.c
Exception handlers that are written in Fortran and C that show how to
substitute particular values for operations that produce exceptions. Even
when you use support code such as this, the implementation of XL Fortran
exception handling does not fully support the exception-handling
environment that is suggested by the IEEE floating-point standard.

check_fpscr.f and postmortem.f
Show how to work with the fpsets and fpgets procedures and the fpstats
array.

fhandler.F
Shows a sample Fortran signal handler and demonstrates the xl__sigdump
procedure.

xl__trbk_test.f
Shows how to use the xl__trbk procedure to generate a traceback listing
without stopping the program.

The sample programs are strictly for illustrative purposes only.

Causing exceptions for particular variables
To mark a REAL variable as “do not use”, you can encode a special value called a
signaling NaN in it. This causes an invalid exception condition any time that
variable is used in a calculation.

If you use this technique, use the nans suboption of the -qfloat option and the
-qstrict or -qstrict=nans option, so that the program properly detects all cases
where a signaling NaN is used, and one of the methods already described to
generate corresponding SIGFPE signals.

Minimizing the performance impact of floating-point exception
trapping

If you need to deal with floating-point exception conditions but are concerned that
doing so will make your program too slow, here are some techniques that can help
minimize the performance impact:
v Consider using only a subset of the overflow, underflow, zerodivide, invalid,

and inexact suboptions with the -qflttrap option if you can identify some
conditions that will never happen or you do not care about. In particular,
because an inexact exception occurs for each rounding error, you probably
should not check for it if performance is important.

Chapter 11. Implementation details of XL Fortran floating-point processing 309

310 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Chapter 12. Porting programs to XL Fortran

XL Fortran provides many features intended to make it easier to take programs
that were originally written for other computer systems or compilers and
recompile them with XL Fortran.

Outline of the porting process
To port a typical program, you need to identify the nonportable features, modify
the source files to remove or work around these features, and compile the program
with XL Fortran so you can compare the output with the output from the other
system.

The process for porting a typical program looks like this:
1. Identify any nonportable language extensions or features that you used in the

original program. Check to see if any of them are supported by XL Fortran:
v Language extensions are identified in the XL Fortran Language Reference.
v Some extensions require you to specify an XL Fortran compiler option; you

can find these options listed in the Portability and migration options table in
the XL Fortran Compiler Reference.

2. For any nonportable features that XL Fortran does not support, modify the
source files to remove or work around them.

3. Do the same for any implementation-dependent features. For example, if your
program relies on exact bit-pattern representation of floating-point values or
uses system-specific file names, you may need to change it.

4. Compile the program with XL Fortran. If any compilation problems occur, fix
them and recompile and fix any additional errors until the program compiles
successfully.

5. Run the XL Fortran-compiled program and compare the output with the output
from the other system. If the results are substantially different, there are
probably still some implementation-specific features that need to be changed. If
the results are only marginally different (for example, if XL Fortran produces a
different number of digits of precision or a number differs in the last decimal
place), decide whether the difference is significant enough to investigate
further. You might be able to fix these differences.

Before porting programs to XL Fortran, read the tips in the following sections so
that you know in advance what compatibility features XL Fortran offers.

Portability of directives
XL Fortran supports many directives available with other Fortran products. This
ensures easy portability between products.

If your code contains trigger_constants other than the defaults in XL Fortran, you
can use the -qdirective compiler option to specify them. For instance, if you are
porting CRAY code contained in a file xx.f, you would use the following
command to add the CRAY trigger_constant:

xlf95 xx.f -qdirective=mic\$

© Copyright IBM Corp. 1990, 2015 311

For fixed source form code, in addition to the ! value for the trigger_head portion of
the directive, XL Fortran also supports the trigger_head values C, c, and *.

For more information, see the -qdirective option in the XL Fortran Compiler
Reference.

XL Fortran supports a number of programming terms as synonyms to ease the
effort of porting code from other Fortran products. Those terms that are supported
are dependent on context, as indicated in the following tables:

Table 36. PARALLEL DO Clauses and their XL Fortran synonyms

PARALLEL DO Clause XL Fortran Synonym

LASTLOCAL LASTPRIVATE

LOCAL PRIVATE

MP_SCHEDTYPE
and CHUNK

SCHEDULE

SAVELAST LASTPRIVATE

SHARE SHARED

NEW PRIVATE

Table 37. PARALLEL DO scheduling types and their XL Fortran synonyms

Scheduling Type XL Fortran Synonym

GSS GUIDED

INTERLEAVE STATIC(1)

INTERLEAVED STATIC(1)

INTERLEAVE(n) STATIC(n)

INTERLEAVED(n) STATIC(n)

SIMPLE STATIC

Table 38. PARALLEL SECTIONS clauses and their XL Fortran synonyms

PARALLEL SECTIONS Clause XL Fortran Synonym

LOCAL PRIVATE

SHARE SHARED

NEW PRIVATE

Common industry extensions that XL Fortran supports
XL Fortran allows many of the same FORTRAN 77 extensions as other popular
compilers.

These extensions include:

Extension

Refer to XL Fortran
Language Reference
Section(s)

Typeless constants Typeless literal
constants

312 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Extension

Refer to XL Fortran
Language Reference
Section(s)

*len length specifiers for types Data types

BYTE data type Byte

Long variable names Names

Lower case Names

Mixing integers and logicals (with -qintlog option) Evaluation of
expressions

Character-count Q edit descriptor (with -qqcount option) Q (Character Count)
Editing

Intrinsics for counting set bits in registers and determining
data-object parity

POPCNT, POPPAR

64-bit data types (INTEGER(8), REAL(8), COMPLEX(8), and
LOGICAL(8)), including support for default 64-bit types (with
-qintsize and -qrealsize options)

Integer Real Complex
Logical

Integer POINTERs, similar to those supported by CRAY and Sun
compilers. (XL Fortran integer pointer arithmetic uses increments of
one byte, while the increment on CRAY computers is eight bytes.
You may need to multiply pointer increments and decrements by
eight to make programs ported from CRAY computers work
properly.)

POINTER(integer)

Conditional vector merge (CVMGx) intrinsic functions CVMGx (TSOURCE,
FSOURCE, MASK)

Date and time service and utility functions (rtc, irtc, jdate, clock_,
timef, and date)

Service and utility
procedures

STRUCTURE, UNION, and MAP constructs Structure components,
Union and map

Finding nonstandard extensions

XL Fortran supports a number of extensions to various language standards. Many
of these extensions are so common that you need to keep in mind, when you port
programs to other systems, that not all compilers have them. To find such
extensions in your XL Fortran programs before beginning a porting effort, use the
-qlanglvl option:
$ # -qnoobject stops the compiler after parsing all the source,
$ # giving a fast way to check for errors.
$ # Look for anything above the base F77 standard.
$ xlf -qnoobject -qlanglvl=77std f77prog.f

...
$ # Look for anything above the F90 standard.
$ xlf90 -qnoobject -qlanglvl=90std use_in_2000.f

...
$ # Look for anything above the F95 standard.
$ xlf95 -qnoobject -qlanglvl=95std use_in_2000.f

...

Related reference:

See -langlvl in the Compiler Reference

See -qport in the Compiler Reference

Chapter 12. Porting programs to XL Fortran 313

Mixing data types in statements
The -qctyplss option lets you use character constant expressions in the same
places that you use typeless constants. The -qintlog option lets you use integer
expressions where you can use logicals, and vice versa. A kind type parameter
must not be replaced with a logical constant even if -qintlog is on, nor by a
character constant even if -qctyplss is on, nor can it be a typeless constant.

Date and time routines
Date and time routines, such as dtime, etime, and jdate, are accessible as Fortran
subroutines.

Other libc routines
A number of other popular routines from the libc library, such as flush, getenv,
and system, are also accessible as Fortran subroutines.

Changing the default sizes of data types
For porting from machines with larger or smaller word sizes, the -qintsize option
lets you specify the default size for integers and logicals.The -qrealsize option lets
you specify the default size for reals and complex components.

Name conflicts between your procedures and XL Fortran
intrinsic procedures

If you have procedures with the same names as any XL Fortran intrinsic
procedures, the program calls the intrinsic procedure. This situation is more likely
with the addition of the many new Fortran 90, Fortran 95, Fortran 2003, and
Fortran 2008 intrinsic procedures.

If you still want to call your procedure, add explicit interfaces, EXTERNAL
statements, or PROCEDURE statements for any procedures with conflicting
names, or use the -qextern option when compiling.

Reproducing results from other systems
XL Fortran provides settings through the -qfloat option that help make
floating-point results consistent with those from other IEEE systems; this subject is
discussed in “Duplicating the floating-point results of other systems” on page 303.

314 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Chapter 13. Vector element order toggling

To consistently use the instructions generated by vector intrinsic procedures, users
need to make all existing Vector Multimedia Extension (VMX) and Vector Scalar
Extension (VSX) load and store intrinsic procedures operate on the vectors in
registers in the same vector element order, either little endian or big endian
element order.

Vector element order

The -qaltivec option affects the vector element order only in registers when the
vectors are operated by a specific set of functions. In registers, the vector layout
differs when the computer loads the vector in either big endian element order or
little endian element order.

Big endian element order
Vectors are laid out in vector registers from left to right, so that element 0
is the leftmost element in the register.

Little endian element order
Vectors are laid out in vector registers from right to left, so that element 0
is the rightmost element in the register.

For more information, see “Example: Vector layout in the memory and register” on
page 316.

Rules for vector element order toggling

The vector element order is toggled in registers by following these rules:
v The -qaltivec option does not affect the vector element order in memory, where

the vector elements are always stored in big endian element order.
For example, in memory, the vector initialization is not affected by the -qaltivec
option. The vectors initialized by the EQUIVALENCE statement with the
non-vectors (such as arrays) are always in big endian element order in memory.
When the initialized vector is loaded to registers, the vector element order is
always reversed to little endian element order in registers even when
-qaltivec=be. However, if the vector loading is realized by using the vector
intrinsic procedure, the vector element order is arranged with respect to the
-qaltivec option.

v When -qaltivec=le is in effect, the behaviours of procedures are as follows:
– The VMX and VSX load intrinsic procedures load vectors to registers in little

endian element order.
– The VMX and VSX store intrinsic procedures assume that the vectors to be

stored are in little endian element order in registers.
– The nonload and nonstore intrinsic procedures assume that vectors are loaded

in registers in little endian element order.
v When -qaltivec=be is in effect, these procedures operate on the vectors in an

opposite way of -qaltivec=le. The vectors in registers are in big endian element
order.

© Copyright IBM Corp. 1990, 2015 315

v Regardless of the -qaltivec option, the VEC_XL_BE procedure loads vectors to
registers always in big endian element order and the VEC_XST_BE procedure
assumes that vectors to be stored are always in big endian element order in
registers.

For more information, see “Example: The vector intrinsic procedure affected by the
-qaltivec option” on page 317 and “Example: The vector initialization by using the
EQUIVALENCE statement with arrays” on page 317.

Example: Vector layout in the memory and register

The following example gets the first element of vector va by calling the
VEC_EXTRACT procedure. The procedure returning value is different based on
the -qaltivec option that determines whether VEC_EXTRACT arranges the vector
elements in big endian or little endian element order.
INTEGER(4) FUNCTION get_first_element(va)

VECTOR(INTEGER(4)) va

!vec_extract is affected by the -qaltivec option
get_first_element = VEC_EXTRACT(va, 0)

END FUNCTION

The following tables show the vector layout in the memory and the register.

Table 39. Vector layout in the memory

Vector element
value

E0 E1 E2 E3

v When -qaltivec=be, the vector elements are loaded to registers in big endian
element order and vector layout looks as follows.

Table 40. Vector layout in big endian element order

Vector element
number

0 1 2 3

Vector element
value

E0 E1 E2 E3

The elements of vector va are ordered from the first to last, and stored from the
left of registers. The get_first_element procedure gets the first element E0 from
the left of registers.

v When -qaltivec=le, the vector elements are loaded to registers in little endian
element order and vector layout looks as follows.

Table 41. Vector layout in little endian element order

Vector element
number

3 2 1 0

Vector element
value

E3 E2 E1 E0

The elements of vector va are ordered from the last to first, and also stored from
the left of registers. The get_first_element procedure gets the first element E0
from the right of registers.

316 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Example: The vector intrinsic procedure affected by the
-qaltivec option

The following program example vec_xlw4.f shows that the VEC_XLW4 procedure
loads the vector elements in registers in the order specified by the -qaltivec
option. The VEC_EXTRACT procedure recognizes the element order because it is
affected by the -qaltivec option as well. Therefore, the same output is obtained
with -qaltivec=be and -qaltivec=le.
PROGRAM main

IMPLICIT NONE

VECTOR(INTEGER(4)) a4
INTEGER(4) c4(4)
INTEGER i

c4 = [0, 1, 2, 3]

!VEC_XLW4 is affected by the -qaltivec option
a4 = VEC_XLW4(0, c4)

!VEC_EXTRACT is affected by the -qaltivec option
PRINT *, (VEC_EXTRACT(a4, i), i=0, 3)

END

v Compile the program with -qaltivec=le by running the following command:
xlf95 vec_xlw4.f -qaltivec=le

Ouput:
0 1 2 3

v Compile the program with -qaltivec=be by running the following command:
xlf95 vec_xlw4.f -qaltivec=be

The compilation result is the same as that of ouput generated by using
-qaltivec=le.

Example: The vector initialization by using the EQUIVALENCE
statement with arrays

The following program example vec_equiv.f contains the vectors initialization by
using the EQUIVALENCE statement with arrays. The vector loading is not affected
by the -qaltivec option and the vector is loaded to registers in little endian
element order. The VEC_EXTRACT procedure is affected by the-qaltivec=be
option. Therefore, the program compilation output is difference between
-qaltivec=be and -qaltivec=le .
PROGRAM main

IMPLICIT NONE

VECTOR(INTEGER(4)) a4
INTEGER(4) c4(4)
INTEGER i

EQUIVALENCE(a4, c4)
!In the memory, the vector initialization (by using equivalence)
!is not affected by the -qaltivec option and
!the vector is store in big endian element order.
!The initialized vector is loaded in registers by
!being reveresed to the little endian element order.

c4 = [0, 1, 2, 3]

Chapter 13. Vector element order toggling 317

!vec_extract is affected by the -qaltivec option
PRINT *, (VEC_EXTRACT(a4, i), i=0, 3)

END

v Compile the codes with -qaltivec=le by running the following command:
xlf95 vec_equiv.f -qaltivec=le

Ouput:
0 1 2 3

v Compile the program with -qaltivec=be by running the following command:
xlf95 vec_equiv.f -qaltivec=be

Ouput:
3 2 1 0

The compilation result is different from that of compilation with -qaltivec=le.
Related information:

-qaltivec

EQUIVALENCE

Program migration from big endian systems
When migrating the programs that contain the Vector Multimedia Extension (VMX)
and Vector Scalar Extension (VSX) intrinsic procedures from big endian systems,
you can use -qaltivec=be to minimize program changes, but you need to pay
attention in specific cases.

The following table shows what users need to pay attention when migrating codes
from big endian systems by using -qaltivec=be.

Table 42. Attention when -qaltivec=be

Case Attention

If the existing program contains
only VMX load and store
intrinsic procedures

Using -qaltivec=be may affect the program
performance; using -qaltivec=le may affect the
performance in different ways.

If the existing program contains
only VSX load and store intrinsic
procedures

In the existing programs, you can use the VEC_XL and
VEC_XST procedures to replace the VSX load and store
intrinsic procedures to maximally simplify the code
changes.

If the existing program contains
both VMX and VSX load and
store intrinsic procedures

You need to pay attention to the differences of the
element order of vectors that are operated by the VMX
and VSX intrinsic procedures in little endian systems.

If the existing program contains
the vector initialization by using
the EQUIVALENCE statement
with arrays

You need to use the VEC_LD or VEC_XL procedure to
load the vectors explicitly, instead of using the
EQUIVALENCE with arrays, or you can reverse the
element order of the array used for vector initialization.

Related information:

-qaltivec

Vector intrinsic procedures (IBM extension)

318 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Chapter 14. Sample Fortran programs

The programs in the topics referenced here are provided as coding examples for
XL Fortran.

A number of these samples illustrate various aspects of SMP programming that
may be new to many users. If you are new to SMP programming, you should
examine these samples to gain a better understanding of the SMP coding style.

You can compile and execute the first program to verify that the compiler is
installed correctly and your user ID is set up to execute Fortran programs.

Example 1 - XL Fortran source file
This is an example of an XL Fortran source file

PROGRAM CALCULATE
!
! Program to calculate the sum of up to n values of x**3
! where negative values are ignored.
!

IMPLICIT NONE
INTEGER I,N
REAL SUM,X,Y
READ(*,*) N
WRITE(*,*) N
SUM=0
DO I=1,N

READ(*,*) X
WRITE(*,*) X
IF (X.GE.0.0) THEN

Y=X**3
SUM=SUM+Y

END IF
END DO
WRITE(*,*) ’This is the sum of the positive cubes:’,SUM
END

Execution results

Running the program yields the following results:
$ a.out
5
37
22
-4
19
6
This is the sum of the positive cubes: 68376.00000

Example 2 - valid C routine source file
This is an example of a valid C routine source file used to execute Fortran test
subroutines.
/*
* **
* This is a main function that creates threads to execute the Fortran
* test subroutines.

© Copyright IBM Corp. 1990, 2015 319

* **
*/
#include <pthread.h>
#include <stdio.h>
#include <errno.h>

extern char *optarg;
extern int optind;

static char *prog_name;

#define MAX_NUM_THREADS 100

void *f_mt_exec(void *);
void f_pre_mt_exec(void);
void f_post_mt_exec(int *);

void
usage(void)
{

fprintf(stderr, "Usage: %s -t number_of_threads.\n", prog_name);
exit(-1);

}

main(int argc, char *argv[])
{

int i, c, rc;
int num_of_threads, n[MAX_NUM_THREADS];
char *num_of_threads_p;
pthread_attr_t attr;
pthread_t tid[MAX_NUM_THREADS];

prog_name = argv[0];
while ((c = getopt(argc, argv, "t")) != EOF)
{

switch (c)
{
case ’t’:

break;

default:
usage();
break;

}
}

argc -= optind;
argv += optind;
if (argc < 1)
{

usage();
}

num_of_threads_p = argv[0];
if ((num_of_threads = atoi(num_of_threads_p)) == 0)
{

fprintf(stderr,
"%s: Invalid number of threads to be created <\n", prog_name,

num_of_threads_p);
exit(1);

}
else if (num_of_threads > MAX_NUM_THREADS)
{

fprintf(stderr,
"%s: Cannot create more than 100 threads.\n", prog_name);

exit(1);
}

320 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

/* **
* Execute the Fortran subroutine that prepares for multithreaded
* execution.
* **
*/

f_pre_mt_exec();

for (i = 0; i < num_of_threads; i++)
{

n[i] = i;
rc = pthread_create(&tid[i], &attr, f_mt_exec, (void *)&n[i]);
if (rc != 0)
{

fprintf(stderr, "Failed to create thread %d.\n", i);

exit(1);
}

}
/* The attribute is no longer needed after threads are created. */
pthread_attr_destroy(&attr);

for (i = 0; i < num_of_threads; i++)
{

rc = pthread_join(tid[i], NULL);
if (rc != 0)
{

fprintf(stderr, "Failed to join thread %d. \n", i);

}
}
/*
* Execute the Fortran subroutine that does the check after
* multithreaded execution.
*/

f_post_mt_exec(&num_of_threads);

exit(0);
}

! ***
! This test case tests the writing list-directed to a single external
! file by many threads.
! ***

subroutine f_pre_mt_exec()
integer array(1000)
common /x/ array

do i = 1, 1000
array(i) = i

end do

open(10, file="fun10.out", form="formatted", status="replace")
end

subroutine f_post_mt_exec(number_of_threads)
integer array(1000), array1(1000)
common /x/ array

close(10)
open(10, file="fun10.out", form="formatted")
do j = 1, number_of_threads

read(10, *) array1

do i = 1, 1000

Chapter 14. Sample Fortran programs 321

if (array1(i) /= array(i)) then
print *, "Result is wrong."
stop

endif
end do

end do
close(10, status="delete")
print *, "Normal ending."
end

subroutine f_mt_exec(thread_number)
integer thread_number
integer array(1000)
common /x/ array

write(10, *) array
end

Example 3 - valid Fortran SMP source file
This is an example of a valid Fortran SMP source file used to calculate the value of
pi.
!***
!* This example uses a PARALLEL construct and a DO construct *
!* to calculate the value of pi. *
!***

program compute_pi
integer n, i
real*8 w, x, pi, f, a
f(a) = 4.d0 /(1.d0 + a*a) !! function to integrate

pi = 0.0d0
!$OMP PARALLEL private(x, w, n), shared(pi)

n = 10000 !! number of intervals
w = 1.0d0/n !! calculate the interval size

!$OMP DO reduction(+: pi)
do i = 1, n

x = w * (i - 0.5d0)
pi = pi + f(x)

enddo
!$OMP END DO
!$OMP END PARALLEL

print *, "Computed pi = ", pi
end

Example 4 - invalid Fortran SMP source file
This is an example of an invalid Fortran SMP source file.
!***
!* In this example, fort_sub is invoked by multiple threads. *
!* *
!* This example is not valid because *
!* fort_sub and another_sub both declare /block/ to be *
!* THREADPRIVATE. They intend to share the common block, but *
!* they are executed via different threads. *
!* *
!* To "fix" this problem, one of the following approaches can *
!* be taken: *
!* (1) The code for another_sub should be brought into the loop.*
!* (2) "j" should be passed as an argument to another_sub, and *
!* the declaration for /block/ should be removed from *
!* another_sub. *
!* (3) The loop should be marked as "do not parallelize" by *
!* using the directive "!$OMP PARALLEL DO IF(.FALSE.)". *

322 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

!***

subroutine fort_sub()

common /block/ j
integer :: j
!$OMP THREADPRIVATE(/block/) ! Each thread executing fort_sub

! obtains its own copy of /block/.
integer a(10)

...
!$OMP PARALLEL DO
do index = 1,10
call another_sub(a(i))

enddo
...

end subroutine fort_sub

subroutine another_sub(aa) ! Multiple threads are used to
integer aa ! execute another_sub.
common /block/ j ! Each thread obtains a new copy
integer :: j ! of the common block /block/.
!$OMP THREADPRIVATE(/block/)

aa = j ! The value of "j" is undefined.
end subroutine another_sub

Programming examples using the Pthreads library module
These examples demonstrate the use of the Pthreads library module.
!**
!* Example 5 : Create a thread with Round_Robin scheduling policy.*
!* For simplicity, we do not show any codes for error checking, *
!* which would be necessary in a real program. *
!**

use, intrinsic::f_pthread
integer(4) ret_val
type(f_pthread_attr_t) attr
type(f_pthread_t) thr

ret_val = f_pthread_attr_init(attr)
ret_val = f_pthread_attr_setschedpolicy(attr, SCHED_RR)
ret_val = f_pthread_attr_setinheritsched(attr, PTHREAD_EXPLICIT_SCHED)
ret_val = f_pthread_create(thr, attr, FLAG_DEFAULT, ent, integer_arg)
ret_val = f_pthread_attr_destroy(attr)
......

Before you can manipulate a pthread attribute object, you need to create and
initialize it. The appropriate interfaces must be called to manipulate the attribute
objects. A call to f_pthread_attr_setschedpolicy sets the scheduling policy attribute
to Round_Robin. Note that this does not affect newly created threads that inherit
the scheduling property from the creating thread. For these threads, we explicitly
call f_pthread_attr_setinheritsched to override the default inheritance attribute.
The rest of the code is self-explanatory.
!***
!* Example 6 : Thread safety *
!* In this example, we show that thread safety can be achieved *
!* by using the push-pop cleanup stack for each thread. We *
!* assume that the thread is in deferred cancellability-enabled *
!* state. This means that any thread-cancel requests will be *
!* put on hold until a cancellation point is encountered. *
!* Note that f_pthread_cond_wait provides a *
!* cancellation point. *

Chapter 14. Sample Fortran programs 323

!***
use, intrinsic::f_pthread
integer(4) ret_val
type(f_pthread_mutex_t) mutex
type(f_pthread_cond_t) cond
pointer(p, byte)
! Initialize mutex and condition variables before using them.
! For global variables this should be done in a module, so that they
! can be used by all threads. If they are local, other threads
! will not see them. Furthermore, they must be managed carefully
! (for example, destroy them before returning, to avoid dangling and
! undefined objects).
mutex = PTHREAD_MUTEX_INITIALIZER
cond = PTHREAD_COND_INITIALIZER

......
! Doing something

......

! This thread needs to allocate some memory area used to
! synchronize with other threads. However, when it waits on a
! condition variable, this thread may be canceled by another
! thread. The allocated memory may be lost if no measures are
! taken in advance. This will cause memory leakage.

ret_val = f_pthread_mutex_lock(mutex)
p = malloc(%val(4096))

! Check condition. If it is not true, wait for it.
! This should be a loop.

! Since memory has been allocated, cleanup must be registered
! for safety during condition waiting.

ret_val = f_pthread_cleanup_push(mycleanup, FLAG_DEFAULT, p)
ret_val = f_pthread_cond_wait(cond, mutex)

! If this thread returns from condition waiting, the cleanup
! should be de-registered.

call f_pthread_cleanup_pop(0) ! not execute
ret_val = f_pthread_mutex_unlock(mutex)

! This thread will take care of p for the rest of its life.
......

! mycleanup looks like:

subroutine mycleanup(passed_in)
pointer(passed_in, byte)
external free

call free(%val(passed_in))
end subroutine mycleanup

324 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM XL Fortran for Linux.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1990, 2015 325

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

326 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2015.

This software and documentation are based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California. We acknowledge the following institution for its role in this product's
development: the Electrical Engineering and Computer Sciences Department at the
Berkeley campus.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

Notices 327

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

328 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Index

Special characters
_OPENMP C preprocessor macro 79
-O0 3
-O2 3
-O3 5

trade-offs 6
-O4 7

trade-offs 7
-O5 8

trade-offs 8
-qarch 35
-qcache 7, 37
-qcompact

code size 49
-qfloat compiler option 303

hssngl suboption 303
nans suboption 309
nomaf suboption 303
rsqrt suboption 303

-qflttrap compiler option 304
-qfunctrace 29
-qfunctrace_xlf_enter 29
-qfunctrace_xlf_exit 29
-qfuntrace_xlf_catch 29
-qinline inlining

code size 48
-qipa 7

IPA process 7
-qlistfmt 27
-qnofunctrace 29
-qpdf1, -qpdf2 15
-qposition 282
-qsigtrap 305
-qstrict 6
-qtune 36
/tmp directory 285
* length specifiers (FORTRAN 77

extension) 312
%REF functions 265
%VAL functions 265

Numerics
64-bit data types (FORTRAN 77

extension) 312

A
advanced optimization 4
aliasing 43
arguments

passing between languages 260, 261
passing by reference or by value 265

array initialization
code size 48

arrays
passing between languages 264

assembler
low-level linkage conventions 268

ATOMIC 102

B
BARRIER 108
basic example, described xii
basic optimization 2
bitwise-identical floating-point

results 303
block

cyclic scheduling 176
blocked special files, interaction of XL

Fortran I/O with 283
buffers, flushing 284
BYTE data type (FORTRAN 77

extension) 312

C
C language and interlanguage calls 257,

260
C++ and Fortran in same program 259
calling by reference or value 265
calling non-Fortran procedures 257
CASE construct

code size 49
character data, passing between

languages 263
character special files, interaction of XL

Fortran I/O with 283
character-count edit descriptor

(FORTRAN 77 extension) 312
check_fpscr.f sample file 309
chunk

SCHEDULE directive and 130
code size 47

-qcompact 49
-qinline inlining 48
array initialization 48
blocking 47
CASE constructs 49
computed GOTOs 49
dynamic linking 50
high activity areas 49
page faults 49
static linking 50
steps for reduction 48

common blocks
in data scope attribute clauses 155

compiler-friendly techniques 57
Compiler-friendly techniques

aliasing 57
arrays 58
choosing appropriate variable

sizes 58
compiler invocations 57
floating-point precision 58
PERMUTATION 58
pointers 57
SUBMODULE 59
submodules 59
variables 57
WHERE constructs 58

computed GOTO
code size 49

conditional vector merge intrinsic
functions (FORTRAN 77
extension) 312

control and status register for floating
point 307

controlling optimization
transformations 40

COPYIN clause 158
core file 305, 306
CRAY functions (FORTRAN 77 extension)

conditional vector merge
intrinsics 312

date and time service and utility
functions 312

CRAY pointer (FORTRAN 77 extension),
XL Fortran equivalent 312

CRITICAL 109
CVMGx intrinsic functions (FORTRAN 77

extension) 312

D
data scope attribute clauses

COPYIN clause 158
discussion 155

data scoping rules 153
data sharing attribute rules 153
data types in Fortran, C 261
date and time functions (FORTRAN 77

extension) 312
debugging 53
delays runtime option 83
deprecated SMP directive 101
directive clauses, global rules 155
directives 101

DO SERIAL 114
END MASTER 117
END ORDERED 119
END PARALLEL 121
END PARALLEL DO 123
END PARALLEL SECTIONS 127
END PARALLEL WORKSHARE 130
END SECTIONS 133
FLUSH 115
MASTER 117
ORDERED 119
PARALLEL 121
PARALLEL DO 123
PARALLEL SECTIONS 127
PARALLEL WORKSHARE 130
SCHEDULE 130
SECTIONS 133
SINGLE / END SINGLE 137
THREADLOCAL 143
THREADPRIVATE 145
WORKSHARE 151

Directives
ATOMIC 102
BARRIER 108

© Copyright IBM Corp. 1990, 2015 329

Directives (continued)
CRITICAL 109
DO (worksharing) 111
END CRITICAL 109
END DO (worksharing) 111

DO (worksharing) 111
DO SERIAL compiler directive 114
double-precision values 296, 298
dynamic linking

code size 50

E
enable suboption of -qflttrap 306
enabling MASS 10
enabling VMX or VSX 10
END CRITICAL 109
END DO (worksharing) 111
END MASTER compiler directive 117
END ORDERED compiler directive 119
END PARALLEL compiler directive 121
END PARALLEL DO compiler

directive 123
END PARALLEL SECTIONS compiler

directive 127
END PARALLEL WORKSHARE compiler

directive 130
END SECTIONS compiler directive 133
environment variables

OpenMP
OMP_DISPLAY_ENV 85
OMP_DYNAMIC 87
OMP_NESTED 89
OMP_NUM_THREADS 89
OMP_PLACES 91
OMP_PROC_BIND 92
OMP_SCHEDULE 96
OMP_STACKSIZE 97
OMP_THREAD_LIMIT 98
OMP_WAIT_POLICY 99

runtime
XLSMPOPTS 80

exception handling 297
for floating point 304
installing an exception handler 305

execution environment routines
OpenMP 180

explicit interfaces 266
extended-precision values 299
extensions to FORTRAN 77, list of

common ones 312

F
f_maketime function 209
f_pthread 206
f_pthread_attr_destroy function 209
f_pthread_attr_getdetachstate

function 210
f_pthread_attr_getguardsize

function 210
f_pthread_attr_getinheritsched

function 211
f_pthread_attr_getschedparam

function 212

f_pthread_attr_getschedpolicy
function 212

f_pthread_attr_getscope function 213
f_pthread_attr_getstack function 213
f_pthread_attr_init function 214
f_pthread_attr_setdetachstate

function 214
f_pthread_attr_setguardsize 215
f_pthread_attr_setinheritsched

function 216
f_pthread_attr_setschedparam

function 216
f_pthread_attr_setschedpolicy

function 217
f_pthread_attr_setscope function 218
f_pthread_attr_setstack function 218
f_pthread_attr_t function 219
f_pthread_cancel function 219
f_pthread_cleanup_pop function 220
f_pthread_cleanup_push function 220
f_pthread_cond_broadcast function 222
f_pthread_cond_destroy function 222
f_pthread_cond_init function 223
f_pthread_cond_signal function 223
f_pthread_cond_t function 224
f_pthread_cond_timedwait function 224
f_pthread_cond_wait function 225
f_pthread_condattr_destroy function 225
f_pthread_condattr_getpshared

function 226
f_pthread_condattr_init function 226
f_pthread_condattr_setpshared

function 227
f_pthread_condattr_t function 228
f_pthread_create function 228
f_pthread_detach function 229
f_pthread_equal function 230
f_pthread_exit function 230
f_pthread_getconcurrency function 231
f_pthread_getschedparam function 232
f_pthread_getspecific function 232
f_pthread_join function 233
f_pthread_key_create function 234
f_pthread_key_delete function 234
f_pthread_key_t 235
f_pthread_kill function 235
f_pthread_mutex_destroy function 236
f_pthread_mutex_init function 236
f_pthread_mutex_lock function 237
f_pthread_mutex_t 237
f_pthread_mutex_trylock function 238
f_pthread_mutex_unlock function 238
f_pthread_mutexattr_destroy

function 239
f_pthread_mutexattr_getpshared

function 239
f_pthread_mutexattr_gettype

function 240
f_pthread_mutexattr_init function 241
f_pthread_mutexattr_setpshared

function 241
f_pthread_mutexattr_settype

function 242
f_pthread_mutexattr_t 243
f_pthread_once function 243
f_pthread_once_t 244
f_pthread_rwlock_destroy function 244

f_pthread_rwlock_init function 244
f_pthread_rwlock_rdlock function 245
f_pthread_rwlock_t function 246
f_pthread_rwlock_tryrdlock

function 246
f_pthread_rwlock_trywrlock

function 246
f_pthread_rwlock_unlock function 247
f_pthread_rwlock_wrlock function 247
f_pthread_rwlockattr_destroy

function 248
f_pthread_rwlockattr_getpshared

function 248
f_pthread_rwlockattr_init function 249
f_pthread_rwlockattr_setpshared

function 250
f_pthread_rwlockattr_t function 251
f_pthread_self function 251
f_pthread_setcancelstate function 251
f_pthread_setcanceltype function 252
f_pthread_setconcurrency function 253
f_pthread_setschedparam function 253
f_pthread_setspecific function 254
f_pthread_t function 255
f_pthread_testcancel function 255
f_sched_param function 255
f_sched_yield function 256
f_timespec function 256
fhandler.F sample file 309
file positioning 282
files

I/O formats 279
names 280
permissions 283

floating-point
exceptions 304
processing 295

optimizing 303
floating-point optimization 38
floating-point status and control

register 307
FLTTRAP @PROCESS directive 304
flttrap_handler.c and flttrap_test.f sample

files 309
FLUSH compiler directive 115
flushing I/O buffers 284
formats, file 279
fort.* default file names 281, 285
FORTRAN 77 extensions, list of common

ones 312
fpdt.h and fpdc.h include files 300
fpgets and fpsets service and utility

subroutines 307
fpscr register 307
fpstat array 307
functions

linkage convention for calls 275
return values 267

FUNCTRACE_XLF_CATCH 29
FUNCTRACE_XLF_ENTER 29
FUNCTRACE_XLF_EXIT 29

G
get_round_mode procedure 300
GETENV intrinsic procedure 280

330 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

H
high-order transformation 9
HOT 9

I
IEEE arithmetic 295
implicitly connected files 281
include files fpdt.h and fpdc.h 300
infinity values 296
initial file position 282
Inlining 44
input/output 295

redirection 282
XL Fortran implementation

details 279
integer POINTER (FORTRAN 77

extension) 312
interlanguage calls 257, 265

arrays 264
C++ 259
character types 263
corresponding data types 261
input and output 258
low-level linkage conventions 268
pointers 265

IPA 11
levels 14
suboptions 14
with C and C++ 15

L
libmass library 64
libmassv library 66
library

MASS 63
scalar 64
vector 66

links, interaction of XL Fortran I/O
with 283

lock routines
OpenMP 180

long variable names (FORTRAN 77
extension) 312

long vectorization 10
loop optimization 9
lower case (FORTRAN 77 extension) 312

M
macro, _OPENMP C preprocessor 79
main, restriction on use as a Fortran

name 257
MASS libraries 63

scalar functions 64
vector functions 66

MASTER compiler directive 117
mergepdf 15
migrating from other systems 311
minus infinity, representation of 296
mixing integers and logicals (FORTRAN

77 extension) 312
module procedures, external names

corresponding to 257

N
naming conventions for external

names 257
NaN values and infinities 296
negative infinity, representation of 296
NOFUNCTRACE 29
null-terminated strings, passing to C

functions 263

O
omp_destory_nest_lock OpenMP nestable

lock routine 182
omp_destroy_lock OpenMP lock

routine 181
OMP_DISPLAY_ENV environment

variable 85
OMP_DYNAMIC environment

variable 87
omp_get_active_level OpenMP

function 182
omp_get_ancestor_thread_num OpenMP

function 183
omp_get_dynamic execution environment

routine 183
omp_get_level OpenMP function 183
omp_get_max_active_levels OpenMP

function 184
omp_get_max_threads execution

environment routine 184
omp_get_nested execution environment

routine 185
omp_get_num_places execution

environment routine 185
omp_get_num_procs execution

environment routine 186
omp_get_num_threads execution

environment routine 186
omp_get_partition_num_places execution

environment routine 187
omp_get_partition_place_nums execution

environment routine 188
omp_get_place_num execution

environment routine 188
omp_get_place_num_procs execution

environment routine 189
omp_get_place_proc_ids execution

environment routine 189
omp_get_schedule OpenMP schedule

routine 190
omp_get_team_size OpenMP

function 191
omp_get_thread_limit OpenMP

function 192
omp_get_thread_num execution

environment routine 192
omp_get_wtick OpenMP timing

routine 193
omp_get_wtime OpenMP timing

routine 194
omp_in_final execution environment

routine 194
omp_in_parallel execution environment

routine 195
omp_init_lock lock routine 196

omp_init_nest_lock OpenMP nestable
lock routine 196

OMP_NESTED environment variable 89
OMP_NUM_THREADS environment

variable 89
OMP_PLACES environment variable 91
OMP_PROC_BIND environment

variable 92
OMP_SCHEDULE environment

variable 96
omp_set_dynamic execution environment

routine 197
omp_set_lock lock routine 198
omp_set_max_active_levels

subroutine 199
omp_set_nest_lock nestable lock

routine 200
omp_set_nested execution environment

routine 199
omp_set_num_threads execution

environment routine 201
omp_set_schedule routine 202
OMP_STACKSIZE environment

variable 97
omp_test_lock lock routine 203
omp_test_nest_lock lock routine 203
OMP_THREAD_LIMIT environment

variable 98
omp_unset_lock lock routine 204
omp_unset_nest_lock lock routine 205
OMP_WAIT_POLICY environment

variable 99
OpenMP

execution environment routines
description 180
omp_get_dynamic 183
omp_get_max_threads 184
omp_get_nested 185
omp_get_num_places 185
omp_get_num_procs 186
omp_get_num_threads 186
omp_get_partition_num_places 187
omp_get_partition_place_nums 188
omp_get_place_num 188
omp_get_place_num_procs 189
omp_get_place_proc_ids 189
omp_get_thread_num 192
omp_in_final 194
omp_in_parallel 195
omp_set_dynamic 197
omp_set_nested 199
omp_set_num_threads 201

function
omp_get_level 183
omp_get_max_active_levels 184
omp_get_thread_limit 192

get active level function
omp_get_active_level 182

get ancestor thread number function
omp_get_ancestor_thread_num 183

get team size function
omp_get_team_size 191

lock routines
description 180
omp_destroy_lock 181
omp_init_lock 196
omp_set_lock 198

Index 331

OpenMP (continued)
lock routines (continued)

omp_test_lock 203
omp_test_nest_lock 203
omp_unset_lock 204
omp_unset_nest_lock 205

nestable lock routines
omp_destroy_nest_lock 182
omp_init_nest_lock 196
omp_set_nest_lock 200

schedule routines
omp_get_schedule 190
omp_set_schedule 202

subroutines
omp_set_max_active_levels 199

timing routines
omp_get_wtick 193
omp_get_wtime 194

OpenMP environment variables 85, 87,
97, 99

optimization
-O0 3
-O2 3
-O3 5
-O4 7
-O5 8
advanced 4
and tuning 35
basic 2
debugging 53
floating-point 38, 40
for floating-point arithmetic 303
loops 38, 40
math functions 63
options to avoid 42

optimization and tuning
optimizing 1
tuning 1

optimization trade-offs
-O3 6
-O4 7
-O5 8

optimization, diagnostics 27, 29
optimizing

applications 1
techniques 8

option driven tuning 37
OPTIONAL attribute 268
options for targeting your

architecture 35
ORDERED compiler directive 119

P
PARALLEL compiler directive

discussion 121
PARALLEL DO compiler directive

discussion 123
SCHEDULE clause 123

PARALLEL SECTIONS compiler directive
discussion 127

PARALLEL WORKSHARE compiler
directive

discussion 130
parthreshold runtime option 84
Pascal language and interlanguage

calls 257

performance analysis 41
performance of floating-point

arithmetic 303
performance tuning options 83
permissions of files 283
pipes, interaction of XL Fortran I/O

with 283
plus infinity, representation of 296
pointers (integer POINTER) (FORTRAN

77 extension) 312
portability 311
porting to XL Fortran 311
POSITION @PROCESS directive 282
position of a file after an OPEN

statement 282
positive infinity, representation of 296
postmortem.f sample file 309
preconnected files 281
PROC_BIND clause 171
procedures 29
profile-directed feedback (PDF) 15
profilefreq runtime option 84
profiling 15
providing your application

characteristics 38
pseudo-devices, interaction of XL Fortran

I/O with 283
Pthreads library module 323
Pthreads Library Module

descriptions of functions in 206
f_maketime function 209
f_pthread_attr_destroy function 209
f_pthread_attr_getdetachstate

function 210
f_pthread_attr_getguardsize

function 210
f_pthread_attr_getinheritsched

function 211
f_pthread_attr_getschedparam

function 212
f_pthread_attr_getschedpolicy

function 212
f_pthread_attr_getscope function 213
f_pthread_attr_getstack 213
f_pthread_attr_init function 214
f_pthread_attr_setdetachstate

function 214
f_pthread_attr_setguardsize

function 215
f_pthread_attr_setinheritsched

function 216
f_pthread_attr_setschedparam

function 216
f_pthread_attr_setschedpolicy

function 217
f_pthread_attr_setscope function 218
f_pthread_attr_setstack function 218
f_pthread_attr_t function 219
f_pthread_cancel function 219
f_pthread_cleanup_pop function 220
f_pthread_cleanup_push

function 220
f_pthread_cond_broadcast

function 222
f_pthread_cond_destroy function 222
f_pthread_cond_init function 223
f_pthread_cond_signal function 223

Pthreads Library Module (continued)
f_pthread_cond_t function 224
f_pthread_cond_timedwait

function 224
f_pthread_cond_wait function 225
f_pthread_condattr_destroy

function 225
f_pthread_condattr_getpshared

function 226
f_pthread_condattr_init function 226
f_pthread_condattr_setpshared

function 227
f_pthread_condattr_t function 228
f_pthread_create function 228
f_pthread_detach function 229
f_pthread_equal function 230
f_pthread_exit function 230
f_pthread_getconcurrency

function 231
f_pthread_getschedparam

function 232
f_pthread_getspecific function 232
f_pthread_join function 233
f_pthread_key_create function 234
f_pthread_key_delete function 234
f_pthread_key_t 235
f_pthread_kill function 235
f_pthread_mutex_destroy

function 236
f_pthread_mutex_init function 236
f_pthread_mutex_lock function 237
f_pthread_mutex_t 237
f_pthread_mutex_trylock

function 238
f_pthread_mutex_unlock

function 238
f_pthread_mutexattr_destroy

function 239
f_pthread_mutexattr_getpshared

function 239
f_pthread_mutexattr_gettype

function 240
f_pthread_mutexattr_init

function 241
f_pthread_mutexattr_setpshared

function 241
f_pthread_mutexattr_settype

function 242
f_pthread_mutexattr_t 243
f_pthread_once function 243
f_pthread_once_t 244
f_pthread_rwlock_destroy

function 244
f_pthread_rwlock_init function 244
f_pthread_rwlock_rdlock

function 245
f_pthread_rwlock_t function 246
f_pthread_rwlock_tryrdlock

function 246
f_pthread_rwlock_trywrlock

function 246
f_pthread_rwlock_unlock

function 247
f_pthread_rwlock_wrlock

function 247
f_pthread_rwlockattr_destroy

function 248

332 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

Pthreads Library Module (continued)
f_pthread_rwlockattr_getpshared

function 248
f_pthread_rwlockattr_init

function 249
f_pthread_rwlockattr_setpshared

function 250
f_pthread_rwlockattr_t function 251
f_pthread_self function 251
f_pthread_setcancelstate function 251
f_pthread_setcanceltype function 252
f_pthread_setchedparam

function 253
f_pthread_setconcurrency

function 253
f_pthread_setspecific function 254
f_pthread_t function 255
f_pthread_testcancel function 255
f_sched_param function 255
f_sched_yield function 256
f_timespec function 256

Pthreads Library, Linux 206

Q
Q (character-count) edit descriptor

(FORTRAN 77 extension) 312
quiet NaN 296

R
real arithmetic 295
REAL(16) values 299
REAL(4) and REAL(8) values 296, 298
record lengths 283
redirecting input/output 282
reference, passing arguments by 265
rounding 300

rounding errors 302
rounding mode 300, 302

S
sample programs 319

calling C functions from Fortran 261
floating-point exception

handling 309
SMP 319

scalar MASS library 64
SCHEDULE clause, of PARALLEL DO

directive 123
SCHEDULE compiler directive 130

discussion 130
schedule runtime option 80
scheduling, block cyclic 176
scope

data scope attribute clauses 155
scratch file directory 285
scratch_vars runtime option 285
SECTIONS compiler directive 133
seqthreshold runtime option 84
short vectorization 10
showpdf 15
SIGFPE signal 304, 305
signal handling

floating point 304

signal handling (continued)
installing an exception handler 305

signaling NaN 296, 309
SIGTRAP signal 304, 305
SINGLE / END SINGLE compiler

directive 137
single-precision values 296, 298
SMP

sample programs 319
SMP applications

developing and running 99
special files, interaction of XL Fortran I/O

with 283
spins runtime option 83
stack 270
stack runtime option 82
standard error, input, and output

streams 281
star length specifiers 312
static linking

code size 50
status and control register for floating

point 307
stderr, stdin, and stdout streams 281
strings, passing to C functions 263
subprograms in other languages,

calling 257, 260
Sun pointer (FORTRAN 77 extension), XL

Fortran equivalent 312
symbolic links, interaction of XL Fortran

I/O with 283
system Pthreads Library 206

T
tctl command 283
thread visible variables 115
thread-safing

Pthreads Library Module 206
THREADLOCAL compiler directive 143
THREADPRIVATE compiler

directive 145
time and date functions (FORTRAN 77

extension) 312
toggling the vector element order

migrating codes from big endian
systems 318

Trace/BPT trap 305
traceback listing 305
tracing 29
tuning 35

-qarch 35
-qcache 37
-qtune 36
controlling optimization

transformations 40
option driven tuning 37
options to avoid 42
performance analysis 41
providing your application

characteristics 38
typeless constants (FORTRAN 77

extension) 312

U
unit_vars runtime option 285
usrthds runtime option 82

V
VALUE attribute 265
value, passing arguments by 265
vector element order 315
vector element order toggling 315
vector MASS library 66
vectorization

long 10
short 10

W
work-sharing constructs

SECTIONS / END SECTIONS
compiler directives 133

SINGLE / END SINGLE compiler
directives 137

WORKSHARE compiler directive 151

X
xl__ieee.F and xl__ieee.c sample

files 309
xl__sigdump exception handler 305
xl__trbk exception handler 305
xl__trbk_test.f sample file 309
xl__trce exception handler 305
xl__trcedump exception handler 305
XLFSCRATCH_unit environment

variable 285
XLFUNIT_unit environment

variable 285
XLSMPOPTS environment variable 80
XML report schema 29

Y
yields runtime option 83

Index 333

334 XL Fortran: Optimization and Programming Guide for Little Endian Distributions

IBM®

Product Number: 5765-J10; 5725-C75

Printed in USA

SC27-6600-02

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions
	Related information
	IBM XL Fortran information
	Standards and specifications
	Other IBM information

	Technical support
	How to send your comments

	Chapter 1. Optimizing your applications
	Distinguishing between optimization and tuning
	Steps in the optimization process
	Basic optimization
	Optimizing at level 0
	Optimizing at level 2

	Advanced optimization
	Optimizing at level 3
	An intermediate step: adding -qhot suboptions at level 3
	Optimizing at level 4
	The IPA process

	Optimizing at level 5

	Specialized optimization techniques
	High-order transformation (HOT)
	HOT short vectorization
	HOT long vectorization
	HOT array size adjustment
	HOT fast scalar math routines

	Interprocedural analysis (IPA)
	Using IPA on the compile step only
	IPA Levels and other IPA suboptions
	Using IPA across the XL compiler family

	Profile-directed feedback
	Viewing profiling information with showpdf
	Object level profile-directed feedback

	Vector technology
	Vector technology information
	Explicitly calling vector libraries for vectorization
	Auto-vectorization limitations

	Using compiler reports to diagnose optimization opportunities
	Parsing compiler reports with development tools

	Tracing procedures in your code
	Getting more performance
	Beyond performance: effective programming techniques

	Chapter 2. Tuning XL compiler applications
	Tuning for your target architecture
	Using -qarch
	Using -qtune
	Using -qcache
	Before you finish tuning

	Further option driven tuning
	Options for providing application characteristics
	Options to control optimization transformations
	Options to assist with performance analysis
	Options that can inhibit performance

	Chapter 3. Advanced optimization concepts
	Aliasing
	Inlining
	Finding the right level of inlining

	Chapter 4. Managing code size
	Steps for reducing code size
	Compiler option influences on code size
	The -qipa compiler option
	The -qinline inlining option
	The -qhot compiler option
	The -qcompact compiler option

	Other influences on code size
	High activity areas
	Computed GOTOs and CASE constructs
	Code size with dynamic or static linking

	Chapter 5. Debugging optimized code
	Understanding different results in optimized programs
	Debugging in the presence of optimization

	Chapter 6. Compiler-friendly programming techniques
	General practices
	Variables and pointers
	Arrays
	Choosing appropriate variable sizes
	Submodules (Fortran 2008)

	Chapter 7. High performance libraries
	Using the Mathematical Acceleration Subsystem (MASS) libraries
	Using the scalar library
	Using the vector libraries
	Using the SIMD libraries
	Compiling and linking a program with MASS
	Using libmass.a with the math system library

	Using the Basic Linear Algebra Subprograms – BLAS
	BLAS function syntax
	Linking the libxlopt library

	Chapter 8. Parallel programming with XL Fortran
	Compiling your parallelized code
	The _OPENMP C preprocessor macro and conditional compilation

	Setting runtime options
	XLSMPOPTS
	Environment variables for OpenMP
	OMP_DISPLAY_ENV
	OMP_DYNAMIC
	OMP_MAX_ACTIVE_LEVELS
	OMP_NESTED
	OMP_NUM_THREADS
	OMP_PLACES
	OMP_PROC_BIND
	OMP_SCHEDULE
	OMP_STACKSIZE
	OMP_THREAD_LIMIT
	OMP_WAIT_POLICY

	Optimizing your SMP code
	Developing and running SMP applications

	An introduction to parallelization directives
	Parallel region construct
	Work-sharing constructs
	Combined parallel work-sharing constructs
	Synchronization constructs
	Other OpenMP directives
	Non-OpenMP SMP directives
	Deprecated directive

	Detailed descriptions of parallelization directives
	ATOMIC
	BARRIER
	CRITICAL / END CRITICAL
	DO / END DO
	DO SERIAL
	FLUSH
	MASTER / END MASTER
	ORDERED / END ORDERED
	PARALLEL / END PARALLEL
	PARALLEL DO / END PARALLEL DO
	PARALLEL SECTIONS / END PARALLEL SECTIONS
	PARALLEL WORKSHARE / END PARALLEL WORKSHARE
	SCHEDULE
	SECTIONS / END SECTIONS
	SINGLE / END SINGLE
	TASK / END TASK
	TASKWAIT
	TASKYIELD
	THREADLOCAL
	THREADPRIVATE
	WORKSHARE / END WORKSHARE

	Data sharing attribute rules
	Directive clauses
	COLLAPSE
	COPYIN
	COPYPRIVATE
	DEFAULT
	FINAL
	FIRSTPRIVATE
	IF
	LASTPRIVATE
	MERGEABLE
	NUM_THREADS
	ORDERED
	PRIVATE
	PROC_BIND
	REDUCTION
	SCHEDULE
	SHARED
	UNTIED

	Routines for OpenMP
	omp_destroy_lock(svar)
	omp_destroy_nest_lock(nvar)
	omp_get_active_level()
	omp_get_ancestor_thread_num(level)
	omp_get_dynamic()
	omp_get_level()
	omp_get_max_active_levels()
	omp_get_max_threads()
	omp_get_nested()
	omp_get_num_places()
	omp_get_num_procs()
	omp_get_num_threads()
	omp_get_partition_num_places()
	omp_get_partition_place_nums(place_nums)
	omp_get_place_num()
	omp_get_place_num_procs(place_num)
	omp_get_place_proc_ids(place_num, ids)
	omp_get_proc_bind()
	omp_get_schedule(kind, modifier)
	omp_get_team_size(level)
	omp_get_thread_limit()
	omp_get_thread_num()
	omp_get_wtick()
	omp_get_wtime()
	omp_in_final()
	omp_in_parallel()
	omp_init_lock(svar)
	omp_init_nest_lock(nvar)
	omp_set_dynamic(enable_expr)
	omp_set_lock(svar)
	omp_set_max_active_levels(max_levels)
	omp_set_nested(enable_expr)
	omp_set_nest_lock(nvar)
	omp_set_num_threads(number_of_threads_expr)
	omp_set_schedule(kind, modifier)
	omp_test_lock(svar)
	omp_test_nest_lock(nvar)
	omp_unset_lock(svar)
	omp_unset_nest_lock(nvar)

	Pthreads Library Module
	Pthreads data structures, functions, and subroutines
	f_maketime(delay)
	f_pthread_attr_destroy(attr)
	f_pthread_attr_getdetachstate(attr, detach)
	f_pthread_attr_getguardsize(attr, guardsize)
	f_pthread_attr_getinheritsched(attr, inherit)
	f_pthread_attr_getschedparam(attr, param)
	f_pthread_attr_getschedpolicy(attr, policy)
	f_pthread_attr_getscope(attr, scope)
	f_pthread_attr_getstack(attr, stackaddr, ssize)
	f_pthread_attr_init(attr)
	f_pthread_attr_setdetachstate(attr, detach)
	f_pthread_attr_setguardsize(attr, guardsize)
	f_pthread_attr_setinheritsched(attr, inherit)
	f_pthread_attr_setschedparam(attr, param)
	f_pthread_attr_setschedpolicy(attr, policy)
	f_pthread_attr_setscope(attr, scope)
	f_pthread_attr_setstack(attr, stackaddr, ssize)
	f_pthread_attr_t
	f_pthread_cancel(thread)
	f_pthread_cleanup_pop(exec)
	f_pthread_cleanup_push(cleanup, flag, arg)
	f_pthread_cond_broadcast(cond)
	f_pthread_cond_destroy(cond)
	f_pthread_cond_init(cond, cattr)
	f_pthread_cond_signal(cond)
	f_pthread_cond_t
	f_pthread_cond_timedwait(cond, mutex, timeout)
	f_pthread_cond_wait(cond, mutex)
	f_pthread_condattr_destroy(cattr)
	f_pthread_condattr_getpshared(cattr, pshared)
	f_pthread_condattr_init(cattr)
	f_pthread_condattr_setpshared(cattr, pshared)
	f_pthread_condattr_t
	f_pthread_create(thread, attr, flag, ent, arg)
	f_pthread_detach(thread)
	f_pthread_equal(thread1, thread2)
	f_pthread_exit(ret)
	f_pthread_getconcurrency()
	f_pthread_getschedparam(thread, policy, param)
	f_pthread_getspecific(key, arg)
	f_pthread_join(thread, ret)
	f_pthread_key_create(key, dtr)
	f_pthread_key_delete(key)
	f_pthread_key_t
	f_pthread_kill(thread, sig)
	f_pthread_mutex_destroy(mutex)
	f_pthread_mutex_init(mutex, mattr)
	f_pthread_mutex_lock(mutex)
	f_pthread_mutex_t
	f_pthread_mutex_trylock(mutex)
	f_pthread_mutex_unlock(mutex)
	f_pthread_mutexattr_destroy(mattr)
	f_pthread_mutexattr_getpshared(mattr, pshared)
	f_pthread_mutexattr_gettype(mattr, type)
	f_pthread_mutexattr_init(mattr)
	f_pthread_mutexattr_setpshared(mattr, pshared)
	f_pthread_mutexattr_settype(mattr, type)
	f_pthread_mutexattr_t
	f_pthread_once(once, initr)
	f_pthread_once_t
	f_pthread_rwlock_destroy(rwlock)
	f_pthread_rwlock_init(rwlock, rwattr)
	f_pthread_rwlock_rdlock(rwlock)
	f_pthread_rwlock_t
	f_pthread_rwlock_tryrdlock(rwlock)
	f_pthread_rwlock_trywrlock(rwlock)
	f_pthread_rwlock_unlock(rwlock)
	f_pthread_rwlock_wrlock(rwlock)
	f_pthread_rwlockattr_destroy(rwattr)
	f_pthread_rwlockattr_getpshared(rwattr, pshared)
	f_pthread_rwlockattr_init(rwattr)
	f_pthread_rwlockattr_setpshared(rwattr, pshared)
	f_pthread_rwlockattr_t
	f_pthread_self()
	f_pthread_setcancelstate(state, oldstate)
	f_pthread_setcanceltype(type, oldtype)
	f_pthread_setconcurrency(new_level)
	f_pthread_setschedparam(thread, policy, param)
	f_pthread_setspecific(key, arg)
	f_pthread_t
	f_pthread_testcancel()
	f_sched_param
	f_sched_yield()
	f_timespec

	Chapter 9. Interlanguage calls
	Conventions for XL Fortran external names
	Mixed-language input and output
	Mixing Fortran and C++
	Making calls to C functions work
	Passing data from one language to another
	Passing arguments between languages
	Passing global variables between languages
	Passing character types between languages
	Passing arrays between languages
	Passing pointers between languages
	Passing arguments by reference or by value
	Explicit interface for %VAL and %REF
	Example with VALUE attribute

	Passing COMPLEX values to/from gcc
	Returning values from Fortran functions
	Arguments with the OPTIONAL attribute

	Assembler-level subroutine linkage conventions
	The stack
	The Linkage Area and Minimum Stack Frame
	The input parameter area
	The register save area
	The local stack area
	The output parameter area

	Linkage convention for argument passing
	Argument passing rules (by value)
	Order of arguments in argument list

	Linkage convention for function calls
	Pointers to functions
	Function values
	The stack floor
	Stack overflow

	Prolog and epilog
	Traceback

	Chapter 10. Implementation details of XL Fortran Input/Output (I/O)
	Implementation details of file formats
	File names
	Preconnected and Implicitly Connected Files
	File positioning
	I/O redirection
	How XL Fortran I/O interacts with pipes, special files, and links
	Default record lengths
	File permissions
	Selecting error messages and recovery actions
	Flushing I/O buffers
	Choosing locations and names for Input/Output files
	Naming files that are connected with no explicit name
	Naming scratch files

	Asynchronous I/O
	Execution of an asychronous data transfer operation
	Usage
	Performance
	Compiler-generated temporary I/O items
	Error handling

	XL Fortran thread-safe I/O library
	Synchronization of I/O operations
	External files
	Functionality of I/O under synchronization

	Parallel I/O issues
	Use of I/O statements in signal handlers

	Asynchronous thread cancellation

	Chapter 11. Implementation details of XL Fortran floating-point processing
	IEEE floating-point overview
	Compiling for strict IEEE conformance
	IEEE single-precision and double-precision values
	IEEE extended-precision values
	Infinities and NaNs
	Exception-handling model

	Hardware-specific floating-point overview
	Single-precision and double-precision values
	Extended-precision values

	How XL Fortran rounds floating-point calculations
	Selecting the rounding mode
	Minimizing rounding errors
	Minimizing overall rounding
	Delaying rounding until run time
	Ensuring that the rounding mode is consistent

	Duplicating the floating-point results of other systems
	Maximizing floating-point performance
	Detecting and trapping floating-point exceptions
	Compiler features for trapping floating-point exceptions
	Installing an exception handler
	Producing a core file
	Controlling the floating-point status and control register
	xlf_fp_util procedures
	fpgets and fpsets subroutines
	Sample programs for exception handling
	Causing exceptions for particular variables
	Minimizing the performance impact of floating-point exception trapping

	Chapter 12. Porting programs to XL Fortran
	Outline of the porting process
	Portability of directives
	Common industry extensions that XL Fortran supports
	Mixing data types in statements
	Date and time routines
	Other libc routines
	Changing the default sizes of data types
	Name conflicts between your procedures and XL Fortran intrinsic procedures
	Reproducing results from other systems

	Chapter 13. Vector element order toggling
	Program migration from big endian systems

	Chapter 14. Sample Fortran programs
	Example 1 - XL Fortran source file
	Example 2 - valid C routine source file
	Example 3 - valid Fortran SMP source file
	Example 4 - invalid Fortran SMP source file
	Programming examples using the Pthreads library module

	Notices
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

