
IBM XL Fortran for Linux, V15.1.3

Compiler Reference
for Little Endian Distributions
Version 15.1.3

SC27-6610-02

IBM

IBM XL Fortran for Linux, V15.1.3

Compiler Reference
for Little Endian Distributions
Version 15.1.3

SC27-6610-02

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 329.

First edition

This edition applies to IBM XL Fortran for Linux, V15.1.3 (Program 5765-J10; 5725-C75) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition
for the level of the product.

© Copyright IBM Corporation 1990, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document vii
Who should read this document vii
How to use this document vii
How this document is organized vii
Conventions viii
Related information xii

IBM XL Fortran information. xii
Standards and specifications xiii
Other IBM information xiv

Technical support xiv
How to send your comments xiv

Chapter 1. Introduction 1

Chapter 2. Overview of XL Fortran
features 3
Hardware and operating-system support 3
Language support 3
Source-code conformance checking 4
Highly configurable compiler 4
Diagnostic listings 5
Symbolic debugger support 6
Program optimization 6

Chapter 3. Setting up and customizing
XL Fortran. 7
Where to find installation instructions 7
Correct settings for environment variables 7

Environment variable basics 7
Setting library search paths 8
Profile-directed feedback environment variables . 8
TMPDIR: Specifying a directory for temporary
files 9
XLFSCRATCH_unit: Specifying names for scratch
files 9
XLFUNIT_unit: Specifying names for implicitly
connected files 9

Using custom compiler configuration files 9
Creating custom configuration files 10
Using IBM XL Fortran for Linux, V15.1.3 with the
Advance Toolchain 13

Editing the default configuration file 13
Configuration file attributes 14

Determining which level of XL Fortran is installed 16
Running two levels of XL Fortran 16

Chapter 4. Editing, compiling, linking,
and running XL Fortran programs . . . 17
Editing XL Fortran source files 17
Compiling XL Fortran programs 17

Compiling XL Fortran Version 2 programs . . . 19
Compiling Fortran 90 or Fortran 95 programs . . 19
Compiling Fortran 2003 programs 20
Compiling Fortran 2008 programs 20

Compiling and linking a library 21
Compiling XL Fortran SMP programs 22
Compilation order for Fortran programs. . . . 22
Canceling a compilation 23
XL Fortran input files 23
XL Fortran output files 24
Scope and precedence of option settings 26
Specifying options on the command line. . . . 26
Specifying options in the source file 27
Passing command-line options to the "ld" or "as"
command 28
Displaying information inside binary files
(strings) 28
Compiling for specific architectures 29
Passing Fortran files through the C preprocessor 29
cpp directives for XL Fortran programs 30
Passing options to the C preprocessor 31
Avoiding preprocessing problems 31

Linking XL Fortran programs 31
Compiling and linking in separate steps 32
Passing options to the ld command 32
Dynamic and static linking 32
Avoiding naming conflicts during linking . . . 33

Running XL Fortran programs 33
Canceling execution 33
Compiling and executing on different systems. . 33
Runtime libraries for POSIX pthreads support . . 34
Setting runtime options 34

Other environment variables that affect runtime
behavior 45
XL Fortran runtime exceptions 45

Chapter 5. Summary of compiler
options by functional category 47
Output control 47
Input control 49
Language element control 50
Floating-point and integer control 52
Object code control 53
Error checking and debugging 54
Listings, messages, and compiler information . . . 56
Optimization and tuning 58
Linking. 61
Portability and migration 62
Compiler customization 63

Chapter 6. Detailed descriptions of the
XL Fortran compiler options 65
-#. 66
-1. 67
-B 67
-C 68
-c 69
-D 69
-d 70

© Copyright IBM Corp. 1990, 2015 iii

-e 70
-F. 71
-g. 73
-I 76
-k. 77
-L 77
-l 78
-MF 79
-MMD 80
-MT 81
-NS 82
-O 83
-o. 85
-p 86
-qalias 87
-qalign 90
-qaltivec 92
-qarch 93
-qassert 95
-qattr 96
-qautodbl 97
-qbindcextname 99
-qcache 100
-qcclines 103
-qcheck 103
-qci 106
-qcompact 107
-qcr. 108
-qctyplss 109
-qdbg 110
-qddim 112
-qdescriptor 113
-qdirective 114
-qdirectstorage 115
-qdlines 116
-qdpc 117
-qenum 118
-qescape 119
-qessl 120
-qextern 121
-qextname 122
-qfdpr 124
-qfixed 125
-qflag 126
-qfloat 127
-qfpp 131
-qflttrap 132
-qfree 134
-qfullpath 135
-qfunctrace 136
-qfunctrace_xlf_catch 138
-qfunctrace_xlf_enter 138
-qfunctrace_xlf_exit 139
-qhalt 140
-qhaltonmsg 141
-qhelp 142
-qhot 143
-qieee 146
-qinfo 147
-qinit 151
-qinitalloc 152

-qinitauto. 154
-qinlglue 156
-qinline 157
-qintlog 160
-qintsize 161
-qipa 163
-qkeepparm 168
-qlanglvl 169
-qlibansi 171
-qlibmpi 172
-qlinedebug 173
-qlist 174
-qlistfmt 175
-qlistopt 178
-qlog4 179
-qmakedep 179
-qmaxerr 182
-qmaxmem 183
-qmbcs 185
-qmixed 186
-qmkshrobj 186
-qmoddir 187
-qnoprint 188
-qnullterm 189
-qobject 190
-qonetrip 191
-qoptfile 191
-qoptimize 193
-qpath 194
-qpdf1, -qpdf2 195
-qphsinfo 202
-qpic 203
-qport 204
-qposition 206
-qppsuborigarg 207
-qprefetch 209
-qqcount 211
-qrealsize 211
-qrecur 213
-qreport 214
-qsaa 216
-qsave 217
-qsaveopt. 219
-qsclk 221
-qshowpdf 221
-qsigtrap 222
-qsimd 223
-qsmallstack 224
-qsmp 226
-qsource 230
-qspillsize 231
-qstackprotect 231
-qstacktemp 232
-qstaticlink 233
-qstrict 236
-qstrictieeemod 240
-qstrict_induction 241
-qsuffix 242
-qsuppress 243
-qswapomp 245
-qtbtable 246

iv XL Fortran: Compiler Reference for Little Endian Distributions

-qthreaded 247
-qtimestamps 248
-qtune 249
-qufmt. 250
-qundef 251
-qunroll 251
-qunwind. 253
-qversion 254
-qvisibility 255
-qwarn64 257
-qxflag=dvz 257
-qxflag=oldtab 258
-qxlf77. 259
-qxlf90. 261
-qxlf2003 263
-qxlf2008 267
-qxlines 267
-qxref 269
-qzerosize 270
-r 271
-S 272
-t 272
-U 274
-u 274
-v 275
-V 276
-W 276
-w 278
-y 279

Chapter 7. Using XL Fortran in a
64-bit environment 281

Chapter 8. Tracking compiler license
usage. 283
Understanding compiler license tracking 283
Setting up SLM Tags logging 283

Chapter 9. Problem determination and
debugging. 285
Understanding XL Fortran error messages 285

Error severity 285
Compiler return codes 286
Runtime return codes 286

Format of XL Fortran diagnostic messages. . . 286
Limiting the number of compile-time messages 287

Fixing installation or system environment problems 287
Fixing compile-time problems 289
Fixing link-time problems 290
Fixing runtime problems 291
Debugging a Fortran program 292

Chapter 10. Understanding XL Fortran
compiler listings 293
Header section 293
Options section. 293
Source section 294

Error messages 294
PDF report section. 294
Transformation report section 295
Data reorganization report section 297
Attribute and cross reference section 297
Object section 298
File table section 299
Compilation unit epilogue Section 299
Compilation epilogue Section 299

Chapter 11. XL Fortran technical
information 301
External names in XL Fortran libraries 301
The XL Fortran runtime environment 301

External names in the runtime environment . . 301
Technical details of the -qfloat=hsflt option . . . 302
Implementation details for -qautodbl promotion
and padding 302

Terminology. 302
Examples of storage relationships for -qautodbl
suboptions 303

Chapter 12. XL Fortran internal limits 307

Glossary 309

Notices 329
Trademarks 331

Index 333

Contents v

vi XL Fortran: Compiler Reference for Little Endian Distributions

About this document

This document describes the IBM® XL Fortran for Linux, V15.1.3 compiler and
explains how to set up the compilation environment and how to compile, link, and
run programs written in the Fortran language. This guide also contains
cross-references to relevant topics of other reference guides in the XL Fortran
documentation suite.

Who should read this document
This document is for anyone who wants to work with the IBM XL Fortran for
Linux, V15.1.3 compiler, who is familiar with the Linux operating system, and who
has some previous Fortran programming experience. Users new to XL Fortran can
also find information about the capabilities and features unique to XL Fortran. This
document can help you understand the compiler features, especially the options,
and how to use them for effective software development.

How to use this document
While this document covers topics such as configuring the compiler, and
compiling, linking, and running XL Fortran programs, it does not include the
following information, which is covered in other documents:
v Installation, system requirements, last-minute updates: see the XL Fortran

Installation Guide and product README file.
v Overview of XL Fortran features: see Getting Started with XL Fortran.
v Syntax, semantics, and implementation of the XL Fortran programming

language: see the XL Fortran Language Reference.
v Optimizing, porting, OpenMP and SMP programming: see the XL Fortran

Optimization and Programming Guide.
v Operating system commands related to the use of the compiler: consult the man

page help and documentation of your Linux-specific distribution.

How this document is organized
This document starts with an overview of the compiler and then outlines the tasks
you need to do before invoking the compiler. It then continues with reference
information about the compiler options and debugging problems.

This reference includes the following topics:
v Chapter 1, “Introduction,” on page 1 through Chapter 4, “Editing, compiling,

linking, and running XL Fortran programs,” on page 17 discuss setting up the
compilation environment and the environment variables that you need for
different compilation modes, customizing the configuration file, the types of
input and output files, compiler listings and messages, and information specific
to invoking the preprocessor and linkage editor.

v Chapter 5, “Summary of compiler options by functional category,” on page 47
organizes the compiler options by their functional category. You can search for
options by their name, or alternatively use the functional category tables to look
up and link to options.

© Copyright IBM Corp. 1990, 2015 vii

v Chapter 6, “Detailed descriptions of the XL Fortran compiler options,” on page
65 includes individual descriptions of compiler options sorted alphabetically.
Descriptions provide examples and list related topics.

v Chapter 7, “Using XL Fortran in a 64-bit environment,” on page 281 discusses
application development for the 64-bit environment.

v Chapter 8, “Tracking compiler license usage,” on page 283 discusses tracking
compiler utilization. This chapter provides information that helps you to detect
whether compiler utilization exceeds your floating user license entitlements.

v Chapter 9, “Problem determination and debugging,” on page 285 and
Chapter 10, “Understanding XL Fortran compiler listings,” on page 293 address
debugging and understanding compiler listings.

v Chapter 11, “XL Fortran technical information,” on page 301 and Chapter 12, “XL
Fortran internal limits,” on page 307 provide information that advanced
programmers might need to diagnose unusual problems and run the compiler in
a specialized environment.

Conventions
Typographical conventions

The following table shows the typographical conventions used in the IBM XL
Fortran for Linux, V15.1.3 information.

Table 1. Typographical conventions

Typeface Indicates Example

lowercase
bold

Invocation commands, executable
names, and compiler options.

The compiler provides basic
invocation commands, xlf, along with
several other compiler invocation
commands to support various Fortran
language levels and compilation
environments.

The default file name for the
executable program is a.out.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Examples of program code,
reference to program code, file
names, path names, command
strings, or user-defined names.

To compile and optimize
myprogram.f, enter: xlf myprogram.f
-O3.

UPPERCASE
bold

Fortran programming keywords,
statements, directives, and intrinsic
procedures. Uppercase letters may
also be used to indicate the
minimum number of characters
required to invoke a compiler
option/suboption.

The ASSERT directive applies only to
the DO loop immediately following
the directive, and not to any nested
DO loops.

viii XL Fortran: Compiler Reference for Little Endian Distributions

Qualifying elements (icons and bracket separators)

In descriptions of language elements, this information uses icons and marked
bracket separators to delineate the Fortran language standard text as follows:

Table 2. Qualifying elements

Icon
Bracket
separator text Meaning

F2008

F2008

Fortran 2008
begins /
Fortran 2008
ends

The text describes an IBM XL Fortran implementation of
the Fortran 2008 standard.

Fortran 2003
begins /
Fortran 2003
ends

The text describes an IBM XL Fortran implementation of
the Fortran 2003 standard, and it applies to all later
standards.

IBM extension
begins / IBM
extension ends

The text describes a feature that is an IBM XL Fortran
extension to the standard language specifications.

TS 29113

TS 29113

TS 29113
begins / TS
29113 ends

The text describes an IBM XL Fortran implementation of
Technical Specification 29113, referred to as TS 29113.

Note: If the information is marked with a Fortran language standard icon or
bracket separators, it applies to this specific Fortran language standard and all later
ones. If it is not marked, it applies to all Fortran language standards.

Syntax diagrams

Throughout this information, diagrams illustrate XL Fortran syntax. This section
helps you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.
IBM XL Fortran extensions are marked by a number in the syntax diagram with
an explanatory note immediately following the diagram.
Program units, procedures, constructs, interface blocks and derived-type
definitions consist of several individual statements. For such items, a box
encloses the syntax representation, and individual syntax diagrams show the
required order for the equivalent Fortran statements.

v Required items are shown on the horizontal line (the main path):

About this document ix

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([
and]). For example, [UNIT=]u

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

If choosing one of the items is optional, the entire stack is shown below the
main path.

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values. If a variable or user-specified name ends in _list, you can
provide a list of these terms separated by commas.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following is an example of a syntax diagram with an interpretation:

x XL Fortran: Compiler Reference for Little Endian Distributions

How to read syntax statements

Syntax statements are read from left to right:
v Individual required arguments are shown with no special notation.
v When you must make a choice between a set of alternatives, they are enclosed

by { and } symbols.
v Optional arguments are enclosed by [and] symbols.
v When you can select from a group of choices, they are separated by | characters.
v Arguments that you can repeat are followed by ellipses (...).

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.
v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

►►
(1)

EXAMPLE char_constant a
b c

d

▼

,

e name_list ►◄

Notes:

1 IBM extension

Interpret the diagram as follows:

v Enter the keyword EXAMPLE.

v EXAMPLE is an IBM extension.

v Enter a value for char_constant.

v Enter a value for a or b, but not for both.

v Optionally, enter a value for c or d.

v Enter at least one value for e. If you enter more than one value, you must put a
comma between each.

v Enter the value of at least one name for name_list. If you enter more than one value,
you must put a comma between each. (The _list syntax is equivalent to the previous
syntax for e.)

About this document xi

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Notes on the terminology used

Some of the terminology in this information is shortened as follows:
v The term free source form format often appears as free source form.
v The term fixed source form format often appears as fixed source form.
v The term XL Fortran often appears as XLF.

Related information
The following sections provide related information for XL Fortran:

IBM XL Fortran information
XL Fortran provides product information in the following formats:
v Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL Fortran for Linux, V15.1.3. It is located by default in the XL Fortran directory
and in the \quickstart directory of the installation DVD.

v README files
README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL Fortran directory, and in the root directory and subdirectories of the
installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL Fortran for Linux, V15.1.3 Installation
Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.3/
com.ibm.compilers.linux.doc/welcome.html.

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27036672.
The following files comprise the full set of XL Fortran product information:

xii XL Fortran: Compiler Reference for Little Endian Distributions

http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.3/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.3/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27036672
http://www.ibm.com/support/docview.wss?uid=swg27036672

Table 3. XL Fortran PDF files

Document title
PDF file
name Description

IBM XL Fortran for Linux,
V15.1.3 Installation Guide,
GC27-6580-02

install.pdf Contains information for installing XL Fortran
and configuring your environment for basic
compilation and program execution.

Getting Started with IBM
XL Fortran for Linux,
V15.1.3, SC27-6620-02

getstart.pdf Contains an introduction to the XL Fortran
product, with information about setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL Fortran for Linux,
V15.1.3 Compiler Reference,
SC27-6610-02

compiler.pdf Contains information about the various
compiler options and environment variables.

IBM XL Fortran for Linux,
V15.1.3 Language Reference,
SC27-6590-02

langref.pdf Contains information about the Fortran
programming language as supported by IBM,
including language extensions for portability
and conformance to nonproprietary standards,
compiler directives and intrinsic procedures.

IBM XL Fortran for Linux,
V15.1.3 Optimization and
Programming Guide,
SC27-6600-02

proguide.pdf Contains information on advanced
programming topics, such as application
porting, interlanguage calls, floating-point
operations, input/output, application
optimization and parallelization, and the XL
Fortran high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL Fortran, including IBM Redbooks® publications,
white papers, and other articles, is available on the web at http://www.ibm.com/
support/docview.wss?uid=swg27036672.

For more information about Fortran, see the Fortran café at https://
www.ibm.com/developerworks/mydeveloperworks/groups/service/html/
communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa.

Standards and specifications
XL Fortran is designed to support the following standards and specifications. You
can refer to these standards and specifications for precise definitions of some of the
features found in this information.
v American National Standard Programming Language FORTRAN, ANSI X3.9-1978.
v American National Standard Programming Language Fortran 90, ANSI X3.198-1992.
v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
v Federal (USA) Information Processing Standards Publication Fortran, FIPS PUB 69-1.
v Information technology - Programming languages - Fortran, ISO/IEC 1539-1:1991.

(This information uses its informal name, Fortran 90.)
v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:1997. (This information uses its informal name, Fortran 95.)
v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:2004. (This information uses its informal name, Fortran 2003.)

About this document xiii

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036672
http://www.ibm.com/support/docview.wss?uid=swg27036672
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa

v Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:2010. (This information uses its informal name, Fortran 2008. We
currently provide partial support to this standard.)

v Information technology - Further interoperability of Fortran with C, ISO/IEC TS
29113:2012. (This information uses its informal name, Technical specification
29113, referred to as TS 29113. We currently provide partial support to this
specification.)

v Military Standard Fortran DOD Supplement to ANSI X3.9-1978, MIL-STD-1753
(United States of America, Department of Defense standard). Note that XL
Fortran supports only those extensions documented in this standard that have
also been subsequently incorporated into the Fortran 90 standard.

v OpenMP Application Program Interface Version 3.1 (full support), OpenMP
Application Program Interface Version 4.0 (partial support), and OpenMP Application
Program Interface Version 4.5 (partial support), available at http://
www.openmp.org

Other IBM information
v ESSL product documentation available at http://www.ibm.com/support/

knowledgecenter/SSFHY8/essl_welcome.html?lang=en

Technical support
Additional technical support is available from the XL Fortran Support page at
http://www.ibm.com/support/entry/portal/product/rational/
xl_fortran_for_linux. This page provides a portal with search capabilities to a large
selection of Technotes and other support information.

If you cannot find what you need, you can send an email to
compinfo@cn.ibm.com.

For the latest information about XL Fortran, visit the product information site at
http://www.ibm.com/software/products/en/xlfortran-linux.

How to send your comments
Your feedback is important in helping us to provide accurate and high-quality
information. If you have any comments about this information or any other XL
Fortran information, send your comments to compinfo@cn.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL Fortran, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

xiv XL Fortran: Compiler Reference for Little Endian Distributions

http://www.openmp.org
http://www.openmp.org
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html?lang=en
http://www.ibm.com/support/entry/portal/product/rational/xl_fortran_for_linux
http://www.ibm.com/support/entry/portal/product/rational/xl_fortran_for_linux
http://www.ibm.com/software/products/en/xlfortran-linux

Chapter 1. Introduction

IBM XL Fortran for Linux, V15.1.3 is an optimizing, standards-based,
command-line compiler for the Linux operating system, running on Power®

hardware with the Power Architecture. The XL Fortran compiler enables
application developers to create and maintain optimized 64-bit applications for the
Linux operating system. The compiler also offers a diversified portfolio of
optimization techniques that allow an application developer to exploit the
multi-layered architecture of the Power processor.

The implementation of the Fortran programming language is intended to promote
portability among different environments by enforcing conformance to language
standards. A program that conforms strictly to its language specification has
maximum portability among different environments. In theory, a program that
compiles correctly with one standards-conforming compiler will compile and
execute correctly under all other conforming compilers, insofar as hardware
differences permit. A program that correctly exploits the extensions to the
programming language in which it is written can improve the efficiency of its
object code.

XL Fortran can be used for large, complex, and computationally intensive
programs. It also supports interlanguage calls with C. For applications that require
SIMD (single-instruction, multiple data) parallel processing, performance
improvements can be achieved through optimization techniques, which may be
less labor-intensive than vector programming. Many of the optimizations
developed by IBM are controlled by compiler options and directives.

© Copyright IBM Corp. 1990, 2015 1

2 XL Fortran: Compiler Reference for Little Endian Distributions

Chapter 2. Overview of XL Fortran features

This section discusses the features of the XL Fortran compiler, language, and
development environment at a high level. It is intended for people who are
evaluating XL Fortran and for new users who want to find out more about the
product.

Hardware and operating-system support
IBM XL Fortran for Linux, V15.1.3 is supported on several Linux distributions.

See the XL Fortran for Linux Installation Guide and README file for a list of
supported distributions and requirements.

The compiler, its generated object programs, and runtime library can run on
POWER8® systems with the required software, disk space, and virtual storage.

The POWER8 processor is a type of PowerPC® processor. In this document, any
statement or reference to the PowerPC processor also applies to the POWER8
processor.

To take maximum advantage of different hardware configurations, the compiler
provides a number of options for performance tuning based on the configuration
of the machine used for executing an application.

Language support
This topic lists languages and language extensions that are supported by XL
Fortran.

The XL Fortran language consists of the following:
v Partial ISO Technical specification 29113 support (referred to as TS 29113),

defined in the document Information technology -- Further interoperability of Fortran
with C, ISO/IEC TS 29113:2012.

v Partial ISO Fortran 2008 language standard (referred to as Fortran 2008 or
F2008), defined in the document Information technology - Programming languages -
Part 1: Base language, ISO/IEC 1539-1:2010.

v The full ISO Fortran 2003 language standard (referred to as Fortran 2003 or
F2003), defined in the document Information technology - Programming languages -
Part 1: Base language, ISO/IEC 1539-1:2004.

v The full ISO Fortran 95 language standard (referred to as Fortran 95 or F95),
defined in the document Information technology - Programming languages - Fortran
- Part 1: Base language, ISO/IEC 1539-1:1997.

v The full American National Standard Fortran 90 language (referred to as Fortran
90 or F90), defined in the documents American National Standard Programming
Language Fortran 90, ANSI X3.198-1992 and Information technology - Programming
languages - Fortran, ISO/IEC 1539-1:1991 (E). This language has a superset of the
features found in the FORTRAN 77 standard. It adds many more features that
are intended to shift more of the tasks of error checking, array processing,
memory allocation, and so on from the programmer to the compiler.

v Extensions to the Fortran standard:

© Copyright IBM Corp. 1990, 2015 3

– Common Fortran language extensions defined by other compiler vendors, in
addition to those defined by IBM

– Industry extensions that are found in Fortran products from various compiler
vendors

– Extensions specified in SAA Fortran
– Extensions of the Vector Multimedia Extension (VMX) and the Vector Scalar

Extension (VSX) intrinsic functions

In the XL Fortran Language Reference, extensions to the Fortran 2003 language and
Fortran 2008 language are marked as described in the Conventions: Qualifying
elements section.

Source-code conformance checking
To help you find possible problems when you port your application to or from
different FORTRAN 77, Fortran 90, Fortran 95, Fortran 2003, or Fortran 2008
standards, the XL Fortran compiler provides options to warn you about features
that no longer conform to certain Fortran definitions.

If you specify the appropriate compiler options, the XL Fortran compiler checks
source statements for conformance to the following Fortran language definitions:
v Partial Fortran 2008 Standard (-qlanglvl=2008std option)
v Full Fortran 2003 Standard (-qlanglvl=2003std option)
v Full Fortran 95 Standard (-qlanglvl=95std option)
v Full American National Standard Fortran 90 Standard (-qlanglvl=90std option)
v Full American National Standard FORTRAN 77 Standard (-qlanglvl=77std

option)
v Fortran 2008, less any obsolescent features (-qlanglvl=2008pure option)
v Fortran 2003, less any obsolescent features (-qlanglvl=2003pure option)
v Fortran 95, less any obsolescent features (-qlanglvl=95pure option)
v Fortran 90, less any obsolescent features (-qlanglvl=90pure option)
v Partial support for Technical Specification 29113 for further interoperability with

C (-qlanglvl=ts option)
v Technical Specification 29113 supplements to Fortran 2008, less any obsolescent

features (-qlanglvl=tspure option)
v IBM SAA FORTRAN (-qsaa option)

You can also use the langlvl option for conformance checking.

Note: Fortran 2008 conformance checking is based on the current subset
implementation of this standard.

Highly configurable compiler
This topic provides information about the commands that you can use to invoke
the compiler.

You can invoke the compiler by using the following commands:
v xlf
v xlf_r
v f77
v fort77
v xlf90

4 XL Fortran: Compiler Reference for Little Endian Distributions

v xlf90_r
v f90
v xlf95
v xlf95_r
v f95
v xlf2003
v xlf2003_r
v f2003
v xlf2008
v xlf2008_r
v f2008

The following commands maintain maximum compatibility with the behavior and
I/O formats of XL Fortran Version 2:
v For .f, .F, .f77 and .F77 files: xlf and xlf_r

v For any source files: f77 and fort77

The xlf90, xlf90_r, and f90 commands provide more Fortran 90 conformance and
some implementation choices for efficiency and usability. The f95, xlf95 and xlf95_r
commands provide more Fortran 95 conformance and some implementation
choices for efficiency and usability. The xlf2003, xlf2003_r, and f2003 commands
provide more Fortran 2003 conformance and some implementation choices for
efficiency and usability. The xlf2008, xlf2008_r, and f2008 commands provide more
Fortran 2008 conformance and some implementation choices for efficiency and
usability. The f77 or fort77 command provides maximum compatibility with the
XPG4 behavior.

The main difference between the set of xlf_r, xlf90_r, xlf95_r, xlf2003_r, and
xlf2008_r commands and the set of xlf, xlf90, f90, xlf95, f95, xlf2003, f2003, xlf2008,
f2008, f77, and fort77 commands is that the first set links and binds the object files
to the threadsafe components (libraries, and so on). You can have this behavior
with the second set of commands by using the -F compiler option to specify the
configuration file stanza to use. For example:

xlf -F/opt/ibm/xlf/15.1.3/etc/xlf.cfg:xlf_r

You can control the actions of the compiler through a set of options. The different
categories of options help you to debug, to optimize and tune program
performance, to select extensions for compatibility with programs from other
platforms, and to do other common tasks that would otherwise require changing
the source code.

To simplify the task of managing many different sets of compiler options, you can
edit the default configuration file or use a customized configuration file instead of
creating many separate aliases or shell scripts.

Related information
v “Using custom compiler configuration files” on page 9
v “Compiling XL Fortran programs” on page 17
v Chapter 5, “Summary of compiler options by functional category,” on page 47

and Chapter 6, “Detailed descriptions of the XL Fortran compiler options,” on
page 65

Diagnostic listings
The compiler output listing has optional sections that you can include or omit.

Chapter 2. Overview of XL Fortran features 5

For information about the applicable compiler options and the listing itself, see
“Listings, messages, and compiler information” on page 56 and Chapter 10,
“Understanding XL Fortran compiler listings,” on page 293.

The -S option gives you a true assembler source file.

Symbolic debugger support
You can instruct XL Fortran to include debugging information in your compiled
objects by using different levels of the -g or -qdbg compiler option.

For details, see -g or -qdbg.

The debugging information can be examined by gdb or any other symbolic
debugger to help you debug your programs.

Program optimization
The XL Fortran compiler helps you control the optimization of your programs in a
number of ways.
v You can select different levels of compiler optimizations.
v You can turn on separate optimizations for loops, floating point, and other

categories.
v You can optimize a program for a particular class of machines or for a very

specific machine configuration, depending on where the program will run.

The XL Fortran Optimization and Programming Guide provides a road map and
optimization strategies for these features.

6 XL Fortran: Compiler Reference for Little Endian Distributions

Chapter 3. Setting up and customizing XL Fortran

This section explains how to customize XL Fortran settings for yourself or all users.
The full installation procedure is beyond the scope of this section, which refers you
to the documents that cover the procedure in detail.

This section can also help you to diagnose problems that relate to installing or
configuring the compiler.

Some of the instructions require you to be a superuser, and so they are only
applicable if you are a system administrator.

Where to find installation instructions
To install the compiler, refer to these documents (preferably in this order):
1. Read the file called README.FIRST in the root of the product tarball or DVD,

and follow any directions it gives. It contains information that you must know
and possibly distribute to other people who use XL Fortran.

2. Read the XL Fortran Installation Guide to see if there are any important notices
you need to be aware of or any updates you might need to apply to your
system before doing the installation.

Using default installation tools
v You should be familiar with the RPM Package Manager (RPM) for installing this

product on SLES or RHEL. For information on using RPM, visit the RPM Web
page at URL http://www.rpm.org/, or type rpm --help at the command line.
If you are already experienced with software installation, you can use the rpm
command to install all the images from the distribution medium.

v You should be familiar with the Debian Package Manager (dpkg) for installing
this product on Ubuntu. For information on using dpkg, you can view the dpkg
man page at URL http://manpages.ubuntu.com/manpages/trusty/en/man1/
dpkg.1.html, or type dpkg --help at the command line.

Correct settings for environment variables
You can set and export a number of environment variables for use with the
operating system. The following sections deal with the environment variables that
have special significance to the XL Fortran compiler, application programs, or both.

Environment variable basics
You can set the environment variables from shell command lines or from within
shell scripts. (For more information about setting environment variables, see the
man page help for the shell you are using.) If you are not sure which shell is in
use, a quick way to find out is to issue echo $SHELL to show the name of the
current shell.

To display the contents of an environment variable, enter the command echo
$var_name.

Note: For the remainder of this document, most examples of shell commands use
Bash notation instead of repeating the syntax for all shells.

© Copyright IBM Corp. 1990, 2015 7

http://www.rpm.org/
http://manpages.ubuntu.com/manpages/trusty/en/man1/dpkg.1.html
http://manpages.ubuntu.com/manpages/trusty/en/man1/dpkg.1.html

Setting library search paths
If your executable program is linked with shared libraries, you must set the
runtime library search paths. You can use one of the following three ways to set
runtime library search paths:
v When linking the shared library into the executable, use the -R (or -rpath)

compiler/link option.
v Before linking the shared library into the executable, set the LD_RUN_PATH

environment variable.
v Set the LD_LIBRARY_PATH environment variable.

For example:
Compile and link
xlf95 -L/usr/lib/mydir1 -R/usr/lib/mydir1 -L/usr/lib/mydir2 -R/usr/lib/mydir2

-lmylib1 -lmylib2 test.f

-L directories are searched at link time for both static and shared libraries.
-R directories are searched at run time for shared libraries.

For more information about the linker option -R (or -rpath), and environment
variables LD_RUN_PATH and LD_LIBRARY_PATH, see the man pages for the ld
command.

Profile-directed feedback environment variables
The following list includes profile-directed feedback (PDF) environment variables
that you can use with the -qpdf compiler option:

PDF_BIND_PROCESSOR
If you want to bind your application to the specified processor for
cache-miss profiling, set the PDF_BIND_PROCESSOR environment
variable. Processor 0 is set by default.

PDFDIR
When you compile a Fortran program with the -qpdf compiler option, you
can specify the directory where profiling information is stored by setting
the PDFDIR environment variable to the name of the directory. The
compiler creates files to hold the profile information. XL Fortran updates
the files when you run an application that is compiled with the -qpdf1
option.

Problems can occur if the profiling information is stored in a wrong place
or is updated by more than one application. To avoid these problems, you
must follow these guidelines:
v Always set the PDFDIR environment variable when using the -qpdf

option. Make sure that the directory specified by the PDFDIR
environment variable exists; otherwise, the compiler issues a warning
message.

v Store the profiling information for each application in a different
directory, or use the -qpdf1=pdfname, -qpdf1=exename option to explicitly
name the temporary profiling files according to the template provided.

v Leave the value of the PDFDIR environment variable unchanged until
you have completed the PDF process (compiling, running, and
compiling again) for the application.

PDF_PM_EVENT
When you run an application compiled with -qpdf1=level=2 and want to

8 XL Fortran: Compiler Reference for Little Endian Distributions

gather different levels of cache-miss profiling information, set the
PDF_PM_EVENT environment variable to L1MISS, L2MISS, or L3MISS (if
applicable) accordingly.

PDF_WL_ID
The PDF_WL_ID environment variable is used to distinguish the sets of
PDF counters that are generated by multiple training runs of the user
program. Each run receives distinct input.

By default, PDF counters for training runs after the first training run are
added to the first and the only set of PDF counters. This behavior can be
changed by setting the PDF_WL_ID environment variable before each PDF
training run. You can set PDF_WL_ID to an integer value in the range 1 -
65535. The PDF run time then uses this number to tag the set of PDF
counters that are generated by this training run. After all the training runs
complete, the PDF profile file contains multiple sets of PDF counters, each
set with an ID number.

TMPDIR: Specifying a directory for temporary files
The XL Fortran compiler creates a number of temporary files for use during
compilation. An XL Fortran application program creates a temporary file at run
time for a file opened with STATUS='SCRATCH'. By default, these files are placed
in the directory /tmp.

If you want to change the directory where these files are placed, perhaps because
/tmp is not large enough to hold all the temporary files, set and export the
TMPDIR environment variable before running the compiler or the application
program.

If you explicitly name a scratch file by using the XLFSCRATCH_unit method
described below, the TMPDIR environment variable has no effect on that file.

XLFSCRATCH_unit: Specifying names for scratch files
To give a specific name to a scratch file, you can set the runtime option
scratch_vars=yes; then set one or more environment variables with names of the
form XLFSCRATCH_unit to file names to use when those units are opened as
scratch files. See Naming scratch files in the XL Fortran Optimization and Programming
Guide for examples.

XLFUNIT_unit: Specifying names for implicitly connected files
To give a specific name to an implicitly connected file or a file opened with no
FILE= specifier, you can set the runtime option unit_vars=yes; then set one or
more environment variables with names of the form XLFUNIT_unit to file names.
See Naming files that are connected with no explicit name in the XL Fortran
Optimization and Programming Guide for examples.

Using custom compiler configuration files
The XL Fortran compiler generates a default configuration file
/opt/ibm/xlf/15.1.3/etc/xlf.cfg.$OSRelease.gcc$gccVersion at installation time (for
example, /opt/ibm/xlf/15.1.3/etc/xlf.cfg.sles.12.gcc.4.8.2 or /opt/ibm/xlf/15.1.3/
etc/xlf.cfg.ubuntu.14.04.gcc.4.8.2). (See the XL Fortran Installation Guide for more
information on the various tools you can use to generate the configuration file
during installation.) The configuration file specifies information that the compiler
uses when you invoke it.

Chapter 3. Setting up and customizing XL Fortran 9

If you are running on a single-user system, or if you already have a compilation
environment with compilation scripts or makefiles, you might want to leave the
default configuration file as it is.

If you want users to be able to choose among several sets of compiler options, you
might want to use custom configuration files for specific needs. For example, you
might want to enable -qlist by default for compilations using the xlf compiler
invocation command. This is to avoid forcing your users to specify this option on
the command line for every compilation, because -qnolist is automatically in
effect every time the compiler is called with the xlf command.

You have several options for customizing configuration files:
v You can directly edit the default configuration file. In this case, the customized

options will apply for all users for all compilations. The disadvantage of this
option is that you will need to reapply your customizations to the new default
configuration file that is provided every time you install a compiler update.

v You can use the default configuration file as the basis of customized copies that
you specify at compile time with the -F option. In this case, the custom file
overrides the default file on a per-compilation basis.

Note: This option requires you to reapply your customization after you apply
service to the compiler.

v You can create custom, or user-defined, configuration files that are specified at
compile time with the XLF_USR_CONFIG environment variable. In this case, the
custom user-defined files complement, rather than override, the default
configuration file, and they can be specified on a per-compilation or global basis.
The advantage of this option is that you do not need to modify your existing,
custom configuration files when a new system configuration file is installed
during an update installation. Procedures for creating custom, user-defined
configuration files are provided below.

Related reference:
“-F” on page 71

Creating custom configuration files
If you use the XLF_USR_CONFIG environment variable to instruct the compiler to
use a custom user-defined configuration file, the compiler examines and processes
the settings in that user-defined configuration file before looking at the settings in
the default system configuration file.

To create a custom user-defined configuration file, you add stanzas which specify
multiple levels of the use attribute. The user-defined configuration file can
reference definitions specified elsewhere in the same file, as well as those specified
in the system configuration file. For a given compilation, when the compiler looks
for a given stanza, it searches from the beginning of the user-defined configuration
file and follows any other stanza named in the use attribute, including those
specified in the system configuration file.

If the stanza named in the use attribute has a name different from the stanza
currently being processed, the search for the use stanza starts from the beginning
of the user-defined configuration file. This is the case for stanzas A, C, and D
which you see in the following example. However, if the stanza in the use attribute
has the same name as the stanza currently being processed, as is the case of the
two B stanzas in the example, the search for the use stanza starts from the location
of the current stanza.

10 XL Fortran: Compiler Reference for Little Endian Distributions

The following example shows how you can use multiple levels for the use
attribute. This example uses the options attribute to help show how the use
attribute works, but any other attributes, such as libraries can also be used.

In this example:
v stanza A uses option sets A and Z
v stanza B uses option sets B1, B2, D, A, and Z
v stanza C uses option sets C, A, and Z
v stanza D uses option sets D, A, and Z

Attributes are processed in the same order as the stanzas. The order in which the
options are specified is important for option resolution. Ordinarily, if an option is
specified more than once, the last specified instance of that option wins.

By default, values defined in a stanza in a configuration file are added to the list of
values specified in previously processed stanzas. For example, assume that the
XLF_USR_CONFIG environment variable is set to point to the user-defined
configuration file at ~/userconfig1. With the user-defined and default configuration
files shown in the following example, the compiler references the xlf stanza in the
user-defined configuration file and uses the option sets specified in the
configuration files in the following order: A1, A, D, and C.

xlf: use=xlf
options= <A1>

DEFLT: use=DEFLT
options=<D>

Figure 2. Custom user-defined configuration
file ~/userconfig1

xlf: use=DEFLT
options=<A>

DEFLT:
options=<C>

Figure 3. Default configuration file xlf.cfg

Overriding the default order of attribute values
You can override the default order of attribute values by changing the assignment
operator(=) for any attribute in the configuration file.

A: use =DEFLT
options=<set of options A>

B: use =B
options=<set of options B1>

B: use =D
options=<set of options B2>

C: use =A
options=<set of options C>

D: use =A
options=<set of options D>

DEFLT:
options=<set of options Z>

Figure 1. Sample configuration file

Chapter 3. Setting up and customizing XL Fortran 11

Table 4. Assignment operators and attribute ordering

Assignment
Operator

Description

-= Prepend the following values before any values determined by the default
search order.

:= Replace any values determined by the default search order with the
following values.

+= Append the following values after any values determined by the default
search order.

For example, assume that the XLF_USR_CONFIG environment variable is set to
point to the custom user-defined configuration file at ~/userconfig2.

Custom user-defined configuration file
~/userconfig2 Default configuration file xlf.cfg

xlf_prepend: use=xlf
options-=<B1>

xlf_replace: use=xlf
options:=<B2>

xlf_append: use=xlf
options+=<B3>

DEFLT: use=DEFLT
options=<D>

xlf: use=DEFLT
options=

DEFLT:
options=<C>

The stanzas in the preceding configuration files use the following option sets, in
the following orders:
1. stanza xlf uses B, D, and C
2. stanza xlf_prepend uses B1, B, D, and C
3. stanza xlf_replace uses B2

4. stanza xlf_append uses B, D, C, and B3

You can also use assignment operators to specify an attribute more than once. For
example:

Examples of stanzas in custom configuration files

DEFLT: use=DEFLT
options = -g

This example specifies that the -g option is to
be used in all compilations.

xlf: use=xlf
options+=-qlist

xlf_r: use=xlf_r
options+=-qlist

This example specifies that -qlist is to be used
for any compilation called by the xlf and xlf_r
commands. This -qlist specification overrides
the default setting of -qlist specified in the
system configuration file.

DEFLT: use=DEFLT
libraries=-L/home/user/lib,-lmylib

This example specifies that all compilations
should link with /home/user/lib/libmylib.a.

xlf:
use=xlf
options-=-Isome_include_path
options+=some options

Figure 4. Using additional assignment operations

12 XL Fortran: Compiler Reference for Little Endian Distributions

Using IBM XL Fortran for Linux, V15.1.3 with the Advance
Toolchain

IBM XL Fortran for Linux, V15.1.3 supports IBM Advance Toolchain 9.0, which is a
set of open source development tools and runtime libraries. With IBM Advance
Toolchain 9.0, you can take advantage of the latest POWER® hardware features on
Linux, especially the tuned libraries. For more information about the Advance
Toolchain 9.0, see IBM Advance Toolchain for PowerLinux™ Documentation.

To use IBM XL Fortran for Linux, V15.1.3 with the Advance Toolchain, take the
following steps:
1. Install the at9.0 packages into the default installation location. For instructions,

see IBM Advance Toolchain for PowerLinux Documentation.
2. Run the xlf_configure utility to create the xlf.at.cfg configuration file. In the

xlf.at.cfg configuration file, all other entities except the XL Fortran compiler
are directed to those of the Advance Toolchain. The entities include the linker,
headers, and runtime libraries.

Note: To run the xlf_configure utility, you must either become the root user or
use the sudo command.
v If you installed the compiler in the default location, issue the following

command:
xlf_configure -at

v If you installed the compiler in a nondefault installation (NDI) location, issue
the following command:
xlf_configure -at -ibmcmp $ndi_path

where $ndi_path is the directory in which you installed the compiler.
3. Invoke the XL compiler with the Advance Toolchain support.
v If you installed the compiler in the default location, issue the following

command:
/opt/ibm/xlf/15.1.3/bin/xlf_at

v If you installed the compiler in an NDI location, issue the following
command:
$ndi_path/xlf/15.1.3/bin/xlf_at

Note: If you use the XL compiler with the Advance Toolchain support to build
your application, your application can run only under the Advance Toolchain
environment because the application depends on the runtime library of the
Advance Toolchain. If you copy the application to run on other machines, ensure
that the Advance Toolchain, or at least the runtime library of the Advance
Toolchain, is available on those machines.

Editing the default configuration file
The configuration file specifies information that the compiler uses when you
invoke it. XL Fortran provides the default configuration file /opt/ibm/xlf/15.1.3/
etc/xlf.cfg at installation time.

If you want many users to be able to choose among several sets of compiler
options, you may want to add new named stanzas to the configuration file and to
create new commands that are links to existing commands. For example, you could
specify something similar to the following to create a link to the xlf95 command:

Chapter 3. Setting up and customizing XL Fortran 13

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/IBM%20Advance%20Toolchain%20for%20PowerLinux%20Documentation?section=introduction
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/IBM%20Advance%20Toolchain%20for%20PowerLinux%20Documentation?section=introduction

ln -s /opt/ibm/xlf/15.1.3/bin/xlf95 /home/username/bin/xlf95

When you run the compiler under another name, it uses whatever options,
libraries, and so on, that are listed in the corresponding stanza.

Notes:

v The configuration file contains other named stanzas to which you may want to
link.

v If you make any changes to the configuration file and then move or copy your
makefiles to another system, you will also need to copy the changed
configuration file.

v You cannot use tabs as separator characters in the configuration file. If you
modify the configuration file, make sure that you use spaces for any indentation.

Configuration file attributes
The configuration file contains the following attributes:

use The named and local stanzas provide the values for attributes. For
single-valued attributes, values in the use attribute apply if there is no
value in the local, or default, stanza. For comma-separated lists, the values
from the use attribute are added to the values from the local stanza. You
can only use a single level of the use attribute. Do not specify a use
attribute that names a stanza with another use attribute.

crt_64 The path name of the object file which contains the startup code. This
object file is passed as the first parameter to the linkage editor.

mcrt_64
Same as for crt_64, but the object file contains profiling code for the -p
option.

gcrt_64
Same as crt_64, but the object file contains profiling code for the -pg
option.

gcc_libs_64
The linker options to specify the path to the GCC libraries and to link the
GCC library.

gcc_path_64
Specifies the path to the 64-bit tool chain.

cpp The absolute path name of the C preprocessor, which is automatically
called for files ending with a specific suffix (usually .F).

xlf The absolute path name of the main compiler executable file. The compiler
commands are driver programs that execute this file.

hot Absolute path name of the program that does array language
transformations.

ipa Absolute path name of the program that performs interprocedural
optimizations, loop optimizations, and program parallelization.

code The absolute path name of the optimizing code generator.

as_64 The absolute path name of the assembler.

ld_64 The absolute path name of the linker.

bolt Absolute path name of the binder.

14 XL Fortran: Compiler Reference for Little Endian Distributions

options
A string of options that are separated by commas. The compiler processes
these options as if you entered them on the command line before any other
option. This attribute lets you shorten the command line by including
commonly used options in one central place.

cppoptions
A string of options that are separated by commas, to be processed by cpp
(the C preprocessor) as if you entered them on the command line before
any other option. This attribute is needed because some cpp options are
usually required to produce output that can be compiled by XL Fortran.
The default is -C, which preserves any C-style comments in the output.
Also, refer to the “-qfpp” on page 131 and “-qppsuborigarg” on page 207
options for other useful cpp options.

Note: You can specify -C! preprocessor option on the command line (-WF,
-C!) to override the default setting.

xlfopt Lists names of options that are assumed to be compiler options, for cases
where, for example, a compiler option and a linker option use the same
letter. The list is a concatenated set of single-letter flags. Any flag that takes
an argument is followed by a colon, and the whole list is enclosed by
double quotation marks.

asopt Lists names of options that are assumed to be assembler options for cases
where, for example, a compiler option and an assembler option use the
same letter. The list is a concatenated set of single-letter flags. Any flag that
takes an argument is followed by a colon, and the whole list is enclosed by
double quotation marks. You may find it more convenient to set up this
attribute than to pass options to the assembler through the -W compiler
option.

ldopt Lists names of options that are assumed to be linker options for cases
where, for example, a compiler option and a linker option use the same
letter. The list is a concatenated set of single-letter flags. Any flag that takes
an argument is followed by a colon, and the whole list is enclosed by
double quotation marks.

You might find it more convenient to set up this attribute than to pass
options to the linker through the -W compiler option. However, most
unrecognized options are passed to the linker anyway.

cppsuffix
The suffix that indicates a file must be preprocessed by the C preprocessor
(cpp) before being compiled by XL Fortran. The default is F.

fsuffix The allowed suffix for Fortran source files. The default is f. The compiler
requires that all source files in a single compilation have the same suffix.
Therefore, to compile files with other suffixes, such as f95, you must
change this attribute in the configuration file or use the -qsuffix compiler
option. For more information on -qsuffix, see “-qsuffix” on page 242.

osuffix
The suffix used to recognize object files that are specified as input files.
The default is o.

ssuffix
The suffix used to recognize assembler files that are specified as input files.
The default is s.

Chapter 3. Setting up and customizing XL Fortran 15

smplibraries
Specifies the libraries that are used to link programs that you compiled
with the -qsmp compiler option.

defaultmsg
Absolute path name of the default message files.

include_64
Indicates the search path that is used for compilation include files, module
symbol files, and submodule symbol files.

Notes:

v To specify multiple search paths for compilation include files, separate each path
location with a comma as follows:
include = -I/path1, -I/path2, ...

v You can use the “-F” on page 71 option to select a different configuration file, a
specific stanza in the configuration file, or both.

Related information
v “XL Fortran input files” on page 23
v “XL Fortran output files” on page 24

Determining which level of XL Fortran is installed
Sometimes, you may not be sure which level of XL Fortran is installed on a
particular machine. You would need to know this information before contacting
software support.

To check whether the latest level of the product has been installed through the
system installation procedure, issue the command:

On SLES and RHEL
rpm -qa | grep xlf.15.1.3 | xargs rpm -qi

On Ubuntu
dpkg -l xlf.15.1.3

The result includes the version, release, modification, and fix level of the compiler
image installed on the system.

You can also use the -qversion compiler option to display the version, release, and
level of the compiler and its components.

Running two levels of XL Fortran
It is possible for two different levels of the XL Fortran compiler to coexist on one
system. This allows you to invoke one level by default and to invoke the other one
whenever you explicitly choose to.

To do this, consult the XL Fortran Installation Guide for details.

16 XL Fortran: Compiler Reference for Little Endian Distributions

Chapter 4. Editing, compiling, linking, and running XL Fortran
programs

Most Fortran program development consists of a repeating cycle of editing,
compiling and linking (which is by default a single step), and running. For
problems encountered during the development cycle, refer to the following
sections for help.

Prerequisite information:
1. Before you can use the compiler, all the required Linux settings (for example,

certain environment variables and storage limits) must be correct for your user
ID; for details, see “Correct settings for environment variables” on page 7.

2. To learn more about writing and optimizing XL Fortran programs, refer to the
XL Fortran Language Reference and XL Fortran Optimization and Programming
Guide.

Editing XL Fortran source files
To create Fortran source programs, you can use any of the available text editors,
such as vi or emacs. Source programs must have a suffix of .f unless the fsuffix
attribute in the configuration file specifies a different suffix, or the -qsuffix
compiler option is used. You can also use a suffix of .F if the program contains C
preprocessor (cpp) directives that must be processed before compilation begins.
Source files with the .f77, .f90, .f95, .f03, or .f08 suffix are also valid.

For the Fortran source program to be a valid program, it must conform to the
language definition that is specified in the XL Fortran Language Reference.

Compiling XL Fortran programs
To compile a source program, use one of the xlf90, xlf90_r, f90, xlf95, xlf95_r, f95,
xlf2003, xlf2003_r, f2003, xlf2008, xlf2008_r, f2008, xlf, xlf_r, f77, or fort77
commands, which have the form:

►► xlf
xlf_r
f77
fort77
xlf90
xlf90_r
f90
xlf95
xlf95_r
f95
xlf2003
xlf2003_r
f2003
xlf2008
xlf2008_r
f2008

▼ input_file
cmd_line_opt

►◄

© Copyright IBM Corp. 1990, 2015 17

These commands all accept essentially the same Fortran language. The main
difference is that they use different default options (which you can see by reading
the configuration file /opt/ibm/xlf/15.1.3/etc/xlf.cfg).

The invocation command performs the necessary steps to compile the Fortran
source files, assemble any .s files, and link the object files and libraries into an
executable program. In particular, the xlf_r, xlf90_r, xlf95_r, xlf2003_r, and
xlf2008_r commands use the components for multi-threading (libraries, and so on)
to link and bind object files.

The following table summarizes the invocation commands that you can use:

Table 5. XL Fortran Invocation commands

Driver Invocation Path or Location Chief Functionality Linked Libraries

xlf /opt/ibm/xlf/15.1.3/
bin

Selected Fortran
language level

libxlf90.so

xlf_r /opt/ibm/xlf/15.1.3/
bin

The threadsafe
version of the selected
language level

libxlf90_r.so

f77, fort77 /opt/ibm/xlf/15.1.3/
bin

FORTRAN 77 libxlf90.so

xlf90, f90 /opt/ibm/xlf/15.1.3/
bin

Fortran 90 libxlf90.so

xlf90_r /opt/ibm/xlf/15.1.3/
bin

Threadsafe Fortran 90 libxlf90_r.so

xlf95, f95 /opt/ibm/xlf/15.1.3/
bin

Fortran 95 libxlf90.so

xlf95_r /opt/ibm/xlf/15.1.3/
bin

Threadsafe Fortran 95 libxlf90_r.so

xlf2003 /opt/ibm/xlf/15.1.3/
bin

Fortran 2003 libxlf90.so

xlf2003_r /opt/ibm/xlf/15.1.3/
bin

Threadsafe Fortran
2003

libxlf90.so

f2003 /opt/ibm/xlf/15.1.3/
bin

Fortran 2003 libxlf90.so

xlf2008 /opt/ibm/xlf/15.1.3/
bin

Fortran 2008 libxlf90.so

xlf2008_r /opt/ibm/xlf/15.1.3/
bin

Threadsafe Fortran
2008

libxlf90.so

f2008 /opt/ibm/xlf/15.1.3/
bin

Fortran 2008 libxlf90.so

The xlf and xlf_r invocation commands select the appropriate language level
according to the suffix of the source file names. The other invocation commands
behave consistently no matter what the Fortran source file name suffix is. For
example, when you compile the following source files:
xlf program1.f program2.f90 program3.f95 program4.f03 program5.f08

the behavior is as follows:
v The program1.f file is compiled as if the invocation command was f77.
v The program2.f90 file is compiled as if the invocation command was xlf90.

18 XL Fortran: Compiler Reference for Little Endian Distributions

v The program3.f95 file is compiled as if the invocation command was xlf95.
v The program4.f03 file is compiled as if the invocation command was xlf2003.
v The program5.f08 file is compiled as if the invocation command was xlf2008.

libxlf90.so is provided for both threaded and non-threaded applications. XL
Fortran determines at run time whether your application is threaded.

XL Fortran provides the library libxlf90_t.so, in addition to libxlf90_r.so.
libxlf90_t.so exports the same entry points as libxlf90_r.so does. The library
libxlf90_r.so is a superset of libxlf90_t.so. The file xlf.cfg is set up to link to
libxlf90_r.so automatically when you use the xlf90_r, xlf95_r, and xlf_r
commands.libxlf90_t.so is a partial thread-support runtime library. Unlike
libxlf90_r.so, libxlf90_t.so does not provide thread synchronization and routines in
libxlf90_t.so are not thread-reentrant. Therefore, only one Fortran thread at a time
can perform I/O operations or invoke Fortran intrinsics. You can use libxlf90_t.so
instead of libxlf90_r.so in multithread applications where there is only one Fortran
thread, to avoid the thread synchronization overhead in libxlf90_r.so.

When you bind a multithreaded executable with multiple Fortran threads,
libxlf90_r.so should be used. Note that using the xlf_r, xlf90_r, xlf95_r, xlf2003_r,
or xlf2008_r invocation command ensures the proper linking.

The invocation commands have the following implications for directive triggers:
v For f77, fort77, f90, f95, f2003, xlf, xlf90, xlf95, xlf2003, and xlf2008, the directive

trigger is IBM* by default.
v For all other commands, the directive triggers are IBM* and IBMT by default.

If you specify the -qsmp option, the following effects occur:
v The compiler turns on automatic parallelization.
v In addition to IBM* and IBMT, the compiler also recognizes the IBMP, SMP$,

and $OMP directive triggers.
v If you specify the -qsmp=omp option, the compiler only recognizes the $OMP

directive trigger.

Compiling XL Fortran Version 2 programs
When used to compile .f, .F, .f77, or .F77 files, xlf maintains, wherever possible,
compatibility with existing programs by using the same I/O formats as earlier
versions of XL Fortran and some implementation behavior compatible with
FORTRAN 77.

If the configuration file has not been customized, f77 is identical to xlf when xlf is
used to compile the .f, .F, .f77, or .F77 files.

You may find that you need to continue using these commands for compatibility
with existing makefiles and build environments. However, be aware that programs
that you compile with these commands may not conform to the newer standard in
subtle ways.

Compiling Fortran 90 or Fortran 95 programs
The f90, xlf90, and xlf90_r commands make your programs conform more closely
to the Fortran 90 standard than do the other invocation commands. The f95, xlf95,
and xlf95_r commands make your programs conform more closely to the Fortran
95 standard than do the other invocation commands. f90, xlf90, xlf90_r, f95, xlf95,
and xlf95_r are the preferred commands for compiling any new programs. They all

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 19

accept Fortran 90 free source form by default; to use them for fixed source form,
you must use the -qfixed option. I/O formats are slightly different between these
commands and the other commands. I/O formats also differ between the set of
f90, xlf90 and xlf90_r commands and the set of f95, xlf95 and xlf95_r commands.
We recommend that you switch to the Fortran 95 formats for data files whenever
possible.

By default, the f90, xlf90, and xlf90_r commands do not conform completely to the
Fortran 90 standard. Also, by default, the f95, xlf95, and xlf95_r commands do not
conform completely to the Fortran 95 standard. If you need full Fortran 90 or
Fortran 95 compliance, compile with any of the following additional compiler
options (and suboptions):
-qnodirective -qnoescape -qfloat=nomaf:nofold -qnoswapomp
-qlanglvl=90std
-qlanglvl=95std

Also, specify the following runtime options before running the program, with a
command similar to one of the following:
export XLFRTEOPTS="err_recovery=no:langlvl=90std"
export XLFRTEOPTS="err_recovery=no:langlvl=95std"

The default settings are intended to provide the best combination of performance
and usability. Therefore, it is usually a good idea to change them only when
required. Some of the options above are only required for compliance in very
specific situations.

Compiling Fortran 2003 programs
The f2003, xlf2003, and xlf2003_r commands make your programs conform more
closely to the Fortran 2003 Standard than do the other invocation commands.The
Fortran 2003 commands accept free source form by default. I/O formats for the
Fortran 2003 commands are the same as for the f95, xlf95, and xlf95_r commands.
The Fortran 2003 commands format infinity and NaN floating-point values
differently from previous commands. The Fortran 2003 commands enable
polymorphism by default.

By default, the f2003, xlf2003, and xlf2003_r commands do not conform completely
to the Fortran 2003 standard. If you need full compliance, compile with the
following additional compiler suboptions:
-qlanglvl=2003std -qnodirective -qnoescape -qfloat=nomaf:rndsngl:nofold

-qnoswapomp -qstrictieeemod

Also specify the following runtime options:
XLFRTEOPTS="err_recovery=no:langlvl=2003std:iostat_end=2003std:

internal_nldelim=2003std"

Compiling Fortran 2008 programs
The f2008, xlf2008, and xlf2008_r commands make your programs conform more
closely to the Fortran 2008 Standard than do the other invocation commands. The
Fortran 2008 commands accept free source form by default. I/O formats for the
Fortran 2008 commands are the same as for the f95, xlf95, xlf95_r, xlf95_r7, f2003,
xlf2003, and xlf2003_r commands. The Fortran 2008 commands format infinity and
NaN floating-point values in the same way as the Fortran 2003 commands. The
Fortran 2008 commands enable polymorphism by default.

20 XL Fortran: Compiler Reference for Little Endian Distributions

By default, the f2008, xlf2008, and xlf2008_r commands do not conform completely
to the Fortran 2008 standard. If you need full compliance, compile with the
following additional compiler suboptions:
-qlanglvl=2008std -qnodirective -qnoescape -qfloat=nomaf:rndsngl:nofold

-qnoswapomp -qstrictieeemod

Also specify the following runtime options:
XLFRTEOPTS="err_recovery=no:langlvl=2008std:iostat_end=2003std:

internal_nldelim=2003std"

Related information
v “Compiling Fortran 2003 programs” on page 20

Compiling and linking a library

Compiling a static library
To compile a static library:
1. Compile each source file into an object file, with no linking. For example:

xlf -c bar.f example.f

2. Use the ar command to add the generated object files to an archive library file.
For example:
ar -rv libfoo.a bar.o example.o

Compiling a shared library
To compile a shared library, you must use the -qpic option.

Use the following steps to compile a shared library:
1. Compile your source files into an object file, with no linking. For example:

xlf -qpic -c foo.f

2. Use the -qmkshrobj compiler option to create a shared object from the
generated object files. For example:
xlf -qmkshrobj -o libfoo.so foo.o

Related information in the XL Fortran Compiler Reference

-qpic

-qmkshrobj

Linking a library to an application
You can use the same command string to link a static or shared library to your
main program. For example:
xlf -o myprogram main.f -Ldirectory1:directory2 [-Rdirectory] -ltest

At compile time, you instruct the linker to search for libtest.so in the first
directory specified via the -L option. If libtest.so is not found, the linker searches
for libtest.a. If neither file is found, the search continues with the next directory
specified via the -L option.

At run time, the runtime linker searches for libtest.so in the first directory
specified via the -R option. If libtest.so is not found, the search continues with
the next directory specified via the -R option. The path specified by the -R option
can be overridden at run time via the LD_LIBRARY_PATH environment variable.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 21

For additional linkage options, including options that modify the default behavior,
see the operating system ld documentation .

Related information in the XL Fortran Compiler Reference

-l

-L

Linking a shared library to another shared library
Just as you link modules into an application, you can create dependencies between
shared libraries by linking them together. For example:
xlf -qmkshrobj -o mylib.so myfile.o -Ldirectory -Rdirectory -lfoo

Related information in the XL Fortran Compiler Reference

-qmkshrobj

-L

Compiling XL Fortran SMP programs
You can use the xlf_r, xlf90_r, xlf95_r, xlf2003_r, or xlf2008_r command to compile
XL Fortran SMP programs. The xlf_r command is similar to the xlf command; the
xlf90_r command is similar to the xlf90 command; the xlf95_r command is similar
to the xlf95 command; the xlf2003_r command is similar to the xlf2003 command;
the xlf2008_r command is similar to the xlf2008 command. The main difference is
that the components for multi-threading are used to link and bind the object files if
you specify the xlf_r, xlf90_r, xlf95_r, xlf2003_r, or xlf2008_r command.

Note that using any of these commands alone does not imply parallelization. For
the compiler to recognize the SMP directives and activate parallelization, you must
also specify -qsmp. In turn, you can only specify the -qsmp option in conjunction
with one of these invocation commands. When you specify -qsmp, the driver links
in the libraries specified on the smplibraries line in the active stanza of the
configuration file.

POSIX pthreads API support
XL Fortran supports thread programming with the IEEE 1003.1-2001 (POSIX)
standard pthreads API.

To compile and then link your program with the standard interface libraries, use
the xlf_r, xlf90_r, xlf95_r, xlf2003_r, or xlf2008_r command. For example, you
could specify:
xlf95_r test.f

Compilation order for Fortran programs
If you have a program unit, subprogram, or interface body that uses a module,
you must first compile the module. If the module and the code that uses the
module are in separate files, you must first compile the file that contains the
module. If they are in the same file, the module must come before the code that
uses it in the file. If you change any entity in a module, you must recompile any
files that use that module.

F2008 If only the implementation of a separate module procedure is changed,
but the interface remains the same, you do not need to recompile the file that
contains the module in which the corresponding module procedure interface body
is declared. F2008

22 XL Fortran: Compiler Reference for Little Endian Distributions

Canceling a compilation
To stop the compiler before it finishes compiling, press Ctrl+C in interactive mode,
or use the kill command.

XL Fortran input files
The input files to the compiler are:

Source Files (.f or .F suffix)
All .f, .f77, .f90, .f95, .f03, .f08, and .F, .F77, .F90, .F95, .F03, and .F08 files
are source files for compilation. The compiler compiles source files in the
order you specify on the command line. If it cannot find a specified source
file, the compiler produces an error message and proceeds to the next file,
if one exists. Files with a suffix of .F are passed through the C preprocessor
(cpp) before being compiled.

Include files also contain source and often have different suffixes from .f.

Related information: See “Passing Fortran files through the C
preprocessor” on page 29.

The fsuffix and cppsuffix attributes in “Editing the default configuration
file” on page 13 and “-qsuffix” on page 242 let you select a different suffix.

Object Files (.o suffix)
All .o files are object files. After the compiler compiles the source files, it
uses the ld command to link-edit the resulting .o files, any .o files that you
specify as input files, and some of the .o and .a files in the product and
system library directories. It then produces a single executable output file.

Related information: See “Linking” on page 61 and “Linking XL Fortran
programs” on page 31.

The osuffix attribute, which is described in “Editing the default
configuration file” on page 13 and “-qsuffix” on page 242, lets you select a
different suffix.

Assembler Source Files (.s suffix)
The compiler sends any specified .s files to the assembler (as). The
assembler output consists of object files that are sent to the linker at link
time.

Related information: The ssuffix attribute, which is described in “Editing
the default configuration file” on page 13 and “-qsuffix” on page 242, lets
you select a different suffix.

Shared Object or Library Files (.so suffix)
These are object files that can be loaded and shared by multiple processes
at run time. When a shared object is specified during linking, information
about the object is recorded in the output file, but no code from the shared
object is actually included in the output file.

Configuration Files (.cfg suffix)
The contents of the configuration file determine many aspects of the
compilation process, most commonly the default options for the compiler.
You can use it to centralize different sets of default compiler options or to
keep multiple levels of the XL Fortran compiler present on a system.

The default configuration file is /opt/ibm/xlf/15.1.3/etc/xlf.cfg.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 23

Related information: See “Using custom compiler configuration files” on
page 9 and “-F” on page 71 for information about selecting the
configuration file.

Module Symbol Files: modulename.mod
A module symbol file is an output file from compiling a module and is an
input file for subsequent compilations of files that USE that module. One
.mod file is produced for each module, so compiling a single source file
may produce multiple .mod files.

Related information: See “-I” on page 76 and “-qmoddir” on page 187.

F2008 Submodule Symbol Files: ancestormodulename_submodulename.smod
A submodule symbol file is an output file from compiling a submodule
and is an input file for subsequent compilations of the descendant
submodules. One .smod file is produced for each submodule, so compiling
a single source file might produce multiple .smod files.

The submodule symbol file is not needed for compiling the ancestor
module or any compilation units that access the ancestor module via use
association.

Related information: See “-qmoddir” on page 187.
F2008

Profile Data Files

The -qpdf1 option produces runtime profile information for use in
subsequent compilations. This information is stored in one or more hidden
files with names that match the pattern “.*pdf*” or “.*pdf_map*”.

Related information: See “-qpdf1, -qpdf2” on page 195.

XL Fortran output files
The output files that XL Fortran produces are:

Executable Files: a.out
By default, XL Fortran produces an executable file that is named a.out in
the current directory.

Related information: See “-o” on page 85 for information on selecting a
different name and “-c” on page 69 for information on generating only an
object file.

Object Files: filename.o
If you specify the -c compiler option, instead of producing an executable
file, the compiler produces an object file for each specified source file, and
the assembler produces an object file for each specified assembler source
file. By default, the object files have the same file name prefixes as the
source files and appear in the current directory.

Related information:

v For the -c compiler option, see “-c” on page 69 and “Linking XL Fortran
programs” on page 31.

v For information on renaming the object file, see “-o” on page 85.

Assembler Source Files: filename.s
If you specify the -S compiler option, instead of producing an executable
file, the XL Fortran compiler produces an equivalent assembler source file

24 XL Fortran: Compiler Reference for Little Endian Distributions

for each specified source file. By default, the assembler source files have
the same file name prefixes as the source files and appear in the current
directory.

Related information: See “-S” on page 272 and “Linking XL Fortran
programs” on page 31. For information on renaming the assembler source
file, see “-o” on page 85.

Compiler Listing Files: filename.lst
By default, no listing is produced unless you specify one or more
listing-related compiler options. The listing file is placed in the current
directory, with the same file name prefix as the source file and a suffix of
.lst.

Related information: See “Listings, messages, and compiler information”
on page 56.

Module Symbol Files: modulename.mod
Each module has an associated symbol file that holds information needed
by program units, subprograms, and interface bodies that USE that
module. By default, these symbol files must exist in the current directory.

Related information: For information on putting .mod files in a different
directory, see “-qmoddir” on page 187.

F2008 Submodule Symbol Files: ancestormodulename_submodulename.smod
Each submodule has an associated symbol file that holds information
needed by the descendant submodules. By default, these symbol files must
exist in the current directory.

The submodule symbol file is not needed for compiling the ancestor
module or any compilation units that access the ancestor module via use
association.

Related information: For information on putting .smod files in a different
directory, see “-qmoddir” on page 187.

F2008

cpp-Preprocessed Source Files: Ffilename.f
If you specify the -d option when compiling a file with a .F suffix, the
intermediate file created by the C preprocessor (cpp) is saved rather than
deleted.

Related information: See “Passing Fortran files through the C
preprocessor” on page 29 and “-d” on page 70.

Profile Data Files (.*pdf*, .*pdf_map*)
These are the files that the -qpdf1 option produces. They are used in
subsequent compilations to tune optimizations that are based on actual
execution results.

Related information: See “-qpdf1, -qpdf2” on page 195.

Dependency Files: filename.d
A dependency file contains source file dependency information.
Dependency files are used by the make command to determine the order
in which files should be compiled and the minimum set of files that must
be recompiled when a file is changed. You can specify the “-MMD” on
page 80 or “-qmakedep” on page 179 option to generate a dependency file.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 25

Related information: For information on setting the name of the
dependency file, see “-MF” on page 79. For information on specifying the
target name of the object file in the dependency file, see “-MT” on page 81.

Scope and precedence of option settings
You can specify compiler options in any of three locations. Their scope and
precedence are defined by the location you use. (XL Fortran also has comment
directives, such as SOURCEFORM, that can specify option settings. There is no
general rule about the scope and precedence of such directives.)

Location Scope Precedence

In a stanza of the configuration
file.

All compilation units in all files
compiled with that stanza in effect.

Lowest

On the command line. All compilation units in all files
compiled with that command.

Medium

In an @PROCESS directive.
(XL Fortran also has comment
directives, such as
SOURCEFORM, that
can specify option settings.
There is no general rule
about the scope and
precedence of such
directives.)

The following compilation unit. Highest

If you specify an option more than once with different settings, the last setting
generally takes effect. Any exceptions are noted in the individual descriptions in
the Chapter 6, “Detailed descriptions of the XL Fortran compiler options,” on page
65 and are indexed under “conflicting options”.

Specifying options on the command line
XL Fortran supports the traditional UNIX method of specifying command-line
options, with one or more letters (known as flags) following a minus sign:

xlf95 -c file.f

You can often concatenate multiple flags or specify them individually:
xlf95 -cv file.f # These forms
xlf95 -c -v file.f # are equivalent

(There are some exceptions, such as -pg, which is a single option and not the same
as -p -g.)

Some of the flags require additional argument strings. Again, XL Fortran is flexible
in interpreting them; you can concatenate multiple flags as long as the flag with an
argument appears at the end. The following example shows how you can specify
flags:
All of these commands are equivalent.

xlf95 -g -v -o montecarlo -p montecarlo.f
xlf95 montecarlo.f -g -v -o montecarlo -p
xlf95 -g -v montecarlo.f -o montecarlo -p
xlf95 -g -v -omontecarlo -p montecarlo.f

Because -o takes a blank-delimited argument,

26 XL Fortran: Compiler Reference for Little Endian Distributions

the -p cannot be concatenated.
xlf95 -gvomontecarlo -p montecarlo.f

Unless we switch the order.
xlf95 -gvpomontecarlo montecarlo.f

If you are familiar with other compilers, particularly those in the XL family of
compilers, you may already be familiar with many of these flags.

You can also specify many command-line options in a form that is intended to be
easy to remember and make compilation scripts and makefiles relatively
self-explanatory:

►►

▼

▼

-q option_keyword
:

= suboption
,

= argument

►◄

This format is more restrictive about the placement of blanks; you must separate
individual -q options by blanks, and there must be no blank between a -q option
and a following argument string. Unlike the names of flag options, -q option
names are not case-sensitive except that the q must be lowercase. Use an equal
sign to separate a -q option from any arguments it requires, and use colons to
separate suboptions within the argument string.

For example:
xlf95 -qddim -qXREF=full -qfloat=nomaf:rsqrt -O3 -qcache=type=c:level=1 file.f

Specifying options in the source file
By putting the @PROCESS compiler directive in the source file, you can specify
compiler options to affect an individual compilation unit. The @PROCESS
compiler directive can override options specified in the configuration file, in the
default settings, or on the command line.

►► ▼

,

@PROCESS option
(suboption_list)

►◄

option is the name of a compiler option without the -q.

suboption
is a suboption of a compiler option.

In fixed source form, @PROCESS can start in column 1 or after column 6. In free
source form, the @PROCESS compiler directive can start in any column.

You cannot place a statement label or inline comment on the same line as an
@PROCESS compiler directive.

By default, option settings you designate with the @PROCESS compiler directive
are effective only for the compilation unit in which the statement appears. If the
file has more than one compilation unit, the option setting is reset to its original

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 27

state before the next unit is compiled. Trigger constants specified by the
DIRECTIVE option are in effect until the end of the file (or until NODIRECTIVE
is processed).

The @PROCESS compiler directive must usually appear before the first statement
of a compilation unit. The only exceptions are when specifying SOURCE and
NOSOURCE; you can put them in @PROCESS directives anywhere in the
compilation unit.

Passing command-line options to the "ld" or "as" command
Because the compiler automatically executes other commands, such as ld and as,
as needed during compilation, you usually do not need to concern yourself with
the options of those commands. If you want to choose options for these individual
commands, you can do one of the following:
v Include linker options on the compiler command line. When the compiler does

not recognize a command-line option other than a -q option, it passes the option
on to the linker:
xlf95 --print-map file.f # --print-map is passed to ld

v Use the -W compiler option to construct an argument list for the command:
xlf95 -Wl,--print-map file.f # --print-map is passed to ld

In this example, the ld option --print-map is passed to the linker (which is
denoted by the l in the -Wl option) when the linker is executed.
This form is more general than the previous one because it works for the as
command and any other commands called during compilation, by using
different letters after the -W option.

v Edit the configuration file /opt/ibm/xlf/15.1.3/etc/xlf.cfg, or construct your
own configuration file. You can customize particular stanzas to allow specific
command-line options to be passed through to the assembler or linker.
For example, if you include these lines in the xlf95 stanza of
/opt/ibm/xlf/15.1.3/etc/xlf.cfg:

asopt = "W"
ldopt = "M"

and issue this command:
xlf95 -Wa,-Z -Wl,-s -w produces_warnings.s uses_many_symbols.f

the file produces_warnings.s is assembled with the options -W and -Z (issue
warnings and produce an object file even if there are compilation errors), and
the linker is invoked with the options -s and -M (strip final executable file and
produce a load map).

Related information: See “-W” on page 276 and “Using custom compiler
configuration files” on page 9.

Displaying information inside binary files (strings)
The strings command reads information encoded into some binary files, as
follows:
v Information about the compiler version is encoded in the compiler binary

executables and libraries.
v Information about the parent module, bit mode, the compiler that created the

.mod file, the date and time the .mod file was created, and the source file is
encoded in each .mod file.

28 XL Fortran: Compiler Reference for Little Endian Distributions

For example, to see the information embedded in /opt/ibm/xlf/15.1.3/exe/
xlfentry, issue the following command:
strings /opt/ibm/xlf/15.1.3/exe/xlfentry | grep "@(#)"

Compiling for specific architectures
You can use -qarch and -qtune to instruct the compiler to generate and tune code
for a particular architecture. This allows the compiler to take advantage of
machine-specific instructions that can improve performance. The -qarch option
determines the architectures on which the resulting programs can run. The -qtune
and -qcache options refine the degree of platform-specific optimization performed.

By default, the -qarch setting produces code using only instructions common to all
supported architectures, with resultant settings of -qtune and -qcache that are
relatively general. To tune performance for a particular processor set or
architecture, you may need to specify different settings for one or more of these
options. The natural progression to try is to use -qarch, and then add -qtune, and
then add -qcache. Because the defaults for -qarch also affect the defaults for
-qtune and -qcache, the -qarch option is often all that is needed.

If the compiling machine is also the target architecture, -qarch=auto will
automatically detect the setting for the compiling machine. For more information
on this compiler option setting, see “-qarch” on page 93 and also -O4 and -O5
under the -O option.

If the compiling machine is also the target architecture, -qtune=auto will
automatically detect the setting for the compiling machine. For more information
on this compiler option setting, see “-qtune” on page 249 and also -O4 and -O5
under the -O option.

If your programs are intended for execution mostly on particular architectures, you
may want to add one or more of these options to the configuration file so that they
become the default for all compilations.

Passing Fortran files through the C preprocessor
A common programming practice is to pass files through the C preprocessor (cpp).
cpp can include or omit lines from the output file based on user-specified
conditions (“conditional compilation”). It can also perform string substitution
(“macro expansion”).

XL Fortran can use cpp to preprocess a file before compiling it.

To call cpp for a particular file, use a file suffix of .F, .F77, .F90, .F95, .F03, or .F08.
Each .F* file filename.F* is preprocessed into an intermediate file. You can save the
intermediate file by specifying the -d compiler option; otherwise, the file is deleted.
If you specify the -d option, the intermediate file name is Ffilename.f*. Otherwise,
the intermediate file name is /tmpdir/F8xxxxxx, where x is an alphanumeric
character and tmpdir is the contents of the TMPDIR environment variable or, if
you have not specified a value for TMPDIR, /tmp. If you only want to preprocess
and do not want to produce object or executable files, specify the -qnoobject
option also.

When XL Fortran uses cpp for a file, the preprocessor will emit #line directives
unless you also specify the -d option. The #line directive associates code that is
created by cpp or any other Fortran source code generator with input code that
you create. The preprocessor may cause lines of code to be inserted or deleted.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 29

Therefore, the #line directives that it emits can be useful in error reporting and
debugging, because they identify the source statements found in the preprocessed
code by listing the line numbers that were used in the original source.

The _OPENMP C preprocessor macro can be used to conditionally include code.
This macro is defined when the C preprocessor is invoked and when you specify
the -qsmp=omp compiler option. An example of using this macro follows:

program par_mat_mul
implicit none
integer(kind=8) ::i,j,nthreads
integer(kind=8),parameter ::N=60
integer(kind=8),dimension(N,N) ::Ai,Bi,Ci
integer(kind=8) ::Sumi

#ifdef _OPENMP
integer omp_get_num_threads

#endif

common/data/ Ai,Bi,Ci
!$OMP threadprivate (/data/)

!$omp parallel
forall(i=1:N,j=1:N) Ai(i,j) = (i-N/2)**2+(j+N/2)
forall(i=1:N,j=1:N) Bi(i,j) = 3-((i/2)+(j-N/2)**2)

!$omp master
#ifdef _OPENMP

nthreads=omp_get_num_threads()
#else

nthreads=8
#endif
!$omp end master
!$omp end parallel

!$OMP parallel default(private),copyin(Ai,Bi),shared(nthreads)
!$omp do

do i=1,nthreads
call imat_mul(Sumi)

enddo
!$omp end do
!$omp end parallel

end

See Conditional compilation in the Language Elements section of the XL Fortran
Language Reference for more information on conditional compilation.

To customize cpp preprocessing, the configuration file accepts the attributes cpp,
cppsuffix, and cppoptions.

The letter F denotes the C preprocessor with the -t and -W options.

Related information:
v “-d” on page 70
v “-t” on page 272
v “-W” on page 276
v “-qfpp” on page 131
v “-qppsuborigarg” on page 207
v “Using custom compiler configuration files” on page 9

cpp directives for XL Fortran programs
Macro expansion can have unexpected consequences that are difficult to debug,
such as modifying a FORMAT statement or making a line longer than 72

30 XL Fortran: Compiler Reference for Little Endian Distributions

characters in fixed source form. Therefore, we recommend using cpp primarily for
conditional compilation of Fortran programs. The cpp directives that are most
often used for conditional compilation are #if, #ifdef, #ifndef, #elif, #else, and
#endif.

Passing options to the C preprocessor
Because the compiler does not recognize cpp options other than -I directly on the
command line, you must pass them through the -W option. For example, if a
program contains #ifdef directives that test the existence of a symbol named
LNXV1, you can define that symbol to cpp by compiling with a command like:

xlf95 conditional.F -WF,-DLNXV1

Avoiding preprocessing problems
Because Fortran and C differ in their treatment of some sequences of characters, be
careful when using /* or */. These might be interpreted as C comment delimiters,
possibly causing problems even if they occur inside Fortran comments. Also be
careful when using three-character sequences that begin with ?? (which might be
interpreted as C trigraphs).

Consider the following example:
program testcase
character a
character*4 word
a = ’?’
word(1:2) = ’??’
print *, word(1:2)
end program testcase

If the preprocessor matches your character combination with the corresponding
trigraph sequence, your output may not be what you expected.

If your code does not require the use of the XL Fortran compiler option
-qnoescape, a possible solution is to replace the character string with an escape
sequence word(1:2) = '\?\?'. However, if you are using the -qnoescape compiler
option, this solution will not work. In this case, you require a cpp that will ignore
the trigraph sequence. XL Fortran uses the cpp that is shipped as part of the
compiler. It is ISO C compliant and therefore recognizes trigraph sequences.

Linking XL Fortran programs
By default, you do not need to do anything special to link an XL Fortran program.
The compiler invocation commands automatically call the linker to produce an
executable output file. For example, running the following command compiles and
produces object files file1.o and file3.o.
xlf95 file1.f file2.o file3.f

Then all object files are submitted to the linker to produce one executable file.

After linking, follow the instructions in “Running XL Fortran programs” on page
33 to execute the program.

To link a library, follow the instructions in “Compiling and linking a library” on
page 21.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 31

Note: If you want to use a nondefault linker, you can use either of the following
options:
v Use -t and -B to specify the nondefault linker, for example,

-tl -Blinker_path

v Customize the configuration file of the compiler to use the nondefault linker. For
more information about how to customize the configuration file, see Using
custom compiler configuration files and Creating custom configuration files.

Compiling and linking in separate steps
To produce object files that can be linked later, use the -c option.
xlf95 -c file1.f # Produce one object file (file1.o)
xlf95 -c file2.f file3.f # Or multiple object files (file1.o, file3.o)
xlf95 file1.o file2.o file3.o # Link object files with appropriate libraries

It is often best to execute the linker through the compiler invocation command,
because it passes some extra ld options and library names to the linker
automatically.

Passing options to the ld command
For the detailed information about passing options to the ld command, see Passing
command-line options to the "ld" or "as" command.

Dynamic and static linking
XL Fortran allows your programs to take advantage of the operating system
facilities for both dynamic and static linking:
v Dynamic linking means that the code for some external routines is located and

loaded when the program is first run. When you compile a program that uses
shared libraries, the shared libraries are dynamically linked to your program by
default.
Dynamically linked programs take up less disk space and less virtual memory if
more than one program uses the routines in the shared libraries. During linking,
there are less chances for naming conflicts with library routines or external data
objects because only exported symbols are visible outside a shared library. They
may perform better than statically linked programs if several programs use the
same shared routines at the same time. They also allow you to upgrade the
routines in the shared libraries without relinking.
Because this form of linking is the default, you need no additional options to
turn it on.

v Static linking means that the code for all routines called by your program
becomes part of the executable file.
Statically linked programs can be moved to and run on systems without the XL
Fortran libraries. They may perform better than dynamically linked programs if
they make many calls to library routines or call many small routines. There are
more chances for naming conflicts with library routines or external data objects
because all global symbols are visible outside a static library. They also may not
work if you compile them on one level of the operating system and run them on
a different level of the operating system.
To link statically, add the -qstaticlink option to the linker command. For
example:
xlf95 -qstaticlink test.f

32 XL Fortran: Compiler Reference for Little Endian Distributions

Avoiding naming conflicts during linking
If you define an external subroutine, external function, or common block with the
same name as a runtime or system library routine, your definition of that name
may be used in its place, or it may cause a link-edit error.

Try the following general solution to help avoid these kinds of naming conflicts:
v Compile all files with the -qextname option. It adds an underscore to the end of

the name of each global entity, making it distinct from any names in the system
libraries.

Note: When you use this option, you do not need to use the final underscore in
the names of Service and Utility Subprograms, such as dtime_ and flush_.

v Link your programs dynamically, which is the default.

If you do not use the -qextname option, you must take the following extra
precautions to avoid conflicts with the names of the external symbols in the XL
Fortran and system libraries:
v Do not name a subroutine or function main, because XL Fortran defines an entry

point main to start your program.
v Do not use any global names that begin with an underscore. In particular, the XL

Fortran libraries reserve all names that begin with _xl.
v Do not use names that are the same as names in the XL Fortran library or one of

the system libraries. To determine which names are not safe to use in your
program, run the nm command on any libraries that are linked into the program
and search the output for names you suspect might also be in your program.

Be careful not to use the names of subroutines or functions without defining the
actual routines in your program. If the name conflicts with a name from one of the
libraries, the program could use the wrong version of the routine and not produce
any compile-time or link-time errors.

Running XL Fortran programs
The default file name for the executable program is a.out. You can select a different
name with the -o compiler option. You should avoid giving your programs the
same names as system or shell commands (such as test or cp), as you could
accidentally execute the wrong command. If a name conflict does occur, you can
execute the program by specifying a path name, such as ./test.

You can run a program by entering the path name and file name of an executable
file along with any runtime arguments on the command line.

Canceling execution
To suspend a running program, press the Ctrl+Z key while the program is in the
foreground. Use the fg command to resume running.

To cancel a running program, press the Ctrl+C key while the program is in the
foreground.

Compiling and executing on different systems
If you want to move an XL Fortran executable file to a different system (running
the same or a compatible operating system) for execution, you can link statically
and copy the program, and optionally the runtime message catalogs. Alternatively,
you can link dynamically and copy the program as well as the XL Fortran libraries

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 33

if needed and optionally the runtime message catalogs. For non-SMP programs,
libxlf90.so, libxlfmath.so, and libxlomp_ser.so are usually the only XL Fortran
libraries needed. For SMP programs, you will usually need at least the libxlf90.so,
libxlfmath.so, and libxlsmp.so libraries. libxlfpmt*.so is only needed if the
program is compiled with the -qautodbl option.

For a dynamically linked program to work correctly, the XL Fortran libraries and
the operating system on the execution system must be at either the same level or a
more recent level than on the compilation system.

For a statically linked program to work properly, the operating system level may
need to be the same on the execution system as it is on the compilation system.

Related information: See “Dynamic and static linking” on page 32.

Runtime libraries for POSIX pthreads support
There are two runtime libraries that are connected with POSIX thread support. The
libxlf90_r.so library is a threadsafe version of the Fortran runtime library. The
libxlsmp.so library is the SMP runtime library.

Depending on the invocation command, and in some cases, the compiler option,
the appropriate set of libraries for thread support is bound in. For example:

Command Libraries Used Include Directory

xlf90_r
xlf95_r
xlf_r

/opt/ibm/xlf/15.1.3/lib/libxlf90_r.so

/opt/ibm/xlf/15.1.3/lib/libxlsmp.so

/opt/ibm/xlf/15.1.3/include

Setting runtime options
Internal switches in an XL Fortran program control runtime behavior, similar to the
way compiler options control compile-time behavior. You can set the runtime
options through either environment variables or a procedure call within the
program. You can specify XL Fortran runtime option settings by using the
following environment variables: XLFRTEOPTS and XLSMPOPTS .

The XLFRTEOPTS environment variable
The XLFRTEOPTS environment variable allows you to specify options that affect
the runtime behavior of items such as I/O, EOF error-handling, the specification of
random-number generators, and more. You can declare XLFRTEOPTS by using the
following bash command format:

►► ▼

:

XLFRTEOPTS= runtime_option_name = option_setting
" "

►◄

You can specify option names and settings in uppercase or lowercase. You can add
blanks before and after the colons and equal signs to improve readability.
However, if the XLFRTEOPTS option string contains imbedded blanks, you must
enclose the entire option string in double quotation marks (").

The environment variable is checked when the program first encounters one of the
following conditions:
v An I/O statement is executed.

34 XL Fortran: Compiler Reference for Little Endian Distributions

v The RANDOM_SEED procedure is executed.
v An ALLOCATE statement needs to issue a runtime error message.
v A DEALLOCATE statement needs to issue a runtime error message.
v The multithreaded implementation of the MATMUL procedure is executed.

Changing the XLFRTEOPTS environment variable during the execution of a
program has no effect on the program.

The SETRTEOPTS procedure (which is defined in the XL Fortran Language
Reference) accepts a single-string argument that contains the same name-value pairs
as the XLFRTEOPTS environment variable. It overrides the environment variable
and can be used to change settings during the execution of a program. The new
settings remain in effect for the rest of the program unless changed by another call
to SETRTEOPTS. Only the settings that you specified in the procedure call are
changed.

You can specify the following runtime options with the XLFRTEOPTS environment
variable or the SETRTEOPTS procedure:

aggressive_array_io={yes | no}
Controls whether or not the XL Fortran run time will take advantage of
descriptor information when deciding to apply slower or faster algorithms to
do array I/O operations. Descriptor information that specifies an array or array
section as contiguous can be used to apply the faster algorithms which would
otherwise be unsafe if the array or array section was not contiguous. The
default is to perform aggressive array I/O operations.

Code executing under the current XL Fortran runtime but compiled with older
XL Fortran compilers can cause the aggressive array I/O operations to be
unsafe if the older compilers did not set the XL Fortran descriptor information
correctly. This can be a problem with code built with old XL Fortran compilers
no longer in service or built with XL Fortran compilers not at the latest service
levels. Older code should be recompiled, if possible, with the current compiler
instead of relying on the use of this option.

buffering={enable | disable_preconn | disable_all}
Determines whether the XL Fortran runtime library performs buffering for I/O
operations.

The library reads data from, or writes data to the file system in chunks for
READ or WRITE statements, instead of piece by piece. The major benefit of
buffering is performance improvement.

If you have applications in which Fortran routines work with routines in other
languages or in which a Fortran process works with other processes on the
same data file, the data written by Fortran routines may not be seen
immediately by other parties (and vice versa), because of the buffering. Also, a
Fortran READ statement may read more data than it needs into the I/O buffer
and cause the input operation performed by a routine in other languages or
another process that is supposed to read the next data item to fail. In these
cases, you can use the buffering runtime option to disable the buffering in the
XL Fortran runtime library. As a result, a READ statement will read in exactly
the data it needs from a file and the data written by a WRITE statement will
be flushed out to the file system at the completion of the statement.

Note: I/O buffering is always enabled for files on sequential access devices
(such as pipes, terminals, sockets). The setting of the buffering option has no
effect on these types of files.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 35

If you disable I/O buffering for a logical unit, you do not need to flush the
contents of the I/O buffer for that logical unit with the FLUSH statement or
the Fortran service routine flush_.

The suboptions for buffering are as follows:

enable
The Fortran runtime library maintains an I/O buffer for each
connected logical unit. The current read-write file pointers that the
runtime library maintains might not be synchronized with the
read-write pointers of the corresponding files in the file system.

disable_preconn
The Fortran runtime library does not maintain an I/O buffer for each
preconnected logical unit (0, 5, and 6). However, it does maintain I/O
buffers for all other connected logical units. The current read-write file
pointers that the runtime library maintains for the preconnected units
are the same as the read-write pointers of the corresponding files in the
file system.

disable_all
The Fortran runtime library does not maintain I/O buffers for any
logical units. You should not specify the buffering=disable_all option
with Fortran programs that perform asynchronous I/O.

In the following example, Fortran and C routines read a data file through
redirected standard input. First, the main Fortran program reads one integer.
Then, the C routine reads one integer. Finally, the main Fortran program reads
another integer.

Fortran main program:
integer(4) p1,p2,p3
print *,’Reading p1 in Fortran...’
read(5,*) p1
call c_func(p2)
print *,’Reading p3 in Fortran...’
read(5,*) p3
print *,’p1 p2 p3 Read: ’,p1,p2,p3
end

C subroutine (c_func.c):
#include <stdio.h>
void
c_func(int *p2)
{

int n1 = -1;

printf("Reading p2 in C...\n");
setbuf(stdin, NULL); /* Specifies no buffering for stdin */
fscanf(stdin,"%d", &n1);
*p2=n1;
fflush(stdout);

}

Input data file (infile):
11111
22222
33333
44444

The main program runs by using infile as redirected standard input, as
follows:
$ main < infile

36 XL Fortran: Compiler Reference for Little Endian Distributions

If you turn on buffering=disable_preconn, the results are as follows:
Reading p1 in Fortran...
Reading p2 in C...
Reading p3 in Fortran...
p1 p2 p3 Read: 11111 22222 33333

If you turn on buffering=enable, the results are unpredictable.

buffer_size=size
Specifies the size of I/O buffers in bytes instead of using the block size of
devices. size must be either -1 or an integer value that is greater than or equal
to 4096. The default, -1, uses the block size of the device where the file resides.

Using this option can reduce the amount of memory used for I/O buffers
when an application runs out of memory because the block size of devices is
very large and the application opens many files at the same time.

Note the following when using this runtime option:
v Preconnected units remain unaffected by this option. Their buffer size is the

same as the block size of the device where they reside except when the
block size is larger than 64KB, in which case the buffer size is set to 64KB.

v This runtime option does not apply to files on a tape device or logical
volume.

v Specifying the buffer size with the SETRTEOPTS procedure overrides any
value previously set by the XLFRTEOPTS environment variable or
SETRTEOPTS procedure. The resetting of this option does not affect units that
have already been opened.

cnverr={yes | no}
If you set this runtime option to no, the program does not obey the IOSTAT=
and ERR= specifiers for I/O statements that encounter conversion errors.
Instead, it performs default recovery actions (regardless of the setting of
err_recovery) and may issue warning messages (depending on the setting of
xrf_messages).

Related information: For more information about conversion errors, see Data
transfer statements in the XL Fortran Language Reference. For more information
about IOSTAT values, see Conditions and IOSTAT values in the XL Fortran
Language Reference.

cpu_time_type={usertime | systime | alltime | total_usertime |
total_systime | total_alltime}

Determines the measure of time returned by a call to CPU_TIME(TIME).

The suboptions for cpu_time_type are as follows:

usertime
Returns the user time of a process.

systime
Returns the system time of a process.

alltime
Returns the sum of the user and system time of a process.

total_usertime
Returns the total user time of a process. The total user time is the sum
of the user time of a process and the total user times of its child
processes, if any.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 37

total_systime
Returns the total system time of a process. The total system time is the
sum of the system time of the current process and the total system
times of its child processes, if any.

total_alltime
Returns the total user and system time of a process. The total user and
system time is the sum of the user and system time of the current
process and the total user and system times of their child processes, if
any.

default_recl={64 | 32}
Allows you to determine the default record size for sequential files opened
without a RECL= specifier. The suboptions are as follows:

64 Uses a 64-bit value as the default record size.

32 Uses a 32-bit value as the default record size.

Use default_recl when porting 32-bit programs to 64-bit mode where a 64-bit
record length will not fit into the specified integer variable. Consider the
following:
INTEGER(4) I
OPEN (11)
INQUIRE (11, RECL=i)

A runtime error occurs in the above code sample when default_recl=64, since
the default record length of 2**63-1 does not fit into the 4-byte integer I.
Specifying default_recl=32 ensures a default record size of 2**31-1, which fits
into I.

For more information on the RECL= specifier, see the OPEN statement in the
XL Fortran Language Reference.

errloc={yes | no}
Controls whether the file name and line number are displayed with an error
message if a runtime error condition occurs during an I/O, ALLOCATE or
DEALLOCATE statement. By default, the line number and file name appear
prepended to the runtime error messages. If errloc=no is specified, runtime
error messages are displayed without the source location information.

The errloc runtime option can be specified with the SETRTEOPTS procedure,
as well.

erroreof={yes | no}
Determines whether the label specified by the ERR= specifier is to be branched
to if no END= specifier is present when an end-of-file condition is
encountered.

err_recovery={yes | no}
If you set this runtime option to no, the program stops if there is a recoverable
error while executing an I/O statement with no IOSTAT= or ERR= specifiers.
By default, the program takes some recovery action and continues when one of
these statements encounters a recoverable error. Setting cnverr to yes and
err_recovery to no can cause conversion errors to halt the program.

errthrdnum={yes | no}
When errthrdnum=yes is in effect, XL Fortran appends to all error messages
the thread number of the running thread that is specified by the
omp_get_thread_num routine. For single-threaded programs, the thread
number is 0.

38 XL Fortran: Compiler Reference for Little Endian Distributions

If you specify errloc=yes, the thread number is displayed in front of the file
name and line number. If the IOMSG= specifier is present in an I/O
statement, the thread number is prefixed to the error message and the other
part of the message uses the same format as displayed on Standard error.

errtrace={yes | no}
Controls whether a traceback is displayed with an error message if a runtime
error condition occurs during an I/O, ALLOCATE or DEALLOCATE
statement. Specifying errtrace=no means runtime error messages are displayed
without tracebacks.

To show more detailed information in tracebacks, compile with the
-qlinedebug or -g option.

Tracebacks are not displayed if either of the following conditions is true:
v You use the IOSTAT=, ERR=, END=, or EOR= specifier in an I/O

statement.
v You use the STAT= specifier in an ALLOCATE or DEALLOCATE statement.

For example, in the following sample code, the ERR= specifier is used to
branch to some error handling code. Because the I/O statement causing the
error specifies ERR=, no traceback is generated. The output is Open error.,
although errtrace=yes is specified.
program open_error
open(unit=11, file=’doesnotexist’, status=’old’, err=200) ! no traceback
close(11)
200 print *, ’Open error.’
end

iostat_end={extended | 2003std}
Sets the IOSTAT values based on the XL Fortran definition or the Fortran 2003
Standard when end-of-file and end-of-record conditions occur. The suboptions
are as follows:

extended
Sets the IOSTAT variables based on XL Fortran's definition of values
and conditions.

2003std
Sets the IOSTAT variables based on Fortran 2003's definition of values
and conditions.

For example, setting the iostat_end=2003std runtime option results in a
different IOSTAT value from extensions being returned for the end-of-file
condition

export XLFRTEOPTS=iostat_end=2003std
character(10) ifl
integer(4) aa(3), ios
ifl = "12344321 "
read(ifl, ’(3i4)’, iostat=ios) aa ! end-of-file condition occurs and

! ios is set to -1 instead of -2.

For more information on setting and using IOSTAT values, see the READ,
WRITE, and Conditions and IOSTAT values sections in the XL Fortran Language
Reference.

intrinthds={num_threads}
Specifies the number of threads for parallel execution of the MATMUL and
RANDOM_NUMBER intrinsic procedures. The default value for num_threads
when using the MATMUL intrinsic equals the number of processors online.
The default value for num_threads when using the RANDOM_NUMBER
intrinsic is equal to the number of processors online*2.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 39

Changing the number of threads available to the MATMUL and
RANDOM_NUMBER intrinsic procedures can influence performance.

langlvl={ | 90std | 95std | 2003std | 2008std | extended}
Determines the level of support for Fortran standards and extensions to the
standards. The values of the suboptions are as follows:

90std Instructs the compiler to flag any extensions to the Fortran 90 standard
I/O statements and formats as errors.

95std Instructs the compiler to flag any extensions to the Fortran 95 standard
I/O statements and formats as errors.

2003std
Instructs the compiler to flag any extensions to the Fortran 2003
standard I/O statements and formats as errors.

For example, setting the langlvl=2003std runtime option results in a
runtime error message.
integer(4) aa(100)
call setrteopts("langlvl=2003std")

... ! Write to a unit without explicitly

... ! connecting the unit to a file.
write(10, *) aa ! The implicit connection to a file does not

... ! comform with Fortran 2003 behavior.

2008std
Instructs the compiler to accept all standard I/O statements and
formats that the Fortran 2003 standard specifies, as well as any Fortran
2008 formats that XL Fortran supports. Anything else is flagged as an
error.

extended
Instructs that the compiler to accept the Fortran 95 language standard,
Fortran 2003 features, the Fortran 2008 features supported by XL
Fortran, and extensions, effectively turning off language-level checking.

To obtain support for items that are part of the Fortran 95 standard and are
available in XL Fortran (such as namelist comments), you must specify one of
the following suboptions:
v 95std

v 2003std

v 2008std

v extended

The following example contains a Fortran 95 extension (the file specifier is
missing from the OPEN statement):
program test1

call setrteopts("langlvl=95std")
open(unit=1,access="sequential",form="formatted")

10 format(I3)

write(1,fmt=10) 123

end

Specifying langlvl=95std results in a runtime error message.

The following example contains a Fortran 95 feature (namelist comments) that
was not part of Fortran 90:

40 XL Fortran: Compiler Reference for Little Endian Distributions

program test2

INTEGER I
LOGICAL G
NAMELIST /TODAY/G, I

call setrteopts("langlvl=95std:namelist=new")

open(unit=2,file="today.new",form="formatted", &
& access="sequential", status="old")

read(2,nml=today)
close(2)

end

today.new:

&TODAY ! This is a comment
I = 123, G=.true. /

If you specify langlvl=95std, no runtime error message is issued. However, if
you specify langlvl=90std, a runtime error message is issued.

The err_recovery setting determines whether any resulting errors are treated as
recoverable or severe.

multconn={yes | no}
Enables you to access the same file through more than one logical unit
simultaneously. With this option, you can read more than one location within a
file simultaneously without making a copy of the file.

You can only use multiple connections within the same program for files on
random-access devices, such as disk drives. In particular, you cannot use
multiple connections within the same program for:
v Files have been connected for write-only (ACTION='WRITE')
v Asynchronous I/O
v Files on sequential-access devices (such as pipes, terminals, sockets)

To avoid the possibility of damaging the file, keep the following points in
mind:
v The second and subsequent OPEN statements for the same file can only be

for reading.
v If you initially opened the file for both input and output purposes

(ACTION='READWRITE'), the unit connected to the file by the first OPEN
becomes read-only (ACCESS='READ') when the second unit is connected.
You must close all of the units that are connected to the file and reopen the
first unit to restore write access to it.

v Two files are considered to be the same file if they share the same device
and i-node numbers. Thus, linked files are considered to be the same file.

multconnio={tty | nulldev | combined | no }
Enables you to connect a device to more than one logical unit. You can then
write to, or read from, more than one logical unit that is attached to the same
device. The suboptions are as follows:

combined
Enables you to connect a combination of null and TTY devices to more
than one logical unit.

nulldev
Enables you to connect the null device to more than one logical unit.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 41

tty
Enables you to connect a TTY device to more than one logical unit.

Note: Using this option can produce unpredictable results.

In your program, you can now specify multiple OPEN statements that
contain different values for the UNIT parameters but the same value for
the FILE parameters. For example, if you have a symbolic link called
mytty that is linked to TTY device /dev/tty, you can run the following
program when you specify the multconnio=tty option:
PROGRAM iotest
OPEN(UNIT=3, FILE=’mytty’, ACTION="WRITE")
OPEN(UNIT=7, FILE=’mytty’, ACTION="WRITE")
END PROGRAM iotest

Fortran preconnects units 0, 5, and 6 to the same TTY device. Normally,
you cannot use the OPEN statement to explicitly connect additional units
to the TTY device that is connected to units 0, 5, and 6. However, this is
possible if you specify the multconnio=tty option. For example, if units 0,
5, and 6 are preconnected to TTY device /dev/tty, you can run the
following program if you specify the multconnio=tty option:
PROGRAM iotest

! /dev/pts/2 is your current tty, as reported by the ’tty’ command.
! (This changes every time you login.)
CALL SETRTEOPTS (’multconnio=tty’)
OPEN (UNIT=3, FILE=’/dev/pts/2’)
WRITE (3, *) ’hello’ ! Display ’hello’ on your screen

END PROGRAM

namelist={new | old}
Determines whether the program uses the XL Fortran new or old NAMELIST
format for input and output. The Fortran 90 and Fortran 95 standards require
the new format.

Note: You may need the old setting to read existing data files that contain
NAMELIST output.However, use the standard-compilant new format in
writing any new data files.

With namelist=old, the nonstandard NAMELIST format is not considered an
error by the langlvl=90std, langlvl=95std, or langlvl=2003std setting.

Related information: For more information about NAMELIST I/O, see
Namelist formatting in the XL Fortran Language Reference.

naninfoutput={2003std | old | default}
Controls whether the display of IEEE exceptional values conform to the
Fortran 2003 standard or revert to the old XL Fortran behavior. This runtime
option allows object files created with different compilation commands to
output all IEEE exceptional values based on the old behavior, or the Fortran
2003 standard. The suboptions are:

default
Exceptional values output depends on how the program is compiled.

old
Exceptional values output conforms to the old XL Fortran behavior.

2003std
Exceptional values output conforms to the Fortran 2003 standard.

nlwidth=record_width
By default, a NAMELIST write statement produces a single output record long

42 XL Fortran: Compiler Reference for Little Endian Distributions

enough to contain all of the written NAMELIST items. To restrict NAMELIST
output records to a given width, use the nlwidth runtime option.

Note: The RECL= specifier for sequential files has largely made this option
obsolete, because programs attempt to fit NAMELIST output within the
specified record length. You can still use nlwidth in conjunction with RECL=
as long as the nlwidth width does not exceed the stated record length for the
file.

random={generator1 | generator2}
Specifies the generator to be used by RANDOM_NUMBER if
RANDOM_SEED has not yet been called with the GENERATOR argument.
The value generator1 (the default) corresponds to GENERATOR=1, and
generator2 corresponds to GENERATOR=2. If you call RANDOM_SEED with
the GENERATOR argument, it overrides the random option from that point
onward in the program. Changing the random option by calling SETRTEOPTS
after calling RANDOM_SEED with the GENERATOR option has no effect.

scratch_vars={yes | no}
To give a specific name to a scratch file, set the scratch_vars runtime option to
yes, and set the environment variable XLFSCRATCH_unit to the name of the
file you want to be associated with the specified unit number. See Naming
scratch files in the XL Fortran Optimization and Programming Guide for examples.

ufmt_bigendian={units_list}
Specifies unit numbers of unformatted data files on which big-endian I/O is to
be performed. The big-endian format data in the specified unformatted files is
converted, on-the-fly, during the I/O operation to and from the little-endian
format used on machines where XL Fortran applications are running.

This runtime option does not work with internal files; internal files are always
FORMATTED. Units specified must be connected by an explicit or implicit
OPEN for the UNFORMATTED form of I/O.

The syntax for this option is as follows:
ufmt_bigendian=units_list

where:
units_list = units | units_list, units

units = unit | unit- | -unit | unit1-unit2 | newunit | *

The unit number must be an integer, whose value is in the range 1 through 2
147 483 647.

unit Specifies the number of the logical unit.

unit- Specifies the range of units, starting from unit number unit to the
highest possible unit number

-unit Specifies the range of units, starting from unit number 1 to unit
number unit.

unit1-unit2
Specifies the range of units, starting from unit number unit1 to unit
number unit2.

newunit
Specifies the range of all NEWUNIT values. For details about
NEWUNIT values, see NEWUNIT value.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 43

* Specifies all units. It is equivalent to 1-,newunit.

Note:

1. The byte order of data of type CHARACTER is not swapped.
2. The compiler assumes that the internal representation of values of type

REAL*4 or REAL*8 is IEEE floating-point format compliant. I/O may not
work properly with an internal representation that is different.

3. The internal representation of values of type REAL*16 is inconsistent
among different vendors. The compiler treats the internal representation of
values of type REAL*16 to be the same as XL Fortran's. I/O may not work
properly with an internal representation that is different.

4. Conversion of derived type data is not supported. The alignment of
derived types is inconsistent among different vendors.

5. Discrepancies in implementations from different vendors may cause
problems in exchanging the big-endian unformatted data files between XL
Fortran applications running on Linux and Fortran applications running on
big-endian systems. XL Fortran provides a number of options that help
users port their programs to XL Fortran. If there are problems exchanging
big-endian data files, check these options to see if they can help with the
problem.

6. XL Fortran provides several methods of specifying the byte order of
unformatted data transfer. The ufmt_bigendian option has the highest
precedence, followed by the CONVERT= specifier and the -qufmt option.
For more information, see CONVERT= specifier in the OPEN statement
and “-qufmt” on page 250.

unit_vars={yes | no}
To give a specific name to an implicitly connected file or to a file opened with
no FILE= specifier, you can set the runtime option unit_vars=yes and set one
or more environment variables with names of the form XLFUNIT_unit to file
names. See Naming files that are connected with no explicit name in the XL Fortran
Optimization and Programming Guide for examples.

uwidth={32 | 64}
To specify the width of record length fields in unformatted sequential files,
specify the value in bits. When the record length of an unformatted sequential
file is greater than (2**31 - 1) bytes minus 8 bytes (for the record terminators
surrounding the data), you need to set the runtime option uwidth=64 to
extend the record length fields to 64 bits. This allows the record length to be
up to (2**63 - 1) minus 16 bytes (for the record terminators surrounding the
data).

xrf_messages={yes | no}
To prevent programs from displaying runtime messages for error conditions
during I/O operations, RANDOM_SEED calls, and ALLOCATE or
DEALLOCATE statements, set the xrf_messages runtime option to no.
Otherwise, runtime messages for conversion errors and other problems are sent
to the standard error stream.

The following examples set the cnverr runtime option to yes and the xrf_messages
option to no.
Basic format

XLFRTEOPTS=cnverr=yes:xrf_messages=no
export XLFRTEOPTS

44 XL Fortran: Compiler Reference for Little Endian Distributions

With imbedded blanks
XLFRTEOPTS="xrf_messages = NO : cnverr = YES"
export XLFRTEOPTS

As a call to SETRTEOPTS, this example could be:
CALL setrteopts(’xrf_messages=NO:cnverr=yes’)

! Name is in lowercase in case -U (mixed) option is used.

Setting OMP and SMP run time options
The XLSMPOPTS environment variable allows you to specify options that affect
SMP execution. The OpenMP environment variables, OMP_DYNAMIC,
OMP_NESTED, OMP_NUM_THREADS, and OMP_SCHEDULE, allow you to
control the execution of parallel code. For details on using these, see XLSMPOPTS
and OpenMP environment variables sections in the XL Fortran Optimization and
Programming Guide.

BLAS/ESSL environment variable
By default, the libxlopt library is linked with any application you compile with
XL Fortran. However, if you are using a third-party Basic Linear Algebra
Subprograms (BLAS) library or want to ship a binary file that includes ESSL
routines, you must specify these using the XL_BLAS_LIB environment variable. For
example, if your own BLAS library is called libblas, set the environment variable
as follows:
export XL_BLAS_LIB=/usr/lib/libblas.a

When the compiler generates calls to BLAS routines, the ones defined in the
libblas library will be used at run time instead of those defined in libxlopt.

XLF_USR_CONFIG
Use the XLF_USR_CONFIG environment variable to specify the location of a
custom configuration file to be used by the compiler. The file name must be given
with its absolute path. The compiler will first process the definitions in this file
before processing those in the default system configuration file, or those in a
customized file specified by the -F option; for more information, see “Using
custom compiler configuration files” on page 9.

Other environment variables that affect runtime behavior
The LD_LIBRARY_PATH, LD_RUN_PATH, and TMPDIR environment variables
have an effect at run time, as explained in “Correct settings for environment
variables” on page 7. They are not XL Fortran runtime options and cannot be set in
either XLFRTEOPTS or XLSMPOPTS.

XL Fortran runtime exceptions
The following operations cause runtime exceptions in the form of SIGTRAP
signals, which typically result in a “Trace/breakpoint trap” message:
v Character substring expression or array subscript out of bounds after you

specified the -C option at compile time.
v Lengths of character pointer and target do not match after you specified the -C

option at compile time.
v The flow of control in the program reaches a location for which a semantic error

with severity of S was issued when the program was compiled.
v Floating-point operations that generate NaN values and loads of the NaN values

after you specify the -qfloat=nanq option at compile time.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 45

v Fixed-point division by zero.
v Calls to the TRAP hardware-specific intrinsic procedure.

The following operations cause runtime exceptions in the form of SIGFPE signals:
v Floating-point exceptions provided you specify the appropriate -qflttrap

suboptions at compile time.

If you install one of the predefined XL Fortran exception handlers before the
exception occurs, a diagnostic message and a traceback showing the offset within
each routine called that led to the exception are written to standard error after the
exception occurs. The file buffers are also flushed before the program ends. If you
compile the program with the -g option, the traceback shows source line numbers
in addition to the address offsets.

You can use a symbolic debugger to determine the error. gdb provides a specific
error message that describes the cause of the exception.

Related information:
v “-C” on page 68
v “-qflttrap” on page 132
v “-qsigtrap” on page 222

Also see the following topics in the XL Fortran Optimization and Programming Guide:
v Detecting and trapping floating-point exceptions for more details about these

exceptions
v Controlling the floating-point status and control register for a list of exception

handlers.

46 XL Fortran: Compiler Reference for Little Endian Distributions

Chapter 5. Summary of compiler options by functional
category

The XL Fortran options available on the Linux platform are grouped into the
following categories:
v “Output control”
v “Input control” on page 49
v “Language element control” on page 50
v “Floating-point and integer control” on page 52
v “Object code control” on page 53
v “Error checking and debugging” on page 54
v “Listings, messages, and compiler information” on page 56
v “Optimization and tuning” on page 58
v “Linking” on page 61
v “Portability and migration” on page 62
v “Compiler customization” on page 63

If the option supports an equivalent @PROCESS directive, this is indicated. To get
detailed information on any option listed, see the full description page for that
option.

You can enter compiler options that start with -q, suboptions, and @PROCESS
directives in either uppercase or lowercase. However, note that if you specify the
-qmixed option, procedure names that you specify for the -qextern option are
case-sensitive.

In general, this document uses the convention of lowercase for -q compiler options
and suboptions and uppercase for @PROCESS directives.

Understanding the significance of the options you use and knowing the
alternatives available can save you considerable time and effort in making your
programs work correctly and efficiently.

For detailed information about each compiler option, see Chapter 6, “Detailed
descriptions of the XL Fortran compiler options,” on page 65.

Output control
The options in this category control the type of file output the compiler produces,
as well as the locations of the output. These are the basic options that determine
the compiler components that will be invoked, the preprocessing, compilation, and
linking steps that will (or will not) be taken, and the kind of output to be
generated.

Table 6. Compiler output options

Option name @PROCESS directive Description

“-c” on page 69 None.
Instructs the compiler to compile or
assemble the source files only but do
not link. With this option, the output
is a .o file for each source file.

© Copyright IBM Corp. 1990, 2015 47

Table 6. Compiler output options (continued)

Option name @PROCESS directive Description

“-d” on page 70 None.
Causes preprocessed source files that
are produced by cpp to be kept
rather than deleted.

“-MMD” on page 80 None. Produces a dependency output file
containing targets suitable for
inclusion in a description file for the
make command. -MMD is the short
form of “-qmakedep” on page 179.

“-MF” on page 79 None. Specifies the name or location for the
dependency output files that are
generated by the -qmakedep or -MMD
option.

“-MT” on page 81 None. Specifies the target name of the
object file in the make rule in the
dependency output file that is
generated by the -qmakedep or -MMD
option.

“-o” on page 85 None.
Specifies a name for the output
object, assembler, or executable file.

“-qmakedep” on page
179

None. Produces a dependency output file
containing targets suitable for
inclusion in a description file for the
make command. -qmakedep is the
long form of “-MMD” on page 80.

“-qmkshrobj” on page
186

None.
Creates a shared object from
generated object files.

“-qmoddir” on page
187

None.
Specifies the location for any module

(.mod) or F2008 submodule
F2008

(.smod) files that the

compiler writes.

“-qtimestamps” on
page 248

None.
Controls whether or not implicit
time stamps are inserted into an
object file.

“-S” on page 272 None.
Generates an assembler language file
for each source file.

48 XL Fortran: Compiler Reference for Little Endian Distributions

Input control
The options in this category specify the type and location of your source files.

Table 7. Compiler input options

Option name @PROCESS directive Description

“-D” on page 69,
“-qdlines” on page
116

DLINES
Specifies whether the compiler
compiles fixed source form lines with
a D in column 1 or treats them as
comments.

“-I” on page 76 None.
Adds a directory to the search path for
include files, .mod files, and .smod files.

“-qcclines” on page
103

CCLINES
Determines whether the compiler
recognizes conditional compilation
lines in fixed source form and F90 free
source form. This option is not
supported with IBM free source form.

“-qci” on page 106 CI
Specifies the identification numbers
(from 1 to 255) of the INCLUDE lines
to process.

“-qcr” on page 108 None.
Controls how the compiler interprets
the CR (carriage return) character.

“-qdirective” on page
114

DIRECTIVE
Specifies sequences of characters,
known as trigger constants, that
identify comment lines as compiler
comment directives.

“-qfixed” on page 125 FIXED
Indicates that the input source
program is in fixed source form and
optionally specifies the maximum line
length.

“-qfpp” on page 131 None.
Controls Fortran-specific preprocessing
in the C preprocessor.

This is a C preprocessor option, and
must therefore be specified using the
-WF option.

“-qfree” on page 134 FREE
Indicates that the source code is in free
source form.

“-qmixed” on page
186, “-U” on page 274

MIXED
Makes the compiler sensitive to the
case of letters in names.

Chapter 5. Summary of compiler options by functional category 49

Table 7. Compiler input options (continued)

Option name @PROCESS directive Description

“-qppsuborigarg” on
page 207

None.
Instructs the C preprocessor to
substitute original macro arguments
before further macro expansion.

This is a C preprocessor option, and
must therefore be specified using the
-WF option.

“-qsuffix” on page 242 None.
Specifies the source-file suffix on the
command line.

“-qxlines” on page
267

XLINES
Specifies whether fixed source form
lines with an X in column 1 are
compiled or treated as comments.

Language element control
The options in this category allow you to specify the characteristics of the source
code. You can also use these options to enforce or relax language restrictions and
enable or disable language extensions.

Table 8. Language element control options

Option name @PROCESS directive Description

“-qaltivec” on page 92 ALTIVEC Specifies the order of vector
elements in vector registers.

“-qinit” on page 151 INIT(F90PTR)
Makes the initial association status
of pointers disassociated.

“-qlanglvl” on page 169 LANGLVL
Determines which language
standard (or superset, or subset of
a standard) to consult for
nonconformance. It identifies
nonconforming source code and
also options that allow such
nonconformances.

“-qmbcs” on page 185 MBCS
Indicates to the compiler whether
character literal constants,
Hollerith constants, H edit
descriptors, and character string
edit descriptors can contain
Multibyte Character Set (MBCS) or
Unicode characters.

“-qnullterm” on page 189 NULLTERM
Appends a null character to each
character constant expression that
is passed as a dummy argument,
making it more convenient to pass
strings to C functions.

50 XL Fortran: Compiler Reference for Little Endian Distributions

Table 8. Language element control options (continued)

Option name @PROCESS directive Description

“-1” on page 67, “-qonetrip”
on page 191

ONETRIP
Executes each DO loop in the
compiled program at least once if
its DO statement is executed, even
if the iteration count is 0. This
option provides compatibility with
FORTRAN 66.

“-qposition” on page 206 POSITION
Positions the file pointer at the end
of the file when data is written
after an OPEN statement with no
POSITION= specifier and the
corresponding STATUS= value
(OLD or UNKNOWN) is
specified.

“-qqcount” on page 211 QCOUNT
Accepts the Q character-count edit
descriptor (Q) as well as the
extended-precision Q edit
descriptor (Qw.d).

“-qsaa” on page 216 SAA
Checks for conformance to the
SAA FORTRAN language
definition. It identifies
nonconforming source code and
also options that allow such
nonconformances.

“-qsave” on page 217 SAVE
Specifies the default storage class
for local variables.

“-qsclk” on page 221 None.
Specifies the resolution that the
SYSTEM_CLOCK intrinsic
procedure uses in a program.

“-u” on page 274,“-qundef”
on page 251

UNDEF
Specifies that no implicit typing of
variable names is permitted.

-qundef is the long form of the
“-u” on page 274 option.

“-qxlf77” on page 259 XLF77
Provides compatibility with
FORTRAN 77 aspects of language
semantics and I/O data format
that have changed.

“-qxlf90” on page 261 XLF90
Provides compatibility with the
Fortran 90 standard for certain
aspects of the Fortran language.

Chapter 5. Summary of compiler options by functional category 51

Table 8. Language element control options (continued)

Option name @PROCESS directive Description

“-qxlf2003” on page 263 XLF2003
Provides the ability to use
language features specific to the
Fortran 2003 standard when
compiling with compiler
invocations that conform to earlier
Fortran standards, as well as the
ability to disable these features
when compiling with compiler
invocations that conform to the
Fortran 2003 standard.

“-qxlf2008” on page 267 XLF2008 Provides the ability to use
language features specific to the
Fortran 2008 standard when
compiling with compiler
invocations that conform to earlier
Fortran standards, as well as the
ability to disable these features
when compiling with compiler
invocations that conform to the
Fortran 2008 standard.

“-qzerosize” on page 270 ZEROSIZE Determines whether checking for
zero-sized character strings and
arrays takes place in programs that
might process such objects.

Floating-point and integer control
Specifying the details of how your applications perform calculations can allow you
to take better advantage of your system's floating-point performance and precision,
including how to direct rounding. However, keep in mind that strictly adhering to
IEEE floating-point specifications can impact the performance of your application.
Using the options in the following table, you can control trade-offs between
floating-point performance and adherence to IEEE standards. Some of these
options also allow you to control certain aspects of integer calculations.

Table 9. Floating-point and integer control options

Option name @PROCESS directive Description

“-qautodbl” on page
97

AUTODBL
Provides an automatic means of
converting single-precision
floating-point calculations to
double-precision and of converting
double-precision calculations to
extended-precision.

“-qdpc” on page 117 DPC
Increases the precision of real
constants for maximum accuracy,
when assigning real constants to
DOUBLE PRECISION variables.

“-qenum” on page 118 None.
Specifies the range of the enumerator
constant and enables storage size to
be determined.

52 XL Fortran: Compiler Reference for Little Endian Distributions

Table 9. Floating-point and integer control options (continued)

Option name @PROCESS directive Description

“-qfloat” on page 127 FLOAT
Selects different strategies for
speeding up or improving the
accuracy of floating-point
calculations.

“-qieee” on page 146,
“-y” on page 279

IEEE
Specifies the rounding mode that the
compiler will use when it evaluates
constant floating-point expressions at
compile time.

“-qintlog” on page 160 INTLOG
Specifies that you can mix integer
and logical data entities in
expressions and statements.

“-qintsize” on page
161

INTSIZE
Sets the size of default INTEGER
and LOGICAL data entities that
have no length or kind specified.

“-qrealsize” on page
211

REALSIZE
Sets the default size of REAL,
DOUBLE PRECISION, COMPLEX,
and DOUBLE COMPLEX values.

“-qstrictieeemod” on
page 240

STRICTIEEEMOD
Specifies whether the compiler will
adhere to the Fortran 2003 IEEE
arithmetic rules for the
ieee_arithmetic and ieee_exceptions
intrinsic modules.

Object code control
These options affect the characteristics of the object code, preprocessed code, or
other output generated by the compiler.

Table 10. Object code control options

Option name @PROCESS directive Description

“-qinlglue” on page
156

INLGLUE
When used with -O2 or higher
optimization, inlines glue code
that optimizes external function
calls in your application.

“-qpic” on page 203 None.
Generates position-independent
code required for use in shared
libraries.

Chapter 5. Summary of compiler options by functional category 53

Table 10. Object code control options (continued)

Option name @PROCESS directive Description

“-qsaveopt” on page
219

None.
Saves the command-line options
used for compiling a source file,
the user's configuration file name
and the options specified in the
configuration files, the version and
level of each compiler component
invoked during compilation, and
other information to the
corresponding object file.

“-qstackprotect” on
page 231

None. Provides protection against
malicious input data or
programming errors that overwrite
or corrupt the stack.

“-qtbtable” on page
246

None.
Controls the amount of debugging
traceback information that is
included in the object files.

“-qthreaded” on page
247

None.
Indicates to the compiler whether
it must generate threadsafe code.

Error checking and debugging
The options in the following table allow you to detect and correct problems in
your source code. In some cases, these options can alter your object code, increase
your compile time, or introduce runtime checking that can slow down the
execution of your application. The option descriptions indicate how extra checking
can impact performance.

To control the amount and type of information you receive regarding the behavior
and performance of your application, consult “Listings, messages, and compiler
information” on page 56.

For information about debugging optimized code, see the XL Fortran Optimization
and Programming Guide.

Table 11. Error checking and debugging options

Option name @PROCESS directive Description

“-#” on page 66 None.
Previews the compilation steps
specified on the command line,
without actually invoking any
compiler components.

“-C” on page 68, “-qcheck”
on page 103

CHECK
Generates code that performs certain
types of runtime checking.

“-g” on page 73, “-qdbg” on
page 110

DBG
Generates debugging information for
use by a symbolic debugger, and
makes the program state available to
the debugging session at selected
source locations.

54 XL Fortran: Compiler Reference for Little Endian Distributions

Table 11. Error checking and debugging options (continued)

Option name @PROCESS directive Description

“-qflttrap” on page 132 FLTTRAP
Determines what types of
floating-point exception conditions to
detect at run time.

“-qfullpath” on page 135 None.
When used with the -g or
-qlinedebug option, this option
records the full, or absolute, path
names of source and include files in
object files compiled with debugging
information, so that debugging tools
can correctly locate the source files.

“-qfunctrace” on page 136 None. Traces entry and exit points of
procedures in your program. If your
program contains C++ compilation
units, this option also traces C++
catch blocks.

“-qfunctrace_xlf_catch” on
page 138

None. Specifies the name of the catch
tracing subroutine.

“-qfunctrace_xlf_enter” on
page 138

None. Specifies the name of the entry
tracing subroutine.

“-qfunctrace_xlf_exit” on
page 139

None. Specifies the name of the exit tracing
subroutine.

“-qhalt” on page 140 HALT
Stops compilation before producing
any object, executable, or assembler
source files if the maximum severity
of compile-time messages equals or
exceeds the severity you specify.

“-qhaltonmsg” on page 141 HALTONMSG Stops compilation before producing
any object files, executable files, or
assembler source files if a specified
error message is generated.

“-qinfo” on page 147 None. Produces or suppresses groups of
informational messages.

“-qinitalloc” on page 152 INITALLOC Initializes allocatable and pointer
variables that are allocated but not
initialized to a specific value, for
debugging purposes.

“-qinitauto” on page 154 None.
Initializes uninitialized automatic
variables to a specific value, for
debugging purposes.

“-qkeepparm” on page 168 None.
When used with -O2 or higher
optimization, specifies whether
procedure parameters are stored on
the stack.

“-qlinedebug” on page 173 None.
Generates only line number and
source file name information for a
debugger.

Chapter 5. Summary of compiler options by functional category 55

Table 11. Error checking and debugging options (continued)

Option name @PROCESS directive Description

“-qobject” on page 190 OBJECT
Specifies whether to produce an
object file or to stop immediately
after checking the syntax of the
source files.

“-qsigtrap” on page 222 None.
Sets up the specified trap handler to
catch SIGTRAP and SIGFPE
exceptions when compiling a file
that contains a main program.

“-qwarn64” on page 257 None.
Displays informational messages
identifying statements that may
cause problems with 32-bit to 64-bit
migration.

“-qxflag=dvz” on page 257 None.
Causes the compiler to generate code
to detect floating-point
divide-by-zero operations.

Listings, messages, and compiler information
The options in the following table allow your control over the listing file, as well
as how and when to display compiler messages. You can use these options in
conjunction with those described in “Error checking and debugging” on page 54 to
provide a more robust overview of your application when checking for errors and
unexpected behavior.

Table 12. Listings and messages options

Option name @PROCESS directive Description

“-qattr” on page 96 ATTR
Produces a compiler listing that
includes the attribute component
of the attribute and
cross-reference section of the
listing.

“-qflag” on page 126 FLAG
Limits the diagnostic messages to
those of a specified severity level
or higher.

“-qhelp” on page 142 None. Displays the man page of the
compiler.

“-qlist” on page 174 LIST
Produces a compiler listing file
that includes object and constant
area sections.

“-qlistfmt” on page 175 None.
Creates a report in XML or
HTML format to help you find
optimization opportunities.

56 XL Fortran: Compiler Reference for Little Endian Distributions

Table 12. Listings and messages options (continued)

Option name @PROCESS directive Description

“-qlistopt” on page 178 None.
Produces a compiler listing file
that includes all options in effect
at the time of compiler
invocation.

“-qmaxerr” on page 182 MAXERR Stops compilation when the
number of error messages of a
specified severity level or higher
reaches a specified number.

“-qphsinfo” on page 202 PHSINFO
Reports the time taken in each
compilation phase to standard
output.

“-qnoprint” on page 188 None.
Prevents the compiler from
creating the listing file, regardless
of the settings of other listing
options.

“-qreport” on page 214 None.
Produces listing files that show
how sections of code have been
optimized.

“-qsource” on page 230 SOURCE
Produces a compiler listing file
that includes the source section of
the listing and provides
additional source information
when printing error messages.

“-qsuppress” on page 243 None.
Prevents specific informational or
warning messages from being
displayed or added to the listing
file, if one is generated.

“-qversion” on page 254 None.
Displays the version and release
of the compiler being invoked.

“-V” on page 276 None.
The same as -v except that you
can cut and paste directly from
the display to create a command.

“-v” on page 275 None.
Reports the progress of
compilation, by naming the
programs being invoked and the
options being specified to each
program.

“-w” on page 278 None.
Suppresses warning messages
(equivalent to -qflag=e:e).

“-qxref” on page 269 XREF
Produces a compiler listing that
includes the cross-reference
component of the attribute and
cross-reference section of the
listing.

Chapter 5. Summary of compiler options by functional category 57

Optimization and tuning
You can control the optimization and tuning process, which can improve the
performance of your application at run time, using the options in the following
table. Remember that not all options benefit all applications. Trade-offs sometimes
occur between an increase in compile time, a reduction in debugging capability,
and the improvements that optimization can provide. In addition to the option
descriptions in this section, consult the XL Fortran Optimization and Programming
Guide for details on the optimization and tuning process as well as writing
optimization friendly source code.

Some of the options in “Floating-point and integer control” on page 52 can also
improve performance, but you must use them with care to ensure your application
retains the floating-point semantics it requires.

Table 13. Optimization and tuning options

Option name @PROCESS directive Description

“-qalias” on page 87 ALIAS(argument_list)
Indicates whether a program
contains certain categories of aliasing
or does not conform to Fortran
standard aliasing rules. The compiler
limits the scope of some
optimizations when there is a
possibility that different names are
aliases for the same storage location.

“-qarch” on page 93 None.
Specifies the processor architecture,
or family of architectures, where the
code may run. This allows the
compiler to take maximum
advantage of the machine
instructions specific to an
architecture, or common to a family
of architectures.

“-qassert” on page 95 ASSERT
Provides information about the
characteristics of your code that can
help the compiler fine-tune
optimizations.

“-qcache” on page 100 None.
Specifies the cache configuration for
a specific execution machine.

“-qcompact” on page
107

COMPACT
Avoids optimizations that increase
code size.

“-qdirectstorage” on
page 115

None.
Informs the compiler that a given
compilation unit may reference
write-through-enabled or
cache-inhibited storage.

58 XL Fortran: Compiler Reference for Little Endian Distributions

Table 13. Optimization and tuning options (continued)

Option name @PROCESS directive Description

“-qessl” on page 120 None.
Allows the compiler to substitute the
Engineering and Scientific Subroutine
Library (ESSL) routines in place of
Fortran 90 intrinsic procedures.

“-qfdpr” on page 124 None.
Provides object files with information
that the IBM Feedback Directed
Program Restructuring (FDPR®)
performance-tuning utility needs to
optimize the resulting executable file.

“-qhot” on page 143 HOT(suboptions)
Performs high-order loop analysis
and transformations (HOT) during
optimization.

-qinline None. Attempts to inline procedures
instead of generating calls to those
procedures, for improved
performance.

“-qipa” on page 163 None.
Enables or customizes a class of
optimizations known as
interprocedural analysis (IPA).

“-qlibansi” on page
171

None. Assumes that all functions with the
name of an ANSI C library function
are, in fact, the library functions and
not a user function with different
semantics.

-qlibmpi None. Asserts that all functions with
Message Passing Interface (MPI)
names are in fact MPI functions and
not a user function with different
semantics.

“-qmaxmem” on page
183

MAXMEM
Limits the amount of memory that
the compiler allocates while
performing specific,
memory-intensive optimizations to
the specified number of kilobytes.

“-O” on page 83 OPTIMIZE
Specifies whether to optimize code
during compilation and, if so, at
which level.

“-p” on page 86 None.
Prepares the object files produced by
the compiler for profiling.

“-qpdf1, -qpdf2” on
page 195

None.
Tunes optimizations through
profile-directed feedback (PDF), where
results from sample program
execution are used to improve
optimization near conditional
branches and in frequently executed
code sections.

Chapter 5. Summary of compiler options by functional category 59

Table 13. Optimization and tuning options (continued)

Option name @PROCESS directive Description

“-qprefetch” on page
209

None.
Inserts prefetch instructions
automatically where there are
opportunities to improve code
performance.

“-qshowpdf ” on page
221

None.
When used with -qpdf1 and a
minimum optimization level of -O2
at compile and link steps, creates a
PDF map file that contains additional
profiling information for all
procedures in your application.

“-qsimd” on page 223 None.
Controls whether the compiler can
automatically take advantage of
vector instructions for processors that
support them.

“-qsmallstack” on
page 224

None.
Minimizes stack usage where
possible.

“-qsmp” on page 226 None.
Enables parallelization of program
code.

“-qstacktemp” on
page 232

None.
Determines where to allocate certain
XL Fortran compiler temporaries at
run time.

“-qstrict” on page 236 STRICT
Ensures that optimizations that are
done by default at the -O3 and
higher optimization levels, and,
optionally at -O2, do not alter certain
program semantics mostly related to
strict IEEE floating-point
conformance.

“-qstrict_induction”
on page 241

None.
Prevents the compiler from
performing induction (loop counter)
variable optimizations. These
optimizations may be unsafe (may
alter the semantics of your program)
when there are integer overflow
operations involving the induction
variables.

“-qtune” on page 249 None.
Tunes instruction selection,
scheduling, and other
architecture-dependent performance
enhancements to run best on a
specific hardware architecture.
Allows specification of a target SMT
mode to direct optimizations for best
performance in that mode.

60 XL Fortran: Compiler Reference for Little Endian Distributions

Table 13. Optimization and tuning options (continued)

Option name @PROCESS directive Description

“-qunroll” on page
251

None.
Specifies whether unrolling DO
loops is allowed in a program.
Unrolling is allowed on outer and
inner DO loops.

“-qunwind” on page
253

None.
Specifies that the compiler will
preserve the default behavior for
saves and restores to volatile
registers during a procedure call.

“-qvisibility” on page
255

VISIBILITY(suboption) Specifies the visibility attribute for
external linkage symbols in object
files.

Linking
Though linking occurs automatically, the options in the following table allow you
to direct input and output to the linker, controlling how the linker processes your
object files.

You can actually include ld options on the compiler command line, because the
compiler passes unrecognized options on to the linker.

Table 14. Linking options

Option name @PROCESS directive Description

“-e” on page 70 None. When used together with the
-qmkshrobj option , specifies an entry
point for a shared object.

“-L” on page 77 None.
At link time, searches the directory
path for library files specified by the
-l option.

“-l” on page 78 None.
Searches for the specified library file.
The linker searches for libkey.so, and
then libkey.a if libkey.so is not found.

“-qstaticlink” on page
233

None. Controls whether static or shared
runtime libraries are linked into an
application.

Chapter 5. Summary of compiler options by functional category 61

Portability and migration
The options in this category can help you maintain application behavior
compatibility on past, current, and future hardware, operating systems and
compilers, or help move your applications to an XL compiler with minimal change.

Table 15. Portability and migration options

Option name @PROCESS directive Description

“-qalign” on page 90 ALIGN
Specifies the alignment of data
objects in storage, which avoids
performance problems with
misaligned data.

“-qbindcextname” on
page 99

BINDCEXTNAME Controls whether the -qextname
option affects BIND(C) entities.

“-qctyplss” on page
109

CTYPLSS
Specifies whether character constant
expressions are allowed wherever
typeless constants may be used.

“-qddim” on page 112 DDIM
Specifies that the bounds of pointee
arrays are re-evaluated each time the
arrays are referenced and removes
some restrictions on the bounds
expressions for pointee arrays.

“-qdescriptor” on
page 113

None.
Specifies the XL Fortran internal
descriptor data structure format to
use for non object-oriented entities in
your compiled applications.

“-qescape” on page
119

ESCAPE
Specifies how the backslash is treated
in character strings, Hollerith
constants, H edit descriptors, and
character string edit descriptors.

“-qextern” on page
121

None.
Allows user-written procedures to be
called instead of XL Fortran
intrinsics.

“-qextname” on page
122

EXTNAME
Adds an underscore to the names of
all global entities.

“-qlog4” on page 179 LOG4
Specifies whether the result of a
logical operation with logical
operands is a LOGICAL(4) or is a
LOGICAL with the maximum length
of the operands.

“-qport” on page 204 PORT
Provides options to accommodate
other Fortran language extensions
when porting programs to XL
Fortran.

“-qswapomp” on
page 245

SWAPOMP
Specifies that the compiler should
recognize and substitute OpenMP
routines in XL Fortran programs.

62 XL Fortran: Compiler Reference for Little Endian Distributions

Table 15. Portability and migration options (continued)

Option name @PROCESS directive Description

“-qufmt” on page 250 UFMT Sets the byte order for I/O operations
on unformatted data files.

“-qxflag=oldtab” on
page 258

XFLAG(OLDTAB)
Interprets a tab in columns 1 to 5 as a
single character (for fixed source
form programs).

Compiler customization
The options in the following table allow you to specify alternative locations for
compiler components, configuration files, standard include directories, and internal
compiler operation. These options are useful for specialized installations, testing
scenarios, and the specification of additional command-line options.

Table 16. Compiler customization options

Option name @PROCESS directive Description

“-B” on page 67 None.
Specifies substitute path names for XL
Fortran components such as the
assembler, C preprocessor, and linker.

“-F” on page 71 None.
Specifies an alternative configuration
file, which stanza to use within the
configuration file, or both.

“-NS” on page 82,
“-qspillsize” on page
231

SPILLSIZE
Specifies the size (in bytes) of the
register spill space; the internal
program storage areas used by the
optimizer for register spills to storage.

“-qoptfile” on page
191

None. Specifies a response file that contains
a list of additional command line
options to be used for the
compilation. Response files typically
have the .rsp suffix.

“-qpath” on page 194 None. Specifies substitute path names for XL
Fortran components such as the
assembler, C preprocessor, and linker.

“-t” on page 272 None.
Applies the prefix specified by the -B
option to the designated components.

“-W” on page 276 None.
Passes the listed options to a
component that is executed during
compilation.

Chapter 5. Summary of compiler options by functional category 63

64 XL Fortran: Compiler Reference for Little Endian Distributions

Chapter 6. Detailed descriptions of the XL Fortran compiler
options

This section contains descriptions of the individual options available in XL Fortran.

For each option, the following information is provided:

Category
The functional category to which the option belongs is listed here.

@PROCESS
For many compiler options, you can use an equivalent @PROCESS
directive to apply the option's functionality within the source code, limiting
the scope of the option's application to a single source file or compilation
unit, or even selected sections of code.

Purpose
This section provides a brief description of the effect of the option (and
equivalent directives), and why you might want to use it.

Syntax
This section provides the syntax for the command-line option and for the
equivalent @PROCESS directive, if applicable. Syntax is shown first in
command-line form, and then in @PROCESS form. For an explanation of
the notations used to represent command-line syntax, see “Conventions”
on page viii.

Uppercase letters are sometimes used to indicate the minimum number of
characters for an option. For example, in -qassert=CONTIGuous, the
uppercase letters CONTIG indicate the minimum number of characters
you must use for this option. Therefore if you use -qassert=contig or
-qassert=contigu, the compiler recognizes both as valid.

For @PROCESS syntax, the following notations are used:
v Defaults for each option are underlined and in boldface type.
v Individual required arguments are shown with no special notation.
v When you must make a choice between a set of alternatives, they are

enclosed by { and } symbols.
v Optional arguments are enclosed by [and] symbols.
v When you can select from a group of choices, they are separated by |

characters.
v Arguments that you can repeat are followed by ellipses (...).

Defaults
In most cases, the default option setting is clearly indicated in the syntax
diagram. However, for many options, there are multiple default settings,
depending on other compiler options in effect. This section indicates the
different defaults that may apply.

Parameters
This section describes the suboptions that are available for the option.

Usage This section describes any rules or usage considerations you should be
aware of. These can include restrictions on the option's applicability,
precedence rules for multiple option specifications, and so on.

© Copyright IBM Corp. 1990, 2015 65

Examples
Where appropriate, examples of the command-line syntax and use are
provided in this section.

-#
Category

Error checking and debugging

@PROCESS

None.

Purpose

Previews the compilation steps specified on the command line, without actually
invoking any compiler components.

At the points where the compiler executes commands to perform different
compilation steps, this option displays a simulation of the commands it would run
and the system argument lists it would pass, but it does not actually perform these
actions.

Syntax

Option:

►► -# ►◄

Defaults

Not applicable.

Usage

Examining the output of this option can help you quickly and safely determine the
following information for a particular compilation:
v What files are involved
v What options are in effect for each step

It avoids the overhead of compiling the source code and avoids overwriting any
existing files, such as .lst files. (If you are familiar with the make command, it is
similar to make -n.)

This option produces the same output as -v and -V, but does not perform the
compilation.

Note that if you specify this option with -qipa, the compiler does not display
linker information subsequent to the IPA link step. This is because the compiler
does not actually call IPA.

Related information
v “-v” on page 275
v “-V” on page 276

66 XL Fortran: Compiler Reference for Little Endian Distributions

-1
Category

Language element control

Purpose

Executes each DO loop in the compiled program at least once if its DO statement
is executed, even if the iteration count is 0. This option provides compatibility with
FORTRAN 66.

-qonetrip is the long form of -1.

Syntax

Option:

►► -l ►◄

@PROCESS:

@PROCESS ONETRIP | NOONETRIP

Defaults

The default is to follow the behavior of later Fortran standards, where DO loops
are not performed if the iteration count is 0.

Restrictions

It has no effect on FORALL statements, FORALL constructs, or array constructor
implied-DO loops.

-B
Category

Compiler customization

@PROCESS

None.

Purpose

Specifies substitute path names for XL Fortran components such as the assembler,
C preprocessor, and linker.

It can be used in combination with the -t option, which determines which of these
components are affected by -B. However, it is preferred that you use the -qpath
option to accomplish this instead.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 67

Syntax

►► -B
prefix

►◄

Defaults

The default paths for the compiler components are defined in the compiler
configuration file.

Parameters

prefix
The name of a directory where the components reside. It must end in a /
(slash).

Usage

To form the complete path name for each component, the driver program adds
prefix to the standard program names. You can restrict the components that are
affected by this option by also including one or more -tmnemonic options.

You can also specify default path names for these commands in the configuration
file.

This option allows you to keep multiple levels of some or all of the XL Fortran
components or to try out an upgraded component before installing it permanently.
When keeping multiple levels of XL Fortran available, you might want to put the
appropriate -B and -t options into a configuration-file stanza and to use the -F
option to select the stanza to use.

Related information
v “-qpath” on page 194
v “-t” on page 272
v “-F” on page 71
v “Using custom compiler configuration files” on page 9
v “Running two levels of XL Fortran” on page 16

-C
Category

Error checking and debugging

Purpose

Generates code that performs certain types of runtime checking.

-qcheck is the long form of -C.

Syntax

Option:

68 XL Fortran: Compiler Reference for Little Endian Distributions

►► -C ►◄

@PROCESS:

@PROCESS CHECK | NOCHECK

Defaults

-qnocheck

-c
Category

Object code control

@PROCESS

None.

Purpose

Instructs the compiler to compile or assemble the source files only but do not link.
With this option, the output is a .o file for each source file.

Syntax

►► -c ►◄

Defaults

Not applicable.

Usage

Using the -o option in combination with -c selects a different name for the .o file.
In this case, you can only compile one source file at a time.

Related information
v “-o” on page 85.

-D
Category

Input control

Purpose

Specifies whether the compiler compiles fixed source form lines with a D in
column 1 or treats them as comments.

-qdlines is the long form of -D.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 69

Syntax

►► -D ►◄

@PROCESS:

@PROCESS DLINES | NODLINES

Usage

If you specify -D, fixed source form lines that have a D in column 1 are compiled.
The default action is to treat these lines as comment lines. They are typically used
for sections of debugging code that need to be turned on and off.

Note that in order to pass C-style -D macro definitions to the C preprocessor, for
example, when compiling a file that ends with .F, use the -W option. For example:
-WF,-DDEFINE_THIS

-d
Category

Output control

@PROCESS

None.

Purpose

Causes preprocessed source files that are produced by cpp to be kept rather than
deleted.

Syntax

►► -d ►◄

Defaults

Not applicable.

Results

The files that this option produces have names of the form Ffilename.f*, derived
from the names of the original source files. For example, source file test.F03 is
preprocessed into a file called Ftest.f03.

Related information
v “Passing Fortran files through the C preprocessor” on page 29

-e
Category

Linking

70 XL Fortran: Compiler Reference for Little Endian Distributions

@PROCESS

None.

Purpose

When used together with the -qmkshrobj option , specifies an entry point for a
shared object.

Syntax

►► -e entry_name ►◄

Defaults

None.

Parameters

name
The name of the entry point for the shared executable.

Usage

Specify the -e option only with the -qmkshrobj option.

Note: When you link object files, do not use the -e option. The default entry point
of the executable output is __start. Changing this label with the -e flag can
produce errors.

Related information
v “-qmkshrobj” on page 186

-F
Category

Compiler customization

@PROCESS

None.

Purpose

Specifies an alternative configuration file, which stanza to use within the
configuration file, or both.

The configuration file specifies different kinds of defaults, such as options for
particular compilation steps and the locations of various files that the compiler
requires.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 71

Syntax

►► -F config_file
: stanza

: stanza

►◄

Defaults

By default, the compiler uses the configuration file that is configured at installation
time, and the stanza defined in that file for the invocation command currently
being used (for example, xlf2003, xlf90_r, xlf90, and so on.).

Parameters

config_file
The full path name of the alternate compiler configuration file to use.

stanza
The name of the configuration file stanza to use for compilation. This directs
the compiler to use the entries under that stanza regardless of the invocation
command being used. For example, if you are compiling with xlf2003, but you
specify the xlf95 stanza, the compiler will use all the settings specified in the
xlf95 stanza.

Usage

A simple way to customize the way the compiler works, as an alternative to
writing complicated compilation scripts, is to add new stanzas to
/opt/ibm/xlf/15.1.3/etc/xlf.cfg, giving each stanza a different name and a
different set of default compiler options. Or, you can specify a user-defined
configuration file with the XLF_USR_CONFIG environment variable rather than
editing the default configuration file. You may find a single, centralized file easier
to maintain than many scattered compilation scripts and makefiles.

By running the compiler with an appropriate -F option, you can select the set of
options that you want. You might have one set for full optimization, another set
for full error checking, and so on. Note that the settings in any user-defined
configuration file are processed before the ones specified by the -F option.

Restrictions

Because the default configuration file is replaced each time a new compiler release
is installed, make sure to save a copy of any new stanzas or compiler options that
you add.

Alternatively, you can store customized settings in the user-defined configuration
file specified by the XLF_USR_CONFIG environment variable. This file will not be
replaced during reinstallation.

Examples
Use stanza debug in default xlf.cfg.
xlf95 -F:debug t.f

Use stanza xlf95 in /home/fred/xlf.cfg.

72 XL Fortran: Compiler Reference for Little Endian Distributions

xlf95 -F/home/fred/xlf.cfg t.f

Use stanza myxlf in /home/fred/xlf.cfg.
xlf95 -F/home/fred/xlf.cfg:myxlf t.f

Related information
v “Creating custom configuration files” on page 10 explains the contents of a

custom, user-defined configuration file and shows how to select different stanzas
in the file without using the -F option.

v “Editing the default configuration file” on page 13 explains how to edit the
contents of a configuration file for use with the -F option.

v “-B” on page 67
v “-t” on page 272
v “-W” on page 276

-g
Category

Error checking and debugging

@PROCESS

DBG

Purpose

Generates debugging information for use by a symbolic debugger, and makes the
program state available to the debugging session at selected source locations.

You can use different -g levels to balance between debug capability and compiler
optimization. Higher -g levels provide a more complete debug support, at the cost
of runtime or possible compile-time performance, while lower -g levels provide
higher runtime performance, at the cost of some capability in the debugging
session.

When the -O2 optimization level is in effect, the debug capability is completely
supported.

Note: When an optimization level higher than -O2 is in effect, the debug capability
is limited.

-g is the short form of -qdbg.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 73

Syntax

►► -g
0

1
2
3
4
5
6
7
8
9

►◄

@PROCESS:

@PROCESS DBG | NODBG

Defaults

-g0, equivalent to -qnodbg

Parameters

-g

v When no optimization is enabled (-qnoopt), -g is equivalent to -g9 or
-qdbg=level=9.

v When the -O2 optimization level is in effect, -g is equivalent to -g2 or
-qdbg=level=2.

-g0 Generates no debugging information. No program state is preserved.

-g1 Generates minimal read-only debugging information about line numbers
and source file names. No program state is preserved. This option is
equivalent to -qlinedebug.

-g2 Generates read-only debugging information about line numbers, source file
names, and variables.

When the -O2 optimization level is in effect, no program state is preserved.

-g3, -g4
Generates read-only debugging information about line numbers, source file
names, and variables.

When the -O2 optimization level is in effect:
v No program state is preserved.
v Procedure parameter values are available to the debugger at the

beginning of each procedure.

-g5, -g6, -g7
Generates read-only debugging information about line numbers, source file
names, and variables.

When the -O2 optimization level is in effect:
v Program state is available to the debugger at IF constructs, loop

constructs, procedure definitions, and procedure calls. For details, see
“Usage” on page 75.

v Procedure parameter values are available to the debugger at the
beginning of each procedure.

74 XL Fortran: Compiler Reference for Little Endian Distributions

-g8 Generates read-only debugging information about line numbers, source file
names, and variables.

When the -O2 optimization level is in effect:
v Program state is available to the debugger at the beginning of every

executable statement.
v Procedure parameter values are available to the debugger at the

beginning of each procedure.

-g9 Generates debugging information about line numbers, source file names,
and variables. You can modify the value of the variables in the debugger.

When the -O2 optimization level is in effect:
v Program state is available to the debugger at the beginning of every

executable statement.
v Procedure parameter values are available to the debugger at the

beginning of each procedure.

Usage

When no optimization is enabled, the debugging information is always available if
you specify -g2 or a higher level. When the -O2 optimization level is in effect, the
debugging information is available at selected source locations if you specify -g5
or a higher level.

When you specify -g8 or -g9 with -O2, the debugging information is available at
every source line with an executable statement.

When you specify -g5, -g6, or -g7 with -O2, the debugging information is available
for the following language constructs:
v IF constructs

The debugging information is available at the beginning of every IF statement,
namely at the line where the IF keyword is specified. It is also available at the
beginning of the next executable statement right after the IF construct.

v Loop constructs
The debugging information is available at the beginning of every DO statement,
namely at the line where the DO keyword is specified. It is also available at the
beginning of the next executable statement right after the DO construct.

v Procedure definitions
The debugging information is available at the first executable statement in the
body of the procedure.

v Procedure calls
The debugging information is available at the beginning of every statement
where a user-defined procedure is called. It is also available at the beginning of
the next executable statement right after the statement that contains the
procedure call.

Examples

Use the following command to compile myprogram.f and generate an executable
program called testing for debugging:
xlf myprogram.f -o testing -g

Chapter 6. Detailed descriptions of the XL Fortran compiler options 75

The following command uses a specific -g level with -O2 to compile myprogram.f
and generate debugging information:
xlf myprogram.f -O2 -g8

Related information
v SNAPSHOT
v “Debugging a Fortran program” on page 292
v “Symbolic debugger support” on page 6
v “-qdbg” on page 110
v “-qlinedebug” on page 173
v “-qfullpath” on page 135
v “-O” on page 83
v “-qkeepparm” on page 168

-I
Category

Input control

@PROCESS

None.

Purpose

Adds a directory to the search path for include files, .mod files, and .smod files.

Syntax

►► -I path_name ►◄

Defaults

Not applicable.

Parameters

path_name
A valid path name (for example, /home/dir, /tmp, or ./subdir).

Usage

If XL Fortran calls cpp, this option adds a directory to the search path for #include
files. Before checking the default directories for include, .mod, and .smod files, the
compiler checks each directory in the search path. For include files, this path is
only used if the file name in an INCLUDE line is not provided with an absolute
path. For #include files, refer to the cpp documentation for the details of the -I
option.

76 XL Fortran: Compiler Reference for Little Endian Distributions

Rules

The compiler appends a / to path_name and then concatenates that with the file
name before making a search. If you specify more than one -I option on the
command line, files are searched in the order of the path_name names as they
appear on the command line.

The following directories are searched, in this order, after any paths that are
specified by -I options:
1. The current directory (from which the compiler is executed)
2. The directory where the source file is (if different from 1.)
3. /usr/include

Also, the compiler searches /opt/ibm/xlf/15.1.3/include where include and .mod
files supplied with the compiler are located.

Related information
v “-qmoddir” on page 187
v “-qfullpath” on page 135

-k
Category

Input control

Purpose

Indicates that the source code is in free source form.

This option is the short form of -qfree=f90.

Syntax

Option:

►► -k ►◄

@PROCESS:

@PROCESS FREE(F90)

Related information
v “-qfree” on page 134
v Free source form in the XL Fortran Language Reference

-L
Category

Linking

@PROCESS

None.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 77

Purpose

At link time, searches the directory path for library files specified by the -l option.

Syntax

Option:

►► -L Directory ►◄

Defaults

Not applicable.

Usage

Adds Directory to the list of search directories that are used for finding libraries
designated by the -l flag (lowercase letter L). If you use libraries other than the
default ones specified in /opt/ibm/xlf/15.1.3/lib , you can specify one or more -L
options that point to the locations of the other libraries.

Rules

This option is passed directly to the ld command and is not processed by XL
Fortran at all.

Related information
v “Linking” on page 61
v “Linking XL Fortran programs” on page 31

-l
Category

Linking

@PROCESS

None.

Purpose

Searches for the specified library file. The linker searches for libkey.so, and then
libkey.a if libkey.so is not found.

Syntax

►► -l key ►◄

Defaults

The compiler default is to search only for some of the compiler runtime libraries.
The default configuration file specifies the default library names to search for with

78 XL Fortran: Compiler Reference for Little Endian Distributions

the -l compiler option, and the default search path for libraries with the -L
compiler option.

Parameters

key
The name of the library minus the lib and .a or .so characters.

Rules

This option is passed directly to the ld command and is not processed by XL
Fortran at all.

Examples

To compile myprogram.f and link it with library libmylibrary.so or
libmylibrary.a that is found in the /usr/mylibdir directory, enter the following
command. Preference is given to libmylibrary.so over libmylibrary.a.
xlc myprogram.f -lmylibrary -L/usr/mylibdir

Related information
v “Linking” on page 61
v “Linking XL Fortran programs” on page 31

-MF
Category

Output control

@PROCESS

None.

Purpose

Specifies the name or location for the dependency output files that are generated
by the -qmakedep or -MMD option.

For more information about the -qmakedep and -MMD options, see “-qmakedep” on
page 179 and “-MMD” on page 80.

Syntax

►► -MF file_path ►◄

Defaults

If -MF is not specified, the dependency output file is generated in the current
working directory. The file has the same base name as the object file, but with a .d
suffix.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 79

Parameters

file_path
The name or location of the generated dependency output file. file_path can be
the path name of a file or a directory. It can be relative or absolute.

If file_path is the name of an existing directory, the generated dependency
output file is placed in the specified directory. It will have the same base name
as the generated object file, but with a .d suffix. Otherwise, file_path is the
name of the generated dependency output file.For more information, see the
Examples section.

Usage

If the file specified by -MF option already exists, it will be overwritten.

If you specify a single file name for the -MF option when you compile multiple
source files, only a single dependency file will be generated. The dependency file
contains the make rule for the last file specified on the command line.

Examples

To compile source.f and create a dependency output file named mysource.d, enter:
xlf -c -qmakedep source.f -MF mysource.d

To compile source1.f and source2.f and create two dependency output files,
named source1.d and source2.d, respectively, in the /project/deps/ directory,
enter:
xlf -c -qmakedep source1.f source2.f -MF /project/deps/

To compile source.f and create a dependency output file named mysource.d in the
deps/ directory, enter:
xlf -c -qmakedep source.f -MF deps/mysource.d

To compile source.f and create an object file named object.o and a dependency
output file named mysource.d, enter:
xlf -c -qmakedep source.f -o object.o -MF mysource.d

Related information
v “-qmakedep” on page 179
v “-MMD”
v “-MT” on page 81

-MMD
Category

Output control

@PROCESS

None.

80 XL Fortran: Compiler Reference for Little Endian Distributions

Purpose

Produces a dependency output file containing targets suitable for inclusion in a
description file for the make command.

The dependency output file is named with a .d suffix and specifies a separate rule
for each of the main source file's dependencies.

-MMD is the short form of “-qmakedep” on page 179.

Syntax

►► -MMD ►◄

Defaults

Not applicable.

Related information
v “-qmakedep” on page 179

-MT
Category

Output control

@PROCESS

None.

Purpose

Specifies the target name of the object file in the make rule in the dependency
output file that is generated by the -qmakedep or -MMD option.

For more information about the -qmakedep and -MMD options, see “-qmakedep” on
page 179 and “-MMD” on page 80.

Syntax

►► -MT target ►◄

Defaults

If -MT is not specified, the target name is the base name of the object file.

Parameters

target The name that you specify for the object file in the generated dependency
file.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 81

Usage

Only one target is accepted. If you specify multiple -MT options, the target from the
last -MT option is used.

Examples

A source file named mysource.f contains the following code:
#include "options.h"
MODULE m

USE n

CONTAINS
SUBROUTINE sub
IMPLICIT NONE
INCLUDE ’constants.h’
CALL my_print(pi)

END SUBROUTINE
END MODULE

To compile mysource.f and create a dependency output file named mysource.d,
and also to include path information /home/user/sample/ as part of the target
name of the object file in the mysource.d file, enter:
xlf -c -qmakedep mysource.f -MT ’/home/user/sample/mysource.o’

The generated mysource.d file is as follows:
/home/user/sample/mysource.o m.mod: n.mod
/home/user/sample/mysource.o m.mod: option.h
/home/user/sample/mysource.o m.mod: mysource.f
/home/user/sample/mysource.o m.mod: constants.h

Related information
v “-qmakedep” on page 179
v “-MMD” on page 80
v “-MF” on page 79

-NS
Category

Compiler customization

Purpose

Specifies the size (in bytes) of the register spill space; the internal program storage
areas used by the optimizer for register spills to storage.

-qspillsize is the long form of -NS.

Syntax

Option:

►► -NS bytes ►◄

@PROCESS:

@PROCESS SPILLSIZE(bytes)

82 XL Fortran: Compiler Reference for Little Endian Distributions

Defaults

By default, each subprogram stack has 512 bytes of spill space reserved.

If you need this option, a compile-time message informs you of the fact.

Parameters

bytes
The number of bytes of stack space to reserve in each subprogram, in case
there are too many variables to hold in registers and the program needs
temporary storage for register contents.

Related information
v “-qspillsize” on page 231

-O
Category

Optimization and tuning

Purpose

Specifies whether to optimize code during compilation and, if so, at which level.

-qOPTimize is the long form of -O.

Syntax

Option:

►►
0

-O
1
2
3
4
5

►◄

@PROCESS:

@PROCESS OPTimize[(level)] | NOOPTimize

Defaults

nooptimize or -O0 or optimize=0

Parameters

not specified
Almost all optimizations are disabled. This is equivalent to specifying -O0
or -qnoopt.

-O For each release of XL Fortran, -O enables the level of optimization that
represents the best tradeoff between compilation speed and runtime
performance. If you need a specific level of optimization, specify the
appropriate numeric value. -O is equivalent to -O2.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 83

-O0 Almost all optimizations are disabled. This option is equivalent to -qnoopt.

-O1 Reserved for future use. This form is ignored and has no effect on the
outcome of the compilation.

-O2 Performs a set of optimizations that are intended to offer improved
performance without an unreasonable increase in time or storage that is
required for compilation.

-O3 Performs additional optimizations that are memory intensive, compile-time
intensive, and may change the semantics of the program slightly, unless
-qstrict is specified. We recommend these optimizations when the desire
for runtime speed improvements outweighs the concern for limiting
compile-time resources.

This level of optimization also affects the setting of the -qfloat option,
turning on the rsqrt suboption by default, and sets -qmaxmem=-1.

Specifying -O3 implies -qhot=level=0, unless you explicitly specify -qhot,
-qhot=level=1, or -qnohot.

-O4 Aggressively optimizes the source program, trading off additional compile
time for potential improvements in the generated code. You can specify the
option at compile time or at link time. If you specify it at link time, it will
have no effect unless you also specify it at compile time for at least the file
that contains the main program.

-O4 implies the following other options:
v -qhot
v -qipa
v -O3 (and all the options and settings that it implies)
v -qarch=auto
v -qtune=auto
v -qcache=auto

Note that the auto setting of -qarch, -qtune, and -qcache implies that the
execution environment will be the same as the compilation environment.

This option follows the "last option wins" conflict resolution rule, so any of
the options that are modified by -O4 can be subsequently changed.

-O5 Provides all of the functionality of the -O4 option, but also provides the
functionality of the -qipa=level=2 option.

Note:

To obtain the same floating-point accuracy for optimized and non-optimized
applications, you must specify the -qfloat=nomaf compiler option. In cases where
differences in floating-point accuracy still occur after specifying -qfloat=nomaf, the
-qstrict compiler option allows you to exert greater control over changes that
optimization can cause in floating-point semantics.

Usage

Generally, use the same optimization level for both the compile and link steps. This
is important when using either the -O4 or -O5 optimization level to get the best
runtime performance. For the -O5 level, all loop transformations (as specified via
the -qhot option) are done at the link step.

84 XL Fortran: Compiler Reference for Little Endian Distributions

Increasing the level of optimization may or may not result in additional
performance improvements, depending on whether the additional analysis detects
any further optimization opportunities.

An optimization level of -O3 or higher can change the behavior of the program and
potentially cause exceptions that would not otherwise occur. Use of the -qstrict
option maintains the same program behavior as with -O2, at the cost of
optimization opportunity. Refer to the -qstrict option for the list of optimizations
it disables.

When you use -O or higher optimization, -qtbtable=small is in effect. The
traceback table generated has no function name or parameter information.

If the -O option is used in an @PROCESS statement, only an optimization level of
0, 2, or 3 is allowed. Note that unlike using -O3 in command line invocation,
specifying @PROCESS OPT(3) does not imply -qhot=level=0. If optimization level
-O3 or higher is specified on the command line, the -qhot and -qipa options that
are set by the optimization level cannot be overridden by @PROCESS OPT(0) or
@PROCESS OPT(2).

Compilations with optimization may require more time and machine resources
than other compilations.

The more the compiler optimizes a program, the more difficult it is to debug the
program with a symbolic debugger.

Related information
v “-qtbtable” on page 246 controls the amount of debugging traceback information

that is included in the object files.
v “-qstrict” on page 236 shows how to turn off the effects of -O3 that might change

the semantics of a program.
v “-qipa” on page 163, “-qpdf1, -qpdf2” on page 195, and “-qhot” on page 143

turn on additional optimizations that may improve performance for some
programs.

v "Optimizing your applications" in the XL Fortran Optimization and Programming
Guide discusses technical details of the optimization techniques the compiler uses
and some strategies you can use to get maximum performance from your code.

-o
Category

Output control

@PROCESS

None.

Purpose

Specifies a name for the output object, assembler, or executable file.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 85

Syntax

►► -o name ►◄

Defaults

The default name for an executable file is a.out. The default name for an object or
assembler source file is the same as the source file except that it has a .o or .s
extension.

Usage

To choose the name for an object file, use this option in combination with the -c
option. For an assembler source file, use it in combination with the -S option.

Rules

Except when you specify the -c or -S option, the -o option is passed directly to the
ld command, instead of being processed by XL Fortran.

Examples
xlf95 t.f # Produces "a.out"
xlf95 -c t.f # Produces "t.o"
xlf95 -o test_program t.f # Produces "test_program"
xlf95 -S -o t2.s t.f # Produces "t2.s"

-p
Category

Optimization and tuning

@PROCESS

None.

Purpose

Prepares the object files produced by the compiler for profiling.

The compiler produces monitoring code that counts the number of times each
routine is called. The compiler inserts a call to the monitor subroutine at the start
of each subprogram.

Syntax

►► -p
g

►◄

Defaults

Not applicable.

86 XL Fortran: Compiler Reference for Little Endian Distributions

Usage

When you run a program compiled with -p or -pg and it ends normally, it
produces a gmon.out file with the profiling information. You can then use the
gprof command to generate a runtime profile.

Examples
$ xlf95 -pg needs_tuning.f
$ a.out
$ gprof
.
.
.

detailed and verbose profiling data
.
.
.

Related information
v Refer to your operating system documentation for more information on profiling

and the gprof command.

-qalias
Category

Optimization and tuning

Purpose

Indicates whether a program contains certain categories of aliasing or does not
conform to Fortran standard aliasing rules. The compiler limits the scope of some
optimizations when there is a possibility that different names are aliases for the
same storage location.

Syntax

►► ▼

:
std
pteovrlp
nointptr
aryovrlp

-q alias = noaryovrlp
intptr
nopteovrlp
nostd

►◄

@PROCESS:

@PROCESS ALIAS({ARGUMENT_LIST})

Defaults

-qalias=aryovrlp:nointptr:pteovrlp:std

Chapter 6. Detailed descriptions of the XL Fortran compiler options 87

Parameters

aryovrlp | noaryovrlp
Indicates whether the compilation units contain any array assignments
between storage-associated arrays. If not, specify noaryovrlp to improve
performance.

intptr | nointptr
Indicates whether the compilation units contain any integer POINTER
statements. If so, specify intptr.

pteovrlp | nopteovrlp
Indicates whether any pointee variables may be used to refer to any data
objects that are not pointee variables, or whether two pointee variables
may be used to refer to the same storage location. If not, specify
nopteovrlp.

std | nostd
Indicates whether the compilation units contain any nonstandard aliasing
(which is explained below). If so, specify nostd.

Usage

An alias exists when an item in storage can be referred to by more than one name.
The Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008 standards allow some
types of aliasing and disallow some others. The sophisticated optimizations that
the XL Fortran compiler performs increase the likelihood of undesirable results
when nonstandard aliasing is present, as in the following situations:
v The same data object is passed as an actual argument two or more times in the

same subprogram reference. The aliasing is not valid if either of the actual
arguments becomes defined, undefined, or redefined.

v A subprogram reference associates a dummy argument with an object that is
accessible inside the referenced subprogram. The aliasing is not valid if any part
of the object associated with the dummy argument becomes defined, undefined,
or redefined other than through a reference to the dummy argument.

v A dummy argument becomes defined, undefined, or redefined inside a called
subprogram in some other way than through the dummy argument.

v A subscript to an array within a common block exceeds that array's bounds.

Restrictions

Because this option inhibits some optimizations of some variables, using it can
lower performance.

Programs that contain nonstandard or integer POINTER aliasing may produce
incorrect results if you do not compile them with the correct -qalias settings.
When you use the xlf or xlf_r invocation command to compile the .f, .F, .f77, or
.F77 files, or when you use the f77 or fort77 invocation command, the compiler
assumes that integer POINTERs might be present
(-qalias=aryovrlp:pteovrlp:std:intptr). All the other invocation commands assume
that a program contains only standard aliasing
(-qalias=aryovrlp:pteovrlp:std:nointptr).

88 XL Fortran: Compiler Reference for Little Endian Distributions

Examples

If the following subroutine is compiled with -qalias=nopteovrlp, the compiler
may be able to generate more efficient code. You can compile this subroutine with
-qalias=nopteovrlp, because the integer pointers, ptr1 and ptr2, point at
dynamically allocated memory only.

subroutine sub(arg)
real arg
pointer(ptr1, pte1)
pointer(ptr2, pte2)
real pte1, pte2

ptr1 = malloc(%val(4))
ptr2 = malloc(%val(4))
pte1 = arg*arg
pte2 = int(sqrt(arg))
arg = pte1 + pte2
call free(%val(ptr1))
call free(%val(ptr2))

end subroutine

If most array assignments in a compilation unit involve arrays that do not overlap
but a few assignments do involve storage-associated arrays, you can code the
overlapping assignments with an extra step so that the NOARYOVRLP suboption
is still safe to use.
@PROCESS ALIAS(NOARYOVRLP)
! The assertion that no array assignments involve overlapping
! arrays allows the assignment to be done without creating a
! temporary array.

program test
real(8) a(100)
integer :: j=1, k=50, m=51, n=100

a(1:50) = 0.0d0
a(51:100) = 1.0d0

! Timing loop to achieve accurate timing results
do i = 1, 1000000

a(j:k) = a(m:n) ! Here is the array assignment
end do

print *, a
end program

! We cannot assert that this unit is free
! of array-assignment aliasing because of the assignments below.

subroutine sub1
integer a(10), b(10)
equivalence (a, b(3))
a = b ! a and b overlap.
a = a(10:1:-1) ! The elements of a are reversed.
end subroutine

! When the overlapping assignment is recoded to explicitly use a
! temporary array, the array-assignment aliasing is removed.
! Although ALIAS(NOARYOVRLP) does not speed up this assignment,
! subsequent assignments of non-overlapping arrays in this unit
! are optimized.
@PROCESS ALIAS(NOARYOVRLP)

subroutine sub2
integer a(10), b(10), t(10)
equivalence (a, b(3))
t = b; a = t
t = a(10:1:-1); a = t
end subroutine

Chapter 6. Detailed descriptions of the XL Fortran compiler options 89

When SUB1 is called, an alias exists between J and K. J and K refer to the same
item in storage. In Fortran, this aliasing is not permitted if J or K are updated, and,
if it is left undetected, it can have unpredictable results.

CALL SUB1(I,I)
...
SUBROUTINE SUB1(J,K)

In the following example, the program might store 5 instead of 6 into J unless
-qalias=nostd indicates that an alias might exist.

INTEGER BIG(1000)
INTEGER SMALL(10)
COMMON // BIG
EQUIVALENCE(BIG,SMALL)
...
BIG(500) = 5
SMALL (I) = 6 ! Where I has the value 500
J = BIG(500)

Related information
v See Optimizing your applications in the XL Fortran Optimization and Programming

Guide for information on aliasing strategies you should consider.

-qalign
Category

Portability and migration

Purpose

Specifies the alignment of data objects in storage, which avoids performance
problems with misaligned data.

Format

►► ▼

:
no4k

-q align = 4k
linuxppc

bindc = bit_packed
natural

struct = packed
port

►◄

@PROCESS:

@PROCESS ALIGN({[NO]4K|STRUCT{(suboption)}|BINDC{(suboption)}})

Defaults

-qalign= no4k:struct=natural:bindc=linuxppc.

Parameters

The [no]4k, bindc, and struct options can be specified and are not mutually
exclusive. The [no]4k option is useful primarily in combination with logical
volume I/O and disk striping.

90 XL Fortran: Compiler Reference for Little Endian Distributions

[no]4k
Specifies whether to align large data objects on page (4 KB) boundaries, for
improved performance with data-striped I/O. Objects are affected
depending on their representation within the object file. The affected
objects are arrays and structures that are 4 KB or larger and are in static or
bss storage and also CSECTs (typically COMMON blocks) that are 8 KB or
larger. A large COMMON block, equivalence group containing arrays, or
structure is aligned on a page boundary, so the alignment of the arrays
depends on their position within the containing object. Inside a structure of
non-sequence derived type, the compiler adds padding to align large
arrays on page boundaries.

bindc={suboption}
Specifies that the alignment and padding for an XL Fortran derived type
with the BIND(C) attribute is compatible with a C struct type that is
compiled with the corresponding XL C alignment option. The compatible
alignment options include:

XL Fortran Option
Corresponding
XL C Option

-qalign=bindc=bit_packed -qalign=bit_packed
-qalign=bindc=linuxppc -qalign=linuxppc

struct={suboption}
The struct option specifies how objects or arrays of a derived type declared
using a record structure are stored, and whether or not padding is used
between components. All program units must be compiled with the same
settings of the -qalign=struct option. The three suboptions available are:

packed
If the packed suboption of the struct option is specified, objects of
a derived type are stored with no padding between components,
other than any padding represented by %FILL components. The
storage format is the same as would result for a sequence structure
whose derived type was declared using a standard derived type
declaration.

natural
If the natural suboption of the struct option is specified, objects of
a derived type are stored with sufficient padding such that
components will be stored on their natural alignment boundaries,
unless storage association requires otherwise. The natural
alignment boundaries for objects of a type that appears in the
left-hand column of the following table is shown in terms of a
multiple of some number of bytes in the corresponding entry in
the right-hand column of the table.

Type
Natural Alignment (in

multiples of bytes)

INTEGER(1), LOGICAL(1), BYTE, CHARACTER 1

INTEGER(2), LOGICAL(2) 2

INTEGER(4), LOGICAL(4), REAL(4) 4

INTEGER(8), LOGICAL(8), REAL(8), COMPLEX(4) 8

REAL(16), COMPLEX(8), COMPLEX(16) 16

Chapter 6. Detailed descriptions of the XL Fortran compiler options 91

Type
Natural Alignment (in

multiples of bytes)

Derived Maximum alignment of its
components

If the natural suboption of the struct option is specified, arrays of
derived type are stored so that each component of each element is
stored on its natural alignment boundary, unless storage
association requires otherwise.

port

If the port suboption of the struct option is specified,
v Storage padding is the same as described above for the natural

suboption, with the exception that the alignment of components
of type complex is the same as the alignment of components of
type real of the same kind.

v The padding for an object that is immediately followed by a
union is inserted at the beginning of the first map component
for each map in that union.

Restrictions

The port suboption does not affect any arrays or structures with the AUTOMATIC
attribute or arrays that are allocated dynamically. Because this option may change
the layout of non-sequence derived types, when compiling programs that read or
write such objects with unformatted files, use the same setting for this option for
all source files.

You can tell if an array has the AUTOMATIC attribute and is thus unaffected by
-qalign=4k if you look for the keywords AUTOMATIC or CONTROLLED
AUTOMATIC in the listing of “-qattr” on page 96. This listing also shows the
offsets of data objects.

-qaltivec

Category

Language element control

@PROCESS

ALTIVEC(LE | BE)

Purpose

Specifies the order of vector elements in vector registers.

Syntax

►► -q altivec
=le
=be ►◄

92 XL Fortran: Compiler Reference for Little Endian Distributions

Defaults

-qaltivec=le

Parameters

be Specifies big endian element order. Vectors are laid out in vector registers
from left to right, so that element 0 is the leftmost element in the register.

le Specifies little endian element order. Vectors are laid out in vector registers
from right to left, so that element 0 is the rightmost element in the register.

Usage

The -qaltivec option affects the following categories of procedures:
v Vector Multimedia Extension (VMX) load and store intrinsic procedures
v Vector Scalar Extension (VSX) load and store intrinsic procedures
v The nonload and nonstore intrinsic procedures referring to the vector element

order

The following list shows all the procedures affected:
v Load procedures

– VMX load procedures: VEC_LD, VEC_LDE, and VEC_LDL

– VSX load procedures: VEC_XLD2, VEC_XLW4, and VEC_XL

v Store procedures
– VMX store procedures: VEC_ST, VEC_STE, and VEC_STL

– VSX store procedures: VEC_XSTD2, VEC_XSTW4, and VEC_XST

v Nonload and nonstore procedures: VPERMXOR, VEC_EXTRACT,
VEC_INSERT, VEC_MERGEH, VEC_MERGEL, VEC_MERGEE,
VEC_MERGEO, VEC_MULE, VEC_MULO, VEC_PACK, VEC_PERM,
VEC_PROMOTE, VEC_SPLAT, VEC_SUM2S, VEC_SUMS, VEC_UNPACKH,
and VEC_UNPACKL

Examples
v To change the vector element sequence to big endian element order in registers,

enter the following command:
xlf95 myprogram.f -qaltivec=be

Related information
v “-qarch”
v Vector intrinsic procedures (IBM extension)
v Vector data types
v Vector layout in register (big endian or little endian element order)
v “-qsimd” on page 223
v AltiVec Technology Programming Interface Manual, available at

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

-qarch
Category

Optimization and tuning

Chapter 6. Detailed descriptions of the XL Fortran compiler options 93

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

@PROCESS

None.

Purpose

Specifies the processor architecture, or family of architectures, where the code may
run. This allows the compiler to take maximum advantage of the machine
instructions specific to an architecture, or common to a family of architectures.

Syntax

►►
= pwr8

-q arch = auto ►◄

Defaults
v -qarch=pwr8

v -qarch=auto when -O4 or -O5 is in effect

Parameters

auto
Automatically detects the specific architecture of the compilation machine. It
assumes that the execution environment will be the same as the compilation
environment. This option is implied if the -O4 or -O5 option is set or implied.

pwr8
Produces object code containing instructions that run on the POWER8
hardware platforms.

Usage

For any given or -qarch setting, the compiler defaults to a specific, matching or
-qtune setting, which can provide additional performance improvements. For
detailed information about using -qarch and -qtune together, see “-qtune” on page
249.

The POWER8 architecture supports graphics, square root, Vector Multimedia
Extension (VMX) processing, Vector Scalar Extension (VSX) processing, hardware
transactional memory, and cryptography.

Examples

To specify that the executable program testing compiled from myprogram.f is to
run on a computer with VSX instruction support, enter:
xlf -o testing myprogram.f -qarch=pwr8

Related information
v -qprefetch
v -qfloat
v “-qtune” on page 249
v “Compiling for specific architectures” on page 29

94 XL Fortran: Compiler Reference for Little Endian Distributions

-qassert
Category

Optimization and tuning

Purpose

Provides information about the characteristics of your code that can help the
compiler fine-tune optimizations.

Syntax

Option:

►►

▼

-q assert
:

deps
= nodeps

itercnt=n
minitercnt=n
maxitercnt=n
CONTIGuous
NOCONTIGuous
REFalign
NOREFalign

►◄

@PROCESS:

@PROCESS ASSERT(suboptions)

Defaults

-qassert=deps:norefalign:nocontig

Parameters

deps | nodeps
Specifies whether or not any loop-carried dependencies exist.

itercnt=n
Specifies a value for loop iteration counts for the optimizer to use when it
cannot statically determine the loop iteration count. n must be a positive
integer.

minitercnt=n
Specifies the expected minimum iteration count of the loops in the
program. n must be a positive integer.

maxitercnt=n
Specifies the expected maximum iteration count of the loops in the
program. n must be a positive integer.

CONTIGuous | NOCONTIGuous
Specifies the following contiguity for all compilation units:
v All array pointers are pointer associated with contiguous targets.
v All assumed-shape arrays are argument associated with contiguous

actual arguments.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 95

When -qassert=contig is specified, the compiler can perform
optimizations according to the memory layout of the objects occupying
contiguous blocks of memory.

Using -qassert=contig does not have the same effect as specifying the
CONTIGUOUS attribute for array pointers and assumed-shape arrays.
-qassert=contig does not validate contiguity assertion. F2008 To ensure
Fortran 2008 semantics, use the CONTIGUOUS attribute. F2008

Notes:

v -qassert=contig is not supported through the ASSERT directive.
v Using this suboption might produce unexpected results without

warning.

REFalign | NOREFalign
Specifies that all pointers inside the compilation unit only point to data
that is naturally aligned according to the length of the pointer types. With
this assertion, the compiler might generate more efficient code. This
assertion is particularly useful when you target a SIMD architecture with
-qhot=level=0 or -qhot=level=1 with -qsimd=auto.

Usage

The itercnt, minitercnt, and maxitercnt values are not required to be accurate. The
values only affect performance, never correctness. Specify the values following the
rule minitercnt <= itercnt <= maxitercnt. Otherwise, messages are issued to
indicate that the values are inconsistent and the inconsistent value is ignored.

Related information
v High-order transformation in the XL Fortran Optimization and Programming Guide

for background information and instructions on using these assertions
v The ASSERT directive in the XL Fortran Language Reference
v F2008 The CONTIGUOUS attribute F2008

-qattr
Category

Listings, messages, and compiler information

Purpose

Produces a compiler listing that includes the attribute component of the attribute
and cross-reference section of the listing.

Syntax

►►
noattr

-q attr
= full

►◄

@PROCESS:

@PROCESS ATTR[(FULL)] | NOATTR

96 XL Fortran: Compiler Reference for Little Endian Distributions

Defaults

-qnoattr

Parameters

full
Reports all identifiers in the program, whether they are referenced or not. If
you specify -qattr without this suboption, reports only those identifiers that
are used.

Usage

If you specify -qattr after -qattr=full, the full attribute listing is still produced.

You can use the attribute listing to help debug problems caused by incorrectly
specified attributes or as a reminder of the attributes of each object while writing
new code.

Related information
v “Listings, messages, and compiler information” on page 56
v “Attribute and cross reference section” on page 297

-qautodbl
Category

Floating-point and integer control

Purpose

Provides an automatic means of converting single-precision floating-point
calculations to double-precision and of converting double-precision calculations to
extended-precision.

Syntax

►►
none

-q autodbl = dbl4
dbl8
dbl

►◄

@PROCESS:

@PROCESS AUTODBL(setting)

Defaults

-qautodbl=none

Parameters

The -qautodbl suboptions offer different strategies to preserve storage relationships
between objects that are promoted or padded and those that are not.

The settings you can use are as follows:

Chapter 6. Detailed descriptions of the XL Fortran compiler options 97

none Does not promote or pad any objects that share storage. This setting is the
default.

dbl4 Promotes floating-point objects that are single-precision (4 bytes in size) or
that are composed of such objects (for example, COMPLEX or array
objects):
v REAL(4) is promoted to REAL(8).
v COMPLEX(4) is promoted to COMPLEX(8).

This suboption requires the libxlfpmt4.a library during linking.

dbl8 Promotes floating-point objects that are double-precision (8 bytes in size) or
that are composed of such objects:
v REAL(8) is promoted to REAL(16).
v COMPLEX(8) is promoted to COMPLEX(16).

This suboption requires the libxlfpmt8.a library during linking.

dbl Combines the promotions that dbl4 and dbl8 perform.

This suboption requires the libxlfpmt4.a and libxlfpmt8.a libraries during
linking.

Usage

You might find this option helpful in porting code where storage relationships are
significant and different from the XL Fortran defaults. For example, programs that
are written for the IBM VS FORTRAN compiler may rely on that compiler's
equivalent option.

If the appropriate -qautodbl option is specified during linking, the program is
automatically linked with the necessary extra libraries. Otherwise, you must link
them in manually.

When you have both REAL(4) and REAL(8) calculations in the same program and
want to speed up the REAL(4) operations without slowing down the REAL(8)
ones, use dbl4.

If you want maximum precision of all results, you can use dbl. The dbl4 and dbl8
suboptions select a subset of real types that have their precision increased.

By using dbl4, you can increase the size of REAL(4) objects without turning
REAL(8) objects into REAL(16)s. REAL(16) is less efficient in calculations than
REAL(8) is.

The -qautodbl option handles calls to intrinsics with arguments that are promoted;
when necessary, the correct higher-precision intrinsic function is substituted. For
example, if single-precision items are being promoted, a call in your program to
SIN automatically becomes a call to DSIN.

You must not specify the -qautodbl option if your program contains vector types.

Restrictions
v Because character data is not promoted or padded, its relationship with

storage-associated items that are promoted or padded may not be maintained.
v If the storage space for a pointee is acquired through the system routine malloc,

the size specified to malloc should take into account the extra space needed to
represent the pointee if it is promoted or padded.

98 XL Fortran: Compiler Reference for Little Endian Distributions

v If an intrinsic function cannot be promoted because there is no higher-precision
specific name, the original intrinsic function is used, and the compiler displays a
warning message.

v You must compile every compilation unit in a program with the same -qautodbl
setting.

Related information

For background information on promotion, padding, and storage/value
relationships and for some source examples, see “Implementation details for
-qautodbl promotion and padding” on page 302.

“-qrealsize” on page 211 describes another option that works like -qautodbl, but it
only affects items that are of default kind type and does not do any padding. If
you specify both the -qrealsize and the -qautodbl options, only -qautodbl takes
effect. Also, -qautodbl overrides the -qdpc option.

-qbindcextname
Category

Portability and migration

Purpose

Controls whether the -qextname option affects BIND(C) entities.

Syntax

►►
bindcextname

-q nobindcextname ►◄

@PROCESS:

@PROCESS BINDCEXTNAME | NOBINDCEXTNAME

Defaults

-qbindcextname

Usage

The -qextname option and the BIND(C) attribute are two ways of modifying the
names of Fortran global entities to facilitate use in C.

If you explicitly specify a BIND(C) binding label in an interface block using the
NAME= specifier, the compiler uses this binding label in calls to the procedure
regardless of the -qextname and -qbindcextname options.

If your interface does not explicitly specify a BIND(C) binding label using the
NAME= specifier, the compiler creates an implicit binding label. If you also specify
the -qextname option, the compiler appends an underscore to the implicit binding
label only when the -qbindcextname option is in effect.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 99

If you specify the -qextname and -qbindcextname options for a compilation unit
declaring a BIND(C) procedure, the compiler appends an underscore to the
binding label, even when the binding label is explicitly specified.

Notes:

v You must ensure that the names of a BIND(C) entity are identical. Accordingly,
if two compilation units access the same BIND(C) entity that does not have an
explicitly-specified binding label, you must not compile one unit with the
-qbindcextname option and the other with the -qnobindcextname option.

v The -q[no]bindcextname option has effect only if the -qextname option is also
specified. If the -qextname option is specified with a list of named entities, the
-q[no]bindcextname option only affects these named entities.

Examples
interface

integer function foo() bind(c)
end funciton
integer function bar()
end function

end interface

print *, foo()
print *, bar()
end

xlf90 x.f -qextname -qbindcextname # calls "foo_", and "bar_"
xlf90 x.f -qextname -qnobindcextname # calls "foo", and "bar_"
xlf90 x.f -qextname=foo -qbindcextname # calls "foo_", and "bar"
xlf90 x.f -qextname=foo -qnobindcextname # calls "foo", and "bar"
xlf90 x.f # calls "foo", and "bar"
xlf90 x.f -qnobindcextname # calls "foo", and "bar"

Related information
v “-qextname” on page 122
v "BIND (Fortran 2003)"
v "Binding labels"

-qcache
Category

Optimization and tuning

@PROCESS

None.

Purpose

Specifies the cache configuration for a specific execution machine.

The compiler uses this information to tune program performance, especially for
loop operations that can be structured (or blocked) to process only the amount of
data that can fit into the data cache.

100 XL Fortran: Compiler Reference for Little Endian Distributions

Syntax

►► ▼

:

-q cache = assoc = 0
1
number

auto
cost = cycles
level = 1

2
3

line = bytes
size = Kbytes
type = C

c
D
d
I
i

►◄

Defaults

Not applicable.

Parameters

assoc=number
Specifies the set associativity of the cache:

0 Direct-mapped cache

1 Fully associative cache

n > 1 n-way set-associative cache

auto Automatically detects the specific cache configuration of the compiling
machine. It assumes that the execution environment will be the same as
the compilation environment.

cost=cycles
Specifies the performance penalty that results from a cache miss so that the
compiler can decide whether to perform an optimization that might result
in extra cache misses.

level=level
Specifies which level of cache is affected:

1 Basic cache

2 Level-2 cache or the table lookaside buffer (TLB) if the machine has
no level-2 cache

3 TLB in a machine that does have a level-2 cache

Other levels are possible but are currently undefined. If a system has more
than one level of cache, use a separate -qcache option to describe each
level.

line=bytes
Specifies the line size of the cache.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 101

size=Kbytes
Specifies the total size of this cache.

type={C|c| D|d|I|i}
Specifies the type of cache that the settings apply to, as follows:
v C or c for a combined data and instruction cache
v D or d for the data cache
v I or i for the instruction cache

Usage

If you know exactly what type of system a program is intended to be executed on
and that system has its instruction or data cache configured differently from the
default case (as governed by the -qtune setting), you can specify the exact
characteristics of the cache to allow the compiler to compute more precisely the
benefits of particular cache-related optimizations.

For the -qcache option to have any effect, you must include the level and type
suboptions and specify the -qhot option or an option that implies -qhot.
v If you know some but not all of the values, specify the ones you do know.
v If a system has more than one level of cache, use a separate -qcache option to

describe each level. If you have limited time to spend experimenting with this
option, it is more important to specify the characteristics of the data cache than
of the instruction cache.

v If you are not sure of the exact cache sizes of the target systems, use relatively
small estimated values. It is better to have some cache memory that is not used
than to have cache misses or page faults from specifying a cache that is larger
than the target system has.

If you specify the wrong values for the cache configuration or run the program on
a machine with a different configuration, the program may not be as fast as
possible but will still work correctly. Remember, if you are not sure of the exact
values for cache sizes, use a conservative estimate.

Examples

To tune performance for a system with a combined instruction and data level-1
cache where the cache is two-way associative, 8 KB in size, and has 64-byte cache
lines:

xlf95 -O3 -qhot -qcache=type=c:level=1:size=8:line=64:assoc=2 file.f

To tune performance for a system with two levels of data cache, use two -qcache
options:

xlf95 -O3 -qhot -qcache=type=D:level=1:size=256:line=256:assoc=4 \
-qcache=type=D:level=2:size=512:line=256:assoc=2 file.f

To tune performance for a system with two types of cache, again use two -qcache
options:

xlf95 -O3 -qhot -qcache=type=D:level=1:size=256:line=256:assoc=4 \
-qcache=type=I:level=1:size=512:line=256:assoc=2 file.f

Related information
v “-qarch” on page 93
v “-qhot” on page 143
v “-qtune” on page 249

102 XL Fortran: Compiler Reference for Little Endian Distributions

-qcclines
Category

Input control

Purpose

Determines whether the compiler recognizes conditional compilation lines in fixed
source form and F90 free source form. This option is not supported with IBM free
source form.

Syntax

►► -q cclines
nocclines

►◄

@PROCESS:

@PROCESS CCLINES | NOCCLINES

Defaults

The default is -qcclines if the -qsmp=omp option is turned on; otherwise, the
default is -qnocclines.

Related information
v Conditional compilation in the XL Fortran Language Reference

-qcheck
Category

Error checking and debugging

Purpose

Generates code that performs certain types of runtime checking.

-qcheck is the long form of the -C option.

Syntax

►►
nocheck

-q check
all

= bounds
nobounds
stackclobber
nostackclobber
unset
nounset

►◄

@PROCESS:

@PROCESS CHECK[(suboptions)] | NOCHECK

Chapter 6. Detailed descriptions of the XL Fortran compiler options 103

Defaults

-qnocheck

Parameters

all
Enables all suboptions.

bounds | nobounds
Checks each reference to an array element, array section, or character substring
to ensure the reference stays within the defined bounds of the entity.

stackclobber | nostackclobber
Detects stack corruption of nonvolatile registers in the save area in user
programs. This type of corruption happens only if any of the nonvolatile
registers in the save area of the stack is modified.

If the -qstackprotect option and this suboption are both on, this suboption
catches the stack corruption first.

unset | nounset
Checks for automatic variables that are used before they are set. A trap will
occur at run time if an automatic variable is not set before it is used.

The -qinitauto option initializes automatic variables. As a result, the
-qinitauto option hides uninitialized variables from the -qcheck=unset option.

The -qsave option changes the storage class of automatic variables to STATIC.
As a result, the -qsave option hides variables that are used before they are set
from the -qcheck=unset option.

Specify the -qsigtrap option to get a traceback that shows the procedure calls
leading to the use of the variable. If you also specify the -g option, the
traceback will include the line numbers and procedure names.

Specifying -qcheck with no suboption is equivalent to specifying -qcheck=all.

Usage

You can specify the -qcheck option more than once. The suboption settings are
accumulated, but the later suboptions override the earlier ones.

You can use the all suboption along with the no... form of one or more of the other
options as a filter. For example, the following command provides checking for
everything except for references that go out of bounds:
xlf myprogram.f -qcheck=all:nobounds

If you use all with the no... form of the suboptions, all should usually be the first
suboption.

At compile time, if the compiler can determine that a reference goes out of bounds,
the severity of the error reported is increased to S (severe) when -qcheck=bounds is
enabled.

At run time, if a reference goes out of bounds or if a certain type of stack
corruption is detected, the program generates a SIGTRAP signal. By default, this
signal ends the program and produces a core dump. This is an expected behavior
and does not indicate there is a defect in the compiler product.

104 XL Fortran: Compiler Reference for Little Endian Distributions

Because runtime checking can slow execution, you should decide which is the
more important factor for each program: the performance impact or the possibility
of incorrect results if an error goes undetected. You might decide to use this option
only while testing and debugging a program (if performance is more important) or
also for compiling the production version (if safety is more important).

The -qcheck option prevents some optimizations. You may want to remove the
-qcheck option after the debugging of your code is complete and then add any
wanted optimization options for better performance.

The valid bounds for character substring expressions differ depending on the
setting of the -qzerosize option.

Examples

The following code example shows an out-of-bounds access of an allocatable array
that is detected by -qcheck=bounds:
program outofbounds

real, allocatable :: x(:)
allocate(x(5:10))
x(1) = 3.0 ! Out of bound access.
print *, x

end

In the following example, a random assignment of an integer pointer corrupts the
save area of the call stack. -qcheck=stackclobber detects the problem and causes a
trap:
subroutine update(i, off, value)

implicit none
integer, value :: i, off
character, value :: value
integer pointee
pointer(p, pointee)
p = i + off
pointee = ichar(value)

end subroutine

subroutine sub1()
implicit none
interface
subroutine update(i, off, value)

integer, value :: i, off
character, value :: value

end subroutine
end interface
character(9) buffer
buffer = ""
! This call to update will corrupt the call stack.
! Offset 48 is within the save area for this program.
call update(loc(buffer), 48, ’a’)
print *, buffer

end subroutine

program main
call sub1

end program

Note: The offset of the save area of the call stack depends on the program source
and optimization level. When -O2 or a lower optimization level is in effect, offset
48 falls within the save area.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 105

In the following function factorial, temp is not initialized when n<=1, and result
is accessed before it is set when n>1. To compile factorial.f to detect this issue
and causes traps during run time, enter the following command:
xlf95 -qcheck=unset -O -g -qsigtrap factorial.f

factorial.f contains the following code:
module m
contains
recursive function factorial(n) result(result)
integer, value :: n
integer result, temp

if (n > 1) then
temp = n * factorial(n - 1)
print *, result ! line 9

endif

result = temp ! line 12
end function

end module

use m
integer x
x = factorial(1)
end

The compiler issues the following informational messages and traps occur near line
12 and line 18 during run time:
1500-098 (I) "factorial.f", line 9: "result" is used before it is set.
1500-098 (I) "factorial.f", line 12: "temp" might be used before it is set.
1501-510 Compilation successful for file factorial.f.
$./a.out

Signal received: SIGTRAP - Trace trap
Fortran language trap: reference to unset memory location

Traceback:
Offset 0x00000014 in procedure __m_NMOD_factorial, near line 12 in file factorial.f
Offset 0x00000028 in procedure _main, near line 18 in file factorial.f
--- End of call chain ---

Note: If you set -qcheck=unset at noopt, the compiler does not issue informational
messages at compile time.

Related information
v “-qstackprotect” on page 231
v “-qhot” on page 143
v “-qzerosize” on page 270
v “-qsigtrap” on page 222 and Installing an exception handler in the XL Fortran

Optimization and Programming Guide describe how to detect and recover from
SIGTRAP signals without ending the program.

-qci
Category

Input control

Purpose

Specifies the identification numbers (from 1 to 255) of the INCLUDE lines to
process.

106 XL Fortran: Compiler Reference for Little Endian Distributions

Syntax

►► ▼

:

-q ci = number ►◄

@PROCESS:

@PROCESS CI(number,...,number)

Defaults

Not applicable.

Usage

This option allows a kind of conditional compilation because you can put code that
is only sometimes needed (such as debugging WRITE statements, additional
error-checking code, or XLF-specific code) into separate files and decide for each
compilation whether to process them.

If an INCLUDE line has a number at the end, the file is only included if you
specify that number in a -qci option. The set of identification numbers that is
recognized is the union of all identification numbers that are specified on all
occurrences of the -qci option.

Note:

1. Because the optional number in INCLUDE lines is not a widespread XL
Fortran feature, using it may restrict the portability of a program.

2. This option works only with the XL Fortran INCLUDE directive and not with
the #include C preprocessor directive.

Examples
REAL X /1.0/
INCLUDE ’print_all_variables.f’ 1
X = 2.5
INCLUDE ’print_all_variables.f’ 1
INCLUDE ’test_value_of_x.f’ 2
END

In this example, compiling without the -qci option simply declares X and assigns
it a value. Compiling with -qci=1 includes two instances of an include file, and
compiling with -qci=1:2 includes both include files.

Related information
v The INCLUDE directive in the XL Fortran Language Reference

-qcompact
Category

Optimization and tuning

Purpose

Avoids optimizations that increase code size.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 107

Syntax

►►
nocompact

-q compact ►◄

@PROCESS:

@PROCESS COMPACT | NOCOMPACT

Defaults

-qnocompact

Usage

By default, some techniques the optimizer uses to improve performance, such as
loop unrolling and array vectorization, may also make the program larger. For
systems with limited storage, you can use -qcompact to reduce the expansion that
takes place. If your program has many loop and array language constructs, using
the -qcompact option will affect your application's overall performance. You may
want to restrict using this option to those parts of your program where
optimization gains will remain unaffected.

Rules

With -qcompact in effect, other optimization options still work; the reductions in
code size come from limiting code replication that is done automatically during
optimization.

This option takes effect only when it is specified at the -O2 optimization level, or
higher.

-qcr
Category

Input control

@PROCESS

None.

Purpose

Controls how the compiler interprets the CR (carriage return) character.

This option allows you to compile code written using a Mac OS or DOS/Windows
editor.

Syntax

►►
nocr

-q cr ►◄

108 XL Fortran: Compiler Reference for Little Endian Distributions

Defaults

By default, the CR (Hex value X'0d') or LF (Hex value X'0a') character, or the CRLF
(Hex value X'0d0a') combination indicates line termination in a source file.

Usage

If you specify -qnocr, the compiler recognizes only the LF character as a line
terminator. You must specify -qnocr if you use the CR character for a purpose
other than line termination.

-qctyplss
Category

Portability and migration

Purpose

Specifies whether character constant expressions are allowed wherever typeless
constants may be used.

This language extension might be needed when you are porting programs from
other platforms.

Syntax

►►
noctyplss

-q ctyplss
noarg

= arg

►◄

@PROCESS:

@PROCESS CTYPLSS[([NO]ARG)]| NOCTYPLSS

Defaults

-qnoctyplss

Parameters

arg | noarg
Suboptions retain the behavior of -qctyplss. Additionally, arg specifies that
Hollerith constants used as actual arguments will be treated as integer
actual arguments.

Usage

With -qctyplss, character constant expressions are treated as if they were Hollerith
constants and thus can be used in logical and arithmetic expressions.
v If you specify the -qctyplss option and use a character-constant expression with

the %VAL argument-list keyword, a distinction is made between Hollerith
constants and character constants. Character constants are placed in the

Chapter 6. Detailed descriptions of the XL Fortran compiler options 109

rightmost byte of the register and padded on the left with zeros, while Hollerith
constants are placed in the leftmost byte and padded on the right with blanks.
All of the other %VAL rules apply.

v The option does not apply to character expressions that involve a constant array
or subobject of a constant array at any point.

Examples

Example 1: In the following example, the compiler option -qctyplss allows the use
of a character constant expression.
@PROCESS CTYPLSS

INTEGER I,J
INTEGER, PARAMETER :: K(1) = (/97/)
CHARACTER, PARAMETER :: C(1) = (/’A’/)

I = 4HABCD ! Hollerith constant
J = ’ABCD’ ! I and J have the same bit representation

! These calls are to routines in other languages.
CALL SUB(%VAL(’A’)) ! Equivalent to CALL SUB(97)
CALL SUB(%VAL(1HA)) ! Equivalent to CALL SUB(1627389952)

! These statements are not allowed because of the constant-array
! restriction.
! I = C // C
! I = C(1)
! I = CHAR(K(1))

END

Example 2: In the following example, the variable J is passed by reference. The
suboption arg specifies that the Hollerith constant is passed as if it were an integer
actual argument.
@PROCESS CTYPLSS(ARG)

INTEGER :: J

J = 3HIBM
! These calls are to routines in other languages.

CALL SUB(J)
CALL SUB(3HIBM) ! The Hollerith constant is passed as if

! it were an integer actual argument

Related information
v Hollerith constants in the XL Fortran Language Reference
v Passing arguments by reference or by value in the XL Fortran Optimization and

Programming Guide

-qdbg
Category

Error checking and debugging

Purpose

-qdbg is the long form of -g.

110 XL Fortran: Compiler Reference for Little Endian Distributions

Syntax

►►
nodbg

-q dbg
0

= level = 1
2
3
4
5
6
7
8
9

►◄

@PROCESS:

@PROCESS DBG | NODBG

Defaults

-qnodbg, or -qdbg=level=0

Parameters

-qdbg=level=0
Equivalent to -qnodbg or -g0.

-qdbg=level=1
Equivalent to -g1 or -qlinedebug.

-qdbg=level=2
Equivalent to -g2.

-qdbg=level=3
Equivalent to -g3.

-qdbg=level=4
Equivalent to -g4.

-qdbg=level=5
Equivalent to -g5.

-qdbg=level=6
Equivalent to -g6.

-qdbg=level=7
Equivalent to -g7.

-qdbg=level=8
Equivalent to -g8.

-qdbg=level=9
Equivalent to -g9.

Related information
v “-g” on page 73
v “-qlinedebug” on page 173

Chapter 6. Detailed descriptions of the XL Fortran compiler options 111

-qddim
Category

Portability and migration

Purpose

Specifies that the bounds of pointee arrays are re-evaluated each time the arrays
are referenced and removes some restrictions on the bounds expressions for
pointee arrays.

Syntax

►►
noddim

-q ddim ►◄

@PROCESS:

@PROCESS DDIM | NODDIM

Defaults

-qnoddim

Usage

By default, a pointee array can only have dimension declarators containing
variable names if the array appears in a subprogram, and any variables in the
dimension declarators must be dummy arguments, members of a common block,
or use- or host-associated. The size of the dimension is evaluated on entry to the
subprogram and remains constant during execution of the subprogram.

With the -qddim option:
v The bounds of a pointee array are re-evaluated each time the pointee is

referenced. This process is called dynamic dimensioning. Because the variables in
the declarators are evaluated each time the array is referenced, changing the
values of the variables changes the size of the pointee array.

v The restriction on the variables that can appear in the array declarators is lifted,
so ordinary local variables can be used in these expressions.

v Pointee arrays in the main program can also have variables in their array
declarators.

Examples
@PROCESS DDIM
INTEGER PTE, N, ARRAY(10)
POINTER (P, PTE(N))
DO I=1, 10

ARRAY(I)=I
END DO
N = 5
P = LOC(ARRAY(2))
PRINT *, PTE ! Print elements 2 through 6.
N = 7 ! Increase the size.
PRINT *, PTE ! Print elements 2 through 8.
END

112 XL Fortran: Compiler Reference for Little Endian Distributions

-qdescriptor
Category

Portability and migration

@PROCESS

None.

Purpose

Specifies the XL Fortran internal descriptor data structure format to use for non
object-oriented entities in your compiled applications.

Syntax

►►
v1

-q descriptor = v2 ►◄

Defaults
v -qdescriptor=v1

Parameters

v1 Use an internal descriptor data structure format that is compact, but incapable
of representing some of the new Fortran language features such as
object-orientation.

v2 Use an internal descriptor data structure format that is extensible. This setting
allows your programs to take advantage of Fortran's object-oriented features,
as well as parameterized derived types.

Usage

Regardless of what -qdescriptor setting is in effect, applications containing
object-oriented constructs or parameterized derived types will use the v2 data
structure format for those constructs.

The choice of -qdescriptor setting is an important consideration when building
libraries or modules for distribution. Users of these libraries and modules will
need to be aware of the -qdescriptor setting and compile the code that uses them
in a compatible way. It is suggested that such libraries and modules be built with
the -qsaveopt option so that the objects themselves will encode the compilation
options in a user-readable form.

If you are building modules that contain user-visible derived types, consider
building them with the -qxlf2003=polymorphic suboption. This allows users of the
module to use or extend the derived types in a Fortran object-oriented context that
uses polymorphism.

In the Fortran 2003 object-oriented programming model, the XL Fortran compiler
supports using types and type extensions from types defined in modules not
compiled with -qxlf2003=polymorphic, as long as the types are not used in a
context that requires polymorphism. However, if the compiler detects the

Chapter 6. Detailed descriptions of the XL Fortran compiler options 113

attempted use of a type or a type extension from a module not compiled with
-qxlf2003=polymorphic in a context that requires polymorphism, an error message
will be issued and compilation halted.

If a module built with the -qdescriptor=v1 setting is used in a compilation where
-qdescriptor=v2 has been specified, the compiler will diagnose this mismatch and
halt compilation after issuing an error message.

When using the -qdescriptor=v2 option, the compiler is unable to diagnose unsafe
usage where objects built with the v2 setting are mixed with those built with the
v1 setting or with XL Fortran 10.1 or older compilers. Even if your program
appears to function properly, this usage is unsupported. The descriptor formats are
different sizes and, when used with certain constructs, data layouts will change
resulting in undefined and unsupported behavior. For example, the sizes of
allocatable and pointer entities within derived types will be different resulting a
differing size for the derived type itself.

Related information
v “-qsaveopt” on page 219
v “-qxlf2003” on page 263

-qdirective
Category

Input control

Purpose

Specifies sequences of characters, known as trigger constants, that identify
comment lines as compiler comment directives.

A compiler comment directive is a line that is not a Fortran statement but is
recognized and acted on by the compiler.

Format

►►

nodirective
= directive_list

-q directive
= directive_list

►◄

@PROCESS:

@PROCESS DIRECTIVE[(directive_list)] | NODIRECTIVE[(directive_list)]

Defaults

The compiler recognizes the default trigger constant IBM*.

Specifying -qsmp implies -qdirective=smp\$:\$omp:ibmp, and, by default, the
trigger constants SMP$, $OMP, and IBMP are also turned on. If you specify
-qsmp=omp, the compiler ignores all trigger constants that you have specified up to
that point and recognizes only the $OMP trigger constant. Specifying -qthreaded
implies -qdirective=ibmt, and, by default, the trigger constant IBMT is also
turned on.

114 XL Fortran: Compiler Reference for Little Endian Distributions

Parameters

The -qnodirective option with no directive_list turns off all previously specified
directive identifiers; with a directive_list, it turns off only the selected identifiers.

-qdirective with no directive_list turns on the default trigger constant IBM* if it
has been turned off by a previous -qnodirective.

Usage

Note the following:
v Multiple -qdirective and -qnodirective options are additive; that is, you can

turn directive identifiers on and off again multiple times.
v One or more directive_lists can be applied to a particular file or compilation unit;

any comment line beginning with one of the strings in the directive_list is then
considered to be a compiler comment directive.

v The trigger constants are not case-sensitive.
v The characters (,), ', ", :, =, comma, and blank cannot be part of a trigger

constant.
v To avoid wildcard expansion in trigger constants that you might use with these

options, you can enclose them in single quotation marks on the command line.
For example:
xlf95 -O3 -qhot -qcache=type=D:level=1 -qdirective=’dbg*’ -qnodirective=’IBM*’ directives.f

v This option only affects Fortran directives that the XL Fortran compiler provides,
not those that any preprocessors provide.

v As the use of incorrect trigger constants can generate warning messages, error
messages, or both, you should check the particular directive statement for the
suitable associated trigger constant.

Examples
! This program is written in Fortran free source form.
PROGRAM DIRECTV
INTEGER A, B, C, D, E, F
A = 1 ! Begin in free source form.
B = 2
!OLDSTYLE SOURCEFORM(FIXED)
! Switch to fixed source form for this include file.

INCLUDE ’set_c_and_d.inc’
!IBM* SOURCEFORM(FREE)
! Switch back to free source form.
E = 5
F = 6
END

For this example, compile with the option -qdirective=oldstyle to ensure that the
compiler recognizes the SOURCEFORM directive before the INCLUDE line. After
processing the include-file line, the program reverts back to free source form, after
the SOURCEFORM(FREE) statement.
v The SOURCEFORM directive in the XL Fortran Language Reference
v The Directives section in the XL Fortran Language Reference

-qdirectstorage
Category

Optimization and tuning

Chapter 6. Detailed descriptions of the XL Fortran compiler options 115

@PROCESS

None.

Context

None.

Purpose

Informs the compiler that a given compilation unit may reference
write-through-enabled or cache-inhibited storage.

Format

►►
nodirectstorage

-q directstorage ►◄

Defaults

-qnodirectstorage

Usage

Use this option with discretion. It is intended for programmers who know how the
memory and cache blocks work, and how to tune their applications for optimal
performance. For a program to execute correctly on all Power implementations of
cache organization, the programmer should assume that separate instruction and
data caches exist, and should program to the separate cache model.

Note: Using the -qdirectstorage option together with the CACHE_ZERO
directive may cause your program to fail, or to produce incorrect results.

Related information
v CACHE_ZERO in the XL Fortran Language Reference.

-qdlines
Category

Input control

Purpose

-qdlines is the long form of -D.

Format

►►
nodlines

-q dlines ►◄

@PROCESS:

@PROCESS DLINES | NODLINES

116 XL Fortran: Compiler Reference for Little Endian Distributions

Defaults

-qnodlines

-qdpc
Category

Floating-point and integer control

Purpose

Increases the precision of real constants for maximum accuracy, when assigning
real constants to DOUBLE PRECISION variables.

This language extension might be needed when you are porting programs from
other platforms.

Format

►►
nodpc

-q dpc
= e

►◄

@PROCESS:

@PROCESS DPC[(E)] | NODPC

Defaults

-qnodpc

Usage

If you specify -qdpc, all basic real constants (for example, 1.1) are treated as
double-precision constants; the compiler preserves some digits of precision that
would otherwise be lost during the assignment to the DOUBLE PRECISION
variable. If you specify -qdpc=e, all single-precision constants, including constants
with an e exponent, are treated as double-precision constants.

This option does not affect constants with a kind type parameter specified.

-qautodbl and -qrealsize are more general-purpose options that can also do what
-qdpc does. -qdpc has no effect if you specify either of these options.

Examples
@process nodpc

subroutine nodpc
real x
double precision y
data x /1.000000000001/ ! The trailing digit is lost
data y /1.000000000001/ ! The trailing digit is lost

print *, x, y, x .eq. y ! So x is considered equal to y
end

@process dpc
subroutine dpc

Chapter 6. Detailed descriptions of the XL Fortran compiler options 117

real x
double precision y
data x /1.000000000001/ ! The trailing digit is lost
data y /1.000000000001/ ! The trailing digit is preserved

print *, x, y, x .eq. y ! So x and y are considered different
end

program testdpc
call nodpc
call dpc
end

When compiled, this program prints the following:
1.000000000 1.00000000000000000 T
1.000000000 1.00000000000100009 F

showing that with -qdpc the extra precision is preserved.
v “-qautodbl” on page 97
v “-qrealsize” on page 211

-qenum
Category

Floating-point and integer control

@PROCESS

None.

Purpose

Specifies the range of the enumerator constant and enables storage size to be
determined.

Syntax

►►
4

-q enum = 1
2
8

►◄

Defaults

-qenum=4

Usage

Regardless of its storage size, the enumerator's value will be limited by the range
that corresponds to value. If the enumerator value exceeds the range specified, a
warning message is issued and truncation is performed as necessary.

The range limit and kind type parameter corresponding to each value is as follows:

118 XL Fortran: Compiler Reference for Little Endian Distributions

Table 17. Enumerator sizes and types

Value Valid range of enumerator constant value
Kind type
parameter

1 -128 to 127 4

2 -32768 to 32767 4

4 -2147483648 to 2147483647 4

8 -9223372036854775808 to 9223372036854775807 8

Related information
v ENUM/ ENDENUM statement in the XL Fortran Language Reference

-qescape
Category

Portability and migration

Purpose

Specifies how the backslash is treated in character strings, Hollerith constants, H
edit descriptors, and character string edit descriptors.

It can be treated as an escape character or as a backslash character. This language
extension might be needed when you are porting programs from other platforms.

Syntax

►►
escape

-q noescape ►◄

@PROCESS:

@PROCESS ESCAPE | NOESCAPE

Defaults

-qescape

Usage

When -qescape is specified, the backslash is interpreted as an escape character in
these contexts. If you specify -qnoescape, the backslash is treated as the backslash
character.

The default setting is useful for the following:
v Porting code from another Fortran compiler that uses the backslash as an escape

character.
v Including “unusual” characters, such as tabs or newlines, in character data.

Without this option, the alternative is to encode the ASCII values (or EBCDIC
values, on mainframe systems) directly in the program, making it harder to port.

If you are writing or porting code that depends on backslash characters being
passed through unchanged, specify -qnoescape so that they do not get any special

Chapter 6. Detailed descriptions of the XL Fortran compiler options 119

interpretation. You could also write \\ to mean a single backslash character under
the default setting.

Examples
$ # Demonstrate how backslashes can affect the output
$ cat escape.f

PRINT *,’a\bcde\fg’
END

$ xlf95 escape.f
** _main === End of Compilation 1 ===
1501-510 Compilation successful for file escape.f.
$ a.out
cde

g
$ xlf95 -qnoescape escape.f
** _main === End of Compilation 1 ===
1501-510 Compilation successful for file escape.f.
$ a.out
a\bcde\fg

In the first compilation, with the default setting of -qescape, \b is printed as a
backspace, and \f is printed as a formfeed character.

With the -qnoescape option specified, the backslashes are printed like any other
character.

Related information

The list of escape sequences that XL Fortran recognizes is shown in Escape sequences
for character strings in the XL Fortran Optimization and Programming Guide.

-qessl
Category

Optimization and tuning

@PROCESS

None.

Purpose

Allows the compiler to substitute the Engineering and Scientific Subroutine Library
(ESSL) routines in place of Fortran 90 intrinsic procedures.

The ESSL is a collection of subroutines that provides a wide range of mathematical
functions for various scientific and engineering applications. The subroutines are
tuned for performance on specific architectures. Some of the Fortran 90 intrinsic
procedures have similar counterparts in ESSL. Performance is improved when
these Fortran 90 intrinsic procedures are linked with ESSL. In this case, you can
keep the interface of Fortran 90 intrinsic procedures, and get the added benefit of
improved performance using ESSL.

120 XL Fortran: Compiler Reference for Little Endian Distributions

Syntax

►►
noessl

-q essl ►◄

Defaults

-qnoessl

Usage

Use the ESSL Serial Library when linking with -lessl. Use the ESSL SMP Library
when linking with -lesslsmp.

-lessl or -lesslsmp must be used whenever code is being compiled with -qessl.

Also, since libessl.so and libesslsmp.so have a dependency on libxlf90_r.so,
compile with xlf_r, xlf90_r, or xlf95_r, which use libxlf90_r.so as the default to
link. You can also specify -lxlf90_r on the link command line if you use the linker
directly, or other commands to link.

The following MATMUL function calls may use ESSL routines when -qessl is
enabled:
real a(10,10), b(10,10), c(10,10)
c=MATMUL(a,b)

Related information

The ESSL libraries are not shipped with the XL Fortran compiler. For more
information about these libraries, see the Engineering and Scientific Subroutine
Library (ESSL) and Parallel ESSL web page.

-qextern
Category

Portability and migration

@PROCESS

None.

Purpose

Allows user-written procedures to be called instead of XL Fortran intrinsics.

Syntax

►► -q extern = names ►◄

Defaults

Not applicable.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 121

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl.doc/esslbooks.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl.doc/esslbooks.html

Parameters

names
A list of procedure names separated by colons.

Usage

The procedure names are treated as if they appear in an EXTERNAL statement in
each compilation unit being compiled. If any of your procedure names conflict
with XL Fortran intrinsic procedures, use this option to call the procedures in the
source code instead of the intrinsic ones.

Because of the many Fortran 90 and Fortran 95 intrinsic functions and subroutines,
you might need to use this option even if you did not need it for FORTRAN 77
programs.

Examples
subroutine matmul(res, aa, bb, ext)
implicit none
integer ext, i, j, k
real aa(ext, ext), bb(ext, ext), res(ext, ext), temp
do i = 1, ext
do j = 1, ext
temp = 0
do k = 1, ext

temp = temp + aa(i, k) * bb(k, j)
end do
res(i, j) = temp

end do
end do

end subroutine

implicit none
integer i, j, irand
integer, parameter :: ext = 100
real ma(ext, ext), mb(ext, ext), res(ext, ext)

do i = 1, ext
do j = 1, ext
ma(i, j) = float(irand())
mb(i, j) = float(irand())

end do
end do

call matmul(res, ma, mb, ext)
end

Compiling this program with no options fails because the call to MATMUL is
actually calling the intrinsic subroutine, not the subroutine defined in the program.
Compiling with -qextern=matmul allows the program to be compiled and run
successfully.

-qextname
Category

Portability and migration

Purpose

Adds an underscore to the names of all global entities.

122 XL Fortran: Compiler Reference for Little Endian Distributions

Syntax

►► ▼

noextname
:

-q extname = name ►◄

@PROCESS:

@PROCESS EXTNAME[(name1, name2,...)] | NOEXTNAME

Defaults

-qnoextname

Parameters

name
Identifies a specific global entity (or entities). For a list of named entities,
separate each name with a colon. For example: name1: name2:....

The name of a main program is not affected.

Usage

The -qextname option helps to port mixed-language programs to XL Fortran
without modifications.

Use of this option avoids naming problems that might otherwise be caused by:
v Fortran subroutines, functions, or common blocks that are named main, MAIN,

or have the same name as a system subroutine
v Non-Fortran routines that are referenced from Fortran and contain an underscore

at the end of the routine name

Note: XL Fortran Service and Utility Procedures , such as flush_ and dtime_,
have these underscores in their names already. By compiling with the -qextname
option, you can code the names of these procedures without the trailing
underscores.

v Non-Fortran routines that call Fortran procedures and use underscores at the
end of the Fortran names

v Non-Fortran external or global data objects that contain an underscore at the end
of the data name and are shared with a Fortran procedure

You must compile all the source files for a program, including the source files of
any required module files, with the same -qextname setting.

If you use the xlfutility module to ensure that the Service and Utility subprograms
are correctly declared, you must change the name to xlfutility_extname when
compiling with -qextname.

If there is more than one Service and Utility subprogram referenced in a
compilation unit, using -qextname with no names specified and the
xlfutility_extname module may cause the procedure declaration check not to work
accurately.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 123

This option also affects the names that are specified in the -qextern, -qinline, and
-qsigtrap options. You do not have to include underscores in their names on the
command line.

Examples
@PROCESS EXTNAME

SUBROUTINE STORE_DATA
CALL FLUSH(10) ! Using EXTNAME, we can drop the final underscore.
END SUBROUTINE

@PROCESS(EXTNAME(sub1))
program main

external :: sub1, sub2
call sub1() ! An underscore is added.
call sub2() ! No underscore is added.

end program

Related information
v “-qextern” on page 121
v “-qinline” on page 157
v “-qsigtrap” on page 222
v “-qbindcextname” on page 99

-qfdpr
Category

Optimization and tuning

@PROCESS

None.

Purpose

Provides object files with information that the IBM Feedback Directed Program
Restructuring (FDPR) performance-tuning utility needs to optimize the resulting
executable file.

When -qfdpr is in effect, optimization data is stored in the object file.

Syntax

►►
nofdpr

-q fdpr ►◄

Defaults

-qnofdpr

Usage

For best results, use -qfdpr for all object files in a program; FDPR will perform
optimizations only on the files compiled with -qfdpr, and not library code, even if
it is statically linked.

124 XL Fortran: Compiler Reference for Little Endian Distributions

The optimizations that the FDPR utility performs are similar to those that the
-qpdf option performs.

The FDPR performance-tuning utility has its own set of restrictions, and it is not
guaranteed to speed up all programs or produce executables that produce exactly
the same results as the original programs.

Examples

To compile myprogram.f so it includes data required by the FDPR utility, enter:
xlf myprogram.f -qfdpr

Related information
v “-qpdf1, -qpdf2” on page 195

-qfixed
Category

Input control

Purpose

Indicates that the input source program is in fixed source form and optionally
specifies the maximum line length.

Syntax

►► -q fixed
= right_margin

►◄

@PROCESS:

@PROCESS FIXED[(right_margin)]

Defaults

-qfixed=72 is the default for the xlf and xlf_r invocation commands when they are
used to compile the .f, .F, .f77, or .F77 files.

-qfixed=72 is also the default for the f77 and fort77 invocation commands.

Note:

-qfree=f90 is the default for the f90, xlf90, xlf90_r, f95, xlf95, xlf95_r, f2003,
xlf2003, xlf2003_r, f2008, xlf2008, and xlf2008_r commands.

Usage

The source form specified when executing the compiler applies to all of the input
files, although you can switch the form for a compilation unit by using a FREE or
FIXED @PROCESS directive, or switch the form for the rest of the file by using a
SOURCEFORM comment directive (even inside a compilation unit).

Chapter 6. Detailed descriptions of the XL Fortran compiler options 125

For source code from some other systems, you may find you need to specify a
right margin larger than the default. This option allows a maximum right margin
of 132.

Related information
v “-qfree” on page 134
v See Fixed source form in the XL Fortran Language Reference.

-qflag
Category

Listings, messages, and compiler information

Purpose

Limits the diagnostic messages to those of a specified severity level or higher.

Syntax

►►

(1) (2)
i i

-q flag = l : l
w w
e e
s s
u u
q q

►◄

Notes:

1 Minimum severity level of messages reported in listing

2 Minimum severity level of messages reported on terminal
@PROCESS:

@PROCESS FLAG(listing_severity,terminal_severity)

Defaults

-qflag=i:i, which shows all compiler messages.

Parameters

The severity levels (from lowest to highest) are:

i Informational messages. They explain things that you should know, but
they usually do not require any action on your part.

l Language-level messages, such as those produced under the -qlanglvl
option. They indicate possible nonportable language constructs.

w Warning messages. They indicate error conditions that might require action
on your part, but the program is still correct.

e Error messages. They indicate error conditions that require action on your
part to make the program correct, but the resulting program can probably
still be executed.

s Severe error messages. They indicate error conditions that require action on

126 XL Fortran: Compiler Reference for Little Endian Distributions

your part to make the program correct, and the resulting program will fail
if it reaches the location of the error. You must change the -qhalt setting to
make the compiler produce an object file when it encounters this kind of
error.

u Unrecoverable error messages. They indicate error conditions that prevent
the compiler from continuing. They require action on your part before you
can compile your program.

q No messages. A severity level that can never be generated by any defined
error condition. Specifying it prevents the compiler from displaying
messages, even if it encounters unrecoverable errors.

Usage

You must specify both listing_severity and terminal_severity.

Only messages with severity listing_severity or higher are written to the listing file.
Only messages with severity terminal_severity or higher are written to the terminal.

The -qflag option overrides any -qlanglvl or -qsaa options specified.

The -w option is a short form for -qflag=e:e.

The -qhaltonmsg option has precedence over the -qflag option. If you specify both
-qhaltonmsg and -qflag, messages that -qflag does not select are also printed and
compilation stops.

Note: If -qflag=u:u or -qflag=q:q is specified, the message specified by
-qhaltonmsg is not shown.

Related information
v “-qhalt” on page 140
v “-qlanglvl” on page 169
v “-qmaxerr” on page 182
v “-qhaltonmsg” on page 141
v “-qsaa” on page 216
v “-qsuppress” on page 243
v “-w” on page 278
v “Understanding XL Fortran error messages” on page 285

-qfloat
Category

Floating-point and integer control

Purpose

Selects different strategies for speeding up or improving the accuracy of
floating-point calculations.

Syntax

Chapter 6. Detailed descriptions of the XL Fortran compiler options 127

►► ▼

:
nosubnormals
nostrictnmaf
norsqrt
norrm
rngchk
nonans
maf
nohsflt
nohscmplx
nogcclongdouble
fold
nofenv

-q float = fenv
nofold
gcclongdouble
hscmplx
hsflt
nomaf
nans
norngchk
rrm
rsqrt
strictnmaf
subnormals

►◄

@PROCESS:

@PROCESS FLOAT(suboptions)

Defaults
v -qfloat=nofenv:fold:nogcclongdouble:nohscmplx:nohsflt:maf:nonans:rngchk:

norrm:norsqrt:nostrictnmaf:nosubnormals
v -qfloat=rsqrt:norngchk when -qnostrict,

-qstrict=nooperationprecision:noexceptions, or the -O3 or higher optimization
level is in effect.

Parameters

fenv | nofenv
Specifies whether the code depends on the hardware environment and whether
to suppress optimizations that could cause unexpected results due to this
dependency.

Certain floating-point operations rely on the status of Floating-Point Status and
Control Register (FPSCR), for example, to control the rounding mode or to
detect underflow. In particular, many compiler built-in functions read values
directly from the FPSCR.

When nofenv is in effect, the compiler assumes that the program does not
depend on the hardware environment, and that aggressive compiler
optimizations that change the sequence of floating-point operations are
allowed. When fenv is in effect, such optimizations are suppressed.

You should use fenv for any code containing statements that read or set the
hardware floating-point environment, to guard against optimizations that could
cause unexpected behavior.

fold | nofold
Evaluates constant floating-point expressions at compile time, which may yield

128 XL Fortran: Compiler Reference for Little Endian Distributions

slightly different results from evaluating them at run time. The compiler
always evaluates constant expressions in specification statements, even if you
specify nofold.

gcclongdouble | nogcclongdouble
Specifies whether the compiler uses GCC-supplied or IBM-supplied library
functions for 128-bit REAL(16) and COMPLEX(32) operations.

gcclongdouble ensures binary compatibility with GCC for mathematical
calculations. If this compatibility is not important in your application, you
should use nogcclongdouble for better performance.

Note: Passing results from modules compiled with nogcclongdouble to
modules compiled with gcclongdouble may produce different results for
numbers such as Inf, NaN, and other rare cases. To avoid such
incompatibilities, the compiler provides built-in functions to convert IBM long
double types to GCC long double types.

hscmplx | nohscmplx
Speeds up operations involving complex division and complex absolute value.
This suboption, which provides a subset of the optimizations of the hsflt
suboption, is preferred for complex calculations.

hsflt | nohsflt
Speeds up calculations by preventing rounding for single-precision expressions
and by replacing floating-point division by multiplication with the reciprocal of
the divisor. hsflt implies hscmplx.

The hsflt suboption overrides the nans and spnans suboptions.

Note: Use -qfloat=hsflt on applications that perform complex division and
floating-point conversions where floating-point calculations have known
characteristics. In particular, all floating-point results must be within the
defined range of representation of single precision. Use with discretion, as this
option may produce unexpected results without warning. For complex
computations, it is recommended that you use the hscmplx suboption
(described above), which provides equivalent speed-up without the
undesirable results of hsflt.

maf | nomaf
Makes floating-point calculations faster and more accurate by using
floating-point multiply-add instructions where appropriate. The results may
not be exactly equivalent to those from similar calculations performed at
compile time or on other types of computers. Negative zero results may be
produced. Rounding towards negative infinity or positive infinity will be
reversed for these operations. This suboption may affect the precision of
floating-point intermediate results. If -qfloat=nomaf is specified, no
multiply-add instructions will be generated unless they are required for
correctness.

nans | nonans
Allows you to use the -qflttrap=invalid:enable option to detect and deal
with exception conditions that involve signaling NaN (not-a-number) values.
Use this suboption only if your program explicitly creates signaling NaN
values, because these values never result from other floating-point operations.

rngchk | norngchk
At optimization level -O3 and above, and without -qstrict, controls whether
range checking is performed for input arguments for software divide and
inlined square root operations. Specifying norngchk instructs the compiler to

Chapter 6. Detailed descriptions of the XL Fortran compiler options 129

skip range checking, allowing for increased performance where division and
square root operations are performed repeatedly within a loop.

Note that with norngchk in effect the following restrictions apply:
v The dividend of a division operation must not be +/-INF.
v The divisor of a division operation must not be 0.0, +/- INF, or

denormalized values.
v The quotient of dividend and divisor must not be +/-INF.
v The input for a square root operation must not be INF.

If any of these conditions are not met, incorrect results may be produced. For
example, if the divisor for a division operation is 0.0 or a denormalized
number (absolute value < 2-1022 for double precision, and absolute value < 2-126

for single precision), NaN, instead of INF, may result; when the divisor is +/-
INF, NaN instead of 0.0 may result. If the input is +INF for a sqrt operation,
NaN, rather than INF, may result.

norngchk is only allowed when -qnostrict is in effect. If -qstrict,
-qstrict=infinities, -qstrict=operationprecision, or -qstrict=exceptions is
in effect, norngchk is ignored.

rrm | norrm
Prevents floating-point optimizations that require the rounding mode to be the
default, round-to-nearest, at run time, by informing the compiler that the
floating-point rounding mode may change or is not round-to-nearest at run
time. You should use rrm if your program changes the runtime rounding mode
by any means; otherwise, the program may compute incorrect results.

rsqrt | norsqrt
Speeds up some calculations by replacing division by the result of a square
root with multiplication by the reciprocal of the square root.

If you compile with the -O3 or higher optimization level, rsqrt is enabled
automatically. To disable it, also specify -qstrict, -qstrict=nans,
-qstrict=infinities, -qstrict=zerosigns, or -qstrict=exceptions.

strictnmaf | nostrictnmaf
Turns off floating-point transformations that are used to introduce negative
MAF instructions, as these transformations do not preserve the sign of a zero
value. By default, the compiler enables these types of transformations.

To ensure strict semantics, specify both -qstrict and -qfloat=strictnmaf.

subnormals | nosubnormals
Specifies whether the code uses subnormal floating point values, also known
as denormalized floating point values. Whether or not you specify this
suboption, the behavior of your program will not change, but the compiler
uses this information to gain possible performance improvements.

Note: For details about the relationship between -qfloat suboptions and their
-qstrict counterparts, see “-qstrict” on page 236.

Usage

Using -qfloat suboptions other than the default settings might produce incorrect
results in floating-point computations if the system does not meet all required
conditions for a given suboption. Therefore, use this option only if the
floating-point calculations involving IEEE floating-point values are manipulated
and can properly assess the possibility of introducing errors in the program.

130 XL Fortran: Compiler Reference for Little Endian Distributions

If the -qstrict | -qnostrict and float suboptions conflict, the last setting
specified is used.

Examples

To compile myprogram.f so that the constant floating-point expressions are
evaluated at compile time and multiply-add instructions are not generated, enter:
xlf myprogram.f -qfloat=fold:nomaf

Related information
v “-qarch” on page 93
v “-qflttrap” on page 132
v “-qstrict” on page 236
v "Implementation details of XL Fortran floating-point processing" in the XL

Fortran Optimization and Programming Guide

-qfpp
Category

Input control

@PROCESS

None.

Purpose

Controls Fortran-specific preprocessing in the C preprocessor.

Syntax

►►

▼

nofpp
-WF , -q fpp

:
linecont
comment

= nocomment
nolinecont

►◄

Defaults
v -qnofpp

Parameters

comment | nocomment
Instructs the C preprocessor (cpp) to recognize the ! character as a comment
delimiter in macro expansion. When this suboption is enabled, the ! character
and all characters following it on that line will be ignored by cpp when
performing macro expansion.

linecont | nolinecont
Instructs cpp to recognize the & character as a line continuation character.
When this suboption is enabled, cpp treats the & character and the C-style \
line continuation character equivalently.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 131

Specifying -qfpp without any suboptions is equivalent to -qfpp=comment:linecont.

Usage

-qfpp is a C preprocessor option, and must therefore be specified using the -WF
option.

Related information
v “-W” on page 276
v “-qppsuborigarg” on page 207
v “Passing Fortran files through the C preprocessor” on page 29

-qflttrap
Category

Error checking and debugging

Purpose

Determines what types of floating-point exceptions to detect at run time.

The program receives a SIGFPE signal when the corresponding exception occurs.

Syntax

►►

▼

noflttrap
-q flttrap

:
ZEROdivide
UNDerflow
OVerflow
INValid
INEXact

= ENable
NANQ

►◄

@PROCESS:

FLTTRAP[(suboptions)] | NOFLTTRAP

Defaults

-qnoflttrap

Specifying -qflttrap option with no suboptions is equivalent to
-qflttrap=invalid:inexact:overflow:undflow:zerodivide

Parameters

ENable
Turn on checking for the specified exceptions in the main program so that
the exceptions generate SIGFPE signals. You must specify this suboption if
you want to turn on exception trapping without modifying your source
code.

INEXact
Detect and trap on floating-point inexact if exception-checking is enabled.

132 XL Fortran: Compiler Reference for Little Endian Distributions

Because inexact results are very common in floating-point calculations, you
usually should not need to turn this type of exception on.

INValid
Detect and trap on floating-point invalid operations if exception-checking
is enabled.

NANQ
Detect and trap on all quiet not-a-number values (NaNQs) and signaling
not-a-number values (NaNSs). Trapping code is generated regardless of
specifying the enable suboption. This suboption detects all NaN values
handled by or generated by floating-point instructions, including those not
created by invalid operations. This option can impact performance.

OVerflow
Detect and trap on floating-point overflow if exception-checking is enabled.

UNDerflow
Detect and trap on floating-point underflow if exception-checking is
enabled.

ZEROdivide
Detect and trap on floating-point division by zero if exception-checking is
enabled.

Usage

Exceptions will be detected by the hardware, but trapping is not enabled. Because
this default does not include enable, it is probably only useful if you already use
fpsets or similar subroutines in your source.

If you specify -qflttrap more than once, both with and without suboptions, the
-qflttrap without suboptions is ignored.

The -qflttrap option is recognized during linking with IPA. Specifying the option
at the link step overrides the compile-time setting.

Note: Due to the transformations performed and the exception handling support
of some vector instructions, use of -qsimd=auto may change the location where an
exception is caught or even cause the compiler to miss catching an exception.

For full instructions on how and when to use the -qflttrap option, especially if
you are just starting to use it, see the Detecting and trapping floating-point exceptions
topic in XL Fortran Optimization and Programming Guide.

Example
REAL :: x, y, z
DATA x /5.0/, y /0.0/
z = x / y
PRINT *, z
END

When you compile this program with the following command, the program stops
when the division is performed.
xlf -qflttrap=zerodivide:enable -qsigtrap divide_by_zero.f

The zerodivide suboption identifies the type of exception to guard against. The
enable suboption causes a SIGFPE signal to be generated when the exception

Chapter 6. Detailed descriptions of the XL Fortran compiler options 133

occurs. The -qsigtrap option produces informative output when the signal stops
the program.

Related information
v Detecting and trapping floating-point exceptions

v “-qfloat” on page 127
v “-qarch” on page 93
v “-qsigtrap” on page 222

-qfree
Category

Input control

Purpose

Indicates that the source code is in free source form.

Syntax

►► -q free
= f90

ibm

►◄

@PROCESS:

@PROCESS FREE[({F90|IBM})]

Defaults

-qfree by itself specifies Fortran 90 free source form.

-qfixed=72 is the default for the xlf and xlf_r invocation commands when they are
used to compile the .f, .F, .f77, or .F77 files. -qfixed=72 is also the default for the
f77 and fort77 invocation commands.

-qfree=f90 is the default for the f90, xlf90, xlf90_r, f95, xlf95, xlf95_r, f2003,
xlf2003, xlf2003_r, f2008, xlf2008, and xlf2008_r commands.

Parameters

ibm
Specifies compatibility with the free source form defined for VS FORTRAN.

f90
Specifies compatibility with the free source form defined for Fortran 90.

Note that the free source form defined for Fortran 90 also applies to Fortran 95,
Fortran 2003, and Fortran 2008.

Usage

The source form specified when executing the compiler applies to all of the input
files, although you can switch the form for a compilation unit by using a FREE or
FIXED @PROCESS directive or for the rest of the file by using a SOURCEFORM
comment directive (even inside a compilation unit).

134 XL Fortran: Compiler Reference for Little Endian Distributions

Fortran 90 free source form is the format to use for maximum portability across
compilers that support Fortran 90 and Fortran 95 features now and in the future.

IBM free source form is equivalent to the free format of the IBM VS FORTRAN
compiler, and it is intended to help port programs from the z/OS® platform.

-k is equivalent to -qfree=f90.

Related information
v “-qfixed” on page 125
v “-k” on page 77
v Free source form in the XL Fortran Language Reference

-qfullpath
Category

Error checking and debugging

@PROCESS

None.

Purpose

When used with the -g or -qlinedebug option, this option records the full, or
absolute, path names of source and include files in object files compiled with
debugging information, so that debugging tools can correctly locate the source
files.

Syntax

►►
nofullpath

-q fullpath ►◄

Defaults

By default, the compiler records the relative path names of the original source file
in each .o file. It may also record relative path names for include files.

Usage

If you need to move an executable file into a different directory before debugging
it or have multiple versions of the source files and want to ensure that the
debugger uses the original source files, use the -qfullpath option in combination
with the -g or -qlinedebug option so that source-level debuggers can locate the
correct source files.

Although -qfullpath works without the -g or -qlinedebug option, you cannot do
source-level debugging unless you also specify the -g or -qlinedebug option.

Examples

In this example, the executable file is moved after being created, but the debugger
can still locate the original source files:

Chapter 6. Detailed descriptions of the XL Fortran compiler options 135

$ xlf95 -g -qfullpath file1.f file2.f file3.f -o debug_version
...
$ mv debug_version $HOME/test_bucket
$ cd $HOME/test_bucket
$ gdb debug_version

Related information
v “-g” on page 73
v “-qlinedebug” on page 173

-qfunctrace
Category

Error checking and debugging

@PROCESS

None.

Purpose

Traces entry and exit points of procedures in your program. If your program
contains C++ compilation units, this option also traces C++ catch blocks.

Syntax

►►

▼

-qnofunctrace
-qfunctrace

:

+ procedure_name
- module_name

submodule_name

►◄

Defaults

-qnofunctrace

Parameters

+ Instructs the compiler to trace the specified program, procedures, or module
procedures. All their internal procedures are traced by default.

- Instructs the compiler not to trace the specified program, procedures, module
procedures, or any of their internal procedures.

procedure_name
The name of a program, external procedure, or module procedure. The name is
case sensitive when -qmixed is in effect. BIND(C) binding labels and mangled
module procedure names are allowed, but they must have the correct case. If
-qextname is in effect, procedure_name is the name of the procedure without the
additional underscore.

module_name
The name of a module. The name is case sensitive when -qmixed is in effect.

136 XL Fortran: Compiler Reference for Little Endian Distributions

F2008 submodule_name
The name of a submodule. The name is case sensitive when -qmixed is in
effect. F2008

Usage

-qfunctrace enables tracing for all procedures in your program. -qnofunctrace
disables tracing that was enabled by -qfunctrace.

The -qfunctrace+ and -qfunctrace- suboptions enable tracing for a specific list of
procedures and are not affected by -qnofunctrace. The list of procedures is
cumulative. When a module procedure and its containing module F2008 or
submodule F2008

are both specified, the procedure specification takes

precedence.

This option inserts calls to the tracing procedures that you have defined. These
procedures must be provided at the link step. For details about the interface of
tracing procedures, as well as when they are called, see the Trace procedures in
your code section in the XL Fortran Optimization and Programming Guide.

Examples

The following table provides some examples of using the -qfunctrace option to
achieve different purposes.

Purpose Usage example

Tracing all procedures -qfunctrace

Tracing procedures x, y, and z -qfunctrace+x:y:z

Tracing all procedures except x -qfunctrace -qfunctrace-x or
-qfunctrace-x -qfunctrace

Tracing only procedures x and y -qfunctrace+x -qfunctrace+y or
-qfunctrace+x -qnofunctrace
-qfunctrace+y

Tracing only procedure y -qfunctrace+y -qnofunctrace or
-qfunctrace+y

Tracing all the module procedures, except
procedure x, in module y

-qfunctrace-x -qfunctrace+y or
-qfunctrace+y -qfunctrace-x

Related information
v “-qfunctrace_xlf_catch” on page 138
v “-qfunctrace_xlf_enter” on page 138
v “-qfunctrace_xlf_exit” on page 139
v For details about the directives that you can use to specify the name of the

tracing procedures, see the FUNCTRACE_XLF_CATCH,
FUNCTRACE_XLF_ENTER, FUNCTRACE_XLF_EXIT sections in the XL Fortran
Language Reference.

v For details about the rules for using the NOFUNCTRACE directive, see
NOFUNCTRACE in the XL Fortran Language Reference.

v For detailed information about how to implement procedure tracing routines in
your code, as well as detailed examples and a list of rules for using them, see
Tracing procedures in your code in the XL Fortran Optimization and Programming
Guide.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 137

-qfunctrace_xlf_catch
Category

Error checking and debugging

@PROCESS

None.

Purpose

Specifies the name of the catch tracing subroutine.

Syntax

►► -qfunctrace_xlf_catch = catch_routine ►◄

Defaults

Not applicable.

Parameters

catch_routine
Indicates the name of the catch tracing subroutine.

Usage

You use the -qfunctrace_xlf_catch option to specify that the external or module
procedure being compiled must be used as a catch tracing procedure.

Note:
v If you write a tracing subroutine, make sure that the program does not contain

any user procedures called __func_trace_catch.
v You must not specify the name of an internal subroutine when you use the

-qfunctrace_xlf_catch option.

Related information
v The FUNCTRACE_XLF_CATCH directive in the XL Fortran Language Reference.
v “-qfunctrace” on page 136
v “-qfunctrace_xlf_enter”
v “-qfunctrace_xlf_exit” on page 139
v For detailed information about how to implement the tracing procedures in your

code, see Tracing procedures in your code in the XL Fortran Optimization and
Programming Guide.

-qfunctrace_xlf_enter
Category

Error checking and debugging

138 XL Fortran: Compiler Reference for Little Endian Distributions

@PROCESS

None.

Purpose

Specifies the name of the entry tracing subroutine.

Syntax

►► -qfunctrace_xlf_enter = enter_routine ►◄

Defaults

Not applicable.

Parameters

enter_routine
Indicates the name of the entry tracing subroutine.

Usage

You use the -qfunctrace_xlf_enter option to specify that the external or module
procedure being compiled must be used as an entry tracing procedure.

Note:
v If you write a tracing subroutine, make sure that the program does not contain

any user procedures called __func_trace_enter.
v You must not specify the name of an internal subroutine when you use the

-qfunctrace_xlf_enter option.

Related information
v The FUNCTRACE_XLF_ENTER directive in the XL Fortran Language Reference.
v “-qfunctrace” on page 136
v “-qfunctrace_xlf_catch” on page 138
v “-qfunctrace_xlf_exit”
v For detailed information about how to implement the tracing procedures in your

code, see Tracing procedures in your code in the XL Fortran Optimization and
Programming Guide.

-qfunctrace_xlf_exit
Category

Error checking and debugging

@PROCESS

None.

Purpose

Specifies the name of the exit tracing subroutine.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 139

Syntax

►► -qfunctrace_xlf_exit = exit_routine ►◄

Defaults

Not applicable.

Parameters

exit_routine
Indicates the name of the exit tracing subroutine.

Usage

You use the -qfunctrace_xlf_exit option to specify that the external or module
procedure being compiled must be used as an exit tracing procedure.

Note:
v If you write a tracing subroutine, make sure that the program does not contain

any user procedures called __func_trace_exit.
v You must not specify the name of an internal subroutine when you use the

-qfunctrace_xlf_exit option.

Related information
v The FUNCTRACE_XLF_EXIT directive in the XL Fortran Language Reference.
v “-qfunctrace” on page 136
v “-qfunctrace_xlf_catch” on page 138
v “-qfunctrace_xlf_exit” on page 139
v For detailed information about how to implement the tracing procedures in your

code, see Tracing procedures in your code in the XL Fortran Optimization and
Programming Guide.

-qhalt
Category

Error checking and debugging

Purpose

Stops compilation before producing any object, executable, or assembler source
files if the maximum severity of compile-time messages equals or exceeds the
severity you specify.

Syntax

►►
(1) s

-q halt = i
l
w
e
u

►◄

140 XL Fortran: Compiler Reference for Little Endian Distributions

Notes:

1 Minimum severity level of messages that will prevent an object file from
being created

@PROCESS:

@PROCESS HALT(severity)

Defaults

-qhalt=s, which prevents the compiler from generating an object file when
compilation fails.

Parameters

The severity levels (from lowest to highest) are:

i Informational messages. They explain things that you should know, but
they usually do not require any action on your part.

l Language-level messages, such as those produced under the -qlanglvl
option. They indicate possible nonportable language constructs.

w Warning messages. They indicate error conditions that might require action
on your part, but the program is still correct.

e Error messages. They indicate error conditions that require action on your
part to make the program correct, but the resulting program can probably
still be executed.

s Severe error messages. They indicate error conditions that require action on
your part to make the program correct, and the resulting program will fail
if it reaches the location of the error. You must change the -qhalt setting to
make the compiler produce an object file when it encounters this kind of
error.

u Unrecoverable error messages. They indicate error conditions that prevent
the compiler from continuing. They require action on your part before you
can compile your program.

Usage

The -qhalt option can override the -qobject option, and -qnoobject can override
-qhalt.

Related information
v “-qflag” on page 126
v “-qhaltonmsg”
v “-qmaxerr” on page 182
v “-qobject” on page 190

-qhaltonmsg
Category

Error checking and debugging

Chapter 6. Detailed descriptions of the XL Fortran compiler options 141

Purpose

Stops compilation before producing any object files, executable files, or assembler
source files if a specified error message is generated.

Syntax

►► ▼

nohaltonmsg
:

-q haltonmsg = message_identifier ►◄

@PROCESS:

@PROCESS HALTONMSG(message_identifier[, message_identifier[, ...]]) | NOHALTONMSG

Defaults

-qnohaltonmsg

Parameters

message_identifier[:message_identifier ...]
Stops compilation before producing any object files, executable files, or
assembler source files if a specified error message (nnnn-mmm) or a list of
messages (nnnn-mmm[:nnnn-mmm ...]) is generated. To specify a list of
messages, separate each message number with a colon.

nnnn-mmm is the message number, where:
v nnnn must be a four-digit integer between 1500 and 1585; this is the

range of XL Fortran message numbers.
v mmm must be any three-digit integer (with leading zeros if necessary).

Usage

When the compiler stops as a result of the -qhaltonmsg option, the compiler return
code is nonzero. The severity level of a message that is specified by -qhaltonmsg is
changed to S if its original severity level is lower than S.

If -qflag=u:u or -qflag=q:q is specified, the message specified by -qhaltonmsg is
not shown.

-qhaltonmsg has precedence over -qsuppress and -qflag.

Related information
v “-qhalt” on page 140
v “-qflag” on page 126
v “-qsuppress” on page 243

-qhelp
Category

Listings, messages, and compiler information

142 XL Fortran: Compiler Reference for Little Endian Distributions

@PROCESS

None.

Purpose

Displays the man page of the compiler.

Syntax

►► -q help ►◄

Usage

If you specify the -qhelp option, regardless of whether you provide input files, the
compiler man page is displayed and the compilation stops.

Related information
v “-qversion” on page 254

-qhot
Category

Optimization and tuning

Purpose

Performs high-order loop analysis and transformations (HOT) during optimization.

The -qhot compiler option is a powerful alternative to hand tuning that provides
opportunities to optimize loops and array language. This compiler option will
always attempt to optimize loops, regardless of the suboptions you specify.

Syntax

►►

▼

nohot
-q hot

:

= noarraypad
arraypad

= number
1

level = 0
2

vector
novector
fastmath
nofastmath

►◄

@PROCESS:

@PROCESS HOT[=suboptions] | NOHOT

Chapter 6. Detailed descriptions of the XL Fortran compiler options 143

Defaults
v -qnohot

v -qhot=noarraypad:level=0:novector:fastmath when -O3 is in effect.
v -qhot=noarraypad:level=1:vector:fastmath when -qsmp, -O4 or -O5 is in effect.
v Specifying -qhot without suboptions is equivalent to

-qhot=noarraypad:level=1:vector:fastmath.

Parameters

arraypad | noarraypad
Permits the compiler to increase the dimensions of arrays where doing so
might improve the efficiency of array-processing loops. (Because of the
implementation of the cache architecture, array dimensions that are powers of
two can lead to decreased cache utilization.) Specifying -qhot=arraypad when
your source includes large arrays with dimensions that are powers of 2 can
reduce cache misses and page faults that slow your array processing programs.
This can be particularly effective when the first dimension is a power of 2. If
you use this suboption with no number, the compiler will pad any arrays
where it infers there may be a benefit and will pad by whatever amount it
chooses. Not all arrays will necessarily be padded, and different arrays may be
padded by different amounts. If you specify a number, the compiler will pad
every array in the code.

Note: Using arraypad can be unsafe, as it does not perform any checking for
reshaping or equivalences that may cause the code to break if padding takes
place.

number
A positive integer value representing the number of elements by which each
array will be padded in the source. The pad amount must be a positive integer
value. To achieve more efficient cache utilization, it is recommended that pad
values be multiples of the largest array element size, typically 4, 8, or 16.

level=0
Performs a subset of the high-order transformations and sets the default to
novector:noarraypad:fastmath.

level=1
Performs the default set of high-order transformations.

level=2
Performs the default set of high-order transformations and some more
aggressive loop transformations. This option performs aggressive loop analysis
and transformations to improve cache reuse and exploit loop parallelization
opportunities.

vector | novector
When specified with -qnostrict and an optimization level of -O3 or higher,
vector causes the compiler to convert certain operations that are performed in
a loop on successive elements of an array (for example, square root, reciprocal
square root) into a call to a routine in the Mathematical Acceleration
Subsystem (MASS) library in libxlopt.

The vector suboption supports single-precision and double-precision
floating-point mathematics, and is useful for applications with significant
mathematical processing demands.

novector disables the conversion of loop array operations into calls to MASS
library routines.

144 XL Fortran: Compiler Reference for Little Endian Distributions

Because vectorization can affect the precision of your program results, if you
are using -O3 or higher, you should specify -qhot=novector if the change in
precision is unacceptable to you.

fastmath | nofastmath
You can use this suboption to tune your application to either use fast scalar
versions of math functions or use the default versions.

-qhot=fastmath enables the replacement of math routines with available math
routines from the XLOPT library only if -qstrict=nolibrary is enabled.

-qhot=nofastmath disables the replacement of math routines by the XLOPT
library. -qhot=fastmath is enabled by default if -qhot is specified regardless of
the hot level.

Usage

If you do not also specify an optimization level when specifying -qhot on the
command line, the compiler assumes -O2.

If you want to override the default level setting of 1 when using -qsmp, -O4 or -O5,
be sure to specify -qhot=level=0 or -qhot=level=2 after the other options.

If -O2, -qnohot, or -qnoopt is used on the command line, specifying HOT options
in an @PROCESS directive will have no effect on the compilation unit.

The -C option turns off some array optimizations.

You can use the -qreport option in conjunction with -qhot or any optimization
option that implies -qhot to produce a pseudo-Fortran report showing how the
loops were transformed. The loop transformations are included in the listing report
if either the -qreport or -qlistfmt option is also specified. This LOOP
TRANSFORMATION SECTION of the listing file also contains information about data
prefetch insertion locations. In addition, when you use -qprefetch=assistthread to
generate prefetching assist threads, a message Assist thread for data
prefetching was generated also appears in the LOOP TRANSFORMATION SECTION of
the listing file. Specifying -qprefetch=assistthread guides the compiler to
generate aggressive data prefetching at optimization level -O3 -qhot or higher. For
more information, see “-qreport” on page 214.

Related information
v “-qarch” on page 93
v “-C” on page 68
v “-qsimd” on page 223
v “-qreport” on page 214
v “-qlistfmt” on page 175
v “-O” on page 83
v “-qstrict” on page 236
v “-qsmp” on page 226
v Using the Mathematical Acceleration Subsystem (MASS) in the XL Fortran

Optimization and Programming Guide
v Directives for loop optimization in the XL Fortran Language Reference
v High-order transformation in the XL Fortran Optimization and Programming Guide

Chapter 6. Detailed descriptions of the XL Fortran compiler options 145

-qieee
Category

Floating-point and integer control

Purpose

Specifies the rounding mode that the compiler will use when it evaluates constant
floating-point expressions at compile time.

Syntax

►►
Near

-q ieee = Minus
Plus
Zero

►◄

@PROCESS:

@PROCESS IEEE({Near | Minus | Plus | Zero})

Defaults

Near, which rounds to the nearest representable number.

Parameters

Near Round to nearest representable number.

Minus Round toward minus infinity.

Plus Round toward plus infinity.

Zero Round toward zero.

Usage

Use this option in combination with the XL Fortran subroutine fpsets or some
other method of changing the rounding mode at run time. It sets the rounding
mode that is used for compile-time arithmetic (for example, evaluating constant
expressions such as 2.0/3.5).

Specifying the same rounding mode for compile-time and runtime operations
avoids inconsistencies in floating-point results.

Note: Compile-time arithmetic is most extensive when you also specify the -O
option.

If you change the rounding mode from the default (round-to-nearest) at run time,
be sure to also specify -qfloat=rrm to turn off optimizations that only apply in the
default rounding mode.

If your program contains operations involving real(16) values, the rounding mode
must be set to -qieee=near, round-to-nearest.

146 XL Fortran: Compiler Reference for Little Endian Distributions

Related information
v Selecting the rounding mode in the XL Fortran Optimization and Programming Guide
v “-O” on page 83
v “-qfloat” on page 127

-qinfo
Category

Error checking and debugging

@PROCESS

None.

Purpose

Produces or suppresses groups of informational messages.

The messages are written to standard output and, optionally, to the listing file if
one is generated.

Syntax

Option syntax

►►

▼

-q noinfo
info

:

= all
noall
HOSTASSOCiation
NOHOSTASSOCiation
mt
nomt
stp
nostp
unset
nounset

►◄

@PROCESS:

@PROCESS INFO[(suboptions)] | NOINFO

Defaults

-qnoinfo

Parameters

all
Enables diagnostic messages for all groups except mt.

noall (option only)
Disables all diagnostic messages for all groups.

mt | nomt

Chapter 6. Detailed descriptions of the XL Fortran compiler options 147

Reports potential synchronization issues in parallel code. This suboption
detects the Global Thread Flag pattern where one thread uses a shared volatile
flag variable to notify other threads that it has completed a computation and
stored its result to memory. Other threads check the flag variable in a loop that
does not change the flag variable. When the value of the flag variable changes,
the waiting threads access the computation result from memory. The PowerPC
storage model requires synchronization before the flag variable is set in the
first thread, and after the flag variable is checked in the waiting threads.
Synchronization can be done by the LIGHT_SYNC or ISYNC directive.

The type of synchronization directives you need to use depends on your code.
Usually, it is enough to use the LIGHT_SYNC directive, as it preserves the
storage access order to system memory. However, if the loops in the waiting
threads are written in such a way that might cause instruction prefetching to
start executing code that accesses the computation result before the flag
variable is updated, you need to use the ISYNC directive to preserve order.
Such patterns are typically as follows:
10 CALL sleep_(value)

IF (.NOT. flag) GOTO 10
! The SYNC directive is needed here.
x = shared_computation_result

Some patterns that do not require synchronization are similar to the patterns
described above. The messages generated by this suboption are only
suggestions about potential synchronization issues.

To use the -qinfo=mt suboption, you must enable the -qthreaded option and
specify at least one of the following options:
v -O3

v -O4

v -O5

v -qipa

v -qhot

v -qsmp

The default option is -qinfo=nomt.

HOSTASSOCiation | NOHOSTASSOCiation
Issues an information message for an entity that is accessed by host association
for the first time. However, if the entity is accessed by an IMPORT statement,
no information message is issued.

You can use -qinfo=all / noall to control whether to enable the
-qinfo=HOSTASSOCiation option. The default option is
-qinfo=NOHOSTASSOCiation.

stp | nostp
Issues warnings for procedures that are not protected against stack corruption.
-qinfo=stp has no effects unless the -qstackprotect option is also enabled.
Like other -qinfo options, -qinfo=stp is enabled or disabled through
-qinfo=all / noall. -qinfo=nostp is the default option.

unset | nounset
Detects automatic variables that are used before they are set, and flags them
with informational messages at compile time.

-qinfo=unset uses program information, such as control flow information,
available during optimization. As a result, detection accuracy improves with
the optimization level. For example, some uses of unset variables that are not

148 XL Fortran: Compiler Reference for Little Endian Distributions

flagged at -O0 are flagged at -O2. Aggressive optimization levels, such as -O4
and -O5, can cause the line numbers in the informational messages to become
inaccurate. In very rare cases, these optimization levels reorder the program
sufficiently to cause false positive messages from static analysis. You can get
the best results with the -O2 optimization level.

The -qinitauto option initializes automatic variables. As a result, the
-qinitauto option hides variables that are used before they are set from the
-qinfo=unset option.

The -qsave option changes the storage class of automatic variables to STATIC.
As a result, the -qsave option hides variables that are used before they are set
from the -qinfo=unset option.

Usage

Specifying -qinfo with no suboptions is equivalent to -qinfo=all.

Specifying -qnoinfo is equivalent to -qinfo=noall.

Examples

To compile a program to produce informational messages about stack protection,
enter the following command:
xlf90 myprogram.f -qinfo=stp -qstackprotect

To compile t.f to produce informational messages about host-associated variables,
enter the following command:
xlf2008 t.f -qinfo=HOSTASSOCiation

Suppose that t.f contains the following code:
PROGRAM p

IMPLICIT none

INTEGER :: var

var = 3
CALL sub()

CONTAINS
SUBROUTINE sub()

PRINT *, var ! The compiler issues an information message when
! entity ’var’ is accessed by host association for
! the first time.

PRINT *, var ! No message is issued here.
END

INTEGER FUNCTION func()
func = var ! Entity ’var’ is in a different scope. The compiler

! issues an information message when the entity is
! accessed by host association for the first time in
! each scope.

END
END

The compiler issues the following information messages:
"t.f", line 11.20: 1521-004 (I) Entity var is accessed by host association.
"t.f", line 16.18: 1521-004 (I) Entity var is accessed by host association.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 149

To compile sync.f to produce informational messages about potential
synchronization issues in parallel code, enter the following command:
xlf95_r -qinfo=mt -O3 sync.f

Suppose that sync.f contains the following code:
MODULE m
IMPLICIT NONE
LOGICAL, VOLATILE :: done ! shared flag
INTEGER, VOLATILE :: shared_result

CONTAINS
SUBROUTINE setter(id)
IMPLICIT NONE
INTEGER, INTENT(IN) :: id

CALL sleep_(5)
shared_result = 7
! !ibm* light_sync
done = .TRUE. ! line 13

END SUBROUTINE

SUBROUTINE waiter(id)
IMPLICIT NONE
INTEGER, INTENT(IN) :: id

DO WHILE (.NOT. done)
CALL sleep_(1)

END DO ! line 22
! !ibm* light_sync
PRINT *, shared_result

END SUBROUTINE
END MODULE

PROGRAM MAIN
USE m, ONLY: waiter, setter
USE f_pthread
IMPLICIT NONE

TYPE(f_pthread_t) threads(2)
TYPE(f_pthread_attr_t) attr
INTEGER(4) flag, result

! Initialization
result = f_pthread_attr_init(attr)
IF (result /= 0) ERROR STOP 1
flag = FLAG_DEFAULT

! Create threads
result = f_pthread_create(threads(1), attr, flag, waiter, 1)
IF (result /= 0) ERROR STOP 2

result = f_pthread_create(threads(2), attr, flag, setter, 2)
IF (result /= 0) ERROR STOP 3

result = f_pthread_join(threads(1))
result = f_pthread_join(threads(2))

END PROGRAM

The compiler issues the following informational message:
** m === End of Compilation 1 ===
** main === End of Compilation 2 ===

1586-669 (I) "sync.f", line 22: If this loop is used as a synchronization
point, additional synchronization via a directive or built-in function might
be needed.

1586-670 (I) "sync.f", line 13: If this statement is used as a synchronization
point, additional synchronization via a directive or built-in function might

150 XL Fortran: Compiler Reference for Little Endian Distributions

be needed.

1501-510 Compilation successful for file sync.f.

The following function factorial.f does not initialize temp when n<=1.
factorial.f also accesses result before it is set when n>1. With -qinfo=unset at
-qnoopt, this issue is not detected. To compile factorial.f to produce
informational messages about the uninitialized variables, enter the following
command:
xlf95 -qinfo=unset -O factorial.f

factorial.f contains the following code:
module m
contains
recursive function factorial(n) result(result)
integer, value :: n
integer result, temp

if (n > 1) then
temp = n * factorial(n - 1)
print *, result ! line 9

endif

result = temp ! line 12
end function

end module

use m
integer x
x = factorial(1)
end

The compiler issues the following informational messages:
1500-098 (I) "factorial.f", line 9: "result" is used before it is set.
1500-099 (I) "factorial.f", line 12: "temp" might be used before it is set.
1501-510 Compilation successful for file factorial.f.

Related information
v “-qreport” on page 214
v isync in the XL Fortran Language Reference
v light_sync in the XL Fortran Language Reference
v For more information about synchronization and the PowerPC storage model,

see the article at http://www.ibm.com/developerworks/systems/articles/
powerpc.html.

-qinit
Category

Language element control

Purpose

Makes the initial association status of pointers disassociated.

Note that this option applies to Fortran 90 and above.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 151

http://www.ibm.com/developerworks/systems/articles/powerpc.html
http://www.ibm.com/developerworks/systems/articles/powerpc.html

Syntax

►► -q init = f90ptr ►◄

@PROCESS:

@PROCESS INIT(F90PTR)

Defaults

Not applicable.

Usage

You can use this option to help locate and fix problems that are due to using a
pointer before you define it.

Related information
v See Pointer association in the XL Fortran Language Reference.

-qinitalloc
Category

Error checking and debugging

Purpose

Initializes allocatable and pointer variables that are allocated but not initialized to a
specific value, for debugging purposes.

The -qinitalloc option applies to the following uninitialized variables:
v Variables that have the ALLOCATABLE attribute and are allocated using the

ALLOCATE statement
v Variables that have the POINTER attribute and are allocated using the

ALLOCATE statement

Syntax

►►
noinitalloc

-q initalloc
= hex_value

►◄

@PROCESS:

@PROCESS INITALLOC[(hex_value)] | NOINITALLOC

Defaults

-qnoinitalloc

By default, the compiler does not initialize allocated storage to any particular
value.

152 XL Fortran: Compiler Reference for Little Endian Distributions

Parameters

hex_value
A one- to eight-digit hexadecimal number.

v If you do not specify a hex_value, the compiler initializes the value of each byte
of allocated storage to zero.

v To initialize each byte of storage to a specific value, specify one or two digits for
the hex_value. If you specify only one digit, the compiler pads the hex_value on
the left with a zero.

v To initialize each word of storage to a specific value, specify three to eight digits
for the hex_value. If you specify more than two but fewer than eight digits, the
compiler pads the hex_value on the left with zeros.

v In the case of word initialization, if allocatable variables are not a multiple of 4
bytes in length, the hex_value is truncated on the left to fit. For example, if an
allocatable variable is only 1 byte and you specify five digits for the hex_value,
the compiler truncates the three digits on the left and assigns the other two
digits on the right to the variable.

v You can specify alphabetic digits as either uppercase or lowercase.
v For derived type variables with default initialization, initialization with hex_value

occurs before the default initialization. See Example 2.

Usage

The -qinitalloc option provides the following benefits:
v Setting hex_value to zero (the default value) ensures that all allocatable variables

are cleared before being used.
v You can use this option to initialize variables of real or complex type to a

signaling or quiet NaN, which helps locate uninitialized variables in your
program.

The usage of this option is similar to that of the -qinitauto option. For more
information, see “-qinitauto” on page 154.

Restriction: Objects that are equivalenced, structure components, and array
elements are not initialized individually. Instead, the entire storage sequence is
initialized collectively.

Examples

Example 1:

The following example shows how the -qinitalloc option works.
SUBROUTINE Sub()

REAL(4), ALLOCATABLE :: a, b
CHARACTER, ALLOCATABLE :: c
REAL(8), ALLOCATABLE :: d

ALLOCATE(a) ! a is allocated but not initialized.
ALLOCATE(b, SOURCE = 3.0) ! b is allocated and initialized to 3.0.
ALLOCATE(c)
ALLOCATE(d)

END SUBROUTINE

If you compile your program with -qinitalloc=0cf, for example, the compiler
performs the following initialization:
v Pads 0cf with five zeros and initializes a to 000000CF

Chapter 6. Detailed descriptions of the XL Fortran compiler options 153

v Keeps the original initialization for b
v Truncates the first digit of 0cf and initializes c to CF
v Pads 0cf with five zeros, repeats the value, and initializes d to 000000CF000000CF

Example 2:

The following example shows how the -qinitalloc option works when a derived
type contains a component with default initialization.
TYPE dt

INTEGER :: i = 1 ! i has default initialization
INTEGER :: j

END TYPE
TYPE(dt), ALLOCATABLE :: dt1
ALLOCATE(dt1)

If you compile your program with -qinitalloc, the compiler keeps the default
initialization for i, and initializes j to zero.

Related information
v The ALLOCATABLE attribute in the XL Fortran Language Reference
v The ALLOCATE statement in the XL Fortran Language Reference
v The POINTER statement in the XL Fortran Language Reference

-qinitauto
Category

Error checking and debugging

@PROCESS

None.

Purpose

Initializes uninitialized automatic variables to a specific value, for debugging
purposes.

Syntax

►►
noinitauto

-q initauto
= hex_value

►◄

Defaults

-qnoinitauto

By default, the compiler does not initialize automatic storage to any particular
value. However, it is possible that a region of storage contains all zeros.

Parameters

hex_value
A 1 to 8 digit hexadecimal number.

154 XL Fortran: Compiler Reference for Little Endian Distributions

v If you do not specify a hex_value number, the compiler initializes the value of
each byte of automatic storage to zero.

v To initialize each byte of storage to a specific value, specify 1 or 2 digits for the
hex_value. If you specify only 1 digit, the compiler pads the hex_value on the left
with a zero.

v To initialize each word of storage to a specific value, specify 3 to 8 digits for the
hex_value. If you specify more than 2 but fewer than 8 digits, the compiler pads
the hex_value on the left with zeros.

v In the case of word initialization, if automatic variables are not a multiple of 4
bytes in length, the hex_value may be truncated on the left to fit. For example, if
you specify 5 digits for the hex_value and an automatic variable is only 1 byte
long, the compiler truncates the 3 digits on the left-hand side of the hex_value
and assigns the two right-hand digits to the variable.

v You can specify alphabetic digits as either upper- or lower-case.

Usage

This option helps you to locate variables that are referenced before being defined.
For example, by using both the -qinitauto option to initialize REAL variables
with a signaling NAN value and the -qflttrap option, it is possible to identify
references to uninitialized REAL variables at run time.

Setting hex_value to zero ensures that all automatic variables are cleared before
being used. Some programs assume that variables are initialized to zero and do not
work when they are not. Other programs may work if they are not optimized but
fail when they are optimized. Typically, setting all the variables to all zero bytes
prevents such runtime errors. It is better to locate the variables that require zeroing
and insert code in your program to do so than to rely on this option to do it for
you. Using this option will generally zero more things than necessary and may
result in slower programs.

To locate and fix these errors, set the bytes to a value other than zero, which will
consistently reproduce incorrect results. This method is especially valuable in cases
where adding debugging statements or loading the program into a symbolic
debugger makes the error go away.

Setting the hex_value to FF (255) gives REAL and COMPLEX variables an initial
value of “negative not a number”, or quiet NAN. Any operations on these
variables will also result in quiet NAN values, making it clear that an uninitialized
variable has been used in a calculation.

This option can help you to debug programs with uninitialized variables in
subprograms. For example, you can use it to initialize REAL variables with a
signaling NAN value. You can initialize 8-byte REAL variables to double-precision
signaling NAN values by specifying an 8-digit hexadecimal number, that, when
repeated, has a double-precision signaling NAN value. For example, you could
specify a number such as 7FBFFFFF, that, when stored in a REAL(4) variable, has a
single-precision signaling NAN value. The value 7FF7FFFF, when stored in a
REAL(4) variable, has a single-precision quiet NAN value. If the same number is
stored twice in a REAL(8) variable (7FF7FFFF7FF7FFFF), it has a double-precision
signaling NAN value.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 155

Restrictions

Equivalenced variables, structure components, and array elements are not
initialized individually. Instead, the entire storage sequence is initialized
collectively.

Examples

The following example shows how to perform word initialization of automatic
variables:
subroutine sub()
integer(4), automatic :: i4
character, automatic :: c
real(4), automatic :: r4
real(8), automatic :: r8
end subroutine

When you compile the code with the following option, the compiler performs
word initialization, as the hex_value is longer than 2 digits:
-qinitauto=0cf

The compiler initializes the variables as follows, padding the hex_value with zeros
in the cases of the i4, r4, and r8 variables and truncating the first hexadecimal
digit in the case of the c variable:

Variable Value

i4 000000CF

c CF

r4 000000CF

r8 000000CF000000CF

Related information
v “-qflttrap” on page 132
v The AUTOMATIC attribute in the XL Fortran Language Reference

-qinlglue
Category

Object code control

Purpose

When used with -O2 or higher optimization, inlines glue code that optimizes
external function calls in your application.

Glue code or Procedure Linkage Table code, generated by the linker, is used for
passing control between two external functions. When -qinlglue is in effect, the
optimizer inlines glue code for better performance. When -qnoinlglue is in effect,
inlining of glue code is prevented.

156 XL Fortran: Compiler Reference for Little Endian Distributions

Syntax

►►
inlglue

-q noinlglue ►◄

@PROCESS:

@PROCESS INLGLUE | NOINLGLUE

Defaults
v -qinlglue

Usage

Inlining glue code can cause the code size to grow. Specifying -qcompact overrides
the -qinlglue setting to prevent code growth. If you want -qinlglue to be enabled,
do not specify -qcompact.

Specifying -qnoinlglue or -qcompact can degrade performance; use these options
with discretion.

Related information
v “-qcompact” on page 107
v “-qtune” on page 249
v Inlining in the XL Fortran Optimization and Programming Guide
v Managing code size in the XL Fortran Optimization and Programming Guide

-qinline
Category

Optimization and tuning

@PROCESS

None.

Purpose

Attempts to inline procedures instead of generating calls to those procedures, for
improved performance.

Syntax

►►

▼

▼

-qnoinline
-qinline

:

= auto
noauto
level = number

:

+ procedure_name
-

►◄

Chapter 6. Detailed descriptions of the XL Fortran compiler options 157

Defaults

If -qinline is not specified, the default option is as follows:
v -qnoinline at the -O0 or -qnoopt optimization level
v -qinline=noauto:level=5 at the -O2 optimization level
v -qinline=auto:level=5 at the -O2 -qipa, -O3 or higher optimization level

If -qinline is specified without any suboptions, the default option is
-qinline=auto:level=5.

Parameters

auto | noauto
Enables or disables automatic inlining. When option -qinline=auto is in effect,
all the procedures are considered for inlining by the compiler. When option
-qinline=noauto is in effect, the compiler only inlines small procedures that it
deems appropriate for inlining.

level=number
Indicates the relative degree of inlining. The values for number must be integers
in the range 0 - 10 inclusive. The default value for number is 5. The greater the
value of number, the more aggressive inlining the compiler conducts.

procedure_name
If procedure_name is specified after the -qinline+ option, the named procedure
must be inlined. If procedure_name is specified after the -qinline- option, the
named procedure must not be inlined.

Usage

You can specify -qinline with any optimization level of -O2, -O3, -O4, or -O5 to
enable inlining of procedures.

When -qinline is in effect, the compiler determines whether inlining a specific
procedure can improve performance. That is, whether a procedure is appropriate
for inlining is subject to two factors: limits on the number of inlined calls and the
amount of code size increase as a result. Therefore, enabling inlining a procedure
does not guarantee that procedure will be inlined.

Because inlining does not always improve runtime performance, you need to test
the effects of this option on your code. Do not attempt to inline recursive or
mutually recursive procedures.

You can use the -qinline+<procedure_name> or -qinline-<procedure_name> option to
specify the procedures that must be inlined or must not be inlined.

Specifying -qnoinline disables all inlining, including that achieved by the
high-level optimizer with the -qipa option.

If you specify the -g option to generate debugging information, the inlining effect
of -qinline might be suppressed.

If you specify the -qcompact option to avoid optimizations that increase code size,
the inlining effect of -qinline might be suppressed.

158 XL Fortran: Compiler Reference for Little Endian Distributions

By default, -qinline affects only internal or module procedures. To turn on inline
expansion for calls to procedures in different scopes, you must also use the -qipa
option.

Conflicting @PROCESS directives or compilation options that are applied to
different compilation units can impact inlining effectiveness. For example, if you
specify inlining for a procedure, some @PROCESS compiler directives can be
rendered ineffective. See the XL Fortran Optimization and Programming Guide for
more information about inlining and IPA.

If you specify inlining for a procedure, the following @PROCESS compiler
directives are only effective if they come before the first compilation unit in the
file: ALIAS, ALIGN, ATTR, COMPACT, DBG, EXTCHK, EXTNAME, FLOAT,
FLTTRAP, HALT, IEEE, LIST, MAXMEM, OBJECT, OPTIMIZE, PHSINFO,
SPILLSIZE, STRICT, and XREF.

Examples

Example 1

To compile myprogram.f so that no procedures are inlined, use the following
command:
xlf myprogram.f -O2 -qnoinline

If you want to enable automatic inlining, you use the auto suboption:
-O2 -qinline=auto

You can specify an inlining level 6 - 10 to achieve more aggressive automatic
inlining. For example:
-O2 -qinline=auto:level=7

If automatic inlining is already enabled by default and you want to specify an
inlining level of 7, you enter:
-O2 -qinline=level=7

Example 2

Assuming myprogram.f contains the salary, taxes, expenses, and benefits
procedures, you can use the following command to compile myprogram.f to inline
these procedures:
xlf myprogram.f -O2 -qinline+salary:taxes:expenses:benefits

If you do not want the procedures salary, taxes, expenses, and benefits to be
inlined, use the following command to compile myprogram.f:
xlf myprogram.f -O2 -qinline-salary:taxes:expenses:benefits

You can also disable automatic inlining and specify certain procedures to be
inlined with the -qinline+ option. Consider the following example:
-O2 -qinline=noauto -qinline+salary:taxes:benefits

In this case, the procedures salary, taxes, and benefits are inlined. Procedures
that are declared with the inline specifier are also inlined. No other procedures
are inlined.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 159

You cannot mix the + and - suboptions with each other or with other -qinline
suboptions. For example, the following options are invalid suboption combinations:
-qinline+increase-decrease // Invalid
-qinline=level=5+increase // Invalid

However, you can use multiple -qinline options separately. See the following
example:
-qinline+increase -qinline-decrease -qinline=noauto:level=5

Related information
v “-g” on page 73
v “-qipa” on page 163
v "Interprocedural analysis" in the XL Fortran Optimization and Programming Guide
v The -qinline inlining option in the XL Fortran Optimization and Programming

Guide

-qintlog
Category

Floating-point and integer control

Purpose

Specifies that you can mix integer and logical data entities in expressions and
statements.

Syntax

►►
nointlog

-q intlog ►◄

@PROCESS:

@PROCESS INTLOG | NOINTLOG

Defaults

-qnointlog

Usage

When -qintlog is specified, logical operators that you specify with integer
operands act upon those integers in a bit-wise manner, and integer operators treat
the contents of logical operands as integers.

The following operations do not allow the use of logical variables:
v ASSIGN statement variables
v Assigned GOTO variables
v DO loop index variables
v Implied-DO loop index variables in DATA statements
v Implied-DO loop index variables in either input and output or array

constructors
v Index variables in FORALL constructs

160 XL Fortran: Compiler Reference for Little Endian Distributions

You can also use the intrinsic functions IAND, IOR, IEOR, and NOT to perform
bitwise logical operations.

The MOVE_ALLOC intrinsic function cannot take one integer and one logical
argument.

Examples
INTEGER I, MASK, LOW_ORDER_BYTE, TWOS_COMPLEMENT
I = 32767
MASK = 255
! Find the low-order byte of an integer.
LOW_ORDER_BYTE = I .AND. MASK
! Find the twos complement of an integer.
TWOS_COMPLEMENT = (.NOT. I) + 1
END

Related information
v -qport=clogicals option.

-qintsize
Category

Floating-point and integer control

Purpose

Sets the size of default INTEGER and LOGICAL data entities that have no length
or kind specified.

This option is not intended as a general-purpose method for increasing the sizes of
data entities. Its use is limited to maintaining compatibility with code that is
written for other systems.

Syntax

►►
4

-q intsize = 2
8

►◄

@PROCESS:

@PROCESS INTSIZE(bytes)

Defaults

-qintsize=4

Parameters

bytes
Allowed sizes are 2, 4, or 8.

Usage

This option is intended to allow you to port programs unchanged from systems
that have different default sizes for data. For example, you might need

Chapter 6. Detailed descriptions of the XL Fortran compiler options 161

-qintsize=2 for programs that are written for a 16-bit microprocessor or
-qintsize=8 for programs that are written for a CRAY computer.

You might need to add PARAMETER statements to give explicit lengths to
constants that you pass as arguments.

The specified size1 applies to these data entities:
v INTEGER and LOGICAL specification statements with no length or kind

specified.
v FUNCTION statements with no length or kind specified.
v Intrinsic functions that accept or return default INTEGER or LOGICAL

arguments or return values unless you specify a length or kind in an
INTRINSIC statement. Any specified length or kind must agree with the default
size of the return value.

v Variables that are implicit integers or logicals.
v Integer and logical literal constants with no kind specified. If the value is too

large to be represented by the number of bytes that you specified, the compiler
chooses a size that is large enough. The range for 2-byte integers is -(2**15) to
2**15-1, for 4-byte integers is -(2**31) to 2**31-1, and for 8-byte integers is -(2**63)
to 2**63-1.

v Typeless constants in integer or logical contexts.
v In addition to types INTEGER and LOGICAL, -qintsize also works for

vector(integer). Specifying -qintsize=2 is equivalent to specifying
vector(integer*2). Similarly, specifying -qintsize=4 is equivalent to specifying
vector(integer*4). Specifying -qintsize=8 is equivalent to vector(integer*8).

Examples

In the following example, note how variables, literal constants, intrinsics,
arithmetic operators, and input/output operations all handle the changed default
integer size.
@PROCESS INTSIZE(8)

PROGRAM INTSIZETEST
INTEGER I
I = -9223372036854775807 ! I is big enough to hold this constant.
J = ABS(I) ! So is implicit integer J.
IF (I .NE. J) THEN
PRINT *, I, ’.NE.’, J

END IF
END

The following example only works with the default size for integers:
CALL SUB(17)
END

SUBROUTINE SUB(I)
INTEGER(4) I ! But INTSIZE may change "17"

! to INTEGER(2) or INTEGER(8).
...
END

If you change the default value, you must either declare the variable I as
INTEGER instead of INTEGER(4) or give a length to the actual argument, as
follows:

1. In Fortran 90/95 terminology, these values are referred to as kind type parameters.

162 XL Fortran: Compiler Reference for Little Endian Distributions

@PROCESS INTSIZE(8)
INTEGER(4) X
PARAMETER(X=17)
CALL SUB(X) ! Use a parameter with the right length, or
CALL SUB(17_4) ! use a constant with the right kind.
END

Related information
v “-qrealsize” on page 211
v Type declaration: type parameters and specifiers in the XL Fortran Language Reference

-qipa
Category

Optimization and tuning

@PROCESS

None.

Purpose

Enables or customizes a class of optimizations known as interprocedural analysis
(IPA).

IPA is a two-step process: the first step, which takes place during compilation,
consists of performing an initial analysis and storing interprocedural analysis
information in the object file. The second step, which takes place during linking,
and causes a complete recompilation of the entire application, applies the
optimizations to the entire program.

You can use -qipa during the compilation step, the link step, or both. If you
compile and link in a single compiler invocation, only the link-time suboptions are
relevant. If you compile and link in separate compiler invocations, only the
compile-time suboptions are relevant during the compile step, and only the
link-time suboptions are relevant during the link step.

Syntax

-qipa compile-time syntax

►►
noipa

-q ipa
object

= noobject

►◄

-qipa link-time syntax

Chapter 6. Detailed descriptions of the XL Fortran compiler options 163

►►

▼ ▼

▼

▼

noipa
-q ipa

:
,

= exits = function_name
1

level = 0
2

list
= file_name

long
short
,

lowfreq = function_name
unknown

missing = safe
isolated
pure

medium
partition = small

large
nostdexits
stdexits
threads

auto
= number

noauto
nothreads

,

isolated = function_name
pure
safe
unknown

file_name

►◄

Defaults
v -qnoipa

Parameters

You can specify the following parameters during a separate compile step only:

object | noobject
Specifies whether to include standard object code in the output object files.

Specifying noobject can substantially reduce overall compile time by not
generating object code during the first IPA phase. Note that if you specify -S
with noobject, noobject will be ignored.

If compiling and linking are performed in the same step and you do not
specify the -S or any listing option, -qipa=noobject is implied.

Specifying -qipa with no suboptions on the compile step is equivalent to
-qipa=object.

164 XL Fortran: Compiler Reference for Little Endian Distributions

You can specify the following parameters during a combined compile and link in
the same compiler invocation, or during a separate link step only:

exits
Specifies names of procedures which represent program exits. Program exits
are calls which can never return and can never call any procedure which has
been compiled with IPA pass 1. The compiler can optimize calls to these
procedures (for example, by eliminating save/restore sequences), because the
calls never return to the program. These procedures must not call any other
parts of the program that are compiled with -qipa.

isolated
Specifies a comma-separated list of procedures that are not compiled with
-qipa. Procedures that you specify as isolated or procedures within their call
chains cannot refer directly to any global variable.

level
Specifies the optimization level for interprocedural analysis. Valid suboptions
are one of the following suboptions:

0 Performs only minimal interprocedural analysis and optimization.

1 Enables inlining, limited alias analysis, and limited call-site tailoring.

2 Performs full interprocedural data flow and alias analysis.

If you do not specify a level, the default is 1.

To generate data reorganization information, specify the optimization level
-qipa=level=2 or -O5 together with -qreport. During the IPA link phase, the
data reorganization messages for program variable data are written to the data
reorganization section of the listing file. Reorganizations include common block
splitting, array splitting, array transposing, memory allocation merging, array
interleaving, and array coalescing.

list
Specifies that a listing file be generated during the link phase. The listing file
contains information about transformations and analyses performed by IPA, as
well as an optional object listing for each partition.

If you do not specify a list_file_name, the listing file name defaults to a.lst. If
you specify -qipa=list together with any other option that generates a listing
file, IPA generates an a.lst file that overwrites any existing a.lst file. If you have
a source file named a.f, the IPA listing will overwrite the regular compiler
listing a.lst. You can use the -qipa=list=list_file_name suboption to specify an
alternative listing file name.

Additional suboptions are one of the following suboptions:

short Requests less information in the listing file. Generates the Object File
Map, Source File Map and Global Symbols Map sections of the listing.

long Requests more information in the listing file. Generates all of the
sections generated by the short suboption, plus the Object Resolution
Warnings, Object Reference Map, Inliner Report and Partition Map
sections.

lowfreq
Specifies procedures that are likely to be called infrequently. These are typically
error handling, trace, or initialization procedures. The compiler may be able to
make other parts of the program run faster by doing less optimization for calls
to these procedures.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 165

missing
Specifies the interprocedural behavior of procedures that are not compiled with
-qipa and are not explicitly named in an unknown, safe, isolated, or pure
suboption.

Valid suboptions are one of the following suboptions:

safe Specifies that the missing procedures do not indirectly call a visible
(not missing) function either through direct call or through a procedure
pointer.

isolated
Specifies that the missing procedures do not directly reference global
variables accessible to visible procedures. Procedures bound from
shared libraries are assumed to be isolated.

pure Specifies that the missing procedures are safe and isolated and do not
indirectly alter storage accessible to visible procedures. pure procedures
also have no observable internal state.

unknown
Specifies that the missing procedures are not known to be safe, isolated,
or pure. This suboption greatly restricts the amount of interprocedural
optimization for calls to missing procedures.

The default is to assume unknown.

partition
Specifies the size of each program partition created by IPA during pass 2. Valid
suboptions are one of the following suboptions:
v small

v medium

v large

Larger partitions contain more procedures, which result in better
interprocedural analysis but require more storage to optimize. Reduce the
partition size if compilation takes too long because of paging.

pure
Specifies pure procedures that are not compiled with -qipa. Any procedure
specified as pure must be isolated and safe, and must not alter the internal state
or have side-effects, defined as potentially altering any data visible to the
caller.

safe
Specifies safe procedures that are not compiled with -qipa and do not call any
other part of the program. Safe procedures can modify global variables and
dummy arguments, but may not call procedures compiled with -qipa.

stdexits | nostdexits
Specifies that certain predefined routines can be optimized as with the exits
suboption. The procedures are: abort, exit, _exit, and _assert.

threads | nothreads
Runs portions of the IPA optimization process during pass 2 in parallel
threads, which can speed up the compilation process on multi-processor
systems. Valid suboptions for the threads suboption are as follows:

auto | noauto
When auto is in effect, the compiler selects a number of threads

166 XL Fortran: Compiler Reference for Little Endian Distributions

heuristically based on machine load. When noauto is in effect, the compiler
creates one thread per machine processor.

number
Instructs the compiler to use a specific number of threads. number can be
any integer value in the range of 1 to 32 767. However, number is
effectively limited to the number of processors available on your system.

Specifying threads with no suboptions implies -qipa=threads=auto.

unknown
Specifies unknown procedures that are not compiled with -qipa. Any procedure
specified as unknown can make calls to other parts of the program compiled
with -qipa, and modify global variables and dummy arguments.

file_name
Gives the name of a file which contains suboption information in a special
format.

The file format is shown as follows:
... comment
attribute{, attribute} = name{, name}

missing = attribute{, attribute}
exits = name{, name}
lowfreq = name{, name}
list [= file-name | short | long]
level = 0 | 1 | 2
partition = small | medium | large

where attribute is one of:
v exits
v lowfreq
v unknown
v safe
v isolated
v pure

Usage

Specifying -qipa automatically sets the optimization level to -O2. For additional
performance benefits, you can also specify the -qinline option. The -qipa option
extends the area that is examined during optimization and inlining from a single
procedure to multiple procedures (possibly in different source files) and the linkage
between them.

If any object file used in linking with -qipa was created with the -qipa=noobject
option, any file containing an entry point (the main program for an executable
program, or an exported function for a library) must be compiled with -qipa.

You can link objects created with different releases of the compiler, but you must
ensure that you use a linker that is at least at the same release level as the newer
of the compilers used to create the objects being linked.

Some symbols which are clearly referenced or set in the source code may be
optimized away by IPA, and may be lost to debug or nm outputs. Using IPA
together with the -g compiler will usually result in non-steppable output.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 167

Note that if you specify -qipa with -#, the compiler does not display linker
information subsequent to the IPA link step.

For recommended procedures for using -qipa, see "Optimizing your applications"
in the XL Fortran Optimization and Programming Guide.

Examples

The following example shows how you might compile a set of files with
interprocedural analysis:
xlf -c *.f -qipa
xlf -o product *.o -qipa

Here is how you might compile the same set of files, improving the optimization
of the second compilation, and the speed of the first compile step. Assume that
there exist a set of routines, user_trace1, user_trace2, and user_trace3, which are
rarely executed, and the routine user_abort that exits the program:
xlf95 -c *.f -qipa=noobject
xlf95 -c *.o -qipa=lowfreq=user_trace[123]:exit=user_abort

Related information
v -qinline
v “-qlibmpi” on page 172
v “-S” on page 272
v Correct settings for environment variables

-qkeepparm
Category

Error checking and debugging

@PROCESS

None.

Purpose

When used with -O2 or higher optimization, specifies whether procedure
parameters are stored on the stack.

A procedure usually stores its incoming parameters on the stack at the entry point.
However, when you compile code with optimization options enabled, the
optimizer may remove these parameters from the stack if it sees an optimizing
advantage in doing so.

Syntax

►►
nokeepparm

-q keepparm ►◄

Defaults

-qnokeepparm

168 XL Fortran: Compiler Reference for Little Endian Distributions

Usage

When -qkeepparm is in effect, parameters are stored on the stack even when
optimization is enabled. This option then provides access to the values of incoming
parameters to tools, such as debuggers, simply by preserving those values on the
stack. However, this may negatively impact execution performance.

When -qnokeepparm is in effect, parameters are removed from the stack if this
provides an optimization advantage.

-qlanglvl
Category

Language element control

Purpose

Determines which language standard (or superset, or subset of a standard) to
consult for nonconformance. It identifies nonconforming source code and also
options that allow such nonconformances.

Syntax

►► ▼

:
extended

-q langlvl = 77std
90std
90pure
95std
95pure
2003std
2003pure
2008std
2008pure
ts
tspure

►◄

@PROCESS:

@PROCESS LANGLVL({suboption})

Defaults

-qlanglvl=extended

Parameters

77std Accepts the language that the ANSI FORTRAN 77 standard specifies and
reports anything else using language-level messages.

90std Accepts the language that the ISO Fortran 90 standard specifies and
reports anything else using language-level messages.

90pure
The same as 90std except that it also issues language-level messages for
any obsolescent Fortran 90 features used.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 169

95std Accepts the language that the ISO Fortran 95 standard specifies and
reports anything else using language-level messages.

95pure
The same as 95std except that it also issues language-level messages for
any obsolescent Fortran 95 features used.

2003std
Accepts the language that the ISO Fortran 2003 standard specifies and
reports anything else using language-level messages.

2003pure
The same as 2003std except that it also issues language-level messages for
any obsolescent Fortran 2003 features used.

2008std
Accepts the language that the ISO Fortran 2003 standard specifies and all
Fortran 2008 features supported by XL Fortran, and reports anything else
using language-level messages.

2008pure
The same as 2008std except that it also issues language-level messages for
any obsolescent Fortran 2008 features used.

ts Accepts the language that a standard technical specification specifies, and
reports anything else using language-level messages. Technical
Specification 29113 is an addition to the current Fortran standard. This
option checks for the language that the ISO Fortran 2003 standard
specifies, all supported ISO Fortran 2008 standard features, and all
supported ISO TS 29113 features.

tspure The same as ts except that it also issues language-level messages for any
obsolescent Technical Specification 29113 features used.

extended
Accepts the full Fortran 2003 language standard, all Fortran 2008 features
supported by XL Fortran, and all extensions, effectively turning off
language-level checking.

Usage

When a -qlanglvl setting is specified, the compiler issues a message with severity
code L if it detects syntax that is not allowed by the language level that you
specified.

The -qflag option can override the -qlanglvl option.

The langlvl runtime option, which is described in “Setting runtime options” on
page 34, helps to locate runtime extensions that cannot be checked for at compile
time.

Examples

The following example contains source code that conforms to a mixture of Fortran
standards:
!--
! in free source form
program tt

integer :: a(100,100), b(100), i
real :: x, y
...

170 XL Fortran: Compiler Reference for Little Endian Distributions

goto (10, 20, 30), i
10 continue

pause ’waiting for input’

20 continue
y= gamma(x)

30 continue
b = maxloc(a, dim=1, mask=a .lt 0)

end program
!--

The following table shows examples of how some -qlanglvl suboptions affect this
sample program:

-qlanglvl Suboption
Specified Result Reason

95pure
Flags PAUSE statement

Flags computed GOTO
statement

Flags GAMMA intrinsic

Deleted feature in
Fortran 95

Obsolescent feature in
Fortran 95

Extension to Fortran 95

95std
Flags PAUSE statement

Flags GAMMA intrinsic

Deleted feature in
Fortran 95

Extension to Fortran 95

extended No errors flagged

Related information
v “-qflag” on page 126
v “-qhalt” on page 140
v “-qsaa” on page 216
v langlvl runtime option in “Setting runtime options” on page 34

-qlibansi
Category

Optimization and tuning

@PROCESS

None.

Purpose

Assumes that all functions with the name of an ANSI C library function are, in
fact, the library functions and not a user function with different semantics.

Syntax

►►
nolibansi

-q libansi ►◄

Chapter 6. Detailed descriptions of the XL Fortran compiler options 171

Defaults

-qnolibansi

Usage

This option will allow the optimizer to generate better code because it will know
about the behavior of a given function, such as whether or not it has any side
effects.

Note: Do not use this option if your application contains your own version of a
library function that is incompatible with the standard one.

Related information

See “-qipa” on page 163.

-qlibmpi
Category

“Optimization and tuning” on page 58

@PROCESS

None

Purpose

Asserts that all functions with Message Passing Interface (MPI) names are in fact
MPI functions and not a user function with different semantics.

Syntax

►►
nolibmpi

-q libmpi ►◄

Defaults

-qnolibmpi

Usage

MPI is a library interface specification for message passing. It addresses the
message-passing parallel programming model in which data is moved from the
address space of one process to another through cooperative operations. For details
about MPI, see the Message Passing Interface Forum.

-qlibmpi allows the compiler to generate better code because it knows about the
behavior of a given function, such as whether or not it has any side effects.

When you use -qlibmpi, the compiler assumes that all functions with the name of
an MPI library function are in fact MPI functions. -qnolibmpi makes no such
assumptions.

172 XL Fortran: Compiler Reference for Little Endian Distributions

http://www.mpi-forum.org

Note: You cannot use this option if your application contains your own version of
the library function that is incompatible with the standard one.

Examples

To compile myprogram.f, enter the following command:
xlf -O5 myprogram.f -qlibmpi

Related information
v Message Passing Interface Forum
v “-qipa” on page 163

-qlinedebug
Category

Error checking and debugging

Purpose

Generates only line number and source file name information for a debugger.

When -qlinedebug is in effect, the compiler produces minimal debugging
information, so the resulting object size is smaller than that produced by the -g
debugging option. You can use the debugger to step through the source code, but
you will not be able to see or query variable information. The traceback table, if
generated, will include line numbers.

-qlinedebug is equivalent to -g1.

Syntax

►►
nolinedebug

-q linedebug ►◄

@PROCESS:

@PROCESS LINEDEBUG | NOLINEDEBUG

Defaults

-qnolinedebug

Usage

When -qlinedebug is in effect, function inlining is disabled.

As with all debugging information, the output of -qlinedebug might be incomplete
or misleading if the code is optimized.

The -g option overrides the -qlinedebug option. If you specify -g with
-qnolinedebug on the command line, -qnolinedebug is ignored and a warning is
issued.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 173

http://www.mpi-forum.org

Related information
v “-g” on page 73
v “-O” on page 83

-qlist
Category

Listings, messages, and compiler information

Purpose

Produces a compiler listing file that includes object and constant area sections.

When -qlist is in effect, a listing file is generated with a .lst suffix for each
source file named on the command line.

Syntax

►►
nolist

-q list
nooffset

= offset

►◄

@PROCESS:

@PROCESS LIST[([NO]OFFSET)] | NOLIST

Defaults

-qnolist

Parameters

offset | nooffset
When -qlist=offset is in effect, the listing will show the offset from the start
of the procedure rather than the offset from the start of code generation. This
suboption allows any program reading the .lst file to add the value of the
PDEF and the line in question, and come up with the same value whether
offset or nooffset is specified.

The offset suboption is relevant only if there are multiple procedures in a
compilation unit. For example, this might occur if nested procedures are used
in a program.

Specifying -qlist with no suboption is equivalent to -qlist=nooffset.

Usage

You can use the object listing to help understand the performance characteristics of
the generated code and to diagnose execution problems.

If you specify -qipa and want to generate the IPA listing file, use the
-qipa=list=filename suboption to get an alternative listing.

The -qnoprint compiler option overrides this option.

174 XL Fortran: Compiler Reference for Little Endian Distributions

Related information
v “Listings, messages, and compiler information” on page 56
v “Object section” on page 298
v “-qnoprint” on page 188
v “-S” on page 272
v Program units and procedures in the XL Fortran Language Reference

-qlistfmt
Category

Listings, messages, and compiler information

@PROCESS

None.

Purpose

Creates a report in XML or HTML format to help you find optimization
opportunities.

Syntax

►►

▼

xml
-q listfmt= html

:

= contentSelectionList
filename= filename
version= version number
stylesheet= filename

►◄

Defaults

This option is off by default. If none of the contentSelectionList suboptions is
specified, all available report information is produced. For example, specifying
-qlistfmt=xml is equivalent to -qlistfmt=xml=all.

Parameters

The following list describes -qlistfmt parameters:

xml | html
Instructs the compiler to generate the report in XML or HTML format. If an
XML report has been generated before, you can convert the report to the
HTML format using the genhtml command. For more information about this
command, see “genhtml command” on page 177.

contentSelectionList
The following suboptions provide a filter to limit the type and quantity of
information in the report:

data | nodata
Produces data reorganization information.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 175

inlines | noinlines
Produces inlining information.

pdf | nopdf
Produces profile-directed feedback information.

transforms | notransforms
Produces loop transformation information.

all
Produces all available report information.

none
Does not produce a report.

filename
Specifies the name of the report file. One file is produced during the compile
phase, and one file is produced during the IPA link phase. If no filename is
specified, a file with the suffix .xml or .html is generated in a way that is
consistent with the rules of name generation for the given platform. For
example, if the foo.f file is compiled, the generated XML files are foo.xml
from the compile step and a.xml from the link step.

Note: If you compile and link in one step and use this suboption to specify a
file name for the report, the information from the IPA link step will overwrite
the information generated during the compile step.

The same will be true if you compile multiple files using the filename
suboption. The compiler creates an report for each file so the report of the last
file compiled will overwrite the previous reports. For example,
xlf -qlistfmt=xml=all:filename=abc.xml -O3 myfile1.f myfile2.f myfile3.f

will result in only one report, abc.xml based on the compilation of the last file
myfile3.f.

stylesheet
Specifies the name of an existing XML stylesheet for which an xml-stylesheet
directive is embedded in the resulting report. The default behavior is to not
include a stylesheet. The stylesheet supplied with XL Fortran is xlstyle.xsl.
This stylesheet renders the XML report to an easily read format when the
report is viewed through a browser that supports XSLT.

To view the XML report created with the stylesheet suboption, you must
place the actual stylesheet (xlstyle.xsl) and the XML message catalog
(XMLMessages-locale.xml where locale refers to the locale set on the compilation
machine) in the path specified by the stylesheet suboption. The stylesheet and
message catalog are installed in the /opt/ibm/xlf/15.1.3/listings/ directory.

For example, if a.xml is generated with stylesheet=xlstyle.xsl, both
xlstyle.xsl and XMLMessages-locale.xml must be in the same directory as
a.xml, before you can properly view a.xml with a browser.

version
Specifies the major version of the content that will be generated. If you have
written a tool that requires a certain version of this report, you must specify
the version.

For example, IBM XL Fortran for Linux, V15.1.3 creates reports at XML v1.1. If
you have written a tool to consume these reports, specify version=v1.

176 XL Fortran: Compiler Reference for Little Endian Distributions

Usage

The information produced in the report by the -qlistfmt option depends on which
optimization options are used to compiler the program.
v When you specify both -qlistfmt and an option that enables inlining such as

-qinline, the report shows which functions were inlined and why others were
not inlined.

v When you specify both -qlistfmt and an option that enables loop unrolling, the
report contains a summary of how program loops are optimized. The report also
includes diagnostic information about why specific loops cannot be vectorized.
To make -qlistfmt generate information about loop transformations, you must
also specify at least one of the following options:
– -qhot

– -qsmp

– -O3 or higher
v When you specify both -qlistfmt and an option that enables parallel

transformations, the report contains information about parallel transformations.
For -qlistfmt to generate information about parallel transformations or parallel
performance messages, you must also specify at least one of the following
options:
– -qsmp

– -O5

– -qipa=level=2

v When you specify both -qlistfmt and -qpdf, which enables profiling, the report
contains information about call and block counts and cache misses.

v When you specify both -qlistfmt and an option that produces data
reorganizations such as -qipa=level=2, the report contains information about
those reorganizations.

Examples

If you want to compile myprogram.f to produce an XML report that shows how
loops are optimized, enter:
xlf -qhot -O3 -qlistfmt=xml=transforms myprogram.f

If you want to compile myprogram.f to produce an XML report that shows which
functions are inlined, enter:
xlf -qinline -qlistfmt=xml=inlines myprogram.f

genhtml command

To view the HTML version of an XML report that has already been generated, you
can use the genhtml tool.

Use the following command to view the existing XML report in HTML format.
This command generates the HTML content to standard output.
genhtml xml_file

Use the following command to generate the HTML content into a defined HTML
file. You can use a web browser to view the generated HTML file.
genhtml xml_file > target_html_file

Chapter 6. Detailed descriptions of the XL Fortran compiler options 177

Note: The suffix of the HTML file name must be compliant with the static HTML
page standard, for example, .html or .htm. Otherwise, the web browser might not
be able to open the file.

Related information
v “-qreport” on page 214
v "Using compiler reports to diagnose optimization opportunities" in the XL

Fortran Optimization and Programming Guide

-qlistopt
Category

Listings, messages, and compiler information

Purpose

Produces a compiler listing file that includes all options in effect at the time of
compiler invocation.

When listopt is in effect, a listing file is generated with a .lst suffix for each
source file named on the command line. The listing shows options in effect as set
by the compiler defaults, the configuration file, and command line settings.

Syntax

►►
nolistopt

-q listopt ►◄

@PROCESS:

@PROCESS LISTOPT | NOLISTOPT

Defaults

-qnolistopt

Usage

You can use the option listing during debugging to check whether a problem
occurs under a particular combination of compiler options, or during performance
testing to record the optimization options in effect for a particular compilation.

Options that are always displayed in the listing include:
v All “on/off” options that are on by default: for example, -qobject
v All “on/off” options that are explicitly turned off through the configuration file,

command-line options, or @PROCESS directives
v All options that take arbitrary numeric arguments (typically sizes)
v All options that have multiple suboptions

The -qnoprint compiler option overrides this option.

Related information
v “Listings, messages, and compiler information” on page 56
v “Options section” on page 293

178 XL Fortran: Compiler Reference for Little Endian Distributions

-qlog4
Category

Portability and migration

Purpose

Specifies whether the result of a logical operation with logical operands is a
LOGICAL(4) or is a LOGICAL with the maximum length of the operands.

You can use this option to port code that was originally written for the IBM VS
FORTRAN compiler.

Syntax

►►
nolog4

-q log4 ►◄

@PROCESS:

@PROCESS LOG4 | NOLOG4

Defaults

-qnolog4, which makes the result depend on the lengths of the operands.

Usage

Specifying -qlog4 makes the result a LOGICAL(4).

If you use -qintsize to change the default size of logicals, -qlog4 is ignored.

-qmakedep
Category

Output control

@PROCESS

None.

Purpose

Produces a dependency output file containing targets suitable for inclusion in a
description file for the make command.

The dependency output file is named with a .d suffix.

-qmakedep is the long form of -MMD.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 179

Syntax

►► -q makedep
= gcc

►◄

Defaults

Not applicable.

Parameters

gcc
The format of the generated make rule to match the GCC format: the
dependency output file includes a single target that lists all of the source file's
dependencies.

If you specify -qmakedep with no suboption, the dependency output file specifies
a separate rule for each of the source file's dependencies.

Usage

The make command uses dependency information to determine the compilation
order of the files. The make command also uses the dependency information to
determine the minimum set of files that must be recompiled when a file is
changed.

XL Fortran recognizes the following types of source file dependencies:
v Dependencies on the files that are included through C preprocessor #include

directives.
v Dependencies on the files that are included through the Fortran INCLUDE

directive.
v Dependencies on the module symbol files in the files that use or extend one or

more Fortran modules.
v F2008 Dependencies on the submodule symbol files in the files that extend

one or more Fortran submodules. F2008

For each source file that is named on the command line, a dependency output file
is generated with the same name as the object file but with a .d suffix. Dependency
output files are not created for any other types of input files. If you use the -o
option to rename the object file, the name of the dependency output file is based
on the name specified in the -o option. For more information, see the Examples
section.

The dependency output files generated by these options are not make description
files; they must be linked before they can be used with the make command. For
more information about this command, see your operating system documentation.

If the -qfullpath option is also specified, the absolute path names of the source
and include files are recorded in the dependency output file.

You can also use -qmakedep with the following options:

180 XL Fortran: Compiler Reference for Little Endian Distributions

-MF file_path
Sets the name of the dependency output file, where file_path is the full or
partial path or file name for the dependency output file. For more information,
see “-MF” on page 79.

-MT target
Specifies the target name of the object file in the make rule in the generated
dependency file. For more information, see “-MT” on page 81.

Examples

Example 1: To compile mysource.f and create a dependency output file named
mysource.d, enter:
xlf -c -qmakedep mysource.f

Example 2: To compile source.f and create an object file named object.o and a
dependency output file named object.d, enter:
xlf -c -qmakedep source.f -o object.o

Example 3: If you have the following files in the current working directory:
v options.h

v constants.h

v n.F

v m.f

The options.h file contains following code:
@PROCESS free(f90)

The constants.h file contains following code:
real(4), parameter :: pi = 3.14

The n.F file contains following code:
#include "options.h"
module n
contains

subroutine my_print(x)
real, value :: x
print *, x

end subroutine
end module

The m.f file contains following code:
#include "options.h"
module m

use n
contains

subroutine sub
implicit none
include ’constants.h’
call my_print(pi)

end subroutine
end module

To compile n.F and create a dependency output file named n.d in the
./dependencies directory, enter:
xlf -c n.F -qmakedep -MF./dependencies -o n_obj.o

Chapter 6. Detailed descriptions of the XL Fortran compiler options 181

To compile m.f and create a dependency output file named m.d in the
./dependencies directory, and also to include path information
/home/user/sample/ as part of the target name of the object file in the m.d file,
enter:
xlf -c m.F -qmakedep -MF./dependencies -MT ’/home/user/sample/m.o’

The generated n.d file is as follows:
n_obj.o n.mod: options.h
n_obj.o n.mod: n.F

The generated m.d file is as follows:
/home/user/sample/m.o m.mod: n.mod
/home/user/sample/m.o m.mod: option.h
/home/user/sample/m.o m.mod: m.f
/home/user/sample/m.o m.mod: constants.h

Related information
v “-qfullpath” on page 135
v “-MF” on page 79
v “-MT” on page 81
v “-o” on page 85

-qmaxerr
Category

Error checking and debugging

@PROCESS
@PROCESS MAXERR(number, severity) | NOMAXERR

Purpose

Stops compilation when the number of error messages of a specified severity level
or higher reaches a specified number.

Syntax

►►
nomaxerr

-q maxerr = number
s

: i
l
w
e

►◄

Defaults

-qnomaxerr

Parameters

number
It specifies the maximum number of messages the compiler generates
before it stops. number must be an integer with a value of 1 or greater.

182 XL Fortran: Compiler Reference for Little Endian Distributions

The severity levels (from lowest to highest) are listed as follows. See “Error
severity” on page 285 for more information about these levels.

i Informational messages.

l Language-level messages, such as those produced under the -qlanglvl
option.

w Warning messages.

e Error messages.

s Severe error messages.

Usage

If the -qmaxerr option does not specify the severity level, it uses the severity that is
in effect by the -qhalt option; otherwise, the severity level is specified by either
-qmaxerr or -qhalt that appears last.

When -qflag is specified, -qmaxerr counts the messages that are allowed by the
-qflag option.

When -qsuppress is specified, -qmaxerr does not count the messages that are
censored by the -qsuppress option.

Examples

To stop compilation of myprogram.f when 5 error messages are encountered, enter
the following command:
xlf myprogram.f -qmaxerr=5:e

To stop compilation of myprogram.f when 5 severe errors are encountered, enter the
following command:
xlf myprogram.f -qmaxerr=5

To stop compilation of myprogram.f when 5 language level messages are
encountered, enter the following command:
xlf myprogram.f -qmaxerr=5:l

or:
xlf myprogram.f -qmaxerr=5 -qhalt=l

Related information
v “-qflag” on page 126
v “-qhalt” on page 140
v “-qsuppress” on page 243
v “Error severity” on page 285

-qmaxmem
Category

Optimization and tuning

Chapter 6. Detailed descriptions of the XL Fortran compiler options 183

Purpose

Limits the amount of memory that the compiler allocates while performing
specific, memory-intensive optimizations to the specified number of kilobytes.

Syntax

►► -q maxmem = Kbytes ►◄

@PROCESS:

@PROCESS MAXMEM(Kbytes)

Defaults
v maxmem=8192 when -O2 is in effect.
v maxmem=-1 when -O3 or higher optimization is in effect.

Parameters

Kbytes
The number of kilobytes worth of memory to be used by optimizations. The
limit is the amount of memory for specific optimizations, and not for the
compiler as a whole. Tables required during the entire compilation process are
not affected by or included in this limit.

A value of -1 permits each optimization to take as much memory as it needs
without checking for limits.

Usage

If the specified amount of memory is insufficient for the compiler to compute a
particular optimization, the compiler issues a message and reduces the degree of
optimization.

This option has no effect except in combination with the -O option.

When compiling with -O2, you only need to increase the limit if a compile-time
message instructs you to do so. When compiling with -O3, you might need to
establish a limit if compilation stops because the machine runs out of storage; start
with a value of 8192 or higher, and decrease it if the compilation continues to
require too much storage.

Notes:
1. Reduced optimization does not necessarily mean that the resulting program

will be slower. It only means that the compiler cannot finish looking for
opportunities to improve performance.

2. Increasing the limit does not necessarily mean that the resulting program will
be faster. It only means that the compiler is better able to find opportunities to
improve performance if they exist.

3. Setting a large limit has no negative effect when compiling source files for
which the compiler does not need to use so much memory during
optimization.

4. As an alternative to raising the memory limit, you can sometimes move the
most complicated calculations into procedures that are then small enough to be
fully analyzed.

5. Not all memory-intensive compilation stages can be limited.

184 XL Fortran: Compiler Reference for Little Endian Distributions

6. Only the optimizations done for -O2 and -O3 can be limited; -O4 and -O5
optimizations cannot be limited.

7. The -O4 and -O5 optimizations may also use a file in the /tmp directory. This is
not limited by the -qmaxmem setting.

8. Some optimizations back off automatically before they exceed the maximum
available address space, but not before they exceed the paging space available
at that time, which depends on machine workload.

Restrictions

Depending on the source file being compiled, the size of subprograms in the
source code, the machine configuration, and the workload on the system, setting
the limit too high might fill up the paging space. In particular, a value of -1 can fill
up the storage of even a well-equipped machine.

Related information
v “-O” on page 83
v Optimizing your applications in the XL Fortran Optimization and Programming Guide

-qmbcs
Category

Language element control

Purpose

Indicates to the compiler whether character literal constants, Hollerith constants, H
edit descriptors, and character string edit descriptors can contain Multibyte
Character Set (MBCS) or Unicode characters.

This option is intended for applications that must deal with data in a multibyte
language, such as Japanese.

Syntax

►►
nombcs

-q mbcs ►◄

@PROCESS:

@PROCESS MBCS | NOMBCS

Defaults

-qnombcs

Usage

Each byte of a multibyte character is counted as a column.

To process the multibyte data correctly at run time, set the locale (through the
LANG environment variable or a call to the libc setlocale routine) to the same
value as during compilation.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 185

To read or write Unicode data, set the locale value to UNIVERSAL at run time. If
you do not set the locale, you might not be able to interchange data with
Unicode-enabled applications.

-qmixed
Category

Input control

Purpose

This is the long form of the “-U” on page 274 option.

Syntax

►►
nomixed

-q mixed ►◄

@PROCESS:

@PROCESS MIXED | NOMIXED

Defaults

-qnomixed

-qmkshrobj
Category

Output control

@PROCESS

None.

Purpose

Creates a shared object from generated object files.

Use this option, together with the related options described later in this topic,
instead of calling the linker directly to create a shared object. The advantage of
using this option is that it is compatible with -qipa link-time optimizations (such
as those performed at -O5).

Syntax

►► -q mkshrobj ►◄

Defaults

By default, the output object is linked with the runtime libraries and startup
routines to create an executable file.

186 XL Fortran: Compiler Reference for Little Endian Distributions

Usage

The compiler automatically exports all global symbols from the shared object
unless you specify which symbols to export by using the --version-script linker
option. IBM Symbols that have the hidden or internal visibility attribute are
not exported. IBM

Specifying -qmkshrobj implies -qpic.

You can also use the following related options with -qmkshrobj:

-o shared_file
The name of the file that holds the shared file information. The default is a.out.

-e name
Sets the entry name for the shared executable to name.

-qstaticlink=xllibs
When you specify -qstaticlink=xllibs and -qmkshrobj, both options take
effect. The compiler creates a shared object in which all references to the XL
libraries are statically linked in.

For detailed information about using -qmkshrobj to create shared libraries, see
“Compiling and linking a library” on page 21.

Examples

To construct the shared library big_lib.so from three smaller object files, enter the
following command:
xlf -qmkshrobj -o big_lib.so lib_a.o lib_b.o lib_c.o

Related information
v “-e” on page 70
v “-qipa” on page 163
v “-o” on page 85
v “-qpic” on page 203

-qmoddir
Category

Output control

@PROCESS

None.

Purpose

Specifies the location for any module (.mod) or F2008 submodule F2008

(.smod)

files that the compiler writes.

Syntax

►► -q moddir = directory ►◄

Chapter 6. Detailed descriptions of the XL Fortran compiler options 187

Defaults

Not applicable.

Usage

If you do not specify -qmoddir, the .mod or .smod files are placed in the current
directory.

To read the .mod or .smod files from this directory when compiling files that
reference the modules or F2008 submodules F2008 , use the -I option.

Related information
v “XL Fortran output files” on page 24
v “-I” on page 76
v Modules in the XL Fortran Language Reference
v F2008 Submodules in the XL Fortran Language Reference F2008

-qnoprint
Category

Listings, messages, and compiler information

@PROCESS

None.

Purpose

Prevents the compiler from creating the listing file, regardless of the settings of
other listing options.

Syntax

►► -q noprint ►◄

Defaults

Not applicable.

Usage

Specifying -qnoprint on the command line enables you to put other listing options
in a configuration file or on @PROCESS directives and still prevent the listing file
from being created.

A listing file is usually created when you specify any of the following options:
-qattr, -qlist, -qlistopt, -qphsinfo, -qsource, -qreport, or -qxref. -qnoprint
prevents the listing file from being created by changing its name to /dev/null, a
device that discards any data that is written to it.

Related information
v “Listings, messages, and compiler information” on page 56

188 XL Fortran: Compiler Reference for Little Endian Distributions

-qnullterm
Category

Language element control

Purpose

Appends a null character to each character constant expression that is passed as a
dummy argument, making it more convenient to pass strings to C functions.

This option allows you to pass strings to C functions without having to add a null
character to each string argument.

Syntax

►►
nonullterm

-q nullterm ►◄

@PROCESS:

@PROCESS NULLTERM | NONULLTERM

Defaults

-qnonullterm

Usage

This option affects arguments that are composed of any of the following objects:
v Basic character constants
v Concatenations of multiple character constants
v Named constants of type character
v Hollerith constants
v Binary, octal, or hexadecimal typeless constants when an interface block is

available
v Any character expression composed entirely of these objects.

The result values from the CHAR and ACHAR intrinsic functions also have a null
character added to them if the arguments to the intrinsic function are constant
expressions.

Rules

This option does not change the length of the dummy argument, which is defined
by the additional length argument that is passed as part of the XL Fortran calling
convention.

Restrictions

This option affects those arguments that are passed with or without the %REF
built-in function, but it does not affect those that are passed by value. This option
does not affect character expressions in input and output statements.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 189

Examples

Here are two calls to the same C function; one with, and one without the option:
@PROCESS NONULLTERM
SUBROUTINE CALL_C_1
CHARACTER*9, PARAMETER :: HOME = "/home/luc"

! Call the libc routine mkdir() to create some directories.
CALL mkdir ("/home/luc/testfiles\0", %val(448))

! Call the libc routine unlink() to remove a file in the home directory.
CALL unlink (HOME // "/.hushlogin" // CHAR(0))

END SUBROUTINE

@PROCESS NULLTERM
SUBROUTINE CALL_C_2
CHARACTER*9, PARAMETER :: HOME = "/home/luc"

! With the option, there is no need to worry about the trailing null
! for each string argument.

CALL mkdir ("/home/luc/testfiles", %val(448))
CALL unlink (HOME // "/.hushlogin")

END SUBROUTINE
!

Related information

See Passing character types between languages in the XL Fortran Optimization and
Programming Guide.

-qobject
Category

Error checking and debugging

Purpose

Specifies whether to produce an object file or to stop immediately after checking
the syntax of the source files.

Syntax

►►
OBJect

-q NOOBJect ►◄

@PROCESS:

@PROCESS OBJect | NOOBJect

Defaults

-qobject

Usage

When debugging a large program that takes a long time to compile, you might
want to use the -qnoobject option. It allows you to quickly check the syntax of a
program without incurring the overhead of code generation. The .lst file is still
produced, so you can get diagnostic information to begin debugging.

190 XL Fortran: Compiler Reference for Little Endian Distributions

After fixing any program errors, you can change back to the default (-qobject) to
test whether the program works correctly. If it does not work correctly, compile
with the -g option for interactive debugging.

The -qhalt option can override the -qobject option, and -qnoobject can override
-qhalt.

Related information
v “Listings, messages, and compiler information” on page 56
v “Object section” on page 298
v The compiler phases in the Getting Started with XL Fortran.
v “-qhalt” on page 140

-qonetrip
Category

Language element control

Purpose

This is the long form of the -1 option.

Syntax

►►
noonetrip

-q onetrip ►◄

@PROCESS:

@PROCESS ONETRIP | NOONETRIP

Defaults

-qnoonetrip

-qoptfile
Category

Compiler customization

@PROCESS directive

None.

Purpose

Specifies a response file that contains a list of additional command line options to
be used for the compilation. Response files typically have the .rsp suffix.

Syntax

►► -q optfile = filename ►◄

Chapter 6. Detailed descriptions of the XL Fortran compiler options 191

Defaults

None.

Parameters

filename
Specifies the name of the response file that contains a list of additional
command line options. filename can contain a relative path or absolute path, or
it can contain no path. It is a plain text file with one or more command line
options per line.

Usage

The format of the response file follows these rules:
v Specify the options you want to include in the file with the same syntax as on

the command line. The response file is a whitespace-separated list of options.
The following special characters indicate whitespace: \n, \v, \t. (All of these
characters have the same effect.)

v A character string between a pair of single or double quotation marks are passed
to the compiler as one option.

v You can include comments in the response file. Comment lines start with the #
character and continue to the end of the line. The compiler ignores comments
and empty lines.

When processed, the compiler removes the -qoptfile option from the command
line, and sequentially inserts the options included in the file before the other
subsequent options that you specify.

The -qoptfile option is also valid within a response file. The files that contain
another response file are processed in a depth-first manner. The compiler avoids
infinite loops by detecting and ignoring cycles in response file inclusion.

If -qoptfile and -qsaveopt are specified on the same command line, the original
command line is used for -qsaveopt. A new line for each response file is included
representing the contents of each response file. The options contained in the file are
saved to the compiled object file.

Example 1

This is an example of specifying a response file.
$ cat options.file
To perform optimization at -O3 level, and high-order
loop analysis and transformations during optimization
-O3 -qhot
To indicate that the input source program is in fixed source form
-qfixed

$ xlf95 -qlist -qoptfile=options.file -qipa test.f

The preceding example is equivalent to the following invocation:
$ xlf95 -qlist -O3 -qhot -qfixed -qipa test.f

Example 2

This is an example of specifying a response file that contains -qoptfile with a
cycle.

192 XL Fortran: Compiler Reference for Little Endian Distributions

$ cat options.file1
To perform optimization at -O3 level, and high-order
loop analysis and transformations during optimization
-O3 -qhot
To include the -qoptfile option in the same response file
-qoptfile=options.file1
To indicate that the input source program is in fixed source form
-qfixed
To indicate that the source code is in free source form
-qfree

$ xlf95 -qlist -qoptfile=options.file1 -qipa test.f

The preceding example is equivalent to the following invocation:
$ xlf95 -qlist -O3 -qhot -qfixed -qfree -qipa test.f

Example 3

This is an example of specifying a response file that contains -qoptfile without a
cycle.
$ cat options.file1
-O3 -qhot
-qoptfile=options.file2

$ cat options.file2
-qfixed

$ xlf95 -qoptfile=options.file1 test.f

The preceding example is equivalent to the following invocation:
$ xlf95 -O3 -qhot -qfixed test.f

Example 4

This is an example of specifying -qsaveopt and -qoptfile on the same command
line.
$ cat options.file3
-O3
-qassert=contiguous

$ xlf95 -qsaveopt -qipa -qoptfile=options.file3 test.f -c

$ what test.o
test.o:
opt f xlf95 -qsaveopt -qipa -qoptfile=options.file3 test.f -c
optfile options.file3 -O3 -qassert=contiguous

Related information
v “-qsaveopt” on page 219

-qoptimize
Purpose

This is the long form of the -O option.

Syntax

Chapter 6. Detailed descriptions of the XL Fortran compiler options 193

►►
NOOPTimize

-q OPTimize = level ►◄

@PROCESS:

@PROCESS OPTimize[(level)] | NOOPTimize

Defaults

-qnooptimize

-qpath
Category

Compiler customization

Purpose

Specifies substitute path names for XL Fortran components such as the assembler,
C preprocessor, and linker.

You can use this option if you want to keep multiple levels of some or all of the
XL Fortran components and have the option of specifying which one you want to
use.

Syntax

►► ▼-q path = a : directory_path
b
c
d
F
h
I
l
z

►◄

Defaults

By default, the compiler uses the paths for compiler components defined in the
configuration file.

Parameters

directory_path
The path to the directory where the complier components are located.It must
be an existing directory. It can be relative or absolute.

The following table shows the correspondence between -qpath parameters and the
component names:

Parameter Description Component name

a The assembler as

194 XL Fortran: Compiler Reference for Little Endian Distributions

Parameter Description Component name

b The low-level optimizer xlfcode

c The compiler front end xlfentry

d The disassembler dis

F The C preprocessor cpp

h The array language
optimizer

xlfhot

I (uppercase i) The high-level optimizer,
compile step

ipa

l (lowercase L) The linker ld

z The binder bolt

Usage

The -qpath option overrides the -F, -t, and -B options.

Examples

To compile myprogram.f using a substitute compiler front end and linker from
/fix/FE/ and the remaining compiler components from default locations, enter the
command:
xlf myprogram.f -qpath=cl:/fix/FE

To compile myprogram.f using a substitute compiler front end from /fix/FE, a
substitute linker from the current directory, and the remaining compiler
components from default locations, enter the command:
xlf95 myprogram.f -qpath=c:/fix/FE -qpath=l:.

Related information
v “-B” on page 67
v “-t” on page 272

-qpdf1, -qpdf2
Category

Optimization and tuning

@PROCESS

None.

Purpose

Tunes optimizations through profile-directed feedback (PDF), where results from
sample program execution are used to improve optimization near conditional
branches and in frequently executed code sections.

Optimizes an application for a typical usage scenario based on an analysis of how
often branches are taken and blocks of code are run.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 195

Syntax

►►

nopdf2
nopdf1

-q pdf1
= pdfname = file_path
= unique
= nounique
= exename
= defname
= level = 0

1
2

pdf2
= pdfname = file_path
= exename
= defname

►◄

Defaults

-qnopdf1, -qnopdf2

Parameters

defname
Reverts a PDF file to its default file name if the -qpdf1=exename option is also
specified.

exename
Specifies the name of the generated PDF file according to the output file name
specified by the -o option. For example, you can use -qpdf1=exename -o func
func.f to generate a PDF file called .func_pdf.

level=0 | 1 | 2
Specifies different levels of profiling information to be generated by the
resulting application. The following table shows the type of profiling
information supported on each level. The plus sign (+) indicates that the
profiling type is supported.

Table 18. Profiling type supported on each -qpdf1 level

Profiling type

Level

0 1 2

Block-counter profiling + + +

Call-counter profiling + + +

Value profiling + +

Cache-miss profiling +

-qpdf1=level=1 is the default level. It is equivalent to -qpdf1. Higher PDF
levels profile more optimization opportunities but have a larger overhead.

Notes:
v Only one application compiled with the -qpdf1=level=2 option can be run at

a time on a particular processor.
v Cache-miss profiling information has several levels. If you want to gather

different levels of cache-miss profiling information, set the PDF_PM_EVENT
environment variable to L1MISS, L2MISS, or L3MISS (if applicable)

196 XL Fortran: Compiler Reference for Little Endian Distributions

accordingly. Only one level of cache-miss profiling information can be
instrumented at a time. L2 cache-miss profiling is the default level.

v If you want to bind your application to a specified processor for cache-miss
profiling, set the PDF_BIND_PROCESSOR environment variable equal to the
processor number.

pdfname= file_path
Specifies the directories and names for the PDF files and any existing PDF map
files. By default, if the PDFDIR environment variable is set, the compiler places
the PDF and PDF map files in the directory specified by PDFDIR. Otherwise, if
the PDFDIR environment variable is not set, the compiler places these files in
the current working directory. If the PDFDIR environment variable is set but
the specified directory does not exist, the compiler issues a warning message.
The name of the PDF map file follows the name of the PDF file if the
-qpdf1=unique option is not specified. For example, if you specify the
-qpdf1=pdfname=/home/joe/func option, the generated PDF file is called func,
and the PDF map file is called func_map. Both of the files are placed in the
/home/joe directory. You can use the pdfname suboption to do simultaneous
runs of multiple executable applications using the same directory. This is
especially useful when you are tuning dynamic libraries with PDF.

unique | nounique
You can use the -qpdf1=unique option to avoid locking a single PDF file when
multiple processes are writing to the same PDF file in the PDF training step.
This option specifies whether a unique PDF file is created for each process
during run time. The PDF file name is <pdf_file_name>.<pid>.
<pdf_file_name> is ._pdf by default or specified by other -qpdf1 suboptions,
which include pdfname, exename, and defname. <pid> is the ID of the running
process in the PDF training step. For example, if you specify the
-qpdf1=unique:pdfname=abc option, and there are two processes for PDF
training with the IDs 12345678 and 87654321, two PDF files abc.12345678 and
abc.87654321 are generated.

Note: When -qpdf1=unique is specified, multiple PDF files with process IDs as
suffixes are generated. You must use the mergepdf program to merge all these
PDF files into one after the PDF training step.

Usage

The PDF process consists of the following three steps:
1. Compile your program with the -qpdf1 option and a minimum optimization

level of -O2. By default, a PDF map file named ._pdf_map and a resulting
application are generated.

2. Run the resulting application with a typical data set. Profiling information is
written to a PDF file named ._pdf by default. This step is called the PDF
training step.

3. Recompile and link or just relink the program with the -qpdf2 option and the
optimization level used with the -qpdf1 option. The -qpdf2 process fine-tunes
the optimizations according to the profiling information collected when the
resulting application is run.

Notes:

v The showpdf utility uses the PDF map file to display part of the profiling
information in text or XML format. For details, see "Viewing profiling
information with showpdf" in the XL Fortran Optimization and Programming
Guide. If you do not need to view the profiling information, specify the

Chapter 6. Detailed descriptions of the XL Fortran compiler options 197

-qnoshowpdf option during the -qpdf1 phase so that the PDF map file is not
generated. For details of -qnoshowpdf, see -qshowpdf in the XL Fortran Compiler
Reference.

v When option -O4, -O5, or any level of option -qipa is in effect, and you specify
the -qpdf1 or -qpdf2 option at the link step but not at the compile step, the
compiler issues a warning message. The message indicates that you must
recompile your program to get all the profiling information.

v When the -qpdf1=pdfname option is used during the -qpdf1 phase, you must use
the -qpdf2=pdfname option during the -qpdf2 phase for the compiler to recognize
the correct PDF file. This rule also applies to the -qpdf[1|2]=exename option.

The compiler issues an information message with a number in the range of 0 - 100
during the -qpdf2 phase. If you have not changed your program between the
-qpdf1 and -qpdf2 phases, the number is 100, which means that all the profiling
information can be used to optimize the program. If the number is 0, it means that
the profiling information is completely outdated, and the compiler cannot take
advantage of any information. When the number is less than 100, you can choose
to recompile your program with the -qpdf1 option and regenerate the profiling
information.

If you recompile your program by using the -qpdf1 option with any suboption, the
compiler removes the existing PDF file or files whose names and locations are the
same as the file or files that will be created in the training step before generating a
new application.

Other related options

You can use the following option with the -qpdf1 option:

-qprefetch
When you run the -qprefetch=assistthread option to generate data
prefetching assist threads, the compiler uses the delinquent load information to
perform analysis and generate them. The delinquent load information can be
gathered from dynamic profiling using the -qpdf1=level=2 option. For more
information, see -qprefetch.

-qshowpdf
Uses the showpdf utility to view the PDF data that were collected. See
“-qshowpdf ” on page 221 for more information.

For recommended procedures of using PDF, see "Profile-directed feedback" in the
XL Fortran Optimization and Programming Guide.

The following utility programs, found in /opt/ibm/xlf/15.1.3/bin/, are available
for managing the files to which profiling information is written:

cleanpdf

►► cleanpdf
pdfdir -u -f pdfname

►◄

Removes all PDF files or the specified PDF files, including PDF files with
process ID suffixes. Removing profiling information reduces runtime
overhead if you change the program and then go through the PDF process
again.

pdfdir Specifies the directory that contains the PDF files to be removed. If

198 XL Fortran: Compiler Reference for Little Endian Distributions

pdfdir is not specified, the directory is set by the PDFDIR
environment variable; if PDFDIR is not set, the directory is the
current directory.

-f pdfname
Specifies the name of the PDF file to be removed. If -f pdfname is
not specified, ._pdf is removed.

-u If -f pdfname is specified, in addition to the file removed by -f,
files with the naming convention pdfname.<pid>, if applicable, are
also removed.

If -f pdfname is not specified, removes ._pdf. Files with the
naming convention ._pdf.<pid>, if applicable, are also removed.

<pid> is the ID of the running process in the PDF training step.

Run cleanpdf only when you finish the PDF process for a particular
application. Otherwise, if you want to resume by using PDF process with
that application, you must compile all of the files again with -qpdf1.

mergepdf

►► ▼mergepdf input -o output
-r scaling -n -v

►◄

Merges two or more PDF files into a single PDF file.

-r scaling
Specifies the scaling ratio for the PDF file. This value must be
greater than zero and can be either an integer or a floating-point
value. If not specified, a ratio of 1.0 is assumed.

input Specifies the name of a PDF input file, or a directory that contains
PDF files.

-o output
Specifies the name of the PDF output file, or a directory to which
the merged output is written.

-n Specifies that PDF files do not get normalized. By default,
mergepdf normalizes the files in such a way that every profile has
the same overall weighting, and individual counters are scaled
accordingly. This is done before applying the user-specified ratio
(with -r). When -n is specified, no normalization occurs. If neither
-n nor -r is specified, the PDF files are not scaled at all.

-v Specifies verbose mode, and causes internal and user-specified
scaling ratios to be displayed to standard output.

showpdf

Displays part of the profiling information written to PDF and PDF map
files. To use this command, you must first compile your program with the
-qpdf1 option. See "Viewing profiling information with showpdf" in the XL
Fortran Optimization and Programming Guide for more information.

Predefined macros

None.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 199

Examples

The following example uses the -qpdf1=level=0 option to reduce possible runtime
instrumentation overhead:
#Compile all the files with -qpdf1=level=0
xlf -qpdf1=level=0 -O3 file1.f file2.f file3.f

#Run with one set of input data
./a.out < sample.data

#Recompile all the files with -qpdf2
xlf -qpdf2 -O3 file1.f file2.f file3.f

#If the sample data is typical, the program
#can now run faster than without the PDF process

The following example uses the -qpdf1=level=1 option:
#Compile all the files with -qpdf1
xlf -qpdf1 -O3 file1.f file2.f file3.f

#Run with one set of input data
./a.out < sample.data

#Recompile all the files with -qpdf2
xlf -qpdf2 -O3 file1.f file2.f file3.f

#If the sample data is typical, the program
#can now run faster than without the PDF process

The following example uses the -qpdf1=level=2 option to gather cache-miss
profiling information:
#Compile all the files with -qpdf1=level=2
xlf -qpdf1=level=2 -O3 file1.f file2.f file3.f

#Set PM_EVENT=L2MISS to gather L2 cache-miss profiling
#information
export PDF_PM_EVENT=L2MISS

#Run with one set of input data
./a.out < sample.data

#Recompile all the files with -qpdf2
xlf -qpdf2 -O3 file1.f file2.f file3.f

#If the sample data is typical, the program
#can now run faster than without the PDF process

The following example demonstrates the use of the PDF_BIND_PROCESSOR
environment variable:
#Compile all the files with -qpdf1=level=1
xlf -qpdf1=level=1 -O3 file1.f file2.f file3.

#Set PDF_BIND_PROCESSOR environment variable so that
#all processes for this executable are run on Processor 1
export PDF_BIND_PROCESSOR=1

#Run executable with sample input data
./a.out < sample.data

#Recompile all the files with -qpdf2
xlf -qpdf2 -O3 file1.f file2.f file3.f

200 XL Fortran: Compiler Reference for Little Endian Distributions

#If the sample data is typical, the program
#can now run faster than without the PDF process

The following example demonstrates the use of the -qpdf[1|2]=exename option:
#Compile all the files with -qpdf1=exename
xlf -qpdf1=exename -O3 -o final file1.f file2.f file3.f

#Run executable with sample input data
./final < typical.data

#List the content of the directory
>ls -lrta

-rw-r--r-- 1 user staff 50 Dec 05 13:18 file1.f
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file2.f
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file3.f
-rwxr-xr-x 1 user staff 12243 Dec 05 17:00 final
-rwxr-Sr-- 1 user staff 762 Dec 05 17:03 .final_pdf

#Recompile all the files with -qpdf2=exename
xlf -qpdf2=exename -O3 -o final file1.f file2.f file3.f

#The program is now optimized using PDF information

The following example demonstrates the use of the -qpdf[1|2]=pdfname option:
#Compile all the files with -qpdf1=pdfname. The static profiling
#information is recorded in a file named final_map
xlf -qpdf1=pdfname=final -O3 file1.f file2.f file3.f

#Run executable with sample input data. The profiling
#information is recorded in a file named final
./a.out < typical.data

#List the content of the directory
>ls -lrta

-rw-r--r-- 1 user staff 50 Dec 05 13:18 file1.f
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file2.f
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file3.f
-rwxr-xr-x 1 user staff 12243 Dec 05 18:30 a.out
-rwxr-Sr-- 1 user staff 762 Dec 05 18:32 final

#Recompile all the files with -qpdf2=pdfname
xlf -qpdf2=pdfname=final -O3 file1.f file2.f file3.f

#The program is now optimized using PDF information

Related information
v “-qshowpdf ” on page 221
v “-qipa” on page 163
v -qprefetch
v “-qreport” on page 214
v “XL Fortran input files” on page 23
v “XL Fortran output files” on page 24
v "Profile-directed feedback" in the XL Fortran Optimization and Programming Guide
v Correct settings for environment variables

Chapter 6. Detailed descriptions of the XL Fortran compiler options 201

-qphsinfo
Category

Listings, messages, and compiler information

Purpose

Reports the time taken in each compilation phase to standard output.

Syntax

►►
nophsinfo

-q phsinfo ►◄

@PROCESS:

@PROCESS PHSINFO | NOPHSINFO

Defaults

-qnophsinfo

Usage

The output takes the form number1/number2 for each phase where number1
represents the CPU time used by the compiler and number2 represents the total of
the compile time and the time that the CPU spends handling system calls.

The time reported by -qphsinfo is in seconds.

Examples

To compile app.f, which consists of 3 compilation units, and report the time taken
for each phase of the compilation, enter:
xlf90 app.f -qphsinfo

The output looks similar to:
FORTRAN phase 1 ftphas1 TIME = 0.000 / 0.000
** m_module === End of Compilation 1 ===
FORTRAN phase 1 ftphas1 TIME = 0.000 / 0.000
** testassign === End of Compilation 2 ===
FORTRAN phase 1 ftphas1 TIME = 0.000 / 0.010
** dataassign === End of Compilation 3 ===
HOT - Phase Ends; 0.000/ 0.000
HOT - Phase Ends; 0.000/ 0.000
HOT - Phase Ends; 0.000/ 0.000
W-TRANS - Phase Ends; 0.000/ 0.010
OPTIMIZ - Phase Ends; 0.000/ 0.000
REGALLO - Phase Ends; 0.000/ 0.000
AS - Phase Ends; 0.000/ 0.000
W-TRANS - Phase Ends; 0.000/ 0.000
OPTIMIZ - Phase Ends; 0.000/ 0.000
REGALLO - Phase Ends; 0.000/ 0.000
AS - Phase Ends; 0.000/ 0.000
W-TRANS - Phase Ends; 0.000/ 0.000
OPTIMIZ - Phase Ends; 0.000/ 0.000

202 XL Fortran: Compiler Reference for Little Endian Distributions

REGALLO - Phase Ends; 0.000/ 0.000
AS - Phase Ends; 0.000/ 0.000
1501-510 Compilation successful for file app.f.

Each phase is invoked three times, corresponding to each compilation unit. FORTRAN
represents front-end parsing and semantic analysis, HOT loop transformations,
W-TRANS intermediate language translation, OPTIMIZ high–level optimization,
REGALLO register allocation and low–level optimization, and AS final assembly.

Compile app.f at the -O4 optimization level with -qphsinfo specified:
xlf90 myprogram.f -qphsinfo -O4

The following output results:
FORTRAN phase 1 ftphas1 TIME = 0.010 / 0.020
** m_module === End of Compilation 1 ===
FORTRAN phase 1 ftphas1 TIME = 0.000 / 0.000
** testassign === End of Compilation 2 ===
FORTRAN phase 1 ftphas1 TIME = 0.000 / 0.000
** dataassign === End of Compilation 3 ===
HOT - Phase Ends; 0.000/ 0.000
HOT - Phase Ends; 0.000/ 0.000
HOT - Phase Ends; 0.000/ 0.000
IPA - Phase Ends; 0.080/ 0.100
1501-510 Compilation successful for file app.f.
IPA - Phase Ends; 0.050/ 0.070
W-TRANS - Phase Ends; 0.010/ 0.030
OPTIMIZ - Phase Ends; 0.020/ 0.020
REGALLO - Phase Ends; 0.040/ 0.040
AS - Phase Ends; 0.000/ 0.000

Note that during the IPA (interprocedural analysis) optimization phases, the
program has resulted in one compilation unit; that is, all procedures have been
inlined.

Related information

.The compiler phases in the Getting Started with XL Fortran

-qpic
Category

Object code control

@PROCESS

None.

Purpose

Generates position-independent code required for use in shared libraries.

Syntax

►►
nopic

-q pic ►◄

Chapter 6. Detailed descriptions of the XL Fortran compiler options 203

Defaults
v -qnopic

Usage

When -qpic is in effect, the compiler generates two instructions for each TOC
access to enlarge the accessing range. This helps avoid TOC overflow conditions
when the Table of Contents is larger than 64 Kb.

You must specify -qpic when you build shared libraries.

When you specify -qpic -qtls, thread local storage (TLS) symbols are not affected
by -qpic.

You can use different TOC access options for different compilation units in an
application.

-qport
Category

Portability and migration

Purpose

Provides options to accommodate other Fortran language extensions when porting
programs to XL Fortran.

A particular -qport suboption will always function independently of other -qport
and compiler options.

Syntax

►►

▼

noport
-q port

:
notyplssarg
notypestmt
nosce
nonullarg
nomod
nohexint
noclogicals

= clogicals
hexint
mod
nullarg
sce
typestmt
typlssarg

►◄

@PROCESS:

@PROCESS PORT[(suboptions)]| NOPORT

204 XL Fortran: Compiler Reference for Little Endian Distributions

Defaults

-qnoport

Parameters

clogicals | noclogicals
When clogicals is in effect, the compiler treats all non-zero integers that are
used in logical expressions as TRUE. You must specify -qintlog for
-qport=clogicals to take effect.

The -qport=clogicals option is useful when porting applications from
other Fortran compilers that expect this behavior. However, it is unsafe to
mix programs that use different settings for non-zero integers if they share
or pass logical data between them. Data files already written with the
default -qintlog setting will produce unexpected behavior if read with the
-qport=clogicals option active.

hexint | nohexint
When hexint is in effect, typeless constant hexadecimal strings are
converted to integers when passed as an actual argument to the INT
intrinsic function. Typeless constant hexadecimal strings not passed as
actual arguments to INT remain unaffected.

mod | nomod
Specifying mod relaxes existing constraints on the MOD intrinsic function,
allowing two arguments of the same data type to be of different kind type
parameters. The result will be of the same basic type as the argument, but
with the larger kind type parameter value.

nullarg | nonullarg
For an external or internal procedure reference, specifying nullarg causes
the compiler to treat an empty argument, which is delimited by a left
parenthesis and a comma, two commas, or a comma and a right
parenthesis, as a null argument. This suboption has no effect if the
argument list is empty.

Examples of empty arguments are:
call foo(,,z)

call foo(x,,z)

call foo(x,y,)

The following program includes a null argument.

Fortran program:
program nularg
real(4) res/0.0/
integer(4) rc
integer(4), external :: add
rc = add(%val(2), res, 3.14, 2.18,) ! The last argument is a

! null argument.
if (rc == 0) then
print *, "res = ", res
else
print *, "number of arguments is invalid."
endif
end program

C program:

Chapter 6. Detailed descriptions of the XL Fortran compiler options 205

int add(int a, float *res, float *b, float *c, float *d)
{

int ret = 0;
if (a == 2)
*res = *b + *c;

else if (a == 3)
*res = (*b + *c + *d);

else
ret = 1;

return (ret);
}

sce | nosce
By default, the compiler performs short circuit evaluation in selected
logical expressions using XL Fortran rules. Specifying sce allows the
compiler to use non-XL Fortran rules. The compiler will perform short
circuit evaluation if the current rules allow it.

typestmt | notypestmt
The TYPE statement, which behaves in a manner similar to the PRINT
statement, is supported whenever typestmt is specified.

typlssarg | notyplssarg
Converts all typeless constants to default integers if the constants are
actual arguments to an intrinsic procedure whose associated dummy
arguments are of integer type. Typeless actual arguments associated with
dummy arguments of noninteger type remain unaffected by this option.

Using this option may cause some intrinsic procedures to become
mismatched in kinds. Specify -qxlf77=intarg to convert the kind to that of
the longest argument.

Related information
v “-qintlog” on page 160
v “-qxlf77” on page 259
v See the section on the INT and MOD intrinsic functions in the XL Fortran

Language Reference for further information.

-qposition
Category

Language element control

Purpose

Positions the file pointer at the end of the file when data is written after an OPEN
statement with no POSITION= specifier and the corresponding STATUS= value
(OLD or UNKNOWN) is specified.

The position becomes APPEND when the first I/O operation moves the file
pointer if that I/O operation is a WRITE or PRINT statement. If it is a
BACKSPACE, ENDFILE, READ, or REWIND statement instead, the position is
REWIND.

Syntax

►► -q position = appendold
appendunknown

►◄

206 XL Fortran: Compiler Reference for Little Endian Distributions

@PROCESS:

@PROCESS POSITION({APPENDOLD | APPENDUNKNOWN} ...)

Defaults

The default setting depends on the I/O specifiers in the OPEN statement and on
the compiler invocation command:
v -qposition=appendold for the xlf and xlf_r commands when they are used to

compile the .f, .F, .f77, or .F77 files
v -qposition=appendold for the f77 and fort77 commands
v The defined Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008 behaviors for

the xlf90, f90, xlf90_r, xlf95, f95, xlf95_r, xlf2003, f2003, xlf2003_r, xlf2008, f2008,
and xlf2008_r commands

Examples

In the following example, OPEN statements that do not specify a POSITION=
specifier, but specify STATUS='old' will open the file as if POSITION='append'
was specified.
xlf95 -qposition=appendold opens_old_files.f

In the following example, OPEN statements that do not specify a POSITION=
specifier, but specify STATUS='unknown' will open the file as if
POSITION='append' was specified.
xlf95 -qposition=appendunknown opens_unknown_files.f

In the following example, OPEN statements that do not specify a POSITION=
specifier, but specify either STATUS='old' or STATUS='unknown' will open the
file as if POSITION='append' was specified.
xlf95 -qposition=appendold:appendunknown opens_many_files.f

Related information
v File positioning in the XL Fortran Optimization and Programming Guide
v OPEN statement in the XL Fortran Language Reference

-qppsuborigarg
Category

Input control

@PROCESS

None.

Purpose

Instructs the C preprocessor to substitute original macro arguments before further
macro expansion.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 207

Syntax

►►
noppsuborigarg

-WF , -q ppsuborigarg ►◄

Defaults
v -WF, -qnoppsuborigarg

Usage

-qppsuborigarg is a C preprocessor option, and must therefore be specified using
the -WF option.

Examples

Consider the following sample code, x.F:
#define PRINT_COMP(a) PRINT_4(SPLIT_COMP(a))
#define SPLIT_COMP(a) "Real:", real(a), "Imag:", imag(a)
#define PRINT_4(list) PRINT_LIST(list)
#define PRINT_LIST(list) print *, list

complex a
a = (3.5, -3.5)
PRINT_COMP(a)
end

If this code is compiled with -qnoppsuborigarg, the C preprocessor reports an error
because the parameter "list" in the function-like macro PRINT_4 is the expanded
substitution text of the macro SPLIT_COMP(a). The C preprocessor therefore
complains because PRINT_LIST is being called with four arguments but only
expects one.
> xlf95 x.F -d
"x.F", line 8.1: 1506-215 (E) Too many arguments specified for macro PRINT_LIST.
** _main === End of Compilation 1 ===
1501-510 Compilation successful for file x.F.
> cat Fx.f

complex a
a = (3.5, -3.5)
print *, "Real:"
end

When the code is compiled with -qppsuborigarg, the C preprocessor uses the text
"SPLIT_COMP(a)" rather than the expanded substitution text of SPLIT_COMP(a) as the
argument to the function-like macro PRINT_LIST. Only after the macro PRINT_LIST
has been expanded, does the C preprocessor proceed to expand the macro
"SPLIT_COMP(a)". As a result, the macro PRINT_LIST only receives the expected
single argument "SPLIT_COMP(a)" rather than the four arguments.
> xlf95 x.F -d -WF,-qppsuborigarg
** _main === End of Compilation 1 ===
1501-510 Compilation successful for file x.F.
> cat Fx.f

complex a
a = (3.5, -3.5)
print *, "Real:", real(a), "Imag:", imag(a)
end

208 XL Fortran: Compiler Reference for Little Endian Distributions

Related information
v “-W” on page 276
v “-qfpp” on page 131
v “Passing Fortran files through the C preprocessor” on page 29

-qprefetch
Category

Optimization and tuning

@PROCESS

None.

Purpose

Inserts prefetch instructions automatically where there are opportunities to
improve code performance.

When -qprefetch is in effect, the compiler may insert prefetch instructions in
compiled code. When -qnoprefetch is in effect, prefetch instructions are not
inserted in compiled code.

Syntax

►►

▼

:

prefetch
noassistthread

= assistthread = SMT
CMP

noaggressive
= aggressive
= dscr = value

-q noprefetch ►◄

Defaults

-qprefetch=noassistthread:noaggressive:dscr=0

Parameters

assistthread | noassistthread
When you work with applications that generate a high cache-miss rate, you
can use -qprefetch=assistthread to exploit assist threads for data prefetching.
This suboption guides the compiler to exploit assist threads at optimization
level -O3 -qhot or higher. If you do not specify -qprefetch=assistthread,
-qprefetch=noassistthread is implied.

CMP
For systems based on the chip multi-processor architecture (CMP), you can
use -qprefetch=assistthread=cmp.

SMT
For systems based on the simultaneous multi-threading architecture (SMT),
you can use -qprefetch=assistthread=smt.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 209

Note: If you do not specify either CMP or SMT, the compiler uses the
default setting based on your system architecture.

aggressive | noaggressive
This suboption guides the compiler to generate aggressive data prefetching at
optimization level -O3 or higher. If you do not specify aggressive,
-qprefetch=noaggressive is implied.

dscr
You can specify a value for the dscr suboption to improve the runtime
performance of your applications. The compiler sets the Data Stream Control
Register (DSCR) to the specified dscr value to control the hardware prefetch
engine. The value is valid only when -qarch=pwr8 is in effect and the
optimization level is -O2 or greater. The default value of dscr is 0.

value

The value that you specify for dscr must be 0 or greater, and representable
as a 64-bit unsigned integer. Otherwise, the compiler issues a warning
message and sets dscr to 0. The compiler accepts both decimal and
hexadecimal numbers, and a hexadecimal number requires the prefix of 0x.
The value range depends on your system architecture. See the product
information about the POWER Architecture for details. If you specify
multiple dscr values, the last one takes effect.

Usage

The -qnoprefetch option does not prevent built-in functions such as
__prefetch_by_stream from generating prefetch instructions.

When you run -qprefetch=assistthread, the compiler uses the delinquent load
information to perform analysis and generates prefetching assist threads. The
delinquent load information can either be provided through the built-in
__mem_delay function (const void *delinquent_load_address, const unsigned int
delay_cycles), or gathered from dynamic profiling using -qpdf1=level=2.

When you use -qpdf to call -qprefetch=assistthread, you must use the traditional
two-step PDF invocation:
1. Run -qpdf1=level=2
2. Run -qpdf2 -qprefetch=assistthread

Example
DO i = 1, 1000

!IBM* MEM_DELAY(x(i), 10)
x(i) = x(i) + 1

END DO

Examples
DO I = 1, 1000

!IBM* MEM_DELAY(X(I), 10)

X(I) = X(I) + 1

END DO

210 XL Fortran: Compiler Reference for Little Endian Distributions

Related information
v -qarch
v “-qhot” on page 143
v “-qpdf1, -qpdf2” on page 195
v “-qreport” on page 214
v MEM_DELAY section in the XL Fortran Language Reference

-qqcount
Category

Language element control

Purpose

Accepts the Q character-count edit descriptor (Q) as well as the extended-precision
Q edit descriptor (Qw.d).

Syntax

►►
noqcount

-q qcount ►◄

@PROCESS:

@PROCESS QCOUNT | NOQCOUNT

Defaults

With -qnoqcount, all Q edit descriptors are interpreted as the extended-precision Q
edit descriptor.

Usage

The compiler interprets a Q edit descriptor as one or the other depending on its
syntax and issues a warning if it cannot determine which one is specified.

Related information
v Q (Character Count) Editing in the XL Fortran Language Reference

-qrealsize
Category

Floating-point and integer control

Purpose

Sets the default size of REAL, DOUBLE PRECISION, COMPLEX, and
DOUBLE COMPLEX values.

This option is intended for maintaining compatibility with code that is written for
other systems. You may find it a useful alternative to the -qautodbl option in some
situations.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 211

Syntax

►►
4

-q realsize = 8 ►◄

@PROCESS:

@PROCESS REALSIZE(bytes)

Defaults

-qrealsize=4

Parameters

The allowed values for bytes are as follows:
v 4
v 8

Usage

This option is intended to allow you to port programs unchanged from systems
that have different default sizes for data. For example, you might need
-qrealsize=8 for programs that are written for a CRAY computer.

-qautodbl is related to -qrealsize, although you cannot combine these options.
When the -qautodbl option turns on automatic doubling, padding, or both, the
-qrealsize option has no effect.

Setting -qrealsize to 8 overrides the setting of the -qdpc option.

In addition to type REAL, -qrealsize also works for type vector(real).

Results

The option affects the sizes2 of constants, variables, derived type components, and
functions (which include intrinsic functions) for which no kind type parameter is
specified. Objects that are declared with a kind type parameter or length, such as
REAL(4) or COMPLEX*16, are not affected.

This option determines the sizes of affected objects as follows:
Data Object REALSIZE(4) in Effect REALSIZE(8) in Effect

1.2 REAL(4) REAL(8)
1.2e0 REAL(4) REAL(8)
1.2d0 REAL(8) REAL(16)
1.2q0 REAL(16) REAL(16)

REAL REAL(4) REAL(8)
DOUBLE PRECISION REAL(8) REAL(16)
COMPLEX COMPLEX(4) COMPLEX(8)
DOUBLE COMPLEX COMPLEX(8) COMPLEX(16)

Similar rules apply to intrinsic functions:

2. In Fortran 90/95 terminology, these values are referred to as kind type parameters.

212 XL Fortran: Compiler Reference for Little Endian Distributions

v If an intrinsic function has no type declaration, its argument and return types
may be changed by the -qrealsize setting.

v Any type declaration for an intrinsic function must agree with the default size of
the return value.

Examples

This example shows how changing the -qrealsize setting transforms some typical
entities:
@PROCESS REALSIZE(8)

REAL R ! treated as a real(8)
REAL(8) R8 ! treated as a real(8)
VECTOR(REAL) ! treated as a vector(real(8))
VECTOR(REAL(4)) ! treated as a vector(real(4))
DOUBLE PRECISION DP ! treated as a real(16)
DOUBLE COMPLEX DC ! treated as a complex(16)
COMPLEX(4) C ! treated as a complex(4)
PRINT *,DSIN(DP) ! treated as qsin(real(16))

! Note: we cannot get dsin(r8) because dsin is being treated as qsin.
END

Specifying -qrealsize=8 affects intrinsic functions, such as DABS, as follows:
INTRINSIC DABS ! Argument and return type become REAL(16).
DOUBLE PRECISION DABS ! OK, because DOUBLE PRECISION = REAL(16)

! with -qrealsize=8 in effect.
REAL(16) DABS ! OK, the declaration agrees with the option setting.
REAL(8) DABS ! The declaration does not agree with the option

! setting and is ignored.

Related information
v “-qintsize” on page 161 is a similar option that affects integer and logical objects.
v “-qautodbl” on page 97
v Type declaration: type parameters and specifiers in the XL Fortran Language Reference

-qrecur
Purpose

Specifies whether external subprograms may be called recursively.

Not recommended.

Syntax

►►
norecur

-q recur ►◄

@PROCESS:

@PROCESS RECUR | NORECUR

Defaults

-qnorecur

Chapter 6. Detailed descriptions of the XL Fortran compiler options 213

Usage

For new programs, use the RECURSIVE keyword, which provides a
standards-conforming way of using recursive procedures.

If you specify the -qrecur option, the compiler must assume that any procedure
could be recursive. Code generation for recursive procedures may be less efficient.
With the RECURSIVE keyword, you can specify exactly which procedures are
recursive.

When you use the following commands to compile programs that contain recursive
calls, specify -qnosave to make the default storage class automatic:
v For .f, .F, .f77 and .F77 files: xlf and xlf_r

v For any source files: f77 and fort77

Examples
! The following RECUR recursive function:

@process recur
function factorial (n)
integer factorial
if (n .eq. 0) then

factorial = 1
else

factorial = n * factorial (n-1)
end if
end function factorial

! can be rewritten to use F90/F95 RECURSIVE/RESULT features:

recursive function factorial (n) result (res)
integer res
if (n .eq. 0) then

res = 1
else

res = n * factorial (n-1)
end if
end function factorial

-qreport
Category

Listings, messages, and compiler information

Purpose

Produces listing files that show how sections of code have been optimized.

A listing file is generated with a .lst suffix for each source file that is listed on the
command line. When you specify -qreport with an option that enables automatic
parallelization or vectorization, the listing file shows a pseudo-Fortran code listing
and a summary of how program loops are parallelized or optimized. The report
also includes diagnostic information about why specific loops cannot be
parallelized or vectorized. For example, when -qreport is specified with -qsimd,
messages are provided to identify non-stride-one references that prevent loop
vectorization.

214 XL Fortran: Compiler Reference for Little Endian Distributions

The compiler also reports the number of streams created for a given loop, which
include both load and store streams. This information is included in the Loop
Transformation section of the listing file. You can use this information to
understand your application code and to tune your code for better performance.
For example, you can distribute a loop which has more streams than the number
supported by the underlying architecture. The POWER8 processors support both
load and store stream prefetch.

Syntax

Option:

►►

▼

noreport
-q report

:
hotlist

= smplist

►◄

@PROCESS:

@PROCESS REPORT[({SMPLIST |HOTLIST}...)] | NOREPORT

Defaults

-qnoreport

Parameters

smplist | hotlist

When -qreport=smplist is in effect, produces a pseudo-Fortran listing that
shows how the program is parallelized. This listing is produced before
loop and other optimizations are performed. It includes messages that
point out places in the program that can be modified to be more efficient.
This report is only produced if -qsmp is in effect.

When -qreport=hotlist is in effect, produces a pseudo-Fortran listing that
shows how loops are transformed, to assist you in tuning the performance
of all loops. This report is only produced if -qhot is in effect.

In addition, if you specify the -qreport=hotlist option when -qsmp is in
effect, a pseudo-Fortran listing will be produced that shows the calls to the
SMP runtime library and the procedures created for parallel constructs.

Specifying -qreport with no suboptions is equivalent to -qreport=hotlist.

Usage

To generate a loop transformation listing, you must specify -qreport with one of
the following options:
v -qhot

v -qsmp

v -O3 or higher

To generate PDF information in the listing, you must specify both -qreport and
-qpdf2.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 215

To generate a parallel transformation listing or parallel performance messages, you
must specify -qreport with one of the following options:
v -qsmp

v -O5

v -qipa=level=2

To generate data reorganization information, specify -qreport with the
optimization level -qipa=level=2 or -O5. Reorganizations include common block
splitting, array splitting, array transposing, memory allocation merging, array
interleaving, and array coalescing.

To generate information about data prefetch insertion locations, specify -qreport
with the optimization level of -qhot or any other option that implies -qhot. This
information appears in the LOOP TRANSFORMATION SECTION of the listing file. In
addition, when you use -qprefetch=assistthread to generate prefetching assist
threads, the message: Assist thread for data prefetching was generated also
appears in the LOOP TRANSFORMATION SECTION of the listing file.

To generate a list of aggressive loop transformations and parallelization performed
on loop nests in the LOOP TRANSFORMATION SECTION of the listing file, use the
optimization level of -qhot=level=2 and -qsmp together with -qreport.

The pseudo-Fortran code listing is not intended to be compilable. Do not include
any of the pseudo-Fortran code in your program, and do not explicitly call any of
the internal routines whose names may appear in the pseudo-Fortran code listing.

Examples

To compile myprogram.f so the compiler listing includes a report showing how
loops are optimized, enter:
xlf -qhot -O3 -qreport myprogram.f

To compile myprogram.f so the compiler listing also includes a report showing how
parallelized loops are transformed, enter:
xlf_r -qhot -qsmp -qreport=smplist myprogram.f

Related information
v “-qhot” on page 143
v “-qsimd” on page 223
v “-qipa” on page 163
v “-qsmp” on page 226

-qsaa
Category

Language element control

Purpose

Checks for conformance to the SAA FORTRAN language definition. It identifies
nonconforming source code and also options that allow such nonconformances.

216 XL Fortran: Compiler Reference for Little Endian Distributions

Syntax

►►
nosaa

-q saa ►◄

@PROCESS:

@PROCESS SAA | NOSAA

Defaults

-qnosaa

Usage

The -qflag option can override this option.

Use the -qlanglvl option to check your code for conformance to international
standards.

Results

Warnings have a prefix of (L), indicating a problem with the language level.

Related information
v “-qflag” on page 126
v “-qlanglvl” on page 169

-qsave
Category

Language element control

Purpose

Specifies the default storage class for local variables.

Syntax

►► -q nosave
save

= all
defaultinit

►◄

@PROCESS:

@PROCESS SAVE[({ALL | DEFAULTINIT})] | NOSAVE

Defaults

The default for this option depends on the invocation command used:
v When xlf is used to compile the .f, .F, .f77, or .F77 files, the default is

-qsave=all.
v For the f77 and fort77 invocation commands, the default is -qsave=all.
v For all the other invocation commands, the default is -qnosave.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 217

Parameters

The -qsave suboptions include:

all
The default storage class is STATIC.

defaultinit
The default storage class is STATIC for variables of derived type that have
default initialization specified, and AUTOMATIC otherwise.

The all and defaultinit suboptions are mutually exclusive.

Usage

The -qnosave option sets the default storage class to AUTOMATIC. This usage is
usually necessary for multithreaded applications and subprograms that are
compiled with the -qrecur option.

You can specify the -qsave option to duplicate the behavior of FORTRAN 77
programs. The xlf, f77 and fort77 commands have -qsave listed as a default option
in the configuration file to preserve the previous behavior. The default
configuration file path is /opt/ibm/xlf/15.1.3/etc/xlf.cfg

Examples

The following example illustrates the impact of the -qsave option on derived data
type:

PROGRAM P
CALL SUB
CALL SUB

END PROGRAM P

SUBROUTINE SUB
LOGICAL, SAVE :: FIRST_TIME = .TRUE.
STRUCTURE /S/
INTEGER I/17/

END STRUCTURE
RECORD /S/ LOCAL_STRUCT
INTEGER LOCAL_VAR

IF (FIRST_TIME) THEN
LOCAL_STRUCT.I = 13
LOCAL_VAR = 19
FIRST_TIME = .FALSE.

ELSE
! Prints " 13" if compiled with -qsave or -qsave=all
! Prints " 13" if compiled with -qsave=defaultinit
! Prints " 17" if compiled with -qnosave
PRINT *, LOCAL_STRUCT
! Prints " 19" if compiled with -qsave or -qsave=all
! Value of LOCAL_VAR is undefined otherwise
PRINT *, LOCAL_VAR

END IF
END SUBROUTINE SUB

Related information
v “-qrecur” on page 213
v See Storage classes for variables in the XL Fortran Language Reference for

information on how this option affects the storage class of variables.

218 XL Fortran: Compiler Reference for Little Endian Distributions

-qsaveopt
Category

Object code control

@PROCESS

None.

Purpose

Saves the command-line options used for compiling a source file, the user's
configuration file name and the options specified in the configuration files, the
version and level of each compiler component invoked during compilation, and
other information to the corresponding object file.

Syntax

►►
nosaveopt

-q saveopt ►◄

Defaults

-qnosaveopt

Usage

This option has effect only when compiling to an object (.o) file (that is, using the
-c option). Though each object might contain multiple compilation units, only one
copy of the command-line options is saved. Compiler options specified with
@PROCESS directives are ignored.

Command-line compiler options information is copied as a string into the object
file, using the following format:

►► @(#) opt f invocation options
c
C

►◄

►► @(#) cfg config_file_options_list ►◄

►► @(#) env env_var_definition ►◄

where:
f Signifies a Fortran language compilation.
c Signifies a C language compilation.
C Signifies a C++ language compilation.
invocation

Shows the command used for the compilation, for example, xlf.
options The list of command line options specified on the command line, with

individual options separated by space.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 219

config_file_options_list
The list of options specified by the options attribute in all configuration
files that take effect in the compilation, separated by space.

env_var_definition
The environment variables that are used by the compiler. Currently only
XLF_USR_CONFIG is listed.

Note: You can always use this option, but the corresponding information
is only generated when the environment variable XLF_USR_CONFIG is set.

For more information about the environment variable XLF_USR_CONFIG, see
XLF_USR_CONFIG.

Note: The string of the command-line options is truncated after 64,000 bytes.

Compiler version and release information, as well as the version and level of each
component invoked during compilation, are also saved to the object file in the
format:

►► @(#) ▼ version Version : VV.RR.MMMM.LLLL
component_name Version : VV.RR (product_name) Level : YYMMDD : component_level_ID

►◄

where:
V Represents the version.
R Represents the release.
M Represents the modification.
L Represents the level.
component_name

Specifies the components that were invoked for this compilation, such as
the low-level optimizer.

product_name
Indicates the product to which the component belongs (for example, C/C++
or Fortran).

YYMMDD
Represents the year, month, and date of the installed update. If the update
installed is at the base level, the level is displayed as BASE.

component_level_ID
Represents the ID associated with the level of the installed component.

If you want to simply output this information to standard output without writing
it to the object file, use the -qversion option.

Examples

Compile t.f with the following command:
xlf t.f -c -qsaveopt -qhot

Issuing the strings -a command on the resulting t.o object file produces
information similar to the following:
IBM XL Fortran for Linux, Version 15.1.3.0
@(#)opt f /opt/ibm/xlf/15.1.3/bin/xlf t.f -c -qsaveopt -qhot
@(#)cfg -qnozerosize -qsave -qalias=intptr -qposition=appendold
-qxlf90=noautodealloc:nosignedzero:oldpad
-qxlf77=intarg:intxor:persistent:noleadzero:gedit77:noblankpad:oldboz:softeof
-qxlf2003=nopolymorphic:nobozlitargs:nostopexcept:novolatile:noautorealloc:oldnaninf -bh:4
@(#)version IBM XL Fortran for Linux, V15.1.3
@(#)version Version: 15.01.0003.0000
@(#)version Driver Version: 15.1.3(Fortran) Level: 121020 ID: _acSDAheyEeK928eKYVtYGg
@(#)version Fortran Front End and Run Time Version: 15.1.3(Fortran) Level: 121020

220 XL Fortran: Compiler Reference for Little Endian Distributions

ID: _0lpiYhmQEeK928eKYVtYGg
@(#)version Fortran Transformer Version: 15.1.3(Fortran) Level: 121021
ID: _gYSYgRpREeK928eKYVtYGg
@(#)version High-Level Optimizer Version: 13.1.3(C/C++) and 15.1.3(Fortran) Level: 151106
ID: _JfAAgYQ_EeWg_O7EssfHAg
@(#)version Low-Level Optimizer Version: 13.1.3(C/C++) and 15.1.3(Fortran) Level: 151030
ID: _sk208X8mEeWg_O7EssfHAg

In the first line, t.f identifies the source used as Fortran, bin/xlf shows the
invocation command used, and -qhot -qsaveopt shows the compilation options.
The second line, which starts with cfg, shows the compiler options added by the
configuration file.

The remaining lines list each compiler component invoked during compilation, and
its version and level. Components that are shared by multiple products may show
more than one version number. Level numbers shown may change depending on
the updates you have installed on your system.

Related information
v “-qversion” on page 254
v COMPILER_OPTIONS

-qsclk
Category

Language element control

@PROCESS

None.

Purpose

Specifies the resolution that the SYSTEM_CLOCK intrinsic procedure uses in a
program.

Syntax

►►
centi

-q sclk = micro ►◄

Defaults

The default is centisecond resolution (–qsclk=centi).

Related information

See SYSTEM_CLOCK in the XL Fortran Language Reference for more information
on returning integer data from a real-time clock.

-qshowpdf
Category

Optimization and tuning

Chapter 6. Detailed descriptions of the XL Fortran compiler options 221

@PROCESS

None.

Purpose

When used with -qpdf1 and a minimum optimization level of -O2 at compile and
link steps, creates a PDF map file that contains additional profiling information for
all procedures in your application.

Syntax

►►
showpdf

-q noshowpdf ►◄

Defaults

-qshowpdf

Usage

After you run your application with typical data, the profiling information is
recorded into a profile-directed feedback (PDF) file (by default, the file is named
._pdf).

In addition to the PDF file, the compiler also generates a PDF map file that
contains static information during the -qpdf1 phase. With these two files, you can
use the showpdf utility to view part of the profiling information of your
application in text or XML format. For details of the showpdf utility, see "Viewing
profiling information with showpdf" in the XL Fortran Optimization and
Programming Guide.

If you do not need to view the profiling information, specify the -qnoshowpdf
option during the -qpdf1 phase so that the PDF map file is not generated. This can
reduce your compile time.

-qsigtrap
Category

Error checking and debugging

@PROCESS

None.

Purpose

Sets up the specified trap handler to catch SIGTRAP and SIGFPE exceptions when
compiling a file that contains a main program.

This option enables you to install a handler for SIGTRAP or SIGFPE signals
without calling the SIGNAL subprogram in the program.

222 XL Fortran: Compiler Reference for Little Endian Distributions

Syntax

►► -q sigtrap
= trap_handler

►◄

Defaults

Not applicable.

Usage

If you specify the -qsigtrap option without a handler name, the xl__trce trap
handler is used by default. To use a different trap handler, specify its name with
the -qsigtrap option.

If you specify a different handler, ensure that the object module that contains it is
linked with the program. To show more detailed information in the tracebacks
generated by the trap handlers provided by XL Fortran (such as xl__trce), specify
the -qlinedebug or -g option.

Related information
v “XL Fortran runtime exceptions” on page 45 describes the possible causes of

exceptions.
v Detecting and trapping floating-point exceptions in the XL Fortran Optimization and

Programming Guide describes a number of methods for dealing with exceptions
that result from floating-point computations.

v Installing an exception handler in the XL Fortran Optimization and Programming
Guide lists the exception handlers that XL Fortran supplies.

-qsimd
Category

Optimization and tuning

@PROCESS

None.

Purpose

Controls whether the compiler can automatically take advantage of vector
instructions for processors that support them.

These instructions can offer higher performance when used with
algorithmic-intensive tasks such as multimedia applications.

Syntax

►►
auto

-q simd = noauto ►◄

Defaults

Chapter 6. Detailed descriptions of the XL Fortran compiler options 223

Whether -qsimd is specified or not, -qsimd=auto is implied at the -O3 or higher
optimization level; -qsimd=noauto is implied at the -O2 or lower optimization level.

Usage

The -qsimd=auto option enables automatic generation of vector instructions for
processors that support them. When -qsimd=auto is in effect, the compiler converts
certain operations that are performed in a loop on successive elements of an array
into vector instructions. These instructions calculate several results at one time,
which is faster than calculating each result sequentially. These options are useful
for applications with significant image processing demands.

The -qsimd=noauto option disables the conversion of loop array operations into
vector instructions. To achieve finer control, use -qstrict=ieeefp,
-qstrict=operationprecision, and -qstrict=vectorprecision. For details, see
“-qstrict” on page 236.

The -qsimd=auto option controls the autosimdization, which was performed by the
deprecated -qhot=simd option. If you specify -qhot=simd, the compiler ignores it
and does not issue any warning message.

Notes:

v Specifying -qsimd without any suboption is equivalent to -qsimd=auto.
v Specifying -qsimd=auto does not guarantee that autosimdization will occur.
v Using vector instructions to calculate several results at one time might delay or

even miss detection of floating-point exceptions on some architectures. If
detecting exceptions is important, do not use -qsimd=auto.

Rules

If you enable IPA and specify -qsimd=auto at the IPA compile step, but specify
-qsimd=noauto at the IPA link step, the compiler automatically sets -qsimd=auto at
the IPA link step. Similarly, if you enable IPA and specify -qsimd=noauto at the IPA
compile step, but specify -qsimd=auto at the IPA link step, the compiler
automatically sets -qsimd=auto at the compile step.

Related information
v “-qarch” on page 93
v “-qreport” on page 214
v “-qstrict” on page 236
v The NOSIMD directive in the XL Fortran Language Reference.
v Interprocedural analysis (IPA) in the XL Fortran Optimization and Programming

Guide.

-qsmallstack
Category

Optimization and tuning

@PROCESS

None.

224 XL Fortran: Compiler Reference for Little Endian Distributions

Purpose

Minimizes stack usage where possible.

This compiler option controls two distinct, but related sets of transformations:
general small stack transformations and dynamic length variable allocation
transformations. These two kinds of transformations can be controlled
independently of each other.

Syntax

►►
nosmallstack

-q smallstack
= dynlenonheap

nodynlenonheap

►◄

Defaults

-qnosmallstack

Parameters

dynlenonheap | nodynlenonheap
The -qsmallstack=dynlenonheap suboption affects automatic objects that have
nonconstant character lengths or a nonconstant array bound (DYNamic
LENgth ON HEAP). When specified, those automatic variables are allocated on
the heap. When this suboption is not specified, those automatic variables are
allocated on the stack.

Defaults

The default, –qnosmallstack, implies that all suboptions are off.

Usage

Using this option may adversely affect program performance; it should be used
only for programs that allocate large amounts of data on the stack.

-qsmallstack with no suboptions enables only the general small stack
transformations.

-qnosmallstack only disables the general small stack transformations. To disable
dynlenonheap transformations, specify -qsmallstack=nodynlenonheap as well.

-qsmallstack=dynlenonheap enables the dynamic length variable allocation and
general small stack transformations.

To enable only the dynlenonheap transformations, specify
-qsmallstack=dynlenonheap -qnosmallstack .

When both -qsmallstack and -qstacktemp options are used, the -qstacktemp
setting will be used to allocate applicable temporary variables if it is set to a
non-zero value, even if this setting conflicts with that of -qsmallstack. The
-qsmallstack setting will continue to apply transformations not affected by
-qstacktemp.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 225

Related information
v “-qstacktemp” on page 232

-qsmp
Category

Optimization and tuning

@PROCESS

None.

Purpose

Enables parallelization of program code.

Syntax

►►

▼

nosmp
-q smp

:
nostackcheck
opt
norec_locks
noomp
auto

= omp
noauto
noopt
rec_locks

auto
schedule = runtime

affinity
dynamic = n
guided
static

stackcheck
threshold

= n

►◄

Defaults

-qnosmp. Code is produced for a uniprocessor machine.

Parameters

auto | noauto
Enables or disables automatic parallelization and optimization of program
code. By default, the compiler tries to parallelize explicitly coded DO loops
and those that are generated by the compiler for processing arrays. When
noauto is in effect, only program code explicitly parallelized with OpenMP
directives is optimized. noauto is implied if you specify -qsmp=omp or
-qsmp=noopt.

omp | noomp
Enforces or relaxes strict compliance with the OpenMP standard. When noomp

226 XL Fortran: Compiler Reference for Little Endian Distributions

is in effect, auto is implied. When omp is in effect, noauto is implied and only
OpenMP parallelization directives are recognized. The compiler issues warning
messages if your code contains any language constructs that do not conform to
the OpenMP API.

Note: The -qsmp=omp option must be used to enable OpenMP parallelization.

Specifying omp also has the following effects:
v Automatic parallelization is disabled.
v All previously recognized directive triggers are ignored. The only recognized

directive trigger is $OMP. However, you can specify additional triggers on
subsequent -qdirective options.

v The -qcclines compiler option is enabled.
v When the C preprocessor is invoked, the _OPENMP C preprocessor macro is

defined based on the latest OpenMP API specification that XL Fortran
supports. This macro is useful in supporting conditional compilation. See
Conditional Compilation in the XL Fortran Language Reference for more
information.

opt | noopt
Enables or disables optimization of parallelized program code. When noopt is
in effect, the compiler will do the smallest amount of optimization that is
required to parallelize the code. This is useful for debugging because -qsmp
enables the -O2 and -qhot options by default, which may result in the
movement of some variables into registers that are inaccessible to the
debugger. However, if the -qsmp=noopt and -g options are specified, these
variables will remain visible to the debugger.

rec_locks | norec_locks
Determines whether recursive locks are used to avoid problems associated
with CRITICAL constructs. When rec_locks is in effect, nested critical sections
will not cause a deadlock; a thread can enter a CRITICAL construct from
within the dynamic extent of another CRITICAL construct that has the same
name. Note that the rec_locks suboption specifies behavior for critical
constructs that is inconsistent with the OpenMP API.

schedule
Specifies the type of scheduling algorithms and, except in the case of auto,
chunk size (n) that are used for loops to which no other scheduling algorithm
has been explicitly assigned in the source code. Suboptions of the schedule
suboption are as follows:

affinity[=n]
The iterations of a loop are initially divided into n partitions, containing
ceiling(number_of_iterations/number_of_threads) iterations. Each partition is
initially assigned to a thread and is then further subdivided into chunks
that each contain n iterations. If n is not specified, then the chunks consist
of ceiling(number_of_iterations_left_in_partition / 2) loop iterations.

When a thread becomes free, it takes the next chunk from its initially
assigned partition. If there are no more chunks in that partition, then the
thread takes the next available chunk from a partition initially assigned to
another thread.

The work in a partition initially assigned to a sleeping thread will be
completed by threads that are active.

The affinity scheduling type is not part of the OpenMP API specification.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 227

Note: This suboption has been deprecated. You can use the OMP_SCHEDULE
environment variable with the dynamic clause for a similar functionality.

auto
Scheduling of the loop iterations is delegated to the compiler and runtime
systems. The compiler and runtime system can choose any possible
mapping of iterations to threads (including all possible valid schedule
types) and these might be different in different loops. Do not specify chunk
size (n).

dynamic[=n]
The iterations of a loop are divided into chunks that contain n iterations
each. If n is not specified, each chunk contains one iteration.

Active threads are assigned these chunks on a "first-come, first-do" basis.
Chunks of the remaining work are assigned to available threads until all
work has been assigned.

guided[=n]
The iterations of a loop are divided into progressively smaller chunks until
a minimum chunk size of n loop iterations is reached. If n is not specified,
the default value for n is 1 iteration.

Active threads are assigned chunks on a "first-come, first-do" basis. The
first chunk contains ceiling(number_of_iterations/number_of_threads)
iterations. Subsequent chunks consist of ceiling(number_of_iterations_left /
number_of_threads) iterations.

runtime
Specifies that the chunking algorithm will be determined at run time.

static[=n]
The iterations of a loop are divided into chunks containing n iterations
each. Each thread is assigned chunks in a "round-robin" fashion. This is
known as block cyclic scheduling. If the value of n is 1, then the scheduling
type is specifically referred to as cyclic scheduling.

If n is not specified, the chunks will contain floor(number_of_iterations/
number_of_threads) iterations. The first remainder (number_of_iterations/
number_of_threads) chunks have one more iteration. Each thread is assigned
a separate chunk. This is known as block scheduling.

If a thread is asleep and it has been assigned work, it will be awakened so
that it may complete its work.

n Must be an integer of value 1 or greater.

Specifying schedule with no suboption is equivalent to schedule=auto.

For more information on chunking algorithms and SCHEDULE, refer to
Directives in the XL Fortran Language Reference.

stackcheck | nostackcheck
Causes the compiler to check for stack overflow by slave threads at run time,
and issue a warning if the remaining stack size is less than the number of
bytes specified by the stackcheck option of the XLSMPOPTS environment
variable. This suboption is intended for debugging purposes, and only takes
effect when XLSMPOPTS=stackcheck is also set; see XLSMPOPTS in the XL
Fortran Optimization and Programming Guide for more information.

threshold[=n]
When -qsmp=auto is in effect, controls the amount of automatic loop

228 XL Fortran: Compiler Reference for Little Endian Distributions

parallelization that occurs. The value of n represents the minimum amount of
work required in a loop in order for it to be parallelized. Currently, the
calculation of "work" is weighted heavily by the number of iterations in the
loop. In general, the higher the value specified for n, the fewer loops are
parallelized. Specifying a value of 0 instructs the compiler to parallelize all
auto-parallelizable loops, whether or not it is profitable to do so. Specifying a
value of 100 instructs the compiler to parallelize only those auto-parallelizable
loops that it deems profitable. Specifying a value of greater than 100 will result
in more loops being serialized.

n Must be a positive integer of 0 or greater.

If you specify threshold with no suboption, the program uses a default value
of 100.

Specifying -qsmp without suboptions is equivalent to:
-qsmp=auto:opt:noomp:norec_locks:schedule=auto:
nostackcheck:threshold=100

Usage
v Specifying the omp suboption always implies noauto. Specify -qsmp=omp:auto to

apply automatic parallelization on OpenMP-compliant applications, as well.
v When -qsmp is in effect, the compiler recognizes all directives with the trigger

constants SMP$, $OMP, and IBMP, unless you specify the omp suboption. If you
specify omp and want the compiler to recognize directives specified with the
other triggers, you can use the -qdirective option to do so.

v If you use the f77 or fort77 command with the -qsmp option to compile
programs, specify -qnosave to make the default storage class automatic, and
specify -qthreaded to tell the compiler to generate threadsafe code.

v Object files generated with the -qsmp=opt option can be linked with object files
generated with -qsmp=noopt. The visibility within the debugger of the variables
in each object file will not be affected by linking.

v Specifying -qsmp implicitly sets -O2. The -qsmp option overrides -qnooptimize,
but does not override -O3, -O4, or -O5. When debugging parallelized program
code, you can disable optimization in parallelized program code by specifying
-qsmp=noopt.

v The -qsmp=noopt suboption overrides performance optimization options
anywhere on the command line unless -qsmp appears after -qsmp=noopt. For
example, -qsmp=noopt -O3 is equivalent to -qsmp=noopt, while -qsmp=noopt -O3
-qsmp is equivalent to -qsmp -O3.

Examples

In the following example, you should specify -qsmp=rec_locks to avoid a deadlock
caused by critical constructs.

program t
integer i, a, b

a = 0
b = 0

!smp$ parallel do
do i=1, 10

!smp$ critical
a = a + 1

!smp$ critical
b = b + 1

Chapter 6. Detailed descriptions of the XL Fortran compiler options 229

!smp$ end critical
!smp$ end critical

enddo
end

Related information
v “-O” on page 83
v XLSMPOPTS environment variable and Parallelization directives in the XL

Fortran Optimization and Programming Guide

-qsource
Category

Listings, messages, and compiler information

Purpose

Produces a compiler listing file that includes the source section of the listing and
provides additional source information when printing error messages.

Syntax

►►
nosource

-q source ►◄

@PROCESS:

@PROCESS SOURCE | NOSOURCE

Defaults

-qnosource

Usage

This option displays on the terminal each source line where the compiler detects a
problem, which can be very useful in diagnosing program errors in the Fortran
source files.

You can selectively print parts of the source code by using SOURCE and
NOSOURCE in @PROCESS directives in the source files around those portions of
the program you want to print. This is the only situation where the @PROCESS
directive does not have to be before the first statement of a compilation unit.

Examples

In the following example, the point at which the incorrect call is made is identified
more clearly when the program is compiled with the -qsource option:
$ cat argument_mismatch.f

subroutine mult(x,y)
integer x,y
print *,x*y
end

program wrong_args
interface

subroutine mult(a,b) ! Specify the interface for this

230 XL Fortran: Compiler Reference for Little Endian Distributions

integer a,b ! subroutine so that calls to it
end subroutine mult ! can be checked.

end interface
real i,j
i = 5.0
j = 6.0
call mult(i,j)
end

$ xlf95 argument_mismatch.f
** mult === End of Compilation 1 ===
"argument_mismatch.f", line 15.20: 1513-061 (S) Actual argument attributes
do not match those specified by an accessible explicit interface.
** wrong_args === End of Compilation 2 ===
1501-511 Compilation failed for file argument_mismatch.f.
$ xlf95 -qsource argument_mismatch.f
** mult === End of Compilation 1 ===

15 | call mult(i,j)
............a...

a - "argument_mismatch.f", line 15.20: 1513-061 (S) Actual argument attributes do not match those
specified by an accessible explicit interface.
** wrong_args === End of Compilation 2 ===
1501-511 Compilation failed for file argument_mismatch.f.

Related information
v “Listings, messages, and compiler information” on page 56
v “Source section” on page 294

-qspillsize
Category

Compiler customization

Purpose

-qspillsize is the long form of -NS. See “-NS” on page 82.

Syntax

►► -q spillsize = bytes ►◄

@PROCESS:

@PROCESS SPILLSIZE(bytes)

Defaults

Not applicable.

-qstackprotect
Category

“Object code control” on page 53

@PROCESS

None.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 231

Purpose

Provides protection against malicious input data or programming errors that
overwrite or corrupt the stack.

Syntax

►►
nostackprotect

-q stackprotect = all
size = N

►◄

Defaults

-qnostackprotect

Parameters

all
Protects all procedures whether or not procedures have vulnerable objects. This
option is not set by default.

size=N
Protects all procedures containing automatic objects with size greater than or
equal to N bytes. The default size is 8 byteswhen -qstackprotect is enabled.

Usage

-qstackprotect generates extra code to protect procedures with vulnerable objects
against stack corruption. The option is disabled by default because it can degrade
runtime performance.

To generate code to protect all procedures with vulnerable objects, enter the
following command:
xlf myprogram.f -qstackprotect=all

To generate code to protect procedures with objects of certain size, enter the
following command with the size= parameter set to the object size indicated in
bytes:
xlf myprogram.f -qstackprotect=size=8

-qstacktemp
Category

Optimization and tuning

Purpose

Determines where to allocate certain XL Fortran compiler temporaries at run time.

Applicable compiler temporaries are the set of temporary variables created by the
compiler for its own use when it determines it can safely apply these. Most
typically, the compiler creates these kinds of temporaries to hold copies of XL
Fortran arrays for array language semantics, especially in conjunction with calls to
intrinsic functions or user subprograms.

232 XL Fortran: Compiler Reference for Little Endian Distributions

Syntax

►►
0

-q stacktemp = -1
value

►◄

@PROCESS:

@PROCESS STACKTEMP={0 | -1 | value}

Defaults

-qstacktemp=0

Parameters

The possible suboptions are:

0 Based on the target environment, the compiler determines whether it will
allocate applicable temporaries on the heap or the stack. If this setting
causes your program to run out of stack storage, try specifying a nonzero
value instead, or try using the -qsmallstack option.

-1 Allocates applicable temporaries on the stack. Generally, this is the best
performing setting but uses the most amount of stack storage.

value Allocates applicable temporaries less than value on the stack and those
greater than or equal to value on the heap. value is a positive integer. A
value of 1 Mb has been shown to be a good compromise between stack
storage and performance for many programs, but you may need to adjust
this number based on your application's characteristics.

Usage

If you have programs that make use of large arrays, you may need to use this
option to help prevent stack space overflow when running them. For example, for
SMP or OpenMP applications that are constrained by stack space, you can use this
option to move some compiler temporaries onto the heap from the stack.

The compiler cannot detect whether or not the stack limits will be exceeded when
an application runs. You will need to experiment with several settings before
finding the one that works for your application. To override an existing setting,
you must specify a new setting.

The -qstacktemp option can take precedence over the -qsmallstack option for
certain compiler-generated temporaries.

Related information
v “-qsmallstack” on page 224

-qstaticlink
Category

Linking

Chapter 6. Detailed descriptions of the XL Fortran compiler options 233

@PROCESS directive

None.

Purpose

Controls whether static or shared runtime libraries are linked into an application.

This option provides the ability to specify linking rules that are equivalent to those
implied by the GNU options -static, -static-libgcc, -shared, and
-shared-libgcc, used singly and in combination.

Syntax

►►

▼

nostaticlink
-q staticlink

:

= libgcc
xllibs

►◄

Defaults

-qnostaticlink

Parameters

libgcc

v When you specify libgcc with nostaticlink, the compiler links the shared
version of libgcc.

v When you specify libgcc with staticlink, the compiler links the static
version of libgcc.

This suboption provides the equivalent ability that is enabled by the GNU
options -static-libgcc and -shared-libgcc.

xllibs

v When you specify xllibs with -qnostaticlink, the compiler links the shared
version of the XL compiler libraries.

v When you specify xllibs with -qstaticlink, the compiler links the static
version of the XL compiler libraries.

Usage

When you specify -qstaticlink without suboptions, only static libraries are linked
with the object file.

When you specify -qnostaticlink without suboptions, shared libraries are linked
with the object file.

When you specify -qstaticlink=xllibs and -qmkshrobj, both options take effect.
The compiler creates a shared object in which all references to the XL libraries are
statically linked in.

Conflicting compiler options are resolved as follows:

234 XL Fortran: Compiler Reference for Little Endian Distributions

v If you first specify -qnostaticlink without suboptions and then specify
-qstaticlink with or without suboptions, -qnostaticlink is overridden. For
example, -qnostaticlink -qstaticlink=xllibs is equivalent to
-qstaticlink=xllibs.

v If you specify -qstaticlink with or without suboptions followed by
-qnostaticlink without suboptions, -qnostaticlink takes effect and shared
libraries are linked. Otherwise, once you have specified -qstaticlink without
suboptions, -qstaticlink takes effect and only static libraries are linked with the
object file. See the following examples:

Table 19. Examples of conflicting compiler options and resolutions

Options combination Compiler behavior

-qstaticlink=libgcc
-qnostaticlink

Shared libraries are linked.

-qstaticlink
-qnostaticlink=libgcc

All libraries are linked statically. The compiler issues
the following warning message:
(W) The options -qnostaticlink=libgcc and -qstaticlink
are incompatible. Option -qnostaticlink=libgcc is
ignored.

-qstaticlink
-qnostaticlink=libgcc:xllibs

All libraries are linked statically. The compiler issues
the following warning messages:
(W) The options -qnostaticlink=libgcc and -qstaticlink
are incompatible. Option -qnostaticlink=libgcc is
ignored.
(W) The options -qnostaticlink=xllibs and -qstaticlink
are incompatible. Option -qnostaticlink=xllibs is
ignored.

-qstaticlink
-qstaticlink=libgcc

All libraries are linked statically.

-qnostaticlink=libgcc
-qstaticlink

All libraries are linked statically.

Note: If a runtime library is linked in statically while its message catalog is not
installed on the system, messages are issued with message numbers only, and no
message text is shown.

Important: Any use of third-party libraries or products is subject to the provisions
in their respective licenses. Using the -qstaticlink option can have significant
legal consequences for the programs that you compile. It is strongly recommended
that you seek legal advice before you use this option.

The following table shows the equivalent GNU and XL Fortran options for
specifying linkage of shared and nonshared libraries.

Table 20. Option mappings: control of the GNU linker

GNU option Meaning XL Fortran option

-shared Build a shared object. -qmkshrobj

-static Build a static object and prevent
linking with shared libraries. Every
library that is linked to must be a
static library.

-qstaticlink

-shared-libgcc Link with the shared version of libgcc. -qnostaticlink=libgcc ▌1▐

Chapter 6. Detailed descriptions of the XL Fortran compiler options 235

Table 20. Option mappings: control of the GNU linker (continued)

GNU option Meaning XL Fortran option

-static-libgcc Link with the static version of libgcc.
You can still link your shared libraries.

-qstaticlink=libgcc

Notes:

▌1▐ This is the default setting on SUSE Linux Enterprise Server (SLES) and Red Hat
Enterprise Linux (RHEL).

Related information
v “-qmkshrobj” on page 186

-qstrict
Category

Optimization and tuning

Purpose

Ensures that optimizations that are done by default at the -O3 and higher
optimization levels, and, optionally at -O2, do not alter certain program semantics
mostly related to strict IEEE floating-point conformance.

This option is intended for situations where the changes in program execution in
optimized programs produce different results from unoptimized programs.

Syntax

236 XL Fortran: Compiler Reference for Little Endian Distributions

►►

▼

-q nostrict
strict

:

= all
none
precision
noprecision
exceptions
noexceptions
ieeefp
noieeefp
nans
nonans
infinities
noinfinities
subnormals
nosubnormals
zerosigns
nozerosigns
operationprecision
nooperationprecision
vectorprecision
novectorprecision
order
noorder
association
noassociation
reductionorder
noreductionorder
guards
noguards
library
nolibrary
constructcopy
noconstructcopy

►◄

@PROCESS:

@PROCESS STRICT[(suboptions)] | NOSTRICT

Defaults
v -qstrict or -qstrict=all is always in effect when the -qnoopt or -O0

optimization level is in effect
v -qstrict or -qstrict=all is the default when the -O2 or -O optimization level is

in effect
v -qnostrict or -qstrict=none is the default when the -O3 or higher optimization

level is in effect

Parameters

The -qstrict suboptions include the following:

all | none
all disables all semantics-changing transformations, including those controlled
by the ieeefp, order, library, constructcopy, precision, and exceptions
suboptions. none enables these transformations.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 237

precision | noprecision
precision disables all transformations that are likely to affect floating-point
precision, including those controlled by the subnormals, operationprecision,
vectorprecision, association, reductionorder, and library suboptions.
noprecision enables these transformations.

exceptions | noexceptions
exceptions disables all transformations likely to affect exceptions or be affected
by them, including those controlled by the nans, infinities, subnormals,
guards, library, and constructcopy suboptions. noexceptions enables these
transformations.

ieeefp | noieeefp
ieeefp disables transformations that affect IEEE floating-point compliance,
including those controlled by the nans, infinities, subnormals, zerosigns,
vectorprecision, and operationprecision suboptions. noieeefp enables these
transformations.

nans | nonans
nans disables transformations that may produce incorrect results in the
presence of, or that may incorrectly produce IEEE floating-point NaN
(not-a-number) values. nonans enables these transformations.

infinities | noinfinities
infinities disables transformations that may produce incorrect results in the
presence of, or that may incorrectly produce floating-point infinities.
noinfinities enables these transformations.

subnormals | nosubnormals
subnormals disables transformations that may produce incorrect results in the
presence of, or that may incorrectly produce IEEE floating-point subnormals
(formerly known as denorms). nosubnormals enables these transformations.

zerosigns | nozerosigns
zerosigns disables transformations that may affect or be affected by whether
the sign of a floating-point zero is correct. nozerosigns enables these
transformations.

operationprecision | nooperationprecision
operationprecision disables transformations that produce approximate results
for individual floating-point operations. nooperationprecision enables these
transformations.

vectorprecision | novectorprecision
vectorprecision disables vectorization in loops where it might produce
different results in vectorized iterations than in nonvectorized residue
iterations. vectorprecision ensures that every loop iteration of identical
floating-point operations on identical data produces identical results.

novectorprecision enables vectorization even when different iterations might
produce different results from the same inputs.

order | noorder
order disables all code reordering between multiple operations that may affect
results or exceptions, including those controlled by the association,
reductionorder, and guards suboptions. noorder enables code reordering.

association | noassociation
association disables reordering operations within an expression. noassociation
enables reordering operations.

238 XL Fortran: Compiler Reference for Little Endian Distributions

reductionorder | noreductionorder
reductionorder disables parallelizing floating-point reductions.
noreductionorder enables parallelizing these reductions.

guards | noguards
guards disables moving operations past guards (that is, past IF statements, out
of loops, or past subroutine or function calls that might end the program)
which control whether the operation should be executed. noguards enables
moving operations past guards.

library | nolibrary
library disables transformations that affect floating-point library functions; for
example, transformations that replace floating-point library functions with
other library functions or with constants. nolibrary enables these
transformations.

constructcopy | noconstructcopy
constructcopy disables constructing arrays in place instead of using a
temporary copy where an exception could occur. noconstructcopy enables
constructing such arrays.

Usage

The all, precision, exceptions, ieeefp, and order suboptions and their negative
forms are group suboptions that affect multiple, individual suboptions. For many
situations, the group suboptions will give sufficient granular control over
transformations. Group suboptions act as if either the positive or the no form of
every suboption of the group is specified. Where necessary, individual suboptions
within a group (like subnormals or operationprecision within the precision
group) provide control of specific transformations within that group.

With -qnostrict or -qstrict=none in effect, the following optimizations are turned
on:
v Code that may cause an exception may be rearranged. The corresponding

exception might happen at a different point in execution or might not occur at
all. (The compiler still tries to minimize such situations.)

v Floating-point operations may not preserve the sign of a zero value. (To make
certain that this sign is preserved, you also need to specify -qfloat=rrm,
-qfloat=nomaf, or -qfloat=strictnmaf.)

v Floating-point expressions may be reassociated. For example, (2.0*3.1)*4.2 might
become 2.0*(3.1*4.2) if that is faster, even though the result might not be
identical.

v The optimization functions enabled by -qfloat=rsqrt. You can turn off the
optimization functions by using the -qstrict option or -qfloat=norsqrt. With
lower-level or no optimization specified, these optimization functions are turned
off by default.

Specifying various suboptions of -qstrict[=suboptions] or -qnostrict
combinations sets the following suboptions:
v -qstrict or -qstrict=all sets -qfloat=norsqrt:rngchk. -qnostrict or

-qstrict=none sets -qfloat=rsqrt:norngchk.
v -qstrict=infinities, -qstrict=operationprecision, or -qstrict=exceptions

sets -qfloat=norsqrt.
v -qstrict=noinfinities:nooperationprecision:noexceptions sets -qfloat=rsqrt.
v -qstrict=nans, -qstrict=infinities, -qstrict=zerosigns, or

-qstrict=exceptions sets -qfloat=rngchk. Specifying all of

Chapter 6. Detailed descriptions of the XL Fortran compiler options 239

-qstrict=nonans:nozerosigns:noexceptions or
-qstrict=noinfinities:nozerosigns:noexceptions, or any group suboptions
that imply all of them, sets -qfloat=norngchk.

Note: For details about the relationship between -qstrict suboptions and their
-qfloat counterparts, see “-qfloat” on page 127.

To override any of these settings, specify the appropriate -qfloat suboptions after
the -qstrict option on the command line.

Examples

To compile myprogram.f so that the aggressive optimization of -O3 are turned off,
and division by the result of a square root is replaced by multiplying by the
reciprocal (-qfloat=rsqrt), enter:
xlf myprogram.f -O3 -qstrict -qfloat=rsqrt

To enable all transformations except those affecting precision, specify:
xlf myprogram.f -qstrict=none:precision

To disable all transformations except those involving NaNs and infinities, specify:
xlf myprogram.f -qstrict=all:nonans:noinfinities

Related information
v “-qsimd” on page 223
v “-qessl” on page 120
v “-qfloat” on page 127
v “-qhot” on page 143
v “-O” on page 83
v “-qxlf90” on page 261

-qstrictieeemod
Category

Floating-point and integer control

Purpose

Specifies whether the compiler will adhere to the Fortran 2003 IEEE arithmetic
rules for the ieee_arithmetic and ieee_exceptions intrinsic modules.

Syntax

►►
strictieeemod

-q nostrictieeemod ►◄

@PROCESS:

@PROCESS STRICTIEEEMOD | NOSTRICTIEEEMOD

Defaults

-qstrictieeemod

240 XL Fortran: Compiler Reference for Little Endian Distributions

Usage

When you specify -qstrictieeemod, the compiler adheres to the following rules:
v If there is an exception flag set on entry into a procedure that uses the IEEE

intrinsic modules, the flag is set on exit. If a flag is clear on entry into a
procedure that uses the IEEE intrinsic modules, the flag can be set on exit.

v If there is an exception flag set on entry into a procedure that uses the IEEE
intrinsic modules, the flag clears on entry into the procedure and resets when
returning from the procedure.

v When returning from a procedure that uses the IEEE intrinsic modules, the
settings for halting mode and rounding mode return to the values they had at
procedure entry.

v Calls to procedures that do not use the ieee_arithmetic or ieee_exceptions
intrinsic modules from procedures that do use these modules, will not change
the floating-point status except by setting exception flags.

Since the above rules can impact performance, specifying –qnostrictieeemod will
relax the rules on saving and restoring floating-point status. This prevents any
associated impact on performance.

-qstrict_induction
Category

Optimization and tuning

@PROCESS

None.

Purpose

Prevents the compiler from performing induction (loop counter) variable
optimizations. These optimizations may be unsafe (may alter the semantics of your
program) when there are integer overflow operations involving the induction
variables.

Syntax

►►
nostrict_induction

-q strict_induction ►◄

Defaults

-qnostrict_induction

Usage

You should avoid specifying -qstrict_induction unless absolutely necessary, as it
may cause performance degradation.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 241

Examples

Consider the following two examples:

Example 1
integer(1) :: i, j ! Variable i can hold a
j = 0 ! maximum value of 127.

do i = 1, 200 ! Integer overflow occurs when 128th
j = j + 1 ! iteration of loop is attempted.

enddo

Example 2
integer(1) :: i
i = 1_1 ! Variable i can hold a maximum

! value of 127.
100 continue

if (i == -127) goto 200 ! Go to label 200 once decimal overflow
i = i + 1_1 ! occurs and i == -127.
goto 100

200 continue
print *, i
end

If you compile these examples with the -qstrict_induction option, the compiler
does not perform induction variable optimizations, but the performance of the
code may be affected. If you compile the examples with the -qnostrict_induction
option, the compiler may perform optimizations that may alter the semantics of the
programs.

Related information
v “-O” on page 83

-qsuffix
Category

Input control

@PROCESS

None.

Purpose

Specifies the source-file suffix on the command line.

This option saves time for the user by permitting files to be used as named with
minimal makefile modifications. Only one setting is supported at any one time for
any particular file type.

Syntax

►► -q suffix = f = source-file-suffix
o = object-file-suffix
s = assembler-source-file-suffix
cpp = preprocessor-source-file-suffix

►◄

242 XL Fortran: Compiler Reference for Little Endian Distributions

Defaults

Not applicable.

Parameters

f=suffix
Where suffix represents the new source-file-suffix

o=suffix
Where suffix represents the new object-file-suffix

s=suffix
Where suffix represents the new assembler-source-file-suffix

cpp=suffix
Where suffix represents the new preprocessor-source-file-suffix

Rules
v The new suffix setting is case-sensitive.
v The new suffix can be of any length.

Examples

For instance,
xlf a1.f2k a2.F2K -qsuffix=f=f2k:cpp=F2K

will cause these effects:
v The compiler is invoked for source files with a suffix of .f2k and .F2K.
v cpp is invoked for files with a suffix of .F2K.

-qsuppress
Category

Listings, messages, and compiler information

@PROCESS

None.

Purpose

Prevents specific informational or warning messages from being displayed or
added to the listing file, if one is generated.

Syntax

►►

▼

nosuppress
-q suppress

:

= message_num
cmpmsg

►◄

Chapter 6. Detailed descriptions of the XL Fortran compiler options 243

Defaults

Not applicable.

Parameters

message_num[:message_num ...]
Suppresses the display of a specific compiler message (nnnn-mmm) or a list
of messages (nnnn-mmm[:nnnn-mmm ...]). To suppress a list of messages,
separate each message number with a colon.

nnnn-mmm is the message number, where:
v nnnn must be a four-digit integer between 1500 and 1585; this is the

range of XL Fortran message numbers.
v mmm must be any three-digit integer (with leading zeros if necessary).

cmpmsg
Suppresses the informational messages that report compilation progress
and a successful completion.

This suboption has no effect on any error messages that are emitted.

Usage

In some situations, users may receive an overwhelming number of compiler
messages. In many cases, these compiler messages contain important information.
However, some messages contain information that is either redundant or can be
safely ignored. When multiple error or warning messages appear during
compilation, it can be very difficult to distinguish which messages should be
noted. By using -qsuppress, you can eliminate messages that do not interest you.

Note:
v The compiler tracks the message numbers specified with -qsuppress. If the

compiler subsequently generates one of those messages, it will not be displayed
or entered into the listing.

v Only compiler and driver messages can be suppressed. Linker or operating
system message numbers will be ignored if specified with -qsuppress.

v To suppress IPA messages, enter -qsuppress before -qipa on the command line.
v The -qhaltonmsg option has precedence over -qsuppress. If you specify both

-qhaltonmsg and -qsuppress, messages that -qsuppress suppresses are also
printed and compilation stops.

Examples
@process nullterm

i = 1; j = 2;
call printf("i=%d\n", %val(i));
call printf("i=%d, j=%d\n", %val(i), %val(j));
end

Compiling this sample program would normally result in the following output:
"t.f", line 4.36: 1513-029 (W) The number of arguments to "printf" differ
from the number of arguments in a previous reference. You should use the
OPTIONAL attribute and an explicit interface to define a procedure with
optional arguments.
** _main === End of Compilation 1 ===
1501-510 Compilation successful for file t.f.

When the program is compiled with -qsuppress=1513-029, the output is:

244 XL Fortran: Compiler Reference for Little Endian Distributions

** _main === End of Compilation 1 ===
1501-510 Compilation successful for file t.f.

Related information
v “-qflag” on page 126
v “-qhaltonmsg” on page 141
v “-qmaxerr” on page 182

-qswapomp
Category

Portability and migration

Purpose

Specifies that the compiler should recognize and substitute OpenMP routines in XL
Fortran programs.

The OpenMP routines for Fortran and C have different interfaces. To support
multi-language applications that use OpenMP routines, the compiler needs to
recognize OpenMP routine names and substitute them with the XL Fortran
versions of these routines, regardless of the existence of other implementations of
such routines.

Syntax

►►
swapomp

-q noswapomp ►◄

@PROCESS:

@PROCESS SWAPOMP | NOSWAPOMP

Defaults

-qswapomp

Usage

The compiler does not perform substitution of OpenMP routines when you specify
the -qnoswapomp option.

The -qswapomp and -qnoswapomp options only affect Fortran subprograms that
reference OpenMP routines that exist in the program.

Rules
v If a call to an OpenMP routine resolves to a dummy procedure, module

procedure, an internal procedure, a direct invocation of a procedure itself, or a
statement function, the compiler will not perform the substitution.

v When you specify an OpenMP routine, the compiler substitutes the call to a
different special routine depending upon the setting of the -qintsize option. In
this manner, OpenMP routines are treated as generic intrinsic procedures.

v Unlike generic intrinsic procedures, if you specify an OpenMP routine in an
EXTERNAL statement, the compiler will not treat the name as a user-defined

Chapter 6. Detailed descriptions of the XL Fortran compiler options 245

external procedure. Instead, the compiler will still substitute the call to a special
routine depending upon the setting of the -qintsize option.

v An OpenMP routine cannot be extended or redefined, unlike generic intrinsic
procedures.

Examples

In the following example, the OpenMP routines are declared in an INTERFACE
statement.
@PROCESS SWAPOMP

INTERFACE
FUNCTION OMP_GET_THREAD_NUM()

INTEGER OMP_GET_THREAD_NUM
END FUNCTION OMP_GET_THREAD_NUM

FUNCTION OMP_GET_NUM_THREADS()
INTEGER OMP_GET_NUM_THREADS

END FUNCTION OMP_GET_NUM_THREADS
END INTERFACE

IAM = OMP_GET_THREAD_NUM()
NP = OMP_GET_NUM_THREADS()
PRINT *, IAM, NP
END

Related information

See the OpenMP execution environment, lock and timing routines section in the XL
Fortran Optimization and Programming Guide.

-qtbtable
Category

Object code control

@PROCESS

None.

Purpose

Controls the amount of debugging traceback information that is included in the
object files.

Syntax

►► -q tbtable = full
none
small

►◄

Defaults

Not applicable.

246 XL Fortran: Compiler Reference for Little Endian Distributions

Parameters

full The object code contains full traceback information. The program is
debuggable, and if it stops because of a runtime exception, it produces a
traceback listing that includes the names of all procedures in the call chain.

none The object code contains no traceback information at all. You cannot debug
the program, because a debugger or other code-examination tool cannot
unwind the program's stack at run time. If the program stops because of a
runtime exception, it does not explain where the exception occurred.

small The object code contains traceback information but not the names of
procedures or information about procedure parameters. You can debug the
program, but some non-essential information is unavailable to the
debugger. If the program stops because of a runtime exception, it explains
where the exception occurred but reports machine addresses rather than
procedure names.

Defaults
v Code compiled with -g or without -O has full traceback information

(-qtbtable=full).
v Code compiled with -O or higher optimization contains less traceback

information (-qtbtable=small).

Usage

This option is most suitable for programs that contain many long procedure
names, such as the internal names constructed for module procedures. You may
find it more applicable to C++ programs than to Fortran programs.

You can use this option to make your program smaller, at the cost of making it
harder to debug. When you reach the production stage and want to produce a
program that is as compact as possible, you can specify -qtbtable=none.
Otherwise, the usual defaults apply.

Related information
v “-g” on page 73
v “-qcompact” on page 107
v “-O” on page 83
v Debugging optimized code in the XL Fortran Optimization and Programming Guide

-qthreaded
Category

Object code control

@PROCESS

None.

Purpose

Indicates to the compiler whether it must generate threadsafe code.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 247

Syntax

►► -q threaded ►◄

Defaults

-qthreaded is the default for the xlf_r, xlf90_r, xlf95_r, xlf2003_r, and xlf2008_r
commands.

Usage

Specifying the -qthreaded option implies -qdirective=ibmt, and by default, the
trigger_constant IBMT is recognized.

The -qthreaded option does not imply the -qnosave option. The -qnosave option
specifies a default storage class of automatic for user local variables. In general,
both of these options need to be used to generate threadsafe code. Specifying these
options ensures that variables and code created by the compiler are threadsafe; it
does not guarantee the thread safety of user-written code.

The -qthreaded option does not imply the -qxlf77=nopersistent option. The
-qxlf77=nopersistent option improves thread safety by preventing the compiler
from saving the addresses of arguments to subprograms with the ENTRY
statements in static storage.

-qtimestamps
Category

“Output control” on page 47

@PROCESS

None.

Purpose

Controls whether or not implicit time stamps are inserted into an object file.

Syntax

►►
timestamps

-q notimestamps ►◄

Defaults

-qtimestamps

Usage

By default, the compiler inserts an implicit time stamp in an object file when it is
created. In some cases, comparison tools may not process the information in such
binaries properly. Controlling time stamp generation provides a way of avoiding
such problems. To omit the time stamp, use the option -qnotimestamps.

248 XL Fortran: Compiler Reference for Little Endian Distributions

This option does not affect time stamps inserted by pragmas and other explicit
mechanisms.

-qtune
Category

Optimization and tuning

@PROCESS

None.

Purpose

Tunes instruction selection, scheduling, and other architecture-dependent
performance enhancements to run best on a specific hardware architecture. Allows
specification of a target SMT mode to direct optimizations for best performance in
that mode.

Syntax

►►
balanced

-q tune = auto
pwr8 balanced

: st
smt2
smt4
smt8

►◄

Defaults

-qtune=balanced:balanced

Parameters for CPU suboptions

The following CPU suboptions allow you to specify a particular architecture for
the compiler to target for best performance:

auto
Optimizations are tuned for the platform on which the application is compiled.

balanced
Optimizations are tuned across a selected range of recent hardware.

pwr8
Optimizations are tuned for the POWER8 hardware platforms.

Parameters for SMT suboptions

The following simultaneous multithreading (SMT) suboptions allow you to
optionally specify an execution mode for the compiler to target for best
performance.

balanced
Optimizations are tuned for performance across various SMT modes for a
selected range of recent hardware.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 249

st Optimizations are tuned for single-threaded execution.

smt2
Optimizations are tuned for SMT2 execution mode (two threads).

smt4
Optimizations are tuned for SMT4 execution mode (four threads).

smt8
Optimizations are tuned for SMT8 execution mode (eight threads).

Usage

By arranging (scheduling) the generated machine instructions to take maximum
advantage of hardware features such as cache size and pipelining, -qtune can
improve performance. It only has an effect when used in combination with options
that enable optimization.

Although changing the -qtune setting may affect the performance of the resulting
executable, it has no effect on whether the executable can be executed correctly on
a particular hardware platform.

Examples

To specify that the executable program testing compiled from myprogram.f is to be
optimized for a POWER8 hardware platform configured for the SMT4 mode, enter:
xlf -o testing myprogram.f -qtune=pwr8:smt4

Related information
v “-qarch” on page 93
v "Optimizing your applications" in the XL Fortran Optimization and Programming

Guide

-qufmt
Category

Portability and migration

Purpose

Sets the byte order for I/O operations on unformatted data files.

Syntax

►►
=le

-q ufmt =be ►◄

@PROCESS:

@PROCESS UFMT[({BE | LE})]

Defaults

-qufmt=le

250 XL Fortran: Compiler Reference for Little Endian Distributions

Parameters

be Specifies that I/O operations on unformatted data files use the big-endian byte
order. This option provides compatibility with big-endian data files at the cost
of runtime performance. The byte order of non-character data and record
markers is converted in real time during I/O operations.

le Specifies that I/O operations on unformatted data files use the little-endian
byte order. This option provides better performance because data and record
markers are read and written from unformatted data files without converting
the byte order.

Usage

You can specify the byte order for I/O operations in the following ways. If more
than one is specified for the same unit and they conflict with each other, the one
that comes first in the list takes precedence:
1. Runtime option XLFRTEOPTS=ufmt_bigendian

2. CONVERT= char_expr in the OPEN statement, where char_expr is NATIVE,
BIG_ENDIAN, or LITTLE_ENDIAN

3. @PROCESS UFMT(BE) or @PROCESS UFMT(LE)
4. Compiler option -qufmt=be or -qufmt=le

Related information
v "OPEN statement" in the XL Fortran Language Reference

v “The XLFRTEOPTS environment variable” on page 34

-qundef
Category

Language element control

Purpose

-qundef is the long form of the “-u” on page 274 option.

Syntax

►►
noundef

-q undef ►◄

@PROCESS:

@PROCESS UNDEF | NOUNDEF

Defaults

-qnoundef

-qunroll
Category

Optimization and tuning

Chapter 6. Detailed descriptions of the XL Fortran compiler options 251

@PROCESS

None.

Purpose

Specifies whether unrolling DO loops is allowed in a program. Unrolling is
allowed on outer and inner DO loops.

Syntax

►►

auto
= yes

n
unroll

-q nounroll ►◄

Defaults

-qunroll=auto

Parameters

auto The compiler performs basic loop unrolling.

yes The compiler looks for more opportunities to perform loop unrolling than
that performed with -qunroll=auto. In general, this suboption has more
chances to increase compile time or program size than -qunroll=auto
processing, but it may also improve your application's performance.

n Instructs the compiler to unroll loops by a factor of n. In other words, the
body of a loop is replicated to create n copies and the number of iterations
is reduced by a factor of 1/n. The value of n must be a positive integer.

Specifying -qunroll=1 disables loop unrolling, and is equivalent to
specifying -qnounroll. If n is not specified and if -qhot, -qsmp, -O4, or -O5
is specified, the optimizer determines an appropriate unrolling factor for
each nested loop.

The compiler might limit unrolling to a number smaller than the value you
specify for n. The reason is that the option affects all loops in source files
to which it applies and large unrolling factors might significantly increase
compile time without necessarily improving runtime performance. To
specify a specific unrolling factor for particular loops, use the unroll
directive in those loops.

If you decide to unroll a loop, specifying one of the above suboptions does not
automatically guarantee that the compiler will perform the operation. Based on the
performance benefit, the compiler will determine whether unrolling will be
beneficial to the program. Experienced compiler users should be able to determine
the benefit in advance.

Usage

Specifying -qunroll with no suboptions is equivalent to -qunroll=yes.

The -qnounroll option prohibits unrolling unless you specify the
STREAM_UNROLL, UNROLL, or UNROLL_AND_FUSE directive for a

252 XL Fortran: Compiler Reference for Little Endian Distributions

particular loop. These directives always override the command line options.

Examples

In the following example, the UNROLL(2) directive is used to tell the compiler
that the body of the loop can be replicated so that the work of two iterations is
performed in a single iteration. Instead of performing 1000 iterations, if the
compiler unrolls the loop, it will only perform 500 iterations.
!IBM* UNROLL(2)

DO I = 1, 1000
A(I) = I

END DO

If the compiler chooses to unroll the previous loop, the compiler translates the loop
so that it is essentially equivalent to the following:

DO I = 1, 1000, 2
A(I) = I
A(I+1) = I + 1

END DO

Related information

See the appropriate directive on unrolling loops in the XL Fortran Language
Reference:
v STREAM_UNROLL
v UNROLL
v UNROLL_AND_FUSE

See High-order transformation in the XL Fortran Optimization and Programming Guide.

-qunwind
Category

Optimization and tuning

Purpose

Specifies that the compiler will preserve the default behavior for saves and restores
to volatile registers during a procedure call.

Syntax

►►
unwind

-q nounwind ►◄

@PROCESS:

@PROCESS UNWIND | NOUNWIND

Defaults

-qunwind

Chapter 6. Detailed descriptions of the XL Fortran compiler options 253

Usage

If you specify -qnounwind, the compiler rearranges subprograms to minimize saves
and restores to volatile registers. This rearrangement may make it impossible for
the program or debuggers to walk through or "unwind" subprogram stack frame
chains.

While code semantics are preserved, applications such as exception handlers that
rely on the default behavior for saves and restores can produce undefined results.
When using -qnounwind in conjunction with the -g compiler option, debugging
information regarding exception handling when unwinding the program's stack
can be inaccurate.

-qversion
Category

Listings, messages, and compiler information

@PROCESS

None.

Purpose

Displays the version and release of the compiler being invoked.

Syntax

►►
noversion

-q version
= verbose

►◄

Defaults

-qnoversion

Parameters

verbose
Displays information about the version, release, and level of each compiler
component installed.

Usage

When you specify -qversion, the compiler displays the version information and
exits; compilation is stopped. If you want to save this information to the output
object file, you can do so with the -qsaveopt -c options.

-qversion specified without the verbose suboption shows compiler information in
the format:
product_nameVersion: VV.RR.MMMM.LLLL

where:
V Represents the version.

254 XL Fortran: Compiler Reference for Little Endian Distributions

R Represents the release.
M Represents the modification.
L Represents the level.

For more details, see Example 1.

-qversion=verbose shows component information in the following format:
component_name Version: VV.RR(product_name) Level: component_build_date ID:
component_level_ID

where:
component_name

Specifies an installed component, such as the low-level optimizer.
component_build_date

Represents the build date of the installed component.
component_level_ID

Represents the ID associated with the level of the installed component.

For more details, see Example 2.

Example 1

The output of specifying the -qversion option:
IBM XL Fortran for Linux, V15.1.3 (5765-J10; 5725-C75)
Version: 15.01.0002.0000

Example 2

The output of specifying the -qversion=verbose option:
IBM XL Fortran for Linux, V15.1.3 (5765-J10; 5725-C75)
Version: 15.01.0003.0000
Driver Version: 15.1.3(Fortran) Level: 150508
ID: _hnbfIvWfEeSjz7qEhQiYJQ
Fortran Front End and Run Time Version: 15.1.3(Fortran) Level: 150512
ID: _mQf28vkLEeSjz7qEhQiYJQ
Fortran Transformer Version: 15.1.3(Fortran) Level: 150506
ID: _Ax_9Eu1CEeSbzZ-i2Itj4A
High-Level Optimizer Version: 13.1.3(C/C++) and 15.1.3(Fortran)
Level: 150512 ID: _mSHAgvkLEeSjz7qEhQiYJQ
Low-Level Optimizer Version: 13.1.3(C/C++) and 15.1.3(Fortran)
Level: 150511 ID: _YY5AQvhCEeSjz7qEhQiYJQ

Related information
v “-qsaveopt” on page 219
v COMPILER_VERSION

-qvisibility
Category

Optimization and tuning

Purpose

Specifies the visibility attribute for external linkage symbols in object files.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 255

Syntax

►►
default

-q visibility = hidden
protected
internal

►◄

@PROCESS:
@PROCESS VISIBILITY(suboption)

Defaults

-qvisibility=default

Parameters

default
Indicates that the affected external linkage symbols have the default visibility
attribute. These symbols are exported in shared libraries, and they can be
preempted.

hidden
Indicates that the affected external linkage symbols have the hidden visibility
attribute. These symbols are not exported to the shared libraries, but addresses
of these symbols can be referenced indirectly by pointers.

internal
Indicates that the affected external linkage symbols have the internal visibility
attribute. These symbols are not exported to the shared libraries, and addresses
of these symbols are not available to other modules in shared libraries.

protected
Indicates that the affected external linkage symbols have the protected
visibility attribute. These symbols are exported to the shared libraries, but they
cannot be preempted.

Usage

The -qvisibility option globally sets visibility attributes for external linkage
symbols. The purpose is to describe whether and how a symbol defined in one
module can be referenced or used in other modules. The symbol visibility attribute
affects the symbols with external linkage only, and cannot increase the visibility of
other symbols. Symbol preemption occurs when a symbol definition is resolved at
link time, but is replaced with another symbol definition at run time.

Example

To set the protected visibility attribute for external linkage symbols in the
compilation unit myprogram.f, run the following command:
xlf myprogram.f -qvisibility=protected -c

In this example, all external linkage symbols in the compilation unit myprogram.f
will have protected visibility.

Related information

“Linking a library to an application” on page 21
“Dynamic and static linking” on page 32
“XL Fortran output files” on page 24

256 XL Fortran: Compiler Reference for Little Endian Distributions

-qwarn64
Category

Error checking and debugging

@PROCESS

None.

Purpose

Displays informational messages identifying statements that may cause problems
with 32-bit to 64-bit migration.

This option aids in porting code from a 32-bit to a 64-bit environment by detecting
the truncation of an 8-byte integer pointer to 4 bytes.

Syntax

►►
nowarn64

-q warn64 ►◄

Defaults

-qnowarn64

Usage

The compiler flags the following situations with informational messages:
v The assignment of a reference to the LOC intrinsic to an INTEGER(4) variable.
v The assignment between an INTEGER(4) variable or INTEGER(4) constant and

an integer pointer.
v The specification of an integer pointer within a common block.
v The specification of an integer pointer within an equivalence statement.

You can use interface blocks for argument checking.

Related information
v Chapter 7, “Using XL Fortran in a 64-bit environment,” on page 281

-qxflag=dvz
Category

Error checking and debugging

@PROCESS

None.

Purpose

Causes the compiler to generate code to detect floating-point divide-by-zero
operations.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 257

Syntax

►► -q xflag = dvz ►◄

Defaults

Not applicable.

Usage

This option takes effect at optimization levels of -O or higher.

With this option on, the extra code calls the external handler function __xl_dzx
when the divisor is zero. The return value of this function is used as the result of
the division. Users are required to provide the function to handle the
divide-by-zero operations. Specifying -qxflag=dvz handles only single-precision
(REAL*4) and double-precision (REAL*8) division.

The interface of the function is as follows:
real(8) function __xl_dzx(x, y, kind_type)
real(8), value :: x, y
integer, value :: kind_type

end function

where

x is the dividend value.

y is the divisor value.

kind_type
specifies the size of the actual arguments associated with x and y.

A kind_type value equal to zero indicates that the actual arguments associated
with x and y are of type REAL(8). A kind_type value equal to one indicates that
the actual arguments associated with x and y are of type REAL(4).

The division always executes before the handler routine is called. This means that
any exception is posted and handled before the handler function is called.

Related information
v Implementation details of XL Fortran floating-point processing in the XL Fortran

Optimization and Programming Guide
v “-qflttrap” on page 132
v “Understanding XL Fortran error messages” on page 285

-qxflag=oldtab
Category

Portability and migration

Purpose

Interprets a tab in columns 1 to 5 as a single character (for fixed source form
programs).

258 XL Fortran: Compiler Reference for Little Endian Distributions

Syntax

►► -q xflag = oldtab ►◄

@PROCESS:

@PROCESS XFLAG(OLDTAB)

Defaults

By default, the compiler allows 66 significant characters on a source line after
column 6. A tab in columns 1 through 5 is interpreted as the appropriate number
of blanks to move the column counter past column 6. This default is convenient for
those who follow the earlier Fortran practice of including line numbers or other
data in columns 73 through 80.

Usage

If you specify the option -qxflag=oldtab, the source statement still starts
immediately after the tab, but the tab character is treated as a single character for
counting columns. This setting allows up to 71 characters of input, depending on
where the tab character occurs.

-qxlf77
Category

Language element control

Purpose

Provides compatibility with FORTRAN 77 aspects of language semantics and I/O
data format that have changed.

Most of these changes are required by the Fortran 90 standard.

Syntax

Option:

►►

nosofteof
nopersistent
nooldboz
leadzero
nointxor
nointarg
nogedit77
blankpad

-q xlf77 = noblankpad
gedit77
intarg
intxor
noleadzero
oldboz
persistent
softeof

►◄

Chapter 6. Detailed descriptions of the XL Fortran compiler options 259

@PROCESS:

@PROCESS XLF77(settings)

Defaults

By default, the compiler uses settings that apply to Fortran 90, Fortran 95, Fortran
2003, Fortran 2008, and the most recent compiler version in all cases.

The default suboptions are: blankpad, nogedit77, nointarg, nointxor, leadzero,
nooldboz, nopersistent, and nosofteof.

These defaults are only used by the xlf90, f90, xlf90_r, xlf95, f95, xlf95_r, xlf2003,
f2003, xlf2003_r, xlf2008, f2008, and xlf2008_r commands, which you should use to
compile new programs.

Parameters

To get various aspects of XL Fortran Version 2 behavior, select the nondefault
choice for one or more of the following suboptions. The descriptions explain what
happens when you specify the nondefault choices.

blankpad | noblankpad
For internal, direct-access, and stream-access files, uses a default setting
equivalent to pad='no'. This setting produces conversion errors when
reading from such a file if the format requires more characters than the
record has. This suboption does not affect direct-access or stream-access
files opened with a pad= specifier.

gedit77 | nogedit77
Uses FORTRAN 77 semantics for the output of REAL objects with the G
edit descriptor. Between FORTRAN 77 and Fortran 90, the representation
of 0 for a list item in a formatted output statement changed, as did the
rounding method, leading to different output for some combinations of
values and G edit descriptors.

intarg | nointarg
Converts all integer arguments of an intrinsic procedure to the kind of the
longest argument if they are of different kinds. Under Fortran 90/95 rules,
some intrinsics (for example, IBSET) determine the result type based on
the kind of the first argument; others (for example, MIN and MAX)
require that all arguments be of the same kind.

intxor | nointxor
Treats .XOR. as a logical binary intrinsic operator. It has a precedence
equivalent to the .EQV. and .NEQV. operators and can be extended with
an operator interface. (Because the semantics of .XOR. are identical to
those of .NEQV., .XOR. does not appear in the Fortran 90 or Fortran 95
language standard.)

Otherwise, the .XOR. operator is only recognized as a defined operator.
The intrinsic operation is not accessible, and the precedence depends on
whether the operator is used in a unary or binary context.

leadzero | noleadzero
Produces a leading zero in real output under the D, E, L, F, and Q edit
descriptors.

oldboz | nooldboz
Turns blanks into zeros for data read by B, O, and Z edit descriptors,

260 XL Fortran: Compiler Reference for Little Endian Distributions

regardless of the BLANK= specifier or any BN or BZ control edit
descriptors. It also preserves leading zeros and truncation of too-long
output, which is not part of the Fortran 90 or Fortran 95 standard.

persistent | nopersistent
Saves the addresses of arguments to subprograms with ENTRY statements
in static storage. This is an implementation choice that has been changed
for increased performance.

softeof | nosofteof
Allows READ and WRITE operations when a unit is positioned after its
endfile record unless that position is the result of executing an ENDFILE
statement. This suboption reproduces a FORTRAN 77 extension of earlier
versions of XL Fortran that some existing programs rely on.

Usage

If you only want to compile and run old programs unchanged, you can continue to
use the appropriate invocation command and not concern yourself with this
option.

You should only use this option if you are using existing source or data files with
Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008 and the xlf90, f90, xlf90_r,
xlf95, f95, xlf95_r, xlf2003, f2003, xlf2003_r, xlf2008, f2008, or xlf2008_r command
and find some incompatibility because of behavior or data format that has
changed.

Eventually, you should be able to recreate the data files or modify the source files
to remove the dependency on the old behavior.

-qxlf90
Category

Language element control

Purpose

Provides compatibility with the Fortran 90 standard for certain aspects of the
Fortran language.

Syntax

Option:

►►

nooldpad
signedzero
autodealloc

-q xlf90 = noautodealloc
nosignedzero
oldpad

►◄

@PROCESS:

@PROCESS XLF90(settings)

Chapter 6. Detailed descriptions of the XL Fortran compiler options 261

Defaults

The default suboptions for -qxlf90 depend on the invocation command that you
specify.

For the xlf95, f95, xlf95_r, xlf2003, f2003, xlf2003_r, xlf2008, f2008, or xlf2008_r
command, the default suboptions are signedzero, autodealloc, and nooldpad .

For all other invocation commands, the defaults are nosignedzero, noautodealloc
and oldpad .

Parameters

signedzero | nosignedzero
Determines how the SIGN(A,B) function handles signed real 0.0.If you
specify the -qxlf90=signedzero compiler option, SIGN(A,B) returns -|A|
when B=-0.0. This behavior conforms to the Fortran 95 standard and is
consistent with the IEEE standard for binary floating-point arithmetic. Note
that for the REAL(16) data type, XL Fortran never treats zero as negative
zero.

This suboption also determines whether a minus sign is printed in the
following cases:
v For a negative zero in formatted output. Again, note that for the

REAL(16) data type, XL Fortran never treats zero as negative zero.
v For negative values that have an output form of zero (that is, where

trailing non-zero digits are truncated from the output so that the
resulting output looks like zero). Note that in this case, the signedzero
suboption does affect the REAL(16) data type; non-zero negative values
that have an output form of zero will be printed with a minus sign.

When using -qxlf90=nosignedzero, consider setting the
-qstrict=nozerosigns option to improve performance.

autodealloc | noautodealloc
Determines whether the compiler deallocates allocatable objects that are
declared locally without either the SAVE or the STATIC attribute and have
a status of currently allocated when the subprogram terminates. This
behavior conforms with the Fortran 95 standard. If you are certain that you
are deallocating all local allocatable objects explicitly, you may want to turn
off this suboption to avoid possible performance degradation.

oldpad | nooldpad
When the PAD=specifier is present in the INQUIRE statement, specifying
-qxlf90=nooldpad returns UNDEFINED when there is no connection, or
when the connection is for unformatted I/O. This behavior conforms with
the Fortran 95 standard and above. Specifying -qxlf90=oldpad preserves
the Fortran 90 behavior.

Examples

Consider the following program:
PROGRAM TESTSIGN
REAL X, Y, Z
X=1.0
Y=-0.0
Z=SIGN(X,Y)
PRINT *,Z
END PROGRAM TESTSIGN

262 XL Fortran: Compiler Reference for Little Endian Distributions

The output from this example depends on the invocation command and the
-qxlf90 suboption that you specify. For example:

Invocation Command/xlf2008 Suboption Output

xlf2008 -1.0

xlf2008 -qxlf90=signedzero -1.0

xlf2008 -qxlf90=nosignedzero 1.0

xlf2003 -1.0

xlf2003 -qxlf90=signedzero -1.0

xlf2003 -qxlf90=nosignedzero 1.0

xlf95 -1.0

xlf95 -qxlf90=signedzero -1.0

xlf95 -qxlf90=nosignedzero 1.0

xlf90 1.0

xlf 1.0

Related information
v See the SIGN information in the Intrinsic Procedures section and the Array

concepts section of the XL Fortran Language Reference.
v “-qstrict” on page 236

-qxlf2003
Category

Language element control

Purpose

Provides the ability to use language features specific to the Fortran 2003 standard
when compiling with compiler invocations that conform to earlier Fortran
standards, as well as the ability to disable these features when compiling with
compiler invocations that conform to the Fortran 2003 standard.

Syntax

Option:

Chapter 6. Detailed descriptions of the XL Fortran compiler options 263

►► ▼

:
volatile
stopexcept
signdzerointr
POLYmorphic
nooldnaninf
nodynamicacval
bozlitargs
autorealloc

-q xlf2003 = noautorealloc
nobozlitargs
dynamicacval
oldnaninf
NOPOLYmorphic
nosigndzerointr
nostopexcept
novolatile

►◄

@PROCESS:

@PROCESS XLF2003(suboption,suboption,...)

Defaults

The default suboption depends on the invocation command that you specify.

The f2003, xlf2003, or xlf2003_r command has the following defaults:

autorealloc:bozlitargs:nodynamicacval:nooldnaninf:polymorphic:signdzerointr:

stopexcept:volatile

All other invocation commands have the following defaults:

noautorealloc:nobozlitargs:nodynamicacval:oldnaninf:nopolymorphic:

nosigndzerointr:nostopexcept:novolatile

Parameters

autorealloc | noautorealloc
Controls whether the compiler automatically reallocates the left-hand-side
(LHS) with the shape of the right-hand-side (RHS) when assigning into an
allocatable variable. If the LHS variable was not allocated before the
assignment, it is allocated automatically. The default is autorealloc for the
f2003, xlf2003, and xlf2003_r commands, and noautorealloc for all other
commands. This suboption has no effect on reallocation when the values of
length type parameters in the LHS and RHS differ.

bozlitargs | nobozlitargs
The bozlitargs suboption ensures that the passing of boz-literal constants
as arguments to the INT, REAL, CMPLX, or DBLE intrinsic function
conforms to the Fortran 2003 standard. The default is bozlitargs for the
f2003, xlf2003, and xlf2003_r commands. The -qlanglvl=2003pure or
-qlanglvl=2003std option must be specified, as well. If -qport=typlssarg
and -qxlf2003=bozlitargs are specified, passing boz-literal constants to
the CMPLX intrinsic will yield non-standard results.

264 XL Fortran: Compiler Reference for Little Endian Distributions

dynamicacval | nodynamicacval
When dynamicacval is in effect, the dynamic types of array constructor
values are used to determine the type of the array constructors and you
can use unlimited polymorphic entities in array constructors. When
nodynamicacval is in effect, the declared types of array constructor values
are used to determine the type of the array constructors and you cannot
use unlimited polymorphic entities in array constructors.

Note: To make the -qxlf2003=dynamicacval option effective, you must also
specify -qxlf2003=polymorphic.

oldnaninf | nooldnaninf
The oldnaninf suboption controls the formatting of the output of IEEE
NaN and infinity exceptional values. This suboption has no effect on input.
When oldnaninf is in effect, the compiler uses the XL Fortran V10.1 (and
earlier) behavior for output. That is, INF for infinity, NAN for a quiet or
signaling NaN.

When nooldnaninf is in effect, the compiler output for IEEE exceptional
values is compliant with the Fortran 2003 standard. That is, Inf for infinity,
NaN(Q) for a quiet NaN, and NaN(S) for a signaling NaN.

polymorphic | nopolymorphic
When polymorphic is in effect, the compiler allows polymorphic items in
Fortran source files. You can specify the CLASS type specifier, the SELECT
TYPE construct, and use polymorphic items in other Fortran statements.
The use of the polymorphic argument also causes the compiler to produce
runtime type information for each derived type definition.

When nopolymorphic is in effect, polymorphic items cannot be specified
in Fortran source files and no runtime type information is generated.

signdzerointr | nosigndzerointr
When signdzerointr is in effect, the passing of signed zeros to the SQRT,
LOG, and ATAN2 intrinsic functions returns results consistent with the
Fortran 2003 standard. The -qxlf90=signedzero option must be in effect, as
well. For the xlf, xlf_r, f77, fort77, xlf90, xlf90_r, and f90 invocations,
specify both options to have the Fortran 2003 behavior.

The following example shows the use of this suboption:
! If the Test program is compiled with -qxlf2003=signdzerointr
! and -qxlf90=signedzero, then Fortran 2003 behavior is seen.
! Otherwise, this program will demonstrate Fortran 95 behavior.

Program Test

real a, b
complex j, l
a = -0.0
j = sqrt(cmplx(-1.0,a))
b = atan2(a,-1.0)
l = log(cmplx(-1.0,a))
print *, ’j=’, j
print *, ’b=’, b
print *, ’l=’, l
end

! Fortran 95 output:

j= (-0.0000000000E+00,1.000000000)
b= 3.141592741
l= (0.0000000000E+00,3.141592741)

Chapter 6. Detailed descriptions of the XL Fortran compiler options 265

! Fortran 2003 output:

j= (0.0000000000E+00,-1.000000000)
b= -3.141592741
l= (0.0000000000E+00,-3.141592741)

stopexcept | nostopexcept
When stopexcept is in effect, informational messages are displayed when
IEEE floating-point exceptions are signaled by a STOP statement. Messages
have the format:
STOP [stop-code]
(OVERFLOW, DIV-BY-ZERO, INVALID, UNDERFLOW, INEXACT)

where stop-code corresponds to the optional digit string or character
constant specified in the STOP statement. OVERFLOW, DIV-BY-ZERO, INVALID,
UNDERFLOW and INEXACT appear only if the corresponding flag is set.

The following example shows corresponding messages generated:
real :: rl1, rl2, rl3, rl4
logical :: l

rl1 = 1.3
rl2 = 0.0

rl3 = rl1 / rl2 ! divide by zero

rl4 = rl3 ! to make sure rl3 is actually used

rl4 = log(-rl1) ! invalid input for log

stop "The End"

end

Output:

STOP The End
(DIV-BY-ZERO, INVALID)

When nostopexcept is in effect, informational messages are suppressed.

volatile | novolatile
When volatile is in effect, a nonvolatile entity that is use- or
host-associated can be specified as VOLATILE in inner or local scope.

Usage

If the application uses F2003 polymorphism, you must compile every unit with
polymorphic specified. If the application does not use polymorphism, specify the
nopolymorphic suboption; doing so may save compilation time and potentially
improve runtime performance.

Related information

See the following information in XL Fortran Language Reference:
v Polymorphic entities
v Array constructors

266 XL Fortran: Compiler Reference for Little Endian Distributions

-qxlf2008
Category

Language element control

Purpose

Provides the ability to use language features specific to the Fortran 2008 standard
when compiling with compiler invocations that conform to earlier Fortran
standards, as well as the ability to disable these features when compiling with
compiler invocations that conform to the Fortran 2008 standard.

Syntax

Option:

►►
checkpresence

-q xlf2008 = nocheckpresence ►◄

@PROCESS:

@PROCESS XLF2008(suboption,suboption,...)

Defaults

The default suboption depends on the invocation command that you specify.

The f2008, xlf2008, and xlf2008_r commands have the following default:

checkpresence

All other invocation commands have the following default:

nocheckpresence

Parameters

checkpresence | nocheckpresence
When checkpresence is in effect, dummy argument presence is checked
according to the Fortran 2008 standard. When nocheckpresence is in effect,
dummy argument presence is checked according to previous Fortran
standards. For more information about dummy argument presence, see
Restrictions on optional dummy arguments not present.

Note: When -qxlf2008=checkpresence is in effect, the performance of your
program is inhibited because of runtime checks for the allocation and
association status of actual arguments. To avoid these performance
impacts, consider using -qxlf2008=nocheckpresence.

-qxlines
Category

Input control

Chapter 6. Detailed descriptions of the XL Fortran compiler options 267

Purpose

Specifies whether fixed source form lines with an X in column 1 are compiled or
treated as comments.

This option is similar to the recognition of the character 'd' in column 1 as a
conditional compilation (debug) character. The -qxlines option recognizes the
character 'x' in column 1 as a conditional compilation character when this compiler
option is enabled. The 'x' in column 1 is interpreted as a blank, and the line is
handled as source code.

Syntax

Option:

►►
noxlines

-q xlines ►◄

@PROCESS:

@PROCESS XLINES | NOXLINES

Defaults

-qnoxlines

This option is set to -qnoxlines by default, and lines with the character 'x' in
column 1 in fixed source form are treated as comment lines.

While the -qxlines option is independent of -D, all rules for debug lines that apply
to using 'd' as the conditional compilation character also apply to the conditional
compilation character 'x'.

The -qxlines compiler option is only applicable to fixed source form.

Usage

The conditional compilation characters 'x' and 'd' may be mixed both within a
fixed source form program and within a continued source line. If a conditional
compilation line is continued onto the next line, all the continuation lines must
have 'x' or 'd' in column 1. If the initial line of a continued compilation statement is
not a debugging line that begins with either 'x' or 'd' in column 1, subsequent
continuation lines may be designated as debug lines as long as the statement is
syntactically correct.

The OMP conditional compilation characters '!$', 'C$', and '*$' may be mixed with
the conditional characters 'x' and 'd' both in fixed source form and within a
continued source line. The rules for OMP conditional characters will still apply in
this instance.

Examples

An example of a base case of -qxlines:
C2345678901234567890

program p
i=3 ; j=4 ; k=5

X print *,i,j

268 XL Fortran: Compiler Reference for Little Endian Distributions

X + ,k
end program p

<output>: 3 4 5 (if -qxlines is on)
no output (if -qxlines is off)

In this example, conditional compilation characters 'x' and 'd' are mixed, with 'x' on
the initial line:

C2345678901234567890
program p
i=3 ; j=4 ; k=5

X print *,i,
D + j,
X + k

end program p

<output>: 3 4 5 (if both -qxlines and -qdlines are on)
3 5 (if only -qxlines is turned on)

Here, conditional compilation characters 'x' and 'd' are mixed, with 'd' on the initial
line:

C2345678901234567890
program p
i=3 ; j=4 ; k=5

D print *,i,
X + j,
D + k

end program p

<output>: 3 4 5 (if both -qxlines and -qdlines are on)
3 5 (if only -qdlines is turned on)

In this example, the initial line is not a debug line, but the continuation line is
interpreted as such, since it has an 'x' in column 1:

C2345678901234567890
program p
i=3 ; j=4 ; k=5
print *,i

X + ,j
X + ,k

end program p

<output>: 3 4 5 (if -qxlines is on)
3 (if -qxlines is off)

Related information
v “-D” on page 69
v Conditional compilation in the XL Fortran Language Reference

-qxref
Category

Listings, messages, and compiler information

Purpose

Produces a compiler listing that includes the cross-reference component of the
attribute and cross-reference section of the listing.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 269

Syntax

►►
noxref

-q xref
= full

►◄

@PROCESS:

@PROCESS XREF[(FULL)] | NOXREF

Defaults

-qnoxref

Usage

If you specify only -qxref, only identifiers that are used are reported. If you
specify -qxref=full, the listing contains information about all identifiers that
appear in the program, whether they are used or not.

If -qxref is specified after -qxref=full, the full cross-reference listing is still
produced.

You can use the cross-reference listing during debugging to locate problems such
as using a variable before defining it or entering the wrong name for a variable.

Related information
v “Listings, messages, and compiler information” on page 56
v “Attribute and cross reference section” on page 297

-qzerosize
Category

“Language element control” on page 50

Purpose

Determines whether checking for zero-sized character strings and arrays takes
place in programs that might process such objects.

Syntax

►► -q nozerosize
zerosize

►◄

@PROCESS:

@PROCESS ZEROSIZE | NOZEROSIZE

Defaults

The default setting depends on which command invokes the compiler:
v -qzerosize for the f90, xlf90, xlf90_r, f95, xlf95, xlf95_r, f2003, xlf2003,

xlf2003_r, f2008, xlf2008, and xlf2008_r commands

270 XL Fortran: Compiler Reference for Little Endian Distributions

v -qnozerosize for the xlf and xlf_r commands when they are used to compile the
.f, .F, .f77, or .F77 files

v -qnozerosize for the f77 and fort77 commands

Usage

Use -qzerosize for Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008
programs that might process zero-sized character strings and arrays.

For FORTRAN 77 programs, where zero-sized objects are not allowed, or for
Fortran 90 and Fortran 95 programs that do not use them, compiling with
-qnozerosize can improve the performance of some array or character-string
operations.

Runtime checking performed by the -C option takes slightly longer when
-qzerosize is in effect.

-r
Category

Object code control

@PROCESS

None.

Purpose

Produces a nonexecutable output file to use as an input file in another ld
command call. This file may also contain unresolved symbols.

Syntax

►► -r ►◄

Defaults

Not applicable.

Usage

A file produced with this flag is expected to be used as an input file in another
compiler invocation or ld command call.

Predefined macros

None.

Examples

To compile myprogram.f and myprog2.f into a single object file mytest.o, enter:
xlf myprogram.f myprog2.f -r -o mytest.o

Chapter 6. Detailed descriptions of the XL Fortran compiler options 271

-S
Category

Output control

@PROCESS

None.

Purpose

Generates an assembler language file for each source file.

Syntax

►► -S ►◄

Rules

When this option is specified, the compiler produces the assembler source files as
output instead of an object or an executable file.

Restrictions

The generated assembler files do not include all the data that is included in a .o
file by -qipa or -g.

Examples
xlf95 -O3 -qhot -S test.f # Produces test.s

Related information

The -o option can be used to specify a name for the resulting assembler source file.

-t
Category

Compiler customization

@PROCESS

None.

Purpose

Applies the prefix specified by the -B option to the designated components.

Syntax

272 XL Fortran: Compiler Reference for Little Endian Distributions

►► ▼-t a
b
c
d
F
h
I
l
z

►◄

Defaults

The default paths for all of the compiler components are defined in the compiler
configuration file.

Parameters

The following table shows the correspondence between -t parameters and the
component names:

Parameter Description Component name

a The assembler as

b The low-level optimizer xlfcode

c The compiler front end xlfentry

d The disassembler dis

F The C preprocessor cpp

h The array language
optimizer

xlfhot

I (uppercase i) The high-level optimizer,
compile step

ipa

l (lowercase L) The linker ld

z The binder bolt

Usage

Use this option with the -Bprefix option.

Examples

To compile myprogram.f so that the name /u/newones/compilers/ is prefixed to the
compiler and assembler program names, enter:
xlf myprogram.f -B/u/newones/compilers/ -tca

Related information
v “-B” on page 67

Chapter 6. Detailed descriptions of the XL Fortran compiler options 273

-U
Category

Input control

Purpose

Makes the compiler sensitive to the case of letters in names.

Syntax

►► -U ►◄

@PROCESS:

@PROCESS MIXED | NOMIXED

Defaults

By default, the compiler interprets all names as if they were in lowercase. For
example, Abc and ABC are both interpreted as abc and so refer to the same object.

Usage

You can use this option when writing mixed-language programs, because Fortran
names are all lowercase by default, while names in C and other languages may be
mixed-case.

If -U is specified, case is significant in names. For example, the names Abc and ABC
refer to different objects.

This option changes the link names used to resolve calls between compilation
units. It also affects the names of modules and F2008 submodules F2008

and

thus the names of their .mod and .smod files.

Restrictions

The names of intrinsics must be all in lowercase when -U is in effect. Otherwise,
the compiler may accept the names without errors, but the compiler considers
them to be the names of external procedures, rather than intrinsics.

Related information

This is the short form of -qmixed. See “-qmixed” on page 186.

-u
Category

Language element control

Purpose

Specifies that no implicit typing of variable names is permitted.

274 XL Fortran: Compiler Reference for Little Endian Distributions

It has the same effect as using the IMPLICIT NONE statement in each scope that
allows implicit statements.

Syntax

►► -u ►◄

@PROCESS:

@PROCESS UNDEF | NOUNDEF

Defaults

-qnoundef, which allows implicit typing.

Related information

See IMPLICIT in the XL Fortran Language Reference.

This is the short form of -qundef. See “-qundef” on page 251.

-v
Category

Listings, messages, and compiler information

@PROCESS

None.

Purpose

Reports the progress of compilation, by naming the programs being invoked and
the options being specified to each program.

Syntax

►► -v ►◄

Defaults

Not applicable.

Usage

For a particular compilation, examining the output that this option produces can
help you determine:
v What files are involved
v What options are in effect for each step
v How far a compilation gets when it fails

Related information
v “-#” on page 66 is similar to -v, but it does not actually execute any of the

compilation steps.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 275

v “-V”

-V
Category

Listings, messages, and compiler information

@PROCESS

None.

Purpose

The same as -v except that you can cut and paste directly from the display to
create a command.

Defaults

Not applicable.

Syntax

►► -V ►◄

Related information
v “-v” on page 275
v “-#” on page 66

-W
Category

Compiler customization

@PROCESS

None.

Purpose

Passes the listed options to a component that is executed during compilation.

Syntax

276 XL Fortran: Compiler Reference for Little Endian Distributions

►► ▼ ▼-W a , option
b
c
d
F
h
I
L
l
z

►◄

Parameters

option
Any option that is valid for the component to which it is being passed.

The following table shows the correspondence between -W parameters and the
component names:

Parameter Description Component name

a The assembler as

b The low-level optimizer xlfcode

c The compiler front end xlfentry

d The disassembler dis

F The C preprocessor cpp

h The array language
optimizer

xlfhot

I (uppercase i) The high-level optimizer,
compile step

ipa

L The high-level optimizer, link
step

ipa

l (lowercase L) The linker ld

z The binder bolt

Usage

In the string following the -W option, use a comma as the separator for each
option, and do not include any spaces. If you need to include a character that is
special to the shell in the option string, precede the character with a backslash. For
example, if you use the -W option in the configuration file, you can use the escape
sequence backslash comma (\,) to represent a comma in the parameter string.

You do not need the -W option to pass most options to the linker ld; unrecognized
command-line options, except -q options, are passed to it automatically. Only
linker options with the same letters as compiler options, such as -v or -S, strictly
require -W.

Examples

To compile the file file.f and pass the linker option -berok to the linker, enter the
following command:

Chapter 6. Detailed descriptions of the XL Fortran compiler options 277

xlf -Wl,-berok file.f

To compile the file uses_many_symbols.f and the assembly file
produces_warnings.s so that produces_warnings.s is assembled with the assembler
option -x (issue warnings and produce cross-reference), and the object files are
linked with the option -s (write list of object files and strip final executable file),
issue the following command:
xlf -Wa,-x -Wl,-s produces_warnings.s uses_many_symbols.f

In the following example, the \, embeds a literal comma in the -WF string and
causes three arguments, rather than four, to be supplied to the C preprocessor.

$ xlf -qfree=f90 ’-WF,-Dint1=1,-Dint2=2,-Dlist=3\,4’ a.F
$ cat a.F
print *, int1
print *, int2
print *, list
end

The output from the program will be:
$./a.out
1
2
3 4

Related information
v “Passing command-line options to the "ld" or "as" command” on page 28

-w
Category

Listings, messages, and compiler information

@PROCESS

None.

Purpose

Suppresses warning messages (equivalent to -qflag=e:e).

Syntax

►► -w ►◄

Defaults

Not applicable.

Related information
v “-qflag” on page 126

278 XL Fortran: Compiler Reference for Little Endian Distributions

-y
Category

Floating-point and integer control

Purpose

Specifies the rounding mode for the compiler to use when evaluating constant
floating-point expressions at compile time.

It is equivalent to the -qieee option.

Syntax

►►
n

-y m
p
z

►◄

@PROCESS:

@PROCESS IEEE(Near | Minus | Plus | Zero)

Defaults

-yn

Parameters

n Round to nearest.

m Round toward minus infinity.

p Round toward plus infinity.

z Round toward zero.

Usage

If your program contains operations involving real(16) values, the rounding mode
must be set to -yn, round-to-nearest.

Related information
v “-O” on page 83
v “-qfloat” on page 127
v “-qieee” on page 146

Chapter 6. Detailed descriptions of the XL Fortran compiler options 279

280 XL Fortran: Compiler Reference for Little Endian Distributions

Chapter 7. Using XL Fortran in a 64-bit environment

The 64-bit environment addresses an increasing demand for larger storage
requirements and greater processing power. The Linux operating system provides
an environment that allows you to develop and execute programs that exploit
64-bit processors through the use of 64-bit address space.

© Copyright IBM Corp. 1990, 2015 281

282 XL Fortran: Compiler Reference for Little Endian Distributions

Chapter 8. Tracking compiler license usage

You can enable IBM Software License Metric (SLM) Tags logging to track compiler
license usage. This information can help you determine whether your
organization's use of the compiler exceeds your compiler license entitlements.

Understanding compiler license tracking
You can enable IBM Software License Metric (SLM) Tags logging in the compiler so
that IBM License Metric Tool (ILMT) can track compiler license usage.

The compiler logs the usage of the following two types of compiler licenses:
v Authorized user licenses: Each compiler license is tied to a specific user ID,

designated by that user's uid.
v Concurrent user licenses: A certain number of concurrent users are authorized

to use the compiler license at any given time.

In IBM XL Fortran for Linux, V15.1.3, SLM Tags logging is provided for evaluation
purposes only, and logging is enabled only when you specify the -qxflag=slmtags
compiler option to invoke the license metric logging. When logging is enabled, the
compiler logs compiler license usage in the SLM Tags format, to files in the
/user_home/xl-slmtags directory, where /user_home is the user's home directory.
The compiler logs each compiler invocation as either a concurrent user or an
authorized user invocation, depending on the presence of the invoking user's uid
in a file that lists the authorized users.

Setting up SLM Tags logging
If your compiler license is an authorized user license, use these steps to set up XL
compiler SLM Tags logging.

Procedure
1. Determine which user IDs are from authorized users.
2. Create a file with the name XLAuthorizedUsers in the /etc directory. The file

contains information for authorized users, one line for each user. Each line
should contain only the numeric uid of the authorized user followed by a
comma, and the Software ID (SWID) of the authorized product.
You can obtain the uid of a user ID by using the id -u username command,
where you replace username with the user ID you are looking up.
You can find the SWID of the product by running the following command:
grep persistentId /opt/ibm/xlf/V.R.M/swidtag/*.swidtag

where V.R.M is the Version.Release.Modification level of the compiler that is
installed on the system.
For IBM XL Fortran for Linux, the SWID is 0bce7313f2a24da7b1b27f33294ffe70,
which does not change across compiler versions or for different installation
instances.
Suppose that you have three authorized users whose IDs are bsmith, rsingh,
and jchen. For these user IDs you enter the following commands and see the
corresponding output in a command shell:

© Copyright IBM Corp. 1990, 2015 283

$id -u bsmith
24461
$id -u rsingh
9204
$id -u jchen
7531

Then you create /etc/XLAuthorizedUsers with the following lines to authorize
these users to use the compiler:
24461,0bce7313f2a24da7b1b27f33294ffe70
9204,0bce7313f2a24da7b1b27f33294ffe70
7531,0bce7313f2a24da7b1b27f33294ffe70

3. Set /etc/XLAuthorizedUsers to be readable by all users invoking the compiler:
chmod a+r /etc/XLAuthorizedUsers

What to do next

SLM Tags logging is enabled when you specify the -qxflag=slmtags option. You
can add this option to the compiler invocation command for a given invocation. If
you want all compiler invocations to have SLM Tags logging enabled, you can add
this option to the appropriate stanza in your compiler configuration file.

If a user's uid is listed in /etc/XLAuthorizedUsers, the compiler will log an
authorized user invocation along with the SWID of the compiler being used each
time the compiler is invoked with the -qxflag=slmtags option. Otherwise the
compiler will log a concurrent user invocation.

Note that XL compiler SLM Tags logging does not enforce license compliance. It
only logs compiler invocations so that you can use the collected data and IBM
License Metric Tool to determine whether your use of the compiler is within the
terms of your compiler license.
Related information:

IBM License Metric Tool (ILMT)

284 XL Fortran: Compiler Reference for Little Endian Distributions

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/IBM+License+Metric+Tool

Chapter 9. Problem determination and debugging

This section describes some methods you can use for locating and fixing problems
in compiling or executing your programs.

Understanding XL Fortran error messages
Most information about potential or actual problems comes through messages from
the compiler or application program. These messages are written to the standard
error stream.

Error severity
Compilation errors can have the following severity levels (from the highest to the
lowest):

U An unrecoverable error. Compilation failed because of an internal
compile-time error.

S A severe error. Compilation failed due to one of the following:
v An unrecoverable program error has been detected. Processing of the

source file stops, and XL Fortran does not produce an object file. You can
usually correct this error by fixing any program errors that were
reported during compilation.

v Conditions exist that the compiler could not correct. An object file is
produced; however, you should not attempt to run the program.

v An internal compiler table has overflowed. Processing of the program
stops, and XL Fortran does not produce an object file.

v An include file does not exist. Processing of the program stops, and XL
Fortran does not produce an object file.

E An error that the compiler can correct. The program should run correctly.

W Warning message. It does not signify an error but may indicate some
unexpected condition.

L Warning message that was generated by one of the compiler options that
check for conformance to various language levels. It may indicate a
language feature that you should avoid if you are concerned about
portability.

I Informational message. It does not indicate any error, just something that
you should be aware of to avoid unexpected behavior or to improve
performance.

Note:
v The message levels S and U indicate a compilation failure.
v The message levels I, L, W, and E do not indicate a compilation failure.

By default, the compiler stops without producing output files if it encounters a
severe error (severity S). However, you can control how the messages are
generated by using the following options:
v You can make the compiler stop for less severe errors by specifying a different

severity with the -qhalt option. For example, with -qhalt=e, the compiler stops

© Copyright IBM Corp. 1990, 2015 285

if it encounters any errors of severity E or higher severity. This technique can
reduce the amount of compilation time that is needed to check the syntactic and
semantic validity of a program.

v You can limit low-severity messages without stopping the compiler by using the
-qflag option.

v You can stop compilation when a specified error message is generated by using
the -qhaltonmsg option.

v You can stop compilation when a specified number of errors of a specified
minimum severity level is reached by using the -qmaxerr option.

v If you simply want to prevent specific messages from going to the output
stream, see -qsuppress.

Compiler return codes
The compiler return codes and their respective meanings are as follows:
0 The compiler did not encounter any errors severe enough to make it stop

processing a compilation unit.
1 The compiler encountered an error of severity high enough to halt the

compilation. Depending on the level of halt_severity, the compiler might
have continued processing the compilation units with errors.

40 An option error.
41 A configuration file error.
250 An out-of-memory error. The compiler cannot allocate any more memory

for its use.
251 A signal received error. An unrecoverable error or interrupt signal is

received.
252 A file-not-found error.
253 An input/output error. Cannot read or write files.
254 A fork error. Cannot create a new process.
255 An error while executing a process.

Runtime return codes
If an XLF-compiled program ends abnormally, the return code to the operating
system is 1.

If the program ends normally, the return code is 0 (by default) or is
MOD(digit_string,256) if the program ends because of a STOP digit_string
statement.

Format of XL Fortran diagnostic messages
In addition to the diagnostic message issued, the source line and a pointer to the
position in the source line at which the error was detected are printed or displayed
if you specify the -qsource compiler option. If -qnosource is in effect, the file
name, the line number, and the column position of the error are displayed with the
message.

The format of an XL Fortran diagnostic message is:

►► 15 cc - nnn message_text
(severity_letter)

►◄

where:

15 Indicates an XL Fortran message

286 XL Fortran: Compiler Reference for Little Endian Distributions

cc Is the component number, as follows:

00 Indicates a code generation or optimization message

01 Indicates an XL Fortran common message

11-20 Indicates a Fortran-specific message

25 Indicates a runtime message from an XL Fortran application
program

85 Indicates a loop-transformation message

86 Indicates an interprocedural analysis (IPA) message

87 Indicates a runtime message from the SMP library

nnn Is the message number

severity_letter
Indicates how serious the problem is, as described in the preceding section

'message text'
Is the text describing the error

Limiting the number of compile-time messages
If the compiler issues many low-severity (I or W) messages concerning problems
you are aware of or do not care about, use the -qflag option or its short form -w
to limit messages to high-severity ones:
E, S, and U messages go in listing; U messages are displayed on screen.
xlf95 -qflag=e:u program.f

E, S, and U messages go in listing and are displayed on screen.

xlf95 -w program.f

Fixing installation or system environment problems
If individual users or all users on a particular machine have difficulty running the
compiler, there may be a problem in the system environment. Here are some
common problems and solutions:

A compilation fails with an I/O error.

System action:
The compilation fails with an I/O error.

User response:
Increase the size of the /tmp filesystem, or set the environment variable
TMPDIR to the path of a filesystem that has more free space.

Explanation:
The object file may have grown too large for the filesystem that holds it.
The cause could be a very large compilation unit or initialization of all or
part of a large array in a declaration.

Could not load program program

Message:

Could not load program program
Error was: not enough space

Chapter 9. Problem determination and debugging 287

System action:
The system cannot execute the compiler or an application program at all.

User response:

Set the storage limits for stack and data to “unlimited” for users who
experience this problem. For example, you can set both your hard and soft
limits with these bash commands:

ulimit -s unlimited
ulimit -d unlimited

Or, you may find it more convenient to edit the file /etc/security/
limits.conf to give all users unlimited stack and data segments (by
entering -1 for these fields).

If the storage problem is in an XLF-compiled program, using the -qsave or
-qsmallstack option might prevent the program from exceeding the stack
limit.

Explanation:
The compiler allocates large internal data areas that may exceed the
storage limits for a user. XLF-compiled programs place more data on the
stack by default than in previous versions, also possibly exceeding the
storage limit. Because it is difficult to determine precise values for the
necessary limits, we recommend making them unlimited.

Could not load library library_name

Message:

Could not load library library_name.so
Error was: no such file or directory

User response:
Make sure the XL Fortran libraries are installed in /opt/ibm/xlf/15.1.3/lib,
or set the LD_RUN_PATH environment variables to include the directory
where libxlf90.alibxlf90.so is installed if it is in a different directory. See
“Setting library search paths” on page 8 for details of this environment
variable.

Internal compiler error

System action:
The compilation fails with an internal compiler error.

User response:
Try increasing the stack size. For example, you can set both your hard and
soft limits with the ulimit bash command or edit the file
/etc/security/limits.conf to modify the stack segment. If the error still
occurs after you increase the stack size, you must take other measures.

Note: Only some internal compiler errors are caused by the limited stack
size. An example scenario where such an internal compiler error might
occur is when you compile a program that reads module symbol files in
which large derived types are defined.

invocation_command: not found

System action:
The shell cannot locate the command to execute the compiler.

288 XL Fortran: Compiler Reference for Little Endian Distributions

User response:
Make sure that your PATH environment variable includes the directory
/opt/ibm/xlf/15.1.3/bin. If the compiler is properly installed, the
commands you need to execute it are in this directory.

Too many individual makefiles and compilation scripts

System action:
There are too many individual makefiles and compilation scripts to easily
maintain or track.

User response:
Add stanzas to the configuration file, and create links to the compiler by
using the names of these stanzas. By running the compiler with different
command names, you can provide consistent groups of compiler options
and other configuration settings to many users.

Fixing compile-time problems
The following sections discuss common problems you might encounter while
compiling and how to avoid them.

Duplicating extensions from other systems

Some ported programs may cause compilation problems because they rely on
extensions that exist on other systems. XL Fortran supports many extensions like
these, but some require compiler options to turn them on. See “Portability and
migration” on page 62 for a list of these options and Porting programs to XL Fortran
in the XL Fortran Optimization and Programming Guide for a general discussion of
porting.

Isolating problems with individual compilation units

If you find that a particular compilation unit requires specific option settings to
compile properly, you may find it more convenient to apply the settings in the
source file through an @PROCESS directive. Depending on the arrangement of
your files, this approach may be simpler than recompiling different files with
different command-line options.

Compiling with threadsafe commands

Threadsafe invocation commands like xlf_r or xlf90_r, for example, use different
search paths and call different modules than the non threadsafe invocations. Your
programs should account for the different usages. Programs that compile and run
successfully for one environment may produce unexpected results when compiled
and run for a different use. The configuration file, xlf.cfg, shows the paths,
libraries, and so on for each invocation command. (See “Editing the default
configuration file” on page 13 for an explanation of its contents.)

Running out of machine resources

If the operating system runs low on resources (page space or disk space) while one
of the compiler components is running, you should receive one of the following
messages:
1501-229 Compilation ended because of lack of space.

1517-011 Compilation ended. No more system resources available.

Chapter 9. Problem determination and debugging 289

1501-053 (S) Too much initialized data.
1501-511. Compilation failed for file [filename].

You may need to increase the system page space and recompile your program. See
the man page information man 8 mkswap swapon for more information about
page space.

If your program produces a large object file, for example, by initializing all or part
of a large array, you may need to do one of the following:
v Increase the size of the filesystem that holds the /tmp directory.
v Set the TMPDIR environment variable to a filesystem with a lot of free space.
v For very large arrays, initialize the array at run time rather than statically (at

compile time).

Compilation failure because of internal alias table overflow

At an optimization level of -O2 or higher, XL Fortran compiler computes alias
information to ensure that the optimizer preserves the semantics of the application.
Alias computation might be an expensive process in terms of space usage,
depending on the object definitions and language constructs used in an
application. In rare occasions, the internal alias table might overflow, which causes
the compilation to fail. Such overflow might occur when a module defines or uses
derived-type objects that contain a large number of ultimate components, and
passes the objects as dummy arguments to a large number of procedures that are
defined in the same module. Partitioning the set of module procedures and placing
each partition in a separate module might resolve the overflow problem.

Fixing link-time problems
After the XL Fortran compiler processes the source files, the linker links the
resulting object files together. Any messages issued at this stage come from the ld
command. A frequently encountered error and its solution are listed here for your
convenience:

Undefined or unresolved symbols detected

Message:
filename.o(.text+0x14): undefined reference to "p"
filename.o(.text+0x14): relocation truncated to fit: R_PPC_REL24 p

System action:
A program cannot be linked because of unresolved references.

Explanation:
Either needed object files or libraries are not being used during linking,
there is an error in the specification of one or more external names, or
there is an error in the specification of one or more procedure interfaces.

User response:
You may need to do one or more of the following actions:
v Compile again with the -Wl or -M option to create a file that contains

information about undefined symbols.
v Make sure that if you use the -U option, all intrinsic names are in

lowercase.

290 XL Fortran: Compiler Reference for Little Endian Distributions

Fixing runtime problems
XL Fortran issues error messages during the running of a program in either of the
following cases:
v XL Fortran detects an input/output error. “Setting runtime options” on page 34

explains how to control these kinds of messages.
v XL Fortran detects an exception error, and the default exception handler is

installed (through the -qsigtrap option or a call to SIGNAL). To get a more
descriptive message than Core dumped, you may need to run the program from
within gdb.
The causes for runtime exceptions are listed in “XL Fortran runtime exceptions”
on page 45.

You can investigate errors that occur during the execution of a program by using a
symbolic debugger, such as gdb.

Duplicating extensions from other systems

Some ported programs may not run correctly if they rely on extensions that are
found on other systems. XL Fortran supports many such extensions, but you need
to turn on compiler options to use some of them. See “Portability and migration”
on page 62 for a list of these options and Porting programs to XL Fortran in the XL
Fortran Optimization and Programming Guide for a general discussion of porting.

Mismatched sizes or types for arguments

Arguments of different sizes or types might produce incorrect execution and
results. To do the type-checking during the early stages of compilation, specify
interface blocks for the procedures that are called within a program.

Working around problems when optimizing

If you find that a program produces incorrect results when it is optimized and if
you can isolate the problem to a particular variable, you might be able to work
around the problem temporarily by declaring the variable as VOLATILE. This
prevents some optimizations that affect the variable. (See VOLATILE in the XL
Fortran Language Reference.) Because this is only a temporary solution, you should
continue debugging your code until you resolve your problem, and then remove
the VOLATILE keyword. If you are confident that the source code and program
design are correct and you continue to have problems, contact your support
organization to help resolve the problem.

Input/Output errors

If the error detected is an input/output error and you have specified IOSTAT on
the input/output statement in error, the IOSTAT variable is assigned a value
according to Conditions and IOSTAT values in the XL Fortran Language Reference.

If you have installed the XL Fortran runtime message catalog on the system on
which the program is executing, a message number and message text are issued to
the terminal (standard error) for certain I/O errors. If you have specified IOMSG
on the input/output statement, the IOMSG variable is assigned the error message
text if an error is detected, or the content of IOMSG variable is not changed. If this
catalog is not installed on the system, only the message number appears. Some of
the settings in “Setting runtime options” on page 34 allow you to turn some of
these error messages on and off.

Chapter 9. Problem determination and debugging 291

If a program fails while writing a large data file, you may need to increase the
maximum file size limit for your user ID. You can do this through a shell
command, such as ulimit in bash.

Tracebacks and core dumps

If a runtime exception occurs and an appropriate exception handler is installed, a
message and a traceback listing are displayed. Depending on the handler, a core
file might be produced as well. You can then use a debugger to examine the
location of the exception.

To produce a traceback listing without ending the program, call the xl__trbk
procedure:
IF (X .GT. Y) THEN ! X > Y indicates that something is wrong.

PRINT *, ’Error - X should not be greater than Y’
CALL XL__TRBK ! Generate a traceback listing.

END IF

See Installing an exception handler in the XL Fortran Optimization and Programming
Guide for instructions about exception handlers and “XL Fortran runtime
exceptions” on page 45 for information about the causes of runtime exceptions.

Debugging a Fortran program
You can use gdb and other symbolic debuggers to debug your programs. For
instructions on using your chosen debugger, consult the online help within the
debugger or its documentation.

Always specify the -g option when compiling programs for debugging.

Note: Debugging Fortran 2003 polymorphic objects and parameterized derived
types is not supported in this release of XL Fortran.

Related information:

v “Error checking and debugging” on page 54

292 XL Fortran: Compiler Reference for Little Endian Distributions

Chapter 10. Understanding XL Fortran compiler listings

Diagnostic information is placed in the output listing produced by the -qlist,
-qsource, -qxref, -qattr, -qreport, and -qlistopt compiler options. The -S option
generates an assembler listing in a separate file.

To locate the cause of a problem with the help of a listing, you can refer to the
following:
v The source section (to see any compilation errors in the context of the source

program)
v The attribute and cross-reference section (to find data objects that are misnamed

or used without being declared or to find mismatched parameters)
v The transformation and object sections (to see if the generated code is similar to

what you expect)

A heading identifies each major section of the listing. A string of greater than
symbols precedes the section heading so that you can easily locate its beginning:
>>>>> SECTION NAME <<<<<<

You can select which sections appear in the listing by specifying compiler options.

Related information
v “Listings, messages, and compiler information” on page 56

Header section
The listing file has a header section that contains the following items:
v A compiler identifier that consists of the following elements:

– Compiler name
– Version number
– Release number
– Modification number
– Fix number

v Source file name
v Date of compilation
v Time of compilation

The header section is always present in a listing; it is the first line and appears
only once. The following sections are repeated for each compilation unit when
more than one compilation unit is present.

Options section
The options section is always present in a listing. There is a separate section for
each compilation unit. It indicates the specified options that are in effect for the
compilation unit. This information is useful when you have conflicting options. If
you specify the -qlistopt compiler option, this section lists the settings for all
options.

© Copyright IBM Corp. 1990, 2015 293

Source section
The source section contains the input source lines with a line number and,
optionally, a file number. The file number indicates the source file (or include file)
from which the source line originated. All main file source lines (those that are not
from an include file) do not have the file number printed. Each include file has a
file number associated with it, and source lines from include files have that file
number printed. The file number appears on the left, the line number appears to
its right, and the text of the source line is to the right of the line number. XL
Fortran numbers lines relative to each file. The source lines and the numbers that
are associated with them appear only if the -qsource compiler option is in effect.
You can selectively print parts of the source by using the @PROCESS directives
SOURCE and NOSOURCE throughout the program.

Error messages
If the -qsource option is in effect, the error messages are interspersed with the
source listing. The error messages that are generated during the compilation
process contain the following elements:
v The source line
v A line of indicators that point to the columns that are in error
v The error message, which consists of the following elements:

– The 4-digit component number
– The number of the error message
– The severity level of the message
– The text that describes the error

For example:
2 | equivalence (i,j,i,j)

................................a.b.
a - "t.f", line 2.24: 1514-117 (E) Same name appears more than once in an equivalence group.
b - "t.f", line 2.26: 1514-117 (E) Same name appears more than once in an equivalence group.

If the -qnosource option is in effect, the error messages are all that appear in the
source section, and an error message contains:
v The file name in quotation marks
v The line number and column position of the error
v The error message, which consists of the following elements:

– The 4-digit component number
– The number of the error message
– The severity level of the message
– The text that describes the error

For example:
"doc.f", line 6.11: 1513-039 (S) Number of arguments is not
permitted for INTRINSIC function abs.

PDF report section
The following sections of the listing report have been added to help you analyze
some aspects of your programs. When using the -qreport option with the -qpdf2
option, you can get the following additional sections added to the listing report in
the section entitled PDF Report:

Loop iteration count
The most frequent loop iteration count and the average iteration count, for

294 XL Fortran: Compiler Reference for Little Endian Distributions

a given set of input data, is calculated for most loops in a program. This
information is only available when the program is compiled at
optimization level -O5.

Block and call count
This section covers the Call Structure of the program and the respective
execution count for each called function. It also includes Block information
for each function. For non-user defined functions, only execution count is
given. The Total Block and Call Coverage, and a list of the user functions
ordered by decreasing execution count are printed in the end of this report
section. In addition, the Block count information is printed at the
beginning of each block of the pseudo-code in the listing files.

Cache miss
This section is printed in a single table. It reports the number of Cache
Misses for certain functions, with additional information about the
functions such as: Cache Level, Cache Miss Ratio, Line Number, File Name,
and Memory Reference.

Note: You must use the -qpdf1=level=2 option to get this report.
You can also select the level of cache to profile using the PDF_PM_EVENT
environment variable during run time.

Relevance of profiling data
This section includes the relevance between the source code during the
-qpdf1 phase and the profiling data. The relevance is indicated by a
number in the range of 0 - 100. The larger the number is, the more relevant
the profiling data is to the source code, and the more performance gain can
be achieved by using the profiling data.

Missing profiling data
This section might include a warning message about missing profiling
data. The warning message is issued for each function for which the
compiler does not find profiling data.

Outdated profiling data
This section might include a warning message about outdated profiling
data. The compiler issues this warning message for each function that is
modified after the -qpdf1 phase. The warning message is also issued when
the optimization levels are different between the -qpdf1 and -qpdf2 phases.

For detailed information about the profile-directed feedback, see "Profile-directed
feedback" in the XL Fortran Optimization and Programming Guide.

For additional information about the listing files, see "Understanding XL Fortran
compiler listings" in the XL Fortran Compiler Reference.

Transformation report section
If the -qreport option is in effect, a transformation report listing shows how IBM
XL Fortran for Linux, V15.1.3 optimized the program. This LOOP TRANSFORMATION
section displays pseudo-Fortran code that corresponds to the original source code,
so that you can see parallelization and loop transformations that the -qhot or
-qsmp options have generated. This section of the report also shows information on
the additional transformations and parallelization performed on loop nests if you
compile with -qsmp and -qhot=level=2.

Chapter 10. Understanding XL Fortran compiler listings 295

The compiler also reports the number of streams created for a given loop. You can
use this information to understand your application code and to tune your code
for better performance. For example, you can distribute a loop which has more
streams than the number supported by the underlying architecture.

To generate information about where the compiler inserted data prefetch
instructions, use the optimization level of -qhot, -O3, -O4 or -O5 together with
-qreport.

Sample Report

The following report was created for the program t.f using the
xlf -qhot -qreport t.f

command.

Program t.f:
integer a(100, 100)
integer i,j

do i = 1 , 100
do j = 1, 100
a(i,j) = j

end do
end do
end

Transformation Report:
>>>>> SOURCE SECTION <<<<<
** _main === End of Compilation 1 ===

>>>>> LOOP TRANSFORMATION SECTION <<<<<

PROGRAM _main ()
4| IF (.FALSE.) GOTO lab_9

@CIV2 = 0
Id=1 DO @CIV2 = @CIV2, 24

5| IF (.FALSE.) GOTO lab_11
@LoopIV1 = 0

6| @CSE0 = @CIV2 * 4
@ICM0 = @CSE0 + 1
@ICM1 = @CSE0 + 2
@ICM2 = @CSE0 + 3
@ICM3 = @CSE0 + 4

5|Id=2 DO @LoopIV1 = @LoopIV1, 99
! DIR_INDEPENDENT loopId = 0
! DIR_INDEPENDENT loopId = 0

6| @CSE1 = @LoopIV1 + 1
SHADV_M003_a(@CSE1,@ICM0) = @ICM0
SHADV_M002_a(@CSE1,@ICM1) = @ICM1
SHADV_M001_a(@CSE1,@ICM2) = @ICM2
SHADV_M000_a(@CSE1,@ICM3) = @ICM3

7| ENDDO
lab_11

8| ENDDO
lab_9

4| IF (.FALSE.) THEN
@LoopIV0 = int((100 - MOD(100, int(4))))

Id=5 DO @LoopIV0 = @LoopIV0, 100
5| IF (.FALSE.) GOTO lab_19

@LoopIV1 = 0
6| @ICM4 = @LoopIV0 + 1

296 XL Fortran: Compiler Reference for Little Endian Distributions

5|Id=6 DO @LoopIV1 = @LoopIV1, 99
! DIR_INDEPENDENT loopId = 0
! DIR_INDEPENDENT loopId = 0

6| a((@LoopIV1 + 1),@ICM4) = @ICM4
7| ENDDO

lab_19
8| ENDDO

ENDIF
9| END PROGRAM _main

Source Source Loop Id Action / Information
File Line
---------- ---------- ---------- --

0 4 1 Loop interchanging applied to loop nest.
0 4 1 Outer loop has been unrolled 4 time(s).

Data reorganization report section
A summary of useful information about how program variable data gets
reorganized by the compiler, data reorganizations.

To generate data reorganization information, specify the optimization level
-qipa=level=2 or -O5 together with -qreport. During the IPA link pass, the data
reorganization messages for program variable data is produced to the data
reorganization section of the listing file. Reorganization includes:
v common block splitting
v array splitting
v array transposing
v memory allocation merging
v array interleaving
v array coalescing

Attribute and cross reference section
This section provides information about the entities that are used in the
compilation unit. It is present if the -qxref or -qattr compiler option is in effect.
Depending on the options in effect, this section contains all or part of the following
information about the entities that are used in the compilation unit:
v Names of the entities
v Attributes of the entities (if -qattr is in effect). Attribute information may

include any or all of the following details:
– The class of the name
– The type
– The relative address of the name
– Alignment
– Dimensions
– For an array, whether it is allocatable
– Whether it is a pointer, target, or integer pointer
– Whether it is a parameter
– Whether it is volatile
– For a dummy argument, its intent, whether it is value, and whether it is

optional
– For a module entity, whether it is private, public, or protected

v Coordinates to indicate where you have defined, referenced, or modified the
entities. If you declared the entity, the coordinates are marked with a $. If you
initialized the entity, the coordinates are marked with a *. If you both declared

Chapter 10. Understanding XL Fortran compiler listings 297

and initialized the entity at the same place, the coordinates are marked with a &.
If the entity is set, the coordinates are marked with a @. If the entity is
referenced, the coordinates are not marked.

Class is one of the following:
v Automatic
v BSS (uninitialized static internal)
v Common
v Common block
v Construct name
v Controlled (for an allocatable object)
v Controlled automatic (for an automatic object)
v Defined assignment
v Defined operator
v Derived type definition
v Entry
v External subprogram
v Function
v Generic name
v Internal subprogram
v Intrinsic
v Module
v Module function
v Module subroutine
v Namelist
v Pointee
v Private component
v Program
v Reference argument
v Renames
v Static
v F2008 Submodule F2008

v Subroutine
v Use associated
v Value parameter

If you specify the full suboption with -qxref or -qattr, XL Fortran reports all
entities in the compilation unit. If you do not specify this suboption, only the
entities you actually use appear.

Object section
XL Fortran produces this section only when the -qlist compiler option is in effect.
It contains the object code listing, which shows the source line number, the
instruction offset in hexadecimal notation, the assembler mnemonic of the
instruction, and the hexadecimal value of the instruction. On the right side, it also
shows the cycle time of the instruction and the intermediate language of the
compiler. Finally, the total number of machine instructions that are produced and
the total cycle time (straight-line execution time) are displayed. There is a separate
section for each compilation unit.

298 XL Fortran: Compiler Reference for Little Endian Distributions

File table section
This section contains a table that shows the file number and file name for each
main source file and include file used. It also lists the line number of the main
source file at which the include file is referenced. This section is always present.
The table also includes the file creation date and time.

Compilation unit epilogue Section
This is the last section of the listing for each compilation unit. It contains the
diagnostics summary and indicates whether the unit was compiled successfully.
This section is not present in the listing if the file contains only one compilation
unit.

Compilation epilogue Section
The compilation epilogue section occurs only once at the end of the listing. At
completion of the compilation, XL Fortran presents a summary of the compilation:
number of source records that were read, compilation start time, compilation end
time, total compilation time, total CPU time, virtual CPU time, and a summary of
diagnosed conditions. This section is always present in a listing.

Chapter 10. Understanding XL Fortran compiler listings 299

300 XL Fortran: Compiler Reference for Little Endian Distributions

Chapter 11. XL Fortran technical information

This section contains details about XL Fortran that advanced programmers may
need to diagnose unusual problems, run the compiler in a specialized environment,
or do other things that a casual programmer is rarely concerned with.

External names in XL Fortran libraries
To minimize naming conflicts between user-defined names and the names that are
defined in the runtime libraries, the names of routines in the runtime libraries are
prefixed with an underscore (_), or _xl.

The XL Fortran runtime environment
Object code that the XL Fortran compiler produces often invokes compiler-supplied
subprograms at run time to handle certain complex tasks. These subprograms are
collected into several libraries.

The function of the XL Fortran Runtime Environment may be divided into these
main categories:
v Support for Fortran I/O operations
v Mathematical calculation
v Operating-system services
v Support for SMP parallelization

Unless you bind statically, you cannot run object code produced by the XL Fortran
compiler without the XL Fortran Runtime Environment.

The XL Fortran Runtime Environment is upward-compatible. Programs that are
compiled and linked with a given level of the runtime environment and a given
level of the operating system require the same or higher levels of both the runtime
environment and the operating system to run.

External names in the runtime environment
Runtime subprograms are collected into libraries. By default, the compiler
invocation command also invokes the linker and gives it the names of the libraries
that contain runtime subprograms called by Fortran object code.

The names of these runtime subprograms are external symbols. When object code
that is produced by the XL Fortran compiler calls a runtime subprogram, the .o
object code file contains an external symbol reference to the name of the
subprogram. A library contains an external symbol definition for the subprogram.
The linker resolves the runtime subprogram call with the subprogram definition.

You should avoid using names in your XL Fortran program that conflict with
names of runtime subprograms. Conflict can arise under two conditions:
v The name of a subroutine, function, or common block that is defined in a

Fortran program has the same name as a library subprogram.
v The Fortran program calls a subroutine or function with the same name as a

library subprogram but does not supply a definition for the called subroutine or
function.

© Copyright IBM Corp. 1990, 2015 301

Technical details of the -qfloat=hsflt option
The -qfloat=hsflt option is unsafe for optimized programs that compute
floating-point values that are outside the range of representation of single
precision, not just outside the range of the result type. The range of representation
includes both the precision and the exponent range.

Even when you follow the rules that are stated in the preceding paragraph and in
“-qfloat” on page 127, programs that are sensitive to precision differences might
not produce expected results. Because -qfloat=hsflt is not compliant with IEEE,
programs will not always run as expected.

For example, in the following program, X.EQ.Y may be true or may be false:
REAL X, Y, A(2)
DOUBLE PRECISION Z
LOGICAL SAME

READ *, Z
X = Z
Y = Z
IF (X.EQ.Y) SAME = .TRUE.
! ...
! ... Calculations that do not change X or Y
! ...
CALL SUB(X) ! X is stored in memory with truncated fraction.
IF (X.EQ.Y) THEN ! Result might be different than before.
...

A(1) = Z
X = Z
A(2) = 1. ! A(1) is stored in memory with truncated fraction.
IF (A(1).EQ.X) THEN ! Result might be different than expected.
...

If the value of Z has fractional bits that are outside the precision of a
single-precision variable, these bits may be preserved in some cases and lost in
others. This makes the exact results unpredictable when the double-precision value
of Z is assigned to single-precision variables. For example, passing the variable as a
dummy argument causes its value to be stored in memory with a fraction that is
truncated rather than rounded.

Implementation details for -qautodbl promotion and padding
The following sections provide additional details about how the -qautodbl option
works, to allow you to predict what happens during promotion and padding.

Terminology
The storage relationship between two data objects determines the relative starting
addresses and the relative sizes of the objects. The -qautodbl option tries to
preserve this relationship as much as possible.

Data objects can also have a value relationship, which determines how changes to
one object affect another. For example, a program might store a value into one
variable, and then read the value through a different storage-associated variable.
With -qautodbl in effect, the representation of one or both variables might be
different, so the value relationship is not always preserved.

An object that is affected by this option can be:

302 XL Fortran: Compiler Reference for Little Endian Distributions

v Promoted, meaning that it is converted to a higher-precision data type. Usually,
the resulting object is twice as large as it would be by default. Promotion applies
to constants, variables, derived-type components, arrays, and functions (which
include intrinsic functions) of the appropriate types.

Note: BYTE, INTEGER, LOGICAL, and CHARACTER objects are never
promoted.

v Padded, meaning that the object keeps its original type but is followed by
undefined storage space. Padding applies to BYTE, INTEGER, LOGICAL, and
nonpromoted REAL and COMPLEX objects that may share storage space with
promoted items. For safety, POINTERs, TARGETs, actual and dummy
arguments, members of COMMON blocks, structures, pointee arrays, and
pointee COMPLEX objects are always padded appropriately depending on the
-qautodbl suboption. This is true whether or not they share storage with
promoted objects.
Space added for padding ensures that the storage-sharing relationship that
existed before conversion is maintained. For example, if array elements I(20) and
R(10) start at the same address by default and if the elements of R are promoted
and become twice as large, the elements of I are padded so that I(20) and R(10)
still start at the same address.
Except for unformatted I/O statements, which read and write any padding that
is present within structures, I/O statements do not process padding.

Note: The compiler does not pad CHARACTER objects.

Examples of storage relationships for -qautodbl suboptions
The examples in this section illustrate storage-sharing relationships between the
following types of entities:
v REAL(4)

v REAL(8)

v REAL(16)

v COMPLEX(4)

v COMPLEX(8)

v COMPLEX(16)

v INTEGER(8)

v INTEGER(4)

v CHARACTER(16).

Note: In the diagrams, solid lines represent the actual data, and dashed lines
represent padding.

Chapter 11. XL Fortran technical information 303

The figure above illustrates the default storage-sharing relationship of the compiler.
@process autodbl(none)

block data
complex(4) x8 /(1.123456789e0,2.123456789e0)/
real(16) r16(2) /1.123q0,2.123q0/
integer(8) i8(2) /1000,2000/
character*5 c(2) /"abcde","12345"/
common /named/ x8,r16,i8,c
end

subroutine s()
complex(4) x8
real(16) r16(2)
integer(8) i8(2)
character*5 c(2)
common /named/ x8,r16,i8,c

! x8 = (1.123456e0,2.123456e0) ! promotion did not occur
! r16(1) = 1.123q0 ! no padding
! r16(2) = 2.123q0 ! no padding
! i8(1) = 1000 ! no padding
! i8(2) = 2000 ! no padding
! c(1) = "abcde" ! no padding
! c(2) = "12345" ! no padding

end subroutine s

@process autodbl(dbl)
block data
complex(4) x8

4 8 16 320 64

COMPLEX (16)
COMPLEX (8)

COMPLEX (4)
REAL (16)

REAL (8)
REAL (4)

INTEGER (8)

INTEGER (4)

CHARACTER (16)

Figure 5. Storage relationships without the -qautodbl option

4 8 16 320 64

COMPLEX (16)
COMPLEX (8) (promoted)
COMPLEX (4) (promoted)

REAL (16)

REAL (8) (promoted)
REAL (4) (promoted)

INTEGER (8)

INTEGER (4)

CHARACTER (16)

Figure 6. Storage relationships with -qautodbl=dbl

304 XL Fortran: Compiler Reference for Little Endian Distributions

real(16) r16(2) /1.123q0,2.123q0/
real(8) r8
real(4) r4 /1.123456789e0/
integer(8) i8(2) /1000,2000/
character*5 c(2) /"abcde","12345"/
equivalence (x8,r8)
common /named/ r16,i8,c,r4

! Storage relationship between r8 and x8 is preserved.
! Data values are NOT preserved between r8 and x8.

end

subroutine s()
real(16) r16(2)
real(8) r4
integer(8) i8(2)
character*5 c(2)
common /named/ r16,i8,c,r4

! r16(1) = 1.123q0 ! no padding
! r16(2) = 2.123q0 ! no padding
! r4 = 1.123456789d0 ! promotion occurred
! i8(1) = 1000 ! no padding
! i8(2) = 2000 ! no padding
! c(1) = "abcde" ! no padding
! c(2) = "12345" ! no padding

end subroutine s

@process autodbl(dbl4)
complex(8) x16 /(1.123456789d0,2.123456789d0)/
complex(4) x8
real(4) r4(2)
equivalence (x16,x8,r4)

! Storage relationship between r4 and x8 is preserved.
! Data values between r4 and x8 are preserved.
! x16 = (1.123456789d0,2.123456789d0) ! promotion did not occur
! x8 = (1.123456789d0,2.123456789d0) ! promotion occurred
! r4(1) = 1.123456789d0 ! promotion occurred
! r4(2) = 2.123456789d0 ! promotion occurred

end

4 8 16 320 64

COMPLEX (16)
COMPLEX (8)

COMPLEX (4) (promoted)

REAL (16)
REAL (8)

REAL (4) (promoted)
INTEGER (8)

INTEGER (4)

CHARACTER (16)

Figure 7. Storage relationships with -qautobl=dbl4

Chapter 11. XL Fortran technical information 305

@process autodbl(dbl8)
complex(8) x16 /(1.123456789123456789d0,2.123456789123456789d0)/
complex(4) x8
real(8) r8(2)
equivalence (x16,x8,r8)

! Storage relationship between r8 and x16 is preserved.
! Data values between r8 and x16 are preserved.
! x16 = (1.123456789123456789q0,2.123456789123456789q0)
! ! promotion occurred
! x8 = upper 8 bytes of r8(1) ! promotion did not occur
! r8(1) = 1.123456789123456789q0 ! promotion occurred
! r8(2) = 2.123456789123456789q0 ! promotion occurred

end

4 8 16 320 64

COMPLEX (16)

COMPLEX (8) (promoted)

COMPLEX (4)
REAL (16)

REAL (8) (promoted)

REAL (4)

INTEGER (8)
INTEGER (4)

CHARACTER (16)

Figure 8. Storage relationships with -qautodbl=dbl8

306 XL Fortran: Compiler Reference for Little Endian Distributions

Chapter 12. XL Fortran internal limits
Language Feature Limit

Maximum number of iterations performed
by DO loops with loop control with index
variable of type INTEGER(n) for n = 1, 2 or
4

(2**31)-1

Maximum number of iterations performed
by DO loops with loop control with index
variable of type INTEGER(8)

(2**63)-1

Maximum character format field width (2**31)-1

Maximum length of a format specification (2**31)-1

Maximum length of Hollerith and character
constant edit descriptors

(2**31)-1

Maximum length of a fixed source form
statement

34 000

Maximum length of a free source form
statement

34 000

Maximum number of continuation lines n/a ▌1▐

Maximum number of nested INCLUDE
lines

64

Maximum number of nested interface blocks 1 024

Maximum number of statement numbers in
a computed GOTO

999

Maximum number of times a format code
can be repeated

(2**31)-1

Allowable record numbers and record
lengths for input/output files

The record number can be up to (2**63)-1,
and the record length can be up to (2**63)-1
bytes.

However, for unformatted sequential files,
you must use the uwidth=64 runtime option
for the record length to be greater than
(2**31)-1 and up to (2**63)-1. If you use the
default uwidth=32 runtime option, the
maximum length of a record in an
unformatted sequential file is (2**31)-1 bytes.

Allowable bound range of an array
dimension

The bound of an array dimension can be
positive, negative, or zero within the range
-(2**63) to 2**63-1.

Allowable external unit numbers 0 to (2**31)-1 ▌2▐

Maximum numeric format field width 2 000

Maximum number of concurrent open files 1 024 ▌3▐

▌1▐ You can have as many continuation lines as you need to create a statement
with a maximum of 34 000 bytes.
▌2▐ The value must be representable in an INTEGER(4) object, even if specified
by an INTEGER(8) variable.

© Copyright IBM Corp. 1990, 2015 307

▌3▐ In practice, this value is somewhat lower because of files that the runtime
system may open, such as the preconnected units 0, 5, and 6.

308 XL Fortran: Compiler Reference for Little Endian Distributions

Glossary

This glossary defines terms that are commonly used in this document. It includes
definitions developed by the American National Standards Institute (ANSI) and
entries from the IBM Terminology website.

A

abstract interface
An ABSTRACT INTERFACE consists of procedure characteristics and
names of dummy arguments. Used to declare the interfaces for procedures
and deferred bindings.

abstract type
A type that has the ABSTRACT attribute. A nonpolymorphic object cannot
be declared to be of abstract type. A polymorphic object cannot be
constructed or allocated to have a dynamic type that is abstract.

active processor
See online processor.

actual argument
An expression, variable, procedure, or alternate return specifier that is
specified in a procedure reference.

alias A single piece of storage that can be accessed through more than a single
name. Each name is an alias for that storage.

alphabetic character
A letter or other symbol, excluding digits, used in a language. Usually the
uppercase and lowercase letters A through Z plus other special symbols
(such as $ and _) allowed by a particular language.

alphanumeric
Pertaining to a character set that contains letters, digits, and usually other
characters, such as punctuation marks and mathematical symbols.

American National Standard Code for Information Interchange
See ASCII.

argument
An expression that is passed to a function or subroutine. See also actual
argument, dummy argument.

argument association
The relationship between an actual argument and a dummy argument
during the invocation of a procedure.

arithmetic constant
A constant of type integer, real, or complex.

arithmetic expression
One or more arithmetic operators and arithmetic primaries, the evaluation
of which produces a numeric value. An arithmetic expression can be an
unsigned arithmetic constant, the name of an arithmetic constant, or a
reference to an arithmetic variable, function reference, or a combination of
such primaries formed by using arithmetic operators and parentheses.

© Copyright IBM Corp. 1990, 2015 309

http://www.ibm.com/software/globalization/terminology/

arithmetic operator
A symbol that directs the performance of an arithmetic operation. The
intrinsic arithmetic operators are:

+ addition

- subtraction

* multiplication

/ division

** exponentiation

array An entity that contains an ordered group of scalar data. All objects in an
array have the same data type and type parameters.

array declarator
The part of a statement that describes an array used in a program unit. It
indicates the name of the array, the number of dimensions it contains, and
the size of each dimension.

array element
A single data item in an array, identified by the array name and one or
more subscripts. See also subscript.

array name
The name of an ordered set of data items.

array section
A subobject that is an array and is not a structure component.

ASCII The standard code, using a coded character set consisting of 7-bit coded
characters (8-bits including parity check), that is used for information
interchange among data processing systems, data communication systems,
and associated equipment. The ASCII set consists of control characters and
graphic characters. See also Unicode.

asynchronous
Pertaining to events that are not synchronized in time or do not occur in
regular or predictable time intervals.

assignment statement
An executable statement that defines or redefines a variable based on the
result of expression evaluation.

associate name
The name by which a selector of a SELECT TYPE or ASSOCIATE
construct is known within the construct.

assumed-size array
A dummy array whose size is assumed from the associated actual
argument. Its last upper bound is specified by an asterisk.

assumed-type object
An entity declared with TYPE(*). An assumed-type object does not have a
declared type, and its dynamic type and type parameters are assumed
from its corresponding actual argument.

attribute
A property of a data object that may be specified in a type declaration
statement, attribute specification statement, or through a default setting.

310 XL Fortran: Compiler Reference for Little Endian Distributions

automatic parallelization
The process by which the compiler attempts to parallelize both explicitly
coded DO loops and DO loops generated by the compiler for array
language.

B

base object
An object that is designated by the leftmost part_name.

base type
An extensible type that is not an extension of another type.

binary constant
A constant that is made of one or more binary digits (0 and 1).

bind To relate an identifier to another object in a program; for example, to relate
an identifier to a value, an address or another identifier, or to associate
formal parameters and actual parameters.

binding label
A value of type default character that uniquely identifies how a variable,
common block, subroutine, or function is known to a companion processor.

blank common
An unnamed common block.

block data subprogram
A subprogram headed by a BLOCK DATA statement and used to initialize
variables in named common blocks.

bounds_remapping
Allows a user to view a flat, rank-1 array as a multi-dimensional array.

bss storage
Uninitialized static storage.

busy-wait
The state in which a thread keeps executing in a tight loop looking for
more work once it has completed all of its work and there is no new work
to do.

byte constant
A named constant that is of type byte.

byte type
A data type representing a one-byte storage area that can be used wherever
a LOGICAL(1), CHARACTER(1), or INTEGER(1) can be used.

C

C descriptor
A C structure of type CFI_cdesc_t that is defined in the
ISO_Fortran_binding.h header file.

character constant
A string of one or more alphabetic characters enclosed in apostrophes or
double quotation marks.

character expression
A character object, a character-valued function reference, or a sequence of
them separated by the concatenation operator, with optional parentheses.

Glossary 311

character operator
A symbol that represents an operation, such as concatenation (//), to be
performed on character data.

character set
All the valid characters for a programming language or for a computer
system.

character string
A sequence of consecutive characters.

character substring
A contiguous portion of a character string.

character type
A data type that consists of alphanumeric characters. See also data type.

chunk A subset of consecutive loop iterations.

class A set of types comprised of a base type and all types extended from it.

collating sequence
The sequence in which the characters are ordered for the purpose of
sorting, merging, comparing, and processing indexed data sequentially.

comment
A language construct for the inclusion of text in a program that has no
effect on the execution of the program.

common block
A storage area that may be referred to by a calling program and one or
more subprograms.

compile
To translate a source program into an executable program (an object
program).

compiler comment directive
A line in source code that is not a Fortran statement but is recognized and
acted on by the compiler.

compiler directive
Source code that controls what XL Fortran does rather than what the user
program does.

complex constant
An ordered pair of real or integer constants separated by a comma and
enclosed in parentheses. The first constant of the pair is the real part of the
complex number; the second is the imaginary part.

complex number
A number consisting of an ordered pair of real numbers, expressible in the
form a+bi, where a and b are real numbers and i squared equals -1.

complex type
A data type that represents the values of complex numbers. The value is
expressed as an ordered pair of real data items separated by a comma and
enclosed in parentheses. The first item represents the real part of the
complex number; the second represents the imaginary part.

component
A constituent of a derived type.

312 XL Fortran: Compiler Reference for Little Endian Distributions

component order
The ordering of the components of a derived type that is used for intrinsic
formatted input/output and for structure constructors.

conform
To adhere to a prevailing standard. An executable program conforms to the
Fortran 95 Standard if it uses only those forms and relationships described
therein and if the executable program has an interpretation according to
the Fortran 95 Standard. A program unit conforms to the Fortran 95
Standard if it can be included in an executable program in a manner that
allows the executable program to be standard-conforming. A processor
conforms to the standard if it executes standard-conforming programs in a
manner that fulfills the interpretations prescribed in the standard.

connected unit
In XL Fortran, a unit that is connected to a file in one of three ways:
explicitly via the OPEN statement to a named file, implicitly, or by
preconnection.

constant
A data object with a value that does not change. The four classes of
constants specify numbers (arithmetic), truth values (logical), character
data (character), and typeless data (hexadecimal, octal, and binary). See
also variable.

construct
A sequence of statements starting with a SELECT CASE, DO, IF, or
WHERE statement, for example, and ending with the corresponding
terminal statement.

contiguous
An array is contiguous if it has array elements in order that are not
separated by other data objects. A data object with multiple parts is
contiguous if the parts in order are not separated by other data objects.

continuation line
A line that continues a statement beyond its initial line.

control statement
A statement that is used to alter the continuous sequential invocation of
statements; a control statement may be a conditional statement, such as IF,
or an imperative statement, such as STOP.

D

data object
A variable, constant, or subobject of a constant.

data striping
Spreading data across multiple storage devices so that I/O operations can
be performed in parallel for better performance. Also known as disk
striping.

data transfer statement
A READ, WRITE, or PRINT statement.

data type
The properties and internal representation that characterize data and
functions. The intrinsic types are integer, real, complex, logical, and
character. See also intrinsic.

Glossary 313

debug line
Allowed only for fixed source form, a line containing source code that is to
be used for debugging. Debug lines are defined by a D or X in column 1.
The handling of debug lines is controlled by the -qdlines and -qxlines
compiler options.

decimal symbol
The symbol that separates the whole and fractional parts of a real number.

declared type
The type that a data entity is declared to have. May differ from the type
during execution (the dynamic type) for polymorphic data entities.

default initialization
The initialization of an object with a value specified as part of a derived
type definition.

deferred binding
A binding with the DEFERRED attribute. A deferred binding can only
appear in an abstract type definition.

definable variable
A variable whose value can be changed by the appearance of its name or
designator on the left of an assignment statement.

delimiters
A pair of parentheses or slashes (or both) used to enclose syntactic lists.

denormalized number
An IEEE number with a very small absolute value and lowered precision.
A denormalized number is represented by a zero exponent and a non-zero
fraction.

derived type
A type whose data have components, each of which is either of intrinsic
type or of another derived type.

digit A character that represents a nonnegative integer. For example, any of the
numerals from 0 through 9.

directive
A type of comment that provides instructions and information to the
compiler.

disk striping
See data striping.

DO loop
A range of statements invoked repetitively by a DO statement.

DO variable
A variable, specified in a DO statement, that is initialized or incremented
prior to each occurrence of the statement or statements within a DO loop.
It is used to control the number of times the statements within the range
are executed.

DOUBLE PRECISION constant
A constant of type real with twice the precision of the default real
precision.

314 XL Fortran: Compiler Reference for Little Endian Distributions

dummy argument
An entity whose name appears in the parenthesized list following the
procedure name in a FUNCTION, SUBROUTINE, ENTRY, or statement
function statement.

dynamic dimensioning
The process of re-evaluating the bounds of an array each time the array is
referenced.

dynamic extent
For a directive, the lexical extent of the directive and all subprograms
called from within the lexical extent.

dynamic type
The type of a data entity during execution of a program. The dynamic type
of a data entity that is not polymorphic is the same as its declared type.

E

edit descriptor
An abbreviated keyword that controls the formatting of integer, real, or
complex data.

effective item
A scalar object resulting from expanding an input/output list.

elemental
Pertaining to an intrinsic operation, procedure or assignment that is
applied independently to elements of an array or corresponding elements
of a set of conformable arrays and scalars.

embedded blank
A blank that is surrounded by any other characters.

entity A general term for any of the following: a program unit, procedure,
operator, interface block, common block, external unit, statement function,
type, named variable, expression, component of a structure, named
constant, statement label, construct, or namelist group.

environment variable
A variable that describes the operating environment of the process.

epoch The starting date used for time in POSIX. It is Jan 01 00:00:00 GMT 1970.

executable program
A program that can be executed as a self-contained procedure. It consists
of a main program and, optionally, modules, submodules, subprograms
and non-Fortran external procedures.

executable statement
A statement that causes an action to be taken by the program; for example,
to perform a calculation, test conditions, or alter normal sequential
execution.

explicit initialization
The initialization of an object with a value in a data statement initial value
list, block data program unit, type declaration statement, or array
constructor.

explicit interface
For a procedure referenced in a scoping unit, the property of being an
internal procedure, module procedure, intrinsic procedure, external

Glossary 315

procedure that has an interface block, recursive procedure reference in its
own scoping unit, or dummy procedure that has an interface block.

expression
A sequence of operands, operators, and parentheses. It may be a variable, a
constant, or a function reference, or it may represent a computation.

extended-precision constant
A processor approximation to the value of a real number that occupies 16
consecutive bytes of storage.

extended type
An extensible type that is an extension of another type. A type that is
declared with the EXTENDS attribute.

extensible type
A type from which new types may be derived using the EXTENDS
attribute. A nonsequence type that does not have the BIND attribute.

extension type
A base type is an extension type of itself only. An extended type is an
extension type of itself and of all types for which its parent type is an
extension.

external file
A sequence of records on an input/output device. See also internal file.

external name
The name of a common block, subroutine, or other global procedure,
which the linker uses to resolve references from one compilation unit to
another.

external procedure
A procedure that is defined by an external subprogram or by a means
other than Fortran.

F

field An area in a record used to contain a particular category of data.

file A sequence of records. See also external file, internal file.

file index
See i-node.

final subroutine
A subroutine that is called automatically during finalization.

finalizable
A type that has final subroutines, or that has a finalizable component. An
object of finalizable type.

finalization
The process of calling user-defined final subroutines immediately before
destroying an object.

floating-point number
A real number represented by a pair of distinct numerals. The real number
is the product of the fractional part, one of the numerals, and a value
obtained by raising the implicit floating-point base to a power indicated by
the second numeral.

316 XL Fortran: Compiler Reference for Little Endian Distributions

format
A defined arrangement of such things as characters, fields, and lines,
usually used for displays, printouts, or files.

To arrange such things as characters, fields, and lines.

formatted data
Data that is transferred between main storage and an input/output device
according to a specified format. See also list-directed and unformatted record.

function
A procedure that returns the value of a single variable or an object and
usually has a single exit. See also intrinsic procedure, subprogram.

G

generic identifier
A lexical token that appears in an INTERFACE statement and is associated
with all the procedures in an interface block.

H

hard limit
A system resource limit that can only be raised or lowered by using root
authority, or cannot be altered because it is inherent in the system or
operating environments's implementation. See also soft limit.

hexadecimal
Pertaining to a system of numbers to the base sixteen; hexadecimal digits
range from 0 (zero) through 9 (nine) and A (ten) through F (fifteen).

hexadecimal constant
A constant, usually starting with special characters, that contains only
hexadecimal digits.

high order transformations
A type of optimization that restructures loops and array language.

Hollerith constant
A string of any characters capable of representation by XL Fortran and
preceded with nH, where n is the number of characters in the string.

host A main program or subprogram that contains an internal procedure is
called the host of the internal procedure. A module or submodule that
contains a module procedure is called the host of the module procedure. A
module or submodule is called the host of its descendant submodules.

host association
The process by which an internal subprogram, module subprogram,
derived-type definition, or submodule accesses the entities of its host.

host instance
An instance of the host procedure that supplies the host environment of
the internal procedure.

I

IPA Interprocedural analysis, a type of optimization that allows optimizations
to be performed across procedure boundaries and across calls to
procedures in separate source files.

implicit interface
A procedure referenced in a scoping unit other than its own is said to have
an implicit interface if the procedure is an external procedure that does not

Glossary 317

have an interface block, a dummy procedure that does not have an
interface block, or a statement function.

implied DO
An indexing specification (similar to a DO statement, but without
specifying the word DO) with a list of data elements, rather than a set of
statements, as its range.

infinity
An IEEE number (positive or negative) created by overflow or division by
zero. Infinity is represented by an exponent where all the bits are 1's, and a
zero fraction.

inherit
To acquire from a parent. Type parameters, components, or procedure
bindings of an extended type that are automatically acquired from its
parent type without explicit declaration in the extended type are said to be
inherited.

inheritance association
The relationship between the inherited components and the parent
component in an extended type.

i-node The internal structure that describes the individual files in the operating
system. There is at least one i-node for each file. An i-node contains the
node, type, owner, and location of a file. A table of i-nodes is stored near
the beginning of a file system. Also known as file index.

input/output (I/O)
Pertaining to either input or output, or both.

input/output list
A list of variables in an input or output statement specifying the data to be
read or written. An output list can also contain a constant, an expression
involving operators or function references, or an expression enclosed in
parentheses.

integer constant
An optionally signed digit string that contains no decimal point.

interface block
A sequence of statements from an INTERFACE statement to its
corresponding END INTERFACE statement.

interface body
A sequence of statements in an interface block from a FUNCTION or
SUBROUTINE statement to its corresponding END statement.

interference
A situation in which two iterations within a DO loop have dependencies
upon one another.

internal file
A sequence of records in internal storage. See also external file.

interprocedural analysis
See IPA.

intrinsic
Pertaining to types, operations, assignment statements, and procedures that
are defined by Fortran language standards and can be used in any scoping
unit without further definition or specification.

318 XL Fortran: Compiler Reference for Little Endian Distributions

intrinsic module
A module that is provided by the compiler and is available to any
program.

intrinsic procedure
A procedure that is provided by the compiler and is available to any
program.

K

keyword
A statement keyword is a word that is part of the syntax of a statement (or
directive) and may be used to identify the statement.

An argument keyword specifies the name of a dummy argument

kind type parameter
A parameter whose values label the available kinds of an intrinsic type or
a derived-type parameter that is declared to have the KIND attribute.

L

lexical extent
All of the code that appears directly within a directive construct.

lexical token
A sequence of characters with an indivisible interpretation.

link-edit
To create a loadable computer program by means of a linker.

linker A program that resolves cross-references between separately compiled or
assembled object modules and then assigns final addresses to create a
single relocatable load module. If a single object module is linked, the
linker simply makes it relocatable.

list-directed
A predefined input/output format that depends on the type, type
parameters, and values of the entities in the data list.

literal A symbol or a quantity in a source program that is itself data, rather than a
reference to data.

literal constant
A lexical token that directly represents a scalar value of intrinsic type.

load balancing
An optimization strategy that aims at evenly distributing the work load
among processors.

logical constant
A constant with a value of either true or false (or T or F).

logical operator
A symbol that represents an operation on logical expressions:
.NOT. (logical negation)
.AND. (logical conjunction)
.OR. (logical union)
.EQV. (logical equivalence)
.NEQV. (logical nonequivalence)
.XOR. (logical exclusive disjunction)

loop A statement block that executes repeatedly.

M

Glossary 319

_main The default name given to a main program by the compiler if the main
program was not named by the programmer.

main program
The first program unit to receive control when a program is run. See also
subprogram.

master thread
The head process of a team of threads.

module
A program unit that contains or accesses definitions to be accessed by
other program units.

module procedure interface body
An interface body whose initial statement contains the MODULE prefix
specifier. A module procedure interface body specifies the interface of a
separate module procedure.

module subprogram
A subprogram that is contained in a module or submodule, but is not an
internal subprogram. A module subprogram is a function subprogram, a
subroutine subprogram, or a separate module subprogram.

mutex A primitive object that provides mutual exclusion between threads. A
mutex is used cooperatively between threads to ensure that only one of the
cooperating threads is allowed to access shared data or run certain
application code at a time.

N

NaN (not-a-number)
A symbolic entity encoded in floating-point format that does not
correspond to a number. See also quiet NaN, signaling NaN.

name A lexical token consisting of a letter followed by up to 249 alphanumeric
characters (letters, digits, and underscores). Note that in FORTRAN 77, this
was called a symbolic name.

named common
A separate, named common block consisting of variables.

namelist group name
The first parameter in the NAMELIST statement that names a list of names
to be used in READ, WRITE, and PRINT statements.

negative zero
An IEEE representation where the exponent and fraction are both zero, but
the sign bit is 1. Negative zero is treated as equal to positive zero.

nest To incorporate a structure or structures of some kind into a structure of the
same kind. For example, to nest one loop (the nested loop) within another
loop (the nesting loop); to nest one subroutine (the nested subroutine)
within another subroutine (the nesting subroutine).

NEWUNIT value
A negative number that is less than -2 and is unequal to the unit number
of any currently connected file. It is a unit value that the runtime library
assigns to the variable specified by the NEWUNIT= specifier.

320 XL Fortran: Compiler Reference for Little Endian Distributions

nonexecutable statement
A statement that describes the characteristics of a program unit, data,
editing information, or statement functions, but does not cause any action
to be taken by the program.

nonexisting file
A file that does not physically exist on any accessible storage medium.

normal
A floating-point number that is not denormal, infinity, or NaN.

not-a-number
See NaN.

numeric constant
A constant that expresses an integer, real, complex, or byte number.

numeric storage unit
The space occupied by a nonpointer scalar object of type default integer,
default real, or default logical.

O

octal Pertaining to a system of numbers to the base eight; the octal digits range
from 0 (zero) through 7 (seven).

octal constant
A constant that is made of octal digits.

one-trip DO-loop
A DO loop that is executed at least once, if reached, even if the iteration
count is equal to 0. (This type of loop is from FORTRAN 66.)

online processor
In a multiprocessor machine, a processor that has been activated (brought
online). The number of online processors is less than or equal to the
number of physical processors actually installed in the machine. Also
known as active processor.

operator
A specification of a particular computation involving one or two operands.

P

pad To fill unused positions in a field or character string with dummy data,
usually zeros or blanks.

paging space
Disk storage for information that is resident in virtual memory but is not
currently being accessed.

parent component
The component of an entity of extended type that corresponds to its
inherited portion.

parent type
The extensible type from which an extended type is derived.

passed-object dummy argument
The dummy argument of a type-bound procedure or procedure pointer
component that becomes associated with the object through which the
procedure was invoked.

PDF See profile-directed feedback.

Glossary 321

pointee array
An explicit-shape or assumed-size array that is declared in an integer
POINTER statement or other specification statement.

pointer
A variable that has the POINTER attribute. A pointer must not be
referenced or defined unless it is pointer associated with a target. If it is an
array, it does not have a shape unless it is pointer-associated.

polymorphic
Able to be of differing types during program execution. An object declared
with the CLASS keyword is polymorphic.

preconnected file
A file that is connected to a unit at the beginning of execution of the
executable program. Standard error, standard input, and standard output
are preconnected files (units 0, 5 and 6, respectively).

predefined convention
The implied type and length specification of a data object, based on the
initial character of its name when no explicit specification is given. The
initial characters I through N imply type integer of length 4; the initial
characters A through H, O through Z, $, and _ imply type real of length 4.

present
A dummy argument is present in an instance of a subprogram if it is
associated with an actual argument and the actual argument is a dummy
argument that is present in the invoking procedure or is not a dummy
argument of the invoking procedure.

primary
The simplest form of an expression: an object, array constructor, structure
constructor, function reference, or expression enclosed in parentheses.

procedure
A computation that may be invoked during program execution. It may be
a function or a subroutine. It may be an intrinsic procedure, an external
procedure, a module procedure, an internal procedure, a dummy
procedure, or a statement function. A subprogram may define more than
one procedure if it contains ENTRY statements.

procedure binding
See type-bound procedure.

procedure pointer
A procedure entity that has the EXTERNAL and POINTER attributes. It
can be pointer associated with an external procedure, a module procedure,
a dummy procedure or another procedure pointer.

profile-directed feedback (PDF)
A type of optimization that uses information collected during application
execution to improve performance of conditional branches and in
frequently executed sections of code.

program state
The values of user variables at certain points during the execution of a
program.

program unit
A main program or subprogram.

pure An attribute of a procedure that indicates there are no side effects.

322 XL Fortran: Compiler Reference for Little Endian Distributions

Q

quiet NaN
A NaN (not-a-number) value that does not signal an exception. The intent
of a quiet NaN is to propagate a NaN result through subsequent
computations. See also NaN, signaling NaN.

R

random access
An access method in which records can be read from, written to, or
removed from a file in any order. See also sequential access.

rank The number of dimensions of an array.

real constant
A string of decimal digits that expresses a real number. A real constant
must contain a decimal point, a decimal exponent, or both.

record A sequence of values that is treated as a whole within a file.

relational expression
An expression that consists of an arithmetic or character expression,
followed by a relational operator, followed by another arithmetic or
character expression.

relational operator
The words or symbols used to express a relational condition or a relational
expression:
.GT. greater than
.GE. greater than or equal to
.LT. less than
.LE. less than or equal to
.EQ. equal to
.NE. not equal to

result variable
The variable that returns the value of a function.

return specifier
An argument specified for a statement, such as CALL, that indicates to
which statement label control should return, depending on the action
specified by the subroutine in the RETURN statement.

S

scalar A single datum that is not an array.

Not having the property of being an array.

scale factor
A number indicating the location of the decimal point in a real number
(and, on input, if there is no exponent, the magnitude of the number).

scope That part of an executable program within which a lexical token has a
single interpretation.

scope attribute
That part of an executable program within which a lexical token has a
single interpretation of a particular named property or entity.

scoping unit
A derived-type definition.

A BLOCK construct (not including any nested BLOCK constructs,
derived-type definitions, and interface bodies within it).

Glossary 323

An interface body.

A program unit or subprogram, excluding derived-type definitions,
BLOCK constructs, interface bodies, and subprograms contained within it.

selector
The object that is associated with the associate name in an ASSOCIATE
construct.

semantics
The relationships of characters or groups of characters to their meanings,
independent of the manner of their interpretation and use. See also syntax.

separate module procedure
A module procedure that is defined by a separate module subprogram or
by a function or subroutine subprogram whose initial statement contains
the MODULE prefix specifier. A separate module procedure defines a
module procedure interface body.

separate module subprogram
A module subprogram whose initial statement contains the MODULE
PROCEDURE statement. A separate module subprogram defines a module
procedure interface body.

sequential access
An access method in which records are read from, written to, or removed
from a file based on the logical order of the records in the file. See also
random access.

signaling NaN
A NaN (not-a-number) value that signals an invalid operation exception
whenever it appears as an operand. The intent of the signaling NaN is to
catch program errors, such as using an uninitialized variable. See also NaN,
quiet NaN.

sleep The state in which a thread completely suspends execution until another
thread signals it that there is work to do.

SMP See symmetric multiprocessing.

soft limit
A system resource limit that is currently in effect for a process. The value
of a soft limit can be raised or lowered by a process, without requiring root
authority. The soft limit for a resource cannot be raised above the setting of
the hard limit. See also hard limit.

spill space
The stack space reserved in each subprogram in case there are too many
variables to hold in registers and the program needs temporary storage for
register contents.

specification statement
A statement that provides information about the data used in the source
program. The statement could also supply information to allocate data
storage.

stanza A group of lines in a file that together have a common function or define a
part of the system. Stanzas are usually separated by blank lines or colons,
and each stanza has a name.

324 XL Fortran: Compiler Reference for Little Endian Distributions

statement
A language construct that represents a step in a sequence of actions or a
set of declarations. Statements fall into two broad classes: executable and
nonexecutable.

statement function
A name, followed by a list of dummy arguments, that is equated with an
intrinsic or derived-type expression, and that can be used as a substitute
for the expression throughout the program.

statement label
A number made up of one to five digits that is used to identify a
statement. Statement labels can be used to transfer control, to define the
range of a DO, or to refer to a FORMAT statement.

storage association
The relationship between two storage sequences if a storage unit of one is
the same as a storage unit of the other.

structure
A scalar data object of derived type.

structure component
The part of a data object of derived-type corresponding to a component of
its type.

submodule
A program unit that extends a module or another submodule. A
submodule accesses the definitions from its ancestor module or
submodules through host association. It might contain definitions to be
accessed by its descendant submodules through host association. It might
also contain separate module procedures that define module procedure
interface bodies declared in its ancestor module or submodules.

subobject
A portion of a named data object that may be referenced or defined
independently of other portions. It can be an array element, array section,
structure component, or substring.

subprogram
A function subprogram or a subroutine subprogram. Note that in
FORTRAN 77, a block data program unit was called a subprogram. See
also main program.

subroutine
A procedure that is invoked by a CALL statement or defined assignment
statement.

subscript
A subscript quantity or set of subscript quantities enclosed in parentheses
and used with an array name to identify a particular array element.

substring
A contiguous portion of a scalar character string. (Although an array
section can specify a substring selector, the result is not a substring.)

symmetric multiprocessing (SMP)
A system in which functionally-identical multiple processors are used in
parallel, providing simple and efficient load-balancing.

Glossary 325

synchronous
Pertaining to an operation that occurs regularly or predictably with regard
to the occurrence of a specified event in another process.

syntax The rules for the construction of a statement. See also semantics.

T

target A named data object specified to have the TARGET attribute, a data object
created by an ALLOCATE statement for a pointer, or a subobject of such
an object.

thread A stream of computer instructions that is in control of a process. A
multithread process begins with one stream of instructions (one thread)
and may later create other instruction streams to perform tasks.

thread-visible variable
A variable that can be accessed by more than one thread.

time slice
An interval of time on the processing unit allocated for use in performing
a task. After the interval has expired, processing unit time is allocated to
another task, so a task cannot monopolize processing unit time beyond a
fixed limit.

token In a programming language, a character string, in a particular format, that
has some defined significance.

trigger constant
A sequence of characters that identifies comment lines as compiler
comment directives.

Type-bound procedure
A procedure binding in a type definition. The procedure may be referenced
by the binding-name via any object of that dynamic type, as a defined
operator, by defined assignment, or as part of the finalization process.

type compatible
All entities are type compatible with other entities of the same type.
Unlimited polymorphic entities are type compatible with all entities; other
polymorphic entities are type compatible with entities whose dynamic type
is an extension type of the polymorphic entity's declared type.

type declaration statement
A statement that specifies the type, length, and attributes of an object or
function. Objects can be assigned initial values.

type parameter
A parameter of a data type. KIND and LEN are the type parameters of
intrinsic types. A type parameter of a derived type has either a KIND or a
LEN attribute.

Note: The type parameters of a derived type are defined in the
derived-type definition.

U

unformatted record
A record that is transmitted unchanged between internal and external
storage.

Unicode
A universal character encoding standard that supports the interchange,

326 XL Fortran: Compiler Reference for Little Endian Distributions

processing, and display of text that is written in any of the languages of
the modern world. It also supports many classical and historical texts in a
number of languages. The Unicode standard has a 16-bit international
character set defined by ISO 10646. See also ASCII.

unit A means of referring to a file to use in input/output statements. A unit can
be connected or not connected to a file. If connected, it refers to a file. The
connection is symmetric: that is, if a unit is connected to a file, the file is
connected to the unit.

unsafe option
Any option that could result in undesirable results if used in the incorrect
context. Other options may result in very small variations from the default
result, which is usually acceptable. Typically, using an unsafe option is an
assertion that your code is not subject to the conditions that make the
option unsafe.

use association
The association of names in different scoping units specified by a USE
statement.

V

variable
A data object whose value can be defined and redefined during the
execution of an executable program. It may be a named data object, array
element, array section, structure component, or substring. Note that in
FORTRAN 77, a variable was always scalar and named.

X

XPG4 X/Open Common Applications Environment (CAE) Portability Guide Issue
4; a document which defines the interfaces of the X/Open Common
Applications Environment that is a superset of POSIX.1-1990,
POSIX.2-1992, and POSIX.2a-1992 containing extensions to POSIX
standards from XPG3.

Z

zero-length character
A character object that has a length of 0 and is always defined.

zero-sized array
An array that has a lower bound that is greater than its corresponding
upper bound. The array is always defined.

Glossary 327

328 XL Fortran: Compiler Reference for Little Endian Distributions

Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM XL Fortran for Linux.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1990, 2015 329

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

330 XL Fortran: Compiler Reference for Little Endian Distributions

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2015.

This software and documentation are based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California. We acknowledge the following institution for its role in this product's
development: the Electrical Engineering and Computer Sciences Department at the
Berkeley campus.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

Notices 331

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Windows is a trademark of Microsoft Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

332 XL Fortran: Compiler Reference for Little Endian Distributions

Index

Special characters
_OPENMP C preprocessor macro 30
-# compiler option 66
-1 compiler option 67
-B compiler option 67
-c compiler option 69
-C compiler option 68
-d compiler option 70
-D compiler option 69
-F compiler option 71
-g compiler option 73, 292
-I compiler option 76
-k compiler option 77
-l compiler option 78
-L compiler option 77
-NS compiler option 82
-o compiler option 85
-O compiler option 83
-O2 compiler option 84
-O3 compiler option 84
-O4 compiler option 84
-O5 compiler option 84
-p compiler option 86
-qalias compiler option 87
-qalign compiler option 90
-qarch compiler option 29
-qassert compiler option 95
-qattr compiler option 96, 297
-qautodbl compiler option 97, 302
-qbindcextname compiler option 99
-qcache compiler option 29, 100
-qcclines compiler option 103
-qcheck compiler option 68, 103
-qci compiler option 106
-qcompact compiler option 107
-qcr compiler option 108
-qctyplss compiler option 109
-qdbg compiler option 73, 110
-qddim compiler option 112
-qdescriptor compiler option 113
-qdirective compiler option 114
-qdlines compiler option 69, 116
-qdpc compiler option 117
-qenum compiler option 118
-qescape compiler option 119
-qessl compiler option 120
-qextern compiler option 121
-qextname compiler option 122
-qfdpr compiler option 124
-qfixed compiler option 125
-qflag compiler option 126
-qflttrap compiler option 132
-qfpp option 131
-qfree compiler option 134
-qfullpath compiler option 135
-qfunctrace 136
-qfunctrace_xlf_catch 138
-qfunctrace_xlf_enter 138
-qfunctrace_xlf_exit 139
-qhalt compiler option 140
-qhelp compiler option 142

-qieee compiler option 279
-qinit compiler option 151
-qinitalloc compiler option 152
-qinitauto compiler option 154
-qinlglue compiler option 156
-qintlog compiler option 160
-qintsize compiler option 161
-qkeepparm compiler option 168
-qlanglvl compiler option 169
-qlibansi compiler option 171
-qlibmpi 172
-qlinedebug compiler option 173
-qlist compiler option 174, 298
-qlistfmt compiler option 175
-qlistopt compiler option 178, 293
-qlog4 compiler option 179
-qmaxmem compiler option 183
-qmbcs compiler option 185
-qmixed compiler option 186
-qmkshrobj 21
-qmoddir compiler option 187
-qnoprint compiler option 188
-qnullterm compiler option 189
-qobject compiler option 190
-qonetrip compiler option 67, 191
-qoptimize compiler option 83, 193
-qphsinfo compiler option 202
-qpic compiler option 203
-qport compiler option 204
-qposition compiler option 206
-qppsuborigarg option 207
-qqcount compiler option 211
-qrealsize compiler option 211
-qrecur compiler option 213
-qreport compiler option 214, 294, 295,

297
-qsaa compiler option 216
-qsave compiler option 217
-qsaveopt compiler option 219
-qsclk compiler option 221
-qshowpdf compiler option 221
-qsigtrap compiler option 222
-qsmallstack compiler option 224
-qsmp compiler option 226
-qsource compiler option 230, 294
-qspillsize compiler option 82, 231
-qstackprotect compiler option 231
-qstacktemp compiler option 232, 233
-qstrict compiler option 236
-qstrict_induction compiler otpion 241
-qstrictieeemod compiler option 240
-qsuffix compiler option 242
-qsuppress compiler option 243
-qswapomp compiler option 245
-qtbtable compiler option 246
-qthreaded compiler option 247
-qtimestamps compiler option 248
-qtune compiler option 29
-qundef compiler option 251, 274
-qunroll compiler option 251
-qunwind compiler option 253

-qversion compiler option 254
-qwarn64 compiler option 257
-qxflag=dvz compiler option 257
-qxflag=oldtab compiler option 258
-qxlf2003 compiler option 263
-qxlf2008 compiler option 267
-qxlf77 compiler option 259
-qxlf90 compiler option 261
-qxlines compiler option 267
-qxref compiler option 269, 297
-qzerosize compiler option 270
-S compiler option 272
-u compiler option 274
-U compiler option 274
-v compiler option 275
-V compiler option 276
-w compiler option 126, 278
-yn, -ym, -yp, -yz compiler options 146,

279
/tmp directory 9
.a files 23
.cfg files 23
.d files 24
.f and .F files 23
.lst files 24
.mod files 23, 24, 187
.o files 23, 24
.s files 23, 24
.so files 23
.XOR. operator 260
@PROCESS compiler directive 27
#if and other cpp directives 31
#pragma nofunctrace 136

Numerics
1501-224, 1501-229, and 1517-011 error

messages 290
15xx identifiers for XL Fortran

messages 286
4K suboption of -qalign 90
64-bit environment 281

A
a.out file 24
actual arguments

definition of 309
addresses of arguments, saving 260
aggressive array I/O 35
aggressive_array_io runtime option 35
ALIAS @PROCESS directive 87
ALIGN @PROCESS directive 90
alignment of BIND(C) derived types 90
alignment of CSECTs and large arrays for

data-striped I/O 90
allocatable arrays, automatic deallocation

with -qxlf90=autodealloc 261
alphabetic character, definition of 309
alphanumeric, definition of 309

© Copyright IBM Corp. 1990, 2015 333

alter program semantics 236
ANSI

checking conformance to the Fortran
90 standard 169

checking conformance to the Fortran
95 standard 169

appendold and appendunknown
suboptions of -qposition 206

architecture 93
-qarch compiler option 93
-qtune compiler option 249

archive files 23
argument addresses, saving 260
argument promotion (integer only) for

intrinsic procedures 260
arguments

definition of 309
passing null-terminated strings to C

functions 189
arrays

optimizing assignments 87
padding 143

arrays, initialization problems 290
aryovrlp suboption of -qalias 87
as attribute of configuration file 14
as command, passing command-line

options to 28
ASCII

definition of 310
asopt attribute of configuration file 15
assembler

source (.s) files 23, 24
ATTR @PROCESS directive 96
attribute section in compiler listing 297
AUTODBL @PROCESS directive 97
autodealloc suboption of -qxlf90 261
autorealloc suboption, -qxlf2003 264

B
bash shell 7
basic example, described xii
big-endian I/O 43
BIND(C) derived types, alignment 90
BINDCEXTNAME @PROCESS

directive 99
blankpad suboption of -qxlf77 260
bolt attribute of configuration file 14
bozlitargs suboption, -qxlf2003 264
bss storage, alignment of arrays in 90
buffering runtime option

description 35
using with preconnected files 35

C
C preprocessor (cpp) 29, 131, 207
carriage return character 108
catch routine 138
CCLINES @PROCESS 103
character constants and typeless

constants 109
CHECK @PROCESS directive 68, 103
checkpresence suboption, -qxlf2008 267
chunk

definition of 312

CI @PROCESS directive 106
cleanpdf command 198
cnverr runtime option 37
code attribute of configuration file 14
code generation for different systems 29
code optimization 6
command line options, summary 47
command line, specifying options on 26
COMPACT @PROCESS directive 107
compatibility

options for compatibility 62
compilation order 22
compilation unit epilogue section in

compiler listing 299
compiler listings 293
compiler options

descriptions 65
scope and precedence 26
section in compiler listing 293
specifying in the source file 27
specifying on the command line 26

compiling
cancelling a compilation 23
description of how to compile a

program 17
Fortran 2003 programs 20
Fortran 2008 programs 20
problems 289
SMP programs 22

conditional compilation 29
configuration 9

custom configuration files 9
configuration file 23, 71
configuration file attributes 14
conflicting options

-C interferes with -qhot 105
-qautodbl overrides -qrealsize 99
-qrealsize is overridden by

-qautodbl 99
conformance checking 169, 216
control of transformations 236
conversion errors 37
core file 292
could not load program (error

message) 287
cpp attribute of configuration file 14
cpp command 29
cpp, cppoptions, and cppsuffix attributes

of configuration file 15
cppsuffix attribute of configuration

file 15
cpu_time_type runtime option 37
cross reference section in compiler

listing 297
crt_64 attribute of configuration file 14
CSECTS, alignment of 90
csh shell 7
CTYPLSS @PROCESS directive 109
customizing configuration file (including

default compiler options) 13

D
data limit 287
data reorganization report section in

compiler listing 297

data striping
-qalign required for improved

performance 90
data types 92

-qaltivec compiler option 92
DBG @PROCESS directive 73, 110
dbl, dbl4, dbl8, suboptions of

-qautodbl 97
DDIM @PROCESS directive 112
debugger support

symbolic 6
debugging 285

using path names of original
files 135

default_recl runtime option 38
defaultmsg attribute of configuration

file 16
defaults

customizing compiler defaults 13
search paths for include and .mod

files 76
search paths for libraries 8

dependency files 24
deps suboption of -qassert 95
descriptor data structure formats 113
diagnostics, compiler listings 293
DIRECTIVE @PROCESS directive 114
disassembly listing

from the -S compiler option 272
disk space, running out of 289
DLINES @PROCESS directive 69, 116
DPC @PROCESS directive 117
dummy argument

definition of 315
dynamic dimensioning of arrays 112
dynamic extent, definition of 315
dynamic library 21
dynamic linking 32

E
E error severity 285
edit descriptors (B, O, Z), differences

between F77 and F90 260
edit descriptors (G), difference between

F77 and F90 260
editing configuration file 13
editing source files 17
emacs text editor 17
enable suboption of -qflttrap 132
end-of-file, writing past 260
enter routine 138
ENTRY statements, compatibility with

previous compiler versions 260
environment problems 287
environment variables

compile time 7
PDF_BIND_PROCESSOR 8
TMPDIR 9

LD_LIBRARY_PATH 8
LD_RUN_PATH 8
runtime 8

LD_LIBRARY_PATH 45
LD_RUN_PATH 45
TMPDIR 45
XLFRTEOPTS 34

XLF_USR_CONFIG 45

334 XL Fortran: Compiler Reference for Little Endian Distributions

environment variables (continued)
XLFSCRATCH_unit 9
XLFUNIT_unit 9

eof, writing past 260
epilogue sections in compiler listing 299
err_recovery runtime option 38
errloc runtime option 38
error checking and debugging 54
error messages 285

1501-229 290
1517-011 290
explanation of format 286
in compiler listing 294

erroreof runtime option 38
errthrdnum runtime option 38
errtrace runtime option 39
ESCAPE @PROCESS directive 119
exception handling 45

for floating point 132
exclusive or operator 260
executable files 24
executing a program 33
executing the compiler 17
exit routine 139
extensions, language 3
external names

in the runtime environment 301
EXTNAME @PROCESS directive 122

F
faster array I/O 35
file table section in compiler listing 299
files

editing source 17
input 23
output 24
using suffixes other than .f for source

files 15
FIXED @PROCESS directive 125
FLAG @PROCESS directive 126
floating-point

exception handling 45
exceptions 132

FLTTRAP @PROCESS directive 132
Fortran 2003

programs, compiling 20
Fortran 2003 iostat_end behavior 39
Fortran 2008

programs, compiling 20
Fortran 90

compiling programs written for 19
Fortran 95

compiling programs written for 19
FREE @PROCESS directive 134
fsuffix attribute of configuration file 15
full suboption of -qtbtable 247
FULLPATH @PROCESS directive 135
function trace 136, 138, 139

G
G edit descriptor, difference between F77

and F90 260
gcc_libs_64 attribute of configuration

file 14

gcc_path_64 attribute of configuration
file 14

gcrt64 attribute of configuration file 14
gedit77 suboption of -qxlf77 260
generating code for different systems 29

H
HALT @PROCESS directive 140
hardware, compiling for different types

of 29
header section in compiler listing 293
hexint and nohexint suboptions of

-qport 204
high order transformation 143
hot attribute of configuration file 14
hsflt suboption of -qfloat 302

I
I error severity 285
i-node 41
IEEE @PROCESS directive 146, 279
IEEE infinity output 265
IEEE NaN output 265
implicit timestamps 248
include_64 attribute of configuration

file 16
inexact suboption of -qflttrap 132
informational message 285
INIT @PROCESS directive 151
initialize arrays, problems 290
INLGLUE @PROCESS directive 156
inlining 157
input files 23
input/output

increasing throughput with data
striping 90

runtime behavior 34
when unit is positioned at

end-of-file 260
installation problems 287
installing the compiler 7
intarg suboption of -qxlf77 260
integer arguments of different kinds to

intrinsic procedures 260
internal compiler error 287
internal limits for the compiler 307
interprocedural analysis (IPA) 163
INTLOG @PROCESS directive 160
intptr suboption of -qalias 87
intrinsic procedures accepting integer

arguments of different kinds 260
intrinthds runtime option 39
INTSIZE @PROCESS directive 161
intxor suboption of -qxlf77 260
invalid suboption of -qflttrap 133
invoking a program 33
invoking the compiler 17
iostat_end runtime option 39
ipa attribute of configuration file 14
irand routine, naming restriction for 33
ISO

checking conformance to the Fortran
2003 standard 169

ISO (continued)
checking conformance to the Fortran

2008 standard 169
checking conformance to the Fortran

90 standard 169
checking conformance to the Fortran

95 standard 169
itercnt suboption of -qassert 95

K
kind type parameters 162
ksh shell 7

L
L error severity 285
LANGLVL @PROCESS directive 169
language extensions 3
language standards 3
language support 3
language-level error 285
ld command, passing command-line

options to 28
LD_LIBRARY_PATH environment

variable 8, 45
LD_RUN_PATH environment

variable 8, 45
ldopt attributes of configuration file 14,

15
leadzero suboption of -qxlf77 260
level of XL Fortran, determining 16
lexical extent, definition of 319
lib*.so library files 23, 78
libraries 23

default search paths 8
external names 301

library
shared (dynamic) 21
static 21

library path environment variable 287
libxlf90_t.so 19
libxlf90.so library 34
libxlsmp.so library 34
limit command 287
limits internal to the compiler 307
line feed character 108
LINEDEBUG @PROCESS directive 173
linking 31

dynamic 32
problems 290
static 32

LIST @PROCESS directive 174
listing files 24
listings, compiler 293
LISTOPT @PROCESS directive 178
LOG4 @PROCESS directive 179

M
m suboption of -y 279
machines, compiling for different

types 29
macro expansion 29, 131, 207
macro, _OPENMP C preprocessor 30
maf suboption of -qfloat 239

Index 335

make command 66
makefiles

copying modified configuration files
along with 14

malloc system routine 98
MAXMEM @PROCESS directive 183
MBCS @PROCESS directive 185
mclock routine, naming restrictions

for 33
mcrt64 attribute of configuration file 14
mergepdf 198
message suppression 243
messages

1501-053 error message 290
1501-229 error message 290
1517-011 error message 290

minus suboption of -qieee 146
MIXED @PROCESS directive 186, 274
mod and nomod suboptions of

-qport 204
mod files 23, 24, 187
modules, effect on compilation order 22
mon.out file 23
mpi 172
MPI 172
multconn runtime option 41
multconnio runtime option 41

N
n suboption of -y 279
name conflicts, avoiding 33
namelist runtime option 42
NaN values

specifying with -qinitalloc compiler
option 152

specifying with -qinitauto compiler
option 154

naninfoutput runtime option 42
nearest suboption of -qieee 146
nlwidth runtime option 42
nodblpad suboption of -qautodbl 97
nodeps suboption of -qassert 95
none suboption of -qautodbl 97
none suboption of -qtbtable 247
nooldnaninf suboption, -qxlf2003 265
nooldpad suboption of -qxlf90 261
null-terminated strings, passing to C

functions
strings, passing to C functions 189

NULLTERM @PROCESS directive 189

O
OBJECT @PROCESS directive 190
object files 23, 24
oldboz suboption of -qxlf77 260
oldpad suboption of -qxlf90 261
ONETRIP @PROCESS directive 67, 191
optimization 6

loop optimization 143
OPTIMIZE @PROCESS directive 83, 193
option 255
options attribute of configuration file 15
options for performance optimization 58
options section in compiler listing 293

options that control linking 61
options that control listings and

messages 56
osuffix attribute of configuration file 15
output files 24
overflow suboption of -qflttrap 133

P
p suboption of -y 279
pad setting, changing for internal,

direct-access and stream-access
files 260

padding of data types with -qautodbl
option 302

paging space
running out of 289

path name of source files, preserving
with -qfullpath 135

PDF report section in compiler
listing 294

PDF_BIND_PROCESSOR environment
variable 8

PDF_PM_EVENT 8
PDF_PM_EVENT environment

variables 8
PDFDIR 8
PDFDIR environment variables 8
performance of real operations, speeding

up 98, 211
performance optimization options 58
persistent suboption of -qxlf77 260
PHSINFO @PROCESS directive 202
plus suboption of -qieee 146
pointers (Fortran 90) and -qinit compiler

option 151
polymorphic suboption of -qxlf2003 263
PORT @PROCESS directive 204
POSITION @PROCESS directive 206
POSIX pthreads

API support 22
runtime libraries 34

PowerPC systems
compiling programs for 29

precision of real data types 98, 211
preprocessing Fortran source with the C

preprocessor 29
problem determination 285
procedure trace 136, 138, 139
prof command 24
profile-directed feedback (PDF) 195

-qpdf1 compiler option 195
-qpdf2 compiler option 195

profiling 86
-qpdf1 compiler option 195
-qpdf2 compiler option 195

profiling data files 24
Program Editor 17
promoting integer arguments to intrinsic

procedures 260
promotion of data types with -qautodbl

option 302
pteovrlp suboption of -qalias 87

Q
QCOUNT @PROCESS directive 211
qdirectstorage compiler option 115
quiet NaN 155
quiet NaN suboption of -qflttrap 133

R
rand routine, naming restriction for 33
random runtime option 43
READ statements past end-of-file 260
REAL data types 98
REALSIZE @PROCESS directive 211
RECUR @PROCESS directive 213
recursion 213, 218
register flushing 168
return code

from compiler 286
from Fortran programs 286

rpm command 16
rrm suboption of -qfloat 239
running a program 33
running the compiler 17
runtime

environment 301
exceptions 45
libraries 23
options 34
problems 291

runtime options 34

S
S error severity 285
SAA @PROCESS directive 216
SAVE @PROCESS directive 217
scratch_vars runtime option 9, 43
setrteopts service and utility

procedure 34
severe error 285
sh shell 7
shared (dynamic) library 21
shared object files 23
shared objects 186

-qmkshrobj 186
shared-memory parallelism (SMP) 226
showpdf 198
SIGN intrinsic, effect of

-qxlf90=signedzero on 261
signal handling 45
signedzero suboption of -qxlf90 261
SIGTRAP signal 45, 132
small suboption of -qtbtable 247
SMP

programs, compiling 22
smplibraries attribute of configuration

file 16
softeof suboption of -qxlf77 260
SOURCE @PROCESS directive 230
source file options 27
source files 23

allowing suffixes other than .f 15
preserving path names for

debugging 135
specifying options in 27

source section in compiler listing 294

336 XL Fortran: Compiler Reference for Little Endian Distributions

source-code conformance checking 4
source-level debugging support 6
space problems 287
SPILLSIZE @PROCESS directive 82, 231
ssuffix attribute of configuration file 15
stack

limit 287
stackprotect

stackprotect 231
standards, language 3
static library 21
static linking 32
static storage, alignment of arrays in 90
std suboption of -qalias 87
storage limits 287
storage relationship between data

objects 302
storage-associated arrays, performance

implications of 87
STRICT @PROCESS directive 236
strictieeemod @PROCESS directive 240
suffix, allowing other than .f on source

files 15
suffixes for source files 241, 242
summary of command line options 47
SWAPOMP @PROCESS directive 245
symbolic debugger support 6
system problems 287

T
target machine 93
temporary arrays, reducing 87
temporary file directory 9
text editors 17
threads, controlling 39
throughput for I/O, increasing with data

striping 90
times routine, naming restriction for 33
TMPDIR environment variable 45, 290

compile time 9
Trace/breakpoint trap 45
traceback listing 223, 292
transformation report section in compiler

listing 295
transformations, control of 236
trigger_constant

IBM* 114
IBMT 248
setting values 114

trigraphs 31
tuning 249

-qarch compiler option 249
-qtune compiler option 249

typeless constants and character
constants 109

typestmt and notypestmt suboptions of
-qport 204

U
U error severity 285
ufmt_bigendian runtime option 43
ulimit command 287
UNDEF @PROCESS directive 251, 274
underflow suboption of -qflttrap 133

unformatted data files, little-endian
I/O 43

Unicode data 186
unit_vars runtime option 9, 44
UNIVERSAL setting for locale 186
unrecoverable error 285
unrolling DO LOOPs 251
UNWIND @PROCESS directive 253
use attribute of configuration file 14
UTF-8 encoding for Unicode data 186
uwidth runtime option 44

V
value relationships between data

objects 302
vector data types 92

-qaltivec compiler option 92
vector processing 223

-qaltivec compiler option 92
vi text editor 17
visibility attributes 255

W
W error severity 285
warning error 285
what command 16
WRITE statements past end-of-file 260

X
XFLAG(OLDTAB) @PROCESS

directive 258
xl__trbk library procedure 292
xl__trce exception handler 223
xlf attribute of configuration file 14
xlf_r command

for compiling SMP programs 22
XLF_USR_CONFIG environment

variable 45
xlf.cfg configuration file 13
xlf.cfg.nn configuration file 71
xlf.cfgconfiguration file 71
XLF2003 @PROCESS directive 263
XLF2008 @PROCESS directive 267
XLF77 @PROCESS directive 259
XLF90 @PROCESS directive 261
xlf90_r command

for compiling SMP programs 22
xlf95_r command

for compiling SMP programs 22
xlfopt attribute of configuration file 15
XLFRTEOPTS environment variable 34
XLFSCRATCH_unit environment

variable 9, 43
XLFUNIT_unit environment variable 9,

44
XLINES @PROCESS 267
XOR 260
XREF @PROCESS directive 269
xrf_messages runtime option 44

Z
z suboption of -y 279
zero suboption of -qieee 146
zerodivide suboption of -qflttrap 133
zeros (leading), in output 260
ZEROSIZE @PROCESS directive 270

Index 337

338 XL Fortran: Compiler Reference for Little Endian Distributions

IBM®

Product Number: 5765-J10; 5725-C75

Printed in USA

SC27-6610-02

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions
	Related information
	IBM XL Fortran information
	Standards and specifications
	Other IBM information

	Technical support
	How to send your comments

	Chapter 1. Introduction
	Chapter 2. Overview of XL Fortran features
	Hardware and operating-system support
	Language support
	Source-code conformance checking
	Highly configurable compiler
	Diagnostic listings
	Symbolic debugger support
	Program optimization

	Chapter 3. Setting up and customizing XL Fortran
	Where to find installation instructions
	Correct settings for environment variables
	Environment variable basics
	Setting library search paths
	Profile-directed feedback environment variables
	TMPDIR: Specifying a directory for temporary files
	XLFSCRATCH_unit: Specifying names for scratch files
	XLFUNIT_unit: Specifying names for implicitly connected files

	Using custom compiler configuration files
	Creating custom configuration files
	Overriding the default order of attribute values
	Examples of stanzas in custom configuration files

	Using IBM XL Fortran for Linux, V15.1.3 with the Advance Toolchain

	Editing the default configuration file
	Configuration file attributes

	Determining which level of XL Fortran is installed
	Running two levels of XL Fortran

	Chapter 4. Editing, compiling, linking, and running XL Fortran programs
	Editing XL Fortran source files
	Compiling XL Fortran programs
	Compiling XL Fortran Version 2 programs
	Compiling Fortran 90 or Fortran 95 programs
	Compiling Fortran 2003 programs
	Compiling Fortran 2008 programs
	Compiling and linking a library
	Compiling a static library
	Compiling a shared library
	Linking a library to an application
	Linking a shared library to another shared library

	Compiling XL Fortran SMP programs
	POSIX pthreads API support

	Compilation order for Fortran programs
	Canceling a compilation
	XL Fortran input files
	XL Fortran output files
	Scope and precedence of option settings
	Specifying options on the command line
	Specifying options in the source file
	Passing command-line options to the "ld" or "as" command
	Displaying information inside binary files (strings)
	Compiling for specific architectures
	Passing Fortran files through the C preprocessor
	cpp directives for XL Fortran programs
	Passing options to the C preprocessor
	Avoiding preprocessing problems

	Linking XL Fortran programs
	Compiling and linking in separate steps
	Passing options to the ld command
	Dynamic and static linking
	Avoiding naming conflicts during linking

	Running XL Fortran programs
	Canceling execution
	Compiling and executing on different systems
	Runtime libraries for POSIX pthreads support
	Setting runtime options
	The XLFRTEOPTS environment variable
	Setting OMP and SMP run time options
	BLAS/ESSL environment variable
	XLF_USR_CONFIG

	Other environment variables that affect runtime behavior
	XL Fortran runtime exceptions

	Chapter 5. Summary of compiler options by functional category
	Output control
	Input control
	Language element control
	Floating-point and integer control
	Object code control
	Error checking and debugging
	Listings, messages, and compiler information
	Optimization and tuning
	Linking
	Portability and migration
	Compiler customization

	Chapter 6. Detailed descriptions of the XL Fortran compiler options
	-#
	-1
	-B
	-C
	-c
	-D
	-d
	-e
	-F
	-g
	-I
	-k
	-L
	-l
	-MF
	-MMD
	-MT
	-NS
	-O
	-o
	-p
	-qalias
	-qalign
	-qaltivec
	-qarch
	-qassert
	-qattr
	-qautodbl
	-qbindcextname
	-qcache
	-qcclines
	-qcheck
	-qci
	-qcompact
	-qcr
	-qctyplss
	-qdbg
	-qddim
	-qdescriptor
	-qdirective
	-qdirectstorage
	-qdlines
	-qdpc
	-qenum
	-qescape
	-qessl
	-qextern
	-qextname
	-qfdpr
	-qfixed
	-qflag
	-qfloat
	-qfpp
	-qflttrap
	-qfree
	-qfullpath
	-qfunctrace
	-qfunctrace_xlf_catch
	-qfunctrace_xlf_enter
	-qfunctrace_xlf_exit
	-qhalt
	-qhaltonmsg
	-qhelp
	-qhot
	-qieee
	-qinfo
	-qinit
	-qinitalloc
	-qinitauto
	-qinlglue
	-qinline
	-qintlog
	-qintsize
	-qipa
	-qkeepparm
	-qlanglvl
	-qlibansi
	-qlibmpi
	-qlinedebug
	-qlist
	-qlistfmt
	-qlistopt
	-qlog4
	-qmakedep
	-qmaxerr
	-qmaxmem
	-qmbcs
	-qmixed
	-qmkshrobj
	-qmoddir
	-qnoprint
	-qnullterm
	-qobject
	-qonetrip
	-qoptfile
	-qoptimize
	-qpath
	-qpdf1, -qpdf2
	-qphsinfo
	-qpic
	-qport
	-qposition
	-qppsuborigarg
	-qprefetch
	-qqcount
	-qrealsize
	-qrecur
	-qreport
	-qsaa
	-qsave
	-qsaveopt
	-qsclk
	-qshowpdf
	-qsigtrap
	-qsimd
	-qsmallstack
	-qsmp
	-qsource
	-qspillsize
	-qstackprotect
	-qstacktemp
	-qstaticlink
	-qstrict
	-qstrictieeemod
	-qstrict_induction
	-qsuffix
	-qsuppress
	-qswapomp
	-qtbtable
	-qthreaded
	-qtimestamps
	-qtune
	-qufmt
	-qundef
	-qunroll
	-qunwind
	-qversion
	-qvisibility
	-qwarn64
	-qxflag=dvz
	-qxflag=oldtab
	-qxlf77
	-qxlf90
	-qxlf2003
	-qxlf2008
	-qxlines
	-qxref
	-qzerosize
	-r
	-S
	-t
	-U
	-u
	-v
	-V
	-W
	-w
	-y

	Chapter 7. Using XL Fortran in a 64-bit environment
	Chapter 8. Tracking compiler license usage
	Understanding compiler license tracking
	Setting up SLM Tags logging

	Chapter 9. Problem determination and debugging
	Understanding XL Fortran error messages
	Error severity
	Compiler return codes
	Runtime return codes
	Format of XL Fortran diagnostic messages
	Limiting the number of compile-time messages

	Fixing installation or system environment problems
	Fixing compile-time problems
	Fixing link-time problems
	Fixing runtime problems
	Debugging a Fortran program

	Chapter 10. Understanding XL Fortran compiler listings
	Header section
	Options section
	Source section
	Error messages

	PDF report section
	Transformation report section
	Data reorganization report section
	Attribute and cross reference section
	Object section
	File table section
	Compilation unit epilogue Section
	Compilation epilogue Section

	Chapter 11. XL Fortran technical information
	External names in XL Fortran libraries
	The XL Fortran runtime environment
	External names in the runtime environment

	Technical details of the -qfloat=hsflt option
	Implementation details for -qautodbl promotion and padding
	Terminology
	Examples of storage relationships for -qautodbl suboptions

	Chapter 12. XL Fortran internal limits
	Glossary
	Notices
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

