
IBM XL Fortran for Linux, V15.1.1

Getting Started with XL Fortran
for Little Endian Distributions
Version 15.1.1

SC27-6620-00

IBM

IBM XL Fortran for Linux, V15.1.1

Getting Started with XL Fortran
for Little Endian Distributions
Version 15.1.1

SC27-6620-00

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 21.

First edition

This edition applies to IBM XL Fortran for Linux, V15.1.1 (Program 5765-J10; 5725-C75) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition
for the level of the product.

© Copyright IBM Corporation 1996, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Conventions v
Related information x

IBM XL Fortran information x
Standards and specifications xi
Other IBM information xii

Technical support xii
How to send your comments xii

Chapter 1. Introducing XL Fortran . . . 1
Commonality with other IBM compilers 1
Operating system and hardware support 1
A highly configurable compiler 1
Language standard compliance 2

Source-code migration and conformance checking 3
Tools, utilities, and commands 3
Advance Toolchain 8.0 support 4
Program optimization 4
Shared memory parallelization 5
Diagnostic listings 6
Symbolic debugger support 6

Chapter 2. Migrating to IBM XL Fortran
for Linux, V15.1.1. 7
Migrating from big endian Linux to little endian
Linux 7

Chapter 3. Setting up and customizing
XL Fortran. 9
Using custom compiler configuration files 9

Chapter 4. Developing applications with
XL Fortran 11
The compiler phases 11
Editing Fortran source files 11
Compiling with XL Fortran 12

Invoking the compiler 12
Compiling parallelized XL Fortran applications 14
Specifying compiler options 15
XL Fortran input and output files 16

Linking your compiled applications with XL Fortran 16
Dynamic and static linking 17

Running your compiled application 17
XL Fortran compiler diagnostic aids 18

Debugging compiled applications 18
Determining which level of XL Fortran is being
used 18

Notices 21
Trademarks and service marks 23

Index 25

© Copyright IBM Corp. 1996, 2014 iii

iv XL Fortran: Getting Started for Little Endian Distributions

About this document

This document contains overview and basic usage information for the IBM® XL
Fortran for Linux, V15.1.1 compiler.

Who should read this document

This document is intended for Fortran developers who are looking for introductory
overview and usage information for XL Fortran. It assumes that you have some
familiarity with command-line compilers, a basic knowledge of the Fortran
programming language, and basic knowledge of operating system commands.
Programmers new to XL Fortran can use this document to find information on the
capabilities and features unique to XL Fortran.

How to use this document

Throughout this document, the xlf compiler invocation is used to describe the
actions of the compiler. You can, however, substitute other forms of the compiler
invocation command if your particular environment requires it, and compiler
option usage will remain the same unless otherwise specified.

While this document covers information on configuring the compiler environment,
and compiling and linking Fortran applications using the XL Fortran compiler, it
does not include the following topics:
v Compiler installation: see the XL Fortran Installation Guide for information on

installing XL Fortran.
v Compiler options: see the XL Fortran Compiler Reference for detailed information

on the syntax and usage of compiler options.
v The Fortran programming language: see the XL Fortran Language Reference for

information on the syntax, semantics, and IBM implementation of the Fortran
programming language.

v Programming topics: see the XL Fortran Optimization and Programming Guide for
detailed information on developing applications with XL Fortran, with a focus
on program portability and optimization.

Conventions
Typographical conventions

© Copyright IBM Corp. 1996, 2014 v

The following table shows the typographical conventions used in the IBM XL
Fortran for Linux, V15.1.1 information.

Table 1. Typographical conventions

Typeface Indicates Example

lowercase
bold

Invocation commands, executable
names, and compiler options.

The compiler provides basic
invocation commands, xlf, along with
several other compiler invocation
commands to support various Fortran
language levels and compilation
environments.

The default file name for the
executable program is a.out.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Examples of program code,
reference to program code, file
names, path names, command
strings, or user-defined names.

To compile and optimize
myprogram.f, enter: xlf myprogram.f
-O3.

UPPERCASE
bold

Fortran programming keywords,
statements, directives, and intrinsic
procedures. Uppercase letters may
also be used to indicate the
minimum number of characters
required to invoke a compiler
option/suboption.

The ASSERT directive applies only to
the DO loop immediately following
the directive, and not to any nested
DO loops.

Qualifying elements (icons and bracket separators)

In descriptions of language elements, this information uses icons and marked
bracket separators to delineate the Fortran language standard text as follows:

Table 2. Qualifying elements

Icon
Bracket
separator text Meaning

F2008

F2008

N/A The text describes an IBM XL Fortran implementation of
the Fortran 2008 standard.

Fortran 2003
begins / ends

The text describes an IBM XL Fortran implementation of
the Fortran 2003 standard, and it applies to all later
standards.

IBM extension
begins / ends

The text describes a feature that is an IBM XL Fortran
extension to the standard language specifications.

vi XL Fortran: Getting Started for Little Endian Distributions

Table 2. Qualifying elements (continued)

Icon
Bracket
separator text Meaning

TS

TS

N/A The text describes a feature in a Technical Specification
that is not part of the current Fortran standard.

Note: If the information is marked with a Fortran language standard icon or
bracket separators, it applies to this specific Fortran language standard and all later
ones. If it is not marked, it applies to all Fortran language standards.

Syntax diagrams

Throughout this information, diagrams illustrate XL Fortran syntax. This section
will help you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.
IBM XL Fortran extensions are marked by a number in the syntax diagram with
an explanatory note immediately following the diagram.
Program units, procedures, constructs, interface blocks and derived-type
definitions consist of several individual statements. For such items, a box
encloses the syntax representation, and individual syntax diagrams show the
required order for the equivalent Fortran statements.

v Required items are shown on the horizontal line (the main path):

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([
and]). For example, [UNIT=]u

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

About this document vii

If choosing one of the items is optional, the entire stack is shown below the
main path.

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values. If a variable or user-specified name ends in _list, you can
provide a list of these terms separated by commas.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following is an example of a syntax diagram with an interpretation:

viii XL Fortran: Getting Started for Little Endian Distributions

How to read syntax statements

Syntax statements are read from left to right:
v Individual required arguments are shown with no special notation.
v When you must make a choice between a set of alternatives, they are enclosed

by { and } symbols.
v Optional arguments are enclosed by [and] symbols.
v When you can select from a group of choices, they are separated by | characters.
v Arguments that you can repeat are followed by ellipses (...).

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.
v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

►►
(1)

EXAMPLE char_constant a
b c

d

▼

,

e name_list ►◄

Notes:

1 IBM extension

Interpret the diagram as follows:

v Enter the keyword EXAMPLE.

v EXAMPLE is an IBM extension.

v Enter a value for char_constant.

v Enter a value for a or b, but not for both.

v Optionally, enter a value for c or d.

v Enter at least one value for e. If you enter more than one value, you must put a
comma between each.

v Enter the value of at least one name for name_list. If you enter more than one value,
you must put a comma between each. (The _list syntax is equivalent to the previous
syntax for e.)

About this document ix

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Notes on the terminology used

Some of the terminology in this information is shortened as follows:
v The term free source form format often appears as free source form.
v The term fixed source form format often appears as fixed source form.
v The term XL Fortran often appears as XLF.

Related information
The following sections provide related information for XL Fortran:

IBM XL Fortran information
XL Fortran provides product information in the following formats:
v README files

README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL Fortran directory, and in the root directory and subdirectories of the
installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL Fortran for Linux, V15.1.1 Installation
Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.1/
com.ibm.compilers.linux.doc/welcome.html.

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27036672.
The following files comprise the full set of XL Fortran product information:

Table 3. XL Fortran PDF files

Document title
PDF file
name Description

IBM XL Fortran for Linux,
V15.1.1 Installation Guide,
GC27-6580-00

install.pdf Contains information for installing XL Fortran
and configuring your environment for basic
compilation and program execution.

x XL Fortran: Getting Started for Little Endian Distributions

http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.1/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.1/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27036672
http://www.ibm.com/support/docview.wss?uid=swg27036672

Table 3. XL Fortran PDF files (continued)

Document title
PDF file
name Description

Getting Started with IBM
XL Fortran for Linux,
V15.1.1, SC27-6620-00

getstart.pdf Contains an introduction to the XL Fortran
product, with information on setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL Fortran for Linux,
V15.1.1 Compiler Reference,
SC27-6610-00

compiler.pdf Contains information about the various
compiler options and environment variables.

IBM XL Fortran for Linux,
V15.1.1 Language Reference,
SC27-6590-00

langref.pdf Contains information about the Fortran
programming language as supported by IBM,
including language extensions for portability
and conformance to nonproprietary standards,
compiler directives and intrinsic procedures.

IBM XL Fortran for Linux,
V15.1.1 Optimization and
Programming Guide,
SC27-6600-00

proguide.pdf Contains information on advanced
programming topics, such as application
porting, interlanguage calls, floating-point
operations, input/output, application
optimization and parallelization, and the XL
Fortran high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL Fortran including IBM Redbooks® publications,
white papers, tutorials, documentation errata, and other articles, is available on the
web at:

http://www.ibm.com/support/docview.wss?uid=swg27036672

For more information about Fortran, see the Fortran café at https://
www.ibm.com/developerworks/mydeveloperworks/groups/service/html/
communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa.

Standards and specifications
XL Fortran is designed to support the following standards and specifications. You
can refer to these standards for precise definitions of some of the features found in
this information.
v American National Standard Programming Language FORTRAN, ANSI X3.9-1978.
v American National Standard Programming Language Fortran 90, ANSI X3.198-1992.
v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
v Federal (USA) Information Processing Standards Publication Fortran, FIPS PUB 69-1.
v Information technology - Programming languages - Fortran, ISO/IEC 1539-1:1991.

(This information uses its informal name, Fortran 90.)
v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:1997. (This information uses its informal name, Fortran 95.)
v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:2004. (This information uses its informal name, Fortran 2003.)

About this document xi

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036672
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa

v Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:2010. (This information uses its informal name, Fortran 2008. We
currently provide partial support to this standard.)

v Military Standard Fortran DOD Supplement to ANSI X3.9-1978, MIL-STD-1753
(United States of America, Department of Defense standard). Note that XL
Fortran supports only those extensions documented in this standard that have
also been subsequently incorporated into the Fortran 90 standard.

v OpenMP Application Program Interface Version 4.0 (Partial support), available at
http://www.openmp.org

Other IBM information
v ESSL product documentation available at http://www.ibm.com/support/

knowledgecenter/SSFHY8/essl_welcome.html

Technical support
Additional technical support is available from the XL Fortran Support page at
http://www.ibm.com/support/entry/portal/overview/software/rational/
xl_fortran_for_linux. This page provides a portal with search capabilities to a large
selection of Technotes and other support information.

If you cannot find what you need, you can send email to compinfo@cn.ibm.com.

For the latest information about XL Fortran, visit the product information site at
http://www.ibm.com/software/products/us/en/xlfortran-linux.

How to send your comments
Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this information or any other XL
Fortran information, send your comments by email to compinfo@cn.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL Fortran, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

xii XL Fortran: Getting Started for Little Endian Distributions

http://www.openmp.org
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_fortran_for_linux
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_fortran_for_linux
http://www.ibm.com/software/products/us/en/xlfortran-linux

Chapter 1. Introducing XL Fortran

IBM XL Fortran for Linux, V15.1.1 is an advanced, high-performance compiler that
can be used for developing complex, computationally intensive programs,
including interlanguage calls with C programs.

This section contains information about the features of the XL Fortran compiler at a
high level. It is intended for people who are evaluating the compiler, and for new
users who want to find out more about the product.

Commonality with other IBM compilers
IBM XL Fortran for Linux, V15.1.1 is part of a larger family of IBM C, C++, and
Fortran compilers. XL Fortran, together with XL C/C++, comprises the family of
XL compilers.

These compilers are derived from a common code base that shares compiler
function and optimization technologies for a variety of platforms and
programming languages. Programming environments include IBM AIX®, IBM Blue
Gene®/P, IBM Blue Gene®/Q, IBM i, selected Linux distributions, IBM z/OS®, and
IBM z/VM®. The common code base, along with compliance with international
programming language standards, helps support consistent compiler performance
and ease of program portability across multiple operating systems and hardware
platforms.

Operating system and hardware support
This section describes the operating systems and hardware that IBM XL Fortran for
Linux, V15.1.1 supports.

IBM XL Fortran for Linux, V15.1.1 supports the following operating systems:
v Ubuntu Server V14.04
v Ubuntu Server V14.10
v SUSE Linux Enterprise Server 12

See the README file and "Before installing XL Fortran" in the XL Fortran
Installation Guide for a complete list of requirements.

The compiler, its libraries, and its generated object programs run on any IBM
Power Systems™ server supported by your operating system distribution with the
required software and disk space.

To exploit the various supported hardware configurations, the compiler provides
options to tune the performance of applications according to the hardware type
that runs the compiled applications.

A highly configurable compiler
You can use a variety of compiler invocation commands and options to tailor the
compiler to your unique compilation requirements.

© Copyright IBM Corp. 1996, 2014 1

Compiler invocation commands

XL Fortran provides several commands to invoke the compiler, for example, xlf,
xlf90, xlf95, xlf2003, and xlf2008. Compiler invocation commands are provided to
support all standardized Fortran language levels, and many popular language
extensions as well.

The compiler also provides corresponding "_r" versions of most invocation
commands, for example, xlf_r. The "_r" invocations instruct the compiler to link
and bind object files to threadsafe components and libraries, and produce
threadsafe object code for compiler-created data and procedures.

For more information about XL Fortran compiler invocation commands, see
"Compiling XL Fortran programs" in the XL Fortran Compiler Reference.

Compiler options

You can choose from a large selection of compiler options to control compiler
behavior. You can benefit from using different options for the following tasks:
v Debugging your applications
v Optimizing and tune application performance
v Selecting language levels and extensions for compatibility with nonstandard

features and behaviors that are supported by other Fortran compilers
v Performing many other common tasks that would otherwise require changing

the source code

You can specify compiler options through a combination of environment variables,
compiler configuration files, command line options, and compiler directive
statements embedded in your program source.

For more information about XL Fortran compiler options, see "Summary of
compiler options" in the XL Fortran Compiler Reference.

Custom compiler configuration files

The installation process creates a default compiler configuration file containing
stanzas that define compiler option default settings.

If you frequently specify compiler option settings other than the default settings of
XL Fortran, you can use makefiles to define your settings. Alternatively, you can
create custom configuration files to define your own frequently used option
settings.

For more information about using custom compiler configuration files, see “Using
custom compiler configuration files” on page 9.

Language standard compliance
IBM XL Fortran for Linux, V15.1.1 supports the following Fortran programming
language specifications.
v Partial support for ISO/IEC TS 29113:2012 (referred to as the Technical

Specification for further interoperability with C or TS 29113)
v Partial support for ISO/IEC 1539-1:2010 (referred to as Fortran 2008 or F2008)
v ISO/IEC 1539-1:2004 (referred to as Fortran 2003 or F2003)

2 XL Fortran: Getting Started for Little Endian Distributions

v ISO/IEC 1539-1:1997 (referred to as Fortran 95 or F95)
v ISO/IEC 1539-1:1991(E) and ANSI X3.198-1992 (referred to as Fortran 90 or F90)
v ANSI X3.9-1978 (referred to as FORTRAN 77)

In addition to the standard language levels, XL Fortran supports the following
language extensions:
v Partial support for OpenMP Application Program Interface V4.0
v OpenMP Application Program Interface V3.1
v Language extensions to support vector programming
v Common Fortran language extensions defined by other compiler vendors, in

addition to those defined by IBM
v Industry extensions that are found in Fortran products from various compiler

vendors
v Extensions specified in SAA Fortran

See "Language standards" in the XL Fortran Language Reference for more
information about Fortran language specifications and extensions.

Source-code migration and conformance checking
XL Fortran provides compiler invocation commands that instruct the compiler to
inspect your application for conformance to a specific language level and warn you
if constructs and keywords do not conform to the specified language level.

You can also use the -qlanglvl compiler option to specify a language level. If the
language elements in your program source do not conform to the specified
language level, the compiler issues diagnostic messages. Additionally, you can
name your source files with common filename extensions such as .f77, .f90, f95,
.f03, or .f08, then use the generic compiler invocations such as xlf or xlf_r to
automatically select the appropriate language level appropriate to the filename
extension.

See -qlanglvl in the XL Fortran Compiler Reference for more information.

Tools, utilities, and commands
This topic introduces the main tools, utilities, and commands that are included
with XL Fortran. It does not contain all compiler tools, utilities, and commands.

Utilities

install The install utility installs and configures IBM XL Fortran for Linux,
V15.1.1 for use on your system.

xlf_configure
You can use the xlf_configure utility to facilitate the use of XL Fortran
with IBM Advance Toolchain. For details, see "Using IBM XL Fortran for
Linux, V15.1.1 with the Advance Toolchain" in XL Fortran Compiler
Reference.

Commands

genhtml command
The genhtml command converts an existing XML diagnostic report
produced by the -qlistfmt option. You can choose to produce XML or
HTML diagnostic reports by using the -qlistfmt option. The report can

Chapter 1. Introducing XL Fortran 3

help with finding optimization opportunities. For more information about
how to use this command, see genhtml command in the XL Fortran
Compiler Reference.

Profile-directed feedback (PDF) related commands

cleanpdf command
The cleanpdf command removes all the PDF files or the specified
PDF files from the directory to which profile-directed feedback
data is written.

mergepdf command
The mergepdf command provides the ability to weigh the
importance of two or more PDF records when combining them into
a single record. The PDF records must be derived from the same
executable.

resetpdf command
The current behavior of the resetpdf command is the same as the
cleanpdf command, and is retained for compatibility with earlier
releases on other platforms.

showpdf command
The showpdf command displays the following types of profiling
information for all the procedures executed in a PDF run
(compilation under the -qpdf1 option):
v Block-counter profiling
v Call-counter profiling
v Value profiling
v Cache-miss profiling, if you specified the -qpdf1=level=2 option

during the -qpdf1 phase.

You can view the first two types of profiling information in either
text or XML format. However, you can view value profiling and
cache-miss profiling information only in XML format.

For more information, see -qpdf1, -qpdf2 in the XL Fortran Compiler
Reference.

Advance Toolchain 8.0 support
IBM XL Fortran for Linux, V15.1.1 fully supports IBM Advance Toolchain 8.0,
which is a set of open source development tools and runtime libraries. With IBM
Advance Toolchain, you can take advantage of the latest POWER® hardware
features on Linux, especially the tuned libraries.

For more information, see "Using IBM XL Fortran for Linux, V15.1.1 with the
Advance Toolchain" in the XL Fortran Compiler Reference.

Program optimization
XL Fortran provides several compiler options that can help you control the
optimization and performance of your programs.

With these options, you can perform the following tasks:
v Select different levels of compiler optimizations.
v Control optimizations for loops, floating point, and other types of operations.

4 XL Fortran: Getting Started for Little Endian Distributions

v Optimize a program for a particular class of machines or for a very specific
machine configuration, depending on where the program will run.

Optimizing transformations can give your application better overall execution
performance. XL Fortran provides a portfolio of optimizing transformations
tailored to various supported hardware. These transformations offer the following
benefits:
v Reducing the number of instructions executed for critical operations
v Restructuring generated object code to make optimal use of the Power

Architecture
v Improving the usage of the memory subsystem
v Exploiting the ability of the architecture to handle large amounts of shared

memory parallelization

For more information, see these related topics:
v "Optimizing your applications" in the XL Fortran Optimization and Programming

Guide

v "Optimizing and tuning options" in the XL Fortran Compiler Reference

Shared memory parallelization
XL Fortran supports application development for multiprocessor system
architectures.

You can use any of the following methods to develop your parallelized
applications with XL Fortran:

v Directive-based shared memory parallelization
v Instructing the compiler to automatically generate shared memory

parallelization
v Message passing based shared or distributed memory parallelization (MPI)

For more information, see "Parallel programming with XL Fortran" in the XL
Fortran Optimization and Programming Guide.

OpenMP directives

OpenMP directives are a set of API-based commands supported by XL Fortran and
many other IBM and non-IBM C, C++, and Fortran compilers.

You can use OpenMP directives to instruct the compiler how to parallelize a
particular loop. The existence of the directives in the source removes the need for
the compiler to perform any parallel analysis on the parallel code. OpenMP
directives require the presence of Pthread libraries to provide the necessary
infrastructure for parallelization.

OpenMP directives address three important issues of parallelizing an application:
1. Clauses and directives are available for scoping variables. Frequently,

variables should not be shared; that is, each processor should have its
own copy of the variable.

2. Work sharing directives specify how the work contained in a parallel
region of code should be distributed across the processors.

3. Directives are available to control synchronization between the processors.

Chapter 1. Introducing XL Fortran 5

As of IBM XL Fortran for Linux, V15.1.1, XL Fortran supports OpenMP API
Version 3.1 and selected features of the OpenMP API Version 4.0 specification.

For more information about program performance optimization, see:
v "Optimizing your applications" in the XL Fortran Optimization and Programming

Guide

v The OpenMP API specification for parallel programming

Diagnostic listings
The compiler output listings and the XML or HTML reports provide important
information to help you develop and debug your applications more efficiently.

Listing information is organized into optional sections that you can include or
omit. For more information about the applicable compiler options and the listing
itself, see "Understanding XL Fortran compiler listings" in the XL Fortran Compiler
Reference.

You can also get the diagnostic information from the compiler in XML or HTML
format about some of the optimizations that the compiler performed or missed.
You can use this information to reduce programming effort when tuning
applications, especially high-performance applications. The report is defined by an
XML schema and is easily consumable by tools that you can create to read and
analyze the results. For detailed information about this report and how to use it,
see "Using reports to diagnose optimization opportunities" in the XL Fortran
Optimization and Programming Guide.

Symbolic debugger support
You can instruct XL Fortran to include debugging information in your compiled
objects by using different levels of the -g or -qdbg compiler option.

For details, see -g or -qdbg in XL Fortran Compiler Reference.

The debugging information can be examined by gdb or any other symbolic
debugger to help you debug your programs.

6 XL Fortran: Getting Started for Little Endian Distributions

http://www.openmp.org

Chapter 2. Migrating to IBM XL Fortran for Linux, V15.1.1

This section describes features of IBM XL Fortran for Linux, V15.1.1 that you
should consider when moving your application that was compiled with versions of
XL Fortran on other platforms.

Migrating from big endian Linux to little endian Linux
IBM XL Fortran for Linux, V15.1.1 is compatible with versions of the compiler
running on the POWER8® big endian systems. There are, however, some
differences to consider.
v To help migrate programs from big endian systems, you can use the

-qaltivec=be or -qaltivec=leoption to toggle the vector element sequence in
registers to big endian or little endian element order.

v To make big endian data files compatible in little endian systems, you can use
the -qufmt=be option so that the I/O operations on unformatted data files use
the big endian byte order.
Related information

Program migration from big-endian systems

-qufmt

-qaltivec

© Copyright IBM Corp. 1996, 2014 7

8 XL Fortran: Getting Started for Little Endian Distributions

Chapter 3. Setting up and customizing XL Fortran

For complete prerequisite and installation information for XL Fortran, see "Before
installing XL Fortran" in the XL Fortran Installation Guide.

Using custom compiler configuration files
You can customize compiler settings and options by modifying the default
configuration file or creating your own configuration file.

You have the following options to customize compiler settings:
v The XL Fortran compiler installation process creates a default compiler

configuration file. You can directly modify this configuration file to add default
options for specific needs. However, if you later apply updates to the compiler,
you must reapply all of your modifications to the newly installed configuration
file.

v You can create your own custom configuration file that either overrides or
complements the default configuration file. The compiler can recognize and
resolve compiler settings that you specify in your custom configuration files
with compiler settings that are specified in the default configuration file.
Compiler updates that might later affect settings in the default configuration file
does not affect the settings in your custom configuration files.

For more information, see "Using custom compiler configuration files" in the XL
Fortran Compiler Reference.

© Copyright IBM Corp. 1996, 2014 9

10 XL Fortran: Getting Started for Little Endian Distributions

Chapter 4. Developing applications with XL Fortran

Fortran application development consists of repeating cycles of editing, compiling,
linking, and running. By default, compiling and linking are combined into a single
step.

Notes:

1. Before you can use the compiler, you must first ensure that XL Fortran is
properly installed and configured. For more information, see the XL Fortran
Installation Guide.

2. To learn about writing Fortran programs, refer to the XL Fortran Language
Reference.

The compiler phases
A typical compiler invocation executes some or all of these activities in sequence.
For link time optimizations, some activities are executed more than once during a
compilation. As each compilation component runs, the results are sent to the next
step in the sequence.
1. Preprocessing of source files
2. Compilation, which may consist of the following phases, depending on what

compiler options are specified:
a. Front-end parsing and semantic analysis
b. Loop transformations
c. High-level optimization
d. Low-level optimization
e. Register allocation
f. Final assembly

3. Assemble the assembly (.s) files, and the unpreprocessed assembler (.S) files
after they are preprocessed

4. Object linking to create an executable application

To see the compiler step through these phases, specify the -v compiler option
when you compile your application. To see the amount of time the compiler
spends in each phase, specify -qphsinfo.

Editing Fortran source files
To create Fortran source programs, you can use any text editor available to your
system.

Source programs must be saved using a recognized file name suffix. See “XL
Fortran input and output files” on page 16 for a list of suffixes recognized by XL
Fortran.

For a Fortran source program to be a valid program, it must conform to the
language definitions specified in the XL Fortran Language Reference.

© Copyright IBM Corp. 1996, 2014 11

Compiling with XL Fortran
XL Fortran is a command-line compiler. Invocation commands and options can be
selected according to the needs of a particular Fortran application.

Invoking the compiler
The compiler invocation commands perform all necessary steps to compile Fortran
source files , assemble any .s and .S files, and link the object files and libraries
into an executable program.

To compile a Fortran source program, use the following basic invocation syntax:

►► xlf ▼ ▼ input_file
compiler_option

►◄

For most applications, compile with xlf or a threadsafe counterpart.
v If the file name extensions of your source files indicate a specific level of

Fortran, such as .f08, .f03, .f95, .f90, or .f77, you can compile with xlf or
corresponding generic threadsafe invocations so the compiler can automatically
select the appropriate language-level defaults.

v If you compile source files whose file name extensions are generic, such as .f or
.F, with xlf or corresponding generic threadsafe invocations, the compilation
conforms to FORTRAN 77.

For more information about threadsafe counterparts, see "Compiling XL Fortran
programs" in the XL Fortran Compiler Reference.

Invocation commands for different levels of Fortran

More invocation commands are available to meet specialized compilation needs,
primarily to provide explicit compilation support for different levels and
extensions of the Fortran language. These invocation commands do not consider
the specific level of Fortran indicated by the source file name extensions, such as
.f08, .f03, .f95, .f90, or .f77.

12 XL Fortran: Getting Started for Little Endian Distributions

Table 4. Invocation commands and corresponding Fortran language standards

Language
level

Invocation
commands Notes

Fortran
2008

v f2008

v xlf2008

These compiler invocations
accept Fortran 90 free source
form by default. To use fixed
source form with these
invocations, you must specify
the -qfixed option.

The Fortran 2008 language
standard is partially
supported in this release.

Fortran
2003

v f2003

v xlf2003

Fortran
95

v f95

v xlf95

I/O formats are slightly
different between these
commands and the other
commands. I/O formats for
the Fortran 95 compiler
invocations are also different
from the I/O formats of
Fortran 90 invocations.
Switch to the Fortran 95
formats for data files
whenever possible.

Fortran
90

v f90

v xlf90

FORTRAN
77

v f77

v fort77

Where possible, these compiler invocations maintain
compatibility with existing programs by using the same I/O
formats as FORTRAN 77 and some implementation
behaviors compatible with earlier versions of XL Fortran.

You might need to continue using these invocations for
compatibility with existing makefiles and build
environments. However, programs that are compiled with
these invocations might not conform to the Fortran 2008,
Fortran 2003, Fortran 95, or Fortran 90 language level
standards.

Compiling with full compliance to language standards

By default, these invocation commands do not conform completely to the
corresponding language standards. If you need full compliance, compile with the
following compiler option settings and specify the following runtime options
before you run the program, with a command similar to the following examples:

Fortran 2008

Compiler options:
-qlanglvl=2008std -qnodirective -qnoescape -qextname
-qfloat=nomaf:nofold -qnoswapomp -qstrictieeemod

Example of runtime options:
export XLFRTEOPTS="err_recovery=no:langlvl=2008std:

iostat_end=2003std:internal_nldelim=2003std"

Fortran 2003

Compiler options:
-qlanglvl=2003std -qnodirective -qnoescape -qextname
-qfloat=nomaf:nofold -qnoswapomp -qstrictieeemod

Example of runtime options:
export XLFRTEOPTS="err_recovery=no:langlvl=2003std:

iostat_end=2003std:internal_nldelim=2003std"

Fortran 95

Chapter 4. Developing applications with XL Fortran 13

Compiler options:
-qlanglvl=95std -qnodirective -qnoescape -qextname
-qfloat=nomaf:nofold -qnoswapomp

Example of runtime options:
export XLFRTEOPTS="err_recovery=no:langlvl=95std"

Fortran 90

Compiler options:
-qlanglvl=90std -qnodirective -qnoescape -qextname
-qfloat=nomaf:nofold -qnoswapomp

Example of runtime options:
export XLFRTEOPTS="err_recovery=no:langlvl=90std"

The default settings are intended to provide the best combination of performance
and usability, so change them only when full compliance is required. Some of the
options that are mentioned in the preceding tables are only required for
compliance in specific situations. For example, you must specify -qextname only
when an external symbol, such as a common block or subprogram, is named main.

The -qxlf2003 compiler option

The -qxlf2003 compiler option provides compatibility with XL Fortran V10.1 and
the Fortran 2003 standard for certain aspects of the language.

When you compile with the Fortran 2003 or Fortran 2008 compiler invocations, the
default setting is -qxlf2003=polymorphic. This setting instructs the compiler to
allow polymorphic items such as the CLASS type specifier and SELECT TYPE
construct in your Fortran application source.

For all other compiler invocations, the default is -qxlf2003=nopolymorphic.

The -qxlf2008 compiler option

You can use the -qxlf2008 compiler option for the following purposes:
v To enable language features specific to the Fortran 2008 standard when you

compile with compiler invocations that conform to earlier Fortran standards
v To disable language features specific to the Fortran 2008 standard when you

compile with compiler invocations that conform to the Fortran 2008 standard

When you compile with the Fortran 2008 compiler invocations, the default setting
is -qxlf2008=checkpresence. This setting instructs the compiler to check dummy
argument presence according to the Fortran 2008 standard.

For all other compiler invocations, the default is -qxlf2008=nocheckpresence.

See "Compiling XL Fortran programs" in the XL Fortran Compiler Reference for more
information about compiler invocation commands available to you.

Compiling parallelized XL Fortran applications
XL Fortran provides threadsafe compiler invocation commands to compile
parallelized applications for use in multiprocessor environments.

These invocations are similar to their corresponding base compiler invocations,
except that they link and bind compiled objects to threadsafe components and
libraries. The generic XL Fortran threadsafe compiler invocation is as follows:

14 XL Fortran: Getting Started for Little Endian Distributions

v xlf_r

XL Fortran provides additional threadsafe invocations to meet specific compilation
requirements. For more information, see "Compiling XL Fortran programs" in the
XL Fortran Compiler Reference.

Note: Using any of these commands alone does not imply parallelization. For the
compiler to recognize OpenMP directives and activate parallelization, you must
also specify -qsmp compiler option. In turn, you should specify the -qsmp option
only in conjunction with one of these threadsafe invocation commands. When you
specify -qsmp, the driver links in the libraries specified on the smp libraries line in
the active stanza of the configuration file.

For more information on parallelized applications, see "Parallel programming" in
the XL Fortran Optimization and Programming Guide.

POSIX Pthreads API support

XL Fortran supports thread programming with the IEEE 1003.1-2001 (POSIX)
standard Pthreads API.

Specifying compiler options
Compiler options perform a variety of functions, such as setting compiler
characteristics, describing the object code to be produced, controlling the diagnostic
messages emitted, and performing some preprocessor functions.

You can specify compiler options in one or any combination of the following ways:
v On the command-line with command-line compiler options
v In your source code using directive statements
v In a makefile
v In the stanzas found in a compiler configuration file

You can also pass compiler options to the linker, assembler, and preprocessor.

For more information about compiler options and their usage, see "Specifying
options on the command line" in the XL Fortran Compiler Reference.

Priority sequence of compiler options

It is possible for option conflicts and incompatibilities to occur when multiple
compiler options are specified. To resolve these conflicts in a consistent fashion, the
compiler usually applies the following general priority sequence to most options:
1. Directive statements in your source file override command-line settings
2. Command-line compiler option settings override configuration file settings
3. Configuration file settings override default settings

Generally, if the same compiler option is specified more than once on a
command-line when invoking the compiler, the last option specified prevails.

Note: Some compiler options, such as the -I option, do not follow the priority
sequence described above. The compiler searches any directories specified with -I
in the xlf.cfg file before it searches the directories specified with -I on the
command-line. The -I option is cumulative rather than preemptive. Other options
with cumulative behavior are -R and -l (lowercase L).

Chapter 4. Developing applications with XL Fortran 15

XL Fortran input and output files
These file types are recognized by XL Fortran.

For detailed information about these and additional file types used by the
compiler, see "Types of input files" in the XL Fortran Compiler Reference and "Types
of output files" in the XL Fortran Compiler Reference.

Table 5. Input file types

Filename extension Description

.f, .F, .f77, .F77, .f90, .F90,
.f95, .F95, .f03, .F03, .f08,

.F08

Fortran source files

.mod Module symbol files

.smod ▌1▐ Submodule symbol files

.o Object files

.s Assembler files

.so Shared object or library files

Note: ▌1▐ Fortran 2008

Table 6. Output file types

Filename extension Description

a.out Default name for executable file created by the compiler

.mod Module symbol files

.smod ▌1▐ Submodule symbol files

.lst Listing files

.o Object files

.s Assembler files

.so Shared object or library files

Note: ▌1▐ Fortran 2008

Linking your compiled applications with XL Fortran
By default, you do not need to do anything special to link an XL Fortran program.
The compiler invocation commands automatically call the linker to produce an
executable output file.

For example, you can use the following command to compile file1.f and file3.f
to produce the object files file1.o and file3.o. All object files, including file2.o,
are submitted to the linker to produce one executable.
xlf file1.f file2.o file3.f

Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.
xlf -c file1.f # Produce one object file (file1.o)
xlf -c file2.f file3.f # Or multiple object files (file2.o, file3.o)
xlf file1.o file2.o file3.o # Link object files with default libraries

16 XL Fortran: Getting Started for Little Endian Distributions

For more information about compiling and linking your programs, see "Linking XL
Fortran programs" in the XL Fortran Compiler Reference.

Dynamic and static linking
XL Fortran allows your programs to take advantage of the operating system
facilities for both dynamic and static linking.

Dynamic linking means that the code for some external routines is located and
loaded when the program is first run. When you compile a program that uses
shared libraries, the shared libraries are dynamically linked to your program by
default. Dynamically linked programs take up less disk space and less virtual
memory if more than one program uses the routines in the shared libraries. During
linking, they do not require any special precautions to avoid naming conflicts with
library routines. They are designed to perform better than statically linked
programs if several programs use the same shared routines at the same time. By
using dynamic linking, you can upgrade the routines in the shared libraries
without relinking.

Because this form of linking is the default, you need no additional options to turn
it on.

Static linking means that the code for all routines called by your program becomes
part of the executable file.

Statically linked programs can be moved to run on systems without the XL Fortran
runtime libraries. They might perform better than dynamically linked programs if
they make many calls to library routines or call many small routines. They do
require some precautions in choosing names for data objects and routines in the
program if you want to avoid naming conflicts with library routines. They also
might not work if you compile them on one level of the operating system and run
them on a different level of the operating system.

Running your compiled application
After a program is compiled and linked, you can run the generated executable file
on the command line.

The default file name for the program executable file produced by the XL Fortran
compiler is a.out. You can select a different name with the -o compiler option.

You should avoid giving your program executable file the same name as system or
shell commands, such as test or cp, as you could accidentally execute the wrong
command. If you do decide to name your program executable file with the same
name as a system or shell command, you should execute your program by
specifying the path name to the directory in which your executable file resides,
such as ./test.

To run a program, enter the name of the program executable file together with any
run time arguments on the command line.

Canceling execution

To suspend a running program, press the Ctrl+Z key while the program is in the
foreground. Use the fg command to resume running.

Chapter 4. Developing applications with XL Fortran 17

To cancel a running program, press the Ctrl+C key while the program is in the
foreground.

Setting runtime options

You can use environment variable settings to control certain runtime options and
behaviors of applications created with the XL Fortran compiler. Some environment
variables do not control actual runtime behavior, but they can have an impact on
how your applications run.

For more information on environment variables and how they can affect your
applications at run time, see the XL Fortran Installation Guide.

Running compiled applications on other systems

If you want to run an application developed with the XL Fortran compiler on
another system that does not have the compiler installed, you need to install a
runtime environment on that system or link your application statically.

You can obtain the latest XL Fortran Runtime Environment PTF images, together
with licensing and usage information, from the XL Fortran for Linux support page.

XL Fortran compiler diagnostic aids
XL Fortran issues diagnostic messages when it encounters problems compiling
your application. You can use these messages and other information provided in
compiler output listings to help identify and correct such problems.

For more information about listing, diagnostics, and related compiler options that
can help you resolve problems with your application, see the following topics in
the XL Fortran Compiler Reference:
v "Understanding XL Fortran compiler listings"
v "Error checking and debugging options"
v "Listings, messages, and compiler information options"

Debugging compiled applications
You can use a symbolic debugger to debug applications compiled with XL Fortran.

At compile time, you can use the -g or -qlinedebug option to instruct the XL
Fortran compiler to include debugging information in compiled output. For -g,
you can also use different levels to balance between debug capability and compiler
optimization. For more information about the debugging options, see "Error
checking and debugging" in the XL Fortran Compiler Reference.

You can then use gdb or any other symbolic debugger to step through and inspect
the behavior of your compiled application.

Optimized applications pose special challenges when debugging. For more
information about optimizing your code, see "Optimizing your applications" in the
XL Fortran Optimization and Programming Guide.

Determining which level of XL Fortran is being used
To display the version and release level of XL Fortran that you are using, invoke
the compiler with the -qversion compiler option.

18 XL Fortran: Getting Started for Little Endian Distributions

http://www.ibm.com/support/entry/portal/overview/software/rational/xl_fortran_for_linux

For example, to obtain detailed version information, enter the following command:
xlf -qversion=verbose

Chapter 4. Developing applications with XL Fortran 19

20 XL Fortran: Getting Started for Little Endian Distributions

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2014 21

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd. Laboratory
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

22 XL Fortran: Getting Started for Little Endian Distributions

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2014.

This software and documentation are based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California. We acknowledge the following institution for its role in this product's
development: the Electrical Engineering and Computer Sciences Department at the
Berkeley campus.

Trademarks and service marks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 23

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

24 XL Fortran: Getting Started for Little Endian Distributions

Index

Special characters
.a files 16
.f and .F files 16
.i files 16
.lst files 16
.mod files 16
.o files 16
.s files 16
.S files 16
.so files 16

A
archive files 16
assembler

source (.s) files 16
source (.S) files 16

B
basic example, described x

C
code optimization 4
compilation

sequence of activities 11
compiler

controlling behavior of 15
invoking 12
running 12

compiler options
conflicts and incompatibilities 15
specification methods 15

compiling
SMP programs 14

D
debugger support 18

output listings 18
symbolic 6

debugging 18
debugging compiled applications 18
debugging information, generating 18
dynamic linking 17

E
editing source files 11
executable files 16
executing a program 17
executing the linker 16

F
f2003 command

description 12

f2003 command (continued)
level of Fortran standard

compliance 13
f2008 command

description 12
level of Fortran standard

compliance 13
f77 command

description 12
level of Fortran standard

compliance 13
f90 command

description 12
level of Fortran standard

compliance 13
f95 command

description 12
level of Fortran standard

compliance 13
files

editing source 11
input 16
output 16

fort77 command
description 12
level of Fortran standard

compliance 13
Fortran 2003

compiling programs written for 13
Fortran 2008

compiling programs written for 13
Fortran 90

compiling programs written for 13
Fortran 95

compiling programs written for 13

I
input files 16
invocation commands 12
invoking a program 17
invoking the compiler 12

L
language standards 2
language support 2
level of XL Fortran, determining 19
libraries 16
linking

dynamic 17
static 17

linking process 16
listings 16

M
migration

source code 15
mod files 16

multiprocessor systems 5

O
object files 16

creating 16
linking 16

OpenMP 5
optimization

programs 4
output files 16

P
parallelization 5
performance

optimizing transformations 4
POSIX Pthreads

API support 15
problem determination 18
programs

running 17

R
running the compiler 12
runtime

libraries 16
runtime environment 18
runtime options 18

S
shared memory parallelization 5
shared object files 16
SMP

programs, compiling 14
SMP programs 5
source files 16
source-level debugging support 6
static linking 17
symbolic debugger support 6

T
tools 3

cleanpdf utility 4
install configuration utility 3
install utility 3
mergepdf utility 4
resetpdf utility 4
showpdf utility 4

U
utilities 3

cleanpdf 4
install 3

© Copyright IBM Corp. 1996, 2014 25

utilities (continued)
mergepdf 4
resetpdf 4
showpdf 4

X
xlc.cfg file 15
xlf command

description 12
xlf_r command

description 12
for compiling SMP programs 14

xlf2003 command
description 12
level of Fortran standard

compliance 13
xlf2003_r command

description 12
level of Fortran standard

compliance 13
xlf2008 command

description 12
level of Fortran standard

compliance 13
xlf2008_r command

description 12
level of Fortran standard

compliance 13
xlf90 command

description 12
level of Fortran standard

compliance 13
xlf90_r command

description 12
for compiling SMP programs 14
level of Fortran standard

compliance 13
xlf95 command

description 12
level of Fortran standard

compliance 13
xlf95_r command

description 12
for compiling SMP programs 14
level of Fortran standard

compliance 13

26 XL Fortran: Getting Started for Little Endian Distributions

IBM®

Product Number: 5765-J10; 5725-C75

Printed in USA

SC27-6620-00

	Contents
	About this document
	Conventions
	Related information
	IBM XL Fortran information
	Standards and specifications
	Other IBM information

	Technical support
	How to send your comments

	Chapter 1. Introducing XL Fortran
	Commonality with other IBM compilers
	Operating system and hardware support
	A highly configurable compiler
	Language standard compliance
	Source-code migration and conformance checking

	Tools, utilities, and commands
	Advance Toolchain 8.0 support
	Program optimization
	Shared memory parallelization
	Diagnostic listings
	Symbolic debugger support

	Chapter 2. Migrating to IBM XL Fortran for Linux, V15.1.1
	Migrating from big endian Linux to little endian Linux

	Chapter 3. Setting up and customizing XL Fortran
	Using custom compiler configuration files

	Chapter 4. Developing applications with XL Fortran
	The compiler phases
	Editing Fortran source files
	Compiling with XL Fortran
	Invoking the compiler
	Compiling parallelized XL Fortran applications
	Specifying compiler options
	XL Fortran input and output files

	Linking your compiled applications with XL Fortran
	Dynamic and static linking

	Running your compiled application
	XL Fortran compiler diagnostic aids
	Debugging compiled applications
	Determining which level of XL Fortran is being used

	Notices
	Trademarks and service marks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	I
	L
	M
	O
	P
	R
	S
	T
	U
	X

