<|lI!

IBM XL Fortran for Linux, V15.1

Compiler Reference

Version 15.1

SC27-4254-00

<|lI!

IBM XL Fortran for Linux, V15.1

Compiler Reference

Version 15.1

SC27-4254-00

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 373

First edition

This edition applies to IBM XL Fortran for Linux, V15.1 (Program 5765-J10; 5725-C75) and to all subsequent releases
and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

© Copyright IBM Corporation 1990, 2014.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information. vii Compiling and linking a library23
Who should read this information. vii Compiling XL Fortran SMP programs24
How to use this information vii Compilation order for Fortran programs. . . . 24
How this information is organizedvii Canceling a compilation24
Conventions. viii XL Fortran input files25
Related information . . A i XL Fortran output files . . . Coe. 126
IBM XL Fortran 1nformat10n oL xid Scope and precedence of option settmgs. .. .28
Standards and specifications xiii Specifying options on the command line. . . . 28
Other IBM informationXxiv Specifying options in the source file . . - 29
Technical supportxiv Passing command-line options to the "ld" or "as"
How to send your commentsXxiv command - .30
Displaying 1nformat10n 1r1s1de bmary flles
Chapter 1. Introduction1 (strings) . . <. . . 30
P Compiling for spec1f1c archltectures S .31
. Passing Fortran files through the C preprocessor 31
Chapter 2. Overview of XL Fortran cpp directives for XL Fortran programs 32
features. L -3 Passing options to the C preprocessor33
Hardware and operating-system support . .3 Avoiding preprocessing problems33
Language support .3 Linking XL Fortran programs33
Source-code conformance checkmg 4 Compiling and linking in separate steps. . . .34
Highly configurable compiler . .4 Passing options to the ld command34
Diagnostic listings .5 Dynamic and static linking L34
Symbolic debugger support .5 Avoiding naming conflicts during hnkmg oo 034
Program optimization . 6 Running XL Fortran programs35
Canceling execution35
Chapter 3. Setting up and custom|z|ng Compiling and executing on dlfferent systems . 35
XL Fortran. .7 Runtime libraries for POSIX pthreads support. . 36
Where to find installation instructions . o Selecting the language for runtime messages . . 36
Correct settings for environment variables .7 Setting runtime options . . - - 36
Environment variable basics . 7 Other environment variables that affect runtlme
Environment variables for national language behavior S W
support 7 XL Fortran runtime exceptlons B Y4
Setting library search paths 9

Profile-directed feedback environment Varlables .9 Chapter 5. Tracklng and reportmg

TMPDIR: Specifying a directory for temporary compilerusage 49
files 10 Understanding utilization tracking and reporting. . 49
XLFSCRATCH umt Spec1fymg names for scratch Overview49
files10 Four usage scenarios50
XLFUNIT_ unlt Spec1fy1ng names for 1mp11c1t1y Preparing to use this feature.58
connected files 10 Time synchronization58
Using custom compiler conﬁguratlon flles10 License types and user information58
Creating custom configuration files11 Central configuration59
Editing the default configuration file14 Concurrent user considerations.59
Configuration file attributes14 Usage file considerations60
Determining which level of XL Fortran is mstalled 17 Regular utilization checking.62
Running two levels of XL Fortran17 Testing utilization tracking62
Configuring utilization tracking64
Chapter 4. Editing, compiling, linking, Editing utilization tracking conﬁguratlon flle
and running XL Fortran programs . . . 19 entries . .. RS
Editing XL Fortran source files19 Understanding the utlhzatlon reportmg tool R 68
Compiling XL Fortran programs . . . 19 Utlhz'atlon reporting tool command-line options 68
Compiling XL Fortran Version 2 programs A | Generating usage reports.72
Compiling Fortran 90 or Fortran 95 programs . . 21 Urlderstandmg usage reports72
Compiling Fortran 2003 programs22 Pruning usage files.75
Compiling Fortran 2008 programs.22

© Copyright IBM Corp. 1990, 2014 iii

Diagnostic messages from utilization tracking and
reporting .

Chapter 6. Summary of compiler
options by functional category
Output control

Input control . .

Language element control

Floating-point and integer control .

Object code control . .

Error checking and debuggmg S
Listings, messages, and compiler information .
Optimization and tuning .

Linking. .

Portability and mlgratlon

Compiler customization .

Deprecated options .

Chapter 7. Detailed descriptions of the
XL Fortran compiler options
-#.

-1.

B .

C .

< .

-D .

-d .

-e

-F

8

-1

k.

-L .
1.

-M .
-MF.
-MT

-NS.

O .

-0

T .
-q32

-q64 .
-qalias .
-qalias_size .
-qalign
-qarch .
-qassert
-qattr .
-qautodbl.
-gbindcextname
-qcache
-qcclines .
-qcheck
-qci.
-qcompact
-qer. ..
-qctyplss .
-qdbg . .
-qdbgfmt .

iv XL Fortran: Compiler Reference

. 76

.77
.77
.79
. 80
. 82
. 83
. 84
. 86
. 88
.91
.92
. 93
. 94

. 97
. 98
.99
.99
. 100
. 101
. 101
. 102
. 102
. 103
. 105
. 108
. 109
. 109
. 110
. 111
. 111
. 113
. 114
. 115
. 117
. 118
. 119
. 120
. 121
. 124
. 124
. 127
. 129
. 131
. 132
. 134
. 136
. 138
. 138
. 142
. 143
. 144
. 144
. 146
. 147

-qddim
-qdescriptor .
-qdirective

-qdirectstorage .

-qdlines
-qdpc .
-genum
-qgescape .
-qessl .
-gextern .
-gextname
-qfdpr .
-qfixed
-qflag .
-gfloat.
-qfpp . .
-gflttrap .
-qfree .
-qfullpath
-qfunctrace .

-qfunctrace_xIf Catch
-qfunctrace_xlf_enter .
-qfunctrace_xIf_exit

-ghalt .
-ghaltonmsg .
-ghelp .
-ghot .
-qieee .
-qinfo .
-qinit .
-qinitalloc
-qginitauto.
-qinlglue .
-ginline
-qintlog
-qintsize .
-qipa .
-gkeepparm .
-glanglvl .
-glibansi .
-qlibmpi .
-glinedebug .
-qlist
-qlistfmt .
-qlistopt .
-qlog4 .
-qmakedep .
-qmaxerr .
-gmaxmem .
-qmbcs
-qminimaltoc
-qmixed .
-qmkshrobj .
-qmoddir .
-qmodule.
-qnoprint .
-qnullterm
-qobject
-qonetrip .
-qoptdebug .
-qoptfile .

. 148
. 149
. 150
. 152
. 153
. 153
. 155
. 155
. 157
. 158
. 159
. 161
. 161
. 162
. 164
. 168
. 169
. 171
. 172
. 173
. 175
. 176
. 177
. 178
. 179
. 180
. 181
. 183
. 184
. 189
. 190
. 192
. 194
. 195
. 198
. 199
. 201
. 206
. 207
. 209
. 210
. 211
. 212
. 213
. 216
. 217
. 217
. 220
. 221
. 223
. 224
. 224
. 225
. 226
. 227
. 227
. 228
. 229
. 230
. 231
. 232

-qoptimize
-qpath. .
-qpdfl, -qpdf2 .
-qphsinfo.
-gpic .

-qport .
-gposition
-qppsuborigarg .
-qprefetch
-qqcount .
-qrealsize.
-qrecur
-qreport .
-qsaa .
-qsave .
-qsaveopt.
-gsclk .
-qshowpdf
-gsigtrap .
-qsimd
-gqsmallstack .
-qsmp .
-qsource .
-qspillsize
-gstackprotect .
-gstacktemp .
-gstaticlink .
-qstrict
-gstrictieeemod .

-gstrict_induction .

-gsuffix
-qsuppress
-qgswapomp .
-qtbtable .
-qthreaded
-qtimestamps
-qtune .
-qundef
-qunroll
-qunwind.
-qversion .
-qwarn64 .
-qxflag=dvz .
-qxflag=oldtab .
-qx1f77.
-qx1£90.
-qx1f2003 .
-qx1f2008 .
-qxlines
-qxref .
-qzerosize

T

-S

-t

-U .

-u .

v o

Vo

W

-wo.

. 234
. 234
. 236
. 244
. 245
. 247
. 249
. 250
. 251
. 253
. 254
. 256
. 257
. 259
. 260
. 262
. 264
. 264
. 265
. 266
. 268
. 269
. 274
. 275
. 275
. 276
. 277
. 280
. 284
. 284
. 286
. 287
. 288
. 290
. 291
. 291
. 292
. 295
. 295
. 297
. 297
. 299
. 300
. 301
. 301
. 303
. 305
. 309
. 310
. 311
. 312
. 313
. 314
. 314
. 316
. 316
. 317
. 318
. 318
. 320

N 74|

Chapter 8. Using XL Fortran in a
64-bit environment 323
Compiler options for the 64-bit environment . . . 323

Chapter 9. Problem determination and
debugging. 325

Understanding XL Fortran error messages. . . . 325
Error severity325
Compiler return codes326
Runtime return codes 326
Format of XL Fortran diagnostic messages . . 326
Limiting the number of compile-time messages 327
Selecting the language for messages. . . . 327

Fixing installation or system environment problems 328

Fixing compile-time problems. 330

Fixing link-time problems331

Fixing runtime problems331

Debugging a Fortran program. 333

Chapter 10. Understanding XL Fortran
compiler listings 335

Header section.335
Options section.335
Source section336
Error messages.336
PDF report section. . . B £)
Transformation report sectlon B £ 7
Data reorganization report section 339
Attribute and cross reference section 339
Object section340
File table section . . . G 7 Y |
Compilation unit epilogue Sectlon PG 7 |
Compilation epilogue Section341

Chapter 11. XL Fortran technical
information« - 343

External names in XL Fortran 11brar1es G L

The XL Fortran runtime environment 343
External names in the runtime environment . . 343

Technical details of the -qfloat=hsflt option . . . 344

Implementation details for -qautodbl promotion

and padding344
Terminology. . . . 344
Examples of storage relat1onsh1ps for —qautodbl
suboptions345

XL Fortran internal limits 351
Glossary353

Notices.373

Trademarks and service marks 375

Index.377

Contents V

vi XL Fortran: Compiler Reference

About this information

This document describes the IBM® XL Fortran for Linux, V15.1 compiler and
explains how to set up the compilation environment and how to compile, link, and
run programs written in the Fortran language. This guide also contains
cross-references to relevant topics of other reference guides in the XL Fortran
documentation suite.

Who should read this information

This information is for anyone who wants to work with the IBM XL Fortran for
Linux, V15.1 compiler, is familiar with the Linux operating system, and who has
some previous Fortran programming experience. Users new to XL Fortran can also
find information on the capabilities and features unique to XL Fortran. This
information can help you understand what the features of the compiler are,
especially the options, and how to use them for effective software development.

How to use this information

While this information covers topics about configuring the compiler, and
compiling, linking and running XL Fortran programs, it does not include
information on the following topics, which are covered elsewhere:

* Installation, system requirements, last-minute updates: see the XL Fortran
Installation Guide and product README.

* Overview of XL Fortran features: see the Getting Started with XL Fortran.

* Syntax, semantics, and implementation of the XL Fortran programming
language: see the XL Fortran Language Reference.

¢ Optimizing, porting, OpenMP/ SMP programming: see the XL Fortran
Optimization and Programming Guide.

* Operating system commands related to the use of the compiler: consult your
Linux-specific distribution's man page help and documentation.

How this information is organized

This information starts with an overview of the compiler and then outlines the
tasks you need to do before invoking the compiler. It then continues with reference
information about the compiler options and debugging problems.

This reference includes the following topics:

« |Chapter 1, “Introduction,” on page 1| through [Chapter 4, “Editing, compiling,l
linking, and running XL Fortran programs,” on page 19|discuss setting up the
compilation environment and the environment variables that you need for
different compilation modes, customizing the configuration file, the types of
input and output files, compiler listings and messages and information specific
to invoking the preprocessor and linkage editor.

Chapter 6, “Summary of compiler options by functional category,” on page 77|
organizes the compiler options by their functional category. You can search for
options by their name, or alternatively use the links in the functional category
tables and look up options according to their functionality. [Chapter 7, “Detailed|

© Copyright IBM Corp. 1990, 2014 vii

[descriptions of the XL Fortran compiler options,” on page 97|includes individual

descriptions of the compiler options sorted alphabetically. Descriptions provide
examples and list related topics.

¢ |Chapter 8, “Using XL Fortran in a 64-bit environment,” on page 323 discusses

application development for the 64-bit environment.

Chapter 9, “Problem determination and debugging,” on page 325 addresses

debugging and understanding compiler listings.

» |Chapter 11, “XL Fortran technical information,” on page 343{ and [“XL Fortran|

internal limits” on page 351|provide information that advanced programmers

may need to diagnose unusual problems and run the compiler in a specialized

environment.

Conventions

Typographical conventions

The following table shows the typographical conventions used in the IBM XL
Fortran for Linux, V15.1 information.

Table 1. Typographical conventions

Typeface

Indicates

Example

lowercase
bold

Invocation commands, executable
names, and compiler options.

The compiler provides basic
invocation commands, xlf, along with
several other compiler invocation
commands to support various Fortran
language levels and compilation
environments.

The default file name for the
executable program is a.out.

italics

Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining

The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace

Examples of program code,

reference to program code, file
names, path names, command
strings, or user-defined names.

To compile and optimize
myprogram.f, enter: x1f myprogram. f
-03.

UPPERCASE
bold

Fortran programming keywords,
statements, directives, and intrinsic
procedures. Uppercase letters may
also be used to indicate the
minimum number of characters
required to invoke a compiler
option/suboption.

The ASSERT directive applies only to
the DO loop immediately following
the directive, and not to any nested
DO loops.

Qualifying elements (icons and bracket separators)

In descriptions of language elements, this information uses icons and marked
bracket separators to delineate the Fortran language standard text as follows:

viii XL Fortran: Compiler Reference

Table 2. Qualifying elements

Bracket
Icon separator text |Meaning
N/A The text describes an IBM XL Fortran implementation of
p
the Fortran 2008 standard.
F2003 Fortran 2003 The text describes an IBM XL Fortran implementation of
p
begins / ends | the Fortran 2003 standard, and it applies to all later
standards.
IBM extension | The text describes a feature that is an IBM XL Fortran
begins / ends |extension to the standard language specifications.
TS N/A The text describes a feature in a Technical Specification
P TS | P
that is not part of the current Fortran standard.

Note: If the information is marked with a Fortran language standard icon or
bracket separators, it applies to this specific Fortran language standard and all later
ones. If it is not marked, it applies to all Fortran language standards.

Syntax diagrams

Throughout this information, diagrams illustrate XL Fortran syntax. This section
will help you to interpret and use those diagrams.

* Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The »—— symbol indicates the beginning of a command, directive, or statement.
The — symbol indicates that the command, directive, or statement syntax is
continued on the next line.

The »— symbol indicates that a command, directive, or statement is continued
from the previous line.

The —>< symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the |— symbol and end with
the —| symbol.

IBM XL Fortran extensions are marked by a number in the syntax diagram with
an explanatory note immediately following the diagram.

Program units, procedures, constructs, interface blocks and derived-type
definitions consist of several individual statements. For such items, a box
encloses the syntax representation, and individual syntax diagrams show the
required order for the equivalent Fortran statements.

Required items are shown on the horizontal line (the main path):

A\
A

»>—keyword—required_argument

¢ Optional items are shown below the main path:

About this information 1X

v
A

»»—keyword
|—opt ional_argumen t—l

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([
and]). For example, [UNIT=]u

If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main
path.

Y
A

»—keyword—Erequired_argument]
required_argumen t2—|

If choosing one of the items is optional, the entire stack is shown below the
main path.

»»—keyword «
i:zpt ional_argumentl:l

ptional_argument2

An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

v

»»—keyword

repeatable_argument >

The item that is the default is shown above the main path.

efault_argumen t—l
»»—keyword lternate_argument »><

Keywords are shown in nonitalic letters and should be entered exactly as shown.

Variables are shown in italicized lowercase letters. They represent user-supplied
names or values. If a variable or user-specified name ends in _list, you can
provide a list of these terms separated by commas.

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following is an example of a syntax diagram with an interpretation:

X XL Fortran: Compiler Reference

(1) (_‘

»>—EXAMPLE char_constant I—GJ A name_list >
i
d
Notes:
1 IBM extension

Interpret the diagram as follows:

* Enter the keyword EXAMPLE.

* EXAMPLE is an IBM extension.

* Enter a value for char_constant.

* Enter a value for a or b, but not for both.
 Optionally, enter a value for c or d.

* Enter at least one value for e. If you enter more than one value, you must put a
comma between each.

* Enter the value of at least one name for name_list. If you enter more than one value,
you must put a comma between each. (The _list syntax is equivalent to the previous
syntax for e.)

How to read syntax statements

Syntax statements are read from left to right:

Individual required arguments are shown with no special notation.

When you must make a choice between a set of alternatives, they are enclosed
by { and } symbols.

Optional arguments are enclosed by [and] symbols.
When you can select from a group of choices, they are separated by | characters.
Arguments that you can repeat are followed by ellipses (...).

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|dle[,e]... name_list{name list}...

The following list explains the syntax statement:

Enter the keyword EXAMPLE.

Enter a value for char_constant.

Enter a value for a or b, but not for both.
Optionally, enter a value for c or d.

Enter at least one value for e. If you enter more than one value, you must put a
comma between each.

Optionally, enter the value of at least one name for name_list. If you enter more
than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

About this information X1

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Notes on the terminology used

Some of the terminology in this information is shortened as follows:
* The term free source form format often appears as free source form.

* The term fixed source form format often appears as fixed source form.
* The term XL Fortran often appears as XLF.

Related information

xii

The following sections provide related information for XL Fortran:

IBM XL Fortran information
XL Fortran provides product information in the following formats:
* README files
READMEE files contain late-breaking information, including changes and

corrections to the product information. README files are located by default in
the XL Fortran directory and in the root directory of the installation CD.

¢ Installable man pages
Man pages are provided for the compiler invocations and all command-line

utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL Fortran for Linux, V15.1 Installation Guide.

¢ Information center

The fully searchable HTML-based documentation is viewable on the web at
http:/ /www.ibm.com/support/knowledgecenter /SSAT4AT_15.1.0/|
com.ibm.compilers.linux.doc/welcome.html]
* PDF documents
PDF documents are located by default in the /opt/ibm/x1f/15.1.0/doc/LANG/
pdf/ directory, where LANG is one of en_US or ja_JP. The PDF files are also
available on the web at |ttp:/ /www.ibm.com /support/|
[docview.wss?uid=swg27036672)

The following files comprise the full set of XL Fortran product information:

Table 3. XL Fortran PDF files

PDF file
Document title name Description
IBM XL Fortran for Linux, |install.pdf Contains information for installing XL Fortran
V15.1 Installation Guide, and configuring your environment for basic
5C27-4253-00 compilation and program execution.

XL Fortran: Compiler Reference

http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.0/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.0/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27036672
http://www.ibm.com/support/docview.wss?uid=swg27036672

Table 3. XL Fortran PDF files (continued)

PDF file
Document title name Description
Getting Started with IBM | getstart.pdf | Contains an introduction to the XL Fortran
XL Fortran for Linux, product, with information on setting up and
V15.1, SC27-4252-00 configuring your environment, compiling and

linking programs, and troubleshooting
compilation errors.

IBM XL Fortran for Linux, |compiler.pdf |Contains information about the various
V15.1 Compiler Reference, compiler options and environment variables.
5C27-4254-00

IBM XL Fortran for Linux, |langref.pdf |Contains information about the Fortran

V15.1 Language Reference, programming language as supported by IBM,
SC27-4255-00 including language extensions for portability
and conformance to nonproprietary standards,
compiler directives and intrinsic procedures.

IBM XL Fortran for Linux, |proguide.pdf | Contains information on advanced

V15.1 Optimization and programming topics, such as application
Programming Guide, porting, interlanguage calls, floating-point
SC27-4256-00 operations, input/output, application

optimization and parallelization, and the XL
Fortran high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
[http:/ /www.adobe.com}

More information related to XL Fortran including IBM Redbooks® publications,
white papers, tutorials, documentation errata, and other articles, is available on the
web at:

http:/ /www.ibm.com/support/docview.wss?uid=swg27036672|

Note: Documentation errata is reflected only in the English version of the
information center.

For more information about Fortran, see the Fortran café at |https:/ / |
www.ibm.com/developerworks/mydeveloperworks / groups/service /html/|
communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aal

Standards and specifications

XL Fortran is designed to support the following standards and specifications. You
can refer to these standards for precise definitions of some of the features found in
this information.

* American National Standard Programming Language FORTRAN, ANSI X3.9-1978.

* American National Standard Programming Language Fortran 90, ANSI X3.198-1992.
* ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
* Federal (USA) Information Processing Standards Publication Fortran, FIPS PUB 69-1.

* Information technology - Programming languages - Fortran, ISO/IEC 1539-1:1991.
(This information uses its informal name, Fortran 90.)

* Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:1997. (This information uses its informal name, Fortran 95.)

* Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:2004. (This information uses its informal name, Fortran 2003.)

About this information Xxiii

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036672
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa

* Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:2010. (This information uses its informal name, Fortran 2008. We
currently provide partial support to this standard.)

* Military Standard Fortran DOD Supplement to ANSI X3.9-1978, MIL-STD-1753
(United States of America, Department of Defense standard). Note that XL
Fortran supports only those extensions documented in this standard that have
also been subsequently incorporated into the Fortran 90 standard.

* OpenMP Application Program Interface Version 4.0 (Partial support), available at
[http:/ / www.openmp.org]

Other IBM information

e ESSL for AIX® V5.1/ESSL for Linux on POWER V5.1 Guide and Reference available
at the [Engineering and Scientific Subroutine Library (ESSL) and Parallel ESSI]
web page.

Technical support

Additional technical support is available from the XL Fortran Support page at
http:/ /www.ibm.com /support/entry /portal /overview /software /rational /|
xl_fortran_for_linux} This page provides a portal with search capabilities to a large
selection of Technotes and other support information.

If you cannot find what you need, you can send email to compinfo@ca.ibm.com.

For the latest information about XL Fortran, visit the product information site at
Ihttp: / /www.ibm.com /software/products/us/en/ xlfortran-linuxl

How to send your comments

Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this information or any other XL
Fortran information, send your comments by email to compinfo@ca.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the

version of XL Fortran, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

xiv XL Fortran: Compiler Reference

http://www.openmp.org
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl.doc/esslbooks.html
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_fortran_for_linux
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_fortran_for_linux
http://www.ibm.com/software/products/us/en/xlfortran-linux

Chapter 1. Introduction

IBM XL Fortran for Linux, V15.1 is an optimizing, standards-based, command-line
compiler for the Linux operating system, running on Power® hardware with the
Power Architecture. The XL Fortran compiler enables application developers to
create and maintain optimized 32-bit and 64-bit applications for the Linux
operating system. The compiler also offers a diversified portfolio of optimization
techniques that allow an application developer to exploit the multi-layered
architecture of the Power processor.

The implementation of the Fortran programming language is intended to promote
portability among different environments by enforcing conformance to language
standards. A program that conforms strictly to its language specification has
maximum portability among different environments. In theory, a program that
compiles correctly with one standards-conforming compiler will compile and
execute correctly under all other conforming compilers, insofar as hardware
differences permit. A program that correctly exploits the extensions to the
programming language in which it is written can improve the efficiency of its
object code.

XL Fortran can be used for large, complex, and computationally intensive
programs. It also supports interlanguage calls with C. For applications that require
SIMD (single-instruction, multiple data) parallel processing, performance
improvements can be achieved through optimization techniques, which may be
less labor-intensive than vector programming. Many of the optimizations
developed by IBM are controlled by compiler options and directives.

© Copyright IBM Corp. 1990, 2014 1

2 XL Fortran: Compiler Reference

Chapter 2. Overview of XL Fortran features

This section discusses the features of the XL Fortran compiler, language, and
development environment at a high level. It is intended for people who are
evaluating XL Fortran and for new users who want to find out more about the
product.

Hardware and operating-system support

IBM XL Fortran for Linux, V15.1 is supported on several Linux distributions. See
the XL Fortran for Linux Installation Guide and README file for a list of supported
distributions and requirements.

IBM XL Fortran for Linux, V15.1 is supported on big-endian systems. The compiler,
its generated object programs, and runtime library can run on all POWERS5,
POWER5+, POWER6®, POWER7®, POWER7+"", POWERS"™, and PowerPC® systems
with the required software, disk space, and virtual storage.

The POWERS5 , POWER5+, POWER6, POWER7, POWER7+ and POWERS
processors are types of PowerPC processors. In this document, any statement or
reference to the PowerPC processor also applies to the POWER5, POWER5+,
POWER6, POWER7, POWER7+ or POWERS processor.

To take maximum advantage of different hardware configurations, the compiler
provides a number of options for performance tuning based on the configuration
of the machine used for executing an application.

Language support

The XL Fortran language consists of the following:

* Partial ISO Fortran 2008 language standard (referred to as Fortran 2008 or
F2008), defined in the document Information technology - Programming languages -
Part 1: Base language, ISO/IEC 1539-1:2010.

* The full ISO Fortran 2003 language standard (referred to as Fortran 2003 or
F2003), defined in the document Information technology - Programming languages -
Part 1: Base language, ISO/IEC 1539-1:2004.

* The full ISO Fortran 95 language standard (referred to as Fortran 95 or F95),
defined in the document Information technology - Programming languages - Fortran
- Part 1: Base language, ISO/IEC 1539-1:1997.

* The full American National Standard Fortran 90 language (referred to as Fortran
90 or F90), defined in the documents American National Standard Programming
Language Fortran 90, ANSI X3.198-1992 and Information technology - Programming
languages - Fortran, ISO/IEC 1539-1:1991 (E). This language has a superset of the
features found in the FORTRAN 77 standard. It adds many more features that
are intended to shift more of the tasks of error checking, array processing,
memory allocation, and so on from the programmer to the compiler.

* Extensions to the Fortran standard:
— Common Fortran language extensions defined by other compiler vendors, in
addition to those defined by IBM
— Industry extensions that are found in Fortran products from various compiler
vendors
— Extensions specified in SAA Fortran

© Copyright IBM Corp. 1990, 2014 3

In the XL Fortran Language Reference, extensions to the Fortran 2003 language and
Fortran 2008 language are marked as described in the [Conventions: Qualifying|

section.

Source-code conformance checking

To help you find possible problems when you port your application to or from
different FORTRAN 77, Fortran 90, Fortran 95, Fortran 2003, or Fortran 2008
standards, the XL Fortran compiler provides options to warn you about features
that no longer conform to certain Fortran definitions.

If you specify the appropriate compiler options, the XL Fortran compiler checks
source statements for conformance to the following Fortran language definitions:

e Partial Fortran 2008 Standard (|-q1anglv1=20085td| option)

* Full Fortran 2003 Standard (-qlanglvl=2003std| option

e Full Fortran 95 Standard m‘ option)

+ Full American National Standard Fortran 90 Standard (-qlanglvl=90std| option)

+ Full American National Standard FORTRAN 77 Standard (-qlanglvl=77std|
option)

 Fortran 2008, less any obsolescent features (-qlanglvl=2008pure] option)

* Fortran 2003, less any obsolescent features (-qlanglvl=2003pure] option)

 Fortran 95, less any obsolescent features (qlanglvl=95pure| option)

« Fortran 90, less any obsolescent features (tqlanglvl=90pure| option)

* Partial support for Technical Specification 29113 for further interoperability with
C (rqlanglvl=ts| option)
¢ Technical Specification 29113 supplements to Fortran 2008, less any obsolescent

features (-qlanglvl=tspure|option)
+ IBM SAA FORTRAN option)

You can also use the [langlvl| environment variable for conformance checking.

Note: Fortran 2008 conformance checking is based on the current subset
implementation of this standard.

Highly configurable compiler

You can invoke the compiler by using the following commands:
e xlIf

e xlf r

. {77

e fort77

* x1f90

e xI1f90 r
* 90

e xIf95

e xIf95_r
e 95

+ x1f2003
e xI1f2003_r
» 2003

* x1f2008
* x1f2008_r
+ 2008

4 XL Fortran: Compiler Reference

The following commands maintain maximum compatibility with the behavior and
I/0 formats of XL Fortran Version 2:

e For .f, .F, f77 and .F77 files: xIf and x1f_r
 For any source files: f77 and fort77

The x1£90, x1f90_r, and f90 commands provide more Fortran 90 conformance and
some implementation choices for efficiency and usability. The 95, x1f95 and x1f95_r
commands provide more Fortran 95 conformance and some implementation
choices for efficiency and usability. The x1£2003, x1f2003_r, and £2003 commands
provide more Fortran 2003 conformance and some implementation choices for
efficiency and usability. The x1£f2008, x1f2008_r, and £2008 commands provide more
Fortran 2008 conformance and some implementation choices for efficiency and
usability. The 77 or fort77 command provides maximum compatibility with the
XPG4 behavior.

The main difference between the set of xIf r, x1f90_r, x1f95_r, x1£2003_r, and
x1£2008_r commands and the set of xlIf, x1f90, £90, x1£95, £95, x1£2003, £2003, x1f2008,
£2008, £77, and fort77 commands is that the first set links and binds the object files
to the threadsafe components (libraries, and so on). You can have this behavior
with the second set of commands by using the -F compiler option to specify the
configuration file stanza to use. For example:

x1f -F/opt/ibm/x1f/15.1.0/etc/x1f.cfg:x1f _r

You can control the actions of the compiler through a set of options. The different
categories of options help you to debug, to optimize and tune program
performance, to select extensions for compatibility with programs from other
platforms, and to do other common tasks that would otherwise require changing
the source code.

To simplify the task of managing many different sets of compiler options, you can
edit the default configuration file or use a customized configuration file instead of
creating many separate aliases or shell scripts.

Related information

+ |[“Using custom compiler configuration files” on page 10|

* [“Compiling XL Fortran programs” on page 19

« |Chapter 6, “Summary of compiler options by functional category,” on page 77|
and [Chapter 7, “Detailed descriptions of the XL Fortran compiler options,” on|

|_‘Eage 9Z|

Diagnostic listings

The compiler output listing has optional sections that you can include or omit. For
information about the applicable compiler options and the listing itself, refer to

“Listings, messages, and compiler information” on page 86| and |ChaEter 10,|
“Understanding XL Fortran compiler listings,” on page 335.

The S| option gives you a true assembler source file.

Symbolic debugger support

You can instruct XL Fortran to include debugging information in your compiled
objects by using different levels of the -g or -qdbg compiler option.

For details, see El or

Chapter 2. Overview of XL Fortran features 5

The debugging information can be examined by gdb or any other symbolic
debugger to help you debug your programs.

Program optimization

The XL Fortran compiler helps you control the optimization of your programs:

* You can select different levels of compiler optimizations.

* You can turn on separate optimizations for loops, floating point, and other
categories.

* You can optimize a program for a particular class of machines or for a very
specific machine configuration, depending on where the program will run.

The XL Fortran Optimization and Programming Guide provides a road map and
loptimization strategies|for these features.

6 XL Fortran: Compiler Reference

Chapter 3. Setting up and customizing XL Fortran

This section explains how to customize XL Fortran settings for yourself or all users.
The full installation procedure is beyond the scope of this section, which refers you
to the documents that cover the procedure in detail.

This section can also help you to diagnose problems that relate to installing or
configuring the compiler.

Some of the instructions require you to be a superuser, and so they are only
applicable if you are a system administrator.

Where to find installation instructions

To install the compiler, refer to these documents (preferably in this order):

1. Read the file called /opt/ibm/x1f/15.1.0/README, and follow any directions it
gives. It contains information that you must know and possibly distribute to
other people who use XL Fortran.

2. Read the XL Fortran Installation Guide to see if there are any important notices
you need to be aware of or any updates you might need to apply to your
system before doing the installation.

3. You should be familiar with the RPM Package Manager (RPM) for installing
this product. For information on using RPM, visit the RPM Web page at URL
[http:/ /www.rpm.org /| or type rpm --help at the command line.

If you are already experienced with software installation, you can use the rpm
command to install all the images from the distribution medium.

Correct settings for environment variables

You can set and export a number of environment variables for use with the
operating system. The following sections deal with the environment variables that
have special significance to the XL Fortran compiler, application programs, or both.

Environment variable basics

You can set the environment variables from shell command lines or from within
shell scripts. (For more information about setting environment variables, see the
man page help for the shell you are using.) If you are not sure which shell is in
use, a quick way to find out is to issue echo $SHELL to show the name of the
current shell.

To display the contents of an environment variable, enter the command
echo $var_name.

Note: For the remainder of this document, most examples of shell commands use
Bash notation instead of repeating the syntax for all shells.

Environment variables for national language support

Diagnostic messages and the listings from the compiler are displayed in the default
language that was specified at installation of the operating system. If you want the
messages and listings to display in another language, you can set and export the
following environment variables before executing the compiler:

© Copyright IBM Corp. 1990, 2014 7

http://www.rpm.org/

LANG
Specifies the locale. A locale is divided into categories. Each category
contains a specific aspect of the locale data. Setting LANG might change
the national language for all the categories.

NLSPATH
Refers to a list of directory names where the message catalogs might be
found.

For example, to specify the Japanese locale, set the LANG environment variable to

ja_JP.

Substitute any valid national language code for ja_JP, provided the associated
message catalogs are installed.

These environment variables are initialized when the operating system is installed
and may be different from the ones that you want to use with the compiler.

Each category has an environment variable associated with it. If you want to
change the national language for a specific category but not for other categories,
you can set and export the corresponding environment variable.

For example:

LC_MESSAGES
Specifies the national language for the messages that are issued. It affects
messages from the compiler and XLF-compiled programs, which might be
displayed on the screen or stored in a listing or other compiler output file.

LC_TIME
Specifies the national language for the time format category. It primarily
affects the compiler listings.

LC_CTYPE
Defines character classification, case conversion, and other character
attributes. For XL Fortran, it primarily affects the processing of multibyte
characters.

LC_NUMERIC
Specifies the format to use for input and output of numeric values.

Note:

1. Specifying the LC_ALL environment variable overrides the value of the LANG
and other LC_ environment variables.

2. 1If the XL Fortran compiler or application programs cannot access the message
catalogs or retrieve a specific message, the message is displayed in U.S. English.

3. The backslash character, \, has the same hexadecimal code, X'5C', as the Yen
symbol and can be displayed as the Yen symbol if the locale is Japanese.

Related information: [“Selecting the language for runtime messages” on page 36.|

See the system documentation and man page help for more information about
National Language Support environment variables and locale concepts.

8 XL Fortran: Compiler Reference

Setting library search paths

If your executable program is linked with shared libraries, you must set the
runtime library search paths. You can use one of the following three ways to set
runtime library search paths:

* When linking the shared library into the executable, use the -R (or -rpath)
compiler/link option.

* Before linking the shared library into the executable, set the LD_RUN_PATH
environment variable.

¢ Set the LD_LIBRARY_PATH environment variable.

For example:

Compile and 1link
x1f95 -L/usr/1ib/mydirl -R/usr/1ib/mydirl -L/usr/1ib/mydir2 -R/usr/1ib/mydir2
-Tmylibl -Tmylib2 test.f

-L directories are searched at link time for both static and shared Tibraries.
-R directories are searched at run time for shared Tibraries.

For more information about the linker option -R (or -rpath), and environment
variables LD_RUN_PATH and LD_LIBRARY_PATH, see the man pages for the 1d
command.

Profile-directed feedback environment variables

The following list includes profile-directed feedback (PDF) environment variables
that you can use with the -qpdf compiler option:

 PDF_BIND_PROCESSOR:

If you want to bind your application to the specified processor for cache-miss
profiling, set the PDF_BIND_PROCESSOR environment variable. Processor 0 is
set by default.

* PDFDIR:

When you compile a Fortran program with the -qpdf compiler option, you can
specify the directory where profiling information is stored by setting the
PDFDIR environment variable to the name of the directory. The compiler creates
files to hold the profile information. XL Fortran updates the files when you run
an application that is compiled with the -qpdf1 option.

Problems can occur if the profiling information is stored in a wrong place or is
updated by more than one application. To avoid these problems, you must
follow these guidelines:

— Always set the PDFDIR environment variable when using the -qpdf option.
Make sure that the directory specified by the PDFDIR environment variable
exists; otherwise, the compiler issues a warning message.

— Store the profiling information for each application in a different directory, or
use the |-qpdfl=pdfname, -qpdfl=exename| option to explicitly name the
temporary profiling files according to the template provided.

— Leave the value of the PDFDIR environment variable unchanged until you
have completed the PDF process (compiling, running, and compiling again)
for the application.

* PDF_PM_EVENT:

When you run an application compiled with -qpdfl=level=2 and want to gather
different levels of cache-miss profiling information, set the PDF_PM_EVENT
environment variable to LIMISS, L2MISS, or L3MISS (if applicable) accordingly.

* PDF_WL_ID:

Chapter 3. Setting up and customizing XL Fortran 9

The PDF_WL_ID environment variable is used to distinguish the sets of PDF
counters that are generated by multiple training runs of the user program. Each
run receives distinct input.

By default, PDF counters for training runs after the first training run are added
to the first and the only set of PDF counters. This behavior can be changed by
setting the PDF_WL_ID environment variable before each PDF training run. You
can set PDF_WL_ID to an integer value in the range 1 - 65535. The PDF run
time then uses this number to tag the set of PDF counters that are generated by
this training run. After all the training runs complete, the PDF profile file
contains multiple sets of PDF counters, each set with an ID number.

TMPDIR: Specifying a directory for temporary files

The XL Fortran compiler creates a number of temporary files for use during
compilation. An XL Fortran application program creates a temporary file at run
time for a file opened with STATUS='SCRATCH'. By default, these files are placed
in the directory /tmp.

If you want to change the directory where these files are placed, perhaps because
/tmp is not large enough to hold all the temporary files, set and export the
TMPDIR environment variable before running the compiler or the application
program.

If you explicitly name a scratch file by using the XLFSCRATCH_unit method
described below, the TMPDIR environment variable has no effect on that file.

XLFSCRATCH_unit: Specifying names for scratch files

To give a specific name to a scratch file, you can set the runtime option
scratch_vars=yes; then set one or more environment variables with names of the
form XLFSCRATCH_unit to file names to use when those units are opened as
scratch files. See [Naming scratch files|in the XL Fortran Optimization and Programming
Guide for examples.

XLFUNIT_unit: Specifying names for implicitly connected files

To give a specific name to an implicitly connected file or a file opened with no
FILE= specifier, you can set the runtime option unit_vars=yes; then set one or
more environment variables with names of the form XLFUNIT _unit to file names.
See [Naming files that are connected with no explicit name|in the XL Fortran
Optimization and Programming Guide for examples.

Using custom compiler configuration files

The XL Fortran compiler generates a default configuration file
/opt/ibm/x1f/15.1.0/ etc/x1f.cfg.$ OSRelease.gcc$gcc Version. For example,
/opt/ibm/x1f/15.1.0/ etc/xlf.cfg.sles11.gcc432 or /opt/ibm/x1f/15.1.0/etc/
xlf.cfg.rhel6.2.gcc446 at installation time. (See the XL Fortran Installation Guide for
more information on the various tools you can use to generate the configuration
file during installation.) The configuration file specifies information that the
compiler uses when you invoke it.

If you are running on a single-user system, or if you already have a compilation

environment with compilation scripts or makefiles, you might want to leave the
default configuration file as it is.

10 XL Fortran: Compiler Reference

If you want users to be able to choose among several sets of compiler options, you
might want to use custom configuration files for specific needs. For example, you
might want to enable -qlist by default for compilations using the x1f compiler
invocation command. This is to avoid forcing your users to specify this option on
the command line for every compilation, because -qnolist is automatically in effect
every time the compiler is called with the xIf command.

You have several options for customizing configuration files:

* You can directly edit the default configuration file. In this case, the customized
options will apply for all users for all compilations. The disadvantage of this
option is that you will need to reapply your customizations to the new default
configuration file that is provided every time you install a compiler update.

* You can use the default configuration file as the basis of customized copies that
you specify at compile time with the@ option. In this case, the custom file
overrides the default file on a per-compilation basis.

Note: This option requires you to reapply your customization after you apply
service to the compiler.

* You can create custom, or user-defined, configuration files that are specified at
compile time with the XLF_USR_CONFIG environment variable. In this case, the
custom user-defined files complement, rather than override, the default
configuration file, and they can be specified on a per-compilation or global basis.
The advantage of this option is that you do not need to modify your existing,
custom configuration files when a new system configuration file is installed
during an update installation. Procedures for creating custom, user-defined
configuration files are provided below.

Related information:

* |“-F” on page 103|

Creating custom configuration files

If you use the XLF_USR_CONFIG environment variable to instruct the compiler to
use a custom user-defined configuration file, the compiler examines and processes
the settings in that user-defined configuration file before looking at the settings in
the default system configuration file.

To create a custom user-defined configuration file, you add stanzas which specify
multiple levels of the use attribute. The user-defined configuration file can
reference definitions specified elsewhere in the same file, as well as those specified
in the system configuration file. For a given compilation, when the compiler looks
for a given stanza, it searches from the beginning of the user-defined configuration
file and follows any other stanza named in the use attribute, including those
specified in the system configuration file.

If the stanza named in the use attribute has a name different from the stanza
currently being processed, the search for the use stanza starts from the beginning
of the user-defined configuration file. This is the case for stanzas A, C, and D
which you see in the following example. However, if the stanza in the use attribute
has the same name as the stanza currently being processed, as is the case of the
two B stanzas in the example, the search for the use stanza starts from the location
of the current stanza.

Chapter 3. Setting up and customizing XL Fortran 11

The following example shows how you can use multiple levels for the use
attribute. This example uses the options attribute to help show how the use
attribute works, but any other attributes, such as libraries can also be used.

A: use =DEFLT

options=<set of options A>
B: use =B

options=<set of options BIl>
B: use =D

options=<set of options B2>
C: use =A

options=<set of options C>
D: use =A

options=<set of options D>
DEFLT:

options=<set of options Z>

Figure 1. Sample configuration file

In this example:
 stanza A uses option sets A and Z
 stanza B uses option sets B1, B2, D, A, and Z
* stanza C uses option sets C, A, and Z
* stanza D uses option sets D, A, and Z

Attributes are processed in the same order as the stanzas. The order in which the
options are specified is important for option resolution. Ordinarily, if an option is
specified more than once, the last specified instance of that option wins.

By default, values defined in a stanza in a configuration file are added to the list of
values specified in previously processed stanzas. For example, assume that the
XLF_USR_CONFIG environment variable is set to point to the user-defined
configuration file at ~/userconfigl. With the user-defined and default configuration
files shown in the following example, the compiler references the xIf stanza in the
user-defined configuration file and uses the option sets specified in the
configuration files in the following order: AI1, A, D, and C.

x1f: use=x1f x1f: use=DEFLT
options= <AI> options=<A>

DEFLT: use=DEFLT DEFLT:
options=<D> options=<(C>

Figure 2. Custom user-defined configuration Figure 3. Default configuration file xIf.cfg
file ~/userconfig1

Overriding the default order of attribute values
You can override the default order of attribute values by changing the assignment
operator(=) for any attribute in the configuration file.

12 XL Fortran: Compiler Reference

Table 4. Assignment operators and attribute ordering

Assignment

Operator Description

-= Prepend the following values before any values determined by the default
search order.

= Replace any values determined by the default search order with the
following values.

+= Append the following values after any values determined by the default
search order.

For example, assume that the XLF_USR_CONFIG environment variable is set to
point to the custom user-defined configuration file at ~/userconfig?.

Custom user-defined configuration file
~luserconfig2 Default configuration file x1f.cfg

x1f_prepend: use=x1f x1f: use=DEFLT
options-=<BI> options=
x1f_replace: use=x1f
options:=<B2> DEFLT:
x1f_append: use=x1f options=<C>
options+=<B3>

DEFLT: use=DEFLT
options=<D>

The stanzas in the preceding configuration files use the following option sets, in
the following orders:

1. stanza xIf uses B, D, and C

2. stanza xIf_prepend uses B1, B, D, and C

3. stanza xIf_replace uses B2

4. stanza xlf_append uses B, D, C, and B3

You can also use assignment operators to specify an attribute more than once. For
example:

x1f:
use=x1f
options-=-Isome_include_path
options+=some options

Figure 4. Using additional assignment operations

Examples of stanzas in custom configuration files

DEFLT: use=DEFLT This example specifies that the -g option is to
options = -g be used in all compilations.

x1f: use=x1f This example specifies that -qlist is to be used
options+=-qlist for any compilation called by the x1f and x1f_r

x1f_r: use=x1f_r commands. This -qlist specification overrides
options+=-qlist the default setting of -qlist specified in the

system configuration file.

DEFLT: use=DEFLT This example specifies that all compilations
libraries=-L/home/user/1ib,-1mylib should link with /home/user/lib/libmylib.a.

Chapter 3. Setting up and customizing XL Fortran 13

Editing the default configuration file

The configuration file specifies information that the compiler uses when you
invoke it. XL Fortran provides the default configuration file /opt/ibm/x1f/15.1.0/
etc/x1f.cfg at installation time.

If you want many users to be able to choose among several sets of compiler
options, you may want to add new named stanzas to the configuration file and to
create new commands that are links to existing commands. For example, you could
specify something similar to the following to create a link to the x1f95 command:

In -s /opt/ibm/x1f/15.1.0/bin/x1f95 /home/username/bin/x1f95

When you run the compiler under another name, it uses whatever options,
libraries, and so on, that are listed in the corresponding stanza.

Note:
1. The configuration file contains other named stanzas to which you may want to
link.

2. If you make any changes to the configuration file and then move or copy your
makefiles to another system, you will also need to copy the changed
configuration file.

3. You cannot use tabs as separator characters in the configuration file. If you
modify the configuration file, make sure that you use spaces for any
indentation.

Configuration file attributes

The configuration file contains the following attributes:

use The named and local stanzas provide the values for attributes. For
single-valued attributes, values in the use attribute apply if there is no
value in the local, or default, stanza. For comma-separated lists, the values
from the use attribute are added to the values from the local stanza. You
can only use a single level of the use attribute. Do not specify a use
attribute that names a stanza with another use attribute.

crt The path name of the object file that contains the startup code for 32-bit
programs. This object file is passed as the first parameter to the linkage
editor in 32-bit mode.

crt_64 The path name of the object file which contains the startup code for 64-bit
programs. This object file is passed as the first parameter to the linkage
editor in 64-bit mode.

mcrt Same as for crt, but the object file contains profiling code for the -p option.

mcrt_64
Same as for crt_64, but the object file contains profiling code for the -p
option.

gert Same as crt, but the object file contains profiling code for the -pg option.

gert_64
Same as crt_64, but the object file contains profiling code for the -pg
option.

gec_libs
When invoked in 32-bit mode, the linker options to specify the path to the
GCC libraries and to link the GCC library.

14 XL Fortran: Compiler Reference

gee_libs_64

When invoked in 64-bit mode, the linker options to specify the path to the
GCC libraries and to link the GCC library.

gce_path

Specifies the path to the 32-bit tool chain.

gecc_path_64

3%

x1f

hot

ipa

code
as

1d
bolt

options

Specifies the path to the 64-bit tool chain.

The absolute path name of the C preprocessor, which is automatically
called for files ending with a specific suffix (usually .F).

The absolute path name of the main compiler executable file. The compiler
commands are driver programs that execute this file.

Absolute path name of the program that does array language
transformations.

Absolute path name of the program that performs interprocedural
optimizations, loop optimizations, and program parallelization.

The absolute path name of the optimizing code generator.
The absolute path name of the assembler.

The absolute path name of the linker.

Absolute path name of the binder.

A string of options that are separated by commas. The compiler processes
these options as if you entered them on the command line before any other
option. This attribute lets you shorten the command line by including
commonly used options in one central place.

cppoptions

xlfopt

asopt

1dopt

A string of options that are separated by commas, to be processed by cpp
(the C preprocessor) as if you entered them on the command line before
any other option. This attribute is needed because some cpp options are
usually required to produce output that can be compiled by XL Fortran.
The default is -C, which preserves any C-style comments in the output.
Also, refer to the ["-qfpp” on page 168 and [“-qppsuborigarg” on page 250|
options for other useful cpp options.

Note: You can specify -C! preprocessor option on the command line (-WF,
-C!) to override the default setting.

Lists names of options that are assumed to be compiler options, for cases
where, for example, a compiler option and a linker option use the same
letter. The list is a concatenated set of single-letter flags. Any flag that takes
an argument is followed by a colon, and the whole list is enclosed by
double quotation marks.

Lists names of options that are assumed to be assembler options for cases
where, for example, a compiler option and an assembler option use the
same letter. The list is a concatenated set of single-letter flags. Any flag that
takes an argument is followed by a colon, and the whole list is enclosed by
double quotation marks. You may find it more convenient to set up this
attribute than to pass options to the assembler through the -W compiler
option.

Lists names of options that are assumed to be linker options for cases

Chapter 3. Setting up and customizing XL Fortran 15

where, for example, a compiler option and a linker option use the same
letter. The list is a concatenated set of single-letter flags. Any flag that takes
an argument is followed by a colon, and the whole list is enclosed by
double quotation marks.

You might find it more convenient to set up this attribute than to pass
options to the linker through the -W compiler option. However, most
unrecognized options are passed to the linker anyway.

cppsuffix
The suffix that indicates a file must be preprocessed by the C preprocessor
(cpp) before being compiled by XL Fortran. The default is F.

fsuffix The allowed suffix for Fortran source files. The default is f. The compiler
requires that all source files in a single compilation have the same suffix.
Therefore, to compile files with other suffixes, such as f95, you must
change this attribute in the configuration file or use the -gsuffix compiler
option. For more information on -qsuffix, see [*-qsuffix” on page 286.

osuffix

The suffix used to recognize object files that are specified as input files.
The default is o.

ssuffix

The suffix used to recognize assembler files that are specified as input files.
The default is s.

libraries
-1 options, which are separated by commas, that specify the libraries used
to link all programs.

smplibraries
Specifies the libraries that are used to link programs that you compiled
with the -qsmp compiler option.

defaultmsg
Absolute path name of the default message files.

include
Indicates the search path that is used for compilation include files, module
symbol files, and submodule symbol files[_F2008 4.

include_32
Indicates the search path that is used for 32-bit compilation include files.

include_64
Indicates the search path that is used for 64-bit compilation include files.

Notes:

* To specify multiple search paths for compilation include files, separate each path
location with a comma as follows:
include = -I/pathl, -I/path2, ...

* You can use the [-F” on page 103 option to select a different configuration file, a
specific stanza in the configuration file, or both.

Related information
* [“XL Fortran input files” on page 25|

* [“XL Fortran output files” on page 26

16 XL Fortran: Compiler Reference

Determining which level of XL Fortran is installed

Sometimes, you may not be sure which level of XL Fortran is installed on a
particular machine. You would need to know this information before contacting
software support.

To check whether the latest level of the product has been installed through the
system installation procedure, issue the command:

rpm -qa | grep x1f.15.1.0 | xargs rpm -qi

The result includes the version, release, modification, and fix level of the compiler
image installed on the system.

You can also use the compiler option to display the version, release, and
level of the compiler and its components.

Running two levels of XL Fortran

It is possible for two different levels of the XL Fortran compiler to coexist on one
system. This allows you to invoke one level by default and to invoke the other one
whenever you explicitly choose to.

To do this, consult the XL Fortran Installation Guide for details.

Chapter 3. Setting up and customizing XL Fortran 17

18 XL Fortran: Compiler Reference

Chapter 4. Editing, compiling, linking, and running XL Fortran

programs

Most Fortran program development consists of a repeating cycle of editing,
compiling and linking (which is by default a single step), and running. For
problems encountered during the development cycle, refer to the following
sections for help.

Prerequisite information:

1. Before you can use the compiler, all the required Linux settings (for example,
certain environment variables and storage limits) must be correct for your user
ID; for details, see [“Correct settings for environment variables” on page 7|

2. To learn more about writing and optimizing XL Fortran programs, refer to the
XL Fortran Language Reference and XL Fortran Optimization and Programming
Guide.

Editing XL Fortran source files

To create Fortran source programs, you can use any of the available text editors,
such as vi or emacs. Source programs must have a suffix of .f unless the fsuffix
attribute in the configuration file specifies a different suffix, or the
compiler option is used. You can also use a suffix of .F if the program contains C
preprocessor (cpp) directives that must be processed before compilation begins.
Source files with the .f77, .£90, .f95, .f03, or .f08 suffix are also valid.

For the Fortran source program to be a valid program, it must conform to the
language definition that is specified in the XL Fortran Language Reference.

Compiling XL Fortran programs

To compile a source program, use one of the x1£90, x1£90_r, £90, x1f95, x1f95_r, {95,
x1£2003, x1£2003_r, 2003, x1£2008, x1£f2008_r, £2008, x1f, xIf r, 77, or fort77
commands, which have the form:

»»——x1f
—x1f_r
—f77
—fort77——
—x190
—x1f90_r—
—f90
—x1f95
—x1f95_r—-
—f95
—x1f2003—
—x1f2003_r—
—f2003
—x1f2008—
—x1f2008_r—
—f2008

input_file ><

|—cmd_Z ine_op t—l

© Copyright IBM Corp. 1990, 2014 19

These commands all accept essentially the same Fortran language. The main
difference is that they use different default options (which you can see by reading
the configuration file /opt/ibm/x1f/15.1.0/etc/x1f.cfg).

The invocation command performs the necessary steps to compile the Fortran
source files, assemble any .s files, and link the object files and libraries into an
executable program. In particular, the x1f_r, x1f90_r, x1f95_r, x1f2003_r, and
x1£2008_r commands use the components for multi-threading (libraries, and so on)
to link and bind object files.

The following table summarizes the invocation commands that you can use:

Table 5. XL Fortran Invocation commands

Driver Invocation Path or Location Chief Functionality Linked Libraries

x1f /opt/ibm/x1f/15.1.0/ Selected Fortran libx1£90.s0
bin language level

xIf_r /opt/ibm/x1f/15.1.0/ The threadsafe libx1f90_r.so
bin version of the selected

language level

£77, fort77 /opt/ibm/x1f/15.1.0/ FORTRAN 77 1ibx1f90.s0
bin

x1£90, £90 /opt/ibm/x1f/15.1.0/ Fortran 90 1ibx1f90.so0
bin

x1f90_r /opt/ibm/x1f/15.1.0/ Threadsafe Fortran 90 libxI1f90_r.so
bin

x1f95, 95 /opt/ibm/x1f/15.1.0/ Fortran 95 libx1f90.so
bin

x1f95_r /opt/ibm/x1f/15.1.0/ Threadsafe Fortran 95 libx1f90_r.so
bin

x1£2003 /opt/ibm/x1f/15.1.0/ Fortran 2003 libx1f90.so
bin

x1£2003_r /opt/ibm/x1f/15.1.0/ Threadsafe Fortran 1ibx1f90.s0
bin 2003

£2003 /opt/ibm/x1f/15.1.0/ Fortran 2003 libx1f90.s0
bin

x1£2008 /opt/ibm/x1f/15.1.0/ Fortran 2008 libx1f90.s0
bin

x1£2008_r /opt/ibm/x1f/15.1.0/ Threadsafe Fortran libx1f90.so
bin 2008

£2008 /opt/ibm/x1f/15.1.0/ Fortran 2008 libx1f90.s0
bin

The xIf and xIf_r invocation commands select the appropriate language level
according to the suffix of the source file names. The other invocation commands
behave consistently no matter what the Fortran source file name suffix is. For
example, when you compile the following source files:

x1f programl.f program2.f90 program3.f95 program4.f03 programb.f08

the behavior is as follows:
* The programl.f file is compiled as if the invocation command was £77.

* The program2.f90 file is compiled as if the invocation command was x1£90.

20 XL Fortran: Compiler Reference

* The program3.f95 file is compiled as if the invocation command was x1£95.
* The program4.f03 file is compiled as if the invocation command was x1f2003.
e The programb.f08 file is compiled as if the invocation command was x1£2008.

libx1f90.s0 is provided for both threaded and non-threaded applications. XL
Fortran determines at run time whether your application is threaded.

XL Fortran provides the library 1ibx1f90_t.so, in addition to libx1f90_r.so.
libx1£f90_t.so exports the same entry points as libx1f90_r.so does. The library
1ibx1£90_r.so is a superset of 1libx1f90_t.so. The file xIf.cfg is set up to link to
libx1£f90_r.so automatically when you use the xI1f90_r, x1f95_r, and xIf_r
commands.libxIf90_t.so is a partial thread-support runtime library. Unlike
1ibx1£90_r.so, 1libx1f90_t.so does not provide thread synchronization and routines in
libx1f90_t.so are not thread-reentrant. Therefore, only one Fortran thread at a time
can perform I/O operations or invoke Fortran intrinsics. You can use libx1f90_t.so
instead of libx1f90_r.so in multithread applications where there is only one Fortran
thread, to avoid the thread synchronization overhead in libx1f90_r.so.

When you bind a multithreaded executable with multiple Fortran threads,
1ibx1£90_r.so should be used. Note that using the xIf_r, x1f90_r, x1f95_r, x1f2003_r,
or x1f2008_r invocation command ensures the proper linking.

The invocation commands have the following implications for directive triggers:

» For {77, fort77, £90, 95, £2003, x1f, x1f90, x1f95, x1f2003, and x1£f2008, the directive
trigger is IBM* by default.

 For all other commands, the directive triggers are IBM* and IBMT by default.

If you specify the -qsmp option, the following occurs:

* The compiler turns on automatic parallelization.

* In addition to IBM* and IBMT, the compiler also recognizes the IBMP, SMPS$,
and $OMP directive triggers.

* If you specify the -qgsmp=omp option, the compiler only recognizes the SOMP
directive trigger.

Compiling XL Fortran Version 2 programs

When used to compile .f, .F, .f77, or .F77 files, xIf maintains, wherever possible,
compatibility with existing programs by using the same 1/O formats as earlier
versions of XL Fortran and some implementation behavior compatible with
FORTRAN 77.

If the configuration file has not been customized, 77 is identical to xIf when xIf is
used to compile the .f, .F, .f77, or .F77 files.

You may find that you need to continue using these commands for compatibility
with existing makefiles and build environments. However, be aware that programs
that you compile with these commands may not conform to the newer standard in
subtle ways.

Compiling Fortran 90 or Fortran 95 programs

The 190, x1f90, and x1f90_r commands make your programs conform more closely
to the Fortran 90 standard than do the other invocation commands. The f95, x1f95,
and xI1f95_r commands make your programs conform more closely to the Fortran
95 standard than do the other invocation commands. £90, x1f90, x1f90_r, f95, x1f95,
and xIf95_r are the preferred commands for compiling any new programs. They all

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 21

accept Fortran 90 free source form by default; to use them for fixed source form,
you must use the -qfixed option. I/O formats are slightly different between these
commands and the other commands. I/O formats also differ between the set of
190, x1f90 and x1f90_r commands and the set of 95, x1f95 and x1f95_r commands.
We recommend that you switch to the Fortran 95 formats for data files whenever
possible.

By default, the £90, x1f90, and x1f90_r commands do not conform completely to the
Fortran 90 standard. Also, by default, the £95, x1f95, and x1f95_r commands do not
conform completely to the Fortran 95 standard. If you need full Fortran 90 or
Fortran 95 compliance, compile with any of the following additional compiler
options (and suboptions):

-gnodirective -qnoescape -qfloat=nomaf:nofold -gnoswapomp

-qTlanglv1=90std
-qTlanglv1=95std

Also, specify the following runtime options before running the program, with a
command similar to one of the following;:

export XLFRTEOPTS="err_recovery=no:langlv1=90std"
export XLFRTEOPTS="err_recovery=no:langlv1=95std"

The default settings are intended to provide the best combination of performance
and usability. Therefore, it is usually a good idea to change them only when
required. Some of the options above are only required for compliance in very
specific situations.

Compiling Fortran 2003 programs

The £2003, x1£2003, and x1f2003_r commands make your programs conform more
closely to the Fortran 2003 Standard than do the other invocation commands.The
Fortran 2003 commands accept free source form by default. I/O formats for the
Fortran 2003 commands are the same as for the 95, x1f95, and x1f95_r commands.
The Fortran 2003 commands format infinity and NaN floating-point values
differently from previous commands. The Fortran 2003 commands enable
polymorphism by default.

By default, the £2003, x1f2003, and x1f2003_r commands do not conform completely
to the Fortran 2003 standard. If you need full compliance, compile with the
following additional compiler suboptions:

-qlanglv1=2003std -gnodirective -gnoescape -gqfloat=nomaf:rndsngl:nofold
-gnoswapomp -gstrictieeemod

Also specify the following runtime options:

XLFRTEOPTS="err_recovery=no:langlv1=2003std:iostat_end=2003std:
internal_nldelim=2003std"

Compiling Fortran 2008 programs

The £2008, x1£2008, and x1f2008_r commands make your programs conform more
closely to the Fortran 2008 Standard than do the other invocation commands. The
Fortran 2008 commands accept free source form by default. I/O formats for the
Fortran 2008 commands are the same as for the 95, x1£95, x1f95_r, x1f95_r7, £2003,
x1£2003, and x1£2003_r commands. The Fortran 2008 commands format infinity and
NaN floating-point values in the same way as the Fortran 2003 commands. The
Fortran 2008 commands enable polymorphism by default.

22 XL Fortran: Compiler Reference

By default, the £2008, x1£2008, and x1f2008_r commands do not conform completely
to the Fortran 2008 standard. If you need full compliance, compile with the
following additional compiler suboptions:

-qTanglv1=2008std -gnodirective -gnoescape -qfloat=nomaf:rndsngl:nofold
-gnoswapomp -gstrictieeemod

Also specify the following runtime options:

XLFRTEOPTS="err_recovery=no:1langlv1=2008std:iostat_end=2003std:
internal_nldelim=2003std"

Related information

“Compiling Fortran 2003 programs” on page 22|

Compiling and linking a library

Compiling a static library

To compile a static library:

1. Compile each source file into an object file, with no linking. For example:
x1f -c bar.f example.f

2. Use the ar command to add the generated object files to an archive library file.
For example:

ar -rv Tibfoo.a bar.o example.o

Compiling a shared library
Use the following steps to compile a shared library:

1. Compile your source files into an object file, with no linking. Note that in the
case of compiling a shared library, the -qpic compiler option is also used. For
example:

x1f -gpic -c foo.f

2. Use the -qmkshrobj compiler option to create a shared object from the
generated object files. For example:

x1f -gmkshrobj -o Tibfoo.so foo.o
Related information in the XL Fortran Compiler Reference

Linking a library to an application
You can use the same command string to link a static or shared library to your
main program. For example:

x1f -0 myprogram main.f -Ldirectory [-Rdirectory] -1foo
where directory is the path to the directory containing the library.

By using the -1 option, you instruct the linker to search 1ibfoo.so in the directory
specified via the -L option (and, for a shared library, the -R option). If it is not
found, the linker searches for 1ibfoo.a. For additional linkage options, including
options that modify the default behavior, see the operating system 1d
documentation.

Related information in the XL Fortran Compiler Reference

By

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 23

B

Linking a shared library to another shared library
Just as you link modules into an application, you can create dependencies between
shared libraries by linking them together. For example:

x1f -gmkshrobj -o mylib.so myfile.o -Ldirectory -Rdirectory -1foo
Related information in the XL Fortran Compiler Reference

B

Compiling XL Fortran SMP programs

You can use the xIf_r, x1f90_r, x1f95_r, x1f2003_r, or x1f2008_r command to compile
XL Fortran SMP programs. The xlf_r command is similar to the xIf command; the
x1f90_r command is similar to the x1f90 command; the x1f95_r command is similar
to the x1f95 command; the x1f2003_r command is similar to the x1f2003 command,;
the x1£2008_r command is similar to the x1f2008 command. The main difference is
that the components for multi-threading are used to link and bind the object files if
you specify the xIf_r, x1f90_r, x1f95_r, x1f2003_r, or x1f2008_r command.

Note that using any of these commands alone does not imply parallelization. For
the compiler to recognize the SMP directives and activate parallelization, you must
also specify -qsmp. In turn, you can only specify the -qsmp option in conjunction
with one of these invocation commands. When you specify -qsmp, the driver links
in the libraries specified on the smplibraries line in the active stanza of the
configuration file.

POSIX pthreads API support
XL Fortran supports thread programming with the IEEE 1003.1-2001 (POSIX)
standard pthreads APIL

To compile and then link your program with the standard interface libraries, use
the xIf_r, x1f90_r, x1f95_r, x1f2003_r, or x1f2008_r command. For example, you
could specify:

x1f95_r test.f

Compilation order for Fortran programs

If you have a program unit, subprogram, or interface body that uses a module,
you must first compile the module. If the module and the code that uses the
module are in separate files, you must first compile the file that contains the
module. If they are in the same file, the module must come before the code that
uses it in the file. If you change any entity in a module, you must recompile any
files that use that module.

If only the implementation of a separate module procedure is changed,
but the interface remains the same, you do not need to recompile the file that
contains the module in which the corresponding module procedure interface body

is declared.[F2008

Canceling a compilation

To stop the compiler before it finishes compiling, press Ctrl+C in interactive mode,
or use the kill command.

24 XL Fortran: Compiler Reference

XL Fortran input files

The input files to the compiler are:

Source Files (.f or .F suffix)
All f, .£77, .£90, .f95, .f03, .f08, and .F, .F77, .F90, .F95, .F03, and .F08 files
are source files for compilation. The compiler compiles source files in the
order you specify on the command line. If it cannot find a specified source
file, the compiler produces an error message and proceeds to the next file,
if one exists. Files with a suffix of .F are passed through the C preprocessor
(cpp) before being compiled.

Include files also contain source and often have different suffixes from .f.

Related information: See [‘Passing Fortran files through the (]
[preprocessor” on page 31}

The fsuffix and cppsuffix attributes in [“Editing the default configuration|
ffile” on page 14| and |“-qsuffix” on page 286|let you select a different suffix.

Object Files (.o suffix)
All .o files are object files. After the compiler compiles the source files, it
uses the 1d command to link-edit the resulting .o files, any .o files that you
specify as input files, and some of the .0 and .a files in the product and
system library directories. It then produces a single executable output file.

Related information: See|“Linking” on page 91| and [“Linking XL Fortran|
fpbrograms” on page 33

The osuffix attribute, which is described in [“Editing the defaulf]
fconfiguration file” on page 14| and [-gsuffix” on page 286/ lets you select a
different suffix.

Assembler Source Files (.s suffix)
The compiler sends any specified .s files to the assembler (as). The
assembler output consists of object files that are sent to the linker at link
time.

Related information: The ssuffix attribute, which is described in f’Editina
fthe default configuration file” on page 14|and [’-qsuffix” on page 286/ lets
you select a different suffix.

Shared Object or Library Files (.so suffix)
These are object files that can be loaded and shared by multiple processes
at run time. When a shared object is specified during linking, information
about the object is recorded in the output file, but no code from the shared
object is actually included in the output file.

Configuration Files (.cfg suffix)
The contents of the configuration file determine many aspects of the
compilation process, most commonly the default options for the compiler.
You can use it to centralize different sets of default compiler options or to
keep multiple levels of the XL Fortran compiler present on a system.

The default configuration file is /opt/ibm/x1f/15.1.0/etc/x1f.cfg.

Related information: See|‘Using custom compiler configuration files” on|
lpage 10| and [“-F” on page 103| for information about selecting the
configuration file.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 25

Module Symbol Files: modulename.mod
A module symbol file is an output file from compiling a module and is an
input file for subsequent compilations of files that USE that module. One
.mod file is produced for each module, so compiling a single source file
may produce multiple .mod files.

Related information: See[’-I” on page 108 and [“-gmoddir” on page 226)

Submodule Symbol Files: ancestormodulename_submodulename.smod

A submodule symbol file is an output file from compiling a submodule
and is an input file for subsequent compilations of the descendant
submodules. One .smod file is produced for each submodule, so compiling
a single source file might produce multiple .smod files.

The submodule symbol file is not needed for compiling the ancestor
module or any compilation units that access the ancestor module via use
association.

Related information: See[“-qmoddir” on page 226/

Profile Data Files

The -qpdf1 option produces runtime profile information for use in
subsequent compilations. This information is stored in one or more hidden
files with names that match the pattern “.*pdf*” or “.*pdf_map*”.

Related information: See|’-qpdfl, -qgpdf2” on page 236.|

XL Fortran output files
The output files that XL Fortran produces are:
Executable Files: a.out

By default, XL Fortran produces an executable file that is named a.out in
the current directory.

Related information: See[’-0” on page 117|for information on selecting a
different name and [*-c” on page 101| for information on generating only an
object file.

Object Files: filename.o
If you specify the -c compiler option, instead of producing an executable
file, the compiler produces an object file for each specified source file, and
the assembler produces an object file for each specified assembler source
file. By default, the object files have the same file name prefixes as the
source files and appear in the current directory.

Related information: See[“-c” on page 101| and [“Linking XL Fortran|
programs” on page 33.| For information on renaming the object file, see
“-0” on page 117

Assembler Source Files: filename.s
If you specify the -S compiler option, instead of producing an executable
file, the XL Fortran compiler produces an equivalent assembler source file
for each specified source file. By default, the assembler source files have
the same file name prefixes as the source files and appear in the current
directory.

26 XL Fortran: Compiler Reference

Related information: See|’-S” on page 314| and [‘Linking XL Fortran|
[programs” on page 33] For information on renaming the assembler source
file, see|“-0” on page 117

Compiler Listing Files: filename.lst
By default, no listing is produced unless you specify one or more
listing-related compiler options. The listing file is placed in the current
directory, with the same file name prefix as the source file and a suffix of
Ast.

Related information: See[“Listings, messages, and compiler information”|

Module Symbol Files: modulename.mod
Each module has an associated symbol file that holds information needed
by program units, subprograms, and interface bodies that USE that
module. By default, these symbol files must exist in the current directory.

Related information: For information on putting .mod files in a different
directory, see [-qmoddir” on page 226.

Submodule Symbol Files: ancestormodulename_submodulename.smod

Each submodule has an associated symbol file that holds information
needed by the descendant submodules. By default, these symbol files must
exist in the current directory.

The submodule symbol file is not needed for compiling the ancestor
module or any compilation units that access the ancestor module via use
association.

Related information: For information on putting .smod files in a different
directory, see |’-qmoddir” on page 226.|

cpp-Preprocessed Source Files: Ffilename.f
If you specity the -d option when compiling a file with a .F suffix, the
intermediate file created by the C preprocessor (cpp) is saved rather than
deleted.

Related information: See|‘Passing Fortran files through the (
fpreprocessor” on page 31|and|“-d” on page 102

Profile Data Files (*pdf*, .*pdf _map¥)
These are the files that the -qpdf1 option produces. They are used in
subsequent compilations to tune optimizations that are based on actual
execution results.

Related information: See[“-qpdfl, -qpdf2” on page 236,

Dependency Files: filename.d
A dependency file contains source file dependency information.
Dependency files are used by the make command to determine the order
in which files should be compiled and the minimum set of files that must
be recompiled when a file is changed. You can specify the
or|“-gmakedep” on page 217|option to generate a dependency file.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 27

Related information: For information on setting the name of the
dependency file, see [*-MF” on page 111, For information on specifying the
target name of the object file in the dependency file, see
illB

Scope and precedence of option settings

You can specify compiler options in any of three locations. Their scope and
precedence are defined by the location you use. (XL Fortran also has comment
directives, such as SOURCEFORM,, that can specify option settings. There is no
general rule about the scope and precedence of such directives.)

Location Scope Precedence
In a stanza of the configuration All compilation units in all files Lowest
file. compiled with that stanza in effect.

On the command line. All compilation units in all files Medium

compiled with that command.

In an @PROCESS directive. The following compilation unit. Highest
(XL Fortran also has comment
directives, such as
SOURCEFORM, that

can specify option settings.
There is no general rule
about the scope and
precedence of such

directives.)

If you specify an option more than once with different settings, the last setting
generally takes effect. Any exceptions are noted in the individual descriptions in
the [Chapter 7, “Detailed descriptions of the XL Fortran compiler options,” on page
and are indexed under “conflicting options”.

Specifying options on the command line

XL Fortran supports the traditional UNIX method of specifying command-line
options, with one or more letters (known as flags) following a minus sign:

x1f95 -c file.f

You can often concatenate multiple flags or specify them individually:

x1f95 -cv file.f # These forms
x1f95 -c -v file.f # are equivalent

(There are some exceptions, such as -pg, which is a single option and not the same
as -p -g.)

Some of the flags require additional argument strings. Again, XL Fortran is flexible
in interpreting them; you can concatenate multiple flags as long as the flag with an
argument appears at the end. The following example shows how you can specify
flags:
A1l of these commands are equivalent.

x1f95 -g -v -o montecarlo -p montecarlo.f

x1f95 montecarlo.f -g -v -0 montecarlo -p

x1f95 -g -v montecarlo.f -o montecarlo -p

x1f95 -g -v -omontecarlo -p montecarlo.f
Because -o takes a blank-delimited argument,

28 XL Fortran: Compiler Reference

the -p cannot be concatenated.

x1f95 -gvomontecarlo -p montecarlo.f
Unless we switch the order.

x1f95 -gvpomontecarlo montecarlo.f

If you are familiar with other compilers, particularly those in the XL family of
compilers, you may already be familiar with many of these flags.

You can also specify many command-line options in a form that is intended to be
easy to remember and make compilation scripts and makefiles relatively

self-explanatory:

»>—-q—option_keyword ><

Y _suboption

Y _argument

This format is more restrictive about the placement of blanks; you must separate
individual -q options by blanks, and there must be no blank between a -q option
and a following argument string. Unlike the names of flag options, -q option
names are not case-sensitive except that the q must be lowercase. Use an equal
sign to separate a -q option from any arguments it requires, and use colons to
separate suboptions within the argument string.

For example:
x1f95 -qddim -gXREF=full -gfloat=nomaf:rsqrt -03 -qcache=type=c:Tevel=1 file.f

Specifying options in the source file

By putting the @PROCESS compiler directive in the source file, you can specify
compiler options to affect an individual compilation unit. The @°ROCESS
compiler directive can override options specified in the configuration file, in the
default settings, or on the command line.

]

»»—@PROCESS——option

A\
A

|—(suboption list)—|

option is the name of a compiler option without the -q.
suboption
is a suboption of a compiler option.

In fixed source form, @PROCESS can start in column 1 or after column 6. In free
source form, the @PROCESS compiler directive can start in any column.

You cannot place a statement label or inline comment on the same line as an
@PROCESS compiler directive.

By default, option settings you designate with the @PROCESS compiler directive

are effective only for the compilation unit in which the statement appears. If the
file has more than one compilation unit, the option setting is reset to its original

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 29

state before the next unit is compiled. Trigger constants specified by the
DIRECTIVE option are in effect until the end of the file (or until NODIRECTIVE
is processed).

The @PROCESS compiler directive must usually appear before the first statement
of a compilation unit. The only exceptions are when specifying SOURCE and
NOSOURCE; you can put them in @PROCESS directives anywhere in the
compilation unit.

Passing command-line options to the "ld" or "as" command

Because the compiler automa