
IBM COBOL for Linux on x86 1.1

Programming Guide

IBM

SC28-3118-00



 
Note

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 635.

First edition (October 2023)

This edition applies to Version 1.1 of IBM® COBOL for Linux® on x86 (program number 5737-L11) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

You can view or download softcopy publications free of charge in the COBOL for Linux on x86 library.
© Copyright International Business Machines Corporation 2021, 2023.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/support/pages/node/6217311


Contents

Tables..................................................................................................................xv

Preface...............................................................................................................xix
About this information...............................................................................................................................xix

How this information will help you...................................................................................................... xix
Abbreviated terms................................................................................................................................xix
How to read syntax diagrams............................................................................................................... xx
How to use examples...........................................................................................................................xxi
Related information............................................................................................................................. xxi

How to send your comments.................................................................................................................... xxi
Accessibility.............................................................................................................................................. xxii

Part 1. Coding your program.................................................................................. 1

Chapter 1. Structuring your program...........................................................................................................3
Identifying a program............................................................................................................................. 3

Identifying a program as recursive...................................................................................................4
Marking a program as callable by containing programs.................................................................. 4
Setting a program to an initial state................................................................................................. 4
Changing the header of a source listing........................................................................................... 4

Describing the computing environment.................................................................................................5
Example: FILE-CONTROL paragraph................................................................................................5
Specifying the collating sequence....................................................................................................6
Defining symbolic characters........................................................................................................... 7
Defining a user-defined class........................................................................................................... 8
Identifying files to the operating system (ASSIGN)......................................................................... 8

Describing the data.................................................................................................................................9
Using data in input and output operations.......................................................................................9
Comparison of WORKING-STORAGE and LOCAL-STORAGE......................................................... 11
Using data from another program.................................................................................................. 12

Processing the data..............................................................................................................................13
How logic is divided in the PROCEDURE DIVISION.......................................................................14
Declaratives.................................................................................................................................... 17

Chapter 2. Using data................................................................................................................................ 19
Using variables, structures, literals, and constants............................................................................ 19

Using variables................................................................................................................................19
Using data items and group items..................................................................................................20
Using literals................................................................................................................................... 21
Using constants...............................................................................................................................22
Using figurative constants.............................................................................................................. 22

Assigning values to data items.............................................................................................................23
Examples: initializing data items....................................................................................................24
Initializing a structure (INITIALIZE).............................................................................................. 27
Assigning values to elementary data items (MOVE)...................................................................... 28
Assigning values to group data items (MOVE)............................................................................... 29
Assigning arithmetic results (MOVE or COMPUTE)........................................................................30
Assigning input from a screen or file (ACCEPT)............................................................................. 30

Displaying values on a screen or in a file (DISPLAY)........................................................................... 31
Using intrinsic functions (built-in functions)....................................................................................... 32

  iii



Using tables (arrays) and pointers.......................................................................................................33

Chapter 3. Working with numbers and arithmetic.................................................................................... 35
Defining numeric data.......................................................................................................................... 35
Displaying numeric data.......................................................................................................................37
Controlling how numeric data is stored...............................................................................................38
Formats for numeric data.....................................................................................................................39

Examples: numeric data and internal representation................................................................... 42
Data format conversions...................................................................................................................... 46

Conversions and precision..............................................................................................................47
Sign representation of zoned and packed-decimal data.................................................................... 47
Checking for incompatible data (numeric class test)..........................................................................48
Performing arithmetic.......................................................................................................................... 48

Using COMPUTE and other arithmetic statements........................................................................49
Using arithmetic expressions......................................................................................................... 50
Using numeric intrinsic functions...................................................................................................50
Examples: numeric intrinsic functions...........................................................................................51

Fixed-point contrasted with floating-point arithmetic........................................................................53
Examples: fixed-point and floating-point evaluations...................................................................55

Using currency signs............................................................................................................................ 56
Example: multiple currency signs.................................................................................................. 56

Chapter 4. Handling tables........................................................................................................................ 59
Defining a table (OCCURS)................................................................................................................... 59
Nesting tables.......................................................................................................................................61

Example: subscripting.................................................................................................................... 62
Example: indexing...........................................................................................................................62

Referring to an item in a table..............................................................................................................62
Subscripting.................................................................................................................................... 63
Indexing.......................................................................................................................................... 64

Putting values into a table....................................................................................................................65
Loading a table dynamically........................................................................................................... 65
Initializing a table (INITIALIZE)..................................................................................................... 65
Assigning values when you define a table (VALUE)....................................................................... 66
Example: PERFORM and subscripting............................................................................................68
Example: PERFORM and indexing.................................................................................................. 69

Creating variable-length tables (DEPENDING ON)............................................................................. 70
Loading a variable-length table......................................................................................................72
Assigning values to a variable-length table................................................................................... 72

Complex OCCURS DEPENDING ON..................................................................................................... 73
Example: complex ODO..................................................................................................................73
Effects of change in ODO object value........................................................................................... 74

Searching a table..................................................................................................................................76
Doing a serial search (SEARCH)......................................................................................................77
Doing a binary search (SEARCH ALL)............................................................................................. 78

Sorting a table...................................................................................................................................... 79
Processing table items using intrinsic functions................................................................................. 79

Example: processing tables using intrinsic functions....................................................................80

Chapter 5. Selecting and repeating program actions............................................................................... 81
Selecting program actions................................................................................................................... 81

Coding a choice of actions.............................................................................................................. 81
Coding conditional expressions......................................................................................................85

Repeating program actions.................................................................................................................. 88
Choosing inline or out-of-line PERFORM....................................................................................... 89
Coding a loop.................................................................................................................................. 90
Looping through a table.................................................................................................................. 90
Executing multiple paragraphs or sections....................................................................................91

iv  



Chapter 6. Handling strings....................................................................................................................... 93
Joining data items (STRING)................................................................................................................93

Example: STRING statement..........................................................................................................94
Splitting data items (UNSTRING).........................................................................................................95

Example: UNSTRING statement.................................................................................................... 96
Manipulating null-terminated strings.................................................................................................. 98

Example: null-terminated strings...................................................................................................98
Referring to substrings of data items...................................................................................................99

Reference modifiers..................................................................................................................... 100
Example: arithmetic expressions as reference modifiers........................................................... 101
Example: intrinsic functions as reference modifiers................................................................... 102

Tallying and replacing data items (INSPECT)....................................................................................102
Examples: INSPECT statement....................................................................................................103

Converting data items (intrinsic functions)....................................................................................... 104
Changing case (UPPER-CASE, LOWER-CASE)............................................................................. 104
Transforming to reverse order (REVERSE)...................................................................................105
Converting to numbers (NUMVAL, NUMVAL-C)........................................................................... 105
Converting from one code page to another................................................................................. 106

Evaluating data items (intrinsic functions)........................................................................................106
Evaluating single characters for collating sequence................................................................... 107
Finding the largest or smallest data item.................................................................................... 107
Finding the length of data items...................................................................................................109
Finding the date of compilation....................................................................................................110

Chapter 7. Processing files......................................................................................................................111
File concepts and terminology...........................................................................................................111
File types............................................................................................................................................ 112
Identifying files.................................................................................................................................. 113

Identifying Db2 files..................................................................................................................... 115
Identifying SFS files......................................................................................................................116
Precedence of file-system determination....................................................................................116

File systems........................................................................................................................................117
Db2 file system............................................................................................................................. 118
QSAM file system..........................................................................................................................119
RSD file system............................................................................................................................. 120
SdU file system............................................................................................................................. 120
SFS file system..............................................................................................................................121
STL file system..............................................................................................................................122

Specifying a file organization and access mode................................................................................122
File organization and access mode.............................................................................................. 122

Generation data groups..................................................................................................................... 125
Creating generation data groups..................................................................................................127
Using generation data groups...................................................................................................... 128
Name format of generation files.................................................................................................. 130
Insertion and wrapping of generation files..................................................................................131
Limit processing of generation data groups.................................................................................132

Concatenating files.............................................................................................................................133
Opening optional files........................................................................................................................ 134
Setting up a field for file status.......................................................................................................... 135
Describing the structure of a file in detail......................................................................................... 135
Coding input and output statements for files....................................................................................136

Example: COBOL coding for files..................................................................................................136
File position indicator................................................................................................................... 138
Opening a file................................................................................................................................ 138
Reading records from a file.......................................................................................................... 140
Statements used when writing records to a file.......................................................................... 141
Adding records to a file.................................................................................................................142

  v



Replacing records in a file............................................................................................................ 142
Deleting records from a file.......................................................................................................... 143
PROCEDURE DIVISION statements used to update files........................................................... 143

Using Db2 files................................................................................................................................... 145
Using Db2 files and SQL statements in the same program......................................................... 146

Using QSAM files................................................................................................................................ 147
Using SFS files....................................................................................................................................148

Example: accessing SFS files....................................................................................................... 149
Improving SFS performance........................................................................................................ 150

Chapter 8. Sorting and merging files.......................................................................................................153
Sort and merge process..................................................................................................................... 153
Describing the sort or merge file....................................................................................................... 154
Describing the input to sorting or merging........................................................................................ 154

Example: describing sort and input files for SORT...................................................................... 155
Coding the input procedure..........................................................................................................155

Describing the output from sorting or merging................................................................................. 156
Coding the output procedure....................................................................................................... 157

Restrictions on input and output procedures....................................................................................157
Requesting the sort or merge............................................................................................................ 158

Setting sort or merge criteria....................................................................................................... 158
Choosing alternate collating sequences...................................................................................... 159
Example: sorting with input and output procedures................................................................... 159

Determining whether the sort or merge was successful.................................................................. 160
Sort and merge error numbers.....................................................................................................161

Stopping a sort or merge operation prematurely..............................................................................164

Chapter 9. Handling errors...................................................................................................................... 165
Handling errors in joining and splitting strings..................................................................................165
Handling errors in arithmetic operations.......................................................................................... 166

Example: checking for division by zero........................................................................................166
Handling errors in input and output operations................................................................................ 166

Using the end-of-file condition (AT END).....................................................................................168
Coding ERROR declaratives..........................................................................................................168
Using file status keys.................................................................................................................... 168
Using file system status codes..................................................................................................... 170
Coding INVALID KEY phrases.......................................................................................................172

Handling errors when calling programs............................................................................................ 172

Part 2. Enabling programs for international environments...................................175

Chapter 10. Processing data in an international environment...............................................................177
Unicode and the encoding of language characters........................................................................... 178
Using national data (Unicode) in COBOL........................................................................................... 179

Defining national data items........................................................................................................ 179
Using national literals................................................................................................................... 180
COBOL statements and national data..........................................................................................181
Intrinsic functions and national data........................................................................................... 183
Using national-character figurative constants.............................................................................184
Defining national numeric data items.......................................................................................... 185
National groups.............................................................................................................................185
Converting to or from national (Unicode) representation........................................................... 186
Using national groups...................................................................................................................189
Storage of character data............................................................................................................. 192
Comparing national (UTF-16) data.............................................................................................. 192

Processing UTF-8 data using UTF-16 (national) data types.............................................................195
Processing Chinese GB 18030 data.................................................................................................. 195

vi  



Coding for use of DBCS support.........................................................................................................196
Defining DBCS data.......................................................................................................................197
Using DBCS literals....................................................................................................................... 197
Testing for valid DBCS characters................................................................................................ 198
Processing alphanumeric data items that contain DBCS data....................................................198

Chapter 11. Setting the locale.................................................................................................................201
The active locale................................................................................................................................ 201
Specifying the code page for character data.....................................................................................202
Using environment variables to specify a locale...............................................................................203

Determination of the locale from system settings.......................................................................204
Types of messages for which translations are available............................................................. 204

Locales and code pages that are supported..................................................................................... 204
Controlling the collating sequence with a locale.............................................................................. 207

Controlling the alphanumeric collating sequence with a locale................................................. 208
Controlling the DBCS collating sequence with a locale...............................................................209
Controlling the national collating sequence with a locale...........................................................209
Intrinsic functions that depend on collating sequence...............................................................210

Accessing the active locale and code-page values...........................................................................210
Example: get and convert a code-page ID...................................................................................211

Part 3. Compiling, linking, running, and debugging your program........................ 213

Chapter 12. Compiling, linking, and running programs..........................................................................215
Setting environment variables...........................................................................................................215

Compiler and runtime environment variables............................................................................. 216
Compiler environment variables.................................................................................................. 218
Runtime environment variables................................................................................................... 220
Example: setting and accessing environment variables............................................................. 223

Compiling programs........................................................................................................................... 224
Compiling from the command line...............................................................................................225
Compiling using shell scripts........................................................................................................226
Specifying compiler options in the PROCESS (CBL) statement...................................................226
Modifying the default compiler configuration..............................................................................227

Correcting errors in your source program......................................................................................... 229
Severity codes for compiler diagnostic messages.......................................................................230
Generating a list of compiler messages.......................................................................................230

cob2 options.......................................................................................................................................232
Linking programs................................................................................................................................234

Passing options to the linker........................................................................................................ 234
Linker input and output files........................................................................................................ 235

Correcting errors in linking.................................................................................................................237
Running programs..............................................................................................................................237

Chapter 13. Specifying compiler options on the command line............................................................ 239
Flag options........................................................................................................................................ 239

-# (pound sign)............................................................................................................................. 240
-?, ?................................................................................................................................................ 240
-q32, -q64.....................................................................................................................................240
-c................................................................................................................................................... 241
-comprc_ok...................................................................................................................................242
-dll | -dso | -shared.......................................................................................................................242
-F................................................................................................................................................... 242
-g................................................................................................................................................... 243
-host..............................................................................................................................................244
-I....................................................................................................................................................244
-main............................................................................................................................................. 245

  vii



-o................................................................................................................................................... 246
-v................................................................................................................................................... 246

-q options........................................................................................................................................... 247
Compiler options.......................................................................................................................... 248
Option settings for 85 COBOL Standard conformance................................................................250
Conflicting compiler options........................................................................................................ 250
ADATA........................................................................................................................................... 251
ADDR............................................................................................................................................. 251
ARITH............................................................................................................................................253
BINARY......................................................................................................................................... 254
CALLINT........................................................................................................................................ 254
CHAR............................................................................................................................................. 255
CICS.............................................................................................................................................. 257
COLLSEQ....................................................................................................................................... 258
COMPILE....................................................................................................................................... 259
CURRENCY....................................................................................................................................260
DATEPROC.................................................................................................................................... 261
DATETIME..................................................................................................................................... 261
DEFINE..........................................................................................................................................262
DIAGTRUNC.................................................................................................................................. 263
DYNAM.......................................................................................................................................... 264
EXIT...............................................................................................................................................265
FLAG..............................................................................................................................................267
FLAGSTD....................................................................................................................................... 268
FLOAT............................................................................................................................................ 269
LINECOUNT...................................................................................................................................270
LIST............................................................................................................................................... 270
LSTFILE......................................................................................................................................... 271
MAP............................................................................................................................................... 271
MDECK.......................................................................................................................................... 272
NCOLLSEQ.....................................................................................................................................273
NSYMBOL......................................................................................................................................273
NUMBER........................................................................................................................................274
OPTIMIZE..................................................................................................................................... 274
PGMNAME.....................................................................................................................................275
APOST/QUOTE.............................................................................................................................. 276
SEPOBJ......................................................................................................................................... 277
SEQUENCE.................................................................................................................................... 278
SOSI.............................................................................................................................................. 278
SOURCE.........................................................................................................................................280
SPACE............................................................................................................................................280
SPILL............................................................................................................................................. 280
SQL................................................................................................................................................ 281
SRCFORMAT..................................................................................................................................282
SSRANGE...................................................................................................................................... 283
TERMINAL.....................................................................................................................................284
TEST.............................................................................................................................................. 284
THREAD.........................................................................................................................................285
TRUNC...........................................................................................................................................285
UTF16............................................................................................................................................287
VBREF........................................................................................................................................... 288
WSCLEAR...................................................................................................................................... 288
XREF..............................................................................................................................................289
YEARWINDOW..............................................................................................................................290
ZWB...............................................................................................................................................290

Chapter 14. Compiler-directing statements...........................................................................................293

viii  



Chapter 15. Runtime options.................................................................................................................. 299
CHECK................................................................................................................................................ 299
DEBUG................................................................................................................................................ 300
ERRCOUNT......................................................................................................................................... 300
FILESYS.............................................................................................................................................. 300
TRAP................................................................................................................................................... 302
UPSI....................................................................................................................................................302

Chapter 16. Debugging............................................................................................................................303
Debugging with source language.......................................................................................................303

Tracing program logic................................................................................................................... 303
Finding and handling input-output errors....................................................................................304
Validating data.............................................................................................................................. 304
Moving, initializing or setting uninitialized data...........................................................................305
Generating information about procedures.................................................................................. 305

Debugging using compiler options.................................................................................................... 306
Finding coding errors....................................................................................................................307
Finding line sequence problems.................................................................................................. 307
Checking for valid ranges............................................................................................................. 308
Selecting the level of error to be diagnosed................................................................................ 308
Finding program entity definitions and references......................................................................310
Listing data items..........................................................................................................................311

Debugging using IBM Debug for Linux on x86.................................................................................. 311
IBM Debug for Linux on x86 overview......................................................................................... 311
Debugger engine for compiled languages................................................................................... 318
Debugging your applications........................................................................................................320

Getting listings................................................................................................................................... 356
Example: short listing................................................................................................................... 358
Example: SOURCE and NUMBER output......................................................................................360
Example: MAP output................................................................................................................... 361
Example: XREF output: data-name cross-references................................................................. 364
Example: VBREF compiler output................................................................................................ 368

Debugging with messages that have offset information...................................................................368
Debugging assembler routines.......................................................................................................... 369

Part 4. Targeting COBOL programs for certain environments............................... 371

Chapter 17. Programming for a Db2 environment................................................................................. 373
Ensuring that the PAM package is installed...................................................................................... 374
Db2 coprocessor................................................................................................................................ 375
Coding SQL statements......................................................................................................................375

Using SQL INCLUDE with the Db2 coprocessor...........................................................................376
Using binary items in SQL statements......................................................................................... 376
Determining the success of SQL statements............................................................................... 376

Connecting to the database...............................................................................................................377
Compiling with the SQL option.......................................................................................................... 377

Separating Db2 suboptions.......................................................................................................... 377
Using package and bindfile-names..............................................................................................378

Creating COBOL external stored procedures in Db2.........................................................................378

Chapter 18. Developing COBOL programs for CICS............................................................................... 379
Coding COBOL programs to run under CICS..................................................................................... 380

Getting the system date under CICS............................................................................................382
Making dynamic calls under CICS................................................................................................382
Accessing SFS data.......................................................................................................................384
Calling between COBOL and C/C++ under CICS..........................................................................384

  ix



Compiling and running CICS programs............................................................................................. 385
Integrated CICS translator........................................................................................................... 385

Debugging CICS programs.................................................................................................................386

Part 5. Using XML and COBOL together............................................................... 387

Chapter 19. Processing XML input.......................................................................................................... 389
XML parser in COBOL......................................................................................................................... 389
Accessing XML documents................................................................................................................ 390
Parsing XML documents.....................................................................................................................391

Writing procedures to process XML............................................................................................. 392
XML events....................................................................................................................................393
Transforming XML text to COBOL data items.............................................................................. 395

The encoding of XML documents.......................................................................................................396
XML input document encoding.....................................................................................................396
Parsing XML documents encoded in UTF-8.................................................................................399

Handling XML PARSE exceptions.......................................................................................................399
How the XML parser handles errors.............................................................................................400
Handling encoding conflicts......................................................................................................... 401

Terminating XML parsing................................................................................................................... 402
XML PARSE examples........................................................................................................................ 403

Example: parsing a simple document..........................................................................................403
Example: program for processing XML........................................................................................ 404

Chapter 20. Producing XML output......................................................................................................... 409
Generating XML output...................................................................................................................... 409
Controlling the encoding of generated XML output.......................................................................... 414
Handling XML GENERATE exceptions................................................................................................414
Example: generating XML.................................................................................................................. 415
Enhancing XML output....................................................................................................................... 419

Example: enhancing XML output..................................................................................................419

Part 6. Working with more complex applications................................................ 423

Chapter 21. Porting applications between platforms.............................................................................425
Getting IBM Enterprise COBOL for z/OS applications to compile.................................................... 425
Getting IBM Enterprise COBOL for z/OS applications to run: overview........................................... 425

Fixing differences caused by data representations.....................................................................426
Fixing environment differences that affect portability................................................................ 428
Fixing differences caused by language elements........................................................................428

Writing code to run with IBM Enterprise COBOL for z/OS.................................................................429

Chapter 22. Using subprograms..............................................................................................................431
Main programs, subprograms, and calls........................................................................................... 431
Ending and reentering main programs or subprograms................................................................... 431
Calling nested COBOL programs........................................................................................................432

Nested programs.......................................................................................................................... 433
Example: structure of nested programs...................................................................................... 434
Scope of names............................................................................................................................ 434

Calling nonnested COBOL programs................................................................................................. 435
CALL identifier and CALL literal.................................................................................................... 435
Example: dynamic call using CALL identifier............................................................................... 436

Calling between COBOL and C/C++ programs.................................................................................. 437
Initializing environments..............................................................................................................438
Passing data between COBOL and C/C++....................................................................................438
Collapsing stack frames and terminating run units or processes............................................... 439
COBOL and C/C++ data types.......................................................................................................439

x  



Example: COBOL program calling C functions.............................................................................440
Example: C programs that are called by and call COBOL............................................................441
Example: COBOL program called by a C program....................................................................... 442
Example: results of compiling and running examples.................................................................442
Example: COBOL program calling C++ function.......................................................................... 442

Making recursive calls........................................................................................................................443
Passing return codes..........................................................................................................................444

Chapter 23. Sharing data.........................................................................................................................445
Passing data....................................................................................................................................... 445

Describing arguments in the calling program.............................................................................. 447
Describing parameters in the called program............................................................................. 447
Testing for OMITTED arguments.................................................................................................. 447

Coding the LINKAGE SECTION.......................................................................................................... 448
Coding the PROCEDURE DIVISION for passing arguments..............................................................449

Grouping data to be passed......................................................................................................... 449
Handling null-terminated strings................................................................................................. 449
Using pointers to process a chained list...................................................................................... 450

Using procedure and function pointers............................................................................................. 452
Passing return-code information.......................................................................................................453

Using the RETURN-CODE special register................................................................................... 453
Using PROCEDURE DIVISION RETURNING . . ............................................................................ 453
Specifying CALL . . . RETURNING................................................................................................. 453

Sharing data by using the EXTERNAL clause.................................................................................... 454
Sharing files between programs (external files)............................................................................... 454

Example: using external files....................................................................................................... 455
Using command-line arguments........................................................................................................457

Example: command-line arguments without -host option......................................................... 458
Example: command-line arguments with -host option...............................................................459

Chapter 24. Using shared libraries..........................................................................................................461
Static linking versus using shared libraries....................................................................................... 461
How the linker resolves references to shared libraries.................................................................... 462

Example: creating a sample shared library................................................................................. 462
Example: creating a makefile for the sample shared library.......................................................464

Chapter 25. Preinitializing the COBOL runtime environment.................................................................465
Initializing persistent COBOL environment....................................................................................... 465
Terminating preinitialized COBOL environment................................................................................ 466
Example: preinitializing the COBOL environment............................................................................. 467

Chapter 26. Processing two-digit-year dates......................................................................................... 471
Millennium language extensions (MLE)............................................................................................. 472

Principles and objectives of these extensions.............................................................................472
Resolving date-related logic problems..............................................................................................473

Using a century window............................................................................................................... 474
Using internal bridging..................................................................................................................475
Moving to full field expansion.......................................................................................................476

Using year-first, year-only, and year-last date fields........................................................................ 478
Compatible dates..........................................................................................................................478
Example: comparing year-first date fields...................................................................................479
Using other date formats..............................................................................................................479
Example: isolating the year.......................................................................................................... 480

Manipulating literals as dates............................................................................................................480
Assumed century window............................................................................................................ 481
Treatment of nondates................................................................................................................. 482
Using sign conditions....................................................................................................................483

Performing arithmetic on date fields.................................................................................................484

  xi



Allowing for overflow from windowed date fields....................................................................... 484
Specifying the order of evaluation............................................................................................... 485

Controlling date processing explicitly............................................................................................... 485
Using DATEVAL............................................................................................................................. 486
Using UNDATE...............................................................................................................................486
Example: DATEVAL....................................................................................................................... 487
Example: UNDATE........................................................................................................................ 487

Analyzing and avoiding date-related diagnostic messages..............................................................487
Avoiding problems in processing dates.............................................................................................489

Avoiding problems with packed-decimal fields...........................................................................489
Moving from expanded to windowed date fields.........................................................................489

Part 7. Improving performance and productivity.................................................491

Chapter 27. Tuning your program........................................................................................................... 493
Using an optimal programming style.................................................................................................493

Using structured programming.................................................................................................... 494
Factoring expressions...................................................................................................................494
Using symbolic constants.............................................................................................................494
Grouping constant computations.................................................................................................494
Grouping duplicate computations................................................................................................495

Choosing efficient data types............................................................................................................ 495
Choosing efficient computational data items.............................................................................. 496
Using consistent data types......................................................................................................... 496
Making arithmetic expressions efficient...................................................................................... 496
Making exponentiations efficient................................................................................................. 497

Handling tables efficiently................................................................................................................. 497
Optimization of table references..................................................................................................498

Optimizing your code......................................................................................................................... 500
Optimization..................................................................................................................................500

Choosing compiler features to enhance performance......................................................................500
Performance-related compiler options........................................................................................501
Evaluating performance............................................................................................................... 502

Chapter 28. Simplifying coding............................................................................................................... 505
Eliminating repetitive coding............................................................................................................. 505

Example: using the COPY statement........................................................................................... 506
Manipulating dates and times............................................................................................................507

Getting feedback from date and time callable services.............................................................. 507
Handling conditions from date and time callable services......................................................... 508
Example: manipulating dates.......................................................................................................508
Example: formatting dates for output..........................................................................................508
Feedback token............................................................................................................................ 509
Picture character terms and strings.............................................................................................510
Example: date-and-time picture strings......................................................................................512
Century window............................................................................................................................513

Using the format 2 SORT statement to sort a table.......................................................................... 514

Appendix A. Summary of differences from IBM Enterprise COBOL for z/OS..........517
Compiler options..................................................................................................................................... 517
Data representation.................................................................................................................................517

Binary data......................................................................................................................................... 517
Zoned decimal data............................................................................................................................517
Packed-decimal data......................................................................................................................... 518
Display floating-point data.................................................................................................................518
National data...................................................................................................................................... 518
EBCDIC and ASCII data..................................................................................................................... 518

xii  



Code-page determination for data conversion................................................................................. 518
DBCS character strings...................................................................................................................... 518

Runtime environment variables.............................................................................................................. 519
File specification......................................................................................................................................519
Interlanguage communication (ILC)....................................................................................................... 520
Input and output......................................................................................................................................520
Runtime options...................................................................................................................................... 521
Source code line size............................................................................................................................... 521
Language elements..................................................................................................................................521

Appendix B. IBM Z host data format considerations............................................ 525
CICS access............................................................................................................................................. 525
Date and time callable services.............................................................................................................. 525
Floating-point overflow exceptions........................................................................................................ 525
Db2...........................................................................................................................................................525
Distributed Computing Environment applications..................................................................................526
File data................................................................................................................................................... 526
SORT.........................................................................................................................................................526

Appendix C. Intermediate results and arithmetic precision................................. 527
Terminology used for intermediate results.............................................................................................528
Example: calculation of intermediate results......................................................................................... 529
Fixed-point data and intermediate results............................................................................................. 529

Addition, subtraction, multiplication, and division........................................................................... 529
Exponentiation................................................................................................................................... 530
Example: exponentiation in fixed-point arithmetic...........................................................................531
Truncated intermediate results......................................................................................................... 532
Binary data and intermediate results................................................................................................ 532

Intrinsic functions evaluated in fixed-point arithmetic.......................................................................... 532
Integer functions................................................................................................................................532
Mixed functions.................................................................................................................................. 533

Floating-point data and intermediate results.........................................................................................534
Exponentiations evaluated in floating-point arithmetic................................................................... 535
Intrinsic functions evaluated in floating-point arithmetic................................................................ 535

Arithmetic expressions in nonarithmetic statements............................................................................ 535

Appendix D. Date and time callable services.......................................................537
CEECBLDY: convert date to COBOL integer format................................................................................ 538
CEEDATE: convert Lilian date to character format................................................................................. 542
CEEDATM: convert seconds to character time stamp............................................................................ 545
CEEDAYS: convert date to Lilian format.................................................................................................. 549
CEEDYWK: calculate day of week from Lilian date.................................................................................551
CEEGMT: get current Greenwich Mean Time..........................................................................................553
CEEGMTO: get offset from Greenwich Mean Time to local time............................................................555
CEEISEC: convert integers to seconds....................................................................................................557
CEELOCT: get current local date or time.................................................................................................559
CEEQCEN: query the century window.....................................................................................................561
CEESCEN: set the century window......................................................................................................... 562
CEESECI: convert seconds to integers....................................................................................................563
CEESECS: convert time stamp to seconds..............................................................................................566
CEEUTC: get coordinated universal time................................................................................................ 569
IGZEDT4: get current date...................................................................................................................... 570

Appendix E. XML reference material...................................................................571
XML PARSE exceptions............................................................................................................................571

XML PARSE exceptions that allow continuation................................................................................571
XML PARSE exceptions that do not allow continuation.................................................................... 576

  xiii



XML conformance.................................................................................................................................... 579
XML GENERATE exceptions.....................................................................................................................581

Appendix F. EXIT compiler option.......................................................................583
User-exit work area and work area extension........................................................................................ 583
Parameter list for exit modules............................................................................................................... 584
Processing of INEXIT...............................................................................................................................585
Processing of LIBEXIT............................................................................................................................. 586
Processing of PRTEXIT............................................................................................................................ 587
Processing of MSGEXIT........................................................................................................................... 587

Customizing compiler-message severities........................................................................................588
Example: MSGEXIT user exit............................................................................................................. 590

Error handling for exit modules...............................................................................................................594

Appendix G. Runtime messages......................................................................... 597

Notices..............................................................................................................635
Trademarks.............................................................................................................................................. 637

Glossary............................................................................................................ 639
List of resources................................................................................................ 679

COBOL for Linux publications..................................................................................................................679
Related publications................................................................................................................................679

Index................................................................................................................ 681

xiv  



Tables

1. FILE SECTION entries................................................................................................................................. 10

2. Assignment to data items in a program......................................................................................................23

3. Ranges in value of COMP-5 data items.......................................................................................................40

4. Internal representation of binary numeric items....................................................................................... 42

5. Internal representation of native numeric items....................................................................................... 43

6. Internal representation of numeric items when CHAR(EBCDIC) and FLOAT(BE) are in effect................ 45

7. Order of evaluation of arithmetic operators............................................................................................... 50

8. Numeric intrinsic functions......................................................................................................................... 51

9. File organization and access mode...........................................................................................................122

10. Valid COBOL statements for sequential files......................................................................................... 139

11. Valid COBOL statements for line-sequential files..................................................................................139

12. Valid COBOL statements for indexed and relative files......................................................................... 140

13. Statements used when writing records to a file.................................................................................... 141

14. PROCEDURE DIVISION statements used to update files......................................................................144

15. Sort and merge error numbers............................................................................................................... 161

16. COBOL statements and national data.................................................................................................... 181

17. Intrinsic functions and national character data.....................................................................................183

18. National group items that are processed with group semantics...........................................................191

19. Encoding and size of alphanumeric, DBCS, and national data.............................................................. 192

20. Supported locales and code pages........................................................................................................ 205

21. Intrinsic functions that depend on collating sequence......................................................................... 210

22. TZ environment parameter variables..................................................................................................... 218

23. Output from the cob2 command............................................................................................................ 226

  xv



24. Examples of compiler-option syntax in a shell script............................................................................ 226

25. Stanza attributes.....................................................................................................................................229

26. Severity codes for compiler diagnostic messages.................................................................................230

27. Common linker options...........................................................................................................................235

28. Default file-names assumed by the linker............................................................................................. 237

29. Compiler options.....................................................................................................................................248

30. Mutually exclusive compiler options...................................................................................................... 250

31. Effect of comparand data type and collating sequence on comparisons............................................. 258

32. Runtime options......................................................................................................................................299

33. Severity levels of compiler messages.................................................................................................... 308

34. Console view commands ....................................................................................................................... 351

35. Variables view commands ..................................................................................................................... 354

36. Using compiler options to get listings.................................................................................................... 357

37. Terms and symbols used in MAP output................................................................................................ 363

38. Special registers used by the XML parser.............................................................................................. 392

39. Results of processing-procedure changes to XML-CODE......................................................................394

40. Hexadecimal values of white-space characters.................................................................................... 397

41. Hexadecimal values of special characters for various EBCDIC CCSIDs............................................... 398

42. XML events and special registers........................................................................................................... 403

43. Encoding of generated XML if the ENCODING phrase is omitted..........................................................414

44. ASCII characters contrasted with EBCDIC............................................................................................ 426

45. ASCII comparisons contrasted with EBCDIC.........................................................................................426

46. IEEE contrasted with hexadecimal.........................................................................................................427

47. COBOL and C/C++ data types.................................................................................................................439

48. Methods for passing data in the CALL statement.................................................................................. 445

xvi  



49. Advantages and disadvantages of Year 2000 solutions........................................................................ 474

50. Performance-related compiler options..................................................................................................501

51. Performance-tuning worksheet..............................................................................................................502

52. Picture character terms and strings....................................................................................................... 510

53. Japanese Eras.........................................................................................................................................512

54. Examples of date-and-time picture strings........................................................................................... 512

55. Comparison of format 1 and format 2 SORT statements...................................................................... 514

56. Language differences between Enterprise COBOL for z/OS and COBOL for Linux on x86................... 521

57. Maximum floating-point values..............................................................................................................525

58. Date and time callable services..............................................................................................................537

59. Date and time intrinsic functions........................................................................................................... 538

60. CEECBLDY symbolic conditions..............................................................................................................540

61. CEEDATE symbolic conditions................................................................................................................542

62. CEEDATM symbolic conditions............................................................................................................... 545

63. CEEDAYS symbolic conditions................................................................................................................550

64. CEEDYWK symbolic conditions...............................................................................................................552

65. CEEGMT symbolic conditions................................................................................................................. 554

66. CEEGMTO symbolic conditions.............................................................................................................. 555

67. CEEISEC symbolic conditions.................................................................................................................558

68. CEELOCT symbolic conditions................................................................................................................ 560

69. CEEQCEN symbolic conditions............................................................................................................... 561

70. CEESCEN symbolic conditions............................................................................................................... 562

71. CEESECI symbolic conditions.................................................................................................................564

72. CEESECS symbolic conditions................................................................................................................ 567

73. XML PARSE exceptions that allow continuation.................................................................................... 572

  xvii



74. XML PARSE exceptions that do not allow continuation......................................................................... 576

75. XML GENERATE exceptions.................................................................................................................... 581

76. Parameter list for exit modules.............................................................................................................. 584

77. MSGEXIT processing...............................................................................................................................587

78. FIPS (FLAGSTD) message categories.....................................................................................................589

79. Runtime messages..................................................................................................................................597

xviii  



Preface

About this information
Welcome to IBM COBOL for Linux on x86, IBM's COBOL compiler and runtime for Linux on x86.

This information describes use of the IBM COBOL compiler and runtime environment for Linux on x86,
referred to in this information as COBOL for Linux.

There are some differences between host and workstation COBOL. For details about language and system
differences between COBOL for Linux and Enterprise COBOL for z/OS®, see Appendix A, “Summary of
differences from IBM Enterprise COBOL for z/OS,” on page 517.

How this information will help you
This information will help you write, compile, link-edit, and run IBM COBOL for Linux on x86 programs.

This information assumes experience in developing application programs and some knowledge of COBOL.
It focuses on using COBOL to meet your programming objectives and not on the definition of the COBOL
language. For complete information about COBOL syntax, see the COBOL for Linux on x86 Language
Reference.

This information also assumes familiarity with Linux. For information about Linux, see your operating
system documentation.

Abbreviated terms
Certain terms are used in a shortened form in this information. Abbreviations for the product names used
most frequently are listed alphabetically in the table below.

Term used Long form

TXSeries® IBM TXSeries for Multiplatforms

CICS® TX Either CICS TX Advanced or CICS TX Standard

CICS Either IBM TXSeries for Multiplatforms or IBM CICS TX

COBOL for Linux IBM COBOL for Linux on x86

Db2® IBM Db2 for Linux, UNIX® and Windows™

In addition to these abbreviated terms, the term "85 COBOL Standard" is used in this information to refer
to the combination of the following standards:

• ISO 1989:1985, Programming languages - COBOL
• ISO/IEC 1989/AMD1:1992, Programming languages - COBOL: Intrinsic function module
• ISO/IEC 1989/AMD2:1994, Programming languages - Correction and clarification amendment for

COBOL
• ANSI INCITS 23-1985, Programming Languages - COBOL
• ANSI INCITS 23a-1989, Programming Languages - Intrinsic Function Module for COBOL
• ANSI INCITS 23b-1993, Programming Language - Correction Amendment for COBOL

Other terms, if not commonly understood, are shown in italics the first time they appear and are listed in
the glossary.

© Copyright IBM Corp. 2021, 2023 xix



How to read syntax diagrams
Use the following description to read the syntax diagrams in this information:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The >>--- symbol indicates the beginning of a syntax diagram.

The ---> symbol indicates that the syntax diagram is continued on the next line.

The >--- symbol indicates that the syntax diagram is continued from the previous line.

The --->< symbol indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the >--- symbol and end with
the ---> symbol.

• Required items appear on the horizontal line (the main path).

required_item

• Optional items appear below the main path.

required_item

optional_item

• If you can choose from two or more items, they appear vertically, in a stack. If you must choose one of
the items, one item of the stack appears on the main path.

required_item required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

required_item

optional_choice1

optional_choice2

If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

required_item

default_choice

optional_choice

optional_choice

• An arrow returning to the left, above the main line, indicates an item that can be repeated.

xx  Preface



required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

required_item

,

repeatable_item

• Keywords appear in uppercase (for example, FROM). They must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent user-supplied names or
values.

• If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must
enter them as part of the syntax.

How to use examples
This information shows numerous examples of sample COBOL statements, program fragments, and small
programs to illustrate the coding techniques being discussed. The examples of program code are written
in lowercase, uppercase, or mixed case to demonstrate that you can write your programs in any of these
ways.

To more clearly separate some examples from the explanatory text, they are presented in a monospace
font.

COBOL keywords and compiler options that appear in text are generally shown in SMALL UPPERCASE.
Other terms such as program variable names are sometimes shown in an italic font for clarity.

If you copy and paste examples from the PDF format documentation, make sure that the spaces in
the examples (if any) are in place; you might need to manually add some missing spaces to ensure
that COBOL source text aligns to the required columns per the "COBOL reference format" section
in the Language Reference. Alternatively, you can copy and paste examples from the HTML format
documentation and the spaces should be already in place.

Related information
The information in this Programming Guide is available online in the IBM COBOL for Linux documentation
at http://www.ibm.com/support/knowledgecenter/SS7FZ2_1.1.0. The IBM Documentation website also
has the COBOL for Linux on x86 Language Reference.

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality information. If you have
comments about this information or any other COBOL for Linux documentation, send your comments
to: compinfo@cn.ibm.com.

Be sure to include the name of the document, the publication number, the version of COBOL for Linux,
and, if applicable, the specific location (for example, the page number or section heading) of the text that
you are commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way that IBM believes appropriate without incurring any obligation to you.

Preface  xxi

https://www.ibm.com/support/knowledgecenter/SS7FZ2_1.1.0/
mailto:compinfo@cn.ibm.com


Accessibility
Accessibility features help users who have a disability, such as restricted mobility or limited vision, to use
information technology products successfully.

Accessibility features
IBM COBOL for Linux on x86 uses the latest W3C Standard, WAI-ARIA 1.0, to ensure compliance to US
Section 508 and Web Content Accessibility Guidelines (WCAG) 2.0. To take advantage of accessibility
features, use the latest release of your screen reader in combination with the latest web browser that is
supported by this product.

Keyboard navigation
This product uses standard navigation keys.

Interface information
You can use speech recognition software like a Text-to-speech (TTS) tool to view the output generated by
the product.

The online product documentation is available in IBM Documentation, which is viewable from a standard
web browser.

PDF files have limited accessibility support. With PDF documentation, you can use optional font
enlargement, high-contrast display settings, and can navigate by keyboard alone.

To enable your screen reader to accurately read syntax diagrams, source code examples, and text that
contains the period or comma PICTURE symbols, you must set the screen reader to speak all punctuation.

Related accessibility information
In addition to standard IBM help desk and support websites, IBM has established a TTY telephone
service for use by deaf or hard of hearing customers to access sales and support services:

TTY service 800-IBM-3383 (800-426-3383) (within North America)

IBM and accessibility
For more information about the commitment that IBM has to accessibility, see IBM Accessibility.

xxii  IBM COBOL for Linux on x86 1.1: Programming Guide

https://www.ibm.com/links?url=http%3A%2F%2Fwww.w3.org%2FTR%2Fwai-aria%2F
https://www.access-board.gov/ict/
https://www.access-board.gov/ict/
https://www.ibm.com/links?url=http%3A%2F%2Fwww.w3.org%2FTR%2FWCAG20%2F
http://www.ibm.com/able


Part 1. Coding your program

© Copyright IBM Corp. 2021, 2023 1



2  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 1. Structuring your program

COBOL programs consist of four divisions: IDENTIFICATION DIVISION, ENVIRONMENT DIVISION,
DATA DIVISION, and PROCEDURE DIVISION. Each division has a specific logical function.

To define a program, only the IDENTIFICATION DIVISION is required.

Related tasks   
“Identifying a program” on page 3  
“Describing the computing environment” on page 5  
“Describing the data” on page 9  
“Processing the data” on page 13  
  
  
 

Identifying a program
Use the IDENTIFICATION DIVISION to name a program and optionally provide other identifying
information.

You can use the optional AUTHOR, INSTALLATION, DATE-WRITTEN, and DATE-COMPILED paragraphs
for descriptive information about a program. The data you enter in the DATE-COMPILED paragraph is
replaced with the latest compilation date.

IDENTIFICATION DIVISION.
Program-ID.    Helloprog.
Author.        A. Programmer.
Installation.  Computing Laboratories.
Date-Written.  06/30/2020.
Date-Compiled. 07/05/2020.

Use the PROGRAM-ID paragraph to name your program. The program-name that you assign is used in
these ways:

• Other programs use that name to call your program.
• The name appears in the header on each page, except the first, of the program listing that is generated

when you compile the program.

Tip: If a program-name is case sensitive, avoid mismatches with the name that the compiler is looking for.
Verify that the appropriate setting of the PGMNAME compiler option is in effect.

Related tasks   
“Changing the header of a source listing” on page 4  
“Identifying a program as
recursive” on page 4  
“Marking a program as callable by containing programs” on page 4  
“Setting a program to an
initial state” on page 4

Related references   
Compiler limits (COBOL for Linux on x86 Language Reference)  
Conventions for program-names (COBOL for Linux on x86 Language Reference)

© Copyright IBM Corp. 2021, 2023 3



Identifying a program as recursive
Code the RECURSIVE attribute on the PROGRAM-ID clause to specify that a program can be recursively
reentered while a previous invocation is still active.

You can code RECURSIVE only on the outermost program of a compilation unit. Neither nested
subprograms nor programs that contain nested subprograms can be recursive.

Related tasks   
“Sharing data in recursive programs” on page 13  
“Making recursive calls” on page 443 

Marking a program as callable by containing programs
Use the COMMON attribute in the PROGRAM-ID paragraph to specify that a program can be called by the
containing program or by any program in the containing program. The COMMON program cannot be called
by any program contained in itself.

Only contained programs can have the COMMON attribute.

Related concepts   
“Nested programs” on page 433 

Setting a program to an initial state
Use the INITIAL clause in the PROGRAM-ID paragraph to specify that whenever a program is called, that
program and any nested programs that it contains are to be placed in their initial state.

When a program is set to its initial state:

• Data items that have VALUE clauses are set to the specified values.
• Changed GO TO statements and PERFORM statements are in their initial states.
• Non-EXTERNAL files are closed.

Related tasks   
“Ending and reentering
main programs or subprograms” on page 431  

Related references   
“WSCLEAR” on page 288 

Changing the header of a source listing
The header on the first page of a source listing contains the identification of the compiler and the current
release level, the date and time of compilation, and the page number.

The following example shows these five elements:

PP  5737-L11 IBM COBOL for Linux 1.1.0     Date 05/29/2020   Time 17:38:17   Page     1

The header indicates the compilation platform. You can customize the header on succeeding pages of the
listing by using the compiler-directing TITLE statement.

Related references   
TITLE statement (COBOL for Linux on x86 Language Reference)

4  IBM COBOL for Linux on x86 1.1: Programming Guide



Describing the computing environment
In the ENVIRONMENT DIVISION of a program, you describe the aspects of the program that depend on
the computing environment.

Use the CONFIGURATION SECTION to specify the following items:

• Computer for compiling the program (in the SOURCE-COMPUTER paragraph)
• Computer for running the program (in the OBJECT-COMPUTER paragraph)
• Special items such as the currency sign and symbolic characters (in the SPECIAL-NAMES paragraph)
• User-defined classes (in the REPOSITORY paragraph)

Use the FILE-CONTROL and I-O-CONTROL paragraphs of the INPUT-OUTPUT SECTION to:

• Identify and describe the characteristics of the files in the program.
• Associate your files with the corresponding system file-name, directly or indirectly.
• Optionally identify the file system (for example, SFS or STL) that is associated with a file. You can also

do so at run time.
• Provide information about how the files are accessed.

“Example: FILE-CONTROL paragraph” on page 5

Related tasks   
“Specifying the collating sequence” on page 6  
“Defining symbolic characters” on page 7  
“Defining a user-defined class” on page 8  
“Identifying files to the operating system (ASSIGN)” on page 8

Related references   
Sections and paragraphs (COBOL for Linux on x86 Language Reference)

Example: FILE-CONTROL paragraph
The following example shows how the FILE-CONTROL paragraph associates each file in the COBOL
program with a physical file known to the file system. This example shows a FILE-CONTROL paragraph
for an indexed file.

SELECT COMMUTER-FILE (1)
  ASSIGN TO COMMUTER (2)
  ORGANIZATION IS INDEXED (3)
  ACCESS IS RANDOM (4)
  RECORD KEY IS COMMUTER-KEY (5)
  FILE STATUS IS (5)
    COMMUTER-FILE-STATUS
    COMMUTER-STL-STATUS.

(1)
The SELECT clause associates a file in the COBOL program with a corresponding system file.

(2)
The ASSIGN clause associates the name of the file in the program with the name of the file as known
to the system. COMMUTER might be the system file-name or the name of the environment variable
whose runtime value is used as the system file-name with optional directory and path names.

(3)
The ORGANIZATION clause describes the organization of the file. If you omit this clause,
ORGANIZATION IS SEQUENTIAL is assumed.

(4)
The ACCESS MODE clause defines the manner in which the records in the file are made available
for processing: sequential, random, or dynamic. If you omit this clause, ACCESS IS SEQUENTIAL is
assumed.

Chapter 1. Structuring your program  5



(5)
You might have additional statements in the FILE-CONTROL paragraph depending on the type of file
and file system you use.

Related tasks   
“Describing the computing environment” on page 5 

Specifying the collating sequence
You can use the PROGRAM COLLATING SEQUENCE clause and the ALPHABET clause of the SPECIAL-
NAMES paragraph to establish the collating sequence that is used in several operations on alphanumeric
items.

These clauses specify the collating sequence for the following operations on alphanumeric items:

• Comparisons explicitly specified in relation conditions and condition-name conditions
• HIGH-VALUE and LOW-VALUE settings
• SEARCH ALL
• SORT and MERGE unless overridden by a COLLATING SEQUENCE phrase in the SORT or MERGE

statement

“Example: specifying the collating sequence” on page 7

The sequence that you use can be based on one of these alphabets:

• EBCDIC: references the collating sequence associated with the EBCDIC character set 
• NATIVE: references the collating sequence specified by the locale setting. The locale setting refers to

the national language locale name in effect at compile time. It is usually set at installation.
• STANDARD-1: references the collating sequence associated with the ASCII character set defined by

ANSI INCITS X3.4, Coded Character Sets - 7-bit American National Standard Code for Information
Interchange (7-bit ASCII) 

• STANDARD-2: references the collating sequence associated with the character set defined by ISO/IEC
646 -- Information technology -- ISO 7-bit coded character set for information interchange, International
Reference Version

• An alteration of the ASCII sequence that you define in the SPECIAL-NAMES paragraph

You can also specify a collating sequence that you define.

Restriction: If the code page is DBCS, Extended UNIX Code (EUC), or UTF-8, you cannot use the
ALPHABET clause.

The PROGRAM COLLATING SEQUENCE clause does not affect comparisons that involve national or DBCS
operands.

Related tasks   
“Choosing alternate collating
sequences” on page 159 
“Comparing national (UTF-16)
data” on page 192  
Chapter 11, “Setting the locale,” on page 201  
“Controlling the collating
sequence with a locale” on page 207  

6  IBM COBOL for Linux on x86 1.1: Programming Guide



Example: specifying the collating sequence
The following example shows the ENVIRONMENT DIVISION coding that you can use to specify a collating
sequence in which uppercase and lowercase letters are similarly handled in comparisons and in sorting
and merging.

When you change the ASCII sequence in the SPECIAL-NAMES paragraph, the overall collating sequence
is affected, not just the collating sequence of the characters that are included in the SPECIAL-NAMES
paragraph.

IDENTIFICATION DIVISION.
. . .
ENVIRONMENT DIVISION.
  CONFIGURATION SECTION.
   Object-Computer.
      Program Collating Sequence Special-Sequence.
   Special-Names.
      Alphabet Special-Sequence Is
          "A" Also "a"
          "B" Also "b"
          "C" Also "c"
          "D" Also "d"
          "E" Also "e"
          "F" Also "f"
          "G" Also "g"
          "H" Also "h"
          "I" Also "i"
          "J" Also "j"
          "K" Also "k"
          "L" Also "l"
          "M" Also "m"
          "N" Also "n"
          "O" Also "o"
          "P" Also "p"
          "Q" Also "q"
          "R" Also "r"
          "S" Also "s"
          "T" Also "t"
          "U" Also "u"
          "V" Also "v"
          "W" Also "w"
          "X" Also "x"
          "Y" Also "y"
          "Z" Also "z".

Related tasks   
“Specifying the collating sequence” on page 6 

Defining symbolic characters
Use the SYMBOLIC CHARACTERS clause to give symbolic names to any character of the specified
alphabet. Use ordinal position to identify the character, where position 1 corresponds to character X'00'.

For example, to give a name to the plus character (X'2B' in the ASCII alphabet), code:

SYMBOLIC CHARACTERS PLUS IS 44

You cannot use the SYMBOLIC CHARACTERS clause when the code page indicated by the locale is a
multibyte-character code page.

Related tasks   
Chapter 11, “Setting the locale,” on page 201

Chapter 1. Structuring your program  7



Defining a user-defined class
Use the CLASS clause to give a name to a set of characters that you list in the clause.

For example, name the set of digits by coding the following clause:

CLASS DIGIT IS "0" THROUGH "9"

You can reference the class-name only in a class condition. (This user-defined class is not the same as an
object-oriented class.)

You cannot use the CLASS clause when the code page indicated by the locale is a multibyte-character
code page.

Identifying files to the operating system (ASSIGN)
The ASSIGN clause associates the name of a file as it is known within a program to the associated file that
will be used by the operating system.

You can use an environment variable, a system file-name, a literal, or a data-name in the ASSIGN clause.
If you specify an environment variable as the assignment-name, the environment variable is evaluated at
run time and the value (including optional directory and path names) is used as the system file-name.

If you use a file system other than the default, you need to indicate the file system explicitly, for example,
by specifying the file-system identifier before the system file-name. For example, if MYFILE is an STL file,
and you use F1 as the name of the file in your program, you can code the ASSIGN clause as follows:

SELECT F1 ASSIGN TO STL-MYFILE

If MYFILE is not an environment variable, or is an environment variable that is set to the empty string, the
code shown above treats MYFILE as a system file-name. If MYFILE is an environment variable that has a
value at run time other than the empty string, the value of the environment variable is used.

For example, if MYFILE is set by the command export MYFILE=RSD-YOURFILE, the system file-name
is YOURFILE, and the file is treated as an RSD file, overriding the file-system ID (STL) coded in the
ASSIGN clause.

If you enclose an assignment-name in quotation marks or single quotation marks (for example, "STL-
MYFILE"), the value of any environment variable is ignored. The literal assignment-name is used.

Related tasks   
“Varying the input or output file at run time” on page 8  
“Identifying files” on page 113  

Related references   
“Precedence of file-system determination” on page 116  
“FILESYS” on page 300  
ASSIGN clause (COBOL for Linux on x86 Language Reference)  

Varying the input or output file at run time
The file-name that you code in a SELECT clause is used as a constant throughout your COBOL program,
but you can associate the name of that file with a different system file at run time.

Changing a file-name within a COBOL program would require changing the input statements and output
statements and recompiling the program. Alternatively, you can change the assignment-name in the
export command to use a different file at run time.

Environment variable values that are in effect at the time of the OPEN statement are used for associating
COBOL file-names to the system file-names (including any path specifications).

8  IBM COBOL for Linux on x86 1.1: Programming Guide



Example: using different input files
This example shows that you can use the same COBOL program to access different files by setting an
environment variable before the programs runs.

Consider a COBOL program that contains the following SELECT clause:

SELECT MAINFILE ASSIGN TO MAINA

Suppose you want the program to access either the checking or savings file using the file called
MAINFILE within the program. To do so, set the MAINA environment variable before the program runs
by using one of the following two statements as appropriate, assuming that the checking and savings
files are in the /accounts directory:

export MAINA=/accounts/checking
export MAINA=/accounts/savings

You can thus use the same program to access either the checking or savings file as the file called
MAINFILE within the program without having to change or recompile the source.

Describing the data
Define the characteristics of your data, and group your data definitions into one or more of the sections in
the DATA DIVISION.

You can use these sections for defining the following types of data:

• Data used in input-output operations: FILE SECTION
• Data developed for internal processing:

– To have storage be statically allocated and exist for the life of the run unit: WORKING-STORAGE
SECTION

– To have storage be allocated each time a program is entered, and deallocated on return from the
program: LOCAL-STORAGE SECTION

• Data from another program: LINKAGE SECTION

The COBOL for Linux compiler limits the maximum size of DATA DIVISION elements. For details, see the
related reference about compiler limits below.

Related concepts   
“Comparison of WORKING-STORAGE
and LOCAL-STORAGE” on page 11 

Related tasks   
“Using data in input and
output operations” on page 9  
“Using data from another
program” on page 12 

Related references   
Compiler limits (COBOL for Linux on x86 Language Reference)

Using data in input and output operations
Define the data that you use in input and output operations in the FILE SECTION.

Provide the following information about the data:

• Name the input and output files that the program will use. Use the FD entry to give names to the files
that the input-output statements in the PROCEDURE DIVISION can refer to.

Chapter 1. Structuring your program  9



Data items defined in the FILE SECTION are not available to PROCEDURE DIVISION statements until
the file has been successfully opened.

• In the record description that follows the FD entry, describe the records in the file and their fields. The
record-name is the object of WRITE and REWRITE statements.

Programs in the same run unit can refer to the same COBOL file-names.

You can use the EXTERNAL clause for separately compiled programs. A file that is defined as EXTERNAL
can be referenced by any program in the run unit that describes the file.

You can use the GLOBAL clause for programs in a nested, or contained, structure. If a program contains
another program (directly or indirectly), both programs can access a common file by referencing a GLOBAL
file-name.

You can share physical files without using external or global file definitions in COBOL source programs.
For example, you can specify that an application has two COBOL file-names, but these COBOL files are
associated with one system file:

SELECT F1 ASSIGN TO MYFILE.
SELECT F2 ASSIGN TO MYFILE.

Related concepts   
“Nested programs” on page 433 

Related tasks   
“Sharing files between programs
(external files)” on page 454 

Related references   
“FILE SECTION entries” on page 10 

FILE SECTION entries
The entries that you can use in the FILE SECTION are summarized in the table below.

Table 1. FILE SECTION entries

Clause To define

FD The file-name to be referred to in PROCEDURE DIVISION input-
output statements (OPEN, CLOSE, READ, START, and DELETE). Must
match file-name in the SELECT clause. file-name is associated with
the system file through the assignment-name.

RECORD CONTAINS n Size of logical records (fixed length). Integer size indicates the
number of bytes in a record regardless of the USAGE of the data
items in the record.

RECORD IS VARYING Size of logical records (variable length). If integer size or sizes are
specified, they indicate the number of bytes in a record regardless of
the USAGE of the data items in the record.

RECORD CONTAINS n TO m Size of logical records (variable length). The integer sizes indicate
the number of bytes in a record regardless of the USAGE of the data
items in the record.

VALUE OF An item in the label records associated with file. Comments only.

DATA RECORDS Names of records associated with file. Comments only.

RECORDING MODE Record type for sequential files

10  IBM COBOL for Linux on x86 1.1: Programming Guide



Related references   
FILE SECTION (COBOL for Linux on x86 Language Reference)

Comparison of WORKING-STORAGE and LOCAL-STORAGE
How data items are allocated and initialized varies depending on whether the items are in the WORKING-
STORAGE SECTION or LOCAL-STORAGE SECTION.

When a program is invoked, the WORKING-STORAGE associated with the program is allocated.

Any data items that have VALUE clauses are initialized to the appropriate value at that time. For the
duration of the run unit, WORKING-STORAGE items persist in their last-used state. Exceptions are:

• A program with INITIAL specified in the PROGRAM-ID paragraph

In this case, WORKING-STORAGE data items are reinitialized each time that the program is entered.
• A subprogram that is dynamically called and then canceled

In this case, WORKING-STORAGE data items are reinitialized on the first reentry into the program
following the CANCEL.

WORKING-STORAGE is deallocated at the termination of the run unit.

See the Related tasks for information about WORKING-STORAGE in COBOL class definitions.

A separate copy of LOCAL-STORAGE data is allocated for each call of a program, and is freed on return
from the program. If you specify a VALUE clause for a LOCAL-STORAGE item, the item is initialized to that
value on each call. If a VALUE clause is not specified, the initial value of the item is undefined.

“Example: storage sections” on page 11

Related tasks   
“Ending and reentering
main programs or subprograms” on page 431  
  
 

Related references   
WORKING-STORAGE SECTION (COBOL for Linux on x86 Language Reference)  
LOCAL-STORAGE SECTION (COBOL for Linux on x86 Language Reference)

Example: storage sections
The following example is a recursive program that uses both WORKING-STORAGE and LOCAL-STORAGE.

CBL apost,pgmn(lu)
*********************************
* Recursive Program - Factorials
*********************************
 IDENTIFICATION DIVISION.
 Program-Id. factorial recursive.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01  numb  pic 9(4)  value 5.
 01  fact  pic 9(8)  value 0.
 LOCAL-STORAGE SECTION.
 01  num  pic 9(4).
 PROCEDURE DIVISION.
     move numb to num.

     if numb = 0
        move 1 to fact
     else
        subtract 1 from numb
        call 'factorial'
        multiply num by fact
     end-if.

Chapter 1. Structuring your program  11



     display num '! = ' fact.
     goback.
 End Program factorial.

The program produces the following output:

0000! = 00000001
0001! = 00000001
0002! = 00000002
0003! = 00000006
0004! = 00000024
0005! = 00000120

The following tables show the changing values of the data items in LOCAL-STORAGE and WORKING-
STORAGE in the successive recursive calls of the program, and in the ensuing gobacks. During the
gobacks, fact progressively accumulates the value of 5! (five factorial).

Recursive calls Value for num in
LOCAL-STORAGE

Value for numb in
WORKING-STORAGE

Value for fact in
WORKING-STORAGE

Main 5 5 0

1 4 4 0

2 3 3 0

3 2 2 0

4 1 1 0

5 0 0 0

 

Gobacks Value for num in
LOCAL-STORAGE

Value for numb in
WORKING-STORAGE

Value for fact in
WORKING-STORAGE

5 0 0 1

4 1 0 1

3 2 0 2

2 3 0 6

1 4 0 24

Main 5 0 120

Related concepts   
“Comparison of WORKING-STORAGE
and LOCAL-STORAGE” on page 11 

Using data from another program
How you share data depends on the type of program. You share data differently in programs that are
separately compiled than you do for programs that are nested or for programs that are recursive or
multithreaded.

Related tasks   
“Sharing data in separately
compiled programs” on page 13  
“Sharing data in nested
programs” on page 13  

12  IBM COBOL for Linux on x86 1.1: Programming Guide



“Sharing data in recursive programs” on page 13  
“Passing data” on page 445 

Sharing data in separately compiled programs
Many applications consist of separately compiled programs that call and pass data to one another. Use
the LINKAGE SECTION in the called program to describe the data passed from another program.

In the calling program, code a CALL . . . USING statement to pass the data.

Related tasks   
“Passing data” on page 445 
“Coding the LINKAGE SECTION” on page 448 

Sharing data in nested programs
Some applications consist of nested programs, that is, programs that are contained in other programs.
Level-01 data items can include the GLOBAL attribute. This attribute allows any nested program that
includes the declarations to access these data items.

A nested program can also access data items in a sibling program (one at the same nesting level in the
same containing program) that is declared with the COMMON attribute.

Related concepts   
“Nested programs” on page 433 

Sharing data in recursive programs
If your program has the RECURSIVE attribute, data that is defined in the LINKAGE SECTION is not
accessible on subsequent invocations of the program.

To address a record in the LINKAGE SECTION, use either of these techniques:

• Pass an argument to the program and specify the record in an appropriate position in the USING phrase
in the program.

• Use the format-5 SET statement.

If your program has the RECURSIVE attribute, the address of the record is valid for a particular instance
of the program invocation. The address of the record in another execution instance of the same program
must be reestablished for that execution instance. Unpredictable results will occur if you refer to a data
item for which the address has not been established.

Related tasks   
“Making recursive calls” on page 443

Related references   
  
SET statement (COBOL for Linux on x86 Language Reference)

Processing the data
In the PROCEDURE DIVISION of a program, you code the executable statements that process the data
that you defined in the other divisions. The PROCEDURE DIVISION contains one or two headers and the
logic of your program.

The PROCEDURE DIVISION begins with the division header and a procedure-name header. The division
header for a program can simply be:

PROCEDURE DIVISION.

You can code the division header to receive parameters by using the USING phrase, or to return a value by
using the RETURNING phrase.

Chapter 1. Structuring your program  13



To receive an argument that was passed by reference (the default) or by content, code the division header
for a program in either of these ways:

PROCEDURE DIVISION USING dataname
PROCEDURE DIVISION USING BY REFERENCE dataname

Be sure to define dataname in the LINKAGE SECTION of the DATA DIVISION.

To receive a parameter that was passed by value, code the division header for a program as follows:

PROCEDURE DIVISION USING BY VALUE dataname

To return a value as a result, code the division header as follows:

PROCEDURE DIVISION RETURNING dataname2

You can also combine USING and RETURNING in a PROCEDURE DIVISION header:

PROCEDURE DIVISION USING dataname RETURNING dataname2

Be sure to define dataname and dataname2 in the LINKAGE SECTION.

Related concepts   
“How logic is divided in the PROCEDURE DIVISION” on page 14 

Related tasks   
“Coding the LINKAGE SECTION” on page 448  
“Coding the PROCEDURE DIVISION
for passing arguments” on page 449  
“Using PROCEDURE DIVISION RETURNING . . .” on page 453  
“Eliminating repetitive
coding” on page 505  

Related references   
The procedure division header (COBOL for Linux on x86 Language Reference)  
The USING phrase (COBOL for Linux on x86 Language Reference)  
CALL statement (COBOL for Linux on x86 Language Reference)

How logic is divided in the PROCEDURE DIVISION
The PROCEDURE DIVISION of a program is divided into sections and paragraphs, which contain
sentences, statements, and phrases.
Section

Logical subdivision of your processing logic.

A section has a section header and is optionally followed by one or more paragraphs.

A section can be the subject of a PERFORM statement. One type of section is for declaratives.

Paragraph
Subdivision of a section, procedure, or program.

A paragraph has a name followed by a period and zero or more sentences.

A paragraph can be the subject of a statement.

Sentence
Series of one or more COBOL statements that ends with a period.

Statement
Performs a defined step of COBOL processing, such as adding two numbers.

14  IBM COBOL for Linux on x86 1.1: Programming Guide



A statement is a valid combination of words, and begins with a COBOL statement. Statements are
imperative (indicating unconditional action), conditional, or compiler-directing. Using explicit scope
terminators instead of periods to show the logical end of a statement is preferred.

Phrase
A subdivision of a statement.

Related concepts   
“Compiler-directing statements” on page 16  
“Scope terminators” on page 16  
“Imperative statements” on page 15  
“Conditional statements” on page 15  
“Declaratives” on page 17 

Related references   
PROCEDURE DIVISION structure (COBOL for Linux on x86 Language Reference) 

Imperative statements
An imperative statement (such as ADD, MOVE, CALL, or CLOSE) indicates an unconditional action to be
taken.

You can end an imperative statement with an implicit or explicit scope terminator.

A conditional statement that ends with an explicit scope terminator becomes an imperative statement
called a delimited scope statement. Only imperative statements (or delimited scope statements) can be
nested.

Related concepts   
“Conditional statements” on page 15  
“Scope terminators” on page 16 

Conditional statements
A conditional statement is either a simple conditional statement (IF, EVALUATE, SEARCH) or a conditional
statement made up of an imperative statement that includes a conditional phrase or option.

You can end a conditional statement with an implicit or explicit scope terminator. If you end a conditional
statement explicitly, it becomes a delimited scope statement (which is an imperative statement).

You can use a delimited scope statement in these ways:

• To delimit the range of operation for a COBOL conditional statement and to explicitly show the levels of
nesting

For example, use an END-IF phrase instead of a period to end the scope of an IF statement within a
nested IF.

• To code a conditional statement where the COBOL syntax calls for an imperative statement

For example, code a conditional statement as the object of an inline PERFORM:

PERFORM UNTIL TRANSACTION-EOF
    PERFORM 200-EDIT-UPDATE-TRANSACTION
    IF NO-ERRORS
        PERFORM 300-UPDATE-COMMUTER-RECORD
    ELSE
        PERFORM 400-PRINT-TRANSACTION-ERRORS
    END-IF
    READ UPDATE-TRANSACTION-FILE INTO WS-TRANSACTION-RECORD
        AT END
            SET TRANSACTION-EOF TO TRUE
    END-READ
END-PERFORM

Chapter 1. Structuring your program  15



An explicit scope terminator is required for the inline PERFORM statement, but it is not valid for the
out-of-line PERFORM statement.

For additional program control, you can use the NOT phrase with conditional statements. For example, you
can provide instructions to be performed when a particular exception does not occur, such as NOT ON
SIZE ERROR. The NOT phrase cannot be used with the ON OVERFLOW phrase of the CALL statement, but
it can be used with the ON EXCEPTION phrase.

Do not nest conditional statements. Nested statements must be imperative statements (or delimited
scope statements) and must follow the rules for imperative statements.

The following statements are examples of conditional statements if they are coded without scope
terminators:

• Arithmetic statement with ON SIZE ERROR
• Data-manipulation statements with ON OVERFLOW
• CALL statements with ON OVERFLOW
• I/O statements with INVALID KEY, AT END, or AT END-OF-PAGE
• RETURN with AT END

Related concepts   
“Imperative statements” on page 15  
“Scope terminators” on page 16 

Related tasks   
“Selecting program actions” on page 81 

Related references   
Conditional statements (COBOL for Linux on x86 Language Reference)

Compiler-directing statements
A compiler-directing statement causes the compiler to take specific action about the program structure,
COPY processing, listing control, control flow, or CALL interface convention.

A compiler-directing statement is not part of the program logic.

Related references   
Chapter 14, “Compiler-directing
statements,” on page 293  
Compiler-directing statements (COBOL for Linux on x86 Language Reference)

Scope terminators
A scope terminator ends a statement. Scope terminators can be explicit or implicit.

Explicit scope terminators end a statement without ending a sentence. They consist of END followed by a
hyphen and the name of the statement being terminated, such as END-IF. An implicit scope terminator is
a period (.) that ends the scope of all previous statements not yet ended.

Each of the two periods in the following program fragment ends an IF statement, making the code
equivalent to the code after it that instead uses explicit scope terminators:

IF ITEM = "A"
    DISPLAY "THE VALUE OF ITEM IS " ITEM
    ADD 1 TO TOTAL
    MOVE "C" TO ITEM
    DISPLAY "THE VALUE OF ITEM IS NOW " ITEM.
IF ITEM = "B"
    ADD 2 TO TOTAL.

IF ITEM = "A"

16  IBM COBOL for Linux on x86 1.1: Programming Guide



    DISPLAY "THE VALUE OF ITEM IS " ITEM
    ADD 1 TO TOTAL
    MOVE "C" TO ITEM
    DISPLAY "THE VALUE OF ITEM IS NOW " ITEM
END-IF
IF ITEM = "B"
    ADD 2 TO TOTAL
END-IF

If you use implicit terminators, the end of statements can be unclear. As a result, you might end
statements unintentionally, changing your program's logic. Explicit scope terminators make a program
easier to understand and prevent unintentional ending of statements. For example, in the program
fragment below, changing the location of the first period in the first implicit scope example changes
the meaning of the code:

IF ITEM = "A"
    DISPLAY "VALUE OF ITEM IS " ITEM
    ADD 1 TO TOTAL.
    MOVE "C" TO ITEM
    DISPLAY " VALUE OF ITEM IS NOW " ITEM
IF ITEM = "B"
    ADD 2 TO TOTAL.

The MOVE statement and the DISPLAY statement after it are performed regardless of the value of ITEM,
despite what the indentation indicates, because the first period terminates the IF statement.

For improved program clarity and to avoid unintentional ending of statements, use explicit scope
terminators, especially within paragraphs. Use implicit scope terminators only at the end of a paragraph
or the end of a program.

Be careful when coding an explicit scope terminator for an imperative statement that is nested within
a conditional statement. Ensure that the scope terminator is paired with the statement for which it was
intended. In the following example, the scope terminator will be paired with the second READ statement,
though the programmer intended it to be paired with the first.

READ FILE1
  AT END
    MOVE A TO B
    READ FILE2
END-READ

To ensure that the explicit scope terminator is paired with the intended statement, the preceding example
can be recoded in this way:

READ FILE1
  AT END
    MOVE A TO B
    READ FILE2
    END-READ
END-READ

Related concepts   
“Conditional statements” on page 15  
“Imperative statements” on page 15 

Declaratives
Declaratives provide one or more special-purpose sections that are executed when an exception
condition occurs.

Start each declarative section with a USE statement that identifies the function of the section. In the
procedures, specify the actions to be taken when the condition occurs.

Chapter 1. Structuring your program  17



Related tasks   
“Finding and handling input-output
errors” on page 304 

Related references   
Declaratives (COBOL for Linux on x86 Language Reference)

18  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 2. Using data

This information is intended to help non-COBOL programmers relate terms for data used in other
programming languages to COBOL terms. It introduces COBOL fundamentals for variables, structures,
literals, and constants; assigning and displaying values; intrinsic (built-in) functions, and tables (arrays)
and pointers.

Related tasks   
“Using variables, structures,
literals, and constants” on page 19  
“Assigning values to data
items” on page 23  
“Displaying values on a
screen or in a file (DISPLAY)” on page 31  
“Using intrinsic functions (built-in functions)” on page 32  
“Using tables (arrays) and
pointers” on page 33  
Chapter 10, “Processing data in an international
environment,” on page 177 

Using variables, structures, literals, and constants
Most high-level programming languages share the concept of data being represented as variables,
structures (group items), literals, or constants.

The data in a COBOL program can be alphabetic, alphanumeric, double-byte character set (DBCS),
national, or numeric. You can also define index-names and data items described as USAGE POINTER,
USAGE FUNCTION-POINTER, or USAGE PROCEDURE-POINTER. You place all data definitions in the
DATA DIVISION of your program.

Related tasks   
“Using variables” on page 19  
“Using data items and group items” on page 20  
“Using literals” on page 21  
“Using constants” on page 22  
“Using figurative constants” on page 22 

Related references   
Classes and categories of data (COBOL for Linux on x86 Language Reference)

Using variables
A variable is a data item whose value can change during a program. The value is restricted, however, to
the data type that you define when you specify a name and a length for the data item.

For example, if a customer name is an alphanumeric data item in your program, you could define and use
the customer name as shown below:

Data Division.
01  Customer-Name           Pic X(20).
01  Original-Customer-Name  Pic X(20).
. . .
Procedure Division.
    Move Customer-Name to Original-Customer-Name
    . . .

© Copyright IBM Corp. 2021, 2023 19



You could instead define the customer names above as national data items by specifying their PICTURE
clauses as Pic N(20) and specifying the USAGE NATIONAL clause for the items. National data items are
represented in Unicode UTF-16, in which most characters are represented in 2 bytes of storage.

Related concepts   
“Unicode and the encoding
of language characters” on page 178 

Related tasks   
“Using national data (Unicode)
in COBOL” on page 179 

Related references   
“NSYMBOL” on page 273  
“Storage of character
data” on page 192  
PICTURE clause (COBOL for Linux on x86 Language Reference)

Using data items and group items
Related data items can be parts of a hierarchical data structure. A data item that does not have
subordinate data items is called an elementary item. A data item that is composed of one or more
subordinate data items is called a group item.

A record can be either an elementary item or a group item. A group item can be either an alphanumeric
group item or a national group item.

For example, Customer-Record below is an alphanumeric group item that is composed of two
subordinate alphanumeric group items (Customer-Name and Part-Order), each of which contains
elementary data items. These groups items implicitly have USAGE DISPLAY. You can refer to an entire
group item or to parts of a group item in MOVE statements in the PROCEDURE DIVISION as shown below:

Data Division.
File Section.
FD  Customer-File
    Record Contains 45 Characters.
01  Customer-Record.
    05  Customer-Name.
        10 Last-Name        Pic x(17).
        10 Filler           Pic x.
        10 Initials         Pic xx.
    05  Part-Order.
        10 Part-Name        Pic x(15).
        10 Part-Color       Pic x(10).
Working-Storage Section.
01  Orig-Customer-Name.
    05  Surname             Pic x(17).
    05  Initials            Pic x(3).
01  Inventory-Part-Name     Pic x(15).
. . .
Procedure Division.
    Move Customer-Name to Orig-Customer-Name
    Move Part-Name to Inventory-Part-Name
    . . .

You could instead define Customer-Record as a national group item that is composed of two
subordinate national group items by changing the declarations in the DATA DIVISION as shown below.
National group items behave in the same way as elementary category national data items in most
operations. The GROUP-USAGE NATIONAL clause indicates that a group item and any group items
subordinate to it are national groups. Subordinate elementary items in a national group must be explicitly
or implicitly described as USAGE NATIONAL.

Data Division.
File Section.
FD  Customer-File
    Record Contains 90 Characters.

20  IBM COBOL for Linux on x86 1.1: Programming Guide



01  Customer-Record         Group-Usage National.
    05  Customer-Name.
        10 Last-Name        Pic n(17).
        10 Filler           Pic n.
        10 Initials         Pic nn.
    05  Part-Order.
        10 Part-Name        Pic n(15).
        10 Part-Color       Pic n(10).
Working-Storage Section.
01  Orig-Customer-Name      Group-Usage National.
    05  Surname             Pic n(17).
    05  Initials            Pic n(3).
01  Inventory-Part-Name     Pic n(15)  Usage National.
. . .
Procedure Division.
    Move Customer-Name to Orig-Customer-Name
    Move Part-Name to Inventory-Part-Name
    . . .

In the example above, the group items could instead specify the USAGE NATIONAL clause at the group
level. A USAGE clause at the group level applies to each elementary data item in a group (and thus serves
as a convenient shorthand notation). However, a group that specifies the USAGE NATIONAL clause is not
a national group despite the representation of the elementary items within the group. Groups that specify
the USAGE clause are alphanumeric groups and behave in many operations, such as moves and compares,
like elementary data items of USAGE DISPLAY (except that no editing or conversion of data occurs).

Related concepts   
“Unicode and the encoding
of language characters” on page 178  
“National groups” on page 185 

Related tasks   
“Using national data (Unicode)
in COBOL” on page 179  
“Using national groups” on page 189 

Related references   
“FILE SECTION entries” on page 10  
“Storage of character
data” on page 192  
Classes and categories of group items (COBOL for Linux on x86 Language Reference)  
PICTURE clause (COBOL for Linux on x86 Language Reference)  
MOVE statement (COBOL for Linux on x86 Language Reference)  
USAGE clause (COBOL for Linux on x86 Language Reference)

Using literals
A literal is a character string whose value is given by the characters themselves. If you know the value
you want a data item to have, you can use a literal representation of the data value in the PROCEDURE
DIVISION.

You do not need to define a data item for the value nor refer to it by using a data-name. For example, you
can prepare an error message for an output file by moving an alphanumeric literal:

Move "Name is not valid" To Customer-Name

You can compare a data item to a specific integer value by using a numeric literal. In the example below,
"Name is not valid" is an alphanumeric literal, and 03519 is a numeric literal:

01  Part-number     Pic 9(5).
. . .
    If Part-number = 03519 then display "Part number was found"

Chapter 2. Using data  21



You can use hexadecimal-notation format (X') to express control characters X'00' through X'1F' within
an alphanumeric literal. Results are unpredictable if you specify these control characters in the basic
format of alphanumeric literals.

You can use the opening delimiter N" or N' to designate a national literal if the NSYMBOL(NATIONAL)
compiler option is in effect, or to designate a DBCS literal if the NSYMBOL(DBCS) compiler option is in
effect.

You can use the opening delimiter NX" or NX' to designate national literals in hexadecimal notation
(regardless of the setting of the NSYMBOL compiler option). Each group of four hexadecimal digits
designates a single national character.

Related concepts   
“Unicode and the encoding
of language characters” on page 178 

Related tasks   
“Using national literals” on page 180  
“Using DBCS literals” on page 197 

Related references   
“NSYMBOL” on page 273  
Literals (COBOL for Linux on x86 Language Reference)

Using constants
A constant is a data item that has only one value. COBOL does not define a construct for constants.
However, you can define a data item with an initial value by coding a VALUE clause in the data description
(instead of coding an INITIALIZE statement).

Data Division.
01  Report-Header   pic x(50)  value "Company Sales Report".
. . .
01  Interest        pic 9v9999 value 1.0265.

The example above initializes an alphanumeric and a numeric data item. You can likewise use a VALUE
clause in defining a national or DBCS constant.

Related tasks   
“Using national data (Unicode)
in COBOL” on page 179  
“Coding for use of DBCS
support” on page 196 

Using figurative constants
Certain commonly used constants and literals are available as reserved words called figurative constants:
ZERO, SPACE, HIGH-VALUE, LOW-VALUE, QUOTE, NULL, and ALL literal. Because they represent fixed
values, figurative constants do not require a data definition.

For example:

Move Spaces To Report-Header

Related tasks   
“Using national-character
figurative constants” on page 184  
“Coding for use of DBCS
support” on page 196 

22  IBM COBOL for Linux on x86 1.1: Programming Guide



Related references   
Figurative constants (COBOL for Linux on x86 Language Reference)

Assigning values to data items
After you have defined a data item, you can assign a value to it at any time. Assignment takes many forms
in COBOL, depending on what you want to do.

Table 2. Assignment to data items in a program

What you want to do How to do it

Assign values to a data item or large data area. Use one of these ways:

• INITIALIZE statement
• MOVE statement
• STRING or UNSTRING statement
• VALUE clause (to set data items to the values

you want them to have when the program is in
initial state)

Assign the results of arithmetic. Use COMPUTE, ADD, SUBTRACT, MULTIPLY, or
DIVIDE statements.

Examine or replace characters or groups of characters in a
data item.

Use the INSPECT statement.

Receive values from a file. Use the READ (or READ INTO) statement.

Receive values from a system input device or a file. Use the ACCEPT statement.

Establish a constant. Use the VALUE clause in the definition of the
data item, and do not use the data item as a
receiver. Such an item is in effect a constant
even though the compiler does not enforce read-
only constants.

One of these actions:

• Place a value associated with a table element in an index.
• Set the status of an external switch to ON or OFF.
• Move data to a condition-name to make the condition

true.
• Set a POINTER, PROCEDURE-POINTER, or FUNCTION-
POINTER data item to an address.

Use the SET statement.

“Examples: initializing data items” on page 24

Related tasks   
“Initializing a structure
(INITIALIZE)” on page 27  
“Assigning values to elementary
data items (MOVE)” on page 28  
“Assigning values to group data items (MOVE)” on page 29  
“Assigning input from a
screen or file (ACCEPT)” on page 30  
“Joining data items (STRING)” on page 93  
“Splitting data items (UNSTRING)” on page 95  
“Assigning arithmetic results

Chapter 2. Using data  23



(MOVE or COMPUTE)” on page 30  
“Tallying and replacing
data items (INSPECT)” on page 102  
Chapter 10, “Processing data in an international
environment,” on page 177 

Examples: initializing data items
The following examples show how you can initialize many kinds of data items, including alphanumeric,
national-edited, and numeric-edited data items, by using INITIALIZE statements.

An INITIALIZE statement is functionally equivalent to one or more MOVE statements. The related tasks
about initializing show how you can use an INITIALIZE statement on a group item to conveniently
initialize all the subordinate data items that are in a given data category.

Initializing a data item to blanks or zeros:

INITIALIZE identifier-1

identifier-1 PICTURE identifier-1 before identifier-1 after

9(5) 12345 00000

X(5) AB123 bbbbb1

N(3) 4100420031002 2000200020003

99XX9 12AB3 bbbbb1

XXBX/XX ABbC/DE bbbb/bb1

**99.9CR 1234.5CR **00.0bb1

A(5) ABCDE bbbbb1

+99.99E+99 +12.34E+02 +00.00E+00

1. The symbol b represents a blank space.
2. Hexadecimal representation of the national (UTF-16) characters 'AB1'. The example assumes that

identifier-1 has Usage National.
3. Hexadecimal representation of the national (UTF-16) characters '   ' (three blank spaces). Note

that if identifier-1 were not defined as Usage National, and if NSYMBOL(DBCS) were in effect,
INITIALIZE would instead store DBCS spaces ('2020') into identifier-1.

Initializing an alphanumeric data item:

01  ALPHANUMERIC-1    PIC X    VALUE "y".
01  ALPHANUMERIC-3    PIC X(1) VALUE "A".
. . .
    INITIALIZE ALPHANUMERIC-1
        REPLACING ALPHANUMERIC DATA BY ALPHANUMERIC-3

ALPHANUMERIC-3 ALPHANUMERIC-1 before ALPHANUMERIC-1 after

A y A

Initializing an alphanumeric right-justified data item:

01  ANJUST            PIC X(8)  VALUE SPACES  JUSTIFIED RIGHT.
01  ALPHABETIC-1      PIC A(4)  VALUE "ABCD".

24  IBM COBOL for Linux on x86 1.1: Programming Guide



. . .
    INITIALIZE ANJUST
        REPLACING ALPHANUMERIC DATA BY ALPHABETIC-1

ALPHABETIC-1 ANJUST before ANJUST after

ABCD bbbbbbbb1 bbbbABCD1

1. The symbol b represents a blank space.

Initializing an alphanumeric-edited data item:

01  ALPHANUM-EDIT-1   PIC XXBX/XXX  VALUE "ABbC/DEF".
01  ALPHANUM-EDIT-3   PIC X/BB      VALUE "M/bb".
. . .
    INITIALIZE ALPHANUM-EDIT-1
        REPLACING ALPHANUMERIC-EDITED DATA BY ALPHANUM-EDIT-3

ALPHANUM-EDIT-3 ALPHANUM-EDIT-1 before ALPHANUM-EDIT-1 after

M/bb1 ABbC/DEF1 M/bb/bbb1

1. The symbol b represents a blank space.

Initializing a national data item:

01  NATIONAL-1        PIC NN  USAGE NATIONAL  VALUE N"AB".
01  NATIONAL-3        PIC NN  USAGE NATIONAL  VALUE N"CD".
. . .
    INITIALIZE NATIONAL-1
        REPLACING NATIONAL DATA BY NATIONAL-3
    INITIALIZE NATIONAL-1 NATIONAL TO VALUE

NATIONAL-3 NATIONAL-1 before
first INITIALIZE

NATIONAL-1 after first
INITIALIZE

NATIONAL-1 after
second INITIALIZE

430044001 410042002 430044001 41004200

1. Hexadecimal representation of the national characters 'CD'
2. Hexadecimal representation of the national characters 'AB'

Initializing a national-edited data item:

01  NATL-EDIT-1       PIC 0NN  USAGE NATIONAL  VALUE N"123".
01  NATL-3            PIC NNN  USAGE NATIONAL  VALUE N"456".
. . .
    INITIALIZE NATL-EDIT-1
        REPLACING NATIONAL-EDITED DATA BY NATL-3

NATL-3 NATL-EDIT-1 before NATL-EDIT-1 after

3400350036001 3100320033002 3000340035003

1. Hexadecimal representation of the national characters '456'
2. Hexadecimal representation of the national characters '123'
3. Hexadecimal representation of the national characters '045'

Chapter 2. Using data  25



Initializing a numeric (zoned decimal) data item:

01  NUMERIC-1         PIC 9(8)        VALUE 98765432.
01  NUM-INT-CMPT-3    PIC 9(7)  COMP  VALUE 1234567.
. . .
    INITIALIZE NUMERIC-1
        REPLACING NUMERIC DATA BY NUM-INT-CMPT-3

NUM-INT-CMPT-3 NUMERIC-1 before NUMERIC-1 after

1234567 98765432 01234567

Initializing a numeric (national decimal) data item:

01  NAT-DEC-1         PIC 9(3)  USAGE  NATIONAL VALUE 987.
01  NUM-INT-BIN-3     PIC 9(2)  BINARY VALUE 12.
. . .
    INITIALIZE NAT-DEC-1
        REPLACING NUMERIC DATA BY NUM-INT-BIN-3

NUM-INT-BIN-3 NAT-DEC-1 before NAT-DEC-1 after

12 3900380037001 3000310032002

1. Hexadecimal representation of the national characters '987'
2. Hexadecimal representation of the national characters '012'

Initializing a numeric-edited (USAGE DISPLAY) data item:

01  NUM-EDIT-DISP-1   PIC $ZZ9V  VALUE "$127".
01  NUM-DISP-3        PIC 999V   VALUE 12.
. . .
    INITIALIZE NUM-EDIT-DISP-1
        REPLACING NUMERIC-EDITED DATA BY NUM-DISP-3

NUM-DISP-3 NUM-EDIT-DISP-1 before NUM-EDIT-DISP-1 after

012 $127 $ 12

Initializing a numeric-edited (USAGE NATIONAL) data item:

01  NUM-EDIT-NATL-1   PIC $ZZ9V  NATIONAL VALUE N"$127".
01  NUM-NATL-3        PIC 999V   NATIONAL VALUE 12.
. . .
    INITIALIZE NUM-EDIT-NATL-1
        REPLACING NUMERIC-EDITED DATA BY NUM-NATL-3

NUM-NATL-3 NUM-EDIT-NATL-1 before NUM-EDIT-NATL-1 after

3000310032001 24003100320037002 24002000310032003

1. Hexadecimal representation of the national characters '012'
2. Hexadecimal representation of the national characters '$127'
3. Hexadecimal representation of the national characters '$ 12'

Related tasks   
“Initializing a structure

26  IBM COBOL for Linux on x86 1.1: Programming Guide



(INITIALIZE)” on page 27  
“Initializing a table (INITIALIZE)” on page 65  
“Defining numeric data” on page 35 

Related references   
“NSYMBOL” on page 273 

Initializing a structure (INITIALIZE)
You can reset the values of all subordinate data items in a group item by applying the INITIALIZE
statement to that group item. However, it is inefficient to initialize an entire group unless you really need
all the items in the group to be initialized.

The following example shows how you can reset fields to spaces and zeros in transaction records that
a program produces. The values of the fields are not identical in each record that is produced. (The
transaction record is defined as an alphanumeric group item, TRANSACTION-OUT.)

01  TRANSACTION-OUT.
    05  TRANSACTION-CODE        PIC X.
    05  PART-NUMBER             PIC 9(6).
    05  TRANSACTION-QUANTITY    PIC 9(5).
    05  PRICE-FIELDS.
        10  UNIT-PRICE          PIC 9(5)V9(2).
        10  DISCOUNT            PIC V9(2).
        10  SALES-PRICE         PIC 9(5)V9(2).
. . .
    INITIALIZE TRANSACTION-OUT

Record TRANSACTION-OUT before TRANSACTION-OUT after

 1 R001383000240000000000000000 b0000000000000000000000000001

 2 R001390000480000000000000000 b0000000000000000000000000001

 3 S001410000120000000000000000 b0000000000000000000000000001

 4 C001383000000000425000000000 b0000000000000000000000000001

 5 C002010000000000000100000000 b0000000000000000000000000001

1. The symbol b represents a blank space.

You can likewise reset the values of all the subordinate data items in a national group item by applying the
INITIALIZE statement to that group item. The following structure is similar to the preceding structure,
but instead uses Unicode UTF-16 data:

01  TRANSACTION-OUT GROUP-USAGE NATIONAL.
    05  TRANSACTION-CODE        PIC N.
    05  PART-NUMBER             PIC 9(6).
    05  TRANSACTION-QUANTITY    PIC 9(5).
    05  PRICE-FIELDS.
        10  UNIT-PRICE          PIC 9(5)V9(2).
        10  DISCOUNT            PIC V9(2).
        10  SALES-PRICE         PIC 9(5)V9(2).
. . .
    INITIALIZE TRANSACTION-OUT

Regardless of the previous contents of the transaction record, after the INITIALIZE statement above is
executed:

• TRANSACTION-CODE contains NX"2000" (a national space).
• Each of the remaining 27 national character positions of TRANSACTION-OUT contains NX"3000" (a

national-decimal zero).

Chapter 2. Using data  27



When you use an INITIALIZE statement to initialize an alphanumeric or national group data item,
the data item is processed as a group item, that is, with group semantics. The elementary data items
within the group are recognized and processed, as shown in the examples above. If you do not code the
REPLACING phrase of the INITIALIZE statement:

• SPACE is the implied sending item for alphabetic, alphanumeric, alphanumeric-edited, DBCS, category
national, and national-edited receiving items.

• ZERO is the implied sending item for numeric and numeric-edited receiving items.

Related concepts   
“National groups” on page 185 

Related tasks   
“Initializing a table (INITIALIZE)” on page 65  
“Using national groups” on page 189 

Related references   
INITIALIZE statement (COBOL for Linux on x86 Language Reference)

Assigning values to elementary data items (MOVE)
Use a MOVE statement to assign a value to an elementary data item.

The following statement assigns the contents of an elementary data item, Customer-Name, to the
elementary data item Orig-Customer-Name:

Move Customer-Name to Orig-Customer-Name

If Customer-Name is longer than Orig-Customer-Name, truncation occurs on the right. If Customer-
Name is shorter, the extra character positions on the right in Orig-Customer-Name are filled with
spaces.

For data items that contain numbers, moves can be more complicated than with character data items
because there are several ways in which numbers can be represented. In general, the algebraic values of
numbers are moved if possible, as opposed to the digit-by-digit moves that are performed with character
data. For example, after the MOVE statement below, Item-x contains the value 3.0, represented as 0030:

01  Item-x      Pic 999v9.
. . .
    Move 3.06 to Item-x

You can move an alphabetic, alphanumeric, alphanumeric-edited, DBCS, integer, or numeric-edited data
item to a category national or national-edited data item; the sending item is converted. You can move
a national data item to a category national or national-edited data item. If the content of a category
national data item has a numeric value, you can move that item to a numeric, numeric-edited, external
floating-point, or internal floating-point data item. You can move a national-edited data item only to a
category national data item or another national-edited data item. Padding or truncation might occur.

For complete details about elementary moves, see the related reference below about the MOVE
statement.

The following example shows an alphanumeric data item in the Greek language that is moved to a
national data item:

. . .
01 Data-in-Unicode   Pic N(100) usage national.
01 Data-in-Greek     Pic X(100).
. . .
    Read Greek-file into Data-in-Greek
    Move Data-in-Greek to Data-in-Unicode

28  IBM COBOL for Linux on x86 1.1: Programming Guide



Related concepts   
“Unicode and the encoding
of language characters” on page 178 

Related tasks   
“Assigning values to group data items (MOVE)” on page 29  
“Converting to or from national (Unicode) representation” on page 186 

Related references   
Classes and categories of data (COBOL for Linux on x86 Language Reference)  
MOVE statement (COBOL for Linux on x86 Language Reference)

Assigning values to group data items (MOVE)
Use the MOVE statement to assign values to group data items.

You can move a national group item (a data item that is described with the GROUP-USAGE NATIONAL
clause) to another national group item. The compiler processes the move as though each national group
item were an elementary item of category national, that is, as if each item were described as PIC N(m),
where m is the length of that item in national character positions.

You can move an alphanumeric group item to an alphanumeric group item or to a national group item.
You can also move a national group item to an alphanumeric group item. The compiler performs such
moves as group moves, that is, without consideration of the individual elementary items in the sending
or receiving group, and without conversion of the sending data item. Be sure that the subordinate
data descriptions in the sending and receiving group items are compatible. The moves occur even if a
destructive overlap could occur at run time.

You can code the CORRESPONDING phrase in a MOVE statement to move subordinate elementary items
from one group item to the identically named corresponding subordinate elementary items in another
group item:

01  Group-X.
    02 T-Code    Pic X    Value "A".
    02 Month     Pic 99   Value 04.
    02 State     Pic XX   Value "CA".
    02 Filler    PIC X.
01  Group-N      Group-Usage National. 
    02 State     Pic NN.
    02 Month     Pic 99.
    02 Filler    Pic N.
    02 Total     Pic 999.
. . .
    MOVE CORR Group-X TO Group-N

In the example above, State and Month within Group-N receive the values in national representation
of State and Month, respectively, from Group-X. The other data items in Group-N are unchanged.
(Filler items in a receiving group item are unchanged by a MOVE CORRESPONDING statement.)

In a MOVE CORRESPONDING statement, sending and receiving group items are treated as group items,
not as elementary data items; group semantics apply. That is, the elementary data items within each
group are recognized, and the results are the same as if each pair of corresponding data items were
referenced in a separate MOVE statement. Data conversions are performed according to the rules for the
MOVE statement as specified in the related reference below. For details about which types of elementary
data items correspond, see the related reference about the CORRESPONDING phrase.

Related concepts   
“Unicode and the encoding
of language characters” on page 178  
“National groups” on page 185 

Related tasks   
“Assigning values to elementary

Chapter 2. Using data  29



data items (MOVE)” on page 28  
“Using national groups” on page 189  
“Converting to or from national (Unicode) representation” on page 186 

Related references   
Classes and categories of group items (COBOL for Linux on x86 Language Reference)  
MOVE statement (COBOL for Linux on x86 Language Reference)  
CORRESPONDING phrase (COBOL for Linux on x86 Language Reference)

Assigning arithmetic results (MOVE or COMPUTE)
When assigning a number to a data item, consider using the COMPUTE statement instead of the MOVE
statement.

Move w to z
Compute z = w

In the example above, the two statements in most cases have the same effect. The MOVE statement
however carries out the assignment with truncation. You can use the DIAGTRUNC compiler option to
request that the compiler issue a warning for MOVE statements that might truncate numeric receivers.

When significant left-order digits would be lost in execution, the COMPUTE statement can detect the
condition and allow you to handle it. If you use the ON SIZE ERROR phrase of the COMPUTE statement,
the compiler generates code to detect a size-overflow condition. If the condition occurs, the code in the
ON SIZE ERROR phrase is performed, and the content of z remains unchanged. If you do not specify
the ON SIZE ERROR phrase, the assignment is carried out with truncation. There is no ON SIZE ERROR
support for the MOVE statement.

You can also use the COMPUTE statement to assign the result of an arithmetic expression or intrinsic
function to a data item. For example:

Compute z = y + (x ** 3)
Compute x = Function Max(x y z)

Related references   
“DIAGTRUNC” on page 263  
Intrinsic functions (COBOL for Linux on x86 Language Reference)

Assigning input from a screen or file (ACCEPT)
One way to assign a value to a data item is to read the value from a screen or a file.

To enter data from the screen, first associate the monitor with a mnemonic-name in the SPECIAL-NAMES
paragraph. Then use ACCEPT to assign the line of input entered at the screen to a data item. For example:

Environment Division.
Configuration Section.
Special-Names.
    Console is Names-Input.
. . .
    Accept Customer-Name From Names-Input

To read from a file instead of the screen, make either of the following changes:

• Change Console to device, where device is any valid system device (for example, SYSIN). For example:

SYSIN is Names-Input

30  IBM COBOL for Linux on x86 1.1: Programming Guide



• Set the environment variable CONSOLE to a valid file specification by using the export command. For
example:

export CONSOLE=/myfiles/myinput.rpt

The environment-variable name must be the same as the system device name used. In the example
above, the system device is Console, but the method of assigning an environment variable to the
system device name is supported for all valid system devices. For example, if the system device is
SYSIN, the environment variable that must be assigned a file specification is also SYSIN.

The ACCEPT statement assigns the input line to the data item. If the input line is shorter than the data
item, the data item is padded with spaces of the appropriate representation. When you read from a screen
and the input line is longer than the data item, the remaining characters are discarded. When you read
from a file and the input line is longer than the data item, the remaining characters are retained as the
next input line for the file.

When you use the ACCEPT statement, you can assign a value to an alphanumeric or national group item,
or to an elementary data item that has USAGE DISPLAY, USAGE DISPLAY-1, or USAGE NATIONAL.

When you assign a value to a USAGE NATIONAL data item, the input data is converted from the code page
associated with the current runtime locale to national (Unicode UTF-16) representation only if the input is
from the terminal.

To have conversion done when the input data is from any other device, use the NATIONAL-OF intrinsic
function.

Related concepts   
“Unicode and the encoding
of language characters” on page 178 

Related tasks   
“Setting environment variables” on page 215  
“Converting alphanumeric or DBCS to national (NATIONAL-OF)” on page 187  
“Getting the system date
under CICS” on page 382

Related references   
ACCEPT statement (COBOL for Linux on x86 Language Reference)  
SPECIAL-NAMES paragraph (COBOL for Linux on x86 Language Reference)

Displaying values on a screen or in a file (DISPLAY)
You can display the value of a data item on a screen or write it to a file by using the DISPLAY statement.

Display "No entry for surname '" Customer-Name "' found in the file.".

In the example above, if the content of data item Customer-Name is JOHNSON, then the statement
displays the following message on the screen:

No entry for surname 'JOHNSON' found in the file.

To write data to a destination other than the screen, use the UPON phrase. For example, the following
statement writes to the file that you specify as the value of the SYSOUT environment variable:

Display "Hello" upon sysout.

When you display the value of a USAGE NATIONAL data item, the output data is converted to the code
page that is associated with the current locale.

Chapter 2. Using data  31



Related concepts   
“Unicode and the encoding
of language characters” on page 178 

Related tasks  
“Converting national to
alphanumeric (DISPLAY-OF)” on page 188  
“Coding COBOL programs to
run under CICS” on page 380 

Related references  
“Runtime environment
variables” on page 220  
DISPLAY statement (COBOL for Linux on x86 Language Reference)  

Using intrinsic functions (built-in functions)
Some high-level programming languages have built-in functions that you can reference in your program as
if they were variables that have defined attributes and a predetermined value. In COBOL, these functions
are called intrinsic functions. They provide capabilities for manipulating strings and numbers.

Because the value of an intrinsic function is derived automatically at the time of reference, you do not
need to define functions in the DATA DIVISION. Define only the nonliteral data items that you use as
arguments. Figurative constants are not allowed as arguments.

A function-identifier is the combination of the COBOL reserved word FUNCTION followed by a function
name (such as Max), followed by any arguments to be used in the evaluation of the function (such as x,
y, z). (Optionally, the reserved word FUNCTION may be omitted if the function name is referenced in the
REPOSITORY paragraph.) For example, the groups of highlighted words below are function-identifiers:

Unstring Function Upper-case(Name) Delimited By Space
    Into Fname Lname
Compute A = 1 + Function Log10(x)
Compute M = Function Max(x y z)

A function-identifier represents both the invocation of the function and the data value returned by the
function. Because it actually represents a data item, you can use a function-identifier in most places in the
PROCEDURE DIVISION where a data item that has the attributes of the returned value can be used.

The COBOL word function is a reserved word, but the function-names are not reserved. You can use
them in other contexts, such as for the name of a data item. For example, you could use Sqrt to invoke an
intrinsic function and to name a data item in your program:

Working-Storage Section.
01  x                 Pic 99  value 2.
01  y                 Pic 99  value 4.
01  z                 Pic 99  value 0.
01  Sqrt              Pic 99  value 0.
. . .
    Compute Sqrt = 16 ** .5
    Compute z = x + Function Sqrt(y)
    . . .

A function-identifier represents a value that is of one of these types: alphanumeric, national, numeric,
or integer. You can include a substring specification (reference modifier) in a function-identifier for
alphanumeric or national functions. Numeric intrinsic functions are further classified according to the
type of numbers they return.

The functions MAX, MIN, DATEVAL, and UNDATE can return either type of value depending on the type of
arguments you supply.

The functions DATEVAL, UNDATE, and YEARWINDOW are provided with the millennium language
extensions to assist with manipulating and converting windowed date fields.

32  IBM COBOL for Linux on x86 1.1: Programming Guide



Functions can reference other functions as arguments provided that the results of the nested functions
meet the requirements for the arguments of the outer function. For example, Function Sqrt(5)
returns a numeric value. Thus, the three arguments to the MAX function below are all numeric, which is an
allowable argument type for this function:

Compute x = Function Max((Function Sqrt(5)) 2.5 3.5)

Related tasks   
“Processing table items
using intrinsic functions” on page 79  
“Converting data items (intrinsic
functions)” on page 104  
“Evaluating data items (intrinsic
functions)” on page 106 

Using tables (arrays) and pointers
In COBOL, arrays are called tables. A table is a set of logically consecutive data items that you define in
the DATA DIVISION by using the OCCURS clause.

Pointers are data items that contain virtual storage addresses. You define them either explicitly with the
USAGE IS POINTER clause in the DATA DIVISION or implicitly as ADDRESS OF special registers.

You can perform the following operations with pointer data items:

• Pass them between programs by using the CALL . . . BY REFERENCE statement.
• Set a pointer to allocated storage or free storage by using the ALLOCATE and FREE statements.
• Move them to other pointers by using the SET statement.
• Compare them to other pointers for equality by using a relation condition.
• Initialize them to contain an invalid address by using VALUE IS NULL.

Use pointer data items to:

• Accomplish limited base addressing, particularly if you want to pass and receive addresses of a record
area that is defined with OCCURS DEPENDING ON and is therefore variably located.

• Handle a chained list.

Related tasks   
“Defining a table (OCCURS)” on page 59  
“Using procedure and function
pointers” on page 452

Chapter 2. Using data  33



34  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 3. Working with numbers and arithmetic

In general, you can view COBOL numeric data as a series of decimal digit positions. However, numeric
items can also have special properties such as an arithmetic sign or a currency sign.

To define, display, and store numeric data so that you can perform arithmetic operations efficiently:

• Use the PICTURE clause and the characters 9, +, -, P, S, and V to define numeric data.
• Use the PICTURE clause and editing characters (such as Z, comma, and period) along with MOVE and
DISPLAY statements to display numeric data.

• Use the USAGE clause with various formats to control how numeric data is stored.
• Use the numeric class test to validate that data values are appropriate.
• Use ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE statements to perform arithmetic.
• Use the CURRENCY SIGN clause and appropriate PICTURE characters to designate the currency you

want.

Related tasks   
“Defining numeric data” on page 35  
“Displaying numeric data” on page 37  
“Controlling how numeric
data is stored” on page 38  
“Checking for incompatible
data (numeric class test)” on page 48  
“Performing arithmetic” on page 48  
“Using currency signs” on page 56 

Defining numeric data
Define numeric items by using the PICTURE clause with the character 9 in the data description to
represent the decimal digits of the number. Do not use an X, which is for alphanumeric data items.

For example, Count-y below is a numeric data item, an external decimal item that has USAGE DISPLAY
(a zoned decimal item):

05  Count-y        Pic 9(4)  Value 25.
05  Customer-name  Pic X(20) Value "Johnson".

You can similarly define numeric data items to hold national characters (UTF-16). For example, Count-n
below is an external decimal data item that has USAGE NATIONAL (a national decimal item):

05  Count-n        Pic 9(4)  Value 25  Usage National.

You can code up to 18 digits in the PICTURE clause when you compile using the default compiler option
ARITH(COMPAT) (referred to as compatibility mode). When you compile using ARITH(EXTEND) (referred
to as extended mode), you can code up to 31 digits in the PICTURE clause.

Other characters of special significance that you can code are:

P
Indicates leading or trailing zeros

S
Indicates a sign, positive or negative

V
Implies a decimal point

© Copyright IBM Corp. 2021, 2023 35



The s in the following example means that the value is signed:

05  Price  Pic s99v99.

The field can therefore hold a positive or a negative value. The v indicates the position of an implied
decimal point, but does not contribute to the size of the item because it does not require a storage
position. An s usually does not contribute to the size of a numeric item, because by default s does not
require a storage position.

However, if you plan to port your program or data to a different machine, you might want to code the sign
for a zoned decimal data item as a separate position in storage. In the following case, the sign takes 1
byte:

05  Price  Pic s99V99  Sign Is Leading, Separate.

This coding ensures that the convention your machine uses for storing a nonseparate sign will not cause
unexpected results on a machine that uses a different convention.

Separate signs are also preferable for zoned decimal data items that will be printed or displayed.

Separate signs are required for national decimal data items that are signed. The sign takes 2 bytes of
storage, as in the following example:

05 Price Pic s99V99 Usage National Sign Is Leading, Separate.

You cannot use the PICTURE clause with internal floating-point data (COMP-1 or COMP-2). However, you
can use the VALUE clause to provide an initial value for an internal floating-point literal:

05  Compute-result  Usage Comp-2  Value 06.23E-24.

For information about external floating-point data, see the examples referenced below and the related
concept about formats for numeric data.

“Examples: numeric data and internal representation” on page 42

Related concepts   
“Formats for numeric
data” on page 39  
Appendix C, “Intermediate results
and arithmetic precision,” on page 527 

Related tasks   
“Displaying numeric data” on page 37  
“Controlling how numeric
data is stored” on page 38  
“Performing arithmetic” on page 48  
“Defining national numeric
data items” on page 185 

Related references   
“Sign representation
of zoned and packed-decimal data” on page 47  
“Storage of character
data” on page 192  
“ARITH” on page 253  
SIGN clause (COBOL for Linux on x86 Language Reference)

36  IBM COBOL for Linux on x86 1.1: Programming Guide



Displaying numeric data
You can define numeric items with certain editing symbols (such as decimal points, commas, dollar signs,
and debit or credit signs) to make the items easier to read and understand when you display or print
them.

For example, in the code below, Edited-price is a numeric-edited item that has USAGE DISPLAY. (You
can specify the clause USAGE IS DISPLAY for numeric-edited items; however, it is implied. It means
that the items are stored in character format.)

05  Price          Pic     9(5)v99.
05  Edited-price   Pic  $zz,zz9.99.
. . .
Move Price To Edited-price
Display Edited-price

If the contents of Price are 0150099 (representing the value 1,500.99), $ 1,500.99 is displayed when
you run the code. The z in the PICTURE clause of Edited-price indicates the suppression of leading
zeros.

You can define numeric-edited data items to hold national (UTF-16) characters instead of alphanumeric
characters. To do so, define the numeric-edited items as USAGE NATIONAL. The effect of the editing
symbols is the same for numeric-edited items that have USAGE NATIONAL as it is for numeric-edited
items that have USAGE DISPLAY, except that the editing is done with national characters. For example,
if Edited-price is declared as USAGE NATIONAL in the code above, the item is edited and displayed
using national characters.

You can cause an elementary numeric or numeric-edited item to be filled with spaces when a value of
zero is stored into it by coding the BLANK WHEN ZERO clause for the item. For example, each of the
DISPLAY statements below causes blanks to be displayed instead of zeros:

05 Price           Pic     9(5)v99.
05 Edited-price-D  Pic  $99,999.99
       Blank When Zero.
05 Edited-price-N  Pic  $99,999.99 Usage National
       Blank When Zero.
. . .  
Move 0 to Price
Move Price to Edited-price-D
Move Price to Edited-price-N
Display Edited-price-D
Display Edited-price-N

You cannot use numeric-edited items as sending operands in arithmetic expressions or in ADD,
SUBTRACT, MULTIPLY, DIVIDE, or COMPUTE statements. (Numeric editing takes place when a numeric-
edited item is the receiving field for one of these statements, or when a MOVE statement has a numeric-
edited receiving field and a numeric-edited or numeric sending field.) You use numeric-edited items
primarily for displaying or printing numeric data.

You can move numeric-edited items to numeric or numeric-edited items. In the following example, the
value of the numeric-edited item (whether it has USAGE DISPLAY or USAGE NATIONAL) is moved to the
numeric item:

Move Edited-price to Price
Display Price

If these two statements immediately followed the statements in the first example above, then Price
would be displayed as 0150099, representing the value 1,500.99. Price would also be displayed as
0150099 if Edited-price had USAGE NATIONAL.

Chapter 3. Working with numbers and arithmetic  37



You can also move numeric-edited items to alphanumeric, alphanumeric-edited, floating-point, and
national data items. For a complete list of the valid receiving items for numeric-edited data, see the
related reference about the MOVE statement.

“Examples: numeric data and internal representation” on page 42

Related tasks   
“Displaying values on a
screen or in a file (DISPLAY)” on page 31  
“Controlling how numeric
data is stored” on page 38  
“Defining numeric data” on page 35  
“Performing arithmetic” on page 48  
“Defining national numeric
data items” on page 185  
“Converting to or from national (Unicode) representation” on page 186 

Related references   
MOVE statement (COBOL for Linux on x86 Language Reference)  
BLANK WHEN ZERO clause (COBOL for Linux on x86 Language Reference)

Controlling how numeric data is stored
You can control how the computer stores numeric data items by coding the USAGE clause in your data
description entries.

You might want to control the format for any of several reasons such as these:

• Arithmetic performed with computational data types is more efficient than with USAGE DISPLAY or
USAGE NATIONAL data types.

• Packed-decimal format requires less storage per digit than USAGE DISPLAY or USAGE NATIONAL data
types.

• Packed-decimal format converts to and from DISPLAY or NATIONAL format more efficiently than binary
format does.

• Floating-point format is well suited for arithmetic operands and results with widely varying scale, while
maintaining the maximal number of significant digits.

• You might need to preserve data formats when you move data from one machine to another.

The numeric data you use in your program will have one of the following formats available with COBOL:

• External decimal (USAGE DISPLAY or USAGE NATIONAL)
• External floating point (USAGE DISPLAY or USAGE NATIONAL)
• Internal decimal (USAGE PACKED-DECIMAL)
• Binary (USAGE BINARY)
• Native binary (USAGE COMP-5)
• Internal floating point (USAGE COMP-1 or USAGE COMP-2)

COMP and COMP-4 are synonymous with BINARY, and COMP-3 is synonymous with PACKED-DECIMAL.

The compiler converts displayable numbers to the internal representation of their numeric values before
using them in arithmetic operations. Therefore it is often more efficient if you define data items as
BINARY or PACKED-DECIMAL than as DISPLAY or NATIONAL. For example:

05  Initial-count   Pic S9(4)  Usage Binary   Value 1000.

Regardless of which USAGE clause you use to control the internal representation of a value, you use the
same PICTURE clause conventions and decimal value in the VALUE clause (except for internal floating-
point data, for which you cannot use a PICTURE clause).

38  IBM COBOL for Linux on x86 1.1: Programming Guide



“Examples: numeric data and internal representation” on page 42

Related concepts   
“Formats for numeric
data” on page 39  
“Data format conversions” on page 46  
Appendix C, “Intermediate results
and arithmetic precision,” on page 527 

Related tasks   
“Defining numeric data” on page 35  
“Displaying numeric data” on page 37  
“Performing arithmetic” on page 48 

Related references   
“Conversions and precision” on page 47  
“Sign representation
of zoned and packed-decimal data” on page 47 

Formats for numeric data
Several formats are available for numeric data.

External decimal (DISPLAY and NATIONAL) items
When USAGE DISPLAY is in effect for a category numeric data item (either because you have coded it, or
by default), each position (byte) of storage contains one decimal digit. The items are stored in displayable
form. External decimal items that have USAGE DISPLAY are referred to as zoned decimal data items.

When USAGE NATIONAL is in effect for a category numeric data item, 2 bytes of storage are required
for each decimal digit. The items are stored in UTF-16 format. External decimal items that have USAGE
NATIONAL are referred to as national decimal data items.

National decimal data items, if signed, must have the SIGN SEPARATE clause in effect. All other rules for
zoned decimal items apply to national decimal items. You can use national decimal items anywhere that
other category numeric data items can be used.

External decimal (both zoned decimal and national decimal) data items are primarily intended for
receiving and sending numbers between your program and files, terminals, or printers. You can also
use external decimal items as operands and receivers in arithmetic processing. However, if your program
performs a lot of intensive arithmetic, and efficiency is a high priority, COBOL's computational numeric
types might be a better choice for the data items used in the arithmetic.

External floating-point (DISPLAY and NATIONAL) items
When USAGE DISPLAY is in effect for a floating-point data item (either because you have coded it, or
by default), each PICTURE character position (except for v, an implied decimal point, if used) takes 1
byte of storage. The items are stored in displayable form. External floating-point items that have USAGE
DISPLAY are referred to as display floating-point data items in this information when necessary to
distinguish them from external floating-point items that have USAGE NATIONAL.

In the following example, Compute-Result is implicitly defined as a display floating-point item:

05  Compute-Result  Pic -9v9(9)E-99.

The minus signs (-) do not mean that the mantissa and exponent must necessarily be negative numbers.
Instead, they mean that when the number is displayed, the sign appears as a blank for positive numbers
or a minus sign for negative numbers. If you instead code a plus sign (+), the sign appears as a plus sign
for positive numbers or a minus sign for negative numbers.

Chapter 3. Working with numbers and arithmetic  39



When USAGE NATIONAL is in effect for a floating-point data item, each PICTURE character position
(except for v, if used) takes 2 bytes of storage. The items are stored as national characters (UTF-16).
External floating-point items that have USAGE NATIONAL are referred to as national floating-point data
items.

The existing rules for display floating-point items apply to national floating-point items.

In the following example, Compute-Result-N is a national floating-point item:

05  Compute-Result-N  Pic -9v9(9)E-99  Usage National.

If Compute-Result-N is displayed, the signs appear as described above for Compute-Result, but in
national characters.

You cannot use the VALUE clause for external floating-point items.

As with external decimal numbers, external floating-point numbers have to be converted (by the
compiler) to an internal representation of their numeric value before they can be used in arithmetic
operations. If you compile with the default option ARITH (COMPAT), external floating-point numbers are
converted to long (64-bit) floating-point format. If you compile with ARITH (EXTEND), they are instead
converted to extended-precision (128-bit) floating-point format.

Binary (COMP) items
BINARY, COMP, and COMP-4 are synonyms. Binary-format numbers occupy 2, 4, or 8 bytes of storage. If
the PICTURE clause specifies that an item is signed, the leftmost bit is used as the operational sign.

A binary number with a PICTURE description of four or fewer decimal digits occupies 2 bytes; five to nine
decimal digits, 4 bytes; and 10 to 18 decimal digits, 8 bytes. Binary items with nine or more digits require
more handling by the compiler.

You can use binary items, for example, for indexes, subscripts, switches, and arithmetic operands or
results.

Use the TRUNC(STD|OPT|BIN) compiler option to indicate how binary data (BINARY, COMP, or COMP-4)
is to be truncated.

Native binary (COMP-5) items
Data items that you define as USAGE COMP-5 are represented in storage as binary data. However,
unlike USAGE COMP items, they can contain values of magnitude up to the capacity of the native binary
representation (2, 4, or 8 bytes) rather than being limited to the value implied by the number of 9s in the
PICTURE clause.

When you move or store numeric data into a COMP-5 item, truncation occurs at the binary field size rather
than at the COBOL PICTURE size limit. When you reference a COMP-5 item, the full binary field size is
used in the operation.

COMP-5 is thus particularly useful for binary data items that originate in non-COBOL programs where the
data might not conform to a COBOL PICTURE clause.

The table below shows the ranges of possible values for COMP-5 data items.

Table 3. Ranges in value of COMP-5 data items

PICTURE Storage representation Numeric values

S9(1) through S9(4) Binary halfword (2 bytes) -32768 through +32767

S9(5) through S9(9) Binary fullword (4 bytes) -2,147,483,648 through +2,147,483,647

S9(10) through
S9(18)

Binary doubleword (8 bytes) -9,223,372,036,854,775,808 through
+9,223,372,036,854,775,807

40  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 3. Ranges in value of COMP-5 data items (continued)

PICTURE Storage representation Numeric values

9(1) through 9(4) Binary halfword (2 bytes) 0 through 65535

9(5) through 9(9) Binary fullword (4 bytes) 0 through 4,294,967,295

9(10) through 9(18) Binary doubleword (8 bytes) 0 through 18,446,744,073,709,551,615

You can specify scaling (that is, decimal positions or implied integer positions) in the PICTURE clause
of COMP-5 items. If you do so, you must appropriately scale the maximal capacities listed above. For
example, a data item you describe as PICTURE S99V99 COMP-5 is represented in storage as a binary
halfword, and supports a range of values from -327.68 through +327.67.

Large literals in VALUE clauses: Literals specified in VALUE clauses for COMP-5 items can, with a few
exceptions, contain values of magnitude up to the capacity of the native binary representation. See COBOL
for Linux on x86 Language Reference for the exceptions.

Regardless of the setting of the TRUNC compiler option, COMP-5 data items behave like binary data does
in programs compiled with TRUNC(BIN).

Packed-decimal (COMP-3) items
PACKED-DECIMAL and COMP-3 are synonyms. Packed-decimal items occupy 1 byte of storage for every
two decimal digits you code in the PICTURE description, except that the rightmost byte contains only one
digit and the sign. This format is most efficient when you code an odd number of digits in the PICTURE
description, so that the leftmost byte is fully used. Packed-decimal items are handled as fixed-point
numbers for arithmetic purposes.

Internal floating-point (COMP-1 and COMP-2) items
COMP-1 refers to short floating-point format and COMP-2 refers to long floating-point format, which
occupy 4 and 8 bytes of storage, respectively.

COMP-1 and COMP-2 data items are represented in IEEE format if the FLOAT(NATIVE) compiler option
(the default) is in effect. If FLOAT(BE) is in effect, COMP-1 and COMP-2 data items are represented
consistently with System z®, that is, in hexadecimal floating-point format. For details, see the related
reference about the FLOAT option.

Related concepts   
“Unicode and the encoding
of language characters” on page 178  
Appendix C, “Intermediate results
and arithmetic precision,” on page 527 

Related tasks   
“Defining numeric data” on page 35  
“Defining national numeric
data items” on page 185 

Related references   
“Storage of character
data” on page 192  
“TRUNC” on page 285  
“FLOAT” on page 269  
Classes and categories of data (COBOL for Linux on x86 Language Reference)  
SIGN clause (COBOL for Linux on x86 Language Reference)  
VALUE clause (COBOL for Linux on x86 Language Reference)

Chapter 3. Working with numbers and arithmetic  41



Examples: numeric data and internal representation
The following tables show the internal representation of numeric items.

The following table shows the internal representation of numeric items for binary data types.

Table 4. Internal representation of binary numeric items

Numeric type PICTURE and USAGE and
optional SIGN clause

Value Internal representation

Binary
PIC S9999 BINARY
PIC S9999 COMP
PIC S9999 COMP-4 

+ 1234    D2 04

- 1234    2E FB

PIC S9999 COMP-5 + 123451    39 30

- 123451    C7 CF

PIC 9999  BINARY
PIC 9999  COMP
PIC 9999  COMP-4 

  1234    D2 04

PIC 9999  COMP-5   600001    60 EA

1. The example demonstrates that COMP-5 data items can contain values of magnitude up to the capacity
of the native binary representation (2, 4, or 8 bytes), rather than being limited to the value implied by the
number of 9s in the PICTURE clause.

The following table shows the internal representation of numeric items in native data format. Assume that
the CHAR(NATIVE) and FLOAT(NATIVE) compiler options are in effect.

42  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 5. Internal representation of native numeric items

Numeric type PICTURE and USAGE and
optional SIGN clause

Value Internal representation

External
decimal

PIC S9999 DISPLAY + 1234    31 32 33 34

- 1234    31 32 33 74

  1234    31 32 33 34

PIC 9999 DISPLAY   1234    31 32 33 34

PIC 9999 NATIONAL   1234 31 00 32 00 33 00 34 00

PIC S9999 DISPLAY
  SIGN LEADING 

+ 1234    31 32 33 34

- 1234    71 32 33 34

PIC S9999 DISPLAY
  SIGN LEADING SEPARATE 

+ 1234 2B 31 32 33 34

- 1234 2D 31 32 33 34

PIC S9999 DISPLAY
  SIGN TRAILING 
SEPARATE 

+ 1234    31 32 33 34 2B

- 1234    31 32 33 34 2D

PIC S9999 NATIONAL
   SIGN LEADING 
SEPARATE

+ 1234 2B 00 31 00 32 00 33 00 34
00

- 1234 2D 00 31 00 32 00 33 00 34
00

PIC S9999 NATIONAL
   SIGN TRAILING 
SEPARATE

+ 1234 31 00 32 00 33 00 34 00 2B
00

- 1234 31 00 32 00 33 00 34 00 2D
00

Internal
decimal PIC S9999 PACKED-

DECIMAL
PIC S9999 COMP-3 

+ 1234    01 23 4C

- 1234    01 23 4D

PIC 9999  PACKED-
DECIMAL
PIC 9999  COMP-3 

  1234    01 23 4C

Internal
floating point

COMP-1 + 1234 00 40 9A 44

- 1234 00 40 9A C4

COMP-2 + 1234 00 00 00 00 00 48 93 40

- 1234 00 00 00 00 00 48 93 C0

Chapter 3. Working with numbers and arithmetic  43



Table 5. Internal representation of native numeric items (continued)

Numeric type PICTURE and USAGE and
optional SIGN clause

Value Internal representation

External
floating point

PIC +9(2).9(2)E+99
DISPLAY

+ 12.34E+02 2B 31 32 2E 33 34 45 2B 30
32

- 12.34E+02 2D 31 32 2E 33 34 45 2B 30
32

PIC +9(2).9(2)E+99
NATIONAL

+ 12.34E+02
2B 00 31 00 32 00 2E 00 33 
00
34 00 45 00 2B 00 30 00 32 
00

- 12.34E+02
2D 00 31 00 32 00 2E 00 33 
00
34 00 45 00 2B 00 30 00 32 
00

The following table shows the internal representation of numeric items in IBM Z® host data format.
Assume that the CHAR(EBCDIC) and FLOAT(BE) compiler options are in effect.

44  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 6. Internal representation of numeric items when CHAR(EBCDIC) and FLOAT(BE) are in effect

Numeric type PICTURE and USAGE and
optional SIGN clause

Value Internal representation

External
decimal

PIC S9999 DISPLAY + 1234    F1 F2 F3 C4

- 1234    F1 F2 F3 D4

  1234    F1 F2 F3 C4

PIC 9999 DISPLAY   1234    F1 F2 F3 F4

PIC 9999 NATIONAL   1234 00 31 00 32 00 33 00 34

PIC S9999 DISPLAY
  SIGN LEADING 

+ 1234    C1 F2 F3 F4

- 1234    D1 F2 F3 F4

PIC S9999 DISPLAY
  SIGN LEADING SEPARATE 

+ 1234 4E F1 F2 F3 F4

- 1234 60 F1 F2 F3 F4

PIC S9999 DISPLAY
  SIGN TRAILING 
SEPARATE 

+ 1234    F1 F2 F3 F4 4E

- 1234    F1 F2 F3 F4 60

PIC S9999 NATIONAL
   SIGN LEADING 
SEPARATE

+ 1234 00 2B 00 31 00 32 00 33 00
34

- 1234 00 2D 00 31 00 32 00 33 00
34

PIC S9999 NATIONAL
   SIGN TRAILING 
SEPARATE

+ 1234 00 31 00 32 00 33 00 34 00
2B

- 1234 00 31 00 32 00 33 00 34 00
2D

Internal
decimal PIC S9999 PACKED-

DECIMAL
PIC S9999 COMP-3 

+ 1234    01 23 4C

- 1234    01 23 4D

PIC 9999  PACKED-
DECIMAL
PIC 9999  COMP-3 

  1234    01 23 4C

Internal
floating point

COMP-1 + 1234 43 4D 20 00

- 1234 C3 4D 20 00

COMP-2 + 1234 43 4D 20 00 00 00 00 00

- 1234 C3 4D 20 00 00 00 00 00

Chapter 3. Working with numbers and arithmetic  45



Table 6. Internal representation of numeric items when CHAR(EBCDIC) and FLOAT(BE) are in effect
(continued)

Numeric type PICTURE and USAGE and
optional SIGN clause

Value Internal representation

External
floating point

PIC +9(2).9(2)E+99
DISPLAY

+ 12.34E+02 4E F1 F2 4B F3 F4 C5 4E F0
F2

- 12.34E+02 60 F1 F2 4B F3 F4 C5 4E F0
F2

PIC +9(2).9(2)E+99
NATIONAL

+ 12.34E+02
00 2B 00 31 00 32 00 2E 00 
33
00 34 00 45 00 2B 00 30 00 
32

- 12.34E+02
00 2D 00 31 00 32 00 2E 00 
33
00 34 00 45 00 2B 00 30 00 
32

Data format conversions
When the code in your program involves the interaction of items that have different data formats,
the compiler converts those items either temporarily, for comparisons and arithmetic operations, or
permanently, for assignment to the receiver in a MOVE, COMPUTE, or other arithmetic statement.

A conversion is actually a move of a value from one data item to another. The compiler performs any
conversions that are required during the execution of arithmetic or comparisons by using the same rules
that are used for MOVE and COMPUTE statements.

When possible, the compiler performs a move to preserve numeric value instead of a direct digit-for-digit
move.

Conversion generally requires additional storage and processing time because data is moved to an
internal work area and converted before the operation is performed. The results might also have to be
moved back into a work area and converted again.

Conversions between fixed-point data formats (external decimal, packed decimal, or binary) are without
loss of precision provided that the target field can contain all the digits of the source operand.

A loss of precision is possible in conversions between fixed-point data formats and floating-point data
formats (short floating point, long floating point, or external floating point). These conversions happen
during arithmetic evaluations that have a mixture of both fixed-point and floating-point operands.

Related references   
“Conversions and precision” on page 47  
“Sign representation
of zoned and packed-decimal data” on page 47 

46  IBM COBOL for Linux on x86 1.1: Programming Guide



Conversions and precision
In some numeric conversions, a loss of precision is possible; other conversions preserve precision or
result in rounding.

Because both fixed-point and external floating-point items have decimal characteristics, references to
fixed-point items in the following examples include external floating-point items unless stated otherwise.

When the compiler converts from fixed-point to internal floating-point format, fixed-point numbers in
base 10 are converted to the numbering system used internally.

When the compiler converts short form to long form for comparisons, zeros are used for padding the
shorter number.

Conversions that lose precision
When a USAGE COMP-2 data item is moved to a fixed-point data item that has more than 18 digits, the
fixed-point data item will receive only 18 significant digits, and the remaining digits will be zero.

When a USAGE COMP-1 data item is moved to a fixed-point data item that has more than six digits, the
fixed-point data item will receive only six significant digits, and the remaining digits will be zero.

Conversions that preserve precision
If a fixed-point data item that has six or fewer digits is moved to a USAGE COMP-1 data item and then
returned to the fixed-point data item, the original value is recovered.

If a USAGE COMP-1 data item is moved to a fixed-point data item of six or more digits and then returned
to the USAGE COMP-1 data item, the original value is recovered.

If a fixed-point data item that has 15 or fewer digits is moved to a USAGE COMP-2 data item and then
returned to the fixed-point data item, the original value is recovered.

If a USAGE COMP-2 data item is moved to a fixed-point (not external floating-point) data item of 18 or
more digits and then returned to the USAGE COMP-2 data item, the original value is recovered.

Conversions that result in rounding
If a USAGE COMP-1 data item, a USAGE COMP-2 data item, an external floating-point data item, or a
floating-point literal is moved to a fixed-point data item, rounding occurs in the low-order position of
the target data item. Fractional values .5 and greater are rounded up; fractional values less than .5 are
rounded down.

If a USAGE COMP-2 data item is moved to a USAGE COMP-1 data item, rounding occurs in the low-order
position of the target data item.

If a fixed-point data item is moved to an external floating-point data item and the PICTURE of the
fixed-point data item contains more digit positions than the PICTURE of the external floating-point data
item, rounding occurs in the low-order position of the target data item.

Related concepts   
Appendix C, “Intermediate results
and arithmetic precision,” on page 527 

Sign representation of zoned and packed-decimal data
Sign representation affects the processing and interaction of zoned decimal and internal decimal data.

Given X'sd', where s is the sign representation and d represents the digit, the valid sign representations
for zoned decimal (USAGE DISPLAY) data without the SIGN IS SEPARATE clause are:

Positive:
3, C, and F

Chapter 3. Working with numbers and arithmetic  47



Negative:
7 and D

When the CHAR(NATIVE) compiler option is in effect, signs generated internally are 3 for positive and
unsigned, and 7 for negative.

When the CHAR(EBCDIC) compiler option is in effect, signs generated internally are C for positive, F for
unsigned, and D for negative.

Given X'ds', where d represents the digit and s is the sign representation, the valid sign representations
for internal decimal (USAGE PACKED-DECIMAL) data are:

Positive:
A, C, E, and F

Negative:
B and D

Signs generated internally are C for positive and unsigned, and D for negative.

The sign representation of unsigned internal decimal numbers is different between COBOL for Linux and
host COBOL. Host COBOL generates F internally as the sign of unsigned internal decimal numbers.

Related references   
“ZWB” on page 290  
“Data representation” on page 517

Checking for incompatible data (numeric class test)
The compiler assumes that values you supply for a data item are valid for the PICTURE and USAGE
clauses, and does not check their validity. Ensure that the contents of a data item conform to the
PICTURE and USAGE clauses before using the item in additional processing.

It can happen that values are passed into your program and assigned to items that have incompatible
data descriptions for those values. For example, nonnumeric data might be moved or passed into a field
that is defined as numeric, or a signed number might be passed into a field that is defined as unsigned.
In either case, the receiving fields contain invalid data. When you give an item a value that is incompatible
with its data description, references to that item in the PROCEDURE DIVISION are undefined and your
results are unpredictable.

You can use the numeric class test to perform data validation. For example:

Linkage Section.
01  Count-x   Pic 999.
. . .
Procedure Division Using Count-x.
    If Count-x is numeric then display "Data is good"

The numeric class test checks the contents of a data item against a set of values that are valid for the
PICTURE and USAGE of the data item.

Performing arithmetic
You can use any of several COBOL language features (including COMPUTE, arithmetic expressions,
numeric intrinsic functions, and date/time callable services) to perform arithmetic. Your choice depends
on whether a feature meets your particular needs.

For most common arithmetic evaluations, the COMPUTE statement is appropriate. If you need to use
numeric literals, numeric data, or arithmetic operators, you might want to use arithmetic expressions. In
places where numeric expressions are allowed, you can save time by using numeric intrinsic functions.

48  IBM COBOL for Linux on x86 1.1: Programming Guide



Related tasks   
“Using COMPUTE and other
arithmetic statements” on page 49  
“Using arithmetic expressions” on page 50  
“Using numeric intrinsic
functions” on page 50

Using COMPUTE and other arithmetic statements
Use the COMPUTE statement for most arithmetic evaluations rather than ADD, SUBTRACT, MULTIPLY,
and DIVIDE statements. Often you can code only one COMPUTE statement instead of several individual
arithmetic statements.

The COMPUTE statement assigns the result of an arithmetic expression to one or more data items:

Compute z     = a + b / c ** d - e
Compute x y z = a + b / c ** d - e

Some arithmetic calculations might be more intuitive using arithmetic statements other than COMPUTE.
For example:

COMPUTE Equivalent arithmetic statements

Compute Increment = Increment + 1 Add 1 to Increment

Compute Balance =
    Balance - Overdraft

Subtract Overdraft from Balance

Compute IncrementOne =
    IncrementOne + 1
Compute IncrementTwo =
    IncrementTwo + 1
Compute IncrementThree =
    IncrementThree + 1

Add 1 to IncrementOne,
    IncrementTwo,
    IncrementThree

You might also prefer to use the DIVIDE statement (with its REMAINDER phrase) for division in which you
want to process a remainder. The REM intrinsic function also provides the ability to process a remainder.

When you perform arithmetic calculations, you can use national decimal data items as operands just as
you use zoned decimal data items. You can also use national floating-point data items as operands just as
you use display floating-point operands.

Related concepts   
“Fixed-point contrasted
with floating-point arithmetic” on page 53  
Appendix C, “Intermediate results
and arithmetic precision,” on page 527 

Related tasks   
“Defining numeric data” on page 35 

Chapter 3. Working with numbers and arithmetic  49



Using arithmetic expressions
You can use arithmetic expressions in many (but not all) places in statements where numeric data items
are allowed.

For example, you can use arithmetic expressions as comparands in relation conditions:

If (a + b) > (c - d + 5) Then. . .

Arithmetic expressions can consist of a single numeric literal, a single numeric data item, or a single
intrinsic function reference. They can also consist of several of these items connected by arithmetic
operators.

Arithmetic operators are evaluated in the following order of precedence:

Table 7. Order of evaluation of arithmetic operators

Operator Meaning Order of evaluation

Unary + or - Algebraic sign First

** Exponentiation Second

/ or * Division or multiplication Third

Binary + or - Addition or subtraction Last

Operators at the same level of precedence are evaluated from left to right; however, you can use
parentheses to change the order of evaluation. Expressions in parentheses are evaluated before the
individual operators are evaluated. Parentheses, whether necessary or not, make your program easier to
read.

Related concepts   
“Fixed-point contrasted
with floating-point arithmetic” on page 53  
Appendix C, “Intermediate results
and arithmetic precision,” on page 527 

Using numeric intrinsic functions
You can use numeric intrinsic functions only in places where numeric expressions are allowed. These
functions can save you time because you don't have to code the many common types of calculations that
they provide.

Numeric intrinsic functions return a signed numeric value, and are treated as temporary numeric data
items.

Numeric functions are classified into the following categories:

Integer
Those that return an integer

Floating point
Those that return a long (64-bit) or extended-precision (128-bit) floating-point value (depending on
whether you compile using the default option ARITH(COMPAT) or using ARITH(EXTEND))

Mixed
Those that return an integer, a floating-point value, or a fixed-point number with decimal places,
depending on the arguments

You can use intrinsic functions to perform several different arithmetic operations, as outlined in the
following table.

50  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 8. Numeric intrinsic functions

Number
handling

Date and time Finance Mathematics Statistics

LENGTH
MAX
MIN
NUMVAL
NUMVAL-C

ORD-MAX
ORD-MIN 

ADD-DURATION
CONVERT-DATE-TIME
CURRENT-DATE
DATE-OF-INTEGER
DATE-TO-YYYYMMDD
DATEVAL
DAY-OF-INTEGER
DAY-TO-YYYYDDD
EXTRACT-DATE-TIME
FIND-DURATION
INTEGER-OF-DATE
INTEGER-OF-DAY
UNDATE
SUBTRACT-DURATION
TEST-DATE-TIME
WHEN-COMPILED
YEAR-TO-YYYY
YEARWINDOW 

ANNUITY
PRESENT-VALUE 

ACOS
ASIN
ATAN
COS
FACTORIAL
INTEGER
INTEGER-PART
LOG
LOG10
MOD
REM
SIN
SQRT
SUM
TAN 

MEAN
MEDIAN
MIDRANGE
RANDOM
RANGE
STANDARD-DEVIATION
VARIANCE 

“Examples: numeric intrinsic functions” on page 51

You can reference one function as the argument of another. A nested function is evaluated independently
of the outer function (except when the compiler determines whether a mixed function should be
evaluated using fixed-point or floating-point instructions).

You can also nest an arithmetic expression as an argument to a numeric function. For example, in the
statement below, there are three function arguments (a, b, and the arithmetic expression (c / d)):

Compute x = Function Sum(a b (c / d))

You can reference all the elements of a table (or array) as function arguments by using the ALL subscript.

You can also use the integer special registers as arguments wherever integer arguments are allowed.

Related concepts   
“Fixed-point contrasted
with floating-point arithmetic” on page 53  
Appendix C, “Intermediate results
and arithmetic precision,” on page 527 

Related references   
“ARITH” on page 253 

Examples: numeric intrinsic functions
The following examples and accompanying explanations show intrinsic functions in each of several
categories.

Where the examples below show zoned decimal data items, national decimal items could instead be
used. (Signed national decimal items, however, require that the SIGN SEPARATE clause be in effect.)

Chapter 3. Working with numbers and arithmetic  51



General number handling
Suppose you want to find the maximum value of two prices (represented below as alphanumeric items
with dollar signs), put this value into a numeric field in an output record, and determine the length of the
output record. You can use NUMVAL-C (a function that returns the numeric value of an alphanumeric or
national literal, or an alphanumeric or national data item) and the MAX and LENGTH functions to do so:

01  X                   Pic 9(2).
01  Price1              Pic x(8)   Value "$8000".
01  Price2              Pic x(8)   Value "$2000".
01  Output-Record.
    05  Product-Name    Pic x(20).
    05  Product-Number  Pic 9(9).
    05  Product-Price   Pic 9(6).
. . .
Procedure Division.
    Compute Product-Price =
      Function Max (Function Numval-C(Price1) Function Numval-C(Price2))
    Compute X = Function Length(Output-Record)

Additionally, to ensure that the contents in Product-Name are in uppercase letters, you can use the
following statement:

Move Function Upper-case (Product-Name) to Product-Name

Date and time
The following example shows how to calculate a due date that is 90 days from today. The first eight
characters returned by the CURRENT-DATE function represent the date in a four-digit year, two-digit
month, and two-digit day format (YYYYMMDD). The date is converted to its integer value; then 90 is added
to this value and the integer is converted back to the YYYYMMDD format. 

01  YYYYMMDD         Pic 9(8).
01  Integer-Form     Pic S9(9).
. . .
    Move Function Current-Date(1:8) to YYYYMMDD
    Compute Integer-Form = Function Integer-of-Date(YYYYMMDD)
    Add 90 to Integer-Form
    Compute YYYYMMDD = Function Date-of-Integer(Integer-Form)
    Display 'Due Date: ' YYYYMMDD

Finance
Business investment decisions frequently require computing the present value of expected future cash
inflows to evaluate the profitability of a planned investment. The present value of an amount that you
expect to receive at a given time in the future is that amount, which, if invested today at a given interest
rate, would accumulate to that future amount.

For example, assume that a proposed investment of $1,000 produces a payment stream of $100, $200,
and $300 over the next three years, one payment per year respectively. The following COBOL statements
calculate the present value of those cash inflows at a 10% interest rate: 

01  Series-Amt1      Pic 9(9)V99       Value 100.
01  Series-Amt2      Pic 9(9)V99       Value 200.
01  Series-Amt3      Pic 9(9)V99       Value 300.
01  Discount-Rate    Pic S9(2)V9(6)    Value .10.
01  Todays-Value     Pic 9(9)V99.
. . .
    Compute Todays-Value =
      Function
        Present-Value(Discount-Rate Series-Amt1 Series-Amt2 Series-Amt3)

You can use the ANNUITY function in business problems that require you to determine the amount of
an installment payment (annuity) necessary to repay the principal and interest of a loan. The series of

52  IBM COBOL for Linux on x86 1.1: Programming Guide



payments is characterized by an equal amount each period, periods of equal length, and an equal interest
rate each period. The following example shows how you can calculate the monthly payment required to
repay a $15,000 loan in three years at a 12% annual interest rate (36 monthly payments, interest per
month = .12/12):

01  Loan             Pic 9(9)V99.
01  Payment          Pic 9(9)V99.
01  Interest         Pic 9(9)V99.
01  Number-Periods   Pic 99.
. . .
    Compute Loan = 15000
    Compute Interest = .12
    Compute Number-Periods = 36
    Compute Payment =
      Loan * Function Annuity((Interest / 12) Number-Periods)

Mathematics
The following COBOL statement demonstrates that you can nest intrinsic functions, use arithmetic
expressions as arguments, and perform previously complex calculations simply:

Compute Z = Function Log(Function Sqrt (2 * X + 1)) + Function Rem(X 2)

Here in the addend the intrinsic function REM (instead of a DIVIDE statement with a REMAINDER clause)
returns the remainder of dividing X by 2.

Statistics
Intrinsic functions make calculating statistical information easier. Assume you are analyzing various city
taxes and want to calculate the mean, median, and range (the difference between the maximum and
minimum taxes):

01  Tax-S            Pic 99v999 value .045.
01  Tax-T            Pic 99v999 value .02.
01  Tax-W            Pic 99v999 value .035.
01  Tax-B            Pic 99v999 value .03.
01  Ave-Tax          Pic 99v999.
01  Median-Tax       Pic 99v999.
01  Tax-Range        Pic 99v999.
. . .
    Compute Ave-Tax    = Function Mean   (Tax-S Tax-T Tax-W Tax-B)
    Compute Median-Tax = Function Median (Tax-S Tax-T Tax-W Tax-B)
    Compute Tax-Range  = Function Range  (Tax-S Tax-T Tax-W Tax-B)

Related tasks   
“Converting to numbers (NUMVAL, NUMVAL-C)” on page 105 

Fixed-point contrasted with floating-point arithmetic
How you code arithmetic in a program (whether an arithmetic statement, an intrinsic function, an
expression, or some combination of these nested within each other) determines whether the evaluation is
done with floating-point or fixed-point arithmetic.

Many statements in a program could involve arithmetic. For example, each of the following types of
COBOL statements requires some arithmetic evaluation:

• General arithmetic

compute report-matrix-col = (emp-count ** .5) + 1
add report-matrix-min to report-matrix-max giving report-matrix-tot

• Expressions and functions

Chapter 3. Working with numbers and arithmetic  53



compute report-matrix-col = function sqrt(emp-count) + 1
compute whole-hours       = function integer-part((average-hours) + 1)

• Arithmetic comparisons

if report-matrix-col <     function sqrt(emp-count) + 1
if whole-hours       not = function integer-part((average-hours) + 1)

Floating-point evaluations
In general, if your arithmetic coding has either of the characteristics listed below, it is evaluated in
floating-point arithmetic:

• An operand or result field is floating point.

An operand is floating point if you code it as a floating-point literal or if you code it as a data item that
is defined as USAGE COMP-1, USAGE COMP-2, or external floating point (USAGE DISPLAY or USAGE
NATIONAL with a floating-point PICTURE).

An operand that is a nested arithmetic expression or a reference to a numeric intrinsic function results
in floating-point arithmetic when any of the following conditions is true:

– An argument in an arithmetic expression results in floating point.
– The function is a floating-point function.
– The function is a mixed function with one or more floating-point arguments.

• An exponent contains decimal places.

An exponent contains decimal places if you use a literal that contains decimal places, give the item a
PICTURE that contains decimal places, or use an arithmetic expression or function whose result has
decimal places.

An arithmetic expression or numeric function yields a result that has decimal places if any operand or
argument (excluding divisors and exponents) has decimal places.

Fixed-point evaluations
In general, if an arithmetic operation contains neither of the characteristics listed above for floating point,
the compiler causes it to be evaluated in fixed-point arithmetic. In other words, arithmetic evaluations
are handled as fixed point only if all the operands are fixed point, the result field is defined to be fixed
point, and none of the exponents represent values with decimal places. Nested arithmetic expressions
and function references must also represent fixed-point values.

Arithmetic comparisons (relation conditions)
When you compare numeric expressions using a relational operator, the numeric expressions (whether
they are data items, arithmetic expressions, function references, or some combination of these) are
comparands in the context of the entire evaluation. That is, the attributes of each can influence the
evaluation of the other: both expressions are evaluated in fixed point, or both are evaluated in floating
point. This is also true of abbreviated comparisons even though one comparand does not explicitly appear
in the comparison. For example:

if (a + d) = (b + e) and c

This statement has two comparisons: (a + d) = (b + e), and (a + d) = c. Although (a + d)
does not explicitly appear in the second comparison, it is a comparand in that comparison. Therefore, the
attributes of c can influence the evaluation of (a + d).

54  IBM COBOL for Linux on x86 1.1: Programming Guide



The compiler handles comparisons (and the evaluation of any arithmetic expressions nested in
comparisons) in floating-point arithmetic if either comparand is a floating-point value or resolves to a
floating-point value.

The compiler handles comparisons (and the evaluation of any arithmetic expressions nested in
comparisons) in fixed-point arithmetic if both comparands are fixed-point values or resolve to fixed-point
values.

Implicit comparisons (no relational operator used) are not handled as a unit, however; the two
comparands are treated separately as to their evaluation in floating-point or fixed-point arithmetic. In the
following example, five arithmetic expressions are evaluated independently of one another's attributes,
and then are compared to each other.

evaluate (a + d)
    when (b + e) thru c
    when (f / g) thru (h * i)
    . . .
end-evaluate

“Examples: fixed-point and floating-point evaluations” on page 55

Related references   
“Arithmetic expressions
in nonarithmetic statements” on page 535 

Examples: fixed-point and floating-point evaluations
The following example shows statements that are evaluated using fixed-point arithmetic and using
floating-point arithmetic.

Assume that you define the data items for an employee table in the following manner:

01  employee-table.
    05  emp-count         pic  9(4).
    05  employee-record occurs 1 to 1000 times
            depending on emp-count.
        10 hours          pic +9(5)ve+99.
. . .
01  report-matrix-col     pic  9(3).
01  report-matrix-min     pic  9(3).
01  report-matrix-max     pic  9(3).
01  report-matrix-tot     pic  9(3).
01  average-hours         pic  9(3)v9.
01  whole-hours           pic  9(4).

These statements are evaluated using floating-point arithmetic:

compute report-matrix-col = (emp-count ** .5) + 1
compute report-matrix-col = function sqrt(emp-count) + 1
if report-matrix-tot < function sqrt(emp-count) + 1

These statements are evaluated using fixed-point arithmetic:

add report-matrix-min to report-matrix-max giving report-matrix-tot
compute report-matrix-max =
    function max(report-matrix-max report-matrix-tot)
if whole-hours not = function integer-part((average-hours) + 1)

Chapter 3. Working with numbers and arithmetic  55



Using currency signs
Many programs need to process financial information and present that information using the appropriate
currency signs. With COBOL currency support (and the appropriate code page for your printer or display
unit), you can use several currency signs in a program.

You can use one or more of the following signs:

• Symbols such as the dollar sign ($)
• Currency signs of more than one character (such as USD or EUR)
• Euro sign, established by the Economic and Monetary Union (EMU)

To specify the symbols for displaying financial information, use the CURRENCY SIGN clause (in the
SPECIAL-NAMES paragraph in the CONFIGURATION SECTION) with the PICTURE characters that relate
to those symbols. In the following example, the PICTURE character $ indicates that the currency sign $US
is to be used:

    Currency Sign is "$US" with Picture Symbol "$".
    . . .
77  Invoice-Amount      Pic $$,$$9.99.
. . .
    Display "Invoice amount is " Invoice-Amount.

In this example, if Invoice-Amount contained 1500.00, the display output would be:

Invoice amount is  $US1,500.00

By using more than one CURRENCY SIGN clause in your program, you can allow for multiple currency
signs to be displayed.

You can use a hexadecimal literal to indicate the currency sign value. Using a hexadecimal literal could
be useful if the data-entry method for the source program does not allow the entry of the intended
characters easily. The following example shows the hexadecimal value X'80' used as the currency sign:

    Currency Sign X'80' with Picture Symbol 'U'.
    . . .
01  Deposit-Amount       Pic UUUUU9.99.

If there is no corresponding character for the euro sign on your keyboard, you need to specify it as a
hexadecimal value in the CURRENCY SIGN clause.

The hexadecimal value for the euro sign is X'80' with code page 1252 (Latin 1).

Related references   
“CURRENCY” on page 260  
CURRENCY SIGN clause (COBOL for Linux on x86 Language Reference)  

Example: multiple currency signs
The following example shows how you can display values in both euro currency (as EUR) and Swiss francs
(as CHF).

IDENTIFICATION DIVISION.
PROGRAM-ID. EuroSamp.
Environment Division.
Configuration Section.
Special-Names.
    Currency Sign is "CHF "  with Picture Symbol "F"
    Currency Sign is "EUR "  with Picture Symbol "U".

56  IBM COBOL for Linux on x86 1.1: Programming Guide



Data Division.
WORKING-STORAGE SECTION.
01  Deposit-in-Euro        Pic S9999V99 Value 8000.00.
01  Deposit-in-CHF         Pic S99999V99.
01  Deposit-Report.
    02  Report-in-Franc    Pic -FFFFF9.99.
    02  Report-in-Euro     Pic -UUUUU9.99.
01  EUR-to-CHF-Conv-Rate   Pic 9V99999  Value 1.53893.
. . .
PROCEDURE DIVISION.
Report-Deposit-in-CHF-and-EUR.
    Move Deposit-in-Euro to Report-in-Euro
    Compute Deposit-in-CHF Rounded
          = Deposit-in-Euro * EUR-to-CHF-Conv-Rate
      On Size Error
        Perform Conversion-Error
      Not On Size Error
        Move Deposit-in-CHF to Report-in-Franc
        Display "Deposit in euro  = " Report-in-Euro
        Display "Deposit in franc = " Report-in-Franc
    End-Compute
    Goback.
Conversion-Error.
           Display "Conversion error from EUR to CHF"
           Display "Euro value: " Report-in-Euro.

The above example produces the following display output:

Deposit in euro  =  EUR 8000.00
Deposit in franc = CHF 12311.44

The exchange rate used in this example is for illustrative purposes only.

Chapter 3. Working with numbers and arithmetic  57



58  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 4. Handling tables

A table is a collection of data items that have the same description, such as account totals or monthly
averages. A table consists of a table name and subordinate items called table elements. A table is the
COBOL equivalent of an array.

In the example above, SAMPLE-TABLE-ONE is the group item that contains the table. TABLE-COLUMN
names the table element of a one-dimensional table that occurs three times.

Rather than defining repetitious items as separate, consecutive entries in the DATA DIVISION, you use
the OCCURS clause in the DATA DIVISION entry to define a table. This practice has these advantages:

• The code clearly shows the unity of the items (the table elements).
• You can use subscripts and indexes to refer to the table elements.
• You can easily repeat data items.

Tables are important for increasing the speed of a program, especially a program that looks up records.

Related concepts   
“Complex OCCURS DEPENDING
ON” on page 73 

Related tasks   
“Defining a table (OCCURS)” on page 59  
“Nesting tables” on page 61  
“Referring to an item in
a table” on page 62  
“Putting values into a table” on page 65  
“Creating variable-length
tables (DEPENDING ON)” on page 70  
“Searching a table” on page 76  
“Processing table items
using intrinsic functions” on page 79  
  
“Handling tables efficiently” on page 497 

Defining a table (OCCURS)
To code a table, give the table a group name and define a subordinate item (the table element) to be
repeated n times.

01  table-name.
    05 element-name OCCURS n TIMES.
    . . . (subordinate items of the table element)

In the example above, table-name is the name of an alphanumeric group item. The table element
definition (which includes the OCCURS clause) is subordinate to the group item that contains the table.
The OCCURS clause cannot be used in a level-01 description.

© Copyright IBM Corp. 2021, 2023 59



If a table is to contain only Unicode (UTF-16) data, and you want the group item that contains the table to
behave like an elementary category national item in most operations, code the GROUP-USAGE NATIONAL
clause for the group item:

01  table-nameN Group-Usage National.
    05  element-nameN OCCURS m TIMES.
        10  elementN1  Pic nn.
        10  elementN2  Pic S99 Sign Is Leading, Separate.
        . . .

Any elementary item that is subordinate to a national group must be explicitly or implicitly described as
USAGE NATIONAL, and any subordinate numeric data item that is signed must be implicitly or explicitly
described with the SIGN IS SEPARATE clause.

To create tables of two to seven dimensions, use nested OCCURS clauses.

To create a variable-length table, code the DEPENDING ON phrase of the OCCURS clause.

To specify that table elements will be arranged in ascending or descending order based on the values in
one or more key fields of the table, code the ASCENDING or DESCENDING KEY phrases of the OCCURS
clause, or both. Specify the names of the keys in decreasing order of significance. Keys can be of class
alphabetic, alphanumeric, DBCS, national, or numeric. (If it has USAGE NATIONAL, a key can be of
category national, or can be a national-edited, numeric-edited, national decimal, or national floating-point
item.)

You must code the ASCENDING or DESCENDING KEY phrase of the OCCURS clause to do a binary search
(SEARCH ALL) of a table. You can use a format 2 SORT statement to order the table according to its
defined keys, thereby making the table searchable by the SEARCH ALL statement. Note that SEARCH
ALL will return unpredictable results if the table has not been ordered according to the keys.

“Example: binary search” on page 78

Related concepts   
“National groups” on page 185 

Related tasks   
“Nesting tables” on page 61  
“Referring to an item in
a table” on page 62  
“Putting values into a table” on page 65  
“Creating variable-length
tables (DEPENDING ON)” on page 70  
“Using national groups” on page 189  
“Doing a binary search (SEARCH
ALL)” on page 78  
“Defining numeric data” on page 35 

Related references   
OCCURS clause (COBOL for Linux on x86 Language Reference)  
SIGN clause (COBOL for Linux on x86 Language Reference)  
ASCENDING KEY and DESCENDING KEY phrases 
   (COBOL for Linux on x86 Language Reference)  
SORT statement (COBOL for Linux on x86 Language Reference)  

60  IBM COBOL for Linux on x86 1.1: Programming Guide



Nesting tables
To create a two-dimensional table, define a one-dimensional table in each occurrence of another one-
dimensional table.

For example, in SAMPLE-TABLE-TWO above, TABLE-ROW is an element of a one-dimensional table that
occurs two times. TABLE-COLUMN is an element of a two-dimensional table that occurs three times in
each occurrence of TABLE-ROW.

To create a three-dimensional table, define a one-dimensional table in each occurrence of another
one-dimensional table, which is itself contained in each occurrence of another one-dimensional table. For
example:

In SAMPLE-TABLE-THREE, TABLE-DEPTH is an element of a one-dimensional table that occurs two
times. TABLE-ROW is an element of a two-dimensional table that occurs two times within each
occurrence of TABLE-DEPTH. TABLE-COLUMN is an element of a three-dimensional table that occurs
three times within each occurrence of TABLE-ROW.

In a two-dimensional table, the two subscripts correspond to the row and column numbers. In a three-
dimensional table, the three subscripts correspond to the depth, row, and column numbers.

“Example: subscripting” on page 62
“Example: indexing” on page 62 

Related tasks   
“Defining a table (OCCURS)” on page 59  
“Referring to an item in
a table” on page 62  
“Putting values into a table” on page 65  
“Creating variable-length
tables (DEPENDING ON)” on page 70  
“Searching a table” on page 76  
“Processing table items
using intrinsic functions” on page 79  
“Handling tables efficiently” on page 497 

Related references   
OCCURS clause (COBOL for Linux on x86 Language Reference)

Chapter 4. Handling tables  61



Example: subscripting
The following example shows valid references to SAMPLE-TABLE-THREE that use literal subscripts. The
spaces are required in the second example.

TABLE-COLUMN (2, 2, 1)
TABLE-COLUMN (2 2 1)

In either table reference, the first value (2) refers to the second occurrence within TABLE-DEPTH, the
second value (2) refers to the second occurrence within TABLE-ROW, and the third value (1) refers to the
first occurrence within TABLE-COLUMN.

The following reference to SAMPLE-TABLE-TWO uses variable subscripts. The reference is valid if SUB1
and SUB2 are data-names that contain positive integer values within the range of the table.

TABLE-COLUMN (SUB1 SUB2)

Related tasks   
“Subscripting” on page 63 

Example: indexing
The following example shows how displacements to elements that are referenced with indexes are
calculated.

Consider the following three-dimensional table, SAMPLE-TABLE-FOUR:

01  SAMPLE-TABLE-FOUR
    05 TABLE-DEPTH OCCURS 3 TIMES INDEXED BY INX-A.
       10 TABLE-ROW OCCURS 4 TIMES INDEXED BY INX-B.
          15 TABLE-COLUMN OCCURS 8 TIMES INDEXED BY INX-C  PIC X(8).

Suppose you code the following relative indexing reference to SAMPLE-TABLE-FOUR:

TABLE-COLUMN (INX-A + 1, INX-B + 2, INX-C - 1)

This reference causes the following computation of the displacement to the TABLE-COLUMN element:

  (contents of INX-A) + (256 * 1)
+ (contents of INX-B) + (64 * 2)
+ (contents of INX-C) - (8 * 1)

This calculation is based on the following element lengths:

• Each occurrence of TABLE-DEPTH is 256 bytes in length (4 * 8 * 8).
• Each occurrence of TABLE-ROW is 64 bytes in length (8 * 8).
• Each occurrence of TABLE-COLUMN is 8 bytes in length.

Related tasks   
“Indexing” on page 64 

Referring to an item in a table
A table element has a collective name, but the individual items within it do not have unique data-names.

To refer to an item, you have a choice of three techniques:

62  IBM COBOL for Linux on x86 1.1: Programming Guide



• Use the data-name of the table element, along with its occurrence number (called a subscript) in
parentheses. This technique is called subscripting.

• Use the data-name of the table element, along with a value (called an index) that is added to the
address of the table to locate an item (as a displacement from the beginning of the table). This
technique is called indexing, or subscripting using index-names.

• Use both subscripts and indexes together.

Related tasks   
“Subscripting” on page 63  
“Indexing” on page 64 

Subscripting
The lowest possible subscript value is 1, which references the first occurrence of a table element. In a
one-dimensional table, the subscript corresponds to the row number.

You can use a literal or a data-name as a subscript. If a data item that has a literal subscript is of fixed
length, the compiler resolves the location of the data item.

When you use a data-name as a variable subscript, you must describe the data-name as an elementary
numeric integer. The most efficient format is COMPUTATIONAL (COMP) with a PICTURE size that is smaller
than five digits. You cannot use a subscript with a data-name that is used as a subscript. The code
generated for the application resolves the location of a variable subscript at run time.

You can increment or decrement a literal or variable subscript by a specified integer amount. For example:

TABLE-COLUMN (SUB1 - 1, SUB2 + 3)

You can change part of a table element rather than the whole element. To do so, refer to the character
position and length of the substring to be changed. For example:

01  ANY-TABLE.
    05 TABLE-ELEMENT     PIC X(10)
        OCCURS 3 TIMES   VALUE "ABCDEFGHIJ".
. . .
    MOVE "??" TO TABLE-ELEMENT (1) (3 : 2).

The MOVE statement in the example above moves the string '??' into table element number 1, beginning
at character position 3, for a length of 2 characters.

“Example: subscripting” on page 62

Related tasks   
“Indexing” on page 64  
“Putting values into a table” on page 65  
“Searching a table” on page 76  
“Handling tables efficiently” on page 497 

Chapter 4. Handling tables  63



Indexing
You create an index by using the INDEXED BY phrase of the OCCURS clause to identify an index-name.

For example, INX-A in the following code is an index-name:

05 TABLE-ITEM PIC X(8)
     OCCURS 10 INDEXED BY INX-A.

The compiler calculates the value contained in the index as the occurrence number (subscript) minus
1, multiplied by the length of the table element. Therefore, for the fifth occurrence of TABLE-ITEM, the
binary value contained in INX-A is (5 - 1) * 8, or 32.

You can use an index-name to reference another table only if both table descriptions have the same
number of table elements, and the table elements are of the same length.

You can use the USAGE IS INDEX clause to create an index data item, and can use an index data item
with any table. For example, INX-B in the following code is an index data item:

77  INX-B  USAGE IS INDEX.
. . .
    SET INX-A TO 10
    SET INX-B TO INX-A.
    PERFORM VARYING INX-A FROM 1 BY 1 UNTIL INX-A > INX-B
        DISPLAY TABLE-ITEM (INX-A)
        . . .
    END-PERFORM.

The index-name INX-A is used to traverse table TABLE-ITEM above. The index data item INX-B is used
to hold the index of the last element of the table. The advantage of this type of coding is that calculation of
offsets of table elements is minimized, and no conversion is necessary for the UNTIL condition.

You can use the SET statement to assign to an index data item the value that you stored in an index-name,
as in the statement SET INX-B TO INX-A above. For example, when you load records into a variable-
length table, you can store the index value of the last record into a data item defined as USAGE IS
INDEX. Then you can test for the end of the table by comparing the current index value with the index
value of the last record. This technique is useful when you look through or process a table.

You can increment or decrement an index-name by an elementary integer data item or a nonzero integer
literal, for example:

SET INX-A DOWN BY 3

The integer represents a number of occurrences. It is converted to an index value before being added to
or subtracted from the index.

Initialize the index-name by using a SET, PERFORM VARYING, or SEARCH ALL statement. You can then
use the index-name in SEARCH or relational condition statements. To change the value, use a PERFORM,
SEARCH, or SET statement.

Because you are comparing a physical displacement, you can directly use index data items only in
SEARCH and SET statements or in comparisons with indexes or other index data items. You cannot use
index data items as subscripts or indexes.

“Example: indexing” on page 62

Related tasks   
“Subscripting” on page 63  
“Putting values into a table” on page 65  
“Searching a table” on page 76  
“Processing table items
using intrinsic functions” on page 79  
“Handling tables efficiently” on page 497 

64  IBM COBOL for Linux on x86 1.1: Programming Guide



Related references  
INDEXED BY phrase (COBOL for Linux on x86 Language Reference)  
INDEX phrase (COBOL for Linux on x86 Language Reference)  
SET statement (COBOL for Linux on x86 Language Reference)

Putting values into a table
You can put values into a table by loading the table dynamically, initializing the table with the
INITIALIZE statement, or assigning values with the VALUE clause when you define the table.

Related tasks   
“Loading a table dynamically” on page 65  
“Loading a variable-length table” on page 72  
“Initializing a table (INITIALIZE)” on page 65  
“Assigning values when you
define a table (VALUE)” on page 66  
“Assigning values to a variable-length
table” on page 72 

Loading a table dynamically
If the initial values of a table are different with each execution of your program, you can define the table
without initial values. You can instead read the changed values into the table dynamically before the
program refers to the table.

To load a table, use the PERFORM statement and either subscripting or indexing.

When reading data to load your table, test to make sure that the data does not exceed the space allocated
for the table. Use a named value (rather than a literal) for the maximum item count. Then, if you make the
table bigger, you need to change only one value instead of all references to a literal.

“Example: PERFORM and subscripting” on page 68
“Example: PERFORM and indexing” on page 69 

Related references   
PERFORM statement (COBOL for Linux on x86 Language Reference)

Initializing a table (INITIALIZE)
You can load a table by coding one or more INITIALIZE statements.

For example, to move the value 3 into each of the elementary numeric data items in a table called
TABLE-ONE, shown below, you can code the following statement:

INITIALIZE TABLE-ONE REPLACING NUMERIC DATA BY 3.

To move the character 'X' into each of the elementary alphanumeric data items in TABLE-ONE, you can
code the following statement:

INITIALIZE TABLE-ONE REPLACING ALPHANUMERIC DATA BY "X".

When you use the INITIALIZE statement to initialize a table, the table is processed as a group item
(that is, with group semantics); elementary data items within the group are recognized and processed. For
example, suppose that TABLE-ONE is an alphanumeric group that is defined like this:

01  TABLE-ONE.
  02  Trans-out  Occurs 20.
      05  Trans-code       Pic X    Value "R".
      05  Part-number      Pic XX   Value "13".
      05  Trans-quan       Pic 99   Value 10.

Chapter 4. Handling tables  65



      05  Price-fields.
          10  Unit-price   Pic 99V  Value 50.
          10  Discount     Pic 99V  Value 25.
          10  Sales-Price  Pic 999  Value 375.
      . . .  
      Initialize TABLE-ONE Replacing Numeric Data By 3
                                     Alphanumeric Data By "X"

The table below shows the content that each of the twenty 12-byte elements Trans-out(n) has before
execution and after execution of the INITIALIZE statement shown above:

Trans-out(n) before Trans-out(n) after

R13105025375 XXb0303030031

1. The symbol b represents a blank space.

You can similarly use an INITIALIZE statement to load a table that is defined as a national group. For
example, if TABLE-ONE shown above specified the GROUP-USAGE NATIONAL clause, and Trans-code
and Part-number had N instead of X in their PICTURE clauses, the following statement would have the
same effect as the INITIALIZE statement above, except that the data in TABLE-ONE would instead be
encoded in UTF-16:

Initialize TABLE-ONE Replacing Numeric  Data By 3
                               National Data By N"X"

The REPLACING NUMERIC phrase initializes floating-point data items also.

You can use the REPLACING phrase of the INITIALIZE statement similarly to initialize all of the
elementary ALPHABETIC, DBCS, ALPHANUMERIC-EDITED, NATIONAL-EDITED, and NUMERIC-EDITED
data items in a table.

The INITIALIZE statement cannot assign values to a variable-length table (that is, a table that was
defined using the OCCURS DEPENDING ON clause).

“Examples: initializing data items” on page 24

Related tasks   
“Initializing a structure
(INITIALIZE)” on page 27  
“Assigning values when you
define a table (VALUE)” on page 66  
“Assigning values to a variable-length
table” on page 72  
“Looping through a table” on page 90  
“Using data items and group items” on page 20  
“Using national groups” on page 189 

Related references   
INITIALIZE statement (COBOL for Linux on x86 Language Reference)

Assigning values when you define a table (VALUE)
If a table is to contain stable values (such as days and months), you can set the specific values when you
define the table.

Set static values in tables in one of these ways:

• Initialize each table item individually.
• Initialize an entire table at the group level.
• Initialize all occurrences of a given table element to the same value.

66  IBM COBOL for Linux on x86 1.1: Programming Guide



Related tasks   
“Initializing each table
item individually” on page 67  
“Initializing a table at
the group level” on page 68  
“Initializing all occurrences
of a given table element” on page 68  
“Initializing a structure
(INITIALIZE)” on page 27 

Initializing each table item individually
If a table is small, you can set the value of each item individually by using a VALUE clause.

Use the following technique, which is shown in the example code below:

1. Define a record (such as Error-Flag-Table below) that contains the items that are to be in the
table.

2. Set the initial value of each item in a VALUE clause.
3. Code a REDEFINES entry to make the record into a table.

***********************************************************
***           E R R O R   F L A G   T A B L E           ***
***********************************************************
 01  Error-Flag-Table                    Value Spaces.
   88 No-Errors                          Value Spaces.
     05 Type-Error                       Pic X.
     05 Shift-Error                      Pic X.
     05 Home-Code-Error                  Pic X.
     05 Work-Code-Error                  Pic X.
     05 Name-Error                       Pic X.
     05 Initials-Error                   Pic X.
     05 Duplicate-Error                  Pic X.
     05 Not-Found-Error                  Pic X.
 01  Filler Redefines Error-Flag-Table.
     05 Error-Flag Occurs 8 Times
          Indexed By Flag-Index          Pic X.

In the example above, the VALUE clause at the 01 level initializes each of the table items to the same
value. Each table item could instead be described with its own VALUE clause to initialize that item to a
distinct value.

To initialize larger tables, use MOVE, PERFORM, or INITIALIZE statements.

Related tasks   
“Initializing a structure
(INITIALIZE)” on page 27  
“Assigning values to a variable-length
table” on page 72 

Related references   
REDEFINES clause (COBOL for Linux on x86 Language Reference)  
OCCURS clause (COBOL for Linux on x86 Language Reference)

Chapter 4. Handling tables  67



Initializing a table at the group level
Code an alphanumeric or national group data item and assign to it, through the VALUE clause, the
contents of the whole table. Then, in a subordinate data item, use an OCCURS clause to define the
individual table items.

In the following example, the alphanumeric group data item TABLE-ONE uses a VALUE clause that
initializes each of the four elements of TABLE-TWO:

01  TABLE-ONE                     VALUE "1234".
    05 TABLE-TWO OCCURS 4 TIMES   PIC X.

In the following example, the national group data item Table-OneN uses a VALUE clause that initializes
each of the three elements of the subordinate data item Table-TwoN (each of which is implicitly USAGE
NATIONAL). Note that you can initialize a national group data item with a VALUE clause that uses an
alphanumeric literal, as shown below, or a national literal.

01  Table-OneN  Group-Usage National  Value "AB12CD34EF56".
    05  Table-TwoN   Occurs 3 Times   Indexed By MyI.
        10  ElementOneN  Pic nn.
        10  ElementTwoN  Pic 99.

After Table-OneN is initialized, ElementOneN(1) contains NX"41004200" (the UTF-16 representation
of 'AB'), the national decimal item ElementTwoN(1) contains NX"31003200" (the UTF-16 representation
of '12'), and so forth.

Related references   
OCCURS clause (COBOL for Linux on x86 Language Reference)  
GROUP-USAGE clause (COBOL for Linux on x86 Language Reference)

Initializing all occurrences of a given table element
You can use the VALUE clause in the data description of a table element to initialize all instances of that
element to the specified value.

01  T2.
    05 T-OBJ                   PIC 9   VALUE 3.
    05 T OCCURS 5 TIMES
           DEPENDING ON T-OBJ.
       10 X                    PIC XX  VALUE "AA".
       10 Y                    PIC 99  VALUE 19.
       10 Z                    PIC XX  VALUE "BB".

For example, the code above causes all the X elements (1 through 5) to be initialized to AA, all the Y
elements (1 through 5) to be initialized to 19, and all the Z elements (1 through 5) to be initialized to BB.
T-OBJ is then set to 3.

Related tasks   
“Assigning values to a variable-length
table” on page 72 

Related references   
OCCURS clause (COBOL for Linux on x86 Language Reference)

Example: PERFORM and subscripting
This example traverses an error-flag table using subscripting until an error code that has been set is
found. If an error code is found, the corresponding error message is moved to a print report field.

***********************************************************
***           E R R O R   F L A G   T A B L E           ***

68  IBM COBOL for Linux on x86 1.1: Programming Guide



***********************************************************
 01  Error-Flag-Table                    Value Spaces.
   88 No-Errors                          Value Spaces.
     05 Type-Error                       Pic X.
     05 Shift-Error                      Pic X.
     05 Home-Code-Error                  Pic X.
     05 Work-Code-Error                  Pic X.
     05 Name-Error                       Pic X.
     05 Initials-Error                   Pic X.
     05 Duplicate-Error                  Pic X.
     05 Not-Found-Error                  Pic X.
 01  Filler Redefines Error-Flag-Table.
     05 Error-Flag Occurs 8 Times
           Indexed By Flag-Index         Pic X.
 77  Error-on                            Pic X  Value "E". 
***********************************************************
***         E R R O R   M E S S A G E   T A B L E       ***
***********************************************************
 01  Error-Message-Table.
     05  Filler                           Pic X(25) Value
          "Transaction Type Invalid".
     05  Filler                           Pic X(25) Value
          "Shift Code Invalid".
     05  Filler                           Pic X(25) Value
          "Home Location Code Inval.".
     05  Filler                           Pic X(25) Value
          "Work Location Code Inval.".
     05  Filler                           Pic X(25) Value
          "Last Name - Blanks".
     05  Filler                           Pic X(25) Value
          "Initials - Blanks".
     05  Filler                           Pic X(25) Value
          "Duplicate Record Found".
     05  Filler                           Pic X(25) Value
          "Commuter Record Not Found".
 01  Filler Redefines Error-Message-Table.
     05  Error-Message Occurs 8 Times
            Indexed By Message-Index      Pic X(25).
 . . .
 PROCEDURE DIVISION.
     . . .
     Perform
          Varying Sub From 1 By 1
          Until No-Errors
        If Error-Flag (Sub) = Error-On
          Move Space To Error-Flag (Sub)
          Move Error-Message (Sub) To Print-Message
          Perform 260-Print-Report
        End-If
     End-Perform
     . . .

Example: PERFORM and indexing
This example traverses an error-flag table using indexing until an error code that has been set is found. If
an error code is found, the corresponding error message is moved to a print report field.

***********************************************************
***           E R R O R   F L A G   T A B L E           ***
***********************************************************
 01  Error-Flag-Table                    Value Spaces.
   88 No-Errors                          Value Spaces.
     05 Type-Error                       Pic X.
     05 Shift-Error                      Pic X.
     05 Home-Code-Error                  Pic X.
     05 Work-Code-Error                  Pic X.
     05 Name-Error                       Pic X.
     05 Initials-Error                   Pic X.
     05 Duplicate-Error                  Pic X.
     05 Not-Found-Error                  Pic X.
 01  Filler Redefines Error-Flag-Table.
     05 Error-Flag Occurs 8 Times
          Indexed By Flag-Index          Pic X.
 77  Error-on                            Pic X  Value "E".   
***********************************************************
***         E R R O R   M E S S A G E   T A B L E       ***
***********************************************************
 01  Error-Message-Table.

Chapter 4. Handling tables  69



     05  Filler                           Pic X(25) Value
          "Transaction Type Invalid".
     05  Filler                           Pic X(25) Value
          "Shift Code Invalid".
     05  Filler                           Pic X(25) Value
          "Home Location Code Inval.".
     05  Filler                           Pic X(25) Value
          "Work Location Code Inval.".
     05  Filler                           Pic X(25) Value
          "Last Name - Blanks".
     05  Filler                           Pic X(25) Value
          "Initials - Blanks".
     05  Filler                           Pic X(25) Value
          "Duplicate Record Found".
     05  Filler                           Pic X(25) Value
          "Commuter Record Not Found".
 01  Filler Redefines Error-Message-Table.
     05  Error-Message Occurs 8 Times
            Indexed By Message-Index      Pic X(25).
 . . .
 PROCEDURE DIVISION.
     . . .
     Set Flag-Index To 1
     Perform Until No-Errors
       Search Error-Flag
         When Error-Flag (Flag-Index) = Error-On
           Move Space To Error-Flag (Flag-Index)
           Set Message-Index To Flag-Index
           Move Error-Message (Message-Index) To
             Print-Message
           Perform 260-Print-Report
       End-Search
     End-Perform
     . . .

Creating variable-length tables (DEPENDING ON)
If you do not know before run time how many times a table element occurs, define a variable-length
table. To do so, use the OCCURS DEPENDING ON (ODO) clause.

X OCCURS 1 TO 10 TIMES DEPENDING ON Y

In the example above, X is called the ODO subject, and Y is called the ODO object.

Two factors affect the successful manipulation of variable-length records:

• Correct calculation of record lengths

The length of the variable portions of a group item is the product of the object of the DEPENDING ON
phrase and the length of the subject of the OCCURS clause.

• Conformance of the data in the object of the OCCURS DEPENDING ON clause to its PICTURE clause

If the content of the ODO object does not match its PICTURE clause, the program could terminate
abnormally. You must ensure that the ODO object correctly specifies the current number of occurrences
of table elements.

The following example shows a group item (REC-1) that contains both the subject and object of the
OCCURS DEPENDING ON clause. The way the length of the group item is determined depends on whether
it is sending or receiving data.

WORKING-STORAGE SECTION.
01  MAIN-AREA.
    03 REC-1.
        05 FIELD-1                       PIC 9.
        05 FIELD-2 OCCURS 1 TO 5 TIMES
           DEPENDING ON FIELD-1          PIC X(05).
01  REC-2.
    03 REC-2-DATA                        PIC X(50).

70  IBM COBOL for Linux on x86 1.1: Programming Guide



If you want to move REC-1 (the sending item in this case) to REC-2, the length of REC-1 is determined
immediately before the move, using the current value in FIELD-1. If the content of FIELD-1 conforms to
its PICTURE clause (that is, if FIELD-1 contains a zoned decimal item), the move can proceed based on
the actual length of REC-1. Otherwise, the result is unpredictable. You must ensure that the ODO object
has the correct value before you initiate the move.

When you do a move to REC-1 (the receiving item in this case), the length of REC-1 is determined using
the maximum number of occurrences. In this example, five occurrences of FIELD-2, plus FIELD-1,
yields a length of 26 bytes. In this case, you do not need to set the ODO object (FIELD-1) before
referencing REC-1 as a receiving item. However, the sending field's ODO object (not shown) must be set
to a valid numeric value between 1 and 5 for the ODO object of the receiving field to be validly set by the
move.

However, if you do a move to REC-1 (again the receiving item) where REC-1 is followed by a variably
located group (a type of complex ODO), the actual length of REC-1 is calculated immediately before the
move, using the current value of the ODO object (FIELD-1). In the following example, REC-1 and REC-2
are in the same record, but REC-2 is not subordinate to REC-1 and is therefore variably located:

01  MAIN-AREA
    03 REC-1.
       05 FIELD-1                       PIC 9.
       05 FIELD-3                       PIC 9.
       05 FIELD-2 OCCURS 1 TO 5 TIMES
            DEPENDING ON FIELD-1        PIC X(05).
    03 REC-2.
       05 FIELD-4 OCCURS 1 TO 5 TIMES
            DEPENDING ON FIELD-3        PIC X(05).

The compiler issues a message that lets you know that the actual length was used. This case requires that
you set the value of the ODO object before using the group item as a receiving field.

The following example shows how to define a variable-length table when the ODO object (LOCATION-
TABLE-LENGTH below) is outside the group:

 DATA DIVISION.
 FILE SECTION.
 FD  LOCATION-FILE.
 01  LOCATION-RECORD.
     05  LOC-CODE                  PIC XX.
     05  LOC-DESCRIPTION           PIC X(20).
     05  FILLER                    PIC X(58).
 WORKING-STORAGE SECTION.
 01  FLAGS.
     05 LOCATION-EOF-FLAG          PIC X(5) VALUE SPACE.
        88 LOCATION-EOF               VALUE "FALSE".
 01  MISC-VALUES.
     05 LOCATION-TABLE-LENGTH      PIC 9(3) VALUE ZERO.
     05 LOCATION-TABLE-MAX         PIC 9(3) VALUE 100.
*****************************************************************
***                L O C A T I O N   T A B L E                ***
***                FILE CONTAINS LOCATION CODES.              ***
*****************************************************************
 01  LOCATION-TABLE.
     05 LOCATION-CODE OCCURS 1 TO 100 TIMES
          DEPENDING ON LOCATION-TABLE-LENGTH   PIC X(80).

Related concepts   
“Complex OCCURS DEPENDING
ON” on page 73 

Related tasks   
“Assigning values to a variable-length
table” on page 72  
“Loading a variable-length table” on page 72  
“Preventing overlay when adding elements to a variable table” on page 75  

Chapter 4. Handling tables  71



“Finding the length of data
items” on page 109

Related references   
OCCURS DEPENDING ON clause
 (COBOL for Linux on x86 Language Reference)  
Variable-length tables (COBOL for Linux on x86 Language Reference)

Loading a variable-length table
You can use a do-until structure (a TEST AFTER loop) to control the loading of a variable-length table. For
example, after the following code runs, LOCATION-TABLE-LENGTH contains the subscript of the last item
in the table.

 DATA DIVISION.
 FILE SECTION.
 FD  LOCATION-FILE.
 01  LOCATION-RECORD.
     05  LOC-CODE               PIC XX.
     05  LOC-DESCRIPTION        PIC X(20).
     05  FILLER                 PIC X(58).
 . . .
 WORKING-STORAGE SECTION.
 01  FLAGS.
     05 LOCATION-EOF-FLAG       PIC X(5) VALUE SPACE.
        88 LOCATION-EOF                  VALUE "YES".
 01  MISC-VALUES.
     05 LOCATION-TABLE-LENGTH   PIC 9(3) VALUE ZERO.
     05 LOCATION-TABLE-MAX      PIC 9(3) VALUE 100.
*****************************************************************
***                L O C A T I O N   T A B L E                ***
***                FILE CONTAINS LOCATION CODES.              ***
*****************************************************************
 01  LOCATION-TABLE.
     05 LOCATION-CODE OCCURS 1 TO 100 TIMES
          DEPENDING ON LOCATION-TABLE-LENGTH   PIC X(80).
 . . .         
 PROCEDURE DIVISION.
     . . .
     Perform Test After
         Varying Location-Table-Length From 1 By 1
           Until Location-EOF
           Or Location-Table-Length = Location-Table-Max
       Move Location-Record To
           Location-Code (Location-Table-Length)
       Read Location-File
           At End Set Location-EOF To True
       End-Read
     End-Perform

Assigning values to a variable-length table
You can code a VALUE clause for an alphanumeric or national group item that has a subordinate data
item that contains the OCCURS clause with the DEPENDING ON phrase. Each subordinate structure that
contains the DEPENDING ON phrase is initialized using the maximum number of occurrences.

If you define the entire table by using the DEPENDING ON phrase, all the elements are initialized using the
maximum defined value of the ODO (OCCURS DEPENDING ON) object.

If the ODO object is initialized by a VALUE clause, it is logically initialized after the ODO subject has been
initialized.

01  TABLE-THREE           VALUE "3ABCDE".
    05 X                  PIC 9.
    05 Y OCCURS 5 TIMES
          DEPENDING ON X  PIC X.

72  IBM COBOL for Linux on x86 1.1: Programming Guide



For example, in the code above, the ODO subject Y(1) is initialized to 'A', Y(2) to 'B', . . ., Y(5) to 'E',
and finally the ODO object X is initialized to 3. Any subsequent reference to TABLE-THREE (such as in a
DISPLAY statement) refers to X and the first three elements, Y(1) through Y(3), of the table.

Related tasks   
“Assigning values when you
define a table (VALUE)” on page 66 

Related references   
OCCURS DEPENDING ON clause
 (COBOL for Linux on x86 Language Reference)

Complex OCCURS DEPENDING ON
Several types of complex OCCURS DEPENDING ON (complex ODO) are possible. Complex ODO is
supported as an extension to the 85 COBOL Standard.

The basic forms of complex ODO permitted by the compiler are as follows:

• Variably located item or group: A data item described by an OCCURS clause with the DEPENDING ON
phrase is followed by a nonsubordinate elementary or group data item.

• Variably located table: A data item described by an OCCURS clause with the DEPENDING ON phrase is
followed by a nonsubordinate data item described by an OCCURS clause.

• Table that has variable-length elements: A data item described by an OCCURS clause contains a
subordinate data item described by an OCCURS clause with the DEPENDING ON phrase.

• Index name for a table that has variable-length elements.
• Element of a table that has variable-length elements.

“Example: complex ODO” on page 73

Related tasks   
“Preventing index errors
when changing ODO object value” on page 75  
“Preventing overlay when adding elements to a variable table” on page 75 

Related references   
“Effects of change
in ODO object value” on page 74  
OCCURS DEPENDING ON clause
 (COBOL for Linux on x86 Language Reference)

Example: complex ODO
The following example illustrates the possible types of occurrence of complex ODO.

01  FIELD-A.
    02 COUNTER-1                             PIC S99.
    02 COUNTER-2                             PIC S99.
    02 TABLE-1.
       03 RECORD-1 OCCURS 1 TO 5 TIMES
                   DEPENDING ON COUNTER-1    PIC X(3).
    02 EMPLOYEE-NUMBER                       PIC X(5). (1)
    02 TABLE-2 OCCURS 5 TIMES                          (2)(3)
               INDEXED BY INDX.                        (4)
       03 TABLE-ITEM                         PIC 99.   (5)
       03 RECORD-2 OCCURS 1 TO 3 TIMES
                   DEPENDING ON COUNTER-2.
          04 DATA-NUM                        PIC S99.

Definition: In the example, COUNTER-1 is an ODO object, that is, it is the object of the DEPENDING ON
clause of RECORD-1. RECORD-1 is said to be an ODO subject. Similarly, COUNTER-2 is the ODO object of
the corresponding ODO subject, RECORD-2.

Chapter 4. Handling tables  73



The types of complex ODO occurrences shown in the example above are as follows:

(1)
A variably located item: EMPLOYEE-NUMBER is a data item that follows, but is not subordinate to, a
variable-length table in the same level-01 record.

(2)
A variably located table: TABLE-2 is a table that follows, but is not subordinate to, a variable-length
table in the same level-01 record.

(3)
A table with variable-length elements: TABLE-2 is a table that contains a subordinate data item,
RECORD-2, whose number of occurrences varies depending on the content of its ODO object.

(4)
An index-name, INDX, for a table that has variable-length elements.

(5)
An element, TABLE-ITEM, of a table that has variable-length elements.

How length is calculated
The length of the variable portion of each record is the product of its ODO object and the length of its ODO
subject. For example, whenever a reference is made to one of the complex ODO items shown above, the
actual length, if used, is computed as follows:

• The length of TABLE-1 is calculated by multiplying the contents of COUNTER-1 (the number of
occurrences of RECORD-1) by 3 (the length of RECORD-1).

• The length of TABLE-2 is calculated by multiplying the contents of COUNTER-2 (the number of
occurrences of RECORD-2) by 2 (the length of RECORD-2), and adding the length of TABLE-ITEM.

• The length of FIELD-A is calculated by adding the lengths of COUNTER-1, COUNTER-2, TABLE-1,
EMPLOYEE-NUMBER, and TABLE-2 times 5.

Setting values of ODO objects
You must set every ODO object in a group item before you reference any complex ODO item in the group.
For example, before you refer to EMPLOYEE-NUMBER in the code above, you must set COUNTER-1 and
COUNTER-2 even though EMPLOYEE-NUMBER does not directly depend on either ODO object for its value.

Restriction: An ODO object cannot be variably located.

Effects of change in ODO object value
If a data item that is described by an OCCURS clause with the DEPENDING ON phrase is followed in the
same group by one or more nonsubordinate data items (a form of complex ODO), any change in value of
the ODO object affects subsequent references to complex ODO items in the record.

For example:

• The size of any group that contains the relevant ODO clause reflects the new value of the ODO object.
• A MOVE to a group that contains the ODO subject is made based on the new value of the ODO object.
• The location of any nonsubordinate items that follow the item described with the ODO clause is affected

by the new value of the ODO object. (To preserve the contents of the nonsubordinate items, move them
to a work area before the value of the ODO object changes, then move them back.)

The value of an ODO object can change when you move data to the ODO object or to the group in which
it is contained. The value can also change if the ODO object is contained in a record that is the target of a
READ statement.

Related tasks   
“Preventing index errors
when changing ODO object value” on page 75  
“Preventing overlay when adding elements to a variable table” on page 75 

74  IBM COBOL for Linux on x86 1.1: Programming Guide



Preventing index errors when changing ODO object value
Be careful if you reference a complex-ODO index-name, that is, an index-name for a table that has
variable-length elements, after having changed the value of the ODO object for a subordinate data item in
the table.

When you change the value of an ODO object, the byte offset in an associated complex-ODO index is no
longer valid because the table length has changed. Unless you take precautions, you will have unexpected
results if you then code a reference to the index-name such as:

• A reference to an element of the table
• A SET statement of the form SET integer-data-item TO index-name (format 1)
• A SET statement of the form SET index-name UP|DOWN BY integer (format 2)

To avoid this type of error, do these steps:

1. Save the index in an integer data item. (Doing so causes an implicit conversion: the integer item
receives the table element occurrence number that corresponds to the offset in the index.)

2. Change the value of the ODO object.
3. Immediately restore the index from the integer data item. (Doing so causes an implicit conversion:

the index-name receives the offset that corresponds to the table element occurrence number in the
integer item. The offset is computed according to the table length then in effect.)

The following code shows how to save and restore the index-name (shown in “Example: complex ODO”
on page 73) when the ODO object COUNTER-2 changes.

 77  INTEGER-DATA-ITEM-1      PIC 99.
 . . .
     SET INDX TO 5.
*         INDX is valid at this point.
     SET INTEGER-DATA-ITEM-1 TO INDX.
*         INTEGER-DATA-ITEM-1 now has the
*         occurrence number that corresponds to INDX.
     MOVE NEW-VALUE TO COUNTER-2.
*         INDX is not valid at this point.
     SET INDX TO INTEGER-DATA-ITEM-1.
*         INDX is now valid, containing the offset
*         that corresponds to INTEGER-DATA-ITEM-1, and
*         can be used with the expected results.

Related references   
SET statement (COBOL for Linux on x86 Language Reference)

Preventing overlay when adding elements to a variable table
Be careful if you increase the number of elements in a variable-occurrence table that is followed by one
or more nonsubordinate data items in the same group. When you increment the value of the ODO object
and add an element to a table, you can inadvertently overlay the variably located data items that follow
the table.

To avoid this type of error, do these steps:

1. Save the variably located data items that follow the table in another data area.
2. Increment the value of the ODO object.
3. Move data into the new table element (if needed).
4. Restore the variably located data items from the data area where you saved them.

In the following example, suppose you want to add an element to the table VARY-FIELD-1, whose
number of elements depends on the ODO object CONTROL-1. VARY-FIELD-1 is followed by the
nonsubordinate variably located data item GROUP-ITEM-1, whose elements could potentially be overlaid.

WORKING-STORAGE SECTION.

Chapter 4. Handling tables  75



01  VARIABLE-REC.
    05  FIELD-1                              PIC X(10).
    05  CONTROL-1                            PIC S99.
    05  CONTROL-2                            PIC S99.
    05  VARY-FIELD-1 OCCURS 1 TO 10 TIMES
          DEPENDING ON CONTROL-1             PIC X(5).
    05  GROUP-ITEM-1.
        10  VARY-FIELD-2
              OCCURS 1 TO 10 TIMES
              DEPENDING ON CONTROL-2         PIC X(9).
01  STORE-VARY-FIELD-2.
    05  GROUP-ITEM-2.
        10  VARY-FLD-2
              OCCURS 1 TO 10 TIMES
              DEPENDING ON CONTROL-2         PIC X(9).

Each element of VARY-FIELD-1 has 5 bytes, and each element of VARY-FIELD-2 has 9 bytes. If
CONTROL-1 and CONTROL-2 both contain the value 3, you can picture storage for VARY-FIELD-1 and
VARY-FIELD-2 as follows:

VARY-FIELD-1(1)

VARY-FIELD-1(2)

VARY-FIELD-1(3)

VARY-FIELD-2(1)

VARY-FIELD-2(2)

VARY-FIELD-2(3)

To add a fourth element to VARY-FIELD-1, code as follows to prevent overlaying the first 5 bytes of
VARY-FIELD-2. (GROUP-ITEM-2 serves as temporary storage for the variably located GROUP-ITEM-1.)

MOVE GROUP-ITEM-1 TO GROUP-ITEM-2.
ADD 1 TO CONTROL-1.
MOVE five-byte-field TO
  VARY-FIELD-1 (CONTROL-1).
MOVE GROUP-ITEM-2 TO GROUP-ITEM-1.

You can picture the updated storage for VARY-FIELD-1 and VARY-FIELD-2 as follows:

VARY-FIELD-1(1)

VARY-FIELD-1(2)

VARY-FIELD-1(3)

VARY-FIELD-1(4)

VARY-FIELD-2(1)

VARY-FIELD-2(2)

VARY-FIELD-2(3)

Note that the fourth element of VARY-FIELD-1 did not overlay the first element of VARY-FIELD-2.

Searching a table
COBOL provides two search techniques for tables: serial and binary.

To do serial searches, use SEARCH and indexing. For variable-length tables, you can use PERFORM with
subscripting or indexing.

To do binary searches, use SEARCH ALL and indexing.

A binary search can be considerably more efficient than a serial search. For a serial search, the number
of comparisons is of the order of n, the number of entries in the table. For a binary search, the number of
comparisons is of the order of only the logarithm (base 2) of n. A binary search, however, requires that the
table items already be sorted.

Related tasks   
“Doing a serial search (SEARCH)” on page 77  

76  IBM COBOL for Linux on x86 1.1: Programming Guide



“Doing a binary search (SEARCH
ALL)” on page 78 

Doing a serial search (SEARCH)
Use the SEARCH statement to do a serial (sequential) search beginning at the current index setting. To
modify the index setting, use the SET statement.

The conditions in the WHEN phrase are evaluated in the order in which they appear:

• If none of the conditions is satisfied, the index is increased to correspond to the next table element, and
the WHEN conditions are evaluated again.

• If one of the WHEN conditions is satisfied, the search ends. The index remains pointing to the table
element that satisfied the condition.

• If the entire table has been searched and no conditions were met, the AT END imperative statement
is executed if there is one. If you did not code AT END, control passes to the next statement in the
program.

You can reference only one level of a table (a table element) with each SEARCH statement. To search
multiple levels of a table, use nested SEARCH statements. Delimit each nested SEARCH statement with
END-SEARCH.

Performance: If the found condition comes after some intermediate point in the table, you can speed up
the search by using the SET statement to set the index to begin the search after that point. Arranging the
table so that the data used most often is at the beginning of the table also enables more efficient serial
searching. If the table is large and is presorted, a binary search is more efficient.

“Example: serial search” on page 77

Related references   
SEARCH statement (COBOL for Linux on x86 Language Reference)

Example: serial search
The following example shows how you might find a particular string in the innermost table of a three-
dimensional table.

Each dimension of the table has its own index (set to 1, 4, and 1, respectively). The innermost table
(TABLE-ENTRY3) has an ascending key.

01  TABLE-ONE.
    05 TABLE-ENTRY1 OCCURS 10 TIMES
          INDEXED BY TE1-INDEX.
       10 TABLE-ENTRY2 OCCURS 10 TIMES
             INDEXED BY TE2-INDEX.
          15 TABLE-ENTRY3 OCCURS 5 TIMES
                ASCENDING KEY IS KEY1
                INDEXED BY TE3-INDEX.
             20 KEY1                 PIC X(5).
             20 KEY2                 PIC X(10).
. . .
PROCEDURE DIVISION.
    . . .
    SET TE1-INDEX TO 1
    SET TE2-INDEX TO 4
    SET TE3-INDEX TO 1
    MOVE "A1234" TO KEY1 (TE1-INDEX, TE2-INDEX, TE3-INDEX + 2)
    MOVE "AAAAAAAA00" TO KEY2 (TE1-INDEX, TE2-INDEX, TE3-INDEX + 2)
    . . .
    SEARCH TABLE-ENTRY3
      AT END
        MOVE 4 TO RETURN-CODE
      WHEN TABLE-ENTRY3(TE1-INDEX, TE2-INDEX, TE3-INDEX)
          = "A1234AAAAAAAA00"
        MOVE 0 TO RETURN-CODE
    END-SEARCH

Chapter 4. Handling tables  77



Values after execution:

TE1-INDEX = 1
TE2-INDEX = 4
TE3-INDEX points to the TABLE-ENTRY3 item
          that equals "A1234AAAAAAAA00"
RETURN-CODE = 0

Doing a binary search (SEARCH ALL)
If you use SEARCH ALL to do a binary search, you do not need to set the index before you begin. The
index is always the one that is associated with the first index-name in the OCCURS clause. The index varies
during execution to maximize the search efficiency.

To use the SEARCH ALL statement to search a table, the table must specify the ASCENDING or
DESCENDING KEY phrases of the OCCURS clause, or both, and must already be ordered on the key or
keys that are specified in the ASCENDING and DESCENDING KEY phrases. You can use a format 2 SORT
statement to order the table according to its defined keys, thereby making the table searchable by the
SEARCH ALL statement. Note that SEARCH ALL will return unpredictable results if the table has not
been ordered according to the keys.

In the WHEN phrase of the SEARCH ALL statement, you can test any key that is named in the ASCENDING
or DESCENDING KEY phrases for the table, but you must test all preceding keys, if any. The test must be
an equal-to condition, and the WHEN phrase must specify either a key (subscripted by the first index-name
associated with the table) or a condition-name that is associated with the key. The WHEN condition can be
a compound condition that is formed from simple conditions that use AND as the only logical connective.

Each key and its object of comparison must be compatible according to the rules for comparison of data
items. Note though that if a key is compared to a national literal or identifier, the key must be a national
data item.

“Example: binary search” on page 78

Related tasks   
“Defining a table (OCCURS)” on page 59 

Related references   
SEARCH statement (COBOL for Linux on x86 Language Reference)  
General relation conditions (COBOL for Linux on x86 Language Reference)

Example: binary search
The following example shows how you can code a binary search of a table.

Suppose you define a table that contains 90 elements of 40 bytes each, and three keys. The primary
and secondary keys (KEY-1 and KEY-2) are in ascending order, but the least significant key (KEY-3) is in
descending order:

01  TABLE-A.
    05 TABLE-ENTRY OCCURS 90 TIMES
           ASCENDING KEY-1, KEY-2
           DESCENDING KEY-3
           INDEXED BY INDX-1.
       10 PART-1       PIC 99.
       10 KEY-1        PIC 9(5).
       10 PART-2       PIC 9(6).
       10 KEY-2        PIC 9(4).
       10 PART-3       PIC 9(18).
       10 KEY-3        PIC 9(5).

You can search this table by using the following statements:

SEARCH ALL TABLE-ENTRY

78  IBM COBOL for Linux on x86 1.1: Programming Guide



  AT END
    PERFORM NOENTRY
  WHEN KEY-1 (INDX-1) = VALUE-1 AND
       KEY-2 (INDX-1) = VALUE-2 AND
       KEY-3 (INDX-1) = VALUE-3
    MOVE PART-1 (INDX-1) TO OUTPUT-AREA
END-SEARCH

If an entry is found in which each of the three keys is equal to the value to which it is compared (VALUE-1,
VALUE-2, and VALUE-3, respectively), PART-1 of that entry is moved to OUTPUT-AREA. If no matching
key is found in the entries in TABLE-A, the NOENTRY routine is performed.

Sorting a table
You can sort a table by using the format 2 SORT statement. It is part of the 2002 COBOL Standard.

The format 2 SORT statement sorts table elements according to the specified table keys, and it is
especially useful for tables used with SEARCH ALL. You can specify the keys for sorting as part of the
table definition, which can also be used in the SEARCH ALL statement. Alternatively, you can also specify
the keys for sorting as part of the SORT statement, either if you want to sort the table using different keys
than those specified in the table definition, or if the table has no keys specified.

With the format 2 SORT statement, you don't need to use the input and output procedures as you do with
the format 1 SORT statement.

See the following example in which the table is sorted based on specified keys:

WORKING-STORAGE SECTION.
01 GROUP-ITEM.
    05 TABL OCCURS 10 TIMES
       10 ELEM-ITEM1 PIC X.
       10 ELEM-ITEM2 PIC X.
       10 ELEM-ITEM3 PIC X.
...
PROCEDURE DIVISION.
    ...
    SORT TABL DESCENDING ELEM-ITEM2 ELEM-ITEM3.
    IF TABL (1)...

Related references   
SORT statement (COBOL for Linux on x86 Language Reference)  
“Using the format 2 SORT statement to sort a table” on page 514

Processing table items using intrinsic functions
You can use intrinsic functions to process alphabetic, alphanumeric, national, or numeric table items.
(You can process DBCS data items only with the NATIONAL-OF intrinsic function.) The data descriptions
of the table items must be compatible with the requirements for the function arguments.

Use a subscript or index to reference an individual data item as a function argument. For example,
assuming that Table-One is a 3 x 3 array of numeric items, you can find the square root of the middle
element by using this statement:

Compute X = Function Sqrt(Table-One(2,2))

You might often need to iteratively process the data in tables. For intrinsic functions that accept multiple
arguments, you can use the subscript ALL to reference all the items in the table or in a single dimension of
the table. The iteration is handled automatically, which can make your code shorter and simpler.

You can mix scalars and array arguments for functions that accept multiple arguments:

Compute Table-Median = Function Median(Arg1 Table-One(ALL))

Chapter 4. Handling tables  79



“Example: processing tables using intrinsic functions” on page 80

Related tasks   
“Using intrinsic functions (built-in functions)” on page 32  
“Converting data items (intrinsic
functions)” on page 104  
“Evaluating data items (intrinsic
functions)” on page 106 

Related references   
Intrinsic functions (COBOL for Linux on x86 Language Reference)

Example: processing tables using intrinsic functions
These examples show how you can apply an intrinsic function to some or all of the elements in a table by
using the ALL subscript.

Assuming that Table-Two is a 2 x 3 x 2 array, the following statement adds the values in elements
Table-Two(1,3,1), Table-Two(1,3,2), Table-Two(2,3,1), and Table-Two(2,3,2):

Compute Table-Sum = FUNCTION SUM (Table-Two(ALL, 3, ALL))

The following example computes various salary values for all the employees whose salaries are encoded
in Employee-Table:

01  Employee-Table.
    05 Emp-Count      Pic s9(4) usage binary.
    05 Emp-Record     Occurs 1 to 500 times
                        depending on Emp-Count.
       10 Emp-Name    Pic x(20).
       10 Emp-Idme    Pic 9(9).
       10 Emp-Salary  Pic 9(7)v99.
. . .
Procedure Division.
    Compute Max-Salary    = Function Max(Emp-Salary(ALL))
    Compute I             = Function Ord-Max(Emp-Salary(ALL))
    Compute Avg-Salary    = Function Mean(Emp-Salary(ALL))
    Compute Salary-Range  = Function Range(Emp-Salary(ALL))
    Compute Total-Payroll = Function Sum(Emp-Salary(ALL))

80  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 5. Selecting and repeating program actions

Use COBOL control language to choose program actions based on the outcome of logical tests, to iterate
over selected parts of your program and data, and to identify statements to be performed as a group.

These controls include the IF, EVALUATE, and PERFORM statements, and the use of switches and flags.

Related tasks   
“Selecting program actions” on page 81  
“Repeating program actions” on page 88 

Selecting program actions
You can provide for different program actions depending on the tested value of one or more data items.

The IF and EVALUATE statements in COBOL test one or more data items by means of a conditional
expression.

Related tasks   
“Coding a choice of actions” on page 81  
“Coding conditional expressions” on page 85 

Related references   
IF statement (COBOL for Linux on x86 Language Reference)  
EVALUATE statement (COBOL for Linux on x86 Language Reference)

Coding a choice of actions
Use IF . . . ELSE to code a choice between two processing actions. (The word THEN is optional.) Use
the EVALUATE statement to code a choice among three or more possible actions.

IF condition-p
  statement-1
ELSE
  statement-2
END-IF

When one of two processing choices is no action, code the IF statement with or without ELSE. Because
the ELSE clause is optional, you can code the IF statement as follows:

IF condition-q
  statement-1
END-IF

Such coding is suitable for simple cases. For complex logic, you probably need to use the ELSE clause.
For example, suppose you have nested IF statements in which there is an action for only one of the
processing choices. You could use the ELSE clause and code the null branch of the IF statement with the
CONTINUE statement:

IF condition-q
  statement-1
ELSE
  CONTINUE
END-IF

The EVALUATE statement is an expanded form of the IF statement that allows you to avoid nesting IF
statements, a common source of logic errors and debugging problems.

© Copyright IBM Corp. 2021, 2023 81



Related tasks   
“Using nested IF statements” on page 82  
“Using the EVALUATE statement” on page 83  
“Coding conditional expressions” on page 85 

Using nested IF statements
If an IF statement contains an IF statement as one of its possible branches, the IF statements are said
to be nested. Theoretically, there is no limit to the depth of nested IF statements.

However, use nested IF statements sparingly. The logic can be difficult to follow, although explicit scope
terminators and indentation can help. If a program has to test a variable for more than two values,
EVALUATE is probably a better choice.

The following pseudocode depicts a nested IF statement:

IF condition-p
  IF condition-q
    statement-1
  ELSE
    statement-2
  END-IF
  statement-3
ELSE
  statement-4
END-IF

In the pseudocode above, an IF statement and a sequential structure are nested in one branch of the
outer IF. In this structure, the END-IF that closes the nested IF is very important. Use END-IF instead
of a period, because a period would end the outer IF structure also.

The following figure shows the logic structure of the pseudocode above.

Related tasks   
“Coding a choice of actions” on page 81 

Related references   
Explicit scope terminators (COBOL for Linux on x86 Language Reference) 

82  IBM COBOL for Linux on x86 1.1: Programming Guide



Using the EVALUATE statement
You can use the EVALUATE statement instead of a series of nested IF statements to test several
conditions and specify a different action for each. Thus you can use the EVALUATE statement to
implement a case structure or decision table.

You can also use the EVALUATE statement to cause multiple conditions to lead to the same processing, as
shown in these examples:

“Example: EVALUATE using THRU phrase” on page 83
“Example: EVALUATE using multiple WHEN phrases” on page 84 

In an EVALUATE statement, the operands before the WHEN phrase are referred to as selection subjects,
and the operands in the WHEN phrase are called the selection objects. Selection subjects can be identifiers,
literals, conditional expressions, or the word TRUE or FALSE. Selection objects can be identifiers, literals,
conditional or arithmetic expressions, or the word TRUE, FALSE, or ANY.

You can separate multiple selection subjects with the ALSO phrase. You can separate multiple selection
objects with the ALSO phrase. The number of selection objects within each set of selection objects must
be equal to the number of selection subjects, as shown in this example:

“Example: EVALUATE testing several conditions” on page 84

Identifiers, literals, or arithmetic expressions that appear within a selection object must be valid operands
for comparison to the corresponding operand in the set of selection subjects. Conditions or the word TRUE
or FALSE that appear in a selection object must correspond to a conditional expression or the word TRUE
or FALSE in the set of selection subjects. (You can use the word ANY as a selection object to correspond
to any type of selection subject.)

The execution of the EVALUATE statement ends when one of the following conditions occurs:

• The statements associated with the selected WHEN phrase are performed.
• The statements associated with the WHEN OTHER phrase are performed.
• No WHEN conditions are satisfied.

WHEN phrases are tested in the order that they appear in the source program. Therefore, you should order
these phrases for the best performance. First code the WHEN phrase that contains selection objects that
are most likely to be satisfied, then the next most likely, and so on. An exception is the WHEN OTHER
phrase, which must come last.

Related tasks   
“Coding a choice of actions” on page 81 

Related references   
EVALUATE statement (COBOL for Linux on x86 Language Reference)  
General relation conditions (COBOL for Linux on x86 Language Reference)

Example: EVALUATE using THRU phrase
This example shows how you can code several conditions in a range of values to lead to the same
processing action by coding the THRU phrase. Operands in a THRU phrase must be of the same class.

In this example, CARPOOL-SIZE is the selection subject; 1, 2, and 3 THRU 6 are the selection objects:

EVALUATE CARPOOL-SIZE
  WHEN 1
    MOVE "SINGLE" TO PRINT-CARPOOL-STATUS
  WHEN 2
    MOVE "COUPLE" TO PRINT-CARPOOL-STATUS
  WHEN 3 THRU 6
    MOVE "SMALL GROUP" TO PRINT-CARPOOL STATUS
  WHEN OTHER
    MOVE "BIG GROUP" TO PRINT-CARPOOL STATUS
END-EVALUATE

Chapter 5. Selecting and repeating program actions  83



The following nested IF statements represent the same logic:

IF CARPOOL-SIZE = 1 THEN
  MOVE "SINGLE" TO PRINT-CARPOOL-STATUS
ELSE
  IF CARPOOL-SIZE = 2 THEN
    MOVE "COUPLE" TO PRINT-CARPOOL-STATUS
  ELSE
    IF CARPOOL-SIZE >= 3 and CARPOOL-SIZE <= 6 THEN
      MOVE "SMALL GROUP" TO PRINT-CARPOOL-STATUS
    ELSE
      MOVE "BIG GROUP" TO PRINT-CARPOOL-STATUS
    END-IF
  END-IF
END-IF

Example: EVALUATE using multiple WHEN phrases
The following example shows that you can code multiple WHEN phrases if several conditions should lead
to the same action. Doing so gives you more flexibility than using only the THRU phrase, because the
conditions do not have to evaluate to values in a range nor have the same class.

EVALUATE MARITAL-CODE
  WHEN "M"
    ADD 2 TO PEOPLE-COUNT
  WHEN "S"
  WHEN "D"
  WHEN "W"
    ADD 1 TO PEOPLE-COUNT
END-EVALUATE

The following nested IF statements represent the same logic:

IF MARITAL-CODE = "M" THEN
  ADD 2 TO PEOPLE-COUNT
ELSE
  IF MARITAL-CODE = "S" OR
     MARITAL-CODE = "D" OR
     MARITAL-CODE = "W" THEN
       ADD 1 TO PEOPLE-COUNT
  END-IF
END-IF

Example: EVALUATE testing several conditions
This example shows the use of the ALSO phrase to separate two selection subjects (True ALSO True)
and to separate the two corresponding selection objects within each set of selection objects (for example,
When A + B < 10 Also C = 10).

Both selection objects in a WHEN phrase must satisfy the TRUE, TRUE condition before the associated
action is performed. If both objects do not evaluate to TRUE, the next WHEN phrase is processed.

Identification Division.
  Program-ID. MiniEval.
Environment Division.
  Configuration Section.
Data Division.
  Working-Storage Section.
  01   Age             Pic  999.
  01   Sex             Pic  X.
  01   Description     Pic  X(15).
  01   A               Pic  999.
  01   B               Pic  9999.
  01   C               Pic  9999.
  01   D               Pic  9999.
  01   E               Pic  99999.
  01   F               Pic  999999.
Procedure Division.
  PN01.
    Evaluate True Also True

84  IBM COBOL for Linux on x86 1.1: Programming Guide



      When Age < 13 Also Sex = "M"
        Move "Young Boy" To Description
      When Age < 13 Also Sex = "F"
        Move "Young Girl" To Description
      When Age > 12 And Age < 20 Also Sex = "M"
        Move "Teenage Boy" To Description
      When Age > 12 And Age < 20 Also Sex = "F"
        Move "Teenage Girl" To Description
      When Age > 19 Also Sex = "M"
        Move "Adult Man" To Description
      When Age > 19 Also Sex = "F"
        Move "Adult Woman" To Description
      When Other
        Move "Invalid Data" To Description
    End-Evaluate
    Evaluate True Also True
      When A + B < 10 Also C = 10
        Move "Case 1" To Description
      When A + B > 50 Also C = ( D + E ) / F
        Move "Case 2" To Description
      When Other
        Move "Case Other" To Description
    End-Evaluate
    Stop Run.

Coding conditional expressions
Using the IF and EVALUATE statements, you can code program actions that will be performed depending
on the truth value of a conditional expression.

You can specify the following conditions:

• Relation conditions, such as:

– Numeric comparisons
– Alphanumeric comparisons
– DBCS comparisons
– National comparisons

• Class conditions; for example, to test whether a data item:

– IS NUMERIC
– IS ALPHABETIC
– IS ALPHABETIC-LOWER
– IS ALPHABETIC-UPPER
– IS DBCS
– IS KANJI

• Condition-name conditions, to test the value of a conditional variable that you define
• Sign conditions, to test whether a numeric operand IS POSITIVE, NEGATIVE, or ZERO
• Switch-status conditions, to test the status of UPSI switches that you name in the SPECIAL-NAMES

paragraph
• Complex conditions, such as:

– Negated conditions; for example, NOT (A IS EQUAL TO B)
– Combined conditions (conditions combined with logical operators AND or OR)

Related concepts   
“Switches and flags” on page 86 

Related tasks   
“Defining switches and flags” on page 86  
“Resetting switches and flags” on page 87  
“Checking for incompatible
data (numeric class test)” on page 48  

Chapter 5. Selecting and repeating program actions  85



“Comparing national (UTF-16)
data” on page 192  
“Testing for valid DBCS
characters” on page 198 

Related references   
“UPSI” on page 302  
General relation conditions (COBOL for Linux on x86 Language Reference)  
Class condition (COBOL for Linux on x86 Language Reference)  
Rules for condition-name entries (COBOL for Linux on x86 Language Reference)  
Sign condition (COBOL for Linux on x86 Language Reference)  
Combined conditions (COBOL for Linux on x86 Language Reference)

Switches and flags
Some program decisions are based on whether the value of a data item is true or false, on or off, yes or no.
Control these two-way decisions by using level-88 items with meaningful names (condition-names) to act
as switches.

Other program decisions depend on the particular value or range of values of a data item. When you use
condition-names to give more than just on or off values to a field, the field is generally referred to as a
flag.

Flags and switches make your code easier to change. If you need to change the values for a condition, you
have to change only the value of that level-88 condition-name.

For example, suppose a program uses a condition-name to test a field for a given salary range. If the
program must be changed to check for a different salary range, you need to change only the value
of the condition-name in the DATA DIVISION. You do not need to make changes in the PROCEDURE
DIVISION.

Related tasks   
“Defining switches and flags” on page 86  
“Resetting switches and flags” on page 87 

Defining switches and flags
In the DATA DIVISION, define level-88 items that will act as switches or flags, and give them meaningful
names.

To test for more than two values with flags, assign more than one condition-name to a field by using
multiple level-88 items.

The reader can easily follow your code if you choose meaningful condition-names and if the values
assigned to them have some association with logical values.

“Example: switches” on page 86
“Example: flags” on page 87 

Example: switches
The following examples show how you can use level-88 items to test for various binary-valued (on-off)
conditions in your program.

For example, to test for the end-of-file condition for an input file named Transaction-File, you can use the
following data definitions:

WORKING-STORAGE SECTION.
01  Switches.
    05  Transaction-EOF-Switch  Pic X  value space.
        88  Transaction-EOF     value "y".

86  IBM COBOL for Linux on x86 1.1: Programming Guide



The level-88 description says that a condition named Transaction-EOF is in effect when
Transaction-EOF-Switch has value 'y'. Referencing Transaction-EOF in the PROCEDURE
DIVISION expresses the same condition as testing Transaction-EOF-Switch = "y". For example,
the following statement causes a report to be printed only if Transaction-EOF-Switch has been set to
'y':

If Transaction-EOF Then 
    Perform Print-Report-Summary-Lines
End-if

Example: flags
The following examples show how you can use several level-88 items together with an EVALUATE
statement to determine which of several conditions in a program is true.

Consider for example a program that updates a main file. The updates are read from a transaction file.
The records in the file contain a field that indicates which of the three functions is to be performed: add,
change, or delete. In the record description of the input file, code a field for the function code using
level-88 items:

01  Transaction-Input Record
    05  Transaction-Type         Pic X.
        88  Add-Transaction      Value "A".
        88  Change-Transaction   Value "C".
        88  Delete-Transaction   Value "D".

The code in the PROCEDURE DIVISION for testing these condition-names to determine which function is
to be performed might look like this:

Evaluate True
  When Add-Transaction
    Perform Add-Main-Record-Paragraph
  When Change-Transaction
    Perform Update-Existing-Record-Paragraph
  When Delete-Transaction
    Perform Delete-Main-Record-Paragraph
End-Evaluate

Resetting switches and flags
Throughout your program, you might need to reset switches or flags to the original values they had in their
data descriptions. To do so, either use a SET statement or define a data item to move to the switch or flag.

When you use the SET condition-name TO TRUE statement, the switch or flag is set to the original
value that it was assigned in its data description. For a level-88 item that has multiple values, SET
condition-name TO TRUE assigns the first value (A in the example below):

88 Record-is-Active Value "A" "O" "S"

Using the SET statement and meaningful condition-names makes it easier for readers to follow your code.

“Example: set switch on” on page 88
“Example: set switch off” on page 88 

Chapter 5. Selecting and repeating program actions  87



Example: set switch on
The following examples show how you can set a switch on by coding a SET statement that moves the
condition name value to the conditional variable.

For example, the SET statement in the following example has the same effect as coding the statement
Move "y" to Transaction-EOF-Switch:

01  Switches
    05  Transaction-EOF-Switch   Pic X  Value space.
        88  Transaction-EOF             Value "y".
. . .
Procedure Division.
000-Do-Main-Logic.
    Perform 100-Initialize-Paragraph
    Read Update-Transaction-File
      At End Set Transaction-EOF to True
    End-Read

The following example shows how to assign a value to a field in an output record based on the transaction
code of an input record:

01  Input-Record.
    05  Transaction-Type         Pic X(9).
01  Data-Record-Out.
    05  Data-Record-Type         Pic X.
        88 Record-Is-Active          Value "A".
        88 Record-Is-Suspended       Value "S".
        88 Record-Is-Deleted         Value "D".
    05  Key-Field                Pic X(5).
. . .
Procedure Division.
    Evaluate Transaction-Type of Input-Record
      When "ACTIVE"
        Set Record-Is-Active to TRUE
      When "SUSPENDED"
        Set Record-Is-Suspended to TRUE
      When "DELETED"
        Set Record-Is-Deleted to TRUE
    End-Evaluate

Example: set switch off
The following example shows how you can set a switch off by coding a MOVE statement that moves the
condition name value to the conditional variable.

For example, you can use a data item called SWITCH-OFF to set an on-off switch to off, as in the following
code, which resets a switch to indicate that end-of-file has not been reached:

01  Switches
    05  Transaction-EOF-Switch       Pic X  Value space.
        88  Transaction-EOF                 Value "y".
01  SWITCH-OFF                       Pic X  Value "n".
. . . 
Procedure Division.
    . . .
    Move SWITCH-OFF to Transaction-EOF-Switch

Repeating program actions
Use a PERFORM statement to repeat the same code (that is, loop) either a specified number of times or
based on the outcome of a decision.

You can also use a PERFORM statement to execute a paragraph and then implicitly return control to the
next executable statement. In effect, this PERFORM statement is a way of coding a closed subroutine that
you can enter from many different parts of the program.

88  IBM COBOL for Linux on x86 1.1: Programming Guide



PERFORM statements can be inline or out-of-line.

Related tasks   
“Choosing inline or out-of-line PERFORM” on page 89  
“Coding a loop” on page 90  
“Looping through a table” on page 90  
“Executing multiple paragraphs
or sections” on page 91 

Related references   
PERFORM statement (COBOL for Linux on x86 Language Reference)

Choosing inline or out-of-line PERFORM
An inline PERFORM is an imperative statement that is executed in the normal flow of a program; an
out-of-line PERFORM entails a branch to a named paragraph and an implicit return from that paragraph.

To determine whether to code an inline or out-of-line PERFORM statement, answer the following
questions:

• Is the PERFORM statement used in several places?

Use an out-of-line PERFORM when you want to use the same portion of code in several places in your
program.

• Which placement of the statement will be easier to read?

If the code to be performed is short, an inline PERFORM can be easier to read. But if the code extends
over several screens, the logical flow of the program might be clearer if you use an out-of-line PERFORM.
(Each paragraph in structured programming should perform one logical function, however.)

• What are the efficiency tradeoffs?

An inline PERFORM avoids the overhead of branching that occurs with an out-of-line PERFORM. But
even out-of-line PERFORM coding can improve code optimization, so efficiency gains should not be
overemphasized.

In the 1974 COBOL standard, the PERFORM statement is out-of-line and thus requires a branch to a
separate procedure and an implicit return. If the performed procedure is in the subsequent sequential
flow of your program, it is also executed in that logic flow. To avoid this additional execution, place the
procedure outside the normal sequential flow (for example, after the GOBACK) or code a branch around it.

The subject of an inline PERFORM is an imperative statement. Therefore, you must code statements (other
than imperative statements) within an inline PERFORM with explicit scope terminators.

“Example: inline PERFORM statement” on page 89

Example: inline PERFORM statement
This example shows the structure of an inline PERFORM statement that has the required scope
terminators and the required END-PERFORM phrase.

   Perform 100-Initialize-Paragraph
* The following statement is an inline PERFORM:
   Perform Until Transaction-EOF
      Read Update-Transaction-File Into WS-Transaction-Record
         At End
            Set Transaction-EOF To True
         Not At End
            Perform 200-Edit-Update-Transaction
            If No-Errors
               Perform 300-Update-Commuter-Record
            Else
               Perform 400-Print-Transaction-Errors
* End-If is a required scope terminator
            End-If
            Perform 410-Re-Initialize-Fields
* End-Read is a required scope terminator

Chapter 5. Selecting and repeating program actions  89



      End-Read
   End-Perform

Coding a loop
Use the PERFORM . . . TIMES statement to execute a procedure a specified number of times.

PERFORM 010-PROCESS-ONE-MONTH 12 TIMES
INSPECT . . .

In the example above, when control reaches the PERFORM statement, the code for the procedure 010-
PROCESS-ONE-MONTH is executed 12 times before control is transferred to the INSPECT statement.

Use the PERFORM . . . UNTIL statement to execute a procedure until a condition you choose is
satisfied. You can use either of the following forms:

PERFORM . . . WITH TEST AFTER  . . . . UNTIL . . .
PERFORM . . . [WITH TEST BEFORE] . . . UNTIL . . . 

Use the PERFORM . . . WITH TEST AFTER . . . UNTIL statement if you want to execute the
procedure at least once, and test before any subsequent execution. This statement is equivalent to a
do-until structure:

In the following example, the implicit WITH TEST BEFORE phrase provides a do-while structure:

PERFORM  010-PROCESS-ONE-MONTH
  UNTIL MONTH GREATER THAN 12
INSPECT . . .

When control reaches the PERFORM statement, the condition MONTH GREATER THAN 12 is tested. If the
condition is satisfied, control is transferred to the INSPECT statement. If the condition is not satisfied,
010-PROCESS-ONE-MONTH is executed, and the condition is tested again. This cycle continues until the
condition tests as true. (To make your program easier to read, you might want to code the WITH TEST
BEFORE clause.)

Looping through a table
You can use the PERFORM . . . VARYING statement to initialize a table. In this form of the PERFORM
statement, a variable is increased or decreased and tested until a condition is satisfied.

Thus you use the PERFORM statement to control looping through a table. You can use either of these
forms:

PERFORM . . . WITH TEST AFTER  . . . . VARYING . . . UNTIL . . .
PERFORM . . . [WITH TEST BEFORE] . . . VARYING . . . UNTIL . . .

90  IBM COBOL for Linux on x86 1.1: Programming Guide



The following section of code shows an example of looping through a table to check for invalid data:

PERFORM TEST AFTER VARYING WS-DATA-IX
      FROM 1 BY 1 UNTIL WS-DATA-IX = 12
   IF WS-DATA (WS-DATA-IX) EQUALS SPACES
      SET SERIOUS-ERROR TO TRUE
      DISPLAY ELEMENT-NUM-MSG5
   END-IF
END-PERFORM
INSPECT . . .

When control reaches the PERFORM statement above, WS-DATA-IX is set equal to 1 and the PERFORM
statement is executed. Then the condition WS-DATA-IX = 12 is tested. If the condition is true, control
drops through to the INSPECT statement. If the condition is false, WS-DATA-IX is increased by 1, the
PERFORM statement is executed, and the condition is tested again. This cycle of execution and testing
continues until WS-DATA-IX is equal to 12.

The loop above controls input-checking for the 12 fields of item WS-DATA. Empty fields are not allowed in
the application, so the section of code loops and issues error messages as appropriate.

Executing multiple paragraphs or sections
In structured programming, you usually execute a single paragraph. However, you can execute a group of
paragraphs, or a single section or group of sections, by coding the PERFORM . . . THRU statement.

When you use the PERFORM . . . THRU statement, code a paragraph-EXIT statement to clearly
indicate the end point of a series of paragraphs.

Related tasks   
“Processing table items
using intrinsic functions” on page 79

Related references   
EXIT PERFORM or EXIT PERFORM CYCLE statement 
(COBOL for Linux on x86 Language Reference) 
EXIT PARAGRAPH or EXIT SECTION statement 
(COBOL for Linux on x86 Language Reference)

Chapter 5. Selecting and repeating program actions  91



92  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 6. Handling strings

COBOL provides language constructs for performing many different operations on string data items.

For example, you can:

• Join or split data items.
• Manipulate null-terminated strings, such as count or move characters.
• Refer to substrings by their ordinal position and, if needed, length.
• Tally and replace data items, such as count the number of times a specific character occurs in a data

item.
• Convert data items, such as change to uppercase or lowercase.
• Evaluate data items, such as determine the length of a data item.

Related tasks   
“Joining data items (STRING)” on page 93  
“Splitting data items (UNSTRING)” on page 95  
“Manipulating null-terminated
strings” on page 98  
“Referring to substrings
of data items” on page 99  
“Tallying and replacing
data items (INSPECT)” on page 102  
“Converting data items (intrinsic
functions)” on page 104  
“Evaluating data items (intrinsic
functions)” on page 106  
Chapter 10, “Processing data in an international
environment,” on page 177 

Joining data items (STRING)
Use the STRING statement to join all or parts of several data items or literals into one data item. One
STRING statement can take the place of several MOVE statements.

The STRING statement transfers data into a receiving data item in the order that you indicate. In the
STRING statement you also specify:

• A delimiter for each set of sending fields that, if encountered, causes those sending fields to stop being
transferred (DELIMITED BY phrase)

• (Optional) Action to be taken if the receiving field is filled before all of the sending data has been
processed (ON OVERFLOW phrase) 

• (Optional) An integer data item that indicates the leftmost character position within the receiving field
into which data should be transferred (WITH POINTER phrase)

The receiving data item must not be an edited item, or a display or national floating-point item. If the
receiving data item has:

• USAGE DISPLAY, each identifier in the statement except the POINTER identifier must have USAGE
DISPLAY, and each literal in the statement must be alphanumeric 

• USAGE NATIONAL, each identifier in the statement except the POINTER identifier must have USAGE
NATIONAL, and each literal in the statement must be national

• USAGE DISPLAY-1, each identifier in the statement except the POINTER identifier must have USAGE
DISPLAY-1, and each literal in the statement must be DBCS

© Copyright IBM Corp. 2021, 2023 93



Only that portion of the receiving field into which data is written by the STRING statement is changed.

“Example: STRING statement” on page 94

Related tasks   
“Handling errors in joining and splitting strings” on page 165 

Related references   
STRING statement (COBOL for Linux on x86 Language Reference)

Example: STRING statement
The following example shows the STRING statement selecting and formatting information from a record
into an output line.

The FILE SECTION defines the following record:

01  RCD-01.
    05  CUST-INFO.
        10  CUST-NAME    PIC X(15).
        10  CUST-ADDR    PIC X(35).
    05  BILL-INFO.
        10  INV-NO       PIC X(6).
        10  INV-AMT      PIC $$,$$$.99.
        10  AMT-PAID     PIC $$,$$$.99.
        10  DATE-PAID    PIC X(8).
        10  BAL-DUE      PIC $$,$$$.99.
        10  DATE-DUE     PIC X(8).

The WORKING-STORAGE SECTION defines the following fields:

77  RPT-LINE             PIC X(120).
77  LINE-POS             PIC S9(3).
77  LINE-NO              PIC 9(5) VALUE 1.
77  DEC-POINT            PIC X VALUE ".".

The record RCD-01 contains the following information (the symbol b indicates a blank space):

J.B.bSMITHbbbbb
444bSPRINGbST.,bCHICAGO,bILL.bbbbbb
A14275
$4,736.85
$2,400.00
09/22/76
$2,336.85
10/22/76

In the PROCEDURE DIVISION, these settings occur before the STRING statement:

• RPT-LINE is set to SPACES.
• LINE-POS, the data item to be used as the POINTER field, is set to 4.

Here is the STRING statement:

STRING
   LINE-NO SPACE CUST-INFO INV-NO SPACE DATE-DUE SPACE
      DELIMITED BY SIZE
   BAL-DUE
      DELIMITED BY DEC-POINT
   INTO RPT-LINE
   WITH POINTER LINE-POS.

Because the POINTER field LINE-POS has value 4 before the STRING statement is performed, data is
moved into the receiving field RPT-LINE beginning at character position 4. Characters in positions 1
through 3 are unchanged.

94  IBM COBOL for Linux on x86 1.1: Programming Guide



The sending items that specify DELIMITED BY SIZE are moved in their entirety to the receiving field.
Because BAL-DUE is delimited by DEC-POINT, the moving of BAL-DUE to the receiving field stops when a
decimal point (the value of DEC-POINT) is encountered.

STRING results
When the STRING statement is performed, items are moved into RPT-LINE as shown in the table below.

Item Positions

LINE-NO 4 - 8

Space 9

CUST-INFO 10 - 59

INV-NO 60 - 65

Space 66

DATE-DUE 67 - 74

Space 75

Portion of BAL-DUE that precedes the decimal point 76 - 81

After the STRING statement is performed, the value of LINE-POS is 82, and RPT-LINE has the values
shown below.

Splitting data items (UNSTRING)
Use the UNSTRING statement to split a sending field into several receiving fields. One UNSTRING
statement can take the place of several MOVE statements.

In the UNSTRING statement you can specify:

• Delimiters that, when one of them is encountered in the sending field, cause the current receiving field
to stop receiving and the next, if any, to begin receiving (DELIMITED BY phrase)

• A field for the delimiter that, when encountered in the sending field, causes the current receiving field to
stop receiving (DELIMITER IN phrase) 

• An integer data item that stores the number of characters placed in the current receiving field (COUNT
IN phrase) 

• An integer data item that indicates the leftmost character position within the sending field at which
UNSTRING processing should begin (WITH POINTER phrase)

• An integer data item that stores a tally of the number of receiving fields that are acted on (TALLYING
IN phrase) 

• Action to be taken if all of the receiving fields are filled before the end of the sending data item is
reached (ON OVERFLOW phrase)

The sending data item and the delimiters in the DELIMITED BY phrase must be of category alphabetic,
alphanumeric, alphanumeric-edited, DBCS, national, or national-edited.

Receiving data items can be of category alphabetic, alphanumeric, numeric, DBCS, or national. If numeric,
a receiving data item must be zoned decimal or national decimal. If a receiving data item has:

Chapter 6. Handling strings  95



• USAGE DISPLAY, the sending item and each delimiter item in the statement must have USAGE
DISPLAY, and each literal in the statement must be alphanumeric 

• USAGE NATIONAL, the sending item and each delimiter item in the statement must have USAGE
NATIONAL, and each literal in the statement must be national

• USAGE DISPLAY-1, the sending item and each delimiter item in the statement must have USAGE
DISPLAY-1, and each literal in the statement must be DBCS

“Example: UNSTRING statement” on page 96

Related concepts   
“Unicode and the encoding
of language characters” on page 178 

Related tasks   
“Handling errors in joining and splitting strings” on page 165 

Related references   
UNSTRING statement (COBOL for Linux on x86 Language Reference)  
Classes and categories of data (COBOL for Linux on x86 Language Reference)

Example: UNSTRING statement
The following example shows the UNSTRING statement transferring selected information from an input
record. Some information is organized for printing and some for further processing.

The FILE SECTION defines the following records:

*  Record to be acted on by the UNSTRING statement:
 01  INV-RCD.
     05  CONTROL-CHARS               PIC XX.
     05  ITEM-INDENT                 PIC X(20).
     05  FILLER                      PIC X.
     05  INV-CODE                    PIC X(10).
     05  FILLER                      PIC X.
     05  NO-UNITS                    PIC 9(6).
     05  FILLER                      PIC X.
     05  PRICE-PER-M                 PIC 99999.
     05  FILLER                      PIC X.
     05  RTL-AMT                     PIC 9(6).99.
*
*  UNSTRING receiving field for printed output:
 01  DISPLAY-REC.
     05  INV-NO                      PIC X(6).
     05  FILLER                      PIC X VALUE SPACE.
     05  ITEM-NAME                   PIC X(20).
     05  FILLER                      PIC X VALUE SPACE.
     05  DISPLAY-DOLS                PIC 9(6).
*
*  UNSTRING receiving field for further processing:
 01  WORK-REC.
     05  M-UNITS                     PIC 9(6).
     05  FIELD-A                     PIC 9(6).
     05  WK-PRICE REDEFINES FIELD-A  PIC 9999V99.
     05  INV-CLASS                   PIC X(3).
*
*  UNSTRING statement control fields:
 77  DBY-1                           PIC X.
 77  CTR-1                           PIC S9(3).
 77  CTR-2                           PIC S9(3).
 77  CTR-3                           PIC S9(3).
 77  CTR-4                           PIC S9(3).
 77  DLTR-1                          PIC X.
 77  DLTR-2                          PIC X.
 77  CHAR-CT                         PIC S9(3).
 77  FLDS-FILLED                     PIC S9(3).

In the PROCEDURE DIVISION, these settings occur before the UNSTRING statement:

• A period (.) is placed in DBY-1 for use as a delimiter.
• CHAR-CT (the POINTER field) is set to 3.

96  IBM COBOL for Linux on x86 1.1: Programming Guide



• The value zero (0) is placed in FLDS-FILLED (the TALLYING field).
• Data is read into record INV-RCD, whose format is as shown below.

Here is the UNSTRING statement:

* Move subfields of INV-RCD to the subfields of DISPLAY-REC
* and WORK-REC:
     UNSTRING INV-RCD
       DELIMITED BY ALL SPACES  OR "/"  OR DBY-1
       INTO ITEM-NAME    COUNT IN CTR-1
            INV-NO       DELIMITER IN DLTR-1  COUNT IN CTR-2
            INV-CLASS
            M-UNITS      COUNT IN CTR-3
            FIELD-A
            DISPLAY-DOLS DELIMITER IN DLTR-2  COUNT IN CTR-4
       WITH POINTER CHAR-CT
       TALLYING IN  FLDS-FILLED
       ON OVERFLOW  GO TO UNSTRING-COMPLETE.

Because the POINTER field CHAR-CT has value 3 before the UNSTRING statement is performed, the two
character positions of the CONTROL-CHARS field in INV-RCD are ignored.

UNSTRING results
When the UNSTRING statement is performed, the following steps take place:

1. Positions 3 through 18 (FOUR-PENNY-NAILS) of INV-RCD are placed in ITEM-NAME, left justified in
the area, and the four unused character positions are padded with spaces. The value 16 is placed in
CTR-1.

2. Because ALL SPACES is coded as a delimiter, the five contiguous space characters in positions 19
through 23 are considered to be one occurrence of the delimiter.

3. Positions 24 through 29 (707890) are placed in INV-NO. The delimiter character slash (/) is placed in
DLTR-1, and the value 6 is placed in CTR-2.

4. Positions 31 through 33 (BBA) are placed in INV-CLASS. The delimiter is SPACE, but because no field
has been defined as a receiving area for delimiters, the space in position 34 is bypassed.

5. Positions 35 through 40 (475120) are placed in M-UNITS. The value 6 is placed in CTR-3. The
delimiter is SPACE, but because no field has been defined as a receiving area for delimiters, the space
in position 41 is bypassed.

6. Positions 42 through 46 (00122) are placed in FIELD-A and right justified in the area. The high-order
digit position is filled with a zero (0). The delimiter is SPACE, but because no field was defined as a
receiving area for delimiters, the space in position 47 is bypassed.

7. Positions 48 through 53 (000379) are placed in DISPLAY-DOLS. The period (.) delimiter in DBY-1 is
placed in DLTR-2, and the value 6 is placed in CTR-4.

8. Because all receiving fields have been acted on and two characters in INV-RCD have not been
examined, the ON OVERFLOW statement is executed. Execution of the UNSTRING statement is
completed.

After the UNSTRING statement is performed, the fields contain the values shown below.

Field Value

DISPLAY-REC 707890 FOUR-PENNY-NAILS            000379

WORK-REC 475120000122BBA

Chapter 6. Handling strings  97



Field Value

CHAR-CT (the POINTER field) 55

FLDS-FILLED (the TALLYING field) 6

Manipulating null-terminated strings
You can construct and manipulate null-terminated strings (for example, strings that are passed to or from
a C program) by various mechanisms.

For example, you can:

• Use null-terminated literal constants (Z". . . ").
• Use an INSPECT statement to count the number of characters in a null-terminated string:

MOVE 0 TO char-count
INSPECT source-field TALLYING char-count
                     FOR CHARACTERS
                     BEFORE X"00"

• Use an UNSTRING statement to move characters in a null-terminated string to a target field, and get the
character count:

WORKING-STORAGE SECTION.
01  source-field          PIC X(1001).
01  char-count     COMP-5 PIC 9(4).
01  target-area.
    02 individual-char OCCURS 1 TO 1000 TIMES DEPENDING ON char-count
                          PIC X.
. . .
PROCEDURE DIVISION.
    UNSTRING source-field DELIMITED BY X"00"
                          INTO target-area
                          COUNT IN char-count
      ON OVERFLOW
        DISPLAY "source not null terminated or target too short"
    END-UNSTRING

• Use a SEARCH statement to locate trailing null or space characters. Define the string being examined as
a table of single characters.

• Check each character in a field in a loop (PERFORM). You can examine each character in a field by using a
reference modifier such as source-field (I:1).

“Example: null-terminated strings” on page 98

Related tasks   
“Handling null-terminated
strings” on page 449 

Related references   
Alphanumeric literals (COBOL for Linux on x86 Language Reference)

Example: null-terminated strings
The following example shows several ways in which you can process null-terminated strings.

 01  L pic X(20) value z'ab'.
 01  M pic X(20) value z'cd'.
 01  N pic X(20).
 01  N-Length pic 99 value zero.
 01  Y pic X(13) value 'Hello, World!'.
 . . .
* Display null-terminated string:
     Inspect N tallying N-length
       for characters before initial x'00'

98  IBM COBOL for Linux on x86 1.1: Programming Guide



     Display 'N: ' N(1:N-Length) ' Length: ' N-Length
     . . .
* Move null-terminated string to alphanumeric, strip null:
     Unstring N delimited by X'00' into X
     . . .
* Create null-terminated string:
     String Y     delimited by size
            X'00' delimited by size
            into N.
     . . .
* Concatenate two null-terminated strings to produce another:
     String L     delimited by x'00'
            M     delimited by x'00'
            X'00' delimited by size
            into N.

Referring to substrings of data items
Refer to a substring of a data item that has USAGE DISPLAY, DISPLAY-1, or NATIONAL by using a
reference modifier. You can also refer to a substring of an alphanumeric or national character string that is
returned by an intrinsic function by using a reference modifier.

The following example shows how to use a reference modifier to refer to a twenty-character substring of a
data item called Customer-Record:

Move Customer-Record(1:20) to Orig-Customer-Name

You code a reference modifier in parentheses immediately after the data item. As the example shows, a
reference modifier can contain two values that are separated by a colon, in this order:

1. Ordinal position (from the left) of the character that you want the substring to start with
2. (Optional) Length of the required substring in character positions

The reference-modifier position and length for an item that has USAGE DISPLAY are expressed in
terms of single-byte characters. The reference-modifier position and length for items that have USAGE
DISPLAY-1 or NATIONAL are expressed in terms of DBCS character positions and national character
positions, respectively.

If you omit the length in a reference modifier (coding only the ordinal position of the first character,
followed by a colon), the substring extends to the end of the item. Omit the length where possible as a
simpler and less error-prone coding technique.

You can refer to substrings of USAGE DISPLAY data items, including alphanumeric groups,
alphanumeric-edited data items, numeric-edited data items, display floating-point data items, and zoned
decimal data items, by using reference modifiers. When you reference-modify any of these data items, the
result is of category alphanumeric. When you reference-modify an alphabetic data item, the result is of
category alphabetic.

You can refer to substrings of USAGE NATIONAL data items, including national groups, national-edited
data items, numeric-edited data items, national floating-point data items, and national decimal data
items, by using reference modifiers. When you reference-modify any of these data items, the result is of
category national. For example, suppose that you define a national decimal data item as follows:

01  NATL-DEC-ITEM  Usage National  Pic 999  Value 123.

You can use NATL-DEC-ITEM in an arithmetic expression because NATL-DEC-ITEM is of category
numeric. But you cannot use NATL-DEC-ITEM(2:1) (the national character 2, which in hexadecimal
notation is NX"3200") in an arithmetic expression, because it is of category national.

You can refer to substrings of table entries, including variable-length entries, by using reference
modifiers. To refer to a substring of a table entry, code the subscript expression before the reference

Chapter 6. Handling strings  99



modifier. For example, assume that PRODUCT-TABLE is a properly coded table of character strings. To
move D to the fourth character in the second string in the table, you can code this statement:

MOVE 'D' to PRODUCT-TABLE (2), (4:1)

You can code either or both of the two values in a reference modifier as a variable or as an arithmetic
expression.

“Example: arithmetic expressions as reference modifiers” on page 101

Because numeric function identifiers can be used anywhere that arithmetic expressions can be used, you
can code a numeric function identifier in a reference modifier as the leftmost character position or as the
length, or both.

“Example: intrinsic functions as reference modifiers” on page 102

Each number in the reference modifier must have a value of at least 1. The sum of the two numbers
must not exceed the total length of the data item by more than 1 character position so that you do not
reference beyond the end of the substring.

If the leftmost character position or the length value is a fixed-point noninteger, truncation occurs to
create an integer. If either is a floating-point noninteger, rounding occurs to create an integer.

The following options detect out-of-range reference modifiers, and flag violations with a runtime
message:

• SSRANGE compiler option
• CHECK runtime option

Related concepts   
“Reference modifiers” on page 100  
“Unicode and the encoding
of language characters” on page 178 

Related tasks   
“Referring to an item in
a table” on page 62 

Related references   
“SSRANGE” on page 283  
Reference modification (COBOL for Linux on x86 Language Reference)  
Function definitions (COBOL for Linux on x86 Language Reference)

Reference modifiers
Reference modifiers let you easily refer to a substring of a data item.

For example, assume that you want to retrieve the current time from the system and display its value in an
expanded format. You can retrieve the current time with the ACCEPT statement, which returns the hours,
minutes, seconds, and hundredths of seconds in this format:

HHMMSSss

However, you might prefer to view the current time in this format:

HH:MM:SS

Without reference modifiers, you would have to define data items for both formats. You would also have
to write code to convert from one format to the other.

100  IBM COBOL for Linux on x86 1.1: Programming Guide



With reference modifiers, you do not need to provide names for the subfields that describe the TIME
elements. The only data definition you need is for the time as returned by the system. For example:

01  REFMOD-TIME-ITEM    PIC X(8).

The following code retrieves and expands the time value:

     ACCEPT REFMOD-TIME-ITEM FROM TIME.
     DISPLAY "CURRENT TIME IS: "
* Retrieve the portion of the time value that corresponds to
*   the number of hours:
       REFMOD-TIME-ITEM (1:2)
       ":"
* Retrieve the portion of the time value that corresponds to
*   the number of minutes:
       REFMOD-TIME-ITEM (3:2)
       ":"
* Retrieve the portion of the time value that corresponds to
*   the number of seconds:
       REFMOD-TIME-ITEM (5:2)

“Example: arithmetic expressions as reference modifiers” on page 101
“Example: intrinsic
functions as reference modifiers” on page 102 

Related tasks   
“Assigning input from a
screen or file (ACCEPT)” on page 30  
“Referring to substrings
of data items” on page 99  
“Using national data (Unicode)
in COBOL” on page 179 

Related references   
Reference modification (COBOL for Linux on x86 Language Reference)

Example: arithmetic expressions as reference modifiers
Suppose that a field contains some right-justified characters, and you want to move those characters to
another field where they will be left justified. You can do so by using reference modifiers and an INSPECT
statement.

Suppose a program has the following data:

01  LEFTY     PIC X(30).
01  RIGHTY    PIC X(30)  JUSTIFIED RIGHT.
01  I         PIC 9(9)   USAGE BINARY.

The program counts the number of leading spaces and, using arithmetic expressions in a reference
modifier, moves the right-justified characters into another field, justified to the left:

MOVE SPACES TO LEFTY
MOVE ZERO TO I
INSPECT RIGHTY
   TALLYING I FOR LEADING SPACE.
IF I IS LESS THAN LENGTH OF RIGHTY THEN
   MOVE RIGHTY ( I + 1 : LENGTH OF RIGHTY - I ) TO LEFTY
END-IF

The MOVE statement transfers characters from RIGHTY, beginning at the position computed as I + 1 for a
length that is computed as LENGTH OF RIGHTY - I, into the field LEFTY.

Chapter 6. Handling strings  101



Example: intrinsic functions as reference modifiers
You can use intrinsic functions in reference modifiers if you do not know the leftmost position or length of
a substring at compile time.

For example, the following code fragment causes a substring of Customer-Record to be moved into the
data item WS-name. The substring is determined at run time.

05  WS-name        Pic x(20).
05  Left-posn      Pic 99.
05  I              Pic 99.
. . .
Move Customer-Record(Function Min(Left-posn I):Function Length(WS-name)) to WS-name

If you want to use a noninteger function in a position that requires an integer function, you can use the
INTEGER or INTEGER-PART function to convert the result to an integer. For example:

Move Customer-Record(Function Integer(Function Sqrt(I)): ) to WS-name

Related references   
INTEGER (COBOL for Linux on x86 Language Reference)  
INTEGER-PART (COBOL for Linux on x86 Language Reference)

Tallying and replacing data items (INSPECT)
Use the INSPECT statement to inspect characters or groups of characters in a data item and to optionally
replace them.

Use the INSPECT statement to do the following tasks:

• Count the number of times a specific character occurs in a data item (TALLYING phrase).
• Fill a data item or selected portions of a data item with specified characters such as spaces, asterisks,

or zeros (REPLACING phrase).
• Convert all occurrences of a specific character or string of characters in a data item to replacement

characters that you specify (CONVERTING phrase).

You can specify one of the following data items as the item to be inspected:

• An elementary item described explicitly or implicitly as USAGE DISPLAY, USAGE DISPLAY-1, or
USAGE NATIONAL

• An alphanumeric group item or national group item

If the inspected item has:

• USAGE DISPLAY, each identifier in the statement (except the TALLYING count field) must have USAGE
DISPLAY, and each literal in the statement must be alphanumeric

• USAGE NATIONAL, each identifier in the statement (except the TALLYING count field) must have
USAGE NATIONAL, and each literal in the statement must be national

• USAGE DISPLAY-1, each identifier in the statement (except the TALLYING count field) must have
USAGE DISPLAY-1, and each literal in the statement must be a DBCS literal

“Examples: INSPECT statement” on page 103

Related concepts   
“Unicode and the encoding
of language characters” on page 178 

Related references   
INSPECT statement (COBOL for Linux on x86 Language Reference)

102  IBM COBOL for Linux on x86 1.1: Programming Guide



Examples: INSPECT statement
The following examples show some uses of the INSPECT statement to examine and replace characters.

In the following example, the INSPECT statement examines and replaces characters in data item
DATA-2. The number of times a leading zero (0) occurs in the data item is accumulated in COUNTR.
The first instance of the character A that follows the first instance of the character C is replaced by the
character 2.

77  COUNTR            PIC 9   VALUE ZERO.
01  DATA-2            PIC X(11).
. . .
    INSPECT DATA-2
      TALLYING COUNTR FOR LEADING "0"
      REPLACING FIRST "A" BY "2" AFTER INITIAL "C"

DATA-2 before COUNTR after DATA-2 after

00ACADEMY00 2 00AC2DEMY00

0000ALABAMA 4 0000ALABAMA

CHATHAM0000 0 CH2THAM0000

In the following example, the INSPECT statement examines and replaces characters in data item
DATA-3. Each character that precedes the first instance of a quotation mark (") is replaced by the
character 0.

77  COUNTR            PIC 9   VALUE ZERO.
01  DATA-3            PIC X(8).
. . .
    INSPECT DATA-3
      REPLACING CHARACTERS BY ZEROS BEFORE INITIAL QUOTE

DATA-3 before COUNTR after DATA-3 after

456"ABEL 0 000"ABEL

ANDES"12 0 00000"12

"TWAS BR 0 "TWAS BR

The following example shows the use of INSPECT CONVERTING with AFTER and BEFORE phrases to
examine and replace characters in data item DATA-4. All characters that follow the first instance of the
character / but that precede the first instance of the character ? (if any) are translated from lowercase to
uppercase.

01  DATA-4            PIC X(11).
. . .
    INSPECT DATA-4
      CONVERTING
         "abcdefghijklmnopqrstuvwxyz" TO
         "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
      AFTER INITIAL "/"
      BEFORE INITIAL"?"

DATA-4 before DATA-4 after

a/five/?six a/FIVE/?six

r/Rexx/RRRr r/REXX/RRRR

Chapter 6. Handling strings  103



DATA-4 before DATA-4 after

zfour?inspe zfour?inspe

Converting data items (intrinsic functions)
You can use intrinsic functions to convert character-string data items to several other formats, for
example, to uppercase or lowercase, to reverse order, to numbers, or to one code page from another.

You can use the NATIONAL-OF and DISPLAY-OF intrinsic functions to convert to and from national
(Unicode) strings.

You can also use the INSPECT statement to convert characters.

“Examples: INSPECT statement” on page 103

Related tasks   
“Changing case (UPPER-CASE,
LOWER-CASE)” on page 104  
“Transforming to reverse
order (REVERSE)” on page 105  
“Converting to numbers (NUMVAL, NUMVAL-C)” on page 105  
“Converting from one code
page to another” on page 106

Changing case (UPPER-CASE, LOWER-CASE)
You can use the UPPER-CASE and LOWER-CASE intrinsic functions to easily change the case of
alphanumeric, alphabetic, or national strings.

01  Item-1   Pic x(30)  Value "Hello World!".
01  Item-2   Pic x(30).
. . .
    Display Item-1
    Display Function Upper-case(Item-1)
    Display Function Lower-case(Item-1)
    Move Function Upper-case(Item-1) to Item-2
    Display Item-2

The code above displays the following messages on the system logical output device:

Hello World!
HELLO WORLD!
hello world!
HELLO WORLD!

The DISPLAY statements do not change the actual contents of Item-1, but affect only how the letters
are displayed. However, the MOVE statement causes uppercase letters to replace the contents of Item-2.

The conversion uses the case mapping that is defined in the current locale. The length of the function
result might differ from the length of the argument.

Related tasks   
“Assigning input from a
screen or file (ACCEPT)” on page 30  
“Displaying values on a
screen or in a file (DISPLAY)” on page 31 

104  IBM COBOL for Linux on x86 1.1: Programming Guide



Transforming to reverse order (REVERSE)
You can reverse the order of the characters in a string by using the REVERSE intrinsic function.

Move Function Reverse(Orig-cust-name) To Orig-cust-name

For example, the statement above reverses the order of the characters in Orig-cust-name. If the
starting value is JOHNSONbbb, the value after the statement is performed is bbbNOSNHOJ, where b
represents a blank space.

Related concepts   
“Unicode and the encoding
of language characters” on page 178 

Converting to numbers (NUMVAL, NUMVAL-C)
The NUMVAL and NUMVAL-C functions convert character strings (alphanumeric or national literals, or
class alphanumeric or class national data items) to numbers. Use these functions to convert free-format
character-representation numbers to numeric form so that you can process them numerically.

Use NUMVAL-C when the argument includes a currency symbol or comma or both, as shown in the
example above. You can also place an algebraic sign before or after the character string, and the sign
will be processed. The arguments must not exceed 18 digits when you compile with the default option
ARITH(COMPAT) (compatibility mode) nor 31 digits when you compile with ARITH(EXTEND) (extended
mode), not including the editing symbols.

NUMVAL, NUMVAL-C and return long (64-bit) floating-point values in compatibility mode, and return
extended-precision (128-bit) floating-point values in extended mode. A reference to either of these
functions represents a reference to a numeric data item.

At most 15 decimal digits can be converted accurately to long-precision floating point (as described in the
related reference below about conversions and precision). If the argument to NUMVAL, NUMVAL-C, or has
more than 15 digits, it is recommended that you specify the ARITH(EXTEND) compiler option so that an
extended-precision function result that can accurately represent the value of the argument is returned.

When you use NUMVAL, NUMVAL-C, or , you do not need to statically define numeric data in a fixed format
nor input data in a precise manner. For example, suppose you define numbers to be entered as follows:

01  X   Pic S999V99  leading sign is separate.
. . .
    Accept X from Console

The user of the application must enter the numbers exactly as defined by the PICTURE clause. For
example:

+001.23
-300.00

However, using the NUMVAL function, you could code:

01  A   Pic x(10).
01  B   Pic S999V99.
. . .
    Accept A from Console
    Compute B = Function Numval(A)

Chapter 6. Handling strings  105



The input could then be:

1.23
-300

Related concepts   
“Formats for numeric
data” on page 39  
“Data format conversions” on page 46  
“Unicode and the encoding
of language characters” on page 178 

Related tasks   
“Converting to or from national (Unicode) representation” on page 186 

Related references   
“Conversions and precision” on page 47  
“ARITH” on page 253 

Converting from one code page to another
You can nest the DISPLAY-OF and NATIONAL-OF intrinsic functions to easily convert from any code page
to any other code page.

For example, the following code converts an EBCDIC string to an ASCII string:

  77  EBCDIC-CCSID PIC 9(4) BINARY VALUE 1140.
  77  ASCII-CCSID  PIC 9(4) BINARY VALUE 819.
  77  Input-EBCDIC PIC X(80).
  77  ASCII-Output PIC X(80).
  . . .
* Convert EBCDIC to ASCII
      Move Function Display-of
          (Function National-of (Input-EBCDIC EBCDIC-CCSID),
              ASCII-CCSID)
      to ASCII-output 

Related concepts   
“Unicode and the encoding
of language characters” on page 178 

Related tasks   
“Converting to or from national (Unicode) representation” on page 186 

Evaluating data items (intrinsic functions)
You can use intrinsic functions to determine the ordinal position of a character in the collating sequence,
to find the largest or smallest item in a series, to find the length of data item, or to determine when a
program was compiled.

Use these intrinsic functions:

• CHAR and ORD to evaluate integers and single alphabetic or alphanumeric characters with respect to the
collating sequence used in a program

• MAX, MIN, ORD-MAX, and ORD-MIN to find the largest and smallest items in a series of data items,
including USAGE NATIONAL data items

• LENGTH to find the length of data items, including USAGE NATIONAL data items
• WHEN-COMPILED to find the date and time when a program was compiled

106  IBM COBOL for Linux on x86 1.1: Programming Guide



Related concepts   
“Unicode and the encoding
of language characters” on page 178 

Related tasks   
“Evaluating single characters
for collating sequence” on page 107  
“Finding the largest or smallest data item” on page 107  
“Finding the length of data
items” on page 109  
“Finding the date of compilation” on page 110 

Evaluating single characters for collating sequence
To find out the ordinal position of a given alphabetic or alphanumeric character in the collating sequence,
use the ORD function with the character as the argument. ORD returns an integer that represents that
ordinal position.

You can use a one-character substring of a data item as the argument to ORD:

IF Function Ord(Customer-record(1:1)) IS > 194 THEN . . .

If you know the ordinal position in the collating sequence of a character, and want to find the character
that it corresponds to, use the CHAR function with the integer ordinal position as the argument. CHAR
returns the required character. For example:

INITIALIZE Customer-Name REPLACING ALPHABETIC BY Function Char(65)

Related references   
CHAR (COBOL for Linux on x86 Language Reference)  
ORD (COBOL for Linux on x86 Language Reference)

Finding the largest or smallest data item
To determine which of two or more alphanumeric, alphabetic, or national data items has the largest value,
use the MAX or ORD-MAX intrinsic function. To determine which item has the smallest value, use MIN or
ORD-MIN. These functions evaluate according to the collating sequence.

To compare numeric items, including those that have USAGE NATIONAL, you can use MAX, ORD-MAX,
MIN, or ORD-MIN. With these intrinsic functions, the algebraic values of the arguments are compared.

The MAX and MIN functions return the content of one of the arguments that you supply. For example,
suppose that your program has the following data definitions:

05  Arg1   Pic x(10)  Value "THOMASSON ".
05  Arg2   Pic x(10)  Value "THOMAS    ".
05  Arg3   Pic x(10)  Value "VALLEJO   ".

The following statement assigns VALLEJObbb to the first 10 character positions of Customer-record,
where b represents a blank space:

Move Function Max(Arg1 Arg2 Arg3) To Customer-record(1:10)

If you used MIN instead, then THOMASbbbb would be assigned.

The functions ORD-MAX and ORD-MIN return an integer that represents the ordinal position (counting
from the left) of the argument that has the largest or smallest value in the list of arguments that you
supply. If you used the ORD-MAX function in the previous example, the compiler would issue an error

Chapter 6. Handling strings  107



message because the reference to a numeric function is not in a valid place. Using the same arguments as
in the previous example, ORD-MAX can be used as follows:

Compute x = Function Ord-max(Arg1 Arg2 Arg3)

The statement above assigns the integer 3 to x if the same arguments are used as in the previous
example. If you used ORD-MIN instead, the integer 2 would be returned. The examples above might be
more realistic if Arg1, Arg2, and Arg3 were successive elements of an array (table).

If you specify a national item for any argument, you must specify all arguments as class national.

Related tasks   
“Performing arithmetic” on page 48  
“Processing table items
using intrinsic functions” on page 79  
“Returning variable results
with alphanumeric or national functions” on page 108 

Related references   
MAX (COBOL for Linux on x86 Language Reference)  
MIN (COBOL for Linux on x86 Language Reference)  
ORD-MAX (COBOL for Linux on x86 Language Reference)  
ORD-MIN (COBOL for Linux on x86 Language Reference)

Returning variable results with alphanumeric or national functions
The results of alphanumeric or national functions could be of varying lengths and values depending on the
function arguments.

In the following example, the amount of data moved to R3 and the results of the COMPUTE statement
depend on the values and sizes of R1 and R2:

01  R1    Pic x(10) value "e".
01  R2    Pic x(05) value "f".
01  R3    Pic x(20) value spaces.
01  L     Pic 99.
. . .
    Move Function Max(R1 R2) to R3
    Compute L = Function Length(Function Max(R1 R2))

This code has the following results:

• R2 is evaluated to be larger than R1.
• The string 'fbbbb' is moved to R3, where b represents a blank space. (The unfilled character positions in
R3 are padded with spaces.)

• L evaluates to the value 5.

If R1 contained 'g' instead of 'e', the code would have the following results:

• R1 would evaluate as larger than R2.
• The string 'gbbbbbbbbb' would be moved to R3. (The unfilled character positions in R3 would be padded

with spaces.)
• The value 10 would be assigned to L.

If a program uses national data for function arguments, the lengths and values of the function results
could likewise vary. For example, the following code is identical to the fragment above, but uses national
data instead of alphanumeric data.

01  R1    Pic n(10) national value "e".
01  R2    Pic n(05) national value "f".
01  R3    Pic n(20) national value spaces.
01  L     Pic 99    national.

108  IBM COBOL for Linux on x86 1.1: Programming Guide



. . .
    Move Function Max(R1 R2) to R3
    Compute L = Function Length(Function Max(R1 R2))

This code has the following results, which are similar to the first set of results except that these are for
national characters:

• R2 is evaluated to be larger than R1.
• The string NX"6600 2000 2000 2000 2000" (the equivalent in national characters of 'fbbbb', where

b represents a blank space), shown here in hexadecimal notation with added spaces for readability, is
moved to R3. The unfilled character positions in R3 are padded with national spaces.

• L evaluates to the value 5, the length in national character positions of R2.

You might be dealing with variable-length output from alphanumeric or national functions. Plan your
program accordingly. For example, you might need to think about using variable-length files when the
records that you are writing could be of different lengths:

File Section.
FD  Output-File Recording Mode V.
01  Short-Customer-Record  Pic X(50).
01  Long-Customer-Record   Pic X(70).
Working-Storage Section.
01  R1    Pic x(50).
01  R2    Pic x(70).
. . .
    If R1 > R2
      Write Short-Customer-Record from R1
    Else
      Write Long-Customer-Record from R2
    End-if

Related tasks   
“Finding the largest or smallest data item” on page 107  
“Performing arithmetic” on page 48 

Related references   
MAX (COBOL for Linux on x86 Language Reference)

Finding the length of data items
You can use the LENGTH function in many contexts (including tables and numeric data) to determine
the length of an item. For example, you can use the LENGTH function to determine the length of an
alphanumeric or national literal, or a data item of any type except DBCS.

LENGTH intrinsic function

The LENGTH function returns the length of a national item (a literal, or any item that has USAGE
NATIONAL, including national group items) as an integer equal to the length of the argument in national
character positions. It returns the length of any other data item as an integer equal to the length of the
argument in alphanumeric character positions.

The following COBOL statement demonstrates moving a data item into the field in a record that holds
customer names:

Move Customer-name To Customer-record(1:Function Length(Customer-name))

LENGTH OF special register

You can also use the LENGTH OF special register, which returns the length in bytes even for national data.
Coding either Function Length(Customer-name) or LENGTH OF Customer-name returns the same
result for alphanumeric items: the length of Customer-name in bytes.

You can use the LENGTH function only where arithmetic expressions are allowed. However, you can use
the LENGTH OF special register in a greater variety of contexts. For example, you can use the LENGTH OF

Chapter 6. Handling strings  109



special register as an argument to an intrinsic function that accepts integer arguments. (You cannot use
an intrinsic function as an operand to the LENGTH OF special register.) You can also use the LENGTH OF
special register as a parameter in a CALL statement.

Related tasks   
“Performing arithmetic” on page 48  
“Creating variable-length
tables (DEPENDING ON)” on page 70  
“Processing table items
using intrinsic functions” on page 79 

Related references    
“ADDR” on page 251     

LENGTH (COBOL for Linux on x86 Language Reference)  
LENGTH OF (COBOL for Linux on x86 Language Reference)

Finding the date of compilation
You can use the WHEN-COMPILED intrinsic function to determine when a program was compiled. The
21-character result indicates the four-digit year, month, day, and time (in hours, minutes, seconds, and
hundredths of seconds) of compilation, and the difference in hours and minutes from Greenwich mean
time.

The first 16 positions are in the following format:

YYYYMMDDhhmmsshh

You can instead use the WHEN-COMPILED special register to determine the date and time of compilation
in the following format:

MM/DD/YYhh.mm.ss

The WHEN-COMPILED special register supports only a two-digit year, and does not carry fractions of a
second. You can use this special register only as the sending field in a MOVE statement.

Related references   
WHEN-COMPILED (COBOL for Linux on x86 Language Reference)

110  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 7. Processing files

Reading data from files and writing data to files is an essential part of most COBOL programs. Your
program can retrieve information, process it as you request, and then write the results.

Before the processing, however, you must identify the files and describe their physical structure, and
indicate whether they are organized as sequential, relative, indexed, or line sequential. Identifying files
entails naming the files and their file systems. You might also want to set up a file status field that you can
later check to verify that the processing worked properly.

The major tasks you can perform in processing a file are first opening the file and then reading it, and
(depending on the type of file organization and access) adding, replacing, or deleting records.

Related concepts   
“File concepts and terminology” on page 111  
“File systems” on page 117  
“Generation data groups” on page 125  

Related tasks   
“Identifying files” on page 113  
“Specifying a file organization and access mode” on page 122  
“Concatenating files” on page 133  
“Opening optional files” on page 134  
“Setting up a field for file status” on page 135  
“Describing the structure of a file in detail” on page 135  
“Coding input and output statements for files” on page 136  
“Using Db2 files” on page 145    
“Using QSAM files” on page 147  
“Using SFS files” on page 148  

File concepts and terminology
The following concepts and terminology are used in COBOL for Linux information about files.
System file-name

The name of a file on a hard drive or other external medium. A system file-name might be qualified by
a path or other prefix to ensure uniqueness. A file exists within a specific file system.

File systems usually provide commands to manage files. The following example shows use of the
ls command to print details about a file Transaction.log in the STL file system, and shows the
system response:

> ls -l Transaction.log
-rw-r--r--    1 cobdev   cobdev     6144 May 27 17:29 Transaction.log

Internal file-name
A user-defined word that is specified after the FD keyword in a file description entry in the FILE
SECTION, and is used inside a program to refer to a file.

In the following example, LOG-FILE is an internal file-name:

Data division.
File section.
FD  LOG-FILE.
01  LOG-FILE-RECORD.

Programs operate on internal files by using I/O statements such as OPEN, CLOSE, READ, WRITE, and
START. As the term suggests, an internal file-name has no meaning outside a program.

© Copyright IBM Corp. 2021, 2023 111



The ASSIGN clause, described below, is the mechanism that associates an internal file-name with a
system file-name.

File-system ID
A three-character string that specifies the file system in which a file is stored and through which it is
accessed.

External file-name
A name that acts as an intermediary between an internal file-name and the associated system
file-name. The external file-name is visible outside a program and is typically used as the name of
an environment variable that is set to the file-information (an optional file-system ID followed by the
system file-name) before the program is run.

(An external file-name is distinct from the name of an external file, that is, a file that is defined with
the EXTERNAL keyword in its FD entry.)

The ASSIGN clause associates an internal file-name to a system file-name, and is specified in the FILE-
CONTROL paragraph. The ASSIGN clause has three basic forms:

•
SELECT internal-file-name ASSIGN TO user-defined-word

•
SELECT internal-file-name ASSIGN TO 'literal'

•
SELECT internal-file-name ASSIGN USING data-name
. . .
    MOVE file-information TO data-name 

user-defined word and literal each consist of up to three components, separated by hyphens. From left to
right:

1. (Optional) Comment
2. (Optional) File-system ID
3. External file-name if a user-defined word was specified; system file-name if a literal was specified

file-information consists of at most two components, separated by a hyphen. From left to right:

1. (Optional) File-system ID
2. System file-name

Related concepts  
“File systems” on page 117 

Related tasks  
“Identifying files” on page 113  

Related references  
ASSIGN clause (COBOL for Linux on x86 Language Reference)  

File types
On a Linux on x86 system, there are two types of files: stream files and binary files.
Stream files

Stream files are text files. The records of stream files are separated by /n. Stream files are viewable
by operating system utilities such as vi, cat, or lpr. Examples of stream files are record sequential
delimited (RSD) and line sequential (LSQ) data sets.
If you want to share data with a non-COBOL process, the data needs to be in a stream file.

112  IBM COBOL for Linux on x86 1.1: Programming Guide



Binary files
Binary files are raw files. The contents of binary files are entirely controlled by the applications that
use the file. Binary files are readable only by an application that understands the format. Examples of
binary files are QSAM and VSAM files.

In addition, Db2 and CICS provide file systems that the COBOL runtime can communicate with. Db2 and
CICS files are binary files or raw mount points, which are entirely managed by Db2 or CICS applications.
The contents of Db2 and CICS files are entirely invisible by the operating system provided tools; you can
use Db2 or CICS tools like sfsadmin list files, db2 show catalogue, or cics schema to view
the contents.

If you are moving COBOL programs between Linux on x86 and z/OS, you might also want to understand
the file types of z/OS.

There are two different file types on z/OS:
Sequential files

Examples are QSAM, BSAM, and EXCP files.
Relative or indexed files

Examples are BDAM and VSAM files.

Related concepts  
“File systems” on page 117 

Related tasks  
“Identifying files” on page 113  

Related references  
ASSIGN clause (COBOL for Linux on x86 Language Reference)  

Identifying files
To identify a file, you associate the file-name that is internal to your COBOL program with the
corresponding system file-name by using the SELECT and the ASSIGN clauses in the FILE-CONTROL
paragraph.

A simple form of this specification is:

SELECT internalFilename ASSIGN TO fileSystemID-externalFilename

internalFilename specifies the name that you use inside the program to refer to the file. The internal name
is typically not the same as the external file-name or the system file-name.

In the ASSIGN clause, you designate the external name of the file (externalFilename) that you want to
access, and optionally specify the file system (fileSystemID) in which the file exists or is to be created.

If you code fileSystemID to identify the file system, use one of the following values:

Db2
Db2 relational database file system.

LSQ
Line sequential file system.

QSAM
Queued sequential access method file system.

RSD
Record sequential delimited file system.

SdU
SMARTdata Utilities file system.

SFS
CICS Structured File Server file system.

Chapter 7. Processing files  113



STL
Standard language file system.

VSA
Virtual storage access method, which implies either the SFS or STL file system.

SFS is implied if the initial (leftmost) part of the system file-name begins with /.:/cics/sfs.
Otherwise VSA implies the STL file system.

For LINE SEQUENTIAL files, you can either specify or default to LSQ, the line sequential file system.

For INDEXED, RELATIVE, and SEQUENTIAL files, you can specify Db2, SdU, SFS, or STL. For
SEQUENTIAL files, RSD or QSAM is also a valid choice.

If you do not specify the file system for a given file, its file system is determined according to the
precedence described in the related reference about precedence.

You associate an internal file-name to a system file-name using one of these items in the ASSIGN clause,
as described below:

• A user-defined word
• A literal
• A data-name

Identifying files using a user-defined word:

To associate an internal file-name to a system file-name using a user-defined word, you can code a
SELECT clause and an ASSIGN clause in the following form:

SELECT internalFilename ASSIGN TO userDefinedWord

The association of the internal file-name to a system file-name is completed at run time. The following
example shows how you associate internal file-name LOG-FILE with file Transaction.log in the STL
file system by using environment variable TRANLOG:

SELECT LOG-FILE ASSIGN TO TRANLOG
. . . 
export TRANLOG=STL-Transaction.log

If an environment variable TRANLOG has not been set or is set to the null string when an OPEN statement
for LOG-FILE is executed, LOG-FILE is associated with a file named TRANLOG in the default file system.

Identifying files using a literal:

To associate an internal file-name to a system file-name using a literal, you can code a SELECT clause and
an ASSIGN clause in the following form:

SELECT internalFilename ASSIGN TO 'fileSystemID-systemFilename'

In the literal, you specify the system file-name and optionally the file system.

The following example shows how you can associate an internal file-name myFile with file extFile on
server sfsServer in the SFS file system:

SELECT myFile ASSIGN TO 'SFS-/.:/cics/sfs/sfsServer/extFile'

Because the literal explicitly specifies the file system and the system file-name, the file association can be
resolved at compile time.

For further details about coding the ASSIGN clause, see the appropriate related reference.

Identifying files using a data-name:

114  IBM COBOL for Linux on x86 1.1: Programming Guide



To associate an internal file-name to a system file-name using a data-name, code a SELECT clause and an
ASSIGN clause in the following form:

SELECT internalFilename ASSIGN USING dataName

Move the file-system and file-name information to the variable dataName before the file is processed.

The following example shows how you can associate internal file-name myFile with file FebPayroll in
the SdU file system:

SELECT myFile ASSIGN USING fileData
. . . 
01 fileData PIC X(50).
. . . 
    MOVE 'SdU-FebPayroll' TO fileData
    OPEN INPUT myFile

The association is resolved unconditionally at run time.

Related concepts   
“File systems” on page 117 
“Line-sequential file organization” on page 123  
“Generation data groups” on page 125  

Related tasks  
“Identifying files to the operating system (ASSIGN)” on page 8  
“Identifying Db2 files” on page 115  
“Identifying SFS files” on page 116  
“Concatenating files” on page 133  

Related references  
“Precedence of file-system determination” on page 116  
“Runtime environment
variables” on page 220  
ASSIGN clause (COBOL for Linux on x86 Language Reference)  

Identifying Db2 files
To identify a file in the Db2 file system, specify or default to file-system ID DB2.

The system file-name must include the schema for the underlying Db2 table. Specify the schema directly
as a prefix to the system file-name.

For interoperation with TXSeries or CICS TX, use schema name CICS. For example, to associate a Db2 file
named TRANS in schema CICS with environment variable EXTFILENAME, you can use this command:

export EXTFILENAME=DB2-CICS.TRANS

Alternatively, for more flexibility, specify the file system and system file-name separately:

export COBRTOPT=FILESYS=DB2
export EXTFILENAME=CICS.TRANS

For more details about using DB2® files, see the appropriate related task below.

Related tasks  
“Identifying files” on page 113  
“Using Db2 files” on page 145  
“Using file system status codes” on page 170  
“Setting environment variables” on page 215  

Chapter 7. Processing files  115



Related references  
“Db2 file system” on page 118  
“FILESYS” on page 300  

Identifying SFS files
To identify a file in the SFS file system, specify or default to file-system ID SFS.

The system file-name must start with prefix SFS- followed by the SFS server name and file-name. You
can specify the system file name if files are located on multiple SFS servers. The following example shows
the system file named INVENTORY is located on the SFS server named sfsServer.

export EXTFN=SFS-/.:/cics/sfs/sfsServer/INVENTORY

If you set environment variable CICS_TK_SFS_SERVER to the required SFS server, you can use a
shorthand specification for the system file-name instead of using the fully qualified name. The system
file-name is prefixed with the value of CICS_TK_SFS_SERVER, followed by a forward slash, to create the
fully qualified system file-name. For example:

export CICS_TK_SFS_SERVER=/.:/cics/sfs/sfsServer
export EXTFN=SFS-INVENTORY

The following export command shows a more complex example of how you might set an environment
variable MYFILE to identify an indexed SFS file that has two alternate indexes:

export MYFILE="/.:/cics/sfs/sfsServer/mySFSfil(\
/.:/cics/sfs/sfsServer/mySFSfil;myaltfil1,\
/.:/cics/sfs/sfsServer/mySFSfil;myaltfil2)"

The command provides the following information:

• /.:/cics/sfs/sfsServer is the fully qualified name for the CICS server.
• mySFSfil is the base SFS file.
• /.:/cics/sfs/sfsServer/mySFSfil is the fully qualified base system file-name.
• myaltfil1 and myaltfil2 are the alternate index files.

For each alternate index file, the file name must be in the format of its fully qualified base system
file-name followed by a semicolon (;) and the alternate index file name: /.:/cics/sfs/sfsServer/
mySFSfil;myaltfil1.

A comma is required between specifications of alternate index files in the export command.

Related tasks  
“Identifying files” on page 113  
“Using SFS files” on page 148  
“Using file system status codes” on page 170  

Related references   
“SFS file system” on page 121  

Precedence of file-system determination
The file system applicable to a given SEQUENTIAL, INDEXED, or RELATIVE file is determined according to
the following precedence, from highest to lowest.

1. The file system specified by the assignment-name runtime environment variable or the value of the
USING data item that is coded in the ASSIGN clause

116  IBM COBOL for Linux on x86 1.1: Programming Guide



2. The file system specified by the next-to-rightmost component of the literal or user-defined word that
is coded in the ASSIGN clause if that component is at least three characters long (and meets the other
criteria described in the documentation of the ASSIGN clause)

3. The default file system designated by the FILESYS runtime option (as specified in the COBRTOPT
runtime environment variable)

If no file system is determined by the preceding means, the file system defaults to SFS if the leftmost part
of the system file-name begins with /.:/cics/sfs, otherwise to STL.

Related concepts   
“File systems” on page 117  

Related tasks   
“Identifying files to the operating system (ASSIGN)” on page 8  
“Identifying files” on page 113  

Related references  
“Runtime environment
variables” on page 220  
“FILESYS” on page 300  
ASSIGN clause (COBOL for Linux on x86 Language Reference)  

File systems
Record-oriented files that have sequential, relative, indexed, or line-sequential organization are accessed
through a file system.

COBOL for Linux supports the following file systems for sequential, relative, and indexed files:
Db2 (Db2 relational database) file system

Lets batch COBOL programs create and access CICS files that are stored in Db2. 
SdU (SMARTdata Utilities) file system

Files in the SdU file system can be shared with PL/I programs. 
SFS (CICS Structured File Server) file system

One of the file systems used by CICS. CICS SFS is supplied as part of CICS. SFS files can be shared
with PL/I programs. 

STL (standard language) file system
Provides the basic facilities for local files. 

COBOL for Linux supports the following file systems for sequential files:
QSAM (queued sequential access method) file system

Lets COBOL programs access QSAM files that are transferred from the mainframe to Linux using FTP. 
RSD (record sequential delimited) file system

Lets COBOL programs share data with programs written in other languages. RSD files are sequential
only, with fixed or variable-length records, and support all COBOL data types in records. Text data in
records can be edited by most file editors. 

You can specify the file system for a given sequential, relative, or indexed file in any of several ways. For
details, see the related reference about precedence of file-system determination.

Record-oriented files that have line-sequential organization can be accessed only through the LSQ (line
sequential) file system.

Db2 files are managed by the DB2 command-line utility; SFS files are managed by the sfsadmin
command-line utility. All other files exist in the line sequential Linux file system, and are managed by
standard Linux commands such as cp, ls, mv, and rm. (Do not however use the cp or mv command for
SdU files, which consist of multiple component files that refer to one another internally.)

Chapter 7. Processing files  117



All the file systems let you use COBOL statements to read and write COBOL files. Most programs have
the same behaviors in all file systems. However, files written using one file system cannot be read using a
different file system.

To associate a COBOL file name to a file system and operating system file name, use one of the following
three methods that are listed in increasing order of flexibility, where RSD is used as an example file
system:

• Code ASSIGN TO RSD-assignment-name in your program.
• Set the following environment variable: export COBRTOPT=FS=RSD:.
• Set the following command: export assignment-name=RSD-os-file-name.

It is common for a COBOL program to use multiple file systems during the execution; for example:

• Use the RSD file system for transaction files that are used to update the database file.
• Use the STL file system for indexed or relative database files.
• Use the RSD file system for output files.
• All other files exist in the native Linux file system.

Tip: To avoid changing and recompiling COBOL programs when the file system changes, you can use
environment variables to associate a file system, and file name with the ASSIGN clause rather than use
the COBRTOPT default settings.

Related concepts   
“Line-sequential file organization” on page 123  

Related tasks   
“Identifying files to the operating system (ASSIGN)” on page 8 
“Identifying files” on page 113 

Related references  
“Precedence of file-system determination” on page 116  
“Db2 file system” on page 118 
“QSAM file system” on page 119  
“RSD file system” on page 120  
“SdU file system” on page 120  
“SFS file system” on page 121  
“STL file system” on page 122  
  
  
Appendix B, “IBM Z host data format
considerations,” on page 525  

Db2 file system
The Db2 file system supports sequential, indexed, and relative files. It provides enhanced interoperation
with TXSeries or CICS TX, enabling batch COBOL programs to access CICS ESDS, KSDS, and RRDS files
that are stored in Db2.

The implementation of the Db2 file system ensures that each COBOL operation is committed to the
database so that no transactional or other database semantics show through to the COBOL program.

The Db2 database management system (DBMS) provides backup, compression, encryption, and utility
functions, and also provides Db2 users with a familiar maintenance and administration protocol.

The db2 command-line utility provides administrative functions for Db2 files. For example, you might use
the db2 describe command to print details about a file called CICS.Transaction.log in the Db2 file
system:

> db2 describe table CICS.\"Transaction.log\"

118  IBM COBOL for Linux on x86 1.1: Programming Guide



                        Data type                    Column
Column name             schema    Data type name     Length   Scale Nulls
----------------------- --------- ------------------ -------- ----- ----
RBA                     SYSIBM    CHARACTER                8      0 No
F1                      SYSIBM    CHARACTER               41      0 No
F2                      SYSIBM    VARCHAR                 29      0 No

For more information about the functions that are provided by the db2 utility, enter the command db2.

The Db2 file system is nonhierarchical.

Restrictions:

• A given program can use Db2 files in only one database.
• The Db2 file system is not safe for use with multiple threads.

Interoperation with TXSeries or CICS TX:

For interoperation with TXSeries or CICS TX, there are additional requirements for Db2 files:

• The schema name for the Db2 table must be CICS. Specify the fully-qualified name in one of these
items:

– The ASSIGN TO literal, for example, ASSIGN TO 'CICS.MYFILE'
– The environment variable value, for example, export ENVAR=CICS.MYFILE
– The ASSIGN USING data-name value, for example, MOVE 'CICS.MYFILE' TO fileData

The rest of the file-name after the schema must be uppercase.
• Fixed-length files have the following maximum record lengths:

– Indexed (KSDS): 4005 bytes
– Relative (RRDS): 4001 bytes
– Sequential (ESDS): 4001 bytes

• Files that have record lengths that are larger than the maximum record lengths for fixed-length files
must be defined as variable length.

• The maximum record length is 32,767 bytes.
• If a Db2 file is created by a COBOL program, the runtime option FILEMODE(SMALL) must be in effect.

Related concepts   
“File organization and access mode” on page 122 

Related tasks   
“Identifying Db2 files” on page 115 
“Using Db2 files” on page 145 

Related references  
  
Effect of CLOSE statement on file types (COBOL for Linux on x86 Language Reference)  
Compiler limits (COBOL for Linux on x86 Language Reference)  
DB2 Database Administration Concepts and Configuration Reference (SQL limits)    

QSAM file system
The QSAM (queued sequential access method) file system supports fixed, variable, and spanned records.
Using the QSAM file system, you can directly access a QSAM file that you transferred from the mainframe
to Linux. QSAM files support all COBOL data types in the record.

You can obtain a QSAM file from the mainframe using FTP with the options binary and quote site
rdw. If the file contains EBCDIC character data, compile the Linux COBOL program with -host to read or
write the character data as EBCDIC. If the QSAM file already exists, you can upload the same file to the
mainframe. If the file does not exist, you must create it using the correct file attributes.

Chapter 7. Processing files  119

http://publib.boulder.ibm.com/epubs/pdf/c2724421.pdf


The QSAM file system fully supports the following RECFM options that are specified in mainframe COBOL:

• RECFM=V[B][S]
• RECFM=F[B][S]

, where:

• B represents blocked records. B has no significance on Linux.
• F represents fixed length records. A QSAM fixed length record file has no metadata. The file has just

data.
• S represents spanned records.
• U represents undefined length records. U is not applicable for COBOL files.
• V represents variable length records. A QSAM variable length record file has a leading Record Descriptor

Word (RDW) as a prefix for every record in the file.

Related concepts   
“File organization and access mode” on page 122  

Related tasks   
“Using QSAM files” on page 147 

RSD file system
The RSD (record sequential delimited) file system supports sequential files that have fixed or variable-
length records. You can process RSD files by using the standard system file utility functions such as
browse, edit, copy, delete, and print.

RSD files provide good performance. They give you the ability to port files easily between Linux and
Windows-based systems and to share files between programs and applications written in different
languages.

RSD files support all COBOL data types in records of fixed or variable length. Each record that is written is
followed by a newline control character.

Related concepts   
“File organization and access mode” on page 122 

SdU file system
The SdU (SMARTdata Utilities) file system supports sequential, indexed, and relative files.

When you create an SdU file using OPEN OUTPUT and WRITE statements, multiple files are created:

• The file attributes are stored in files that have suffix .DDMEA.
• The primary index is stored in a file whose name begins with the character @, followed by the file name.
• The alternate indexes are stored in files whose names end with suffix .@00, .@01, and so forth.

Because SdU files consist of multiple files that refer to one another internally, do not attempt to copy,
move, or rename them. When you delete an SdU file (using the rm command), be sure to also delete all its
component files, some of which are hidden due to their having names that begin with a period (.). To list
all the components of an SdU file named Log123 in the current directory for example, use the following
command:

ls -l *Log123* .*Log123*

The SdU file system conforms to 85 COBOL Standard.

Restrictions:

• SdU files must not be accessed other than from COBOL programs, because the metadata for SdU files is
stored separately from the files (as described above).

120  IBM COBOL for Linux on x86 1.1: Programming Guide



• The SdU file system is not safe for use with multiple threads.

Related concepts   
“File organization and access mode” on page 122 

Related references  
  
   
VSAM File System Reply Messages  

SFS file system
The CICS SFS (Structured File Server) file system is a record-oriented file system that supports three
types of file organization: sequential (entry-sequenced), relative, and indexed (clustered). The SFS
file system provides the basic facilities that you need for accessing files sequentially, randomly, or
dynamically.

You can process SFS files by using the standard file operations such as read, write, rewrite, and delete.

Each SFS file has one internal primary index, which defines the physical ordering of the records in the file,
and can have any number of secondary indexes, which provide alternate sequences in which the records
can be accessed.

All data in SFS files is managed by an SFS server. SFS provides a system tool, sfsadmin, for performing
administrative functions such as creating files and indexes, determining which volumes are available on
the SFS server, and so on, through a command-line interface. For details, see the CICS publication in the
related reference.

The SFS file system is nonhierarchical. That is, when identifying SFS files, you can specify only individual
file names, not directory names, after the server name.

COBOL access to SFS files is nontransactional: each operation against an SFS file is atomic, that is,
performed either in its entirety or not at all. In the event of an SFS system failure, the result of a file
operation completed by a COBOL application might not be reflected in the SFS file.

The SFS file system conforms to 85 COBOL Standard.

With the SFS file system, you can easily read and write files to be shared with PL/I programs.

Restrictions:

• The SFS file system is not safe for use with multiple threads.
• You cannot process SFS files using 64-bit COBOL for Linux programs.

Related concepts   
“File organization and access mode” on page 122 

Related tasks   
“Identifying files” on page 113  
“Identifying SFS files” on page 116  
“Using SFS files” on page 148  
“Improving SFS performance” on page 150  

Related references   
TXSeries documentation
CICS TX documentation  
  

Chapter 7. Processing files  121

http://publib.boulder.ibm.com/epubs/pdf/cob4vs00.pdf
https://www.ibm.com/support/knowledgecenter/en/SSAL2T_9.1.0/com.ibm.cics.tx.doc/ic-homepage.html
https://www.ibm.com/docs/en/cics-tx/latest


STL file system
The STL file system (standard language file system) supports sequential, indexed, and relative files. It
provides the basic file facilities for accessing files.

The STL file system conforms to 85 COBOL Standard, and provides good performance and the ability to
port easily between Linux and Windows-based systems.

Related concepts   
“File organization and access mode” on page 122  

Specifying a file organization and access mode
In the FILE-CONTROL paragraph, you need to define the physical structure of a file and its access mode,
as shown below.

FILE-CONTROL.
    SELECT file ASSIGN TO FileSystemID-Filename
    ORGANIZATION IS org ACCESS MODE IS access.

For org, you can choose SEQUENTIAL (the default), LINE SEQUENTIAL, INDEXED, or RELATIVE.

For access, you can choose SEQUENTIAL (the default), RANDOM, or DYNAMIC.

Sequential and line-sequential files must be accessed sequentially. For indexed or relative files, all three
access modes are possible.

File organization and access mode
You can organize your files as sequential, line-sequential, indexed, or relative. The access mode defines
how COBOL reads and writes files, but not how files are organized.

You should decide on the file organization and access modes when you design your program.

The following table summarizes file organization and access modes for COBOL files.

Table 9. File organization and access mode

File organization Order of records Records can be deleted or
replaced?

Access mode

Sequential Order in which they
were written

A record cannot be deleted,
but its space can be reused
for a same-length record.

Sequential only

Line-sequential Order in which they
were written

A record can not be deleted,
but its space can be reused
for a same-length record.

Sequential only

Indexed Collating sequence by
key field

Yes Sequential, random, or
dynamic

Relative Order of relative record
numbers

Yes Sequential, random, or
dynamic

Your file-management system handles the input and output requests and record retrieval from the input-
output devices.

Related concepts   
“Sequential file organization” on page 123  
“Line-sequential file organization” on page 123  
“Indexed file organization” on page 123  
“Relative file organization” on page 124  

122  IBM COBOL for Linux on x86 1.1: Programming Guide



“Sequential access” on page 124  
“Random access” on page 124  
“Dynamic access” on page 124 

Related tasks   
“Specifying a file organization and access mode” on page 122 

Sequential file organization
A sequential file contains records organized by the order in which they were entered. The order of the
records is fixed.

Records in sequential files can be read or written only sequentially.

After you place a record into a sequential file, you cannot shorten, lengthen, or delete the record.
However, you can update (REWRITE) a record if the length does not change. New records are added at the
end of the file.

If the order in which you keep records in a file is not important, sequential organization is a good choice
whether there are many records or only a few. Sequential output is also useful for printing reports.

Related concepts   
“Sequential access” on page 124 

Related references   
“Valid COBOL statements for sequential files” on page 138 

Line-sequential file organization
Line-sequential files are like sequential files, except that the records can contain only characters as data.
Line-sequential files are supported by the native byte stream files of the operating system.

Line-sequential files that are created using WRITE statements that have the ADVANCING phrase can be
directed to a printer or to a disk.

Related concepts   
“Sequential file organization” on page 123 

Related tasks   
“Identifying files” on page 113 

Related references   
“Valid COBOL statements for line-sequential files” on page 139 

Indexed file organization
An indexed file contains records ordered by a record key. A record key uniquely identifies a record and
determines the sequence in which it is accessed with respect to other records.

Each record contains a field that contains the record key. A record key for a record might be, for example,
an employee number or an invoice number.

An indexed file can also use alternate indexes, that is, record keys that let you access the file using
a different logical arrangement of the records. For example, you could access a file through employee
department rather than through employee number.

The possible record transmission (access) modes for indexed files are sequential, random, or dynamic.
When indexed files are read or written sequentially, the sequence is that of the key values.

EBCDIC consideration: As with any change in the collating sequence, if your indexed file is a local
EBCDIC file, the EBCDIC keys will not be recognized as such outside of your COBOL program. For
example, an external sort program, unless it also has support for EBCDIC, will not sort records in the
order that you might expect.

Chapter 7. Processing files  123



Related references   
“Valid COBOL statements for indexed and relative files” on page 139 

Relative file organization
A relative record file contains records ordered by their relative key, a record number that represents the
location of the record relative to where the file begins.

For example, the first record in a file has a relative record number of 1, the tenth record has a relative
record number of 10, and so forth. The records can have fixed length or variable length.

The record transmission modes for relative files are sequential, random, or dynamic. When relative files
are read or written sequentially, the sequence is that of the relative record number.

Related references   
“Valid COBOL statements for indexed and relative files” on page 139 

Sequential access
For sequential access, code ACCESS IS SEQUENTIAL in the FILE-CONTROL paragraph.

For indexed files, records are accessed in the order of the key field selected (either primary or alternate),
beginning at the current position of the file position indicator.

For relative files, records are accessed in the order of the relative record numbers.

Related concepts   
“Random access” on page 124  
“Dynamic access” on page 124 

Related references   
“File position indicator” on page 138 

Random access
For random access, code ACCESS IS RANDOM in the FILE-CONTROL paragraph.

For indexed files, records are accessed according to the value you place in a key field (primary, alternate,
or relative). There can be one or more alternate indexes.

For relative files, records are accessed according to the value you place in the relative key.

Related concepts   
“Sequential access” on page 124  
“Dynamic access” on page 124 

Dynamic access
For dynamic access, code ACCESS IS DYNAMIC in the FILE-CONTROL paragraph.

Dynamic access supports a mixture of sequential and random access in the same program. With dynamic
access, you can use one COBOL file definition to perform both sequential and random processing,
accessing some records in sequential order and others by their keys.

For example, suppose you have an indexed file of employee records, and the employee's hourly wage
forms the record key. Also, suppose your program is interested in those employees who earn between
$12.00 and $18.00 per hour and those who earn $25.00 per hour and above. To access this information,
retrieve the first record randomly (with a random-retrieval READ) based on the key of 1200. Next,
begin reading sequentially (using READ NEXT) until the salary field exceeds 1800. Then switch back
to a random read, this time based on a key of 2500. After this random read, switch back to reading
sequentially until you reach the end of the file.

124  IBM COBOL for Linux on x86 1.1: Programming Guide



Related concepts   
“Sequential access” on page 124  
“Random access” on page 124 

Generation data groups
A generation data group (GDG) is a chronological collection of related files. GDGs simplify the processing
of multiple versions of related data.

Each file within a GDG is called a generation data set (GDS) or generation. (In this information, generation
data sets are referred to as generation files. The term file on the workstation is equivalent to the term data
set on the host.)

Within a GDG, the generations can have like or unlike attributes including ORGANIZATION, record format,
and record length. If all generations in a group have consistent attributes and sequential organization, you
can retrieve the generations together as a single file.

There are advantages to grouping related files. For example:

• The files in the group can be referred to by a common name.
• The files in the group are kept in generation order.
• The outdated files can be automatically discarded.

The generations within a GDG have sequentially ordered relative and absolute names that represent their
age.

The relative name of a generation file is the group name followed by an integer in parentheses. For
example, if the name of a group is hlq.PAY:

• hlq.PAY(0) refers to the most current generation.
• hlq.PAY(-1) refers to the previous generation.
• hlq.PAY(+1) specifies a new generation to be added.

The absolute name of a generation file contains the generation number and version number. For example,
if the name of a group is hlq.PAY:

• hlq.PAY.g0005v00 refers to generation file 5, version 0.
• hlq.PAY.g0006v00 refers to generation file 6, version 0.

For more information about forming absolute and relative names, see the Related tasks.

Generation order is typically but not necessarily the same as the order in which files were added to a
group. Depending on how you add generation files using absolute and relative names, you might insert a
generation into an unexpected position in a group. For details, see the related reference about insertion
and wrapping of generation files.

GDGs are supported in all of the COBOL for Linux file systems.

Restriction: A GDG cannot contain either an SFS indexed file that has any alternate indexes, or an SdU
indexed file that requires a list of alternate indexes in the file name. The restriction is due to the ambiguity
between the syntax of a parenthesized alternate index list and the syntax of GDG relative names, which
also require a parenthesized expression.

For information about creating and initializing generation data groups, see the appropriate related task.

To delete, rebuild, clean up, modify, or list generation groups, or add or delete generations within a group,
use the gdgmgr utility. To see a summary of gdgmgr functions, issue the following command: gdgmgr
-h. For further details about the gdgmgr utility, see its man page via the following command: gdgmgr
-man.

Chapter 7. Processing files  125



Use case
A GDG can be used to store and combine data to produce an aggregate daily, monthly, quarterly, or yearly
reporting application. The below list defines each frequency:

• A maximum of 7 days a week
• A maximum of 31 days in a month
• A maximum of 3 months in a quarter
• A maximum of 4 quarters in a year

You keep writing daily reports automatically, but only keep the 7 most recent reports. The COBOL program
opens a file named daily.reports(+1); the runtime will generate a unique name for the new file, and
do any cleanup necessary to ensure older generations are properly aged out. If you are summarizing a
yearly report instead, the COBOL program opens a file named quarterly.reports(*) to signify that it
wants all the data and in sequential order.

Example
Follow these steps to create different versions of GDG:

1. Export the filesystem name.
2. Compile and link your program as usual. To learn more, see Chapter 12, “Compiling, linking, and

running programs,” on page 215.
3. Create a GDG base gdg_test and list the contents using this command: gdgmgr -e -s -L 2 -c
gdg_test -l.

The output is as follows:

GDG: gdg_test 
  Catalogue   = ./gdg_test.catalogue
  Limit       = 2
  Days        = 0
  NoEmpty
  Scratch
  Entries     = 0

4. Execute the program.
5. Create different GDG versions and list the contents using this command: gdgmgr -l gdg_test.

The source file is as follows:

cbl compile,pgmname(mixed) 
ID DIVISION.
PROGRAM-ID. 'ins_gdg'.
 
ENVIRONMENT DIVISION.
INPUT-OUTPUT Section.
 
FILE-CONTROL.
    SELECT GDS_File
       ASSIGN using gds_filename
       ORGANIZATION is sequential.
 
DATA DIVISION.
 
FILE SECTION.
FD GDS_File
    Record contains 80 characters
    RECORDING MODE is F.
01 GDS_File-record pic x(80).
 
Working-Storage Section.
01 record-in            pic x(80) value spaces.
01 record-out           pic x(80) value spaces.
01 gds_filename         pic x(64) value spaces.
 
Linkage Section.
 
Procedure Division.

126  IBM COBOL for Linux on x86 1.1: Programming Guide



    move 0 to return-code.
 
    display "     Start ..."
 
    move 'gdg_test.g0001v00' to gds_filename.
    move '   Initial GDS 0001    [gdg_test.g0001v00]'
         to record-out.
    open output GDS_File
    write GDS_File-record from record-out
    close GDS_File
    move 'gdg_test(+1)' to gds_filename. 
    move '   Increment of +1 (1) [gdg_test.g0002v00]'
         to record-out.
    open output GDS_File
    write GDS_File-record from record-out
    close GDS_File
 
    move 'gdg_test(+1)' to gds_filename.
    move '   Increment of +1 (2) [gdg_test.g0003v00]'
         to record-out.
    open output GDS_File
    write GDS_File-record from record-out
    close GDS_File
    display "     End   ..."
 
    goback.
 
END PROGRAM 'ins_gdg'.

Related tasks   
“Creating generation data groups” on page 127  
“Using generation data groups” on page 128  

Related references 
“Name format of generation files” on page 130  
“Insertion and wrapping of generation files” on page 131  
“Limit processing of generation data groups” on page 132  
“File specification” on page 519  

Creating generation data groups
To create a generation data group (GDG), first create its catalog by using the gdgmgr command with the
-c flag. (A GDG catalog is a binary file in the Linux native file system; a GDG catalog name is of the form
gdgBaseName.catalogue.)

You then populate the GDG with generation files typically by running COBOL programs that create the
files.

In the Linux LSQ file system:

To create a GDG catalog in the LSQ, RSD, SdU, or STL file system, use the gdgmgr command with the -c
flag. For example, to create catalog ./myGroups/transactionGroup.catalogue, you can issue this
command:

gdgmgr -c ./myGroups/transactionGroup

The catalog is created by default in the current working directory (./). You can optionally precede the
catalog name in the gdgmgr command with a path name, as shown above. The catalog and the generation
files must be created in the same directory.

In the SFS file system:

To create a GDG catalog in the SFS file system, use the gdgmgr command with the -c flag. You can
specify the SFS file name in either a fully qualified form or an abbreviated form. For example, the following
command creates a GDG catalog using a fully qualified SFS name:

gdgmgr -c /.:/cics/sfs/sfsServer/baseName

Chapter 7. Processing files  127



You can instead specify an abbreviated form of the SFS file name by first setting environment variable
CICS_TK_SFS_SERVER, and then issuing the gdgmgr command using also the -F flag to specify the SFS
file system. For example:

export CICS_TK_SFS_SERVER=/.:/cics/sfs/sfsServer
gdgmgr -F SFS -c baseName

To override the default GDG home directory (~/gdg) for SFS groups, set environment variable gdg_home.
For example, the following commands create a GDG catalog ~/groups/forSFS/sfs/sfsServer/
myGroup.catalogue:

export gdg_home=~/groups/forSFS
gdgmgr -c /.:/cics/sfs/sfsServer/myGroup

All SFS generation files in a given group must be on the same SFS server.

In the Db2 file system:

To create a GDG catalog in the Db2 file system, do the following steps:

1. Initialize the Db2 environment by running the profile for the Db2 instance that you want to use.
2. Set environment variable DB2DBDFT to the database for the group.
3. Use the gdgmgr command with the -F flag to specify the Db2 file system, and with the -c flag. Specify

the schema directly in the required catalog name.

For example, the following commands create catalog ~/gdg/db2/db2inst1/database/
cics.dbGroup.catalogue:

. /home/db2inst1/sqllib/db2profile
export DB2DBDFT=database
gdgmgr -F DB2 -c cics.dbGroup

The home directory for a GDG catalog for Db2 files is taken from environment variable $gdg_home or else
defaults to ~/gdg.

All generation files in a generation data group must be in one database under one schema.

Related concepts   
“File systems” on page 117 
“Generation data groups” on page 125 

Related tasks   
“Identifying Db2 files” on page 115  
“Identifying SFS files” on page 116  
“Using generation data groups” on page 128  

Related references  
“Limit processing of generation data groups” on page 132   

Using generation data groups
To use generation data groups, you must understand how to refer to them and how to form absolute and
relative names of the generation files within a group.

Refer to an entire group by using the group name optionally followed by an asterisk in parentheses, for
example: abc.SALES(*). Either form denotes all the files in the group concatenated in generation order,
the most current generation first. To refer to a specific generation and add it to a group, use the group
name followed by either an absolute or relative reference.

Absolute names:

128  IBM COBOL for Linux on x86 1.1: Programming Guide



To name a specific generation of a group using an absolute reference, use the group name followed by an
absolute generation number and version number. For example, if the name of a group is abc.SALES:

• abc.SALES.g0001v00 refers to generation file 1, version 0.
• abc.SALES.g0002v00 refers to generation file 2, version 0.

Relative names:

To name a specific generation of a group using a relative reference, use the group name followed by an
integer in parentheses. For example, if the name of a group is abc.SALES:

• abc.SALES(0) refers to the most current generation.
• abc.SALES(-1) refers to the previous generation.
• abc.SALES(+1) specifies a new generation to be added.

For further details about absolute and relative names, see the related reference about name format of
generation files.

If an absolute or relative reference is syntactically valid, the run time determines whether an intended
generation data reference refers to a generation data group or generation file by checking for the
existence of an appropriately named generation data group catalog. If the catalog is not found, the
reference is treated as a normal file identifier rather than as the name of a generation data group or
generation file.

An unsigned or negative relative reference resolves to the equivalent absolute file identifier; the catalog is
consulted to determine the equivalent. If there is no absolute name in the catalog that corresponds with
the resolved relative reference, the reference is treated as a normal file identifier.

A signed positive relative reference typically represents a new generation to be added to the group. The
increment is added to the generation number of the current (zeroth) generation to form the number of a
new generation. A signed positive relative reference is an alternative means of specifying the equivalent
absolute name.

Generation wrapping:

If the sum of the increment and the current generation number is greater than 9999, the new generation
number is formed by wrapping (subtraction of 9999). For examples, see the related reference about
insertion and wrapping of generation files.

If a group does not include a generation that has the new number, and either of the following conditions is
true, a new generation is added to the group in the appropriate ordinal position:

• The file is not OPTIONAL and the open mode is OUTPUT.
• The file is OPTIONAL and the open mode is I-O or EXTEND.

If a group already contains a generation that has the new number, the existing generation is reused and
might be overwritten if the open mode is not INPUT.

Related concepts   
“Generation data groups” on page 125 

Related tasks   
“Creating generation data groups” on page 127  

Related references  
“Name format of generation files” on page 130  
“Limit processing of generation data groups” on page 132  
“Insertion and wrapping of generation files” on page 131  
“File specification” on page 519  

Chapter 7. Processing files  129



Name format of generation files
The following syntax describes how to form absolute and relative references to generation data groups
(GDGs) and generation files.

GDG and GDS syntax
gdgBaseName

.g xxxx v yy

( *

 - 
mmm

 + nnnn

)

gdgBaseName
The name of the generation data group and the base name of the GDG catalog (a binary file
gdgBaseName.catalogue in the Linux native file system).

gdgBaseName can be any valid file name. However, avoid specifying a base name that looks like an
absolute or relative reference, for example, my(+1)Base.

.gxxxxvyy
An absolute generation and version number that identify a specific generation, where:

• xxxx is an unsigned 4-digit decimal number from 0001 through 9999, inclusive.
• yy is 00. 00 is the only version number that is supported. Nonzero version numbers are ignored.

An absolute name is thus of the form gdgBaseName.gxxxxvyy.

*
A relative suffix that designates an entire group. All generation files in a group are concatenated in
generation order, the most current generation first.

A reference to the entire group is of the form gdgBaseName(*) or gdgBaseName.

mmm
A relative generation number from 0 to 999, inclusive, that identifies a specific generation. The
number refers to the current generation (0), the previous or less current generation (1) or (-1), and so
forth. The negative sign is optional.

It is an error to refer to a nonexistent generation.

A relative name for an existing generation is thus of the form gdgBaseName(mmm) or
gdgBaseName(-mmm).

+nnnn
A positive relative generation number from 1 to 9999, inclusive, that typically identifies a generation
to be created and added to a GDG.

A number greater than 1 can cause generation numbers to be skipped. For example, if only one
generation exists and gdgBaseName(+3) is specified, two generations are skipped.

It is not an error to open for input a reference such as gdgBaseName(+1234) if the reference
resolves to an existing file in the group.

Related concepts  
“Generation data groups” on page 125 

Related tasks  
“Using generation data groups” on page 128 

130  IBM COBOL for Linux on x86 1.1: Programming Guide



Related references 
“Insertion and wrapping of generation files” on page 131    
“File specification” on page 519  

Insertion and wrapping of generation files
A new generation in a GDG is typically inserted after the current generation and thus becomes the new
current generation.

If the sum of the increment and the current generation number is greater than 9999, wrapping
(subtraction of 9999) occurs, and the new generation number will be less than the current generation
number. In this case the new generation might be inserted before the current generation, becoming a
previous (less current) generation in the group.

Consider the following initial group:

0: base.g0001v00 

The number before the colon, called an epoch number, is used to cause insertion to occur predictably and
enforces limits on generation numbers.

Typically a new generation is inserted into the group in the position indicated by the new generation
number after any wrapping has occurred, and the epoch numbers within the GDG are not changed.

In each of the following examples, the least current generation is listed first, and the most current
generation is listed last. Italics indicates a new generation that has been added to the group.

Consider the example initial group shown above. If base(+1) is specified, the current generation number
(0001) is incremented by 1. The group as a result will contain the new generation 0002 as shown:

0: base.g0001v00 
0: base.g0002v00

If base(+4) is then specified, the current generation number (0002) is incremented by 4. The group as a
result will contain the new generation (0006) as shown:

0: base.g0001v00
0: base.g0002v00
0: base.g0006v00

If base(+9997) is then specified, the current generation number (0006) is incremented by 9997. The
resulting generation number (10003) is greater than 9999 and is therefore wrapped to become 0004. In
the resulting group this new generation (0004) will be inserted before the current generation (0006) as
shown:

0: base.g0001v00 
0: base.g0002v00
0: base.g0004v00 
0: base.g0006v00

After this last insertion, it is not an error to open base(+9997) for input, because the reference to
base(+9997) denotes the existing file base.g0004v00 and does not cause any change to the structure
of the group.

Typically, the epoch number of a new generation is the same as the epoch number of the current
generation. There are however two cases in which epoch numbers are adjusted, and the insertion position
of the new generation is less obvious:

• If the current generation number is greater than or equal to 9000 and the new generation number is
less than 1000, wrapping will occur. But the epoch number of the new generation will increase so that

Chapter 7. Processing files  131



the new generation can be inserted after the current generation despite the fact that the new generation
has a lower generation number.

For example, consider the following initial group:

0: base.g1000v00 
0: base.g9000v00

If base(+1499) is specified, the current generation number (9000) is incremented by 1499. The
resulting generation number (10499) is greater than 9999 and is therefore wrapped to become 0500.
In the resulting group the new generation (0500) is given a higher epoch number and becomes the new
current generation despite having the lowest generation number in the group as shown:

0: base.g1000v00 
0: base.g9000v00
1: base.g0500v00

• If the current generation number is less than 1000 and the new generation number is greater than or
equal to 9000, the epoch number of the new generation is decreased unless the epoch number of the
current generation was already zero. In the latter case the epoch number of the existing generations is
increased so that the new generation will be inserted before all the generations despite having a higher
generation number.

For example, consider the following initial group:

0: base.g0001v00 
0: base.g0999v00

If base(+8501) is specified, the current generation (0999) is incremented by 8501. The resulting
generation number (9500) is less than 9999; therefore no wrapping occurs. The resulting group will
contain the new generation (9500) but with epoch number 0. The epoch number of the existing
generations is increased to 1. As a result the new generation becomes the least current generation
in the group as shown:

0: base.g9500v00
1: base.g0001v00 
1: base.g0999v00

Related concepts   
“Generation data groups” on page 125 

Related tasks   
“Using generation data groups” on page 128 

Related references   
“Name format of generation files” on page 130  
“File specification” on page 519  

Limit processing of generation data groups
Limit processing is done whenever a new generation is added to a generation data group, typically as the
result of an OPEN statement. You can also do limit processing manually by using the -C (cleanup) option
of the gdgmgr utility.

If the empty option is in effect for a group, limit processing removes all expired files from the group. If the
empty option is not in effect for a group, expired files are removed from the group, after any addition, in
least-current to most-current generation order until the group is at its limit.

A generation file is considered expired if the difference between the current system date and the file
creation date exceeds the number of days specified by the days property of the group.

132  IBM COBOL for Linux on x86 1.1: Programming Guide



Generation files that are removed from a group are also deleted from the file system if the scratch
option is in effect for the group.

For groups of Db2 and SFS files, the -D days option is not supported, and the days property of the group
is forced to zero. Thus the age of these files is not a factor during limit processing.

“Example: limit processing” on page 133

Related concepts  
“Generation data groups” on page 125 

Related tasks  
“Creating generation data groups” on page 127  
“Using generation data groups” on page 128    

Related references 
“File specification” on page 519  

Example: limit processing
The following example shows how limit processing affects the content of a generation data group.

Consider a generation data group, audit, that has a limit of three generations, a days option of 5, and the
noempty option, and that was created with the following four new member generation files:

0: audit.g0001v00
0: audit.g0003v00
0: audit.g0005v00
0: audit.g0007v00

Because none of the files was beyond its expiration date when the group was created, the group is
allowed to be over the limit of three generations. But after seven days, all the existing generations are
expired. Therefore if a new generation is then added, the two least-current expired generations are
removed to comply with the limit after the addition.

Typically the addition is done by running a program, but the following example shows another way of
adding a generation, and shows the resulting group content:

gdgmgr -a "audit(+2)" -1

0: audit.g0005v00
0: audit.g0007v00
0: audit.g0009v00

If the original group had the empty option instead, the group content after the addition contains only one
generation file, as follows:

0: audit.g0009v00

Concatenating files
In COBOL for Linux, you can concatenate multiple files by separating the individual file identifiers with a
colon (:).

For example, the following export command sets the MYFILE environment variable to STL-/home/
myUserID/file1 followed by STL-/home/myUserID/file2:

export MYFILE='STL-/home/myUserID/file1:STL-/home/myUserID/file2'

Chapter 7. Processing files  133



The export command together with a SELECT and ASSIGN clause that associate the environment
variable with a COBOL internal file-name causes the two files to be treated as a single file in the COBOL
program:

SELECT concatfile ASSIGN TO MYFILE

Concatenation is supported if the assignment-name for the concatenation is an environment variable (as
shown above), literal, or USING data-name.

A COBOL internal file assigned to a concatenation of file identifiers must meet the following criteria:

• ORGANIZATION is SEQUENTIAL or LINE SEQUENTIAL.
• ACCESS MODE is SEQUENTIAL.
• OPEN statements for the file have mode INPUT.

You can concatenate files that are in any of the file systems. You can specify the file-system ID for any
or all of the file identifiers in a given concatenation. However, all file identifiers in a concatenation must
specify or default at run time to the same file system, and all the files must have consistent attributes.

GDGs: You can concatenate entire generation data groups (GDGs) or individual generation files from one
or more groups. If you specify a GDG in a concatenation, the most current generation file is read first, then
the next most current, and so on until the least current generation file in the group is reached. It is an
error to include a newly defined, and thus empty, GDG in a concatenation.

Validation of the individual file identifiers in a concatenation is deferred until the corresponding COBOL
file is opened. At that time, the first identifier in the concatenation is resolved, and the open is attempted.

After a successful OPEN, the first file in the concatenation can be read until its last record has been
reached. At the next READ statement, the next file identifier in the concatenation is resolved and opened.

If all the files in a concatenation are unavailable when an OPEN statement is executed for an optional
COBOL file, the OPEN is successful and the file status key is set to 05. The first READ operation returns
end-of-file, and the AT END condition exists.

Related concepts   
“Generation data groups” on page 125 

Related tasks   
“Identifying files” on page 113 
“Using the end-of-file condition
(AT END)” on page 168 

Related references  
 
ASSIGN clause (COBOL for Linux on x86 Language Reference)  
File concatenation (COBOL for Linux on x86 Language Reference)  

Opening optional files
If a program tries to open and read a file that does not exist, normally an error occurs.

However, there might be times when opening a nonexistent file makes sense. For such cases, code the
keyword OPTIONAL in the SELECT clause:

SELECT OPTIONAL file ASSIGN TO filename

Whether a file is available or optional affects OPEN processing, file creation, and the resulting file status
key. For example, if you open in EXTEND, I-O, or INPUT mode a nonexistent non-OPTIONAL file, the
result is an OPEN error, and file status 35 is returned. If the file is OPTIONAL, however, the same OPEN
statement returns file status 05, and, for open modes EXTEND and I-O, creates the file.

134  IBM COBOL for Linux on x86 1.1: Programming Guide



Related tasks   
“Handling errors in input and output operations” on page 166  
“Using file status keys” on page 168  

Related references   
File status key (COBOL for Linux on x86 Language Reference)  
OPEN statement notes (COBOL for Linux on x86 Language Reference)  

Setting up a field for file status
Establish a file status key by using the FILE STATUS clause in the FILE-CONTROL paragraph and data
definitions in the DATA DIVISION.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
    . . .
    FILE STATUS IS file-status
WORKING-STORAGE SECTION.
01  file-status  PIC 99.

Specify the file status key file-status as a two-character category alphanumeric or category national
item, or as a two-digit zoned decimal (USAGE DISPLAY) (as shown above) or national decimal (USAGE
NATIONAL) item.

Restriction: The data item referenced in the FILE STATUS clause cannot be variably located; for
example, it cannot follow a variable-length table.

Related tasks   
“Using file status keys” on page 168 

Related references   
FILE STATUS clause (COBOL for Linux on x86 Language Reference)

Describing the structure of a file in detail
In the FILE SECTION of the DATA DIVISION, start a file description by using the keyword FD and the
same file-name you used in the corresponding SELECT clause in the FILE-CONTROL paragraph.

DATA DIVISION.
FILE SECTION.
FD  filename
01  recordname
    nn . . . fieldlength & type
    nn . . . fieldlength & type
    . . .

In the example above, filename is also the file-name you use in the OPEN, READ, and CLOSE statements.

recordname is the name of the record used in WRITE and REWRITE statements. You can specify more
than one record for a file.

fieldlength is the logical length of a field, and type specifies the format of a field. If you break the record
description entry beyond level 01 in this manner, map each element accurately to the corresponding field
in the record.

Related references   
Data relationships (COBOL for Linux on x86 Language Reference)  
Level-numbers (COBOL for Linux on x86 Language Reference)  
PICTURE clause (COBOL for Linux on x86 Language Reference)  
USAGE clause (COBOL for Linux on x86 Language Reference)

Chapter 7. Processing files  135



Coding input and output statements for files
After you identify and describe the files in the ENVIRONMENT DIVISION and the DATA DIVISION, you
can process the file records in the PROCEDURE DIVISION of your program.

Code your COBOL program according to the types of files that you use, whether sequential, line
sequential, indexed, or relative. The general format for coding input and output (as shown in the example
referenced below) involves opening the file, reading it, writing information into it, and then closing it.

“Example: COBOL coding for files” on page 136

Related tasks   
“Identifying files” on page 113  
“Specifying a file organization and access mode” on page 122  
“Opening optional files” on page 134  
“Setting up a field for file status” on page 135  
“Describing the structure of a file in detail” on page 135  
“Opening a file” on page 138  
“Reading records from a file” on page 140  
“Adding records to a file” on page 142  
“Replacing records in a file” on page 142  
“Deleting records from a file” on page 143 

Related references   
“File position indicator” on page 138  
“Statements used when writing records to a file” on page 141  
“PROCEDURE DIVISION statements used to update files” on page 143  

Example: COBOL coding for files
The following example shows the general format of input/output coding. Explanations of user-supplied
information (lowercase text in the example) are shown after the code.

IDENTIFICATION DIVISION.
. . .
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
    SELECT filename ASSIGN TO assignment-name  (1) (2)
    ORGANIZATION IS org ACCESS MODE IS access  (3) (4)
    FILE STATUS IS file-status  (5)
    . . .
DATA DIVISION.
FILE SECTION.
FD  filename
01  recordname  (6)
    nn . . . fieldlength & type  (7) (8)
    nn . . . fieldlength & type
    . . .
WORKING-STORAGE SECTION.
01  file-status    PIC 99.
    . . .
PROCEDURE DIVISION.
    OPEN iomode filename   (9)
    . . .
    READ filename
    . . .
    WRITE recordname
    . . .
    CLOSE filename
  STOP RUN.

(1) filename
Any valid COBOL name. You must use the same file-name in the SELECT clause and FD entry, and
in the OPEN, READ, START, DELETE, and CLOSE statements. This name is not necessarily the system

136  IBM COBOL for Linux on x86 1.1: Programming Guide



file-name. Each file requires its own SELECT clause, FD entry, and input/output statements. For
WRITE and REWRITE, you specify a record defined for the file.

(2) assignment-name
You can code ASSIGN TO assignment-name to specify the target file-system ID and system file-name
directly, or you can set the value indirectly by using an environment variable.

If you want to have the system file-name identified at OPEN time, specify ASSIGN USING data-name.
The value of data-name at the time of the execution of the OPEN statement for that file is used.
You can optionally precede the system file-name by the file-system identifier, using a hyphen as the
separator.

The following example shows how inventory-file is dynamically associated with the file /user/
inventory/parts by means of a MOVE statement:

SELECT inventory-file ASSIGN USING a-file . . .
. . .
FD inventory-file . . .
. . .
77 a-file PIC X(25) VALUE SPACES.
. . .
    MOVE "/user/inventory/parts" TO a-file
    OPEN INPUT inventory-file

The following example shows how inventory-file is dynamically associated with the indexed
CICS SFS file parts, and shows how the alternate index files altpart1 and altpart2 are
associated with the fully qualified name (/.:/cics/sfs in this example) of the CICS server.

SELECT inventory-file ASSIGN USING a-file . . .
    ORGANIZATION IS INDEXED
    ACCESS MODE IS DYNAMIC
    RECORD KEY IS FILESYSFILE-KEY
    ALTERNATE RECORD KEY IS ALTKEY1
    ALTERNATE RECORD KEY IS ALTKEY2. . . .
. . .
FILE SECTION.
FD inventory-file . . .
. . .
WORKING-STORAGE SECTION.
01 a-file  PIC X(80). . .
. . .
    MOVE "/.:/cics/sfs/parts(/.:/cics/sfs/parts;altpart1,/.:/
       cics/sfs/parts;altpart2)" TO a-file
    OPEN INPUT inventory-file

(3) org
Indicates the organization: LINE SEQUENTIAL, SEQUENTIAL, INDEXED, or RELATIVE. If you omit
this clause, the default is ORGANIZATION SEQUENTIAL.

(4) access
Indicates the access mode, SEQUENTIAL, RANDOM, or DYNAMIC. If you omit this clause, the default is
ACCESS SEQUENTIAL.

(5) file-status
The COBOL file status key. You can specify the file status key as a two-character alphanumeric or
national data item, or as a two-digit zoned decimal or national decimal item.

(6) recordname
The name of the record used in the WRITE and REWRITE statements. You can specify more than one
record for a file.

(7) fieldlength
The logical length of the field.

(8) type
Must match the record format of the file. If you break the record description entry beyond the level-01
description, map each element accurately against the record's fields.

Chapter 7. Processing files  137



(9) iomode
Specifies the open mode. If you are only reading from a file, code INPUT. If you are only writing to a
file, code OUTPUT (to open a new file or write over an existing one) or EXTEND (to add records to the
end of the file). If you are doing both, code I-O.

Restriction: For line-sequential files, I-O is not a valid mode of the OPEN statement.

File position indicator
The file position indicator marks the next record to be accessed for sequential COBOL requests.

You do not explicitly set the file position indicator anywhere in your program. It is set by successful OPEN,
START, READ, READ NEXT, and READ PREVIOUS statements. Subsequent READ, READ NEXT, or READ
PREVIOUS requests use the established file position indicator location and update it.

The file position indicator is not used or affected by the output statements WRITE, REWRITE, or DELETE.
The file position indicator has no meaning for random processing.

Opening a file
Before your program can use a WRITE, START, READ, REWRITE, or DELETE statement to process records
in a file, the program must first open the file using an OPEN statement.

PROCEDURE DIVISION.
    . . .
    OPEN iomode filename

In the example above, iomode specifies the open mode. If you are only reading from the file, code INPUT
for the open mode. If you are only writing to the file, code either OUTPUT (to open a new file or write over
an existing one) or EXTEND (to add records to the end of the file) for the open mode.

To open a file that already contains records, use OPEN INPUT, OPEN I-O (not valid for line-sequential
files), or OPEN EXTEND.

If you code OPEN OUTPUT for either an SdU or SFS file that contains records, the COBOL run time deletes
the file and then creates the file with attributes provided by COBOL. If you do not want an SdU or SFS file
to be deleted, open the file by coding OPEN I-O instead.

If you open a sequential, line-sequential, or relative file as EXTEND, the added records are placed after
the last existing record in the file. If you open an indexed file as EXTEND, each record that you add must
have a record key that is higher than the highest record in the file.

Related concepts  
“File organization and access mode” on page 122  

Related tasks   
“Opening optional files” on page 134 

Related references   
“Valid COBOL statements for sequential files” on page 138  
“Valid COBOL statements for line-sequential files” on page 139  
“Valid COBOL statements for indexed and relative files” on page 139 
  
OPEN statement (COBOL for Linux on x86 Language Reference)

Valid COBOL statements for sequential files
The following table shows the possible combinations of input-output statements for sequential files. 'X'
indicates that the statement can be used with the open mode shown at the top of the column.

138  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 10. Valid COBOL statements for sequential files

Access mode COBOL statement OPEN
INPUT

OPEN
OUTPUT

OPEN I-O OPEN
EXTEND

Sequential OPEN X X X X

WRITE   X   X

START        

READ X   X  

REWRITE     X  

DELETE        

CLOSE X X X X

Related concepts   
“Sequential file organization” on page 123  
“Sequential access” on page 124 

Valid COBOL statements for line-sequential files
The following table shows the possible combinations of input-output statements for line-sequential files.
'X' indicates that the statement can be used with the open mode shown at the top of the column.

Table 11. Valid COBOL statements for line-sequential files

Access mode COBOL statement OPEN
INPUT

OPEN
OUTPUT

OPEN I-O OPEN
EXTEND

Sequential OPEN X X   X

WRITE   X   X

START        

READ X      

REWRITE        

DELETE        

CLOSE X X   X

Related concepts   
“Line-sequential file organization” on page 123  
“Sequential access” on page 124 

Valid COBOL statements for indexed and relative files
The following table shows the possible combinations of input-output statements for indexed and relative
files. 'X' indicates that the statement can be used with the open mode shown at the top of the column.

Chapter 7. Processing files  139



Table 12. Valid COBOL statements for indexed and relative files

Access mode COBOL statement OPEN
INPUT

OPEN
OUTPUT

OPEN I-O OPEN
EXTEND

Sequential OPEN X X X X

WRITE   X   X

START X   X  

READ X   X  

REWRITE     X  

DELETE     X  

CLOSE X X X X

Random OPEN X X X  

WRITE   X X  

START        

READ X   X  

REWRITE     X  

DELETE     X  

CLOSE X X X  

Dynamic OPEN X X X  

WRITE   X X  

START X   X  

READ X   X  

REWRITE     X  

DELETE     X  

CLOSE X X X  

Related concepts   
“Indexed file organization” on page 123  
“Relative file organization” on page 124  
“Sequential access” on page 124  
“Random access” on page 124  
“Dynamic access” on page 124 

Reading records from a file
Use the READ statement to retrieve records from a file. To read a record, you must have opened the file
with OPEN INPUT or OPEN I-O (OPEN I-O is not valid for line-sequential files). Check the file status key
after each READ.

You can retrieve records in sequential and line-sequential files only in the sequence in which they were
written.

You can retrieve records in indexed and relative record files sequentially (according to the ascending order
of the key for indexed files, or according to ascending relative record locations for relative files), randomly,
or dynamically.

140  IBM COBOL for Linux on x86 1.1: Programming Guide



When using dynamic access, you can switch between reading records sequentially and reading a specific
record directly. For sequential retrieval, code READ NEXT and READ PREVIOUS; and for random retrieval
(by key), use READ.

To read sequentially beginning at a specific record, use a START statement to set the file position
indicator to point to a particular record before the READ NEXT or the READ PREVIOUS statement. If you
code START followed by READ NEXT, the next record is read, and the file position indicator is reset to
the next record. If you code START followed by READ PREVIOUS, the previous record is read, and the
file position indicator is reset to the previous record. You can move the file position indicator randomly by
using START, but all reading is done sequentially from that point.

You can continue to read records sequentially, or you can use START to move the file position indicator.
For example:

START file-name KEY IS EQUAL TO ALTERNATE-RECORD-KEY

If a direct READ is performed for an indexed file based on an alternate index for which duplicates exist,
only the first record in the file (base cluster) with that alternate key value is retrieved. You need a series
of READ NEXT statements to retrieve each of the records that have the same alternate key. A file status
value of 02 is returned if there are more records with the same alternate key value still to be read. A value
of 00 is returned when the last record with that key value has been read.

Related concepts  
“Sequential access” on page 124  
“Random access” on page 124  
“Dynamic access” on page 124  
“File organization and access mode” on page 122 

Related tasks   
“Opening a file” on page 138  
“Using file status keys” on page 168 

Related references   
“File position indicator” on page 138  
FILE STATUS clause (COBOL for Linux on x86 Language Reference) 

Statements used when writing records to a file
The following table shows the COBOL statements that you can use when creating or extending a file.

Table 13. Statements used when writing records to a file

Division Sequential Line sequential Indexed Relative

ENVIRONMEN
T

SELECT

ASSIGN

ORGANIZATION IS
SEQUENTIAL

ORGANIZATION IS
LINE SEQUENTIAL

ORGANIZATION
IS INDEXED

ORGANIZATION
IS RELATIVE

n/a
RECORD KEY

RELATIVE KEYALTERNATE
RECORD KEY

FILE STATUS

ACCESS MODE

DATA FD entry

Chapter 7. Processing files  141



Table 13. Statements used when writing records to a file (continued)

Division Sequential Line sequential Indexed Relative

PROCEDURE OPEN OUTPUT

OPEN EXTEND

WRITE

CLOSE

Related concepts   
“File organization and access mode” on page 122 

Related tasks   
“Specifying a file organization and access mode” on page 122  
“Opening a file” on page 138  
“Setting up a field for file status” on page 135  
“Adding records to a file” on page 142 

Related references   
“PROCEDURE DIVISION statements used to update files” on page 143 

Adding records to a file
The COBOL WRITE statement adds a record to a file without replacing any existing records. The record to
be added must not be larger than the maximum record size set when the file was defined. Check the file
status key after each WRITE statement.

Adding records sequentially: To add records sequentially to the end of a file that has been opened with
either OUTPUT or EXTEND, use ACCESS IS SEQUENTIAL and code the WRITE statement.

Sequential and line-sequential files are always written sequentially.

For indexed files, you must add new records in ascending key sequence. If a file is opened EXTEND, the
record keys of the records to be added must be higher than the highest primary record key that was in the
file when it was opened.

For relative files, the records must be in sequence. If you code a RELATIVE KEY data item in the SELECT
clause, the relative record number of the record to be written is placed in that data item.

Adding records randomly or dynamically: When you write records to an indexed file for which you coded
ACCESS IS RANDOM or ACCESS IS DYNAMIC, you can write the records in any order.

Related concepts  
“File organization and access mode” on page 122  

Related tasks 
“Specifying a file organization and access mode” on page 122  
“Using file status keys” on page 168 

Related references   
“Statements used when writing records to a file” on page 141  
“PROCEDURE DIVISION statements used to update files” on page 143  
  
FILE STATUS clause (COBOL for Linux on x86 Language Reference)  

Replacing records in a file
To replace a record in a file, use REWRITE if you opened the file for I-O. If the file was opened other than
for I-O, the record is not replaced, and the status key is set to 49.

Check the file status key after each REWRITE statement.

142  IBM COBOL for Linux on x86 1.1: Programming Guide



For sequential files, the length of the replacement record must be the same as the length of the original
record. For indexed files or variable-length relative files, you can change the length of the record you
replace.

To replace a record randomly or dynamically, you do not have to first READ the record. Instead, locate the
record you want to replace as follows:

• For indexed files, move the record key to the RECORD KEY data item, and then use REWRITE.
• For relative files, move the relative record number to the RELATIVE KEY data item, and then use
REWRITE.

Related concepts   
“File organization and access mode” on page 122  

Related tasks  
“Opening a file” on page 138  
“Using file status keys” on page 168 

Related references   
FILE STATUS clause (COBOL for Linux on x86 Language Reference)  

Deleting records from a file
To remove an existing record from an indexed or relative file, open the file as I-O and use the DELETE
statement. You cannot use DELETE for a sequential or line-sequential file.

If ACCESS IS SEQUENTIAL, the record to be deleted must first be read by the COBOL program. The
DELETE statement removes the record that was just read. If the DELETE statement is not preceded by a
successful READ, the record is not deleted, and the file status key is set to 92.

If ACCESS IS RANDOM or ACCESS IS DYNAMIC, the record to be deleted need not be read by the
COBOL program. To delete a record, move the key of the record to the RECORD KEY data item, and then
issue the DELETE.

Check the file status key after each DELETE statement.

Related concepts   
“File organization and access mode” on page 122 

Related tasks   
“Opening a file” on page 138  
“Reading records from a file” on page 140  
“Using file status keys” on page 168 

Related references   
FILE STATUS clause (COBOL for Linux on x86 Language Reference) 

PROCEDURE DIVISION statements used to update files
The table below shows the statements that you can use in the PROCEDURE DIVISION for sequential,
line-sequential, indexed, and relative files.

Chapter 7. Processing files  143



Table 14. PROCEDURE DIVISION statements used to update files

Access method Sequential Line sequential Indexed Relative

ACCESS IS
SEQUENTIAL OPEN EXTEND

WRITE
CLOSE

or

OPEN I-O
READ
REWRITE
CLOSE

OPEN EXTEND
WRITE
CLOSE 

OPEN EXTEND
WRITE
CLOSE

or

OPEN I-O
READ
REWRITE
DELETE
CLOSE

OPEN EXTEND
WRITE
CLOSE

or

OPEN I-O
READ
REWRITE
DELETE
CLOSE

ACCESS IS
RANDOM

Not applicable Not applicable
OPEN I-O
READ
WRITE
REWRITE
DELETE
CLOSE 

OPEN I-O
READ
WRITE
REWRITE
DELETE
CLOSE 

ACCESS IS
DYNAMIC
(sequential
processing)

Not applicable Not applicable
OPEN I-O
READ NEXT
READ PREVIOUS
START
CLOSE 

OPEN I-O
READ NEXT
READ PREVIOUS
START
CLOSE 

ACCESS IS
DYNAMIC (random
processing)

Not applicable Not applicable
OPEN I-O
READ
WRITE
REWRITE
DELETE
CLOSE 

OPEN I-O
READ
WRITE
REWRITE
DELETE
CLOSE 

Related concepts   
“File organization and access mode” on page 122 

Related tasks   
“Opening a file” on page 138  
“Reading records from a file” on page 140  
“Adding records to a file” on page 142  
“Replacing records in a file” on page 142  
“Deleting records from a file” on page 143 

Related references   
“Statements used when writing records to a file” on page 141 

144  IBM COBOL for Linux on x86 1.1: Programming Guide



Using Db2 files
To access Db2 files from a COBOL application that runs under Linux, you must follow guidelines for
compiling and linking the application and for identifying the Db2 file system, the Db2 instance and
database, and the Db2 files.

1. Compile and link the COBOL programs in your application by using the cob2 command.
2. Initialize the Db2 environment by executing the profile for the Db2 instance that you want to use.

For example, you might issue the following command to use instance db2inst1:

. /home/db2inst1/sqllib/db2profile

3. Ensure that the Db2 instance is running and that you can connect to the database that you want to
access.

The following example shows the db2 command that you might use to connect to database db2cob,
and shows the system response:

> db2 connect to db2cob
        Database Connection Information
        Database server        = DB2/Linux64 9.7.0
        SQL authorization ID   = MYUID
        Local database alias   = DB2COB

Restriction: Note that COBOL applications can access Db2 files in only one database and Db2 instance
at a time.

4. Set environment variable DB2DBDFT to the intended database. For example:

export DB2DBDFT=db2cob

5. For the files that use Db2, specify the Db2 file system (either as the value of the FILESYS runtime
option or directly in the assignment-name value). Use the fully qualified Db2 table name, including the
schema name.

For example, the following command completes the assignment of a transaction file TRANFILE to
system file-name TEST.TRANS in the Db2 file system:

export TRANFILE=DB2-TEST.TRANS

Creating Db2 files:

You can create a Db2 file in any of several ways:

• By using an OPEN statement in your COBOL program
• By using the TXSeries or CICS TX cicsddt utility

For more information about the cicsddt command, see the TXSeries or CICS TX documentation
referenced below.

• By using the db2 create command

For example, you might use the following command sequence to create a relative file called EXAMPLE
under schema CICS:

db2 create table cics.example\
"(rba char(4) not null for bit data, f1 varchar(80) not null for bit data)"
db2 create unique index cics.example0 on cics.example\
"(rba) disallow reverse scans"
db2 create unique index cics.example0@ on cics.example\
"(rba desc) disallow reverse scans"

Chapter 7. Processing files  145



You can display the resulting table by issuing the db2 describe command. For example:

> db2 describe table cics.example

                         Data type                     Column
Column name              schema    Data type name      Length     Scale Nulls
------------------------ --------- ------------------- ---------- ----- ------
RBA                      SYSIBM    CHARACTER                    4     0 No
F1                       SYSIBM    VARCHAR                     80     0 No

  2 record(s) selected.

The file CICS.EXAMPLE has variable-length records that would be compatible with a COBOL FILE
SECTION definition of minimum record length between 0 and 79.

For more information about the functions that are provided by the db2 utility, enter the command db2.

For information about the additional requirements that apply to using Db2 files with TXSeries or CICS TX,
see the related reference about the Db2 file system.

Related tasks   
“Identifying files” on page 113  
“Identifying Db2 files” on page 115  
“Using Db2 files and SQL
statements in the same program” on page 146  
“Compiling from the command
line” on page 225  
Chapter 17, “Programming for a Db2 environment,” on page 373  

Related references   
“Db2 file system” on page 118  
“Compiler and runtime
environment variables” on page 216  
“FILESYS” on page 300  
TXSeries for Multiplatforms documentation  
CICS TX documentation

Using Db2 files and SQL statements in the same program
To use EXEC SQL statements and Db2 file I/O in the same program, there are some important facts that
you must know, as explained below.

• Both facilities (EXEC SQL statements and Db2 file I/O) use the same Db2 connection.
• Each COBOL I/O update operation that uses the Db2 file system is committed to the database

immediately.
• If an existing Db2 connection is available, the Db2 file system uses that connection.

If a connection is not available, the Db2 file system establishes a connection to the database that is
referenced by the value of the DB2DBDFT environment variable.

EXEC SQL statements and Db2 file I/O can use the same database, or, if you explicitly control the
connection, different databases.

Using the same database:

Using the same database for EXEC SQL statements and Db2 file I/O in the same program is simpler than
using different databases. But you must handle this configuration carefully nonetheless:

• To avoid anomalies, do not rely on the Db2 file system's use of an existing connection. To ensure
consistent results regardless of which type of database access (Db2 file I/O or EXEC SQL) occurs first,
set environment variable DB2DBDFT to the same database that the EXEC SQL statements use.

• Db2 file update operations commit all pending work for the database. Therefore roll back or commit any
pending EXEC SQL updates before initiating any Db2 file I/O operations.

146  IBM COBOL for Linux on x86 1.1: Programming Guide

https://www.ibm.com/support/knowledgecenter/SSAL2T
https://www.ibm.com/support/knowledgecenter/SSNAQ8


Although opening a Db2 file for input and reading the file does not cause a database commit, it is
recommended that you not rely on this behavior.

Using different databases:

To use different databases for EXEC SQL statements and for Db2 file I/O in the same program, you must
explicitly control the database connections as shown in the examples below.

Suppose that you want to use EXEC SQL statements with database db2pli, and do Db2 file I/O using
database db2cob by setting environment variable DB2DBDFT:

export DB2DBDFT=db2cob

In the example below, doing the sequence of steps shown (with angle brackets indicating pseudocode)
will not use the intended databases correctly, as the inline comments explain:

<DB2 file I/O>                        *> Uses database db2cob (from DB2DBDFT)
EXEC SQL CONNECT TO db2pli END-EXEC   *> Switches to database db2pli
<Other EXEC SQL operations>           *> Use database db2pli
<DB2 file I/O>                        *> Uses the existing connection--and
. . .                                 *>   thus database db2pli--incorrectly!

To access the intended databases, first disconnect from the database used by the EXEC SQL statements
before doing any Db2 file I/O operations. Then either rely on the value in environment variable DB2DBDFT
or explicitly connect to the database that you want to use for Db2 file I/O.

The following sequence of steps illustrates reliance on DB2DBDFT to correctly make the intended
connections:

<DB2 file I/O>                        *> Uses database db2cob (from DB2DBDFT)
EXEC SQL CONNECT TO db2pli END-EXEC   *> Switches to database db2pli
<Other EXEC SQL operations>           *> Use database db2pli
* Commit or roll back pending operations
* here, because the following statement
* unconditionally commits pending work:
EXEC SQL CONNECT RESET END-EXEC       *> Disconnect from database db2pli
<DB2 file I/O>                        *> Uses database db2cob (from DB2DBDFT)
. . .

Related tasks   
“Coding SQL statements” on page 375  

Related references   
“Compiler and runtime
environment variables” on page 216  

Using QSAM files
QSAM (queued sequential access method) files are unkeyed files in which the records are placed one
after another, according to entry order.

Your program can process these files only sequentially, retrieving records using the READ statement in the
same order as they are in the file. Each record is placed after the preceding record. To process QSAM files
in your program, use COBOL language statements that:

• Identify and describe the QSAM files in the ENVIRONMENT DIVISION and the DATA DIVISION.
• Process the records in these files in the PROCEDURE DIVISION.

After you create a record, you cannot change its length or its position in the file, and you cannot delete it.

Related tasks   
“Identifying files” on page 113

Chapter 7. Processing files  147



Related references   
“QSAM file system” on page 119  
“FILESYS” on page 300  

Using SFS files
To access CICS SFS files from a COBOL application that runs under Linux, you must follow guidelines for
compiling and linking, and for identifying the file system, the CICS SFS server, and the SFS files.

1. Compile and link the COBOL programs in the application by using the cob2 command.
2. Ensure that the CICS SFS server that your application will access is running. 
3. (Optional) If your application creates one or more SFS files, and you want to allocate the files on an

SFS data volume that has a name other than sfs_SSFS_SERVER, you can specify either or both of the
following names: 

• The name of the SFS data volume on which the SFS files are to be created. To do so, assign a value
to the runtime environment variable CICS_SFS_INDEX_VOLUME. The data volume must have been
defined to the SFS server. If you do not know which data volumes are available to the SFS server,
issue the command sfsadmin list lvols. 

By default, SFS files are created on the data volume that is named sfs_SSFS_SERVER. 
• The name of the SFS data volume on which alternate index files, if any, are to be created. To do

so, assign a value to the runtime environment variable CICS_SFS_INDEX_VOLUME. The data volume
must have been defined to the SFS server.

By default, alternate index files are created on the same volume as the corresponding base files.
4. Identify each SFS file:

• Either set the default file system to SFS by setting the runtime option FILESYS as follows:

export COBRTOPT=FILESYS=SFS

Or alternatively, in an export command for each SFS file, precede the file name and SFS server
name with the file-system ID SFS followed by a hyphen (-), as shown below.

• The CICS SFS server name must precede the file name.
• Any alternate index file names must start with the base file name, followed by a semicolon (;) and

the alternate index name.

For example, if /.:/cics/sfs/sfsServer is the CICS SFS server, and SFS04A is an SFS file that has
alternate index SFS04A1, you could identify SFS04A by issuing the following export command:

export SFS04AEV="SFS-/.:/cics/sfs/sfsServer/SFS04A(/.:/cics/sfs/sfsServer/SFS04A;SFS04A1)"

For more information about fully qualified names for SFS servers and files, see the related task about
identifying CICS SFS files.

“Example: accessing SFS files” on page 149

Related tasks   
“Identifying files” on page 113  
“Identifying SFS files” on page 116  
“Improving SFS performance” on page 150  
  

Related references   
“SFS file system” on page 121  
“Runtime environment
variables” on page 220  
“FILESYS” on page 300  

148  IBM COBOL for Linux on x86 1.1: Programming Guide



  
  

Example: accessing SFS files
The following example shows COBOL file descriptions that you might code and sfsadmin and export
commands that you might issue to create and access two SFS files.

SFS04 is an indexed file that has no alternate index. SFS04A is an indexed file that has one alternate
index, SFS04A1.

COBOL file descriptions

. . .
Environment division.
Input-output section.
File-control.
    select SFS04-file
        assign to SFS04EV
        access dynamic
        organization is indexed
        record key is SFS04-rec-num
        file status is SFS04-status.
        
    select SFS04A-file
        assign to SFS04AEV
        access dynamic
        organization is indexed
        record key is SFS04A-rec-num
        alternate record key is SFS04A-date-time
        file status is SFS04A-status.
        
Data division.
File section.
FD  SFS04-file.
  01 SFS04-record.
     05 SFS04-rec-num               pic x(10).
     05 SFS04-rec-data              pic x(70).     
FD  SFS04A-file.
  01 SFS04A-record.
     05 SFS04A-rec-num              pic x(10).
     05 SFS04A-date-time.
        07 SFS04A-date-yyyymmdd     pic 9(8).
        07 SFS04A-time-hhmmsshh     pic 9(8).
        07 SFS04A-date-time-counter pic 9(8).
     05 SFS04A-rec-data             pic x(1000).

sfsadmin commands
Create each indexed file by issuing the sfsadmin create clusteredfile command, and add an
alternate index by issuing the sfsadmin add index command:

sfsadmin create clusteredfile SFS04 2 \
PrimaryKey byteArray 10 \
DATA byteArray 70 \
primaryIndex -unique 1 PrimaryKey sfsVolume
#
sfsadmin create clusteredfile SFS04A 3 \
PrimaryKey byteArray 10 \
AltKey1 byteArray 24 \
DATA byteArray 1000 \
primaryIndex -unique 1 PrimaryKey sfsVolume
#
sfsadmin add index SFS04A SFS04A1 1 AltKey1

As shown in the first sfsadmin create clusteredfile command above, you must specify the
following items:

• The name of the new indexed file (SFS04 in this example)
• The number of fields per record (2)

Chapter 7. Processing files  149



• The description of each field (PrimaryKey and DATA, each a byte array)
• The name of the primary index (primaryIndex)
• The -unique option
• The number of fields in the primary index (1)
• The names of the fields in the primary index (PrimaryKey)
• The name of the data volume on which the file is to be stored (sfsVolume)

By default, CICS SFS allows duplicate keys in the primary index of a clustered file. However, you must
specify the -unique option as shown above because COBOL requires that key values in the primary index
be unique within the file.

As shown in the sfsadmin add index command above, you must specify the following items:

• The name of the file to which an alternate index is to be added (SFS04A in this example)
• The name of the new index (SFS04A1)
• The number of fields to be used as keys in the new index (1)
• The names of the fields in the new index (AltKey1)

For details about the syntax of the commands sfsadmin create clusteredfile and sfsadmin
add index, see the Related references.

export commands
Before you run the program that processes the SFS files, issue these export commands to specify the
path (/.:/cics/sfs) to the CICS SFS server (sfsServer) that will access the files, and the data
volume (sfsVolume) that will store the files:

# Set environment variables required by the SFS file system
# for SFS files:

export CICS_SFS_DATA_VOLUME=sfsVolume
export CICS_SFS_INDEX_VOLUME=sfsVolume 

# Set SFS as the default file system:
export COBRTOPT=FILESYS=SFS

# Enable use of a short-form SFS specification:
export CICS_TK_SFS_SERVER=/.:/cics/sfs/sfsServer

# Set the environment variable to access SFS file SFS04
# (an example of using a short-form SFS specification):
export SFS04EV=SFS04

# Set the environment variable to access SFS
# file SFS04A and the alternate index SFS04A1:

export SFS04AEV="/.:/cics/sfs/sfsServer/SFS04A(/.:/cics/sfs/sfsServer/
SFS04A;SFS04A1)"  

Related references   
TXSeries documentation  
CICS TX documentation

Improving SFS performance
You can improve the performance of applications that access SFS files in two ways: by using client-side
caching on the client machine, and by reducing the frequency of saving changes to SFS files.

Related tasks   
“Identifying SFS files” on page 116  
“Enabling client-side caching” on page 151  

150  IBM COBOL for Linux on x86 1.1: Programming Guide

https://www.ibm.com/support/knowledgecenter/en/SSAL2T_9.1.0/com.ibm.cics.tx.doc/ic-homepage.html
https://www.ibm.com/support/knowledgecenter/SSNAQ8


“Reducing the frequency of saving changes” on page 152  
Improving performance of the SFS in the TXSeries documentationPhysical memory and improved 
performance
 in the CICS TX documentation  

Related references   
“SFS file system” on page 121 

Enabling client-side caching
By default, records in SFS files are written to and read from the SFS server, and a remote procedure
call (RPC) is needed whenever a record is accessed. If you enable client-side caching, however, you can
improve performance because less time is needed to access records.

With client-side caching, records are stored in local memory (a cache) on the client machine and sent
(flushed) to the server in a single RPC. You can specify either or both of two types of caching: read caching
and insert caching:

• If you enable read caching, the first sequential read of a file causes the current record and a number
of neighboring records to be read from the server and placed in the read cache. Subsequent sequential
reads, updates, and deletes are made in the read cache rather than on the server.

• If you enable insert caching, insert operations (but not reads, updates, or deletes) are done in the insert
cache rather than on the server.

To enable client-side caching for all the SFS files in your application, set the CICS_VSAM_CACHE
environment variable before you run the application. To see a syntax diagram that describes setting
CICS_VSAM_CACHE, see the related reference about runtime environment variables.

You can code a single value for the cache size to indicate that the same number of pages is to be used
for the read cache and for the insert cache, or you can code distinct values for the read and insert cache
by separating the values by a colon (:). Express size units as numbers of pages. If you code zero as the
size of the read cache, insert cache, or both, that type of caching is disabled. For example, the following
command sets the size of the read cache to 16 pages and the size of the insert cache to 64 pages for each
SFS file in the application:

export CICS_VSAM_CACHE=16:64

You can also specify one or both of the following flags to make client-side caching more flexible:

• To allow uncommitted data (records that are new or modified but have not yet been sent to the server,
known as dirty records) to be read, specify ALLOW_DIRTY_READS.

This flag removes the restriction for read caching that the files being accessed must be locked.
• To allow any inserts to be cached, specify INSERTS_DESPITE_UNIQUE_INDICES.

This flag removes the restriction for insert caching that all active indices for clustered files and active
alternate indices for entry-sequenced and relative files must allow duplicates.

For example, the following command allows maximum flexibility:

export CICS_VSAM_CACHE=16:64:ALLOW_DIRTY_READS,INSERTS_DESPITE_UNIQUE_INDICES

To set client-side caching differently for certain files, code a putenv() call that sets CICS_VSAM_CACHE
before the OPEN statement for each file for which you want to change the caching policy. During a
program, the environment-variable settings that you make in a putenv() call take precedence over the
environment-variable settings that you make in an export command.

“Example: setting and accessing environment variables” on page 223

Related tasks   
“Setting environment variables” on page 215 

Chapter 7. Processing files  151

https://www.ibm.com/support/knowledgecenter/en/SSAL2T_9.1.0/com.ibm.cics.tx.doc/tasks/t_improvg_performance_of_sfs.html
https://www.ibm.com/docs/en/cics-tx/11.1?topic=shortages-physical-memory-improved-performance
https://www.ibm.com/docs/en/cics-tx/11.1?topic=shortages-physical-memory-improved-performance
https://www.ibm.com/docs/en/cics-tx/11.1?topic=shortages-physical-memory-improved-performance


Related references   
“SFS file system” on page 121  
“Runtime environment
variables” on page 220 

Reducing the frequency of saving changes
An RPC normally occurs for each write or update operation on an SFS file that does not use client-side
caching (that is, the operational force feature of SFS is enabled). All file changes that result from input-
output operations are committed to disk before control returns to the application.

You can change this behavior so that the result of input-output operations on SFS files might not be
committed to disk until the files are closed (that is, a lazy-write strategy is used). If each change to an SFS
file is not immediately saved, the application can run faster.

To change the default commit behavior for all the SFS files in your application, set the
CICS_VSAM_AUTO_FLUSH environment variable to OFF before you run the application:

export CICS_VSAM_AUTO_FLUSH=OFF

To set the flush value differently for certain files, code a putenv() call that sets CICS_VSAM_AUTO_FLUSH
before the OPEN statement for each file for which you want to change the flush value. During a program,
the environment-variable settings that you make in a putenv() call take precedence over the environment-
variable settings that you make in an export command.

“Example: setting and accessing environment variables” on page 223

If client-side caching is in effect for an SFS file (that is, environment variable CICS_VSAM_CACHE is set to
a valid nonzero value), the setting of CICS_VSAM_AUTO_FLUSH for the file is ignored. Operational force is
disabled for that file.

Related tasks   
“Setting environment variables” on page 215 

Related references   
“SFS file system” on page 121  
“Runtime environment
variables” on page 220 

152  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 8. Sorting and merging files

You can arrange records in a particular sequence by using a SORT or MERGE statement. You can mix SORT
and MERGE statements in the same COBOL program.

SORT statement
Accepts input (from a file or an internal procedure) that is not in sequence, and produces output (to a
file or an internal procedure) in a requested sequence. You can add, delete, or change records before
or after they are sorted.

MERGE statement
Compares records from two or more sequenced files and combines them in order. You can add,
delete, or change records after they are merged.

A program can contain any number of sort and merge operations. They can be the same operation
performed many times or different operations. However, one operation must finish before another begins.

The steps you take to sort or merge are generally as follows:

1. Describe the sort or merge file to be used for sorting or merging.
2. Describe the input to be sorted or merged. If you want to process the records before you sort them,

code an input procedure.
3. Describe the output from sorting or merging. If you want to process the records after you sort or merge

them, code an output procedure.
4. Request the sort or merge.
5. Determine whether the sort or merge operation was successful.

Related concepts   
“Sort and merge process” on page 153 

Related tasks   
“Describing the sort or
merge file” on page 154  
“Describing the input to
sorting or merging” on page 154  
“Describing the output
from sorting or merging” on page 156  
“Requesting the sort or merge” on page 158  
“Determining whether the
sort or merge was successful” on page 160  
“Stopping a sort or merge operation prematurely” on page 164

Related references   
SORT statement (COBOL for Linux on x86 Language Reference)  
MERGE statement (COBOL for Linux on x86 Language Reference)

Sort and merge process
During the sorting of a file, all of the records in the file are ordered according to the contents of one or
more fields (keys) in each record. You can sort the records in either ascending or descending order of each
key.

If there are multiple keys, the records are first sorted according to the content of the first (or primary) key,
then according to the content of the second key, and so on.

To sort a file, use the COBOL SORT statement.

© Copyright IBM Corp. 2021, 2023 153



During the merging of two or more files (which must already be sorted), the records are combined and
ordered according to the contents of one or more keys in each record. You can order the records in either
ascending or descending order of each key. As with sorting, the records are first ordered according to the
content of the primary key, then according to the content of the second key, and so on.

Use MERGE . . . USING to name the files that you want to combine into one sequenced file. The merge
operation compares keys in the records of the input files, and passes the sequenced records one by one
to the RETURN statement of an output procedure or to the file that you name in the GIVING phrase.

Related tasks   
“Setting sort or merge
criteria” on page 158 

Related references   
SORT statement (COBOL for Linux on x86 Language Reference)  
MERGE statement (COBOL for Linux on x86 Language Reference)

Describing the sort or merge file
Describe the sort file to be used for sorting or merging. You need SELECT clauses and SD entries even if
you are sorting or merging data items only from WORKING-STORAGE or LOCAL-STORAGE.

Code as follows:

1. Write one or more SELECT clauses in the FILE-CONTROL paragraph of the ENVIRONMENT DIVISION
to name a sort file. For example:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
    SELECT Sort-Work-1 ASSIGN TO SortFile.

Sort-Work-1 is the name of the file in your program. Use this name to refer to the file.
2. Describe the sort file in an SD entry in the FILE SECTION of the DATA DIVISION. Every SD entry

must contain a record description. For example:

DATA DIVISION.
FILE SECTION.
SD  Sort-Work-1
    RECORD CONTAINS 100 CHARACTERS.
01  SORT-WORK-1-AREA.
    05  SORT-KEY-1   PIC  X(10).
    05  SORT-KEY-2   PIC  X(10).
    05  FILLER       PIC  X(80).

The file described in an SD entry is the working file used for a sort or merge operation. You cannot perform
any input or output operations on this file.

Related references   
“FILE SECTION entries” on page 10 

Describing the input to sorting or merging
Describe the input file or files for sorting or merging by following the procedure below.

1. Write one or more SELECT clauses in the FILE-CONTROL paragraph of the ENVIRONMENT DIVISION
to name the input files. For example:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
    SELECT Input-File ASSIGN TO InFile.

154  IBM COBOL for Linux on x86 1.1: Programming Guide



Input-File is the name of the file in your program. Use this name to refer to the file.
2. Describe the input file (or files when merging) in an FD entry in the FILE SECTION of the DATA
DIVISION. For example:

DATA DIVISION.
FILE SECTION.
FD  Input-File 
    RECORD CONTAINS 100 CHARACTERS.
01  Input-Record   PIC X(100).

Related tasks   
“Coding the input procedure” on page 155  
“Requesting the sort or merge” on page 158 

Related references   
“FILE SECTION entries” on page 10 

Example: describing sort and input files for SORT
The following example shows the ENVIRONMENT DIVISION and DATA DIVISION entries needed to
describe sort work files and an input file.

 ID Division.
 Program-ID. SmplSort.
 Environment Division.
 Input-Output Section.
 File-Control.
*
* Assign name for a working file is treated as documentation.
*
     Select Sort-Work-1 Assign To SortFile.
     Select Sort-Work-2 Assign To SortFile.
     Select Input-File  Assign To InFile.
 . . .
 Data Division.
 File Section.
 SD  Sort-Work-1
     Record Contains 100 Characters.
 01  Sort-Work-1-Area.
     05  Sort-Key-1    Pic  X(10).
     05  Sort-Key-2    Pic  X(10).
     05  Filler        Pic  X(80).
 SD  Sort-Work-2
     Record Contains 30 Characters.
 01  Sort-Work-2-Area.
     05  Sort-Key      Pic  X(5).
     05  Filler        Pic  X(25).
 FD  Input-File 
     Record Contains 100 Characters.
 01  Input-Record      Pic  X(100).
 . . .
 Working-Storage Section.
 01  EOS-Sw            Pic  X.
 01  Filler.
     05  Table-Entry Occurs 100 Times
             Indexed By X1    Pic X(30).
     . . .

Related tasks   
“Requesting the sort or merge” on page 158 

Coding the input procedure
To process the records in an input file before they are released to the sort program, use the INPUT
PROCEDURE phrase of the SORT statement.

You can use an input procedure to:

• Release data items to the sort file from WORKING-STORAGE or LOCAL-STORAGE.

Chapter 8. Sorting and merging files  155



• Release records that have already been read elsewhere in the program.
• Read records from an input file, select or process them, and release them to the sort file.

Each input procedure must be contained in either paragraphs or sections. For example, to release records
from a table in WORKING-STORAGE or LOCAL-STORAGE to the sort file SORT-WORK-2, you could code as
follows: 

    SORT SORT-WORK-2
      ON ASCENDING KEY SORT-KEY
      INPUT PROCEDURE 600-SORT3-INPUT-PROC
    . . .
600-SORT3-INPUT-PROC SECTION.
    PERFORM WITH TEST AFTER
      VARYING X1 FROM 1 BY 1 UNTIL X1 = 100
      RELEASE SORT-WORK-2-AREA FROM TABLE-ENTRY (X1)
    END-PERFORM.

To transfer records to the sort program, all input procedures must contain at least one RELEASE or
RELEASE FROM statement. To release A from X, for example, you can code:

MOVE X TO A.
RELEASE A.

Alternatively, you can code:

RELEASE A FROM X.

The following table compares the RELEASE and RELEASE FROM statements.

RELEASE RELEASE FROM

MOVE EXT-RECORD
  TO SORT-EXT-RECORD
PERFORM RELEASE-SORT-RECORD
. . .
RELEASE-SORT-RECORD.
  RELEASE SORT-RECORD

PERFORM RELEASE-SORT-RECORD
. . .
RELEASE-SORT-RECORD.
  RELEASE SORT-RECORD
    FROM SORT-EXT-RECORD

Related references   
“Restrictions on input
and output procedures” on page 157  
RELEASE statement (COBOL for Linux on x86 Language Reference)

Describing the output from sorting or merging
If the output from sorting or merging is a file, describe the file by following the procedure below.

1. Write a SELECT clause in the FILE-CONTROL paragraph of the ENVIRONMENT DIVISION to name the
output file. For example:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
    SELECT Output-File ASSIGN TO OutFile.

Output-File is the name of the file in your program. Use this name to refer to the file.
2. Describe the output file (or files when merging) in an FD entry in the FILE SECTION of the DATA
DIVISION. For example:

156  IBM COBOL for Linux on x86 1.1: Programming Guide



DATA DIVISION.
FILE SECTION.
FD  Output-File 
    RECORD CONTAINS 100 CHARACTERS.
01  Output-Record   PIC X(100).

Related tasks   
“Coding the output procedure” on page 157  
“Requesting the sort or merge” on page 158 

Related references   
“FILE SECTION entries” on page 10 

Coding the output procedure
To select, edit, or otherwise change sorted records before writing them from the sort work file into
another file, use the OUTPUT PROCEDURE phrase of the SORT statement.

Each output procedure must be contained in either a section or a paragraph. An output procedure must
include both of the following elements:

• At least one RETURN statement or one RETURN statement with the INTO phrase
• Any statements necessary to process the records that are made available, one at a time, by the RETURN

statement

The RETURN statement makes each sorted record available to the output procedure. (The RETURN
statement for a sort file is similar to a READ statement for an input file.)

You can use the AT END and END-RETURN phrases with the RETURN statement. The imperative
statements in the AT END phrase are performed after all the records have been returned from the sort
file. The END-RETURN explicit scope terminator delimits the scope of the RETURN statement.

If you use RETURN INTO instead of RETURN, the records will be returned to WORKING-STORAGE, LOCAL-
STORAGE, or to an output area.

Related references   
“Restrictions on input
and output procedures” on page 157  
RETURN statement (COBOL for Linux on x86 Language Reference) 

Restrictions on input and output procedures
Several restrictions apply to each input or output procedure called by SORT and to each output procedure
called by MERGE.

Observe these restrictions:

• The procedure must not contain any SORT or MERGE statements.
• You can use ALTER, GO TO, and PERFORM statements in the procedure to refer to procedure-names

outside the input or output procedure. However, control must return to the input or output procedure
after a GO TO or PERFORM statement.

• The remainder of the PROCEDURE DIVISION must not contain any transfers of control to points inside
the input or output procedure (with the exception of the return of control from a declarative section).

• In an input or output procedure, you can call a program. However, the called program cannot issue a
SORT or MERGE statement, and the called program must return to the caller.

• During a SORT or MERGE operation, the SD data item is used. You must not use it in the output procedure
before the first RETURN executes. If you move data into this record area before the first RETURN
statement, the first record to be returned will be overwritten.

Chapter 8. Sorting and merging files  157



Related tasks   
“Coding the input procedure” on page 155  
“Coding the output procedure” on page 157  

Requesting the sort or merge
To read records from an input file (files for MERGE) without preliminary processing, use SORT . . .
USING or MERGE . . . USING and the name of the input file (files) that you declared in a SELECT
clause.

To transfer sorted or merged records from the sort or merge program to another file without any further
processing, use SORT . . . GIVING or MERGE . . . GIVING and the name of the output file that
you declared in a SELECT clause. For example:

SORT Sort-Work-1
    ON ASCENDING KEY Sort-Key-1
    USING Input-File
    GIVING Output-File.

For SORT . . . USING or MERGE . . . USING, the compiler generates an input procedure to open
the file (files), read the records, release the records to the sort or merge program, and close the file (files).
The file (files) must not be open when the SORT or MERGE statement begins execution. For SORT . . .
GIVING or MERGE . . . GIVING, the compiler generates an output procedure to open the file, return
the records, write the records, and close the file. The file must not be open when the SORT or MERGE
statement begins execution.

“Example: describing sort and input files for SORT” on page 155

If you want an input procedure to be performed on the sort records before they are sorted, use
SORT . . . INPUT PROCEDURE. If you want an output procedure to be performed on the sorted
records, use SORT . . . OUTPUT PROCEDURE. For example:

SORT Sort-Work-1
    ON ASCENDING KEY Sort-Key-1
    INPUT PROCEDURE EditInputRecords
    OUTPUT PROCEDURE FormatData.

“Example: sorting with input and output procedures” on page 159

Restriction: You cannot use an input procedure with the MERGE statement. The source of input to the
merge operation must be a collection of already sorted files. However, if you want an output procedure to
be performed on the merged records, use MERGE . . . OUTPUT PROCEDURE. For example:

MERGE Merge-Work
    ON ASCENDING KEY Merge-Key
    USING Input-File-1 Input-File-2 Input-File-3
    OUTPUT PROCEDURE ProcessOutput.

In the FILE SECTION, you must define Merge-Work in an SD entry, and the input files in FD entries.

Related references   
SORT statement (COBOL for Linux on x86 Language Reference)  
MERGE statement (COBOL for Linux on x86 Language Reference) 

Setting sort or merge criteria
To set sort or merge criteria, define the keys on which the operation is to be performed.

Do these steps:

1. In the record description of the files to be sorted or merged, define the key or keys.

Restriction: A key cannot be variably located. 

158  IBM COBOL for Linux on x86 1.1: Programming Guide



2. In the SORT or MERGE statement, specify the key fields to be used for sequencing by coding the
ASCENDING or DESCENDING KEY phrase, or both. When you code more than one key, some can be
ascending, and some descending.

Specify the names of the keys in decreasing order of significance. The leftmost key is the primary key.
The next key is the secondary key, and so on.

SORT and MERGE keys can be of class alphabetic, alphanumeric, national (if the compiler option
NCOLLSEQ(BIN) is in effect), or numeric (but not numeric of USAGE NATIONAL). If it has USAGE
NATIONAL, a key can be of category national or can be a national-edited or numeric-edited data item. A
key cannot be a national decimal data item or a national floating-point data item.

The collation order for national keys is determined by the binary order of the keys. If you specify a
national data item as a key, any COLLATING SEQUENCE phrase in the SORT or MERGE statement does not
apply to that key.

You can mix SORT and MERGE statements in the same COBOL program. A program can perform any
number of sort or merge operations. However, one operation must end before another can begin.

Related tasks   
“Controlling the collating
sequence with a locale” on page 207

Related references   
“NCOLLSEQ” on page 273  
SORT statement (COBOL for Linux on x86 Language Reference)  
MERGE statement (COBOL for Linux on x86 Language Reference)

Choosing alternate collating sequences
You can sort or merge records on a collating sequence that you specify for single-byte character keys. The
default collating sequence is the collating sequence specified by the locale setting in effect at compile
time unless you code the PROGRAM COLLATING SEQUENCE clause in the OBJECT-COMPUTER paragraph.

To override the default sequence, use the COLLATING SEQUENCE phrase of the SORT or MERGE
statement. You can use different collating sequences for each SORT or MERGE statement in your program.

The PROGRAM COLLATING SEQUENCE clause and the COLLATING SEQUENCE phrase apply only to keys
of class alphabetic or alphanumeric. The COLLATING SEQUENCE phrase is valid only when a single-byte
ASCII code page is in effect.

Related tasks   
“Specifying the collating sequence” on page 6  
“Controlling the collating
sequence with a locale” on page 207  
“Setting sort or merge
criteria” on page 158

Related references   
OBJECT-COMPUTER paragraph (COBOL for Linux on x86 Language Reference)  
SORT statement (COBOL for Linux on x86 Language Reference)  
Classes and categories of data (COBOL for Linux on x86 Language Reference)

Example: sorting with input and output procedures
The following example shows the use of an input and an output procedure in a SORT statement. The
example also shows how you can define a primary key (SORT-GRID-LOCATION) and a secondary key
(SORT-SHIFT) before using them in the SORT statement.

DATA DIVISION.
. . .

Chapter 8. Sorting and merging files  159



SD  SORT-FILE
    RECORD CONTAINS 115 CHARACTERS
    DATA RECORD SORT-RECORD.
01  SORT-RECORD.
    05  SORT-KEY.
        10  SORT-SHIFT              PIC X(1).
        10  SORT-GRID-LOCATION      PIC X(2).
        10  SORT-REPORT             PIC X(3).
    05  SORT-EXT-RECORD.
        10  SORT-EXT-EMPLOYEE-NUM   PIC X(6).
        10  SORT-EXT-NAME           PIC X(30).
        10  FILLER                  PIC X(73).
. . .
WORKING-STORAGE SECTION.
01  TAB1.
    05 TAB-ENTRY OCCURS 10 TIMES
           INDEXED BY TAB-INDX.
        10  WS-SHIFT                PIC X(1).
        10  WS-GRID-LOCATION        PIC X(2).
        10  WS-REPORT               PIC X(3).
        10  WS-EXT-EMPLOYEE-NUM     PIC X(6).
        10  WS-EXT-NAME             PIC X(30).
        10  FILLER                  PIC X(73).
. . .
PROCEDURE DIVISION.
    . . .
    SORT SORT-FILE
        ON ASCENDING KEY SORT-GRID-LOCATION SORT-SHIFT
        INPUT PROCEDURE 600-SORT3-INPUT
        OUTPUT PROCEDURE 700-SORT3-OUTPUT.
    . . .
600-SORT3-INPUT.
    PERFORM VARYING TAB-INDX FROM 1 BY 1 UNTIL TAB-INDX > 10
        RELEASE SORT-RECORD FROM TAB-ENTRY(TAB-INDX)
    END-PERFORM.
. . .
700-SORT3-OUTPUT.
    PERFORM VARYING TAB-INDX FROM 1 BY 1 UNTIL TAB-INDX > 10
        RETURN SORT-FILE INTO TAB-ENTRY(TAB-INDX)
            AT END DISPLAY 'Out Of Records In SORT File'
        END-RETURN
    END-PERFORM.

Related tasks   
“Requesting the sort or merge” on page 158 

Determining whether the sort or merge was successful
The SORT or MERGE statement returns a completion code of either 0 (successful completion) or 16
(unsuccessful completion) after each sort or merge has finished. The completion code is stored in the
SORT-RETURN special register.

You should test for successful completion after each SORT or MERGE statement. For example:

    SORT SORT-WORK-2
        ON ASCENDING KEY SORT-KEY
        INPUT PROCEDURE IS 600-SORT3-INPUT-PROC
        OUTPUT PROCEDURE IS 700-SORT3-OUTPUT-PROC.
    IF SORT-RETURN NOT=0
        DISPLAY "SORT ENDED ABNORMALLY. SORT-RETURN = " SORT-RETURN.
    . . .
600-SORT3-INPUT-PROC SECTION.
    . . .
700-SORT3-OUTPUT-PROC SECTION.
    . . .

If you do not reference SORT-RETURN anywhere in your program, the COBOL run time tests the
completion code. If it is 16, COBOL issues a runtime diagnostic message and terminates the run unit
(or the thread, in a multithreaded environment). The diagnostic message contains a sort or merge error
number that can help you determine the cause of the problem.

160  IBM COBOL for Linux on x86 1.1: Programming Guide



If you test SORT-RETURN for one or more (but not necessarily all) SORT or MERGE statements, the COBOL
run time does not check the completion code. However, you can obtain the sort or merge error number
after any SORT or MERGE statement by calling the iwzGetSortErrno service; for example: 

77  sortErrno    PIC 9(9)   COMP-5.
. . .
    CALL 'iwzGetSortErrno'  USING  sortErrno
. . .

See the related reference below for a list of the error numbers and their meanings.

Related references   
“Sort and merge error numbers” on page 161

Sort and merge error numbers
If you do not reference SORT-RETURN in your program, and the completion code from a sort or merge
operation is 16, COBOL for Linux issues a runtime diagnostic message that contains one of the nonzero
error numbers shown in the table below.

Table 15. Sort and merge error numbers

Error number Description

0 No error

1 Record is out of order.

2 Equal-keyed records were detected.

3 Multiple main functions were specified (internal error).

4 Error in the parameter file

5 Parameter file could not be opened.

6 Operand missing from option

7 Operand missing from extended option

8 Invalid operand in option

9 Invalid operand in extended option

10 An invalid option was specified.

11 An invalid extended option was specified.

12 An invalid temporary directory was specified.

13 An invalid file-name was specified.

14 An invalid field was specified.

15 A field was missing in the record.

16 A field was too short in the record.

17 Syntax error in SELECT specification

18 An invalid constant was specified in SELECT.

19 Invalid comparison between constant and data type in SELECT

20 Invalid comparison between two data types in SELECT

21 Syntax error in format specification

Chapter 8. Sorting and merging files  161



Table 15. Sort and merge error numbers (continued)

Error number Description

22 Syntax error in reformat specification

23 An invalid constant was specified in the reformat specification.

24 Syntax error in sum specification

25 A flag was specified multiple times.

26 Too many outputs were specified.

27 No input source was specified.

28 No output destination was specified.

29 An invalid modifier was specified.

30 Sum is not allowed.

31 Record is too short.

32 Record is too long.

33 An invalid packed or zoned field was detected.

34 Read error on file

35 Write error on file

36 Cannot open input file.

37 Cannot open message file.

38 SdU or SFS file error

39 Insufficient space in target buffers

40 Not enough temporary disk space

41 Not enough space for output file

42 An unexpected signal was trapped.

43 Error was returned from the input exit.

44 Error was returned from the output exit.

45 Unexpected data was returned from the output user exit.

46 Invalid bytes used value was returned from input exit.

47 Invalid bytes used value was returned from output exit.

48 SMARTsort is not active.

49 Insufficient storage to continue execution

50 Parameter file was too large.

51 Nonmatching single quotation mark

52 Nonmatching quotation mark

53 Conflicting options were specified.

54 Length field in record is invalid.

55 Last field in record is invalid.

162  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 15. Sort and merge error numbers (continued)

Error number Description

56 Required record format was not specified.

57 Cannot open output file.

58 Cannot open temporary file.

59 Invalid file organization

60 User exit is not supported with the specified file organization.

61 Locale is not known to the system.

62 Record contains an invalid multibyte character.

63 The file was neither SdU nor SFS.

64 No key specified to SORT is usable for definition of indexed output file.

65 The record length for an SdU or SFS file was not correct.

66 The SMARTsort options file creation failed.

67 A fully qualified, nonrelative path name must be specified as a work directory.

68 A required option must be specified.

69 Path name is not valid.

79 Maximum number of temporary files has been reached.

501 Invalid function

502 Invalid record type

503 Invalid record length

504 Type length error

505 Invalid type

506 Mismatched number of keys

507 Type is too long.

508 Invalid key offset

509 Invalid ascending or descending key

510 Invalid overlapping keys

511 No key was defined.

512 No input file was specified.

513 No output file was specified.

514 Mixed-type input files

515 Mixed-type output files

516 Invalid input work buffer

517 Invalid output work buffer

518 COBOL input I/O error

519 COBOL output I/O error

Chapter 8. Sorting and merging files  163



Table 15. Sort and merge error numbers (continued)

Error number Description

520 Unsupported function

521 Invalid key

522 Invalid USING file

523 Invalid GIVING file

524 No work directory was supplied.

525 Work directory does not exist.

526 Sort common was not allocated.

527 No storage for sort common

528 Binary buffer was not allocated.

529 Line-sequential file buffer was not allocated.

530 Work space allocation failed.

531 FCB allocation failed.

Stopping a sort or merge operation prematurely
To stop a sort or merge operation, move the integer 16 into the SORT-RETURN special register.

Move 16 into the register in either of the following ways:

• Use MOVE in an input or output procedure.

Sort or merge processing will be stopped immediately after the next RELEASE or RETURN statement is
performed.

• Reset the register in a declarative section entered during processing of a USING or GIVING file.

Sort or merge processing will be stopped on exit from the declarative section.

Control then returns to the statement following the SORT or MERGE statement.

164  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 9. Handling errors

Put code in your programs that anticipates possible system or runtime problems. If you do not include
such code, output data or files could be corrupted, and the user might not even be aware that there is a
problem.

The error-handling code can take actions such as handling the situation, issuing a message, or halting the
program. You might for example create error-detection routines for data-entry errors or for errors as your
installation defines them. In any event, coding a warning message is a good idea.

COBOL for Linux contains special elements to help you anticipate and correct error conditions:

• ON OVERFLOW in STRING and UNSTRING operations
• ON SIZE ERROR in arithmetic operations
• Elements for handling input or output errors
• ON EXCEPTION or ON OVERFLOW in CALL statements

Related tasks   
“Handling errors in joining and splitting strings” on page 165  
“Handling errors in arithmetic operations” on page 166  
“Handling errors in input and output operations” on page 166  
“Handling errors when calling
programs” on page 172

Handling errors in joining and splitting strings
During the joining or splitting of strings, the pointer used by STRING or UNSTRING might fall outside the
range of the receiving field. A potential overflow condition exists, but COBOL does not let the overflow
happen.

Instead, the STRING or UNSTRING operation is not completed, the receiving field remains unchanged,
and control passes to the next sequential statement. If you do not code the ON OVERFLOW phrase of the
STRING or UNSTRING statement, you are not notified of the incomplete operation.

Consider the following statement:

String Item-1 space Item-2 delimited by Item-3
    into Item-4
    with pointer String-ptr
    on overflow
        Display "A string overflow occurred"
End-String

These are the data values before and after the statement is performed:

Data item PICTURE Value before Value after

Item-1 X(5) AAAAA AAAAA

Item-2 X(5) EEEAA EEEAA

Item-3 X(2) EA EA

Item-4 X(8) bbbbbbbb1 bbbbbbbb1

String-ptr 9(2) 0 0

1. The symbol b represents a blank space.

© Copyright IBM Corp. 2021, 2023 165



Because String-ptr has a value (0) that falls short of the receiving field, an overflow condition occurs
and the STRING operation is not completed. (Overflow would also occur if String-ptr were greater
than 9.) If ON OVERFLOW had not been specified, you would not be notified that the contents of Item-4
remained unchanged.

Handling errors in arithmetic operations
The results of arithmetic operations might be larger than the fixed-point field that is to hold them, or you
might have tried dividing by zero. In either case, the ON SIZE ERROR clause after the ADD, SUBTRACT,
MULTIPLY, DIVIDE, or COMPUTE statement can handle the situation.

For ON SIZE ERROR to work correctly for fixed-point overflow and decimal overflow, you must specify
the TRAP(ON) runtime option.

The imperative statement of the ON SIZE ERROR clause will be performed and the result field will not
change in these cases:

• Fixed-point overflow
• Division by zero
• Zero raised to the zero power
• Zero raised to a negative number
• Negative number raised to a fractional power

Example: checking for division by zero
The following example shows how you can code an ON SIZE ERROR imperative statement so that the
program issues an informative message if division by zero occurs.

DIVIDE-TOTAL-COST.
    DIVIDE TOTAL-COST BY NUMBER-PURCHASED
        GIVING ANSWER
        ON SIZE ERROR
          DISPLAY "ERROR IN DIVIDE-TOTAL-COST PARAGRAPH"
          DISPLAY "SPENT " TOTAL-COST, " FOR " NUMBER-PURCHASED
          PERFORM FINISH
    END-DIVIDE
    . . .
    FINISH.
    STOP RUN.

If division by zero occurs, the program writes a message and halts program execution.

Handling errors in input and output operations
When an input or output operation fails, COBOL does not automatically take corrective action. You choose
whether your program will continue running after a less-than-severe input or output error.

You can use any of the following techniques for intercepting and handling certain input or output
conditions or errors:

• End-of-file condition (AT END)
• ERROR declaratives
• FILE STATUS clause and file status key
• File system status code
• Imperative-statement phrases in READ or WRITE statements
• INVALID KEY phrase

To have your program continue, you must code the appropriate error-recovery procedure. You might code,
for example, a procedure to check the value of the file status key. If you do not handle an input or output
error in any of these ways, a COBOL runtime message is written and the run unit ends.

166  IBM COBOL for Linux on x86 1.1: Programming Guide



The following figure shows the flow of logic after a file-system input or output error:

Related tasks  
“Opening optional files” on page 134  
“Using the end-of-file condition
(AT END)” on page 168  
“Coding ERROR declaratives” on page 168  
“Using file status keys” on page 168  
“Using file system status codes” on page 170  
“Coding INVALID KEY phrases” on page 172  

Related references   
File status key (COBOL for Linux on x86 Language Reference)  

Chapter 9. Handling errors  167



Using the end-of-file condition (AT END)
You code the AT END phrase of the READ statement to handle errors or normal conditions, according
to your program design. At end-of-file, the AT END phrase is performed. If you do not code an AT END
phrase, the associated ERROR declarative is performed.

In many designs, reading sequentially to the end of a file is done intentionally, and the AT END condition
is expected. For example, suppose you are processing a file that contains transactions in order to update
a main file:

PERFORM UNTIL TRANSACTION-EOF = "TRUE"
  READ UPDATE-TRANSACTION-FILE INTO WS-TRANSACTION-RECORD
    AT END
      DISPLAY "END OF TRANSACTION UPDATE FILE REACHED"
      MOVE "TRUE" TO TRANSACTION-EOF
  END READ
  . . .
END-PERFORM

Any NOT AT END phrase is performed only if the READ statement completes successfully. If the READ
operation fails because of a condition other than end-of-file, neither the AT END nor the NOT AT END
phrase is performed. Instead, control passes to the end of the READ statement after any associated
declarative procedure is performed.

You might choose not to code either an AT END phrase or an EXCEPTION declarative procedure, but to
code a status key clause for the file instead. In that case, control passes to the next sequential instruction
after the input or output statement that detected the end-of-file condition. At that place, have some code
that takes appropriate action.

Related references   
AT END phrases (COBOL for Linux on x86 Language Reference) 

Coding ERROR declaratives
You can code one or more ERROR declarative procedures that will be given control if an input or output
error occurs during the execution of your program. If you do not code such procedures, your job could be
canceled or abnormally terminated after an input or output error occurs.

Place each such procedure in the declaratives section of the PROCEDURE DIVISION. You can code:

• A single, common procedure for the entire program
• Procedures for each file open mode (whether INPUT, OUTPUT, I-O, or EXTEND)
• Individual procedures for each file

In an ERROR declarative procedure, you can code corrective action, retry the operation, continue, or
end execution. (If you continue processing a blocked file, though, you might lose the remaining records
in a block after the record that caused the error.) You can use the ERROR declaratives procedure in
combination with the file status key if you want a further analysis of the error.

Related references   
EXCEPTION/ERROR declarative (COBOL for Linux on x86 Language Reference)

Using file status keys
After each input or output statement is performed on a file, the system updates values in the two digit
positions of the file status key. In general, a zero in the first position indicates a successful operation, and
a zero in both positions means that nothing abnormal occurred.

Establish a file status key by coding:

168  IBM COBOL for Linux on x86 1.1: Programming Guide



• The FILE STATUS clause in the FILE-CONTROL paragraph:

FILE STATUS IS data-name-1

• Data definitions in the DATA DIVISION (WORKING-STORAGE, LOCAL-STORAGE, or LINKAGE
SECTION), for example:

WORKING-STORAGE SECTION.
01  data-name-1  PIC 9(2)  USAGE NATIONAL.

Specify the file status key data-name-1 as a two-character category alphanumeric or category national
item, or as a two-digit zoned decimal or national decimal item. This data-name-1 cannot be variably
located.

Your program can check the file status key to discover whether an error occurred, and, if so, what type of
error occurred. For example, suppose that a FILE STATUS clause is coded like this:

FILE STATUS IS FS-CODE

FS-CODE is used by COBOL to hold status information like this:

Follow these rules for each file:

• Define a different file status key for each file.

Doing so means that you can determine the cause of a file input or output exception, such as an
application logic error or a disk error.

• Check the file status key after each input or output request.

If the file status key contains a value other than 0, your program can issue an error message or can take
action based on that value.

You do not have to reset the file status key code, because it is set after each input or output attempt.

In addition to the file status key, you can code a second identifier in the FILE STATUS clause to get more
detailed information about file-system input or output requests. For details, see the related task about file
system status codes.

You can use the file status key alone or in conjunction with the INVALID KEY phrase, or to supplement
the EXCEPTION or ERROR declarative. Using the file status key in this way gives you precise information
about the results of each input or output operation.

“Example: file status key” on page 170  
“Example: checking file system status codes” on page 171  

Related tasks  
“Setting up a field for file status” on page 135  
“Using file system status codes” on page 170  
“Coding INVALID KEY phrases” on page 172   
“Finding and handling input-output
errors” on page 304  

Chapter 9. Handling errors  169



Related references   
FILE STATUS clause (COBOL for Linux on x86 Language Reference)  
File status key (COBOL for Linux on x86 Language Reference) 

Example: file status key
The following example shows how you can perform a simple check of the file status key after opening a
file.

IDENTIFICATION DIVISION.
PROGRAM-ID.  SIMCHK.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
    SELECT MAINFILE ASSIGN TO AS-MAINA
    FILE STATUS IS MAINFILE-CHECK-KEY
    . . .
DATA DIVISION.
. . .
WORKING-STORAGE SECTION.
01  MAINFILE-CHECK-KEY       PIC X(2).
. . .
PROCEDURE DIVISION.
    OPEN INPUT MAINFILE
    IF MAINFILE-CHECK-KEY NOT = "00"
        DISPLAY "Nonzero file status returned from OPEN " MAINFILE-CHECK-KEY
    . . .

Using file system status codes
Often the two-digit file status key is too general to pinpoint the result of an input or output request. You
can get more detailed information about Db2, LSQ, QSAM, RSD, SdU, SFS, and STL file-system requests by
coding a second data item in the FILE STATUS clause.

FILE STATUS IS data-name-1 data-name-8

In the example above, the data item data-name-1 specifies the two-digit COBOL file status key, which
must be a two-character category alphanumeric or category national item, or a two-digit zoned decimal
or national decimal item. The data item data-name-8 specifies a data item that contains the file-system
status code if the COBOL file status key is not zero. data-name-8 is at least 6 bytes long, and must be an
alphanumeric item.

LSQ, QSAM, RSD, SFS, STL and SdU files: For LSQ, QSAM, RSD, SFS, STL and SdU file system input and
output requests, if data-name-8 is 6 bytes long, it contains the file status code. If data-name-8 is longer
than 6 bytes, it also contains a message with further information:

01  my-file-status-2.
    02 exception-return-value PIC 9(6).
    02 additional-info        PIC X(100).

The exception-return-value contains a value that can further refine the error noted in FILE
STATUS. The additional-info contains further diagnostic information of the error noted in
exception-return-value to help you diagnose the problem.

Db2 files: For Db2 file-system input and output requests, define data-name-8 as a group item. For
example:

01  FileStatus2.
    02 FS2-SQLCODE  PICTURE S9(9) COMP.
    02 FS2-SQLSTATE PICTURE X(5).

The runtime values in FS2-SQLCODE and FS2-SQLSTATE represent SQL feedback information for the
operation previously completed.

170  IBM COBOL for Linux on x86 1.1: Programming Guide



“Example: checking file system status codes” on page 171

Related tasks  
“Fixing differences caused
by language elements” on page 428  

Related references  
“Db2 file system” on page 118 
“QSAM file system” on page 119  
“SdU file system” on page 120  
“SFS file system” on page 121  
“STL file system” on page 122   
FILE STATUS clause (COBOL for Linux on x86 Language Reference)  
File status key (COBOL for Linux on x86 Language Reference)  

Example: checking file system status codes
The following example reads an indexed file starting at the fifth record and checks the file status key after
each input or output request. The file status codes are displayed if the file status key is not zero.

This example also illustrates how output from this program might look if the file being processed
contained six records.

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
    SELECT FILESYSFILE ASSIGN TO FILESYSFILE
    ORGANIZATION IS INDEXED
    ACCESS DYNAMIC
    RECORD KEY IS FILESYSFILE-KEY
    FILE STATUS IS FS-CODE, FILESYS-CODE.
DATA DIVISION.
FILE SECTION.
FD  FILESYSFILE
    RECORD  30.
01  FILESYSFILE-REC.
    10 FILESYSFILE-KEY          PIC X(6).
    10 FILLER                   PIC X(24).
WORKING-STORAGE SECTION.
01  RETURN-STATUS.
    05 FS-CODE                  PIC XX.
    05 FILESYS-CODE             PIC X(6).
PROCEDURE DIVISION.
    OPEN  INPUT FILESYSFILE.
    DISPLAY "OPEN INPUT FILESYSFILE FS-CODE: " FS-CODE.

    IF FS-CODE NOT = "00"
       PERFORM FILESYS-CODE-DISPLAY
       STOP RUN
    END-IF.

    MOVE "000005" TO FILESYSFILE-KEY.
    START FILESYSFILE KEY IS EQUAL TO FILESYSFILE-KEY.
    DISPLAY "START FILESYSFILE KEY="  FILESYSFILE-KEY
            " FS-CODE: "  FS-CODE.

    IF FS-CODE NOT = "00"
       PERFORM FILESYS-CODE-DISPLAY
    END-IF.

    IF FS-CODE = "00"
       PERFORM READ-NEXT UNTIL FS-CODE NOT = "00"
    END-IF.

    CLOSE FILESYSFILE.
    STOP RUN.

READ-NEXT.
    READ FILESYSFILE NEXT.
    DISPLAY "READ NEXT FILESYSFILE FS-CODE: " FS-CODE.
    IF FS-CODE NOT = "00"

Chapter 9. Handling errors  171



       PERFORM FILESYS-CODE-DISPLAY
    END-IF.
    DISPLAY FILESYSFILE-REC.

FILESYS-CODE-DISPLAY.
    DISPLAY "FILESYS-CODE ==>", FILESYS-CODE.

Coding INVALID KEY phrases
You can include an INVALID KEY phrase in READ, START, WRITE, REWRITE, and DELETE statements for
indexed and relative files. The INVALID KEY phrase is given control if an input or output error occurs due
to a faulty index key.

Use the FILE STATUS clause with the INVALID KEY phrase to evaluate the status key and determine
the specific INVALID KEY condition.

INVALID KEY phrases differ from ERROR declaratives in several ways. INVALID KEY phrases:

• Operate for only limited types of errors. ERROR declaratives encompass all forms.
• Are coded directly with the input or output statement. ERROR declaratives are coded separately.
• Are specific for a single input or output operation. ERROR declaratives are more general.

If you code INVALID KEY in a statement that causes an INVALID KEY condition, control is transferred
to the INVALID KEY imperative statement. Any ERROR declaratives that you coded are not performed.

If you code a NOT INVALID KEY phrase, it is performed only if the statement completes successfully.
If the operation fails because of a condition other than INVALID KEY, neither the INVALID KEY nor
the NOT INVALID KEY phrase is performed. Instead, after the program performs any associated ERROR
declaratives, control passes to the end of the statement.

“Example: FILE STATUS and INVALID KEY” on page 172

Example: FILE STATUS and INVALID KEY
The following example shows how you can use the file status code and the INVALID KEY phrase to
determine more specifically why an input or output statement failed.

Assume that you have a file that contains main customer records and you need to update some of these
records with information from a transaction update file. The program reads each transaction record, finds
the corresponding record in the main file, and makes the necessary updates. The records in both files
contain a field for a customer number, and each record in the main file has a unique customer number.

The FILE-CONTROL entry for the main file of customer records includes statements that define indexed
organization, random access, MAIN-CUSTOMER-NUMBER as the prime record key, and CUSTOMER-FILE-
STATUS as the file status key.

.

.  (read the update transaction record)

.
MOVE "TRUE" TO TRANSACTION-MATCH
MOVE UPDATE-CUSTOMER-NUMBER TO MAIN-CUSTOMER-NUMBER
READ MAIN-CUSTOMER-FILE INTO WS-CUSTOMER-RECORD
  INVALID KEY
    DISPLAY "MAIN CUSTOMER RECORD NOT FOUND"
    DISPLAY "FILE STATUS CODE IS: " CUSTOMER-FILE-STATUS
    MOVE "FALSE" TO TRANSACTION-MATCH
END-READ

Handling errors when calling programs
When a program dynamically calls a separately compiled program, the called program might be
unavailable. For example, the system might be out of storage or unable to locate the program object.

172  IBM COBOL for Linux on x86 1.1: Programming Guide



If the CALL statement does not have an ON EXCEPTION or ON OVERFLOW phrase, your application might
abend.

Use the ON EXCEPTION phrase to perform a series of statements and to perform your own error handling.
For example, in the code fragment below, if program REPORTA is unavailable, control passes to the ON
EXCEPTION phrase.

MOVE "REPORTA" TO REPORT-PROG
CALL REPORT-PROG
  ON EXCEPTION
    DISPLAY "Program REPORTA not available, using REPORTB."
    MOVE "REPORTB" TO REPORT-PROG
    CALL REPORT-PROG
    END-CALL
END-CALL

The ON EXCEPTION phrase applies only to the availability of the called program on its initial load. If the
called program is loaded but fails for any other reason (such as initialization), the ON EXCEPTION phrase
is not performed.

Chapter 9. Handling errors  173



174  IBM COBOL for Linux on x86 1.1: Programming Guide



Part 2. Enabling programs for international
environments

© Copyright IBM Corp. 2021, 2023 175



176  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 10. Processing data in an international
environment

COBOL for Linux supports Unicode UTF-16 as national character data at run time. UTF-16 is a fixed-width
Unicode encoding that provides a consistent and efficient way to encode plain text. Using UTF-16, you can
develop software that will work with various national languages.

Use these COBOL facilities to code and compile programs that process national data and culturally
sensitive collation orders for such data:

• Data types and literals:

– Character data types, defined with the USAGE NATIONAL clause and a PICTURE clause that defines
data of category national, national-edited, or numeric-edited

– Numeric data types, defined with the USAGE NATIONAL clause and a PICTURE clause that defines
a numeric data item (a national decimal item) or an external floating-point data item (a national
floating-point item)

– National literals, specified with literal prefix N or NX
– Figurative constant ALL national-literal
– Figurative constants QUOTE, SPACE, HIGH-VALUE, LOW-VALUE, or ZERO, which have national

character (UTF-16) values when used in national-character contexts
• The COBOL statements shown in the related reference below about COBOL statements and national

data
• Intrinsic functions:

– NATIONAL-OF to convert an alphanumeric or double-byte character set (DBCS) character string to
USAGE NATIONAL (UTF-16)

– DISPLAY-OF to convert a national character string to USAGE DISPLAY in a selected code page
(EBCDIC, ASCII, EUC, or UTF-8)

– The other intrinsic functions shown in the related reference below about intrinsic functions and
national data

• The GROUP-USAGE NATIONAL clause to define groups that contain only USAGE NATIONAL data items
and that behave like elementary category national items in most operations

• Compiler options:

– NSYMBOL to control whether national or DBCS processing is used for the N symbol in literals and
PICTURE clauses

– NCOLLSEQ to specify the collating sequence for comparison of national operands

You can also take advantage of implicit conversions of alphanumeric or DBCS data items to national
representation. The compiler performs such conversions (in most cases) when you move these items to
national data items, or compare these items with national data items.

Related concepts   
“Unicode and the encoding
of language characters” on page 178  
“National groups” on page 185 

Related tasks   
“Using national data (Unicode)
in COBOL” on page 179  
“Converting to or from national (Unicode) representation” on page 186  
“Processing UTF-8 data using UTF-16 (national) data types” on page 195  

© Copyright IBM Corp. 2021, 2023 177



“Processing Chinese GB 18030
data” on page 195  
“Comparing national (UTF-16)
data” on page 192  
“Coding for use of DBCS
support” on page 196  
Chapter 11, “Setting the locale,” on page 201

Related references   
“COBOL statements and
national data” on page 181  
“Intrinsic functions
and national data” on page 183  
“NCOLLSEQ” on page 273  
“NSYMBOL” on page 273  
Classes and categories of data (COBOL for Linux on x86 Language Reference)  
Data categories and PICTURE rules
 (COBOL for Linux on x86 Language Reference)  
MOVE statement (COBOL for Linux on x86 Language Reference)  
General relation conditions (COBOL for Linux on x86 Language Reference)

Unicode and the encoding of language characters
COBOL for Linux provides basic runtime support for Unicode, which can handle tens of thousands of
characters that cover all commonly used characters and symbols in the world.

A character set is a defined set of characters, but is not associated with a coded representation. A coded
character set (also referred to in this documentation as a code page) is a set of unambiguous rules that
relate the characters of the set to their coded representation. Each code page has a name and is like a
table that sets up the symbols for representing a character set; each symbol is associated with a unique
bit pattern, or code point. Each code page also has a coded character set identifier (CCSID), which is a
value from 1 to 65,536.

Unicode has several encoding schemes, called Unicode Transformation Format (UTF), such as UTF-8,
UTF-16, and UTF-32. COBOL for Linux uses UTF-16 (CCSID 1200) in little-endian format as the
representation for national literals and data items that have USAGE NATIONAL.

UTF-8 represents ASCII invariant characters a-z, A-Z, 0-9, and certain special characters such as ' @ , .
+ - = / * ( ) the same way that they are represented in ASCII. UTF-16 represents these characters as
NX'nn00', where X'nn' is the representation of the character in ASCII.

For example, the string 'ABC' is represented in UTF-16 as NX'410042004300'. In UTF-8, 'ABC' is
represented as X'414243'.

One or more encoding units are used to represent a character from a coded character set. For UTF-16,
an encoding unit takes 2 bytes of storage. Any character defined in any EBCDIC, ASCII, or EUC code
page is represented in one UTF-16 encoding unit when the character is converted to the national data
representation.

Cross-platform considerations: Enterprise COBOL for z/OS and COBOL for AIX® support UTF-16 in
big-endian format in national data. By default, COBOL for Linux supports UTF-16 in little-endian format
in national data. If you are porting Unicode data that is encoded in UTF-16BE representation to COBOL
for Linux from another platform, you must either convert that data to UTF-16 in little-endian format to
process the data as national data, or use the UTF16 compiler option to change the way the compiler
treats UTF-16 endianness. With COBOL for Linux, you can perform such conversions by using the
NATIONAL-OF intrinsic function. 

Related tasks   
“Converting to or from national (Unicode) representation” on page 186 

178  IBM COBOL for Linux on x86 1.1: Programming Guide



Related references   
“Storage of character
data” on page 192  
“Locales and code pages that are supported” on page 204  
Character sets and code pages (COBOL for Linux on x86 Language Reference)

Using national data (Unicode) in COBOL
In COBOL for Linux, you can specify national (UTF-16) data in any of several ways.

These types of national data are available:

• National data items (categories national, national-edited, and numeric-edited)
• National literals
• Figurative constants as national characters
• Numeric data items (national decimal and national floating-point)

In addition, you can define national groups that contain only data items that explicitly or implicitly have
USAGE NATIONAL, and that behave in the same way as elementary category national data items in most
operations.

These declarations affect the amount of storage that is needed.

Related concepts   
“Unicode and the encoding
of language characters” on page 178  
“National groups” on page 185 

Related tasks   
“Defining national data
items” on page 179  
“Using national literals” on page 180  
“Using national-character
figurative constants” on page 184  
“Defining national numeric
data items” on page 185  
“Using national groups” on page 189  
“Converting to or from national (Unicode) representation” on page 186  
“Comparing national (UTF-16)
data” on page 192 

Related references   
“Storage of character
data” on page 192  
Classes and categories of data (COBOL for Linux on x86 Language Reference)

Defining national data items
Define national data items with the USAGE NATIONAL clause to hold national (UTF-16) character strings.

You can define national data items of the following categories:

• National
• National-edited
• Numeric-edited

To define a category national data item, code a PICTURE clause that contains only one or more PICTURE
symbols N.

Chapter 10. Processing data in an international environment  179



To define a national-edited data item, code a PICTURE clause that contains at least one of each of the
following symbols:

• Symbol N
• Simple insertion editing symbol B, 0, or /

To define a numeric-edited data item of class national, code a PICTURE clause that defines a numeric-
edited item (for example, -$999.99) and code a USAGE NATIONAL clause. You can use a numeric-edited
data item that has USAGE NATIONAL in the same way that you use a numeric-edited item that has USAGE
DISPLAY.

You can also define a data item as numeric-edited by coding the BLANK WHEN ZERO clause for an
elementary item that is defined as numeric by its PICTURE clause.

If you code a PICTURE clause but do not code a USAGE clause for data items that contain only one or
more PICTURE symbols N, you can use the compiler option NSYMBOL(NATIONAL) to ensure that such
items are treated as national data items instead of as DBCS items.

Related tasks   
“Displaying numeric data” on page 37 

Related references   
“NSYMBOL” on page 273  
BLANK WHEN ZERO clause (COBOL for Linux on x86 Language Reference)

Using national literals
To specify national literals, use the prefix character N and compile with the option NSYMBOL(NATIONAL).

You can use either of these notations:

• N"character-data"
• N'character-data'

If you compile with the option NSYMBOL(DBCS), the literal prefix character N specifies a DBCS literal, not
a national literal.

To specify a national literal as a hexadecimal value, use the prefix NX. You can use either of these
notations:

• NX"hexadecimal-digits"
• NX'hexadecimal-digits'

Each of the following MOVE statements sets the national data item Y to the UTF-16 value of the characters
'AB':

01 Y pic NN usage national.
. . .
    Move NX"41004200" to Y
    Move N"AB"        to Y
    Move "AB"         to Y

Do not use alphanumeric hexadecimal literals in contexts that call for national literals, because such
usage is easily misunderstood. For example, the following statement also results in moving the UTF-16
characters 'AB' (not the hexadecimal bit pattern 4142) to Y, where Y is defined as USAGE NATIONAL:

Move X"4142" to Y

You cannot use national literals in the SPECIAL-NAMES paragraph or as program-names. You can use
a national literal to name an object-oriented method in the METHOD-ID paragraph or to specify a method-
name in an INVOKE statement.

180  IBM COBOL for Linux on x86 1.1: Programming Guide



Use the SOSI compiler option to control how shift-out and shift-in characters within a national literal are
handled.

Related tasks   
“Using literals” on page 21 

Related references   
“NSYMBOL” on page 273  
“SOSI” on page 278  
National literals (COBOL for Linux on x86 Language Reference)

COBOL statements and national data
You can use national data with the PROCEDURE DIVISION and compiler-directing statements shown in
the table below.

Table 16. COBOL statements and national data

COBOL
statement

Can be national Comment For more information

ACCEPT identifier-1, identifier-2 identifier-1 is converted
from the code page
indicated by the runtime
locale only if input is from
the terminal.

“Assigning input from a screen or file
(ACCEPT)” on page 30

ADD All identifiers can be
numeric items that
have USAGE NATIONAL.
identifier-3 (GIVING) can
be numeric-edited with
USAGE NATIONAL.

  “Using COMPUTE and other
arithmetic statements” on page 49

CALL identifier-2, identifier-3,
identifier-4, identifier-5;
literal-2, literal-3

  “Passing data” on page 445

COMPUTE identifier-1 can be
numeric or numeric-
edited with USAGE
NATIONAL. arithmetic-
expression can contain
numeric items that have
USAGE NATIONAL.

  “Using COMPUTE and other
arithmetic statements” on page 49

COPY . . .
REPLACING

operand-1, operand-2 of
the REPLACING phrase

  Chapter 14, “Compiler-directing
statements,” on page 293

DISPLAY identifier-1 identifier-1 is converted to
the code page associated
with the current locale.

“Displaying values on a screen or in a
file (DISPLAY)” on page 31

DIVIDE All identifiers can be
numeric items that
have USAGE NATIONAL.
identifier-3 (GIVING) and
identifier-4 (REMAINDER)
can be numeric-edited
with USAGE NATIONAL.

  “Using COMPUTE and other
arithmetic statements” on page 49

Chapter 10. Processing data in an international environment  181



Table 16. COBOL statements and national data (continued)

COBOL
statement

Can be national Comment For more information

INITIALIZE identifier-1; identifier-2
or literal-1 of the
REPLACING phrase

If you specify REPLACING
NATIONAL or REPLACING
NATIONAL-EDITED,
identifier-2 or literal-1
must be valid as a sending
operand in a move to
identifier-1.

“Examples: initializing data items” on
page 24

INSPECT All identifiers and
literals. (identifier-2, the
TALLYING integer data
item, can have USAGE
NATIONAL.)

If any of these (other
than identifier-2, the
TALLYING identifier) have
USAGE NATIONAL, all
must be national.

“Tallying and replacing data items
(INSPECT)” on page 102

MERGE Merge keys, if you specify
NCOLLSEQ(BIN)

The COLLATING
SEQUENCE phrase does
not apply.

“Setting sort or merge criteria” on
page 158

MOVE Both the sender and
receiver, or only the
receiver

Implicit conversions are
performed for valid MOVE
operands.

“Assigning values to elementary data
items (MOVE)” on page 28

“Assigning values to group data items
(MOVE)” on page 29

MULTIPLY All identifiers can be
numeric items that
have USAGE NATIONAL.
identifier-3 (GIVING) can
be numeric-edited with
USAGE NATIONAL.

  “Using COMPUTE and other
arithmetic statements” on page 49

SEARCH ALL
(binary search)

Both the key data
item and its object of
comparison

The key data item and
its object of comparison
must be compatible
according to the rules of
comparison. If the object
of comparison is of class
national, the key must be
also.

“Doing a binary search (SEARCH
ALL)” on page 78

SORT Sort keys, if you specify
NCOLLSEQ(BIN)

The COLLATING
SEQUENCE phrase does
not apply.

“Setting sort or merge criteria” on
page 158

STRING All identifiers and literals.
(identifier-4, the POINTER
integer data item, can
have USAGE NATIONAL.)

If identifier-3, the
receiving data item, is
national, all identifiers
and literals (other than
identifier-4, the POINTER
identifier) must be
national.

“Joining data items (STRING)” on
page 93

182  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 16. COBOL statements and national data (continued)

COBOL
statement

Can be national Comment For more information

SUBTRACT All identifiers can be
numeric items that
have USAGE NATIONAL.
identifier-3 (GIVING) can
be numeric-edited with
USAGE NATIONAL.

  “Using COMPUTE and other
arithmetic statements” on page 49

UNSTRING All identifiers and
literals. (identifier-6 and
identifier-7, the COUNT
and TALLYING integer
data items, respectively,
can have USAGE
NATIONAL.)

If identifier-4, a receiving
data item, has USAGE
NATIONAL, the sending
data item and each
delimiter must have
USAGE NATIONAL, and
each literal must be
national.

“Splitting data items (UNSTRING)” on
page 95

XML
GENERATE

identifier-1 (the generated
XML document);
identifier-2 (the source
field or fields); identifier-4
or literal-4 (the
namespace identifier);
identifier-5 or literal-5 (the
namespace prefix)

  Chapter 20, “Producing XML output,”
on page 409

XML PARSE identifier-1 (the XML
document)

The XML-NTEXT special
register contains national
character document
fragments during parsing.

Chapter 19, “Processing XML input,”
on page 389

Related tasks   
“Defining numeric data” on page 35  
“Displaying numeric data” on page 37  
“Using national data (Unicode)
in COBOL” on page 179  
“Comparing national (UTF-16)
data” on page 192 

Related references   
“NCOLLSEQ” on page 273  
Classes and categories of data (COBOL for Linux on x86 Language Reference)

Intrinsic functions and national data
You can use arguments of class national with the intrinsic functions shown in the table below.

Table 17. Intrinsic functions and national character data

Intrinsic function Function type For more information

DISPLAY-OF Alphanumeric “Converting national to alphanumeric (DISPLAY-OF)” on
page 188

LENGTH Integer “Finding the length of data items” on page 109

Chapter 10. Processing data in an international environment  183



Table 17. Intrinsic functions and national character data (continued)

Intrinsic function Function type For more information

LOWER-CASE, UPPER-CASE National “Changing case (UPPER-CASE, LOWER-CASE)” on page
104

NUMVAL, NUMVAL-C, Numeric “Converting to numbers (NUMVAL, NUMVAL-C)” on page
105

MAX, MIN National “Finding the largest or smallest data item” on page 107

ORD-MAX, ORD-MIN Integer “Finding the largest or smallest data item” on page 107

REVERSE Alphanumeric or
national

“Transforming to reverse order (REVERSE)” on page 105

You can use national decimal arguments wherever zoned decimal arguments are allowed. You can use
national floating-point arguments wherever display floating-point arguments are allowed. (See the related
reference below about arguments for a complete list of intrinsic functions that can take integer or numeric
arguments.)

Related tasks   
“Defining numeric data” on page 35  
“Using national data (Unicode)
in COBOL” on page 179 

Related references   
Arguments (COBOL for Linux on x86 Language Reference)  
Classes and categories of data (COBOL for Linux on x86 Language Reference)
Intrinsic functions (COBOL for Linux on x86 Language Reference)  

Using national-character figurative constants
You can use the figurative constant ALL national-literal in a context that requires national characters. ALL
national-literal represents all or part of the string that is generated by successive concatenations of the
encoding units that make up the national literal.

You can use the figurative constants QUOTE, SPACE, HIGH-VALUE, LOW-VALUE, or ZERO in a context that
requires national characters, such as a MOVE statement, an implicit move, or a relation condition that has
national operands. In these contexts, the figurative constant represents a national-character (UTF-16)
value.

When you use the figurative constant HIGH-VALUE in a context that requires national characters, its
value is NX'FFFF'. When you use LOW-VALUE in a context that requires national characters, its value is
NX'0000'. You can use HIGH-VALUE or LOW-VALUE in a context that requires national characters only if
the NCOLLSEQ(BIN) compiler option is in effect.

Restrictions: You must not use HIGH-VALUE or the value assigned from HIGH-VALUE in a way that
results in conversion of the value from one data representation to another (for example, between USAGE
DISPLAY and USAGE NATIONAL, or between ASCII and EBCDIC when the CHAR(EBCDIC) compiler
option is in effect). X'FF' (the value of HIGH-VALUE in an alphanumeric context when the EBCDIC
collating sequence is being used) does not represent a valid EBCDIC or ASCII character, and NX'FFFF'
does not represent a valid national character. Conversion of such a value to another representation results
in a substitution character being used (not X'FF' or NX'FFFF'). Consider the following example:

01 natl-data  PIC NN  Usage National.
01 alph-data  PIC XX.
. . .
    MOVE HIGH-VALUE TO natl-data, alph-data
    IF natl-data = alph-data. . .

184  IBM COBOL for Linux on x86 1.1: Programming Guide



The IF statement above evaluates as false even though each of its operands was set to HIGH-VALUE.
Before an elementary alphanumeric operand is compared to a national operand, the alphanumeric
operand is treated as though it were moved to a temporary national data item, and the alphanumeric
characters are converted to the corresponding national characters. When X'FF' is converted to UTF-16,
however, the UTF-16 item gets a substitution character value and so does not compare equally to
NX'FFFF'.

Related tasks   
“Converting to or from national (Unicode) representation” on page 186  
“Comparing national (UTF-16)
data” on page 192 

Related references   
“CHAR” on page 255  
“NCOLLSEQ” on page 273  
Figurative constants (COBOL for Linux on x86 Language Reference)  
DISPLAY-OF (COBOL for Linux on x86 Language Reference)

Defining national numeric data items
Define data items with the USAGE NATIONAL clause to hold numeric data that is represented in national
characters (UTF-16). You can define national decimal items and national floating-point items.

To define a national decimal item, code a PICTURE clause that contains only the symbols 9, P, S, and V. If
the PICTURE clause contains S, the SIGN IS SEPARATE clause must be in effect for that item.

To define a national floating-point item, code a PICTURE clause that defines a floating-point item (for
example, +99999.9E-99).

You can use national decimal items in the same way that you use zoned decimal items. You can use
national floating-point items in the same way that you use display floating-point items.

Related tasks   
“Defining numeric data” on page 35  
“Displaying numeric data” on page 37 

Related references   
SIGN clause (COBOL for Linux on x86 Language Reference)

National groups
National groups, which are specified either explicitly or implicitly with the GROUP-USAGE NATIONAL
clause, contain only data items that have USAGE NATIONAL. In most cases, a national group item is
processed as though it were redefined as an elementary category national item described as PIC N(m),
where m is the number of national (UTF-16) characters in the group.

For some operations on national groups, however (just as for some operations on alphanumeric groups),
group semantics apply. Such operations (for example, MOVE CORRESPONDING and INITIALIZE)
recognize or process the elementary items within the national group.

Where possible, use national groups instead of alphanumeric groups that contain USAGE NATIONAL
items. National groups provide several advantages for the processing of national data compared to the
processing of national data within alphanumeric groups:

• When you move a national group to a longer data item that has USAGE NATIONAL, the receiving item is
padded with national characters. By contrast, if you move an alphanumeric group that contains national
characters to a longer alphanumeric group that contains national characters, alphanumeric spaces are
used for padding. As a result, mishandling of data items could occur.

Chapter 10. Processing data in an international environment  185



• When you move a national group to a shorter data item that has USAGE NATIONAL, the national
group is truncated at national-character boundaries. By contrast, if you move an alphanumeric group
that contains national characters to a shorter alphanumeric group that contains national characters,
truncation might occur between the 2 bytes of a national character.

• When you move a national group to a national-edited or numeric-edited item, the content of the group is
edited. By contrast, if you move an alphanumeric group to an edited item, no editing takes place.

• When you use a national group as an operand in a STRING, UNSTRING, or INSPECT statement:

– The group content is processed as national characters rather than as single-byte characters.
– TALLYING and POINTER operands operate at the logical level of national characters.
– The national group operand is supported with a mixture of other national operand types.

By contrast, if you use an alphanumeric group that contains national characters in these contexts, the
characters are processed byte by byte. As a result, invalid handling or corruption of data could occur.

USAGE NATIONAL groups: A group item can specify the USAGE NATIONAL clause at the group level
as a convenient shorthand for the USAGE of each of the elementary data items within the group. Such
a group is not a national group, however, but an alphanumeric group, and behaves in many operations,
such as moves and compares, like an elementary data item of USAGE DISPLAY (except that no editing or
conversion of data occurs).

Related tasks   
“Assigning values to group data items (MOVE)” on page 29  
“Joining data items (STRING)” on page 93  
“Splitting data items (UNSTRING)” on page 95  
“Tallying and replacing
data items (INSPECT)” on page 102  
“Using national groups” on page 189 

Related references   
GROUP-USAGE clause (COBOL for Linux on x86 Language Reference)

Converting to or from national (Unicode) representation
You can implicitly or explicitly convert data items to national (UTF-16) representation.

You can implicitly convert alphabetic, alphanumeric, DBCS, or integer data to national data by using the
MOVE statement. Implicit conversions also take place in other COBOL statements, such as IF statements
that compare an alphanumeric data item with a data item that has USAGE NATIONAL.

You can explicitly convert to and from national data items by using the intrinsic functions NATIONAL-OF
and DISPLAY-OF, respectively. By using these intrinsic functions, you can specify a code page for the
conversion that is different from the code page that is in effect for a data item.

Related tasks   
“Converting alphanumeric, DBCS, and integer to national (MOVE)” on page 186  
“Converting alphanumeric or DBCS to national (NATIONAL-OF)” on page 187  
“Converting national to
alphanumeric (DISPLAY-OF)” on page 188  
“Overriding the default
code page” on page 188  
“Comparing national (UTF-16)
data” on page 192  
Chapter 11, “Setting the locale,” on page 201

Converting alphanumeric, DBCS, and integer to national (MOVE)
You can use a MOVE statement to implicitly convert data to national representation.

186  IBM COBOL for Linux on x86 1.1: Programming Guide



You can move the following kinds of data to category national or national-edited data items, and thus
convert the data to national representation:

• Alphabetic
• Alphanumeric
• Alphanumeric-edited
• DBCS
• Integer of USAGE DISPLAY
• Numeric-edited of USAGE DISPLAY

You can likewise move the following kinds of data to numeric-edited data items that have USAGE
NATIONAL:

• Alphanumeric
• Display floating-point (floating-point of USAGE DISPLAY)
• Numeric-edited of USAGE DISPLAY
• Integer of USAGE DISPLAY

For complete rules about moves to national data, see the related reference about the MOVE statement.

For example, the MOVE statement below moves the alphanumeric literal "AB" to the national data item
UTF16-Data:

01  UTF16-Data  Pic N(2) Usage National.
    . . . 
    Move "AB" to UTF16-Data

After the MOVE statement above, UTF16-Data contains NX'41004200', the national representation of
the alphanumeric characters 'AB'.

If padding is required in a receiving data item that has USAGE NATIONAL, the default UTF-16 space
character (NX'2000') is used. If truncation is required, it occurs at the boundary of a national-character
position.

Related tasks   
“Assigning values to elementary
data items (MOVE)” on page 28  
“Assigning values to group data items (MOVE)” on page 29  
“Displaying numeric data” on page 37  
“Coding for use of DBCS
support” on page 196 

Related references   
MOVE statement (COBOL for Linux on x86 Language Reference)

Converting alphanumeric or DBCS to national (NATIONAL-OF)
Use the NATIONAL-OF intrinsic function to convert alphabetic, alphanumeric, or DBCS data to a national
data item. Specify the source code page as the second argument if the source is encoded in a different
code page than is in effect for the data item.

“Example: converting to and from national data” on page 188

Related tasks   
“Processing UTF-8 data using UTF-16 (national) data types” on page 195  
“Processing Chinese GB 18030
data” on page 195  
“Processing alphanumeric
data items that contain DBCS data” on page 198 

Chapter 10. Processing data in an international environment  187



Related references  
NATIONAL-OF (COBOL for Linux on x86 Language Reference)    

Converting national to alphanumeric (DISPLAY-OF)
Use the DISPLAY-OF intrinsic function to convert national data to an alphanumeric (USAGE DISPLAY)
character string that is represented in a code page that you specify as the second argument.

If you omit the second argument, the output code page is determined from the runtime locale.

If you specify an EBCDIC or ASCII code page that combines single-byte character set (SBCS) and
DBCS characters, the returned string might contain a mixture of SBCS and DBCS characters. The DBCS
substrings are delimited by shift-in and shift-out characters if the code page in effect for the function is an
EBCDIC code page.

“Example: converting to and from national data” on page 188

Related concepts   
“The active locale” on page 201

Related tasks   
“Processing UTF-8 data using UTF-16 (national) data types” on page 195  
“Processing Chinese GB 18030
data” on page 195 

Related references   
DISPLAY-OF (COBOL for Linux on x86 Language Reference)  

Overriding the default code page
In some cases, you might need to convert data to or from a code page that differs from the code page that
is in effect at run time. To do so, convert the item by using a conversion function in which you explicitly
specify the code page.

If you specify a code page as an argument to the DISPLAY-OF intrinsic function, and the code page
differs from the code page that is in effect at run time, do not use the function result in any operations
that involve implicit conversion (such as an assignment to, or comparison with, a national data item). Such
operations assume the runtime code page.

Example: converting to and from national data
The following example shows the NATIONAL-OF and DISPLAY-OF intrinsic functions and the MOVE
statement for converting to and from national (UTF-16) data items. It also demonstrates the need for
explicit conversions when you operate on strings that are encoded in multiple code pages.

 
* . . .
 01  Data-in-Unicode          pic N(100) usage national.
 01  Data-in-Greek            pic X(100).
 01  other-data-in-US-English pic X(12) value "PRICE in $ =".
* . . .
     Read Greek-file into Data-in-Greek
     Move function National-of(Data-in-Greek, "ISO8859-7")
         to Data-in-Unicode
* . . . process Data-in-Unicode here . . .
     Move function Display-of(Data-in-Unicode, "ISO8859-7")
         to Data-in-Greek
     Write Greek-record from Data-in-Greek

The example above works correctly because the input code page is specified. Data-in-Greek is
converted as data represented in ISO8859-7 (Ascii Greek). However, the following statement results

188  IBM COBOL for Linux on x86 1.1: Programming Guide



in an incorrect conversion unless all the characters in the item happen to be among those that have a
common representation in both the Greek and the English code pages:

Move Data-in-Greek to Data-in-Unicode

Assuming that the locale in effect is en_US.ISO8859-1, the MOVE statement above converts Data-in-
Greek to Unicode based on the code page ISO8859-1 to UTF-16LE conversion. This conversion does not
produce the expected results because Data-in-Greek is encoded in ISO8859-7.

If you set the locale to el_GR.ISO8859-7 (that is, your program handles ASCII data in Greek), you can
code the same example correctly as follows:

 
* . . .
 01  Data-in-Unicode pic N(100) usage national.
 01  Data-in-Greek   pic X(100).
* . . .
     Read Greek-file into Data-in-Greek
* . . . process Data-in-Greek here ...
* . . . or do the following (if need to process data in Unicode):
     Move Data-in-Greek to Data-in-Unicode
* . . . process Data-in-Unicode
     Move function Display-of(Data-in-Unicode) to Data-in-Greek
     Write Greek-record from Data-in-Greek

Related tasks   
Chapter 11, “Setting the locale,” on page 201

Using national groups
To define a group data item as a national group, code a GROUP-USAGE NATIONAL clause at the
group level for the item. The group can contain only data items that explicitly or implicitly have USAGE
NATIONAL.

The following data description entry specifies that a level-01 group and its subordinate groups are
national group items:

01  Nat-Group-1    GROUP-USAGE NATIONAL.
    02  Group-1.
        04  Month    PIC 99.
        04  DayOf    PIC 99.
        04  Year     PIC 9999.
    02  Group-2    GROUP-USAGE NATIONAL.
        04  Amount   PIC 9(4).99  USAGE NATIONAL.

In the example above, Nat-Group-1 is a national group, and its subordinate groups Group-1 and
Group-2 are also national groups. A GROUP-USAGE NATIONAL clause is implied for Group-1, and
USAGE NATIONAL is implied for the subordinate items in Group-1. Month, DayOf, and Year are national
decimal items, and Amount is a numeric-edited item that has USAGE NATIONAL.

You can subordinate national groups within alphanumeric groups as in the following example:

01  Alpha-Group-1.
    02  Group-1.
        04  Month   PIC 99.
        04  DayOf   PIC 99.
        04  Year    PIC 9999.
    02  Group-2   GROUP-USAGE NATIONAL.
        04  Amount  PIC 9(4).99.

In the example above, Alpha-Group-1 and Group-1 are alphanumeric groups; USAGE DISPLAY is
implied for the subordinate items in Group-1. (If Alpha-Group-1 specified USAGE NATIONAL at the
group level, USAGE NATIONAL would be implied for each of the subordinate items in Group-1. However,
Alpha-Group-1 and Group-1 would be alphanumeric groups, not national groups, and would behave

Chapter 10. Processing data in an international environment  189



like alphanumeric groups during operations such as moves and compares.) Group-2 is a national group,
and USAGE NATIONAL is implied for the numeric-edited item Amount.

You cannot subordinate alphanumeric groups within national groups. All elementary items within a
national group must be explicitly or implicitly described as USAGE NATIONAL, and all group items within
a national group must be explicitly or implicitly described as GROUP-USAGE NATIONAL.

Related concepts   
“National groups” on page 185 

Related tasks   
“Using national groups
as elementary items” on page 190  
“Using national groups
as group items” on page 190 

Related references   
GROUP-USAGE clause (COBOL for Linux on x86 Language Reference)

Using national groups as elementary items
In most cases, you can use a national group as though it were an elementary data item.

In the following example, a national group item, Group-1, is moved to a national-edited item, Edited-
date. Because Group-1 is treated as an elementary data item during the move, editing takes place in the
receiving data item. The value in Edited-date after the move is 06/23/2010 in national characters.

01  Edited-date  PIC NN/NN/NNNN  USAGE NATIONAL.
01  Group-1    GROUP-USAGE NATIONAL.
    02 Month     PIC 99   VALUE 06.
    02 DayOf     PIC 99   VALUE 23.
    02 Year      PIC 9999 VALUE 2010.
    . . .
    MOVE Group-1 to Edited-date.

If Group-1 were instead an alphanumeric group in which each of its subordinate items had USAGE
NATIONAL (specified either explicitly with a USAGE NATIONAL clause on each elementary item, or
implicitly with a USAGE NATIONAL clause at the group level), a group move, rather than an elementary
move, would occur. Neither editing nor conversion would take place during the move. The value in the first
eight character positions of Edited-date after the move would be 06232010 in national characters, and
the value in the remaining two character positions would be 4 bytes of alphanumeric spaces.

Related tasks   
“Assigning values to group data items (MOVE)” on page 29  
“Comparing national data
and alphanumeric-group operands” on page 194  
“Using national groups
as group items” on page 190 

Related references   
MOVE statement (COBOL for Linux on x86 Language Reference)

Using national groups as group items
In some cases when you use a national group, it is handled with group semantics; that is, the elementary
items in the group are recognized or processed.

In the following example, an INITIALIZE statement that acts upon national group item Group-OneN
causes the value 15 in national characters to be moved to only the numeric items in the group:

190  IBM COBOL for Linux on x86 1.1: Programming Guide



01  Group-OneN    Group-Usage National.
    05  Trans-codeN     Pic N   Value "A".
    05  Part-numberN    Pic NN  Value "XX".
    05  Trans-quanN     Pic 99  Value 10.
    . . .
    Initialize Group-OneN Replacing Numeric Data By 15

Because only Trans-quanN in Group-OneN above is numeric, only Trans-quanN receives the value 15.
The other subordinate items are unchanged.

The table below summarizes the cases where national groups are processed with group semantics.

Table 18. National group items that are processed with group semantics

Language feature Uses of national group items Comment

CORRESPONDING phrase
of the ADD, SUBTRACT,
or MOVE statement

Specify a national group item for
processing as a group in accordance
with the rules of the CORRESPONDING
phrase.

Elementary items within the
national group are processed like
elementary items that have USAGE
NATIONAL within an alphanumeric
group.

INITIALIZE statement Specify a national group for processing
as a group in accordance with the rules
of the INITIALIZE statement.

Elementary items within the
national group are initialized like
elementary items that have USAGE
NATIONAL within an alphanumeric
group.

Name qualification Use the name of a national group item
to qualify the names of elementary data
items and of subordinate group items in
the national group.

Follow the same rules
for qualification as for an
alphanumeric group.

THROUGH phrase of the
RENAMES clause

To specify a national group item in the
THROUGH phrase, use the same rules as
for an alphanumeric group item.

The result is an alphanumeric
group item.

FROM phrase of the XML
GENERATE statement

Specify a national group item in the
FROM phrase for processing as a group
in accordance with the rules of the XML
GENERATE statement.

Elementary items within the
national group are processed like
elementary items that have USAGE
NATIONAL within an alphanumeric
group.

Related tasks   
“Initializing a structure
(INITIALIZE)” on page 27  
“Initializing a table (INITIALIZE)” on page 65  
“Assigning values to elementary
data items (MOVE)” on page 28  
“Assigning values to group data items (MOVE)” on page 29  
“Finding the length of data
items” on page 109  
“Generating XML output” on page 409

Related references   
Qualification (COBOL for Linux on x86 Language Reference)  
RENAMES clause (COBOL for Linux on x86 Language Reference)

Chapter 10. Processing data in an international environment  191



Storage of character data
Use the table below to compare alphanumeric (DISPLAY), DBCS (DISPLAY-1), and Unicode (NATIONAL)
encoding and to plan storage usage.

Table 19. Encoding and size of alphanumeric, DBCS, and national data

Characteristic DISPLAY DISPLAY-1 NATIONAL

Character encoding unit 1 byte 2 bytes 2 bytes

Code page ASCII, EUC, UTF-8, or
EBCDIC3

ASCII DBCS or
EBCDIC DBCS3

UTF-16LE1

Encoding units per graphic
character

1 1 1 or 22

Bytes per graphic character 1 byte 2 bytes 2 or 4 bytes

1. National literals in your source program are converted to UTF-16 for use at run time.
2. Most characters are represented in UTF-16 using one encoding unit. In particular, the following

characters are represented using a single UTF-16 encoding unit per character:

• COBOL characters A-Z, a-z, 0-9, space, + - * / = $ , ; . " ( ) > < :'
• All characters that are converted from an EBCDIC, ASCII, or EUC code page

3. Depending on the locale, the CHAR(NATIVE) or CHAR(EBCDIC) option, and the EBCDIC_CODEPAGE
environment variable settings

Related concepts   
“Unicode and the encoding
of language characters” on page 178 

Related tasks   
“Specifying the code page for character data” on page 202  

Related references   
“CHAR” on page 255 

Comparing national (UTF-16) data
You can compare national (UTF-16) data, that is, national literals and data items that have USAGE
NATIONAL (whether of class national or class numeric), explicitly or implicitly with other kinds of data in
relation conditions.

You can code conditional expressions that use national data in the following statements:

• EVALUATE
• IF
• INSPECT
• PERFORM
• SEARCH
• STRING
• UNSTRING

For full details about comparing national data items to other data items, see the Related references.

Related tasks   
“Comparing two class national
operands” on page 193  
“Comparing class national

192  IBM COBOL for Linux on x86 1.1: Programming Guide



and class numeric operands” on page 193  
“Comparing national numeric
and other numeric operands” on page 194  
“Comparing national and other character-string operands” on page 194  
“Comparing national data
and alphanumeric-group operands” on page 194 

Related references   
Relation conditions (COBOL for Linux on x86 Language Reference)  
General relation conditions (COBOL for Linux on x86 Language Reference)  
National comparisons (COBOL for Linux on x86 Language Reference)  
Group comparisons (COBOL for Linux on x86 Language Reference) 

Comparing two class national operands
You can compare the character values of two operands of class national.

Either operand (or both) can be any of the following types of items:

• A national group
• An elementary category national or national-edited data item
• A numeric-edited data item that has USAGE NATIONAL

One of the operands can instead be a national literal or a national intrinsic function.

Use the NCOLLSEQ compiler option to determine which type of comparison to perform:

NCOLLSEQ(BINARY)
When you compare two class national operands of the same length, they are determined to be equal if
all pairs of the corresponding characters are equal. Otherwise, comparison of the binary values of the
first pair of unequal characters determines the operand with the larger binary value.

When you compare operands of unequal lengths, the shorter operand is treated as if it were padded
on the right with default UTF-16 space characters (NX'2000') to the length of the longer operand.

NCOLLSEQ(LOCALE)
When you use a locale-based comparison, the operands are compared by using the algorithm for
collation order that is associated with the locale in effect. Trailing spaces are truncated from the
operands, except that an operand that consists of all spaces is truncated to a single space.

When you compare operands of unequal lengths, the shorter operand is not extended with spaces
because such an extension could alter the expected results for the locale.

The PROGRAM COLLATING SEQUENCE clause does not affect the comparison of two class national
operands.

Related concepts   
“National groups” on page 185 

Related tasks   
“Using national groups” on page 189 

Related references   
“NCOLLSEQ” on page 273  
National comparisons (COBOL for Linux on x86 Language Reference)

Comparing class national and class numeric operands
You can compare national literals or class national data items to integer literals or numeric data items
that are defined as integer (that is, national decimal items or zoned decimal items). At most one of the
operands can be a literal.

Chapter 10. Processing data in an international environment  193



You can also compare national literals or class national data items to floating-point data items (that is,
display floating-point or national floating-point items).

Numeric operands are converted to national (UTF-16) representation if they are not already in national
representation. A comparison is made of the national character values of the operands.

Related references   
General relation conditions (COBOL for Linux on x86 Language Reference)

Comparing national numeric and other numeric operands
National numeric operands (national decimal and national floating-point operands) are data items of class
numeric that have USAGE NATIONAL.

You can compare the algebraic values of numeric operands regardless of their USAGE. Thus you can
compare a national decimal item or a national floating-point item with a binary item, an internal-decimal
item, a zoned decimal item, a display floating-point item, or any other numeric item.

Related tasks   
“Defining national numeric
data items” on page 185 

Related references   
General relation conditions (COBOL for Linux on x86 Language Reference)

Comparing national and other character-string operands
You can compare the character value of a national literal or class national data item with the character
value of any of the following other character-string operands: alphabetic, alphanumeric, alphanumeric-
edited, DBCS, or numeric-edited of USAGE DISPLAY.

These operands are treated as if they were moved to an elementary national data item. The characters
are converted to national (UTF-16) representation, and the comparison proceeds with two national
character operands.

Related tasks   
“Using national-character
figurative constants” on page 184  
“Comparing DBCS literals” on page 198

Related references   
National comparisons (COBOL for Linux on x86 Language Reference)

Comparing national data and alphanumeric-group operands
You can compare a national literal, a national group item, or any elementary data item that has USAGE
NATIONAL to an alphanumeric group.

Neither operand is converted. The national operand is treated as if it were moved to an alphanumeric
group item of the same size in bytes as the national operand, and the two groups are compared.
An alphanumeric comparison is done regardless of the representation of the subordinate items in the
alphanumeric group operand.

194  IBM COBOL for Linux on x86 1.1: Programming Guide



For example, Group-XN is an alphanumeric group that consists of two subordinate items that have USAGE
NATIONAL:

01  Group-XN.
    02 TransCode PIC NN   Value "AB"  Usage National.
    02 Quantity  PIC 999  Value 123   Usage National.
    . . .
    If N"AB123" = Group-XN  Then Display "EQUAL"
    Else Display "NOT EQUAL".

When the IF statement above is executed, the 10 bytes of the national literal N"AB123" are compared
byte by byte to the content of Group-XN. The items compare equally, and "EQUAL" is displayed.

Related references   
Group comparisons (COBOL for Linux on x86 Language Reference)

Processing UTF-8 data using UTF-16 (national) data types
To process UTF-8 data, first convert the UTF-8 data to UTF-16 in a national data item. After processing
the national data, convert it back to UTF-8 for output. For the conversions, use the intrinsic functions
NATIONAL-OF and DISPLAY-OF, respectively. Use code page 1208 for UTF-8 data.

As an alternative to the recommended method of processing UTF-8 data using

USAGE UTF-8

data items, you can also process UTF-8 data by storing it in alphanumeric data items and then converting
it to UTF-16 in a national data item.

Take the following steps to convert ASCII or EBCDIC data to UTF-8 (unless the code page of the locale in
effect is UTF-8, in which case the native alphanumeric data is already encoded in UTF-8):

1. Use the function NATIONAL-OF to convert the ASCII or EBCDIC string to a national (UTF-16) string.
2. Use the function DISPLAY-OF to convert the national string to UTF-8.

The following example converts Greek EBCDIC data to UTF-8:

Usage note: Use care if you use reference modification to refer to data encoded in UTF-8. UTF-8
characters are encoded with a varying number of bytes per character. Avoid operations that might split a
multibyte character.

Related tasks   
“Referring to substrings
of data items” on page 99   
“Converting to or from national (Unicode) representation” on page 186  
“Parsing XML documents
encoded in UTF-8” on page 399 

Processing Chinese GB 18030 data
GB 18030 is a national-character standard specified by the government of the People's Republic of China.

COBOL for Linux supports GB 18030. If the code page specified for the locale in effect is GB18030 (a
code page that supports GB 18030), USAGE DISPLAY data items that contain GB 18030 characters
encoded in GB18030 can be processed in a program. GB 18030 characters take 1 to 4 bytes each.
Therefore the program logic must be sensitive to the multibyte nature of the data.

Chapter 10. Processing data in an international environment  195



You can process GB 18030 characters in these ways:

• Use national data items to define and process GB 18030 characters that are represented in UTF-16,
CCSID 01200.

• Process data in any code page (including GB18030, which has CCSID 1392) by converting the data
to UTF-16, processing the UTF-16 data, and then converting the data back to the original code-page
representation.

When you need to process Chinese GB 18030 data that requires conversion, first convert the input data
to UTF-16 in a national data item. After you process the national data item, convert it back to Chinese
GB 18030 for output. For the conversions, use the intrinsic functions NATIONAL-OF and DISPLAY-OF,
respectively, and specify GB18030 or 1392 as the second argument of each function.

The following example illustrates these conversions:

Related tasks   
“Converting to or from national (Unicode) representation” on page 186  
“Coding for use of DBCS
support” on page 196 

Related references   
“Storage of character
data” on page 192 

Coding for use of DBCS support
IBM COBOL for Linux on x86 supports using applications in any of many national languages, including
languages that use double-byte character sets (DBCS).

The following list summarizes the support for DBCS:

• DBCS characters in user-defined words (multibyte names)
• DBCS characters in comments
• DBCS data items (defined with PICTURE N, G, or G and B)
• DBCS literals
• Collating sequence
• SOSI compiler option
• DBCS_CODEPAGE environment variable

Related tasks   
“Defining DBCS
data” on page 197  
“Using DBCS literals” on page 197  
“Testing for valid DBCS
characters” on page 198  
“Processing alphanumeric
data items that contain DBCS data” on page 198  
Chapter 11, “Setting the locale,” on page 201  
“Controlling the collating
sequence with a locale” on page 207

196  IBM COBOL for Linux on x86 1.1: Programming Guide



Related references   
“SOSI” on page 278

Defining DBCS data
Use the PICTURE and USAGE clauses to define DBCS data items. DBCS data items can use PICTURE
symbols G, G and B, or N. Each DBCS character position is 2 bytes in length.

You can specify a DBCS data item by using the USAGE DISPLAY-1 clause. When you use PICTURE
symbol G, you must specify USAGE DISPLAY-1. When you use PICTURE symbol N but omit the USAGE
clause, USAGE DISPLAY-1 or USAGE NATIONAL is implied depending on the setting of the NSYMBOL
compiler option.

If you use a VALUE clause with the USAGE clause in the definition of a DBCS item, you must specify a
DBCS literal or the figurative constant SPACE or SPACES.

If a data item has USAGE DISPLAY-1 (either explicitly or implicitly), the selected locale must indicate
a code page that includes DBCS characters. If the code page of the locale does not include DBCS
characters, such data items are flagged as errors.

For the purpose of handling reference modifications, each character in a DBCS data item is considered to
occupy the number of bytes that corresponds to the code-page width (that is, 2).

Related tasks   
Chapter 11, “Setting the locale,” on page 201

Related references   
“Locales and code pages that are supported” on page 204  
“NSYMBOL” on page 273

Using DBCS literals
You can use the prefix N or G to represent a DBCS literal.

That is, you can specify a DBCS literal in either of these ways:

• N'dbcs characters' (provided that the compiler option NSYMBOL(DBCS) is in effect)
• G'dbcs characters'

You can use quotation marks (") or apostrophes (') as the delimiters of a DBCS literal irrespective of the
setting of the APOST or QUOTE compiler option. You must code the same opening and closing delimiter for
a DBCS literal.

If the SOSI compiler option is in effect, the shift-out (SO) control character X'1E' must immediately
follow the opening delimiter, and the shift-in (SI) control character X'1F' must immediately precede the
closing delimiter.

In addition to DBCS literals, you can use alphanumeric literals to specify any character in one of the
supported code pages. However, if the SOSI compiler option is in effect, any string of DBCS characters
that is within an alphanumeric literal must be delimited by the SO and SI characters.

You cannot continue an alphanumeric literal that contains multibyte characters. The length of a DBCS
literal is likewise limited by the available space in Area B on a single source line. The maximum length of a
DBCS literal is thus 28 double-byte characters.

An alphanumeric literal that contains multibyte characters is processed byte by byte, that is, with
semantics appropriate for single-byte characters, except when it is converted explicitly or implicitly to
national data representation, as for example in an assignment to or comparison with a national data item.

Related tasks   
“Comparing DBCS literals” on page 198  
“Using figurative constants” on page 22

Chapter 10. Processing data in an international environment  197



Related references   
“NSYMBOL” on page 273   
“SOSI” on page 278  
DBCS literals (COBOL for Linux on x86 Language Reference)

Comparing DBCS literals
Comparisons of DBCS literals are based on the compile-time locale. Therefore, do not use DBCS literals
within a statement that expresses an implied relational condition between two DBCS literals (such as
VALUE G'literal-1' THRU G'literal-2') unless the intended runtime locale is the same as the compile-
time locale.

Related tasks   
“Comparing national (UTF-16)
data” on page 192  
Chapter 11, “Setting the locale,” on page 201 

Related references   
“COLLSEQ” on page 258  
DBCS literals (COBOL for Linux on x86 Language Reference)  
DBCS comparisons (COBOL for Linux on x86 Language Reference)

Testing for valid DBCS characters
The Kanji class test tests for valid Japanese graphic characters. This testing includes Katakana, Hiragana,
Roman, and Kanji character sets.

Kanji and DBCS class tests are defined to be consistent with their IBM Z definitions. Both class tests are
performed internally by converting the double-byte characters to the double-byte characters defined for
z/OS. The converted double-byte characters are tested for DBCS and Japanese graphic characters.

The Kanji class test is done by checking the converted characters for the range X'41' through X'7E' in
the first byte and X'41' through X'FE' in the second byte, plus the space character X'4040'.

The DBCS class test tests for valid graphic characters for the code page.

The DBCS class test is done by checking the converted characters for the range X'41' through X'FE' in
both the first and second byte of each character, plus the space character X'4040'.

Related tasks   
“Coding conditional expressions” on page 85 

Related references   
Class condition (COBOL for Linux on x86 Language Reference)

Processing alphanumeric data items that contain DBCS data
If you use byte-oriented operations (for example, STRING, UNSTRING, or reference modification) on an
alphanumeric data item that contains DBCS characters, results are unpredictable. You should instead
convert the item to a national data item before you process it.

That is, do these steps:

1. Convert the item to UTF-16 in a national data item by using a MOVE statement or the NATIONAL-OF
intrinsic function.

2. Process the national data item as needed.
3. Convert the result back to an alphanumeric data item by using the DISPLAY-OF intrinsic function.

Related tasks   
“Joining data items (STRING)” on page 93  
“Splitting data items (UNSTRING)” on page 95  

198  IBM COBOL for Linux on x86 1.1: Programming Guide



“Referring to substrings
of data items” on page 99  
“Converting to or from national (Unicode) representation” on page 186 

Chapter 10. Processing data in an international environment  199



200  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 11. Setting the locale
You can write applications to reflect the cultural conventions of the locale that is in effect when
the applications are run. Cultural conventions include sort order, character classification, and national
language; and formats of dates and times, numbers, monetary units, postal addresses, and telephone
numbers.

With COBOL for Linux, you can select the appropriate code pages and collating sequences, and you
can use language elements and compiler options to handle Unicode, single-byte character sets, and
double-byte character sets (DBCS).

Related concepts   
“The active locale” on page 201 

Related tasks   
“Specifying the code page for character data” on page 202  
“Using environment variables to specify a locale” on page 203  
“Controlling the collating
sequence with a locale” on page 207  
“Accessing the active locale and code-page values” on page 210 

The active locale
A locale is a collection of data that encodes information about a cultural environment. The active locale
is the locale that is in effect when you compile or run your program. You can establish a cultural
environment for an application by specifying the active locale.

Only one locale can be active at a time.

The active locale affects the behavior of these culturally sensitive interfaces for the entire program:

• Code pages used for character data
• Messages
• Collating sequence
• Date and time formats
• Character classification and case conversion

The active locale does not affect the following items, for which 85 COBOL Standard defines specific
language and behavior:

• Decimal point and grouping separators
• Currency sign

The active locale determines the code page for compiling and running programs:

• The code page that is used for compilation is based on the locale setting at compile time.
• The code page that is used for running an application is based on the locale setting at run time.

The evaluation of literal values in the source program is handled with the locale that is active at compile
time. For example, the conversion of national literals from the source representation to UTF-16 for
running the program uses the compile-time locale.

COBOL for Linux determines the setting of the active locale from a combination of the applicable
environment variables and system settings. Environment variables are used first. If an applicable locale
category is not defined by environment variables, COBOL uses defaults and system settings.

Related concepts   
“Determination of the
locale from system settings” on page 204 

© Copyright IBM Corp. 2021, 2023 201



Related tasks   
“Specifying the code page for character data” on page 202  
“Using environment variables to specify a locale” on page 203  
“Controlling the collating
sequence with a locale” on page 207 

Related references   
“Types of messages for which translations are available” on page 204 

Specifying the code page for character data
In a source program, you can use the characters that are represented in a supported code page in
COBOL names, literals, and comments. At run time, you can use the characters that are represented in
a supported code page in data items described with USAGE DISPLAY, USAGE DISPLAY-1, or USAGE
NATIONAL.

The code page that is in effect for a particular data item depends on the following aspects:

• Which USAGE clause you used
• Whether you used the NATIVE phrase with the USAGE clause
• Whether you used the CHAR(NATIVE) or CHAR(EBCDIC) compiler option
• The value of the EBCDIC_CODEPAGE environment variable
• The value of the DBCS_CODEPAGE environment variable
• Which locale is active

For USAGE NATIONAL data items, the code page defaults to UTF-16 in little-endian format.

For USAGE DISPLAY data items, COBOL for Linux chooses between ASCII, UTF-8, EUC, and EBCDIC code
pages as follows:

• Data items that are described with the NATIVE phrase in the USAGE clause or that are compiled with
the CHAR(NATIVE) option in effect are encoded in an ASCII, EUC, or UTF-8 code page.

• Data items that are described without the NATIVE phrase in the USAGE clause and that are compiled
with the CHAR(EBCDIC) option in effect are encoded in an EBCDIC code page.

For USAGE DISPLAY-1 data items, COBOL for Linux chooses between ASCII and EBCDIC code pages as
follows:

• Data items that are described with the NATIVE phrase in the USAGE clause or that are compiled with
the CHAR(NATIVE) option in effect are encoded in an ASCII DBCS code page.

• Data items that are described without the NATIVE phrase in the USAGE clause and that are compiled
with the CHAR(EBCDIC) option in effect are encoded in an EBCDIC DBCS code page.

COBOL determines the appropriate code page as follows:

ASCII, UTF-8, EUC
From the active locale at run time

ASCII DBCS
From the DBCS_CODEPAGE environment variable, if set, otherwise the default DBCS code page from
the current local setting

EBCDIC
From the EBCDIC_CODEPAGE environment variable, if set, otherwise the default EBCDIC code page
from the current locale setting

Related tasks   
“Using environment variables to specify a locale” on page 203 

Related references   
“Locales and code pages that are supported” on page 204  
“Runtime environment

202  IBM COBOL for Linux on x86 1.1: Programming Guide



variables” on page 220  
“CHAR” on page 255  
COBOL words with single-byte characters 
   (COBOL for Linux on x86 Language Reference)  
User-defined words with multibyte characters 
   (COBOL for Linux on x86 Language Reference) 

Using environment variables to specify a locale
Use any of several environment variables to provide the locale information for a COBOL program.

To specify a code page to use for all of the locale categories (messages, collating sequence, date and time
formats, character classification, and case conversion), use LC_ALL.

To set the value for a specific locale category, use the appropriate environment variable:

• Use LC_MESSAGES to specify the format for affirmative and negative responses. You can use it also
to affect whether messages (for example, error messages and listing headers) are in US English or
Japanese. For any locale other than Japanese, US English is used.

• Use LC_COLLATE to specify the collating sequence in effect for greater-than or less-than comparisons,
such as in relation conditions or in the SORT and MERGE statements.

• Use LC_TIME to specify the format of the date and time shown in compiler listings. All other date and
time values are controlled through COBOL language syntax.

• Use LC_CTYPE to specify character classification, case conversion, and other character attributes.

Any locale category that has not been specified by one of the locale environment variables above is set
from the value of the LANG environment variable.

To set the locale environment variables, use a command of the following format (.codepageID is
optional):

export LC_xxxx=ll_CC.codepageID

Here LC_xxxx is the name of the locale category, ll is a lowercase two-letter language code, CC is an
uppercase two-letter ISO country code, and codepageID is the code page to be used for native DISPLAY
and DISPLAY-1 data. COBOL for Linux uses the POSIX-defined locale conventions.

For example, to set the locale to Canadian French encoded in ISO 8859-1, issue this command in the
command window from which you compile and run a COBOL application:

export LC_ALL=fr_CA.iso88591

You must code a valid value for the locale name (ll_CC), and the code page (codepageID) that you specify
must be valid for the locale name. Valid values are shown in the table of supported locales and code
pages referenced below.

Related concepts   
“Determination of the
locale from system settings” on page 204 

Related tasks   
“Specifying the code page for character data” on page 202 

Related references  
“Locales and code pages that are supported” on page 204  
“Compiler and runtime
environment variables” on page 216   

Chapter 11. Setting the locale  203



Determination of the locale from system settings
If COBOL for Linux cannot determine the value of an applicable locale category from the environment
variables, it uses default settings.

When the language and country codes are determined from environment variables, but the code page is
not, COBOL for Linux uses the default system code page for the language and country-code combination.

Multiple code pages might apply to the language and country-code combination. If you do not want the
Linux system to select a default code page, you must specify the code page explicitly.

UTF-8: UTF-8 encoding is supported for any language and country-code combination.

Related tasks   
“Specifying the code page for character data” on page 202  
“Using environment variables to specify a locale” on page 203  
“Accessing the active locale and code-page values” on page 210  
“Setting environment variables” on page 215 

Related references  
“Locales and code pages that are supported” on page 204  
“Compiler and runtime
environment variables” on page 216  

Types of messages for which translations are available
The following messages are enabled for national language support: compiler, runtime, and debugger user
interface messages, and listing headers (including locale-based date and time formats).

Appropriate text and formats, as specified in the active locale, are used for these messages and the listing
headers.

See the related reference below for information about the LANG and NLSPATH environment variables,
which affect the language and locale of messages.

Related concepts   
“The active locale” on page 201 

Related tasks   
“Using environment variables to specify a locale” on page 203 

Related references  
“Compiler and runtime
environment variables” on page 216  

Locales and code pages that are supported
The following table shows the locales that could be available on your system, and the code pages that
are supported for each locale. COBOL for Linux supports the locales that are available on the system at
compile time and at run time.

To query the available locales on the system, enter the following:

locale -a

204  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 20. Supported locales and code pages

Locale
name1

Language2 Country or
region3

ASCII-based code pages4 EBCDIC code pages5 Language
group

any     utf-8 EBCDIC code pages
that are applicable
to the locale are
based on the language
and COUNTRY portions
of the locale name
regardless of the code-
page value of the locale.

 

ar_AE Arabic United Arab
Emirates

iso88596 IBM-16804, IBM-420 Arabic

be_BY Byelorussian Belarus iso88595 IBM-1025, IBM-1154 Latin 5

bg_BG Bulgarian Bulgaria iso88595 IBM-1025, IBM-1154 Latin 5

ca_ES Catalan Spain iso88591 IBM-285, IBM-1145 Latin 1

cs_CZ Czech Czech
Republic

iso88592 IBM-870, IBM-1153 Latin 2

da_DK Danish Denmark iso88591 IBM-277, IBM-1142 Latin 1

de_CH German Switzerland iso88591 IBM-500, IBM-1148 Latin 1

de_DE German Germany iso88591 IBM-273, IBM-1141 Latin 1

el_GR Greek Greece iso88597 IBM-4971, IBM-875 Greek

en_AU English Australia iso88591 IBM-037, IBM-1140 Latin 1

en_GB English United
Kingdom

iso88591 IBM-037, IBM-1140 Latin 1

en_US English United States iso88591 IBM-037, IBM-1140 Latin 1

en_ZA English South Africa iso88591 IBM-037, IBM-1140 Latin 1

es_ES Spanish Spain iso88591 IBM-284, IBM-1145 Latin 1

fi_FI Finnish Finland iso88591 IBM-278, IBM-1143 Latin 1

fr_BE French Belgium iso88591 IBM-297, IBM-1148 Latin 1

fr_CA French Canada iso88591 IBM-037, IBM-1140 Latin 1

fr_CH French Switzerland iso88591 IBM-500, IBM-1148 Latin 1

fr_FR French France iso88591 IBM-297, IBM-1148 Latin 1

hr_HR Croatian Croatia iso88592 IBM-870, IBM-1153 Latin 2

hu_HU Hungarian Hungary iso88592 IBM-870, IBM-1153 Latin 2

is_IS Icelandic Iceland iso88591 IBM-871, IBM-1149 Latin 1

it_CH Italian Switzerland iso88591 IBM-500, IBM-1148 Latin 1

it_IT Italian Italy iso88591 IBM-280, IBM-1144 Latin 1

iw_IL Hebrew Israel iso88598 IBM-12712, IBM-424 Hebrew

ja_JP Japanese Japan IBMeucjp IBM-930, IBM-939,
IBM-1390, IBM-1399

Ideographic
languages

Chapter 11. Setting the locale  205



Table 20. Supported locales and code pages (continued)

Locale
name1

Language2 Country or
region3

ASCII-based code pages4 EBCDIC code pages5 Language
group

ko_KR Korean Korea,
Republic of

euckr IBM-933, IBM-1364 Ideographic
languages

lt_LT Lithuanian Lithuania IBMiso885913 n/a Lithuanian

lv_LV Latvian Latvia IBMiso885913 n/a Latvian

mk_MK Macedonian Macedonia iso88595 IBM-1025, IBM-1154 Latin 5

nl_BE Dutch Belgium iso8859-1 IBM-500, IBM-1148 Latin 1

nl_NL Dutch Netherlands iso88591 IBM-037, IBM-1140 Latin 1

no_NO Norwegian Norway iso88591 IBM-277, IBM-1142 Latin 1

pl_PL Polish Poland iso88592 IBM-870, IBM-1153 Latin 2

pt_BR Portuguese Brazil iso88591 IBM-037, IBM-1140 Latin 1

pt_PT Portuguese Portugal iso88591 IBM-037, IBM-1140 Latin 1

ro_RO Romanian Romania iso88592 IBM-870, IBM-1153 Latin 2

ru_RU Russian Russian
federation

iso88595 IBM-1025, IBM-1154 Latin 5

sk_SK Slovak Slovakia iso88592 IBM-870, IBM-1153 Latin 2

sl_SI Slovenian Slovenia iso8859-2 IBM-870, IBM-1153 Latin 2

sq_AL Albanian Albania iso88591 IBM-500, IBM-1148 Latin 1

sv_SE Swedish Sweden iso88591 IBM-278, IBM-1143 Latin 1

th_TH Thai Thailand tis620 IBM-9030 Thai

tr_TR Turkish Turkey iso88599 IBM-1026, IBM-1155 Turkish

uk_UA Ukranian Ukraine iso88595 IBM-1123, IBM-1154 Latin 5

zh_CN Chinese China gb18030 IBM-1388 Ideographic
languages

zh_TW Chinese
(traditional)

Taiwan IBMeuctw IBM-1371, IBM-937 Ideographic
languages

206  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 20. Supported locales and code pages (continued)

Locale
name1

Language2 Country or
region3

ASCII-based code pages4 EBCDIC code pages5 Language
group

1. Shows the valid combinations of ISO language code and ISO country code (language_COUNTRY) that are
supported. The case of each character in the locale name shown in the table is significant and might not
reflect the casing of a locale name with a specific code page selected (or implied) for the locale. See the
results of the "locale -a" command for proper casing of each character for the locale name selected.

2. Shows the associated language.
3. Shows the associated country or region.
4. Shows the code pages that are valid as the code-page ID for the locale that has the corresponding

language_COUNTRY value. These table entries are not definitive. For the current list of valid locales, consult
your system documentation for the specific version and configuration of Linux that you are running. The
locale that you select must be valid, that is, installed both where you develop and where you run the
program.

5. Shows the code pages that are valid as the code-page ID for the locale that has the corresponding
language_COUNTRY value. These code pages are valid as content for the EBCDIC_CODEPAGE environment
variable. If the EBCDIC_CODEPAGE environment variable is not set, the rightmost code-page entry shown in
this column is selected as the EBCDIC code page for the corresponding locale.

Related tasks   
“Specifying the code page for character data” on page 202  
“Using environment variables to specify a locale” on page 203 

Controlling the collating sequence with a locale
Various operations such as comparisons, sorting, and merging use the collating sequence that is in effect
for the program and data items. How you control the collating sequence depends on the code page in
effect for the class of the data: alphabetic, alphanumeric, DBCS, or national.

A locale-based collating sequence for items that are class alphabetic, alphanumeric, or DBCS
applies only when the COLLSEQ(LOCALE) compiler option is in effect, not when COLLSEQ(BIN) or
COLLSEQ(EBCDIC) is in effect. Similarly, a locale-based collating sequence for class national items
applies only when the NCOLLSEQ(LOCALE) compiler option is in effect, not when NCOLLSEQ(BIN) is in
effect.

If the COLLSEQ(LOCALE) or NCOLLSEQ(LOCALE) compiler option is in effect, the compile-time locale is
used for language elements that have syntax or semantic rules that are affected by locale-based collation
order, such as:

• THRU phrase in a condition-name VALUE clause
• literal-3 THRU literal-4 phrase in the EVALUATE statement
• literal-1 THRU literal-2 phrase in the ALPHABET clause
• Ordinal positions of characters specified in the SYMBOLIC CHARACTERS clause
• THRU phrase in the CLASS clause

If the COLLSEQ(LOCALE) compiler option is in effect, the collating sequence for alphanumeric keys in
SORT and MERGE statements is always based on the runtime locale.

Related tasks   
“Specifying the collating sequence” on page 6  
“Setting sort or merge
criteria” on page 158 
“Specifying the code page for character data” on page 202  
“Using environment variables to specify a locale” on page 203  
“Controlling the alphanumeric collating sequence with a locale” on page 208  

Chapter 11. Setting the locale  207



“Controlling the DBCS collating sequence with a locale” on page 209  
“Controlling the national collating sequence with a locale” on page 209  
“Accessing the active locale and code-page values” on page 210  

Related references  
“Locales and code pages that are supported” on page 204  
“COLLSEQ” on page 258  
“NCOLLSEQ” on page 273 

Controlling the alphanumeric collating sequence with a locale
The collating sequence for single-byte alphanumeric characters for the program collating sequence is
based on either the locale at compile time or the locale at run time.

If you specify PROGRAM COLLATING SEQUENCE in the source program, the collating sequence is set at
compile time and is used regardless of the locale at run time. If instead you set the collating sequence by
using the COLLSEQ compiler option, the locale at run time takes precedence.

If the code page in effect is a single-byte ASCII code page, you can specify the following clauses in the
SPECIAL-NAMES paragraph:

• ALPHABET clause
• SYMBOLIC CHARACTERS clause
• CLASS clause

If you specify these clauses when the source code page in effect includes DBCS characters, the clauses
will be diagnosed and treated as comments. The rules of the COBOL user-defined alphabet-name and
symbolic characters assume a character-by-character collating sequence, not a collating sequence that
depends on a sequence of multiple characters.

If you specify the PROGRAM COLLATING SEQUENCE clause in the OBJECT-COMPUTER paragraph, the
collating sequence that is associated with the alphabet-name is used to determine the truth value of
alphanumeric comparisons. The PROGRAM COLLATING SEQUENCE clause also applies to sort and merge
keys of USAGE DISPLAY unless you specify the COLLATING SEQUENCE phrase in the SORT or MERGE
statement.

If you do not specify the COLLATING SEQUENCE phrase or the PROGRAM COLLATING SEQUENCE clause,
the collating sequence in effect is NATIVE by default, and it is based on the active locale setting. This
setting applies to SORT and MERGE statements and to the program collating sequence.

The collating sequence affects the processing of the following items:

• ALPHABET clause (for example, literal-1 THRU literal-2)
• SYMBOLIC CHARACTERS specifications
• VALUE range specifications for level-88 items, relation conditions, and SORT and MERGE statements

Related tasks   
“Specifying the collating sequence” on page 6  
“Controlling the collating
sequence with a locale” on page 207  
“Controlling the DBCS collating sequence with a locale” on page 209  
“Controlling the national collating sequence with a locale” on page 209  
“Setting sort or merge
criteria” on page 158 

Related references   
“COLLSEQ” on page 258  
Classes and categories of data (COBOL for Linux on x86 Language Reference)  
Alphanumeric comparisons (COBOL for Linux on x86 Language Reference)

208  IBM COBOL for Linux on x86 1.1: Programming Guide



Controlling the DBCS collating sequence with a locale
The locale-based collating sequence at run time always applies to DBCS data, except for comparisons of
literals.

You can use a data item or literal of class DBCS in a relation condition with any relational operator. The
other operand must be of class DBCS or class national, or be an alphanumeric group. No distinction is
made between DBCS items and edited DBCS items.

When you compare two DBCS operands, the collating sequence is determined by the active locale if the
COLLSEQ(LOCALE) compiler option is in effect. Otherwise, the collating sequence is determined by the
binary values of the DBCS characters. The PROGRAM COLLATING SEQUENCE clause has no effect on
comparisons that involve data items or literals of class DBCS.

When you compare a DBCS item to a national item, the DBCS operand is treated as if it were moved to an
elementary national item of the same length as the DBCS operand. The DBCS characters are converted to
national representation, and the comparison proceeds with two national character operands.

When you compare a DBCS item to an alphanumeric group, no conversion or editing is done. The
comparison proceeds as for two alphanumeric character operands. The comparison operates on bytes
of data without regard to data representation.

Related tasks   
“Specifying the collating sequence” on page 6  
“Using DBCS literals” on page 197  
“Controlling the collating
sequence with a locale” on page 207  
“Controlling the alphanumeric collating sequence with a locale” on page 208  
“Controlling the national collating sequence with a locale” on page 209 

Related references   
“COLLSEQ” on page 258  
Classes and categories of data (COBOL for Linux on x86 Language Reference)  
Alphanumeric comparisons (COBOL for Linux on x86 Language Reference)  
DBCS comparisons (COBOL for Linux on x86 Language Reference)  
Group comparisons (COBOL for Linux on x86 Language Reference)

Controlling the national collating sequence with a locale
You can use national literals or data items of USAGE NATIONAL in a relation condition with any relational
operator. The PROGRAM COLLATING SEQUENCE clause has no effect on comparisons that involve
national operands.

Use the NCOLLSEQ(LOCALE) compiler option to effect comparisons based on the algorithm for collation
order that is associated with the active locale at run time. If NCOLLSEQ(BINARY) is in effect, the collating
sequence is determined by the binary values of the national characters.

Keys used in a SORT or MERGE statement can be class national only if the NCOLLSEQ(BIN) option is in
effect.

Related tasks   
“Comparing national (UTF-16)
data” on page 192  
“Controlling the collating
sequence with a locale” on page 207  
“Controlling the DBCS collating sequence with a locale” on page 209  
“Setting sort or merge
criteria” on page 158 

Chapter 11. Setting the locale  209



Related references   
“NCOLLSEQ” on page 273  
Classes and categories of data (COBOL for Linux on x86 Language Reference)  
National comparisons (COBOL for Linux on x86 Language Reference)

Intrinsic functions that depend on collating sequence
The following intrinsic functions depend on the ordinal positions of characters.

For an ASCII code page, these intrinsic functions are supported based on the collating sequence in effect.
For an EUC code page or a code page that includes DBCS characters, the ordinal positions of single-byte
characters are assumed to correspond to the hexadecimal representations of the single-byte characters.
For example, the ordinal position for 'A' is 66 (X'41' + 1) and the ordinal position for '*' is 43 (X'2A' + 1).

Table 21. Intrinsic functions that depend on collating sequence

Intrinsic function Returns: Comments

CHAR Character that corresponds to the
ordinal-position argument

 

MAX Content of the argument that contains
the maximum value

The arguments can be alphabetic,
alphanumeric, national, or numeric.1

MIN Content of the argument that contains
the minimum value

The arguments can be alphabetic,
alphanumeric, national, or numeric.1

ORD Ordinal position of the character
argument

 

ORD-MAX Integer ordinal position in the argument
list of the argument that contains the
maximum value

The arguments can be alphabetic,
alphanumeric, national, or numeric.1

ORD-MIN Integer ordinal position in the argument
list of the argument that contains the
minimum value

The arguments can be alphabetic,
alphanumeric, national, or numeric.1

1. Code page and collating sequence are not applicable when the function has numeric arguments.

These intrinsic functions are not supported for the DBCS data type.

Related tasks   
“Specifying the collating sequence” on page 6  
“Comparing national (UTF-16)
data” on page 192  
“Controlling the collating
sequence with a locale” on page 207 

Accessing the active locale and code-page values
To verify the locale that is in effect at compile time, check the last few lines of the compiler listing.

For some applications, you might want to verify the locale and the EBCDIC code page that are active at
run time, and convert a code-page ID to the corresponding CCSID. You can use callable library routines to
perform these queries and conversions.

To access the locale and the EBCDIC code page that are active at run time, call the library function
_iwzGetLocaleCP as follows:

CALL "_iwzGetLocaleCP" USING output1, output2

210  IBM COBOL for Linux on x86 1.1: Programming Guide



The variable output1 is an alphanumeric item of 20 characters that represents the null-terminated locale
value in the following format:

• Two-character language code
• An underscore (_)
• Two-character country code
• A period (.)
• The code-page value for the locale

For example, en_US.IBM-1252 is the locale value of language code en, country code US, and code page
IBM-1252.

The variable output2 is an alphanumeric item of 10 characters that represents the null-terminated
EBCDIC code-page ID in effect, such as IBM-1140.

To convert a code-page ID to the corresponding CCSID, call the library function _iwzGetCCSID as follows:

CALL "_iwzGetCCSID" USING input, output RETURNING returncode

input is an alphanumeric item that represents a null-terminated code-page ID.

output is a signed 4-byte binary item, such as one defined as PIC S9(5) COMP-5. Either the CCSID that
corresponds to the input code-page ID string or the error code of -1 is returned.

returncode is a signed 4-byte binary data item, which is set as follows:

0
Successful.

1
The code-page ID is valid but does not have an associated CCSID; output is set to -1.

-1
The code-page ID is not a valid code page; output is set to -1.

To call these services, you must use the PGMNAME(MIXED) and NODYNAM compiler options.

“Example: get and convert a code-page ID” on page 211

Related tasks   
Chapter 11, “Setting the locale,” on page 201 

Related references   
“DYNAM” on page 264  
“PGMNAME” on page 275  
Chapter 14, “Compiler-directing
statements,” on page 293

Example: get and convert a code-page ID
The following example shows how you can use the callable services _iwzGetLocaleCP and _iwzGetCCSID
to retrieve the locale and EBCDIC code page that are in effect, respectively, and convert a code-page ID to
the corresponding CCSID.

cbl pgmname(lm)
       Identification Division.
       Program-ID.  "Samp1".
       Data Division.
       Working-Storage Section.
       01 locale-in-effect.
          05 ll-cc             pic x(5).
          05 filler-period     pic x.
          05 ASCII-CP          Pic x(14).
       01 EBCDIC-CP            pic x(10).

Chapter 11. Setting the locale  211



       01 CCSID                pic s9(5) comp-5.
       01 RC                   pic s9(5) comp-5.
       01 n                    pic 99.

       Procedure Division.
       Get-locale-and-codepages section.
       Get-locale.
           Display "Start Samp1."
           Call "_iwzGetLocaleCP"
             using locale-in-effect, EBCDIC-CP
           Move 0 to n
           Inspect locale-in-effect
             tallying n for characters before initial x'00'
           Display "locale in effect: " locale-in-effect (1 : n)
           Move 0 to n
          Inspect EBCDIC-CP
             tallying n for characters before initial x'00'
          Display "EBCDIC code page in effect: "
            EBCDIC-CP (1 : n).

      Get-CCSID-for-EBCDIC-CP.
          Call "_iwzGetCCSID" using EBCDIC-CP, CCSID returning RC
          Evaluate RC
            When 0
              Display "CCSID for " EBCDIC-CP (1 : n) " is " CCSID
            When 1
              Display EBCDIC-CP (1 : n)
                      " does not have a CCSID value."
            When other
              Display EBCDIC-CP (1 : n) " is not a valid code page."
          End-Evaluate.

      Done.
          Goback.

If you set the locale to ja_JP.IBM-943 (set LC_ALL=ja_JP.IBM-943), the output from the sample
program is:

Start Samp1.
locale in effect: ja_JP.IBM-943
EBCDIC code page in effect: IBM-1399
CCSID for IBM-1399 is 0000001399

Related tasks   
“Using environment variables to specify a locale” on page 203 

212  IBM COBOL for Linux on x86 1.1: Programming Guide



Part 3. Compiling, linking, running, and debugging
your program

© Copyright IBM Corp. 2021, 2023 213



214  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 12. Compiling, linking, and running programs
The following sections explain how to set environment variables, compile, link, run, and correct errors.

Related tasks   
“Setting environment variables” on page 215  
“Compiling programs” on page 224  
“Correcting errors in your
source program” on page 229  
“Linking programs” on page 234  
“Correcting errors in linking” on page 237  
“Running programs” on page 237  

Related references  
“cob2 options” on page 232    

Setting environment variables
You use environment variables to set values that programs need. Specify the value of an environment
variable by using the export command or the putenv() POSIX function. If you do not set an environment
variable, either a default value is applied or the variable is not defined.

An environment variable defines some aspect of a user environment or a program environment that can
vary. For example, you use the COBPATH environment variable to define the locations where the COBOL
run time can find a program when another program dynamically calls it. Environment variables are used
by both the compiler and runtime libraries.

When you installed IBM COBOL for Linux on x86, the installation process set environment variables to
access the COBOL for Linux compiler and runtime libraries. To compile and run a simple COBOL program,
the only environment variables that needs to be set is LANG, and it only needs to be set if you wish to use
messages other than the default en_US messages.

You can change the value of an environment variable in either of two places by using the export
command:

• At the prompt in a command shell (for example, in an XTERM window). This environment variable
definition applies to programs (processes or child processes) that you run from that shell or from any of
its descendants (that is, any shells called directly or indirectly from that shell). 

• In the .profile file in your home directory. If you define environment variables in the .profile file, the
values of these variables are defined automatically whenever you begin a Linux session, and the values
apply to all shell processes.

You can also set environment variables from within a COBOL program by using the putenv() POSIX
function, and access the environment variables by using the getenv() POSIX function.

Some environment variables (such as COBPATH and NLSPATH) define directories in which to search
for files. If multiple directory paths are listed, they are delimited by colons. Paths that are defined by
environment variables are evaluated in order, from the first path to the last in the export command.
If multiple files that have the same name are defined in the paths of an environment variable, the first
located copy of the file is used.

For example, the following export command sets the COBPATH environment variable (which defines the
locations where the COBOL run time can find dynamically accessed programs) to include two directories,
the first of which is searched first:

export COBPATH=/users/me/bin:/mytools/bin

© Copyright IBM Corp. 2021, 2023 215



“Example: setting and accessing environment variables” on page 223

Related tasks   
“Tailoring your compilation” on page 228 

Related references   
“Compiler and runtime
environment variables” on page 216  
“Compiler environment
variables” on page 218  
“Runtime environment
variables” on page 220 

Compiler and runtime environment variables
COBOL for Linux uses the following environment variables that are common to both the compiler and the
run time.

DB2DBDFT
Specifies the database to use for programs that contain embedded SQL statements or that use the
Db2 file system.

DBCS_CODEPAGE
Specifies a DBCS code page applicable to DBCS data, including DBCS literals and DBCS data items.
To set the DBCS code page, issue the following command, where codepage is the name of a DBCS
code page supported by the International Components for Unicode (ICU) conversion libraries, for
example, IBM-943 or IBM-EUCjp:

export DBCS_CODEPAGE=codepage

If DBCS_CODEPAGE is not set, the default DBCS code page associated with the current locale is used.
LANG

Specifies the locale (as described in the related task about using environment variables to specify a
locale). LANG also influences the value of the NLSPATH environment variable as described below.

For example, the following command sets the language locale name to U.S. English:

export LANG=en_US

LC_ALL
Specifies the locale. A locale setting that uses LC_ALL overrides any setting that uses LANG or any
other LC_xx environment variable (as described in the related task about using environment variables
to specify a locale).

LC_COLLATE
Specifies the collation behavior for the locale. This setting is overridden if LC_ALL is specified.

LC_CTYPE
Specifies the code page for the locale. This setting is overridden if LC_ALL is specified.

LC_MESSAGES
Specifies the language for messages for the locale. This setting is overridden if LC_ALL is specified.

LC_TIME
Determines the locale for date and time formatting information. This setting is overridden if LC_ALL is
specified.

LD_LIBRARY_PATH
Specifies the directory paths to be used for shared libraries and user-defined compiler exit programs
that the EXIT compiler option has identified.

216  IBM COBOL for Linux on x86 1.1: Programming Guide



NLSPATH
Specifies the full path name of message catalogs and help files and uses the form
directory_name/%L/%N, where %L is substituted by the value specified by the LANG environment
variable. %N is substituted by the message catalog name.

COBOL for Linux installs the compiler message catalog in /opt/ibm/cobol/1.1.0/usr/share/
locale/xx, and the runtime message catalog in /opt/ibm/cobol/rte/usr/share/locale/xx
in where xx is any language that COBOL for Linux supports. The default is en_US.

When you set NLSPATH, be sure to add to NLSPATH rather than replace it. Other programs might use
this environment variable. For example:

DIR=xxxx
NLSPATH=$DIR/%L/%N:$NLSPATH
export NLSPATH

xxxx is the directory where COBOL was installed. The directory xxxx must contain a directory xxxx/
en_US (in the case of a U.S. English language setup) that contains the COBOL message catalog.

Messages in the following languages are included with the product:

en_US
English

ja_JP
Japanese

You can specify the languages for the messages and for the locale setting differently. For example,
you can set the environment variable LANG to en_US and set the environment variable LC_ALL to
ja_JP.eucjp. In this example, any COBOL compiler or runtime messages will be in English, whereas
native ASCII (DISPLAY or DISPLAY-1) data in the program is treated as encoded in code page
ja_JP.eucjp (Japanese EUC code page).

The compiler uses the combination of the NLSPATH and the LANG environment variable values to
access the message catalog. If NLSPATH is validly set but LANG is not set to one of the locale values
shown above, a warning message is generated and the compiler defaults to the en_US message
catalog. If the NLSPATH value is invalid, a terminating error message is generated.

The runtime also library also uses NLSPATH to access the message catalog. If NLSPATH is not
set correctly, runtime messages appear in an abbreviated form. The compiler and runtime both
automatically manage NLSPATH, so you do not need to handle NLSPATH yourself.

TMPDIR
Specifies the location of temporary work files used by the compiler and runtime. If this value is not
set, it defaults to the current directory.

For example:

export TMPDIR=/tmp

TZ
Describes the time-zone information to be used by the locale. TZ has the following format:

export TZ=SSS[+|-]nDDD[,sm,sw,sd,st,em,ew,ed,et,shift]

If TZ is not present, the default is EST5EDT, the default locale value. If only the standard time zone is
specified, the default value of n (difference in hours from GMT) is 0 instead of 5.

If you supply values for any of sm, sw, sd, st, em, ew, ed, et, or shift, you must supply values for all of
them. If any of these values is not valid, the entire statement is considered invalid and the time-zone
information is not changed.

Chapter 12. Compiling, linking, and running programs  217



For example, the following statement sets the standard time zone to CST, sets the daylight saving time
to CDT, and sets a difference of six hours between CST and UTC. It does not set any values for the
start and end of daylight saving time.

export TZ=CST6CDT

Other possible values are PST8PDT for Pacific United States and MST7MDT for Mountain United
States.

Related tasks   
“Using environment variables to specify a locale” on page 203  

Related references   
“Locales and code pages that are supported” on page 204  
“TZ environment parameter variables” on page 218  

TZ environment parameter variables
The values for the TZ variable are defined below.

Table 22. TZ environment parameter variables

Variable Description Default
value

SSS Standard time-zone identifier. This must be three characters, must begin with a
letter, and can contain spaces.

EST

n Difference (in hours) between the standard time zone and coordinated universal
time (UTC), formerly called Greenwich mean time (GMT). A positive number
denotes time zones west of the Greenwich meridian. A negative number denotes
time zones east of the Greenwich meridian.

5

DDD Daylight saving time (DST) zone identifier. This must be three characters, must
begin with a letter, and can contain spaces.

EDT

sm Starting month (1 to 12) of DST 4

sw Starting week (-4 to 4) of DST 1

sd Starting day of DST: 0 to 6 if sw is not zero; 1 to 31 if sw is zero 0

st Starting time (in seconds) of DST 3600

em Ending month (1 to 12) of DST 10

ew Ending week (-4 to 4) of DST -1

ed Ending day of DST: 0 to 6 if ew is not zero; 1 to 31 if ew is zero 0

et Ending time (in seconds) of DST 7200

shift Amount of time change (in seconds) 3600

Compiler environment variables
COBOL for Linux uses several compiler-only environment variables, as shown below.

Because COBOL words are case insensitive, all letters in COBOL words are treated as uppercase, including
library-name and text-name. Thus environment variable names that correspond to such names must be
uppercase. For example, the environment variable name that corresponds to COPY MyCopy is MYCOPY.

218  IBM COBOL for Linux on x86 1.1: Programming Guide



COBCPYEXT
Specifies the file suffixes to use in searches for copybooks when the COPY name statement does
not indicate a file suffix. Specify one or more file suffixes with or without leading periods. Separate
multiple file suffixes with a space or comma.

If COBCPYEXT is not defined, the following suffixes are searched: CPY, CBL, COB, and the lowercase
equivalents cpy, cbl, and cob.

COBLSTDIR
Specifies the directory into which the compiler listing file is written. Specify any valid path. To indicate
an absolute path, specify a leading slash. Otherwise, the path is relative to the current directory. A
trailing slash is optional.

If COBLSTDIR is not defined, the compiler listing is written into the current directory.

COBOPT
Specifies compiler options. To specify multiple compiler options, separate each option by a space or
comma. Surround the list of options with quotation marks if the list contains blanks or characters that
are significant to the command shell. For example:

export COBOPT="TRUNC(OPT) TERMINAL"

Default values apply to individual compiler options.

Note: The compiler interprets certain shell scripting characters as follows:

• An equal sign (=) is interpreted to a left parenthesis, (
• A colon (:) is interpreted to a right parenthesis, )
• An underscore (_) is interpreted to a single quotation mark (')

You can add a backslash (\) escape character to prevent the interpretation and thus to pass characters
in the strings. If you want the backslash (\) to represent itself (rather than as an escape character),
use the double backslash (\\).

library-name
If you specify library-name as a user-defined word, the name is used as an environment variable, and
the value of the environment variable is used as the path in which to locate the copybook.

If you do not specify a library-name, the compiler searches the library paths in the following order:

1. Current directory
2. Paths specified by the -Ixxx option, if set
3. Paths specified by the SYSLIB environment variable

The search ends when the file is found.

For more details, see the documentation of the COPY statement in the related reference about
compiler-directing statements.

SYSLIB
Specifies paths to be used for COBOL COPY statements that have text-names that are unqualified by
library-names. It also specifies paths to be used for SQL INCLUDE statements.

text-name
If you specify text-name as a user-defined word, the name is used as an environment variable, and
the value of the environment variable is used as the file-name and possibly the path name of the
copybook.

To specify multiple path names, delimit them with a colon (:).

For more details, see the documentation of the COPY statement in the related reference about
compiler-directing statements.

Chapter 12. Compiling, linking, and running programs  219



Related concepts   
“Db2 coprocessor” on page 375 

Related tasks   
“Using SQL INCLUDE with
the Db2 coprocessor” on page 376 

Related references   
“cob2 options” on page 232  
“Compiler options” on page 248  
Chapter 14, “Compiler-directing
statements,” on page 293 

Runtime environment variables
The COBOL runtime library uses the following runtime-only environment variables.

assignment-name
The user-defined word that you specify (in the ASSIGN clause) for the external file-name for a COBOL
file; for example, OUTPUTFILE in the following ASSIGN clause:

SELECT CARPOOL ASSIGN TO OUTPUTFILE

At run time, you set the environment variable to the name of the system file that you want to associate
with the COBOL file. For example:

export OUTPUTFILE=january.car_results

After you issue the command above, input/output statements for COBOL file CARPOOL operate on
system file january.car_results in the current directory.

If you do not set the environment variable, or set it to the empty string, COBOL uses the literal name
of the environment variable as the system file-name (OUTPUTFILE in the current directory for the
ASSIGN example above).

The ASSIGN clause can specify a file stored in a file system other than the default, such as the
standard language file system (STL) or the record sequential delimited file system (RSD). For example:

SELECT CARPOOL ASSIGN TO STL-OUTPUTFILE

In this case, you still set environment variable OUTPUTFILE (not STL-OUTPUTFILE).

CICS_TK_SFS_SERVER
Specifies the fully qualified CICS SFS server name. For example:

export CICS_TK_SFS_SERVER=/.:/cics/sfs/sfsServer

COBPATH
Specifies the directory paths to be used by the COBOL runtime to locate dynamically accessed
programs such as shared libraries. COBPATH is searched first (and if not set, defaults to the current
directory ("./")), followed by LD_LIBRARY_PATH.

For example:

export COBPATH=/pgmpath/pgmshlib

COBRTOPT
Specifies the COBOL runtime options.

220  IBM COBOL for Linux on x86 1.1: Programming Guide



Separate runtime options by a comma or a colon. Use parentheses or equal signs (=) as the
delimiter for suboptions. Options are not case sensitive. For example, the following two commands
are equivalent:

export COBRTOPT="CHECK(ON):UPSI(00000000)"
export COBRTOPT=check=on,upsi=00000000

If you specify more than one setting for a given runtime option, the rightmost such setting prevails.

The defaults for individual runtime options apply. For details, see the related reference about runtime
options.

EBCDIC_CODEPAGE
Specifies an EBCDIC code page applicable to the EBCDIC data processed by programs compiled with
the CHAR(EBCDIC) or CHAR(S390) compiler option.

To set the EBCDIC code page, issue the following command, where codepage is the name of the code
page to be used:

export EBCDIC_CODEPAGE=codepage

If EBCDIC_CODEPAGE is not set, the default EBCDIC code page is selected based on the current
locale, as described in the related reference about the locales and code pages supported. When the
CHAR(EBCDIC) compiler option is in effect and multiple EBCDIC code pages are applicable to the
locale in effect, you must set the EBCDIC_CODEPAGE environment variable unless the default EBCDIC
code page for the locale is acceptable.

CICS_SFS_DATA_VOLUME
Specifies the name of the SFS data volume on which SFS files are to be created. For example:

export CICS_SFS_DATA_VOLUME=sfs_SFS_SERV

This data volume must have been defined to the SFS server that your application accesses.

If this variable is not set, the default name sfs_SSFS_SERVER is used.

CICS_SFS_INDEX_VOLUME
Specifies the name of the SFS data volume on which alternate index files are to be created. For
example:

export CICS_SFS_INDEX_VOLUME=sfs_SFS_SERV

This data volume must have been defined to the SFS server that your application accesses.

If this variable is not set, alternate index files are created on the same data volume as the
corresponding base index files.

CICS_VSAM_AUTO_FLUSH
Specifies whether all changes to CICS SFS files for each input-output operation are committed to disk
before control is returned to the application (that is, whether the operational force feature of SFS is
enabled). You can improve the performance of applications that use SFS files by specifying OFF for
this environment variable. For example:

export CICS_VSAM_AUTO_FLUSH=OFF

When this environment variable is set to OFF, SFS uses a lazy-write strategy; that is, changes to SFS
files might not be committed to disk until the files are closed.

If SFS client-side caching is in effect (that is, environment variable CICS_VSAM_CACHE is set to a valid
nonzero value), the setting of CICS_VSAM_AUTO_FLUSH is ignored. Operational force is disabled.

Chapter 12. Compiling, linking, and running programs  221



If SFS client-side caching is not in effect, the value of CICS_VSAM_AUTO_FLUSH defaults to ON.

CICS_VSAM_CACHE
Specifies whether client-side caching is enabled for SFS files. You can improve the performance of
applications that use SFS files by enabling client-side caching.

CICS_VSAM_CACHE syntax
read-and-insert-cache-size

read-cache-size : insert-cache-size

: flag

, flag

Size units are in numbers of pages. A size of zero indicates that caching is disabled. The possible flags
are:

ALLOW_DIRTY_READS
Removes the restriction for read caching that the files being accessed must be locked.

INSERTS_DESPITE_UNIQUE_INDICES
Removes the restriction for insert caching that inserts are cached only if all active indices
for clustered files and all active alternate indices for entry-sequenced and relative files allow
duplicates.

For example, the following command sets the read-cache size to 16 pages and the insert-cache size
to 64 pages. It also enables dirty reads and enables inserts despite unique indices:

export CICS_VSAM_CACHE=16:64:ALLOW_DIRTY_READS, \
    INSERTS_DESPITE_UNIQUE_INDICES

By default, client-side caching is not enabled.

CICS_SFS_CACHE_<filename>
Specifies whether client-side caching is enabled for a specific SFS file, where you can replace
<filename> with the SFS file name. If the file name contains (.) characters, you must replace them
with (_) (underscore). This setting would help to enable client-side cache based on file operation
(read or write) done on any specific file. You can specify CICS_SFS_CACHE_<filename> using the same
syntax specification as the CICS_SFS_CACHE setting.

For example, to enable file specific client-side caching for a file with the name VSAM.FILE1.TESTFILE,
which is always used for SFS write operation, the environment can be specified only to enable WRITE
operation cache:

export CICS_SFS_CACHE_FILE1_TESTFILE=0:512

CICS_SFS_RDM_CACHE
Specifies whether client-side caching is disabled for SFS files used for random read operation. Specify
the environment value as 0 to disable client side read operation cache for all files that are opened for
random read operation:

export CICS_SFS_RDM_CACHE=0

The CICS_SFS_CACHE setting is a global setting that is applicable for all SFS files, and it is not
recommended to set read operation cache for files that are opened for random read operations. The
CICS_VSAM_RDM_CACHE setting can be used to disable the SFS client-side read operation cache.

222  IBM COBOL for Linux on x86 1.1: Programming Guide



CICS_SFS_PREALLOC_<filename>

Specifies the number of pre-allocated pages for a file, when your program creates the file for the first
time on the SFS server. You can replace <filename> with the SFS file name. If the file name contains
(.) characters, you must replace them with (_) (underscore). For example, to create a SFS file named
TESTFILE and pre-allocate 2000 pages, set the following environment variable:

export CICS_SFS_PREALLOC_TESTFILE=2000

COBCORE
Specifies that the location of core files generated by the runtime will be placed. If not specified, the
default is the current working directory. If the name ends with a percent character (%), a file name
with the program name and timestamp is created.

COBOUTDIR
Specifies a directory where all files create by COBOL DISPLAY statements (SYSOUT, CONSOLE,
SYSPUNCH), and core files (COBCORE) are created, if the variable does not include a path.

PATH
Specifies the directory paths of executable programs.

SYSIN, SYSIPT, SYSOUT, SYSLIST, SYSLST, CONSOLE, SYSPUNCH, SYSPCH
These COBOL environment names are used as the environment variable names that correspond to the
mnemonic names used in ACCEPT and DISPLAY statements.

If the environment variable is not set, by default SYSIN and SYSIPT are directed to the logical input
device (keyboard). SYSOUT, SYSLIST, SYSLST, and CONSOLE are directed to the system logical output
device (screen). SYSPUNCH and SYSPCH are not assigned a default value and are not valid unless you
explicitly define them. If value of any of these variables ends with a percent character (%), a file name
with the program name and timestamp is created.

For example, the following command defines CONSOLE:

export CONSOLE=/users/mypath/myfile

CONSOLE could then be used in conjunction with the following source code:

SPECIAL-NAMES.
    CONSOLE IS terminal
    . . .
    DISPLAY 'Hello World' UPON terminal

Related tasks   
“Identifying files” on page 113  
“Using SFS files” on page 148  
“Improving SFS performance” on page 150  

Related references   
“CHAR” on page 255  
Chapter 15, “Runtime options,” on page 299 

Example: setting and accessing environment variables
The following example shows how you can access and set environment variables from a COBOL program
by calling the standard POSIX functions getenv() and putenv().

Because getenv() and putenv() are C functions, you must pass arguments BY VALUE. Pass character
strings as BY VALUE pointers that point to null-terminated strings. Compile programs that call these
functions with the NODYNAM and PGMNAME(LONGMIXED) options.

 CBL pgmname(longmixed),nodynam
 Identification division.

Chapter 12. Compiling, linking, and running programs  223



 Program-id. "envdemo".
 Data division.
 Working-storage section.
 01 P pointer.
 01 PATH pic x(5) value Z"PATH".
 01 var-ptr pointer.
 01 var-len pic 9(4) binary.
 01 putenv-arg pic x(14) value Z"MYVAR=ABCDEFG".
 01 rc pic 9(9) binary.
 Linkage section.
 01 var pic x(5000).
 Procedure division.
* Retrieve and display the PATH environment variable
     Set P to address of PATH
     Call "getenv" using by value P returning var-ptr
     If var-ptr = null then
         Display "PATH not set"
     Else
         Set address of var to var-ptr
         Move 0 to var-len
         Inspect var tallying var-len
           for characters before initial X"00"
         Display "PATH = " var(1:var-len)
     End-if
* Set environment variable MYVAR to ABCDEFG
     Set P to address of putenv-arg
     Call "putenv" using by value P returning rc
     If rc not = 0 then
         Display "putenv failed"
         Stop run
     End-if
     Goback.

Compiling programs
You can compile your COBOL programs from the command line or by using a shell script or makefile.

If you have non-IBM or free-format COBOL source, you might first need to use the source conversion
utility, scu, to help convert the source so that it can be compiled. To see a summary of the scu functions,
type the command scu -h. For further details, see the man page for scu, or see the related reference
about the source conversion utility.

Specifying compiler options: There are several ways you can specify the options to be used when
compiling COBOL programs. For example, you can:

• Set the COBOPT environment variable from the command line.
• Specify compiler options as options to the cob2 command. You can use this command on the command

line, in a shell script, or in a makefile.
• Use PROCESS (CBL) or *CONTROL statements. An option that you specify by using PROCESS overrides

every other option specification.

For further details about setting compiler options and the relative precedence of the methods of setting
them, see the related reference about conflicting compiler options.

Related tasks  
“Compiling from the command
line” on page 225  
“Compiling using shell
scripts” on page 226  
“Specifying compiler options in the PROCESS (CBL) statement” on page 226  
“Modifying the default compiler
configuration” on page 227  
Chapter 21, “Porting applications between
platforms,” on page 425

Related references  
“Compiler environment
variables” on page 218  

224  IBM COBOL for Linux on x86 1.1: Programming Guide



“cob2 options” on page 232  
“Compiler options” on page 248 
“Conflicting
compiler options” on page 250 
  
Appendix A, “Summary of differences from IBM Enterprise COBOL for z/OS,” on page 517  
Reference format (COBOL for Linux on x86 Language Reference)  
Source conversion utility (scu) (COBOL for Linux on x86 Language Reference)  

Compiling from the command line
To compile a COBOL program from the command line, issue the cob2 command. This command also
invokes the linker.

cob2 command syntax
cob2

options filenames

To compile multiple files, specify the file-names at any position in the command line, using spaces to
separate options and file-names. For example, the following two commands are equivalent:

cob2 -g filea.cbl fileb.cbl -q"flag(w)"
cob2 filea.cbl -g -q"flag(w)" fileb.cbl 

The cob2 command accepts compiler and linker options in any order on the command line. Any options
that you specify apply to all files on the command line.

Only source files that have suffix .cbl or .cob are passed to the compiler. All other files are passed to the
linker.

The default location for compiler input and output is the current directory.

The cob2 command is thread safe. cob2_r is provided for compatibility with COBOL for AIX, but uses the
same default options as the cob2 command. See “Modifying the default compiler configuration” on page
227 for more information on default options.

Note: The compiler interprets certain shell scripting characters as follows:

• An equal sign (=) is interpreted to a left parenthesis, (
• A colon (:) is interpreted to a right parenthesis, )
• An underscore (_) is interpreted to a single quotation mark (')

You can add a backslash (\) escape character to prevent the interpretation and thus to pass characters in
the strings. If you want the backslash (\) to represent itself (rather than as an escape character), use the
double backslash (\\).

“Examples: using cob2 for compiling” on page 226

Related tasks   
“Modifying the default compiler
configuration” on page 227  
“Linking programs” on page 234 

Related references   
“cob2 options” on page 232  
“Compiler options” on page 248 

Chapter 12. Compiling, linking, and running programs  225



Examples: using cob2 for compiling
The following examples show the output produced for various cob2 invocations.

Table 23. Output from the cob2 command

To compile: Enter: These files are
produced:

alpha.cbl cob2 -c alpha.cbl alpha.o

alpha.cbl and beta.cbl cob2 -c alpha.cbl beta.cbl alpha.o, beta.o

alpha.cbl with the LIST and
ADATA options

cob2 -qlist,adata alpha.cbl alpha.wlist, alpha.o1,
alpha.lst, alpha.adt, and
a.out

1. If the linking is successful, this file is deleted.

“Examples: using cob2 for linking” on page 235

Related tasks   
“Compiling from the command
line” on page 225 

Related references   
“ADATA” on page 251  
“LIST” on page 270 

Compiling using shell scripts
You can use a shell script to automate the cob2 command.

To prevent invalid syntax from being passed to the command, however, follow these guidelines:

• Use an equal sign and colon rather than parentheses to delimit compiler suboptions.
• Use underscores rather than single quotation marks to delimit compiler suboptions.
• Do not use any blanks in the option string unless you enclose the string in quotation marks ("").

Table 24. Examples of compiler-option syntax in a shell script

Use in shell script Use on command line

-qFLOAT=NATIVE:,CHAR=NATIVE: -qFLOAT(NATIVE),CHAR(NATIVE)

-qEXIT=INEXIT=_String_,MYMODULE:: -qEXIT(INEXIT('String',MYMODULE))

Specifying compiler options in the PROCESS (CBL) statement
Within a COBOL program, you can code most compiler options in PROCESS (CBL) statements. Code the
statements before the IDENTIFICATION DIVISION header and before any comment lines or compiler-
directing statements.

PROCESS(CBL) statement syntax
PROCESS

CBL options-list

If you do not use a sequence field, you can start a PROCESS statement in column 1 or after. If you use
a sequence field, the sequence number must start in column 1 and must contain six characters; the first
character must be numeric. If used with a sequence field, PROCESS can start in column 8 or after.

226  IBM COBOL for Linux on x86 1.1: Programming Guide



You can use CBL as a synonym for PROCESS. CBL can likewise start in column 1 or after if you do not use a
sequence field. If used with a sequence field, CBL can start in column 8 or after.

You must end PROCESS and CBL statements at or before column 72 if your program uses fixed source
format, or column 252 if your program uses extended source format.

Use one or more blanks to separate a PROCESS or CBL statement from the first option in options-list.
Separate options with a comma or a blank. Do not insert spaces between individual options and their
suboptions.

You can code more than one PROCESS or CBL statement. If you do so, the statements must follow one
another with no intervening statements. You cannot continue options across multiple PROCESS or CBL
statements.

Related references  
“SRCFORMAT” on page 282  
Reference format (COBOL for Linux on x86 Language Reference)  
CBL (PROCESS) statement (COBOL for Linux on x86 Language Reference)  

Modifying the default compiler configuration
The default options used by the cob2 command are obtained from the configuration file, which is
by default /opt/ibm/cobol/1.1.0/etc/cob2.cfg. You can display the options used by cob2 by
specifying the -# option on the command.

If you are using the default configuration file, the command cob2 -# abc.cbl displays output that
looks like this:

exec: /opt/ibm/cobol/1.1.0/usr/bin/cob3 abc.cbl
exec: /usr/bin/gcc -m32 -shared -fPIC -rdynamic -fasynchronous-unwind-tables -Wl,--hash-
style=gnu 
-Wl,--export-dynam -Wl,-Bsymbolic-functions -Wl,--build-id -Wl,--enable-new-dtags -Wl,-zrelro 
-Wl,-znow -Wl,-zdefs -Wl,-z,noexecstack -Wl,--allow-shlib-undefined -pie -Wl,--as-needed abc.o 
-Wl,--as-needed -L/opt/ibm/cobol/1.1.0/usr/lib/ -L/opt/ibm/cobol/rte/usr/lib/ -lcob2_32s 
-lcob2_32r 
-ldfp_32r -lm -lpthread -ldl -Wl,-rpath,/opt/ibm/cobol/rte/usr/lib/:
/opt/ibm/cobol/rte/:/opt/ibm/cobol/1.1.0/usr/lib/:/opt/ibm/cics/lib 

You can modify the cob2.cfg configuration file to change the default options.

Instead of modifying the default configuration file, you can tailor a copy of the file for your purposes.

Note: The compiler interprets certain shell scripting characters as follows:

• An equal sign (=) is interpreted to a left parenthesis, (
• A colon (:) is interpreted to a right parenthesis, )
• An underscore (_) is interpreted to a single quotation mark (')

You can add a backslash (\) escape character to prevent the interpretation and thus to pass characters in
the strings. If you want the backslash (\) to represent itself (rather than as an escape character), use the
double backslash (\\).

Related tasks   
“Tailoring your compilation” on page 228 

Related references   
“cob2 options” on page 232  
“Stanzas in the configuration file” on page 229 

Chapter 12. Compiling, linking, and running programs  227



Tailoring your compilation
To tailor a compilation to your needs, you can change a copy of the default configuration file and use it in
various ways.

The configuration file /opt/ibm/cobol/1.1.0/etc/cob2.cfg has sections, called stanzas, that begin
with cob2:. To list these stanzas, use the command ls /opt/ibm/cobol/1.1.0/usr/bin/cob2*.
The resulting list shows these lines:

/opt/ibm/cobol/1.1.0/usr/bin/cob2
/opt/ibm/cobol/1.1.0/usr/bin/cob2_r
/opt/ibm/cobol/1.1.0/usr/bin/cob2_cics
/opt/ibm/cobol/1.1.0/usr/bin/cob2_db2
/opt/ibm/cobol/1.1.0/usr/bin/cob2_oracle

The cob2 and cob2_r commands execute the same module; however, cob2 uses the cob2 stanza and
cob2_r uses the cob2_r stanza.

You can tailor your compilation by doing the following steps:

1. Make a copy of the default configuration file /opt/ibm/cobol/1.1.0/etc/cob2.cfg.
2. Change your copy to support specific compilation requirements or other COBOL compilation

environments.
3. (Optional) Issue the cob2 command with the -# option to display the effect of your changes.
4. Use your copy instead of /opt/ibm/cobol/1.1.0/etc/cob2.cfg.

To use your copy of cob2.cfg on every invocation of the compiler, change the symbolic link in the etc.d
directory with that name to point to your copy. The compiler automatically reads the configuration file
pointed to by this symbolic link.

To selectively use a modified copy of the configuration file for a specific compilation, issue the cob2
command with the -F option. For example, to use /u/myhome/myconfig.cfg instead of /opt/ibm/
cobol/1.1.0/etc/cob2.cfg as the configuration file to compile myfile.cbl, issue this command:

cob2 myfile.cbl -F/u/myhome/myconfig.cfg

If you add your own stanza, such as mycob2, you can specify it with the -F option:

cob2 myfile.cbl -F/u/myhome/myconfig.cfg:mycob2

Or you can define a mycob2 command:

ln -s /usr/bin/cob2 /u/myhome/mycob2
mycob2 myfile.cbl -F/u/myhome/myconfig

Whichever directory you name in the ln command (such as /u/myhome above) must be in your PATH
environment variable.

For a list of the attributes in each stanza, see the related reference about stanzas.

Related tasks   
“Setting environment variables” on page 215 

Related references   
“cob2 options” on page 232  
“Stanzas in the configuration file” on page 229 

228  IBM COBOL for Linux on x86 1.1: Programming Guide



Stanzas in the configuration file
A stanza in the configuration file can contain any of several attributes, as shown in the following table.

Table 25. Stanza attributes

Attribute Description

compopts A string of compiler options, separated by commas or spaces. Precede each option
by a -q flag, or precede the whole string, enclosed in quotation marks, by a -q flag.
If any option value contains a comma, that option must be enclosed in quotation
marks.

coprocessor Path to the CICS or Db2 coprocessor library.

runlib2,
runlib2_64

Additional runtime libraries to link in when working with CICS, Db2, or Oracle.

use Stanza from which attributes are taken, in addition to the local stanza. For single-
valued attributes, values in the use stanza apply if no value is provided in the local,
or default, stanza. For comma-separated lists, the values from the use stanza are
added to the values from the local stanza.

Related tasks   
“Modifying the default compiler
configuration” on page 227  
“Tailoring your compilation” on page 228 

Related references   
“cob2 options” on page 232  

Correcting errors in your source program
Messages about source-code errors indicate where the error occurred (LINEID). The text of a message
tells you what the problem is. With this information, you can correct the source program.

Although you should try to correct errors, it is not always necessary to correct source code for every
diagnostic message. You can leave a warning-level or informational-level message in a program without
much risk, and you might decide that the recoding and compilation that are needed to remove the
message are not worth the effort. Severe-level and error-level errors, however, indicate probable program
failure and should be corrected.

In contrast with the four lower levels of severities, an unrecoverable (U-level) error might not result from
a mistake in your source program. It could come from a flaw in the compiler itself or in the operating
system. In such cases, the problem must be resolved, because the compiler is forced to end early and
does not produce complete object code or a complete listing. If the message occurs for a program that
has many S-level syntax errors, correct those errors and compile the program again. You can also resolve
job set-up problems (such as missing file definitions or insufficient storage for compiler processing) by
making changes to the compile job. If your compile job setup is correct and you have corrected the S-level
syntax errors, you need to contact IBM to investigate other U-level errors.

After correcting the errors in your source program, recompile the program. If this second compilation
is successful, proceed to the link-editing step. If the compiler still finds problems, repeat the above
procedure until only informational messages are returned.

Related tasks   
“Generating a list of compiler
messages” on page 230  
“Linking programs” on page 234  

Chapter 12. Compiling, linking, and running programs  229



Related references   
“Messages and listings
for compiler-detected errors” on page 231 

Severity codes for compiler diagnostic messages
Conditions that the compiler can detect fall into five levels or categories of severity.

Table 26. Severity codes for compiler diagnostic messages

Level or category of
message

Return
code

Purpose

Informational (I) 0 To inform you. No action is required, and the program runs
correctly.

Warning (W) 4 To indicate a possible error. The program probably runs correctly as
written.

Error (E) 8 To indicate a condition that is definitely an error. The compiler
attempted to correct the error, but the results of program execution
might not be what you expect. You should correct the error.

Severe (S) 12 To indicate a condition that is a serious error. The compiler was
unable to correct the error. The program does not run correctly,
and execution should not be attempted. Object code might not be
created.

Unrecoverable (U) 16 To indicate an error condition of such magnitude that the
compilation was terminated.

The final return code at the end of compilation is generally the highest return code that occurred for any
message during the compilation.

You can suppress compiler diagnostic messages or change their severities, however, which can have an
effect upon the final compilation return code. For details, see the related information.

Related tasks   
“Customizing compiler-message severities” on page 588  

Related references   
“Processing
of MSGEXIT” on page 587  

Generating a list of compiler messages
You can generate a complete listing of compiler diagnostic messages with their message numbers,
severities, and text by compiling a program that has program-name ERRMSG.

You can code just the PROGRAM-ID paragraph, as shown below, and omit the rest of the program.

Identification Division.
Program-ID. ErrMsg.

Related tasks   
“Customizing compiler-message severities” on page 588  

Related references   
“Messages and listings
for compiler-detected errors” on page 231  
“Format of compiler
diagnostic messages” on page 231 

230  IBM COBOL for Linux on x86 1.1: Programming Guide



Messages and listings for compiler-detected errors
As the compiler processes your source program, it checks for COBOL language errors, and issues
diagnostic messages. These messages are collated in the compiler listing (subject to the FLAG option).

The compiler listing file has the same name as the compiler source file, but with the suffix .lst. For
example, the listing file for myfile.cbl is myfile.lst. The listing file is written to the directory from which the
cob2 command was issued.

Each message in the listing provides information about the nature of the problem, its severity, and
the compiler phase that detected it. Wherever possible, the message provides specific instructions for
correcting an error.

The messages for errors found during processing of compiler options, CBL and PROCESS statements, and
BASIS, COPY, or REPLACE statements are displayed near the top of the listing.

The messages for compilation errors (ordered by line number) are displayed near the end of the listing for
each program.

A summary of all problems found during compilation is displayed near the bottom of the listing.

Related tasks   
“Correcting errors in your
source program” on page 229  
“Generating a list of compiler
messages” on page 230 

Related references   
“Format of compiler
diagnostic messages” on page 231  
“Severity codes for
compiler diagnostic messages” on page 230  
“FLAG” on page 267 

Format of compiler diagnostic messages
Each message issued by the compiler has a source line number, a message identifier, and message text.

Each message has the following form:

nnnnnn IGYppxxxx-l message-text

nnnnnn
The number of the source statement of the last line that the compiler was processing. Source
statement numbers are listed on the source printout of your program. If you specified the NUMBER
option at compile time, the numbers are the original source program numbers. If you specified
NONUMBER, the numbers are those generated by the compiler.

IGY
A prefix that identifies that the message was issued by the COBOL compiler.

pp
Two characters that identify which phase or subphase of the compiler detected the condition that
resulted in a message. As an application programmer, you can ignore this information. If you are
diagnosing a suspected compiler error, contact IBM for support.

xxxx
A four-digit number that identifies the message.

l
A character that indicates the severity level of the message: I, W, E, S, or U.

message-text
The message text; for an error message, a short explanation of the condition that caused the error.

Chapter 12. Compiling, linking, and running programs  231



Tip: If you used the FLAG option to suppress messages, there might be additional errors in your program.

Related references   
“Severity codes for
compiler diagnostic messages” on page 230  
“FLAG” on page 267 

cob2 options
The options listed below apply to the cob2 invocation command.

Options that apply to compiling
-c

Compiles programs but does not link them.
-comprc_ok=n

Controls the behavior upon return from the compiler. If the return code is less than or equal to n,
the command continues to the link step, or in the compile-only case, exits with a zero return code. If
the return code generated by the compiler is greater than n, the command exits with the same return
code returned by the compiler.

The default is -comprc_ok=4.

-host
Sets these compiler options for host COBOL data representation and language semantics:

• CHAR(EBCDIC)
• COLLSEQ(EBCDIC)
• NCOLLSEQ(BIN)
• FLOAT(S390)

The -host option changes the format of COBOL program command-line arguments from an array of
pointers to an EBCDIC character string that has a halfword prefix that contains the string length. For
additional information, see the related task below about using command-line arguments.

If you use the -host option and want a main routine in a C object file to be the main entry point of
your application, you must use the -cmain linker option as described below.

-Ixxx
Adds path xxx to the directories to be searched for copybooks if neither a library-name nor SYSLIB is
specified. (This option is the uppercase letter I, not the lowercase letter l.)

Only a single path is allowed for each -I option. To add multiple paths, use multiple -I options. Do
not insert spaces between -I and xxx.

-qxxx
Passes options to the compiler, where xxx is any compiler option or set of compiler options. Do not
insert spaces between -q and xxx.

If a parenthesis is part of the compiler option or suboption, or if a series of options is specified,
include them in quotation marks.

To specify multiple options, delimit each option by a blank or comma. For example, the following two
option strings are equivalent:

-qoptiona,optionb

-q"optiona optionb"

232  IBM COBOL for Linux on x86 1.1: Programming Guide



If you plan to use a shell script to automate your cob2 tasks, a special syntax is provided for the
-qxxx option. For details, see the related task about compiling using shell scripts.

Options that apply to linking
-cmain

(Has an effect only if you also specify -host.) Makes a C object file (that contains a main routine) the
main entry point in the executable file. In C, a main routine is identified by the function name main().

If you link a C object file that contains a main routine with one or more COBOL object files, you must
use -cmain to designate the C routine as the main entry point. A COBOL program cannot be the main
entry point in an executable file that contains a C main routine. Unpredictable behavior occurs if this is
attempted, and no diagnostics are issued.

-main:xxx
Makes xxx the first file in the list of files passed to the linker. The purpose of this option is to make the
specified file the main program in the executable file. xxx must uniquely identify the object file or the
archive library, and the suffix must be either .o or .a, respectively.

If -main is not specified, the first object, archive library, or source file specified in the command is the
first file in the list of files passed to the linker.

If the syntax of -main:xxx is invalid, or if xxx is not the name of an object or source file processed by
the command, the command terminates.

-o xxx
Names the executable module xxx, where xxx is any name. If the -o option is not used, the name of
the executable module defaults to a.out.

Options that apply to both compiling and linking
-Fxxx

Uses xxx as a configuration file or a stanza rather than the defaults specified in the /opt/ibm/cobol/
1.1.0/etc/cob2.cfg configuration file. xxx has one of the following forms:

• configuration_file:stanza
• configuration_file
• :stanza

-g
Produces symbolic information used by the debugger. Sets the TEST compiler option.

-q32
Specifies that a 32-bit object program is to be generated. Sets the ADDR(32) compiler option. Sets
the -m32 linker option, which instructs the linker to create a 32-bit executable module.

-q64
This option is not currently supported. The compiler accepts and ignores this option.

-v
Displays compile and link steps, and executes them.

-#
Displays compile and link steps, but does not execute them.

-?, ?
Displays help for the cob2 command.

Related tasks   
“Compiling from the command
line” on page 225  
“Compiling using shell
scripts” on page 226    

Chapter 12. Compiling, linking, and running programs  233



“Passing options to the linker” on page 234  
“Using command-line arguments” on page 457 

Related references   
“Compiler environment
variables” on page 218   
“ADDR” on page 251   

Linking programs
Use the linker to link specified object files and create an executable file or a shared object.

You have a choice of ways to start the linker. You can use:

• The cob2 command:

This command calls the linker unless you specify the -c option.

cob2 links with the COBOL multithreaded libraries, so there is no need for any additional thread
options.

Linking with C: The linker accepts .o files, but does not accept .c files. If you want to link C and COBOL
files together, first produce .o files for the C source files by using the gcc command.

• A makefile:

You can use a makefile to organize the sequence of actions (such as compiling and linking) that are
required for building your program. In the makefile, you can use linker statements to specify the kind of
output that you need.

You can specify linker options using any of the methods described above.

“Examples: using cob2 for linking” on page 235

Related tasks   
“Compiling from the command
line” on page 225  
“Passing options to the linker” on page 234  
Chapter 24, “Using shared libraries,” on page 461 

Related references   
“cob2 options” on page 232  
“Linker input and output files” on page 235  
“Linker search rules” on page 236  
  
 

Passing options to the linker
You can specify linker options in any of these ways: an invocation command (cob2) or makefile
statements.

Any options that you specify in an invocation command that are not recognized by the command are
passed to the linker.

Several invocation command options influence the linking of your program. For details about the set of
options for a given command, consult documentation for that command.

The following table shows the options that you are more likely to need for your COBOL programs. Precede
each option with a hyphen (-) as shown.

234  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 27. Common linker options

Option Purpose

-Ldir Specifies the directory to search for libraries specified by the -l option
(default: /usr/lib)

-lname Searches the specified library-file, where name selects the file libname.a

“Examples: using cob2 for linking” on page 235

Related references   
“cob2 options” on page 232  
“Linker input and output files” on page 235  
“Linker search rules” on page 236  

Examples: using cob2 for linking
You can use any of the COBOL invocation commands to both compile and link your programs. The
following examples illustrate the use of cob2.

• To link two files together after they are compiled, do not use the -c option. For example, to compile and
link alpha.cbl and beta.cbl and generate a.out, enter:

cob2 alpha.cbl beta.cbl

This command creates alpha.o and beta.o, then links alpha.o, beta.o, and the COBOL libraries. If
the link step is successful, it produces an executable program named a.out and deletes alpha.o and
beta.o.

• To link a compiled file with a library, enter:

cob2 zog.cbl -lmylib

This command causes the linker to search for the library libmylib.so first, and then the archive
library file libmylib.a in each directory in the search path consecutively until either is encountered.

• To use options to limit the search for a library, enter:

cob2 zog.cbl  -llib1  -llib2 

In this case, to satisfy the first library specification, the linker searches for the library liblib1.so first
and then the archive library file liblib1.a in each directory (as described in the previous example).
However, at the same time the linker searches only for liblib2.a in those same libraries.

• To compile and link in separate steps, enter commands such as these:

cob2 -c file1.cbl                # Produce one object file
cob2 -c file2.cbl file3.cbl      # Or multiple object files
cob2 file1.o file2.o file3.o     # Link with appropriate libraries

“Examples: using cob2 for compiling” on page 226

Linker input and output files
The linker takes object files, links them with each other and with any library files that you specify, and
produces an executable output file. The executable output can be either an executable program file or a
shared object.

Linker inputs:

Chapter 12. Compiling, linking, and running programs  235



• Options
• Object files (*.o)
• Archive library files (*.a)
• Dynamic library files (*.so)

Linker outputs:

• Executable file (a.out by default)
• Shared object
• Return code

Library files: Libraries are files that have suffix .a or .so. To designate a library, you can specify an
absolute or relative path name or use the -l (lowercase letter L) option in the form -lname. The last form
designates file libname.a, or in dynamic mode, file libname.so, to be searched for in several directories.
These search directories include directories that you specify by using -L options, and the standard library
directories /usr/lib and /lib.

The environment variable LD_LIBRARY_PATH is not used to search for libraries that you specify on the
command line either explicitly (for example, libc.a) or by using the -l option (for example, -lc). You
must use -Ldir options to indicate the directories to be searched for libraries that you specified with a
-l option.

You can create library files by combining one or more files into a single archive file by using the Linux ar
command.

“Example: creating a sample shared library” on page 462

Related tasks   
“Passing options to the linker” on page 234 

Related references   
“Linker search rules” on page 236  
“Linker file-name defaults” on page 237  

Linker search rules
When searching for an object file (.o) or an archive library file (.a), the linker looks in several locations until
the search is satisfied.

The linker searches these locations:

1. The directory that you specify for the file

If you specify a path with the file, the linker searches only that path and stops linking if the file cannot
be found there.

2. The current directory, if you did not specify a path
3. The value of the environment variable LD_LIBRARY_PATH, if defined

If you use libraries other than the default ones in /usr/lib, you can specify one or more -L options that
point to the locations of the other libraries. You can also set the LD_LIBRARY_PATH environment variable,
which lets you specify a search path for libraries at run time.

If the linker cannot locate a file, it generates an error message and stops linking.

Related tasks   
“Passing options to the linker” on page 234 

Related references   
“Linker file-name defaults” on page 237  
  

236  IBM COBOL for Linux on x86 1.1: Programming Guide



Linker file-name defaults
If you do not enter a file-name, the linker assumes default names.

Table 28. Default file-names assumed by the linker

File Default file-name Default suffix

Object files None. You must enter at least one object file name. .o

Output file a.out None

Library files The default libraries defined in the object files. Use compiler
options to define the default libraries. Any additional libraries
that you specify are searched before the default libraries.

.a or .so

Correcting errors in linking
When you use the PGMNAME(UPPER) compiler option, the names of subprograms referenced in CALL
statements are translated to uppercase. This change affects the linker, which recognizes case-sensitive
names.

For example, the compiler translates Call "RexxStart" to Call "REXXSTART". If the real name of
the called program is RexxStart, the linker will not find the program, and will produce an error message
that indicates that REXXSTART is an unresolved external reference.

This type of error typically occurs when you call API routines that are supplied by another software
product. If the API routines have mixed-case names, you must take both of the following actions:

• Use the PGMNAME(MIXED) compiler option.
• Ensure that CALL statements specify the correct mix of uppercase and lowercase in the names of the

API routines.

Running programs
To run a COBOL program, you set environment variables, issue the command to run the executable, and
then correct any runtime errors.

1. Make sure that any needed environment variables are set.

For example:

• If the program uses an environment variable name to assign a value to a system file-name, set that
environment variable.

• If the program uses runtime options, specify their values in the COBRTOPT runtime environment
variable.

2. Run the program: At the command line, either enter the name of the executable module or run a
command file that invokes that module. Include any needed program arguments on the command line.

For example, if the command cob2 alpha.cbl beta.cbl-o gamma is successful, you can run the
program by entering gamma.

3. Correct runtime errors.

You can use the debugger to examine the program state at the time of the errors.

Tip: If runtime messages are abbreviated or incomplete, the environment variables LANG or NLSPATH or
both might be incorrectly set.

Related tasks  
“Setting environment variables” on page 215  
“Debugging using IBM Debug for Linux on x86” on page 311  
“Using command-line arguments” on page 457 

Chapter 12. Compiling, linking, and running programs  237



Related references  
Chapter 15, “Runtime options,” on page 299  
  
Appendix G, “Runtime messages,” on page 597  

238  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 13. Specifying compiler options on the
command line

Most options specified on the command line override both the default settings of the option and options
set in the configuration file.

There are two kinds of command-line options:

• Flag options
• -qoption_keyword (compiler-specific)

Related concepts   
“Flag
options” on page 239
“-q
options” on page 247

Related tasks   
“Compiling programs” on page 224  

Flag options
COBOL for Linux supports a number of common conventional flag options that are used on Linux systems.
Flag options are case-sensitive and they apply to the cob2 invocation command.

COBOL for Linux also supports flags that are directed to other programming tools and utilities (for
example, the scu command).

Some flag options have arguments that form part of the flag. For example:

cob2 stem.cbl -F/home/tools/test3/new.cfg:cob2

where new.cfg is a custom configuration file.

You can specify flags that do not take arguments in one string. For example:

cob2 -ocv file.cbl

cob2 -o -c -v file.cbl

A flag option that takes arguments can be specified as part of a single string, but you can only use one flag
that takes arguments, and it must be the last option specified. For example, you can use the -o flag (to
specify a name for the executable file) together with other flags, only if the -o option and its argument are
specified last. For example:

cob2 -ocv test test.cbl

has the same effect as:

cob2 -o -c -vtest test.cbl

Most flag options are a single letter, but some are two letters. Take care not to specify two or more options
in a single string if there is another option that uses that letter combination.

Related concepts   
Chapter 13, “Specifying
compiler options on the command line,” on page 239

© Copyright IBM Corp. 2021, 2023 239



“-q
options” on page 247

-# (pound sign)

Purpose
Previews the compilation steps that are specified on the command line, without actually invoking any
compiler components. When this option is enabled, information is written to standard output, showing
the names of the programs within the preprocessor, compiler, and linker that would be invoked, and the
default options that would be specified for each program. The preprocessor, compiler, and linker are not
invoked. This option applies to both compiling and linking.

Syntax
-#

Defaults
The compiler does not display the progress of the compilation.

Usage
You can use this command to determine the commands and files that are involved in a particular
compilation. It avoids the overhead of compiling the source code and overwriting any existing files, such
as .lst files. This option displays the same information as -v, but does not invoke the compiler. The -#
option overrides the -v option.

Related references   
“-v” on page 246

-?, ?

Purpose
Displays help for the cob2 command. This option applies to both compiling and linking.

Syntax
?

Defaults
The compiler does not display the command help information.

-q32, -q64

Purpose
-q32: Specifies that a 32-bit object program is to be generated. Sets the ADDR(32) compiler option. Sets
the -m32 linker option, which instructs the linker to create a 32-bit executable module.

-q64: This option is not currently supported. The compiler accepts and ignores this option.

240  IBM COBOL for Linux on x86 1.1: Programming Guide



Syntax

-q

32

64

Defaults
-q32

Related references   
“ADDR” on page 251

-c

Purpose
Prevents the completed object from being sent to the linker. When this option is in effect, the compiler
creates an output object file, file_name.o. This option applies only to compiling.

Syntax
 -c

Defaults
By default, the compiler invokes the linker to link object files into a final executable file.

Examples

• To compile one file that is called alpha.cbl, enter:

cob2 -c alpha.cbl

The compiled file is named alpha.o.
• To compile two files that are called alpha.cbl and beta.cbl, enter:

cob2 -c alpha.cbl beta.cbl

The compiled files are named alpha.o and beta.o.
• To link two files, compile them without the -c option. For example, to compile and link alpha.cbl and
beta.cbl and generate gamma, enter:

cob2 alpha.cbl beta.cbl -o gamma

This command creates alpha.o and beta.o, then links alpha.o, beta.o, and the COBOL libraries. If
the link step is successful, it produces an executable program named gamma.

• To compile alpha.cbl with the LIST and NODATA options, enter:

cob2 -qlist,noadata alpha.cbl

Chapter 13. Specifying compiler options on the command line  241



-comprc_ok

Purpose
Controls the behavior upon return from the compiler. If the return code is less than or equal to n, the
command continues to the link step, or in the compile-only case, exits with a zero return code. If the
return code generated by the compiler is greater than n, the command exits with the same return code
returned by the compiler. This option applies only to compiling.

Syntax
 -comprc_ok =value

Defaults
The default is -comprc_ok=4.

Usage
When this option is in effect, the compiler creates an output object file, file_name.o.

-dll | -dso | -shared

Purpose
Changes the output of the linkage editor from the default Position Independent Executable (PIE) to a
Dynamically Shared Object (DSO).

Syntax
-dll

-dso

-shared

Defaults
The output of the linkage editor is a PIE.

Usage
A PIE can be invoked like any other executable program, but can not be used as the target of a COBOL
dynamic call, or a CICS transaction.

A DSO is the opposite. It can not be called from the command line, but can be used as the target of a
COBOL dynamic call, or a CICS transaction.

-F

Purpose
Uses xxx as a configuration file or a stanza rather than the defaults specified in the /opt/ibm/cobol/
1.1.0/etc/cob2.cfg configuration file. xxx has one of the following forms:

• configuration_file:stanza

242  IBM COBOL for Linux on x86 1.1: Programming Guide



• configuration_file
• :stanza

This option applies to both compiling and linking.

Syntax
 -F file_path

: stanza

: stanza

Defaults
By default, the compiler uses the configuration file that is supplied at installation time, and uses the
stanza defined in that file for the invocation command currently being used.

Parameters
File_path

The full path name of the alternate compiler configuration file to use.

stanza

The name of the configuration file stanza to use for compilation. This directs the compiler to use the
entries under that stanza regardless of the invocation command being used.

Related references   
“Stanzas in the configuration file” on page 229  

-g

Purpose
Produces information used by the debugger. Sets the TEST compiler option. This option applies to both
compiling and linking.

Syntax
-g

Defaults
Generates no debugging information. No program state is preserved.

Examples
Use the following command to compile myprogram.cbl and generate an executable program called
testing for debugging:

cob2 myprogram.cbl -o testing -g

Related tasks   
“Debugging using IBM Debug for Linux on x86” on page 311  

Related references   
“TEST” on page 284  

Chapter 13. Specifying compiler options on the command line  243



-host

Purpose
-host or -host=EBCDIC sets these compiler options for host COBOL data representation and language
semantics:

• BINARY(BE)
• CHAR(EBCDIC)
• COLLSEQ(EBCDIC)
• FLOAT(BE)
• NCOLLSEQ(BIN)
• UTF16(BE)

The -host or -host=EBCDIC option changes the format of COBOL program command-line arguments
from an array of pointers to an EBCDIC character string that has a halfword prefix that contains the string
length.

The -host option is compatible with COBOL for AIX.

Syntax
-host

= EBCDIC

ASCII

Defaults
The compiler does not set compiler options for host COBOL data representation and language semantics.

Parameters
EBCDIC

Same as -host. Passes a z/OS style parameter list in EBCDIC to your program. The option
converts the parameters from a UNIX-style main(int argc, char **argv) to the z/OS and TSO
convention of struct { uint16_t length; char string[]; }.

ASCII
Passes a z/OS style parameter list in ASCII to your program. The option converts the parameters
from a UNIX-style main(int argc, char **argv) to the z/OS and TSO convention of struct
{ uint16_t length; char string[]; }.

Related references   
 “BINARY” on page 254
CHAR
COLLSEQ
FLOAT
NCOLLSEQ
“UTF16” on page 287

-I

Purpose
Adds path xxx to the directories to be searched for copybooks if neither a library-name nor SYSLIB is
specified. (This option is the uppercase letter I, not the lowercase letter l.)

244  IBM COBOL for Linux on x86 1.1: Programming Guide



Only a single path is allowed for each -I option. To add multiple paths, use multiple -I options.

Syntax
-I directory_path

Parameters
directory_path

The path for the directory where the compiler should search for the header files.

Defaults
There is no default directory to be search for copybooks.

Usage
If the -I directory option is specified both in the configuration file and on the command line, the paths
specified in the configuration file are searched first. The -I directory option can be specified more than
once on the command line. If you specify more than one -I option, directories are searched in the order
that they appear on the command line. The -I option has no effect on files that are included using an
absolute path name

Examples
To compile myprogram.cbl and search /usr/tmp and then /oldstuff/history for included files,
enter:

cob2 myprogram.cbl -I/usr/tmp -I/oldstuff/history

-main

Purpose
Makes xxx the first file in the list of files that are passed to the linker. The purpose of this option is to make
the specified file the main program in the executable file. xxx must uniquely identify the object file or the
archive library, and the suffix must be either .o or .a, respectively.

If -main is not specified, the first object, archive library, or source file specified in the command is the
first file in the list of files that are passed to the linker.

If the syntax of -main:xxx is invalid, or if xxx is not the name of an object or source file that is processed
by the command, the command terminates.

This option applies only to linking.

Syntax
-main: directory_name

Defaults
The -main option is not specified.

Chapter 13. Specifying compiler options on the command line  245



-o

Purpose
Names the executable program or shared library xxx, where xxx is any name. If the -o option is not used,
the name of the executable module defaults to a.out. This option applies only to linking.

Syntax
-o path

Parameters
path

When you are using the option to compile from source files, path can be the name of a file or directory.
The path can be a relative or absolute path name. When you are using the option to link from object
files, path must be a file name. If path is the name of an existing directory, files that are created by the
compiler are placed into that directory. If path is not an existing directory, path is the name of the file that
is produced by the compiler. See below for examples

Defaults
If you specify the -c option, an output object file, file_name.o, is produced for each input file. The
linker is not invoked, and the object files are placed in your current directory. All processing stops at the
completion of the compilation. The compiler gives object files a .o suffix, for example, file_name.o,
unless you specify the -o option, giving a different suffix or no suffix at all.

Usage
If you use the -c option with -o together and the path is not an existing directory, you can compile
only one source file at a time. In this case, if more than one source file name is listed in the compiler
invocation, the compiler issues a warning message and ignores -o.

Examples
To compile myprogram.cbl so that the resulting executable is called myaccount, assuming that no
directory with name myaccount exists, enter:

cob2 myprogram.cbl -o myaccount

To compile test.cbl to an object file only and name the object file new.o, enter:

cob2 test.cbl -c -o new.o

Related references 

-v

Purpose
Displays compile and link steps, and executes them. This option applies to both compiling and linking.
When the -v option is in effect, information is displayed in a comma-separated list. This option applies to
both compiling and linking.

Note: The -v option is overridden by the -# option.

246  IBM COBOL for Linux on x86 1.1: Programming Guide



Syntax
-v

Defaults
The compiler does not display the progress of the compilation.

Examples
To compile myprogram.cbl so you can watch the progress of the compilation and see messages that
describe the progress of the compilation, the programs being invoked, and the options being specified,
enter:

cob2 myprogram.cbl -v

Related references   
“-# (pound sign)” on page 240

-q options
Passes options to the compiler, where xxx is any compiler option or set of compiler options. Do not insert
spaces between -q and xxx. If a parenthesis is part of the compiler option or suboption, or if a series of
options is specified, include them in quotation marks. If a parenthesis is part of the compiler option or
suboption, or if a series of options is specified, include them in quotation marks.

To specify multiple options, delimit each option by a blank or comma. For example, the following two
option strings are equivalent:

-qoptiona,optionb

-q"optiona optionb"

If you plan to use a shell script to automate your cob2 tasks, a special syntax is provided for the -qxxx
option. For details, see the related task about compiling using shell scripts.

-q option_keyword

=

:

suboption

Related concepts   
Chapter 13, “Specifying
compiler options on the command line,” on page 239 

Related references   
“Compiler options” on page 248 
“Conflicting
compiler options” on page 250

Related tasks   
Compiling using shell scripts

Chapter 13. Specifying compiler options on the command line  247



Compiler options
You can direct and control your compilation by using compiler options or by using compiler-directing
statements (compiler directives).

Compiler options affect the aspects of your program that are listed in the table below. The linked-to
information for each option provides the syntax for specifying the option and describes the option, its
parameters, and its interaction with other parameters.

Table 29. Compiler options

Aspect of your
program

Compiler option Default Option abbreviations

Source language “ARITH” on page 253 ARITH(COMPAT) AR(C|E)

“CICS” on page 257 NOCICS None

“CURRENCY” on page 260 NOCURRENCY CURR|NOCURR

“NSYMBOL” on page 273 NSYMBOL(NATIONAL) NS(NAT|DBCS)

“NUMBER” on page 274 NONUMBER NUM|NONUM

“APOST/QUOTE” on page 276 QUOTE Q|APOST

“SEQUENCE” on page 278 SEQUENCE SEQ|NOSEQ

“SOSI” on page 278 NOSOSI None

“SQL” on page 281 SQL("") None

“SRCFORMAT” on page 282 SRCFORMAT(COMPAT) SF(C|E)

Date processing “DATEPROC” on page 261 NODATEPROC, or
DATEPROC(FLAG)if only
DATEPROC is specified

DP|NODP

“DATETIME” on page 261 DATETIME(1900 40) None

“YEARWINDOW” on page 290 YEARWINDOW(1900) YW

Maps and listings “LINECOUNT” on page 270 LINECOUNT(60) LC

“LIST” on page 270 NOLIST None

“LSTFILE” on page 271 LSTFILE(LOCALE) LST

“MAP” on page 271 NOMAP None

“SOURCE” on page 280 SOURCE S|NOS

“SPACE” on page 280 SPACE(1) None

“TERMINAL” on page 284 TERMINAL TERM|NOTERM

“VBREF” on page 288 NOVBREF None

“XREF” on page 289 XREF(FULL) X|NOX

Object module
generation

“COMPILE” on page 259 NOCOMPILE(S) C|NOC

“PGMNAME” on page 275 PGMNAME(UPPER) PGMN(LU|LM)

“SEPOBJ” on page 277 SEPOBJ None

248  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 29. Compiler options (continued)

Aspect of your
program

Compiler option Default Option abbreviations

Object code
control

“ADDR” on page 251 ADDR(32) None

“BINARY” on page 254 BINARY(NATIVE) None

“CHAR” on page 255 CHAR(NATIVE) None

“COLLSEQ” on page 258 COLLSEQ(BIN) CS(L|E|BIN|B)

“DEFINE” on page 262 NODEFINE DEF | NODEF

“DIAGTRUNC” on page 263 NODIAGTRUNC DTR|NODTR

“FLOAT” on page 269 FLOAT(NATIVE) None

“NCOLLSEQ” on page 273 NCOLLSEQ(BINARY) NCS(L|BIN|B)

“OPTIMIZE” on page 274 NOOPTIMIZE OPT|NOOPT

“TRUNC” on page 285 TRUNC(STD) None

“ZWB” on page 290 ZWB None

CALL statement
behavior

“DYNAM” on page 264 NODYNAM DYN|NODYN

Debugging and
diagnostics

“FLAG” on page 267 FLAG(I,I) F|NOF

“FLAGSTD” on page 268 NOFLAGSTD None

“SSRANGE” on page 283 NOSSRANGE SSR(MSG|ABD)|NOSSR

“TEST” on page 284 NOTEST None

Other “ADATA” on page 251 NOADATA None

“CALLINT” on page 254 CALLINT(SYSTEM,NOD
ESC)

None

“EXIT” on page 265 NOEXIT NOEX|EX(INX|NOINX,
LIBX|NOLIBX, PRTX|
NOPRTX, ADX|NOADX, MSGX|
NOMSGX)

“MDECK” on page 272 NOMDECK NOMD|MD|MD(C|NOC)

“SPILL” on page 280 SPILL(512) None

“THREAD” on page 285 NOTHREAD None

“WSCLEAR” on page 288 NOWSCLEAR None

Installation defaults: The defaults listed for the options above are the defaults shipped with the product.

Option specifications:

• Compiler options and suboptions are not case sensitive.
• For compiler options that are followed by arguments as the suboptions, you must adhere to using the

format of option(argument), instead of specifying option=argument.

Performance considerations: The ADDR, ARITH, CHAR, DYNAM, FLOAT, OPTIMIZE, SSRANGE, TEST,
TRUNC, and WSCLEAR compiler options can affect runtime performance.

Chapter 13. Specifying compiler options on the command line  249



Related tasks   
“Compiling programs” on page 224 
Chapter 27, “Tuning your program,” on page 493 

Related references   
Chapter 14, “Compiler-directing
statements,” on page 293 
“Performance-related compiler options” on page 501  

Option settings for 85 COBOL Standard conformance
Compiler options and runtime options are required for conformance with the 85 COBOL Standard.

The following compiler options are required:

• DYNAM
• NOCICS
• NOSOSI
• NOTHREAD
• PGMNAME(COMPAT) or PGMNAME(LONGUPPER)
• QUOTE
• TRUNC(STD)
• ZWB

You can use the FLAGSTD compiler option to flag nonconforming elements such as IBM extensions.

Conflicting compiler options
The COBOL for Linux compiler can encounter conflicting compiler options in either of two ways: both the
positive and negative form of an option are specified at the same level in the hierarchy of precedence of
options, or mutually exclusive options are specified at the same level.

The compiler recognizes options in the following order of precedence from highest to lowest:

1. Options specified in the PROCESS (or CBL) statement
2. Options specified in the cob2 command invocation
3. Options set in the COBOPT environment variable
4. Options set in the compopts attribute of the configuration (.cfg) file
5. IBM default options

If you specify conflicting options at the same level in the hierarchy, the option specified last takes effect.

If you specify mutually exclusive compiler options at the same level, the compiler forces one of the
options to a nonconflicting value, and generates an error message. For example, if you specify both CICS
and DYNAM in the PROCESS statement in any order, CICS takes effect and DYNAM is ignored, as shown in
the following table.

Table 30. Mutually exclusive compiler options

Specified Ignored Forced on

CICS ADDR(64) ADDR(32)

DYNAM NODYNAM

THREAD NOTHREAD

However, options specified at a higher level of precedence override options specified at a lower level
of precedence. For example, if you code CICS in the COBOPT environment variable but DYNAM in the

250  IBM COBOL for Linux on x86 1.1: Programming Guide



PROCESS statement, DYNAM takes effect because the options coded in the PROCESS statement and any
options forced on by an option coded in the PROCESS statement have higher precedence.

Related tasks   
“Compiling programs” on page 224 

Related references  
“Compiler environment
variables” on page 218  
“Stanzas in the configuration file” on page 229  
“cob2 options” on page 232  
Chapter 14, “Compiler-directing
statements,” on page 293 

ADATA
Use ADATA when you want the compiler to create a SYSADATA file that contains records of additional
compilation information.

ADATA option syntax
NOADATA

ADATA

Default is: NOADATA

Abbreviations are: None

SYSADATA information is used by other tools, which will set ADATA ON for their use.

The size of the SYSADATA file generally grows with the size of the associated program.

Option specification: You cannot specify the ADATA option in a PROCESS (or CBL) statement. You can
specify it only in one of the following ways:

• As an option in the cob2 command or one of its variants
• In the COBOPT environment variable
• In the compopts attribute of the configuration (.cfg) file

Note: The ADATA option is not currently supported. Use the default, NOADATA for now.

Related references  
“Compiler environment
variables” on page 218  
“Stanzas in the configuration file” on page 229  
“cob2 options” on page 232 
  

ADDR
Use the ADDR compiler option to indicate whether a 32-bit or 64-bit object program should be generated.

ADDR option syntax

ADDR(

32

64 )

Default is: ADDR(32)

Chapter 13. Specifying compiler options on the command line  251



Abbreviations are: None

Option specification:

Note: The ADDR(64) and -q64 options are not currently supported. The compiler accepts and ignores
these options and defaults to ADDR(32).

You can specify the ADDR option in any of the ways that you specify other compiler options, as described
in the related task about compiling programs. However, if you specify ADDR in a PROCESS (or CBL)
statement:

• In a batch compilation, you can specify ADDR only for the first program. You cannot change the value of
the option for subsequent programs in the batch.

• You must use the matching 32-bit or 64-bit option in the link step.

If you specify compiler options using the -q option of the cob2 command, you can abbreviate ADDR(32)
as 32 or ADDR(64) as 64. For example:

cob2 -q64 prog64.cbl

Storage allocation:

The storage allocation for the following COBOL data types depends on the setting of the ADDR compiler
option:

• USAGE POINTER (also the ADDRESS OF special register, which implicitly has this usage)
• USAGE PROCEDURE-POINTER
• USAGE FUNCTION-POINTER
• USAGE INDEX

If ADDR(32) is in effect, 4 bytes are allocated for each item in your program that has one of the usages
listed above; if ADDR(64) is in effect, 8 bytes are allocated for each of the items.

If the SYNCHRONIZED clause is specified for a data item that has one of the usages shown above, the item
is aligned on a fullword boundary if ADDR(32) is in effect, or on a doubleword boundary if ADDR(64) is in
effect.

The setting of the ADDR option affects several compiler limits. For details, see the related reference about
compiler limits.

LENGTH OF special register:

If ADDR(32) is in effect, the LENGTH OF special register has this implicit definition:

PICTURE 9(9) USAGE IS BINARY

If ADDR(64) is in effect, the LENGTH OF special register has this implicit definition:

PICTURE 9(18) USAGE IS BINARY

LENGTH intrinsic function:

If ADDR(32) is in effect, the returned value of the LENGTH intrinsic function is a 9-digit integer. If
ADDR(64) is in effect, the returned value is an 18-digit integer.

Programming requirements and restrictions:

• All program components within an application must be compiled using the same setting of the ADDR
option. You cannot mix 32-bit programs and 64-bit programs in an application.

• Interlanguage communication: In multilanguage applications, 64-bit COBOL programs can be
combined with 64-bit C/C++ programs, and 32-bit COBOL programs can be combined with 32-bit C/C++
programs.

252  IBM COBOL for Linux on x86 1.1: Programming Guide



• CICS: COBOL programs that will run in the TXSeries or CICS TX environment must be 32 bit.

Related concepts   
  

Related tasks   
“Finding the length of data
items” on page 109 
“Compiling programs” on page 224 
“Coding COBOL programs to
run under CICS” on page 380 
“Calling between COBOL and C/C++ programs” on page 437 

Related references   
“cob2 options” on page 232   
“Conflicting
compiler options” on page 250    
   
Compiler limits (COBOL for Linux on x86 Language Reference)

ARITH
ARITH affects the maximum number of digits that you can code for numeric items, and the number of
digits used in fixed-point intermediate results.

ARITH option syntax

ARITH(

COMPAT

EXTEND )

Default is: ARITH(COMPAT)

Abbreviations are: AR(C | E)

When you specify ARITH(EXTEND):

• The maximum number of digit positions that you can specify in the PICTURE clause for packed-decimal,
external-decimal, and numeric-edited data items is raised from 18 to 31.

• The maximum number of digits that you can specify in a fixed-point numeric literal is raised from 18
to 31. You can use numeric literals with large precision anywhere that numeric literals are currently
allowed, including:

– Operands of PROCEDURE DIVISION statements
– VALUE clauses (for numeric data items with large-precision PICTURE)
– Condition-name values (on numeric data items with large-precision PICTURE)

• The maximum number of digits that you can specify in the arguments to NUMVAL, NUMVAL-C and is
raised from 18 to 31.

• The maximum value of the integer argument to the FACTORIAL function is 29.
• Intermediate results in arithmetic statements use extended mode.

When you specify ARITH(COMPAT):

• The maximum number of digit positions in the PICTURE clause for packed-decimal, external-decimal,
and numeric-edited data items is 18.

• The maximum number of digits in a fixed-point numeric literal is 18.
• The maximum number of digits in the arguments to NUMVAL, NUMVAL-C and is 18.
• The maximum value of the integer argument to the FACTORIAL function is 28.

Chapter 13. Specifying compiler options on the command line  253



• Intermediate results in arithmetic statements use compatibility mode.

Related concepts   
Appendix C, “Intermediate results
and arithmetic precision,” on page 527 

BINARY
BINARY specifies the representation format of binary data items.

BINARY option syntax

BINARY(

NATIVE

BE

LE

)

Default is: BINARY(NATIVE)

Abbreviations are: None

Specify BINARY(NATIVE) to use the native binary representation format of the platform. For COBOL for
Linux, this is little-endian format (least significant digit at the lowest address).

BINARY(BE) indicates that BINARY, COMP, and COMP-4 data items are represented consistently with
IBM Z, that is, in big-endian format (most significant digit at the lowest address).

BINARY(LE) indicates that BINARY, COMP, and COMP-4 data items are represented in little-endian
format (least significant digit at the lowest address).

CALLINT
Use CALLINT to indicate the call interface convention applicable to calls made with the CALL statement,
and to indicate whether argument descriptors are to be generated.

CALLINT option syntax

CALLINT(

SYSTEM

OPTLINK

CDECL

,

NODESC

DESC

DESCRIPTOR

NODESCRIPTOR

)

Default is: CALLINT(SYSTEM,NODESC)

Abbreviations are: None

You can override this option for specific CALL statements by using the compiler directive >>CALLINT.

CALLINT has two sets of suboptions:

• Selecting a call interface convention:
SYSTEM

The SYSTEM suboption specifies that the call convention is that of the standard system linkage
convention of the platform.

SYSTEM is the only call interface convention supported on Linux.

254  IBM COBOL for Linux on x86 1.1: Programming Guide



OPTLINK
If you code the OPTLINK suboption, the compiler generates an I-level diagnostic message, and the
entire directive (not just the first keyword) is ignored.

CDECL
If you code the CDECL suboption, the compiler generates an I-level diagnostic message, and the
entire directive (not just the first keyword) is ignored.

• Specifying whether the argument descriptors are to be generated:
DESC

The DESC suboption specifies that an argument descriptor is passed for each argument in a CALL
statement. For more information about argument descriptors, see the Related references below.

Attention: Do not specify the DESC suboption in object-oriented programs.

DESCRIPTOR
The DESCRIPTOR suboption is synonymous with the DESC suboption.

NODESC
The NODESC suboption specifies that no argument descriptors are passed for any arguments in a
CALL statement.

NODESCRIPTOR
The NODESCRIPTOR suboption is synonymous with the NODESC suboption.

Related references   
Chapter 14, “Compiler-directing
statements,” on page 293 

CHAR
CHAR affects the representation and runtime treatment of USAGE DISPLAY and USAGE DISPLAY-1 data
items.

CHAR option syntax

CHAR(

NATIVE

EBCDIC

S390

)

Default is: CHAR(NATIVE)

Abbreviations are: None

Specify CHAR(NATIVE) to use the native character representation (the native format) of the platform. For
COBOL for Linux, the native format is defined by the code page that is indicated by the locale in effect at
run time. The code page can be a single-byte ASCII code page or an ASCII-based multibyte code page
(UTF-8, EUC, or ASCII DBCS).

CHAR(EBCDIC) and CHAR(S390) are synonymous and indicate that DISPLAY and DISPLAY-1 data
items are in the character representation of IBM Z, that is, in EBCDIC.

However, DISPLAY and DISPLAY-1 data items defined with the NATIVE phrase in the USAGE clause are
not affected by the CHAR(EBCDIC) option. They are always stored in the native format of the platform.

The CHAR(EBCDIC) compiler option has the following effects on runtime processing:

• USAGE DISPLAY and USAGE DISPLAY-1 items: Characters in data items that are described with
USAGE DISPLAY are treated as single-byte EBCDIC format. Characters in data items that are described
with USAGE DISPLAY-1 are treated as EBCDIC DBCS format. (In the bullets that follow, the term
EBCDIC refers to single-byte EBCDIC format for USAGE DISPLAY and to EBCDIC DBCS format for
USAGE DISPLAY-1.)

Chapter 13. Specifying compiler options on the command line  255



– Data that is encoded in the native format is converted to EBCDIC format upon ACCEPT from the
terminal.

– EBCDIC data is converted to the native format upon DISPLAY to the terminal.
– The content of alphanumeric literals and DBCS literals is converted to EBCDIC format for assignment

to data items that are encoded in EBCDIC. For the rules about the comparison of character data when
the CHAR(EBCDIC) option is in effect, see the related reference below about the COLLSEQ option.

– Editing is done with EBCDIC characters.
– Padding is done with EBCDIC spaces. Group items that are used in alphanumeric operations (such

as assignments and comparisons) are padded with single-byte EBCDIC spaces regardless of the
definition of the elementary items within the group.

– Figurative constant SPACE or SPACES used in a VALUE clause for an assignment to, or in a relation
condition with, a USAGE DISPLAY item is treated as a single-byte EBCDIC space (that is, X'40').

– Figurative constant SPACE or SPACES used in a VALUE clause for an assignment to, or in a relation
condition with, a DISPLAY-1 item is treated as an EBCDIC DBCS space (that is, X'4040').

– Class tests are performed based on EBCDIC value ranges.
• USAGE DISPLAY items:

– The program-name in CALL identifier, CANCEL identifier, or in a format-6 SET statement is converted
to the native format if the data item referenced by identifier is encoded in EBCDIC.

– The file-name in the data item referenced by data-name in ASSIGN USING data-name is converted
to the native format if the data item is encoded in EBCDIC.

– The file-name in the SORT-CONTROL special register is converted to native format before being
passed to a sort or merge function. (SORT-CONTROL has the implicit definition USAGE DISPLAY.)

– Zoned decimal data (numeric PICTURE clause with USAGE DISPLAY) and display floating-point data
are treated as EBCDIC format. For example, the value of PIC S9 value "1" is X'F1' instead of
X'31'.

• Group items: Alphanumeric group items are treated similarly to USAGE DISPLAY items. (Note that a
USAGE clause for an alphanumeric group item applies to the elementary items within the group and not
to the group itself.)

Hexadecimal literals are assumed to represent EBCDIC characters if the literals are assigned to, or
compared with, character data. For example, X'C1' compares equal to an alphanumeric item that has the
value 'A'.

Figurative constants HIGH-VALUE or HIGH-VALUES, LOW-VALUE or LOW-VALUES, SPACE or SPACES,
ZERO or ZEROS, and QUOTE or QUOTES are treated logically as their EBCDIC character representations for
assignments to or comparisons with data items that are encoded in EBCDIC.

In comparisons between alphanumeric USAGE DISPLAY items, the collating sequence used is the ordinal
sequence of the characters based on their binary (hexadecimal) values as modified by an alternate
collating sequence for single-byte characters, if specified.

Related tasks   
“Specifying the code page for character data” on page 202 

Related references   
“COLLSEQ” on page 258 
“The encoding of XML
documents” on page 396  
Appendix B, “IBM Z host data format
considerations,” on page 525  

256  IBM COBOL for Linux on x86 1.1: Programming Guide



CICS
The CICS compiler option enables the integrated CICS translator and lets you specify CICS suboptions.
You must use the CICS option if your COBOL source program contains EXEC CICS statements and the
program has not been processed by the separate CICS translator.

CICS option syntax
NOCICS

CICS

(" CICS-suboption-string ")

Default is: NOCICS

Abbreviations are: None

Use the CICS option only to compile CICS programs. Programs compiled with the CICS option will not run
in a non-CICS environment.

Ensure you set the following environment variables before compiling:

export NLSPATH=<CICS install dir>/msg/%L/%N:$NLSPATH
export LD_LIBRARY_PATH=<CICS install dir>/lib:$LD_LIBRARY_PATH

If you specify the NOCICS option, any CICS statements found in the source program are diagnosed and
discarded.

Use either quotation marks or apostrophes to delimit the string of CICS suboptions.

You can use the syntax shown above in either the CBL or PROCESS statement. If you use the CICS option
in the cob2 or cob2_r command, only the single quotation mark (') can be used as the string delimiter:
-q"CICS('options')".

You can partition a long CICS suboption string into multiple suboption strings in multiple CBL or PROCESS
statements. The CICS suboptions are concatenated in the order of their appearance. For example,
suppose that your source file mypgm.cbl has the following code:

cbl . . . CICS("string2") . . .
cbl . . . CICS("string3") . . .

When you issue the command cob2_r mypgm.cbl -q"CICS('string1')", the compiler passes the
following suboption string to the integrated CICS translator:

"string1 string2 string3"

The concatenated strings are delimited with single spaces as shown. If multiple instances of the same
CICS suboption are found, the last specification of that suboption in the concatenated string prevails. The
compiler limits the size of the concatenated suboption string to 4 KB.

Related concepts   
“Integrated CICS translator” on page 385 

Related tasks   
Chapter 18, “Developing COBOL programs for CICS,” on page 379

Related references   
“Conflicting
compiler options” on page 250

Chapter 13. Specifying compiler options on the command line  257



COLLSEQ
COLLSEQ specifies the collating sequence for comparison of alphanumeric and DBCS operands.

COLLSEQ option syntax

COLLSEQ(

BINARY

LOCALE

EBCDIC

)

Default is: COLLSEQ(BINARY)

Abbreviations are: CS(L|E|BIN|B)

You can specify the following suboptions for COLLSEQ:

• COLLSEQ(EBCDIC): Use the EBCDIC collating sequence rather than the ASCII collating sequence.
• COLLSEQ(LOCALE): Use locale-based collation (consistent with the cultural conventions for collation

for the locale).
• COLLSEQ(BIN): Use the hexadecimal values of the characters; the locale setting has no effect. This

setting will give better runtime performance.

If you use the PROGRAM COLLATING SEQUENCE clause in your source with an alphabet-name of
STANDARD-1, STANDARD-2, or EBCDIC, the COLLSEQ option is ignored for comparison of alphanumeric
operands. If you specify PROGRAM COLLATING SEQUENCE is NATIVE, the COLLSEQ option applies.
Otherwise, when the alphabet-name specified in the PROGRAM COLLATING SEQUENCE clause is
defined with literals, the collating sequence used is that given by the COLLSEQ option, modified by the
user-defined sequence given by the alphabet-name. (For details, see the related reference about the
ALPHABET clause.)

The PROGRAM COLLATING SEQUENCE clause has no effect on DBCS comparisons.

The former suboption NATIVE is deprecated. If you specify the NATIVE suboption, COLLSEQ(LOCALE) is
assumed.

The following table summarizes the conversion and the collating sequence that are applicable, based
on the types of data (ASCII or EBCDIC) used in a comparison and the COLLSEQ option in effect when
the PROGRAM COLLATING SEQUENCE clause is not specified. If it is specified, the source specification
has precedence over the compiler option specification. The CHAR option affects whether data is ASCII or
EBCDIC.

Table 31. Effect of comparand data type and collating sequence on comparisons

Comparands COLLSEQ(BIN) COLLSEQ(LOCALE) COLLSEQ(EBCDIC)

Both ASCII No conversion is
performed. The
comparison is based on
the binary value (ASCII).

No conversion is
performed. The
comparison is based on
the current locale.

Both comparands are
converted to EBCDIC.
The comparison is based
on the binary value
(EBCDIC).

Mixed ASCII and
EBCDIC

The EBCDIC comparand
is converted to ASCII.
The comparison is based
on the binary value
(ASCII).

The EBCDIC comparand
is converted to ASCII.
The comparison is based
on the current locale.

The ASCII comparand
is converted to EBCDIC.
The comparison is based
on the binary value
(EBCDIC).

258  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 31. Effect of comparand data type and collating sequence on comparisons (continued)

Comparands COLLSEQ(BIN) COLLSEQ(LOCALE) COLLSEQ(EBCDIC)

Both EBCDIC No conversion is
performed. The
comparison is based
on the binary value
(EBCDIC).

The comparands are
converted to ASCII. The
comparison is based on
the current locale.

No conversion is
performed. The
comparison is based
on the binary value
(EBCDIC).

Related tasks   
“Specifying the collating sequence” on page 6  
“Controlling the collating
sequence with a locale” on page 207 

Related references   
“CHAR” on page 255
ALPHABET clause (COBOL for Linux on x86 Language Reference)

COMPILE
Use the COMPILE option only if you want to force full compilation even in the presence of serious errors.
All diagnostics and object code will be generated. Do not try to run the object code if the compilation
resulted in serious errors: the results could be unpredictable or an abnormal termination could occur.

COMPILE option syntax

NOCOMPILE(

S

E

W

)

COMPILE

NOCOMPILE

Default is: NOCOMPILE(S)

Abbreviations are: C | NOC

Use NOCOMPILE without any suboption to request a syntax check (only diagnostics produced, no object
code). If you use NOCOMPILE without any suboption, several compiler options will have no effect because
no object code will be produced, for example: LIST, OPTIMIZE, SSRANGE, and TEST.

Use NOCOMPILE with suboption W, E, or S for conditional full compilation. Full compilation (diagnosis and
object code) will stop when the compiler finds an error of the level you specify (or higher), and only syntax
checking will continue.

Related tasks   
“Finding coding errors” on page 307 

Related references   
“Messages and listings
for compiler-detected errors” on page 231 

Chapter 13. Specifying compiler options on the command line  259



CURRENCY
You can use the CURRENCY option to provide an alternate default currency symbol to be used for a COBOL
program. (The default currency symbol is the dollar sign ($).)

CURRENCY option syntax
NOCURRENCY

CURRENCY(  literal )

Default is: NOCURRENCY

Abbreviations are: CURR | NOCURR

NOCURRENCY specifies that no alternate default currency symbol will be used.

To change the default currency symbol, specify CURRENCY(literal), where literal is a valid COBOL
alphanumeric literal (optionally a hexadecimal literal) that represents a single character. The literal must
not be from the following list:

• Digits zero (0) through nine (9)
• Uppercase alphabetic characters A B C D E G N P R S V X Z or their lowercase equivalents
• The space
• Special characters * + - / , . ; ( ) " =
• A figurative constant
• A null-terminated literal
• A DBCS literal
• A national literal

If your program processes only one currency type, you can use the CURRENCY option as an alternative to
the CURRENCY SIGN clause for indicating the currency symbol you will use in the PICTURE clause of your
program. If your program processes more than one currency type, you should use the CURRENCY SIGN
clause with the WITH PICTURE SYMBOL phrase to specify the different currency sign types.

If you use both the CURRENCY option and the CURRENCY SIGN clause in a program, the CURRENCY option
is ignored. Currency symbols specified in the CURRENCY SIGN clause or clauses can be used in PICTURE
clauses.

When the NOCURRENCY option is in effect and you omit the CURRENCY SIGN clause, the dollar sign ($) is
used as the PICTURE symbol for the currency sign.

Delimiter: You can delimit the CURRENCY option literal with either quotation marks or apostrophes,
regardless of the APOST|QUOTE compiler option setting.

Related tasks   
“Using currency signs” on page 56  

260  IBM COBOL for Linux on x86 1.1: Programming Guide



DATEPROC
Use the DATEPROC option to enable the millennium language extensions of the COBOL compiler.

DATEPROC option syntax
NODATEPROC

DATEPROC

(

FLAG

NOFLAG )

Default is: NODATEPROC, or DATEPROC(FLAG) if only DATEPROC is specified

Abbreviations are: DP | NODP

DATEPROC(FLAG)
With DATEPROC(FLAG), the millennium language extensions are enabled, and the compiler produces
a diagnostic message wherever a language element uses or is affected by the extensions. The
message is usually an information-level or warning-level message that identifies statements that
involve date-sensitive processing. Additional messages that identify errors or possible inconsistencies
in the date constructs might be generated.

Production of diagnostic messages, and their appearance in or after the source listing, is subject to the
setting of the FLAG compiler option.

DATEPROC(NOFLAG)
With DATEPROC(NOFLAG), the millennium language extensions are in effect, but the compiler does
not produce any related messages unless there are errors or inconsistencies in the COBOL source.

NODATEPROC
NODATEPROC indicates that the extensions are not enabled for this compilation unit. This option
affects date-related program constructs as follows:

• The DATE FORMAT clause is syntax-checked, but has no effect on the execution of the program.
• The DATEVAL and UNDATE intrinsic functions have no effect. That is, the value returned by the

intrinsic function is exactly the same as the value of the argument.
• The YEARWINDOW intrinsic function returns a value of zero.

Related references   
“FLAG” on page 267 
“YEARWINDOW” on page 290 

DATETIME
The DATETIME option specifies the date window that is used for the windowing algorithm.

DATETIME option syntax

DATETIME

( 4-digit-base-century

2-digit-base-year

)

Default is: DATETIME(1900, 40)

Abbreviations are: None

Chapter 13. Specifying compiler options on the command line  261



4-digit-base-century
This must be the first argument. Defines the base century used for the windowing algorithm. The
default value is 1900.

2-digit-base-year
This must be the second argument. Defines the base year used for the windowing algorithm. The
default value is 40.

The default option DATETIME(1900, 40) results in a 100-year window of 1940 through 2039.
Specifying DATETIME(1900 70) results in a 100-year window of 1970 through 2069.

Option specification:

• As an option in the cob2 command, the arguments must be surrounded by single quotes; for example,
DATETIME(‘1900 40’).

• As a process statement, the arguments can be written without quotes; for example, DATETIME(1900
40).

• If the DATETIME option is not specified, or no arguments are supplied, both base-century and base-year
take their default values. Base-century can be specified without a following base-year argument, in
which case base-year will take its default value. If base-year is specified, base-century must also be
specified.

DEFINE
Use the DEFINE compiler option to assign a literal value to a compilation variable that is defined in
the program by using the DEFINE directive with the PARAMETER phrase. The literal value provided for
the compilation variable in the DEFINE option is sometimes referred to as a "parameter value" for the
corresponding compilation variable. Compilation variables can be used within any of the conditional
compilation directives, including DEFINE, EVALUATE, and IF. When a conditional compilation variable
appears in a conditional compilation directive, it is treated as a symbolic reference to the literal value it
currently represents.

The DEFINE compiler option provides a way for you to assign values to compilation variables from outside
the program source. If that is not needed, it is sufficient to use the DEFINE directive within program
source to define compilation variables.

DEFINE option syntax
NODEFINE

DEFINE(  compilation-variable-name-1

=
,

literal-1

)

Default is: NODEFINE

Abbreviations are: DEF | NODEF

compilation-variable-name-1
The name of a compilation variable to be referenced in conditional compilation directives in the
program. If no corresponding DEFINE directive with PARAMETER phrase exists for compilation-
variable-name-1 in the program, any instances of the DEFINE compiler option specified for that
compilation variable are ignored. compilation-variable-name-1 is formed according to the rules of a
data-name user-defined word, except that DBCS characters are not allowed in the name. For details,
see User-defined words in the COBOL for Linux on x86 Language Reference.

literal-1
The literal value that compilation-variable-name-1 will represent symbolically in conditional
compilation-related directives in the program. literal-1 must be one of the following items:

262  IBM COBOL for Linux on x86 1.1: Programming Guide



• An alphanumeric literal, which can be specified as a regular alphanumeric literal ('abcd') or as a
hex literal (x'F1F2F3'). National literals, DBCS literals, and null-terminated alphanumeric literals (Z
literals) are not supported.

• An integer literal.
• A boolean literal (only B'0' and B'1' are supported).

If literal-1 is not specified, a value of B'1' will be assigned to the compilation variable. For example, if
you specify:

>>define foo

foo will be assigned the value B'1'.

Note: The compiler interprets certain shell scripting characters as follows:

• An equal sign (=) is interpreted to a left parenthesis, (
• A colon (:) is interpreted to a right parenthesis, )
• An underscore (_) is interpreted to a single quotation mark (')

You can add a backslash (\) escape character to prevent the interpretation and thus to pass characters in
the strings. If you want the backslash (\) to represent itself (rather than as an escape character), use the
double backslash (\\).

For example, to use the DEFINE option to assign the literal value 1 to a compilation variable VAR1, specify
the DEFINE option as follows:

DEFINE(VAR1=1)

If VAR1 contains an equal sign, a colon, or an underscore that you want to escape from compiler's
interpretation, specify the DEFINE option as follows:

DEFINE(VAR1\=1)

Multiple instances of the DEFINE option can be specified to define a value for multiple different
compilation variables. If a single conditional compilation variable is defined more than once, the last
definition of the variable will be used as the value of the corresponding conditional compilation variable.
If NODEFINE appears after previous instances of the DEFINE option, the definitions for all conditional
compilation variables are cancelled.

When DEFINE options are specified in CBL statements, they can be used only on the first program of a
batch program. Therefore, if a file has multiple COBOL programs in it, there can be CBL statements with
DEFINE options preceding the first program, but not the other programs. The DEFINE options specified
for the first program (and DEFINE options specified as cob2 command options) apply to all programs in a
file.

Related references   
Conditional compilation (COBOL for Linux on x86 Language Reference)  
DEFINE (COBOL for Linux on x86 Language Reference)

DIAGTRUNC
DIAGTRUNC causes the compiler to issue a severity-4 (Warning) diagnostic message for MOVE statements
that have numeric receivers when the receiving data item has fewer integer positions than the sending

Chapter 13. Specifying compiler options on the command line  263



data item or literal. In statements that have multiple receivers, the message is issued separately for each
receiver that could be truncated.

DIAGTRUNC option syntax
NODIAGTRUNC

DIAGTRUNC

Default is: NODIAGTRUNC

Abbreviations are: DTR | NODTR

The diagnostic message is also issued for implicit moves associated with statements such as these:

• INITIALIZE
• READ . . . INTO
• RELEASE . . . FROM
• RETURN . . . INTO
• REWRITE . . . FROM
• WRITE . . . FROM

The diagnostic message is also issued for moves to numeric receivers from alphanumeric data-names or
literal senders, except when the sending field is reference modified.

There is no diagnostic message for COMP-5 receivers, nor for binary receivers when you specify the
TRUNC(BIN) option.

Related concepts   
“Formats for numeric
data” on page 39  
“Reference modifiers” on page 100 

Related references   
“TRUNC” on page 285 

DYNAM
Use DYNAM to cause nonnested, separately compiled programs invoked through the CALL literal
statement to be loaded for CALL, and deleted for CANCEL, dynamically at run time.

CALL identifier statements always result in a runtime load of the target program and are not affected by
this option.

DYNAM option syntax
NODYNAM

DYNAM

Default is: NODYNAM

Abbreviations are: DYN | NODYN

The condition for the ON EXCEPTION phrase can occur for a CALL literal statement only if the DYNAM
option is in effect.

Restriction: The DYNAM compiler option must not be used for programs that contain EXEC CICS or EXEC
SQL statements.

With NODYNAM, the target program-name is resolved through the linker.

264  IBM COBOL for Linux on x86 1.1: Programming Guide



With the DYNAM option, the following statement:

CALL "myprogram" . . .

has the identical behavior to these statements:

MOVE "myprogram" to id-1
CALL id-1 ...

Related concepts   
“CALL identifier and
CALL literal” on page 435
CALLINTERFACE (COBOL for Linux on x86 Language Reference)

Related references  
“Conflicting
compiler options” on page 250    

EXIT
Use the EXIT option to provide user-supplied modules in place of various compiler functions.

For compiler input, use the INEXIT suboption to provide a module in place of SYSIN (primary compiler
input), and use the LIBEXIT suboption to provide a module in place of SYSLIB (copy library input). For
compiler output, use the PRTEXIT suboption to provide a module in place of SYSPRINT (the compiler
listing file).

To customize compiler messages (change their severity or suppress them, including converting FIPS
(FLAGSTD) messages to diagnostic messages to which you assign a severity), use the MSGEXIT suboption.
The module that you provide to customize the messages will be called each time the compiler issues a
diagnostic message or a FIPS message.

When creating your exit module, ensure that the module is linked as a shared library module before
you run it with the COBOL compiler. Exit modules are invoked with the system linkage convention of the
platform.

Chapter 13. Specifying compiler options on the command line  265



EXIT option syntax
NOEXIT

EXIT(

INEXIT(

str1,

mod1)

NOINEXIT

LIBEXIT(

str2,

mod2)

NOLIBEXIT

PRTEXIT(

str3,

mod3)

NOPRTEXIT

MSGEXIT(

str5,

mod5)

NOMSGEXIT

)

Default is: NOEXIT

Abbreviations are: NOEX|EX(INX|NOINX, LIBX|NOLIBX, PRTX|NOPRTX, ADX|NOADX, MSGX|NOMSGX)

Option specification: You cannot specify the EXIT option in a PROCESS (or CBL) statement. You can
specify it only in one of the following ways:

• As an option in the cob2 command
• In the COBOPT environment variable

You can specify the suboptions in any order, and can separate them by either commas or spaces. If you
specify both the positive and negative form of a suboption, the form specified last takes effect. If you
specify the same suboption more than once, the last one specified takes effect.

If you specify the EXIT option without providing at least one suboption (that is, you specify EXIT()),
NOEXIT will be in effect.

INEXIT(['str1',]mod1)
The compiler reads source code from a user-supplied load module (where mod1 is the module name)
instead of SYSIN.

LIBEXIT(['str2',]mod2)
The compiler obtains copybooks from a user-supplied load module (where mod2 is the module name)
instead of library-name or SYSLIB. For use with either COPY or BASIS statements.

PRTEXIT(['str3',]mod3)
The compiler passes printer-destined output to the user-supplied load module (where mod3 is the
module name) instead of SYSPRINT.

MSGEXIT(['str5',]mod5)
The compiler passes the message number, and passes the default severity of a compiler diagnostic
message, or the category (as a numeric code) of a FIPS compiler message, to the user-supplied load
module (where mod5 is the module name).

The names mod1, mod2, mod3, mod4, and mod5 can refer to the same module.

The suboptions str1, str2, str3, str4, and str5 are character strings that are passed to the load module.
These strings are optional. They can be up to 64 characters in length, and you must enclose them in a

266  IBM COBOL for Linux on x86 1.1: Programming Guide



pair of apostrophes (' '). You can use any character in the strings, but any included apostrophes must be
doubled ("). Lowercase characters are folded to uppercase.

Character string formats: If one of str1, str2, str3, str4, or str5 is specified, that string is passed to the
appropriate user-exit module in the following format, where LL is a halfword (on a halfword boundary)
that contains the length of the string.

LL string

“Example: MSGEXIT user exit” on page 590

Related references   
“FLAGSTD” on page 268 
Appendix F, “EXIT compiler option,” on page 583

FLAG
Use FLAG(x) to produce diagnostic messages at the end of the source listing for errors of a severity level
x or above.

FLAG option syntax
FLAG(  x

, y
)

NOFLAG

Default is: FLAG(I,I)

Abbreviations are: F | NOF

x and y can be either I, W, E, S, or U.

Use FLAG(x,y) to produce diagnostic messages for errors of severity level x or above at the end of the
source listing, with error messages of severity y and above to be embedded directly in the source listing.
The severity coded for y must not be lower than the severity coded for x. To use FLAG(x,y), you must
also specify the SOURCE compiler option.

Error messages in the source listing are set off by the embedding of the statement number in an arrow
that points to the message code. The message code is followed by the message text. For example:

  000413     MOVE CORR WS-DATE TO HEADER-DATE

==000413==>    IGYPS2121-S     " WS-DATE " was not defined as a data-name.  . . .

When FLAG(x,y) is in effect, most messages of severity y and above are embedded in the listing after
the line that caused the message. Messages with the IGYCB prefix will never be embedded in the source.
(See the related reference below for information about messages for exceptions.)

Use NOFLAG to suppress error flagging. NOFLAG does not suppress error messages for compiler options.

Embedded messages

• Embedding level-U messages is not recommended. The specification of embedded level-U messages is
accepted, but does not produce any messages in the source.

• The FLAG option does not affect diagnostic messages that are produced before the compiler options are
processed.

Chapter 13. Specifying compiler options on the command line  267



• Diagnostic messages that are produced during processing of compiler options, CBL or PROCESS
statements, or BASIS, COPY, or REPLACE statements are not embedded in the source listing. All such
messages appear at the beginning of the compiler output.

• Diagnostic messages with the IGYCB prefix are not embedded in the source listing. All such messages
appear at the end of the compiler output, regardless of the setting of the FLAG option.

• Messages that are produced during processing of the *CONTROL or *CBL statement are not embedded
in the source listing.

Related references   
“Messages and listings
for compiler-detected errors” on page 231 

FLAGSTD
Use FLAGSTD to specify the level or subset of the 85 COBOL Standard to be regarded as conforming, and
to get informational messages about the 85 COBOL Standard elements that are included in your program.

You can specify any of the following items for flagging:

• A selected Federal Information Processing Standard (FIPS) COBOL subset
• Any of the optional modules
• Obsolete language elements
• Any combination of subset and optional modules
• Any combination of subset and obsolete elements
• IBM extensions (these are flagged any time that FLAGSTD is specified, and identified as "nonconforming

nonstandard")

FLAGSTD option syntax
NOFLAGSTD

FLAGSTD(  x
yy ,O

)

Default is: NOFLAGSTD

Abbreviations are: None

x specifies the subset of the 85 COBOL Standard to be regarded as conforming:

M
Language elements that are not from the minimum subset are to be flagged as "nonconforming
standard."

I
Language elements that are not from the minimum or the intermediate subset are to be flagged as
"nonconforming standard."

H
The high subset is being used and elements will not be flagged by subset. Elements that are IBM
extensions will be flagged as "nonconforming Standard, IBM extension."

yy specifies, by a single character or combination of any two, the optional modules to be included in the
subset:

D
Elements from debug module level 1 are not flagged as "nonconforming standard."

N
Elements from segmentation module level 1 are not flagged as "nonconforming standard."

268  IBM COBOL for Linux on x86 1.1: Programming Guide



S
Elements from segmentation module level 2 are not flagged as "nonconforming standard."

If S is specified, N is included (N is a subset of S).

O (the letter) specifies that obsolete language elements are flagged as "obsolete."

The informational messages appear in the source program listing, and identify:

• The element as "obsolete," "nonconforming standard," or "nonconforming nonstandard" (a language
element that is both obsolete and nonconforming is flagged as obsolete only)

• The clause, statement, or header that contains the element
• The source program line and beginning location of the clause, statement, or header that contains the

element
• The subset or optional module to which the element belongs

FLAGSTD requires the standard set of reserved words.

In the following example, the line number and column where a flagged clause, statement, or header
occurred are shown with the associated message code and text. After that is a summary of the total
number of flagged items and their type.

   LINE.COL CODE       FIPS MESSAGE TEXT

            IGYDS8211  Comment lines before "IDENTIFICATION DIVISION":
                       nonconforming nonstandard, IBM extension to
                       ANS/ISO 1985.

     11.14  IGYDS8111  "GLOBAL clause":  nonconforming standard, ANS/ISO
                       1985 high subset.

     59.12  IGYPS8169  "USE FOR DEBUGGING statement":  obsolete element
                       in ANS/ISO 1985.

 FIPS MESSAGES TOTAL             STANDARD      NONSTANDARD      OBSOLETE

                 3                   1               1              1

You can convert FIPS informational messages into diagnostic messages, and can suppress FIPS
messages, by using the MSGEXIT suboption of the EXIT compiler option. For details, see the related
reference about the processing of MSGEXIT, and see the related task.

Related tasks   
“Customizing compiler-message severities” on page 588  

Related references  
“Processing
of MSGEXIT” on page 587  

FLOAT
Float specifies the representation format of floating-point data items.

FLOAT option syntax

FLOAT(

NATIVE

BE

LE

)

Default is: FLOAT(NATIVE)

Chapter 13. Specifying compiler options on the command line  269



Abbreviations are: None

Specify FLOAT(NATIVE) to use the native floating-point representation format of the platform. For
COBOL for Linux, this is little-endian format (least significant digit at the lowest address).

FLOAT(BE) indicates that COMP-1 and COMP-2 data items are represented consistently with IBM Z, that
is, in big-endian format (most significant digit at the lowest address).

FLOAT(LE) indicates that COMP-1 and COMP-2 data items are represented in little-endian format (least
significant digit at the lowest address).

Related references   
Appendix B, “IBM Z host data format
considerations,” on page 525 

LINECOUNT
Use LINECOUNT(nnn) to specify the number of lines to be printed on each page of the compilation listing,
or use LINECOUNT(0) to suppress pagination.

LINECOUNT option syntax
LINECOUNT(  nnn )

Default is: LINECOUNT(60)

Abbreviations are: LC

nnn must be an integer between 10 and 255, or 0.

If you specify LINECOUNT(0), no page ejects are generated in the compilation listing.

The compiler uses three lines of nnn for titles. For example, if you specify LINECOUNT(60), 57 lines of
source code are printed on each page of the output listing.

LIST
Use the LIST compiler option to produce a listing of the assembler-language expansion of your source
code.

LIST option syntax
NOLIST

LIST

Default is: NOLIST

Abbreviations are: None

Any *CONTROL (or *CBL) LIST or NOLIST statements that you code in the PROCEDURE DIVISION have
no effect. They are treated as comments.

The assembler listing is written to a file that has the same name as the source program but has the
suffix .wlist.

Related tasks   
“Getting listings” on page 356 

Related references   
*CONTROL (*CBL) statement (COBOL for Linux on x86 Language Reference)

270  IBM COBOL for Linux on x86 1.1: Programming Guide



LSTFILE
Specify LSTFILE(LOCALE) to have your generated compiler listing encoded in the code page specified
by the locale in effect. Specify LSTFILE(UTF-8) to have your generated compiler listing encoded in
UTF-8.

LSTFILE option syntax

LSTFILE(

LOCALE

UTF-8 )

Default is: LSTFILE(LOCALE)

Abbreviations are: LST

Related references   
Chapter 11, “Setting the locale,” on page 201 

MAP
Use MAP to produce a listing of the items defined in the DATA DIVISION.

MAP option syntax
NOMAP

MAP

Default is: NOMAP

Abbreviations are: None

The output includes the following items:

• DATA DIVISION map
• Nested program structure map, and program attributes
• Size of the program's WORKING-STORAGE and LOCAL-STORAGE

If you want to limit the MAP output, use *CONTROL MAP or NOMAP statements in the DATA DIVISION.
Source statements that follow *CONTROL NOMAP are not included in the listing until a *CONTROL MAP
statement switches the output back to normal MAP format. For example:

*CONTROL NOMAP            *CBL NOMAP
    01  A                     01  A
    02  B                     02  B
*CONTROL MAP              *CBL MAP

When the MAP option is in effect, you also get an embedded MAP report in the source code listing.
The condensed MAP information is shown to the right of data-name definitions in the WORKING-
STORAGE SECTION, FILE SECTION, LOCAL-STORAGE SECTION, and LINKAGE SECTION of the DATA
DIVISION. When both XREF data and an embedded MAP summary are on the same line, the embedded
MAP summary is listed first.

“Example: MAP output” on page 361

Related concepts   
Chapter 16, “Debugging,” on page 303 

Related tasks   
“Getting listings” on page 356 

Chapter 13. Specifying compiler options on the command line  271



Related references   
*CONTROL (*CBL) statement (COBOL for Linux on x86 Language Reference)

MDECK
The MDECK compiler option specifies that a copy of the updated input source after library processing (that
is, the result of COPY, BASIS, REPLACE, and EXEC SQL INCLUDE statements) is written to a file.

The MDECK output is written in the current directory to a file that has the same name as the COBOL source
file and a suffix of .dek.

MDECK option syntax
NOMDECK

MDECK

(

COMPILE

NOCOMPILE )

Default is: NOMDECK

Abbreviations are: NOMD | MD | MD(C | NOC)

Option specification:

You cannot specify the MDECK option in a PROCESS (or CBL) statement. You can specify it only in one of
the following ways:

• As an option in the cob2 command
• In the COBOPT environment variable
• In the compopts attribute of the configuration (.cfg) file

Suboptions:

• When MDECK(COMPILE) is in effect, compilation continues normally after library processing and
generation of the MDECK output file have completed, subject to the setting of the COMPILE | NOCOMPILE
option.

• When MDECK(NOCOMPILE) is in effect, compilation is terminated after syntax checking has completed
and the expanded source program file has been written. The compiler does no code generation
regardless of the setting of the COMPILE option.

If you specify MDECK with no suboption, MDECK(COMPILE) is implied.

Contents of the MDECK output file:

If you use the MDECK option with programs that contain EXEC CICS or EXEC SQL statements, these
EXEC statements are included in the MDECK output as is. However, if you compile using the SQL option,
the corresponding EXEC SQL INCLUDE statements are expanded in the MDECK output.

CBL, PROCESS, *CONTROL, and *CBL card images are passed to the MDECK output file in the proper
locations.

For a batch compilation (multiple COBOL source programs in a single input file), a single MDECK output file
that contains the complete expanded source is created.

Any SEQUENCE compiler-option processing is reflected in the MDECK file.

COPY statements are included in the MDECK file as comments.

Related references  
“Stanzas in the configuration file” on page 229  
“Conflicting

272  IBM COBOL for Linux on x86 1.1: Programming Guide



compiler options” on page 250  
Chapter 14, “Compiler-directing
statements,” on page 293 

NCOLLSEQ
NCOLLSEQ specifies the collating sequence for comparison of class national operands.

NCOLLSEQ option syntax

NCOLLSEQ(

BINARY

LOCALE )

Default is: NCOLLSEQ(BINARY)

Abbreviations are: NCS(L|BIN|B)

NCOLLSEQ(BIN) uses the hexadecimal values of the character pairs.

NCOLLSEQ(LOCALE) uses the algorithm for collation order that is associated with the locale value that is
in effect.

Related tasks   
“Comparing two class national
operands” on page 193  
“Controlling the collating
sequence with a locale” on page 207 

NSYMBOL
The NSYMBOL option controls the interpretation of the N symbol used in literals and PICTURE clauses,
indicating whether national or DBCS processing is assumed.

NSYMBOL option syntax

NSYMBOL(

NATIONAL

DBCS )

Default is: NSYMBOL(NATIONAL)

Abbreviations are: NS(NAT | DBCS)

With NSYMBOL(NATIONAL):

• Data items defined with a PICTURE clause that consists only of the symbol N without the USAGE clause
are treated as if the USAGE NATIONAL clause is specified.

• Literals of the form N". . ." or N'. . .' are treated as national literals.

With NSYMBOL(DBCS):

• Data items defined with a PICTURE clause that consists only of the symbol N without the USAGE clause
are treated as if the USAGE DISPLAY-1 clause is specified.

• Literals of the form N". . ." or N'. . .' are treated as DBCS literals.

The NSYMBOL(DBCS) option provides compatibility with previous releases of IBM COBOL, and the
NSYMBOL(NATIONAL) option makes the handling of the above language elements consistent with the
2002 COBOL Standard in this regard.

NSYMBOL(NATIONAL) is recommended for applications that use Unicode data.

Chapter 13. Specifying compiler options on the command line  273



NUMBER
Use the NUMBER compiler option if you have line numbers in your source code and want those numbers to
be used in error messages and SOURCE, MAP, LIST, and XREF listings.

NUMBER option syntax
NONUMBER

NUMBER

Default is: NONUMBER

Abbreviations are: NUM | NONUM

If you request NUMBER, the compiler checks columns 1 through 6 to make sure that they contain only
numbers and that the numbers are in numeric collating sequence. (In contrast, SEQUENCE checks the
characters in these columns according to EBCDIC collating sequence.) When a line number is found to be
out of sequence, the compiler assigns to it a line number with a value one higher than the line number of
the preceding statement. The compiler flags the new value with two asterisks and includes in the listing
a message indicating an out-of-sequence error. Sequence-checking continues with the next statement,
based on the newly assigned value of the previous line.

If you use COPY statements and NUMBER is in effect, be sure that your source program line numbers and
the copybook line numbers are coordinated.

Use NONUMBER if you do not have line numbers in your source code, or if you want the compiler to ignore
the line numbers you do have in your source code. With NONUMBER in effect, the compiler generates line
numbers for your source statements and uses those numbers as references in listings.

OPTIMIZE
Use OPTIMIZE to reduce the run time of your object program. Optimization might also reduce the amount
of storage your object program uses. Optimizations performed include the propagation of constants,
instruction scheduling, and the elimination of computations whose results are never used.

OPTIMIZE option syntax
NOOPTIMIZE

OPTIMIZE

(

STD

FULL )

Default is: NOOPTIMIZE

Abbreviations are: OPT | NOOPT

If OPTIMIZE is specified without any suboptions, OPTIMIZE(STD) is in effect.

The FULL suboption requests that, in addition to the optimizations performed with OPT(STD), the
compiler discard unreferenced data items from the DATA DIVISION and suppress generation of code
to initialize these data items to the values in their VALUE clauses. When OPT(FULL) is in effect, all
unreferenced level-77 items and elementary level-01 items are discarded. In addition, level-01 group
items are discarded if none of their subordinate items are referenced. The deleted items are shown in the
listing. If the MAP option is in effect, a BL number of XXXXX in the data map information indicates that the
data item was discarded.

274  IBM COBOL for Linux on x86 1.1: Programming Guide



Recommendation: Use OPTIMIZE(FULL) for database applications. It can make a huge performance
improvement, because unused constants included by the associated COPY statements are eliminated.
However, if your database application depends on unused data items, see the recommendations below.

Unused data items: Do not use OPT(FULL) if your programs depend on making use of unused data
items. In the past, this was commonly done in two ways:

• A technique sometimes used in old OS/VS COBOL programs was to place an unreferenced table after
a referenced table and use out-of-range subscripts on the first table to access the second table.
To determine whether your programs use this technique, use the SSRANGE compiler option with the
CHECK(ON) runtime option. To work around this problem, use the ability of newer COBOL to code large
tables and use just one table.

• Place eye-catcher data items in the WORKING-STORAGE SECTION to identify the beginning and end
of the program data or to mark a copy of a program for a library tool that uses the data to identify
the version of a program. To solve this problem, initialize these items with PROCEDURE DIVISION
statements rather than VALUE clauses. With this method, the compiler will consider these items used
and will not delete them.

The OPTIMIZE option is turned off in the case of a severe-level error or higher.

Related concepts   
“Optimization” on page 500 

Related references  
“Conflicting
compiler options” on page 250  
  

PGMNAME
The PGMNAME option controls the handling of program-names and entry-point names.

PGMNAME option syntax

PGMNAME(

UPPER

MIXED )

Default is: PGMNAME(UPPER)

Abbreviations are: PGMN(LU|LM)

For compatibility with COBOL for OS/390® & VM, LONGMIXED and LONGUPPER are also supported.

LONGUPPER can be abbreviated as UPPER, LU, or U. LONGMIXED can be abbreviated as MIXED, LM, or M.

COMPAT: If you specify PGMNAME(COMPAT), PGMNAME(UPPER) will be set, and you will receive a warning
message.

PGMNAME controls the handling of names used in the following contexts:

• Program-names defined in the PROGRAM-ID paragraph
• Program entry-point names in the ENTRY statement
• Program-name references in:

– CALL statements that reference nested programs, statically linked programs, or shared libraries
– SET procedure-pointer or function-pointer statements that reference statically linked programs or

shared libraries
– CANCEL statements that reference nested programs

Chapter 13. Specifying compiler options on the command line  275



PGMNAME(UPPER)
With PGMNAME(UPPER), program-names that are specified in the PROGRAM-ID paragraph as COBOL
user-defined words must follow the normal COBOL rules for forming a user-defined word:

• The program-name can be up to 30 characters in length.
• All the characters used in the name must be alphabetic, digits, the hyphen, or the underscore.
• At least one character must be alphabetic.
• The hyphen cannot be used as the first or last character.
• The underscore cannot be used as the first character.

When a program-name is specified as a literal, in either a definition or a reference, then:

• The program-name can be up to 160 characters in length.
• All the characters used in the name must be alphabetic, digits, the hyphen, or the underscore.
• At least one character must be alphabetic.
• The hyphen cannot be used as the first or last character.
• The underscore can be used in any position.

External program-names are processed with alphabetic characters folded to uppercase.

PGMNAME(MIXED)
With PGMNAME(MIXED), program-names are processed as is, without truncation, translation, or folding to
uppercase.

With PGMNAME(MIXED), all program-name definitions must be specified using the literal format of the
program-name in the PROGRAM-ID paragraph or ENTRY statement.

APOST/QUOTE
Use APOST if you want the figurative constant [ALL] QUOTE or [ALL] QUOTES to represent one or more
apostrophe (') characters. Use QUOTE if you want the figurative constant [ALL] QUOTE or [ALL] QUOTES to
represent one or more quotation mark (") characters.

APOST/QUOTE option syntax
QUOTE

APOST

Default is: QUOTE

Abbreviations are: Q | APOST

Delimiters: You can use either quotation marks (") or apostrophes (') as literal delimiters regardless of
whether the APOST or QUOTE option is in effect. The delimiter character used as the opening delimiter for
a literal must be used as the closing delimiter for that literal.

276  IBM COBOL for Linux on x86 1.1: Programming Guide



SEPOBJ
SEPOBJ specifies whether each of the outermost COBOL programs in a batch compilation is to be
generated as a separate object file rather than as a single object file.

SEPOBJ option syntax
SEPOBJ

NOSEPOBJ

Default is: SEPOBJ

Abbreviations are: None

Batch compilation
When multiple outermost programs (nonnested programs) are compiled with a single batch invocation
of the compiler, the number of files produced for the object program output of the batch compilation
depends on the compiler option SEPOBJ.

Assume that the COBOL source file pgm.cbl contains three outermost COBOL programs named pgm1,
pgm2, and pgm3. The following figures illustrate whether the object program output is generated as one
file (with NOSEPOBJ) or three files (with SEPOBJ).

Batch compilation with NOSEPOBJ

Batch compilation with SEPOBJ

Usage notes

• The SEPOBJ option is required to conform to 85 COBOL Standard where pgm2 or pgm3 in the above
example is called using CALL identifier from another program.

• If NOSEPOBJ is in effect, the object files are given the name of the source file but with suffix .o. If
SEPOBJ is in effect, the names of the object files are based on the PROGRAM-ID name with suffix .o.

Chapter 13. Specifying compiler options on the command line  277



• The programs called using CALL identifier must be referred to by the names of the object files (rather
than the PROGRAM-ID names) where PROGRAM-ID and the object file name do not match.

You must give the object file a valid file-name for the platform and the file system.

SEQUENCE
When you use SEQUENCE, the compiler examines columns 1 through 6 to check that the source
statements are arranged in ascending order according to their ASCII collating sequence. The compiler
issues a diagnostic message if any statements are not in ascending order.

Source statements with blanks in columns 1 through 6 do not participate in this sequence check and do
not result in messages.

SEQUENCE option syntax
SEQUENCE

NOSEQUENCE

Default is: SEQUENCE

Abbreviations are: SEQ | NOSEQ

If you use COPY statements with the SEQUENCE option in effect, be sure that your source program's
sequence fields and the copybook sequence fields are coordinated.

If you use NUMBER and SEQUENCE, the sequence is checked according to numeric, rather than ASCII,
collating sequence.

Use NOSEQUENCE to suppress this checking and the diagnostic messages.

Related tasks   
“Finding line sequence problems” on page 307 

SOSI
The SOSI option affects the treatment of values X'1E' and X'1F' in comments; alphanumeric, national,
and DBCS literals; and in DBCS user-defined words.

SOSI option syntax
NOSOSI

SOSI

Default is: NOSOSI

Abbreviations are: None

NOSOSI
With NOSOSI, character positions that have values X'1E' and X'1F' are treated as data characters.

NOSOSI conforms to 85 COBOL Standard.

SOSI
With SOSI, shift-out (SO) and shift-in (SI) control characters delimit ASCII DBCS character strings in
COBOL source programs. The SO and SI characters have the encoded values of X'1E' and X'1F',
respectively.

278  IBM COBOL for Linux on x86 1.1: Programming Guide



SO and SI characters have no effect on COBOL for Linux source code, except to act as placeholders for
host DBCS SO and SI characters to ensure proper data handling when remote files are converted from
EBCDIC to ASCII.

When the SOSI option is in effect, in addition to existing rules for COBOL for Linux, the following rules
apply:

• All DBCS character strings (in user-defined words, DBCS literals, alphanumeric literals, national literals,
and in comments) must be delimited by the SO and SI characters.

• User-defined words cannot contain both DBCS and SBCS characters.
• The maximum length of a DBCS user-defined word is 14 DBCS characters.
• Double-byte uppercase alphabetic letters are not equivalent to the corresponding double-byte

lowercase letters when used in user-defined words.
• A DBCS user-defined word must contain at least one letter that does not have its counterpart in a

single-byte representation.
• Double-byte representations of single-byte characters for A-Z, a-z, 0-9, the hyphen (-), and the

underscore (_) can be included within a DBCS user-defined word. Rules applicable to these characters
in single-byte representation apply to these characters in double-byte representation. For example, in
a user-defined word, the hyphen cannot appear as the first or the last character, and the underscore
cannot appear as the first character.

• For DBCS and national literals that contain X'1E' or X'1F' values, the following rules apply when the
SOSI compiler option is in effect:

– Character positions with X'1E' and X'1F' are treated as SO and SI characters.
– Character positions with X'1E' and X'1F' are included in the character string in national

hexadecimal notation and removed in basic notation.
• For alphanumeric literals that contain X'1E' or X'1F' values, the following rules apply when the SOSI

compiler option is in effect:

– Character positions with X'1E' and X'1F' are treated as SO and SI characters.
– Character positions with X'1E' and X'1F' are included in the character string in hexadecimal

notation and removed in basic and null-terminated notation.
• To embed DBCS quotation marks within an N-literal delimited by quotation marks, use two consecutive

DBCS quotation marks to represent a single DBCS quotation mark. Do not include a single DBCS
quotation mark in an N-literal if the literal is delimited by quotation marks. The same rule applies to
single quotation marks.

• The SHIFT-OUT and SHIFT-IN special registers are defined with X'0E' and X'0F' regardless of
whether the SOSI option is in effect.

In general, host COBOL programs that are sensitive to the encoded values for the SO and SI characters
will not have the same behavior on the Linux workstation.

Related tasks  
“Handling differences in
ASCII multibyte and
EBCDIC DBCS strings” on page 428  

Related references  
Character-strings (COBOL for Linux on x86 Language Reference)  

Chapter 13. Specifying compiler options on the command line  279



SOURCE
Use SOURCE to get a listing of your source program. This listing will include any statements embedded by
PROCESS or COPY statements.

SOURCE option syntax
SOURCE

NOSOURCE

Default is: SOURCE

Abbreviations are: S | NOS

You must specify SOURCE if you want embedded messages in the source listing.

Use NOSOURCE to suppress the source code from the compiler output listing.

If you want to limit the SOURCE output, use *CONTROL SOURCE or NOSOURCE statements in your
PROCEDURE DIVISION. Source statements that follow a *CONTROL NOSOURCE statement are not
included in the listing until a subsequent *CONTROL SOURCE statement switches the output back to
normal SOURCE format.

“Example: MAP output” on page 361

Related references   
*CONTROL (*CBL) statement (COBOL for Linux on x86 Language Reference)

SPACE
Use SPACE to select single-, double-, or triple-spacing in your source code listing.

SPACE option syntax

SPACE(

1

2

3

)

Default is: SPACE(1)

Abbreviations are: None

SPACE has meaning only when the SOURCE compiler option is in effect.

Related references   
“SOURCE” on page 280 

SPILL
This option specifies the number of KB set aside for the register spill area. If the program being compiled
is very complex or large, this option might be required.

SPILL option syntax
SPILL(  n)

Default is: SPILL(512)

Abbreviations are: None

280  IBM COBOL for Linux on x86 1.1: Programming Guide



The spill size, n, is any integer between 96 and 32704.

SQL
Use the SQL compiler option to enable the Db2 coprocessor and to specify Db2 suboptions. You must
specify the SQL option if your COBOL source program contains SQL statements and the program has not
been processed by the Db2 precompiler.

SQL option syntax
NOSQL

SQL

(" DB2-suboption-string ")

Default is: NOSQL

Abbreviations are: None

If NOSQL is in effect, any SQL statements found in the source program are diagnosed and discarded.

Use either quotation marks or single quotation marks to delimit the string of Db2 suboptions.

You can use the syntax shown above in either the CBL or PROCESS statement. If you use the SQL option
in the cob2 command, only the single quotation mark (') can be used as the suboption string delimiter:
-q"SQL('suboptions')".

Note: The compiler interprets certain shell scripting characters as follows:

• An equal sign (=) is interpreted to a left parenthesis, (
• A colon (:) is interpreted to a right parenthesis, )
• An underscore (_) is interpreted to a single quotation mark (')

You can add a backslash (\) escape character to prevent the interpretation and thus to pass characters in
the strings. If you want the backslash (\) to represent itself (rather than as an escape character), use the
double backslash (\\).

For example, if you want to work with the integrated Db2 coprocessor and use the DEFERRED_PREPARE
precompile option, specify the SQL option as follows:

SQL('... DEFERRED\_PREPARE ...')

Related tasks   
Chapter 17, “Programming for a Db2 environment,” on page 373  
“Compiling with the SQL option” on page 377  
“Separating Db2 suboptions” on page 377 

Related references   
“Conflicting
compiler options” on page 250 

Chapter 13. Specifying compiler options on the command line  281



SRCFORMAT
Use SRCFORMAT to indicate whether your COBOL source conforms to 72-column fixed source format or to
252-column extended source format.

SRCFORMAT option syntax

SRCFORMAT(

COMPAT

EXTEND )

Default is: SRCFORMAT(COMPAT)

Abbreviations are: SF(C|E)

SRCFORMAT(COMPAT) indicates that each source line of the primary compilation input and of any
included COPY text ends at column 72. If a source line is shorter than 72 bytes, space characters are
logically added to the source line up to the maximum of 72 bytes. If a source line is longer than 72 bytes,
only the first 72 bytes are used as program source. (Bytes 73 through 80, if provided, are assumed to
contain serial numbers; they are printed in the compiler listing but otherwise ignored.)

SRCFORMAT(EXTEND) indicates that each source line of the primary compilation input and of any
included COPY text ends at column 252. If a source line is shorter than 252 bytes, space characters
are logically added to the source line up to the maximum of 252 bytes. If a source line is longer than
252 bytes, only the first 252 bytes are used as program source; the rest are ignored. (In extended source
format, there is no provision for serial numbers.)

In either format, columns 1 through 6 are interpreted as sequence numbers.

Option specification: You cannot specify the SRCFORMAT option in a PROCESS (or CBL) statement. You
can specify it only in one of the following ways:

• As an option in the cob2 command
• In the COBOPT environment variable
• In the compopts attribute of the configuration (.cfg) file

A source conversion utility, scu, is available to help convert non-IBM or free-format COBOL source so that
it can be compiled by COBOL for Linux. To see a summary of the scu functions, type the command scu
-h. For further details, see the man page for scu, or see the appropriate related reference.

Restriction: Extended source format is not compatible with the stand-alone Db2 precompiler or the
separate CICS translator.

Related references  
“Stanzas in the configuration file” on page 229  
“cob2 options” on page 232  
Reference format (COBOL for Linux on x86 Language Reference)  
Source conversion utility (scu) (COBOL for Linux on x86 Language Reference)  

282  IBM COBOL for Linux on x86 1.1: Programming Guide



SSRANGE
Use SSRANGE to generate code that checks for out-of-range storage references.

SSRANGE option syntax
NOSSRANGE

SSRANGE (

,

NOZLEN

ZLEN

ABD

MSG

)

Default is: NOSSRANGE

Suboption default is: NOZLEN,ABD if only SSRANGE is specified.

Abbreviations are: SSR | NOSSR

SSRANGE generates code that checks whether subscripts, including ALL subscripts, or indexes try to
reference areas outside the region of their associated tables. Each subscript or index is not individually
checked for validity. Instead, the effective address is checked to ensure that it does not reference outside
the table.

If you specify SSRANGE with no suboptions, it will be accepted as a specification of
SSRANGE(NOZLEN,ABD).

Note: If the SSRANGE option is in effect, range checks will be generated by the compiler and the checks
will always be conducted at run time. You cannot disable the compiled-in range checks at run time by
specifying the runtime option CHECK(OFF).

Variable-length items are also checked to ensure that references are within their maximum defined
length.

Reference modification expressions are checked to ensure that:

• The starting position is greater than or equal to 1.
• The starting position is not greater than the current length of the subject data item.
• The starting position and length value (if specified) do not reference an area beyond the end of the

subject data item.
• The length value (if specified) is greater than or equal to 1.

The ZLEN and NOZLEN suboptions control how the compiler checks reference modification lengths:

• If ZLEN is in effect, the compiler will generate code to ensure that reference modification lengths are
greater than or equal to zero. Zero-length reference modification specifications will not get an SSRANGE
error at run time.

• If NOZLEN is in effect, the compiler will generate code to ensure that reference modification lengths are
greater than or equal to 1. Zero-length reference modification specifications will get an SSRANGE error
at run time. This is compatible with how SSRANGE behaved in previous COBOL versions.

The MSG and ABD suboptions control the runtime behavior of the COBOL program when a range check
fails.

• If MSG is in effect and a range check fails, a runtime warning message will be issued. This means that
the program will continue executing and might potentially identify other out-of-range conditions.

Chapter 13. Specifying compiler options on the command line  283



• If ABD is in effect and a range check fails, the first out-of-range condition will result in a runtime error
message and the program will ABEND. You can find the next potential out-of-range condition by fixing
the first out-of-range condition and then recompiling and running the program again. To identify all
other potential out-of-range conditions, you might need to repeat this process several times.

For unbounded groups or their subordinate items, checking is done only for reference modification
expressions. Subscripted or indexed references to tables subordinate to an unbounded group are not
checked.

Related concepts   
“Reference modifiers” on page 100 

Related tasks   
“Checking for valid ranges” on page 308 

TERMINAL
Use TERMINAL to send progress and diagnostic messages to the display device.

TERMINAL option syntax
TERMINAL

NOTERMINAL

Default is: TERMINAL

Abbreviations are: TERM | NOTERM

Use NOTERMINAL if you do not want this additional output.

TEST
Use TEST to produce object code that contains symbol and statement information that enables the
debugger to perform symbolic source-level debugging.

An MDECK (.dek) file containing a copy of the updated input source after library processing (that is, the
result of COPY, BASIS, REPLACE, and EXEC SQL INCLUDE statements) is also created for use by the
debugger.

TEST option syntax
NOTEST

TEST

Default is: NOTEST

Abbreviations are: None

Use NOTEST if you do not want to generate object code that has debugging information. Programs
compiled with NOTEST run with the debugger, but have limited debugging support.

If you use the WITH DEBUGGING MODE clause, the TEST option is turned off. TEST will appear in the list
of options, but a diagnostic message is issued to advise you that because of the conflict, TEST was not in
effect.

Related tasks  
“Debugging using IBM Debug for Linux on x86” on page 311

284  IBM COBOL for Linux on x86 1.1: Programming Guide



THREAD
The THREAD option is accepted and ignored. It is no longer needed to indicate that a COBOL program is to
be enabled for execution in a run unit that has multiple threads.

THREAD option syntax
NOTHREAD

THREAD

Default is: NOTHREAD

Abbreviations are: None

Related tasks  
“Compiling from the command
line” on page 225  
 

TRUNC
TRUNC affects the way that binary data is truncated during moves and arithmetic operations.

TRUNC option syntax

TRUNC(

STD

OPT

BIN

)

Default is: TRUNC(STD)

Abbreviations are: None

TRUNC has no effect on COMP-5 data items; COMP-5 items are handled as if TRUNC(BIN) is in effect
regardless of the TRUNC suboption specified.

TRUNC(STD)
TRUNC(STD) applies only to USAGE BINARY receiving fields in MOVE statements and arithmetic
expressions. When TRUNC(STD) is in effect, the final result of an arithmetic expression, or the
sending field in the MOVE statement, is truncated to the number of digits in the PICTURE clause of the
BINARY receiving field.

TRUNC(OPT)
TRUNC(OPT) is a performance option. When TRUNC(OPT) is in effect, the compiler assumes that
data conforms to PICTURE specifications in USAGE BINARY receiving fields in MOVE statements and
arithmetic expressions. The results are manipulated in the most optimal way, either truncating to the
number of digits in the PICTURE clause, or to the size of the binary field in storage (halfword, fullword,
or doubleword).

Tip: Use the TRUNC(OPT) option only if you are sure that the data being moved into the binary areas
will not have a value with larger precision than that defined by the PICTURE clause for the binary
item. Otherwise, unpredictable results could occur. This truncation is performed in the most efficient
manner possible; therefore, the results are dependent on the particular code sequence generated. It
is not possible to predict the truncation without seeing the code sequence generated for a particular
statement.

Chapter 13. Specifying compiler options on the command line  285



TRUNC(BIN)
The TRUNC(BIN) option applies to all COBOL language that processes USAGE BINARY data. When
TRUNC(BIN) is in effect, all binary items (USAGE COMP, COMP-4, or BINARY) are handled as native
hardware binary items, that is, as if they were each individually declared USAGE COMP-5:

• BINARY receiving fields are truncated only at halfword, fullword, or doubleword boundaries.
• BINARY sending fields are handled as halfwords, fullwords, or doublewords when the receiver is

numeric; TRUNC(BIN) has no effect when the receiver is not numeric.
• The full binary content of fields is significant.
• DISPLAY will convert the entire content of binary fields with no truncation.

Recommendations: TRUNC(BIN) is the recommended option for programs that use binary values set
by other products. Other products, such as Db2 and C/C++, might place values in COBOL binary data
items that do not conform to the PICTURE clause of the data items. You can use TRUNC(OPT) with
CICS programs provided that your data conforms to the PICTURE clause for your BINARY data items.

USAGE COMP-5 has the effect of applying TRUNC(BIN) behavior to individual data items. Therefore,
you can avoid the performance overhead of using TRUNC(BIN) for every binary data item by
specifying COMP-5 on only some of the binary data items, such as those data items that are passed
to non-COBOL programs or other products and subsystems. The use of COMP-5 is not affected by the
TRUNC suboption in effect.

Large literals in VALUE clauses: When you use the compiler option TRUNC(BIN), numeric literals
specified in VALUE clauses for binary data items (COMP, COMP-4, or BINARY) can generally contain a
value of magnitude up to the capacity of the native binary representation (2, 4, or 8 bytes) rather than
being limited to the value implied by the number of 9s in the PICTURE clause.

Note: When TRUNC(BIN) and NUMCHECK(BIN) are both in effect and an error message or an
abend is generated, if you intend to switch to TRUNC(STD|OPT) later for better performance, you
must correct the data; if not, you can turn off NUMCHECK(BIN) to reduce the execution time of the
application and avoid an error message or an abend.

TRUNC example 1

01  BIN-VAR     PIC S99 USAGE BINARY.
. . .
    MOVE 123451 to BIN-VAR

The following table shows values of the data items after the MOVE statement.

Data item Decimal Hex Display

Sender 123451 3B|E2|01|00 123451

Receiver TRUNC(STD) 51 33|00 51

Receiver TRUNC(OPT) -7621 3B|E2 2J

Receiver TRUNC(BIN) -7621 3B|E2 762J

A halfword of storage is allocated for BIN-VAR. The result of this MOVE statement if the program is
compiled with the TRUNC(STD) option is 51; the field is truncated to conform to the PICTURE clause.

If you compile the program with TRUNC(BIN), the result of the MOVE statement is -7621. The reason
for the unusual result is that nonzero high-order digits are truncated. Here, the generated code sequence
would merely move the lower halfword quantity X'E23B' to the receiver. Because the new truncated value
overflows into the sign bit of the binary halfword, the value becomes a negative number.

It is better not to compile this MOVE statement with TRUNC(OPT), because 123451 has greater precision
than the PICTURE clause for BIN-VAR. With TRUNC(OPT), the results are again -7621. This is because
the best performance was obtained by not doing a decimal truncation.

286  IBM COBOL for Linux on x86 1.1: Programming Guide



TRUNC example 2

01  BIN-VAR     PIC 9(6)  USAGE BINARY
. . .
    MOVE 1234567891 to BIN-VAR

The following table shows values of the data items after the MOVE statement.

Data item Decimal Hex Display

Sender 1234567891 D3|02|96|49 1234567891

Receiver TRUNC(STD) 567891 53|AA|08|00 567891

Receiver TRUNC(OPT) 567891 53|AA|08|00 567891

Receiver TRUNC(BIN) 1234567891 D3|02|96|49 1234567891

When you specify TRUNC(STD), the sending data is truncated to six integer digits to conform to the
PICTURE clause of the BINARY receiver.

When you specify TRUNC(OPT), the compiler assumes the sending data is not larger than the PICTURE
clause precision of the BINARY receiver. The most efficient code sequence in this case is truncation as if
TRUNC(STD) were in effect.

When you specify TRUNC(BIN), no truncation occurs because all of the sending data fits into the binary
fullword allocated for BIN-VAR.

Related concepts   
“Formats for numeric
data” on page 39 

Related references   
VALUE clause (COBOL for Linux on x86 Language Reference)

UTF16
UTF16 specifies the representation format of UTF-16 data items.

UTF16 option syntax

BINARY(

NATIVE

BE

LE

)

Default is: UTF16(NATIVE)

Abbreviations are: None

Specify UTF16(NATIVE) to use the native UTF-16 representation format of the platform. For COBOL for
Linux, this is little-endian format (least significant digit at the lowest address).

UTF16(BE) indicates that UTF-16 data items are represented consistently with IBM Z, that is, in big-
endian format (most significant digit at the lowest address).

UTF16(LE) indicates that UTF-16 data items are represented in little-endian format (least significant
digit at the lowest address).

Chapter 13. Specifying compiler options on the command line  287



VBREF
Use VBREF to get a cross-reference between all statements used in the source program and the line
numbers in which they are used. VBREF also produces a summary of the number of times each statement
was used in the program.

VBREF option syntax
NOVBREF

VBREF

Default is: NOVBREF

Abbreviations are: None

Use NOVBREF for more efficient compilation.

WSCLEAR
Use WSCLEAR to clear a program's non-EXTERNAL data items in WORKING-STORAGE to binary zeros at
initialization. The storage is cleared before any VALUE clauses are applied.

WSCLEAR option syntax
NOWSCLEAR

WSCLEAR (
nnn

)

Default is: NOWSCLEAR

Abbreviations are: None

Use NOWSCLEAR to bypass the storage-clearing process.

nnn is any integer from 0 to 255. WSCLEAR without the suboption is the same as WSCLEAR(0).

You can specify the WSCLEAR option either in a command line or in a COBOL statement. However, the
WSCLEAR option that is specified in the COBOL statement takes precedence over the option specified in
the command line.

• To specify WSCLEAR with the nnn suboption in the command line, use the format of -qwsclear(nnn).
In this case, the command processor scans characters that are in the range of 0 to 255 only, and other
excessive characters are ignored. No error message is issued.

For example, if you specify -qwsclear(99999), the command processor takes WSCLEAR(99) only.
• To specify WSCLEAR with the nnn suboption in COBOL statements, use the WSCLEAR(nnn) format.

If you specify WSCLEAR(nnn), the byte value represented by nnn is used to initialize each byte of
WORKING-STORAGE data to a specific value. This applies only to data items that do not have a VALUE
attributed specified.

Performance considerations: If you use WSCLEAR and are concerned about the size or performance of an
object program, also use OPTIMIZE(FULL). Doing so instructs the compiler to eliminate all unreferenced
data items from the DATA DIVISION, which will speed up initialization.

Related references 
“OPTIMIZE” on page 274  
  

288  IBM COBOL for Linux on x86 1.1: Programming Guide



XREF
Use XREF to produce a sorted cross-reference listing.

XREF option syntax
XREF

(

FULL

SHORT )

NOXREF

Default is: XREF(FULL)

Abbreviations are: X | NOX

You can choose XREF, XREF(FULL), or XREF(SHORT). If you specify XREF without any suboptions,
XREF(FULL) will be in effect.

A section of the listing shows all the program-names, data-names, and procedure-names that are
referenced in your program, and the line numbers where those names are defined. External program-
names are identified.

“Example: XREF output:
data-name cross-references” on page 364  
“Example: XREF output:
program-name cross-references” on page 366   

A section is also included that cross-references COPY or BASIS statements in the program with the files
from which associated copybooks were obtained.

“Example: XREF output: COPY/BASIS cross-references” on page 366

Names are listed in the order of the collating sequence that is indicated by the locale setting. This order is
used whether the names are in single-byte characters or contain multibyte characters (such as DBCS).

If you use XREF and SOURCE, data-name and procedure-name cross-reference information is printed
on the same line as the original source. Line-number references or other information appears on the
right-hand side of the listing page. On the right of source lines that reference an intrinsic function, the
letters IFN are printed with the line number of the locations where the function arguments are defined.
Information included in the embedded references lets you know if an identifier is undefined (UND) or
defined more than once (DUP), if items are implicitly defined (IMP) (such as special registers or figurative
constants), or if a program-name is external (EXT).

If you use XREF and NOSOURCE, you get only the sorted cross-reference listing.

XREF(SHORT) prints only the explicitly referenced data items in the cross-reference listing.
XREF(SHORT) applies to multibyte data-names and procedure-names as well as to single-byte names.

NOXREF suppresses this listing.

Usage notes

• Group names used in a MOVE CORRESPONDING statement are in the XREF listing. The elementary
names in those groups are also listed.

• In the data-name XREF listing, line numbers that are preceded by the letter M indicate that the data
item is explicitly modified by a statement on that line.

• XREF listings take additional storage.

Related concepts   
Chapter 16, “Debugging,” on page 303 

Chapter 13. Specifying compiler options on the command line  289



Related tasks   
“Getting listings” on page 356 

YEARWINDOW
Use YEARWINDOW to specify the first year of the 100-year window (the century window) to be applied to
windowed date field processing by the COBOL compiler.

YEARWINDOW option syntax
YEARWINDOW(  base-year )

Default is: YEARWINDOW(1900)

Abbreviations are: YW

base-year represents the first year of the 100-year window. You must specify it with one of the following
values:

• An unsigned decimal integer between 1900 and 1999.

An unsigned integer specifies the starting year of a fixed window. For example, YEARWINDOW(1930)
indicates the century window 1930-2029.

• A negative integer from -1 through -99.

A negative integer indicates a sliding window. The first year of the window is calculated by adding the
negative integer to the current year. For example, YEARWINDOW(-80) indicates that the first year of the
century window is 80 years before the year in which the program is run.

Usage notes

• The YEARWINDOW option has no effect unless the DATEPROC option is also in effect.
• At run time, two conditions must be true:

– The century window must have its beginning year in the 1900s.
– The current year must lie within the century window for the compilation unit.

For example, if the current year is 2010, the DATEPROC option is in effect, and you use the
YEARWINDOW(1900) option, the program will terminate with an error message.

ZWB
If you compile using ZWB, the compiler removes the sign from a signed zoned decimal (DISPLAY) field
before comparing this field to an alphanumeric elementary field during execution.

ZWB option syntax
ZWB

NOZWB

Default is: ZWB

Abbreviations are: None

If the zoned decimal item is a scaled item (that is, it contains the symbol P in its PICTURE string),
comparisons that use the decimal item are not affected by ZWB. Such items always have their sign
removed before the comparison is made to an alphanumeric field.

ZWB affects how a program runs. The same COBOL program can produce different results depending on
the setting of this option.

290  IBM COBOL for Linux on x86 1.1: Programming Guide



Use NOZWB if you want to test input numeric fields for SPACES.

Chapter 13. Specifying compiler options on the command line  291



292  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 14. Compiler-directing statements
Several compiler-directing statements help you to direct the compilation of your program.

These are the compiler-directing statements:

BASIS statement
This extended source program library statement provides a complete COBOL program as the source
for a compilation. For rules of formation and processing, see the description of text-name for the COPY
statement.

*CONTROL (*CBL) statement
This compiler-directing statement selectively suppresses or allows output to be produced. The
keywords *CONTROL and *CBL are synonymous.

CALLINTERFACE directive
This compiler directive specifies the interface convention for calls, and indicates whether
argument descriptors are to be generated. The convention specified with >>CALLINTERFACE is in
effect until another >>CALLINTERFACE specification is made. >>CALLINT is an abbreviation for
>>CALLINTERFACE.

>>CALLINTERFACE can be used only in the PROCEDURE DIVISION.

The syntax and usage of the >>CALLINTERFACE directive are similar to that of the CALLINT compiler
option. Exceptions are:

• The directive syntax does not include parentheses.
• The directive can be applied to selected calls as described below.
• The directive syntax includes the keyword DESCRIPTOR and its variants.

If you specify >>CALLINT with no suboptions, the call convention used is determined by the CALLINT
compiler option.

DESCRIPTOR only: The >>CALLINT directive is treated as a comment except for these forms:

• >>CALLINT SYSTEM DESCRIPTOR, or equivalently >>CALLINT DESCRIPTOR
• >>CALLINT SYSTEM NODESCRIPTOR, or equivalently >>CALLINT NODESCRIPTOR

These directives turn DESCRIPTOR on or off; SYSTEM is ignored.

The >>CALLINT directive can be specified anywhere that a COBOL procedure statement can be
specified. For example, this is valid syntax:

MOVE 3 TO
>>CALLINTERFACE SYSTEM
RETURN-CODE.

The effect of >>CALLINT is limited to the current program. A nested program or a program compiled
in the same batch inherits the calling convention specified in the CALLINT compiler option, but not a
convention specified by the >>CALLINT compiler directive.

If you are writing a routine that is to be called with >>CALLINT SYSTEM DESCRIPTOR, this is the
argument-passing mechanism:

© Copyright IBM Corp. 2021, 2023 293



CALL "PROGRAM1" USING arg-2, arg-narg-1, ...

descType  dataType  descInfl  descInf2

length-1

length-2

0

4

8

arg-1

arg-2

...

arg-n

pointer to

descriptor

pointer array

descriptor-ID

pointer to descr-1

pointer to descr-2

...

pointer to descr-n

-8

0

4

8

descriptor for arg-n

descriptor for arg-1

...
descriptor for arg-2

pointer to descr-n
Points to the descriptor for the specific argument; 0 if no descriptor exists for the argument.

descriptor-ID
Set to COBDESC0 to identify this version of the descriptor, allowing for a possible change to the
descriptor entry format in the future.

descType
Set to X'02' (descElmt) for an elementary data item of USAGE DISPLAY with PICTURE X(n) or
USAGE DISPLAY-1 with PICTURE G(n) or N(n). For all others (numeric fields, structures, tables),
set to X'00'.

dataType
Set as follows:

• descType = X'00': dataType = X'00'
• descType = X'02' and the USAGE is DISPLAY: dataType = X'02' (typeChar)
• descType = X'02' and the USAGE is DISPLAY-1: dataType = X'09' (typeGChar)

descInf1
Always set to X'00'.

descInf2
Set as follows:

• If descType = X'00'; descInf2 = X'00'
• If descType = X'02':

– If the CHAR(EBCDIC) option is in effect and the argument is not defined with the NATIVE
option in the USAGE clause: descInf2 = X'40'

– Else: descInf2 = X'00'

length-1
In the argument descriptor is the length of the argument for a fixed-length argument or the current
length for a variable-length item.

length-2
The maximum length of the argument if the argument is a variable-length item. For a fixed-length
argument, length-2 is equal to length-1.

294  IBM COBOL for Linux on x86 1.1: Programming Guide



COPY statement

COPY statement syntax
COPY text-name

literal-1 OF

IN

library-name

literal-2

SUPPRESS

REPLACING operand-1 BY operand-2

LEADING

TRAILNG

 == partial-word-1  == BY  == partial-word-2  == 

.

This compiler-directing statement places prewritten text into a COBOL program.

Neither text-name nor library-name need to be unique within a program. They can be identical to other
user-defined words in the program.

You must specify a text-name (the name of a copybook) that contains the prewritten text; for example,
COPY my-text. You can qualify text-name with a library-name; for example, COPY my-text of
inventory-lib. If text-name is not qualified, a library-name of SYSLIB is assumed.

library-name

If you specify library-name as a literal, the content of the literal is treated as the actual path. If you
specify library-name as a user-defined word, the name is used as an environment variable and the
value of the environment variable is used for the path to locate the copybook. To specify multiple path
names, delimit them with a colon (:).

If you do not specify library-name, the path used is as described under text-name.

text-name

If you specify text-name as a literal, the content of the literal is treated as the actual path. If you
specify text-name as a user-defined word, processing depends on whether the environment variable
that corresponds to text-name is set. If the environment variable is set, the value of the environment
variable is used as the file name, and possibly the path name, for the copybook.

A text-name is treated as an absolute path if all three of these conditions are met:

• library-name is not used.
• text-name is a literal or an environment variable.
• The first character is '/'.

For example, this is treated as an absolute path:

COPY "/mycpylib/mytext.cpy"

If the environment variable that corresponds to text-name is not set, the search for the copybook uses
the following names:

1. text-name with suffix .cpy
2. text-name with suffix .cbl
3. text-name with suffix .cob
4. text-name with no suffix

For example, COPY MyCopy searches in the following order:

1. MYCOPY.cpy (in all the specified paths, as described above)

Chapter 14. Compiler-directing statements  295



2. MYCOPY.cbl (in all the specified paths, as described above)
3. MYCOPY.cob (in all the specified paths, as described above)
4. MYCOPY (in all the specified paths, as described above)

COBOL defaults library-name and text-name to uppercase unless the name is contained in a literal
("MyCopy"). In this example, MyCopy is not the same as MYCOPY. If your file name is mixed case (as in
MyCopy.cbl), define text-name as a literal in the COPY statement.

-I option

For other cases (when neither a library-name nor text-name indicates the path), the search path is
dependent on the -I option.

To have COPY A be equivalent to COPY A OF MYLIB, specify -I$MYLIB.

Based on the above rules, COPY "/X/Y" will be searched in the root directory, and COPY "X/Y" will
be searched in the current directory.

COPY A OF SYSLIB is equivalent to COPY A. The -I option does not affect COPY statements that
have explicit library-name qualifications besides those with the library name of SYSLIB.

If both library-name and text-name are specified, the compiler inserts a path separator (/) between
the two values if library-name does not end in /. For example, COPY MYCOPY OF MYLIB with these
settings:

export MYCOPY=MYPDS(MYMEMBER)
export MYLIB=MYFILE

results in MYFILE/MYPDS(MYMEMBER).

If you specify text-name as a user-defined word, you can access local files and also access PDS
members on z/OS without changing your mainframe source. For example:

COPY mycopybook

In this example, if the environment variable mycopybook is set to h/mypds(mycopy):

• h is assigned to the specific host.
• mypds is the z/OS PDS name.
• mycopy is the PDS member name.

You can access z/OS files from Linux using NFS (Network File System), which let you access z/OS files
by using a Linux path name. However, note that NFS converts the path separator to "." to follow z/OS
naming conventions. To ensure proper name formation, keep this in mind when assigning values to
your environment variables. For example, these settings:

export MYCOPY=(MYMEMBER)
export MYLIB=M/MYFILE/MYPDS

do not work because the resulting path is:

M/MYFILE/MYPDS/(MYMEMBER)

which after conversion of the path separator becomes:

M.MYFILE.MYPDS.(MYMEMBER)

DELETE statement
This extended source library statement removes COBOL statements from the BASIS source program.

296  IBM COBOL for Linux on x86 1.1: Programming Guide



EJECT statement
This compiler-directing statement specifies that the next source statement is to be printed at the top
of the next page.

ENTER statement
The statement is treated as a comment.

EVALUATE directive
The EVALUATE directive provides a multi-branch method of choosing the source lines to include in a
compilation group.

IF directive
The IF directive provides for a one-way or two-way conditional compilation.

INSERT statement
This library statement adds COBOL statements to the BASIS source program.

PROCESS (CBL) statement
This compiler-directing statement, which you can place before the IDENTIFICATION DIVISION
header of an outermost program, specifies compiler options that are to be used during compilation of
the program.

REPLACE statement
This statement is used to replace source program text.

SKIP1/2/3 statement
These statements indicate lines to be skipped in the source listing.

TITLE statement
This statement specifies that a title (header) should be printed at the top of each page of the source
listing.

USE statement
The USE statement provides declaratives to specify these elements:

• Error-handling procedures: EXCEPTION/ERROR
• User label-handling procedures: LABEL
• Debugging lines and sections: DEBUGGING

Related tasks   
“Changing the header of a source listing” on page 4  
“Compiling from the command
line” on page 225  
“Specifying compiler options in the PROCESS (CBL) statement” on page 226 

Related references   
“cob2 options” on page 232  
CALLINTERFACE (COBOL for Linux on x86 Language Reference)  
PROCESS (CBL) statement (COBOL for Linux on x86 Language Reference)  
*CONTROL (*CBL) statement (COBOL for Linux on x86 Language Reference)  
COPY statement (COBOL for Linux on x86 Language Reference)  
DEFINE directive (COBOL for Linux on x86 Language Reference)
EVALUATE directive (COBOL for Linux on x86 Language Reference)
IF directive (COBOL for Linux on x86 Language Reference)

Chapter 14. Compiler-directing statements  297



298  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 15. Runtime options
The following table lists the runtime options that are supported.

Table 32. Runtime options

Option Description Default Abbreviation

“CHECK” on page 299 Flags checking errors CHECK(ON) CH

“DEBUG” on page 300 Specifies whether the COBOL
debugging sections specified by the
USE FOR DEBUGGING declarative are
active

NODEBUG None

“ERRCOUNT” on page
300

Specifies how many conditions of
severity 1 (W-level) can occur before
the run unit terminates abnormally

ERRCOUNT(20) None

“FILESYS” on page 300 Specifies the file system to use for
files for which no explicit file-system
selection is made, either through the
ASSIGN clause or an environment
variable

FILESYS(VSA) FS(DB2|QSAM|RSD|
SdU|SFS |STL|VSA|
VSAM)

“TRAP” on page 302 Indicates whether COBOL intercepts
exceptions

TRAP(ON) None

“UPSI” on page 302 Sets the eight UPSI switches on or
off for applications that use COBOL
routines

UPSI(0000000
0)

None

Specify runtime options by setting the COBRTOPT runtime environment variable.

Related tasks  
“Setting environment variables” on page 215  
“Running programs” on page 237  

Related references  
“Runtime environment
variables” on page 220  

CHECK
CHECK causes checking errors to be flagged. In COBOL, index, subscript, and reference-modification
ranges can cause checking errors.

CHECK option syntax

CHECK(

ON

OFF )

Default is: CHECK(ON)

Abbreviation is: CH

ON
Specifies that runtime checking is performed

© Copyright IBM Corp. 2021, 2023 299



OFF
Specifies that runtime checking is not performed

Usage note: CHECK(ON) has no effect if NOSSRANGE was in effect during compilation.

Performance consideration: If you compiled a COBOL program with SSRANGE, and you are not testing or
debugging an application, performance improves if you specify CHECK(OFF).

DEBUG
DEBUG specifies whether the COBOL debugging sections specified by the USE FOR DEBUGGING
declarative are active.

DEBUG option syntax
NODEBUG

DEBUG

Default is: NODEBUG

DEBUG
Activates the debugging sections

NODEBUG
Suppresses the debugging sections

Performance consideration: To improve performance, use this option only while debugging.

ERRCOUNT
ERRCOUNT indicates how many warning messages can occur before the run unit terminates abnormally.

ERRCOUNT option syntax

ERRCOUNT(
20

number

)

Default: ERRCOUNT(20)

number, if positive, is the number of warning messages that can occur while the run unit is running. If the
number of warning messages exceeds number, the run unit terminates abnormally.

number, if 0, indicates that an unlimited number of warning messages can occur. number cannot be
negative.

Any message due to a condition that has a severity higher than a warning results in termination of the run
unit regardless of the value of the ERRCOUNT option.

FILESYS
FILESYS specifies the file system to be used for files for which no explicit file system was specified by
means of an ASSIGN clause or an environment variable. The option applies to sequential, relative, and

300  IBM COBOL for Linux on x86 1.1: Programming Guide



indexed files. It does not apply to line-sequential files, for which the file system must be specified as, or
default to, LSQ (line sequential).

FILESYS option syntax

FILESYS(

VSA

DB2

QSAM

RSD

SdU

SFS

STL

VSAM

)

Default is: FILESYS(VSA)

Abbreviation is: FS(DB2|QSA|RSD|SdU|SFS|STL|VSA)

DB2
The file system is Db2 relational database.

QSAM
The file system is compatible with mainframe QSAM files.

RSD
The file system is record sequential delimited.

SdU
The file system is SMARTdata Utilities.

SFS
The file system is CICS Structured File Server.

STL
The file system is the standard language file system.

VSA or VSAM
VSA or VSAM (virtual storage access method) implies either the SFS or STL file system.

If the system file-name begins with the value /.:/cics/sfs, this suboption implies the SFS file
system. Otherwise, it implies the STL file system.

Related concepts  
“File systems” on page 117  
“Line-sequential file organization” on page 123  

Related tasks   
“Identifying files” on page 113 

Related references  
“Precedence of file-system determination” on page 116  
“Runtime environment
variables” on page 220  
ASSIGN clause (COBOL for Linux on x86 Language Reference) 

Chapter 15. Runtime options  301



TRAP
TRAP indicates whether COBOL intercepts exceptions.

TRAP option syntax

TRAP(

ON

OFF )

Default is: TRAP(ON)

If TRAP(OFF) is in effect, and you do not supply your own trap handler to handle exceptional conditions,
the conditions result in a default action by the operating system. For example, if your program attempts to
store into an illegal location, the default system action is to issue a message and terminate the process.

ON
Activates COBOL interception of exceptions

OFF
Deactivates COBOL interception of exceptions

Usage notes

• Use TRAP(OFF) only when you need to analyze a program exception before COBOL handles it.
• When you specify TRAP(OFF) in a non-CICS environment, no exception handlers are established.
• Running with TRAP(OFF) (for exception diagnosis purposes) can cause many side effects, because

COBOL requires TRAP(ON). When you run with TRAP(OFF), you can get side effects even if you do not
encounter a software-raised condition, program check, or abend. If you do encounter a program check
or an abend with TRAP(OFF) in effect, the following side effects can occur:

– Resources obtained by COBOL are not freed.
– Files opened by COBOL are not closed, so records might be lost.
– No messages or dump output are generated.

The run unit terminates abnormally if such conditions are raised.

UPSI
UPSI sets the eight UPSI switches on or off for applications that use COBOL routines.

UPSI option syntax

UPSI(
00000000

nnnnnnnn
)

Default is: UPSI(00000000)

Each n represents one UPSI switch (between 0 and 7); the leftmost n represents the first switch. Each n
can be either 0 (off) or 1 (on).

302  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 16. Debugging
You can choose between two different approaches to determine the cause of problems in the behavior of
your application: source-language debugging or interactive debugging.

For source-language debugging, COBOL provides several language elements, compiler options, and listing
outputs that make debugging easier.

For interactive debugging, you can use IBM Debug for Linux on x86.

Related tasks   
“Debugging with source language” on page 303  
“Debugging using compiler
options” on page 306  
“Debugging using IBM Debug for Linux on x86” on page 311  
“Getting listings” on page 356  
“Debugging with messages that have offset information” on page 368  
  
“Debugging assembler routines” on page 369

Debugging with source language
You can use several COBOL language features to pinpoint the cause of a failure in a program.

If a failing program is part of a large application that is already in production (precluding source updates),
write a small test case to simulate the failing part of the program. Code debugging features in the test
case to help detect these problems:

• Errors in program logic
• Input-output errors
• Mismatches of data types
• Uninitialized data
• Problems with procedures

Related tasks   
“Tracing program logic” on page 303  
“Finding and handling input-output
errors” on page 304  
“Validating data” on page 304  
“Moving, initializing or
setting uninitialized data” on page 305  
“Generating information
about procedures” on page 305 

Related references   
Source language debugging (COBOL for Linux on x86 Language Reference)

Tracing program logic
Trace the logic of your program by adding DISPLAY statements.

For example, if you determine that the problem is in an EVALUATE statement or in a set of nested
IF statements, use DISPLAY statements in each path to see the logic flow. If you determine that the
calculation of a numeric value is causing the problem, use DISPLAY statements to check the value of
some interim results.

If you use explicit scope terminators to end statements in your program, the logic is more apparent and
therefore easier to trace.

© Copyright IBM Corp. 2021, 2023 303



To determine whether a particular routine started and finished, you might insert code like this into your
program:

DISPLAY "ENTER CHECK PROCEDURE"
    .
    .  (checking procedure routine)
    .
DISPLAY "FINISHED CHECK PROCEDURE"

After you are sure that the routine works correctly, disable the DISPLAY statements in one of two ways:

• Put an asterisk in column 7 of each DISPLAY statement line to convert it to a comment line.
• Put a D in column 7 of each DISPLAY statement to convert it to a comment line. When you want

to reactivate these statements, include a WITH DEBUGGING MODE clause in the ENVIRONMENT
DIVISION; the D in column 7 is ignored and the DISPLAY statements are implemented.

Before you put the program into production, delete or disable the debugging aids you used and recompile
the program. The program will run more efficiently and use less storage.

Related concepts   
“Scope terminators” on page 16 

Related references   
DISPLAY statement (COBOL for Linux on x86 Language Reference)

Finding and handling input-output errors
File status keys can help you determine whether your program errors are due to input-output errors
occurring on the storage media.

To use file status keys in debugging, check for a nonzero value in the status key after each input-output
statement. If the value is nonzero (as reported in an error message), look at the coding of the input-output
procedures in the program. You can also include procedures to correct the error based on the value of the
status key.

If you determine that a problem lies in an input-output procedure, include the USE EXCEPTION/ERROR
declarative to help debug the problem. Then, when a file fails to open, the appropriate EXCEPTION/
ERROR declarative is performed. The appropriate declarative might be a specific one for the file or one
provided for the open attributes INPUT, OUTPUT, I-O, or EXTEND.

Code each USE AFTER STANDARD ERROR statement in a section that follows the DECLARATIVES
keyword in the PROCEDURE DIVISION.

Related tasks   
“Coding ERROR declaratives” on page 168  
“Using file status keys” on page 168 

Related references   
File status key (COBOL for Linux on x86 Language Reference) 

Validating data
If you suspect that your program is trying to perform arithmetic on nonnumeric data or is receiving the
wrong type of data on an input record, use the class test (the class condition) to validate the type of data.

You can use the class test to check whether the content of a data item is ALPHABETIC, ALPHABETIC-
LOWER, ALPHABETIC-UPPER, DBCS, KANJI, or NUMERIC. If the data item is described implicitly or
explicitly as USAGE NATIONAL, the class test checks the national character representation of the
characters associated with the specified character class.

Related tasks   
“Coding conditional expressions” on page 85  

304  IBM COBOL for Linux on x86 1.1: Programming Guide



“Testing for valid DBCS
characters” on page 198 

Related references   
Class condition (COBOL for Linux on x86 Language Reference) 

Moving, initializing or setting uninitialized data
Use an INITIALIZE or SET statement to initialize a table or data item when you suspect that a problem
might be caused by residual data in those fields.

If the problem happens intermittently and not always with the same data, it could be that a switch was
not initialized but is generally set to the right value (0 or 1) by chance. By using a SET statement to ensure
that the switch is initialized, you can determine that the uninitialized switch is the cause of the problem or
remove it as a possible cause.

Related references   
INITIALIZE statement (COBOL for Linux on x86 Language Reference)  
SET statement (COBOL for Linux on x86 Language Reference)

Generating information about procedures
Generate information about your program or test case and how it is running by coding the USE FOR
DEBUGGING declarative. This declarative lets you include statements in the program and indicate when
they should be performed when you run your program.

For example, to determine how many times a procedure is run, you could include a debugging procedure
in the USE FOR DEBUGGING declarative and use a counter to keep track of the number of times that
control passes to that procedure. You can use the counter technique to check items such as these:

• How many times a PERFORM statement runs, and thus whether a particular routine is being used and
whether the control structure is correct

• How many times a loop runs, and thus whether the loop is executing and whether the number for the
loop is accurate

You can use debugging lines or debugging statements or both in your program.

Debugging lines are statements that are identified by a D in column 7. To make debugging lines in
your program active, code the WITH DEBUGGING MODE clause on the SOURCE-COMPUTER line in the
ENVIRONMENT DIVISION. Otherwise debugging lines are treated as comments.

Debugging statements are the statements that are coded in the DECLARATIVES section of the PROCEDURE
DIVISION. Code each USE FOR DEBUGGING declarative in a separate section. Code the debugging
statements as follows:

• Only in a DECLARATIVES section.
• Following the header USE FOR DEBUGGING.
• Only in the outermost program; they are not valid in nested programs. Debugging statements are also

never triggered by procedures that are contained in nested programs.

To use debugging statements in your program, you must include the WITH DEBUGGING MODE clause and
use the DEBUG runtime option.

Options restrictions: 

• USE FOR DEBUGGING declaratives, if the WITH DEBUGGING MODE clause has been specified, are
mutually exclusive with the TEST compiler option. If USE FOR DEBUGGING declaratives and the WITH
DEBUGGING MODE clause are present, the TEST option is cancelled.

“Example: USE FOR DEBUGGING” on page 306

Related references   
SOURCE-COMPUTER paragraph (COBOL for Linux on x86 Language Reference)  

Chapter 16. Debugging  305



Debugging lines (COBOL for Linux on x86 Language Reference)  
Debugging sections (COBOL for Linux on x86 Language Reference)  
DEBUGGING declarative (COBOL for Linux on x86 Language Reference)

Example: USE FOR DEBUGGING
This example shows the kind of statements that are needed to use a DISPLAY statement and a USE FOR
DEBUGGING declarative to test a program.

The DISPLAY statement writes information to the terminal or to an output file. The USE FOR DEBUGGING
declarative is used with a counter to show how many times a routine runs.

Environment Division.
. . .
Data Division.
. . .
Working-Storage Section.
. . . (other entries your program needs)
01  Trace-Msg    PIC X(30) Value "  Trace for Procedure-Name : ".
01  Total        PIC 9(9)  Value 1.
. . .
Procedure Division.
Declaratives.
Debug-Declaratives Section.
    Use For Debugging On Some-Routine.
Debug-Declaratives-Paragraph.
    Display Trace-Msg, Debug-Name, Total.
End Declaratives.

Main-Program Section.
    . . . (source program statements)
    Perform Some-Routine.
    . . . (source program statements)
    Stop Run.
Some-Routine.
    . . . (whatever statements you need in this paragraph)
    Add 1 To Total.
Some-Routine-End.

The DISPLAY statement in the DECLARATIVES SECTION issues this message every time the procedure
Some-Routine runs:

Trace For Procedure-Name : Some-Routine 22

The number at the end of the message, 22, is the value accumulated in the data item Total; it indicates
the number of times Some-Routine has run. The statements in the debugging declarative are performed
before the named procedure runs.

You can also use the DISPLAY statement to trace program execution and show the flow through the
program. You do this by dropping Total from the DISPLAY statement and changing the USE FOR
DEBUGGING declarative in the DECLARATIVES SECTION to:

USE FOR DEBUGGING ON ALL PROCEDURES.

As a result, a message is displayed before each nondebugging procedure in the outermost program runs.

Debugging using compiler options
You can use certain compiler options to help you find errors in your program, find various elements in your
program, obtain listings, and prepare your program for debugging.

You can find the following errors by using compiler options (the options are shown in parentheses):

• Syntax errors such as duplicate data-names (NOCOMPILE)
• Missing sections (SEQUENCE)

306  IBM COBOL for Linux on x86 1.1: Programming Guide



• Invalid subscript values (SSRANGE)

You can find the following elements in your program by using compiler options:

• Error messages and locations of the associated errors (FLAG)
• Program entity definitions and references (XREF)
• Data items in the DATA DIVISION (MAP)
• Statement references (VBREF)

You can get a copy of your source (SOURCE) or a listing of generated code (LIST).

You prepare your program for debugging by using the TEST compiler option.

Related tasks   
“Finding coding errors” on page 307  
“Finding line sequence problems” on page 307  
“Checking for valid ranges” on page 308  
“Selecting the level of
error to be diagnosed” on page 308  
“Finding program entity
definitions and references” on page 310  
“Listing data items” on page 311  
“Getting listings” on page 356 

Related references  
“Compiler options” on page 248

Finding coding errors
Use the NOCOMPILE option to compile conditionally or to only check syntax. When used with the SOURCE
option, NOCOMPILE produces a listing that will help you find coding mistakes such as missing definitions,
improperly defined data items, and duplicate data-names.

Checking syntax only: To only check the syntax of your program, and not produce object code, use
NOCOMPILE without a suboption. If you also specify the SOURCE option, the compiler produces a listing.

When you specify NOCOMPILE, several compiler options are suppressed. See the related reference below
about the COMPILE option for details.

Compiling conditionally: To compile conditionally, use NOCOMPILE(x), where x is one of the severity
levels of errors. Your program is compiled if all the errors are of a lower severity than x. The severity levels
that you can use, from highest to lowest, are S (severe), E (error), and W (warning).

If an error of level x or higher occurs, the compilation stops and your program is only checked for syntax.

Related references   
“COMPILE” on page 259 

Finding line sequence problems
Use the SEQUENCE compiler option to find statements that are out of sequence. Breaks in sequence
indicate that a section of a source program was moved or deleted.

When you use SEQUENCE, the compiler checks the source statement numbers to determine whether they
are in ascending sequence. Two asterisks are placed beside statement numbers that are out of sequence.
The total number of these statements is printed as the first line in the diagnostics after the source listing.

Related references   
“SEQUENCE” on page 278 

Chapter 16. Debugging  307



Checking for valid ranges
Use the SSRANGE compiler option to check whether addresses fall within proper ranges.

SSRANGE causes the following addresses to be checked:

• Subscripted or indexed data references: Is the effective address of the required element within the
maximum boundary of the specified table?

• Variable-length data references (a reference to a data item that contains an OCCURS DEPENDING ON
clause): Is the actual length positive and within the maximum defined length for the group data item?

• Reference-modified data references: Are the offset and length positive? Is the sum of the offset and
length within the maximum length for the data item?

If the SSRANGE option is in effect, checking is performed at run time if both of the following conditions are
true:

• The COBOL statement that contains the indexed, subscripted, variable-length, or reference-modified
data item is performed.

• The CHECK runtime option is ON.

If an effective address is outside the range of the data item that contains the referenced data, an error
message is generated and the program stops. The message identifies the table or identifier that was
referenced and the line number where the error occurred. Additional information is provided depending
on the type of reference that caused the error.

If all subscripts, indices, and reference modifiers in a given data reference are literals and they result in
a reference outside the data item, the error is diagnosed at compile time regardless of the setting of the
SSRANGE option.

Performance consideration: SSRANGE can somewhat degrade performance because of the extra
overhead to check each subscripted or indexed item.

Related references   
“SSRANGE” on page 283  
“Performance-related compiler options” on page 501 

Selecting the level of error to be diagnosed
Use the FLAG compiler option to specify the level of error to be diagnosed during compilation and to
indicate whether error messages are to be embedded in the listing. Use FLAG(I) or FLAG(I,I) to be
notified of all errors.

Specify as the first parameter the lowest severity level of the syntax-error messages to be issued.
Optionally specify the second parameter as the lowest level of the syntax-error messages to be
embedded in the source listing. This severity level must be the same or higher than the level for the
first parameter. If you specify both parameters, you must also specify the SOURCE compiler option.

Table 33. Severity levels of compiler messages

Severity level Resulting messages

U (unrecoverable) U messages only

S (severe) All S and U messages

E (error) All E, S, and U messages

W (warning) All W, E, S, and U messages

I (informational) All messages

When you specify the second parameter, each syntax-error message (except a U-level message) is
embedded in the source listing at the point where the compiler had enough information to detect that

308  IBM COBOL for Linux on x86 1.1: Programming Guide



error. All embedded messages (except those issued by the library compiler phase) directly follow the
statement to which they refer. The number of the statement that had the error is also included with the
message. Embedded messages are repeated with the rest of the diagnostic messages at the end of the
source listing.

When you specify the NOSOURCE compiler option, the syntax-error messages are included only at the end
of the listing. Messages for unrecoverable errors are not embedded in the source listing, because an error
of this severity terminates the compilation.

“Example: embedded messages” on page 309

Related tasks   
“Generating a list of compiler
messages” on page 230 

Related references   
“Severity codes for
compiler diagnostic messages” on page 230  
“Messages and listings
for compiler-detected errors” on page 231  
“FLAG” on page 267 

Example: embedded messages
The following example shows the embedded messages generated by specifying a second parameter to
the FLAG option. Some messages in the summary apply to more than one COBOL statement.

 
   LineID  PL SL  ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8  Map 
and Cross Reference
 ...                                                                                              |
   000977               /                                                                         |
   000978               *****************************************************************         |
   000979               ***          I N I T I A L I Z E   P A R A G R A P H           **         |
   000980               ***  Open files. Accept date, time and format header lines.    **         |
   000981         IA4690***   Load location-table.                                     **         |
   000982               *****************************************************************         |
   000983                  100-initialize-paragraph.                                              |
   000984                    move spaces to ws-transaction-record                                 | IMP 
339
   000985                    move spaces to ws-commuter-record                                    | IMP 
315
   000986                    move zeroes to commuter-zipcode                                      | IMP 
326
   000987                    move zeroes to commuter-home-phone                                   | IMP 
327
   000988                    move zeroes to commuter-work-phone                                   | IMP 
328
   000989                    move zeroes to commuter-update-date                                  | IMP 
332
   000990                    open input update-transaction-file                                   | 203
 ==000990==> IGYPS2052-S An error was found in the definition of file "LOCATION-FILE".  The       |
                         reference to this file was discarded.                                    |
   000991                        location-file                                                    | 192
   000992                        i-o commuter-file                                                | 180
   000993                        output print-file                                                | 216
   000994                    if loccode-file-status not = "00" or                                 | 248
   000995                       update-file-status not = "00" or                                  | 247
   000996                       updprint-file-status not = "00"                                   | 249
   000997      1                display "Open Error ..."                                          |
   000998      1                display "  Location File Status = " loccode-file-status           | 248
   000999      1                display "  Update   File Status = " update-file-status            | 247
   001000      1                display "  Print    File Status = " updprint-file-status          | 249
   001001      1               perform 900-abnormal-termination                                   | 1433
   001002                    end-if                                                               |
   001003         IA4760     if commuter-file-status not = "00" and not = "97"                    | 240
   001004      1               display "100-OPEN"                                                 |
   001005      1               move 100 to comp-code                                              | 230
   001006      1               perform 500-stl-error                                              | 1387
   001007      1               display "Commuter File Status (OPEN) = "                           |
   001008      1                        commuter-file-status                                      | 240
   001009      1               perform 900-abnormal-termination                                   | 1433
   001010         IA4790     end-if                                                               |

Chapter 16. Debugging  309



   001011                    accept ws-date from date                                             | UND
 ==001011==> IGYPS2121-S "WS-DATE" was not defined as a data-name.  The statement was discarded.  |
   001012         IA4810     move corr ws-date to header-date                                     | UND 
463
 ==001012==> IGYPS2121-S "WS-DATE" was not defined as a data-name.  The statement was discarded.  |
   001013                    accept ws-time from time                                             | UND
 ==001013==> IGYPS2121-S "WS-TIME" was not defined as a data-name.  The statement was discarded.  |
   001014         IA4830     move corr ws-time to header-time                                     | UND 
457
 ==001014==> IGYPS2121-S "WS-TIME" was not defined as a data-name.  The statement was discarded.  |
   001015         IA4840     read location-file                                                   | 192
 ...
 LineID  Message code  Message text
      192  IGYDS1050-E   File "LOCATION-FILE" contained no data record descriptions.
                         The file definition was discarded.
      899  IGYPS2052-S   An error was found in the definition of file "LOCATION-FILE".
                         The reference to this file was discarded.
                         Same message on line:    990
     1011  IGYPS2121-S   "WS-DATE" was not defined as a data-name.  The statement was discarded.
                         Same message on line:   1012
     1013  IGYPS2121-S   "WS-TIME" was not defined as a data-name.  The statement was discarded.
                         Same message on line:   1014
     1015  IGYPS2053-S   An error was found in the definition of file "LOCATION-FILE".
                         This input/output statement was discarded.
                         Same message on line:   1027
     1026  IGYPS2121-S   "LOC-CODE" was not defined as a data-name.  The statement was discarded.
     1209  IGYPS2121-S   "COMMUTER-SHIFT" was not defined as a data-name.  The statement was discarded.
                         Same message on line:   1230
     1210  IGYPS2121-S   "COMMUTER-HOME-CODE" was not defined as a data-name.  The statement was 
discarded.
                         Same message on line:   1231
     1212  IGYPS2121-S   "COMMUTER-NAME" was not defined as a data-name.  The statement was discarded.
                         Same message on line:   1233
     1213  IGYPS2121-S   "COMMUTER-INITIALS" was not defined as a data-name.  The statement was 
discarded.
                         Same message on line:   1234
     1223  IGYPS2121-S   "WS-NUMERIC-DATE" was not defined as a data-name.  The statement was discarded.
 Messages    Total    Informational    Warning    Error    Severe    Terminating
 Printed:      19                                    1        18
 * Statistics for COBOL program FLAGOUT:
 *    Source records = 1755
 *    Data Division statements = 279
 *    Procedure Division statements = 479
 Locale = en_US.ISO8859-1                   (1)                     
 End of compilation 1,  program FLAGOUT,  highest severity: Severe.
 Return code 12

(1)
The locale that the compiler used

Finding program entity definitions and references
Use the XREF(FULL) compiler option to find out where a data-name, procedure-name, or program-name
is defined and referenced. Use it also to produce a cross-reference of COPY or BASIS statements to the
files from which copybooks were obtained.

A sorted cross-reference includes the line number where the data-name, procedure-name, or program-
name was defined and the line numbers of all references to it.

To include only the explicitly referenced data items, use the XREF(SHORT) option.

Use both the XREF (either FULL or SHORT) and the SOURCE options to print a modified cross-reference
to the right of the source listing. This embedded cross-reference shows the line number where the
data-name or procedure-name was defined.

For further details, see the related reference about the XREF compiler option.

“Example: XREF output:
data-name cross-references” on page 364 
“Example: XREF output:
program-name cross-references” on page 366   
“Example:
XREF output: COPY/BASIS cross-references” on page 366  

310  IBM COBOL for Linux on x86 1.1: Programming Guide



“Example: XREF output:
embedded cross-reference” on page 367 

Related tasks   
“Getting listings” on page 356 

Related references   
“XREF” on page 289 

Listing data items
Use the MAP compiler option to create a listing of the DATA DIVISION items and all implicitly declared
items.

When you specify the MAP option, an embedded MAP summary that contains condensed MAP information
is generated to the right of the COBOL source data definition. When both XREF data and an embedded
MAP summary are on the same line, the embedded summary is printed first.

You can select or inhibit parts of the MAP listing and embedded MAP summary by using *CONTROL MAP|
NOMAP (or *CBL MAP|NOMAP) statements throughout the source. For example:

*CONTROL NOMAP
    01  A
    02  B
*CONTROL MAP

“Example: MAP output” on page 361

Related tasks   
“Getting listings” on page 356 

Related references   
“MAP” on page 271 

Debugging using IBM Debug for Linux on x86
Use IBM Debug for Linux on x86, the interactive source-level debugger that is shipped with COBOL for
Linux to debug your COBOL programs.

IBM Debug for Linux on x86 overview
IBM Debug for Linux on x86 is an interactive source-level debugger. It works on Windows- and Linux-
based workstations connected remotely to a debugger engine running on Linux on x86. IBM Debug for
Linux on x86 enables you to debug programs that are written in COBOL.

The debugger displays application source files and the elements in those source files. You can single-
step, step through, step over, or stop execution at a specified line or condition. While controlling
execution, you can monitor variables, registers, memory, call stacks, and other elements.

IBM Debug for Linux on x86 is enabled for Internet Protocol Version 6 (IPv6).

Installation
Learn how to install the components of IBM Debug for Linux on x86.

Debugger components
IBM Debug for Linux on x86 uses a client/server model composed of two components:

• The debug engine (irmtdbgc), which is a server component installed on a Linux on x86 machine.

Chapter 16. Debugging  311



• The debug client, Remote Debug Eclipse User Interface (p2 repository), that is available as a set of
Eclipse features that extends an existing Eclipse instance and can be installed on a Linux on x86 or
Windows 10 workstation.

Installing the Linux on x86 debug engine
The debug engine of IBM Debug for Linux on x86 is installed by default when you use the default
installation utility provided with the product. See the Installation Guide for more information on installing
the compiler and debug engine.

Installing the Linux on x86 or Windows 10 debug client
The debug client, Remote Debug Eclipse User Interface (p2 repository), is available as a set of Eclipse
features that extend an existing Eclipse instance.

For more information on downloading the p2 repository and installing the features, see IBM Debug for
Linux on x86 Remote Debug Eclipse User Interface installation.

Accessibility features
Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use software products successfully.

IBM Debug for Linux on x86 offers the following accessibility features:

• Visual focus indicators by way of cursors in editable objects and highlighted buttons, menu items and
other selections.

• Tooltip help for buttons and other selections.
• Complete assistive technology enablement in wizards and dialog boxes.
• Messages, dialog boxes, and wizards that persist until you close them.
• Documentation that includes hover-over image descriptions and marked table headers.
• User interface keyboard navigation.

Note: While in an Eclipse IDE, you can open the editor marker bar context menu by pressing Ctrl+F10.

Navigating the user interface using the keyboard
The user interface is navigable using the keyboard. The Tab key is used to iterate through the controls in a
particular scope (for example, a dialog or a view and its related icons). To navigate to the main controls for
the user interface or to tab out of views that use the Tab key (such as editors), use Ctrl+Tab.

Menus
Menus can be accessed using the keyboard in the following ways:

• F10 accesses the menus on the main menu bar.
• Shift+F10 opens the context menu for the current view.

Note: This shortcut is dependent on your window manager. In most cases, it is Shift+F10.
• Ctrl+F10 opens the pull down menu (if there is one) for the current view. For editors, Ctrl+F10 will open

the menu for the marker bar to the left of the editor area.
• Alt+mnemonic will activate the main menu for a particular entry (for example, Alt+W will open the

Window menu).
• Microsoft™ Windows only: Pressing Alt will give focus to the menu bar.

312  IBM COBOL for Linux on x86 1.1: Programming Guide

https://www.ibm.com/docs/en/cobol-linux-x86/1.1?topic=guide-installing-compiler
https://www.ibm.com/support/pages/node/6456431
https://www.ibm.com/support/pages/node/6456431


Controls
Mnemonics are assigned to most control labels (for example, buttons, check boxes, and radio buttons) in
dialog boxes, preference pages, and property pages. To access the control associated with a label, use the
Alt key along with the letter that is underlined in the label.

Navigation Context
Navigation context is saved for preferences and properties dialogs. The selected page for the preferences
and properties dialog is saved between invocations of the dialog but are not saved between user interface
invocations.

Cycling Editors, Views and Perspectives
To switch between editors, views and perspectives, the user interface provides a cycling function that is
invoked by Ctrl and a function key. All of these cycling functions recall the last thing selected to allow for
rapid cycling back and forth between two items. The cycling functions are:

• Ctrl+F6 - Cycle to Editor
• Ctrl+F7 - Cycle to View
• Ctrl+F8 - Cycle to Perspective

In addition, Ctrl+E can be used to activate the editor drop-down - and Ctrl+PageUp and Ctrl+PageDown
can be used for switching between open editors.

Key Assist
Many of the actions in the user interface have keyboard bindings assigned to them. To access the list of
available keyboard bindings, select Help > Key Assist from the main menu.

Help system
You can navigate the help system by keyboard using the following key combinations:

• Pressing Tab inside a frame (page) takes you to the next link, button or topic node.
• To expand a tree node, press the Right arrow. To collapse a tree node, press the Left arrow.
• To move to the next topic node, press the Down arrow or Tab.
• To move to the previous topic node, press Up arrow or Shift+Tab.
• To display the selected topic, press Enter.
• To scroll all the way up, press Home. To scroll all the way down, press End.
• To go back, press Alt+Left arrow. To go forward, press Alt+Right arrow.
• To go to the next frame or toolbar, press Ctrl+Tab (Ctrl+F6 if using Mozilla or a Mozilla-based browser).
• To move to the previous frame, press Shift+Ctrl+Tab. (Shift+Ctrl+F6 if using Mozilla or a Mozilla-based

browser).
• To move to the frame displaying topic content, press Alt+K (when using the embedded help browser on

Windows or Internet Explorer).
• To move to the Contents tab, press Alt+C.
• To move to the Search Results tab, press Alt+R.
• To move between tabs, press the Right/Left arrows.
• To switch to another view, select a tab and then press Enter.
• To switch and move to a view, select a tab and then press the Up arrow.
• To move to the search entry field, press Alt+S.
• To print the current page or active frame, press Ctrl+P.

Chapter 16. Debugging  313



• To find a string in the current page or active frame, press Ctrl+F (when using the embedded help
browser on Windows or Internet Explorer).

Most labels of controls on help system pop-up dialogs have mnemonics assigned to them. To access the
control associated with a label, use the Alt key along with the letter that is underlined.

Preparing to debug
Before you can begin a debug session, the debugger user interface daemon (debug daemon) must be
listening for the compiled language debugger engine (debug engine). In addition, your application must be
compiled with the appropriate debug options.

For information about setting the debug daemon to listen for debug engines, see the related topics.

In order to debug your program at the source code level, you need to compile your program with certain
compiler options that instruct the compiler to generate symbolic information and debug hooks in the
object file. Compile without optimization (NOOPTIMIZE) and with the -g or TEST option.

-g option
OPTIMIZE option
Use OPTIMIZE to reduce the run time of your object program. Optimization might also reduce the amount
of storage your object program uses. Optimizations performed include the propagation of constants,
instruction scheduling, and the elimination of computations whose results are never used.
TEST option
Use TEST to produce object code that contains symbol and statement information that enables the
debugger to perform symbolic source-level debugging.

Listening for debug engines
The debug daemon is the part of the user interface that listens for an engine connection.

You can start it by performing one of the following tasks:

• Click the daemon icon ( ). The icon will change to indicate that the daemon has started.
• Click the down arrow to the right of the daemon icon and select Start listening on port: <port number>

from the menu.

To verify if the debug daemon is listening for debug engines, there are three ways:

• Observe the state of the daemon icon in the Debug view. If the daemon is listening, the icon appears as
. If the daemon is not listening, the icon appears as .

• Click the down arrow to the right of the daemon icon. If the daemon is listening, the first menu item
reads Debug UI daemon is listening on port: <port number>. If the daemon is not listening, the first
menu item reads Start listening on port: <port number>.

• Hover over the daemon icon. If the daemon is listening, the hover tooltip reads Debug UI daemon is
listening on port: <port number>. Select this button to stop listening. If the daemon is not listening,
the hover tooltip reads Debug UI daemon is not listening. Select this button to start listening on
port: <port number>.

You might want to stop the debug daemon for security reasons or if the daemon port number is required
by another user on a multiuser machine. However, the daemon must be listening to start a compiled
language debug session.

To stop the debug daemon when it is listening, you can perform one of the following tasks:

• Click the daemon icon ( ). The icon will change to indicate that the daemon has stopped.
• Click the down arrow to the right of the daemon icon and select Stop listening from the menu.

The default port used by the debug daemon to listen for debug engines is 8001. You can change the
daemon port number from the Debug view or from the Debug Daemon preference page - and you can
specify a range of ports for the debug daemon to listen to.

314  IBM COBOL for Linux on x86 1.1: Programming Guide



To change the port number from the Debug view, complete these steps:

1. Click the down arrow to the right of the daemon icon and select Change port from the menu.
2. A Preferences dialog box opens. In the Daemon port field, enter the port number or range of port

numbers (described later on in this topic) that you want to use.
3. Click OK to change the port number. To revert the port number back to its default value, you can click

the Restore Defaults push button.

To change the port number from the Debug Daemon preference page, see the related debug preferences
topic.

To specify a range of port numbers, separate values by commas and hyphens. For example, specifying
8001,8003,8900-8903 will cause the debug daemon to use the first port that is available in this range
of numbers: 8001, 8003, 8900, 8901, 8902, and 8903. After the daemon connection is established, you
can hover over the daemon icon and read (in the hover tooltip) which port was used - or you can click the
down arrow to the right of the daemon icon, where the port number is available in the menu.

Note:

• Unless the port is already in use on your system (you will receive a message in the client if this is the
case), it is recommended that you use the default port.

• If the previously-set daemon port is currently in use for a debug session in the workbench, changing the
daemon port will not affect previous connections created through the port. The new port number will be
used for subsequent engine connections.

• If the new port number is already being used by another application, you will be prompted with an error
message when the daemon attempts to listen on the new port. In this case, choose a daemon port
number that is not being used by another application.

SSL support for the debug daemon
An SSL secure debug daemon can be used in addition to the traditional debug UI daemon. However, SSL
will only work if used with a remote debugger that supports it.

Note: If you are using SSH tunneling to secure your debug connection, the connection should be made to
the Daemon port.

There are two ways to enable the SSL secure debug daemon:

• Click the down arrow to the right of the daemon icon   and select Change Port...
• Open the preferences page by clicking Window > Preferences. Expand Run/Debug in the menu and

select Debug Daemon.

The following dialog will appear:

Chapter 16. Debugging  315



To enable the SSL secure daemon, select the SSL Debug Secure Daemon checkbox and specify the port. A
KeyStore file and password must be defined as well.

To specify a range of port numbers, separate values by commas and hyphens. For example, specifying
8001,8003,8900-8903 will cause the debug daemon to use the first port that is available in this range of
numbers: 8001, 8003, 8900, 8901, 8902, and 8903.

Obtaining the IP address for the client machine from the debugger user interface
To be able to launch a debug session, the IP address of the machine running the debugger client (user
interface) is needed.

To obtain the IP address for the client machine that is running the debugger user interface, complete
these steps:

1. In the Debug view, click the down arrow to the right of the daemon icon and select Get Workstation IP
from the menu.

2. The Get Workstation IP message will open, indicating the current IP address of the client machine.

You can select the IP address from this dialog box, and copy and paste it.

Note: If the workstation has multiple LAN adapters, or if there is a router or a Virtual Private Network
(VPN) between the workstation and server, this dialog may list more than one IP address. You may have to
try each IP address to find the address that the server can use.

Debug compiler options
Compiler options that are relevant to debugging COBOL for Linux on x86 programs include:

316  IBM COBOL for Linux on x86 1.1: Programming Guide



Compiler option Definition

-g Prompts the compiler to generate debug
information for the source code. You must specify
this option if you intend to debug your code.

TEST Equivalent to -g.

Setting debug preferences
You can set a variety of debug-related preferences, such as the daemon port number to use, Debugger
Editor preferences, and the length of time to wait for a response from the debug engine.

Selecting Window > Preferences from the Eclipse IDE menu bar opens the Preferences dialog box. In this
dialog box, you can choose and expand the Run/Debug node to set a variety of debug preferences. These
include the following preferences (found in the Animated Step Into, Debug Daemon, and Compiled
Debug nodes) that you might want to set when debugging your compiled language applications:

Animated Step Into preferences

In the Preferences dialog box, selecting Run/Debug > Compiled Debug > Animated Step Into will open
the Animated Step Into preference page. In this page, you can set the current step into pace (or current
step into delay) and the maximum pace (or maximum step into delay) of the animated step into action. In
addition, you can set the amount of time by which the pace increases or decreases when you select the
Speed Up or Slow Down Animated Step Into actions in the Debug view.

The default values of the fields in this preference page are:

• Current pace (ms) field: 2 seconds or 2000 milliseconds
• Speed up/Slow down by (ms) field: 200 milliseconds
• Maximum pace (ms) field: 5 seconds or 5000 milliseconds

Debug Daemon preferences

In the Preferences dialog box, selecting Run/Debug > Debug Daemon will open the Debug Daemon
page. In this page, you can set the port, a range of ports, or a combination of ports on which the
daemon will listen for debug engine connections. Ranges and combinations of ports can be specified in
comma-separated lists, hyphenated ranges, or a combination of the two. By default, the port is set to
8001.

Note: It is recommended that the default port be left as is, unless you are having problems or are running
on a multiuser machine where the default port is already being used.

If you change the daemon port in the Debug Daemon preference page, you can easily set it back to its
default value by clicking the preference page Restore Defaults push button.

If the daemon was already set in the user interface to listen for debug engines, the debugger will start the
daemon on the new port number for you when you change the daemon port number in this preference
page.

Debugger editor preferences

In the Preferences dialog box, selecting Run/Debug > Compiled Debug > Debug Editors will open the
Debugger Editor page. In this page, you can set the editor to allow hover and type evaluation. When the
Allow hover evaluation check box is selected, you can hover over an expression in the Debugger Editor
to display its value in a pop-up. When the Display types in hover check box is selected, the expression's
type will be displayed in the pop-up.

The Always use while debugging check box determines the editor that source will open in when
debugging. It also determines what you will see when stepping. The default setting for this check box
depends on the product that you have installed this debugger with. When this check box is deselected:

Chapter 16. Debugging  317



• Source will open in the default editor that is associated with the source file type in the workbench
preferences.

• If the source or listing can only be found by the host debug engine, it will open in the Debugger editor.

In this section, you can also:

• Set the editor to load entire source files. By default, this setting is off. When the Load entire file
content check box is selected, the entire source file will load, however, performance may be adversely
impacted. You may want to turn this setting on when using certain advanced LPEX editor actions, such
as incrementally searching within the file or using bracket matching functions.

• Set the debugger to allow monitored expressions to be added to the Monitors view when they are
double-clicked in the editor.

• Select the Center view on execution line check box if you want to have the current line of execution
centered in the Debugger Editor for all debug sessions.

• Choose the color of the line of execution.

Compiled Debug preferences

In the Preferences dialog box, selecting Run/Debug > Compiled Debug will open the Compiled Debug
page. In this page, you can set these preferences:

Program profiles

You can choose to delete program profiles. A program profile is saved by the debugger for each program
that you debug. The program profile includes information such as breakpoint and monitor settings. To
delete all currently-saved program profiles, select this button.

If you want exception breakpoint settings to apply only to the program being debugged in the current
debug session, select the Save exception breakpoint settings by program check box. If this check box
is not selected, exception breakpoint settings will apply to all programs that are debugged by the current
debug engine.

Engine response time

If you want to specify the length of time for the debugger to wait for a response from the debug engine,
select the Wait (in seconds) radio button and then enter the length of time in seconds to wait in the
field. By default, the debugger will wait 15 seconds for an engine response. When the Wait radio button is
selected, if an engine does not respond within the specified waiting period, a dialog box will prompt you
to continue waiting for an engine response. If you choose not to continue waiting, the debug session will
terminate.

If you want the debugger to wait indefinitely for a reply from the debug engine, select the Infinite radio
button. When this radio button is selected, you will need to manually terminate the debug session if an
engine fails to respond.

The Trace engine connection setting is used for diagnostic purposes. When this setting is selected, large
files that are only readable by IBM can be written to your disk. Select this setting only when instructed by
an IBM service representative.

Debugger engine for compiled languages
With the debugger's client/server design, you can debug programs running remotely on other systems in a
network, using the local resources of your workstation to present and control the debug session.

The debugger back-end, also known as a debug engine, runs on the same system as the program you want
to debug. This system can be any Linux on x86 system accessible through a network.

Note: The debug engine shipped with this product identifies itself as a Version 1.0 engine.

318  IBM COBOL for Linux on x86 1.1: Programming Guide



Starting the debugger engine
When debugging from the user interface client, you start the debugger engine using the user interface
daemon mode. In this mode, the user interface is started first, and it waits for the engine to connect to it.

The irmtdbgc command starts the debug engine on the remote system. The irmtdbgc command
has the syntax, irmtdbgc [debugger parms] debuggee_name [debuggee parms], where
[debugger parms] are, in any order:

Parameter Description

-qhost= <host:port> <host> specifies the host name of the machine
running the debugger user interface. This can
be a host name or an IP address. If not
specified, the value in the environment variable
DER_DBG_ADDR is used. If neither is specified, the
value localhost is used.

<port> is optional (by default, port 8001 is
assumed).

-i If present, specifies that the debugger is to stop
immediately after loading the debuggee, and not
run to the main entry point of your application.

-a xxxx xxxx may be a process identifier or, if the name of
the application is unique, the name of the process
as shown by the ps command.

-qconsole=<remote, local, or GUI> This controls where the console for the program
being debugged will appear.

If -qconsole=remote is specified, output will
be directed to the local session and to the user
interface.

If -qconsole=local is specified, the console
appears in the console window in which the you
typed the irmtdbgc command.

If -qconsole=GUI is specified, the console
appears in a separate window.

The default value of this parameter is remote.

-s Specifies that the debuggee is to run immediately.
The debuggee will stop when it reaches a
breakpoint from the profile, or if a signal occurs.

-- This indicates that the next parameter is the
debuggee name. It is only required if the debuggee
name begins with the character '-'.

The debugger will search for the program to debug using the PATH environment variable.

Environment variables for the debugger engine
Debug engine environment variables are set in the Linux environment.

The following environment variables control the engine behavior:

Chapter 16. Debugging  319



Environment Variable Description

DER_DBG_PATH Specifies a set of paths for the debugger to use to
find source files. These paths will be used if the
debug information does not contain fully-qualified
source file names.

DER_DBG_ADDR Specifies the default host to be used in user
interface daemon mode. This can be either a host
name or an IP address. The default is localhost.
This is overridden by the command line parameter
-qhost.

When specifying the address, you can also
include the default port to be used in user
interface daemon mode. To include a port
number, specify DER_DBG_ADDR=<host name
or address>:<port>. By default, the port
number used is 8001. Any port specified with
this environment variable is overridden by the
command line parameter -quiport.

DER_DBG_TRACE Use this environment variable to specify the
location of the engine trace file.

DER_DBG_PICLDUMP Use this environment variable to specify the
location of the EPDC trace file.

Firewall considerations
Should there be a firewall between the engine and the user interface, you will need to provide appropriate
firewall rules so that communication between the engine and user interface can take place.

The engine must be directed to connect to the firewall's WAN IP address on a port that the firewall has
been configured to forward to the client. For example:

Client - ip 10.1.1.7, daemon port 8101
Firewall - wan ip 10.10.10.3, configured to forward to port 8101 to 10.1.1.7
Server - start the engine to connect to the client:
irmtdbgc -qhost=10.10.10.3:8101 a.out

Notes:

• Many firewalls block port 8001. You may need to use a different port, as in the above example.
• You can also direct the debug engine to connect to your workstations through a secure shell (ssh)

tunnel, see technote 1438892, Debugging through a Secure Shell tunnel. If you are starting your debug
session through a debug configuration in the client on your workstation, there may be an option to
tunnel the connections on the Advanced tab of the debug configuration.

Debugging your applications
After you launch a debug session, there are debug views available that enable a variety of debug tasks.

Views that are available for debugging include:

• The Debug view: manage program debugging.
• The Debugger editor: displays source for your application.
• The Breakpoints view: set and work with breakpoints.
• The Variables view: list and edit variables in your application. You can also find more information in

“Inspecting variables” on page 331.
• The Registers view: display registers in your program.

320  IBM COBOL for Linux on x86 1.1: Programming Guide

http://www-01.ibm.com/support/docview.wss?uid=swg21438892


• The Monitors view: work with variables, expressions, and registers that you choose to monitor.
• The Modules view: display a list of modules loaded while running your program. You can navigate

to the individual compile units and source files in your application, see function entry points and set
breakpoints on them.

• The Console view: display the screen output of your program.
• The Memory view: view and map memory used by your application.

Compiled language debugger
The compiled language debugger is an interactive source-level debugger. It works on a client that is
connected through a network connection to the debug engine. The compiled language debugger enables
you to debug COBOL programs.

The debugger displays application source files and the functions in those source files. You can single-
step, step through, step over, or stop execution at a specified line or condition. While controlling
execution, you can monitor variables, registers, memory, call stacks, and other elements.

The compiled language debugger is enabled for Internet Protocol Version 6 (IPv6).

The Debugger Editor
When you launch a debug session, the debugger uses the Debugger Editor to display source. This editor
offers several debug actions.

When a debug session launches, source is opened in the editor in browse mode and it cannot be modified.
Source can only be modified in the Debugger Editor when it is opened with the editor outside of a debug
session.

When source cannot be found, the editor opens without source. For information about how to locate
source, see “Locating source” on page 323.

Related tasks
“Switching between different debug views” on page 325
The Switch View menu from the debugger editor can be used to switch between different debug views
during a debug session. Use the Set Default View actions to select a debug view as the default view.

Using the Debug view
With the Debug view, you can manage the debugging of a program. It displays the stack for the suspended
threads for each target you are debugging. Debug targets (associated with threads and stack frames)
display in the Debug view for each program or application that you are debugging.

In the Debug view, each thread in your program is displayed as a node in the tree. A typical debug target
in the Debug view is described according to this diagram:

Chapter 16. Debugging  321



In the Debug view, launches used to start the debug session for the program are displayed at the top node
level (pointer A. in the diagram). Beneath the launch, a node representing the debug engine is displayed
(pointer B. in the diagram). Each thread in your program is then displayed (pointer C. in the diagram).
When program execution stops, by default, the node for the stopping thread automatically expands to
show its stack frame(s) (pointer D. in the diagram). If you manually expand other threads, these threads
will automatically expand the next time the program suspends. Finally, a node representing the process
and program being debugged is displayed (pointer E. in the diagram).

Note: Paragraph frame is not supported.

When program execution is suspended, the source for the selected stack frame opens in the editor,
highlighting the source line that the program is about to execute. If there are many threads in the
program, the stack for the thread that caused the stop may be scrolled off the end of the debug frame.

The sections that follow explain the actions that can be performed using the toolbar icons in the Debug
View. As shown in the diagram below, the Debug view can also be used for setting the debugger daemon.
For information about this, see the related topic about listening for debug engines.

322  IBM COBOL for Linux on x86 1.1: Programming Guide



Running, terminating, and detaching a program

You can perform these basic debug actions in the Debug view:

• To run your application, click Resume  or press F8.

• To terminate the debug session, click Terminate ( ) or press Shift+F8 - or right-click the debug target
(or one of its threads or stacks) that you want to terminate, and choose one of the terminate actions.

• To detach from the program and leave it running, click Disconnect ( ). This action might be
unavailable, depending on how the program you are debugging was started.

Stepping through a program

When a thread is suspended, the step controls can be used to step through the execution of the program
line-by-line. While performing a step operation, if a breakpoint or event is encountered, execution
suspends at the breakpoint or event, and the step operation ends. You can use step commands to step
through your program a single instruction or location at a time.

The following step commands are available:

• Step Over ( )(F6): When you issue a step over, the program steps to the next source line.

• Step Into ( )(F5): When you issue a step into, your program will step to the next statement. If the
current line contains a call to another function, the debugger will stop in that function.

The behavior of this command is affected by the Use Step Filters action ( )(Shift+F5). If the filter is off
(push button not selected), the debugger will stop in a called function even if it does not contain debug
information and disassembly must be displayed. If the filter is on (push button selected) , the debugger
will only stop in the called function if source can be displayed. If source cannot be displayed, it behaves
as though you had issued a Step Over. The DER_DBG_ STEP_DEBUG debug engine environment variable
affects the behavior of the Use Step Filters action.

Note: For COBOL, the step into action will typically behave as though the step filter action is always on.
When debugging programs written in these languages, the debugger will attempt to stop in source code.

• Step Return ( )(F7): When you issue a step return, your program runs to the point in the calling
program immediately after the call to the current function. You will normally stop at the location
following the calling instruction. If the calling program has debug information, this may be in the middle
of a source line.

• Animated Step Into( ): When you issue this action, the debugger issues a step into action repeatedly.
You can control the delay between each step by selecting the Animated Step Into action again.

Related tasks
“Using breakpoints” on page 325
Breakpoints are temporary markers that you place in your executable program to instruct the debugger
to stop your program at a given point. When a breakpoint is encountered, execution suspends at the
breakpoint before the line is executed, at which point you can see the stack for the thread and check the
contents of variables, registers, and memory. Then, you can step over (execute) the line and see what
effect it has on the argument.

Locating source
When you debug an application, the debug engine attempts to find the source for the application. If the
debug engine can locate the source, it opens the source in the debugger editor. If the debug engine
cannot locate the source, it opens a Disassembly view of the source in the debugger editor.

You can use this method to help the debug engine locate source files:

• In the Debug view or the debugger editor, you can add a source location. For example, Edit Source
Lookup opens the Edit Source Lookup Path dialog in which you can select the type of source location to

Chapter 16. Debugging  323



add. Alternatively, you can alter the source location list by right-clicking a stack frame or thread in the
Debug view and selecting the Edit Source Lookup action.

Altering the source location list

After you start a debugging session, you can modify or add to the source location list by completing these
steps:

1. Right-click the debug target (or one of its threads or stack frames) and choose Edit Source Lookup.
The Edit Source Lookup Path window opens.

2. Do one of these steps:

• To add a source location, click Add. The Add Source dialog opens. Choose one of these options:

– File System Directory adds a local file system directory to the source location list. To also search
subdirectories, select Search subfolders.

– Debug engine adds the debug engine to the source location list.
– Debug engine path adds the path that is specified on the debugger engine to the source location

list. If you specify multiple paths, separate them with the appropriate separator for the platform of
the engine. For example, use a colon (:) for z/OS or Linux engines. Changes to the Debug engine
path setting takes effect in subsequent debug sessions.

• To remove an entry, select a source location and click Remove.
• To change the order of entries, select a source location and click Up or Down.

3. To search for all instances of the source file name in the source location list, select Search for
duplicate source files on the path. If the debugger finds multiple instances of the file name, you are
prompted to choose the correct source file.

4. To save the changes, click OK.

Changing the source file in the editor

If any of the following conditions is true, the debugger can locate the incorrect source for the current
stack frame:

• The source moved.
• You are debugging on a system other than the one on which your program was built.

If this situation occurs, you can change the text file that opens in the editor:

1. In the editor, right-click and select Change Text File.
2. Enter or browse for the path and name of the file that you want to open.

Note: If you are specifying a file on your local workstation, enter the fully qualified path and file name.
3. To load the specified source file in the editor and close the window, click OK.

Locating the source file in the editor

When source cannot be found, the editor opens without source.

To locate the source, do either of these steps:

• To specify a different editor source file name, click Change Text File. Browse or enter the path and
name of the file that you want to open.

Note: To specify a file on your workstation, type the fully qualified path and file name. The ability to
change the editor source file depends on the language, environment, and platform on which you are
debugging.

• To edit the source lookup path, select Add Source Location. The Edit Source Lookup Path window
opens. For instructions for adding a source location, see “Altering the source location list” on page 324.

To open a Disassembly view of the source, click Show Disassembly.

324  IBM COBOL for Linux on x86 1.1: Programming Guide



Switching between different debug views
The Switch View menu from the debugger editor can be used to switch between different debug views
during a debug session. Use the Set Default View actions to select a debug view as the default view.

Three views can be selected in the Switch View menu: Expanded Source view, Mixed view, and
Disassembly view. The Expanded Source view replaces the COPY statements in the COBOL source
with the actual contents of the copybook for which they are referencing. The Mixed view shows the
expanded source along with the disassembly instructions. The Disassembly view shows the disassembly
instructions.

Switching to a different debug view

Use the Switch View actions to switch to a different debug view. The debug view setting applies only to
the current file in the current debug session.

1. Right-click in the debugger editor.
2. Expand the Switch View menu.
3. Select one of the Show actions to switch to a different debug view.

The Show actions include Show Expanded Source, Show Mixed, and Show Disassembly.

Selecting a debug view as the default view

The Set Default View actions set the selected debug view as the default view. It switches the currently
debugged file in the current debug session to the selected view. Subsequent debug sessions will use the
selected view as the default view. If the default view is not available for a language or application, the
next view is selected.

1. Right-click in the debugger editor.
2. Select Switch View > Set Default View.
3. Select one of the debug views as the default view.

The debug views include Expanded Source, Mixed, and Disassembly.

Using breakpoints
Breakpoints are temporary markers that you place in your executable program to instruct the debugger
to stop your program at a given point. When a breakpoint is encountered, execution suspends at the
breakpoint before the line is executed, at which point you can see the stack for the thread and check the
contents of variables, registers, and memory. Then, you can step over (execute) the line and see what
effect it has on the argument.

The debugger supports the following types of breakpoints:

• Line breakpoints   are triggered when the line they are set on is about to be executed.

• Entry breakpoints  are triggered when the entry points they apply to are entered.

• Address breakpoints  are triggered before the disassembly instruction at a particular address is
executed.

• Load breakpoints  are triggered when a DLL or object module is loaded.
• Conditional breakpoints are triggered by parameters that control the behaviour of these breakpoints.

Not all breakpoint types support conditions.
• Event breakpoints are triggered when the debugger recognizes an exception thrown by the application.

• Watch breakpoints  are triggered when execution changes data at a specific address.
• Occurrence breakpoints are triggered when an event occurs or a specific exception is thrown. When

the breakpoint is triggered, an action can be performed (optional).

Event breakpoints are set in the Breakpoints view by clicking the Manage Compiled Language Event
breakpoints push button and then, in the Manage Event Breakpoints dialog, selecting the event type

Chapter 16. Debugging  325



that you want the debugger to catch. These breakpoints include all standard signals, and a number of
events of interest, such as C++ exceptions, and calls to library functions like exit(). For POSIX signals,
you can choose to be notified of all occurrences of each individual signal (handled signals), or only those
occurrences when no handler has been provided (unhandled signals).

Line breakpoints can be set in the editor by double-clicking on the ruler area to the left of an executable
line or by a right-click pop-up menu action in the editor  when you debug - or they can be set by
wizard in the Breakpoints view . If you want a thread-specific Line breakpoint, you must set it from
the Breakpoints view while there is an active debug session. Entry breakpoints can be set in the Modules
view by right-clicking an entry point and selecting Set entry breakpoint from the pop-up menu - or they
can be set by wizard in the Breakpoints view. In addition, you can right-click the debug target (or one
of its threads or stack frames) in the Debug view and select Options > Stop At All Function Entries
from the pop-up menu to stop at all entry points (this option is also available in the Breakpoints view
pop-up menu). All other breakpoint types are set by wizard in the Breakpoints view. To access the wizards
for setting breakpoints, right-click in the Breakpoints view and select Add Breakpoint from the pop-up
menu. This will expand to a menu that allows you to choose the breakpoint type that you want to set.
When you use the wizard to set a breakpoint, you can specify optional breakpoint parameters and set
conditional breakpoints (see the related topic).

The Breakpoints view displays a list of all breakpoints for all debug sessions. You can reduce the number
of breakpoints displayed in one of the following ways:

• To filter out breakpoints that are not related to the current debug session, click the Breakpoints view
Show Breakpoints Supported by Selected Target push button.

• To link the Breakpoints view with the Debug view, click the Link with Debug View toggle. When this
toggle is selected and a breakpoint suspends a debug session, that breakpoint will automatically be
selected in the Breakpoints view.

You can also group breakpoints for easier viewing in the Breakpoints view. Breakpoints can be grouped by
breakpoints (the standard list of breakpoints), breakpoint types (for example, grouped by line and entry
breakpoints), and by breakpoint working sets (groups that you define yourself). To group breakpoints,
select the Breakpoints view down-arrow icon and then select the grouping that you want to display in the
Breakpoints view. When you click Advanced in this menu, a dialog box opens which allows you to created
nested groupings. To create working sets, choose Working Sets from the Breakpoints view down-arrow
icon menu.

The breakpoint entries in the list provide you, in brackets, with a summary of the breakpoints' properties.
With pop-up menu options, you can add breakpoints, remove breakpoints, and enable or disable
breakpoints. You can also edit breakpoint properties with a pop-up menu option. With push buttons
in the Breakpoints view, you can remove breakpoints.

When you choose to edit a breakpoint, the wizard by which it was created opens (if you did not use a
wizard to create the breakpoint, the wizard for the breakpoint type opens). While in the wizard, you can
click Next > or < Back to view or edit the breakpoint settings in the wizard. Once you are finished, click
Finish to change the breakpoint or click Cancel to exit the wizard without making any changes.

Breakpoints can be enabled and disabled with pop-up menus in the Breakpoints view or the editor and
by check box in the Breakpoints view. When a breakpoint is enabled, it will cause all threads to suspend
whenever it is hit. When a breakpoint is disabled, it will not cause threads to suspend. For information
about enabling and disabling breakpoints, see the related topic.

In the Breakpoints view, there are two indicators to the left of a set breakpoint ( ). To the far left is
a check box indicating whether the breakpoint is enabled. When enabled, the check box contains a check
mark. (See pointer A. in the following diagram.) When disabled, the check box does not contain a check
mark. (See pointer B. in the following diagram.)

326  IBM COBOL for Linux on x86 1.1: Programming Guide



An indicator with a check mark overlay, shows a breakpoint that has been successfully installed by the
debug engine. If the breakpoint is enabled, this indicator is filled; if the breakpoint is disabled, this
indicator is not filled. In the editor, line breakpoints are indicated by an indicator with a check mark
overlay, indicating a breakpoint that has been successfully installed by the debug engine (if the breakpoint
is enabled, this indicator is filled - if the breakpoint is disabled, this indicator is not filled).

Breakpoints must be installed to suspend execution. It is possible to add a breakpoint that is not valid
for the current debug session. This breakpoint will not be installed until it is part of a debug session that
includes a debug engine that will recognize the breakpoint.

In the editor, line, and entry breakpoint indicators are displayed in the marker bar to the left of the editor.
Indicators for line, entry, address, watch, and load breakpoints are displayed in the Breakpoints view.

While in the Breakpoints view, the source editor will open to the location of a breakpoint if you do one of
the following:

• Double-click the breakpoint.
• Select the breakpoint and click the Go to File For Breakpoint push button.
• Right-click on the breakpoint and select Go to File from the pop-up menu.

Setting breakpoints
The following information describes how to set line breakpoints, entry breakpoints, exception
breakpoints, and other breakpoint types.

Set a line breakpoint

To set a line breakpoint, perform one of the following steps:

• When you debug, right-click the statement you want to stop at and select Add breakpoint > Line.
• In the debugger editor, double-click in the margin area to the left of the line. Use this method to set or

remove breakpoints.
• In the Breakpoints view, right-click an empty area and select Add a breakpoint.

Set an entry breakpoint

To set an entry breakpoint, perform one of the following steps:

• In the Modules view, right-click an entry point and select Set entry breakpoint.
• In the Debug view, right-click the debug target or one of its threads or stack frames and then select

Options > Stop At All Function Entries to stop at all entry points.
• In the Outline view, right-click on the name of the entry point and select Toggle entry breakpoint. You

cannot add any information such as conditional expressions when you add an entry breakpoint from the
Outline view.

• In the Breakpoints view, select Stop At All Function Entries.
• In the Breakpoints view, select Add Breakpoint > Entry....

Chapter 16. Debugging  327



Set an event breakpoint

To set an event breakpoint, perform these steps:

1. In the Breakpoints view, click Manage Compiled Language Event breakpoints.
2. In the Manage Event Breakpoints dialog, select the event type that you want the debugger to catch.

Set other breakpoint types

To set a source entry breakpoint, perform one of the following steps:

1. Right-click in the Breakpoints view and select Add Breakpoint from the menu. This will expand to a
full menu of the supported breakpoint types.

2. Select the breakpoint type that you want to set. When you use this wizard to set a breakpoint, you can
specify optional breakpoint parameters and set conditional breakpoints.

Exporting and importing breakpoints

Exporting breakpoints
To export breakpoints, perform the following steps:

1. Right-click in the Breakpoints view and select Export breakpoints.
2. In the Export Breakpoints window, select the breakpoints that you want to export.
3. In the To file field, type in the path and file name.
4. If you do not want the debugger to warn you when it overwrites an existing file with the same name,

select Overwrite existing file without warning.
5. Click Finish to save to the file.

You can import the breakpoints saved in this file and send the file to other users who are debugging
the same program so that they can import the same breakpoints.

Importing breakpoints
To import breakpoints, perform the following steps:

1. Verify that you are importing the breakpoints into the same program from which you exported them. If
you try to import the breakpoint into a different program, the debugger might not be able to install the
breakpoint.

2. Right-click in the Breakpoints view and select Import breakpoints.
The Import Breakpoints window opens.

3. In the From file field of the Import Breakpoints window, specify the path and file name, and specify
bkpt as the file extension. You can also use Browse to navigate to the file.

4. If you have existing breakpoints that you want the debugger to replace with the breakpoints in the file,
select the Update existing breakpoints check box.

5. If you want the debugger to create a new working set for these breakpoints, select the Create
breakpoint working sets check box.

6. Click Finish.

Enabling and disabling breakpoints
Rather than deleting a breakpoint, you can disable it so that it does not stop program execution. When
a breakpoint is enabled, it will cause all threads to suspend whenever it is hit. When a breakpoint is
disabled, it will not cause threads to suspend. Breakpoints can be added, deleted, enabled, or disabled
while your application is running.

When you disable a breakpoint, it remains in the Breakpoints view. To have your program stop on a
breakpoint that you have disabled, select and enable it. The advantage of disabling a breakpoint instead
of deleting it is that you do not have to find the location in the source to set the breakpoint again. In
addition, a disabled breakpoint saves any extra settings in the breakpoint.

328  IBM COBOL for Linux on x86 1.1: Programming Guide



There are two indicators to the left of a set breakpoint. To the far left is a check box indicating whether
the breakpoint is enabled. Enabled breakpoints are indicated with a check mark in this check box, while
disabled breakpoints are indicated with no check mark in the check box. When a breakpoint is disabled,
you can choose Enable from its pop-up menu in the Breakpoints view or editor (where the menu item is
Enable Breakpoint). When a breakpoint is enabled, you can choose Disable from its pop-up menu.

Enabling and Disabling Breakpoints from the Breakpoints View
To enable or disable a single breakpoint from the Breakpoints view:

1. Click on the Breakpoints view to bring it to the foreground.
2. Scroll the list of breakpoints until you see the breakpoint you want to enable or disable. If you want to

enable or disable multiple breakpoints, select them using the keyboard Shift or Ctrl keys.
3. Perform one of the following:

• To enable or disable a breakpoint, use the check box to the far left of the breakpoint. To enable a
breakpoint, select the check box. To disable a breakpoint, clear the check box.

• Right-click the breakpoint you want to enable or disable and select Enable or Disable.

Enabling and Disabling Breakpoints from the Editor
To enable or disable a single breakpoint from the editor:

1. Locate the breakpoint in the editor.
2. Perform one of the following tasks:

• Right-click the breakpoint indicator in the editor ruler bar and select Enable Breakpoint or Disable
Breakpoint.

• Right click the breakpoint in the editor and select Enable Breakpoint or Disable Breakpoint from
the pop-up menu.

The editor breakpoint indicator changes to a clear dot, if the breakpoint has been disabled, or a filled
dot, if the breakpoint has been enabled.

Disabling all breakpoints
To disable all breakpoints:

1. Click the Skip All Breakpoints toggle button.
This will temporarily disable all breakpoints.

2. To re-enable all breakpoints except those that you specifically disabled with the Disable Breakpoint
action, click the Skip All Breakpoints toggle button again.

Conditional breakpoints
Optional breakpoint parameters are used to control the behavior of breakpoints.

Note: Not all breakpoints support conditions.

When you set a breakpoint, you can make it conditional by setting these parameters in the Optional
parameters page of any breakpoint wizard:

Optional breakpoint parameter Description Type of breakpoint supported

Thread Breakpoints can be thread-
specific. You can specify whether
the breakpoint applies to all
threads (the default) or only to
one (n=one) specific thread. To
specify all threads, select Every.
To specify an individual thread,
choose the thread.

This parameter is supported by
all breakpoint types.

Chapter 16. Debugging  329



Optional breakpoint parameter Description Type of breakpoint supported

Frequency Indicates when to stop on a
breakpoint and when to skip it.
The debugger keeps track of how
many times each breakpoint is
encountered. The fields in this
section tell the debugger on
which encounter of a breakpoint
the debugger will first stop, how
often it will stop, and on which
encounter the debugger will no
longer stop.

The following parameters are
used to set the breakpoint
frequency:

• From: Enter the first
breakpoint encounter you want
the debugger to stop on.
For example, if you want the
debugger to skip over the
breakpoint the first five times it
is encountered, enter 6.

• To: Enter the last breakpoint
encounter you want the
debugger to stop on. For
example, if you want it to start
ignoring the breakpoint after
the 20th encounter, enter 20.
To stop on every encounter,
enter Infinity.

• Every: Enter the frequency
with which you want the
debugger to stop on this
breakpoint. For example, if you
want it to stop on one out of
every four encounters, enter 4.

This parameter is supported by
all breakpoint types.

330  IBM COBOL for Linux on x86 1.1: Programming Guide



Optional breakpoint parameter Description Type of breakpoint supported

Expression You can enter an expression into
this field. The execution of the
program stops at the breakpoint
only if the condition specified in
this field tests true (any non-zero
value is considered true).

For example, if you are debugging
a C++ program you can type the
following expression:

(i==1) || (j==k) && (k!=5)

A conditional expression is any
valid expression in the language
of the location of the breakpoint
that evaluates to a number,
and does not have side effects
or involve calling a function.
For C and C++, all assignment
operators, and the increment and
decrement operators (++ and --)
are not permitted.

Attention: Even though
an application does
not appear to stop
at a breakpoint whose
condition has not been
met, the debugger
temporarily suspends
the application while it
evaluates the condition.
For most purposes,
this short pause is
not significant. However,
in a multithreaded
application, a pause
may cause the operating
system to change the
order in which threads
are dispatched.

Line, Entry, and Address.

Inspecting variables
You can inspect variables in two ways: by moving the mouse over the name of a variable in the Debug
editor window (hovering) or by using the Variables view. With hovering, the debugger displays the value
of a variable in a tree structure in a small window that disappears when you move the mouse away from
the name of the variable. While the debugger displays the window, you can expand and collapse the tree
structure to view more information. You can also edit the value of a variable from the hovering window.
The debugger Variables view provides easy access to the variables in your program and enables you to
observe and edit variables.

When a thread suspends, the top stack frame of the thread is automatically selected. When a stack frame
is selected, the visible variables in that stack frame are displayed in the Variables view. Complex variables
can be expanded to show the elements that make up the variable.

• Variable values can be changed in the hovering window by performing these steps:

Chapter 16. Debugging  331



a) Select a variable or a field from the tree structure in the hovering window.
The value of the selected element is displayed in the detail pane below the tree structure.

b) Click inside the detail pane to edit the variable value.
You can use Cut, Copy, Paste, or Select All actions when you edit the value in the detail pane.

c) After you edit the variable value, click the Assign Value button below the detail pane to assign the
new value to the variable.

• Variable values can be changed in the Variables view by clicking the value of the variable in the Value
column and changing the value inline or by performing these steps:
a) Right-click the variable that you want to edit and select Change Value from the pop-up menu.
b) In the resulting dialog, change the variable value.

To indicate that the variable value has changed, its indicator will have a delta symbol next to it. All
variables affected by the change will also have a delta symbol next to their indicators.

The Variables view displays all variables for a selected stack frame. The view dynamically shows the
variables in the current scope and they will appear and disappear as the program is stepped through or
resumed. As an alternative to the Variables view, you can monitor variables in the Monitors view. In the
monitors view, the debugger always shows the value for a variable if it can be obtained. To view and
inspect one or multiple variables at a time, right-click the variable or variables and select Monitor Local
Variable from the pop-up menu to work with the variables in the Monitors view.

Depending on the language that you are debugging, you can filter the Variables view to display certain
variables only. To do this, right-click in the Variables view and select an entry from the Filter Locals
submenu as shown in the following image.

Note: The filtering options and content available in the Filter Locals submenu depends on the language
you are debugging.

From the variables view, you can set the value to be represented in either a decimal or hexadecimal
format. To select the representation, highlight the variable, right-click, select Change representation and
then the desired format:

332  IBM COBOL for Linux on x86 1.1: Programming Guide



Viewing the value in hexadecimal display may be useful when debugging data exceptions.

Adding a variable, expression, or register to the Monitors view
The Monitors view shows variables, expressions, and registers that you have selected to monitor. You
can enter the variables or expressions in a dialog box or select them from the Debugger Editor. Use the
Monitors view to monitor global variables - or variables, expressions, and registers that you want to see
at all times during your debugging session. From the Monitors view, you can also modify the content of
variables, expressions, or registers - or change the representation of values. Note: The expression support
for some programming languages might depend upon the version of the compiler and/or runtime for those
languages which are installed on your server.

To add a new Program Monitor for an expression from the Monitors view:

1. In the editor, select the source line that represents the context in which you want to evaluate the
expression. Alternatively, in the Debug view, select the thread that contains the expression that you
want to monitor.

2. Click the Monitors view Monitor Expression button ( ).
3. In the Monitor Expression dialog box, enter the variable, expression, or register in the field.
4. Click OK.

Additional actions

The following information describes additional ways to add a program monitor from the editor, variables
view, registers view, and how to change the contents of a variable, expression, or register in the monitors
view

To add a new Program Monitor for a variable or expression from the editor:

1. In the editor, highlight and right-click the expression that you want to monitor.
2. Select Monitor Expression from the pop-up menu.

To add a new Program Monitor for a variable or expression from the Variables view:

1. In the Variables view, right-click the variable that you want to monitor. To add multiple monitors, select
multiple variables using the keyboard Ctrl or Shift keys.

2. Select Monitor Local Variable from the pop-up menu.

To automatically add the variables on each line to the Monitor view as you step through each line:

1. Stop your program at the first line you want to start monitoring.
2. In the Debug Console view, enter the SET AUTOMONITOR ON command.

To add a new Program Monitor for a register from the Registers view:

Chapter 16. Debugging  333



1. In the Registers view, right-click the register that you want to monitor.
2. Select Monitor Register from the pop-up menu.

To change the contents of a variable, expression, or register in the Monitors view:

1. Select the expression whose value you want to modify.
2. If the expression is a struct or array, expand it to show its individual elements.
3. Scroll down to the expression you want to change and do one of the following:

• Double-click the expression.
• Right-click the expression and choose Change value from the pop-up menu.

Note: If you double-click on a variable and its value field cannot be edited, the variable is a type that
cannot be modified.

4. Enter a new value for the expression and press Enter. The new value can be any valid expression that
has no side effects. To indicate that the expression value has changed, its indicator will have a delta
symbol next to it. All expressions affected by the change will also have a delta symbol next to their
indicators.

The debugger will attempt to recover should one of these restrictions not be met. However, it cannot
guarantee that the state of the application being debugged will not be irrevocably changed.

If you are monitoring a variable in an optimized COBOL program, you might see the following error
message whenever you run a statement that changes the value of that variable: Error occurred:
EQA2421E The assignment was not performed because the assigned value might not
be used by the program, due to optimization. The debugger does not run the statement. To
run that statement, do the following steps:

1. Add the variable to the Monitors view using any method described earlier. The debugger displays the
variable's name and current value in the Monitor view.

2. Step through your program until you reach a statement that alters the value of that variable.
3. Enter the SET WARNING OFF command in the Debug Console view. The Debug Console view displays

a message that the SET WARNING OFF command was received.
4. Step through the statement. The new value of the variable you are monitoring is displayed in the

Monitors window.

Setting the representation of monitor contents
You can change the representation of variables and expressions in the Monitors and Variables views, and
you can set the current representation of a variable or expression to be the default for it.

1. Right-click the variable or expression for which you want to change the representation.
2. Select Change Representation from the pop-up menu.
3. Select the representation that you want. The current representation will have a check mark beside it.
4. You can set the current representation to default as follows:

a. Ensure that you have set the variable or expression to the representation that you want, by
following the preceding steps.

b. Right-click the variable or expression and select Change Representation > Set default
representation from the pop-up menu.

The default representation for the variable or expression will be used for subsequent debug sessions
of the application.

334  IBM COBOL for Linux on x86 1.1: Programming Guide



Dereferencing variables and expressions
Variables or expressions that can be evaluated to an address can be dereferenced in the Variables view
or in the Monitors view, if you are monitoring the variable or expression. To dereference, complete the
following steps:

1. In the Variables or Monitors view, right-click a variable or expression that can be dereferenced (for
example, a pointer).

2. Choose Dereference from the pop-up menu.

Viewing the contents of a register
You can view the contents of a register from the Registers view, the Monitors view, or the Memory view. In
these views, you can observe and change the contents of registers in the current thread of your program.
In the Registers view, the registers are categorized, so you only need to expand the category of registers
that you want to view.

View the contents of a register in the Registers view

1. In the Debug view, select the thread, or the thread's stack frame, for which you want to view the
registers.

2. In the Registers view, expand the register group that you want to view.
3. If necessary, use the scroll bars or PageUp and PageDown keys to scroll the Registers view until the

register is visible.

Note: If you are in the Registers view and want to copy a value, you must put it into edit mode before
you can copy it. To edit a value in the Registers view, double-click on it or right click it and choose
Change Value from the menu. Either action will open the Set Value dialog box from which you can
copy the value of the register.

Tip: To improve performance, collapse register groups that you are not using or editing.

Register values can be changed in the Registers view by performing these steps:

a. Right-click the register that you want to edit and select Change Value from the pop-up menu.
b. In the resulting dialog, change the variable value.
c. Click OK. To indicate that the register value has changed, its indicator will have a delta symbol next

to it.

Attention: To complete the dialog, you must click OK rather than the keyboard Enter key.
Selecting the keyboard Enter key will insert a new line in the register value.

View the contents of a register you have already added to the Monitors view

1. If necessary, use the scroll bars or PageUp and PageDown keys to scroll the Monitors view until the
register is visible.

2. If you want to change the representation of the register, right-click the register name and select
Change representation from the pop-up menu. Then select the representation that you want from the
resulting pop-up selection.

View the contents of a register you have already added to a memory monitor in the Memory view

If necessary, use the scroll bars or PageUp and PageDown keys to scroll the memory monitor until the
register's address is visible.

Using the Modules view
Use the modules view to display a list of modules loaded while running your program.

• Show modules with debug information.
In the Modules view, the items in the list can be expanded to show compile units, files, and functions.
When you are viewing modules, click the Show modules with debug information button to filter out

Chapter 16. Debugging  335



modules without debug information, leaving only the modules with debug information. By default, this
setting is on.

• List source files that are associated with the loaded modules.
When inspecting modules, double-clicking source file nodes will open source files in the editor.
Clicking the Show file filter dialog button will open a dialog box with a list of all source files that
are associated with the loaded modules. You can narrow down the selection list by typing the file name
in the text field. Clicking OK will open the source file in the editor.

• Display properties of compile units, files, and functions in the Properties view:
a) To open the Properties view, select Window > Show View > Properties.
b) In the Modules view, go to the module whose properties you want to view. If necessary, expand the

module nodes and use the scroll bars, Up and Down keys, or PageUp and PageDown keys to scroll
the Modules view until the module is visible.

c) Select the module to have its properties display in the Properties view.
• Set entry breakpoints from the modules view

Right-click an entry point and select Set entry breakpoint from the menu.

Monitoring memory
Use the memory view to change the contents of memory or memory areas used by your program.

Add a new memory monitor from the Variables view, Monitors view, Registers view, or editor

1. In the Variables view, Monitors view, or Registers view, right click the variable, expression, or register
for which you want to monitor memory. Or, in the editor, highlight and right-click the expression for
which you want to monitor memory.

Note: If the expression is a pointer, the value of the expression will be used to address memory. If the
expression is an lvalue (with an address in memory), its address will be used to address memory.
Otherwise, the value of the expression will be used as the address. For example, given the declaration
int i = 0x44;, if the expression is i, the memory monitor will be at the address of i. If the
expression is i+1, the memory monitor will be at the location given by the value of the expression i+1,
which is 0x45.

2. Select Monitor Memory > <rendering> from the pop-up menu, where <rendering> is the rendering that
you want to display in the Renderings portion of the Memory view.

Add a new memory monitor for an expression from the Memory view

1. Click Add Memory Monitor .
2. In the Monitor Memory dialog box, enter the expression in the field (the expression must evaluate to

an address).
3. Click OK.

The Monitors (left-hand) portion of the Memory view displays the expression that you entered for
monitoring. If you have multiple memory monitors, this section displays a list of expressions that you
are monitoring.

The Renderings (right-hand) portion of the Memory view populates with HEX and ASCII renderings.

Inspecting memory in the Memory view
With the Memory view, you can look at the contents of memory at a specific address. The address can be
obtained from an expression that references a variable or a register. When you monitor memory, you can
set the monitor to be rendered in a data format such as Hex, ASCII, EBCDIC, UTF-8, signed integer, and
unsigned integer.

The Memory view is described according to this diagram:

336  IBM COBOL for Linux on x86 1.1: Programming Guide



• The Monitors pane is located on the left-hand side of the view (pointer A. in the diagram). This portion
of the view contains a list of expressions, variables, and registers that you have added for monitoring. In
this documentation, a monitor is a memory monitor that is listed in the Monitors pane.

• The Renderings pane is located on the right-hand side of the view (if the view is set to horizontal
orientation) and it contains renderings for the selected monitor (pointer B. in the diagram). You use it to
set the data format (or formats) that you want displayed for monitored memory.

• The Toggle Split Pane control (pointer C. in the diagram) allows you to split the Renderings pane. By
default, the Memory view only displays one rendering pane. When you click Toggle Split Pane, a second
rendering opens and displays as a split pane.

• The Link Memory Rendering Panes control (pointer D. in the diagram) allows you to keep split
Renderings panes synchronized when you navigate in a rendering or change the format of a rendering.

When you monitor an address or expression from the Monitors pane, the Renderings pane becomes
populated with the default text-based rendering for your operating system. When you monitor an address
or expression from the Renderings pane, the pane becomes populated with a list of renderings from
which you can choose one to display.

Note: If you want to display memory in UTF-8 format, use Traditional or Hex and Character renderings.
To display characters in the UTF-8 encoding, right-click the rendering and select Text > UTF-8 from the
menu.

You can monitor multiple variables, expressions, and registers in the Memory view - or you can add
multiple renderings to the Renderings pane. In the Monitors pane, each variable, expression, or register
that you have added is listed. In the Renderings pane, only one or more memory renderings for the
currently-selected monitor in the Memory view is displayed (multiple renderings are separated by tabs or
a split pane).

You can set the two panes in the Memory view to display in a horizontal orientation (side-by-side) or in a
vertical orientation (top-to-bottom). To set the layout of the view, click the Memory view down-arrow icon
and select Layout from the menu. This will open a submenu, from which you can choose the orientation
that you want to display.

Viewing the contents of memory by using memory monitors
To view the contents of memory from the Memory view:

1. In the Monitors pane, select the memory monitor that contains the memory location that you want to
view. Memory will appear in the Renderings pane, where you will perform all other steps. If you have
added multiple renderings, select the tab that contains the rendering that you want to view.

2. If desired, split the Renderings pane by selecting the Toggle Split Pane push button ( ). By default,
the Memory view only displays one rendering pane. When you click Toggle Split Pane, a second

Chapter 16. Debugging  337



rendering opens and displays as a split pane. If you have chosen to render Hex and Character, you
may need to choose this push button to see both renderings.

3. If necessary, use the scroll bar in the rendering to view memory locations above or below the base
address of the memory monitor being shown by the current rendering. Alternatively, you can right-click
in the rendering and choose the Go to Address pop-up menu item or hit Ctrl+G. This will open a
section at the bottom of the rendering, in which you can perform the following actions:
a) Select the Go to Address pull-down menu item and then enter an address that you want to jump to.

The rendering will be positioned so that the address entered is visible and selected.
b) Select the Go to Offset pull-down menu item and then enter the offset. The rendering will be

positioned so that the address of the expression (base address), plus the offset entered, is visible
and selected. A negative value will position the rendering back from the base address.

c) Select the Jump Memory Units pull-down menu item. This function takes the currently-selected
address and adds the number of memory units that you specify to it. The resulting address is
selected. A negative value will position the rendering back from the current address.

For all of these entries, you can input them as HEX by selecting the Input as Hex check box (if this
check box is not selected, input will be decimal). Once you have made the entry in the field, hit Enter or
click OK to go to the location in the rendering. To close this section, click Cancel or hit Ctrl+G.

Note: Input is also treated as HEX if it is prefixed with 0x.
4. To go to the address in a particular cell, right-click inside the cell and select Dereference Pointer from

the pop-up menu.
5. If you want, change the width of any column by clicking the left or right side of its header cell and

dragging it to alter the width of the column - or right-click inside the rendering and select Resize to
Fit from the pop-up menu so that all columns are re-sized so that all text within them can be viewed.
Alternatively, you can right-click inside the rendering and select Format from the pop-up menu. This
will open the Format dialog box. In this dialog box, you can set the number of units per row and the
number of units per column. As you make these settings, a Preview window in the dialog box displays
the rendering layout that you are setting. To save these settings as the default layout, click Save as
Defaults.

6. To switch the memory rendering to Offset Mode, right-click inside the rendering and select Change
Display Mode > Offset Mode from the pop-up menu. To switch the memory rendering to Address
Mode, right-click inside the rendering and select Change Display Mode > Address Mode from the
pop-up menu. When you switch to Offset Mode, the address of the expression being monitored
becomes the first cell in the rendering and the Address column displays offsets.

7. You can also hide elements of the Memory view for easier viewing:

• You can hide the Monitors pane by deselecting the Toggle Memory Monitors Pane toggle.
• You can hide the Address column by right-clicking inside the rendering and selecting Hide Address

Column. To restore a the address column when it is hidden, right-click inside the rendering and
select Show Address Column from the pop-up menu.

If you are in a memory rendering and move away from the address that you originally set to monitor,
choosing the Reset to Base Address pop-up menu item will position the cursor back to the base address
of the memory monitor. Alternatively, you can reset all renderings for a memory monitor by right-clicking
the monitor and selecting Reset (or, you can select multiple monitors and choose this action). When you
reset a monitor, by default, the visible renderings will be reset to the base address. To reset all renderings
in the current Memory view to the base address, modify the Memory view preferences.

Changing the contents of a memory location
While debugging, you can change the contents of a memory location.

To change the contents of a memory location in a memory monitor in the Memory view:

1. In the Monitors pane, select the memory monitor that contains the memory location that you want to
edit. Memory will appear in the Renderings pane, where you will perform all other steps. If you have
added multiple renderings, select the tab that contains the rendering that you want to edit.

338  IBM COBOL for Linux on x86 1.1: Programming Guide



2. Scroll down to the memory location you want to change. Alternatively, right-click in the monitor and
choose the Go to Address pop-up menu item. This will open a Go To Address section at the bottom of
the rendering, in which you can enter an address that you want to jump to.

3. Select the row containing the value that you want to change and then double-click the value that you
want to change.

Tip: If the rendering is currently in focus, you do not need to double-click the value that you want to
change to be able to edit it. Rather, you can simply start typing the change and the editor will activate.

4. Enter a valid value for that memory location.
5. Press Enter to submit the change. The debugger checks for a valid value.

Memory view preferences
You can set table rendering, codepage, and padded string preferences for memory renderings. In
addition, you can modify the preferred behavior for resetting memory renderings.

Memory view preference dialog boxes are opened from the Memory view down-arrow icon menu. To open
the Memory view Preferences dialog box, click the Memory view down-arrow icon and select Preferences
from the menu. To open the Memory view table renderings Preferences dialog box, click the Memory view
down-arrow icon and select Table Renderings Preferences from the menu.

To restore any changes that you make in the preferences to their default settings, click Restore Defaults.

Preferences: Reset Memory Monitor

You can reset a rendering to the base address if you have moved away from it. When you reset a rendering
to the base address, you can set it to reset only the visible renderings - or you can set it to reset all
renderings. If you choose to reset all renderings, performance of the reset operation can be negatively
impacted. To set this preference, open the Preferences dialog box and then select the Reset Memory
Monitor node. In the Reset Memory Monitor page, choose the appropriate radio button.

Preferences: Padded String

The padded string is the string that will appear in memory contents when memory cannot be retrieved. To
set the padded string, open the Preferences dialog box and select the Padded String node. In the Padded
String page, specify the string that you want to display when memory contents cannot be determined.

Preferences: Select Codepages

When monitoring ASCII and EBCDIC text-based renderings (and mapped memory, if it is available in the
product that you installed this debugger with) in the Renderings pane, you can set the codepage in which
you want the rendering to be displayed.

To set the codepage for rendering memory to ASCII/EBCDIC, open the Preferences dialog box and select
the Select Codepages node. In the Select Codepages page, specify the codepage of the character set that
you want to change (for ASCII renderings, EBCDIC renderings, or both).

Table Renderings Preferences

To set preferences for memory renderings that are displayed in a table, click the Memory view down-
arrow icon and select Table Renderings Preferences. In the resulting preferences dialog box, you can
indicate if you want the debugger to automatically load the next page of memory whenever you scroll to
the end of the buffer. If you deselect this setting, then the number of lines per page that you specify will
be loaded into the Renderings pane. You will not be able to scroll outside the buffer defined by this page
size setting. Instead, to view memory from the next page or previous page, you must right-click to use the
Previous Page and Next Page actions from the pop-up menu.

Working with multiple Memory views

You can add additional Memory views to the workbench. To do this, click New Memory View ( ). When
you have multiple Memory views open, you cannot link their renderings to each other. However, you can

Chapter 16. Debugging  339



pin the contents of a Memory view so that memory renderings that are added to one view do not affect
the other view. To pin a memory monitor, ensure that the Pin Memory Monitor button ( ) in the Memory
view is toggled on. If you then go to another Memory view and add a memory monitor, it will show up in
both Memory views, however, the memory rendering that is currently displayed in the pinned monitor will
not change.

When you add a new Memory view, its Renderings pane will be populated with the memory rendering
selection list. From this list, you can select the data format that you want to use for the memory rendering
and then click Add Rendering(s).

Removing memory monitors from the Memory view
To remove a memory monitor from the Memory view:

1. Select the memory monitor that you want to remove (by selecting it in the list in the Monitors pane).

2. Click the Remove Memory Monitor push button ( ).

To remove multiple memory monitors, select them using the keyboard Ctrl or Shift keys, and then click
Remove Memory Monitor. To remove all memory monitors, click Remove All.

Note: If you have added multiple renderings for a memory monitor, all renderings will be removed when
you choose to remove the monitor.

Mapping memory
In the Memory view, you can display the contents of memory mapped according to a layout that you
define yourself or according to a sample layout.

Depending on the product that you are running, sample layouts and/or document type definition (DTD)
files may be available in these locations:

• In <product installation
directory>\plugins\com.ibm.debug.memorymap.<platform>.samples\samples, where
<product installation directory> is the directory where you installed this product.

• In <product installation directory>\maps.

Predefined memory layouts are stored in XML files (one XML file for each layout, created using a text or
XML editor). The XML file format provides for describing structures of predefined primitive type elements
or nested layouts, where a layout element can point to another memory layout file. The layout file also
specifies the length of the memory block to be laid out.

The size of a memory block that you monitor is determined by the size of the selected layout. If the
specified memory block is protected or cannot be accessed, the display values will be shown as the string
that is set as the padded string in the user preferences (by default, this is a number of "?"s).

Initially, the layout element and any sub-elements representing nested layouts are not populated (no
sub-elements are generated yet). The first time you expand a layout element, it is populated according
to the XML layout file. Populating the layout element means breaking the memory block into fragments
corresponding to the layout elements specified in the XML. The values displayed for the layout sub-
elements are formatted according to a default primitive type specified in the XML file.

Working with mapped memory
You can use the Memory view to monitor memory for expressions, variables, and registers by memory
map.

To view mapped memory in a monitor that you have added to the Memory view:

1. Set columns in the Memory view Renderings pane. You can show or hide columns by right-clicking
inside the pane and selecting Choose Columns from the pop-up menu. In the resulting dialog box,
select the columns that you want to display and then click OK. You can also move columns in the view
by dragging and dropping them.

340  IBM COBOL for Linux on x86 1.1: Programming Guide



2. If necessary, use the scroll bar of the rendering to view fields. Alternatively, right-click in the monitor
and choose the Find Field pop-up menu item. For more information about finding fields, see the
related topic.

3. If you want, set the rendering to show or hide types. To do this, right-click in the memory map monitor
and select Show Types or Hide Types from the pop-up menu.

4. If you want, change the representation of memory contents for the field that you are viewing. To do
this, right-click the field or its value and select Representation > <representation format> from the
pop-up menu.

5. Choose the desired display type for the values in the Offset column by right-clicking in the Renderings
pane and selecting Choose offset display > offset display type.

6. For easier viewing, you can group memory fields and set filters for these groups. For information about
grouping mapping layout fields, see the related topic.

You can monitor multiple variables, expressions, and registers in the Memory view - and multiple map
renderings may be added for a single memory monitor. You can also add multiple Memory views to
the workbench. In the Memory view Monitors pane, each variable, expression, or register that you have
added is listed. In the Renderings pane, only the memory rendering(s) for the currently-selected monitor
in the Memory view is displayed (multiple renderings are separated by tabs or a split pane).

Setting memory map preferences
In the memory map preferences, you can set the memory map location. In addition, you can indicate if
you want the debugger to prompt you when you choose to remove all groups when you are working in the
Manage Groups dialog. You can also set the map to be built before finding fields.

The product that you installed the debugger with may include a <product installation
directory>\plugins\com.ibm.debug.memorymap.<platform>.samples\samples sample
memory map directory, where <product installation directory> is the directory where you
installed this product. If the product includes this directory, the debugger looks for memory maps in it
by default. Otherwise, the default memory map directory can be found in the memory map preferences.
The memory map directory must contain a layout.dtd file, which is required by the Memory view.
You can change the memory map location, however, if you do, you must copy a layout.dtd file to the
new memory map location (if you export a map to this location, the export procedure will automatically
generate a layout.dtd for you). This file must always reside in the memory map location.

Note: A layout.dtd file may also be available at the download site for the product that you installed this
debugger with. If a layout.dtd is not available with the product that you installed this debugger with,
you can create a layout.dtd file as described in “Defining a mapping layout” on page 342.

To have the debugger find memory maps that you have created, you can add your memory maps to the
default directory or you can change the location of memory maps to point to another directory as follows
(be sure that this other directory contains a copy of the layout.dtd file):

1. In the Memory view, click the down-arrow icon and choose Memory Map Preferences from the menu.
2. In the Memory Map Preferences dialog box, enter or browse for the memory map location that you

want to set in the Memory Maps Location field.

Note:

• If the product that you are running this debugger with ships the Remote System Explorer, the
memory maps location settings are made in this dialog box in the Memory Maps Location section. In
this section, you can enter or browse for a location on a remote server. To do this, choose the Profile
and Connection that is associated with the memory map location (if you do not specify a profile
and/or none exists in the workspace, then the filename entered in the Directory field will be treated
as a local file and will not be associated with any profile). Then specify the memory map location
folder in the Directory field. When you map memory, you will be presented with a list of the maps
that reside in the specified location. If this location is remote, an attempt will be made to connect to
the remote server to retrieve the list of available maps. If the Map option is selected, this will allow
you to browse for a map on both remote and local systems. If the selected map file is on a remote
system, any remote files that are required will be cached on the local system.

Chapter 16. Debugging  341



• If you change the default memory map location, you can easily set it back to the product default
value by clicking the Memory Map Preferences dialog box Restore Defaults push button.

3. If you want to control the size of the memory block that is retrieved, complete the Minimum memory
block retrieval size in bytes and Maximum memory block retrieval size in bytes fields. When a block
of memory is retrieved, it is divided into segments that are as large as the minimum memory block
retrieval size. Retrieval requests are then consolidated up to the maximum memory block retrieval
size.

Note:

• If the specified maximum memory block retrieval size exceeds the maximum size that is supported
by the debugger engine, the maximum size that is supported by the debugger engine will be used.

• If you notice performance problems while mapping memory, increasing the minimum block size
may help. For large, contiguous maps, a larger value for the minimum block size will improve
performance.

4. Select the Prompt when removing all groups check box if you want to receive a prompt when
removing all groups.

5. Choose whether or not you want to receive a prompt to preserve or discard grouping and description
information before rebuilding a map. If this check box is not selected, the last save/discard action will
be remembered (for example, the information will be saved if it was for the last map rebuild).

6. Indicate if you want the XML map file to be saved when groups and descriptions are changed in the
rendering. If this check box is selected, the rendering is rebuilt when you make changes - and any
renderings in the Memory view that use the related XML file are rebuilt.

7. To build the map before opening the Find Field dialog box, select the Automatically build the map
before opening the Find Field dialog check box. If this check box is not selected, only those elements
that have already been built (or expanded) in the map will display in the Find Field dialog box. By
default, this check box is selected.

8. Enter the setting of your choice for receiving a warning message when the export of a map will affect
other memory renderings.

When you map memory, the list of available maps that is presented to you are maps that reside in the
memory map location. Similarly, when you map memory using the Map action, you are prompted to locate
the map in this location - however, with this action, you can also browse elsewhere on your local system
for memory maps. If you do browse elsewhere on your local system, and choose a map from this location,
the location will become the default memory map location.

Note: If the product that you are running this debugger with ships the Remote System Explorer, you can
browse for a map on a remote or local system. If you choose a map from a different location on a remote
or local system, the location will become the default memory map location.

Mapping memory for an expression, variable, or register
To map memory for an expression or variable, follow the instructions for adding an expression or variable
to the Memory view and then choose the Map option when selecting your memory rendering. Similarly, to
map memory for a register, follow the instructions for adding a register to the Memory view and choose
the Map option when selecting your memory rendering.

For information about adding expressions, variables, and registers to the Memory view, see the related
topics.

When you choose to render memory with a map that contains errors, the Memory view Renderings pane
will display an error message that contains options for resolving the error. For example, the error page
may include options for opening the file (which would allow you to edit and save it) and for rebuilding the
file. When you map memory, the map builds elements for expanded nodes only. You might not encounter
errors until the node that contains an error is expanded. To fix these errors, open the map and fix the
errors - and then rebuild the map. For information about editing memory layouts, see the related topic.

Defining a mapping layout
The following information describes the layout definition of a map with an example.

Creating the layout XML file

342  IBM COBOL for Linux on x86 1.1: Programming Guide



The XML file format is defined in the layout.dtd document type definition (DTD) file as follows:

<?xml version="1.0"?>
  <!ELEMENT LAYOUT (FIELD)+>
  <!ATTLIST LAYOUT Header CDATA #REQUIRED length CDATA #REQUIRED>
  <!ELEMENT GROUP EMPTY>
  <!ATTLIST GROUP Name CDATA #REQUIRED>
  <!ELEMENT FIELD (FIELD)*>
  <!ATTLIST FIELD
    Header CDATA #REQUIRED
    Type (16_BIT_INT|16_BIT_UINT|16_BIT_HINT|32_BIT_INT|32_BIT_UINT|32_BIT_HINT|32_BIT_FLOAT|
64_BIT_INT|64_BIT_FLOAT|CHARACTER|HEX|ASCII|EBCDIC|STRUCTURE|PADDING|BIT|BITMASK|MAP) #REQUIRED
    length CDATA #REQUIRED
    layout CDATA #IMPLIED
    filename CDATA #IMPLIED
      Groups CDATA #IMPLIED>

This means that the XML layout file first specifies a header (title) and the total length of the layout
followed by a list of sub-elements (FIELD) described by a header (name), length and primitive type which
is used to determine the default representation of that sub-element.

There are also special sub-element types:

• PADDING, used to define a block of bytes that does not need to be specifically laid out
• STRUCTURE introduces a nested structure; the sub-element has no value
• BITMASK, used to define a bitmasked sub-element. Its sub-elements represent bits, groups, or bits
defined by the BIT type.

• UNION defines the same portion of memory in more than one way.

The following example defines the layout for the following C language structure:

typedef struct {
  unsigned short ushort_val;
  short short_val;
  unsigned long ulong_val;
  long long_val;
  char string_val[12];
  char char_val;
} _test;

The XML file describing a tree view of the _test structure and conforming to this format is:

<?xml version="1.0"?>
  <LAYOUT Header="A Layout" description="Tree view" length="25">
  <FIELD Header="ushort_val" Type="16_BIT_UINT" length="2"></FIELD>
  <FIELD Header="short_val" Type="16_BIT_INT" length="2"></FIELD>
  <FIELD Header="ulong_val" Type="32_BIT_UINT" length="4"></FIELD>
  <FIELD Header="long_val" Type="32_BIT_INT" length="4"></FIELD>
  <FIELD Header="string_val" Type="ASCII" length="12"></FIELD>
  <FIELD Header="char_val" Type="ASCII" length="1"></FIELD>
</LAYOUT>

The offset and offset_mode attributes allow you to specify the exact location of a field either
relative to the start of the map (offset_mode=absolute) or relative to the current address
(offset_mode=relative). In the following example, the element named b has an offset of 10 and
offset_mode defined as relative. Without these attributes, this element would have an offset of 80,
but because the offset is defined as 10, relative to current position, the offset is 90. Note that the length
of element a is defined in hexadecimal because the length is prefixed with 0x. Generally, the length
and offset attributes can be specified in HEX by prefixing with 0x. Element c has an offset of 4 and the
mode is absolute. This means that the offset of this element is 4 bytes away from the start of the layout.
The 10 bytes mapped by field c are also covered by field a:

<Header="offset_Test" length="190">
  <FIELD Header="a" Type="HEX" length="0x64"></FIELD>
  <FIELD Header="b" description="offset = 90" Type="HEX" length="80" offset="10" 
offset_mode="relative"></FIELD>
  <FIELD Header="c" Type="HEX" length="10" offset="4" offset_mode="absolute"></FIELD>
</LAYOUT>

Chapter 16. Debugging  343



Defining padding fields

Padding fields can be used to handle byte aligned structures, or to skip data areas in the map that do not
need to be defined in the memory map. For example, for the _test structure defined above, you could
create a map that ignores the long_val field, but shows the string_val type in the layout. The XML file
would look like this:

<?xml version="1.0"?>
  <LAYOUT Header="A Layout" description="Tree view" length="0x19">
  <FIELD Header="ushort_val" Type="16_BIT_UINT" length="2"></FIELD>
  <FIELD Header="short_val" Type="16_BIT_INT" length="2"></FIELD>
  <FIELD Header="ulong_val" Type="32_BIT_UINT" length="4"></FIELD>
  <FIELD Header="" Type="PADDING" length="4"></FIELD>
  <FIELD Header="string_val" Type="ASCII" length="12"></FIELD>
  <FIELD Header="char_val" Type="ASCII" length="1"></FIELD>
</LAYOUT>

You could also use the offset attribute here to skip the long_val field by specifying the offset of
string_val as 4, and the offset_mode as relative:

  <FIELD Header="string_val" Type="ASCII" length="12" offset="4" offset_mode="relative"></FIELD>

This means that the address of the string_val field is actually 4 bytes relative to the last byte of the
ulong_val field, thus skipping the bytes used by the long_val field.

Defining structures

The following XML sample shows the usage of STRUCTURE fields for mapping nested structures. A
structure top element does not have an associated value and it can be expanded to show its sub-
elements. While the length of the STRUCTURE field is added to the total size of the XML layout, the
included field sizes are intended for display only. For example, the following structure means only 344
bytes out of the total layout size.

<FIELD Header="MACHINE CHECK LOG OUT AREA" Type="STRUCTURE" length="344">
  <FIELD Header="reserved" Type="HEX" length="16"></FIELD>
  <FIELD Header="FLCSID" Type="HEX" length="4"></FIELD>
  <FIELD Header="FLCIOFP" Type="HEX" length="4"></FIELD>
  <FIELD Header="reserved" Type="HEX" length="20"></FIELD>
  <FIELD Header="FLCESAR" Type="HEX" length="4"></FIELD>
  <FIELD Header="FLCCTSA" Type="HEX" length="8"></FIELD>
  <FIELD Header="FLCCCSA" Type="HEX" length="8"></FIELD>
  <FIELD Header="FLCMCIC" Type="HEX" length="8"></FIELD>
  <FIELD Header="reserved" Type="HEX" length="8"></FIELD>
  <FIELD Header="FLCFSA" Type="HEX" length="4"></FIELD>
  <FIELD Header="reserved" Type="HEX" length="4"></FIELD>
  <FIELD Header="FLCFLA" Type="HEX" length="16"></FIELD>
  <FIELD Header="FLCRV110" Type="HEX" length="16"></FIELD>
  <FIELD Header="FLCARSAV" Type="STRUCTURE" length="64">
    <FIELD Header="AR0" Type="HEX" length="4"></FIELD>
    <FIELD Header="AR1" Type="HEX" length="4"></FIELD>
    <FIELD Header="AR2" Type="HEX" length="4"></FIELD>
    <FIELD Header="AR3" Type="HEX" length="4"></FIELD>
    <FIELD Header="AR4" Type="HEX" length="4"></FIELD>
    <FIELD Header="AR5" Type="HEX" length="4"></FIELD>
    <FIELD Header="AR6" Type="HEX" length="4"></FIELD>
    <FIELD Header="AR7" Type="HEX" length="4"></FIELD>
    <FIELD Header="AR8" Type="HEX" length="4"></FIELD>
    <FIELD Header="AR9" Type="HEX" length="4"></FIELD>
    <FIELD Header="AR10" Type="HEX" length="4"></FIELD>
    <FIELD Header="AR11" Type="HEX" length="4"></FIELD>
    <FIELD Header="AR12" Type="HEX" length="4"></FIELD>
    <FIELD Header="AR13" Type="HEX" length="4"></FIELD>
    <FIELD Header="AR14" Type="HEX" length="4"></FIELD>
    <FIELD Header="AR15" Type="HEX" length="4"></FIELD>
  </FIELD>
  <FIELD Header="FLCFPSAV" Type="HEX" length="32"></FIELD>
  <FIELD Header="" Type="PADDING" length="64"></FIELD>
  <FIELD Header="" Type="PADDING" length="64"></FIELD>
</FIELD>

344  IBM COBOL for Linux on x86 1.1: Programming Guide



Structures can be defined internally or externally to a layout. An external structure can be created like a
nested layout by specifying filename="<file name>" in the structure field, where the file referenced
by <file name> contains the actual definition of the structure.

For example, the MACHINE CHECK LOG OUT AREA structure can be specified in a mapping layout
externally as follows: <FIELD Header="MACHINE CHECK LOG OUT AREA" Type="STRUCTURE"
length="344" filename="machine.xml"></FIELD>.

Defining bitmask fields

The following XML piece is a sample for describing BITMASK fields. The length of the BITMASK is
specified in bytes and it contains a set of BIT fields for which the length is specified in bits. The offset
shown for the BIT fields is a bit offset within the BITMASK field. While the length of the bitmask field is
added to the total size of the XML layout, the individual BIT field sizes are intended for display only.

<FIELD Header="BITMASK" Type="BITMASK" length="1">
  <FIELD Header="BIT 1" Type="BIT" length="1"></FIELD>
  <FIELD Header="BIT 2" Type="BIT" length="1"></FIELD>
  <FIELD Header="BIT 3" Type="BIT" length="1"></FIELD>
  <FIELD Header="BIT 4" Type="BIT" length="1"></FIELD>
  <FIELD Header="BIT 5" Type="BIT" length="1"></FIELD>
  <FIELD Header="BIT 6" Type="BIT" length="1"></FIELD>
  <FIELD Header="BIT 7" Type="BIT" length="1"></FIELD>
  <FIELD Header="BIT 8" Type="BIT" length="1"></FIELD>
</FIELD> 

Defining unions

The following example defines the layout for the following C language union:

union my_union {
  int my_intVal;
  double my_doubleVal;
};

The sample XML below describes how to describe the union. Note that in the XML, the length of the union
is the size of its largest field:

<LAYOUT Header="UNIONS" length="8">
  <FIELD Header="my_union" Type="UNION" length="8">
    <FIELD Header="my_intVal" Type="HEX" length="4" description="value within the union"></
FIELD>
    <FIELD Header="my_doubleVal" Type="HEX" length="8"></FIELD>
  </FIELD>
</LAYOUT> 

Defining nested layouts

With the MAP field type and optional layout field together, you can describe nested layouts as in the
following DSA layout example:

<?xml version="1.0"?>
<!DOCTYPE LAYOUT SYSTEM "Layout.dtd">
<LAYOUT Header="DSA" length="72">
  <FIELD Header="FLAGS" Type="HEX" length="2"></FIELD>
  <FIELD Header="junk" Type="HEX" length="2"></FIELD>
  <FIELD Header="Back Chain" Type="MAP" length="4" layout="dsa.xml"></FIELD>
  <FIELD Header="Forward Chain" Type="MAP" length="4" layout="dsa.xml"></FIELD>
  <FIELD Header="R14" Type="HEX" length="4"></FIELD>
  <FIELD Header="R15" Type="HEX" length="4"></FIELD>
  <FIELD Header="R0" Type="HEX" length="4"></FIELD>
  <FIELD Header="R1" Type="HEX" length="4"></FIELD>
  <FIELD Header="R2" Type="HEX" length="4"></FIELD>
  <FIELD Header="R3" Type="HEX" length="4"></FIELD>
  <FIELD Header="R4" Type="HEX" length="4"></FIELD>
  <FIELD Header="R5" Type="HEX" length="4"></FIELD>
  <FIELD Header="R6" Type="HEX" length="4"></FIELD>
  <FIELD Header="R7" Type="HEX" length="4"></FIELD>
  <FIELD Header="R8" Type="HEX" length="4"></FIELD>
  <FIELD Header="R9" Type="HEX" length="4"></FIELD>
  <FIELD Header="R10" Type="HEX" length="4"></FIELD>
  <FIELD Header="R11" Type="HEX" length="4"></FIELD>

Chapter 16. Debugging  345



  <FIELD Header="R12" Type="HEX" length="4"></FIELD>
</LAYOUT>

This well-formed XML layout is stored in a file called DSA.XML. Since you know that fields 3 and 4 contain
pointers to different DSA structures you add two nested layout definitions.

Note: The actual memory mapping for that layout is only executed when you expand the layout element
for the first time in order to prevent recursive layout expansions.

Defining groups

With group syntax, you can organize fields in mapping layouts into groups so that they are easier to
work with. To define a group, you need to place <GROUP Name="groupName"></GROUP> at the top of
the layout file. You then indicate that the field belongs to the predefined group by specifying: <FIELD
Header="RESERVED" Type="HEX" length="12" Groups="groupName"></FIELD>.

A field can belong to multiple groups. To define multiple groups, specify them in a comma-delimited list in
the Groups attribute. Each group in the Groups attribute must have been defined in the layout using the
<GROUP> tag.

The ALL group name is a special group. Specifying this in a field will cause it to belong to all groups and
the field will be visible in all groups. The following code sample contains groups:

<?xml version="1.0"?>
<!DOCTYPE LAYOUT SYSTEM "Layout.dtd">
<LAYOUT Header="GROUP_EXAMPLE" length="32">
  <GROUP Name="GroupA"></GROUP>
  <GROUP Name="GroupB"></GROUP>
  <FIELD Header="FIELD_A" Type="HEX" length="8" Groups="GroupA"></FIELD>
  <FIELD Header="FIELD_B" Type="HEX" length="8" Groups="GroupB"></FIELD>
  <FIELD Header="FIELD_AB" Type="HEX" length="8" Groups="GroupA,GroupB"></FIELD>
  <FIELD Header="FIELD_ALL" Type="HEX" length="8" Groups="ALL"></FIELD>
</LAYOUT>

Defining ORG groups

You can use the ORG_GROUP tag to define the layout of a previously-defined portion of memory. This is
similar to the behavior of the ORG instruction in assembler. You can specify the start location of the new
layout using the FIELD attribute. In the simple case, the value of the FIELD attribute can be the name of
a previously-defined field in the map. You can also use *NONE or * as values, which mean that the layout
is for the current location in memory. The Header attribute is simply a name for the new layout.

<LAYOUT Header="SW00SR" length="271">
   <ORG_GROUP FIELD="*NONE" Header="ORG_GROUP1">
    <FIELD Header="A" length="4" Type="HEX"></FIELD>
    <FIELD Header="B" length="4" Type="HEX"></FIELD>
    <FIELD Header="c" length="4" Type="HEX"></FIELD>
  </ORG_GROUP>
   <ORG_GROUP FIELD="A" Header="my_custom_header">
    <FIELD Header="F" length="4" Type="HEX" description="address of F == address of A"></FIELD>
    <FIELD Header="G" length="4" Type="HEX"></FIELD>
    <FIELD Header="H" length="4" Type="HEX"></FIELD>
    <ORG_GROUP FIELD="*+4" Header="another_org">
      <FIELD Header="J" length="2" Type="HEX" description="address of J = current location + 
4"></FIELD>
    </ORG_GROUP>
  </ORG_GROUP>
  <FIELD Header="R" length="4" Type="HEX"></FIELD>
  <FIELD Header="Z" length="4" Type="HEX"></FIELD>
</LAYOUT> 

where:

• The Header attribute is a name for the defined group, and is similar to the Header attribute for
structure or map elements.

• The value for FIELD is evaluated and used as the start address of the ORG_GROUP. For example,

– FIELD="*NONE" or FIELD="*" means the current location in the map.
– FIELD="* +/- a +/- b ..." is also valid, where a and b are either names of fields in the map

(this item must have already been defined) or a and b could be integers.

346  IBM COBOL for Linux on x86 1.1: Programming Guide



– FIELD="NAME" means the address of the element in the map called NAME. This can also be an
expression, for example, FIELD="NAME" or FIELD="NAME +/- a_1 +/- a_2 .... +/- a_n",
where each a_i is either the name of a field in the map (this item must have already been defined) or
an integer.

Editing memory layouts

You can edit memory layouts in two different ways from the Memory view. You can set groups for the
current map that you are using for rendering and then export the map (this overwrites the existing map
if you export the map to the same directory as the source layout). For information about grouping map
layout fields, see the related topic.

Alternatively, you can open the map file that is currently being used for rendering, edit it, and then rebuild
it for use. To open the map file, right-click inside the map file's rendering and select Open Map File from
the menu. This will open the map file for editing. When you finish editing the map, save it. To then use the
changed map for the current rendering, right-click inside the Memory view Renderings pane and select
Rebuild Map.

Note: If you right-click a node or nodes for a single map file and choose Open Map File, the XML file for
that single map will open. If you right-click nodes for multiple maps, the pop-up menu Open Map File
action will open to a sub-menu that lists the XML files for all of the selected maps. From this list, you can
choose the XML file that you want to open.

Related tasks
“Grouping map layout fields” on page 348
You can organize fields in mapping layouts into groups so that they are easier to work with.

Editing mapped memory and field descriptions in the Memory view
To change the contents of mapped memory or field descriptions in the Memory view, complete the
following steps.

1. In the Memory view Renderings pane, select the mapped rendering where you want to make the
change.

2. Scroll down to the field that you want to change. Alternatively, right-click in the rendering and choose
the Find Field menu item. This will open the Find Field dialog box, in which you can enter a field that
you want to jump to.

3. Perform one of the following tasks to change memory contents:
a) Double-click the field or its value. This will cause the field value to be in edit mode and you can then

enter a valid value for that memory location.
b) Right-click the field or its value and choose Edit Value from the menu. This will cause the field

value to be in edit mode and you can then enter a valid value for that memory location.
4. Perform one of the following tasks to change a field description:

a) Double-click the field's Description cell. This will cause the description to be in edit mode and you
can then enter a description or edit an existing one.

b) Right-click the field and choose Edit Description from the menu. This will cause the description to
be in edit mode and you can then enter a description or edit an existing one.

5. Press Enter to submit the change. If you are changing memory contents, the debugger checks for a
valid value.

To edit the descriptions of multiple fields at the same time, select the fields using the keyboard Ctrl or
Shift keys and then right-click and select Edit Description from the menu. This opens the Edit Description
dialog box, which allows you to edit the descriptions of the fields and apply one description to all fields
that were selected.

Note: You can only edit field descriptions. You cannot edit the descriptions of partitioned elements or
organization groups.

Chapter 16. Debugging  347



Removing mapped memory from the Memory view
To remove the current memory map from the Memory view Renderings pane, click the Remove
Rendering push button ( ).

Grouping map layout fields
You can organize fields in mapping layouts into groups so that they are easier to work with.

1. Right-click inside the Memory view Renderings pane and click Manage Groups. This will open the
Manage Groups dialog box. In this dialog box, you can add and remove group names for the current
memory map.

2. Once you have added the memory groups that you want, you can add map layout fields to them:
a) Select the field or fields that you want to add to a group. To select multiple fields, use the keyboard

Ctrl or Shift keys.
b) Right-click the selection and select Set Groups from the pop-up menu. This menu item will expand

to a subgroup, in which you can choose the group that you want to add the field to, or you can
choose to add the field to all groups.

3. After you have set the group or groups that you want to work with, you can use these group settings
for filtering fields from the mapping layout for easier viewing. To do this, right-click inside the pane and
select Show Group from the pop-up menu. This menu item will expand to a subgroup, in which you
can choose the group that you want to display. When you select the group, it will filter out fields that do
not belong to the group. If you want the pane to display all fields, make sure that Show Entire Map is
selected.

4. After adding groups to the current rendered map, you can export the changes that you have made. To
do this, right-click inside the Renderings pane and select Export Map File from the pop-up menu. If
errors exist in the map file, you will be prompted by an error dialog and you will not be able to export
the map. If there are no errors in the map file, you will be prompted to browse for the location in which
you want to save the map. If you save the map to the location in which the original map resides, that
map will be overwritten by the exported map.

Attention: Grouping information is not saved in a memory map layout unless the When editing
groups and descriptions, always save the changes to the file Memory Map preference is
selected or you explicitly export the information to a file. Otherwise, if you have added grouping
information to a rendering and then you remove the rendering without exporting the file, the
grouping information will be discarded.

If you make group changes to a map and want to discard them all, right-click inside the Renderings pane
and choose Rebuild Map. This will prompt you with a dialog that asks if you want to preserve unsaved
grouping information when rebuilding the map. If you click No, all changes that you have made to map
groups will be discarded. To preserve grouping information, click Yes.

Finding and expanding fields
When working with memory maps, actions are available to assist you with locating fields.

By default, when you render memory with a map, only the root element is expanded. All other elements
are collapsed. To expand all fields (except map types) in a map, right-click in the map rendering and select
Expand Entire Map from the pop-up menu. To expand and display all children of an individual node,
right-click it and select Expand <node name>, where <node name> is the node that you selected to
expand. When you choose this action, map types within the node do not expand.

To open the Find Field dialog box, right-click in the map rendering and select Find Field from the pop-up
menu. This dialog box allows you to enter a field that you want to jump to. You can search by field,
description, path, or group by selecting the search filter in the Choose a search filter drop down selection
box. Then, enter the string that you want to search by in the Enter a search string field. For example,
if you want to search for fields in a group called GroupA, select the Group search filter and then type
GroupA in the search string field. This will cause the table in the dialog box just to display fields in that
group - from which you can select the field that you want to find.

Before nodes and maps are expanded, they are not yet built in the Memory view. When you want to find
a field, the Find Field dialog box only populates with fields that have been built. To display long elements

348  IBM COBOL for Linux on x86 1.1: Programming Guide



that have been partitioned in the Memory view (for display purposes), select the Show Partitioned
Elements check box. To build the entire map so that all elements (except those of type map) display in
the list box, select the Build entire map check box. By default, this check box is selected. This setting
(building the map before opening the Find dialog box) can also be made in the memory map preferences.
For more information about this, see the related topic.

When the Find Field dialog box opens, all built fields display in the list box. You can control the columns
that display in this list box by clicking Choose Columns. If you just want to search for a field, select the
Field search filter and then enter the field name (or part of the field name) that you want to find in the
search string field. As you type, the list box contents will be narrowed down to include only those fields
that begin with the entry that you made in the field. This assists you in entering the field name that you
want to find. In the field, you can enter filters for fields (including the use of the '*' wildcard to represent
zero or more characters or the '?' wildcard to represent any one character). Wildcards are also used the
same way when you search by the other filters.

When you enter a field in the Find Field dialog box and click OK, the memory map rendering will highlight
the field if it is found in the map.

Adding multiple memory maps
When you add an expression, variable, or register to the Memory view, you can do so for multiple maps.

You can add maps, one at a time - or, while selecting a map, you can use the keyboard Shift or Ctrl keys
to select multiple maps. Doing this will cause a memory map rendering to be created for each map that is
selected. The renderings will be separated by tabs.

Debugging a local CICS transaction with TXSeries or CICS TX
You can debug a local CICS transaction with TXSeries or CICS TX.

To configure IBM Debug for Linux on x86 with TXSeries or CICS TX, follow these steps:

1. Change the AllowDebugging attribute of Region Definition (RD) of CICS region to yes. You can use the
below command to change the region configuration for debugging:

cicsupdate -r REGION_NAME -c rd AllowDebugging=yes

2. Compile the CICS COBOL program to be debugged with the -a flag if you are using cicstcl, or by
adding the -g option if you are compiling using the cob2 compiler command. For example:

cicstcl -a -lIBMCOB prog.ccp

Note: Transactions that begin with the letter C cannot be debugged, because this is reserved for CICS
internal use.

3. Set the following environment variable in the region's environment file and cold start the region:

DER_DBG_PATH=Path_to_source_files [To inform IDEBUG to pick the source file 
                                       from the specified path]
CICS_IDEBUG_LIBPATH=/opt/ibm/cobol/debug/usr/lib/

4. Configure the region to use the Distributed Debugger through the CDCN supplied transaction:

a. Connect to the region using cicsterm client (or you could use any other 3270 based terminal
emulator).

b. Run the CDCN transaction. The first screen of the CDCN transaction is shown below:

 CDCN              CICS Debugging Configuration Transaction
 
 
        DISPLAY :(         )                               DEBUG  : ON
 
 
 To configure for a ter
minal specify the TERMID            TERMID : (    )
 
 
 To configure for a system specify the SYSID               SYSID  : (    )

Chapter 16. Debugging  349



 
 
 To configure for a transaction specify the TRANSID        TRANSID: (    )
 
 
 To configure for a program specify the PROGRAM            PROGRAM: (    )
 
 
 
 ENTER:    COMMIT SELECTION
 PF1 : HELP                PF2 : DEBUG ON/OFF        PF3 : EXIT
 PF4 : MESSAGES            PF5 : UNDEFINED           PF6 : UNDEFINED
 PF7 : UNDEFINED           PF8 : UNDEFINED           PF9 : UNDEFINED
 PF10: UNDEFINED           PF11: UNDEFINED           PF12: UNDEFINED

c. Use CDCN to configure appropriate CICS® resources such as a specific transaction or a specific
program. CDCN also allows you to debug all programs that run on a specified terminal or that are
routed to a specific system. If you specify more than one resource, CDCN takes the following order
of precedence:

i) TERMID
ii) SYSID

iii) TRANSID
iv) PROGRAM

For example, to debug a PROGRAM resource called CUSTECIC take the following steps:

i) In the CDCN screen, set the DISPLAY: field to the IP address of the machine and the port where
the Distributed Debugger user interface is running.

ii) To debug the CUSTECIC program alone, set the PROGRAM field to CUSTECIC. The figure below
shows the contents of CDCN screen after the changes:

 CDCN              CICS Debugging Configuration Transaction
 
 
        DISPLAY : 9.100.194.80:9005                        DEBUG  : ON
 
 
 To configure for a terminal specify the TERMID            TERMID : (    )
 
 
 To configure for a system specify the SYSID               SYSID  : (    )
 
 
 To configure for a transaction specify the TRANSID        TRANSID: (    )
 
 
 To configure for a program specify the PROGRAM            PROGRAM: CUSTECIC
 
 
 
 ENTER:    COMMIT SELECTION
 PF1 : HELP                PF2 : DEBUG ON/OFF        PF3 : EXIT
 PF4 : MESSAGES            PF5 : UNDEFINED           PF6 : UNDEFINED
 PF7 : UNDEFINED           PF8 : UNDEFINED           PF9 : UNDEFINED
 PF10: UNDEFINED           PF11: UNDEFINED           PF12: UNDEFINED

iii) Press Enter. The following messages are displayed to show that the debugger has been
configured successfully:

There are 2 messages:

ERZI04066I: Successfully configured debugging on program 'CUSTECIC'
ERZI04072I: The display to be used for the debugging information is 
'9.100.194.80:9005 '

iv) Press Enter, followed by F3, to exit the CDCN transaction.

To start debugging CICS programs using the Eclipse IDE on your workstation, follow these steps:

1. Open the Eclipse IDE Debug perspective, and click  to begin listening on the port that is configured
for debugging from the CICS region using the CDCN transaction. The default port is 8001.

350  IBM COBOL for Linux on x86 1.1: Programming Guide



2. Execute the transaction or program and make sure that the transaction or program is already
configured for debugging using the CDCN transaction.

3. Now you can see the program source displayed on your Eclipse IDE and the program is under the
control of the debugger. You can use the debugger options to continue debugging the CICS COBOL
program.

References
This section provides reference information about views in IBM Debug for Linux on x86.

Console view
The Console view displays a variety of console types depending on the type of development and the
current set of user settings.

The three consoles that are provided by default with the Eclipse Platform are as follows:

• The Process Console
• The Stacktrace Console
• The CVS Console

You can change settings for consoles by selecting Run/Debug > Console on the Console preference page.

The commands available in the Console view are listed below.

Table 34. Console view commands

Command Name Description Availability

Clear Console Clears the currently
active console and is
available as both a
view command and a
contextual menu item.

Context menu and view
action

Display Selected
Console

Opens a listing of
current consoles and
allows you to select
which one you would
like to see.

View action

Open Console Opens a new console of
the selected type.

View action

Pin Pins the current console
to remain on top of all
other consoles.

View action

Chapter 16. Debugging  351



Table 34. Console view commands (continued)

Command Name Description Availability

Scroll Lock Changes if scroll lock
should be enabled or not
in the current console.

Context menu and view
action

Registers view
The Registers view of the Debug perspective lists information about the registers in a selected stack
frame. Values that have changed are highlighted in the Registers view when your program stops.

Registers view toolbar options
The table below lists the icons displayed in the Registers view toolbar.

Icon Name Description

Show Type Names Displays the type (such as int)
beside each register value.

Show Logical Structure Changes if logical structures
should be shown in the view or
not.

Collapse All Collapses all the currently
expanded registers.

View Menu > Layout Provides multiple layout options
for the Registers view.

Registers view context menu commands
The Registers view context menu commands include:

Icon Name Description

Add Register Group Opens the Register Group dialog
that allows you to define a
register group that is shown in
the Registers view.

352  IBM COBOL for Linux on x86 1.1: Programming Guide



Icon Name Description

Assign Value Assigns a value to the selected
register.

Cast To Type... Opens the Cast To Type dialog.

Change Value... Opens the Set Value dialog to
change the selected registers
value.

Content Assist Opens a content assist dialog at
the current cursor position.

Copy Copies the currently selected text
or elements to the clipboard.

Copy Registers Copies the register names and
contents to the clipboard.

Create Watch Expression Converts the selected register
into a watch expression.

Cut Copies the currently selected text
or element to the clipboard and
removes the element.

Disable Disables the selected register.

Display As Array... Opens the Display As Array
dialog that allows you to specify
the start and length of the array.

Edit Register Group Opens the Register Group dialog
to edit the selected register
group.

Enable Enables the selected register.

Find... Opens the Find dialog that allows
you to find specific elements
within the view.

Find/Replace Opens the Find / Replace dialog.

Format Selects a format type. Choices
include Default, Decimal,
Hexadecimal, Octal, and Binary.

Max Length... Opens the Configure Details
Pane dialog to set the maximum
number of characters to display.
Default is 10000.

Paste Pastes the current clipboard
content as text.

Remove Register Group Removes the currently selected
register group.

Restore Default Register Groups Restores the original register
groups.

Chapter 16. Debugging  353



Icon Name Description

Restore Original Type Returns the selected register to
the original type.

Select All Selects all the editor content.

Wrap Text Activates to wrap the text
contents within the visible area of
the Details pane of the Registers
view.

Variables view
The Variables view displays information about the variables associated with the stack frame selected
in the Debug View. When you debug a Java™ program, variables can be selected to have more detailed
information be displayed in the detail pane. In addition, Java objects can be expanded to show the fields
that variable contains.

The Variables view is shown with columns. The detail pane is the area at the bottom of the view to display
text.

There are many commands available in the Variables view:

• View Display Commands affect what variables are displayed and how they are presented.
• The detail pane has many commands available by right clicking it.
• View Layout Commands affect how the detail pane is oriented and whether columns are displayed.
• Other commands are listed below:

Table 35. Variables view commands

Command Name Description Availability

All Instances Opens a popup dialog
displaying a list of
all instances of the
selected Java type. Your
Java virtual machine
must support instance
retrieval.

Context menu

354  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 35. Variables view commands (continued)

Command Name Description Availability

All References Opens a popup dialog
displaying a list of
all Java objects that
have references to the
selected variable. Your
Java virtual machine
must support reference
retrieval.

Context menu

Change Value... Allows you to change
the value for the
underlying selected
variable.

Context menu

Collapse All Collapses all the
currently expanded
variables.

View action

Copy Variables Copies the selected
variables to the system
clipboard.

Context menu

Create Watch
Expression

Allows you to create
a watch expression for
the selected variable.

Context menu

Find... Opens the search dialog
to find elements in the
Variables view.

Context menu

Inspect Creates a new inspect
statement for the
selected variable and
adds it to the
expressions view.

Context menu

Instance Breakpoints... Allows you to filter
existing breakpoints to
the selected variable
instance.

Context menu

Java Preferences... Opens several
preference pages
containing options that
affect the view.

View action

New Detail Formatter... Allows you to create
your own detail
formatter for that type
of variable.

Context menu

Open Actual Type Opens the actual type of
the selected variable.

Context menu

Chapter 16. Debugging  355



Table 35. Variables view commands (continued)

Command Name Description Availability

Open Actual Type
Hierarchy

Opens the actual type
hierarchy for the actual
type of the selected
variable.

Context menu

Open Declared Type Opens the declared
type for the selected
variable in a new editor.

Context menu

Open Declared Type
Hierarchy

Opens the type
hierarchy for the
declared type of the
selected variable.

Context menu

Select All Selects all of the
variables in the view.

Context menu

Show Logical Structure Allows you to select a
formatter for showing
the selected logical
structure type variable.

Context menu

Edit Logical Structure Opens preference
page to edit logical
structures.

Sub Context menu

Show Details As... Allows you to select
a different detail pane
for showing detailed
information about
selected variables.

Context menu

Toggle Watchpoint Creates a new
watchpoint on the
currently selected field
or removes the
watchpoint if one
already exists.

Context menu

Getting listings
Get the information that you need for debugging by requesting the appropriate compiler listing with the
use of compiler options.

Attention: The listings produced by the compiler are not a programming interface and are subject to
change.

356  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 36. Using compiler options to get listings

Use Listing Contents Compiler option

To check a list of the
options in effect for
the program, statistics
about the content of the
program, and diagnostic
messages about the
compilation

To check the locale in
effect during compilation

Short listing • List of options in effect
for the program

• Statistics about the
content of the program

• Diagnostic messages
about the compilation1

Locale line that shows the
locale in effect

NOSOURCE, NOXREF,
NOVBREF, NOMAP, NOLIST

To aid in testing and
debugging your program;
to have a record after
the program has been
debugged

Source listing Copy of your source “SOURCE” on page 280

To find certain data
items; to see the final
storage allocation after
reentrancy or optimization
has been accounted for;
to see where programs
are defined and check
their attributes

Map of DATA DIVISION
items

All DATA DIVISION
items and all implicitly
declared items

Embedded map summary
(in the right margin of
the listing for lines in
the DATA DIVISION that
contain data declarations)

Nested program map (if
the program contains
nested programs)

“MAP” on page 2712

To find where a name
is defined, referenced, or
modified; to determine
the context (such as
whether a statement was
used in a PERFORM block)
in which a procedure is
referenced; to determine
the file from which a
copybook was obtained

Sorted cross-reference
listing of names; sorted
cross-reference listing of
COPY/BASIS statements
and copybook files

Data-names, procedure-
names, and program-
names; references to
these names

COPY/BASIS text-names
and library names, and
the files from which
associated copybooks
were obtained

Embedded modified
cross-reference provides
line numbers where data-
names and procedure-
names were defined

“XREF” on page 2892,3

To find the failing
statement in a program
or the address in storage
of a data item that is
moved while the program
is running

PROCEDURE DIVISION
code and assembler
code produced by the
compiler3

Generated code “LIST” on page 2702,4

Chapter 16. Debugging  357



Table 36. Using compiler options to get listings (continued)

Use Listing Contents Compiler option

To find an instance of a
certain statement

Alphabetic listing of
statements

Each statement used,
number of times each
statement was used, line
numbers where each
statement was used

“VBREF” on page 288

1. To eliminate messages, turn off the options (such as FLAG) that govern the level of compile diagnostic
information.

2. To use your line numbers in the compiled program, use the NUMBER compiler option. The compiler checks
the sequence of your source statement line numbers in columns 1 through 6 as the statements are read in.
When it finds a line number out of sequence, the compiler assigns to it a number with a value one higher
than the line number of the preceding statement. The new value is flagged with two asterisks. A diagnostic
message indicating an out-of-sequence error is included in the compilation listing. 

3. The context of the procedure reference is indicated by the characters preceding the line number.
4. The assembler listing is written to the listing file (a file that has the same name as the source program but

with the suffix .wlist).

“Example: short listing” on page 358
“Example: SOURCE and
NUMBER output” on page 360
“Example: MAP output” on page 361
“Example: embedded
map summary” on page 362
“Example: nested program map” on page 364
“Example: XREF output:
data-name cross-references” on page 364
“Example: XREF output:
program-name cross-references” on page 366      
“Example:
XREF output: COPY/BASIS cross-references” on page 366
“Example: XREF output:
embedded cross-reference” on page 367
“Example: VBREF compiler output” on page 368

Related tasks   
“Generating a list of compiler
messages” on page 230

Related references   
“Messages and listings
for compiler-detected errors” on page 231

Example: short listing
The parenthetical numbers shown in the listing below correspond to numbered explanations that follow
the listing. For illustrative purposes, some errors that cause diagnostic messages were deliberately
introduced.

PROCESS(CBL) statements:   (1)
 CBL    NOSOURCE,NOXREF,NOVBREF,NOMAP,NOLIST    (2)        
Options in effect:    (3)
 NOADATA
   ADDR(32)
   QUOTE

358  IBM COBOL for Linux on x86 1.1: Programming Guide



   ARITH(COMPAT)  
   CALLINT(NODESCRIPTOR) 
   CHAR(NATIVE)
 NOCICS
   COLLSEQ(BINARY)
 NOCOMPILE(S)
 NOCURRENCY
 NODATEPROC
 NODIAGTRUNC
 NODYNAM
 NOEXIT
   FLAG(I,I)
 NOFLAGSTD
   FLOAT(NATIVE)
   LINECOUNT(60)
 NOLIST
   LSTFILE(LOCALE)
 NOMAP
 NOMDECK
   NCOLLSEQ(BINARY)
   NSYMBOL(NATIONAL)
 NONUMBER
 NOOPTIMIZE
   PGMNAME(LONGUPPER)   
   SEPOBJ               
   SEQUENCE
 NOSOSI
 NOSOURCE               
   SPACE(1)
   SPILL(512)
 NOSQL     
   SRCFORMAT(COMPAT)            
 NOSSRANGE
   TERM
 NOTEST
 NOTHREAD
   TRUNC(STD)           
 NOVBREF
 NOWSCLEAR
 NOXREF                 
   YEARWINDOW(1900)
   ZWB

LineID  Message code  Message text    (4)
        IGYDS0139-W   Diagnostic messages were issued during processing of compiler options.  These messages are
                    located at the beginning of the listing.
   193  IGYDS1050-E   File "LOCATION-FILE" contained no data record descriptions.  The file definition was discarded.
   889  IGYPS2052-S   An error was found in the definition of file "LOCATION-FILE".  The reference to this file
                    was discarded.
                      Same message on line:    983
   993  IGYPS2121-S   "WS-DATE" was not defined as a data-name.  The statement was discarded.
                      Same message on line:    994
   995  IGYPS2121-S   "WS-TIME" was not defined as a data-name.  The statement was discarded.
                      Same message on line:    996
   997  IGYPS2053-S   An error was found in the definition of file "LOCATION-FILE".  This input/output statement
                    was discarded.
                      Same message on line:   1009
  1008  IGYPS2121-S   "LOC-CODE" was not defined as a data-name.  The statement was discarded.
  1219  IGYPS2121-S   "COMMUTER-SHIFT" was not defined as a data-name.  The statement was discarded.
                      Same message on line:   1240
  1220  IGYPS2121-S   "COMMUTER-HOME-CODE" was not defined as a data-name.  The statement was discarded.
                      Same message on line:   1241
  1222  IGYPS2121-S   "COMMUTER-NAME" was not defined as a data-name.  The statement was discarded.
                      Same message on line:   1243
  1223  IGYPS2121-S   "COMMUTER-INITIALS" was not defined as a data-name.  The statement was discarded.
                      Same message on line:   1244
  1233  IGYPS2121-S   "WS-NUMERIC-DATE" was not defined as a data-name.  The statement was discarded.
Messages    Total    Informational    Warning    Error   Severe   Terminating    (5)
Printed:      21                          2         1       18
  * Statistics for COBOL program SLISTING:    (6)
* Source records = 1765
* Data Division statements = 277
* Procedure Division statements = 513
Locale = en_US.ISO8859-1                     (7)
End of compilation 1,  program SLISTING,  highest severity: Severe.   (8)
Return code 12

(1)
Message about options specified in a PROCESS (or CBL) statement. This message does not appear if
no options were specified.

(2)
Options coded in the PROCESS (or CBL) statement.

(3)
Status of options at the start of this compilation.

Chapter 16. Debugging  359



(4)
Program diagnostics. The first message refers you to the library phase diagnostics, if there were any.
Diagnostics for the library phase are always presented at the beginning of the listing.

(5)
Count of diagnostic messages in this program, grouped by severity level.

(6)
Program statistics for the program SLISTING.

(7)
The locale that the compiler used.

(8)
Program statistics for the compilation unit. When you perform a batch compilation (multiple
outermost COBOL programs in a single compilation), the return code is the highest message severity
level for the entire compilation.

Example: SOURCE and NUMBER output
In the portion of the listing shown below, the programmer numbered two of the statements out of
sequence. The note numbers in the listing correspond to numbered explanations that follow the listing.

                      (1) 
 LineID  PL SL  ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8  Cross-
Reference
   (2)    (3)    (4)                                                                            |
                087000/****************************************************************         |
                087100***                 D O   M A I N   L O G I C                  **         |
                087200***                                                            **         |
                087300*** Initialization. Read and process update transactions until **         |
                087400*** EOE. Close files and stop run.                             **         |
                087500*****************************************************************         |
                087600 procedure division.                                                      |
                087700   000-do-main-logic.                                                     |
                087800     display "PROGRAM SRCOUT - Beginning"                                 |
                087900     perform 050-create-stl-main-file.                                    |
                088150     display "perform 050-create-stl-main-file finished".                 |
 088151**       088125     perform 100-initialize-paragraph                                     |
                088200     display "perform 100-initialize-paragraph finished"                  |
                088300     read update-transaction-file into ws-transaction-record              |
                088400         at end                                                           |
             1  088500       set transaction-eof to true                                        |
                088600     end-read                                                             |
                088700     display "READ completed"                                             |
                088800     perform until transaction-eof                                        |
             1  088900       display "inside perform until loop"                                |
             1  089000       perform 200-edit-update-transaction                                |
             1  089100       display "After perform 200-edit   "                                |
             1  089200       if no-errors                                                       |
             2  089300         perform 300-update-commuter-record                               |
             2  089400         display "After perform 300-update "                              |
             1  089650       else                                                               |
 089651**    2  089600         perform 400-print-transaction-errors                             |
             2  089700         display "After perform 400-errors "                              |
             1  089800       end-if                                                             |
             1  089900       perform 410-re-initialize-fields                                   |
             1  090000       display "After perform 410-reinitialize"                           |
             1  090100       read update-transaction-file into ws-transaction-record            |
             1  090200           at end                                                         |
             2  090300         set transaction-eof to true                                      |
             1  090400       end-read                                                           |
             1  090500       display "After '2nd READ'   "                                      |
                090600     end-perform                                                          |

(1)
Scale line labels Area A, Area B, and source-code column numbers

(2)
Source-code line number assigned by the compiler

(3)
Program (PL) and statement (SL) nesting level

(4)
Columns 1 through 6 of program (the sequence number area)

360  IBM COBOL for Linux on x86 1.1: Programming Guide



Example: MAP output
The following example shows output from the MAP option. The numbers used in the explanation below
correspond to the numbers that annotate the output.

 Data Division Map
 (1)
 Data Definition Attribute codes (rightmost column) have the following meanings:
     D = Object of OCCURS DEPENDING    G = GLOBAL                             LSEQ= ORGANIZATION LINE 
SEQUENTIAL
     E = EXTERNAL                      O = Has OCCURS clause                  SEQ= ORGANIZATION SEQUENTIAL
     VLO=Variably Located Origin       OG= Group has own length definition    INDX= ORGANIZATION INDEXED
     VL= Variably Located              R = REDEFINES                          REL= ORGANIZATION RELATIVE

 (2)      (3) (4)                                            (5)      (6)         (7)           (8)
 Source   Hierarchy and                                                                        Data Def
 LineID   Data Name                                        Length(Displacement) Data Type      Attributes
      4  PROGRAM-ID IGYTCARA----------------------------------------------------------------------------------
*
    180   FD COMMUTER-FILE                                                     File            INDX
    182   1  COMMUTER-RECORD                                      80           Group
    183     2  COMMUTER-KEY                                       16(0000000)  Display
    184     2  FILLER                                             64(0000016)  Display
    186   FD COMMUTER-FILE-MST                                                 File            INDX
    188   1  COMMUTER-RECORD-MST                                  80           Group
    189     2  COMMUTER-KEY-MST                                   16(0000000)  Display
    190     2  FILLER                                             64(0000016)  Display
    192   FD LOCATION-FILE                                                     File            SEQ
    203   FD UPDATE-TRANSACTION-FILE                                           File            SEQ
    208   1  UPDATE-TRANSACTION-RECORD                            80           Display
    216   FD PRINT-FILE                                                        File            SEQ
    221   1  PRINT-RECORD                                        121           Display
    228   1  WORKING-STORAGE-FOR-IGYCARA                           1           Display

(1)
Explanations of the data definition attribute codes.

(2)
Source line number where the data item was defined.

(3)
Level definition or number. The compiler generates this number in the following way:

• First level of any hierarchy is always 01. Increase 1 for each level (any item you coded as level 02
through 49).

• Level-numbers 66, 77, and 88, and the indicators FD and SD, are not changed.

(4)
Data-name that is used in the source module in source order.

(5)
Length of data item. Base locator value.

(6)
Hexadecimal displacement from the beginning of the containing structure.

(7)
Data type and usage.

(8)
Data definition attribute codes. The definitions are explained at the top of the DATA DIVISION map.

“Example: embedded
map summary” on page 362
“Example: nested program map” on page 364 

Related references   
“Terms and symbols used in MAP output” on page 363

Chapter 16. Debugging  361



Example: embedded map summary
The following example shows an embedded map summary from specifying the MAP option. The summary
appears in the right margin of the listing for lines in the DATA DIVISION that contain data declarations.

 000002                Identification Division.                                              |
 000003                                                                                      |
 000004                Program-id.    EMBMAP.                                                |
     . . .                                                                                   |
 000176                Data division.                                                        |
 000177                File section.                                                         |
 000178                                                                                      |
 000179                                                                                      |
 000180                FD  COMMUTER-FILE                                                     |
 000181                    record 80 characters.                                             |      (1)   (2) 
 000182                  01 commuter-record.                                                 |       80
 000183                    05 commuter-key                 PIC x(16).                        |       
16(0000000)
 000184                    05 filler                       PIC x(64).                        |       
64(0000016)
     . . .                                                                                   |    
 000221         IA1620   01 print-record                   pic x(121).                       |      121
     . . .                                                                                   |    
 000227                Working-storage section.                                              |    
 000228                  01 Working-storage-for-EMBMAP     pic x.                            |        1
 000229                                                                                      |    
 000230                  77 comp-code                      pic S9999 comp.                   |        2
 000231                  77 ws-type                        pic x(3)   value spaces.          |        3
 000232                                                                                      |    
 000233                                                                                      |    
 000234                  01 i-f-status-area.                                                 |        2
 000235                    05 i-f-file-status              pic x(2).                         |        
2(0000000)
 000236                      88 i-o-successful             value zeroes.                     |IMP 
 000237                                                                                      |    
 000238                                                                                      |   
 000239                  01 status-area.                                                     |        8
 000240                    05 commuter-file-status         pic x(2).                         |(3)     
2(0000000)
 000241                      88 i-o-okay                   value zeroes.                     |IMP 
     . . .                                                                                   |    
 000246                                                                                      |    
 000247                  77 update-file-status             pic xx.                           |        2
 000248                  77 loccode-file-status            pic xx.                           |        2
 000249                  77 updprint-file-status           pic xx.                           |        2
     . . .                                                                                   |    
 000877                procedure division.                                                   |    
 000878                  000-do-main-logic.                                                  |    
 000879                    display "PROGRAM EMBMAP - Beginning".                             |    
 000880                    perform 050-create-stl-main-file.                               |931 
     . . .                                                                                   |

(1)
Decimal length of data item

(2)
Hexadecimal displacement from the beginning of the base locator value

(3)
Special definition symbols:
UND

The user name is undefined.
DUP

The user name is defined more than once.
IMP

An implicitly defined name, such as special registers or figurative constants.
IFN

An intrinsic function reference.
EXT

An external reference.

362  IBM COBOL for Linux on x86 1.1: Programming Guide



Terms and symbols used in MAP output
The following table describes the terms and symbols used in the listings produced by the MAP compiler
option.

Table 37. Terms and symbols used in MAP output

Term Description

ALPHABETIC Alphabetic (PICTURE A)

ALPHA-EDIT Alphabetic-edited

AN-EDIT Alphanumeric-edited

BINARY Binary (USAGE BINARY, COMPUTATIONAL, or
COMPUTATIONAL-5)

COMP-1 Single-precision internal floating point (USAGE
COMPUTATIONAL-1)

COMP-2 Double-precision internal floating point (USAGE
COMPUTATIONAL-2)

DBCS DBCS (USAGE DISPLAY-1)

DBCS-EDIT DBCS edited

DISP-FLOAT Display floating point (USAGE DISPLAY)

DISPLAY Alphanumeric (PICTURE X)

DISP-NUM Zoned decimal (USAGE DISPLAY)

DISP-NUM-EDIT Numeric-edited (USAGE DISPLAY)

FD File definition

FUNCTION-PTR Pointer to an externally callable function (USAGE FUNCTION-
POINTER)

GROUP Alphanumeric fixed-length group

GRP-VARLEN Alphanumeric variable-length group

INDEX Index (USAGE INDEX)

INDEX-NAME Index-name

NATIONAL Category national (USAGE NATIONAL)

NAT-EDIT National-edited (USAGE NATIONAL)

NAT-FLOAT National floating point (USAGE NATIONAL)

NAT-GROUP National group (GROUP-USAGE NATIONAL)

NAT-GRP-VARLEN National variable-length group (GROUP-USAGE NATIONAL)

NAT-NUM National decimal (USAGE NATIONAL)

NAT-NUM-EDIT National numeric-edited (USAGE NATIONAL)

PACKED-DEC Internal decimal (USAGE PACKED-DECIMAL or
COMPUTATIONAL-3)

POINTER Pointer (USAGE POINTER)

Chapter 16. Debugging  363



Table 37. Terms and symbols used in MAP output (continued)

Term Description

PROCEDURE-PTR Pointer to an externally callable program (USAGE
PROCEDURE-POINTER)

SD Sort file definition

01-49, 77 Level-numbers for data descriptions

66 Level-number for RENAMES

88 Level-number for condition-names

Example: nested program map
This example shows a map of nested procedures produced by specifying the MAP compiler option.
Numbers in parentheses refer to notes that follow the example.

Nested Program Map

    (1)
Program Attribute codes (rightmost column) have the following meanings:
   C = COMMON
   I = INITIAL
   U = PROCEDURE DIVISION USING...

   (2)   (3)      (4)                                     (5)
Source Nesting                                            Program
LineID Level   Program Name from PROGRAM-ID paragraph     Attributes
     2         NESTED. . . . . . . . . . . . . . . . . . 
    12     1     X1. . . . . . . . . . . . . . . . . . . 
    20     2       X11 . . . . . . . . . . . . . . . . . 
    27     2       X12 . . . . . . . . . . . . . . . . . 
    35     1     X2. . . . . . . . . . . . . . . . . . . 

(1)
Explanations of the program attribute codes

(2)
Source line number where the program was defined

(3)
Depth of program nesting

(4)
Program-name

(5)
Program attribute codes

Example: XREF output: data-name cross-references
The following example shows a sorted cross-reference of data-names that is produced by the XREF
compiler option. Numbers in parentheses refer to notes after the example.

An "M" preceding a data-name reference indicates that the 
data-name is modified by this reference.

     (1)        (2)                            (3)
  Defined   Cross-reference of data-names   References

      265   ABEND-ITEM1
      266   ABEND-ITEM2
      347   ADD-CODE . . . . . . . . . . .  1102 1162

364  IBM COBOL for Linux on x86 1.1: Programming Guide



      381   ADDRESS-ERROR. . . . . . . . .  M1126
      280   AREA-CODE. . . . . . . . . . .  1236 1261 1324 1345
      382   CITY-ERROR . . . . . . . . . .  M1129

        (4)
 Context usage is indicated by the letter preceding a procedure-name 
 reference. These letters and their meanings are:
     A = ALTER (procedure-name)
     D = GO TO (procedure-name) DEPENDING ON
     E = End of range of (PERFORM) through (procedure-name)
     G = GO TO (procedure-name)
     P = PERFORM (procedure-name)
     T = (ALTER) TO PROCEED TO (procedure-name)
     U = USE FOR DEBUGGING (procedure-name)

     (5)       (6)                             (7)
  Defined   Cross-reference of procedures   References

      877   000-DO-MAIN-LOGIC
      930   050-CREATE-STL-MAIN-FILE . . .  P879
      982   100-INITIALIZE-PARAGRAPH . . .  P880
     1441   1100-PRINT-I-F-HEADINGS. . . .  P915
     1481   1200-PRINT-I-F-DATA. . . . . .  P916
     1543   1210-GET-MILES-TIME. . . . . .  P1510
     1636   1220-STORE-MILES-TIME. . . . .  P1511
     1652   1230-PRINT-SUB-I-F-DATA. . . .  P1532
     1676   1240-COMPUTE-SUMMARY . . . . .  P1533
     1050   200-EDIT-UPDATE-TRANSACTION. .  P886
     1124   210-EDIT-THE-REST. . . . . . .  P1116
     1159   300-UPDATE-COMMUTER-RECORD . .  P888
     1207   310-FORMAT-COMMUTER-RECORD . .  P1164 P1179
     1258   320-PRINT-COMMUTER-RECORD. . .  P1165 P1176 P1182 P1192
     1288   330-PRINT-REPORT . . . . . . .  P1178 P1202 P1256 P1280 P1340 P1365 P1369
     1312   400-PRINT-TRANSACTION-ERRORS .  P890

Cross-reference of data-names:

(1)
Line number where the name was defined.

(2)
Data-name.

(3)
Line numbers where the name was used. If M precedes the line number, the data item was explicitly
modified at the location.

Cross-reference of procedure references:

(4)
Explanations of the context usage codes for procedure references.

(5)
Line number where the procedure-name is defined.

(6)
Procedure-name.

(7)
Line numbers where the procedure is referenced, and the context usage code for the procedure.

“Example: XREF output:
program-name cross-references” on page 366      
“Example:
XREF output: COPY/BASIS cross-references” on page 366
“Example: XREF output:
embedded cross-reference” on page 367 

Chapter 16. Debugging  365



Example: XREF output: program-name cross-references
The following example shows a sorted cross-reference of program-names produced by the XREF compiler
option. Numbers in parentheses refer to notes that follow the example.

   (1)        (2)                            (3)
Defined   Cross-reference of programs     References

EXTERNAL   EXTERNAL1. . . . . . . . . . . 25
      2   X. . . . . . . . . . . . . . .  41
     12   X1 . . . . . . . . . . . . . .  33 7
     20   X11. . . . . . . . . . . . . .  25 16
     27   X12. . . . . . . . . . . . . .  32 17
     35   X2 . . . . . . . . . . . . . .  40 8

(1)
Line number where the program-name was defined. If the program is external, the word EXTERNAL is
displayed instead of a definition line number.

(2)
Program-name.

(3)
Line numbers where the program is referenced.

Example: XREF output: COPY/BASIS cross-references
The following example shows a sorted cross-reference of copybooks to the library-names and file names
of the associated copybooks, produced by the XREF compiler option. Numbers in parentheses refer to
notes after the example.

        COPY/BASIS cross-reference of text-names, library names and file names

   (1)                          (1)                   (2) 
Text-name                   Library-name           File 
name                                 
                      (3)                    (3)  (4)
"realxrealyrealzlongxlo>    'thisislongdirecto>    <toryname/
realxrealyrealzlongxname.cpy
"realxrealyrealzlongxlo>    SYSLIB (default)    (5)./cbldir1/
realxrealyrealzlongxname.cpy
"copyA.cpy"                 SYSLIB (default)       ./cbldir1/copyA.cpy
'./copydir2/copyM.cbl'      SYSLIB (default)       ./copydir2/copyM.cbl
'/copyB.cpy'                SYSLIB                 ./cbldir1/copyB.cpy
'/copydir/copyM.cbl'        SYSLIB                 ./cbldir1/copydir/copyM.cbl
'cbldir1/copyC.cpy'         ALTDD2                 ./cbldir1/copyC.cpy
'copydir/copyM.cbl'         SYSLIB                 ./cbldir1/copydir/copyM.cbl
'copydir2/copyM.cbl'        SYSLIB (default)       ./copydir2/copyM.cbl
'copydir3/stuff.cpy'        ALTDD2                 ./copydir3/stuff.cpy
'stuff.cpy'                 ALTDD                  ./copydir3/stuff.cpy
OTHERDD                     ALTDD2                 .//cbldir1/other.cob
REALXLONGXLONGYNAMEX        SYSLIB (default)       ./REALXLONGXLONGYNAMEX
. . .

  (5)
./ = /afs/stllp.sanjose.ibm.com/usr1/cobdev/tmross/stuff/subdir
Note: Some names were truncated.   > = truncated on right   < = truncated on left   
        

(1)
From the COPY statement in the source; for example the COPY statement corresponding to the fifth
item in the cross-reference above would be:

COPY '/copyB.cpy' Of SYSLIB

366  IBM COBOL for Linux on x86 1.1: Programming Guide



(2)
The fully qualified path of the file from which the COPY member was copied

(3)
Truncation of a long text-name or library-name on the right is marked by a greater-than sign (>).

(4)
Truncation of a long file name on the left is marked by a less-than sign (<).

(5)
The current working directory portion of the file name is indicated by ./ in the cross-reference. The
expansion of the current working directory name is shown in full beneath the cross-reference.

Related references   
“XREF” on page 289  

Example: XREF output: embedded cross-reference
The following example shows a modified cross-reference that is embedded in the source listing. The
cross-reference is produced by the XREF compiler option.

 LineID  PL SL  ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8  Map and Cross Reference
   . . .                                                                                        |
 000878                procedure division.                                                      |
 000879                  000-do-main-logic.                                                     |
 000880                    display "PROGRAM IGYTCARA - Beginning".                              |
 000881                    perform 050-create-stl-main-file.                                    | 932 (1)
 000882                    perform 100-initialize-paragraph.                                    | 984
 000883                    read update-transaction-file into ws-transaction-record              | 204 340
 000884                        at end                                                           |
 000885      1                    set transaction-eof to true                                   | 254
 000886                    end-read.                                                            |
   . . .                                                                                        |
 000984                  100-initialize-paragraph.                                              |
 000985                    move spaces to ws-transaction-record                                 | IMP 340 (2)
 000986                    move spaces to ws-commuter-record                                    | IMP 316
 000987                    move zeroes to commuter-zipcode                                      | IMP 327
 000988                    move zeroes to commuter-home-phone                                   | IMP 328
 000989                    move zeroes to commuter-work-phone                                   | IMP 329
 000990                    move zeroes to commuter-update-date                                  | IMP 333
 000991                    open input update-transaction-file                                   | 204
 000992                        location-file                                                    | 193
 000993                        i-o commuter-file                                                | 181
 000994                        output print-file                                                | 217
   . . .                                                                                        |
 001442                1100-print-i-f-headings.                                                 |
 001443                                                                                         |
 001444                    open output print-file.                                              | 217
 001445                                                                                         |
 001446                    move function when-compiled to when-comp.                            | IFN 698 (2)
 001447                    move when-comp (5:2) to compile-month.                               | 698 640
 001448                    move when-comp (7:2) to compile-day.                                 | 698 642
 001449                    move when-comp (3:2) to compile-year.                                | 698 644
 001450                                                                                         |
 001451                    move function current-date (5:2) to current-month.                   | IFN 649
 001452                    move function current-date (7:2) to current-day.                     | IFN 651
 001453                    move function current-date (3:2) to current-year.                    | IFN 653
 001454                                                                                         |
 001455                    write print-record from i-f-header-line-1                            | 222 635
 001456                          after new-page.                                                | 138
   . . .                                                                                        |

(1)
Line number of the definition of the data-name or procedure-name in the program

(2)
Special definition symbols:
UND

The user name is undefined.
DUP

The user name is defined more than once.
IMP

Implicitly defined name, such as special registers and figurative constants.
IFN

Intrinsic function reference.

Chapter 16. Debugging  367



EXT
External reference.

*
The program-name is unresolved because the NOCOMPILE option is in effect.

Example: VBREF compiler output
The following example shows an alphabetic listing of all the statements in a program, and shows where
each is referenced. The listing is produced by the VBREF compiler option.

 (1)      (2)                   (3)
2        ACCEPT . . . . . . . . . . . .  1010 1012
2        ADD. . . . . . . . . . . . . .  1290 1306
1        CALL . . . . . . . . . . . . .  1406
5        CLOSE. . . . . . . . . . . . .  898 945 970 1526 1535
20       COMPUTE. . . . . . . . . . . .  1506 1640 1644 1657 1660 1663 1664 1665 1678 1682 1686 1691 1696 1701 1709 1713
                                         1718 1723 1728 1733
2        CONTINUE . . . . . . . . . . .  1062 1069
2        DELETE . . . . . . . . . . . .  964 1193
48       DISPLAY. . . . . . . . . . . .  878 906 917 918 919 933 940 942 947 953 960 966 972 996 997 998 999 1003 1006 1037
                                         1090 1168 1171 1185 1195 1387 1388 1389 1390 1391 1392 1393 1401 1402 1403 1404
                                         1405 1433 1485 1486 1492 1497 1498 1520 1521 1528 1529 1624
2        EVALUATE . . . . . . . . . . .  1161 1557
47       IF . . . . . . . . . . . . . .  887 905 932 939 946 952 959 965 971 993 1002 1036 1051 1054 1071 1074 1077 1089
                                         1102 1111 1115 1125 1128 1131 1134 1137 1141 1145 1148 1151 1167 1184 1194 1240
                                         1247 1265 1272 1289 1321 1330 1339 1351 1361 1484 1496 1519 1527
183      MOVE . . . . . . . . . . . . .  907 937 957 983 984 985 986 987 988 1004 1011 1013 1025 1038 1052 1055 1060 1067
                                         1072 1075 1078 1079 1080 1081 1082 1083 1091 1103 1112 1126 1129 1132 1135 1139
                                         1143 1146 1149 1152 1160 1163 1169 1175 1177 1180 1181 1186 1191 1196 1201 1208
                                         1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1229 1230
                                         1231 1232 1233 1234 1235 1239 1241 1244 1248 1250 1251 1253 1254 1255 1257 1258
                                         1259 1260 1264 1266 1269 1273 1275 1276 1278 1279 1291 1294 1299 1301 1303 1307
                                         1313 1314 1315 1316 1317 1318 1319 1320 1322 1323 1327 1328 1331 1333 1334 1336
                                         1338 1341 1342 1343 1344 1348 1349 1352 1354 1355 1357 1362 1364 1368 1374 1375
                                         1376 1377 1378 1379 1380 1381 1414 1417 1422 1425 1445 1446 1447 1448 1450 1451
                                         1452 1457 1464 1489 1502 1507 1508 1509 1517 1551 1561 1566 1571 1576 1581 1586
                                         1591 1596 1601 1606 1611 1616 1621 1626 1627 1679 1683 1688 1693 1698 1703 1710
                                         1715 1720 1725 1730 1735
5        OPEN . . . . . . . . . . . . .  931 951 989 1443 1483
62       PERFORM. . . . . . . . . . . .  879 880 885 886 888 890 892 908 909 915 916 934 935 941 943 948 949 954 955 961
                                         962 967 968 973 974 1000 1005 1008 1023 1039 1092 1093 1116 1164 1165 1170 1172
                                         1176 1178 1179 1182 1187 1188 1192 1197 1198 1202 1246 1256 1271 1280 1329 1340
                                         1350 1359 1365 1369 1504 1510 1511 1532 1533
8        READ . . . . . . . . . . . . .  881 893 958 1014 1026 1085 1490 1514
1        REWRITE. . . . . . . . . . . .  1183
4        SEARCH . . . . . . . . . . . .  1058 1065 1413 1421
46       SET. . . . . . . . . . . . . .  883 895 1016 1028 1041 1057 1064 1084 1087 1363 1412 1420 1493 1499 1516 1522 1548
                                         1550 1559 1560 1564 1565 1569 1570 1574 1575 1579 1580 1584 1585 1589 1590 1594
                                         1595 1599 1600 1604 1605 1609 1610 1614 1615 1619 1620 1639 1643
2        STOP . . . . . . . . . . . . .  920 1434
4        STRING . . . . . . . . . . . .  1236 1261 1324 1345
33       WRITE. . . . . . . . . . . . .  938 1166 1292 1293 1295 1296 1297 1298 1300 1302 1305 1454 1459 1462 1465 1467 1469
                                         1471 1512 1654 1655 1667 1668 1669 1740 1742 1744 1745 1746 1747 1748 1749 1750

(1)
Number of times the statement is used in the program

(2)
statement

(3)
Line numbers where the statement is used

Debugging with messages that have offset information
Some IWZ messages include offset information that you can use to identify the particular line of a
program that failed.

To use this information:

1. Compile the program with the LIST option. This step produces an assembler listing file, which has a
suffix of .wlist.

2. When you get a message that includes a traceback, find the offset information for the COBOL program.
In the following example, the program is TEST, and the corresponding hexadecimal offset is 0x678
(highlighted in bold):

Traceback:
/opt/ibm/cobol/rte/usr/lib/libcob2_32r.so(+0x66b60)[0xf76f3b60]

368  IBM COBOL for Linux on x86 1.1: Programming Guide



/opt/ibm/cobol/rte/usr/lib/libcob2_32r.so(iwzWriteERRmsg+0x17)[0xf76f41f7]
/opt/ibm/cobol/rte/usr/lib/libcob2_32r.so(_iwzcBCD_CONV_Pckd_To_Int4+0x176)[0xf76be7b6]
test.out(TEST+0x678)[0x5655a844]
/lib/libc.so.6(__libc_start_main+0xf3)[0xf74b12d3]
    --- End of call chain ---
IWZ903S  The system detected a data exception.
IWZ901S  Program exits due to severe or critical error.

3. Look in the .wlist file for the hexadecimal offset. To the right of the hexadecimal offset, after
the instructions bytes, is the COBOL source line number. In the following example, the line number
corresponding to 0x678 is 174 (highlighted in bold):

000174:            COMPUTE x = FUNCTION FACTORIAL(Packed-Dec-05).    
    000669  EC83 6A08                000174        sub   esp, 0x00000008   
    00066C  046A                     000174        push  0x00000004    
    00066E  0068 0000 E800           000174        push  OFFSET FLAT:LEVEL-01-PACKED-DECIMAL
    000673  00E8 0000 8300           000174        call  OFFSET 
FLAT:_iwzcBCD_CONV_Pckd_To_Int4
    000678  C483 8910                000174        add   esp, 0x00000010   

4. Look in your program listing for the statement.

Related references   
“LIST” on page 270 

Debugging assembler routines
Use the Disassembly view to debug assembler routines. Because assembler routines have no debug
information, the debugger automatically goes to this view.

Set a breakpoint at a disassembled statement in the Disassembly view by double-clicking in the prefix
area. By default, the debugger when it starts runs until it hits the first debuggable statement. To cause the
debugger to stop at the very first instruction in the application (debuggable or not), you must use the -i
option. For example:

irmtdbgc –i -qhost=myhost progname

Chapter 16. Debugging  369



370  IBM COBOL for Linux on x86 1.1: Programming Guide



Part 4. Targeting COBOL programs for certain
environments

© Copyright IBM Corp. 2021, 2023 371



372  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 17. Programming for a Db2 environment
In general, the coding for a COBOL program will be the same if you want the program to access a Db2
database. However, to retrieve, update, insert, and delete Db2 data and use other Db2 services, you must
use SQL statements.

To communicate with Db2, do these steps:

• Check your cob2.cfg file to ensure that any paths to your specific Db2 version are set up correctly.
Use of the cob2_db2 command and corresponding cob2_db2 stanza in the cob2.cfg file are
recommended when programming for a Db2 environment. See “Modifying the default compiler
configuration” on page 227 for more information.

• Ensure that the PAM package is installed.
• Code any SQL statements that you need, delimiting them with EXEC SQL and END-EXEC statements.

The EXEC SQL CONNECT statement connects to the database when the program is run. To learn more
about SQL statements, see Introduction to embedded SQL in the Db2 documentation.

• Start Db2 if it is not already started before you compile your program.
• Specify the database that the program uses. The compiler will connect to that database during

compilation.
• If you are connecting to a remote Db2 database, you must configure Db2 to enable authentication

through the operating system. See Db2 security model overview for more information.
• Set the LD_LIBRARY_PATH, NLSPATH, DB2INSTANCE, and SYSLIB environment variables before

compiling. Note that the directory LD_LIBRARY_PATH specifies should contain libdb2.so, which is
the shared object for the Db2 co-processor, so that the co-processor can be loaded by the compiler and
used during the compilation.

Below is an example:

export LD_LIBRARY_PATH=/opt/ibm/db2/<Db2_version>/lib32
export NLSPATH=/opt/ibm/db2/<Db2_version>/msg/%L/%N
export DB2INSTANCE=db2in111
export SYSLIB=/opt/ibm/db2/<Db2_version>/include/cobol_a

Note: The copybook files under the cobol_a directory are included only in Db2 11.5.6. If you are using
an earlier Db2 version, you need to contact COBOL.Linux.Trial@ca.ibm.com to get these files.

• Compile with the SQL compiler option.
• Compile with the NODYNAM compiler option.

Note: The NODYNAM compiler option is required for programs that contain EXEC CICS or EXEC SQL
statements.

If EXEC SQL statements are used in COBOL programs that are loaded by a COBOL dynamic call, then
one or more EXEC SQL statements must be in the main program. In a Db2 application, the main
program must do the initial load of the Db2 libraries before any dynamically called program attempts to
use those libraries.

• Use the -L and -l options when linking. Below is an example:

-L/opt/ibm/db2/<Db2_version>/lib32 -ldb2

Note: You might experience an undefined reference to sqlgstrt, sqlgaloc, sqlgstlv, sqlgcall, sqlgstop, and
other symbols such as undefined reference to `SQLGSTRT'. To resolve the issue, specify the
Db2 libraries using the -L and -l options when linking your program. These options must appear after
the COBOL source files specified on the command line. Here is an example:

filea.cbl -L/opt/ibm/db2/<Db2_version>/lib32 -ldb2

© Copyright IBM Corp. 2021, 2023 373

https://www.ibm.com/docs/en/db2/latest?topic=da-embedded-sql
https://www.ibm.com/docs/en/db2/latest?topic=security-db2-model
mailto:COBOL.Linux.Trial@ca.ibm.com


Related concepts   
“Db2 coprocessor” on page 375 

Related tasks
“Using Db2 files” on page 145
“Coding SQL statements” on page 375  
“Connecting to the database” on page 377  
“Compiling with the SQL option” on page 377
“Passing options to the linker” on page 234

Related references
“Compiler and runtime
environment variables” on page 216  
“DYNAM” on page 264  
SQL reference for Db2  
 

Ensuring that the PAM package is installed
You are required to have the 32-bit PAM package installed to access Db2 with COBOL for Linux on x86. To
check whether it was installed during your Db2 installation, run this command:

sudo yum list 'pam'

, where the sudo command or becoming the root user ensures that you have the privilege to run this
command.

If the PAM library is not installed when you run the compiler with the -qsql option to translate your EXEC
SQL statements, you will get the following IGYDS0220 message that the compiler cannot load the Db2
co-processor:

The "SQL" compiler option was in effect, but the compiler was unable to load the IBM Db2 SQL 
co-processor services module. All "EXEC SQL" statements were discarded.

While missing the PAM package is one of the reasons you get the IGYDS0220 message, other reasons
could be as follows:

• The LD_LIBRARY_PATH environment variable has not been exported or it does not contain the path
where the co-processor library is installed.

• The co-processor library is corrupted.
• You do not have sufficient file system permissions to use the co-processor library.
• One or more libraries that the co-processor requires are not present, such as the PAM package. If the

PAM package is installed as checked with the yum list command mentioned previously, and you still
get the error, you can check for other missing libraries with this command:

ldd /opt/ibm/db2/<Db2_version>/lib32/libdb2.so

To install the PAM package:

• On RHEL 7.8 or 7.9, use this command:

sudo yum install pam.i686

, where pam.i686 is the PAM package name on RHEL, and yum is the default package installer on RHEL
7.8 or 7.9.

• On RHEL 8.0 or higher, use this command:

sudo dnf install pam.i686

, where dnf is the default package installer on RHEL 8.0 or higher.

374  IBM COBOL for Linux on x86 1.1: Programming Guide

https://www.ibm.com/docs/en/db2/latest?topic=fundamentals-sql


• On Ubuntu, use this command:

sudo apt-get install libpam0g:i386

, where libpam0g:i386 is the PAM package name on Ubuntu, and apt-get is the default package
installer on Ubuntu.

Db2 coprocessor
When you use the Db2 coprocessor, the compiler handles your source programs that contain embedded
SQL statements without your having to use a separate precompiler.

To use the Db2 coprocessor, specify the SQL compiler option.

When the compiler encounters SQL statements in the source program, it interfaces with the Db2
coprocessor. All text between EXEC SQL and END-EXEC statements is passed to the coprocessor. The
coprocessor takes appropriate actions for the SQL statements and indicates to the compiler which native
COBOL statements to generate for them.

Certain restrictions on the use of COBOL language that apply with the Db2 precompiler do not apply when
you use the Db2 coprocessor:

• You can identify host variables used in SQL statements without using EXEC SQL BEGIN DECLARE
SECTION and EXEC SQL END DECLARE SECTION statements.

• You can compile in batch a source file that contains multiple nonnested COBOL programs.
• The source program can contain nested programs.
• Extended source format is fully supported.

Related tasks  
“Compiling with the SQL option” on page 377  

Related references  
“SQL” on page 281  
“SRCFORMAT” on page 282  

Coding SQL statements
Delimit SQL statements with EXEC SQL and END-EXEC. The EXEC SQL and END-EXEC delimiters must
each be complete on one line. You cannot continue them across multiple lines. Do not code COBOL
statements within EXEC SQL statements.

You must have an EXEC SQL CONNECT statement so that when your program runs it establishes a
connection to the database. Below is an example:

EXEC SQL CONNECT TO dbname END-EXEC

You also need to do these special steps:

• Code an EXEC SQL INCLUDE statement to include an SQL communication area (SQLCA) in the
WORKING-STORAGE SECTION or LOCAL-STORAGE SECTION of the outermost program. LOCAL-
STORAGE is recommended for recursive programs.

• Define all host variables that you use in SQL statements in the WORKING-STORAGE SECTION, LOCAL-
STORAGE SECTION, or LINKAGE SECTION. However, you do not need to identify them with EXEC SQL
BEGIN DECLARE SECTION and EXEC SQL END DECLARE SECTION.

You can use SQL statements even for large objects (such as BLOB and CLOB) and compound SQL.

Related tasks  
“Using Db2 files and SQL
statements in the same program” on page 146   
“Using SQL INCLUDE with

Chapter 17. Programming for a Db2 environment  375



the Db2 coprocessor” on page 376  
“Using binary items in
SQL statements” on page 376   
“Determining the success of SQL statements” on page 376 

Using SQL INCLUDE with the Db2 coprocessor
An SQL INCLUDE statement is treated identically to a native COBOL COPY statement (including the search
path and the file suffixes used) when you use the SQL compiler option.

The following two lines are therefore treated the same way. (The period that ends the EXEC SQL
INCLUDE statement is required.)

EXEC SQL INCLUDE name END-EXEC.
COPY name.

The name in an SQL INCLUDE statement follows the same rules as those for COPY text-name and is
processed identically to a COPY text-name statement that does not have a REPLACING phrase.

COBOL does not use the Db2 environment variable DB2INCLUDE for SQL INCLUDE processing. If you
use the DB2INCLUDE environment variable for SQL INCLUDE processing, you can concatenate it with the
setting of the COBOL SYSLIB environment variable in the .profile file in your home directory or at the
prompt in a Linux command shell. For example:

export SYSLIB=$DB2INCLUDE:$SYSLIB

Related references  
Chapter 14, “Compiler-directing
statements,” on page 293  
COPY statement (COBOL for Linux on x86 Language Reference)

Using binary items in SQL statements
For binary data items that you specify in an EXEC SQL statement, you can define the data items as either
USAGE COMP-5 or as USAGE BINARY, COMP, or COMP-4.

If you define the binary data items as USAGE BINARY, COMP, or COMP-4, use the TRUNC(BIN) option.
(This technique might have a larger effect on performance than using USAGE COMP-5 on individual data
items.) If instead TRUNC(OPT) or TRUNC(STD) is in effect, the compiler accepts the items but the data
might not be valid because of the decimal truncation rules. You need to ensure that truncation does not
affect the validity of the data.

Related concepts   
“Formats for numeric
data” on page 39 

Related references   
“TRUNC” on page 285 

Determining the success of SQL statements
When Db2 finishes executing an SQL statement, Db2 sends a return code in the SQLCODE and SQLSTATE
fields of the SQLCA structure to indicate whether the operation succeeded or failed. In your program, test
the return code and take any necessary action.

Related references   
SQL communications area (SQLCA) structure
SQLCODE, SQLSTATE, and SQLWARN information
 

376  IBM COBOL for Linux on x86 1.1: Programming Guide

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.5.0/com.ibm.db2.luw.apdv.api.doc/doc/r0001741.html?sc=SSEPGG_latest
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.5.0/com.ibm.db2.luw.apdv.embed.doc/doc/c0005774.html?sc=SSEPGG_latest


Connecting to the database
In order to compile a program containing EXEC SQL statements, the compiler must be able to connect to
the database that the program will use.

You can specify the database by either of these means:

• Use the DATABASE suboption in the SQL option. Below is an example:

cob2_db2 -q"sql('database dbname')" MYSQL.cbl

• Set the DB2DBDFT environment variable prior to invoking the compiler. Below is an example:

export DB2DBDFT=dbname

Compiling with the SQL option
The option string that you provide in the SQL compiler option is made available to the Db2 coprocessor.
Only the Db2 coprocessor views the content of the string.

For example, the following cob2 command passes the database name SAMPLE and the Db2 options USER
and USING to the coprocessor:

cob2 -q"sql('database sample user myname using mypassword')" mysql.cbl. . .

The Db2 coprocessor supports the options that are supported by the Db2 precompiler except the
following ones:

• MESSAGES
• NOLINEMACRO
• OPTLEVEL
• OUTPUT
• SQLCA
• TARGET
• WCHARTYPE

For example, the bindfile suboption is one option supported by the Db2 coprocessor. This option
can be specified by itself -qsql('bindfile') or with a name for the bind file -qsql('bindfile
filename').

Related tasks   
“Separating Db2 suboptions” on page 377  
“Using package and bindfile-names” on page 378 

Related references   
“SQL” on page 281  
PRECOMPILE command in Db2 documentation

Separating Db2 suboptions
Because of the concatenation of multiple SQL option specifications, you can separate Db2 suboptions
(which might not fit in one CBL statement) into multiple CBL statements.

The options that you include in the suboption string are cumulative. The compiler concatenates these
suboptions from multiple sources in the order that they are specified. For example, suppose that your
source file mypgm.cbl has the following code:

cbl . . . SQL("string2") . . .
cbl . . . SQL("string3") . . .

Chapter 17. Programming for a Db2 environment  377

https://www.ibm.com/docs/db2/latest?topic=commands-precompile
https://www.ibm.com/docs/en/db2/latest?topic=commands-precompile


When you issue the command cob2 mypgm.cbl -q:"SQL('string1')", the compiler passes the
following suboption string to the Db2 coprocessor:

"string1 string2 string3"

The concatenated strings are delimited with single spaces. If the compiler finds multiple instances of the
same SQL suboption, the last specification of that suboption in the concatenated string takes effect. The
compiler limits the length of the concatenated Db2 suboption string to 4 KB.

Using package and bindfile-names
Two of the suboptions that you can specify with the SQL option are package name and
bindfile name. If you do not specify these names, default names are constructed based on the source
file-name for a nonbatch compilation or on the first program for a batch compilation.

For subsequent nonnested programs of a batch compilation, the names are based on the PROGRAM-ID of
each program.

For the package name, the base name (the source file-name or the PROGRAM-ID) is modified as follows:

• Names longer than eight characters are truncated to eight characters.
• Lowercase letters are folded to uppercase.
• Any character other than A-Z, 0-9, or _ (underscore) is changed to 0.
• If the first character is not alphabetic, it is changed to A.

Thus if the base name is 9123aB-cd, the package name is A123AB0C.

For the bindfile-name, the suffix .bnd is added to the base name. Unless explicitly specified, the file-name
is relative to the current directory.

Creating COBOL external stored procedures in Db2
Use the PGMNAME(MIXED) option to create the COBOL stored procedures and link them with the
-shared option to produce a shared object. You can use the cob2 command to do both the compilation
and linking at the same time or separately. To link a COBOL program, you should always use cob2 instead
of using gcc or ld directly.

The PROGRAM-ID paragraph in the COBOL source for the stored procedure must match the name,
including casing, of the shared object you create in the file system when you compile and link the
program.

Specify the absolute path to the shared object in the EXTERNAL NAME clause of the CREATE PROCEDURE
statement. If your stored procedure shared object is at this path:

/home/jdoe/db2sp/storedProc1

, you should specify this path in the EXTERNAL NAME clause.

378  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 18. Developing COBOL programs for CICS
You can write CICS applications in COBOL and run them on a Linux workstation using CICS TX or TXSeries.
The cicstcl utility included with CICS TX and TXSeries performs the translation, compiles the translated
program, and links the resulting object by invoking cob2 to do the compilation and link, passing in the
-qcics option. We recommend to use the cicstcl utility to write CICS applications. Alternatively,
you can directly use the cob2 compiler command with the -qcics option. There is no difference in
functionality between the two methods.

Note: To use COBOL for Linux on x86 with TXSeries 9.1, you must have TXSeries 9.1 PTF2 installed. For
more information, see System requirements for IBM TXSeries for Multiplatforms V9.1 for Linux on x86.

To prepare COBOL applications to run under CICS, do these steps:

1. Ensure that your CICS administrator modified the region's environment file to set the environment
variables COBPATH, LD_LIBRARY_PATH, and NLSPATH to include the runtime directory:

export COBPATH=<dynamically accessed program dir>:$COBPATH
export NLSPATH=<CICS install dir>/msg/%L/%N:$NLSPATH
export LD_LIBRARY_PATH=<CICS install dir>/lib:$LD_LIBRARY_PATH

Also, ensure that the CICS region was granted access to the runtime directory.

The environment file is /var/cics_regions/xxxxxxxx/environment (where xxxxxxxx is the
name of the region).

2. Check your cob2.cfg file to ensure that any paths to your specific CICS version are set up correctly.
Use of the cob2_cics command and corresponding cob2_cics stanza in the cob2.cfg file are
recommended when developing COBOL programs for CICS. See “Modifying the default compiler
configuration” on page 227 for more information.

3. Create the application by using an editor to do the following tasks:

• Code your program using COBOL statements and CICS commands.
• Create COBOL copybooks.
• Create the CICS screen maps that your program uses.

4. Use the command cicsmap to process the screen maps.
5. Use the cicstcl command to translate the CICS commands with an integrated CICS translator and

to compile and link the program. If you don't specify a file extension, cicstcl by default uses the
COBOL source file extension .cbl.

The following examples show how to use the cicstcl command to translate, compile, and link a
sample COBOL program APPLCOB that runs under TXSeries or CICS TX. The cicstcl command
generates the output module with the .ibmcob extension.

• To compile, translate, and link-edit a CICS COBOL application, use the -l IBMCOB option to specify
the source language as IBM COBOL, and the CICS COBOL program file extension can be .ccp
or .cbl:

cicstcl -l IBMCOB APPLCOB.ccp

cicstcl -l IBMCOB APPLCOB.cbl

• To compile, translate, and link-edit a CICS COBOL application to be used to debug using CEDF, use
the -e option. To display CICS statement line numbers, use the -d option:

cicstcl -e -l IBMCOB APPLCOB.cbl

cicstcl -e -d -l IBMCOB APPLCOB.cbl

© Copyright IBM Corp. 2021, 2023 379

https://www.ibm.com/docs/en/cics-tx/latest?topic=reference-cicstcl-translate-compile-link
https://www.ibm.com/docs/en/txseries/9.1?topic=SSAL2T_9.1.0/com.ibm.cics.tx.doc/reference/r_cicstcl.html?sc=latest
https://www.ibm.com/support/pages/node/563061


• To compile, translate, and link-edit a CICS COBOL application to be used to debug, use the -a option:

cicstcl -a -l IBMCOB APPLCOB.cbl

• To compile, translate, and link-edit a CICS COBOL application by specifying the COPYBOOK path, set
the SYSLIB environment variable to specify the directory of the COBOL source COPYBOOK path and
then use the cicstcl command:

export SYSLIB=”/program_copybook_path”

cicstcl -l IBMCOB APPLCOB.cbl

• To compile, translate, and link-edit a CICS COBOL application by statically linking a COBOL module,
set the USERLIB environment variable to specify the compiled object module path and then use the
cicstcl command:

export USERLIB=”cobol_module.o”

cicstcl -l IBMCOB APPLCOB.cbl

Note: If you want to compile and link a CICS COBOL program without using the cicstcl command,
use the cob2 compiler command with the -qcics option. There is no difference in functionality
between the two methods. The following example shows how to compile and link a CICS COBOL
application using the cob2 command:

cob2 -qNOTHREAD -I/opt/ibm/cics/include -qcics -o APPLCOB.ibmcob APPLCOB.cbl -L/opt/ibm/
cics/lib -lcicsprIBMCOB

For detailed usage of the cicstcl command, see "cicstcl" in TXSeries for Multiplatforms
documentation or "cicstcl" in CICS TX documentation.

6. Define the resources for your application, such as transactions, application programs, and files, to the
CICS region.
CICS administrator authority is required to perform these actions.

7. Access the CICS region, for example by using the cicsterm command.
8. Run the application by entering the four-character transaction ID that is associated with the

application.

Related concepts   
“Integrated CICS translator” on page 385 

Related tasks   
“Coding COBOL programs to
run under CICS” on page 380  
“Compiling and running CICS programs” on page 385  
“Debugging CICS programs” on page 386  
TXSeries for Multiplatforms documentation  
IBM CICS TX documentation

Coding COBOL programs to run under CICS
To code a program to run under CICS, code CICS commands in the PROCEDURE DIVISION by using the
EXEC CICS command format.

EXEC CICS command-name command-options
END-EXEC

CICS commands have the basic format shown above. Within EXEC commands, use the space as a word
separator; do not use a comma or a semicolon. Do not code COBOL statements within EXEC CICS
commands.

380  IBM COBOL for Linux on x86 1.1: Programming Guide

https://www.ibm.com/support/knowledgecenter/SSAL2T_9.1.0/com.ibm.cics.tx.doc/reference/r_cicstcl.html?sc=latest
https://www.ibm.com/support/knowledgecenter/SSAL2T_9.1.0/com.ibm.cics.tx.doc/reference/r_cicstcl.html?sc=latest
https://www.ibm.com/docs/en/cics-tx/latest?topic=reference-cicstcl-translate-compile-link
https://www.ibm.com/support/knowledgecenter/SSAL2T
https://www.ibm.com/support/knowledgecenter/SSNAQ8


In general, the COBOL language is supported in a CICS environment. However, there are restrictions and
considerations that you should be aware of when you code COBOL programs to run under TXSeries or
CICS TX.

Restrictions:

• Db2 files that will interoperate with TXSeries or CICS TX must be created with FILEMODE(SMALL) in
effect.

• Object-oriented programming and interoperability with Java are not supported. COBOL class definitions
and methods cannot be run in a CICS environment.

• The source program must not contain any nested programs.
• COBOL programs that will run under TXSeries or CICS TX must be 32 bit.

Do not use EXEC, CICS, or END-EXEC as variable names, and do not use user-specified parameters to
the main program. In addition, it is recommended that you not use any of the following COBOL language
elements:

• FILE-CONTROL entry in the ENVIRONMENT DIVISION
• FILE SECTION in the DATA DIVISION
• USE declaratives, except USE FOR DEBUGGING

The following COBOL statements are also not recommended for use in a CICS environment:

• ACCEPT format 1
• CLOSE
• DELETE
• DISPLAY UPON CONSOLE, DISPLAY UPON SYSPUNCH
• MERGE
• OPEN
• READ
• REWRITE
• SORT
• START
• STOP literal
• WRITE

Apart from some forms of the ACCEPT statement, mainframe CICS does not support any of the COBOL
language elements in the preceding list. If you use any of those elements, be aware of the following
limitations:

• The program is not completely portable to the mainframe CICS environment.
• In the case of a CICS failure, a backout (restoring the resources that are associated with the failed task)

for resources that were updated by using the above statements will not be possible.

Restriction: There is no IBM Z host data format support for COBOL programs that are translated by the
separate or integrated CICS translator and run on TXSeries or CICS TX.

Related tasks   
“Getting the system date
under CICS” on page 382  
“Making dynamic calls under CICS” on page 382  
“Accessing SFS data” on page 384  
“Calling between COBOL and C/C++ under CICS” on page 384  

Related references   
“Db2 file system” on page 118  
“ADDR” on page 251  

Chapter 18. Developing COBOL programs for CICS  381



Appendix B, “IBM Z host data format
considerations,” on page 525  

Getting the system date under CICS
To retrieve the system date in a CICS program, use a format-2 ACCEPT statement or the CURRENT-DATE
intrinsic function.

You can use any of these format-2 ACCEPT statements in CICS to get the system date:

• ACCEPT identifier-2 FROM DATE (two-digit year)
• ACCEPT identifier-2 FROM DATE YYYYMMDD
• ACCEPT identifier-2 FROM DAY (two-digit year)
• ACCEPT identifier-2 FROM DAY YYYYDDD
• ACCEPT identifier-2 FROM DAY-OF-WEEK (one-digit integer, where 1 represents Monday)

You can use this format-2 ACCEPT statement in CICS to get the system time:

• ACCEPT identifier-2 FROM TIME

Alternatively, you can use the CURRENT-DATE intrinsic function, which can also provide the time.

These methods work in both CICS and non-CICS environments.

Do not use a format-1 ACCEPT statement in a CICS program.

Related tasks   
“Assigning input from a
screen or file (ACCEPT)” on page 30 

Related references   
CURRENT-DATE (COBOL for Linux on x86 Language Reference)

Making dynamic calls under CICS
You can use CALL identifier statements to make dynamic calls in the CICS environment. However,
you must set the COBPATH environment variable correctly. You also must make sure that the called
module has the correct name.

Consider the following example, in which alpha is a COBOL program that contains CICS statements:

WORKING-STORAGE SECTION.
01  WS-COMMAREA   PIC 9    VALUE ZERO.
77   SUBPNAME     PIC X(8) VALUE SPACES
. . .
PROCEDURE DIVISION.
    MOVE 'alpha' TO SUBPNAME.
    CALL SUBPNAME USING DFHEIBLK, DFHCOMMAREA, WS-COMMAREA.

You must pass the CICS control blocks DFHEIBLK and DFHCOMMAREA (as shown above) to alpha.

The source for alpha is in file alpha.ccp. Use the command cicstcl to translate, compile, and link
alpha.ccp. COBOL defaults to uppercase names. Therefore, unless you change this default by using the
PGMNAME(MIXED) compiler option, you need to name the source file ALPHA.ccp (not alpha.ccp) to
produce ALPHA.ibmcob (not alpha.ibmcob).

Suppose that the CICS region is called green. Then file ALPHA.ibmcob must be copied to /var/
cics_regions/green/bin, and the cicsadd command to add new resource definition must be used
to define ALPHA as a CICS program. Your installation staff must add the following line to the file /var/
cics_regions/green/environment:

COBPATH=/var/cics_regions/green/bin

382  IBM COBOL for Linux on x86 1.1: Programming Guide



Then the staff must shut down the CICS green region and restart it. If you put dynamically called
programs in some other directory, make sure that your installation staff adds that directory to COBPATH
and that the CICS servers have permission to access that directory.

Related tasks  
“Making dynamic calls to shared libraries under CICS” on page 383  
“Tuning the performance of dynamic calls under CICS” on page 384 

Related references  
“Compiler and runtime
environment variables” on page 216  

Making dynamic calls to shared libraries under CICS
If you have a shared library that contains one or more COBOL programs, do not use it in more than one
run unit within the same CICS transaction; otherwise the results are unpredictable.

The following figure shows a CICS transaction in which the same subprogram is called from two different
run units:

• Program A calls Program C (in C.so).
• Program A links to Program B using an EXEC CICS LINK command. This combination becomes a new

run unit within the same transaction.
• Program B calls Program C (in C.so).

C.so

Program C

Program A

CALL

EXEC CICS LINK
Program B

CALL

Programs A and B share the same copy of Program C, and any changes to its state affect both programs.

In the CICS environment, programs in a shared library are initialized (whether by the WSCLEAR compiler
option or by VALUE clause initialization) only on the first call within a run unit. If a COBOL subprogram is
called more than once from either the same or different main programs, the subprogram is initialized on
only the first call.

If you need the subprogram to be initialized on the first call from each main program, statically link a
separate copy of the subprogram with each calling program. If you need the subprogram to be initialized
on every call, use one of the following methods:

• Put data to be reinitialized in the LOCAL-STORAGE SECTION of the subprogram rather than in the
WORKING-STORAGE SECTION. This placement affects initialization only by VALUE clauses, not by
WSCLEAR.

• Use CANCEL to cancel the subprogram after each use so that the next call will be to the program in its
initial state.

• Add the INITIAL attribute to the subprogram.

Related tasks   
Chapter 24, “Using shared libraries,” on page 461  

Related references   
“WSCLEAR” on page 288 

Chapter 18. Developing COBOL programs for CICS  383



Tuning the performance of dynamic calls under CICS
The performance of persistent CICS transactions is improved by default in COBOL for Linux applications
by means of module caching.

To enable or disable module caching, set the following environment variables:

export COBOL_CPM_CACHE=0    ## To disable caching
export COBOL_CPM_CACHE=1    ## To enable caching

If the COBOL_CPM_CACHE environment variable is not specified, the defaults are as follows:

• For a CICS transaction, caching is enabled by default.
• For a non-CICS program, caching is automatically controlled; the COBOL runtime decides if and when to

enable caching.

When a module is cached, its execution semantics might change, because its WORKING-STORAGE data
items that do not have VALUE clauses and for which there are no explicit initialization statements remain
in last-used state. If a program in memory is not cached but is instead reloaded from disk, the last-used
state of these uninitialized variables is lost.

Do not rely on the value of uninitialized data items. Either initialize such data items explicitly, or
temporarily use the WSCLEAR compiler option to clear WORKING-STORAGE to binary zeros each time
the program is entered.

WSCLEAR can impact performance because the option increases the time and possibly space required
for program initialization. To obtain the best performance when module caching is in effect, review your
application code and decide whether to explicitly initialize variables.

Related references   
“WSCLEAR” on page 288 

Accessing SFS data
If your program is not running under CICS, it can access SFS files through the SFS file system (the default
file system used by TXSeries or CICS TX).

Related tasks   
“Identifying files” on page 113  
“Identifying SFS files” on page 116 
“Using SFS files” on page 148 

Related references   
“SFS file system” on page 121 

Calling between COBOL and C/C++ under CICS
You can make a call under CICS from a COBOL to a C/C++ program or from a C/C++ program to a COBOL
program only if the called program does not contain any CICS commands. (The calling program can
contain CICS commands.)

COBOL programs can issue an EXEC CICS LINK or EXEC CICS XCTL command to a C/C++ program
regardless of whether the C/C++ program contains CICS commands. Therefore, if your COBOL program
calls a C/C++ program that contains CICS commands, use EXEC CICS LINK or EXEC CICS XCTL rather
than the COBOL CALL statement.

Related tasks 
“Calling between COBOL and C/C++ programs” on page 437  

384  IBM COBOL for Linux on x86 1.1: Programming Guide



Compiling and running CICS programs
To compile COBOL for Linux TXSeries or CICS TX programs, use the cob2 command.

TRUNC(BIN) is a recommended compiler option for a COBOL program that will run under CICS. However,
if you are certain that the nontruncated values of BINARY, COMP, and COMP-4 data items conform to their
PICTURE specifications, you might be able to improve program performance by using TRUNC(OPT).

You can use a COMP-5 data item instead of a BINARY, COMP, or COMP-4 data item as an EXEC CICS
command argument. COMP-5 data items are treated like BINARY, COMP, or COMP-4 data items if
TRUNC(BIN) is in effect.

You must use the PGMNAME(MIXED) compiler option for programs that use CICS Client.

Do not use the DYNAM or ADDR(64) compiler option when you translate a COBOL program (using either
the separate or integrated CICS translator). All other COBOL compiler options are supported.

Runtime options: Use the FILESYS runtime option to specify the default file system if no file system has
been specified for a file by means of an ASSIGN clause.

Related concepts   
“Integrated CICS translator” on page 385

Related tasks  
“Compiling from the command
line” on page 225  
TXSeries for Multiplatforms documentationCICS TX documentation  

Related references  
“Compiler options” on page 248   
“Conflicting
compiler options” on page 250  
“FILESYS” on page 300  

Integrated CICS translator
When you compile a COBOL program using the CICS compiler option, the COBOL compiler works with the
integrated CICS translator to handle both native COBOL and embedded CICS statements in the source
program.

When the compiler encounters CICS statements, and at other significant points in the source program,
the compiler interfaces with the integrated CICS translator. All text between EXEC CICS and END-EXEC
statements is passed to the translator. The translator takes appropriate actions and then returns to the
compiler, typically indicating which native language statements to generate.

If you compile the COBOL program by using the cicstcl command, it uses the integrated CICS
translator. The cicstcl command invokes the compiler with the appropriate suboptions of the CICS
compiler option.

Although you can still translate embedded CICS statements separately, it is recommended that you
use the integrated CICS translator instead. Certain restrictions that apply when you use the separate
translator do not apply when you use the integrated translator, and using the integrated translator
provides several advantages:

• You can use to debug the original source instead of the expanded source that the separate CICS
translator generates.

• You do not need to separately translate the EXEC CICS statements that are in copybooks.
• There is no intermediate file for a translated but not compiled version of the source program.
• Only one output listing instead of two is produced.
• REPLACE statements can affect EXEC CICS statements.

Chapter 18. Developing COBOL programs for CICS  385

https://www.ibm.com/support/knowledgecenter/SSAL2T
https://www.ibm.com/support/knowledgecenter/SSNAQ8


• You can compile programs that contain CICS statements in a batch compilation (compilation of a
sequence of programs).

• Extended source format is fully supported.

Related tasks  
“Coding COBOL programs to
run under CICS” on page 380   
“Compiling and running CICS programs” on page 385  

Related references   
“CICS” on page 257  
“SRCFORMAT” on page 282  

Debugging CICS programs
If you compile CICS programs using the integrated translator, you can debug the programs at the original
source level instead of debugging the expanded source that the separate CICS translator provides.

If you use the separate CICS translator, first translate your CICS programs into COBOL. Then you can
debug the resulting COBOL programs the same way you debug any other COBOL programs.

You can debug CICS programs by using IBM Debug for Linux on x86 that is shipped with COBOL for Linux.
Be sure to instruct the compiler to produce the symbolic information that the debugger uses.

Related concepts   
Chapter 16, “Debugging,” on page 303 
“Integrated CICS translator” on page 385 

Related tasks  
“Compiling from the command
line” on page 225  
TXSeries for Multiplatforms documentationCICS TX documentation  

386  IBM COBOL for Linux on x86 1.1: Programming Guide

https://www.ibm.com/support/knowledgecenter/SSAL2T
https://www.ibm.com/support/knowledgecenter/SSNAQ8


Part 5. Using XML and COBOL together

© Copyright IBM Corp. 2021, 2023 387



388  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 19. Processing XML input
You can process XML input in a COBOL program by using the XML PARSE statement.

The XML PARSE statement is the COBOL language interface to the high-speed XML parser that is part of
the COBOL run time.

Processing XML input involves passing control between the XML parser and a processing procedure in
which you handle parser events.

Use the following COBOL facilities to process XML input:

• The XML PARSE statement to begin XML parsing and to identify the source XML document and the
processing procedure

• The processing procedure to control the parsing, that is, receive and process XML events and associated
document fragments, and return to the parser for continued processing

• Special registers to exchange information between the parser and the processing procedure:

– XML-CODE to receive the status of XML parsing and, in some cases, to return information to the
parser

– XML-EVENT to receive the name of each XML event from the parser
– XML-NTEXT to receive XML document fragments that are returned as national character data
– XML-TEXT to receive document fragments that are returned as alphanumeric data

Related concepts   
“XML parser in COBOL” on page 389     

Related tasks   
“Accessing XML documents” on page 390  
“Parsing XML documents” on page 391    
“Handling XML PARSE exceptions” on page 399  
“Terminating XML parsing” on page 402 

Related references   
“The encoding of XML
documents” on page 396 
Appendix E, “XML reference material,” on page 571 
Extensible Markup Language (XML)  

XML parser in COBOL
COBOL for Linux provides an event-based interface that lets you parse XML documents and transform
them to COBOL data structures.

The XML parser finds fragments within the source XML document, and your processing procedure acts on
those fragments. The fragments are associated with XML events; you code the processing procedure to
handle each XML event.

Execution of the XML PARSE statement begins the parsing and establishes the processing procedure with
the parser. The parser transfers control to the processing procedure for each XML event that it detects
while processing the document. After processing the event, the processing procedure automatically
returns control to the parser. Each normal return from the processing procedure causes the parser to
continue analyzing the XML document to report the next event. Throughout this operation, control passes
back and forth between the parser and the processing procedure.

In the XML PARSE statement, you can also specify two imperative statements to which you want control
to be passed at the end of the parsing: one if a normal end occurs, and the other if an exception condition
exists.

© Copyright IBM Corp. 2021, 2023 389

http://www.w3.org/XML/


The following figure shows a high-level overview of the basic exchange of control between the parser and
your COBOL program:

Normally, parsing continues until the entire XML document has been parsed.

The XML parser checks XML documents for most aspects of well formedness. A document is well formed if
it adheres to the XML syntax in the XML specification and follows some additional rules such as proper use
of end tags and uniqueness of attribute names.

Related concepts  
“XML input document encoding” on page 396   

Related tasks   
“Parsing XML documents” on page 391    
“Handling XML PARSE exceptions” on page 399  
“Terminating XML parsing” on page 402  

Related references  
“The encoding of XML
documents” on page 396  
“XML conformance” on page 579    
XML specification  

Accessing XML documents
Before you can parse an XML document using an XML PARSE statement, you must make the document
available to your program. Common methods of acquiring an XML document are from a parameter to your
program or by reading the document from a file.

If the XML document that you want to parse is held in a file, use ordinary COBOL facilities to place the
document into a data item in your program:

• A FILE-CONTROL entry to define the file to your program.
• An OPEN statement to open the file.
• READ statements to read all the records from the file into a data item (either an elementary item of

category alphanumeric or national, or an alphanumeric or national group). You can define the data item
in the WORKING-STORAGE SECTION or the LOCAL-STORAGE SECTION.

390  IBM COBOL for Linux on x86 1.1: Programming Guide

http://www.w3.org/TR/xml


• Optionally, the STRING statement to string all of the separate records together into one continuous
stream, to remove extraneous blanks, and to handle variable-length records.

Parsing XML documents
To parse XML documents, use the XML PARSE statement, specifying the XML document that is to be
parsed and the processing procedure for handling XML events that occur during parsing, as shown in the
following code fragment.

XML PARSE xml-document
    PROCESSING PROCEDURE xml-event-handler
  ON EXCEPTION
     DISPLAY 'XML document error ' XML-CODE
     STOP RUN
  NOT ON EXCEPTION
     DISPLAY 'XML document was successfully parsed.'
END-XML

In the XML PARSE statement, you first identify the parse data item (xml-document in the example
above) that contains the XML document character stream. In the DATA DIVISION, define the parse data
item as an elementary data item of category national or as a national group item if the encoding of the
document is Unicode UTF-16; otherwise, define the parse data item as an elementary alphanumeric data
item or an alphanumeric group item:

• If the parse data item is national, the XML document must be encoded in UTF-16 in little-endian format.
• If the parse data item is alphanumeric, its content must be encoded in one of the supported code pages

described in the related reference about the encoding of XML documents.

Next, specify the name of the processing procedure (xml-event-handler in the example above) that is
to handle the XML events that occur during parsing of the document.

In addition, you can specify either or both of the following optional phrases (as shown in the fragment
above) to indicate the action to be taken after parsing finishes: 

• ON EXCEPTION, to receive control if an unhandled exception occurs during parsing
• NOT ON EXCEPTION, to receive control otherwise

You can end the XML PARSE statement with the explicit scope terminator END-XML. Use END-XML to nest
an XML PARSE statement that uses the ON EXCEPTION or NOT ON EXCEPTION phrase in a conditional
statement.

The parser passes control to the processing procedure for each XML event. Control returns to the parser
at the end of the processing procedure. This exchange of control between the XML parser and the
processing procedure continues until one of the following events occurs:

• The entire XML document was parsed, as indicated by the END-OF-DOCUMENT event.
• The parser detects an error in the document and signals an EXCEPTION event, and the processing

procedure does not reset the special register XML-CODE to zero before returning to the parser.
• The parsing process is terminated deliberately by the your code in the processing procedure that sets

the XML-CODE special register to -1 before it returns to the parser.

Related concepts   
“XML events” on page 393  
“XML-CODE” on page 393     

Related tasks      
“Specifying the code page for character data” on page 202  
“Writing procedures to process
XML” on page 392   
“Parsing XML documents
encoded in UTF-8” on page 399    

Chapter 19. Processing XML input  391



Related references    
“The encoding of XML
documents” on page 396   
“XML PARSE exceptions” on page 571  
XML PARSE statement (COBOL for Linux on x86 Language Reference)    

Writing procedures to process XML
In your processing procedure, code statements to handle XML events.

For each event that the parser encounters, the parser passes information to the processing procedure in
several special registers. Use the content of those special registers to populate COBOL data structures
and to control the processing.

Examine the XML-EVENT special register to determine which event the parser passed to the processing
procedure. XML-EVENT contains an event name, such as 'START-OF-ELEMENT'. Obtain the text
associated with the event from the XML-TEXT or XML-NTEXT special register.

When used in nested programs, the XML special registers are implicitly defined as GLOBAL in the
outermost program.

For additional details about the XML special registers, see the following table.

Table 38. Special registers used by the XML parser

Special register Implicit definition and usage Content

XML-EVENT1 
PICTURE X(30) USAGE DISPLAY VALUE 
SPACE 

The name of the XML event

XML-CODE2 
PICTURE S9(9) USAGE BINARY VALUE 
ZERO 

An exception code or zero for each XML event

XML-TEXT1, 3 Variable-length elementary category
alphanumeric item

Text (corresponding to the event that the parser
encountered) from the XML document if you specify an
alphanumeric item for the XML PARSE identifier

XML-NTEXT1 Variable-length elementary category national
item

Text (corresponding to the event that the parser
encountered) from the XML document if you specify a
national item for the XML PARSE identifier

1. You cannot use this special register as a receiving data item.
2. The XML GENERATE statement also uses XML-CODE. Therefore, if you have an XML GENERATE statement in the processing procedure,

save the value of XML-CODE before the XML GENERATE statement, and restore the saved value after the XML GENERATE statement.
3. The content of XML-TEXT has the encoding of the source XML document: ASCII or UTF-8 if the CHAR(NATIVE) compiler option is in

effect; EBCDIC if CHAR(EBCDIC) is in effect.

Restrictions:

• A processing procedure must not directly execute an XML PARSE statement. However, if a processing
procedure passes control to an outermost program by using a CALL statement, the target program can
execute the same or a different XML PARSE statement. You can also execute the same XML statement
or different XML statements simultaneously from a program that is running on multiple threads.

• The range of the processing procedure must not cause the execution of any GOBACK or EXIT PROGRAM
statement, except to return control from a program to which control was passed by a CALL statement,
respectively, that is executed in the range of the processing procedure.

You can code a STOP RUN statement in a processing procedure to end the run unit.

The compiler inserts a return mechanism after the last statement in each processing procedure.

“Example: program for processing XML” on page 404

392  IBM COBOL for Linux on x86 1.1: Programming Guide



Related concepts     
“XML events” on page 393  
“XML-CODE” on page 393   
“XML-TEXT and XML-NTEXT” on page 395   

Related tasks  
“Terminating XML parsing” on page 402  

Related references   
“CHAR” on page 255   
XML-EVENT (COBOL for Linux on x86 Language Reference)   

XML events
An XML event results when the XML parser detects various conditions (such as END-OF-INPUT or
EXCEPTION) or encounters document fragments (such as CONTENT-CHARACTERS or START-OF-CDATA-
SECTION) while processing an XML document.

For each event that occurs during XML parsing, the parser sets the associated event name in the
XML-EVENT special register, and passes the XML-EVENT special register to the processing procedure.
Depending on the event, the parser sets other special registers to contain additional information about
the event.

In most cases, the parser sets the XML-TEXT or XML-NTEXT special register to the XML fragment that
caused the event: XML-NTEXT if the XML document is in a national data item, or if the parser finds a
character reference; otherwise, XML-TEXT.

When the parser detects an encoding conflict or a well-formedness error in the document, it sets
XML-EVENT to 'EXCEPTION' and provides additional information about the exception in the XML-CODE
special register.

For a detailed description of the set of XML events, see the related reference about XML-EVENT.

Related concepts   
“XML parser in COBOL” on page 389   
“XML-CODE” on page 393
   
“XML-TEXT and XML-NTEXT” on page 395   

Related tasks   
“Writing procedures to process
XML” on page 392  

Related references   
“XML PARSE exceptions” on page 571   
XML-EVENT (COBOL for Linux on x86 Language Reference)   

XML-CODE
For each XML event except an EXCEPTION event, the parser sets the value of the XML-CODE special
register to zero. For an EXCEPTION event, the parser sets XML-CODE to a value that identifies the specific
exception.

For information about the possible exception codes, see the related references.

When the parser returns control to the XML PARSE statement from your processing procedure, XML-
CODE generally contains the most recent value that was set by the parser. However, for any event other
than EXCEPTION, if you set XML-CODE to -1 in your processing procedure, parsing terminates with a
user-initiated exception condition when control returns to the parser, and XML-CODE retains the value -1.

For an EXCEPTION XML event, your processing procedure can, in some cases, set XML-CODE to a
meaningful value before control returns to the parser. (For details, see the related tasks about handling

Chapter 19. Processing XML input  393



XML PARSE exceptions and handling encoding conflicts.) If you set XML-CODE to any other nonzero value
or set it for any other exception, the parser resets XML-CODE to the original exception code.

The following table shows the results of setting XML-CODE to various values. The leftmost column shows
the type of XML event passed to the processing procedure; the other column headings show the XML-
CODE value set by the processing procedure. The cell at the intersection of each row and column shows
the action that the parser takes upon return from the processing procedure for a given combination of
XML event and XML-CODE value.

Table 39. Results of processing-procedure changes to XML-CODE

XML event type -1 0
XML-CODE-100,000

 (EBCDIC)
XML-CODE-200,000

(ASCII)

Other nonzero
value

Encoding-conflict
exception
(exception codes 50
- 99)

Ignores setting;
keeps original XML-
CODE value

Chooses encoding
depending on the
specific exception
code1

Ignores setting;
keeps original XML-
CODE value

Ignores setting;
keeps original XML-
CODE value

Encoding-choice
exception
(exception codes >
100,000)

Ignores setting;
keeps original XML-
CODE value

Parses using the
external code page2

Parses using the
difference (shown
above) as the
encoding value2

Ignores setting;
keeps original XML-
CODE value

Other exception Ignores setting;
keeps original XML-
CODE value

Limited continuation
only for exception
codes 1 - 493

Ignores setting;
keeps original XML-
CODE value

Ignores setting;
keeps original XML-
CODE value

Normal event Ends immediately;
XML-CODE = -14

[No apparent change
to XML-CODE]

Ends immediately;
XML-CODE = -1

Ends immediately;
XML-CODE = -1

1. See the exception codes in the related reference about XML PARSE exceptions.
2. See the related task about handling encoding conflicts.
3. See the related task about handling XML PARSE exceptions.
4. See the related task about terminating XML parsing.

XML generation also uses the XML-CODE special register. For details, see the related task about handling
XML GENERATE exceptions.

Related concepts   
“How the XML parser
handles errors” on page 400   

Related tasks   
“Writing procedures to process
XML” on page 392   
“Handling XML PARSE exceptions” on page 399   
“Handling encoding conflicts” on page 401    
“Terminating XML parsing” on page 402  
“Handling XML GENERATE exceptions” on page 414  

Related references 
“XML PARSE exceptions” on page 571  
“XML GENERATE exceptions” on page 581  
XML-CODE (COBOL for Linux on x86 Language Reference) 
XML-EVENT (COBOL for Linux on x86 Language Reference) 

394  IBM COBOL for Linux on x86 1.1: Programming Guide



XML-TEXT and XML-NTEXT
For most XML events, the parser sets XML-TEXT or XML-NTEXT to an associated document fragment.

Typically, the parser sets XML-TEXT if the XML document is in an alphanumeric data item. The parser sets
XML-NTEXT if:

• The XML document is in a national data item.
• The XML document is in an alphanumeric data item and the ATTRIBUTE-NATIONAL-CHARACTER or
CONTENT-NATIONAL-CHARACTER event occurs.

The special registers XML-TEXT and XML-NTEXT are mutually exclusive. When the parser sets XML-TEXT,
XML-NTEXT is empty with length zero. When the parser sets XML-NTEXT, XML-TEXT is empty with length
zero.

To determine the number of character encoding units in XML-NTEXT, use the LENGTH intrinsic function;
for example FUNCTION LENGTH(XML-NTEXT). To determine the number of bytes in XML-NTEXT, use
special register LENGTH OF XML-NTEXT. The number of character encoding units differs from the
number of bytes.

To determine the number of bytes in XML-TEXT, use either special register LENGTH OF XML-TEXT or the
LENGTH intrinsic function; each returns the number of bytes.

The XML-TEXT and XML-NTEXT special registers are undefined outside the processing procedure.

Related concepts    
“XML events” on page 393  
“XML-CODE” on page 393  

Related tasks    
“Writing procedures to process
XML” on page 392  

Related references   
XML-TEXT (COBOL for Linux on x86 Language Reference)
XML-NTEXT (COBOL for Linux on x86 Language Reference)

Transforming XML text to COBOL data items
Because XML data is neither fixed length nor fixed format, you need to use special techniques when you
move XML data to a COBOL data item.

For alphanumeric items, decide whether the XML data should go at the left (default) end, or at the right
end, of the COBOL data item. If the data should go at the right end, specify the JUSTIFIED RIGHT clause
in the definition of the item.

Give special consideration to numeric XML values, particularly "decorated" monetary values such as
'$1,234.00' or '$1234'. These two strings might mean the same thing in XML, but need quite different
definitions if used as COBOL sending fields.

Use one of the following techniques when you move XML data to COBOL data items:

• If the format is reasonably regular, code a MOVE to an alphanumeric item that you redefine appropriately
as a numeric-edited item. Then do the final move to a numeric (operational) item by moving from, and
thus de-editing, the numeric-edited item. (A regular format would have the same number of digits after
the decimal point, a comma separator for values greater than 999, and so on.)

• For simplicity and vastly increased flexibility, use the following intrinsic functions for alphanumeric XML
data:

– NUMVAL to extract and decode simple numeric values from XML data that represents plain numbers
– NUMVAL-C to extract and decode numeric values from XML data that represents monetary quantities

However, using these functions is at the expense of performance.

Chapter 19. Processing XML input  395



Related tasks   
“Converting to numbers (NUMVAL, NUMVAL-C)” on page 105  
“Using national data (Unicode)
in COBOL” on page 179  
“Writing procedures to process
XML” on page 392 

The encoding of XML documents
XML documents must be encoded in a supported code page.

XML documents that you parse using XML PARSE statements must be encoded, and XML documents that
you create using XML GENERATE statements are encoded, as follows:

• Documents in national data items: in Unicode UTF-16 in little-endian format
• Documents in native alphanumeric data items: in Unicode UTF-8 or a single-byte ASCII code page that

is supported by International Components for Unicode (ICU) conversion libraries

A native alphanumeric data item is a category alphanumeric data item that is compiled with the
CHAR(NATIVE) compiler option in effect or whose data description entry contains the NATIVE phrase.

• Documents in host alphanumeric data items: in a single-byte EBCDIC code page that is supported by
ICU conversion libraries

A host alphanumeric data item is a category alphanumeric data item that is compiled with the
CHAR(EBCDIC) compiler option in effect and whose data description entry does not contain the
NATIVE phrase.

The encodings supported by the ICU conversion libraries are documented in the related reference about
the ICU converter explorer.

Related concepts  
“XML input document encoding” on page 396   

Related tasks   
“Specifying the encoding” on page 398 
“Parsing XML documents
encoded in UTF-8” on page 399  
Chapter 20, “Producing XML output,” on page 409  

Related references    
“CHAR” on page 255   
International Components for Unicode: Converter Explorer  

XML input document encoding
To parse an XML document using the XML PARSE statement, the document must be encoded in a
supported encoding.

The supported encodings for a given parse operation depend on the type of the data item that contains
the XML document. The parser supports the following types of data items and encodings:

• Category national data items with content that is encoded in Unicode UTF-16 in little-endian format
• Native alphanumeric data items with content that is encoded in Unicode UTF-8 or one of the supported

single-byte ASCII code pages
• Host alphanumeric data items with content that is encoded in one of the supported single-byte EBCDIC

code pages

The supported code pages are described in the related reference about the encoding of XML documents.

The parser determines the actual document encoding by examining the first few bytes of the XML
document. If the actual document encoding is ASCII or EBCDIC, the parser needs specific code-page

396  IBM COBOL for Linux on x86 1.1: Programming Guide

http://demo.icu-project.org/icu-bin/convexp/


information to be able to parse correctly. This additional code-page information is acquired from the
document encoding declaration or from the external code-page information.

The document encoding declaration is an optional part of the XML declaration at the beginning of the
document. For details, see the related task about specifying the encoding.

The external code page for ASCII XML documents (the external ASCII code page) is the code page
indicated by the current runtime locale. The external code page for EBCDIC XML documents (the external
EBCDIC code page) is one of these:

• The code page that you specified in the EBCDIC_CODEPAGE environment variable
• The default EBCDIC code page selected for the current runtime locale if you did not set the

EBCDIC_CODEPAGE environment variable

If the specified encoding is not one of the supported coded character sets, the parser signals an
XML exception event before beginning the parse operation. If the actual document encoding does not
match the specified encoding, the parser signals an appropriate XML exception after beginning the parse
operation.

To parse an XML document that is encoded in an unsupported code page, first convert the document
to national character data (UTF-16) by using the NATIONAL-OF intrinsic function. You can convert the
individual pieces of document text that are passed to the processing procedure in special register XML-
NTEXT back to the original code page by using the DISPLAY-OF intrinsic function.

XML declaration and white space:

XML documents can begin with white space only if they do not have an XML declaration:

• If an XML document begins with an XML declaration, the first angle bracket (<) in the document must be
the first character in the document.

• If an XML document does not begin with an XML declaration, the first angle bracket in the document can
be preceded only by white space.

White-space characters have the hexadecimal values shown in the following table.

Table 40. Hexadecimal values of white-space characters

White-space character EBCDIC Unicode / ASCII

Space X'40' X'20'

Horizontal tabulation X'05' X'09'

Carriage return X'0D' X'0D'

Line feed X'25' X'0A'

New line / next line X'15' X'85'

Related tasks   
“Converting to or from national (Unicode) representation” on page 186  
“Specifying the encoding” on page 398 
“Parsing XML documents
encoded in UTF-8” on page 399  
“Handling XML PARSE exceptions” on page 399 

Related references   
“Locales and code pages that are supported” on page 204  
“The encoding of XML
documents” on page 396  
“EBCDIC code-page-sensitive characters in XML markup” on page 398   
“XML PARSE exceptions” on page 571  

Chapter 19. Processing XML input  397



Specifying the encoding
You can choose how to specify the encoding for parsing an XML document that is in an alphanumeric data
item.

The preferred way is to omit the encoding declaration from the document and to rely instead on the
external code-page specification.

Omitting the encoding declaration makes it possible to more easily transmit an XML document between
heterogeneous systems. (If you included an encoding declaration, you would need to update it to reflect
any code-page translation imposed by the transmission process.)

The code page used for parsing an alphanumeric XML document that does not have an encoding
declaration is the runtime code page.

You can instead specify an encoding declaration in the XML declaration with which most XML documents
begin. For example:

<?xml version="1.0" encoding="ibm-1140"?>

Note that the XML parser generates an exception if it encounters an XML declaration that does not begin
in the first byte of an XML document.

If you specify an encoding declaration, use one of the primary or alias code-page names that are
supported by the ICU conversion libraries. The code-page names are documented in the related reference
about the ICU converter explorer.

For more information about the CCSIDs that are supported for XML parsing, see the related reference
about the encoding of XML documents.

Related concepts  
“XML input document encoding” on page 396   

Related tasks    
“Parsing XML documents
encoded in UTF-8” on page 399  
“Handling encoding conflicts” on page 401

Related references   
“Locales and code pages that are supported” on page 204   
“The encoding of XML
documents” on page 396    
International Components for Unicode: Converter Explorer  

EBCDIC code-page-sensitive characters in XML markup
Several special characters that are used in XML markup have different hexadecimal representations in
different EBCDIC code pages.

The following table shows those special characters and their hexadecimal values for various EBCDIC
CCSIDs.

Table 41. Hexadecimal values of special characters for various EBCDIC CCSIDs

Character 1047 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

[ X'AD' X'BA' X'63' X'9E' X'B5' X'90' X'4A' X'B1' X'90' X'4A' X'AE'

] X'BD' X'BB' X'FC' X'9F' X'9F' X'51' X'5A' X'BB' X'B5' X'5A' X'9E'

! X'5A' X'5A' X'4F' X'4F' X'4F' X'4F' X'BB' X'5A' X'4F' X'4F' X'4F'

| X'4F' X'4F' X'BB' X'BB' X'BB' X'BB' X'4F' X'4F' X'BB' X'BB' X'BB'

# X'7B' X'7B' X'7B' X'4A' X'63' X'B1' X'69' X'7B' X'B1' X'7B' X'7B'

398  IBM COBOL for Linux on x86 1.1: Programming Guide

http://demo.icu-project.org/icu-bin/convexp/


Parsing XML documents encoded in UTF-8
You can parse XML documents that are encoded in Unicode UTF-8 in a manner similar to parsing other
XML documents. However, some additional requirements apply.

To parse a UTF-8 XML document, code the XML PARSE statement as you would normally for parsing XML
documents:

XML PARSE xml-document
    PROCESSING PROCEDURE xml-event-handler
    . . .
END-XML

Observe the following additional requirements though:

• The parse data item (xml-document in the example above) must be category alphanumeric, and the
CHAR(EBCDIC) compiler option must not be in effect.

• So that the XML document will be parsed as UTF-8 rather than ASCII, ensure that at least one of the
following conditions applies:

– The runtime locale is a UTF-8 locale.
– The document contains an XML encoding declaration that specifies UTF-8 (encoding="UTF-8").
– The document starts with a UTF-8 byte order mark.

• The document must not contain any characters that have a Unicode scalar value that is greater than
x'FFFF'. Use a character reference ("&#xhhhhh;") for such characters.

The parser returns the XML document fragments in the alphanumeric special register XML-TEXT.

UTF-8 characters are encoded using a variable number of bytes per character. Most COBOL operations on
alphanumeric data assume a single-byte encoding, in which each character is encoded in 1 byte. When
you operate on UTF-8 characters as alphanumeric data, you must ensure that the data is processed
correctly. Avoid operations (such as reference modification and moves that involve truncation) that can
split a multibyte character between bytes. You cannot reliably use statements such as INSPECT to
process multibyte characters in alphanumeric data.

Related concepts
“XML-TEXT and XML-NTEXT” on page 395  

Related tasks
“Processing UTF-8 data using UTF-16 (national) data types” on page 195   
“Parsing XML documents” on page 391  
“Specifying the encoding” on page 398

Related references   
“CHAR” on page 255  
“The encoding of XML
documents” on page 396  
XML PARSE statement (COBOL for Linux on x86 Language Reference)  

Handling XML PARSE exceptions
If the XML parser encounters an anomaly or error during parsing, it sets an exception code in the
XML-CODE special register and signals an XML exception event.

If the exception code is within a certain range, you might be able to handle the exception event within
your processing procedure, and resume parsing.

To handle an exception in the processing procedure, follow these steps:

1. Check the contents of XML-CODE.
2. Handle the exception appropriately.

Chapter 19. Processing XML input  399



3. Set XML-CODE to zero to indicate that you handled the exception.
4. Return control to the parser.

The exception condition no longer exists.

You can handle exceptions in this way only if the exception code that is passed in XML-CODE is within one
of the following ranges, which indicates that an encoding conflict was detected:

• 50 - 99
• 100,001 - 165,535
• 200,001 - 265,535

Exception codes 1 - 49: In the processing procedure, you can do limited handling of exceptions for which
the exception code is within the range 1 - 49. After an exception in this range occurs, the parser does not
signal any further normal events, except the END-OF-DOCUMENT event, even if you set XML-CODE to zero
before returning. If you set XML-CODE to zero, the parser continues parsing the document and signals any
exceptions that it finds. (Doing so can provide a useful way to discover multiple errors in the document.)

Restriction: The COBOL XML parser might not signal all additional exception events. The number of
exceptions is limited to the remaining space in the XML PARSE event token array, probably 8192 events.

At the end of parsing after an exception that has an exception code in the range 1 - 49, control is passed
to the statement specified in the ON EXCEPTION phrase. If you did not code an ON EXCEPTION phrase,
control is passed to the end of the XML PARSE statement. XML-CODE contains the code set by the parser
for the most recent exception.

For all exceptions other than those having an exception code within one of the ranges described above,
the parser does not signal any further events, but passes control to the statement specified in the ON
EXCEPTION phrase. XML-CODE contains the original exception code even if you set XML-CODE in the
processing procedure before returning control to the parser.

If you do not want to handle an exception, return control to the parser without changing the value of
XML-CODE. The parser transfers control to the statement specified in the ON EXCEPTION phrase. If you
did not code an ON EXCEPTION phrase, control is transferred to the end of the XML PARSE statement.

If no unhandled exceptions occur before the end of parsing, control is passed to the statement specified
in the NOT ON EXCEPTION phrase. If you did not code a NOT ON EXCEPTION phrase, control is
transferred to the end of the XML PARSE statement. XML-CODE contains zero.

Related concepts   
“XML-CODE” on page 393  
“XML input document encoding” on page 396  
“How the XML parser
handles errors” on page 400  

Related tasks    
“Writing procedures to process
XML” on page 392  
“Handling encoding conflicts” on page 401  

Related references  
“The encoding of XML
documents” on page 396  
“XML PARSE exceptions” on page 571  

How the XML parser handles errors
When the XML parser detects an error in an XML document, it generates an XML exception event and
passes control to your processing procedure.

The parser passes the following information in special registers to the processing procedure: 

• XML-EVENT contains 'EXCEPTION'.

400  IBM COBOL for Linux on x86 1.1: Programming Guide



• XML-CODE contains a numeric exception code.

The exception codes are described in the related reference about XML PARSE exceptions. 
• For fatal exceptions, XML-TEXT or XML-NTEXT contains the document text up to and including the point

where the exception was detected.
• For the warning exceptions issued for using an undeclared prefix, XML-TEXT or XML-NTEXT contains

the fully qualified attribute name or element name. That is, the name includes the undeclared prefix and
the separator colon (:).

• XML-TEXT or XML-NTEXT contains the document text up to and including the point where the exception
was detected.

All other XML special registers are empty with length zero.

The processing procedure might be able to handle an exception so that parsing continues if the exception
code is within one of the following ranges:

• 1 - 99
• 100,001 - 165,535
• 200,001 - 265,535

If the exception code has any other nonzero value, parsing cannot continue.

Encoding conflicts: The exceptions for encoding conflicts (50 - 99 and 300 - 399) are signaled before the
parsing of the document begins. For these exceptions, XML-TEXT or XML-NTEXT is either length zero or
contains only the encoding declaration value from the document.

Exception codes 1 - 49: An exception for which the exception code is in the range 1 - 49 is a fatal
error according to the XML specification. Therefore, the parser does not continue normal parsing even if
the processing procedure handles the exception. However, the parser does continue scanning for further
errors until it reaches the end of the document, or until the existing XML EVENT token array is exhausted.
For these exceptions, the parser does not signal any further normal events except the END-OF-DOCUMENT
event.

Related concepts  
“XML events” on page 393  
“XML-CODE” on page 393  
“XML input document encoding” on page 396   

Related tasks   
“Handling XML PARSE exceptions” on page 399   
“Handling encoding conflicts” on page 401   
   
“Terminating XML parsing” on page 402  

Related references  
“The encoding of XML
documents” on page 396   
“XML PARSE exceptions” on page 571    
XML specification  

Handling encoding conflicts
Your processing procedure might be able to handle exceptions for document encoding conflicts.
Exception events in which the parse data item is alphanumeric and the exception code in XML-CODE
is within the range 100,001 - 165,535 or 200,001 - 265,535 indicate that the code page of the document
(as specified by its encoding declaration) conflicts with the external code-page information.

In this special case, you can choose to parse using the code page of the document by subtracting
100,000 or 200,000 from the value in XML-CODE (depending on whether the code page is EBCDIC or
ASCII, respectively). For instance, if XML-CODE contains 101,140, the code page of the document is

Chapter 19. Processing XML input  401

http://www.w3.org/TR/xml


1140. Alternatively, you can choose to parse using the external code page by setting XML-CODE to zero
before returning to the parser.

The parser takes one of three actions after returning from a processing procedure for an encoding-conflict
exception event:

• If you set XML-CODE to zero, the parser uses the external ASCII code page or external EBCDIC code
page, depending on whether the parse data item is a native alphanumeric or host alphanumeric item,
respectively.

• If you set XML-CODE to the code page of the document (that is, the original XML-CODE value minus
100,000 or 200,000, as appropriate), the parser uses the code page of the document.

This is the only case in which the parser continues when XML-CODE has a nonzero value upon returning
from a processing procedure. 

• Otherwise, the parser stops processing the document and returns control to the XML PARSE statement
with an exception condition. XML-CODE contains the exception code that was originally passed with the
exception event.

Related concepts    
“XML-CODE” on page 393  
“XML input document encoding” on page 396      
“How the XML parser
handles errors” on page 400  

Related tasks    
“Handling XML PARSE exceptions” on page 399  

Related references  
“The encoding of XML
documents” on page 396  
“XML PARSE exceptions” on page 571    

Terminating XML parsing
You can terminate parsing immediately, without processing any remaining XML text, by setting XML-CODE
to -1 in your processing procedure before the procedure returns to the parser from any normal XML event
(that is, any event other than EXCEPTION).

You can use this technique when the processing procedure has examined enough of the document or has
detected some irregularity in the document that precludes further meaningful processing.

If you terminate parsing in this way, the parser does not signal any further XML events, including the
exception event. Control transfers to the ON EXCEPTION phrase of the XML PARSE statement, if that
phrase was specified.

In the imperative statement of the ON EXCEPTION phrase, you can determine whether parsing was
deliberately terminated by testing whether XML-CODE contains -1. If you do not specify the ON
EXCEPTION phrase, control transfers to the end of the XML PARSE statement.

You can also terminate parsing after any XML EXCEPTION event by returning to the parser from the
processing procedure without changing the value in XML-CODE. The result is similar to the result of
deliberate termination, except that the parser returns to the XML PARSE statement with XML-CODE
containing the original exception code.

Related concepts   
“XML-CODE” on page 393  
“How the XML parser
handles errors” on page 400 

Related tasks   
“Writing procedures to process

402  IBM COBOL for Linux on x86 1.1: Programming Guide



XML” on page 392 
“Handling XML PARSE exceptions” on page 399 

XML PARSE examples
The examples that are referenced below illustrate various uses of the XML PARSE statement.

“Example:
parsing a simple document” on page 403       
“Example: program
for processing XML” on page 404     
   
   

Example: parsing a simple document
This example shows the flow of events and the contents of special register XML-TEXT that result from the
parsing of a simple XML document.

Assume that the COBOL program contains the following XML document in data item Doc:

<?xml version="1.0"?><msg type="short">Hello, World!</msg>

The following code fragment shows an XML PARSE statement for parsing Doc, and a processing
procedure, P, for handling the XML events:

XML Parse Doc
   Processing procedure P
   . . .
P. Display XML-Event XML-Text.

The processing procedure displays the content of XML-EVENT and XML-TEXT for each event that the
parser signals during parsing. The following table shows the events and the text.

Table 42. XML events and special registers

XML-EVENT XML-TEXT

START-OF-DOCUMENT

VERSION-INFORMATION 1.0

START-OF-ELEMENT msg

ATTRIBUTE-NAME type

ATTRIBUTE-CHARACTERS short

CONTENT-CHARACTERS Hello, World!

END-OF-ELEMENT msg

END-OF-DOCUMENT

Related concepts     
“XML events” on page 393   
“XML-TEXT and XML-NTEXT” on page 395   

Chapter 19. Processing XML input  403



Example: program for processing XML
This example shows the parsing of an XML document, and a processing procedure that reports the various
XML events and their associated text fragments.

The XML document is shown in the program source to make it easier to follow the flow of the parsing. The
output of the program is shown after the example.

To understand the interaction of the parser and the processing procedure, and to match events to
document fragments, compare the XML document to the output of the program.

Process codepage(1047)
       Identification division.
         Program-id. XMLSAMPL.
       Data division.
        Working-storage section.
      ******************************************************************
      * XML document data, encoded as initial values of data items.    *
      ******************************************************************
         1 xml-document-data.
          2 pic x(39) value '<?xml version="1.0" encoding="UTF-8"'.
          2 pic x(19) value ' standalone="yes"?>'.
          2 pic x(39) value '<!--This document is just an example-->'.
          2 pic x(10) value '<sandwich>'.
          2 pic x(33) value '<bread type="baker&apos;s best"/>'.
          2 pic x(36) value '<?spread We'll use real mayonnaise?>'.
          2 pic x(29) value '<meat>Ham &amp; turkey</meat>'.
          2 pic x(34) value '<filling>Cheese, lettuce, tomato, '.
          2 pic x(32) value 'and that's all, Folks!</filling>'.
          2 pic x(25) value '<![CDATA[We should add a '.
          2 pic x(20) value '<relish> element!]]>'.
          2 pic x(28) value '<listprice>$4.99</listprice>'.
          2 pic x(25) value '<discount>0.10</discount>'.
          2 pic x(31) value '</sandwich>'.
      ******************************************************************
      * XML document, represented as fixed-length records.             *
      ******************************************************************
         1 xml-document redefines xml-document-data.
          2 xml-segment pic x(40) occurs 10 times.
         1 xml-segment-no comp pic s9(4).
         1 content-buffer pic x(100).
         1 current-element-stack.
          2 current-element pic x(30) occurs 10 times.
      ******************************************************************
      * Sample data definitions for processing numeric XML content.    *
      ******************************************************************
         1 element-depth comp pic s9(4).
         1 discount computational pic 9v99 value 0.
         1 display-price pic $$9.99.
         1 filling pic x(4095).
         1 list-price computational pic 9v99 value 0.
         1 ofr-ed pic x(9) justified.
         1 ofr-ed-1 redefines ofr-ed pic 999999.99.
       Procedure division.
        Mainline section.
           Move 1 to xml-segment-no
           Display 'Initial segment {' xml-segment(xml-segment-no) '}'
           Display ' '
           XML parse xml-segment(xml-segment-no)
               processing procedure XML-handler
             On exception
               Display 'XML processing error, XML-Code=' XML-Code '.'
               Move 16 to return-code
               Goback
             Not on exception
               Display 'XML document successfully parsed.'
           End-XML
      ******************************************************************
      * Process the transformed content and calculate promo price.     *
      ******************************************************************
           Display ' '
           Display '-----+++++***** Using information from XML '
               '*****+++++-----'
           Display ' '
           Move list-price to Display-price
           Display ' Sandwich list price: ' Display-price
           Compute Display-price = list-price * (1 - discount)
           Display ' Promotional price: ' Display-price
           Display ' Get one today!'

404  IBM COBOL for Linux on x86 1.1: Programming Guide



           Goback.
        XML-handler section.
           Evaluate XML-Event
      * ==> Order XML events most frequent first
             When 'START-OF-ELEMENT'
               Display 'Start element tag: {' XML-Text '}'
               Add 1 to element-depth
               Move XML-Text to current-element(element-depth)
             When 'CONTENT-CHARACTERS'
               Display 'Content characters: {' XML-Text '}'
      * ==> In general, a split can occur for any element or attribute
      * ==> data, but in this sample, it only occurs for "filling"...
               If xml-information = 2 and
                   current-element(element-depth) not = 'filling'
                 Display 'Unexpected split in content for element '
                     current-element(element-depth)
                 Move -1 to xml-code
               End-if
      * ==> Transform XML content to operational COBOL data item...
               Evaluate current-element(element-depth)
                 When 'filling'
      * ==> After reassembling separate pieces of character content...
                   String xml-text delimited by size into
                       content-buffer with pointer tally
                     On overflow
                       Display 'content buffer ('
                           length of content-buffer
                           ' bytes) is too small'
                       Move -1 to xml-code
                   End-string
                   Evaluate xml-information
                     When 2
                       Display '  Character data for element "filling" '
                           'is incomplete.'
                       Display '  The partial data was buffered for '
                           'content assembly.'
                     When 1
                       subtract 1 from tally
                       move content-buffer(1:tally) to filling
                       Display '  Element "filling" data (' tally
                           ' bytes) is now complete:'
                       Display '  {' filling(1:tally) '}'
                   End-evaluate
                 When 'listprice'
      * ==> Using function NUMVAL-C...
                   Move XML-Text to content-buffer
                   Compute list-price =
                       function numval-c(content-buffer)
                 When 'discount'
      * ==> Using de-editing of a numeric edited item...
                   Move XML-Text to ofr-ed
                   Move ofr-ed-1 to discount
               End-evaluate
             When 'END-OF-ELEMENT'
               Display 'End element tag: {' XML-Text '}'
               Subtract 1 from element-depth
             When 'END-OF-INPUT'
               Display 'End of input'
               Add 1 to xml-segment-no
               Display '  Next segment: {' xml-segment(xml-segment-no)
                   '}'
               Display ' '
               Move 1 to xml-code
             When 'START-OF-DOCUMENT'
               Display 'Start of document'
               Move 0 to element-depth
               Move 1 to tally
             When 'END-OF-DOCUMENT'
               Display 'End of document.'
             When 'VERSION-INFORMATION'
               Display 'Version: {' XML-Text '}'
             When 'ENCODING-DECLARATION'
               Display 'Encoding: {' XML-Text '}'
             When 'STANDALONE-DECLARATION'
               Display 'Standalone: {' XML-Text '}'
             When 'ATTRIBUTE-NAME'
               Display 'Attribute name: {' XML-Text '}'
             When 'ATTRIBUTE-CHARACTERS'
               Display 'Attribute value characters: {' XML-Text '}'
             When 'ATTRIBUTE-CHARACTER'
               Display 'Attribute value character: {' XML-Text '}'
             When 'START-OF-CDATA-SECTION'

Chapter 19. Processing XML input  405



               Display 'Start of CData section'
             When 'END-OF-CDATA-SECTION'
               Display 'End of CData section'
             When 'CONTENT-CHARACTER'
               Display 'Content character: {' XML-Text '}'
             When 'PROCESSING-INSTRUCTION-TARGET'
               Display 'PI target: {' XML-Text '}'
             When 'PROCESSING-INSTRUCTION-DATA'
               Display 'PI data: {' XML-Text '}'
             When 'COMMENT'
               Display 'Comment: {' XML-Text '}'
             When 'EXCEPTION'
               Compute tally = function length (XML-Text)
               Display 'Exception ' XML-Code ' at offset ' tally '.'
             When other
               Display 'Unexpected XML event: ' XML-Event '.'
           End-evaluate
           .
       End program XMLSAMPL.

Output from parsing
From the following output you can see which fragments of the document were associated with the events
that occurred during parsing:

 Start of document                                                           
 Version: {1.0}                                                              
 Encoding: {UTF-8}                                                        
 Standalone: {yes}                                                           
 Comment: {This document is just an example}                                 
 Start element tag: {sandwich}                                               
 Content characters: {  }                                                    
 Start element tag: {bread}                                                  
 Attribute name: {type}                                                      
 Attribute value characters: {baker}                                         
 Attribute value character: {'}                                              
 Attribute value characters: {s best}                                        
 End element tag: {bread}                                                    
 Content characters: {  }                                                    
 PI target: {spread}                                                         
 PI data: {please use real mayonnaise  }                                     
 Content characters: {  }                                                    
 Start element tag: {meat}                                                   
 Content characters: {Ham }                                                  
 Content character: {&}                                                      
 Content characters: { turkey}                                               
 End element tag: {meat}                                                     
 Content characters: {  }                                                    
 Start element tag: {filling}                                                
 Content characters: {Cheese, lettuce, tomato, etc.}                         
 End element tag: {filling}                                                  
 Content characters: {  }                    
 Start of CData: {<![CDATA[}                                                 
 Content characters: {We should add a <relish> element in future!}           
 End of CData: {]]>}                                                         
 Content characters: {  }                                                    
 Start element tag: {listprice}                                              
 Content characters: {$4.99 }                                                
 End element tag: {listprice}                                                
 Content characters: {  }                                                    
 Start element tag: {discount}                                               
 Content characters: {0.10}                                                  
 End element tag: {discount}                                                 
 End element tag: {sandwich}                                                 
 End of document.                                                            
 XML document successfully parsed                                            
                                                                             
 -----+++++***** Using information from XML *****+++++-----                  
                                                                             
   Sandwich list price:  $4.99                                               
   Promotional price:    $4.49                                               
   Get one today!                                                            

Related concepts   
“XML events” on page 393  

406  IBM COBOL for Linux on x86 1.1: Programming Guide



Related references   
XML-EVENT (COBOL for Linux on x86 Language Reference)   

Chapter 19. Processing XML input  407



408  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 20. Producing XML output
You can produce XML output from a COBOL program by using the XML GENERATE statement.

In the XML GENERATE statement, you identify the source and the output data items. You can optionally
also identify:

• A field to receive a count of the XML characters generated
• The encoding for the generated XML document
• A namespace for the generated document
• A namespace prefix to qualify the start and end tag of each element, if you specify a namespace
• A user-defined element or attribute name in the generated XML document
• Attributes or elements to be suppressed according to some specified conditions
• Particular items to be specified as attributes, elements or content in the generated XML output.
• A statement to receive control if an exception occurs

Optionally, you can generate an XML declaration for the document, and can cause eligible source data
items to be expressed as attributes in the output rather than as elements.

You can use the XML-CODE special register to determine the status of XML generation.

After you transform COBOL data items to XML, you can use the resulting XML output in various ways, such
as deploying it in a web service, writing it to a file, or passing it as a parameter to another program.

Related tasks   
“Generating XML output” on page 409  
“Controlling the encoding
of generated XML output” on page 414  
“Handling XML GENERATE exceptions” on page 414 
“Enhancing XML output” on page 419 

Related references
Extensible Markup Language (XML)   
XML GENERATE statement (COBOL for Linux on x86 Language Reference)  

Generating XML output
To transform COBOL data to XML, use the XML GENERATE statement as in the example below.

XML GENERATE XML-OUTPUT FROM SOURCE-REC
       COUNT IN XML-CHAR-COUNT
   ON EXCEPTION
       DISPLAY 'XML generation error ' XML-CODE
       STOP RUN
   NOT ON EXCEPTION
       DISPLAY 'XML document was successfully generated.'
END-XML

In the XML GENERATE statement, you first identify the data item (XML-OUTPUT in the example above)
that is to receive the XML output. Define the data item to be large enough to contain the generated
XML output, typically five to 10 times the size of the COBOL source data depending on the length of its
data-name or data-names.

In the DATA DIVISION, you can define the receiving identifier as alphanumeric (either an alphanumeric
group item or an elementary item of category alphanumeric) or as national (either a national group item or
an elementary item of category national).

© Copyright IBM Corp. 2021, 2023 409

http://www.w3.org/XML/


Next you identify the source data item that is to be transformed to XML format (SOURCE-REC in the
example). The source data item can be an alphanumeric group item, national group item, or elementary
data item of class alphanumeric or national.

Some COBOL data items are not transformed to XML, but are ignored. Subordinate data items of an
alphanumeric group item or national group item that you transform to XML are ignored if they:

• Specify the REDEFINES clause, or are subordinate to such a redefining item
• Specify the RENAMES clause

These items in the source data item are also ignored when you generate XML:

• Elementary FILLER (or unnamed) data items
• Slack bytes inserted for SYNCHRONIZED data items

No extra white space (for example, new lines or indentation) is inserted to make the generated XML more
readable.

Optionally, you can code the COUNT IN phrase to obtain the number of XML character encoding units that
are filled during generation of the XML output. If the receiving identifier has category national, the count is
in UTF-16 character encoding units. For all other encodings (including UTF-8), the count is in bytes.

You can use the count field as a reference modification length to obtain only that portion of the receiving
data item that contains the generated XML output. For example, XML-OUTPUT(1:XML-CHAR-COUNT)
references the first XML-CHAR-COUNT character positions of XML-OUTPUT.

Consider the following program excerpt:

01  doc pic x(512).
01  docSize pic 9(9) binary.
01  G. 
    05  A pic x(3) value "aaa". 
    05  B. 
        10  C pic x(3) value "ccc". 
        10  D pic x(3) value "ddd". 
    05  E pic x(3) value "eee".
    . . .
    XML Generate Doc from G

The code above generates the following XML document, in which A, B, and E are expressed as child
elements of element G, and C and D become child elements of element B:

<G><A>aaa</A><B><C>ccc</C><D>ddd</D></B><E>eee</E></G>

Alternatively, you can specify the ATTRIBUTES phrase of the XML GENERATE statement. The
ATTRIBUTES phrase causes every eligible data item included in the generated XML document to
be expressed as an attribute of the containing XML element, rather than as a child element of the
containing XML element. To be eligible, the data item must be elementary, must have a name other than
FILLER, and must not have an OCCURS clause in its data description entry. The containing XML element
corresponds to the group data item that is immediately superordinate to the elementary data item.
Optionally, you can specify more precise control of which data items should be expressed as attributes or
elements by using the TYPE OF phrase.

For example, suppose that the XML GENERATE statement in the program excerpt above had instead been
coded as follows:

XML Generate Doc from G with attributes 

The code would then generate the following XML document, in which A and E are expressed as attributes
of element G, and C and D become attributes of element B:

<G A="aaa" E="eee"><B C="ccc" D="ddd"></B></G>

Optionally, you can code the ENCODING phrase of the XML GENERATE statement to specify the encoding
of the generated XML document. If you do not use the ENCODING phrase, the document encoding is

410  IBM COBOL for Linux on x86 1.1: Programming Guide



determined by the category of the receiving data item. For further details, see the related task below
about controlling the encoding of generated XML output.

Optionally, you can code the XML-DECLARATION phrase to cause the generated XML document to have
an XML declaration that includes version information and an encoding declaration. If the receiving data
item is of category:

• National: The encoding declaration has the value UTF-16 (encoding="UTF-16").
• Alphanumeric: The encoding declaration is derived from the ENCODING phrase, if specified, or from the

runtime locale or EBCDIC_CODEPAGE environment variable if the ENCODING phrase is not specified.

For example, the program excerpt below specifies the XML-DECLARATION phrase of XML GENERATE, and
specifies encoding in UTF-8:

01  Greeting. 
    05 msg  pic x(80)  value 'Hello, world!'. 
    . . .
    XML Generate Doc from Greeting 
        with Encoding "UTF-8" 
        with XML-declaration 
    End-XML

The code above generates the following XML document:

<?xml version="1.0" encoding="UTF-8"?><Greeting><msg>Hello, world!</msg></Greeting> 

If you do not code the XML-DECLARATION phrase, an XML declaration is not generated.

Optionally, you can code the NAMESPACE phrase to specify a namespace for the generated XML
document. The namespace value must be a valid Uniform Resource Identifier (URI), for example, a URL
(Uniform Resource Locator); for further details, see the related concept about URI syntax below.

Specify the namespace in an identifier or literal of either category national or alphanumeric.

If you specify a namespace, but do not specify a namespace prefix (described below), the namespace
becomes the default namespace for the document. That is, the namespace define on the root element
applies by default to each element name in the document, including the root element.

For example, consider the following data definitions and XML GENERATE statement:

01  Greeting. 
    05  msg  pic x(80)  value 'Hello, world!'. 
01  NS  pic x(20)   value 'http://example'.
    . . .
    XML Generate Doc from Greeting
        namespace is NS

The resulting XML document has a default namespace (http://example), as follows:

<Greeting xmlns="http://example"><msg>Hello, world!</msg></Greeting> 

If you do not specify a namespace, the element names in the generated XML document are not in any
namespace.

Optionally, you can code the NAMESPACE-PREFIX phrase to specify a prefix to be applied to the start and
end tag of each element in the generated document. You can specify a prefix only if you have specified a
namespace as described above.

When the XML GENERATE statement is executed, the prefix value must be a valid XML name, but without
the colon (:); see the related reference below about namespaces for details. The value can have trailing
spaces, which are removed before the prefix is used.

Specify the namespace prefix in an identifier or literal of either category national or alphanumeric.

It is recommended that the prefix be short, because it qualifies the start and end tag of each element.

Chapter 20. Producing XML output  411



For example, consider the following data definitions and XML GENERATE statement:

01  Greeting. 
    05  msg  pic x(80)  value 'Hello, world!'. 
01  NS  pic x(20)   value 'http://example'. 
01  NP  pic x(5)    value 'pre'. 
    . . .
    XML Generate Doc from Greeting
        namespace is NS
        namespace-prefix is NP

The resulting XML document has an explicit namespace (http://example), and the prefix pre is
applied to the start and end tag of the elements Greeting and msg, as follows:

<pre:Greeting xmlns:pre="http://example"><pre:msg>Hello, world!</pre:msg></
pre:Greeting> 

Optionally, you can code the NAME phrase to specify attribute and element names in the generated XML
document. The attribute and element names must be alphanumeric or national literals and must be legal
names according to the XML 1.0 standard.

For example, consider the following data structure and XML GENERATE statement:

01 Msg.
    02 Msg-Severity pic 9 value 1.
    02 Msg-Date pic 9999/99/99 value "2012/04/12".
    02 Msg-Text pic X(50) value "Sell everything!".
01 Doc pic X(500).

    XML Generate Doc from Msg
        With attributes
        Name of Msg          is  "Message" 
                Msg-Severity is  "Severity"
                Msg-Date     is  "Date"
                Msg-Text     is  "Text"
    End-XML

The resulting XML document is as follows:

<Message Severity="1" Date="2012/04/12" Text="Sell everything!"></Message> 

Optionally, you can code the SUPPRESS phrase to specify whether individual data items are generated
based on whether or not they meet certain criteria.

For example, consider the following data structure and XML GENERATE statement to suppress spaces
and zeros:

01 G.
    02 SensitiveInfo.
        03 SSN pic x(11) value '123-45-6789'.
        03 HomeAddress pic x(50) value '123 Main St, Anytown, USA'.   
    02 Aarray value spaces.
        03 A pic AAA occurs 5.
    02 Barray value spaces.
        03 B pic XXX occurs 5.
    02 Carray value zeros.
        03 C pic 999 occurs 5.
    Move 'abc' to A(1)
    Move 123 to C(3)
    XML Generate Doc from G
        Suppress SensitiveInfo
                 every nonnumeric element when space
                 every numeric element when zero
    End-XML

The resulting XML document is as follows:

<G>
   <Aarray><A>abc</A></Aarray>

412  IBM COBOL for Linux on x86 1.1: Programming Guide



   <Carray><C>123</C></Carray>
</G>

Optionally, you can use the TYPE OF phrase to specify whether individual data items are expressed as
attributes, elements or content.

For example, consider the following data structure and XML GENERATE statement:

01 Msg.
   02 Msg-Severity pic 9 value 1.
   02 Msg-Date pic 9999/99/99 value "2012/04/12".
   02 Msg-Text pic X(50) value "Sell everything!".
01 Doc pic X(500).
    XML Generate Doc from Msg
        With attributes
        Type of Msg-Severity is attribute
                Msg-Date     is attribute
                Msg-Text     is element
    End-XML

The resulting XML document is as follows:

<Msg Msg-Severity="1" Msg-Date="2012/04/12"> 
       <Msg-Text>Sell everything!</Msg-Text></Msg>

In addition, you can specify either or both of the following phrases to receive control after generation of
the XML document:

• ON EXCEPTION, to receive control if an error occurs during XML generation
• NOT ON EXCEPTION, to receive control if no error occurs

You can end the XML GENERATE statement with the explicit scope terminator END-XML. Code END-XML
to nest an XML GENERATE statement that has the ON EXCEPTION or NOT ON EXCEPTION phrase in a
conditional statement.

XML generation continues until either the COBOL source record has been transformed to XML or an error
occurs. If an error occurs, the results are as follows:

• The XML-CODE special register contains a nonzero exception code.
• Control is passed to the ON EXCEPTION phrase, if specified, otherwise to the end of the XML
GENERATE statement.

If no error occurs during XML generation, the XML-CODE special register contains zero, and control is
passed to the NOT ON EXCEPTION phrase if specified or to the end of the XML GENERATE statement
otherwise.

“Example: generating XML” on page 415

Related concepts   
Uniform Resource Identifier (URI): Generic Syntax

Related tasks   
“Controlling the encoding
of generated XML output” on page 414  
“Handling XML GENERATE exceptions” on page 414 
“Processing UTF-8 data using UTF-16 (national) data types” on page 195 

Related references     
XML GENERATE statement (COBOL for Linux on x86 Language Reference)  
Extensible Markup Language (XML)
Namespaces in XML 1.0

Chapter 20. Producing XML output  413

http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.w3.org/XML/
http://www.w3.org/TR/xml-names/


Controlling the encoding of generated XML output
When you generate XML output by using the XML GENERATE statement, you can control the encoding
of the output by the category of the data item that receives the output, and by identifying the document
encoding using the WITH ENCODING phrase of the XML GENERATE statement.

If you specify the WITH ENCODING codepage phrase, codepage must identify one of the code pages
supported for COBOL XML processing as described in the related reference below about the encoding
of XML documents. If codepage is an integer, it must be a valid CCSID number. If codepage is of class
alphanumeric or national, it must identify a code-page name that is supported by the International
Components for Unicode (ICU) conversion libraries as shown in the converter explorer table referenced
below.

If you do not code the WITH ENCODING phrase, the generated XML output is encoded as shown in the
table below.

Table 43. Encoding of generated XML if the ENCODING phrase is omitted

If you define the receiving XML identifier
as:

The generated XML output is encoded in:

Native alphanumeric (CHAR(EBCDIC) is not
in effect, or the data description contains the
NATIVE phrase)

The ASCII or UTF-8 code page indicated by the runtime
locale in effect

Host alphanumeric (CHAR(EBCDIC) is in
effect, and the data description does not
contain the NATIVE phrase)

The EBCDIC code page in effect1

National UTF-16 in little-endian format

1. You can set the EBCDIC code page by using the EBCDIC_CODEPAGE environment variable. If the
environment variable is not set, the encoding is in the default EBCDIC code page associated with the
current runtime locale.

A byte order mark is not generated.

For details about how data items are converted to XML and how the XML element names and attributes
names are formed from the COBOL data-names, see the related reference below about the operation of
the XML GENERATE statement.

Related tasks   
Chapter 11, “Setting the locale,” on page 201  
“Setting environment variables” on page 215

Related references   
“CHAR” on page 255  
“The encoding of XML
documents” on page 396
XML GENERATE statement (COBOL for Linux on x86 Language Reference)
Operation of XML GENERATE (COBOL for Linux on x86 Language Reference)   
International Components for Unicode: Converter Explorer   

Handling XML GENERATE exceptions
When an error is detected during generation of XML output, an exception condition exists. You can write
code to check the XML-CODE special register, which contains a numeric exception code that indicates the
error type.

To handle errors, use either or both of the following phrases of the XML GENERATE statement:

• ON EXCEPTION

414  IBM COBOL for Linux on x86 1.1: Programming Guide

http://demo.icu-project.org/icu-bin/convexp/


• COUNT IN

If you code the ON EXCEPTION phrase in the XML GENERATE statement, control is transferred to the
imperative statement that you specify. You might code an imperative statement, for example, to display
the XML-CODE value. If you do not code an ON EXCEPTION phrase, control is transferred to the end of the
XML GENERATE statement.

When an error occurs, one problem might be that the data item that receives the XML output is not large
enough. In that case, the XML output is not complete, and the XML-CODE special register contains error
code 400.

You can examine the generated XML output by doing these steps:

1. Code the COUNT IN phrase in the XML GENERATE statement.

The count field that you specify holds a count of the XML character encoding units that are filled during
XML generation. If you define the XML output as national, the count is in UTF-16 character encoding
units; for all other encodings (including for UTF-8), the count is in bytes.

2. Use the count field as a reference modification length to refer to the substring of the receiving data
item that contains the XML characters that were generated until the point when the error occurred.

For example, if XML-OUTPUT is the data item that receives the XML output, and XML-CHAR-COUNT is
the count field, then XML-OUTPUT(1:XML-CHAR-COUNT) references the XML output.

Use the contents of XML-CODE to determine what corrective action to take. For a list of the exceptions
that can occur during XML generation, see the related reference below.

Related tasks   
“Referring to substrings
of data items” on page 99 

Related references     
  
“XML GENERATE exceptions” on page 581 
XML-CODE (COBOL for Linux on x86 Language Reference)  

Example: generating XML
The following example simulates the building of a purchase order in a group data item, and generates an
XML version of that purchase order.

Program XGFX uses XML GENERATE to produce XML output in elementary data item xmlPO from
the source record, group data item purchaseOrder. Elementary data items in the source record are
converted to character format as necessary, and the characters are inserted as the values of XML
attributes whose names are derived from the data-names in the source record.

XGFX calls program Pretty, which uses the XML PARSE statement with processing procedure p to
format the XML output with new lines and indentation so that the XML content can more easily be verified.

Program XGFX

Identification division.
  Program-id. XGFX.
Data division.
 Working-storage section.
   01 numItems pic 99 global.
   01 purchaseOrder global.
     05 orderDate pic x(10).
     05 shipTo.
       10 country pic xx value 'US'.
       10 name pic x(30).
       10 street pic x(30).
       10 city pic x(30).
       10 state pic xx.
       10 zip pic x(10).
     05 billTo.

Chapter 20. Producing XML output  415



       10 country pic xx value 'US'.
       10 name pic x(30).
       10 street pic x(30).
       10 city pic x(30).
       10 state pic xx.
       10 zip pic x(10).
     05 orderComment pic x(80).
     05 items occurs 0 to 20 times depending on numItems.
       10 item.
         15 partNum pic x(6).
         15 productName pic x(50).
         15 quantity pic 99.
         15 USPrice pic 999v99.
         15 shipDate pic x(10).
         15 itemComment pic x(40).
   01 numChars comp pic 999.
   01 xmlPO pic x(999).
Procedure division.
  m.
    Move 20 to numItems
    Move spaces to purchaseOrder

    Move '1999-10-20' to orderDate

    Move 'US' to country of shipTo
    Move 'Alice Smith' to name of shipTo
    Move '123 Maple Street' to street of shipTo
    Move 'Mill Valley' to city of shipTo
    Move 'CA' to state of shipTo
    Move '90952' to zip of shipTo
 
    Move 'US' to country of billTo
    Move 'Robert Smith' to name of billTo
    Move '8 Oak Avenue' to street of billTo
    Move 'Old Town' to city of billTo
    Move 'PA' to state of billTo
    Move '95819' to zip of billTo
    Move 'Hurry, my lawn is going wild!' to orderComment

    Move 0 to numItems
    Call 'addFirstItem'
    Call 'addSecondItem'
    Move space to xmlPO
    Xml generate xmlPO from purchaseOrder  count in numChars 
        with xml-declaration  with attributes   
        namespace 'http://www.example.com'  namespace-prefix 'po'
    Call 'pretty' using xmlPO value numChars
    Goback
    .

Identification division.
  Program-id. 'addFirstItem'.
Procedure division.
    Add 1 to numItems
    Move '872-AA' to partNum(numItems)
    Move 'Lawnmower' to productName(numItems)
    Move 1 to quantity(numItems)
    Move 148.95 to USPrice(numItems)
    Move 'Confirm this is electric' to itemComment(numItems)
    Goback.
End program 'addFirstItem'.

Identification division.
  Program-id. 'addSecondItem'.
Procedure division.
    Add 1 to numItems
    Move '926-AA' to partNum(numItems)
    Move 'Baby Monitor' to productName(numItems)
    Move 1 to quantity(numItems)
    Move 39.98 to USPrice(numItems)
    Move '1999-05-21' to shipDate(numItems)
    Goback.
End program 'addSecondItem'.

End program XGFX.

416  IBM COBOL for Linux on x86 1.1: Programming Guide



Program Pretty

Identification division.
  Program-id. Pretty.
Data division.
 Working-storage section.
   01 prettyPrint.
     05 pose pic 999.
     05 posd pic 999.
     05 depth pic 99.
     05 inx pic 999.
     05 elementName pic x(30).
     05 indent pic x(40).
     05 buffer pic x(998).
     05 lastitem pic 9.
       88 unknown value 0.
       88 xml-declaration value 1.
       88 element value 2.
       88 attribute value 3.
       88 charcontent value 4.
 Linkage section.
  1 doc.
   2 pic x occurs 16384 times depending on len.
  1 len comp-5 pic 9(9).
Procedure division using doc value len.
  m.
    Move space to prettyPrint
    Move 0 to depth
    Move 1 to posd pose
    Xml parse doc processing procedure p
    Goback
    .
  p.
    Evaluate xml-event
      When 'VERSION-INFORMATION'
        String '<?xml version="' xml-text '"' delimited by size
            into buffer with pointer posd
        Set xml-declaration to true
      When 'ENCODING-DECLARATION'
        String ' encoding="' xml-text '"' delimited by size
            into buffer with pointer posd
      When 'STANDALONE-DECLARATION'
        String ' standalone="' xml-text '"' delimited by size
            into buffer with pointer posd
      When 'START-OF-ELEMENT'
        Evaluate true
          When xml-declaration
            String '?>' delimited by size into buffer
                with pointer posd
            Set unknown to true
            Perform printline
            Move 1 to posd
          When element
            String '>' delimited by size into buffer
                with pointer posd
          When attribute
            String '">' delimited by size into buffer
                with pointer posd
        End-evaluate
        If elementName not = space
          Perform printline
        End-if
        Move xml-text to elementName
        Add 1 to depth
        Move 1 to pose
        Set element to true
        String '<' xml-text delimited by size
            into buffer with pointer pose
        Move pose to posd
      When 'ATTRIBUTE-NAME'
        If element
          String ' ' delimited by size into buffer
              with pointer posd
        Else
          String '" ' delimited by size into buffer
              with pointer posd
        End-if
        String xml-text '="' delimited by size into buffer
            with pointer posd

Chapter 20. Producing XML output  417



        Set attribute to true
      When 'ATTRIBUTE-CHARACTERS'
        String xml-text delimited by size into buffer
            with pointer posd
      When 'ATTRIBUTE-CHARACTER'
        String xml-text delimited by size into buffer
            with pointer posd
      When 'CONTENT-CHARACTERS'
        Evaluate true
          When element
            String '>' delimited by size into buffer
                with pointer posd
          When attribute
            String '">' delimited by size into buffer
                with pointer posd
        End-evaluate
        String xml-text delimited by size into buffer
            with pointer posd
        Set charcontent to true
      When 'CONTENT-CHARACTER'
        Evaluate true
          When element
            String '>' delimited by size into buffer
                with pointer posd
          When attribute
            String '">' delimited by size into buffer
                with pointer posd
        End-evaluate
        String xml-text delimited by size into buffer
            with pointer posd
        Set charcontent to true
      When 'END-OF-ELEMENT'
        Move space to elementName
        Evaluate true
          When element
            String '/>' delimited by size into buffer
                with pointer posd
          When attribute
            String '"/>' delimited by size into buffer
                with pointer posd
          When other
            String '</' xml-text '>' delimited by size
                into buffer with pointer posd
        End-evaluate
        Set unknown to true
        Perform printline
        Subtract 1 from depth
        Move 1 to posd
      When other
        Continue
    End-evaluate
    .
  printline.
    Compute inx = function max(0 2 * depth - 2) + posd - 1
    If inx > 120
      compute inx = 117 - function max(0 2 * depth - 2)
      If depth > 1
        Display indent(1:2 * depth - 2) buffer(1:inx) '...'
      Else
        Display buffer(1:inx) '...'
      End-if
    Else
      If depth > 1
        Display indent(1:2 * depth - 2) buffer(1:posd - 1)
      Else
        Display buffer(1:posd - 1)
      End-if
    End-if
    .
End program Pretty.

Output from program XGFX

<?xml version="1.0" encoding="ISO-8859-1"?>
<po:purchaseOrder xmlns:po="http://www.example.com" orderDate="1999-10-20" orderComment="Hurry, my lawn 
is going wild!">
  <po:shipTo country="US" name="Alice Smith" street="123 Maple Street" city="Mill Valley" state="CA" 
zip="90952"/>

418  IBM COBOL for Linux on x86 1.1: Programming Guide



  <po:billTo country="US" name="Robert Smith" street="8 Oak Avenue" city="Old Town" state="PA" 
zip="95819"/>
  <po:items>
    <po:item partNum="872-AA" productName="Lawnmower" quantity="1" USPrice="148.95" shipDate=" " 
itemComment="Confirm...
  </po:items>
  <po:items>
    <po:item partNum="926-AA" productName="Baby Monitor" quantity="1" USPrice="39.98" 
shipDate="1999-05-21" itemComme...
  </po:items>
</po:purchaseOrder>

Related tasks   
Chapter 19, “Processing XML input,” on page 389 

Related references  
Operation of XML GENERATE (COBOL for Linux on x86 Language Reference)

Enhancing XML output
It might happen that the information that you want to express in XML format already exists in a group
item in the DATA DIVISION, but you are unable to use that item directly to generate an XML document
because of one or more factors.

For example:

• In addition to the required data, the item has subordinate data items that contain values that are
irrelevant to the XML output document.

• The names of the required data items are unsuitable for external presentation, and are possibly
meaningful only to programmers.

• The required data items are broken up into too many components, and should be output as the content
of the containing group.

There are various ways that you can deal with such situations. One possible technique is to define a new
data item that has the appropriate characteristics, and move the required data to the appropriate fields
of this new data item. However, this approach is somewhat laborious and requires careful maintenance to
keep the original and new data items synchronized.

A superior approach that addresses most such problems is to use the new optional phrases of the XML
GENERATE statement in order to:

• Provide more meaningful and appropriate names for the selected elementary items and for the group
items that contain them.

• Exclude irrelevant data items from the generated XML by suppressing them based on their values.

The example that is referenced below shows a way to do so.

“Example: enhancing XML output” on page 419

Related references   
Operation of XML GENERATE (COBOL for Linux on x86 Language Reference)

Example: enhancing XML output
The following example shows how you can modify XML output.

Consider the following data structure. The XML that is generated from the structure suffers from several
problems that can be corrected.

01  CDR-LIFE-BASE-VALUES-BOX.
    15  CDR-LIFE-BASE-VAL-DATE    PIC X(08).
    15  CDR-LIFE-BASE-VALUE-LINE  OCCURS  2 TIMES.
        20  CDR-LIFE-BASE-DESC.
            25 CDR-LIFE-BASE-DESC1 PIC X(15).
            25  FILLER             PIC X(01).
            25  CDR-LIFE-BASE-LIT  PIC X(08).

Chapter 20. Producing XML output  419



            25  CDR-LIFE-BASE-DTE  PIC X(08).
        20  CDR-LIFE-BASE-PRICE.
            25  CDR-LIFE-BP-SPACE  PIC 9(08).
            25  CDR-LIFE-BP-DASH   PIC X.
            25  CDR-LIFE-BP-SPACE1 PIC X(02).
        20  CDR-LIFE-BASE-PRICE-ED  REDEFINES
             CDR-LIFE-BASE-PRICE  PIC $$$.$$.
        20  CDR-LIFE-BASE-QTY.
            25  CDR-LIFE-QTY-SPACE   PIC X(08).
            25  CDR-LIFE-QTY-DASH    PIC X.
            25  CDR-LIFE-QTY-SPACE1  PIC X(03).
            25  FILLER               PIC X(02).
        20  CDR-LIFE-BASE-VALUE   PIC $$$9.99
            BLANK WHEN ZERO.
    15  CDR-LIFE-BASE-TOT-VALUE   PIC X(15)

When this data structure is populated with some sample values, and XML is generated directly from it and
then formatted using program Pretty (shown in “Example: generating XML” on page 415), the result is
as follows:

<CDR-LIFE-BASE-VALUES-BOX>
  <CDR-LIFE-BASE-VAL-DATE>01/02/03</CDR-LIFE-BASE-VAL-DATE>
  <CDR-LIFE-BASE-VALUE-LINE>
    <CDR-LIFE-BASE-DESC>
      <CDR-LIFE-BASE-DESC1>First</CDR-LIFE-BASE-DESC1>
      <CDR-LIFE-BASE-LIT> </CDR-LIFE-BASE-LIT>
      <CDR-LIFE-BASE-DTE>01/01/01</CDR-LIFE-BASE-DTE>
    </CDR-LIFE-BASE-DESC>
    <CDR-LIFE-BASE-PRICE>
      <CDR-LIFE-BP-SPACE>23</CDR-LIFE-BP-SPACE>
      <CDR-LIFE-BP-DASH>.</CDR-LIFE-BP-DASH>
      <CDR-LIFE-BP-SPACE1>00</CDR-LIFE-BP-SPACE1>
    </CDR-LIFE-BASE-PRICE>
    <CDR-LIFE-BASE-QTY>
      <CDR-LIFE-QTY-SPACE>123</CDR-LIFE-QTY-SPACE>
      <CDR-LIFE-QTY-DASH>.</CDR-LIFE-QTY-DASH>
      <CDR-LIFE-QTY-SPACE1>000</CDR-LIFE-QTY-SPACE1>
    </CDR-LIFE-BASE-QTY>
    <CDR-LIFE-BASE-VALUE>$765.00</CDR-LIFE-BASE-VALUE>
  </CDR-LIFE-BASE-VALUE-LINE>
  <CDR-LIFE-BASE-VALUE-LINE>
    <CDR-LIFE-BASE-DESC>
      <CDR-LIFE-BASE-DESC1>Second</CDR-LIFE-BASE-DESC1>
      <CDR-LIFE-BASE-LIT> </CDR-LIFE-BASE-LIT>
      <CDR-LIFE-BASE-DTE>02/02/02</CDR-LIFE-BASE-DTE>
    </CDR-LIFE-BASE-DESC>
    <CDR-LIFE-BASE-PRICE>
      <CDR-LIFE-BP-SPACE>34</CDR-LIFE-BP-SPACE>
      <CDR-LIFE-BP-DASH>.</CDR-LIFE-BP-DASH>
      <CDR-LIFE-BP-SPACE1>00</CDR-LIFE-BP-SPACE1>
    </CDR-LIFE-BASE-PRICE>
    <CDR-LIFE-BASE-QTY>
      <CDR-LIFE-QTY-SPACE>234</CDR-LIFE-QTY-SPACE>
      <CDR-LIFE-QTY-DASH>.</CDR-LIFE-QTY-DASH>
      <CDR-LIFE-QTY-SPACE1>000</CDR-LIFE-QTY-SPACE1>
    </CDR-LIFE-BASE-QTY>
    <CDR-LIFE-BASE-VALUE>$654.00</CDR-LIFE-BASE-VALUE>
  </CDR-LIFE-BASE-VALUE-LINE>
  <CDR-LIFE-BASE-TOT-VALUE>Very high!</CDR-LIFE-BASE-TOT-VALUE>
</CDR-LIFE-BASE-VALUES-BOX>

This generated XML suffers from several problems:

• The element names are long and not very meaningful.
• Some fields that are elements should be attributes such as, CDR-LIFE-BASE-VAL-DATE and CDR-
LIFE-BASE-DESC1.

• There is unwanted data, for example, CDR-LIFE-BASE-LIT and CDR-LIFE-BASE-DTE.
• Required data has an unnecessary parent. For example, CDR-LIFE-BASE-DESC1 has parent CDR-
LIFE-BASE-DESC.

• Other required fields are split into too many subcomponents. For example, CDR-LIFE-BASE-PRICE
has three subcomponents for one amount.

420  IBM COBOL for Linux on x86 1.1: Programming Guide



These and other characteristics of the XML output can be remedied by using additional phrases of the XML
GENERATE statement as follows:

• Use the NAME OF phrase to provide appropriate tag or attribute names.
• Use the TYPE OF … IS ATTRIBUTE phrase to select the fields which should be XML attributes rather

than elements.
• Use the TYPE OF … IS CONTENT phrase to suppress tags for excessive subcomponents.
• Use the SUPPRESS … WHEN phrase to exclude fields that contain uninteresting values.

Here is an example of the XML GENERATE statement to address those problems:

XML generate Doc from CDR-LIFE-BASE-VALUES-BOX
  Count in tally
  Name of
          CDR-LIFE-BASE-VALUES-BOX
       is 'Base_Values'
          CDR-LIFE-BASE-VAL-DATE
       is 'Date'
          CDR-LIFE-BASE-DTE
       is 'Date'
          CDR-LIFE-BASE-VALUE-LINE
       is 'BaseValueLine'
          CDR-LIFE-BASE-DESC1
       is 'Description'
          CDR-LIFE-BASE-PRICE
       is 'BasePrice'
          CDR-LIFE-BASE-QTY
       is 'BaseQuantity'
          CDR-LIFE-BASE-VALUE
       is 'BaseValue'
          CDR-LIFE-BASE-TOT-VALUE
       is 'TotalValue'
  Type of
          CDR-LIFE-BASE-VAL-DATE is attribute
          CDR-LIFE-BASE-DESC1 is attribute
          CDR-LIFE-BP-SPACE   is content
          CDR-LIFE-BP-DASH    is content
          CDR-LIFE-BP-SPACE1  is content
          CDR-LIFE-QTY-SPACE  is content
          CDR-LIFE-QTY-DASH   is content
          CDR-LIFE-QTY-SPACE1 is content
  Suppress every nonnumeric when space
           every numeric when zero

The result of generating and formatting XML from the statement shown above is more usable:

<Base_Values Date="01/02/03">
  <BaseValueLine Description="First">
    <Date>01/01/01</Date>
    <BasePrice>23.00</BasePrice>
    <BaseQuantity>123.000</BaseQuantity>
    <BaseValue>$765.00</BaseValue>
  </BaseValueLine>
  <BaseValueLine Description="Second">
    <Date>02/02/02</Date>
    <BasePrice>34.00</BasePrice>
    <BaseQuantity>234.000</BaseQuantity>
    <BaseValue>$654.00</BaseValue>
  </BaseValueLine>
  <TotalValue>Very high!</TotalValue>
</Base_Values>

Note that the COBOL reserved word DATE can now be used as an XML tag name in the output and other
characters that are illegal to use in COBOL data names, such and underscore _ can also be used.

Note that the COBOL reserved word DATE can now be used as an XML tag name in the output. Characters
such as accented letters and period . that are illegal in single-byte data names can also be used.

Chapter 20. Producing XML output  421



Related references   
Operation of XML GENERATE (COBOL for Linux on x86 Language Reference)  
REPLACE statement (COBOL for Linux on x86 Language Reference)

422  IBM COBOL for Linux on x86 1.1: Programming Guide



Part 6. Working with more complex applications

© Copyright IBM Corp. 2021, 2023 423



424  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 21. Porting applications between platforms
Your Linux on x86 system has a different hardware and operating-system architecture than an IBM Z or
IBM Power system. Because of these differences, some problems can arise as you move COBOL programs
between these environments.

Your IBM Power system has a different hardware and operating-system architecture than an IBM Z or
Linux on x86 system.

The Related tasks and reference below describe some of the differences between development
platforms, and provide instructions to help you minimize portability problems.

Related tasks   
“Getting IBM Enterprise COBOL for z/OS applications to compile” on page 425  
“Getting IBM Enterprise COBOL for z/OS applications to run: overview” on page 425  
“Writing code to run with IBM Enterprise COBOL for z/OS” on page 429  
  

Related references   
Appendix A, “Summary of differences from IBM Enterprise COBOL for z/OS,” on page 517 

Getting IBM Enterprise COBOL for z/OS applications to compile
If you move Enterprise COBOL programs from an IBM Z system to a Linux on x86 system and compile
them using IBM COBOL for Linux on x86, you need to choose the right compiler options and be aware of
language features that differ from IBM Enterprise COBOL for z/OS. You can also use the COPY statement
to help port programs.

Choosing the right compiler options: For additional information about Enterprise COBOL compiler
options that affect portability, see the related reference about compiler options.

Allowing for language features of Enterprise COBOL: Several language features that are valid in
Enterprise COBOL programs can create errors or unpredictable results when compiled with COBOL for
Linux. For details, see the related reference about language elements.

Using the COPY statement to help port programs: In many cases, you can avoid potential portability
problems by using the COPY statement to isolate platform-specific code. For example, you can include
platform-specific code in a compilation for a given platform and exclude it from compilation for a different
platform. You can also use the COPY REPLACING phrase to globally change nonportable source code
elements, such as file-names.

Related tasks  
“Setting environment variables” on page 215  

Related references  
“Compiler options” on page 517   
“Language elements” on page 521  
COPY statement (COBOL for Linux on x86 Language Reference) 

Getting IBM Enterprise COBOL for z/OS applications to run:
overview

After you download an Enterprise COBOL program and successfully compile it using IBM COBOL for Linux
on x86, the next step is to run the program. In many cases, you can get the same results as on IBM z/OS
without greatly modifying the source.

To assess whether to modify the source, you need to know how to fix the elements and behavior of the
COBOL language that vary due to the underlying hardware or software architecture.

© Copyright IBM Corp. 2021, 2023 425



Related tasks   
“Fixing differences caused
by data representations” on page 426  
“Fixing environment differences
that affect portability” on page 428  
“Fixing differences caused
by language elements” on page 428 

Fixing differences caused by data representations
To ensure the same behavior for your programs, you should understand the differences in certain ways of
representing data, and take appropriate action.

Character data might be represented differently, depending on the USAGE clause that describes data
items and the locale that is in effect at run time. COBOL stores signed packed-decimal in the same
manner on both Linux on x86 and IBM z/OS. However, binary, external-decimal, floating-point, and
unsigned packed-decimal data are by default represented differently.

Most programs behave the same on IBM z/OS and Linux on x86 regardless of the data representation.

Related tasks   
“Handling differences in ASCII SBCS and EBCDIC SBCS characters” on page 426  
“Handling differences in IEEE and hexadecimal data” on page 427  
“Handling differences in
ASCII multibyte and
EBCDIC DBCS strings” on page 428

Related references   
“Data representation” on page 517 

Handling differences in ASCII SBCS and EBCDIC SBCS characters
To avoid problems with the different data representation between ASCII and EBCDIC characters, use the
CHAR(EBCDIC) compiler option.

COBOL for Linux on x86 uses the ASCII character set, and Enterprise COBOL for z/OS uses the EBCDIC
character set. Therefore, most characters have a different hexadecimal value, as shown in the following
table.

Table 44. ASCII characters contrasted with EBCDIC

Character Hexadecimal value if ASCII Hexadecimal value if EBCDIC

'0' through '9' X'30' through X'39' X'F0' through X'F9'

'a' X'61' X'81'

'A' X'41' X'C1'

blank X'20' X'40'

Also, code that depends on the EBCDIC hexadecimal values of character data probably fails when the
character data has ASCII values, as shown in the following table.

Table 45. ASCII comparisons contrasted with EBCDIC

Comparison Evaluation if ASCII Evaluation if EBCDIC

'a' < 'A' False True

'A' < '1' False True

426  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 45. ASCII comparisons contrasted with EBCDIC (continued)

Comparison Evaluation if ASCII Evaluation if EBCDIC

x >= '0' If true, does not indicate whether x is a
digit

If true, x is probably a digit

x = X'40' Does not test whether x is a blank Tests whether x is a blank

Because of these differences, the results of sorting character strings are different between EBCDIC and
ASCII. For many programs, these differences have no effect, but you should be aware of potential logic
errors if your program depends on the exact sequence in which some character strings are sorted. If your
program depends on the EBCDIC collating sequence and you are porting it to the workstation, you can
obtain the EBCDIC collating sequence by using PROGRAM COLLATING SEQUENCE IS EBCDIC or the
COLLSEQ(EBCDIC) compiler option.

Related references   
“CHAR” on page 255  
“COLLSEQ” on page 258 

Handling differences in IEEE and hexadecimal data
To avoid most problems with the different representation between IEEE and hexadecimal floating-point
data, use the FLOAT(BE) compiler option.

COBOL for Linux on x86 represents floating-point data using the IEEE format. Enterprise COBOL for z/OS
uses the IBM Z hexadecimal format. The following table summarizes the differences between normalized
floating-point IEEE and normalized hexadecimal for USAGE COMP-1 data and USAGE COMP-2 data.

Table 46. IEEE contrasted with hexadecimal

Specification IEEE for COMP-1
data

Hexadecimal for
COMP-1 data

IEEE for COMP-2
data

Hexadecimal for
COMP-2 data

Range 1.17E-38* to
3.37E+38*

5.4E-79* to
7.2E+75*

2.23E-308* to
1.67E+308*

5.4E-79* to
7.2E+75*

Exponent
representation

8 bits 7 bits 11 bits 7 bits

Mantissa
representation

23 bits 24 bits 53 bits 56 bits

Digits of accuracy 6 digits 6 digits 15 digits 16 digits
* Indicates that the value can be positive or negative.

For most programs, these differences should create no problems. However, use caution when porting if
your program depends on hexadecimal representation of data.

Performance consideration: In general, IBM Z floating-point representation makes a program run more
slowly because the software must simulate the semantics of IBM Z hardware instructions. This is a
consideration especially if the FLOAT(BE) compiler option is in effect and a program has a large number
of floating-point calculations.

“Examples: numeric data and internal representation” on page 42

Related references   
“FLOAT” on page 269 

Chapter 21. Porting applications between platforms  427



Handling differences in ASCII multibyte and EBCDIC DBCS strings
To obtain Enterprise COBOL behavior for alphanumeric data items that contain DBCS characters, use the
CHAR(EBCDIC) and SOSI compiler options. To avoid problems with the different data representation
between ASCII DBCS and EBCDIC DBCS characters, use the CHAR(EBCDIC) compiler option.

In alphanumeric data items, Enterprise COBOL double-byte character strings (containing EBCDIC DBCS
characters) are enclosed in shift codes, and COBOL for Linux on x86 multibyte character strings
(containing ASCII DBCS, UTF-8, or EUC characters) are not enclosed in shift codes. The hexadecimal
values used to represent the same characters are also different.

In DBCS data items, Enterprise COBOL double-byte character strings are not enclosed in shift codes, but
the hexadecimal values used to represent characters are different from the hexadecimal values used to
represent the same characters in COBOL for Linux on x86 multibyte strings.

For most programs, these differences should not make porting difficult. However, if your program
depends on the hexadecimal value of a multibyte string, or expects that an alphanumeric character
string contains a mixture of single-byte characters and multibyte characters, use caution in your coding
practices.

Related references   
“CHAR” on page 255  
“SOSI” on page 278 

Fixing environment differences that affect portability
Differences in file-names and control codes between Linux on x86 and IBM z/OS platforms can affect the
portability of your programs.

File naming conventions on Linux on x86 are very different from those on IBM z/OS. This difference
can affect portability if you use file-names in your COBOL source programs. The following file-name, for
example, is valid on Linux on x86 but not on IBM z/OS (except in the z/OS UNIX file system):

/users/joesmith/programs/cobol/myfile.cbl

Case sensitivity: Unlike z/OS, Linux is case sensitive. Names used in source programs (such as uppercase
file-names) should be named appropriately in Linux file directories.

Some characters that have no particular meaning on z/OS are interpreted as control characters by Linux.
This difference can lead to incorrect processing of ASCII text files. Files should not contain any of the
following characters:

• X'0A' (LF: line feed)
• X'0D' (CR: carriage return)
• X'1A' (EOF: end-of-file)

If you use device-dependent (platform-specific) control codes in your programs or files, these control
codes can cause problems when you try to port the programs or files to platforms that do not support the
control codes. As with all other platform-specific code, it is best to isolate such code as much as possible
so that you can replace it easily when you move the application to another platform.

Fixing differences caused by language elements
In general, you can expect portable COBOL programs to behave the same way on Linux as they do on
z/OS. However, be aware of the differences in file-status values used in I/O processing.

If your program responds to file-status data items, be concerned with two issues, depending on whether
the program is written to respond to the first or the second file-status data item:

• If your program responds to the first file-status data item (data-name-1), be aware that values returned
in the 9n range depend on the platform. If your program relies on the interpretation of a particular 9n

428  IBM COBOL for Linux on x86 1.1: Programming Guide



value (for example, 97), do not expect the value to have the same meaning on Linux that it has on z/OS.
Instead, revise your program so that it responds to any 9n value as a generic I/O failure.

• If your program responds to the second file-status data item (data-name-8), be aware that the values
returned depend on both the platform and file system. For example, the STL file system returns values
with a different record structure on Linux than the VSAM file system does on z/OS. If your program relies
on the interpretation of the second file-status data item, the program is probably not portable.

Related tasks   
“Using file status keys” on page 168  
“Using file system status codes” on page 170 

Related references   
FILE STATUS clause (COBOL for Linux on x86 Language Reference) 
File status key (COBOL for Linux on x86 Language Reference)  

Writing code to run with IBM Enterprise COBOL for z/OS
You can use IBM COBOL for Linux on x86 to develop new applications, and take advantage of the
productivity gains and increased flexibility of using your Linux on x86 system. However, when you develop
COBOL programs, you need to avoid using features that are not supported by IBM Enterprise COBOL for
z/OS.

Language features: COBOL for Linux supports several language features that are not supported by
Enterprise COBOL. As you write code on Linux on x86 that is intended to run on z/OS, avoid using these
features:

• Code-page names as arguments to the DISPLAY-OF and NATIONAL-OF intrinsic functions
• READ statement using the PREVIOUS phrase
• START statement using <, <=, or NOT > in the KEY phrase
• >>CALLINTERFACE compiler directive

Compiler options: Several compiler options are not available on Enterprise COBOL. Do not use any of the
following compiler options in your source code if you intend to port the code to z/OS:

• BINARY(NATIVE)
• CALLINT (treated as a comment)
• CHAR(NATIVE)
• FLOAT(NATIVE)

File names: Be aware of the difference in file-naming conventions between Linux and host file systems.
Avoid hard-coding the names of files in your source programs. Instead, use mnemonic names that you
define on each platform, and map them in turn to mainframe ddnames or environment variables. You
can then compile your program to accommodate the changes in file-names without having to change the
source code.

Specifically, consider how you refer to files in the following language elements:

• ACCEPT or DISPLAY target names
• ASSIGN clause
• COPY statement (text-name or library-name)

File suffixes: In COBOL for Linux, when you compile using one of the cob2 commands, COBOL source
files that have suffix .cbl or .cob are passed to the compiler. In mainframe COBOL, when you compile in
the z/OS UNIX file system, however, only files that have suffix .cbl are passed to the compiler.

Nested programs: Multithreaded programs on the mainframe must be recursive. Therefore, avoid coding
nested programs if you intend to port your programs to the mainframe and enable them to run in a
multithreaded environment.

Chapter 21. Porting applications between platforms  429



430  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 22. Using subprograms

Many applications consist of several separately compiled programs that are linked together. If the
programs call each other, they must be able to communicate. They need to transfer control and usually
need access to common data.

COBOL programs that are nested within each other can also communicate. All the required subprograms
for an application can be in one source file and thus require only one compilation.

Related concepts   
“Main programs, subprograms,
and calls” on page 431 

Related tasks   
“Ending and reentering
main programs or subprograms” on page 431  
“Calling nested COBOL programs” on page 432  
“Calling nonnested COBOL
programs” on page 435  
“Calling between COBOL and C/C++ programs” on page 437  
“Making recursive calls” on page 443 

Main programs, subprograms, and calls
If a COBOL program is the first program in a run unit, that COBOL program is the main program.
Otherwise, it and all other COBOL programs in the run unit are subprograms. No specific source-code
statements or options identify a COBOL program as a main program or subprogram.

Whether a COBOL program is a main program or subprogram can be significant for either of two reasons:

• Effect of program termination statements
• State of the program when it is reentered after returning

In the PROCEDURE DIVISION, a program can call another program (generally called a subprogram), and
this called program can itself call other programs. The program that calls another program is referred to
as the calling program, and the program it calls is referred to as the called program. When the processing
of the called program is completed, the called program can either transfer control back to the calling
program or end the run unit.

The called COBOL program starts running at the top of the PROCEDURE DIVISION.

Related tasks   
“Ending and reentering
main programs or subprograms” on page 431  
“Calling nested COBOL programs” on page 432  
“Calling nonnested COBOL
programs” on page 435  
“Calling between COBOL and C/C++ programs” on page 437  
“Making recursive calls” on page 443

Ending and reentering main programs or subprograms
Whether a program is left in its last-used state or its initial state, and to which caller it returns, can depend
on the termination statements that you use.

To end execution in the main program, you must code a STOP RUN or GOBACK statement in the main
program. STOP RUN terminates the run unit and closes all files opened by the main program and its called
subprograms. Control is returned to the caller of the main program, which is often the operating system.

© Copyright IBM Corp. 2021, 2023 431



GOBACK has the same effect in the main program. An EXIT PROGRAM performed in a main program has
no effect.

You can end a subprogram by using an EXIT PROGRAM, a GOBACK, or a STOP RUN statement. If you use
an EXIT PROGRAM or a GOBACK statement, control returns to the immediate caller of the subprogram
without the run unit ending. An implicit EXIT PROGRAM statement is generated if there is no next
executable statement in a called program. If you end the subprogram with a STOP RUN statement, the
effect is the same as it is in a main program: all COBOL programs in the run unit are terminated, and
control returns to the caller of the main program.

A subprogram is usually left in its last-used state when it terminates with EXIT PROGRAM or GOBACK.
The next time the subprogram is called in the run unit, its internal values are as they were left, except
that return values for PERFORM statements are reset to their initial values. (In contrast, a main program is
initialized each time it is called.)

There are some cases in which programs will be in their initial state:

• A subprogram that is dynamically called and then canceled will be in the initial state the next time it is
called.

• A program that has the INITIAL clause in the PROGRAM-ID paragraph will be in the initial state each
time it is called.

• Data items defined in the LOCAL-STORAGE SECTION will be reset to the initial state specified by their
VALUE clauses each time the program is called.

Related concepts   
“Comparison of WORKING-STORAGE
and LOCAL-STORAGE” on page 11 

Related tasks   
“Calling nested COBOL programs” on page 432  
“Making recursive calls” on page 443 

Calling nested COBOL programs
By calling nested programs, you can create applications that use structured programming techniques. You
can also call nested programs instead of PERFORM procedures to prevent unintentional modification of
data items.

Use either CALL literal or CALL identifier statements to make calls to nested programs.

You can call a nested program only from its directly containing program unless you identify the nested
program as COMMON in its PROGRAM-ID paragraph. In that case, you can call the common program from
any program that is nested (directly or indirectly) in the same program as the common program. Only
nested programs can be identified as COMMON. Recursive calls are not allowed.

Follow these guidelines when using nested program structures:

• Code an IDENTIFICATION DIVISION in each program. All other divisions are optional.
• Optionally make the name of each nested program unique. Although the names of nested programs are

not required to be unique (as described in the related reference about scope of names), making the
names unique could help make your application more maintainable. You can use any valid user-defined
word or an alphanumeric literal as the name of a nested program.

• In the outermost program, code any CONFIGURATION SECTION entries that might be required. Nested
programs cannot have a CONFIGURATION SECTION.

• Include each nested program in the containing program immediately before the END PROGRAM marker
of the containing program.

• Use an END PROGRAM marker to terminate nested and containing programs.

Related concepts   
“Nested programs” on page 433 

432  IBM COBOL for Linux on x86 1.1: Programming Guide



Related references   
“Scope of names” on page 434 

Nested programs
A COBOL program can nest, or contain, other COBOL programs. The nested programs can themselves
contain other programs. A nested program can be directly or indirectly contained in a program.

There are four main advantages to nesting called programs:

• Nested programs provide a method for creating modular functions and maintaining structured
programming techniques. They can be used analogously to perform procedures (using the PERFORM
statement), but with more structured control flow and with the ability to protect local data items.

• Nested programs let you debug a program before including it in an application.
• Nested programs enable you to compile an application with a single invocation of the compiler.
• Calls to nested programs have the best performance of all the forms of COBOL CALL statements.

The following example describes a nested structure that has directly and indirectly contained programs:

“Example: structure of nested programs” on page 434

Related tasks   
“Calling nested COBOL programs” on page 432 

Related references   
“Scope of names” on page 434 

Chapter 22. Using subprograms  433



Example: structure of nested programs
The following example shows a nested structure with some nested programs that are identified as
COMMON.

The following table describes the calling hierarchy for the structure that is shown in the example above.
Programs A12, A2, and A3 are identified as COMMON, and the calls associated with them differ.

This program Can call these programs And can be called by these
programs

A A1, A2, A3 None

A1 A11, A12, A2, A3 A

A11 A111, A12, A2, A3 A1

A111 A12, A2, A3 A11

A12 A2, A3 A1, A11, A111

A2 A3 A, A1, A11, A111, A12, A3

A3 A2 A, A1, A11, A111, A12, A2

In this example, note that:

• A2 cannot call A1 because A1 is not common and is not contained in A2.
• A1 can call A2 because A2 is common.

Scope of names
Names in nested structures are divided into two classes: local and global. The class determines whether a
name is known beyond the scope of the program that declares it. A specific search sequence locates the
declaration of a name after it is referenced in a program.

Local names
Names (except the program-name) are local unless declared to be otherwise. Local names are visible
or accessible only within the program in which they are declared. They are not visible or accessible to
contained and containing programs.

Global names
A name that is global (indicated by using the GLOBAL clause) is visible and accessible to the program in
which it is declared and to all the programs that are directly and indirectly contained in that program.
Therefore, the contained programs can share common data and files from the containing program simply
by referencing the names of the items.

434  IBM COBOL for Linux on x86 1.1: Programming Guide



Any item that is subordinate to a global item (including condition-names and indexes) is automatically
global.

You can declare the same name with the GLOBAL clause more than one time, provided that each
declaration occurs in a different program. Be aware that you can mask, or hide, a name in a nested
structure by having the same name occur in different programs in the same containing structure.
However, such masking could cause problems during a search for a name declaration.

Searches for name declarations
When a name is referenced in a program, a search is made to locate the declaration for that name.
The search begins in the program that contains the reference and continues outward to the containing
programs until a match is found. The search follows this process:

1. Declarations in the program are searched.
2. If no match is found, only global declarations are searched in successive outer containing programs.
3. The search ends when the first matching name is found. If no match is found, an error exists.

The search is for a global name, not for a particular type of object associated with the name such as a data
item or file connector. The search stops when any match is found, regardless of the type of object. If the
object declared is of a different type than that expected, an error condition exists.

Calling nonnested COBOL programs
A COBOL program can call a subprogram that is linked into the same executable module as the caller
(static linking) or that is provided in a shared library (dynamic linking). COBOL for Linux also provides for
runtime resolution of a target subprogram from a shared library.

If you link a target program statically, it is part of the executable module of the caller and is loaded with
the caller. If you link dynamically or resolve a call at run time, the target program is provided in a library
and is loaded either when the caller is loaded or when the target program is called.

Either dynamic or static linking of subprograms is done for COBOL CALL literal. Runtime resolution is
always done for COBOL CALL identifier and is done for CALL literal if the DYNAM option is in effect.

Restriction: You cannot mix 32-bit and 64-bit COBOL programs in an application. All program
components within an application must be compiled using the same setting of the ADDR compiler option.

Related concepts   
“CALL identifier and
CALL literal” on page 435  
“Static linking versus using shared libraries” on page 461

Related references  
“ADDR” on page 251  
“DYNAM” on page 264  
CALL statement (COBOL for Linux on x86 Language Reference)

CALL identifier and CALL literal
CALL identifier, where identifier is a data item that contains the name of a nonnested subprogram at run
time, always results in the target subprogram being loaded when it is called. CALL literal, where literal is
the explicit name of a nonnested target subprogram, can be resolved either statically or dynamically.

With CALL identifier, the name of the executable or shared library must match the name of the target
entry point.

With CALL literal, if the NODYNAM compiler option is in effect, either static or dynamic linking can be done.
If DYNAM is in effect, CALL literal is resolved in the same way as CALL identifier: the target subprogram is
loaded when it is called, and the name of the executable must match the name of the target entry point.

These call definitions apply only in the case of a COBOL program calling a nonnested program. If a COBOL
program calls a nested program, the call is resolved by the compiler without any system intervention.

Chapter 22. Using subprograms  435



Limitation: Two or more separately linked executables in an application must not statically call the same
nonnested subprogram.

Related concepts  
“Static linking versus using shared libraries” on page 461 

Related references   
“DYNAM” on page 264  
CALL statement (COBOL for Linux on x86 Language Reference) 

Example: dynamic call using CALL identifier
The following example shows how you might make dynamic calls that use CALL identifier.

The first program, dl1.cbl, uses CALL identifier to call the second program, dl1a.cbl.

dl1.cbl

* Simple dynamic call to dl1a

 Identification Division.
 Program-id.    dl1.
*
 Environment Division.
 Configuration Section.
 Input-Output Section.
 File-control.
*
 Data Division.
 File Section.
 Working-storage Section.
 01 var pic x(10).
 Linkage Section.
*
 Procedure Division.
     move "Dl1A" to var.
     display "Calling " var.
     call var.
     move "dl1a     " to var.
     display "Calling " var.
     call var.
     stop run.
 End program dl1.

dlla.cbl

* Called by dl1.cbl using CALL identifier.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. dl1a.
*
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 OBJECT-COMPUTER. ANY-THING.
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 num pic 9(4) binary value is zero.
*
 PROCEDURE DIVISION.
 LA-START.
     display "COBOL DL1A function." upon console.
     add 11 to num.
     display "num = " num
     goback.

Procedure
To create and run the example above, do these steps:

436  IBM COBOL for Linux on x86 1.1: Programming Guide



1. Enter cob2 dl1.cbl -o dl1 to generate executable module dl1.
2. Enter cob2 dl1a.cbl -dll -o DL1A to generate executable module DL1A.

Unless you compile using the PGMNAME(MIXED) option, executable program-names are changed to
uppercase.

-dll, -dso, and -shared are three equivalent options, and any one can be specified here. See -dll |
-dso | -shared to learn more about these options.

3. Enter the command export COBPATH=. to cause the current directory to be searched for the targets
of dynamic calls.

4. Enter dl1 to run the program.

Because the CALL identifier target must match the name of the called program, the executable module in
the above example is generated as DL1A, not as dl1a.

Related references   
“PGMNAME” on page 275  

Calling between COBOL and C/C++ programs
You can call functions written in C/C++ from COBOL programs and can call COBOL programs from C/C++
functions.

In an interlanguage application, you can combine 64-bit COBOL programs with 64-bit C/C++ functions, or
32-bit COBOL programs with 32-bit C/C++ functions.

Restriction: 

• You cannot mix 32-bit components and 64-bit components in an application.
• The ADDR(64) and -q64 options are not currently supported. Only 32-bit COBOL programs can be

created at this time.

Interlanguage communication between COBOL and C++: In an interlanguage application that mixes
COBOL and C++, follow these guidelines:

• Specify extern "C" in function prototypes for COBOL programs that are called from C++, and in C++
functions that are called from COBOL.

• In COBOL, use BY VALUE parameters to match the normal C++ parameter convention.
• In C++, use reference parameters to match the COBOL BY REFERENCE convention.

The rules and guidelines referenced below provide further information about how to perform these
interlanguage calls.

Unqualified references to "C/C++" in the referenced sections are to GNU GCC compiler.

Related tasks   
“Calling between COBOL and C/C++ under CICS” on page 384   
“Initializing environments” on page 438  
“Passing data between COBOL
and C/C++” on page 438  
“Collapsing stack frames and terminating run units or processes” on page 439  
Chapter 23, “Sharing data,” on page 445   
   

Related references      
“ADDR” on page 251  
“COBOL and C/C++ data
types” on page 439 

Chapter 22. Using subprograms  437



Initializing environments
To make a call between C/C++ and COBOL, you must properly initialize the target environment.

If your main program is written in C/C++ and makes multiple calls to a COBOL program, use one of the
following approaches:

• Preinitialize the COBOL environment in the C/C++ program before it calls any COBOL program. This
approach is recommended because it provides the best performance.

• Put the COBOL program in an executable that is not part of the C/C++ routine that calls COBOL. Then
every time that you want to call the main COBOL program, do the following steps in the C/C++ program:

1. Load the program.
2. Call the program.
3. Unload the program.

Related concepts   
Chapter 25, “Preinitializing the COBOL runtime environment,” on page 465 

Passing data between COBOL and C/C++
Some COBOL data types have C/C++ equivalents, but others do not. When you pass data between COBOL
programs and C/C++ functions, be sure to limit data exchange to appropriate data types.

By default, COBOL passes arguments BY REFERENCE. If you pass an argument BY REFERENCE, C/C++
gets a pointer to the argument. If you pass an argument BY VALUE, COBOL passes the actual argument.
You can use BY VALUE only for the following data types:

• An alphanumeric character
• A USAGE NATIONAL character
• BINARY
• COMP
• COMP-1
• COMP-2
• COMP-4
• COMP-5
• FUNCTION-POINTER
• POINTER
• PROCEDURE-POINTER

“Example: COBOL program
calling C functions” on page 440 
“Example: C programs
that are called by and call COBOL” on page 441 
“Example: COBOL program calling C++ function” on page 442  

Related tasks   
Chapter 23, “Sharing data,” on page 445 

Related references   
“COBOL and C/C++ data
types” on page 439 

438  IBM COBOL for Linux on x86 1.1: Programming Guide



Collapsing stack frames and terminating run units or processes
Do not invoke functions in one language that collapse program stack frames of another language.

This guideline includes these situations:

• Collapsing some active stack frames from one language when there are active stack frames written in
another language in the to-be-collapsed stack frames (C/C++ longjmp()).

• Terminating a run unit or process from one language while stack frames written in another language are
active, such as issuing a COBOL STOP RUN or a C/C++ exit() or _exit(). Instead, structure the application
in such a way that an invoked program terminates by returning to its invoker.

You can use C/C++ longjmp() or COBOL STOP RUN and C/C++ exit() or _exit() calls if doing so does not
collapse active stack frames of a language other than the language that initiates that action. For the
languages that do not initiate the collapsing and the termination, these adverse effects might otherwise
occur:

• Normal cleanup or exit functions of the language might not be performed, such as the closing of
files by COBOL during run-unit termination, or the cleanup of dynamically acquired resources by the
involuntarily terminated language.

• User-specified exits or functions might not be invoked for the exit or termination, such as destructors
and the C/C++ atexit() function.

In general, exceptions incurred during the execution of a stack frame are handled according to the rules
of the language that incurs the exception. Because the COBOL implementation does not depend on the
interception of exceptions through system services for the support of COBOL language semantics, you can
specify the TRAP(OFF) runtime option to enable the exception-handling semantics of the non-COBOL
language.

COBOL for Linux saves the exception environment at initialization of the COBOL runtime environment and
restores it on termination of the COBOL environment. COBOL expects interfacing languages and tools to
follow the same convention.

Related references   
“TRAP” on page 302 

COBOL and C/C++ data types
The following table shows the correspondence between the data types that are available in COBOL and
C/C++.

Table 47. COBOL and C/C++ data types

C/C++ data types COBOL data types

wchar_t USAGE NATIONAL (PICTURE N)

char PIC X

signed char No appropriate COBOL equivalent

unsigned char No appropriate COBOL equivalent

short signed int PIC S9-S9(4) COMP-5. Can be COMP, COMP-4, or BINARY if you
use the TRUNC(BIN) compiler option.

short unsigned int PIC 9-9(4) COMP-5. Can be COMP, COMP-4, or BINARY if you use
the TRUNC(BIN) compiler option.

long int PIC 9(5)-9(9) COMP-5. Can be COMP, COMP-4, or BINARY if you
use the TRUNC(BIN) compiler option.

Chapter 22. Using subprograms  439



Table 47. COBOL and C/C++ data types (continued)

C/C++ data types COBOL data types

long long int PIC 9(10)-9(18) COMP-5. Can be COMP, COMP-4, or BINARY if
you use the TRUNC(BIN) compiler option.

float COMP-1

double COMP-2

enumeration Analogous to level 88, but not identical

char(n) PICTURE X(n)

array pointer (*) to type No appropriate COBOL equivalent

pointer(*) to function PROCEDURE-POINTER or FUNCTION-POINTER

Related tasks   
“Passing data between COBOL
and C/C++” on page 438 

Related references   
“TRUNC” on page 285 

Example: COBOL program calling C functions
The following example shows a COBOL program that calls C functions by using the CALL statement.

The example illustrates the following concepts:

• The CALL statement does not indicate whether the called program is written in COBOL or C.
• COBOL supports calling programs that have mixed-case names.
• You can pass arguments to C programs in various ways (for example, BY REFERENCE or BY VALUE).
• You must declare a function return value on a CALL statement that calls a non-void C function.
• You must map COBOL data types to appropriate C data types.

 CBL PGMNAME(MIXED)
* This compiler option allows for case-sensitive names for called programs.
*
 IDENTIFICATION DIVISION.
 PROGRAM-ID. "COBCALLC".
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 N4              PIC 9(4)  COMP-5.
 01 NS4             PIC S9(4) COMP-5.
 01 N9              PIC 9(9)  COMP-5.
 01 NS9             PIC S9(9) COMP-5.
 01 NS18            USAGE COMP-2.
 01 D1              USAGE COMP-2.
 01 D2              USAGE COMP-2.
 01 R1.
     02 NR1         PIC 9(8) COMP-5.
     02 NR2         PIC 9(8) COMP-5.
     02 NR3         PIC 9(8) COMP-5.
 PROCEDURE DIVISION.
     MOVE 123 TO N4
     MOVE -567 TO NS4
     MOVE 98765432 TO N9
     MOVE -13579456 TO NS9
     MOVE 222.22 TO NS18
     DISPLAY "Call MyFun with n4=" N4 " ns4=" NS4 " N9=" n9
     DISPLAY "                ns9="  NS9" ns18="  NS18
* The following CALL illustrates several ways to pass arguments.
*
     CALL "MyFun" USING N4 BY VALUE NS4 BY REFERENCE N9 NS9 NS18
     MOVE 1024 TO N4

440  IBM COBOL for Linux on x86 1.1: Programming Guide



* The following CALL returns the C function return value.
*
     CALL "MyFunR" USING BY VALUE N4 RETURNING NS9
     DISPLAY "n4=" N4 " and ns9= n4 times n4= " NS9
     MOVE -357925680.25 TO D1
     CALL "MyFunD" USING BY VALUE D1 RETURNING D2
     DISPLAY "d1=" D1 " and d2= 2.0 times d2= " D2
     MOVE 11111 TO NR1
     MOVE 22222 TO NR2
     MOVE 33333 TO NR3
     CALL "MyFunV" USING R1
     STOP RUN.

Related tasks   
“Passing data between COBOL
and C/C++” on page 438 

Related references   
CALL statement (COBOL for Linux on x86 Language Reference)

Example: C programs that are called by and call COBOL
The following example illustrates that a called C function receives arguments in the order in which they
were passed in a COBOL CALL statement.

The file MyFun.c contains the following source code, which calls the COBOL program tprog1:

#include <stdio.h>
extern void TPROG1(double *);
void
MyFun(short *ps1, short s2, long *k1, long *k2, double *m)
{
    double x;
    x = 2.0*(*m);
    printf("MyFun got s1=%d s2=%d k1=%d k2=%d x=%f\n",
             *ps1, s2, *k1,*k2, x);
}

long
MyFunR(short s1)
{
    return(s1 * s1);
}

double
MyFunD(double d1)
{
    double z;
    /* calling COBOL */
    z = 1122.3344;
    (void) TPROG1(&z);
    /* returning a value to COBOL */
    return(2.0 * d1);
}

void
MyFunV(long *pn)
{
    printf("MyFunV got %d %d %d\n", *pn, *(pn+1), *(pn+2));
}

MyFun.c consists of the following functions:

MyFun
Illustrates passing a variety of arguments.

MyFunR
Illustrates how to pass and return a long variable.

MyFunD
Illustrates C calling a COBOL program and illustrates how to pass and return a double variable.

Chapter 22. Using subprograms  441



MyFunV
Illustrates passing a pointer to a record and accessing the items of the record in a C program.

Example: COBOL program called by a C program
The following example shows how to write COBOL programs that are called by C programs.

The COBOL program tprog1 is called by the C function MyFunD in program MyFun.c (see “Example: C
programs that are called by and call COBOL” on page 441). The called COBOL program contains the
following source code:

*
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TPROG1.
*
 DATA DIVISION.
 LINKAGE SECTION.
*
 01 X                USAGE COMP-2.
*
 PROCEDURE DIVISION USING X.
     DISPLAY "TPROG1 got x= " X
     GOBACK.

Related tasks   
“Calling between COBOL and C/C++ programs” on page 437 

Example: results of compiling and running examples
This example shows how you can compile, link, and run COBOL programs cobcallc.cbl and tprog.cbl and
the C program MyFun.c, and shows the results of running the programs.

Compile and link cobcallc.cbl, tprog.cbl, and MyFun.c by issuing the following commands:

1. gcc -m32 -c MyFun.c
2. cob2 cobcallc.cbl MyFun.o tprog1.cbl -o cobcallc

Run the program by issuing the command cobcallc. The results are as follows:

call MyFun with n4=00123 ns4=-00567 n9=0098765432
            ns9=-0013579456 ns18=.22222000000000000E 03
MyFun got s1=123 s2=-567 k1=98765432 k2=-13579456 x=444.440000
n4=01024 and ns9= n4 times n4= 0001048576
TPROG1 got x=  .11223344000000000E 04
d1=-.35792568025000000E 09 and d2= 2.0 times d2= -.71585136050000000E 09
MyFunV got 11111 22222 33333

“Example: COBOL program
calling C functions” on page 440  
“Example: C programs
that are called by and call COBOL” on page 441  
“Example: COBOL program
called by a C program” on page 442  

Example: COBOL program calling C++ function
The following example shows a COBOL program that calls a C++ function by using a CALL statement that
passes arguments BY REFERENCE.

The example illustrates the following concepts:

• The CALL statement does not indicate whether the called program is written in COBOL or C++.
• You must declare a function return value on a CALL statement that calls a non-void C++ function.

442  IBM COBOL for Linux on x86 1.1: Programming Guide



• The COBOL data types must be mapped to appropriate C++ data types.
• The C++ function must be declared extern "C".
• The COBOL arguments are passed BY REFERENCE. The C++ function receives them by using reference

parameters.

COBOL program driver:

cbl pgmname(mixed)
Identification Division.
Program-Id. "driver".
Data division.
Working-storage section.
01 A pic 9(8) binary value 11111.
01 B pic 9(8) binary value 22222.
01 R pic 9(8) binary.
Procedure Division.
    Display "Hello World, from COBOL!"
    Call "sub" using by reference A B
      returning R
    Display R
    Stop Run.

C++ function sub:

#include <iostream.h>
extern "C" long sub(long& A, long& B) {
  cout << "Hello from C++" << endl;
  return A + B;
}

Output:

Hello World, from COBOL!
Hello from C++
00033333

Related tasks   
“Passing data between COBOL
and C/C++” on page 438 

Related references   
CALL statement (COBOL for Linux on x86 Language Reference)

Making recursive calls
A called program can directly or indirectly execute its caller. For example, program X calls program Y,
program Y calls program Z, and program Z then calls program X. This type of call is recursive.

To make a recursive call, you must code the RECURSIVE clause in the PROGRAM-ID paragraph of the
recursively called program. If you try to recursively call a COBOL program that does not have the
RECURSIVE clause in the PROGRAM-ID paragraph, the run unit will end abnormally.

Related tasks   
“Identifying a program as
recursive” on page 4 

Related references  
PROGRAM-ID paragraph (COBOL for Linux on x86 Language Reference)  

Chapter 22. Using subprograms  443



Passing return codes
You can use the RETURN-CODE special register to pass information between separately compiled
programs.

You can set RETURN-CODE in a called program before returning to the caller, and then test this returned
value in the calling program. This technique is typically used to indicate the level of success of the called
program. For example, a RETURN-CODE of zero can be used to indicate that the called program executed
successfully.

Normal termination: When a main program ends normally, the value of RETURN-CODE is passed to the
operating system as a user return code. However, Linux restricts user return code values to 0 through
255. Therefore, if for example RETURN-CODE contains 258 when the program ends, Linux wraps the value
within the supported range, resulting in a user return code of 2.

Unrecoverable exception: When a program encounters an unrecoverable exception, the user return
code is set to 128 plus the signal number. For a nonthreaded program, the run unit is terminated; for a
threaded program, the thread in which the program is executing, not the run unit, is terminated.

Related tasks   
“Passing return-code information” on page 453   

Related references   
RETURN-CODE (COBOL for Linux on x86 Language Reference) 

444  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 23. Sharing data
If a run unit consists of several separately compiled programs that call each other, the programs must be
able to communicate with each other. They also usually need access to common data.

This information describes how you can write programs that share data with other programs. In this
information, a subprogram is any program that is called by another program.

Related tasks   
“Using data from another
program” on page 12  
  
“Passing data” on page 445  
“Coding the LINKAGE SECTION” on page 448  
“Coding the PROCEDURE DIVISION
for passing arguments” on page 449  
“Using procedure and function
pointers” on page 452  
“Passing return-code information” on page 453  
“Sharing data by using the
EXTERNAL clause” on page 454  
“Sharing files between programs
(external files)” on page 454  
“Using command-line arguments” on page 457   

Passing data
You can choose among three ways of passing data between programs: BY REFERENCE, BY CONTENT, or
BY VALUE.

BY REFERENCE
The subprogram refers to and processes the data items in the storage of the calling program rather
than working on a copy of the data. BY REFERENCE is the assumed passing mechanism for a
parameter if none of the three ways is specified or implied for the parameter.

BY CONTENT
The calling program passes only the contents of the literal or identifier. The called program cannot
change the value of the literal or identifier in the calling program, even if it modifies the data item in
which it received the literal or identifier.

BY VALUE
The calling program or method passes the value of the literal or identifier, not a reference to the
sending data item. The called program or invoked method can change the parameter. However,
because the subprogram or method has access only to a temporary copy of the sending data item, any
change does not affect the argument in the calling program.

Determine which of these data-passing methods to use based on what you want your program to do with
the data.

Table 48. Methods for passing data in the CALL statement

Code Purpose Comments

CALL . . . BY REFERENCE
identifier

To have the definition of the
argument of the CALL statement in
the calling program and the definition
of the parameter in the called
program share the same memory

Any changes made by the
subprogram to the parameter affect
the argument in the calling program.

© Copyright IBM Corp. 2021, 2023 445



Table 48. Methods for passing data in the CALL statement (continued)

Code Purpose Comments

CALL . . . BY REFERENCE
ADDRESS OF identifier

To pass the address of identifier to a
called program, where identifier is an
item in the LINKAGE SECTION 

Any changes made by the
subprogram to the address affect the
address in the calling program.

CALL . . . BY CONTENT
ADDRESS OF identifier

To pass a copy of the address of
identifier to a called program

Any changes to the copy of the
address will not affect the address
of identifier, but changes to identifier
using the copy of the address will
cause changes to identifier.

CALL . . . BY CONTENT
identifier

To pass a copy of the identifier to the
subprogram

Changes to the parameter by the
subprogram will not affect the
caller's identifier.

CALL . . . BY CONTENT
literal

To pass a copy of a literal value to a
called program

 

CALL . . . BY CONTENT
LENGTH OF identifier

To pass a copy of the length of a data
item 

The calling program passes the
length of the identifier from its
LENGTH special register.

A combination of BY
REFERENCE and BY CONTENT
such as:

CALL 'ERRPROC'
   USING BY REFERENCE A
   BY CONTENT LENGTH OF A.

To pass both a data item and a copy
of its length to a subprogram

 

CALL . . . BY VALUE
identifier

To pass data to a program, such as a
C/C++ program, that uses BY VALUE
parameter linkage conventions

A copy of the identifier is passed
directly in the parameter list.

CALL . . . BY VALUE literal To pass data to a program, such as a
C/C++ program, that uses BY VALUE
parameter linkage conventions

A copy of the literal is passed directly
in the parameter list.

CALL . . . BY VALUE
ADDRESS OF identifier

To pass the address of identifier
to a called program. This is the
recommended way to pass data to a
C/C++ program that expects a pointer
to the data.

Any changes to the copy of the
address will not affect the address
of identifier, but changes to identifier
using the copy of the address will
cause changes to identifier.

CALL . . . RETURNING To call a C/C++ function with a
function return value

 

Related tasks   
“Describing arguments in
the calling program” on page 447  
“Describing parameters
in the called program” on page 447  
“Testing for OMITTED arguments” on page 447  
“Specifying CALL . . . RETURNING” on page 453  
“Sharing data by using the
EXTERNAL clause” on page 454  
“Sharing files between programs

446  IBM COBOL for Linux on x86 1.1: Programming Guide



(external files)” on page 454  
 

Related references   
CALL statement (COBOL for Linux on x86 Language Reference)  
The USING phrase (COBOL for Linux on x86 Language Reference)  

Describing arguments in the calling program
In the calling program, describe arguments in the DATA DIVISION in the same manner as other data
items in the DATA DIVISION.

Storage for arguments is allocated only in the outermost program. For example, program A calls program
B, which calls program C. Data items are allocated in program A. They are described in the LINKAGE
SECTION of programs B and C, making the one set of data available to all three programs.

If you reference data in a file, the file must be open when the data is referenced.

Code the USING phrase of the CALL statement to pass the arguments. If you pass a data item BY VALUE,
it must be an elementary item.

Related tasks   
“Coding the LINKAGE SECTION” on page 448  
“Coding the PROCEDURE DIVISION
for passing arguments” on page 449 

Related references   
The USING phrase (COBOL for Linux on x86 Language Reference)

Describing parameters in the called program
You must know what data is being passed from the calling program and describe it in the LINKAGE
SECTION of each program that is called directly or indirectly by the calling program.

Code the USING phrase after the PROCEDURE DIVISION header to name the parameters that receive the
data that is passed from the calling program.

When arguments are passed to the subprogram BY REFERENCE, it is invalid for the subprogram to specify
any relationship between its parameters and any fields other than those that are passed and defined in
the main program. The subprogram must not:

• Define a parameter to be larger in total number of bytes than the corresponding argument.
• Use subscript references to refer to elements beyond the limits of tables that are passed as arguments

by the calling program.
• Use reference modification to access data beyond the length of defined parameters.
• Manipulate the address of a parameter in order to access other data items that are defined in the calling

program.

If any of the rules above are violated, unexpected results might occur.

Related tasks   
“Coding the LINKAGE SECTION” on page 448 

Related references   
The USING phrase (COBOL for Linux on x86 Language Reference)

Testing for OMITTED arguments
You can specify that one or more BY REFERENCE arguments are not to be passed to a called program by
coding the OMITTED keyword in place of those arguments in the CALL statement.

Chapter 23. Sharing data  447



For example, to omit the second argument when calling program sub1, code this statement:

Call 'sub1' Using PARM1, OMITTED, PARM3

The arguments in the USING phrase of the CALL statement must match the parameters of the called
program in number and position.

In a called program, you can test whether an argument was passed as OMITTED by comparing the
address of the corresponding parameter to NULL. For example:

Program-ID. sub1.
. . .
Procedure Division Using RPARM1, RPARM2, RPARM3.
    If Address Of RPARM2 = Null Then
        Display 'No 2nd argument was passed this time'
    Else
        Perform Process-Parm-2
    End-If

Related references   
CALL statement (COBOL for Linux on x86 Language Reference)  
The USING phrase (COBOL for Linux on x86 Language Reference)

Coding the LINKAGE SECTION
Code the same number of data-names in the identifier list of the called program as the number
of arguments in the calling program. Synchronize by position, because the compiler passes the first
argument from the calling program to the first identifier of the called program, and so on.

You will introduce errors if the number of data-names in the identifier list of a called program is greater
than the number of arguments passed from the calling program. The compiler does not try to match
arguments and parameters.

The following figure shows a data item being passed from one program to another (implicitly BY
REFERENCE):

In the calling program, the code for parts (PARTCODE) and the part number (PARTNO) are distinct data
items. In the called program, by contrast, the code for parts and the part number are combined into one
data item (PART-ID). In the called program, a reference to PART-ID is the only valid reference to these
items.

448  IBM COBOL for Linux on x86 1.1: Programming Guide



Coding the PROCEDURE DIVISION for passing arguments
If you pass an argument BY VALUE, code the USING BY VALUE clause in the PROCEDURE DIVISION
header of the subprogram. If you pass an argument BY REFERENCE or BY CONTENT, you do not need to
indicate in the header how the argument was passed.

PROCEDURE DIVISION USING BY VALUE. . .
PROCEDURE DIVISION USING. . .
PROCEDURE DIVISION USING BY REFERENCE. . .

The first header above indicates that the data items are passed BY VALUE; the second or third headers
indicate that the items are passed BY REFERENCE or BY CONTENT.

Related references   
The procedure division header (COBOL for Linux on x86 Language Reference)  
The USING phrase (COBOL for Linux on x86 Language Reference)  
CALL statement (COBOL for Linux on x86 Language Reference)

Grouping data to be passed
Consider grouping all the data items that you need to pass between programs and putting them under one
level-01 item. If you do so, you can pass a single level-01 record.

Note that if you pass a data item BY VALUE, it must be an elementary item.

To lessen the possibility of mismatched records, put the level-01 record into a copy library and copy it
into both programs. That is, copy it in the WORKING-STORAGE SECTION of the calling program and in the
LINKAGE SECTION of the called program.

Related tasks   
“Coding the LINKAGE SECTION” on page 448 

Related references   
CALL statement (COBOL for Linux on x86 Language Reference)

Handling null-terminated strings
COBOL supports null-terminated strings when you use string-handling statements together with null-
terminated literals and the hexadecimal literal X'00'.

You can manipulate null-terminated strings (passed from a C program, for example) by using string-
handling mechanisms such as those in the following code:

01 L        pic X(20) value z'ab'.
01 M        pic X(20) value z'cd'.
01 N        pic X(20).
01 N-Length pic 99    value zero.
01 Y        pic X(13) value 'Hello, World!'.

To determine the length of a null-terminated string, and display the value of the string and its length,
code:

Inspect N tallying N-length for characters before initial X'00'
Display 'N: ' N(1:N-length) ' Length: ' N-length

To move a null-terminated string to an alphanumeric string, but delete the null, code:

Unstring N  delimited by X'00' into X

Chapter 23. Sharing data  449



To create a null-terminated string, code:

String Y      delimited by size
       X'00'  delimited by size
       into N.

To concatenate two null-terminated strings, code:

String L      delimited by x'00'
       M      delimited by x'00'
       X'00'  delimited by size
       into N.

Related tasks   
“Manipulating null-terminated
strings” on page 98 

Related references   
Null-terminated alphanumeric literals
 (COBOL for Linux on x86 Language Reference)

Using pointers to process a chained list
When you need to pass and receive addresses of record areas, you can use pointer data items, which
are either data items that are defined with the USAGE IS POINTER clause or are ADDRESS OF special
registers.

A typical application for using pointer data items is in processing a chained list, a series of records in
which each record points to the next.

When you pass addresses between programs in a chained list, you can use NULL to assign the value of an
address that is not valid (nonnumeric 0) to a pointer item in either of two ways:

• Use a VALUE IS NULL clause in its data definition.
• Use NULL as the sending field in a SET statement.

In the case of a chained list in which the pointer data item in the last record contains a null value, you can
use this code to check for the end of the list:

IF PTR-NEXT-REC = NULL
. . .
   (logic for end of chain)

If the program has not reached the end of the list, the program can process the record and move on to the
next record.

The data passed from a calling program might contain header information that you want to ignore.
Because pointer data items are not numeric, you cannot directly perform arithmetic on them. However, to
bypass header information, you can use the SET statement to increment the passed address.

“Example: using pointers to process a chained list” on page 451

Related tasks   
“Coding the LINKAGE SECTION” on page 448  
“Coding the PROCEDURE DIVISION
for passing arguments” on page 449 

Related references    
“ADDR” on page 251  
SET statement (COBOL for Linux on x86 Language Reference)

450  IBM COBOL for Linux on x86 1.1: Programming Guide



Example: using pointers to process a chained list
The following example shows how you might process a linked list, that is, a chained list of data items.

For this example, picture a chained list of data that consists of individual salary records. The following
figure shows one way to visualize how the records are linked in storage. The first item in each record
except the last points to the next record. The first item in the last record contains a null value (instead of a
valid address) to indicate that it is the last record.

The high-level pseudocode for an application that processes these records might be:

Obtain address of first record in chained list from routine
Check for end of the list
Do until end of the list
   Process record
   Traverse to the next record
End

The following code contains an outline of the calling program, LISTS, used in this example of processing
a chained list.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. LISTS.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
******
 WORKING-STORAGE SECTION.
 77  PTR-FIRST         POINTER  VALUE IS NULL.                   (1)
 77  DEPT-TOTAL        PIC 9(4) VALUE IS 0.
******
 LINKAGE SECTION.
 01  SALARY-REC.
     02  PTR-NEXT-REC    POINTER.                                (2)
     02  NAME            PIC X(20).
     02  DEPT            PIC 9(4).
     02  SALARY          PIC 9(6).
 01  DEPT-X            PIC 9(4).
******
 PROCEDURE DIVISION USING DEPT-X.
******
* FOR EVERYONE IN THE DEPARTMENT RECEIVED AS DEPT-X,
* GO THROUGH ALL THE RECORDS IN THE CHAINED LIST BASED ON THE
* ADDRESS OBTAINED FROM THE PROGRAM CHAIN-ANCH
* AND ACCUMULATE THE SALARIES.
* IN EACH RECORD, PTR-NEXT-REC IS A POINTER TO THE NEXT RECORD
* IN THE LIST; IN THE LAST RECORD, PTR-NEXT-REC IS NULL.
* DISPLAY THE TOTAL.
******
     CALL "CHAIN-ANCH" USING PTR-FIRST                           (3)
     SET ADDRESS OF SALARY-REC TO PTR-FIRST                      (4)
******
     PERFORM WITH TEST BEFORE UNTIL ADDRESS OF SALARY-REC = NULL (5)

      IF DEPT = DEPT-X
        THEN ADD SALARY TO DEPT-TOTAL
        ELSE CONTINUE
      END-IF
      SET ADDRESS OF SALARY-REC TO PTR-NEXT-REC                  (6)

     END-PERFORM
******
     DISPLAY DEPT-TOTAL
     GOBACK.

Chapter 23. Sharing data  451



(1)
PTR-FIRST is defined as a pointer data item with an initial value of NULL. On a successful return from
the call to CHAIN-ANCH, PTR-FIRST contains the address of the first record in the chained list. If
something goes wrong with the call, and PTR-FIRST never receives the value of the address of the
first record in the chain, a null value remains in PTR-FIRST and, according to the logic of the program,
the records will not be processed.

(2)
The LINKAGE SECTION of the calling program contains the description of the records in the chained
list. It also contains the description of the department code that is passed in the USING clause of the
CALL statement.

(3)
To obtain the address of the first SALARY-REC record area, the LISTS program calls the program
CHAIN-ANCH.

(4)
The SET statement bases the record description SALARY-REC on the address contained in PTR-
FIRST.

(5)
The chained list in this example is set up so that the last record contains an address that is not valid.
This check for the end of the chained list is accomplished with a do-while structure where the value
NULL is assigned to the pointer data item in the last record.

(6)
The address of the record in the LINKAGE-SECTION is set equal to the address of the next record by
means of the pointer data item sent as the first field in SALARY-REC. The record-processing routine
repeats, processing the next record in the chained list.

To increment addresses received from another program, you could set up the LINKAGE SECTION and
PROCEDURE DIVISION like this:

LINKAGE SECTION.
01  RECORD-A.
    02  HEADER          PIC X(12).
    02  REAL-SALARY-REC PIC X(30).
. . .
01  SALARY-REC.
    02  PTR-NEXT-REC    POINTER.
    02  NAME            PIC X(20).
    02  DEPT            PIC 9(4).
    02  SALARY          PIC 9(6).
. . .
PROCEDURE DIVISION USING DEPT-X.
. . .
    SET ADDRESS OF SALARY-REC TO ADDRESS OF REAL-SALARY-REC

The address of SALARY-REC is now based on the address of REAL-SALARY-REC, or RECORD-A + 12.

Related tasks   
“Using pointers to process
a chained list” on page 450 

Using procedure and function pointers
Procedure pointers are data items defined with the USAGE IS PROCEDURE-POINTER clause. Function
pointers are data items defined with the USAGE IS FUNCTION-POINTER clause.

In this information, "pointer" refers to either a procedure-pointer data item or a function-pointer data
item. You can set either of these data items to contain entry addresses of, or pointers to, the following
entry points:

• Another COBOL program that is not nested.

452  IBM COBOL for Linux on x86 1.1: Programming Guide



• A program written in another language. For example, to receive the entry address of a C function, call
the function with the CALL RETURNING format of the CALL statement. It returns a pointer that you can
convert to a procedure pointer by using a form of the SET statement. 

• An alternate entry point in another COBOL program (as defined in an ENTRY statement).

You can set a pointer data item only by using the SET statement. For example:

CALL 'MyCFunc' RETURNING ptr.
SET  proc-ptr  TO ptr.
CALL proc-ptr  USING dataname.

Suppose that you set a pointer item to an entry address in a load module that is called by a CALL identifier
statement, and your program later cancels that called module. The pointer item becomes undefined, and
reference to it thereafter is not reliable.

Related references     
“ADDR” on page 251  
PROCEDURE-POINTER phrase (COBOL for Linux on x86 Language Reference)  
SET statement (COBOL for Linux on x86 Language Reference)  

Passing return-code information
Use the RETURN-CODE special register to pass return codes between programs.

Related tasks   
“Passing return codes” on page 444   

Using the RETURN-CODE special register
When a COBOL program returns to its caller, the contents of the RETURN-CODE special register are set
according to the value of the RETURN-CODE special register in the called program.

Setting of the RETURN-CODE by the called program is limited to calls between COBOL programs.
Therefore, if your COBOL program calls a C program, you cannot expect the RETURN-CODE special
register of the COBOL program to be set.

For equivalent function between COBOL and C programs, have your COBOL program call the C program
with the RETURNING phrase. If the C program (function) correctly declares a function value, the
RETURNING value of the calling COBOL program will be set.

Using PROCEDURE DIVISION RETURNING . . .
Use the RETURNING phrase in the PROCEDURE DIVISION header of a program to return information to
the calling program.

PROCEDURE DIVISION RETURNING dataname2

When the called program in the example above successfully returns to its caller, the value in dataname2
is stored into the identifier that was specified in the RETURNING phrase of the CALL statement:

CALL . . . RETURNING dataname2

Specifying CALL . . . RETURNING
You can specify the RETURNING phrase of the CALL statement for calls to C/C++ functions or to COBOL
subroutines.

Chapter 23. Sharing data  453



The RETURNING phrase has the following format.

CALL . . . RETURNING dataname2

The return value of the called program is stored into dataname2. You must define dataname2 in the DATA
DIVISION of the calling program. The data type of the return value that is declared in the target function
must be identical to the data type of dataname2.

Sharing data by using the EXTERNAL clause
Use the EXTERNAL clause to enable separately compiled programs (including programs in a batch
sequence) to share data items. Code EXTERNAL in the level-01 data description in the WORKING-
STORAGE SECTION.

The following rules apply:

• Items that are subordinate to an EXTERNAL group item are themselves EXTERNAL.
• You cannot use the name of an EXTERNAL data item as the name for another EXTERNAL item in the

same program.
• You cannot code the VALUE clause for any elementary item, group item or subordinate item that is
EXTERNAL.

In the run unit, any COBOL program that has the same data description for the item as the program that
contains the item can access and process that item. For example, suppose program A has the following
data description:

01 EXT-ITEM1     EXTERNAL     PIC 99.

Program B can access that data item if B has the identical data description in its WORKING-STORAGE
SECTION.

Any program that has access to an EXTERNAL data item can change the value of that item. Therefore do
not use this clause for data items that you need to protect.

Related references  
  

Sharing files between programs (external files)
To enable separately compiled programs in a run unit to access a file as a common file, use the EXTERNAL
clause for the file.

It is recommended that you follow these guidelines:

• Use the same data-name in the FILE STATUS clause of all the programs that check the file status
code.

• For each program that checks the same file status field, code the EXTERNAL clause in the level-01 data
definition for the file status field.

Using an external file has these benefits:

• Even if the main program does not contain any input or output statements, it can reference the record
area of the file.

• Each subprogram can control a single input or output function, such as OPEN or READ.
• Each program has access to the file.

“Example: using external files” on page 455

454  IBM COBOL for Linux on x86 1.1: Programming Guide



Related tasks   
“Using data in input and
output operations” on page 9 

Related references   
EXTERNAL clause (COBOL for Linux on x86 Language Reference)

Example: using external files
The following example shows the use of an external file in several programs. COPY statements ensure that
each subprogram contains an identical description of the file.

The following table describes the main program and subprograms.

Name Function

ef1 The main program, which calls all the subprograms and then verifies the contents of a
record area

ef1openo Opens the external file for output and checks the file status code

ef1write Writes a record to the external file and checks the file status code

ef1openi Opens the external file for input and checks the file status code

ef1read Reads a record from the external file and checks the file status code

ef1close Closes the external file and checks the file status code

Each program uses three copybooks:

• efselect is placed in the FILE-CONTROL paragraph:

Select ef1 
Assign To ef1
File Status Is efs1
Organization Is Sequential.

• effile is placed in the FILE SECTION:

Fd ef1 Is External
          Record Contains 80 Characters
          Recording Mode F.
01  ef-record-1.
    02 ef-item-1  Pic X(80).

• efwrkstg is placed in the WORKING-STORAGE SECTION:

01  efs1          Pic 99 External.

Input/output using external files

 IDENTIFICATION DIVISION.
 Program-Id.
     ef1.
*
* This main program controls external file processing.
*
 ENVIRONMENT DIVISION.
 Input-Output Section.
 File-Control.
     Copy efselect.
 DATA DIVISION.
 FILE SECTION.
     Copy effile.
 WORKING-STORAGE SECTION.

Chapter 23. Sharing data  455



     Copy efwrkstg.
 PROCEDURE DIVISION.
     Call "ef1openo"
     Call "ef1write"
     Call "ef1close"
     Call "ef1openi"
     Call "ef1read"
     If ef-record-1 = "First record" Then
       Display "First record correct"
     Else
       Display "First record incorrect"
       Display "Expected: " "First record"
       Display "Found   : " ef-record-1
     End-If
     Call "ef1close"
     Goback.
 End Program ef1.
 IDENTIFICATION DIVISION.
 Program-Id.
     ef1openo.
*
* This program opens the external file for output.
*
 ENVIRONMENT DIVISION.
 Input-Output Section.
 File-Control.
     Copy efselect.
 DATA DIVISION.
 FILE SECTION.
     Copy effile.
 WORKING-STORAGE SECTION.
     Copy efwrkstg.
 PROCEDURE DIVISION.
     Open Output ef1
     If efs1 Not = 0
       Display "file status " efs1 " on open output"
       Stop Run
     End-If
     Goback.
 End Program ef1openo.
 IDENTIFICATION DIVISION.
 Program-Id.
     ef1write.
*
* This program writes a record to the external file.
*
 ENVIRONMENT DIVISION.
 Input-Output Section.
 File-Control.
     Copy efselect.
 DATA DIVISION.
 FILE SECTION.
     Copy effile.
 WORKING-STORAGE SECTION.
     Copy efwrkstg.
 PROCEDURE DIVISION.
     Move "First record" to ef-record-1
     Write ef-record-1
     If efs1 Not = 0
       Display "file status " efs1 " on write"
       Stop Run
     End-If
     Goback.
 End Program ef1write.
 Identification Division.
 Program-Id.
     ef1openi.
*
* This program opens the external file for input.
*
 ENVIRONMENT DIVISION.
 Input-Output Section.
 File-Control.
     Copy efselect.
 DATA DIVISION.
 FILE SECTION.
     Copy effile.
 WORKING-STORAGE SECTION.
     Copy efwrkstg.
 PROCEDURE DIVISION.
     Open Input ef1
     If efs1 Not = 0

456  IBM COBOL for Linux on x86 1.1: Programming Guide



       Display "file status " efs1 " on open input"
       Stop Run
     End-If
     Goback.
 End Program ef1openi.
 Identification Division.
 Program-Id.
     ef1read.
*
* This program reads a record from the external file.
*
 ENVIRONMENT DIVISION.
 Input-Output Section.
 File-Control.
     Copy efselect.
 DATA DIVISION.
 FILE SECTION.
     Copy effile.
 WORKING-STORAGE SECTION.
     Copy efwrkstg.
 PROCEDURE DIVISION.
     Read ef1
     If efs1 Not = 0
       Display "file status " efs1 " on read"
       Stop Run
     End-If
     Goback.
 End Program ef1read.
 Identification Division.
 Program-Id.
     ef1close.
*
* This program closes the external file.
*
 ENVIRONMENT DIVISION.
 Input-Output Section.
 File-Control.
     Copy efselect.
 DATA DIVISION.
 FILE SECTION.
     Copy effile.
 WORKING-STORAGE SECTION.
     Copy efwrkstg.
 PROCEDURE DIVISION.
     Close ef1
     If efs1 Not = 0
       Display "file status " efs1 " on close"
       Stop Run
     End-If
     Goback.
 End Program ef1close.

Using command-line arguments
You can pass arguments to a main program on the command line. The operating system calls main
programs with null-terminated strings that contain the arguments.

If the arguments that are entered are shorter than the COBOL data-names that receive them, use the
technique to isolate them that is shown in the related task below about manipulating null-terminated
strings.

How the arguments are treated depends on whether you use the -host option of the cob2 command.

If you do not specify the -host option, command-line arguments are passed in native data format, and
Linux calls all main programs with the following arguments:

• Number of command-line arguments plus one
• Pointer to the name of the program
• Pointer to the first argument
• Pointer to the second argument
• . . .
• Pointer to the nth argument

Chapter 23. Sharing data  457



If you specify the -host option, Linux calls all main programs with an EBCDIC character string that has
a halfword prefix that contains the string length. You must enter the command-line arguments as a single
string enclosed in quotation marks ("). To pass a quotation-mark character in the string, precede the
quotation mark with the backslash (\) escape character.

“Example: command-line arguments without -host option” on page 458
“Example: command-line
arguments with -host
option” on page 459

Related tasks   
“Manipulating null-terminated
strings” on page 98  
“Handling null-terminated
strings” on page 449 

Related references  
“cob2 options” on page 232  

Example: command-line arguments without -host option
This example shows how to read command-line arguments if you are not using the -host option.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. "targlinux".
*
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
 LINKAGE SECTION.
 01  PARM-LEN PIC S9(9) COMP.
 01  OS-PARM.
     02 PARMPTR-TABLE OCCURS 1 TO 100 TIMES DEPENDING ON PARM-LEN.
        03 PARMPTR  POINTER.
 01 PARM-STRING PIC XX.
*
 PROCEDURE DIVISION USING BY VALUE PARM-LEN BY REFERENCE OS-PARM.
     display "parm-len=" parm-len
     SET ADDRESS OF PARM-STRING TO PARMPTR(2).
     display "parm-string= '" PARM-STRING "'";
     EVALUATE PARM-STRING
         when "01"  display "case one"
         when "02"  display "case two"
         when "95"  display "case ninety-five"
         when other display "case unknown"
     END-EVALUATE
     GOBACK.

Suppose you compile and run the following program:

cob2 targlinux.cbl
a.out 95

The result is:

parm-len=000000002
parm-string= '95'
case ninety-five

458  IBM COBOL for Linux on x86 1.1: Programming Guide



Example: command-line arguments with -host option
This example shows how to read the command-line arguments if you are using the -host option.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. "testarg".
*
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
 linkage section.
 01  os-parm.
     05 parm-len         pic s999 comp.
     05 parm-string.
         10 parm-char    pic x occurs 0 to 100 times
                         depending on parm-len.
*
 PROCEDURE DIVISION using os-parm.
     display "parm-len=" parm-len
     display "parm-string='" parm-string "'"
     evaluate parm-string
       when "01"  display "case one"
       when "02"  display "case two"
       when "95"  display "case ninety-five"
       when other display "case unknown"
     end-evaluate
     GOBACK.

Suppose you compile and run the program as follows:

cob2 -host testarg.cbl
a.out "95" 

Then the resulting output is:

parm-len=002
parm-string='95'
case ninety-five

Chapter 23. Sharing data  459



460  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 24. Using shared libraries
Shared libraries provide a convenient and efficient means of packaging applications, and are widely used
in Linux.

In COBOL, a shared library is a collection of one or more outermost programs. Just as you can compile
and link several COBOL programs into a single executable file, you can link one or more compiled
outermost COBOL programs to create a shared library. You typically use a shared library as a collection of
frequently called functions.

Although the outermost programs in a shared library can contain nested programs, programs external to
a shared library can call only the outermost programs (known as entry points) in the shared library. Each
program in a shared library is referred to as a subprogram.

You can call COBOL shared libraries or a mixture of COBOL and C/C++ shared libraries.

“Example: creating a sample shared library” on page 462

Related concepts   
“Main programs, subprograms,
and calls” on page 431  
“Static linking versus using shared libraries” on page 461  
“How the linker resolves references to shared libraries” on page 462 

Static linking versus using shared libraries
Static linking is the linking of a calling program and one or more called programs into a single executable
module. When the program is loaded, the operating system places into memory a single file that contains
the executable code and data.

The primary advantage of static linking is that you can use it to create self-contained, independent
executable modules.

Static linking has these disadvantages, however:

• Because external programs are built into the executable file, the executable file increases in size.
• You cannot change the behavior of the executable file without recompiling and relinking it.
• If more than one calling program needs to access the called programs, duplicate copies of the called

programs must be loaded in memory.

To overcome these disadvantages, you can use shared libraries:

• You can build one or more subprograms into a shared library; and several programs can call the
subprograms that are in the shared library. Because the shared library code is separate from that of the
calling programs, the calling programs can be smaller.

• You can change the subprograms that are in the shared library without having to recompile or relink the
calling programs.

• Only a single copy of the shared library needs to be in memory.

Shared libraries typically provide common functions that can be used by a number of programs. For
example, you can use shared libraries to implement subprogram packages, subsystems, and interfaces in
other programs or to create object-oriented class libraries.

“Example: creating a sample shared library” on page 462

Related tasks   
“Calling nonnested COBOL
programs” on page 435  

© Copyright IBM Corp. 2021, 2023 461



How the linker resolves references to shared libraries
When you compile a program, the compiler generates an object module for the code in the program.
If you call any subprograms (functions in C/C++, subroutines in other languages) that are in an external
object module, the compiler adds an external program reference to the target object module.

To resolve an external reference to a shared library, the linker adds information to the executable file that
tells the loader where to find the shared library code when the executable file is loaded.

The linker does not resolve all references to shared libraries that are made by COBOL CALL statements.
If the DYNAM compiler option is in effect, COBOL resolves CALL literal statements when these calls are
executed. CALL identifier calls are also dynamically resolved.

“Example: creating a sample shared library” on page 462

Related concepts   
“Static linking versus using shared libraries” on page 461 

Related tasks   
“Making dynamic calls to shared libraries under CICS” on page 383 

Related references   
“Linker input and output files” on page 235 
“DYNAM” on page 264 

Example: creating a sample shared library
The following example shows three COBOL programs, one of which (alpha) calls the other two (beta
and gamma). The procedure after the programs shows how to create a shared library that contains the
two called programs, create an archive library that contains that shared library, and compile and link the
calling program into a module that accesses the called programs in the archive library.

Example 1: alpha.cbl

 IDENTIFICATION DIVISION.
 PROGRAM-ID. alpha.
*
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 hello1   pic x(30)  value is "message from alpha to beta".
 01 hello2   pic x(30)  value is "message from alpha to gamma".
*
 PROCEDURE DIVISION.
     display "alpha begins"
     call "beta" using hello1
     display "alpha after beta"
     call "gamma" using hello2
     display "alpha after gamma"
     goback.

Example 2: beta.cbl

 IDENTIFICATION DIVISION.
 PROGRAM-ID. beta.
*
 ENVIRONMENT DIVISION.
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
 Linkage section.
 01 msg   pic x(30).
*

462  IBM COBOL for Linux on x86 1.1: Programming Guide



 PROCEDURE DIVISION using msg.
     DISPLAY "beta gets msg=" msg.
     goback.

Example 3: gamma.cbl

 IDENTIFICATION DIVISION.
 PROGRAM-ID. gamma.
*
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
 Linkage section.
 01 msg            pic x(30).
*
PROCEDURE DIVISION using msg.
    DISPLAY "gamma gets msg=" msg.
    goback.

Procedure
The simplest way to combine the three programs is to compile and link them into a single executable
module by using the following command:

cob2 -o m_abg alpha.cbl beta.cbl gamma.cbl

You can then run the programs by issuing the command m_abg, which results in the following output:

alpha begins
beta gets msg=message from alpha to beta
alpha after beta
gamma gets msg=message from alpha to gamma
alpha after gamma

Instead of linking the programs into a single executable module, you can instead put beta and gamma in
a shared library (called sh_bg in the following procedure), and compile and link alpha into an executable
module that accesses beta and gamma in the shared library. To do so, do these steps:

1. Create an version script that specifies the symbols that the shared library must export:

{  
global:  
     GAMMA;  
     BETA;  
local:  
     *;  
};

The symbol names in export file bg.version shown above are uppercase because the COBOL
default is to use uppercase names for external symbols. If you need mixed-case names, use the
PGMNAME(MIXED) compiler option.

If you name the export file bg.version, you must use option -Wl,--version-
script,bg.version when you create the shared library (as shown in the next step).

2. Use the following command to combine beta and gamma into a shared library object called sh_bg:

cob2 -o sh_bg.so beta.cbl gamma.cbl -Wl,--version-script,bg.version

This command provides the following information to the compiler and linker:

• -o sh_bg beta.cbl gamma.cbl compiles and links beta.cbl and gamma.cbl, and names the
resulting output module sh_bg.so.

Chapter 24. Using shared libraries  463



• -Wl,--version-script,bg.version tells the linker to export the symbols that are named in
export file bg.version.

3. Issue the following commands to recompile alpha.cbl and produce executable m_alpha that has
external references resolved to sh_bg:

cob2 -o m_alpha alpha.cbl sh_bg.so

You can then run the program by issuing the command m_alpha, which produces the same output as that
shown before the steps above.

Note that sh_bg.so must be in your LD_LIBRARY_PATH environment variable when executing m_alpha.
For example you can add the current directory to your LD_LIBRARY_PATH by issuing the command:

export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

As an alternative to issuing the commands in the last two steps, you can create a makefile that includes
the commands.

“Example: creating a makefile for the sample shared library” on page 464

Related tasks   
“Passing options to the linker” on page 234 

Related references   
“cob2 options” on page 232  
“Linker input and output files” on page 235  
“PGMNAME” on page 275  
 
 

Example: creating a makefile for the sample shared library
The following example shows how you can create a makefile for the shared object, sh_bg.so, that
contains two called programs, beta and gamma.

The makefile assumes that the version script bg.version defines the symbols that the shared library
exports.

(The creation of the shared library is shown in “Example: creating a sample shared library” on page 462.)

#
#
all:     m_abg libbg.a m_alpha

#  Create m_abg containing alpha, beta, and gamma

m_abg:   alpha.cbl beta.cbl gamma.cbl
    cob2 -o m_abg alpha.cbl beta.cbl gamma.cbl

#  Create sh_bg.so containing beta and gamma
#  sh_bg.so is a shared object that exports the symbols defined in bg.version
#    contains both beta and gamma

sh_bg.so: beta.cbl gamma.cbl bg.version
    rm -f sh_bg.so
    cob2 -o sh_bg.so beta.cbl gamma.cbl -Wl,--version-script,bg.version

#  Create m_alpha containing alpha and using shared object sh_bg.so
m_alpha: alpha.cbl
    cob2 -o m_alpha alpha.cbl sh_bg.so

clean:
    rm -f m_abg m_alpha sh_bg.so *.lst

Executing either the command m_abg or the command m_alpha provides the same output.

464  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 25. Preinitializing the COBOL runtime
environment

Using preinitialization, an application can initialize the COBOL runtime environment once, perform
multiple executions using that environment, and then explicitly terminate the environment.

You can use preinitialization to invoke COBOL programs multiple times from a non-COBOL environment
such as C/C++.

Preinitialization has two primary benefits:

• The COBOL environment stays ready for program calls.

Because a COBOL run unit is not terminated on return from the first COBOL program in the run unit,
the COBOL programs that are invoked from a non-COBOL environment can be invoked in their last-used
state.

• Performance is better.

Repeatedly creating and taking down the COBOL runtime environment involves overhead and can slow
down an application.

Use preinitialization services for multilanguage applications in which non-COBOL programs need to use
a COBOL program in its last-used state. For example, a file might be opened on the first call to a COBOL
program, and the invoking program expects subsequent calls to the program to find the file open.

Restriction: Preinitialization is not supported under CICS.

Use the interfaces described in the Related tasks to initialize and terminate a persistent COBOL runtime
environment. Any shared library that contains a COBOL program used in a preinitialized environment
cannot be deleted until the preinitialized environment is terminated.

“Example: preinitializing the COBOL environment” on page 467

Related tasks   
“Initializing persistent COBOL environment” on page 465  
“Terminating preinitialized COBOL environment” on page 466 

Initializing persistent COBOL environment
Use the following interface to initialize a persistent COBOL environment.

CALL init_routine syntax
CALL init_routine ( function_code , routine , error_code , token)

CALL
Invocation of init_routine, using language elements appropriate to the language from which the call is
made

init_routine
The name of the initialization routine: _iwzCOBOLInit or IWZCOBOLINIT

function_code (input)
A 4-byte binary number, passed by value. function_code can be:
1

The first COBOL program invoked after this function invocation is treated as a subprogram.

© Copyright IBM Corp. 2021, 2023 465



routine (input)
Address of the routine to be invoked if the run unit terminates. The token argument passed to this
function is passed to the run-unit termination exit routine. This routine, when invoked upon run-unit
termination, must not return to the invoker of the routine but instead use longjmp() or exit().

If you do not provide an exit routine address, an error_code is generated that indicates that
preinitialization failed.

error_code (output)
A 4-byte binary number. error_code can be:
0

Preinitialization was successful.
1

Preinitialization failed.
token (input)

A 4-byte token to be passed to the exit routine specified above when that routine is invoked upon
run-unit termination.

Related tasks   
“Terminating preinitialized COBOL environment” on page 466 

Terminating preinitialized COBOL environment
Use the following interface to terminate the preinitialized persistent COBOL environment.

CALL term_routine syntax
CALL term_routine ( function_code , error_code )

CALL
Invocation of term_routine, using language elements appropriate to the language from which the call
is made

term_routine
The name of the termination routine: _iwzCOBOLTerm or IWZCOBOLTERM

function_code (input)
A 4-byte binary number, passed by value. function_code can be:
1

Clean up the preinitialized COBOL runtime environment as if a COBOL STOP RUN statement were
performed; for example, all COBOL files are closed. However, the control returns to the caller of
this service.

error_code (output)
A 4-byte binary number. error_code can be:
0

Termination was successful.
1

Termination failed.

The first COBOL program called after the invocation of the preinitialization routine is treated as a
subprogram. Thus a GOBACK from this (initial) program does not trigger run-unit termination semantics
such as the closing of files. Run-unit termination (such as with STOP RUN) does free the preinitialized
COBOL environment before the invocation of the run-unit exit routine.

COBOL environment not active: If your program invokes the termination routine and the COBOL
environment is not already active, the invocation has no effect on execution, and control is returned
to the invoker with an error code of 0.

466  IBM COBOL for Linux on x86 1.1: Programming Guide



“Example: preinitializing the COBOL environment” on page 467

Example: preinitializing the COBOL environment
The following figure illustrates how the preinitialized COBOL environment works. The example shows
a C program initializing the COBOL environment, calling COBOL programs, then terminating the COBOL
environment.

if (setjmp(here) !=0
{
printf("STOP RUNed")

}
printf("setjmp done")
C_Pgmy(here)

...

...

...

...

C_PgmX

_iwzCOBOLInit
(1, C_StopIt, fdbk, here)

...

...

...
COBOL_PgmA()

C_PgmY

CALL COBOL-PgmB
...

...

COBOL-PgmA

STOP RUN
...
COBOL-PgmB

...
_iwzCOBOLInit

longjmp(here)
...
C_StopIt

The following example shows the use of COBOL preinitialization. A C main program calls the COBOL
program XIO several times. The first call to XIO opens the file, the second call writes one record, and so
on. The final call closes the file. The C program then uses C-stream I/O to open and read the file.

To test and run the program, enter the following commands from a command shell:

xlc -c testinit.c
cob2 testinit.o xio.cbl
a.out

The result is:

_iwzCOBOLinit got 0
xio entered with x=0000000000
xio entered with x=0000000001
xio entered with x=0000000002
xio entered with x=0000000003
xio entered with x=0000000004
xio entered with x=0000000099
StopArg=0
_iwzCOBOLTerm expects rc=0 and got rc=0
FILE1 contains ----
11111
22222
33333
---- end of FILE1

Note that in this example, the run unit was not terminated by a COBOL STOP RUN; it was terminated when
the main program called _iwzCOBOLTerm.

The following C program is in the file testinit.c:

#ifdef _Linux
typedef int (*PFN)();
#define LINKAGE
#else
#include <windows.h>
#define LINKAGE _System
#endif

Chapter 25. Preinitializing the COBOL runtime environment  467



#include   <stdio.h>
#include   <setjmp.h>

extern void _iwzCOBOLInit(int fcode, PFN StopFun, int *err_code, void *StopArg);
extern void _iwzCOBOLTerm(int fcode, int *err_code);
extern void LINKAGE XIO(long *k);

jmp_buf Jmpbuf;
long StopArg = 0;

int LINKAGE
StopFun(long *stoparg)
{
        printf("inside StopFun\n");
        *stoparg = 123;
        longjmp(Jmpbuf,1);
}

main()
{
        int rc;
        long k;
        FILE *s;
        int c;

        if (setjmp(Jmpbuf) ==0) {
                _iwzCOBOLInit(1, StopFun, &rc, &StopArg);
                printf( "_iwzCOBOLinit got %d\n",rc);
                for (k=0; k <= 4; k++) XIO(&k);
                k = 99; XIO(&k);
        }
        else printf("return after STOP RUN\n");
        printf("StopArg=%d\n", StopArg);
        _iwzCOBOLTerm(1, &rc);
        printf("_iwzCOBOLTerm expects rc=0 and got rc=%d\n",rc);
        printf("FILE1 contains ---- \n");
        s = fopen("FILE1", "r");
        if (s) {
                while (  (c = fgetc(s) ) != EOF ) putchar(c);
        }
        printf("---- end of FILE1\n");
}

The following COBOL program is in the file xio.cbl:

 IDENTIFICATION DIVISION.
 PROGRAM-ID.     xio.
******************************************************************
 ENVIRONMENT    DIVISION.
 CONFIGURATION   SECTION.
 INPUT-OUTPUT    SECTION.
 FILE-CONTROL.
     SELECT file1 ASSIGN TO FILE1
       ORGANIZATION IS LINE SEQUENTIAL
       FILE STATUS IS file1-status.
 . . .
 DATA           DIVISION.
 FILE SECTION.
 FD FILE1.
 01 file1-id pic x(5).
 . . .
 WORKING-STORAGE SECTION.
 01 file1-status  pic xx    value is zero.
 . . .
 LINKAGE SECTION.
*
 01 x               PIC S9(8) COMP-5.
 . . .
 PROCEDURE DIVISION using x.
 . . .
     display "xio entered with x=" x
     if x = 0 then
       OPEN output FILE1
     end-if
     if x = 1  then
        MOVE ALL "1" to file1-id
        WRITE file1-id
     end-if

468  IBM COBOL for Linux on x86 1.1: Programming Guide



     if x = 2 then
        MOVE ALL "2" to file1-id
        WRITE file1-id
     end-if
     if x = 3 then
        MOVE ALL "3" to file1-id
        WRITE file1-id
     end-if
     if x = 99 then
       CLOSE file1
     end-if
     GOBACK.

Chapter 25. Preinitializing the COBOL runtime environment  469



470  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 26. Processing two-digit-year dates

With the millennium language extensions (MLE), you can make simple changes in your COBOL programs
to define date fields. The compiler recognizes and acts on these dates by using a century window to
ensure consistency.

Use the following steps to implement automatic date recognition in a COBOL program:

1. Add the DATE FORMAT clause to the data description entries of the data items in the program that
contain dates. You must identify all dates with DATE FORMAT clauses, even those that are not used in
comparisons.

2. To expand dates, use MOVE or COMPUTE statements to copy the contents of windowed date fields to
expanded date fields.

3. If necessary, use the DATEVAL and UNDATE intrinsic functions to convert between date fields and
nondates.

4. Use the YEARWINDOW compiler option to set the century window as either a fixed window or a sliding
window.

5. Compile the program with the DATEPROC(FLAG) compiler option, and review the diagnostic messages
to see if date processing has produced any unexpected side effects.

6. When the compilation has only information-level diagnostic messages, you can recompile the program
with the DATEPROC(NOFLAG) compiler option to produce a clean listing.

You can use certain programming techniques to take advantage of date processing and control the
effects of using date fields such as when comparing dates, sorting and merging by date, and performing
arithmetic operations involving dates. The millennium language extensions support year-first, year-only,
and year-last date fields for the most common operations on date fields: comparisons, moving and
storing, and incrementing and decrementing.

Related concepts   
“Millennium language
extensions (MLE)” on page 472 

Related tasks   
“Resolving date-related
logic problems” on page 473  
“Using year-first, year-only,
and year-last date fields” on page 478  
“Manipulating literals as
dates” on page 480  
“Performing arithmetic on
date fields” on page 484  
“Controlling date processing
explicitly” on page 485  
“Analyzing and avoiding
date-related diagnostic messages” on page 487  
“Avoiding problems in processing
dates” on page 489

Related references   
“DATEPROC” on page 261  
“YEARWINDOW” on page 290  
DATE FORMAT clause (COBOL for Linux on x86 Language Reference)

© Copyright IBM Corp. 2021, 2023 471



Millennium language extensions (MLE)
The term millennium language extensions (MLE) refers to the features of COBOL for Linux that the
DATEPROC compiler option activates to help with logic problems that involve dates in the year 2000
and beyond.

When enabled, the extensions include:

• The DATE FORMAT clause. To identify date fields and to specify the location of the year component
within the date, add this clause to items in the DATA DIVISION.

There are several restrictions on use of the DATE FORMAT clause; for example, you cannot specify it for
items that have USAGE NATIONAL. For details, see the related references below.

• The reinterpretation as a date field of the function return value for the following intrinsic functions:

– DATE-OF-INTEGER
– DATE-TO-YYYYMMDD
– DAY-OF-INTEGER
– DAY-TO-YYYYDDD
– YEAR-TO-YYYY

• The reinterpretation as a date field of the conceptual data items DATE, DATE YYYYMMDD, DAY, and DAY
YYYYDDD in the following forms of the ACCEPT statement:

– ACCEPT identifier FROM DATE
– ACCEPT identifier FROM DATE YYYYMMDD
– ACCEPT identifier FROM DAY
– ACCEPT identifier FROM DAY YYYYDDD

• The intrinsic functions UNDATE and DATEVAL, used for selective reinterpretation of date fields and
nondates.

• The intrinsic function YEARWINDOW, which retrieves the starting year of the century window set by the
YEARWINDOW compiler option.

The DATEPROC compiler option enables special date-oriented processing of identified date fields. The
YEARWINDOW compiler option specifies the 100-year window (the century window) to use for interpreting
two-digit windowed years.

Related concepts   
“Principles and objectives of these extensions” on page 472 

Related references   
“DATEPROC” on page 261  
“YEARWINDOW” on page 290  
Restrictions on using date fields (COBOL for Linux on x86 Language Reference)  

Principles and objectives of these extensions
To gain the most benefit from the millennium language extensions, you need to understand the reasons
for their introduction into the COBOL language.

The millennium language extensions focus on a few key principles:

• Programs to be recompiled with date semantics are fully tested and valuable assets of the enterprise.
Their only relevant limitation is that two-digit years in the programs are restricted to the range
1900-1999.

• No special processing is done for the nonyear part of dates. That is why the nonyear part of the
supported date formats is denoted by Xs. To do otherwise might change the meaning of existing
programs. The only date-sensitive semantics that are provided involve automatically expanding (and
contracting) the two-digit year part of dates with respect to the century window for the program.

472  IBM COBOL for Linux on x86 1.1: Programming Guide



• Dates with four-digit year parts are generally of interest only when used in combination with windowed
dates. Otherwise there is little difference between four-digit year dates and nondates.

Based on these principles, the millennium language extensions are designed to meet several objectives.
You should evaluate the objectives that you need to meet in order to resolve your date-processing
problems, and compare them with the objectives of the millennium language extensions, to determine
how your application can benefit from them. You should not consider using the extensions in new
applications or in enhancements to existing applications, unless the applications are using old data that
cannot be expanded until later.

The objectives of the millennium language extensions are as follows:

• Extend the useful life of your application programs as they are currently specified.
• Keep source changes to a minimum, preferably limited to augmenting the declarations of date fields in

the DATA DIVISION. To implement the century window solution, you should not need to change the
program logic in the PROCEDURE DIVISION.

• Preserve the existing semantics of the programs when adding date fields. For example, when a date
is expressed as a literal, as in the following statement, the literal is considered to be compatible
(windowed or expanded) with the date field to which it is compared:

If Expiry-Date Greater Than 980101 . . .

Because the existing program assumes that two-digit-year dates expressed as literals are in the range
1900-1999, the extensions do not change this assumption.

• The windowing feature is not intended for long-term use. It can extend the useful life of applications as
a start toward a long-term solution that can be implemented later.

• The expanded date field feature is intended for long-term use, as an aid for expanding date fields in files
and databases.

The extensions do not provide fully specified or complete date-oriented data types, with semantics that
recognize, for example, the month and day parts of Gregorian dates. They do, however, provide special
semantics for the year part of dates.

Resolving date-related logic problems
You can adopt any of three approaches to assist with date-processing problems: use a century window,
internal bridging, or full field expansion.

Century window
You define a century window and specify the fields that contain windowed dates. The compiler then
interprets the two-digit years in these data fields according to the century window.

Internal bridging
If your files and databases have not yet been converted to four-digit-year dates, but you prefer to use
four-digit expanded-year logic in your programs, you can use an internal bridging technique to process
the dates as four-digit-year dates.

Full field expansion
This solution involves explicitly expanding two-digit-year date fields to contain full four-digit years in
your files and databases and then using these fields in expanded form in your programs. This is the
only method that assures reliable date processing for all applications.

You can use the millennium language extensions with each approach to achieve a solution, but each has
advantages and disadvantages, as shown below.

Chapter 26. Processing two-digit-year dates  473



Table 49. Advantages and disadvantages of Year 2000 solutions

Aspect Century window Internal bridging Full field expansion

Implementation Fast and easy but might
not suit all applications

Some risk of corrupting
data

Must ensure that changes to
databases, copybooks, and
programs are synchronized

Testing Less testing is required
because no changes to
program logic

Testing is easy because
changes to program
logic are straightforward

 

Duration of fix Programs can function
beyond 2000, but not a
long-term solution

Programs can function
beyond 2000, but not a
permanent solution

Permanent solution

Performance Might degrade
performance

Good performance Best performance

Maintenance     Maintenance is easier.

“Example: century window” on page 475
“Example: internal bridging” on page 476
“Example: converting files to expanded date form” on page 477 

Related tasks   
“Using a century window” on page 474  
“Using internal bridging” on page 475  
“Moving to full field expansion” on page 476 

Using a century window
A century window is a 100-year interval, such as 1950-2049, within which any two-digit year is unique.
For windowed date fields, you specify the century window start date by using the YEARWINDOW compiler
option.

When the DATEPROC option is in effect, the compiler applies this window to two-digit date fields in
the program. For example, given the century window 1930-2029, COBOL interprets two-digit years as
follows:

• Year values from 00 through 29 are interpreted as years 2000-2029.
• Year values from 30 through 99 are interpreted as years 1930-1999.

To implement this century window, you use the DATE FORMAT clause to identify the date fields in your
program and use the YEARWINDOW compiler option to define the century window as either a fixed window
or a sliding window:

• For a fixed window, specify a four-digit year between 1900 and 1999 as the YEARWINDOW option value.

For example, YEARWINDOW(1950) defines a fixed window of 1950-2049.
• For a sliding window, specify a negative integer from -1 through -99 as the YEARWINDOW option value.

For example, YEARWINDOW(-50) defines a sliding window that starts 50 years before the year in which
the program is running. So if the program is running in 2010, the century window is 1960-2059; in 2011
the century window automatically becomes 1961-2060, and so on.

The compiler automatically applies the century window to operations on the date fields that you have
identified. You do not need any extra program logic to implement the windowing.

“Example: century window” on page 475

Related references   
“DATEPROC” on page 261  

474  IBM COBOL for Linux on x86 1.1: Programming Guide



“YEARWINDOW” on page 290  
DATE FORMAT clause (COBOL for Linux on x86 Language Reference)  
Restrictions on using date fields (COBOL for Linux on x86 Language Reference)

Example: century window
The following example shows (in bold) how to modify a program by using the DATE FORMAT clause to
take advantage of automatic date windowing.

CBLQUOTE,NOOPT,DATEPROC(FLAG),YEARWINDOW(-60)
. . .
01  Loan-Record.
    05  Member-Number   Pic X(8).
    05  DVD-ID          Pic X(8).
    05  Date-Due-Back   Pic X(6) Date Format yyxxxx.
    05  Date-Returned   Pic X(6) Date Format yyxxxx.
. . .
    If Date-Returned > Date-Due-Back Then
       Perform Fine-Member.

There are no changes to the PROCEDURE DIVISION. The addition of the DATE FORMAT clause to the two
date fields means that the compiler recognizes them as windowed date fields and therefore applies the
century window when processing the IF statement. For example, if Date-Due-Back contains 100102
(January 2, 2010) and Date-Returned contains 091231 (December 31, 2009), Date-Returned is
less than (earlier than) Date-Due-Back, and thus the program does not perform the Fine-Member
paragraph. (The program checks whether a DVD was returned on time.)

Using internal bridging
For internal bridging, you need to structure your program appropriately.

Do the following steps:

1. Read the input files with two-digit-year dates.
2. Declare these two-digit dates as windowed date fields and move them to expanded date fields, so that

the compiler automatically expands them to four-digit-year dates.
3. In the main body of the program, use the four-digit-year dates for all date processing.
4. Window the dates back to two-digit years.
5. Write the two-digit-year dates to the output files.

This process provides a convenient migration path to a full expanded-date solution, and can have
performance advantages over using windowed dates.

When you use this technique, your changes to the program logic are minimal. You simply add statements
to expand and contract the dates, and change the statements that refer to dates to use the four-digit-year
date fields in WORKING-STORAGE instead of the two-digit-year fields in the records.

Because you are converting the dates back to two-digit years for output, you should allow for the
possibility that the year is outside the century window. For example, if a date field contains the year 2020,
but the century window is 1920-2019, then the date is outside the window. Simply moving the year to a
two-digit-year field will be incorrect. To protect against this problem, you can use a COMPUTE statement
to store the date, with the ON SIZE ERROR phrase to detect whether the date is outside the century
window.

“Example: internal bridging” on page 476

Related tasks   
“Using a century window” on page 474  
“Performing arithmetic on
date fields” on page 484  
“Moving to full field expansion” on page 476 

Chapter 26. Processing two-digit-year dates  475



Example: internal bridging
The following example shows (in bold) how a program can be changed to implement internal bridging.

CBL  DATEPROC(FLAG),YEARWINDOW(-60)
    . . .
    File Section.
    FD  Customer-File.
    01  Cust-Record.
        05  Cust-Number     Pic 9(9) Binary.
        . . .
        05  Cust-Date       Pic 9(6) Date Format yyxxxx.
    Working-Storage Section.
    77  Exp-Cust-Date       Pic 9(8) Date Format yyyyxxxx.
    . . .
    Procedure Division.
        Open I-O Customer-File.
        Read Customer-File.
        Move Cust-Date to Exp-Cust-Date.
        . . .
   *=====================================================*
   * Use expanded date in the rest of the program logic  *
   *=====================================================*
        . . .
        Compute Cust-Date = Exp-Cust-Date
             On Size Error
                Display "Exp-Cust-Date outside century window"
        End-Compute
        Rewrite Cust-Record.

Moving to full field expansion
Using the millennium language extensions, you can move gradually toward a solution that fully expands
the date field.

Do the following steps:

1. Apply the century window solution, and use this solution until you have the resources to implement a
more permanent solution.

2. Apply the internal bridging solution. This way you can use expanded dates in your programs while
your files continue to hold dates in two-digit-year form. You can progress more easily to a full-field-
expansion solution because there will be no further changes to the logic in the main body of the
programs.

3. Change the file layouts and database definitions to use four-digit-year dates.
4. Change your COBOL copybooks to reflect these four-digit-year date fields.
5. Run a utility program (or special-purpose COBOL program) to copy files from the old format to the new

format.
6. Recompile your programs and do regression testing and date testing.

After you have completed the first two steps, you can repeat the remaining steps any number of times.
You do not need to change every date field in every file at the same time. Using this method, you can
select files for progressive conversion based on criteria such as business needs or interfaces with other
applications.

When you use this method, you need to write special-purpose programs to convert your files to
expanded-date form.

“Example: converting files to expanded date form” on page 477

476  IBM COBOL for Linux on x86 1.1: Programming Guide



Example: converting files to expanded date form
The following example shows a simple program that copies from one file to another while expanding the
date fields. The record length of the output file is larger than that of the input file because the dates are
expanded.

CBL  QUOTE,NOOPT,DATEPROC(FLAG),YEARWINDOW(-80)
      ************************************************
      ** CONVERT - Read a file, convert the date    **
      **           fields to expanded form, write   **
      **           the expanded records to a new    **
      **           file.                            **
      ************************************************
       IDENTIFICATION DIVISION.
       PROGRAM-ID.  CONVERT.

       ENVIRONMENT DIVISION.

       INPUT-OUTPUT SECTION.
       FILE-CONTROL.
           SELECT INPUT-FILE
                  ASSIGN TO INFILE
                  FILE STATUS IS INPUT-FILE-STATUS.

           SELECT OUTPUT-FILE
                  ASSIGN TO OUTFILE
                  FILE STATUS IS OUTPUT-FILE-STATUS.

       DATA DIVISION.
       FILE SECTION.
       FD  INPUT-FILE
           RECORDING MODE IS F.
       01  INPUT-RECORD.
           03  CUST-NAME.
               05  FIRST-NAME  PIC X(10).
               05  LAST-NAME   PIC X(15).
           03  ACCOUNT-NUM     PIC 9(8).
           03  DUE-DATE        PIC X(6) DATE FORMAT YYXXXX.    (1)
           03  REMINDER-DATE   PIC X(6) DATE FORMAT YYXXXX.
           03  DUE-AMOUNT      PIC S9(5)V99 COMP-3.

       FD  OUTPUT-FILE
           RECORDING MODE IS F.
       01  OUTPUT-RECORD.
           03  CUST-NAME.
               05  FIRST-NAME  PIC X(10).
               05  LAST-NAME   PIC X(15).
           03  ACCOUNT-NUM     PIC 9(8).
           03  DUE-DATE        PIC X(8) DATE FORMAT YYYYXXXX.  (2)
           03  REMINDER-DATE   PIC X(8) DATE FORMAT YYYYXXXX.
           03  DUE-AMOUNT      PIC S9(5)V99 COMP-3.

       WORKING-STORAGE SECTION.

       01  INPUT-FILE-STATUS   PIC 99.
       01  OUTPUT-FILE-STATUS  PIC 99.

       PROCEDURE DIVISION.

           OPEN INPUT INPUT-FILE.
           OPEN OUTPUT OUTPUT-FILE.

       READ-RECORD.
           READ INPUT-FILE
                AT END GO TO CLOSE-FILES.
           MOVE CORRESPONDING INPUT-RECORD TO OUTPUT-RECORD.   (3)
           WRITE OUTPUT-RECORD.

           GO TO READ-RECORD.

       CLOSE-FILES.
           CLOSE INPUT-FILE.
           CLOSE OUTPUT-FILE.

           EXIT PROGRAM.

       END PROGRAM CONVERT.

Chapter 26. Processing two-digit-year dates  477



Notes:

(1)
The fields DUE-DATE and REMINDER-DATE in the input record are Gregorian dates with two-digit year
components. They are defined with a DATE FORMAT clause so that the compiler recognizes them as
windowed date fields.

(2)
The output record contains the same two fields in expanded date format. They are defined with a
DATE FORMAT clause so that the compiler treats them as four-digit-year date fields.

(3)
The MOVE CORRESPONDING statement moves each item in INPUT-RECORD to its matching item in
OUTPUT-RECORD. When the two windowed date fields are moved to the corresponding expanded date
fields, the compiler expands the year values using the current century window.

Using year-first, year-only, and year-last date fields
When you compare two date fields of either year-first or year-only types, the two dates must be
compatible; that is, they must have the same number of nonyear characters. The number of digits for
the year component need not be the same.

A year-first date field is a date field whose DATE FORMAT specification consists of YY or YYYY, followed
by one or more Xs. The date format of a year-only date field has just the YY or YYYY. A year-last date field
is a date field whose DATE FORMAT clause specifies one or more Xs preceding YY or YYYY.

Year-last date formats are commonly used to display dates, but are less useful computationally because
the year, which is the most significant part of the date, is in the least significant position of the date
representation.

Functional support for year-last date fields is limited to equal or unequal comparisons and certain kinds
of assignment. The operands must be either dates with identical (year-last) date formats, or a date and
a nondate. The compiler does not provide automatic windowing for operations on year-last dates. When
an unsupported usage (such as arithmetic on year-last dates) occurs, the compiler provides an error-level
message.

If you need more general date-processing capability for year-last dates, you should isolate and operate on
the year part of the date.

“Example: comparing year-first date fields” on page 479

Related concepts   
“Compatible dates” on page 478 

Related tasks   
“Using other date formats” on page 479

Compatible dates
The meaning of the term compatible dates depends on whether the usage occurs in the DATA DIVISION
or the PROCEDURE DIVISION.

The DATA DIVISION usage deals with the declaration of date fields, and the rules that govern
COBOL language elements such as subordinate data items and the REDEFINES clause. In the following
example, Review-Date and Review-Year are compatible because Review-Year can be declared as a
subordinate data item to Review-Date:

01  Review-Record.
    03  Review-Date               Date Format yyxxxx.
        05  Review-Year Pic XX    Date Format yy.
        05  Review-M-D  Pic XXXX.

The PROCEDURE DIVISION usage deals with how date fields can be used together in operations such as
comparisons, moves, and arithmetic expressions. For year-first and year-only date fields to be considered

478  IBM COBOL for Linux on x86 1.1: Programming Guide



compatible, date fields must have the same number of nonyear characters. For example, a field with DATE
FORMAT YYXXXX is compatible with another field that has the same date format and with a YYYYXXXX
field, but not with a YYXXX field.

Year-last date fields must have identical DATE FORMAT clauses. In particular, operations between
windowed date fields and expanded year-last date fields are not allowed. For example, you can move
a date field that has a date format of XXXXYY to another XXXXYY date field, but not to a date field that has
a format of XXXXYYYY.

You can perform operations on date fields, or on a combination of date fields and nondates, provided that
the date fields in the operation are compatible. For example, assume the following definitions:

01  Date-Gregorian-Win  Pic 9(6) Packed-Decimal Date Format yyxxxx.
01  Date-Julian-Win     Pic 9(5) Packed-Decimal Date Format yyxxx.
01  Date-Gregorian-Exp  Pic 9(8) Packed-Decimal Date Format yyyyxxxx.

The following statement is inconsistent because the number of nonyear digits is different between the
two fields:

If Date-Gregorian-Win Less than Date-Julian-Win . . .

The following statement is accepted because the number of nonyear digits is the same for both fields:

If Date-Gregorian-Win Less than Date-Gregorian-Exp . . .

In this case the century window is applied to the windowed date field (Date-Gregorian-Win) to ensure
that the comparison is meaningful.

When a nondate is used in conjunction with a date field, the nondate is either assumed to be compatible
with the date field or is treated as a simple numeric value.

Example: comparing year-first date fields
The following example shows a windowed date field that is compared with an expanded date field.

77  Todays-Date         Pic X(8) Date Format yyyyxxxx.
01  Loan-Record.
    05  Date-Due-Back   Pic X(6) Date Format yyxxxx.
. . .
    If Date-Due-Back > Todays-Date Then . . .

The century window is applied to Date-Due-Back. Todays-Date must have a DATE FORMAT clause to
define it as an expanded date field. If it did not, it would be treated as a nondate field and would therefore
be considered to have the same number of year digits as Date-Due-Back. The compiler would apply the
assumed century window of 1900-1999, which would create an inconsistent comparison.

Using other date formats
To be eligible for automatic windowing, a date field should contain a two-digit year as the first or only part
of the field. The remainder of the field, if present, must contain between one and four characters, but its
content is not important.

If there are date fields in your application that do not fit these criteria, you might have to make some
code changes to define just the year part of the date as a date field with the DATE FORMAT clause. Some
examples of these types of date formats are:

• A seven-character field that consists of a two-digit year, three characters that contain an abbreviation of
the month, and two digits for the day of the month. This format is not supported because date fields can
have only one through four nonyear characters.

Chapter 26. Processing two-digit-year dates  479



• A Gregorian date of the form DDMMYY. Automatic windowing is not provided because the year
component is not the first part of the date. Year-last dates such as these are fully supported as
windowed keys in SORT or MERGE statements, and are also supported in a limited number of other
COBOL operations.

If you need to use date windowing in cases like these, you will need to add some code to isolate the year
portion of the date.

Example: isolating the year
The following example shows how you can isolate the year portion of a data field that is in the form
DDMMYY.

03  Last-Review-Date Pic 9(6).
03  Next-Review-Date Pic 9(6).
. . .
Add 1 to Last-Review-Date Giving Next-Review-Date.

In the code above, if Last-Review-Date contains 230110 (January 23, 2010), then Next-Review-
Date will contain 230111 (January 23, 2011) after the ADD statement is executed. This is a simple
method for setting the next date for an annual review. However, if Last-Review-Date contains 230199,
then adding 1 yields 230200, which is not the required result.

Because the year is not the first part of these date fields, the DATE FORMAT clause cannot be applied
without some code to isolate the year component. In the next example, the year component of both date
fields has been isolated so that COBOL can apply the century window and maintain consistent results:

03  Last-Review-Date Date Format xxxxyy.
    05  Last-R-DDMM  Pic 9(4).
    05  Last-R-YY    Pic 99 Date Format yy.
03  Next-Review-Date Date Format xxxxyy.
    05  Next-R-DDMM  Pic 9(4).
    05  Next-R-YY    Pic 99 Date Format yy.
. . .
Move Last-R-DDMM to Next-R-DDMM.
Add 1 to Last-R-YY Giving Next-R-YY.

Manipulating literals as dates
If a windowed date field has an associated level-88 condition-name, then the literal in the VALUE clause
is windowed against the century window of the compile unit rather than against the assumed century
window of 1900-1999.

For example, suppose you have these data definitions:

05  Date-Due        Pic 9(6)  Date Format yyxxxx.
    88  Date-Target           Value 101220.

If the century window is 1950-2049, and the contents of Date-Due are 101220 (representing December
20, 2010), then the first condition below evaluates to true, but the second condition evaluates to false:

If Date-Target. . .
If Date-Due = 101220

The literal 101220 is treated as a nondate; therefore it is windowed against the assumed century window
of 1900-1999, and represents December 20, 1909. But where the literal is specified in the VALUE clause
of a level-88 condition-name, the literal becomes part of the data item to which it is attached. Because
this data item is a windowed date field, the century window is applied whenever that data item is
referenced.

480  IBM COBOL for Linux on x86 1.1: Programming Guide



You can also use the DATEVAL intrinsic function in a comparison expression to convert a literal to a
date field. The resulting date field is treated as either a windowed date field or an expanded date
field to ensure a consistent comparison. For example, using the above definitions, both of the following
conditions evaluate to true:

If Date-Due = Function DATEVAL (101220 "YYXXXX")
If Date-Due = Function DATEVAL (20101220 "YYYYXXXX")

With a level-88 condition-name, you can specify the THRU option on the VALUE clause, but you must
specify a fixed century window in the YEARWINDOW compiler option rather than a sliding window. For
example:

05  Year-Field  Pic 99  Date Format yy.
    88 In-Range         Value 98 Thru 06.

With this form, the windowed value of the second item in the range must be greater than the windowed
value of the first item. However, the compiler can verify this difference only if the YEARWINDOW
compiler option specifies a fixed century window (for example, YEARWINDOW(1940) rather than
YEARWINDOW(-70)).

The windowed order requirement does not apply to year-last date fields. If you specify a condition-name
VALUE clause with the THROUGH phrase for a year-last date field, the two literals must follow normal
COBOL rules. That is, the first literal must be less than the second literal.

Related concepts   
“Assumed century window” on page 481  
“Treatment of nondates” on page 482 

Related tasks   
“Controlling date processing
explicitly” on page 485 

Assumed century window
When a program uses windowed date fields, the compiler applies the century window that is defined
by the YEARWINDOW compiler option to the compilation unit. When a windowed date field is used in
conjunction with a nondate, and the context demands that the nondate be treated as a windowed date,
the compiler uses an assumed century window to resolve the nondate field.

The assumed century window is 1900-1999, which typically is not the same as the century window for
the compilation unit.

In many cases, particularly for literal nondates, this assumed century window is the correct choice. In the
following construct, the literal should retain its original meaning of January 1, 1972, and not change to
2072 if the century window is, for example, 1975-2074:

01  Manufacturing-Record.
    03  Makers-Date Pic X(6) Date Format yyxxxx.
. . .
    If Makers-Date Greater than "720101" . . .

Even if the assumption is correct, it is better to make the year explicit and eliminate the warning-level
diagnostic message (which results from applying the assumed century window) by using the DATEVAL
intrinsic function:

If Makers-Date Greater than
    Function Dateval("19720101" "YYYYXXXX") . . .

Chapter 26. Processing two-digit-year dates  481



In some cases, the assumption might not be correct. For the following example, assume that Project-
Controls is in a copy member that is used by other applications that have not yet been upgraded for
year 2000 processing, and therefore Date-Target cannot have a DATE FORMAT clause:

01  Project-Controls.
    03  Date-Target     Pic 9(6).
. . .
01  Progress-Record.
    03  Date-Complete   Pic 9(6) Date Format yyxxxx.
. . .
    If Date-Complete Less than Date-Target . . .

In the example above, the following three conditions need to be true to make Date-Complete earlier
than (less than) Date-Target:

• The century window is 1910-2009.
• Date-Complete is 991202 (Gregorian date: December 2, 1999).
• Date-Target is 000115 (Gregorian date: January 15, 2000).

However, because Date-Target does not have a DATE FORMAT clause, it is a nondate. Therefore, the
century window applied to it is the assumed century window of 1900-1999, and it is processed as
January 15, 1900. So Date-Complete will be greater than Date-Target, which is not the required
result.

In this case, you should use the DATEVAL intrinsic function to convert Date-Target to a date field for
this comparison. For example:

If Date-Complete Less than
    Function Dateval (Date-Target "YYXXXX") . . .

Related tasks   
“Controlling date processing
explicitly” on page 485 

Treatment of nondates
How the compiler treats a nondate depends upon its context.

The following items are nondates:

• A literal value.
• A data item whose data description does not include a DATE FORMAT clause.
• The results (intermediate or final) of some arithmetic expressions. For example, the difference of two

date fields is a nondate, whereas the sum of a date field and a nondate is a date field.
• The output from the UNDATE intrinsic function.

When you use a nondate in conjunction with a date field, the compiler interprets the nondate either as
a date whose format is compatible with the date field or as a simple numeric value. This interpretation
depends on the context in which the date field and nondate are used, as follows:

• Comparison

When a date field is compared with a nondate, the nondate is considered to be compatible with the
date field in the number of year and nonyear characters. In the following example, the nondate literal
971231 is compared with a windowed date field:

01  Date-1    Pic 9(6) Date Format yyxxxx.
. . .
    If Date-1 Greater than 971231 . . .

482  IBM COBOL for Linux on x86 1.1: Programming Guide



The nondate literal 971231 is treated as if it had the same DATE FORMAT as Date-1, but with a base
year of 1900.

• Arithmetic operations

In all supported arithmetic operations, nondate fields are treated as simple numeric values. In the
following example, the numeric value 10000 is added to the Gregorian date in Date-2, effectively
adding one year to the date:

01  Date-2    Pic 9(6) Date Format yyxxxx.
. . .
    Add 10000 to Date-2.

• MOVE statement

Moving a date field to a nondate is not supported. However, you can use the UNDATE intrinsic function to
do this.

When you move a nondate to a date field, the sending field is assumed to be compatible with the
receiving field in the number of year and nonyear characters. For example, when you move a nondate to
a windowed date field, the nondate field is assumed to contain a compatible date with a two-digit year.

Using sign conditions
Some applications use special values such as zeros in date fields to act as a trigger, that is, to signify that
some special processing is required.

For example, in an Orders file, a value of zero in Order-Date might signify that the record is a customer
totals record rather than an order record. The program compares the date to zero, as follows:

01  Order-Record.
    05  Order-Date      Pic S9(5) Comp-3 Date Format yyxxx.
. . .
    If Order-Date Equal Zero Then . . .

However, this comparison is not valid because the literal value Zero is a nondate, and is therefore
windowed against the assumed century window to give a value of 1900000.

Alternatively, you can use a sign condition instead of a literal comparison as follows. With a sign condition,
Order-Date is treated as a nondate, and the century window is not considered.

If Order-Date Is Zero Then . . .

This approach applies only if the operand in the sign condition is a simple identifier rather than an
arithmetic expression. If an expression is specified, the expression is evaluated first, with the century
window being applied where appropriate. The sign condition is then compared with the results of the
expression.

You could use the UNDATE intrinsic function instead to achieve the same result.

Related concepts   
“Treatment of nondates” on page 482 

Related tasks   
“Controlling date processing
explicitly” on page 485

Related references   
“DATEPROC” on page 261 

Chapter 26. Processing two-digit-year dates  483



Performing arithmetic on date fields
You can perform arithmetic operations on numeric date fields in the same manner as on any numeric data
item. Where appropriate, the century window will be used in the calculation.

However, there are some restrictions on where date fields can be used in arithmetic expressions and
statements. Arithmetic operations that include date fields are restricted to:

• Adding a nondate to a date field
• Subtracting a nondate from a date field
• Subtracting a date field from a compatible date field to give a nondate result

The following arithmetic operations are not allowed:

• Any operation between incompatible date fields
• Adding two date fields
• Subtracting a date field from a nondate
• Unary minus applied to a date field
• Multiplication, division, or exponentiation of or by a date field
• Arithmetic expressions that specify a year-last date field
• Arithmetic expressions that specify a year-last date field, except as a receiving data item when the

sending field is a nondate

Date semantics are provided for the year parts of date fields but not for the nonyear parts. For example,
adding 1 to a windowed Gregorian date field that contains the value 980831 gives a result of 980832, not
980901.

Related tasks   
“Allowing for overflow
from windowed date fields” on page 484  
“Specifying the order of evaluation” on page 485 

Allowing for overflow from windowed date fields
A (nonyear-last) windowed date field that participates in an arithmetic operation is processed as if the
value of the year component of the field were first incremented by 1900 or 2000, depending on the
century window.

01 Review-Record.
    03 Last-Review-Year Pic 99 Date Format yy.
    03 Next-Review-Year Pic 99 Date Format yy.
. . .
    Add 10 to Last-Review-Year Giving Next-Review-Year.

In the example above, if the century window is 1910-2009, and the value of Last-Review-Year is 98,
then the computation proceeds as if Last-Review-Year is first incremented by 1900 to give 1998.
Then the ADD operation is performed, giving a result of 2008. This result is stored in Next-Review-Year
as 08.

However, the following statement would give a result of 2018:

Add 20 to Last-Review-Year Giving Next-Review-Year.

This result falls outside the range of the century window. If the result is stored in Next-Review-Year,
it will be incorrect because later references to Next-Review-Year will interpret it as 1918. In this case,
the result of the operation depends on whether the ON SIZE ERROR phrase is specified on the ADD
statement:

484  IBM COBOL for Linux on x86 1.1: Programming Guide



• If SIZE ERROR is specified, the receiving field is not changed, and the SIZE ERROR imperative
statement is executed.

• If SIZE ERROR is not specified, the result is stored in the receiving field with the left-hand digits
truncated.

This consideration is important when you use internal bridging. When you contract a four-digit-year date
field back to two digits to write it to the output file, you need to ensure that the date falls within the
century window. Then the two-digit-year date will be represented correctly in the field.

To ensure appropriate calculations, use a COMPUTE statement to do the contraction, with a SIZE ERROR
phrase to handle the out-of-window condition. For example:

Compute Output-Date-YY = Work-Date-YYYY
On Size Error Perform CenturyWindowOverflow.

SIZE ERROR processing for windowed date receivers recognizes any year value that falls outside the
century window. That is, a year value less than the starting year of the century window raises the SIZE
ERROR condition, as does a year value greater than the ending year of the century window.

Related tasks   
“Using internal bridging” on page 475 

Specifying the order of evaluation
Because of the restrictions on date fields in arithmetic expressions, you might find that programs that
previously compiled successfully now produce diagnostic messages when some of the data items are
changed to date fields.

01 Dates-Record.
    03 Start-Year-1 Pic 99 Date Format yy.
    03 End-Year-1   Pic 99 Date Format yy.
    03 Start-Year-2 Pic 99 Date Format yy.
    03 End-Year-2   Pic 99 Date Format yy.
. . .
    Compute End-Year-2 = Start-Year-2 + End-Year-1 - Start-Year-1.

In the example above, the first arithmetic expression evaluated is:

Start-Year-2 + End-Year-1

However, the addition of two date fields is not permitted. To resolve these date fields, you should use
parentheses to isolate the parts of the arithmetic expression that are allowed. For example:

Compute End-Year-2 = Start-Year-2 + (End-Year-1 - Start-Year-1).

In this case, the first arithmetic expression evaluated is:

End-Year-1 - Start-Year-1

The subtraction of one date field from another is permitted and gives a nondate result. This nondate result
is then added to the date field End-Year-1, giving a date field result that is stored in End-Year-2.

Controlling date processing explicitly
There might be times when you want COBOL data items to be treated as date fields only under certain
conditions or only in specific parts of the program. Or your application might contain two-digit-year date

Chapter 26. Processing two-digit-year dates  485



fields that cannot be declared as windowed date fields because of some interaction with another software
product.

For example, if a date field is used in a context where it is recognized only by its true binary contents
without further interpretation, the date in that field cannot be windowed. Such date fields include:

• A key in an SdU file
• A search field in a database system such as Db2
• A key field in a CICS command

Conversely, there might be times when you want a date field to be treated as a nondate in specific parts of
the program.

COBOL provides two intrinsic functions to deal with these conditions:

DATEVAL
Converts a nondate to a date field

UNDATE
Converts a date field to a nondate

Related tasks   
“Using DATEVAL” on page 486  
“Using UNDATE” on page 486 

Using DATEVAL
You can use the DATEVAL intrinsic function to convert a nondate to a date field, so that COBOL will apply
the relevant date processing to the field.

The first argument in the function is the nondate to be converted, and the second argument specifies the
date format. The second argument is a literal string with a specification similar to that of the date pattern
in the DATE FORMAT clause.

In most cases, the compiler makes the correct assumption about the interpretation of a nondate but
accompanies this assumption with a warning-level diagnostic message. This message typically happens
when a windowed date is compared with a literal:

03  When-Made        Pic x(6) Date Format yyxxxx.
. . .
If When-Made = "850701" Perform Warranty-Check.

The literal is assumed to be a compatible windowed date but with a century window of 1900-1999, thus
representing July 15, 1985. You can use the DATEVAL intrinsic function to make the year of the literal
date explicit and eliminate the warning message:

If When-Made = Function Dateval("19850701" "YYYYXXXX")
    Perform Warranty-Check.

“Example: DATEVAL” on page 487

Using UNDATE
You can use the UNDATE intrinsic function to convert a date field to a nondate so that it can be referenced
without any date processing.

Attention: Avoid using UNDATE except as a last resort, because the compiler will lose the flow of date
fields in your program. This problem could result in date comparisons not being windowed properly.

Use more DATE FORMAT clauses instead of function UNDATE for MOVE and COMPUTE.

“Example: UNDATE” on page 487

486  IBM COBOL for Linux on x86 1.1: Programming Guide



Example: DATEVAL
This example shows a case where it is better to leave a field as a nondate, and use the DATEVAL intrinsic
function in a comparison statement.

Assume that a field Date-Copied is referenced many times in a program, but that most of the references
just move the value between records or reformat it for printing. Only one reference relies on it to contain
a date (for comparison with another date). In this case, it is better to leave the field as a nondate, and use
the DATEVAL intrinsic function in the comparison statement. For example:

03  Date-Distributed Pic 9(6) Date Format yyxxxx.
03  Date-Copied      Pic 9(6).
. . .
If Function DATEVAL(Date-Copied "YYXXXX") Less than Date-Distributed . . .

In this example, DATEVAL converts Date-Copied to a date field so that the comparison will be
meaningful.

Related references   
DATEVAL (COBOL for Linux on x86 Language Reference)

Example: UNDATE
The following example shows a case where you might want to convert a date field to a nondate.

The field Invoice-Date is a windowed Julian date. In some records, it contains the value 00999 to
indicate that the record is not a true invoice record, but instead contains file-control information.

Invoice-Date has a DATE FORMAT clause because most of its references in the program are date-
specific. However, when it is checked for the existence of a control record, the value 00 in the year
component will lead to some confusion. A year value of 00 in Invoice-Date could represent either 1900
or 2000, depending on the century window. This is compared with a nondate (the literal 00999 in the
example), which will always be windowed against the assumed century window and therefore always
represents the year 1900.

To ensure a consistent comparison, you should use the UNDATE intrinsic function to convert Invoice-
Date to a nondate. Therefore, if the IF statement is not comparing date fields, it does not need to apply
windowing. For example:

01  Invoice-Record.
    03  Invoice-Date    Pic x(5) Date Format yyxxx.
. . .
    If FUNCTION UNDATE(Invoice-Date) Equal "00999" . . .

Related references   
UNDATE (COBOL for Linux on x86 Language Reference)

Analyzing and avoiding date-related diagnostic messages
When the DATEPROC(FLAG) compiler option is in effect, the compiler produces diagnostic messages for
every statement that defines or references a date field.

As with all compiler-generated messages, each date-related message has one of the following severity
levels:

• Information-level, to draw your attention to the definition or use of a date field.
• Warning-level, to indicate that the compiler has had to make an assumption about a date field or

nondate because of inadequate information coded in the program, or to indicate the location of date
logic that should be manually checked for correctness. Compilation proceeds, with any assumptions
continuing to be applied.

Chapter 26. Processing two-digit-year dates  487



• Error-level, to indicate that the usage of the date field is incorrect. Compilation continues, but runtime
results are unpredictable.

• Severe-level, to indicate that the usage of the date field is incorrect. The statement that caused this
error is discarded from the compilation.

The easiest way to use the MLE messages is to compile with a FLAG option setting that embeds the
messages in the source listing after the line to which the messages refer. You can choose to see all MLE
messages or just certain severities.

To see all MLE messages, specify the FLAG(I,I) and DATEPROC(FLAG) compiler options. Initially, you
might want to see all of the messages to understand how MLE is processing the date fields in your
program. For example, if you want to do a static analysis of the date usage in a program by using the
compile listing, use FLAG (I,I).

However, it is recommended that you specify FLAG(W,W) for MLE-specific compiles. You must resolve
all severe-level (S-level) error messages, and you should resolve all error-level (E-level) messages as
well. For the warning-level (W-level) messages, you need to examine each message and use the following
guidelines to either eliminate the message or, for unavoidable messages, ensure that the compiler makes
correct assumptions:

• The diagnostic messages might indicate some date data items that should have had a DATE FORMAT
clause. Either add DATE FORMAT clauses to these items or use the DATEVAL intrinsic function in
references to them.

• Pay particular attention to literals in relation conditions that involve date fields or in arithmetic
expressions that include date fields. You can use the DATEVAL function on literals (as well as nondate
data items) to specify a DATE FORMAT pattern to be used. As a last resort, you can use the UNDATE
function to enable a date field to be used in a context where you do not want date-oriented behavior.

• With the REDEFINES and RENAMES clauses, the compiler might produce a warning-level diagnostic
message if a date field and a nondate occupy the same storage location. You should check these cases
carefully to confirm that all uses of the aliased data items are correct, and that none of the perceived
nondate redefinitions actually is a date or can adversely affect the date logic in the program.

In some cases, a the W-level message might be acceptable, but you might want to change the code to get
a compile with a return code of zero.

To avoid warning-level diagnostic messages, follow these guidelines:

• Add DATE FORMAT clauses to any data items that will contain dates, even if the items are not used in
comparisons. But see the Related references below about restrictions on using date fields. For example,
you cannot use the DATE FORMAT clause on a data item that is described implicitly or explicitly as
USAGE NATIONAL.

• Do not specify a date field in a context where a date field does not make sense, such as a FILE
STATUS, PASSWORD, ASSIGN USING, LABEL RECORD, or LINAGE item. If you do, you will get a
warning-level message and the date field will be treated as a nondate.

• Ensure that implicit or explicit aliases for date fields are compatible, such as in a group item that
consists solely of a date field.

• Ensure that if a date field is defined with a VALUE clause, the value is compatible with the date field
definition.

• Use the DATEVAL intrinsic function if you want a nondate treated as a date field, such as when moving a
nondate to a date field or when comparing a windowed date with a nondate and you want a windowed
date comparison. If you do not use DATEVAL, the compiler will make an assumption about the use of
the nondate and produce a warning-level diagnostic message. Even if the assumption is correct, you
might want to use DATEVAL to eliminate the message.

• Use the UNDATE intrinsic function if you want a date field treated as a nondate, such as moving a
date field to a nondate, or comparing a nondate and a windowed date field when you do not want a
windowed comparison.

Related tasks   
“Controlling date processing

488  IBM COBOL for Linux on x86 1.1: Programming Guide



explicitly” on page 485  
COBOL Millennium Language Extensions Guide (Analyzing date-related
   diagnostic messages)

Related references   
Restrictions on using date fields (COBOL for Linux on x86 Language Reference)

Avoiding problems in processing dates
When you change a COBOL program to use the millennium language extensions, you might find that some
parts of the program need special attention to resolve unforeseen changes in behavior. For example, you
might need to avoid problems with packed-decimal fields and problems that occur if you move from
expanded to windowed date fields.

Related tasks   
“Avoiding problems with packed-decimal fields” on page 489  
“Moving from expanded to windowed date fields” on page 489 

Avoiding problems with packed-decimal fields
COMPUTATIONAL-3 fields (packed-decimal format) are often defined as having an odd number of digits
even if the field will not be used to hold a number of that magnitude. The internal representation of
packed-decimal numbers always allows for an odd number of digits.

A field that holds a six-digit Gregorian date, for example, can be declared as PIC S9(6) COMP-3. This
declaration will reserve 4 bytes of storage. But a programmer might have declared the field as PIC
S9(7), knowing that this would reserve 4 bytes with the high-order digit always containing a zero.

If you add a DATE FORMAT YYXXXX clause to this field, the compiler will issue a diagnostic message
because the number of digits in the PICTURE clause does not match the size of the date format
specification. In this case, you need to carefully check each use of the field. If the high-order digit is
never used, you can simply change the field definition to PIC S9(6). If it is used (for example, if the
same field can hold a value other than a date), you need to take some other action, such as:

• Using a REDEFINES clause to define the field as both a date and a nondate (this usage will also produce
a warning-level diagnostic message)

• Defining another WORKING-STORAGE field to hold the date, and moving the numeric field to the new
field

• Not adding a DATE FORMAT clause to the data item, and using the DATEVAL intrinsic function when
referring to it as a date field

Moving from expanded to windowed date fields
When you move an expanded alphanumeric date field to a windowed date field, the move does not follow
the normal COBOL conventions for alphanumeric moves. When both the sending and receiving fields
are date fields, the move is right justified, not left justified as normal. For an expanded-to-windowed
(contracting) move, the leading two digits of the year are truncated.

Depending on the contents of the sending field, the results of such a move might be incorrect. For
example:

77  Year-Of-Birth-Exp  Pic x(4) Date Format yyyy.
77  Year-Of-Birth-Win  Pic xx   Date Format yy.
. . .
    Move Year-Of-Birth-Exp to Year-Of-Birth-Win.

If Year-Of-Birth-Exp contains '1925', Year-Of-Birth-Win will contain '25'. However, if the century
window is 1930-2029, subsequent references to Year-Of-Birth-Win will treat it as 2025, which is
incorrect.

Chapter 26. Processing two-digit-year dates  489



490  IBM COBOL for Linux on x86 1.1: Programming Guide



Part 7. Improving performance and productivity

© Copyright IBM Corp. 2021, 2023 491



492  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 27. Tuning your program
When a program is comprehensible, you can assess its performance. A tangled control flow makes a
program difficult to understand and maintain, and inhibits the optimization of its code.

To improve the performance of your program, examine at least these aspects:

• Underlying algorithms: For best performance, using sound algorithms is essential. For example:

– A sophisticated algorithm for sorting a million items might be hundreds of thousands of times faster
than a simple algorithm.

– If the program frequently accesses data, reduce the number of steps to access the data.
• Data structures: Using data structures that are appropriate for the algorithms is essential.

You can write programs that result in better generated code sequences and use system services more
efficiently. These additional aspects can affect performance:

• Coding techniques: Use a programming style that enables the optimizer to choose efficient data types
and handle tables efficiently.

• Optimization: You can optimize code by using the OPTIMIZE compiler option.
• Compiler options and USE FOR DEBUGGING ON ALL PROCEDURES: Some compiler options and

language affect program efficiency.
• Runtime environment: Consider your choice of runtime options.
• CICS: To improve transaction response time, convert instances of EXEC CICS LINK statements to
CALL statements.

For information about improving performance of dynamic calls under CICS, see the Related tasks.

Related concepts   
“Optimization” on page 500

Related tasks  
“Tuning the performance of dynamic calls under CICS” on page 384  
“Using an optimal programming
style” on page 493  
“Choosing efficient data
types” on page 495  
“Handling tables efficiently” on page 497  
“Optimizing your code” on page 500  
“Choosing compiler features
to enhance performance” on page 500  
“Improving SFS performance” on page 150

Related references  
Chapter 15, “Runtime options,” on page 299   
“Performance-related compiler options” on page 501  

Using an optimal programming style
The coding style you use can affect how the optimizer handles your code. You can improve optimization by
using structured programming techniques, factoring expressions, using symbolic constants, and grouping
constant and duplicate computations.

Related tasks   
“Using structured programming” on page 494  
“Factoring expressions” on page 494  
“Using symbolic constants” on page 494  

© Copyright IBM Corp. 2021, 2023 493



“Grouping constant computations” on page 494  
“Grouping duplicate computations” on page 495 

Using structured programming
Using structured programming statements, such as EVALUATE and inline PERFORM, makes your program
more comprehensible and generates a more linear control flow. As a result, the optimizer can operate
over larger regions of the program, which gives you more efficient code.

Use top-down programming constructs. Out-of-line PERFORM statements are a natural means of doing
top-down programming. Out-of-line PERFORM statements can often be as efficient as inline PERFORM
statements, because the optimizer can simplify or remove the linkage code.

Avoid using the following constructs:

• ALTER statements
• Backward branches (except as needed for loops for which PERFORM is unsuitable).
• PERFORM procedures that involve irregular control flow (such as preventing control from passing to the

end of the procedure and returning to the PERFORM statement)

Factoring expressions
By factoring expressions in your programs, you can potentially eliminate a lot of unnecessary
computation.

For example, the first block of code below is more efficient than the second block of code:

MOVE ZERO TO TOTAL
PERFORM VARYING I FROM 1 BY 1 UNTIL I = 10
  COMPUTE TOTAL = TOTAL + ITEM(I)
END-PERFORM
COMPUTE TOTAL = TOTAL * DISCOUNT

MOVE ZERO TO TOTAL
PERFORM VARYING I FROM 1 BY 1 UNTIL I = 10
  COMPUTE TOTAL = TOTAL + ITEM(I) * DISCOUNT
END-PERFORM

The optimizer does not factor expressions.

Using symbolic constants
To have the optimizer recognize a data item as a constant throughout the program, initialize it with a
VALUE clause and do not change it anywhere in the program.

If you pass a data item to a subprogram BY REFERENCE, the optimizer treats it as an external data item
and assumes that it is changed at every subprogram call.

If you move a literal to a data item, the optimizer recognizes the data item as a constant only in a limited
area of the program after the MOVE statement.

Grouping constant computations
When several items in an expression are constant, ensure that the optimizer is able to optimize them. The
compiler is bound by the left-to-right evaluation rules of COBOL. Therefore, either move all the constants
to the left side of the expression or group them inside parentheses.

For example, if V1, V2, and V3 are variables and C1, C2, and C3 are constants, the expressions on the left
below are preferable to the corresponding expressions on the right:

494  IBM COBOL for Linux on x86 1.1: Programming Guide



More efficient Less efficient

V1 * V2 * V3 * (C1 * C2 * C3) V1 * V2 * V3 * C1 * C2 * C3

C1 + C2 + C3 + V1 + V2 + V3 V1 + C1 + V2 + C2 + V3 + C3

In production programming, there is often a tendency to place constant factors on the right-hand side of
expressions. However, such placement can result in less efficient code because optimization is lost.

Grouping duplicate computations
When components of different expressions are duplicates, ensure that the compiler is able to optimize
them. For arithmetic expressions, the compiler is bound by the left-to-right evaluation rules of COBOL.
Therefore, either move all the duplicates to the left side of the expressions or group them inside
parentheses.

If V1 through V5 are variables, the computation V2 * V3 * V4 is a duplicate (known as a common
subexpression) in the following two statements:

COMPUTE A = V1 * (V2 * V3 * V4)
COMPUTE B = V2 * V3 * V4 * V5

In the following example, V2 + V3 is a common subexpression:

COMPUTE C = V1 + (V2 + V3)
COMPUTE D = V2 + V3 + V4

In the following example, there is no common subexpression:

COMPUTE A = V1 * V2 * V3 * V4
COMPUTE B = V2 * V3 * V4 * V5
COMPUTE C = V1 + (V2 + V3)
COMPUTE D = V4 + V2 + V3

The optimizer can eliminate duplicate computations. You do not need to introduce artificial temporary
computations; a program is often more comprehensible and faster without them.

Choosing efficient data types
Choosing the appropriate data type and PICTURE clause can produce more efficient code, as can avoiding
USAGE DISPLAY and USAGE NATIONAL data items in areas that are heavily used for computations.

Making a data item too large can reduce performance, but a data item whose length is a small power
of 2 bytes (1, 2, 4, 8 or 16), and which is aligned on a power of 2-byte boundary matching its size can
usually be initialized and moved more quickly and with fewer instructions than one with an odd length or
alignment.

Arithmetic is faster with binary than with packed-decimal, which is faster than zoned-decimal or DISPLAY,
which is faster than national-decimal.

Options that affect types can also affect performance. For example, FLOAT(BE) is more expensive than
FLOAT(NATIVE).

Consistent data types can reduce the need for conversions during operations on data items. You can also
improve program performance by carefully determining when to use fixed-point and floating-point data
types.

Related concepts   
“Formats for numeric
data” on page 39 

Chapter 27. Tuning your program  495



Related tasks   
“Choosing efficient computational data items” on page 496  
“Using consistent data types” on page 496  
“Making arithmetic expressions efficient” on page 496  
“Making exponentiations efficient” on page 497 

Choosing efficient computational data items
When you use a data item mainly for arithmetic or as a subscript, code USAGE BINARY on the data
description entry for the item. The operations for manipulating binary data are faster than those for
manipulating decimal data.

However, if a fixed-point arithmetic statement has intermediate results with a large precision (number
of significant digits), the compiler uses decimal arithmetic anyway, after converting the operands to
packed-decimal form. For fixed-point arithmetic statements, the compiler normally uses binary arithmetic
for simple computations with binary operands if the precision is eight or fewer digits. Above 18 digits, the
compiler always uses decimal arithmetic. With a precision of nine to 18 digits, the compiler uses either
form.

To produce the most efficient code for a BINARY data item, ensure that it has:

• A sign (an S in its PICTURE clause)
• Eight or fewer digits

For a data item that is larger than eight digits or is used with DISPLAY or NATIONAL data items, use
PACKED-DECIMAL.

To produce the most efficient code for a PACKED-DECIMAL data item, ensure that it has:

• A sign (an S in its PICTURE clause)
• An odd number of digits (9s in the PICTURE clause), so that it occupies an exact number of bytes

without a half byte left over

Using consistent data types
In operations on operands of different types, one of the operands must be converted to the same type as
the other. Each conversion requires several instructions. For example, one of the operands might need to
be scaled to give it the appropriate number of decimal places.

You can largely avoid conversions by using consistent data types and by giving both operands the same
usage and also appropriate PICTURE specifications. That is, you should ensure that two numbers to be
compared, added, or subtracted not only have the same usage but also the same number of decimal
places (9s after the V in the PICTURE clause).

Making arithmetic expressions efficient
Computation of arithmetic expressions that are evaluated in floating point is most efficient when the
operands need little or no conversion. Use operands that are COMP-1 or COMP-2 to produce the most
efficient code.

Define integer items as BINARY or PACKED-DECIMAL with nine or fewer digits to afford quick conversion
to floating-point data. Also, conversion from a COMP-1 or COMP-2 item to a fixed-point integer with nine
or fewer digits, without SIZE ERROR in effect, is efficient when the value of the COMP-1 or COMP-2 item
is less than 1,000,000,000.

496  IBM COBOL for Linux on x86 1.1: Programming Guide



Making exponentiations efficient
Use floating point for exponentiations for large exponents to achieve faster evaluation and more accurate
results.

For example, the first statement below is computed more quickly and accurately than the second
statement:

COMPUTE fixed-point1 = fixed-point2 ** 100000.E+00

COMPUTE fixed-point1 = fixed-point2 ** 100000

A floating-point exponent causes floating-point arithmetic to be used to compute the exponentiation.

Handling tables efficiently
You can use several techniques to improve the efficiency of table-handling operations, and to influence
the optimizer. The return for your efforts can be significant, particularly when table-handling operations
are a major part of an application.

The following two guidelines affect your choice of how to refer to table elements:

• Use indexing rather than subscripting.

Although the compiler can eliminate duplicate indexes and subscripts, the original reference to a table
element is more efficient with indexes (even if the subscripts were BINARY). The value of an index has
the element size factored into it, whereas the value of a subscript must be multiplied by the element
size when the subscript is used. The index already contains the displacement from the start of the table,
and this value does not have to be calculated at run time. However, subscripting might be easier to
understand and maintain.

• Use relative indexing.

Relative index references (that is, references in which an unsigned numeric literal is added to or
subtracted from the index-name) are executed at least as fast as direct index references, and
sometimes faster. There is no merit in keeping alternative indexes with the offset factored in.

Whether you use indexes or subscripts, the following coding guidelines can help you get better
performance:

• Put constant and duplicate indexes or subscripts on the left.

You can reduce or eliminate runtime computations this way. Even when all the indexes or subscripts
are variable, try to use your tables so that the rightmost subscript varies most often for references that
occur close to each other in the program. This practice also improves the pattern of storage references
and also paging. If all the indexes or subscripts are duplicates, then the entire index or subscript
computation is a common subexpression.

• Specify the element length so that it matches that of related tables.

When you index or subscript tables, it is most efficient if all the tables have the same element length.
That way, the stride for the last dimension of the tables is the same, and the optimizer can reuse the
rightmost index or subscript computed for one table. If both the element lengths and the number of
occurrences in each dimension are equal, then the strides for dimensions other than the last are also
equal, resulting in greater commonality between their subscript computations. The optimizer can then
reuse indexes or subscripts other than the rightmost.

• Avoid errors in references by coding index and subscript checks into your program.

If you need to validate indexes and subscripts, it might be faster to code your own checks than to use
the SSRANGE compiler option.

You can also improve the efficiency of tables by using these guidelines:

• Use binary data items for all subscripts.

Chapter 27. Tuning your program  497



When you use subscripts to address a table, use a BINARY signed data item with eight or fewer digits. In
some cases, using four or fewer digits for the data item might also improve processing time.

• Use binary data items for variable-length table items.

For tables with variable-length items, you can improve the code for OCCURS DEPENDING ON (ODO). To
avoid unnecessary conversions each time the variable-length items are referenced, specify BINARY for
OCCURS . . . DEPENDING ON objects.

• Use fixed-length data items whenever possible.

Copying variable-length data items into a fixed-length data item before a period of high-frequency use
can reduce some of the overhead associated with using variable-length data items.

• Organize tables according to the type of search method used.

If the table is searched sequentially, put the data values most likely to satisfy the search criteria at the
beginning of the table. If the table is searched using a binary search algorithm, put the data values in
the table sorted alphabetically on the search key field.

Related concepts   
“Optimization of table
references” on page 498 

Related tasks   
“Referring to an item in
a table” on page 62  
“Choosing efficient data
types” on page 495 

Related references   
“SSRANGE” on page 283 

Optimization of table references
The COBOL compiler optimizes table references in several ways.

For the table element reference ELEMENT(S1 S2 S3), where S1, S2, and S3 are subscripts, the
compiler evaluates the following expression:

comp_s1 * d1 + comp_s2 * d2 + comp_s3 * d3 + base_address

Here comp_s1 is the value of S1 after conversion to binary, comp-s2 is the value of S2 after conversion
to binary, and so on. The strides for each dimension are d1, d2, and d3. The stride of a given dimension
is the distance in bytes between table elements whose occurrence numbers in that dimension differ by 1
and whose other occurrence numbers are equal. For example, the stride d2 of the second dimension in
the above example is the distance in bytes between ELEMENT(S1 1 S3) and ELEMENT(S1 2 S3).

Index computations are similar to subscript computations, except that no multiplication needs to be
done. Index values have the stride factored into them. They involve loading the indexes into registers, and
these data transfers can be optimized, much as the individual subscript computation terms are optimized.

Because the compiler evaluates expressions from left to right, the optimizer finds the most opportunities
to eliminate computations when the constant or duplicate subscripts are the leftmost.

Optimization of constant and variable items
Assume that C1, C2, . . . are constant data items and that V1, V2, . . . are variable data items. Then, for
the table element reference ELEMENT(V1 C1 C2) the compiler can eliminate only the individual terms
comp_c1 * d2 and comp_c2 * d3 as constant from the expression:

comp_v1 * d1 + comp_c1 * d2 + comp_c2 * d3 + base_address

498  IBM COBOL for Linux on x86 1.1: Programming Guide



However, for the table element reference ELEMENT(C1 C2 V1) the compiler can eliminate the entire
subexpression comp_c1 * d1 + comp_c2 * d2 as constant from the expression:

comp_c1 * d1 + comp_c2 * d2 + comp_v1 * d3 + base_address

In the table element reference ELEMENT(C1 C2 C3), all the subscripts are constant, and so no subscript
computation is done at run time. The expression is:

comp_c1 * d1 + comp_c2 * d2 + comp_c3 * d3 + base_address

With the optimizer, this reference can be as efficient as a reference to a scalar (nontable) item.

Optimization of duplicate items
In the table element references ELEMENT(V1 V3 V4) and ELEMENT(V2 V3 V4) only the individual
terms comp_v3 * d2 and comp_v4 * d3 are common subexpressions in the expressions needed to
reference the table elements:

comp_v1 * d1 + comp_v3 * d2 + comp_v4 * d3 + base_address
comp_v2 * d1 + comp_v3 * d2 + comp_v4 * d3 + base_address

However, for the two table element references ELEMENT(V1 V2 V3) and ELEMENT(V1 V2 V4) the
entire subexpression comp_v1 * d1 + comp_v2 * d2 is common between the two expressions
needed to reference the table elements:

comp_v1 * d1 + comp_v2 * d2 + comp_v3 * d3 + base_address
comp_v1 * d1 + comp_v2 * d2 + comp_v4 * d3 + base_address

In the two references ELEMENT(V1 V2 V3) and ELEMENT(V1 V2 V3), the expressions are the same:

comp_v1 * d1 + comp_v2 * d2 + comp_v3 * d3 + base_address
comp_v1 * d1 + comp_v2 * d2 + comp_v3 * d3 + base_address

With the optimizer, the second (and any subsequent) reference to the same element can be as efficient as
a reference to a scalar (nontable) item.

Optimization of variable-length items
A group item that contains a subordinate OCCURS DEPENDING ON data item has a variable length. The
program must perform special code every time a variable-length data item is referenced.

Because this code is out-of-line, it might interrupt optimization. Furthermore, the code to manipulate
variable-length data items is much less efficient than that for fixed-size data items and can significantly
increase processing time. For instance, the code to compare or move a variable-length data item might
involve calling a library routine and is much slower than the same code for fixed-length data items.

Comparison of direct and relative indexing
Relative index references are as fast as or faster than direct index references.

The direct indexing in ELEMENT (I5, J3, K2) requires this preprocessing:

SET I5 TO I 
SET I5 UP BY 5
SET J3 TO J 
SET J3 DOWN BY 3
SET K2 TO K 
SET K2 UP BY 2

Chapter 27. Tuning your program  499



This processing makes the direct indexing less efficient than the relative indexing in ELEMENT (I + 5,
J - 3, K + 2).

Related concepts   
“Optimization” on page 500 

Related tasks   
“Handling tables efficiently” on page 497 

Optimizing your code
When your program is ready for final testing, specify the OPTIMIZE compiler option so that the tested
code and the production code are identical. Note that IBM recommends that all users use OPT(FULL) for
the best performance.

If you frequently run a program without recompiling it during development, you might also want to use
OPTIMIZE. However, if you recompile frequently, the overhead for OPTIMIZE might outweigh its benefits
unless you are using the assembler language expansion (LIST compiler option) to fine-tune the program.

For unit-testing a program, you will probably find it easier to debug code that has not been optimized.

To see how the optimizer works on a program, compile it with and without using OPTIMIZE and compare
the generated code. (Use the LIST compiler option to request the assembler listing of the generated
code.)

Related concepts   
“Optimization” on page 500  

Related references   
“LIST” on page 270  
“OPTIMIZE” on page 274 

Optimization
To improve the efficiency of the generated code, you can use the OPTIMIZE compiler option.

OPTIMIZE causes the COBOL optimizer to do the following optimizations:

• Eliminate unnecessary transfers of control and inefficient branches, including those generated by the
compiler that are not evident from looking at the source program.

• Where possible, the optimizer places the statements inline, eliminating the need for linkage code. This
optimization is known as procedure integration.

• Eliminate duplicate computations (such as subscript computations and repeated statements) that have
no effect on the results of the program.

• Eliminate constant computations by performing them when the program is compiled.
• Eliminate constant conditional expressions.
• Aggregate moves of contiguous items (such as those that often occur with the use of MOVE
CORRESPONDING) into a single move. Both the source and target must be contiguous for the moves
to be aggregated.

• Discard unreferenced data items from the DATA DIVISION, and suppress generation of code to
initialize these data items to their VALUE clauses. (The optimizer takes this action only when you use
the FULL suboption.)

Choosing compiler features to enhance performance
Your choice of performance-related compiler options and your use of the USE FOR DEBUGGING ON ALL
PROCEDURES statement can affect how well your program is optimized.

You might have a customized system that requires certain options for optimum performance. Do these
steps:

500  IBM COBOL for Linux on x86 1.1: Programming Guide



1. To see what your system defaults are, get a short listing for any program and review the listed option
settings.

2. Select performance-related options for compiling your programs.

Important: Confer with your system programmer about how to tune COBOL programs. Doing so will
ensure that the options you choose are appropriate for programs at your site.

Another compiler feature to consider is the USE FOR DEBUGGING ON ALL PROCEDURES statement. It
can greatly affect the compiler optimizer. The ON ALL PROCEDURES option generates extra code at each
transfer to a procedure name. Although very useful for debugging, it can make the program significantly
larger and inhibit optimization substantially.

Related concepts   
“Optimization” on page 500 

Related tasks   
“Optimizing your code” on page 500  
“Getting listings” on page 356 

Related references   
“Performance-related compiler options” on page 501 

Performance-related compiler options
In the table below you can see a description of the purpose of each option, its performance advantages
and disadvantages, and usage notes where applicable.

Table 50. Performance-related compiler options

Compiler option Purpose Performance
advantages

Performance
disadvantages

Usage notes

ARITH(EXTEND)

(see “ARITH” on
page 253)

To increase the
maximum number of
digits allowed for
decimal numbers

None ARITH(EXTEND)
causes some
degradation in
performance for all
decimal data types
because of larger
intermediate results.

The amount of degradation that you
experience depends directly on the
amount of decimal data that you use.

DYNAM

(see “DYNAM” on
page 264)

To have subprograms
(called through the
CALL statement)
dynamically loaded at
run time

Subprograms are easier
to maintain, because
the application does not
have to be link-edited
again if a subprogram is
changed.

There is a slight
performance penalty,
because the call must
go through a library
routine.

To free virtual storage that is no longer
needed, issue the CANCEL statement.

OPTIMIZE(STD)

(see “OPTIMIZE”
on page 274)

To optimize generated
code for better
performance

Generally results in more
efficient runtime code

Longer compile time:
OPTIMIZE requires
more processing time
for compiles than
NOOPTIMIZE.

NOOPTIMIZE is generally used during
program development when frequent
compiles are needed; it also allows
for symbolic debugging. For production
runs, OPTIMIZE is recommended.

OPTIMIZE(FULL
)

To optimize generated
code for better
performance and also
optimize the DATA
DIVISION

Generally results in more
efficient runtime code
and less storage usage

Longer compile time:
OPTIMIZE requires
more processing time
for compiles than
NOOPTIMIZE.

OPT(FULL) deletes unused data items,
which might be undesirable in the case
of time stamps or data items that are
used only as markers for dump reading.

SSRANGE

(see “SSRANGE”
on page 283)

To verify that all
table references and
reference modification
expressions are in
proper bounds

SSRANGE generates
additional code
for verifying table
references. Using
NOSSRANGE causes that
code not to be
generated.

With SSRANGE
specified, checks for
valid ranges do affect
compiler performance.

In general, if you need to verify
the table references only a few
times instead of at every reference,
coding your own checks might be
faster than using SSRANGE. You can
turn off SSRANGE at run time by
using the CHECK(OFF) runtime option.
For performance-sensitive applications,
NOSSRANGE is recommended.

Chapter 27. Tuning your program  501



Table 50. Performance-related compiler options (continued)

Compiler option Purpose Performance
advantages

Performance
disadvantages

Usage notes

NOTEST

(see “TEST” on
page 284)

To avoid the additional
object code that is
needed to take full
advantage of the
debugger.

None TEST significantly
enlarges the object
file because it adds
debugging information.
When linking the
program, you can
direct the linker to
exclude the debugging
information, resulting
in approximately the
same size executable
as would be created
if the modules were
compiled with NOTEST.
If the debugging
information is included,
a slight performance
degradation might
occur because a
larger executable takes
longer to load and
could increase paging.

For production runs, using NOTEST is
recommended.

TRUNC(OPT)

(see “TRUNC” on
page 285)

To avoid having code
generated to truncate
the receiving fields of
arithmetic operations

Does not generate extra
code and generally
improves performance

Both TRUNC(BIN) and
TRUNC(STD) generate
extra code whenever a
BINARY data item is
changed. TRUNC(BIN)
is usually the slowest
of these options.

TRUNC(STD) conforms to the 85
COBOL Standard, but TRUNC(BIN)
and TRUNC(OPT) do not. With
TRUNC(OPT), the compiler assumes
that the data conforms to the PICTURE
and USAGE specifications. TRUNC(OPT)
is recommended where possible.

Related concepts   
“Optimization” on page 500

Related tasks   
“Generating a list of compiler
messages” on page 230  
“Choosing compiler features
to enhance performance” on page 500  
“Handling tables efficiently” on page 497

Related references   
“Sign representation
of zoned and packed-decimal data” on page 47
“Compiler options” on page 248 

Evaluating performance
Fill in the following worksheet to help you evaluate the performance of your program. If you answer yes to
each question, you are probably improving the performance.

In thinking about the performance tradeoff, be sure you understand the function of each option as well as
the performance advantages and disadvantages. You might prefer function over increased performance in
many instances.

Table 51. Performance-tuning worksheet

Compiler option Consideration Yes?

DYNAM Can you use NODYNAM? Consider the performance tradeoffs.  

502  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 51. Performance-tuning worksheet (continued)

Compiler option Consideration Yes?

OPTIMIZE Do you use OPTIMIZE for production runs? Can you use
OPTIMIZE(FULL)?

 

SSRANGE Do you use NOSSRANGE for production runs?  

TEST Do you use NOTEST for production runs?  

TRUNC Do you use TRUNC(OPT) when possible?  

Related tasks   
“Choosing compiler features
to enhance performance” on page 500 

Related references   
“Performance-related compiler options” on page 501 

Chapter 27. Tuning your program  503



504  IBM COBOL for Linux on x86 1.1: Programming Guide



Chapter 28. Simplifying coding

You can use coding techniques to improve your productivity. By using the COPY statement, COBOL
intrinsic functions, and callable services, you can avoid repetitive coding and having to code many
arithmetic calculations or other complex tasks.

If your program contains frequently used code sequences (such as blocks of common data items, input-
output routines, error routines, or even entire COBOL programs), write the code sequences once and put
them in a COBOL copy library. You can use the COPY statement to retrieve these code sequences and have
them included in your program at compile time. Using copybooks in this manner eliminates repetitive
coding.

COBOL provides various capabilities for manipulating strings and numbers. These capabilities can help
you simplify your coding.

The date and time callable services store dates as fullword binary integers and store time stamps as long
(64-bit) floating-point values. These formats let you do arithmetic calculations on date and time values
simply and efficiently. You do not need to write special subroutines that use services outside the language
library to perform such calculations.

Related tasks   
“Using numeric intrinsic
functions” on page 50  
“Eliminating repetitive
coding” on page 505  
“Converting data items (intrinsic
functions)” on page 104  
“Evaluating data items (intrinsic
functions)” on page 106  
“Manipulating dates and times” on page 507

Eliminating repetitive coding
To include stored source statements in a program, use the COPY statement in any program division and at
any code sequence level. You can nest COPY statements to any depth.

To specify more than one copy library, either set the environment variable SYSLIB to multiple path names
separated by a colon (:), or define your own environment variables and include the following phrase in the
COPY statement:

IN/OF library-name

For example:

COPY MEMBER1 OF COPYLIB

If you omit this qualifying phrase, the default is SYSLIB.

COPY and debugging line: In order for the text copied to be treated as debug lines, for example, as if
there were a D inserted in column 7, put the D on the first line of the COPY statement. A COPY statement
cannot itself be a debugging line; if it contains a D, and WITH DEBUGGING mode is not specified, the COPY
statement is nevertheless processed.

“Example: using the COPY statement” on page 506

© Copyright IBM Corp. 2021, 2023 505



Related references  
Chapter 14, “Compiler-directing
statements,” on page 293  

Example: using the COPY statement
These examples show how you can use the COPY statement to include library text in a program.

Suppose the library entry CFILEA consists of the following FD entries:

    BLOCK CONTAINS 20 RECORDS
    RECORD CONTAINS 120 CHARACTERS
    LABEL RECORDS ARE STANDARD
    DATA RECORD IS FILE-OUT.
01  FILE-OUT       PIC X(120).

You can retrieve the text-name CFILEA by using the COPY statement in a source program as follows:

FD FILEA
         COPY CFILEA.

The library entry is copied into your program, and the resulting program listing looks like this:

FD FILEA
         COPY CFILEA.
C    BLOCK CONTAINS 20 RECORDS
C    RECORD CONTAINS 120 CHARACTERS
C    LABEL RECORDS ARE STANDARD
C    DATA RECORD IS FILE-OUT.
C    01  FILE-OUT   PIC X(120).

In the compiler source listing, the COPY statement prints on a separate line. C precedes copied lines.

Assume that a copybook with the text-name DOWORK is stored by using the following statements:

COMPUTE QTY-ON-HAND = TOTAL-USED-NUMBER-ON-HAND
MOVE QTY-ON-HAND to PRINT-AREA

To retrieve the copybook identified as DOWORK, code:

paragraph-name.
    COPY DOWORK.

The statements that are in the DOWORK procedure will follow paragraph-name.

If you use the EXIT compiler option to provide a LIBEXIT module, your results might differ from those
shown here.

Related tasks   
“Eliminating repetitive
coding” on page 505

Related references   
Chapter 14, “Compiler-directing
statements,” on page 293

506  IBM COBOL for Linux on x86 1.1: Programming Guide



Manipulating dates and times
To invoke a date or time callable service, use a CALL statement with the correct parameters for that
service. You define the data items for the CALL statement in the DATA DIVISION with the data
definitions required by that service.

77  argument          pic  s9(9)  comp.
01  format.
    05 format-length  pic  s9(4)  comp.
    05 format-string  pic  x(80).
77  result            pic  x(80).
77  feedback-code     pic  x(12)  display.
. . .
    CALL "CEEDATE" using argument, format, result, feedback-code.

In the example above, the callable service CEEDATE converts a number that represents a Lilian date in the
data item argument to a date in character format, which is written to the data item result. The picture
string contained in the data item format controls the format of the conversion. Information about the
success or failure of the call is returned in the data item feedback-code.

In the CALL statements that you use to invoke the date and time callable services, you must use a literal
for the program-name rather than an identifier.

A program calls the date and time callable services by using the standard system linkage convention.

“Example: manipulating dates” on page 508

Related concepts   
Appendix D, “Date and time callable services,” on page 537 

Related tasks   
“Getting feedback from date and time callable services” on page 507  
“Handling conditions from date and time callable services” on page 508 

Related references   
“Feedback token” on page 509  
“Picture character terms and strings” on page 510  
CALL statement (COBOL for Linux on x86 Language Reference)

Getting feedback from date and time callable services
You can specify a feedback code parameter (which is optional) in any date and time callable service.
Specify OMITTED for this parameter if you do not want the service to return information about the success
or failure of the call.

However, if you do not specify this parameter and the callable service does not complete successfully, the
program will abend.

When you call a date and time callable service and specify OMITTED for the feedback code, the RETURN-
CODE special register is set to 0 if the service is successful, but it is not altered if the service is
unsuccessful. If the feedback code is not OMITTED, the RETURN-CODE special register is always set
to 0 regardless of whether the service completed successfully.

“Example: formatting dates for output” on page 508

Related references   
“Feedback token” on page 509 

Chapter 28. Simplifying coding  507



Handling conditions from date and time callable services
Condition handling by COBOL for Linux is significantly different from that provided by IBM Language
Environment on the host. COBOL for Linux adheres to the native COBOL condition handling scheme and
does not provide the level of support that is in Language Environment.

If you pass a feedback token an argument, it will simply be returned after the appropriate information has
been filled in. You can code logic in the calling routine to examine the contents and perform any actions if
necessary. The condition will not be signaled.

Related references   
“Feedback token” on page 509 

Example: manipulating dates
The following example shows how to use date and time callable services to convert a date to a different
format and do a simple calculation with the formatted date.

CALL CEEDAYS USING dateof_hire, 'YYMMDD', doh_lilian, fc.
CALL CEELOCT USING todayLilian, today_seconds, today_Gregorian, fc.
COMPUTE servicedays  = today_Lilian - doh_Lilian.
COMPUTE serviceyears = service_days / 365.25.

The example above uses the original date of hire in the format YYMMDD to calculate the number of years
of service for an employee. The calculation is as follows:

1. Call CEEDAYS (Convert Date to Lilian Format) to convert the date to Lilian format.
2. Call CEELOCT (Get Current Local Time) to get the current local time.
3. Subtract doh_Lilian from today_Lilian (the number of days from the beginning of the Gregorian

calendar to the current local time) to calculate the employee's number of days of employment.
4. Divide the number of days by 365.25 to get the number of service years.

Example: formatting dates for output
The following example uses date and time callable services to format and display a date obtained from an
ACCEPT statement.

Many callable services offer capabilities that would otherwise require extensive coding. Two such services
are CEEDAYS and CEEDATE, which you can use effectively when you want to format dates.

CBL QUOTE
       ID DIVISION.
       PROGRAM-ID. HOHOHO.
      ************************************************************
      * FUNCTION:  DISPLAY TODAY'S DATE IN THE FOLLOWING FORMAT: *
      *            WWWWWWWWW, MMMMMMMM DD, YYYY                  *
      *                                                          *
      *            For example:  MONDAY, OCTOBER 18, 2010        *
      *                                                          *
      ************************************************************
       ENVIRONMENT DIVISION.
       DATA DIVISION.
       WORKING-STORAGE SECTION.

       01   CHRDATE.
           05 CHRDATE-LENGTH     PIC S9(4) COMP VALUE 10.
           05 CHRDATE-STRING     PIC X(10).
       01   PICSTR.
           05 PICSTR-LENGTH      PIC  S9(4) COMP.
           05 PICSTR-STRING      PIC  X(80).

       77   LILIAN PIC           S9(9) COMP.
       77   FORMATTED-DATE       PIC X(80).

       PROCEDURE DIVISION.
      ***************************************************************
      *    USE  DATE/TIME CALLABLE SERVICES TO PRINT OUT            *

508  IBM COBOL for Linux on x86 1.1: Programming Guide



      *    TODAY'S DATE FROM COBOL ACCEPT STATEMENT.                *
      ***************************************************************
           ACCEPT CHRDATE-STRING FROM DATE.

           MOVE "YYMMDD" TO PICSTR-STRING.
           MOVE 6 TO PICSTR-LENGTH.
           CALL "CEEDAYS" USING CHRDATE , PICSTR , LILIAN , OMITTED.

           MOVE " WWWWWWWWWZ, MMMMMMMMMZ DD, YYYY " TO PICSTR-STRING.
           MOVE 50 TO PICSTR-LENGTH.
           CALL "CEEDATE" USING LILIAN , PICSTR , FORMATTED-DATE ,
                 OMITTED.

           DISPLAY "******************************".
           DISPLAY FORMATTED-DATE.
           DISPLAY "******************************".

           STOP RUN.

Feedback token
A feedback token contains feedback information in the form of a condition token. The condition token
set by the callable service is returned to the calling routine, indicating whether the service completed
successfully.

COBOL for Linux uses the same feedback token as Language Environment, which is defined as follows:

01  FC.
    02  Condition-Token-Value.
    COPY  CEEIGZCT.
        03  Case-1-Condition-ID.
            04  Severity    PIC S9(4) COMP.
            04  Msg-No      PIC S9(4) COMP.
        03  Case-2-Condition-ID
                  REDEFINES Case-1-Condition-ID.
            04  Class-Code  PIC S9(4) COMP.
            04  Cause-Code  PIC S9(4) COMP.
        03  Case-Sev-Ctl    PIC X.
        03  Facility-ID     PIC XXX.
    02  I-S-Info            PIC S9(9) COMP.

The contents of each field and the differences from IBM Language Environment on the host are as follows:

Severity
This is the severity number with the following possible values:
0

Information only (or, if the entire token is zero, no information)
1

Warning: service completed, probably correctly
2

Error detected: correction was attempted; service completed, perhaps incorrectly
3

Severe error: service did not complete
4

Critical error: service did not complete
Msg-No

This is the associated message number.
Case-Sev-Ctl

This field always contains the value 1.
Facility-ID

This field always contains the characters CEE.
I-S-Info

This field always contains the value 0.

Chapter 28. Simplifying coding  509



The sample copybook CEEIGZCT.CPY defines the condition tokens. The condition tokens in the file are
equivalent to those provided by Language Environment, except that character representations are in
ASCII instead of EBCDIC. You must take these differences into account if you compare the condition
tokens with those provided by Language Environment.

The descriptions of the individual callable services include a listing of the symbolic feedback codes that
might be returned in the feedback code output field specified on invocation of the service. In addition
to these, the symbolic feedback code CEE0PD might be returned for any callable service. See message
IWZ0813S for details.

All date and time callable services are based on the Gregorian calendar. Date variables associated with
this calendar have architectural limits. These limits are:

Starting Lilian date
The beginning of the Lilian date range is Friday 15 October 1582, the date of adoption of the Gregorian
calendar. Lilian dates before this date are undefined. Therefore:

• Day zero is 00:00:00 14 October 1582.
• Day one is 00:00:00 15 October 1582.

All valid input dates must be after 00:00:00 15 October 1582.

End Lilian date
The end Lilian date is set to 31 December 9999. Lilian dates after this date are undefined because
9999 is the highest possible four-digit year.

Related references   
Appendix G, “Runtime messages,” on page 597 

Picture character terms and strings
You use picture strings (templates that indicate the format of the input data or the required format of the
output data) for several of the date and time callable services.

Table 52. Picture character terms and strings

Picture
terms

Explanations Valid values Notes

Y One-digit year 0-9 Y valid for output only. YY
assumes range set by CEESCEN.
YYY/ZYY used with <JJJJ>,
<CCCC>, and <CCCCCCCC>.

YY Two-digit year 00-99

YYY Three-digit year 000-999

ZYY Three-digit year within era 1-999

YYYY Four-digit year 1582-9999

<JJJJ> Japanese Era name in
Kanji characters with UTF-16
hexadecimal encoding

Reiwa (NX'E44E8C54') Affects YY field: if <JJJJ>
is specified, YY means the
year within Japanese Era. For
example, 1988 equals Showa 63.

Heisei (NX'735E1062')

Showa (NX'2D668C54')

Taisho (NX'2759636B')

Meiji (NX'0E66BB6C')

MM Two-digit month 01-12 For output, leading zero
suppressed. For input, ZM
treated as MM.ZM One- or two-digit month 1-12

510  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 52. Picture character terms and strings (continued)

Picture
terms

Explanations Valid values Notes

RRRR Roman numeral month Ibbb-XIIb (left justified) For input, source string is
folded to uppercase. For
output, uppercase only. I=Jan,
II=Feb, ..., XII=Dec.

RRRZ

MMM Three-character month, uppercase JAN-DEC For input, source string always
folded to uppercase. For output,
M generates uppercase and m
generates lowercase. Output is
padded with blanks (b) (unless Z
specified) or truncated to match
the number of Ms, up to 20.

Mmm Three-character month, mixed
case

Jan-Dec

MMMM...M 3–20-character month, uppercase JANUARYbb-DECEMBERb

Mmmm...m 3–20-character month, mixed case Januarybb-Decemberb

MMMMMMMM
MZ

Trailing blanks suppressed JANUARY-DECEMBER

Mmmmmmmm
mz

Trailing blanks suppressed January-December

DD Two-digit day of month 01-31 For output, leading zero is
always suppressed. For input, ZD
treated as DD.ZD One- or two-digit day of month 1-31

DDD Day of year (Julian day) 001-366

HH Two-digit hour 00-23 For output, leading zero
suppressed. For input, ZH
treated as HH. If AP specified,
valid values are 01-12.

ZH One- or two-digit hour 0-23

MI Minute 00-59

SS Second

9 Tenths of a second 0-9 No rounding

99 Hundredths of a second 00-99

999 Thousandths of a second 000-999

AP AM/PM indicator AM or PM AP affects HH/ZH field. For input,
source string always folded
to uppercase. For output, AP
generates uppercase and ap
generates lowercase.

ap am or pm

A.P. A.M. or P.M.

a.p. a.m. or p.m.

W One-character day-of-week S, M, T, W, T, F, S For input, Ws are ignored. For
output, W generates uppercase
and w generates lowercase.
Output padded with blanks
(unless Z specified) or truncated
to match the number of Ws, up to
20.

WWW Three-character day, uppercase SUN-SAT

Www Three-character day, mixed case Sun-Sat

WWW...W 3–20-character day, uppercase SUNDAYbbb-SATURDAYb

Www...w 3–20-character day, mixed case Sundaybbb-Saturdayb

WWWWWWWW
WZ

Trailing blanks suppressed SUNDAY-SATURDAY

Wwwwwwww
wz

Trailing blanks suppressed Sunday-Saturday

Chapter 28. Simplifying coding  511



Table 52. Picture character terms and strings (continued)

Picture
terms

Explanations Valid values Notes

All others Delimiters X'01'-X'FF'

(X'00' is reserved for
internal use by the
date and time callable
services.)

For input, treated as delimiters
between the month, day, year,
hour, minute, second, and
fraction of a second. For output,
copied exactly as is to the target
string.

Note: Blank characters are indicated by the symbol b.

The following table defines Japanese Eras used by date and time services when <JJJJ> is specified.

Table 53. Japanese Eras

First date of
Japanese Era

Era name Era name in Kanji with UTF-16
hexadecimal encoding

Valid year values

1868-09-08 Meiji NX'0E66BB6C' 01-45

1912-07-30 Taisho NX'2759636B' 01-15

1926-12-25 Showa NX'2D668C54' 01-64

1989-01-08 Heisei NX'735E1062' 01-31

2019-05-01 Reiwa NX'E44E8C54' 01-999 (01 = 2019)

“Example: date-and-time picture strings” on page 512

Example: date-and-time picture strings
These are examples of picture strings that are recognized by the date and time services.

Table 54. Examples of date-and-time picture strings

Picture strings Examples Comments

YYMMDD 880516

YYYYMMDD 19880516

YYYY-MM-DD 1988-05-16 1988-5-16 would also be valid input.

<JJJJ> YY.MM.DD Showa 63.05.16 Showa is a Japanese Era name. Showa
63 equals 1988.

MMDDYY 050688 One-digit year format (Y) is valid for
output only.

MM/DD/YY 05/06/88

ZM/ZD/YY 5/6/88

MM/DD/YYYY 05/06/1988

MM/DD/Y 05/06/8

512  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 54. Examples of date-and-time picture strings (continued)

Picture strings Examples Comments

DD.MM.YY 09.06.88 Z suppresses zeros and blanks.

DD-RRRR-YY 09-VI -88

DD MMM YY 09 JUN 88

DD Mmmmmmmmmm YY 09 June 88

ZD Mmmmmmmmmz YY 9 June 88

Mmmmmmmmmz ZD, YYYY June 9, 1988

ZDMMMMMMMMzYY 9JUNE88

YY.DDD 88.137 Julian date

YYDDD 88137

YYYY/DDD 1988/137

YYMMDDHHMISS 880516204229 Time stamp: valid only for CEESECS
and CEEDATM. If used with CEEDATE,
time positions are filled with zeros. If
used with CEEDAYS, HH, MI, SS, and
999 fields are ignored.

YYYYMMDDHHMISS 19880516204229

YYYY-MM-DD HH:MI:SS.999 1988-05-16 20:42:29.046

WWW, ZM/ZD/YY HH:MI AP MON, 5/16/88 08:42 PM

Wwwwwwwwwz, DD Mmm YYYY,
ZH:MI AP

Monday, 16 May 1988, 8:42 PM

Note: Lowercase characters can be used only for alphabetic picture terms.

Century window
To process two-digit years in the year 2000 and beyond, the date and time callable services use a sliding
scheme in which all two-digit years are assumed to lie within a 100-year interval (the century window)
that starts 80 years before the current system date.

In the year 2010 for example, the 100 years that span from 1930 to 2029 are the default century window
for the date and time callable services. Thus in 2010, years 30 through 99 are recognized as 1930-1999,
and years 00 through 29 are recognized as 2000-2029.

By year 2080, all two-digit years will be recognized as 20nn. In 2081, 00 will be recognized as year 2100.

Some applications might need to set up a different 100-year interval. For example, banks often deal with
30-year bonds, which could be due 01/31/30. The two-digit year 30 would be recognized as the year
1930 if the century window described above were in effect.

The CEESCEN callable service lets you change the century window. A companion service, CEEQCEN,
queries the current century window.

You can use CEEQCEN and CEESCEN, for example, to cause a subroutine to use a different interval for
date processing than that used by its parent routine. Before returning, the subroutine should reset the
interval to its previous value.

“Example: querying and changing the century window” on page 514

Chapter 28. Simplifying coding  513



Example: querying and changing the century window
The following example shows how to query, set, and restore the starting point of the century window
using the CEEQCEN and CEESCEN services.

The example calls CEEQCEN to obtain an integer (OLDCEN) that indicates how many years earlier the
current century window began. It then temporarily changes the starting point of the current century
window to a new value (TEMPCEN) by calling CEESCEN with that value. Because the century window is set
to 30, any two-digit years that follow the CEESCEN call are assumed to lie within the 100-year interval
starting 30 years before the current system date.

Finally, after it processes dates (not shown) using the temporary century window, the example again calls
CEESCEN to reset the starting point of the century window to its original value.

 WORKING-STORAGE SECTION.
 77 OLDCEN  PIC S9(9) COMP.
 77 TEMPCEN PIC S9(9) COMP.
 77 QCENFC  PIC X(12).
 . . .
 77 SCENFC1 PIC X(12).
 77 SCENFC2 PIC X(12).
 . . .
 PROCEDURE DIVISION.
     . . .
** Call CEEQCEN to retrieve and save current century window
     CALL "CEEQCEN" USING OLDCEN, QCENFC.
** Call CEESCEN to temporarily change century window to 30
     MOVE 30 TO TEMPCEN.
     CALL "CEESCEN" USING TEMPCEN, SCENFC1.
** Perform date processing with two-digit years
     . . .
** Call CEESCEN again to reset century window
     CALL "CEESCEN" USING OLDCEN, SCENFC2.
     . . .
     GOBACK.

Related references   
Appendix D, “Date and time callable services,” on page 537 

Using the format 2 SORT statement to sort a table
It is recommended to use the format 2 SORT statement to sort a table. It provides the following benefits
when compared to the format 1 SORT statement.

Table 55. Comparison of format 1 and format 2 SORT statements

Characteristics Format 1 SORT statements Format 2 SORT statements

Can be used to sort a file or a
table

Yes No, it is for tables only

Requires DFSORT or equivalent
sorting program

Yes No

Supported in CICS Limited Yes

Supported in UNIX System
Services

No Yes

Table can be sorted by using
a single SORT statement, which
simplifies coding

No, it requires the SELECT
clauses, SD entries with record
descriptions, and input and
output procedures

Yes

514  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 55. Comparison of format 1 and format 2 SORT statements (continued)

Characteristics Format 1 SORT statements Format 2 SORT statements

Keys for sorting can be specified
as part of the table definition,
which can also be used in the
SEARCH ALL statement

No, keys must be specified in the
SORT statement. If the table is
to be searched by using SEARCH
ALL as well, the keys must also
be redundantly specified as part
of the table definition.

Yes, and it also supports
specifying keys in the SORT
statement if needed

Can filter or preprocess table
elements during the sorting
process

Yes, using input and output
procedures

No, all of the table elements are
passed to SORT as-is

Uses special registers that
include SORT-CONTROL, SORT-
CORE-SIZE, SORT-FILE-SIZE,
SORT-MESSAGE, SORT-MODE-
SIZE, and SORT-RETURN

Yes No

Can be executed within the range
of an input or output procedure

No Yes

Note: Do not use the format 2 SORT with large tables in an environment where storage is constrained,
because the format 2 SORT uses heap storage to do the sort.

Related references   
SORT statement (COBOL for Linux on x86 Language Reference)  

Chapter 28. Simplifying coding  515



516  IBM COBOL for Linux on x86 1.1: Programming Guide



Appendix A. Summary of differences from IBM
Enterprise COBOL for z/OS

COBOL for Linux on x86 implements certain items differently from the way that Enterprise COBOL for
z/OS implements them. See the Related references below for details.

Related tasks   
Chapter 21, “Porting applications between
platforms,” on page 425 

Related references   
“Compiler options” on page 517  
“Data representation” on page 517  
“Runtime environment
variables” on page 519  
“File specification” on page 519  
“Interlanguage communication (ILC)” on page 520  
“Input and output” on page 520  
“Runtime options” on page 521  
“Source code line
size” on page 521  
“Language elements” on page 521 

Compiler options
COBOL for Linux on x86 does not support some Enterprise COBOL compiler options.

These unsupported options are as follows:

ADATA, ADV, AFP, ARCH, AWO, BLOCK0, BUFSIZE, CODEPAGE, COPYLOC, COPYRIGHT, DATA,
DBCS, DECK, DISPSIGN, DLL, DUMP, EXPORTALL, FASTSRT, HGPR, INITCHECK, INITIAL, INLINE,
INTDATE, LANGUAGE, LP, MAXPCF, NAME, NUMCHECK, NUMPROC, OBJECT, OFFSET, OPTFILE, OUTDD,
PARMCHECK, QUALIFY, RENT, RMODE, RULES, SERVICE, SQLCCSID, SQLIMS, STGOPT, SUPPRESS,
THREAD, VLR, VSAMOPENFS, WORD, XMLPARSE, ZONECHECK, and ZONEDATA

Related tasks   
“Getting IBM Enterprise COBOL for z/OS applications to compile” on page 425 

Related references  
“cob2 options” on page 232    
“CHAR” on page 255 

Data representation
The representation of data can differ between IBM Enterprise COBOL and COBOL for Linux on x86.

Binary data

By default, COBOL for Linux on x86 uses little-endian format and Enterprise COBOL uses big-endian
format for binary data.

Zoned decimal data

Sign representation for zoned decimal data is based on ASCII or EBCDIC depending on the setting of the
CHAR compiler option (NATIVE or EBCDIC) and whether the USAGE clause is specified with the NATIVE

© Copyright IBM Corp. 2021, 2023 517



phrase. COBOL for Linux on x86 processes the sign representation of zoned decimal data consistently
with the processing that occurs on z/OS when the compiler option NUMPROC(NOPFD) is in effect.

Packed-decimal data
Sign representation for unsigned packed-decimal numbers is different between COBOL for Linux on x86
and Enterprise COBOL. COBOL for Linux on x86 always uses a sign nibble of x'C' for unsigned packed-
decimal numbers. Enterprise COBOL uses a sign nibble of x'F' for unsigned packed-decimal numbers.
If you are going to share data files that contain packed-decimal numbers between Linux and z/OS,
it is recommended that you use signed packed-decimal numbers instead of unsigned packed-decimal
numbers.

Display floating-point data
You can use the FLOAT(BE) compiler option to indicate that display floating-point data items are in the
IBM Z data representation (hexadecimal) as opposed to the native (IEEE) format.

Do not specify the IBM Z formats of display floating-point items as arguments on INVOKE statements or
as method parameters. You must specify these arguments and parameters in the native formats in order
for them to be interoperable with the Java data types.

National data

By default, COBOL for Linux on x86 uses UTF-16 little-endian format, and Enterprise COBOL uses UTF-16
big-endian format for national data.

EBCDIC and ASCII data
You can specify the EBCDIC collating sequence for alphanumeric data items using the following language
elements:

• ALPHABET clause
• PROGRAM COLLATING SEQUENCE clause
• COLLATING SEQUENCE phrase of the SORT or MERGE statement

You can specify the CHAR(EBCDIC) compiler option to indicate that DISPLAY data items are in the IBM Z
data representation (EBCDIC).

Code-page determination for data conversion
For alphabetic, alphanumeric, DBCS, and national data items, the source code page used for implicit
conversion of native characters is determined from the locale in effect at run time.

For alphanumeric, DBCS, and national literals, the source code page used for implicit conversion of
characters is determined from the locale in effect at compile time.

DBCS character strings
Under COBOL for Linux on x86, ASCII DBCS character strings are not delimited with the shift-in and
shift-out characters except possibly with the dummy shift-in and shift-out characters as discussed below.

Use the SOSI compiler option to indicate that Linux workstation shift-out (X'1E') and shift-in (X'1F')
control characters delimit DBCS character strings in the source program, including user-defined words,
DBCS literals, alphanumeric literals, national literals, and comments. Host shift-out and shift-in control
characters (X'0E' and X'0F', respectively) are usually converted to workstation shift-out and shift-in
control characters when COBOL for Linux on x86 source code is downloaded, depending on the download
method that you use.

Using control characters X'00' through X'1F' within an alphanumeric literal can yield unpredictable
results.

518  IBM COBOL for Linux on x86 1.1: Programming Guide



Related tasks   
Chapter 11, “Setting the locale,” on page 201  
“Fixing differences caused
by data representations” on page 426 

Related references   
“CHAR” on page 255  
“SOSI” on page 278 

Runtime environment variables
COBOL for Linux on x86 recognizes several runtime environment variables that are not used in Enterprise
COBOL, as listed below.

• CICS_TK_SFS_SERVER
• COBPATH
• COBRTOPT
• EBCDIC_CODEPAGE
• CICS_SFS_DATA_VOLUME
• CICS_SFS_INDEX_VOLUME
• CICS_VSAM_AUTO_FLUSH
• CICS_VSAM_CACHE
• CICS_SFS_CACHE_<filename>
• CICS_SFS_RDM_CACHE
• CICS_SFS_PREALLOC_<filename>
• COBCORE
• COBOUTDIR
• PATH
• SYSIN, SYSIPT, SYSOUT, SYSLIST, SYSLST, CONSOLE, SYSPUNCH, SYSPCH

File specification
There are some differences between the way COBOL for Linux on x86 handles files and the way
Enterprise COBOL handles files.

The differences between COBOL for Linux on x86 and Enterprise COBOL in file handling are in the
following areas:

• Single-volume files
• Source-file suffixes
• Generation data groups (GDGs)
• File concatenation

Single-volume files: COBOL for Linux on x86 treats all files as single-volume files. All other file
specifications are treated as comments. This difference affects the following items: REEL, UNIT,
MULTIPLE FILE TAPE clause, and CLOSE. . .UNIT/REEL.

Source-file suffixes: In COBOL for Linux on x86, when you compile using one of the cob2 commands,
COBOL source files that either have suffix .cbl or .cob are passed to the compiler. In Enterprise COBOL,
when you compile in the z/OS UNIX file system, only files that have suffix .cbl are passed to the compiler.

Generation data groups (GDGs): GDG support is almost identical to GDG support in Enterprise COBOL.
However, there are differences in COBOL for Linux on x86:

Appendix A. Summary of differences from IBM Enterprise COBOL for z/OS  519



• Generation data sets (GDSs), or generation files as they are referred to in this information, are supported
for all file organizations and access modes in all the supported file systems.

• GDG support is not integrated into the file systems. A stand-alone utility, gdgmgr, is provided for
creating and deleting GDGs, managing and querying GDG entries, performing limit processing, and
reconciling the GDG catalog against the existing files.

• The resolution of generation file names occurs when the files are opened rather than at job initialization.
• Limit processing is done when a new generation is added to a group, rather than at job termination.
• The generational range within any given epoch is from 1 to 9999, inclusive, instead of being limited to

1000. Therefore generations 0001 and 9999 can exist in the same epoch.
• A group can contain 1000 generations instead of 255.
• Versioning is not supported. The automatically generated version is always v00.

File concatenation: In COBOL for Linux, you concatenate multiple files by separating the file identifiers
with a colon (:). A COBOL file that is concatenated must have sequential or line-sequential organization,
must be accessed sequentially, and can be opened only for input.

Related concepts   
“Generation data groups” on page 125 

Related tasks  
“Concatenating files” on page 133 
“Compiling from the command
line” on page 225  

Related references  
“Limit processing of generation data groups” on page 132 

Interlanguage communication (ILC)
ILC is available with C/C++ programs.

These are the differences in ILC behavior on Linux on x86 compared to using ILC on z/OS with Language
Environment:

• There are differences in termination behavior when a COBOL STOP RUN or a C exit() is used.
• There is no coordinated condition handling with COBOL for Linux. Avoid using a C longjmp() that crosses

COBOL programs.
• With Enterprise COBOL, the first program that is invoked within the process and that is enabled for

Language Environment is considered to be the "main" program. With COBOL for Linux, the first COBOL
program invoked within the process is considered to be the main program by COBOL. This difference
affects language semantics that are sensitive to the definition of the run unit (the execution unit that
starts with a main program). For example, a STOP RUN results in the return of control to the invoker of
the main program, which in a mixed-language environment might be different as stated above.

Related concepts   
Chapter 25, “Preinitializing the COBOL runtime environment,” on page 465 

Input and output
COBOL for Linux on x86 supports input and output for sequential, relative, and indexed files with the Db2,
SdU, SFS, and STL file systems, and also supports input and output for sequential files with the QSAM file
system and RSD file system.

Line-sequential input and output is supported by the native byte stream file support of the operating
system.

Sizes and values of the returned file status information can vary depending on which file system is used.

520  IBM COBOL for Linux on x86 1.1: Programming Guide



COBOL for Linux on x86 does not provide direct support for tape drives or diskette drives.

Related concepts  
“File systems” on page 117  
“Line-sequential file organization” on page 123 

Related tasks  
“Using file status keys” on page 168  
“Using file system status codes” on page 170  

Runtime options
COBOL for Linux on x86 does not recognize the following Enterprise COBOL runtime options, and treats
them as not valid: AIXBLD, ALL31, CBLPSHPOP, CBLQDA, COUNTRY, HEAP, MSGFILE, NATLANG, SIMVRD,
and STACK.

With Enterprise COBOL, you can use the STORAGE runtime option to initialize COBOL WORKING-STORAGE.
With COBOL for Linux on x86, use the WSCLEAR compiler option.

Related references   
“WSCLEAR” on page 288 

Source code line size
In COBOL for Linux on x86, COBOL source lines can have varying lengths. A source line ends when a
newline control character is encountered or when the maximum line length has been reached.

In Enterprise COBOL, each source line has the same length.

Related references  
“SRCFORMAT” on page 282  

Language elements
The following table lists language elements that are different between Enterprise COBOL and COBOL for
Linux on x86 compilers, and where possible offers advice about how to handle such differences in COBOL
for Linux on x86 programs.

Many COBOL clauses and phrases that are valid in Enterprise COBOL are syntax checked but have no
effect on the execution of COBOL for Linux on x86 programs. These clauses and phrases should have
minimal effect on existing applications that you download. COBOL for Linux on x86 recognizes most
Enterprise COBOL language syntax even if that syntax has no functional effect.

Table 56. Language differences between Enterprise COBOL for z/OS and COBOL for Linux on x86

Language element COBOL for Linux on x86 implementation or restriction

ACCEPT statement If your Enterprise COBOL program expects ddnames as the targets of ACCEPT
statements, define these targets by using equivalent environment variables with
values set to appropriate file-names. In COBOL for Linux on x86, environment-
name and the associated environment-variable value, if set, determine file
identification.

APPLY WRITE-ONLY
clause

Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

ASSIGN clause COBOL for Linux on x86 uses a different syntax and mapping to the system
file-name based on assignment-name. ASSIGN. . .USING data-name is not
supported in Enterprise COBOL.

BLOCK CONTAINS clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

Appendix A. Summary of differences from IBM Enterprise COBOL for z/OS  521



Table 56. Language differences between Enterprise COBOL for z/OS and COBOL for Linux on x86 (continued)

Language element COBOL for Linux on x86 implementation or restriction

CALL statement A file-name as a CALL argument is not supported in COBOL for Linux on x86.

CLOSE statement The following phrases are syntax checked, but have no effect on the execution
of the program in COBOL for Linux on x86: FOR REMOVAL, WITH NO REWIND,
and UNIT/REEL. Avoid use of these phrases in programs that are intended to be
portable.

CODE-SET clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

DATA RECORDS clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

DISPLAY statement If your Enterprise COBOL program expects ddnames as the targets of DISPLAY
statements, define these targets by using equivalent environment variables with
values set to appropriate file-names. In COBOL for Linux on x86, environment-
name and the associated environment-variable value, if set, determine file
identification.

DYNAMIC LENGTH clause Dynamic-length elementary items are not currently supported in COBOL for Linux
on x86.

File status data-name-1 Some values and meanings for file status 9x are different in Enterprise COBOL than
in COBOL for Linux on x86.

File status data-name-8 The format and values are different depending on the platform and the file system.

INDEX data items In Enterprise COBOL, INDEX data items are implicitly defined as 4 bytes. In COBOL
for Linux on x86 programs compiled with ADDR(32), their size is 4 bytes; with
ADDR(64), their size is 8 bytes.

JSON GENERATE and
JSON PARSE statements

JSON is not currently supported in COBOL for Linux on x86.

LABEL RECORDS clause The phrases LABEL RECORD IS data-name, USE. . .AFTER. . .LABEL
PROCEDURE, and GO TO MORE-LABELS are syntax checked, but have no effect
on the execution of the program in COBOL for Linux on x86. A warning is issued
if you use any of these phrases. The user-label declaratives are not called at run
time. You cannot port programs that depend on the user-label processing that
z/OS QSAM supports.

MULTIPLE FILE TAPE Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86. On the Linux workstation, all files are treated as single-volume files.

OBJECT REFERENCE data
items

OBJECT REFERENCE data items are not supported in COBOL for Linux on x86.

OPEN statement The following phrases are syntax checked, but have no effect on the execution of
the program in COBOL for Linux on x86: REVERSED and WITH NO REWIND.

PASSWORD clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

POINTER, PROCEDURE-
POINTER, and
FUNCTION-POINTER data
items

In Enterprise COBOL, POINTER and FUNCTION-POINTER data items are implicitly
defined as 4 bytes as is the special register ADDRESS OF; PROCEDURE-POINTER
data items are implicitly defined as 8 bytes. In COBOL for Linux on x86 programs
compiled with ADDR(32), the size of each of these items is 4 bytes; with
ADDR(64), their size is 8 bytes.

522  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 56. Language differences between Enterprise COBOL for z/OS and COBOL for Linux on x86 (continued)

Language element COBOL for Linux on x86 implementation or restriction

READ. . .PREVIOUS In COBOL for Linux on x86 only, allows you to read the previous record for relative
or indexed files with DYNAMIC access mode

RECORD CONTAINS
clause

The RECORD CONTAINS n CHARACTERS clause is accepted with one exception:
RECORD CONTAINS 0 CHARACTERS is syntax checked, but has no effect on the
execution of the program in COBOL for Linux on x86.

RECORDING MODE clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86 for relative, indexed, and line-sequential files. RECORDING MODE U
is syntax checked, but has no effect on the execution of the program for sequential
files.

RERUN clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

RESERVE clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

SAME AREA clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

SAME SORT clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

SHIFT-IN, SHIFT-OUT
special registers

The COBOL for Linux on x86 compiler puts out an E-level message if it encounters
these registers unless the CHAR(EBCDIC) compiler option is in effect.

SORT-CONTROL special
register

The implicit definition and contents of this special register differ between host and
workstation COBOL.

SORT-CORE-SIZE special
register

The contents of this special register differ between host and workstation COBOL.

SORT-FILE-SIZE special
register

Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86. Values in this special register are not used.

SORT-MESSAGE special
register

Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

SORT-MODE-SIZE special
register

Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86. Values in this special register are not used.

SORT MERGE AREA
clause

Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

START. . . In COBOL for Linux on x86, the following relational operators are allowed: IS
LESS THAN, IS <, IS NOT GREATER THAN, IS NOT >, IS LESS THAN OR
EQUAL TO, IS <=.

STOP RUN Not supported in COBOL for Linux on x86 multithreaded programs; can be
replaced in a multithreaded program with a call to the C exit() function

UTF-8 phrase of the
USAGE clause and the 'U'
PICTURE symbol

The UTF-8 data class and UTF-8 data category are not currently supported in
COBOL for Linux on x86.

WRITE statement In COBOL for Linux on x86, if you specify WRITE. . .ADVANCING with
environment names C01 through C12 or S01 through S05, one line is advanced.

Appendix A. Summary of differences from IBM Enterprise COBOL for z/OS  523



Table 56. Language differences between Enterprise COBOL for z/OS and COBOL for Linux on x86 (continued)

Language element COBOL for Linux on x86 implementation or restriction

XML PARSE statement In Enterprise COBOL programs compiled using the host-only option
XMLPARSE(XMLSS), additional syntax (the ENCODING phrase and RETURNING
NATIONAL phrase) and special registers for namespace processing are available
that are not available with COBOL for Linux on x86.

Names known to the
platform environment

The following names are identified differently: program-name, text-name, library-
name, assignment-name, file-name in the SORT-CONTROL special register, basis-
name, DISPLAY or ACCEPT target identification, and system-dependent names.

524  IBM COBOL for Linux on x86 1.1: Programming Guide



Appendix B. IBM Z host data format considerations
The following information is about considerations, restrictions, and limitations that apply to the use of
IBM Z host data internal representation.

The CHAR and FLOAT compiler options determine whether IBM Z host data format or native data format
is used (other than for COMP-5 items or items defined with the NATIVE phrase in the USAGE clause). (The
terms host data format and native data format in this information refer to the internal representation of
data items.)

CICS access
There is no IBM Z host data format support for COBOL programs that are translated by the separate or
integrated CICS translator and run on TXSeries or CICS TX.

Date and time callable services
You can use the date and time callable services with the IBM Z host data format internal representations.
All of the parameters passed to the callable services must be in IBM Z host data format. You cannot mix
native and host data internal representations in the same call to a date and time service.

Floating-point overflow exceptions
Due to differences in the limits of floating-point data representations on the Linux workstation and the
IBM Z host, it is possible if FLOAT(BE) is in effect that a floating-point overflow exception could occur
during conversion between the two formats. For example, you might receive the following message on the
workstation when you run a program that runs successfully on the host:

IWZ053S An overflow occurred on conversion to floating point

To avoid this problem, you must be aware of the maximum floating-point values supported on each
platform for the respective data types. The limits are shown in the following table.

Table 57. Maximum floating-point values

Data type Maximum workstation value Maximum IBM Z host value

COMP-1 *(2**128 - 2**4)

(approx.*3.4028E+38)

*(16**63 - 16**57)

(approx.*7.2370E+75)

COMP-2 *(2**1024 - 2**971)

(approx.*1.7977E+308)

*(16**63 - 16**49)

(approx.*7.2370E+75)

* Indicates that the value can be positive or negative.

As shown above, the host can carry a larger COMP-1 value than the workstation and the workstation can
carry a larger COMP-2 value than the host.

Db2
The IBM Z host data format compiler options can be used with Db2 programs.

© Copyright IBM Corp. 2021, 2023 525



Distributed Computing Environment applications
The IBM Z host data format compiler options should not be used with Distributed Computing Environment
programs.

File data
• EBCDIC data and hexadecimal binary data can be read from and written to any sequential, relative, or

indexed files. No automatic conversion takes place.
• If you are accessing files that contain host data, use the compiler options BINARY(BE),
COLLSEQ(EBCDIC), CHAR(EBCDIC), and FLOAT(BE) to process binary data, EBCDIC character data
and hexadecimal floating-point data that is acquired from these files.

SORT
All of the IBM Z host data formats except DBCS (USAGE DISPLAY-1) can be used as sort keys.

Related concepts   
“Formats for numeric
data” on page 39 

Related references  
“Compiler options” on page 248

526  IBM COBOL for Linux on x86 1.1: Programming Guide



Appendix C. Intermediate results and arithmetic
precision

The compiler handles arithmetic statements as a succession of operations performed according to
operator precedence, and sets up intermediate fields to contain the results of those operations. The
compiler uses algorithms to determine the number of integer and decimal places to reserve.

Intermediate results are possible in the following cases:

• In an ADD or SUBTRACT statement that contains more than one operand immediately after the verb
• In a COMPUTE statement that specifies a series of arithmetic operations or multiple result fields
• In an arithmetic expression contained in a conditional statement or in a reference-modification
specification

• In an ADD, SUBTRACT, MULTIPLY, or DIVIDE statement that uses the GIVING option and multiple
result fields

• In a statement that uses an intrinsic function as an operand

“Example: calculation of intermediate results” on page 529

The precision of intermediate results depends on whether you compile using the default option
ARITH(COMPAT) (referred to as compatibility mode) or using ARITH(EXTEND) (referred to as extended
mode).

In compatibility mode, evaluation of arithmetic operations is unchanged from that in IBM COBOL Set for
Linux:

• A maximum of 30 digits is used for fixed-point intermediate results.
• Floating-point intrinsic functions return long-precision (64-bit) floating-point results.
• Expressions that contain floating-point operands, fractional exponents, or floating-point intrinsic

functions are evaluated as if all operands that are not in floating point are converted to long-precision
floating point and floating-point operations are used to evaluate the expression.

• Floating-point literals and external floating-point data items are converted to long-precision floating
point for processing.

In extended mode, evaluation of arithmetic operations has the following characteristics:

• A maximum of 31 digits is used for fixed-point intermediate results.
• Floating-point intrinsic functions return extended-precision (128-bit) floating-point results.
• Expressions that contain floating-point operands, fractional exponents, or floating-point intrinsic

functions are evaluated as if all operands that are not in floating point are converted to extended-
precision floating point and floating-point operations are used to evaluate the expression.

• Floating-point literals and external floating-point data items are converted to extended-precision
floating point for processing.

Related concepts   
“Formats for numeric
data” on page 39  
“Fixed-point contrasted
with floating-point arithmetic” on page 53 

Related references   
“Fixed-point data and
intermediate results” on page 529  
“Floating-point data
and intermediate results” on page 534  
“Arithmetic expressions

© Copyright IBM Corp. 2021, 2023 527



in nonarithmetic statements” on page 535  
“ARITH” on page 253 

Terminology used for intermediate results
To understand this information about intermediate results, you need to understand the following
terminology.

i
The number of integer places carried for an intermediate result. (If you use the ROUNDED phrase, one
more integer place might be carried for accuracy if necessary.)

d
The number of decimal places carried for an intermediate result. (If you use the ROUNDED phrase, one
more decimal place might be carried for accuracy if necessary.)

dmax
In a particular statement, the largest of the following items:

• The number of decimal places needed for the final result field or fields
• The maximum number of decimal places defined for any operand, except divisors or exponents
• The outer-dmax for any function operand

inner-dmax
In reference to a function, the largest of the following items:

• The number of decimal places defined for any of its elementary arguments
• The dmax for any of its arithmetic expression arguments
• The outer-dmax for any of its embedded functions

outer-dmax
The number of decimal places that a function result contributes to operations outside of its own
evaluation (for example, if the function is an operand in an arithmetic expression, or an argument to
another function).

op1
The first operand in a generated arithmetic statement (in division, the divisor).

op2
The second operand in a generated arithmetic statement (in division, the dividend).

i1 , i2
The number of integer places in op1 and op2, respectively.

d1 , d2
The number of decimal places in op1 and op2, respectively.

ir
The intermediate result when a generated arithmetic statement or operation is performed.
(Intermediate results are generated either in registers or storage locations.)

ir1 , ir2
Successive intermediate results. (Successive intermediate results might have the same storage
location.)

Related references   
ROUNDED phrase (COBOL for Linux on x86 Language Reference)

528  IBM COBOL for Linux on x86 1.1: Programming Guide



Example: calculation of intermediate results
The following example shows how the compiler performs an arithmetic statement as a succession of
operations, storing intermediate results as needed.

COMPUTE Y = A + B * C - D / E + F ** G

The result is calculated in the following order:

1. Exponentiate F by G yielding ir1.
2. Multiply B by C yielding ir2.
3. Divide E into D yielding ir3.
4. Add A to ir2 yielding ir4.
5. Subtract ir3 from ir4 yielding ir5.
6. Add ir5 to ir1 yielding Y.

Related tasks   
“Using arithmetic expressions” on page 50 

Related references   
“Terminology used for
intermediate results” on page 528 

Fixed-point data and intermediate results
The compiler determines the number of integer and decimal places in an intermediate result.

Addition, subtraction, multiplication, and division
The following table shows the precision theoretically possible as the result of addition, subtraction,
multiplication, or division.

Operation Integer places Decimal places

+ or - (i1 or i2) + 1, whichever is greater d1 or d2, whichever is greater

* i1 + i2 d1 + d2

/ i2 + d1 (d2 - d1) or dmax, whichever is greater

You must define the operands of any arithmetic statements with enough decimal places to obtain the
accuracy you want in the final result.

The following table shows the number of places the compiler carries for fixed-point intermediate results
of arithmetic operations that involve addition, subtraction, multiplication, or division in compatibility mode
(that is, when the default compiler option ARITH(COMPAT) is in effect):

Value of i + d Value of d Value of i + dmax Number of places carried for ir

<30 or =30 Any value Any value i integer and d decimal places

>30 <dmax or =dmax Any value 30-d integer and d decimal places

>dmax <30 or =30 i integer and 30-i decimal places

>30 30-dmax integer and dmax decimal
places

Appendix C. Intermediate results and arithmetic precision  529



The following table shows the number of places the compiler carries for fixed-point intermediate results
of arithmetic operations that involve addition, subtraction, multiplication, or division in extended mode
(that is, when the compiler option ARITH(EXTEND) is in effect):

Value of i + d Value of d Value of i + dmax Number of places carried for ir

<31 or =31 Any value Any value i integer and d decimal places

>31 <dmax or =dmax Any value 31-d integer and d decimal places

>dmax <31 or =31 i integer and 31-i decimal places

>31 31-dmax integer and dmax decimal
places

Exponentiation

Exponentiation is represented by the expression op1 ** op2. Based on the characteristics of op2, the
compiler handles exponentiation of fixed-point numbers in one of three ways:

• When op2 is expressed with decimals, floating-point instructions are used.
• When op2 is an integral literal or constant, the value d is computed as

d = d1 * |op2|

and the value i is computed based on the characteristics of op1:

– When op1 is a data-name or variable,

i = i1 * |op2|

– When op1 is a literal or constant, i is set equal to the number of integers in the value of op1 ** |op2|.

In compatibility mode (compilation using ARITH(COMPAT)), the compiler having calculated i and d
takes the action indicated in the table below to handle the intermediate results ir of the exponentiation.

Value of i + d Other conditions Action taken

<30 Any i integer and d decimal places are carried for ir.

=30 op1 has an odd
number of digits.

i integer and d decimal places are carried for ir.

op1 has an even
number of digits.

Same action as when op2 is an integral data-name or
variable (shown below). Exception: for a 30-digit integer
raised to the power of literal 1, i integer and d decimal
places are carried for ir.

>30 Any Same action as when op2 is an integral data-name or
variable (shown below)

In extended mode (compilation using ARITH(EXTEND)), the compiler having calculated i and d takes
the action indicated in the table below to handle the intermediate results ir of the exponentiation.

Value of i + d Other conditions Action taken

<31 Any i integer and d decimal places are carried for ir.

530  IBM COBOL for Linux on x86 1.1: Programming Guide



Value of i + d Other conditions Action taken

=31 or >31 Any Same action as when op2 is an integral data-name or
variable (shown below). Exception: for a 31-digit integer
raised to the power of literal 1, i integer and d decimal
places are carried for ir.

If op2 is negative, the value of 1 is then divided by the result produced by the preliminary computation.
The values of i and d that are used are calculated following the division rules for fixed-point data already
shown above.

• When op2 is an integral data-name or variable, dmax decimal places and 30-dmax (compatibility mode)
or 31-dmax (extended mode) integer places are used. op1 is multiplied by itself (|op2| - 1) times for
nonzero op2.

If op2 is equal to 0, the result is 1. Division-by-0 and exponentiation SIZE ERROR conditions apply.

Fixed-point exponents with more than nine significant digits are always truncated to nine digits. If
the exponent is a literal or constant, an E-level compiler diagnostic message is issued; otherwise, an
informational message is issued at run time.

“Example: exponentiation in fixed-point arithmetic” on page 531

Related references   
“Terminology used for
intermediate results” on page 528  
“Truncated intermediate
results” on page 532  
“Binary data and intermediate
results” on page 532  
“Floating-point data
and intermediate results” on page 534  
“Intrinsic functions
evaluated in fixed-point arithmetic” on page 532  
“ARITH” on page 253  
SIZE ERROR phrases (COBOL for Linux on x86 Language Reference)

Example: exponentiation in fixed-point arithmetic
The following example shows how the compiler performs an exponentiation to a nonzero integer power as
a succession of multiplications, storing intermediate results as needed.

COMPUTE Y = A ** B

If B is equal to 4, the result is computed as shown below. The values of i and d that are used are
calculated according to the multiplication rules for fixed-point data and intermediate results (referred to
below).

1. Multiply A by A yielding ir1.
2. Multiply ir1 by A yielding ir2.
3. Multiply ir2 by A yielding ir3.
4. Move ir3 to ir4.

ir4 has dmax decimal places. Because B is positive, ir4 is moved to Y. If B were equal to -4, however,
an additional fifth step would be performed:

5. Divide ir4 into 1 yielding ir5.

ir5 has dmax decimal places, and would then be moved to Y.

Appendix C. Intermediate results and arithmetic precision  531



Related references   
“Terminology used for
intermediate results” on page 528  
“Fixed-point data and
intermediate results” on page 529 

Truncated intermediate results
Whenever the number of digits in an intermediate result exceeds 30 in compatibility mode or 31 in
extended mode, the compiler truncates to 30 (compatibility mode) or 31 (extended mode) digits and
issues a warning. If truncation occurs at run time, a message is issued and the program continues
running.

If you want to avoid the truncation of intermediate results that can occur in fixed-point calculations, use
floating-point operands (COMP-1 or COMP-2) instead.

Related concepts   
“Formats for numeric
data” on page 39 

Related references   
“Fixed-point data and
intermediate results” on page 529  
“ARITH” on page 253 

Binary data and intermediate results
If an operation that involves binary operands requires intermediate results longer than 18 digits, the
compiler converts the operands to internal decimal before performing the operation. If the result field is
binary, the compiler converts the result from internal decimal to binary.

Binary operands are most efficient when intermediate results will not exceed nine digits.

Related references   
“Fixed-point data and
intermediate results” on page 529  
“ARITH” on page 253 

Intrinsic functions evaluated in fixed-point arithmetic
The compiler determines the inner-dmax and outer-dmax values for an intrinsic function from the
characteristics of the function.

Integer functions
Integer intrinsic functions return an integer; thus their outer-dmax is always zero. For those integer
functions whose arguments must all be integers, the inner-dmax is thus also always zero.

The following table summarizes the inner-dmax and the precision of the function result.

Function Inner-dmax Digit precision of function result

DATE-OF-INTEGER 0 8

DATE-TO-YYYYMMDD 0 8

DAY-OF-INTEGER 0 7

DAY-TO-YYYYDDD 0 7

532  IBM COBOL for Linux on x86 1.1: Programming Guide



Function Inner-dmax Digit precision of function result

FACTORIAL 0 30 in compatibility mode, 31 in extended mode

INTEGER-OF-DATE 0 7

INTEGER-OF-DAY 0 7

LENGTH n/a 9

MOD 0 min(i1 i2)

ORD n/a 3

ORD-MAX   9

ORD-MIN   9

YEAR-TO-YYYY 0 4

INTEGER   For a fixed-point argument: one more digit than in the
argument. For a floating-point argument: 30 in compatibility
mode, 31 in extended mode.

INTEGER-PART   For a fixed-point argument: same number of digits as in the
argument. For a floating-point argument: 30 in compatibility
mode, 31 in extended mode.

Mixed functions
A mixed intrinsic function is a function whose result type depends on the type of its arguments. A mixed
function is fixed point if all of its arguments are numeric and none of its arguments is floating point. (If any
argument of a mixed function is floating point, the function is evaluated with floating-point instructions
and returns a floating-point result.) When a mixed function is evaluated with fixed-point arithmetic, the
result is integer if all of the arguments are integer; otherwise, the result is fixed point.

For the mixed functions MAX, MIN, RANGE, REM, and SUM, the outer-dmax is always equal to the inner-
dmax (and both are thus zero if all the arguments are integer). To determine the precision of the result
returned for these functions, apply the rules for fixed-point arithmetic and intermediate results (as
referred to below) to each step in the algorithm.

MAX

1. Assign the first argument to the function result.
2. For each remaining argument, do the following steps:

a. Compare the algebraic value of the function result with the argument.
b. Assign the greater of the two to the function result.

MIN

1. Assign the first argument to the function result.
2. For each remaining argument, do the following steps:

a. Compare the algebraic value of the function result with the argument.
b. Assign the lesser of the two to the function result.

RANGE

1. Use the steps for MAX to select the maximum argument.
2. Use the steps for MIN to select the minimum argument.
3. Subtract the minimum argument from the maximum.
4. Assign the difference to the function result.

Appendix C. Intermediate results and arithmetic precision  533



REM

1. Divide argument one by argument two.
2. Remove all noninteger digits from the result of step 1.
3. Multiply the result of step 2 by argument two.
4. Subtract the result of step 3 from argument one.
5. Assign the difference to the function result.

SUM

1. Assign the value 0 to the function result.
2. For each argument, do the following steps:

a. Add the argument to the function result.
b. Assign the sum to the function result.

Related references   
“Terminology used for
intermediate results” on page 528  
“Fixed-point data and
intermediate results” on page 529  
“Floating-point data
and intermediate results” on page 534  
“ARITH” on page 253 

Floating-point data and intermediate results
If any operation in an arithmetic expression is computed in floating-point arithmetic, the entire expression
is computed as if all operands were converted to floating point and the operations were performed using
floating-point instructions.

Floating-point instructions are used to compute an arithmetic expression if any of the following conditions
is true of the expression:

• A receiver or operand is COMP-1, COMP-2, external floating point, or a floating-point literal.
• An exponent contains decimal places.
• An exponent is an expression that contains an exponentiation or division operator, and dmax is greater

than zero.
• An intrinsic function is a floating-point function.

In compatibility mode, if an expression is computed in floating-point arithmetic, the precision used to
evaluate the arithmetic operations is determined as follows:

• Single precision is used if all receivers and operands are COMP-1 data items and the expression
contains no multiplication or exponentiation operations.

• In all other cases, long precision is used.

Whenever long-precision floating point is used for one operation in an arithmetic expression, all
operations in the expression are computed as if long floating-point instructions were used.

In extended mode, if an expression is computed in floating-point arithmetic, the precision used to
evaluate the arithmetic operations is determined as follows:

• Single precision is used if all receivers and operands are COMP-1 data items and the expression
contains no multiplication or exponentiation operations.

• Long precision is used if all receivers and operands are COMP-1 or COMP-2 data items, at least
one receiver or operand is a COMP-2 data item, and the expression contains no multiplication or
exponentiation operations.

• In all other cases, extended precision is used.

534  IBM COBOL for Linux on x86 1.1: Programming Guide



Whenever extended-precision floating point is used for one operation in an arithmetic expression, all
operations in the expression are computed as if extended-precision floating-point instructions were used.

Alert: If a floating-point operation has an intermediate result field in which exponent overflow occurs, the
job is abnormally terminated.

Exponentiations evaluated in floating-point arithmetic
In compatibility mode, floating-point exponentiations are always evaluated using long floating-point
arithmetic. In extended mode, floating-point exponentiations are always evaluated using extended-
precision floating-point arithmetic.

The value of a negative number raised to a fractional power is undefined in COBOL. For example, (-2) ** 3
is equal to -8, but (-2) ** (3.000001) is undefined. When an exponentiation is evaluated in floating point
and there is a possibility that the result is undefined, the exponent is evaluated at run time to determine if
it has an integral value. If not, a diagnostic message is issued.

Intrinsic functions evaluated in floating-point arithmetic
In compatibility mode, floating-point intrinsic functions always return a long (64-bit) floating-point
value. In extended mode, floating-point intrinsic functions always return an extended-precision (128-bit)
floating-point value.

Mixed functions that have at least one floating-point argument are evaluated using floating-point
arithmetic.

Related references   
“Terminology used for
intermediate results” on page 528  
“ARITH” on page 253 

Arithmetic expressions in nonarithmetic statements
Arithmetic expressions can appear in contexts other than arithmetic statements. For example, you can
use an arithmetic expression with the IF or EVALUATE statement.

In such statements, the rules for intermediate results with fixed-point data and for intermediate results
with floating-point data apply, with the following changes:

• Abbreviated IF statements are handled as though the statements were not abbreviated.
• In an explicit relation condition where at least one of the comparands is an arithmetic expression, dmax

is the maximum number of decimal places for any operand of either comparand, excluding divisors and
exponents. The rules for floating-point arithmetic apply if any of the following conditions is true:

– Any operand in either comparand is COMP-1, COMP-2, external floating point, or a floating-point
literal.

– An exponent contains decimal places.
– An exponent is an expression that contains an exponentiation or division operator, and dmax is

greater than zero.

For example:

IF operand-1 = expression-1 THEN . . .

If operand-1 is a data-name defined to be COMP-2, the rules for floating-point arithmetic apply to
expression-1 even if it contains only fixed-point operands, because it is being compared to a floating-
point operand.

• When the comparison between an arithmetic expression and another data item or arithmetic expression
does not use a relational operator (that is, there is no explicit relation condition), the arithmetic
expression is evaluated without regard to the attributes of its comparand. For example:

Appendix C. Intermediate results and arithmetic precision  535



EVALUATE expression-1
  WHEN expression-2 THRU expression-3
  WHEN expression-4
  . . .
END-EVALUATE

In the statement above, each arithmetic expression is evaluated in fixed-point or floating-point
arithmetic based on its own characteristics.

Related concepts   
“Fixed-point contrasted
with floating-point arithmetic” on page 53 

Related references   
“Terminology used for
intermediate results” on page 528  
“Fixed-point data and
intermediate results” on page 529  
“Floating-point data
and intermediate results” on page 534  
IF statement (COBOL for Linux on x86 Language Reference)  
EVALUATE statement (COBOL for Linux on x86 Language Reference)  
Conditional expressions (COBOL for Linux on x86 Language Reference)

536  IBM COBOL for Linux on x86 1.1: Programming Guide



Appendix D. Date and time callable services
By using the date and time callable services, you can get the current local time and date in several
formats and can convert dates and times.

The available date and time callable services are shown below. Two of the services, CEEQCEN and
CEESCEN, provide a predictable way to handle two-digit years, such as 91 for 1991 or 10 for 2010.

Table 58. Date and time callable services

Callable service Description

“CEECBLDY: convert date to COBOL
integer format” on page 538

Converts character date value to COBOL integer date format.
Day one is 01 January 1601, and the value is incremented by
one for each subsequent day.

“CEEDATE: convert Lilian date to
character format” on page 542

Converts dates in the Lilian format back to character values.

“CEEDATM: convert seconds to
character time stamp” on page 545

Converts number of seconds to character time stamp.

“CEEDAYS: convert date to Lilian
format” on page 549

Converts character date values to the Lilian format. Day one
is 15 October 1582 and the value is incremented by one for
each subsequent day.

“CEEDYWK: calculate day of week from
Lilian date” on page 551

Provides day of week calculation.

“CEEGMT: get current Greenwich Mean
Time” on page 553

Gets current Greenwich Mean Time (date and time).

“CEEGMTO: get offset from Greenwich
Mean Time to local time” on page 555

Gets difference between Greenwich Mean Time and local
time.

“CEEISEC: convert integers to seconds”
on page 557

Converts binary year, month, day, hour, second, and
millisecond to a number that represents the number of
seconds since 00:00:00 15 October 1582.

“CEELOCT: get current local date or
time” on page 559

Gets current date and time.

“CEEQCEN: query the century window”
on page 561

Queries the callable services century window.

“CEESCEN: set the century window” on
page 562

Sets the callable services century window.

“CEESECI: convert seconds to integers”
on page 563

Converts a number that represents the number of seconds
since 00:00:00 15 October 1582 to seven separate binary
integers that represent year, month, day, hour, minute,
second, and millisecond.

“CEESECS: convert time stamp to
seconds” on page 566

Converts character time stamps (a date and time) to the
number of seconds since 00:00:00 15 October 1582.

“CEEUTC: get coordinated universal
time” on page 569

Same as CEEGMT.

“IGZEDT4: get current date” on page
570

Returns the current date with a four-digit year in the form
YYYMMDD.

© Copyright IBM Corp. 2021, 2023 537



All of these date and time callable services allow source code compatibility with Enterprise COBOL for
z/OS. There are, however, significant differences in the way conditions are handled.

The date and time callable services are in addition to the date/time intrinsic functions shown below.

Table 59. Date and time intrinsic functions

Intrinsic function Description

CURRENT-DATE Current date and time and difference from Greenwich mean
time

DATE-OF-INTEGER1 Standard date equivalent (YYYYMMDD) of integer date

DATE-TO-YYYYMMDD1 Standard date equivalent (YYYYMMDD) of integer date with a
windowed year, according to the specified 100-year interval

DATEVAL1 Date field equivalent of integer or alphanumeric date

DAY-OF-INTEGER1 Julian date equivalent (YYYYDDD) of integer date

DAY-TO-YYYYDDD1 Julian date equivalent (YYYYMMDD) of integer date with a
windowed year, according to the specified 100-year interval

INTEGER-OF-DATE Integer date equivalent of standard date (YYYYMMDD)

INTEGER-OF-DAY Integer date equivalent of Julian date (YYYYDDD)

UNDATE1 Nondate equivalent of integer or alphanumeric date field

YEAR-TO-YYYY1 Expanded year equivalent (YYYY) of windowed year,
according to the specified 100-year interval

YEARWINDOW1 Starting year of the century window specified by the
YEARWINDOW compiler option

1. Behavior depends on the setting of the DATEPROC compiler option.

“Example: formatting dates for output” on page 508

Related references   
“Feedback token” on page 509  
CALL statement (COBOL for Linux on x86 Language Reference)  
Function definitions (COBOL for Linux on x86 Language Reference)

CEECBLDY: convert date to COBOL integer format
CEECBLDY converts a string that represents a date into the number of days since 31 December 1600.
Use CEECBLDY to access the century window of the date and time callable services and to perform date
calculations with COBOL intrinsic functions.

This service is similar to CEEDAYS except that it provides a string in COBOL integer format, which is
compatible with COBOL intrinsic functions.

CALL CEECBLDY syntax
CALL "CEECBLDY" USING input_char_date , picture_string , output_Integer_date ,

fc .

538  IBM COBOL for Linux on x86 1.1: Programming Guide



input_char_date (input)
A halfword length-prefixed character string that represents a date or time stamp in a format
conforming to that specified by picture_string.

The character string must contain between 5 and 255 characters, inclusive. input_char_date can
contain leading or trailing blanks. Parsing for a date begins with the first nonblank character (unless
the picture string itself contains leading blanks, in which case CEECBLDY skips exactly that many
positions before parsing begins).

After parsing a valid date, as determined by the format of the date specified in picture_string,
CEECBLDY ignores all remaining characters. Valid dates range between and include 01 January 1601
to 31 December 9999.

picture_string (input)
A halfword length-prefixed character string indicating the format of the date specified in
input_char_date.

Each character in the picture_string corresponds to a character in input_char_date. For example, if you
specify MMDDYY as the picture_string, CEECBLDY reads an input_char_date of 060288 as 02 June
1988.

If delimiters such as the slash (/) appear in the picture string, you can omit leading zeros. For
example, the following calls to CEECBLDY each assign the same value, 141502 (02 June 1988), to
COBINTDTE:

MOVE '6/2/88' TO DATEVAL-STRING.
MOVE 6 TO DATEVAL-LENGTH.
MOVE 'MM/DD/YY' TO PICSTR-STRING.
MOVE 8 TO PICSTR-LENGTH.
CALL CEECBLDY USING DATEVAL, PICSTR, COBINTDTE, FC.

MOVE '06/02/88' TO DATEVAL-STRING.
MOVE 8 TO DATEVAL-LENGTH.
MOVE 'MM/DD/YY' TO PICSTR-STRING.
MOVE 8 TO PICSTR-LENGTH.
CALL CEECBLDY USING DATEVAL, PICSTR, COBINTDTE, FC.

MOVE '060288' TO DATEVAL-STRING.
MOVE 6 TO DATEVAL-LENGTH.
MOVE 'MMDDYY' TO PICSTR-STRING.
MOVE 6 TO PICSTR-LENGTH.
CALL CEECBLDY USING DATEVAL, PICSTR, COBINTDTE, FC.

MOVE '88154' TO DATEVAL-STRING.
MOVE 5 TO DATEVAL-LENGTH.
MOVE 'YYDDD' TO PICSTR-STRING.
MOVE 5 TO PICSTR-LENGTH.
CALL CEECBLDY USING DATEVAL, PICSTR, COBINTDTE, FC.

Whenever characters such as colons or slashes are included in the picture_string (such as HH:MI:SS
YY/MM/DD), they count as placeholders but are otherwise ignored.

If picture_string includes a Japanese Era symbol <JJJJ>, the YY position in input_char_date is
replaced by the year number within the Japanese Era. For example, the year 1988 equals the
Japanese year 63 in the Showa era.

output_Integer_date (output)
A 32-bit binary integer that represents the COBOL integer date, the number of days since 31
December 1600. For example, 16 May 1988 is day number 141485.

If input_char_date does not contain a valid date, output_Integer_date is set to 0, and CEECBLDY
terminates with a non-CEE000 symbolic feedback code.

Appendix D. Date and time callable services  539



Date calculations are performed easily on the output_Integer_date, because output_Integer_date is an
integer. Leap year and end-of-year anomalies do not affect the calculations.

fc (output)
A 12-byte feedback code (optional) that indicates the result of this service.

Table 60. CEECBLDY symbolic conditions

Symbolic
feedback
code

Severity Message
number

Message text

CEE000 0 -- The service completed successfully.

CEE2EB 3 2507 Insufficient data was passed to CEEDAYS or CEESECS. The
Lilian value was not calculated.

CEE2EC 3 2508 The date value passed to CEEDAYS or CEESECS was invalid.

CEE2ED 3 2509 The era passed to CEEDAYS or CEESECS was not recognized.

CEE2EH 3 2513 The input date passed in a CEEISEC, CEEDAYS, or CEESECS
call was not within the supported range.

CEE2EL 3 2517 The month value in a CEEISEC call was not recognized.

CEE2EM 3 2518 An invalid picture string was specified in a call to a date/time
service.

CEE2EO 3 2520 CEEDAYS detected nonnumeric data in a numeric field, or
the date string did not match the picture string.

CEE2EP 3 2521 The <JJJJ>, <CCCC>, or <CCCCCCCC> year-within-era value
passed to CEEDAYS or CEESECS was zero.

Usage notes

• Call CEECBLDY only from COBOL programs that use the returned value as input to COBOL intrinsic
functions. Unlike CEEDAYS, there is no inverse function of CEECBLDY, because it is only for COBOL
users who want to use the date and time century window service together with COBOL intrinsic
functions for date calculations. The inverse of CEECBLDY is provided by the DATE-OF-INTEGER and
DAY-OF-INTEGER intrinsic functions.

• To perform calculations on dates earlier than 1 January 1601, add 4000 to the year in each date,
convert the dates to COBOL integer format, then do the calculation. If the result of the calculation is a
date, as opposed to a number of days, convert the result to a date string and subtract 4000 from the
year. 

• By default, two-digit years lie within the 100-year range that starts 80 years before the system date.
Thus in 2010, all two-digit years represent dates between 1930 and 2029, inclusive. You can change
this default range by using the CEESCEN callable service.

Example

*************************************************
**                                             **
** Function: Invoke CEECBLDY callable service  **
** to convert date to COBOL integer format.    **
** This service is used when using the         **
** Century Window feature of the date and time **
** callable services mixed with COBOL          **
** intrinsic functions.                        **
**                                             **
*************************************************
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBLDY.
*
 DATA DIVISION.

540  IBM COBOL for Linux on x86 1.1: Programming Guide



 WORKING-STORAGE SECTION.
 01  CHRDATE.
     02  Vstring-length      PIC S9(4) BINARY.
     02  Vstring-text.
         03  Vstring-char    PIC X
                     OCCURS 0 TO 256 TIMES
                     DEPENDING ON Vstring-length
                         of CHRDATE.
 01  PICSTR.
     02  Vstring-length      PIC S9(4) BINARY.
     02  Vstring-text.
         03  Vstring-char    PIC X
                     OCCURS 0 TO 256 TIMES
                     DEPENDING ON Vstring-length
                         of  PICSTR.
 01  INTEGER                 PIC S9(9) BINARY.
 01  NEWDATE                 PIC 9(8).
 01  FC.
     02  Condition-Token-Value.
     COPY  CEEIGZCT.
         03  Case-1-Condition-ID.
             04  Severity    PIC S9(4) COMP.
             04  Msg-No      PIC S9(4) COMP.
         03  Case-2-Condition-ID
                 REDEFINES Case-1-Condition-ID.
             04  Class-Code  PIC S9(4) COMP.
             04  Cause-Code  PIC S9(4) COMP.
         03  Case-Sev-Ctl    PIC X.
         03  Facility-ID     PIC XXX.
     02  I-S-Info            PIC S9(9) COMP.
*
 PROCEDURE DIVISION.
 PARA-CBLDAYS.
*************************************************
** Specify input date and length               **
*************************************************
     MOVE 25 TO Vstring-length of CHRDATE.
     MOVE '1 January 00'
         to Vstring-text of CHRDATE.
*************************************************
** Specify a picture string that describes     **
** input date, and set the string's length.    **
*************************************************
     MOVE 23 TO Vstring-length of PICSTR.
     MOVE 'ZD Mmmmmmmmmmmmmmz YY'
               TO Vstring-text of PICSTR.
*************************************************
** Call CEECBLDY to convert input date to a    **
** COBOL integer date                          **
*************************************************
     CALL 'CEECBLDY' USING CHRDATE, PICSTR,
                           INTEGER, FC.
*************************************************
** If CEECBLDY runs successfully, then compute **
**     the date of the 90th day after the      **
**     input date using Intrinsic Functions    **
*************************************************
     IF CEE000 of FC  THEN
         COMPUTE INTEGER = INTEGER + 90
         COMPUTE NEWDATE = FUNCTION
             DATE-OF-INTEGER (INTEGER)
         DISPLAY NEWDATE
             ' is Lilian day: ' INTEGER
     ELSE
         DISPLAY 'CEEBLDY failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.
*
     GOBACK.

Related references   
“Picture character terms and strings” on page 510 

Appendix D. Date and time callable services  541



CEEDATE: convert Lilian date to character format
CEEDATE converts a number that represents a Lilian date to a date written in character format. The output
is a character string, such as 2010/04/23.

CALL CEEDATE syntax
CALL "CEEDATE" USING input_Lilian_date , picture_string , output_char_date , fc .

input_Lilian_date (input)
A 32-bit integer that represents the Lilian date. The Lilian date is the number of days since 14 October
1582. For example, 16 May 1988 is Lilian day number 148138. The valid range of Lilian dates is 1 to
3,074,324 (15 October 1582 to 31 December 9999).

picture_string (input)
A halfword length-prefixed character string that represents the required format of output_char_date,
for example MM/DD/YY. Each character in picture_string represents a character in output_char_date. If
delimiters such as the slash (/) appear in the picture string, they are copied as is to output_char_date.

If picture_string includes a Japanese Era symbol <JJJJ>, the YY position in output_char_date is
replaced by the year number within the Japanese Era. For example, the year 1988 equals the
Japanese year 63 in the Showa era.

output_char_date (output)
A fixed-length 80-character string that is the result of converting input_Lilian_date to the format
specified by picture_string. If input_Lilian_date is invalid, output_char_date is set to all blanks and
CEEDATE terminates with a non-CEE000 symbolic feedback code.

fc (output)
A 12-byte feedback code (optional) that indicates the result of this service.

Table 61. CEEDATE symbolic conditions

Symbolic
feedback
code

Severity Message
number

Message text

CEE000 0 -- The service completed successfully.

CEE2EG 3 2512 The Lilian date value passed in a call to CEEDATE or
CEEDYWK was not within the supported range.

CEE2EM 3 2518 An invalid picture string was specified in a call to a date/time
service.

CEE2EQ 3 2522 An era (<JJJJ>, <CCCC>, or <CCCCCCCC>) was used in a
picture string passed to CEEDATE, but the Lilian date value
was not within the supported range. The era could not be
determined.

CEE2EU 2 2526 The date string returned by CEEDATE was truncated.

CEE2F6 1 2534 Insufficient field width was specified for a month or weekday
name in a call to CEEDATE or CEEDATM. Output set to
blanks.

Usage note: The inverse of CEEDATE is CEEDAYS, which converts character dates to the Lilian format.

Example

************************************************
**                                            **
** Function: CEEDATE - convert Lilian date to **

542  IBM COBOL for Linux on x86 1.1: Programming Guide



**                     character format       **
**                                            **
** In this example, a call is made to CEEDATE **
** to convert a Lilian date (the number of    **
** days since 14 October 1582) to a character **
** format (such as 6/22/98). The result is    **
** displayed.  The Lilian date is obtained    **
** via a call to CEEDAYS.                     **
**                                            **
************************************************
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBLDATE.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01  LILIAN                  PIC S9(9) BINARY.
 01  CHRDATE                 PIC X(80).
 01  IN-DATE.
     02  Vstring-length      PIC S9(4) BINARY.
     02  Vstring-text.
         03  Vstring-char    PIC X
                     OCCURS 0 TO 256 TIMES
                     DEPENDING ON Vstring-length
                         of IN-DATE.
 01  PICSTR.
     02  Vstring-length      PIC S9(4) BINARY.
     02  Vstring-text.
         03  Vstring-char    PIC X
                     OCCURS 0 TO 256 TIMES
                     DEPENDING ON Vstring-length
                        of PICSTR.
 01  FC.
     02  Condition-Token-Value.
     COPY  CEEIGZCT.
         03  Case-1-Condition-ID.
             04  Severity    PIC S9(4) COMP.
             04  Msg-No      PIC S9(4) COMP.
         03  Case-2-Condition-ID
                   REDEFINES Case-1-Condition-ID.
             04  Class-Code  PIC S9(4) COMP.
             04  Cause-Code  PIC S9(4) COMP.
         03  Case-Sev-Ctl    PIC X.
         03  Facility-ID     PIC XXX.
     02  I-S-Info            PIC S9(9) COMP.
*
 PROCEDURE DIVISION.
 PARA-CBLDAYS.
*************************************************
** Call CEEDAYS to convert date of 6/2/98 to   **
**     Lilian representation                   **
*************************************************
     MOVE 6 TO Vstring-length of IN-DATE.
     MOVE '6/2/98' TO Vstring-text of IN-DATE(1:6).
     MOVE 8 TO Vstring-length of PICSTR.
     MOVE 'MM/DD/YY' TO Vstring-text of PICSTR(1:8).
     CALL 'CEEDAYS' USING IN-DATE, PICSTR,
                          LILIAN, FC.

*************************************************
** If CEEDAYS runs successfully, display result**
*************************************************
     IF  CEE000 of FC  THEN
         DISPLAY Vstring-text of IN-DATE
             ' is Lilian day: ' LILIAN
     ELSE
         DISPLAY 'CEEDAYS failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

*************************************************
** Specify picture string that describes the   **
**  required format of the output from CEEDATE, **
**  and the picture string's length.           **
*************************************************
     MOVE 23 TO Vstring-length OF PICSTR.
     MOVE 'ZD Mmmmmmmmmmmmmmz YYYY' TO
                  Vstring-text OF PICSTR(1:23).

*************************************************
** Call CEEDATE to convert the Lilian date     **
**     to  a picture string.                   **
*************************************************

Appendix D. Date and time callable services  543



     CALL 'CEEDATE' USING LILIAN, PICSTR,
                          CHRDATE, FC.

*************************************************
** If CEEDATE runs successfully, display result**
*************************************************
     IF CEE000 of FC  THEN
         DISPLAY 'Input Lilian date of ' LILIAN
             ' corresponds to:  ' CHRDATE
     ELSE
         DISPLAY 'CEEDATE failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

     GOBACK.

The following table shows the sample output from CEEDATE.

input_Lilian_date picture_string output_char_date

148138 YY 98

YYMM 9805

YY-MM 98-05

YYMMDD 980516

YYYYMMDD 19980516

YYYY-MM-DD 1998-05-16

YYYY-ZM-ZD 1998-5-16

<JJJJ> YY.MM.DD Showa 63.05.16 (in a DBCS string)

148139 MM 05

MMDD 0517

MM/DD 05/17

MMDDYY 051798

MM/DD/YYYY 05/17/1998

ZM/DD/YYYY 5/17/1998

148140 DD 18

DDMM 1805

DDMMYY 180598

DD.MM.YY 18.05.98

DD.MM.YYYY 18.05.1998

DD Mmm YYYY 18 May 1998

148141 DDD 140

YYDDD 98140

YY.DDD 98.140

YYYY.DDD 1998.140

148142 YY/MM/DD HH:MI:SS.99 98/05/20 00:00:00.00

YYYY/ZM/ZD ZH:MI AP 1998/5/20 0:00 AM

544  IBM COBOL for Linux on x86 1.1: Programming Guide



input_Lilian_date picture_string output_char_date

148143 WWW., MMM DD, YYYY SAT., MAY 21, 1998

Www., Mmm DD, YYYY Sat., May 21, 1998

Wwwwwwwwww, Mmmmmmmmmm DD,
YYYY

Saturday, May 21, 1998

Wwwwwwwwwz, Mmmmmmmmmz DD,
YYYY

Saturday, May 21, 1998

“Example: date-and-time picture strings” on page 512

Related references   
“Picture character terms and strings” on page 510 

CEEDATM: convert seconds to character time stamp
CEEDATM converts a number that represents the number of seconds since 00:00:00 14 October 1582 to
a character string. The output is a character string time stamp such as 1988/07/26 20:37:00.

CALL CEEDATM syntax
CALL "CEEDATM" USING input_seconds , picture_string , output_timestamp , fc .

input_seconds (input)
A 64-bit long floating-point number that represents the number of seconds since 00:00:00 on 14
October 1582, not counting leap seconds.

For example, 00:00:01 on 15 October 1582 is second number 86,401 (24*60*60 + 01). The valid
range of input_seconds is 86,400 to 265,621,679,999.999 (23:59:59.999 31 December 9999).

picture_string (input)
A halfword length-prefixed character string that represents the required format of output_timestamp,
for example, MM/DD/YY HH:MI AP.

Each character in the picture_string represents a character in output_timestamp. If delimiters such as
a slash (/) are used in the picture string, they are copied as is to output_timestamp.

If picture_string includes the Japanese Era symbol <JJJJ>, the YY position in output_timestamp
represents the year within Japanese Era.

output_timestamp (output)
A fixed-length 80-character string that is the result of converting input_seconds to the format
specified by picture_string.

If necessary, the output is truncated to the length of output_timestamp.

If input_seconds is invalid, output_timestamp is set to all blanks and CEEDATM terminates with a
non-CEE000 symbolic feedback code.

fc (output)
A 12-byte feedback code (optional) that indicates the result of this service.

Table 62. CEEDATM symbolic conditions

Symbolic
feedback
code

Severity Message
number

Message text

CEE000 0 -- The service completed successfully.

Appendix D. Date and time callable services  545



Table 62. CEEDATM symbolic conditions (continued)

Symbolic
feedback
code

Severity Message
number

Message text

CEE2E9 3 2505 The input_seconds value in a call to CEEDATM or CEESECI
was not within the supported range.

CEE2EA 3 2506 An era (<JJJJ>, <CCCC>, or <CCCCCCCC>) was used in a
picture string passed to CEEDATM, but the input number-of-
seconds value was not within the supported range. The era
could not be determined.

CEE2EM 3 2518 An invalid picture string was specified in a call to a date or
time service.

CEE2EV 2 2527 The time-stamp string returned by CEEDATM was truncated.

CEE2F6 1 2534 Insufficient field width was specified for a month or weekday
name in a call to CEEDATE or CEEDATM. Output set to
blanks.

Usage note: The inverse of CEEDATM is CEESECS, which converts a time stamp to number of seconds.

Example

*************************************************
**                                             **
** Function: CEEDATM - convert seconds to      **
**                     character time stamp    **
**                                             **
** In this example, a call is made to CEEDATM  **
** to convert a date represented in Lilian     **
** seconds (the number of seconds since        **
** 00:00:00 14 October 1582) to a character    **
** format (such as 06/02/88 10:23:45). The     **
** result is displayed.                        **
**                                             **
*************************************************
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBLDATM.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01  DEST          PIC S9(9) BINARY VALUE 2.
 01  SECONDS                 COMP-2.
 01  IN-DATE.
     02  Vstring-length      PIC S9(4) BINARY.
     02  Vstring-text.
         03  Vstring-char    PIC X
                     OCCURS 0 TO 256 TIMES
                     DEPENDING ON Vstring-length
                         of IN-DATE.
 01  PICSTR.
     02  Vstring-length      PIC S9(4) BINARY.
     02  Vstring-text.
         03  Vstring-char    PIC X
                     OCCURS 0 TO 256 TIMES
                     DEPENDING ON Vstring-length
                        of PICSTR.
 01  TIMESTP                 PIC X(80).
 01  FC.
     02  Condition-Token-Value.
     COPY  CEEIGZCT.
         03  Case-1-Condition-ID.
             04  Severity    PIC S9(4) COMP.
             04  Msg-No      PIC S9(4) COMP.
         03  Case-2-Condition-ID
                   REDEFINES Case-1-Condition-ID.
             04  Class-Code  PIC S9(4) COMP.
             04  Cause-Code  PIC S9(4) COMP.
         03  Case-Sev-Ctl    PIC X.
         03  Facility-ID     PIC XXX.

546  IBM COBOL for Linux on x86 1.1: Programming Guide



     02  I-S-Info            PIC S9(9) COMP.
*
 PROCEDURE DIVISION.
 PARA-CBLDATM.
*************************************************
** Call CEESECS to convert time stamp of 6/2/88**
**     at 10:23:45 AM to Lilian representation **
*************************************************
     MOVE 20 TO Vstring-length of IN-DATE.
     MOVE '06/02/88 10:23:45 AM'
         TO Vstring-text of IN-DATE.
     MOVE 20 TO Vstring-length of PICSTR.
     MOVE 'MM/DD/YY HH:MI:SS AP'
         TO Vstring-text of PICSTR.
     CALL 'CEESECS' USING IN-DATE, PICSTR,
                          SECONDS, FC.

*************************************************
** If CEESECS runs successfully, display result**
*************************************************
     IF  CEE000 of FC  THEN
         DISPLAY Vstring-text of IN-DATE
             ' is Lilian second:  ' SECONDS
     ELSE
         DISPLAY 'CEESECS failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

*************************************************
** Specify required format of the output.       **
*************************************************
     MOVE 35 TO Vstring-length OF PICSTR.
     MOVE 'ZD Mmmmmmmmmmmmmmz YYYY at HH:MI:SS'
             TO Vstring-text OF PICSTR.

*************************************************
** Call CEEDATM to convert Lilian seconds to   **
**     a character time stamp                  **
*************************************************
     CALL 'CEEDATM' USING SECONDS, PICSTR,
                          TIMESTP, FC.

*************************************************
** If CEEDATM runs successfully, display result**
*************************************************
     IF CEE000 of FC  THEN
         DISPLAY 'Input seconds of ' SECONDS
             ' corresponds to: ' TIMESTP
     ELSE
         DISPLAY 'CEEDATM failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

     GOBACK.

The following tables show sample output of CEEDATM.

input_seconds picture_string output_timestamp

12,799,191,601.000 YYMMDD 880516

HH:MI:SS 19:00:01

YY-MM-DD 88-05-16

YYMMDDHHMISS 880516190001

YY-MM-DD HH:MI:SS 88-05-16 19:00:01

YYYY-MM-DD HH:MI:SS AP 1988-05-16 07:00:01 PM

Appendix D. Date and time callable services  547



input_seconds picture_string output_timestamp

12,799,191,661.986 DD Mmm YY 16 May 88

DD MMM YY HH:MM 16 MAY 88 19:01

WWW, MMM DD, YYYY MON, MAY 16, 1988

ZH:MI AP 7:01 PM

Wwwwwwwwwz, ZM/ZD/YY Monday, 5/16/88

HH:MI:SS.99 19:01:01.98

12,799,191,662.009 YYYY 1988

YY 88

Y 8

MM 05

ZM 5

RRRR V 

input_seconds picture_string output_timestamp

12,799,191,662.009 MMM MAY

Mmm May

Mmmmmmmmmm May

Mmmmmmmmmz May

DD 16

ZD 16

DDD 137

HH 19

ZH 19

MI 01

SS 02

99 00

999 009

AP PM

WWW MON

Www Mon

Wwwwwwwwww Monday

Wwwwwwwwwz Monday

“Example: date-and-time picture strings” on page 512

Related references   
“Picture character terms and strings” on page 510 

548  IBM COBOL for Linux on x86 1.1: Programming Guide



CEEDAYS: convert date to Lilian format
CEEDAYS converts a string that represents a date into a Lilian format, which represents a date as the
number of days from the beginning of the Gregorian calendar (Friday, 14 October, 1582).

Do not use CEEDAYS in combination with COBOL intrinsic functions. Use CEECBLDY for programs that use
intrinsic functions.

CALL CEEDAYS syntax
CALL "CEEDAYS" USING input_char_date , picture_string , output_Lilian_date , fc .

input_char_date (input)
A halfword length-prefixed character string that represents a date or a time stamp in a format
conforming to that specified by picture_string.

The character string must contain between 5 and 255 characters, inclusive. input_char_date can
contain leading or trailing blanks. Parsing for a date begins with the first nonblank character (unless
the picture string itself contains leading blanks, in which case CEEDAYS skips exactly that many
positions before parsing begins).

After parsing a valid date, as determined by the format of the date specified in picture_string,
CEEDAYS ignores all remaining characters. Valid dates range between and include 15 October 1582 to
31 December 9999.

picture_string (input)
A halfword length-prefixed character string, indicating the format of the date specified in
input_char_date.

Each character in the picture_string corresponds to a character in input_char_date. For example, if
you specify MMDDYY as the picture_string, CEEDAYS reads an input_char_date of 060288 as 02 June
1988.

If delimiters such as a slash (/) appear in the picture string, leading zeros can be omitted. For
example, the following calls to CEEDAYS each assign the same value, 148155 (02 June 1988), to
lildate:

CALL CEEDAYS USING '6/2/88'  , 'MM/DD/YY', lildate, fc.
CALL CEEDAYS USING '06/02/88', 'MM/DD/YY', lildate, fc.
CALL CEEDAYS USING '060288'  , 'MMDDYY'  , lildate, fc.
CALL CEEDAYS USING '88154'   , 'YYDDD'   , lildate, fc.

Whenever characters such as colons or slashes are included in the picture_string (such as HH:MI:SS
YY/MM/DD), they count as placeholders but are otherwise ignored.

If picture_string includes a Japanese Era symbol <JJJJ>, the YY position in input_char_date is
replaced by the year number within the Japanese Era. For example, the year 1988 equals the
Japanese year 63 in the Showa era.

output_Lilian_date (output)
A 32-bit binary integer that represents the Lilian date, the number of days since 14 October 1582. For
example, 16 May 1988 is day number 148138.

If input_char_date does not contain a valid date, output_Lilian_date is set to 0 and CEEDAYS
terminates with a non-CEE000 symbolic feedback code.

Date calculations are performed easily on the output_Lilian_date, because it is an integer. Leap year
and end-of-year anomalies do not affect the calculations.

fc (output)
A 12-byte feedback code (optional) that indicates the result of this service.

Appendix D. Date and time callable services  549



Table 63. CEEDAYS symbolic conditions

Symbolic
feedback
code

Severity Message
number

Message text

CEE000 0 -- The service completed successfully.

CEE2EB 3 2507 Insufficient data was passed to CEEDAYS or CEESECS. The
Lilian value was not calculated.

CEE2EC 3 2508 The date value passed to CEEDAYS or CEESECS was invalid.

CEE2ED 3 2509 The era passed to CEEDAYS or CEESECS was not recognized.

CEE2EH 3 2513 The input date passed in a CEEISEC, CEEDAYS, or CEESECS
call was not within the supported range.

CEE2EL 3 2517 The month value in a CEEISEC call was not recognized.

CEE2EM 3 2518 An invalid picture string was specified in a call to a date/time
service.

CEE2EO 3 2520 CEEDAYS detected nonnumeric data in a numeric field, or
the date string did not match the picture string.

CEE2EP 3 2521 The <JJJJ>, <CCCC>, or <CCCCCCCC> year-within-era value
passed to CEEDAYS or CEESECS was zero.

Usage notes

• The inverse of CEEDAYS is CEEDATE, which converts output_Lilian_date from Lilian format to character
format.

• To perform calculations on dates earlier than 15 October 1582, add 4000 to the year in each date,
convert the dates to Lilian, then do the calculation. If the result of the calculation is a date, as opposed
to a number of days, convert the result to a date string and subtract 4000 from the year. 

• By default, two-digit years lie within the 100-year range that starts 80 years before the system date.
Thus in 2010, all two-digit years represent dates between 1930 and 2029, inclusive. You can change
the default range by using the callable service CEESCEN.

• You can easily perform date calculations on the output_Lilian_date, because it is an integer. Leap-year
and end-of-year anomalies are avoided.

Example

*******************************************
**                                       **
** Function: CEEDAYS - convert date to   **
**                     Lilian format     **
**                                       **
*******************************************
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBLDAYS.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01  CHRDATE.
     02  Vstring-length      PIC S9(4) BINARY.
     02  Vstring-text.
         03  Vstring-char    PIC X
                     OCCURS 0 TO 256 TIMES
                     DEPENDING ON Vstring-length
                         of CHRDATE.
 01  PICSTR.
     02  Vstring-length      PIC S9(4) BINARY.
     02  Vstring-text.
         03  Vstring-char    PIC X
                     OCCURS 0 TO 256 TIMES
                     DEPENDING ON Vstring-length
                         of PICSTR.

550  IBM COBOL for Linux on x86 1.1: Programming Guide



 01  LILIAN                  PIC S9(9) BINARY.
 01  FC.
     02  Condition-Token-Value.
     COPY  CEEIGZCT.
         03  Case-1-Condition-ID.
             04  Severity    PIC S9(4) COMP.
             04  Msg-No      PIC S9(4) COMP.
         03  Case-2-Condition-ID
                   REDEFINES Case-1-Condition-ID.
             04  Class-Code  PIC S9(4) COMP.
             04  Cause-Code  PIC S9(4) COMP.
         03  Case-Sev-Ctl    PIC X.
         03  Facility-ID     PIC XXX.
     02  I-S-Info            PIC S9(9) COMP.
*
 PROCEDURE DIVISION.
 PARA-CBLDAYS.
*************************************************
** Specify input date and length               **
*************************************************
     MOVE 16 TO Vstring-length of CHRDATE.
     MOVE '1 January 2005'
         TO Vstring-text of CHRDATE.

*************************************************
** Specify a picture string that describes     **
** input date, and the picture string's length.**
*************************************************
     MOVE 25 TO Vstring-length of PICSTR.
     MOVE 'ZD Mmmmmmmmmmmmmmz YYYY'
             TO Vstring-text of PICSTR.

*************************************************
** Call CEEDAYS to convert input date to a     **
** Lilian date                                 **
*************************************************
     CALL 'CEEDAYS' USING CHRDATE, PICSTR,
                          LILIAN, FC.

*************************************************
** If CEEDAYS runs successfully, display result**
*************************************************
     IF  CEE000 of FC  THEN
         DISPLAY Vstring-text of CHRDATE
             ' is Lilian day: ' LILIAN
     ELSE
         DISPLAY 'CEEDAYS failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

     GOBACK.

“Example: date-and-time picture strings” on page 512

Related references   
“Picture character terms and strings” on page 510 

CEEDYWK: calculate day of week from Lilian date
CEEDYWK calculates the day of the week on which a Lilian date falls as a number between 1 and 7.

The number returned by CEEDYWK is useful for end-of-week calculations.

CALL CEEDYWK syntax
CALL "CEEDYWK" USING input_Lilian_date , output_day_no , fc .

input_Lilian_date (input)
A 32-bit binary integer that represents the Lilian date, the number of days since 14 October 1582.

For example, 16 May 1988 is day number 148138. The valid range of input_Lilian_date is between 1
and 3,074,324 (15 October 1582 and 31 December 9999).

Appendix D. Date and time callable services  551



output_day_no (output)
A 32-bit binary integer that represents input_Lilian_date's day-of-week: 1 equals Sunday, 2 equals
Monday, . . ., 7 equals Saturday.

If input_Lilian_date is invalid, output_day_no is set to 0 and CEEDYWK terminates with a non-CEE000
symbolic feedback code.

fc (output)
A 12-byte feedback code (optional) that indicates the result of this service.

Table 64. CEEDYWK symbolic conditions

Symbolic
feedback
code

Severity Message
number

Message text

CEE000 0 -- The service completed successfully.

CEE2EG 3 2512 The Lilian date value passed in a call to CEEDATE or
CEEDYWK was not within the supported range.

Example

************************************************
**                                            **
** Function: Call CEEDYWK to calculate the    **
**           day of the week from Lilian date **
**                                            **
** In this example, a call is made to CEEDYWK **
** to return the day of the week on which a   **
** Lilian date falls. (A Lilian date is the   **
** number of days since 14 October 1582)      **
**                                            **
************************************************
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBLDYWK.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01  LILIAN                  PIC S9(9) BINARY.
 01  DAYNUM                  PIC S9(9) BINARY.
 01  IN-DATE.
     02  Vstring-length      PIC S9(4) BINARY.
     02  Vstring-text.
         03  Vstring-char        PIC X,
                     OCCURS 0 TO 256 TIMES
                     DEPENDING ON Vstring-length
                         of IN-DATE.
 01  PICSTR.
     02  Vstring-length      PIC S9(4) BINARY.
     02  Vstring-text.
         03  Vstring-char        PIC X,
                     OCCURS 0 TO 256 TIMES
                     DEPENDING ON Vstring-length
                         of PICSTR.
 01  FC.
     02  Condition-Token-Value.
     COPY  CEEIGZCT.
         03  Case-1-Condition-ID.
             04  Severity    PIC S9(4) COMP.
             04  Msg-No      PIC S9(4) COMP.
         03  Case-2-Condition-ID
                   REDEFINES Case-1-Condition-ID.
             04  Class-Code  PIC S9(4) COMP.
             04  Cause-Code  PIC S9(4) COMP.
         03  Case-Sev-Ctl    PIC X.
         03  Facility-ID     PIC XXX.
     02  I-S-Info            PIC S9(9) COMP.

 PROCEDURE DIVISION.
 PARA-CBLDAYS.
** Call CEEDAYS to convert date of 6/2/88 to
**     Lilian representation
     MOVE 6 TO Vstring-length of IN-DATE.
     MOVE '6/2/88' TO Vstring-text of IN-DATE(1:6).

552  IBM COBOL for Linux on x86 1.1: Programming Guide



     MOVE 8 TO Vstring-length of PICSTR.
     MOVE 'MM/DD/YY' TO Vstring-text of PICSTR(1:8).
     CALL 'CEEDAYS' USING IN-DATE, PICSTR,
         LILIAN, FC.

** If CEEDAYS runs successfully, display result.
     IF  CEE000 of FC  THEN
         DISPLAY Vstring-text of IN-DATE
             ' is Lilian day: ' LILIAN
     ELSE
         DISPLAY 'CEEDAYS failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

 PARA-CBLDYWK.

** Call CEEDYWK to return the day of the week on
** which the Lilian date falls
     CALL 'CEEDYWK' USING LILIAN , DAYNUM , FC.

** If CEEDYWK runs successfully, print results
     IF CEE000 of FC  THEN
         DISPLAY 'Lilian day ' LILIAN
             ' falls on day ' DAYNUM
             ' of the week, which is a:'
** Select DAYNUM to display the name of the day
**     of the week.
         EVALUATE DAYNUM
           WHEN 1
             DISPLAY 'Sunday.'
           WHEN 2
             DISPLAY 'Monday.'
           WHEN 3
             DISPLAY 'Tuesday'
           WHEN 4
             DISPLAY 'Wednesday.'
           WHEN 5
             DISPLAY 'Thursday.'
           WHEN 6
             DISPLAY 'Friday.'
           WHEN 7
             DISPLAY 'Saturday.'
         END-EVALUATE
     ELSE
         DISPLAY 'CEEDYWK failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

     GOBACK.

CEEGMT: get current Greenwich Mean Time
CEEGMT returns the current Greenwich Mean Time (GMT) as both a Lilian date and as the number of
seconds since 00:00:00 14 October 1582. The returned values are compatible with those generated and
used by the other date and time callable services.

CALL CEEGMT syntax
CALL "CEEGMT" USING output_GMT_Lilian , output_GMT_seconds , fc .

output_GMT_Lilian (output)
A 32-bit binary integer that represents the current date in Greenwich, England, in the Lilian format
(the number of days since 14 October 1582).

For example, 16 May 1988 is day number 148138. If GMT is not available from the system,
output_GMT_Lilian is set to 0 and CEEGMT terminates with a non-CEE000 symbolic feedback code.

output_GMT_seconds (output)
A 64-bit long floating-point number that represents the current date and time in Greenwich, England,
as the number of seconds since 00:00:00 on 14 October 1582, not counting leap seconds.

Appendix D. Date and time callable services  553



For example, 00:00:01 on 15 October 1582 is second number 86,401 (24*60*60 + 01). 19:00:01.078
on 16 May 1988 is second number 12,799,191,601.078. If GMT is not available from the system,
output_GMT_seconds is set to 0 and CEEGMT terminates with a non-CEE000 symbolic feedback code.

fc (output)
A 12-byte feedback code (optional) that indicates the result of this service.

Table 65. CEEGMT symbolic conditions

Symbolic
feedback
code

Severity Message
number

Message text

CEE000 0 -- The service completed successfully.

CEE2E6 3 2502 The UTC/GMT was not available from the system.

Usage notes

• CEEDATE converts output_GMT_Lilian to a character date, and CEEDATM converts output_GMT_seconds
to a character time stamp.

• In order for the results of this service to be meaningful, your system's clock must be set to the local
time and the environment variable TZ must be set correctly.

• The values returned by CEEGMT are handy for elapsed time calculations. For example, you can calculate
the time elapsed between two calls to CEEGMT by calculating the differences between the returned
values.

• CEEUTC is identical to this service.

Example

*************************************************
**                                             **
** Function: Call CEEGMT to get current        **
**           Greenwich Mean Time               **
**                                             **
** In this example, a call is made to CEEGMT   **
** to return the current GMT as a Lilian date  **
** and as Lilian seconds. The results are      **
** displayed.                                  **
**                                             **
*************************************************
 IDENTIFICATION DIVISION.
 PROGRAM-ID. IGZTGMT.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01  LILIAN                  PIC S9(9) BINARY.
 01  SECS                    COMP-2.
 01  FC.
     02  Condition-Token-Value.
     COPY  CEEIGZCT.
         03  Case-1-Condition-ID.
             04  Severity    PIC S9(4) COMP.
             04  Msg-No      PIC S9(4) COMP.
         03  Case-2-Condition-ID
                   REDEFINES Case-1-Condition-ID.
             04  Class-Code  PIC S9(4) COMP.
             04  Cause-Code  PIC S9(4) COMP.
         03  Case-Sev-Ctl    PIC X.
         03  Facility-ID     PIC XXX.
     02  I-S-Info            PIC S9(9) COMP.
 PROCEDURE DIVISION.
 PARA-CBLGMT.
     CALL 'CEEGMT' USING LILIAN , SECS , FC.

     IF CEE000 of FC  THEN
         DISPLAY 'The current GMT is also '
             'known as Lilian day: ' LILIAN
         DISPLAY 'The current GMT in Lilian '
             'seconds is: ' SECS
     ELSE

554  IBM COBOL for Linux on x86 1.1: Programming Guide



         DISPLAY 'CEEGMT failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

     GOBACK.

Related tasks   
“Setting environment variables” on page 215

CEEGMTO: get offset from Greenwich Mean Time to local time
CEEGMTO returns values to the calling routine that represent the difference between the local system
time and Greenwich Mean Time (GMT).

CALL CEEGMTO syntax
CALL "CEEGMTO" USING offset_hours , offset_minutes , offset_seconds , fc .

offset_hours (output)
A 32-bit binary integer that represents the offset from GMT to local time, in hours.

For example, for Pacific Standard Time, offset_hours equals -8.

The range of offset_hours is -12 to +13 (+13 = daylight saving time in the +12 time zone).

If local time offset is not available, offset_hours equals 0 and CEEGMTO terminates with a non-
CEE000 symbolic feedback code.

offset_minutes (output)
A 32-bit binary integer that represents the number of additional minutes that local time is ahead of or
behind GMT.

The range of offset_minutes is 0 to 59.

If the local time offset is not available, offset_minutes equals 0 and CEEGMTO terminates with a
non-CEE000 symbolic feedback code.

offset_seconds (output)
A 64-bit long floating-point number that represents the offset from GMT to local time, in seconds.

For example, Pacific Standard Time is eight hours behind GMT. If local time is in the Pacific time zone
during standard time, CEEGMTO would return -28,800 (-8 * 60 * 60). The range of offset_seconds is
-43,200 to +46,800. offset_seconds can be used with CEEGMT to calculate local date and time.

If the local time offset is not available from the system, offset_seconds is set to 0 and CEEGMTO
terminates with a non-CEE000 symbolic feedback code.

fc (output)
A 12-byte feedback code (optional) that indicates the result of this service.

Table 66. CEEGMTO symbolic conditions

Symbolic
feedback
code

Severity Message
number

Message text

CEE000 0 -- The service completed successfully.

CEE2E7 3 2503 The offset from UTC/GMT to local time was not available
from the system.

Usage notes

• CEEDATM converts offset_seconds to a character time stamp.

Appendix D. Date and time callable services  555



• In order for the results of this service to be meaningful, your system clock must be set to the local time,
and the environment variable TZ must be set correctly.

Example

*************************************************
**                                             **
** Function:  Call CEEGMTO to get offset from  **
**            Greenwich Mean Time to local     **
**            time                             **
**                                             **
** In this example, a call is made to CEEGMTO  **
** to return the offset from GMT to local time **
** as separate binary integers representing    **
** offset hours, minutes, and seconds. The     **
** results are displayed.                      **
**                                             **
*************************************************
 IDENTIFICATION DIVISION.
 PROGRAM-ID. IGZTGMTO.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01  HOURS                   PIC S9(9) BINARY.
 01  MINUTES                 PIC S9(9) BINARY.
 01  SECONDS COMP-2.
 01  FC.
     02  Condition-Token-Value.
     COPY  CEEIGZCT.
         03  Case-1-Condition-ID.
             04  Severity    PIC S9(4) COMP.
             04  Msg-No      PIC S9(4) COMP.
         03  Case-2-Condition-ID
                   REDEFINES Case-1-Condition-ID.
             04  Class-Code  PIC S9(4) COMP.
             04  Cause-Code  PIC S9(4) COMP.
         03  Case-Sev-Ctl    PIC X.
         03  Facility-ID     PIC XXX.
     02  I-S-Info            PIC S9(9) COMP.
 PROCEDURE DIVISION.
 PARA-CBLGMTO.
     CALL 'CEEGMTO' USING HOURS , MINUTES ,
         SECONDS , FC.

     IF CEE000 of FC  THEN
         DISPLAY 'Local time differs from GMT '
             'by: ' HOURS ' hours, '
             MINUTES ' minutes, OR  '
             SECONDS ' seconds. '
     ELSE
         DISPLAY 'CEEGMTO failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

     GOBACK.

Related tasks  
“Setting environment variables” on page 215  

Related references   
“Compiler and runtime
environment variables” on page 216  
“CEEGMT: get current
Greenwich Mean Time” on page 553  

556  IBM COBOL for Linux on x86 1.1: Programming Guide



CEEISEC: convert integers to seconds
CEEISEC converts binary integers that represent year, month, day, hour, minute, second, and millisecond
to a number that represents the number of seconds since 00:00:00 14 October 1582.

CALL CEEISEC syntax
CALL "CEEISEC" USING input_year , input_months , input_day , input_hours ,

input_minutes , input_seconds , input_milliseconds , output_seconds , fc .

input_year (input)
A 32-bit binary integer that represents the year.

The range of valid values for input_year is 1582 to 9999, inclusive.

input_month (input)
A 32-bit binary integer that represents the month.

The range of valid values for input_month is 1 to 12.

input_day (input)
A 32-bit binary integer that represents the day.

The range of valid values for input_day is 1 to 31.

input_hours (input)
A 32-bit binary integer that represents the hours.

The range of valid values for input_hours is 0 to 23.

input_minutes (input)
A 32-bit binary integer that represents the minutes.

The range of valid values for input_minutes is 0 to 59.

input_seconds (input)
A 32-bit binary integer that represents the seconds.

The range of valid values for input_seconds is 0 to 59.

input_milliseconds (input)
A 32-bit binary integer that represents milliseconds.

The range of valid values for input_milliseconds is 0 to 999.

output_seconds (output)
A 64-bit long floating-point number that represents the number of seconds since 00:00:00 on 14
October 1582, not counting leap seconds.

For example, 00:00:01 on 15 October 1582 is second number 86,401 (24*60*60 + 01). The valid
range of output_seconds is 86,400 to 265,621,679,999.999 (23:59:59.999 31 December 9999).

If any input values are invalid, output_seconds is set to zero.

To convert output_seconds to a Lilian day number, divide output_seconds by 86,400 (the number of
seconds in a day).

fc (output)
A 12-byte feedback code (optional) that indicates the result of this service.

Appendix D. Date and time callable services  557



Table 67. CEEISEC symbolic conditions

Symbolic
feedback
code

Severity Message
number

Message text

CEE000 0 -- The service completed successfully.

CEE2EE 3 2510 The hours value in a call to CEEISEC or CEESECS was not
recognized.

CEE2EF 3 2511 The day parameter passed in a CEEISEC call was invalid for
year and month specified.

CEE2EH 3 2513 The input date passed in a CEEISEC, CEEDAYS, or CEESECS
call was not within the supported range.

CEE2EI 3 2514 The year value passed in a CEEISEC call was not within the
supported range.

CEE2EJ 3 2515 The milliseconds value in a CEEISEC call was not recognized.

CEE2EK 3 2516 The minutes value in a CEEISEC call was not recognized.

CEE2EL 3 2517 The month value in a CEEISEC call was not recognized.

CEE2EN 3 2519 The seconds value in a CEEISEC call was not recognized.

Usage note: The inverse of CEEISEC is CEESECI, which converts number of seconds to integer year,
month, day, hour, minute, second, and millisecond.

Example

*************************************************
**                                             **
** Function: Call CEEISEC to convert integers  **
**           to seconds                        **
**                                             **
*************************************************
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBLISEC.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01  YEAR                    PIC S9(9) BINARY.
 01  MONTH                   PIC S9(9) BINARY.
 01  DAYS                    PIC S9(9) BINARY.
 01  HOURS                   PIC S9(9) BINARY.
 01  MINUTES                 PIC S9(9) BINARY.
 01  SECONDS                 PIC S9(9) BINARY.
 01  MILLSEC                 PIC S9(9) BINARY.
 01  OUTSECS                 COMP-2.
 01  FC.
     02  Condition-Token-Value.
     COPY  CEEIGZCT.
         03  Case-1-Condition-ID.
             04  Severity    PIC S9(4) COMP.
             04  Msg-No      PIC S9(4) COMP.
         03  Case-2-Condition-ID
                   REDEFINES Case-1-Condition-ID.
             04  Class-Code  PIC S9(4) COMP.
             04  Cause-Code  PIC S9(4) COMP.
         03  Case-Sev-Ctl    PIC X.
         03  Facility-ID     PIC XXX.
     02  I-S-Info            PIC S9(9) COMP.
 PROCEDURE DIVISION.
 PARA-CBLISEC.
*************************************************
** Specify seven binary integers representing  **
** the date and time as input to be converted  **
** to Lilian seconds                           **
*************************************************
     MOVE 2000 TO YEAR.
     MOVE 1 TO MONTH.

558  IBM COBOL for Linux on x86 1.1: Programming Guide



     MOVE 1 TO DAYS.
     MOVE 0 TO HOURS.
     MOVE 0 TO MINUTES.
     MOVE 0 TO SECONDS.
     MOVE 0 TO MILLSEC.
*************************************************
** Call CEEISEC to convert the integers        **
** to seconds                                  **
*************************************************
     CALL 'CEEISEC' USING YEAR, MONTH, DAYS,
                          HOURS, MINUTES, SECONDS,
                          MILLSEC, OUTSECS , FC.
*************************************************
** If CEEISEC runs successfully, display result**
*************************************************
     IF CEE000 of FC  THEN
         DISPLAY MONTH '/' DAYS '/' YEAR
           ' AT ' HOURS ':' MINUTES ':' SECONDS
           ' is equivalent to ' OUTSECS ' seconds'
     ELSE
         DISPLAY 'CEEISEC failed with msg '
           Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

     GOBACK.

CEELOCT: get current local date or time
CEELOCT returns the current local date or time as a Lilian date (the number of days since 14 October
1582), as Lilian seconds (the number of seconds since 00:00:00 14 October 1582), and as a Gregorian
character string (YYYYMMDDHHMISS999).

These values are compatible with other date and time callable services and with existing intrinsic
functions.

CEELOCT performs the same function as calling the CEEGMT, CEEGMTO, and CEEDATM services
separately. Calling CEELOCT, however, is much faster.

CALL CEELOCT syntax
CALL "CEELOCT" USING output_Lilian , output_seconds , output_Gregorian , fc .

output_Lilian (output)
A 32-bit binary integer that represents the current local date in the Lilian format, that is, day 1 equals
15 October 1582, day 148,887 equals 4 June 1990.

If the local time is not available from the system, output_Lilian is set to 0 and CEELOCT terminates
with a non-CEE000 symbolic feedback code.

output_seconds (output)
A 64-bit long floating-point number that represents the current local date and time as the number of
seconds since 00:00:00 on 14 October 1582, not counting leap seconds. For example, 00:00:01 on
15 October 1582 is second number 86,401 (24*60*60 + 01). 19:00:01.078 on 4 June 1990 is second
number 12,863,905,201.078.

If the local time is not available from the system, output_seconds is set to 0 and CEELOCT terminates
with a non-CEE000 symbolic feedback code.

output_Gregorian (output)
A 17-byte fixed-length character string in the form YYYYMMDDHHMISS999 that represents local year,
month, day, hour, minute, second, and millisecond.

If the format of output_Gregorian does not meet your needs, you can use the CEEDATM callable
service to convert output_seconds to another format.

fc (output)
A 12-byte feedback code (optional) that indicates the result of this service.

Appendix D. Date and time callable services  559



Table 68. CEELOCT symbolic conditions

Symbolic
feedback
code

Severity Message
number

Message text

CEE000 0 -- The service completed successfully.

CEE2F3 3 2531 The local time was not available from the system.

Usage notes

• You can use the CEEGMT callable service to determine Greenwich Mean Time (GMT).
• You can use the CEEGMTO callable service to obtain the offset from GMT to local time.
• The character value returned by CEELOCT is designed to match that produced by existing intrinsic

functions. The numeric values returned can be used to simplify date calculations.

Example

************************************************
**                                            **
** Function: Call CEELOCT to get current      **
**           local time                       **
**                                            **
** In this example, a call is made to CEELOCT **
** to return the current local time in Lilian **
** days (the number of days since 14 October  **
** 1582), Lilian seconds (the number of       **
** seconds since 00:00:00 14 October 1582),   **
** and a Gregorian string (in the form        **
** YYYMMDDMISS999). The Gregorian character   **
** string is then displayed.                  **
**                                            **
************************************************
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBLLOCT.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01  LILIAN                  PIC S9(9) BINARY.
 01  SECONDS                 COMP-2.
 01  GREGORN                 PIC X(17).
 01  FC.
     02  Condition-Token-Value.
     COPY  CEEIGZCT.
         03  Case-1-Condition-ID.
             04  Severity    PIC S9(4) COMP.
             04  Msg-No      PIC S9(4) COMP.
         03  Case-2-Condition-ID
                   REDEFINES Case-1-Condition-ID.
             04  Class-Code  PIC S9(4) COMP.
             04  Cause-Code  PIC S9(4) COMP.
         03  Case-Sev-Ctl    PIC X.
         03  Facility-ID     PIC XXX.
     02  I-S-Info            PIC S9(9) COMP.
 PROCEDURE DIVISION.
 PARA-CBLLOCT.
     CALL 'CEELOCT' USING LILIAN, SECONDS,
                          GREGORN, FC.
************************************************
** If CEELOCT runs successfully, display      **
**     Gregorian character string             **
************************************************
     IF CEE000 of FC  THEN
         DISPLAY 'Local Time is ' GREGORN
     ELSE
         DISPLAY 'CEELOCT failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

     GOBACK.

560  IBM COBOL for Linux on x86 1.1: Programming Guide



CEEQCEN: query the century window
CEEQCEN queries the century window, which is a two-digit year value.

When you want to change the century window, use CEEQCEN to get the setting and then use CEESCEN to
save and restore the current setting.

CALL CEEQCEN syntax
CALL "CEEQCEN" USING century_start , fc .

century_start (output)
An integer between 0 and 100 that indicates the year on which the century window is based.

For example, if the date and time callable services default is in effect, all two-digit years lie within the
100-year window that starts 80 years before the system date. CEEQCEN then returns the value 80.
For example, in the year 2010, 80 indicates that all two-digit years lie within the 100-year window
between 1930 and 2029, inclusive.

fc (output)
A 12-byte feedback code (optional) that indicates the result of this service.

Table 69. CEEQCEN symbolic conditions

Symbolic
feedback
code

Severity Message
number

Message text

CEE000 0 -- The service completed successfully.

Example

*************************************************
**                                             **
** Function: Call CEEQCEN to query the         **
**           date and time callable services   **
**           century window                    **
**                                             **
** In this example, CEEQCEN is called to query **
** the date at which the century window starts **
** The century window is the 100-year window   **
** within which the date and time callable     **
** services assume all two-digit years lie.    **
**                                             **
*************************************************
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBLQCEN.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01  STARTCW                 PIC S9(9) BINARY.
 01  FC.
     02  Condition-Token-Value.
     COPY  CEEIGZCT.
         03  Case-1-Condition-ID.
             04  Severity    PIC S9(4) COMP.
             04  Msg-No      PIC S9(4) COMP.
         03  Case-2-Condition-ID
                   REDEFINES Case-1-Condition-ID.
             04  Class-Code  PIC S9(4) COMP.
             04  Cause-Code  PIC S9(4) COMP.
         03  Case-Sev-Ctl    PIC X.
         03  Facility-ID     PIC XXX.
     02  I-S-Info            PIC S9(9) COMP.
 PROCEDURE DIVISION.

 PARA-CBLQCEN.
*************************************************
** Call CEEQCEN to return the start of the     **
**     century window                          **

Appendix D. Date and time callable services  561



*************************************************

     CALL 'CEEQCEN' USING STARTCW, FC.
*************************************************
** CEEQCEN has no nonzero feedback codes to    **
**     check, so just display result.          **
*************************************************
     IF CEE000 of FC  THEN
         DISPLAY 'The start of the century '
             'window is: ' STARTCW
     ELSE
         DISPLAY 'CEEQCEN failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

     GOBACK.

CEESCEN: set the century window
CEESCEN sets the century window to a two-digit year value for use by other date and time callable
services.

Use CEESCEN in conjunction with CEEDAYS or CEESECS when:

• You process date values that contain two-digit years (for example, in the YYMMDD format).
• The default century interval does not meet the requirements of a particular application.

To query the century window, use CEEQCEN.

CALL CEESCEN syntax
CALL "CEESCEN" USING century_start , fc .

century_start
An integer between 0 and 100, which sets the century window.

A value of 80, for example, places all two-digit years within the 100-year window that starts 80
years before the system date. In 2010, therefore, all two-digit years are assumed to represent dates
between 1930 and 2029, inclusive.

fc (output)
A 12-byte feedback code (optional) that indicates the result of this service.

Table 70. CEESCEN symbolic conditions

Symbolic
feedback
code

Severity Message
number

Message text

CEE000 0 -- The service completed successfully.

CEE2E6 3 2502 The UTC/GMT was not available from the system.

CEE2F5 3 2533 The value passed to CEESCEN was not between 0 and 100.

Example

**************************************************
**                                              **
** Function: Call CEESCEN to set the            **
**           date and time callable services    **
**           century window                     **
**                                              **
** In this example, CEESCEN is called to change **
** the start of the century window to 30 years  **
** before the system date. CEEQCEN is then      **

562  IBM COBOL for Linux on x86 1.1: Programming Guide



** called to query that the change made.  A     **
** message that this has been done is then      **
** displayed.                                   **
**                                              **
**************************************************
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBLSCEN.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01  STARTCW                 PIC S9(9) BINARY.
 01  FC.
     02  Condition-Token-Value.
     COPY  CEEIGZCT.
         03  Case-1-Condition-ID.
             04  Severity    PIC S9(4) COMP.
             04  Msg-No      PIC S9(4) COMP.
         03  Case-2-Condition-ID
                   REDEFINES Case-1-Condition-ID.
             04  Class-Code  PIC S9(4) COMP.
             04  Cause-Code  PIC S9(4) COMP.
         03  Case-Sev-Ctl    PIC X.
         03  Facility-ID     PIC XXX.
     02  I-S-Info            PIC S9(9) COMP.
 PROCEDURE DIVISION.
 PARA-CBLSCEN.
**************************************************
** Specify 30 as century start, and two-digit
**     years will be assumed to lie in the
**     100-year window starting 30 years before
**     the system date.
**************************************************
     MOVE 30 TO STARTCW.

**************************************************
** Call CEESCEN to change the start of the century
**     window.
**************************************************
     CALL 'CEESCEN' USING STARTCW, FC.
     IF NOT CEE000 of FC  THEN
         DISPLAY 'CEESCEN failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

 PARA-CBLQCEN.
**************************************************
** Call CEEQCEN to return the start of the century
**     window
**************************************************
     CALL 'CEEQCEN' USING STARTCW, FC.

**************************************************
** CEEQCEN has no nonzero feedback codes to
**     check, so just display result.
**************************************************
         DISPLAY 'The start of the century '
             'window is: ' STARTCW
     GOBACK.

CEESECI: convert seconds to integers
CEESECI converts a number that represents the number of seconds since 00:00:00 14 October 1582 to
binary integers that represent year, month, day, hour, minute, second, and millisecond.

Use CEESECI instead of CEEDATM when the output is needed in numeric format rather than in character
format.

CALL CEESECI syntax
CALL "CEESECI" USING input_seconds , output_year , output_month , output_day ,

output_hours , output_minutes , output_seconds , output_milliseconds , fc .

Appendix D. Date and time callable services  563



input_seconds
A 64-bit long floating-point number that represents the number of seconds since 00:00:00 on 14
October 1582, not counting leap seconds.

For example, 00:00:01 on 15 October 1582 is second number 86,401 (24*60*60 + 01). The range
of valid values for input_seconds is 86,400 to 265,621,679,999.999 (23:59:59.999 31 December
9999).

If input_seconds is invalid, all output parameters except the feedback code are set to 0.

output_year (output)
A 32-bit binary integer that represents the year.

The range of valid values for output_year is 1582 to 9999, inclusive.

output_month (output)
A 32-bit binary integer that represents the month.

The range of valid values for output_month is 1 to 12.

output_day (output)
A 32-bit binary integer that represents the day.

The range of valid values for output_day is 1 to 31.

output_hours (output)
A 32-bit binary integer that represents the hour.

The range of valid values for output_hours is 0 to 23.

output_minutes (output)
A 32-bit binary integer that represents the minutes.

The range of valid values for output_minutes is 0 to 59.

output_seconds (output)
A 32-bit binary integer that represents the seconds.

The range of valid values for output_seconds is 0 to 59.

output_milliseconds (output)
A 32-bit binary integer that represents milliseconds.

The range of valid values for output_milliseconds is 0 to 999.

fc (output)
A 12-byte feedback code (optional) that indicates the result of this service.

Table 71. CEESECI symbolic conditions

Symbolic
feedback
code

Severity Message
number

Message text

CEE000 0 -- The service completed successfully.

CEE2E9 3 2505 The input_seconds value in a call to CEEDATM or CEESECI
was not within the supported range.

Usage notes

• The inverse of CEESECI is CEEISEC, which converts separate binary integers that represent year, month,
day, hour, second, and millisecond to a number of seconds.

• If the input value is a Lilian date instead of seconds, multiply the Lilian date by 86,400 (number of
seconds in a day), and pass the new value to CEESECI. 

564  IBM COBOL for Linux on x86 1.1: Programming Guide



Example

*************************************************
**                                             **
** Function: Call CEESECI to convert seconds   **
**           to integers                       **
**                                             **
** In this example a call is made to CEESECI   **
** to convert a number representing the number **
** of seconds since 00:00:00 14 October 1582   **
** to seven binary integers representing year, **
** month, day, hour, minute, second, and       **
** millisecond.  The results are displayed in  **
** this example.                               **
**                                             **
*************************************************
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBLSECI.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01  INSECS                  COMP-2.
 01  YEAR                    PIC S9(9) BINARY.
 01  MONTH                   PIC S9(9) BINARY.
 01  DAYS                    PIC S9(9) BINARY.
 01  HOURS                   PIC S9(9) BINARY.
 01  MINUTES                 PIC S9(9) BINARY.
 01  SECONDS                 PIC S9(9) BINARY.
 01  MILLSEC                 PIC S9(9) BINARY.
 01  IN-DATE.
     02  Vstring-length      PIC S9(4) BINARY.
     02  Vstring-text.
         03  Vstring-char        PIC X,
                     OCCURS 0 TO 256 TIMES
                     DEPENDING ON Vstring-length
                         of IN-DATE.
 01  PICSTR.
     02  Vstring-length      PIC S9(4) BINARY.
     02  Vstring-text.
         03  Vstring-char        PIC X,
                     OCCURS 0 TO 256 TIMES
                     DEPENDING ON Vstring-length
                        of PICSTR.
 01  FC.
     02  Condition-Token-Value.
     COPY  CEEIGZCT.
         03  Case-1-Condition-ID.
             04  Severity    PIC S9(4) COMP.
             04  Msg-No      PIC S9(4) COMP.
         03  Case-2-Condition-ID
                   REDEFINES Case-1-Condition-ID.
             04  Class-Code  PIC S9(4) COMP.
             04  Cause-Code  PIC S9(4) COMP.
         03  Case-Sev-Ctl    PIC X.
         03  Facility-ID     PIC XXX.
     02  I-S-Info            PIC S9(9) COMP.
 PROCEDURE DIVISION.
 PARA-CBLSECS.
*************************************************
** Call CEESECS to convert time stamp of 6/2/88
**     at 10:23:45 AM to Lilian representation
*************************************************
     MOVE 20 TO Vstring-length of IN-DATE.
     MOVE '06/02/88 10:23:45 AM'
             TO Vstring-text of IN-DATE.
     MOVE 20 TO Vstring-length of PICSTR.
     MOVE 'MM/DD/YY HH:MI:SS AP'
             TO Vstring-text of PICSTR.
     CALL 'CEESECS' USING IN-DATE, PICSTR,
                          INSECS, FC.
     IF NOT CEE000 of FC  THEN
         DISPLAY 'CEESECS failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

 PARA-CBLSECI.
*************************************************
** Call CEESECI to convert seconds to integers
*************************************************

Appendix D. Date and time callable services  565



     CALL 'CEESECI' USING INSECS, YEAR, MONTH,
                          DAYS, HOURS,  MINUTES,
                          SECONDS, MILLSEC, FC.
*************************************************
** If CEESECI runs successfully, display results
*************************************************
     IF CEE000 of FC  THEN
         DISPLAY 'Input seconds of ' INSECS
             ' represents:'
         DISPLAY '   Year......... ' YEAR
         DISPLAY '   Month........ ' MONTH
         DISPLAY '   Day.......... ' DAYS
         DISPLAY '   Hour......... ' HOURS
         DISPLAY '   Minute....... ' MINUTES
         DISPLAY '   Second....... ' SECONDS
         DISPLAY '   Millisecond.. ' MILLSEC
     ELSE
         DISPLAY 'CEESECI failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

     GOBACK.

CEESECS: convert time stamp to seconds
CEESECS converts a string that represents a time stamp into Lilian seconds (the number of seconds since
00:00:00 14 October 1582). This service makes it easier to perform time arithmetic, such as calculating
the elapsed time between two time stamps.

CALL CEESECS syntax
CALL "CEESECS" USING input_timestamp , picture_string , output_seconds , fc .

input_timestamp (input)
A halfword length-prefixed character string that represents a date or time stamp in a format matching
that specified by picture_string.

The character string must contain between 5 and 80 picture characters, inclusive. input_timestamp
can contain leading or trailing blanks. Parsing begins with the first nonblank character (unless the
picture string itself contains leading blanks; in this case, CEESECS skips exactly that many positions
before parsing begins).

After a valid date is parsed, as determined by the format of the date you specify in picture_string,
all remaining characters are ignored by CEESECS. Valid dates range between and including the dates
15 October 1582 to 31 December 9999. A full date must be specified. Valid times range from
00:00:00.000 to 23:59:59.999.

If any part or all of the time value is omitted, zeros are substituted for the remaining values. For
example:

1992-05-17-19:02 is equivalent to 1992-05-17-19:02:00
1992-05-17       is equivalent to 1992-05-17-00:00:00

picture_string (input)
A halfword length-prefixed character string, indicating the format of the date or time-stamp value
specified in input_timestamp.

Each character in the picture_string represents a character in input_timestamp. For example, if you
specify MMDDYY HH.MI.SS as the picture_string, CEESECS reads an input_char_date of 060288
15.35.02 as 3:35:02 PM on 02 June 1988. If delimiters such as the slash (/) appear in the picture
string, leading zeros can be omitted. For example, the following calls to CEESECS all assign the same
value to data item secs:

CALL CEESECS USING '92/06/03 15.35.03',

566  IBM COBOL for Linux on x86 1.1: Programming Guide



                   'YY/MM/DD HH.MI.SS', secs, fc.
CALL CEESECS USING '92/6/3 15.35.03',
                   'YY/MM/DD HH.MI.SS', secs, fc.
CALL CEESECS USING '92/6/3 3.35.03 PM',
                   'YY/MM/DD HH.MI.SS AP', secs, fc.
CALL CEESECS USING '92.155 3.35.03 pm',
                   'YY.DDD   HH.MI.SS AP', secs, fc.

If picture_string includes a Japanese Era symbol <JJJJ>, the YY position in input_timestamp
represents the year number within the Japanese Era. For example, the year 1988 equals the
Japanese year 63 in the Showa era.

output_seconds (output)
A 64-bit long floating-point number that represents the number of seconds since 00:00:00 on
14 October 1582, not counting leap seconds. For example, 00:00:01 on 15 October 1582 is
second 86,401 (24*60*60 + 01) in the Lilian format. 19:00:01.12 on 16 May 1988 is second
12,799,191,601.12.

The largest value represented is 23:59:59.999 on 31 December 9999, which is second
265,621,679,999.999 in the Lilian format.

A 64-bit long floating-point value can accurately represent approximately 16 significant decimal digits
without loss of precision. Therefore, accuracy is available to the nearest millisecond (15 decimal
digits).

If input_timestamp does not contain a valid date or time stamp, output_seconds is set to 0 and
CEESECS terminates with a non-CEE000 symbolic feedback code.

Elapsed time calculations are performed easily on the output_seconds, because it represents elapsed
time. Leap year and end-of-year anomalies do not affect the calculations.

fc (output)
A 12-byte feedback code (optional) that indicates the result of this service.

Table 72. CEESECS symbolic conditions

Symbolic
feedback
code

Severity Message
number

Message text

CEE000 0 -- The service completed successfully.

CEE2EB 3 2507 Insufficient data was passed to CEEDAYS or CEESECS. The
Lilian value was not calculated.

CEE2EC 3 2508 The date value passed to CEEDAYS or CEESECS was invalid.

CEE2ED 3 2509 The era passed to CEEDAYS or CEESECS was not recognized.

CEE2EE 3 2510 The hours value in a call to CEEISEC or CEESECS was not
recognized.

CEE2EH 3 2513 The input date passed in a CEEISEC, CEEDAYS, or CEESECS
call was not within the supported range.

CEE2EK 3 2516 The minutes value in a CEEISEC call was not recognized.

CEE2EL 3 2517 The month value in a CEEISEC call was not recognized.

CEE2EM 3 2518 An invalid picture string was specified in a call to a date/time
service.

CEE2EN 3 2519 The seconds value in a CEEISEC call was not recognized.

CEE2EP 3 2521 The <JJJJ>, <CCCC>, or <CCCCCCCC> year-within-era value
passed to CEEDAYS or CEESECS was zero.

Appendix D. Date and time callable services  567



Table 72. CEESECS symbolic conditions (continued)

Symbolic
feedback
code

Severity Message
number

Message text

CEE2ET 3 2525 CEESECS detected nonnumeric data in a numeric field, or
the time-stamp string did not match the picture string.

Usage notes

• The inverse of CEESECS is CEEDATM, which converts output_seconds to character format. 
• By default, two-digit years lie within the 100-year range that starts 80 years before the system date.

Thus in 2010, all two-digit years represent dates between 1930 and 2029, inclusive. You can change
this range by using the callable service CEESCEN.

Example

************************************************
**                                            **
** Function: Call CEESECS to convert          **
**           time stamp to number of seconds  **
**                                            **
** In this example, calls are made to CEESECS **
** to convert two time stamps to the number   **
** of seconds since 00:00:00 14 October 1582. **
** The Lilian seconds for the earlier         **
** time stamp are then subtracted from the    **
** Lilian seconds for the later time stamp    **
** to determine the number of between the     **
** two.  This result is displayed.            **
**                                            **
************************************************
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBLSECS.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01  SECOND1                 COMP-2.
 01  SECOND2                 COMP-2.
 01  TIMESTP.
     02  Vstring-length      PIC S9(4) BINARY.
     02  Vstring-text.
         03  Vstring-char        PIC X,
                     OCCURS 0 TO 256 TIMES
                     DEPENDING ON Vstring-length
                        of TIMESTP.
 01  TIMESTP2.
     02  Vstring-length      PIC S9(4) BINARY.
     02  Vstring-text.
         03  Vstring-char        PIC X,
                     OCCURS 0 TO 256 TIMES
                     DEPENDING ON Vstring-length
                        of TIMESTP2.
 01  PICSTR.
     02  Vstring-length      PIC S9(4) BINARY.
     02  Vstring-text.
         03  Vstring-char        PIC X,
                     OCCURS 0 TO 256 TIMES
                     DEPENDING ON Vstring-length
                        of PICSTR.
 01  FC.
     02  Condition-Token-Value.
     COPY  CEEIGZCT.
         03  Case-1-Condition-ID.
             04  Severity    PIC S9(4) COMP.
             04  Msg-No      PIC S9(4) COMP.
         03  Case-2-Condition-ID
                   REDEFINES Case-1-Condition-ID.
             04  Class-Code  PIC S9(4) COMP.
             04  Cause-Code  PIC S9(4) COMP.
         03  Case-Sev-Ctl    PIC X.
         03  Facility-ID     PIC XXX.
     02  I-S-Info            PIC S9(9) COMP.
 PROCEDURE DIVISION.

568  IBM COBOL for Linux on x86 1.1: Programming Guide



 PARA-SECS1.
************************************************
** Specify first time stamp and a picture string
**     describing the format of the time stamp
**     as input to CEESECS
************************************************
     MOVE 25 TO Vstring-length of TIMESTP.
     MOVE '1969-05-07 12:01:00.000'
             TO Vstring-text of TIMESTP.
     MOVE 25 TO Vstring-length of PICSTR.
     MOVE 'YYYY-MM-DD HH:MI:SS.999'
             TO Vstring-text of PICSTR.

************************************************
** Call CEESECS to convert the first time stamp
** to Lilian seconds
************************************************
     CALL 'CEESECS' USING TIMESTP, PICSTR,
                          SECOND1, FC.
     IF NOT CEE000 of FC  THEN
         DISPLAY 'CEESECS failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

 PARA-SECS2.
************************************************
** Specify second time stamp and a picture string
**     describing the format of the time stamp as
**     input to CEESECS.
************************************************
     MOVE 25 TO Vstring-length of TIMESTP2.
     MOVE '2004-01-01 00:00:01.000'
             TO Vstring-text of TIMESTP2.
     MOVE 25 TO Vstring-length of PICSTR.
     MOVE 'YYYY-MM-DD HH:MI:SS.999'
             TO Vstring-text of PICSTR.

************************************************
** Call CEESECS to convert the second time stamp
**     to Lilian seconds
************************************************
     CALL 'CEESECS' USING TIMESTP2, PICSTR,
                          SECOND2, FC.
     IF NOT CEE000 of FC  THEN
         DISPLAY 'CEESECS failed with msg '
             Msg-No of FC UPON CONSOLE
         STOP RUN
     END-IF.

 PARA-SECS2.
************************************************
** Subtract SECOND2 from SECOND1 to determine the
**     number of seconds between the two time stamps
************************************************
     SUBTRACT SECOND1 FROM SECOND2.
     DISPLAY 'The number of seconds between '
         Vstring-text OF TIMESTP ' and '
         Vstring-text OF TIMESTP2 ' is: ' SECOND2.

     GOBACK.

“Example: date-and-time picture strings” on page 512

Related references   
“Picture character terms and strings” on page 510 

CEEUTC: get coordinated universal time
CEEUTC is identical to CEEGMT.

Related references   
“CEEGMT: get current
Greenwich Mean Time” on page 553 

Appendix D. Date and time callable services  569



IGZEDT4: get current date
IGZEDT4 returns the current date with a four-digit year in the form YYYYMMDD.

CALL IGZEDT4 syntax
CALL "IGZEDT4" USING output_char_date .

output_char_date (output)
An 8-byte fixed-length character string in the form YYYYMMDD, which represents current year, month,
and day.

Usage note: IGZEDT4 is not supported under CICS.

Example

**************************************************
** Function: IGZEDT4 - get current date in the  **
**                     format YYYYMMDD.         **
**************************************************
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBLEDT4.
 . . .
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01  CHRDATE                 PIC S9(8) USAGE DISPLAY.
 . . .
 PROCEDURE DIVISION.
 PARA-CBLEDT4.
**************************************************
** Call IGZEDT4.
**************************************************
     CALL 'IGZEDT4' USING BY REFERENCE CHRDATE.
**************************************************
** IGZEDT4 has no nonzero return code to
**     check, so just display result.
**************************************************
     DISPLAY 'The current date is: '
         CHRDATE
     GOBACK.

Alternatively, you can use the ACCEPT statement to get the current date with a four-digit year. Below is an
example:

01 todays-date.
03 todays-yyyy pic 9(04).
03 todays-mm pic 9(02).
03 todays-dd pic 9(02).
. . .
accept todays-date from date yyyymmdd.

570  IBM COBOL for Linux on x86 1.1: Programming Guide



Appendix E. XML reference material
The following information describes the XML exception codes that might be returned during XML parsing
or XML generation. The information also documents the well-formedness constraints from the XML
specification that the parser checks.

Related references   
“XML PARSE exceptions” on page 571  
“XML conformance” on page 579      
“XML GENERATE exceptions” on page 581  
XML specification

XML PARSE exceptions
When an exception event occurs, the XML parser sets special register XML-CODE to a value that identifies
the exception. Depending on the value in XML-CODE, the parser might or might not be able to continue
processing after the exception, as detailed in the information referenced below.

Related references   
“XML PARSE exceptions
that allow continuation” on page 571  
“XML PARSE exceptions
that do not allow continuation” on page 576  

XML PARSE exceptions that allow continuation
Whether the XML parser can continue processing after an exception event depends upon the value of the
exception code.

The parser can continue processing if the exception code, which is in special register XML-CODE, is within
one of the following ranges:

• 1 - 99
• 100,001 - 165,535
• 200,001 - 265,535

The following table describes each exception, and identifies the actions that the parser takes if you
request that it continue after the exception. Some of the descriptions use the following terms:

• Actual document encoding
• Document encoding declaration
• External ASCII code page
• External EBCDIC code page

For definitions of the terms, see the related concept about XML input document encoding.

© Copyright IBM Corp. 2021, 2023 571

http://www.w3.org/TR/xml


Table 73. XML PARSE exceptions that allow continuation

Exception
code
(decimal)

Description Parser action on continuation

1 The parser found an invalid
character while scanning white
space outside element content.

For further information about
white space, see the related
concept about XML input document
encoding.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

2 The parser found an invalid
start of a processing instruction,
element, comment, or document
type declaration outside element
content.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

3 The parser found a duplicate
attribute name.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

4 The parser found the markup
character '<' in an attribute value.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

5 The start and end tag names of an
element did not match.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

6 The parser found an invalid
character in element content.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

7 The parser found an invalid start of
an element, comment, processing
instruction, or CDATA section in
element content.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

8 The parser found in element
content the CDATA closing character
sequence ']]>' without the matching
opening character sequence '<!
[CDATA['.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

572  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 73. XML PARSE exceptions that allow continuation (continued)

Exception
code
(decimal)

Description Parser action on continuation

9 The parser found an invalid
character in a comment.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

10 The parser found in a comment
the character sequence '--' (two
hyphens) not followed by '>'.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

11 The parser found an invalid
character in a processing instruction
data segment.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

12 The XML declaration was not at the
beginning of the document.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

13 The parser found an invalid digit in a
hexadecimal character reference (of
the form &#xdddd;).

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

14 The parser found an invalid digit in a
decimal character reference (of the
form &#dddd;).

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

15 The encoding declaration value in
the XML declaration did not begin
with lowercase or uppercase A
through Z.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

16 A character reference did not refer
to a legal XML character.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

17 The parser found an invalid
character in an entity reference
name.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

Appendix E. XML reference material  573



Table 73. XML PARSE exceptions that allow continuation (continued)

Exception
code
(decimal)

Description Parser action on continuation

18 The parser found an invalid
character in an attribute value.

The parser continues detecting errors until it
reaches the end of the document or encounters
an error that does not allow continuation. The
parser does not signal any further normal events,
except for the END-OF-DOCUMENT event.

70 The actual document encoding was
EBCDIC, and the external EBCDIC
code page is supported, but the
document encoding declaration did
not specify a supported EBCDIC
code page.

The parser uses the encoding specified by
theexternal EBCDIC code page.

71 The actual document encoding
was EBCDIC, and the document
encoding declaration specified a
supported EBCDIC encoding, but
the external EBCDIC code page is
not supported.

The parser uses the encoding specified by the
document encoding declaration.

72 The actual document encoding
was EBCDIC, the external EBCDIC
code page is not supported, and
the document did not contain an
encoding declaration.

The parser uses EBCDIC code page 1140 (USA,
Canada, . . . Euro Country Extended Code Page).

73 The actual document encoding
was EBCDIC, but neither the
external EBCDIC code page nor
the document encoding declaration
specified a supported EBCDIC code
page.

The parser uses EBCDIC code page 1140 (USA,
Canada, . . . Euro Country Extended Code Page).

80 The actual document encoding was
ASCII, and the external ASCII
code page is supported, but the
document encoding declaration did
not specify a supported ASCII code
page.

The parser uses the encoding specified by the
external ASCII code page.

81 The actual document encoding was
ASCII, and the document encoding
declaration specified a supported
ASCII encoding, but the external
ASCII code page is not supported.

The parser uses the encoding specified by the
document encoding declaration.

82 The actual document encoding
was ASCII, but the external ASCII
code page is not supported, and
the document did not contain an
encoding declaration.

The parser uses ASCII code page 819
(ISO-8859-1 Latin 1/Open Systems).

574  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 73. XML PARSE exceptions that allow continuation (continued)

Exception
code
(decimal)

Description Parser action on continuation

83 The actual document encoding was
ASCII, but neither the external
ASCII code page nor the document
encoding declaration specified a
supported ASCII code page.

The parser uses ASCII code page 819
(ISO-8859-1 Latin 1/Open Systems).

84 The actual document encoding was
ASCII but not valid UTF-8, the
external code page specified UTF-8,
and the document did not contain
an encoding declaration.

The parser uses UTF-8.

85 The actual document encoding
was ASCII but not valid UTF-8,
the external code page specified
UTF-8, and the document encoding
declaration specified neither a
supported ASCII code page nor
UTF-8.

The parser uses UTF-8.

86 The actual document encoding was
ASCII but not valid UTF-8, the
external code page specified a
supported ASCII code page, and
the document encoding declaration
specified UTF-8.

The parser uses UTF-8.

87 The actual document encoding
was ASCII but not valid UTF-8,
and the external code page and
the document encoding declaration
both specified UTF-8.

The parser uses UTF-8.

88 The actual document encoding was
ASCII but not valid UTF-8, the
external code page specified neither
a supported ASCII code page nor
UTF-8, and the document encoding
declaration specified UTF-8.

The parser uses UTF-8.

89 The actual document encoding
was ASCII but not valid UTF-8,
the external code page specified
UTF-8, and the document encoding
declaration specified a supported
ASCII code page.

The parser uses UTF-8.

92 The document data item was
alphanumeric, but the actual
document encoding was Unicode
UTF-16.

The parser uses code page 1200 (Unicode
UTF-16).

Appendix E. XML reference material  575



Table 73. XML PARSE exceptions that allow continuation (continued)

Exception
code
(decimal)

Description Parser action on continuation

100,001 -
165,535

The external EBCDIC code page
and the document encoding
declaration specified different
supported EBCDIC code pages.
XML-CODE contains the code page
CCSID for the encoding declaration
plus 100,000.

If you set XML-CODE to zero before returning
from the EXCEPTION event, the parser uses the
encoding specified by the external EBCDIC code
page. If you set XML-CODE to the CCSID for the
document encoding declaration (by subtracting
100,000), the parser uses this encoding.

200,001 -
265,535

The external ASCII code page and
the document encoding declaration
specified different supported ASCII
code pages. XML-CODE contains the
CCSID for the encoding declaration
plus 200,000.

If you set XML-CODE to zero before returning
from the EXCEPTION event, the parser uses the
encoding specified by the external ASCII code
page. If you set XML-CODE to the CCSID for the
document encoding declaration (by subtracting
200,000), the parser uses this encoding.

Related concepts  
“XML-CODE” on page 393  
“XML input document encoding” on page 396   

Related tasks  
“Handling XML PARSE exceptions” on page 399   

XML PARSE exceptions that do not allow continuation
The XML parser cannot continue processing if any of the exceptions described below occurs.

No further events are returned from the parser for any of these exceptions even if the processing
procedure sets XML-CODE to zero before passing control back to the parser. The parser transfers control
to the statement in the ON EXCEPTION phrase, if specified, otherwise to the end of the XML PARSE
statement.

Table 74. XML PARSE exceptions that do not allow continuation

Exception code
(decimal)

Description

100 The parser reached the end of the document while scanning the start of the XML
declaration.

101 The parser reached the end of the document while looking for the end of the XML
declaration.

102 The parser reached the end of the document while looking for the root element.

103 The parser reached the end of the document while looking for the version information
in the XML declaration.

104 The parser reached the end of the document while looking for the version information
value in the XML declaration.

106 The parser reached the end of the document while looking for the encoding
declaration value in the XML declaration.

108 The parser reached the end of the document while looking for the standalone
declaration value in the XML declaration.

109 The parser reached the end of the document while scanning an attribute name.

576  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 74. XML PARSE exceptions that do not allow continuation (continued)

Exception code
(decimal)

Description

110 The parser reached the end of the document while scanning an attribute value.

111 The parser reached the end of the document while scanning a character reference or
entity reference in an attribute value.

112 The parser reached the end of the document while scanning an empty element tag.

113 The parser reached the end of the document while scanning the root element name.

114 The parser reached the end of the document while scanning an element name.

115 The parser reached the end of the document while scanning character data in element
content.

116 The parser reached the end of the document while scanning a processing instruction
in element content.

117 The parser reached the end of the document while scanning a comment or CDATA
section in element content.

118 The parser reached the end of the document while scanning a comment in element
content.

119 The parser reached the end of the document while scanning a CDATA section in
element content.

120 The parser reached the end of the document while scanning a character reference or
entity reference in element content.

121 The parser reached the end of the document while scanning after the close of the root
element.

122 The parser found a possible invalid start of a document type declaration.

123 The parser found a second document type declaration.

124 The first character of the root element name was not a letter, '_', or ':'.

125 The first character of the first attribute name of an element was not a letter, '_', or ':'.

126 The parser found an invalid character either in or following an element name.

127 The parser found a character other than '=' following an attribute name.

128 The parser found an invalid attribute value delimiter.

130 The first character of an attribute name was not a letter, '_', or ':'.

131 The parser found an invalid character either in or following an attribute name.

132 An empty element tag was not terminated by a '>' following the '/'.

133 The first character of an element end tag name was not a letter, '_', or ':'.

134 An element end tag name was not terminated by a '>'.

135 The first character of an element name was not a letter, '_', or ':'.

136 The parser found an invalid start of a comment or CDATA section in element content.

137 The parser found an invalid start of a comment.

138 The first character of a processing instruction target name was not a letter, '_', or ':'.

Appendix E. XML reference material  577



Table 74. XML PARSE exceptions that do not allow continuation (continued)

Exception code
(decimal)

Description

139 The parser found an invalid character in or following a processing instruction target
name.

140 A processing instruction was not terminated by the closing character sequence '?>'.

141 The parser found an invalid character following '&' in a character reference or entity
reference.

142 The version information was not present in the XML declaration.

143 'version' in the XML declaration was not followed by '='.

144 The version declaration value in the XML declaration is either missing or improperly
delimited.

145 The version information value in the XML declaration specified a bad character, or the
start and end delimiters did not match.

146 The parser found an invalid character following the version information value closing
delimiter in the XML declaration.

147 The parser found an invalid attribute instead of the optional encoding declaration in
the XML declaration.

148 'encoding' in the XML declaration was not followed by '='.

149 The encoding declaration value in the XML declaration is either missing or improperly
delimited.

150 The encoding declaration value in the XML declaration specified a bad character, or
the start and end delimiters did not match.

151 The parser found an invalid character following the encoding declaration value closing
delimiter in the XML declaration.

152 The parser found an invalid attribute instead of the optional standalone declaration
in the XML declaration.

153 standalone in the XML declaration was not followed by =.

154 The standalone declaration value in the XML declaration is either missing or
improperly delimited.

155 The standalone declaration value was neither 'yes' nor 'no' only.

156 The standalone declaration value in the XML declaration specified a bad character,
or the start and end delimiters did not match.

157 The parser found an invalid character following the standalone declaration value
closing delimiter in the XML declaration.

158 The XML declaration was not terminated by the proper character sequence '?>', or
contained an invalid attribute.

159 The parser found the start of a document type declaration after the end of the root
element.

160 The parser found the start of an element after the end of the root element.

161 The parser found an invalid UTF-8 byte sequence.

578  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 74. XML PARSE exceptions that do not allow continuation (continued)

Exception code
(decimal)

Description

162 The parser found a UTF-8 character that has a Unicode scalar value greater than
x'FFFF'.

315 The actual document encoding was UTF-16 little-endian, which the parser does not
support on this platform.

316 The actual document encoding was UCS4, which the parser does not support.

317 The parser cannot determine the document encoding. The document might be
damaged.

318 The actual document encoding was UTF-8, which the parser does not support.

320 The document data item was national, but the actual document encoding was
EBCDIC.

321 The document data item was national, but the actual document encoding was ASCII.

322 The document data item was a native alphanumeric data item, but the actual
document encoding was EBCDIC.

323 The document data item was a host alphanumeric data item, but the actual document
encoding was ASCII.

324 The document data item was national, but the actual document encoding was UTF-8.

325 The document data item was a host alphanumeric data item, but the actual document
encoding was UTF-8.

500 - 599 Internal error. Report the error to your service representative.

Related concepts   
“XML-CODE” on page 393 

Related tasks   
“Handling XML PARSE exceptions” on page 399 

XML conformance
The built-in COBOL XML parser that is included in COBOL for Linux is not a conforming XML processor
according to the definition in the XML specification. The parser does not validate the XML documents that
you parse. Although it does check for many well-formedness errors, it does not perform all of the actions
required of a nonvalidating XML processor.

In particular, the parser does not process the internal document type definition (DTD internal subset).
Thus it does not supply default attribute values, does not normalize attribute values, and does not
include the replacement text of internal entities except for the predefined entities. Instead, it passes the
entire document type declaration as the contents of XML-TEXT or XML-NTEXT for the DOCUMENT-TYPE-
DECLARATION XML event, which allows the application to perform these actions if required.

The parser optionally lets programs continue processing an XML document after some errors. The
purpose of allowing processing to continue is to facilitate the debugging of XML documents and
processing procedures.

Recapitulating the definition in the XML specification, a textual object is a well-formed XML document if:

• Taken as a whole, it conforms to the grammar for XML documents.
• It meets all the explicit well-formedness constraints listed in the XML specification.

Appendix E. XML reference material  579



• Each parsed entity (piece of text) that is referenced directly or indirectly within the document is well
formed.

The COBOL XML parser does check that documents conform to the XML grammar, except for any
document type declaration. The declaration is supplied in its entirety, unchecked, to your application.

The following information is an annotation from the XML specification. The W3C is not responsible
for any content not found at the original URL (www.w3.org/TR/REC-xml). All the annotations are non-
normative and are shown in italic.

Copyright © 1994-2001 W3C® (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University), All Rights Reserved. W3C liability,
trademark, document use, and software licensing rules apply. (www.w3.org/Consortium/Legal/ipr-
notice-20000612)

The XML specification also contains twelve explicit well-formedness constraints. The constraints that the
COBOL XML parser checks partly or completely are shown in bold type:

1. Parameter Entities (PEs) in Internal Subset: "In the internal DTD subset, parameter-entity references
can occur only where markup declarations can occur, not within markup declarations. (This does not
apply to references that occur in external parameter entities or to the external subset.)"

The parser does not process the internal DTD subset, so it does not enforce this constraint.
2. External Subset: "The external subset, if any, must match the production for extSubset."

The parser does not process the external subset, so it does not enforce this constraint.
3. Parameter Entity Between Declarations: "The replacement text of a parameter entity reference in a

DeclSep must match the production extSubsetDecl."

The parser does not process the internal DTD subset, so it does not enforce this constraint.
4. Element Type Match: "The Name in an element's end-tag must match the element type in the

start-tag."

The parser enforces this constraint.
5. Unique Attribute Specification: "No attribute name may appear more than once in the same start-

tag or empty-element tag."

The parser partly supports this constraint by checking up to 10 attribute names in a given element for
uniqueness. The application can check any attribute names beyond this limit.

6. No External Entity References: "Attribute values cannot contain direct or indirect entity references to
external entities."

The parser does not enforce this constraint.
7. No '<' in Attribute Values: "The replacement text of any entity referred to directly or indirectly in an

attribute value must not contain a '<'."

The parser does not enforce this constraint.
8. Legal Character: "Characters referred to using character references must match the production for

Char."

The parser enforces this constraint.
9. Entity Declared: "In a document without any DTD, a document with only an internal DTD subset which

contains no parameter entity references, or a document with standalone='yes', for an entity reference
that does not occur within the external subset or a parameter entity, the Name given in the entity
reference must match that in an entity declaration that does not occur within the external subset or a
parameter entity, except that well-formed documents need not declare any of the following entities:
amp, lt, gt, apos, quot. The declaration of a general entity must precede any reference to it which
appears in a default value in an attribute-list declaration."

580  IBM COBOL for Linux on x86 1.1: Programming Guide



"Note that if entities are declared in the external subset or in external parameter entities, a non-
validating processor is not obligated to read and process their declarations; for such documents, the
rule that an entity must be declared is a well-formedness constraint only if standalone='yes'."

The parser does not enforce this constraint.
10. Parsed Entity: "An entity reference must not contain the name of an unparsed entity. Unparsed

entities may be referred to only in attribute values declared to be of type ENTITY or ENTITIES."

The parser does not enforce this constraint.
11. No Recursion: "A parsed entity must not contain a recursive reference to itself, either directly or

indirectly."

The parser does not enforce this constraint.
12. In DTD: "Parameter-entity references may only appear in the DTD."

The parser does not enforce this constraint, because the error cannot occur.

The preceding material is an annotation from the XML specification. The W3C is not responsible for
any content not found at the original URL (www.w3.org/TR/REC-xml); all these annotations are non-
normative. This document has been reviewed by W3C Members and other interested parties and has
been endorsed by the Director as a W3C Recommendation. It is a stable document and may be used
as reference material or cited as a normative reference from another document. The normative version
of the specification is the English version found at the W3C site; any translated document may contain
errors from the translation.

Related concepts   
“XML parser in COBOL” on page 389 

Related references
Extensible Markup Language (XML)
XML specification (Prolog and document type declaration)

XML GENERATE exceptions
One of several exception codes might be returned in the XML-CODE special register during XML
generation. If one of these exceptions occurs, control is passed to the statement in the ON EXCEPTION
phrase, or to the end of the XML GENERATE statement if you did not code an ON EXCEPTION phrase.

Table 75. XML GENERATE exceptions

Exception code
(decimal)

Description

400 The receiver was too small to contain the generated XML document. The COUNT IN
data item, if specified, contains the count of character positions that were actually
generated.

401 A multibyte data-name contained a character that, when converted to Unicode, was
not valid in an XML element or attribute name.

402 The first character of a multibyte data-name, when converted to Unicode, was not
valid as the first character of an XML element or attribute name.

403 The value of an OCCURS DEPENDING ON variable exceeded 16,777,215.

410 The CCSID page specified by the EBCDIC_CODEPAGE environment variable is not
supported for conversion to Unicode.

411 The CCSID specified by the EBCDIC_CODEPAGE environment variable is not a
supported single-byte EBCDIC code page.

Appendix E. XML reference material  581

http://www.w3.org/XML/
http://www.w3.org/TR/xml#sec-prolog-dtd


Table 75. XML GENERATE exceptions (continued)

Exception code
(decimal)

Description

412 The receiver was native alphanumeric, but the encoding specified for the document
was not UTF-8 or a supported single-byte ASCII code page.

413 The receiver was alphanumeric, but the runtime locale was not consistent with the
compile-time locale.

414 The encoding specified for the XML document was invalid or was not a supported code
page.

415 The receiver was national, but the encoding specified for the document was not
UTF-16.

416 The XML namespace identifier contained invalid XML characters.

417 Element character content or an attribute value contained characters that are illegal
in XML content. XML generation has continued, with the element tag name or the
attribute name prefixed with 'hex.' and the original data value represented in the
document in hexadecimal.

418 Substitution characters were generated by encoding conversion.

419 The XML namespace prefix was invalid.

420 The source data item included a multibyte name or multibyte content, and the
receiver was native alphanumeric, but the encoding specified for the document was
not UTF-8.

600-699 Internal error. Report the error to your service representative.

Related tasks   
“Handling XML GENERATE exceptions” on page 414 

Related references   
 

582  IBM COBOL for Linux on x86 1.1: Programming Guide



Appendix F. EXIT compiler option

You can use the EXIT compiler option to provide user-supplied modules in place of various compiler
functions. For details about processing of each exit module, error handling for exit modules, or using the
EXIT option with CICS and SQL statements, see the following topics.

Related references   
“User-exit work area and work area extension” on page 583  
“Parameter list for exit modules” on page 584  
“Processing of INEXIT” on page 585  
“Processing of LIBEXIT” on page 586  
“Processing of PRTEXIT” on page 587  
  
“Processing
of MSGEXIT” on page 587 
“Error handling
for exit modules” on page 594  
“EXIT” on page 265

User-exit work area and work area extension
When you use one of the user exits, the compiler provides a work area and work area extension in which
you can save the address of storage obtained by the exit module. Having such work areas lets the module
be reentrant.

The user-exit work area (for use by INEXIT, LIBEXIT, and PRTEXIT) consists of 4 fullwords that reside on a
fullword boundary. The user-exit work area extension (for use by MSGEXIT) consists of 8 fullwords also on
a fullword boundary. These fullwords are initialized to binary zeros before the first exit routine is invoked,
and are passed to the exit module in a parameter list. After initialization, the compiler makes no further
reference to the work areas.

Related references   
“Processing of INEXIT” on page 585  
“Processing of LIBEXIT” on page 586  
“Processing of PRTEXIT” on page 587  
  
“Processing
of MSGEXIT” on page 587 

© Copyright IBM Corp. 2021, 2023 583



Parameter list for exit modules
The compiler uses a structure, passed by reference, to communicate with the exit module.

Table 76. Parameter list for exit modules

Parameter
offset

Contains Description of item

0 User-exit type Halfword that identifies which user exit is to perform the
operation:

• 1=INEXIT
• 2=LIBEXIT
• 3=PRTEXIT
• 5=Reserved
• 6=MSGEXIT

2 Operation code Halfword that indicates the type of operation:

• 0=OPEN
• 1=CLOSE
• 2=GET
• 3=PUT
• 4=FIND
• 5=MSGSEV: customize message severity

4 Return code Fullword, set by the exit module, that indicates the success of
the requested operation.

For op codes 0 through 4:

• 0=Successful
• 4=End-of-data
• 12=Failed

For op code 5:

• 0=Message not customized
• 4=Message found and customized
• 12=Operation failed

8 Record length Fullword, set by the exit module, that indicates the length of
the record being returned by the GET operation, or supplied
by the PUT operation.

12 Address of record or str2 Fullword, either set by the exit module to the address of
the record in a user-owned buffer for the GET operation, or
set by the compiler to the address of the record of the PUT
operation.

str2 applies only to OPEN.

The first halfword (on a halfword boundary) contains the
length of the string, followed by the string.

584  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 76. Parameter list for exit modules (continued)

Parameter
offset

Contains Description of item

16 User-exit work area Four-fullword work area provided by the compiler for use by
the user-exit module:

• First word: for use by INEXIT
• Second word: for use by LIBEXIT
• Third word: for use by PRTEXIT

32 Text-name Fullword that contains the address of a null-terminated string
that contains the fully qualified text-name. Applies only to
FIND.

(Used only by LIBEXIT)

36 User exit parameter
string

Fullword that contains the address of a six-element array,
each element of which is a structure that contains a 2-byte
length field followed by a 64-character string that contains
the exit parameter string.

The sixth element is the MSGEXIT string.

40 Type of source code line Halfword (used only by INEXIT)

42 Statement indicator Halfword (used only by INEXIT)

44 Statement column
number

Halfword (used only by INEXIT)

46 Reserved Halfword

48 User-exit work area
extension

Eight-fullword work area provided by the compiler for use by
the user-exit module:

• First word: reserved
• Second word: MSGEXIT

80 Message exit data Three-halfword area provided by the compiler:

• First halfword: the message number of the message to be
customized

• Second halfword: for a diagnostic message, the default
severity; for a FIPS message, the FIPS category as a
numeric code

• Third halfword: the user-requested severity for the
messages (-1 to indicate suppression)

Related references   
“User-exit work area and work area extension” on page 583  

Processing of INEXIT
If INEXIT is specified, the compiler loads the exit module (mod1) during initialization, and invokes the
module using the OPEN operation code (op code). The module can then prepare its source for processing
and pass the status of the OPEN request back to the compiler. Subsequently, each time the compiler
requires a source statement, the exit module is invoked with the GET op code.

Appendix F. EXIT compiler option  585



The exit module then returns either the address and length of the next statement, or the end-of-data
indication if no more source statements exist. When end-of-data occurs, the compiler invokes the exit
module with the CLOSE op code so that the module can release any resources that are related to its input.

The compiler uses a structure, passed by reference, to communicate with the exit module.

Related references   
“Parameter list for exit modules” on page 584  

Processing of LIBEXIT
If LIBEXIT is specified, the compiler loads the exit module (mod2) during initialization. The compiler
makes calls to the module to obtain copybooks whenever COPY or BASIS statements are encountered.

The first call invokes the module with an OPEN op code. The module can then prepare the specified
library-name for processing. The OPEN op code is also issued the first time a new library-name is
specified. The exit module returns the status of the OPEN request to the compiler by passing a return
code.

When the exit invoked with the OPEN op code returns, the compiler invokes the exit module with a GET op
code, and the exit module passes the compiler the length and address of the record to be copied from the
active copybook. The GET operation is repeated until the end-of-data indicator is passed to the compiler.

When end-of-data occurs, the compiler issues a CLOSE request so that the exit module can release any
resources related to its input.

Nested COPY statements: Any record from the active copybook can contain a COPY statement. (However,
nested COPY statements cannot contain the REPLACING phrase, and a COPY statement with the
REPLACING phrase cannot contain nested COPY statements.) When a valid nested COPY statement is
encountered, the compiler issues an OPEN and then a series of GET until the compiler receives an EOD
from LIBEXIT.

Recursive calls cannot be made to text-name. That is, a copybook can be named only once in a set of
nested COPY statements until the end-of-data for that copybook is reached.

When the exit module receives the OPEN request, it should push its control information about the active
copybook onto a stack and then complete the requested action by OPEN. The newly requested text-name
(or basis-name) becomes the active copybook.

Processing continues in the normal manner with a series of GET requests until the end-of-data indicator is
passed to the compiler.

Note: The user exit should continue to pass an end-of-data indicator when the compiler issues a GET until
the compiler issues a CLOSE command.

At end-of-data for the nested active copybook and when the compiler issues a CLOSE operation, the exit
module should pop its control information from the stack. The next request from the compiler will be a
GET. The user exit should continue where it has left off.

The compiler then invokes the exit module with a GET request, and the exit module must pass the same
record that was passed previously from this copybook. The compiler verifies that the same record was
passed, and then the processing continues with GET requests until the end-of-data indicator is passed.

The compiler uses a structure, passed by reference, to communicate with the exit module.

Related references   
“Parameter list for exit modules” on page 584  

586  IBM COBOL for Linux on x86 1.1: Programming Guide



Processing of PRTEXIT
If PRTEXIT is specified, the compiler loads the exit module (mod3) during initialization. The exit module
is used in place of the SYSPRINT file.

The compiler invokes the module using the OPEN operation code (op code). The module can then prepare
its output destination for processing and pass the status of the OPEN request back to the compiler.
Subsequently, each time the compiler has a line to print, the exit module is invoked with the PUT op code.
The compiler supplies the address and length of the record that is to be printed, and the exit module
returns the status of the PUT request to the compiler by a return code. The first byte of the record to be
printed contains an ANSI printer control character.

Before the compilation completes, the compiler invokes the exit module with the CLOSE op code so that
the module can release any resources that are related to its output destination.

The compiler uses a structure, passed by reference, to communicate with the exit module.

Related references   
“Parameter list for exit modules” on page 584  

Processing of MSGEXIT
The MSGEXIT module is used to customize compiler diagnostic messages and FIPS messages. The
module can customize a message either by changing its severity or suppressing it.

If the MSGEXIT module assigns a severity to a FIPS message, the message is converted into a diagnostic
message. (The message is shown in the summary of diagnostic messages in the listing.)

A MSGEXIT summary at the end of the compiler listing shows how many messages were changed in
severity and how many messages were suppressed.

Table 77. MSGEXIT processing

Action by compiler Action by exit module

Loads the exit module (mod5) during
initialization

Calls the exit module with an OPEN
operation code (op code)

Optionally processes str5 and passes the status of the OPEN
request to the compiler

Calls the exit module with a MSGSEV
operation code (op code) when the
compiler is about to issue a diagnostic
message or FIPS message

One of the following actions:

• Indicates no customization of the message (by setting
return code to 0)

• Specifies a new severity for (or suppression of) the
message, and sets return code to 4

• Indicates that the operation failed (by setting return code to
12)

Calls the exit module with a CLOSE op
code

Optionally frees storage and passes the status of the CLOSE
request to the compiler

Deletes the exit module (mod5) during
compiler termination

“Example: MSGEXIT user exit” on page 590

Related tasks  
“Customizing compiler-message severities” on page 588  

Related references   
“Parameter list for exit modules” on page 584  

Appendix F. EXIT compiler option  587



Customizing compiler-message severities
To change the severities of compiler messages or suppress compiler messages (including FIPS
messages), do the steps described below.

1. Code and compile a COBOL program named ERRMSG. The program needs only a PROGRAM-ID
paragraph, as described in the related task.

2. Review the ERRMSG listing, which contains a complete list of compiler messages with their message
numbers, severities, and message text.

3. Decide which messages you want to customize.

To understand the customizations that are possible, see the related reference about customizable
compiler-message severities.

4. Code a MSGEXIT module to implement the customizations.

a. Verify that the operation-code parameter indicates message-severity customization.
b. Check the two input values in the message-exit-data parameter: the message number; and the

default severity for a diagnostic message or the FIPS category for a FIPS message.

The FIPS category is expressed as numeric code. For details, see the related reference about
customizable compiler-message severities.

c. For a message that you want to customize, set the user-requested severity in the message-exit-
data parameter to indicate either:

• A new message severity, by coding severity 0, 4, 8, or 12
• Message suppression, by coding severity -1

d. Set the return code to one of the following values:

• 0, to indicate that the message was not customized
• 4, to indicate that the message was found and customized
• 12, to indicate that the operation failed and that compilation should be terminated

5. Compile and link your MSGEXIT module.

Ensure that the module is linked as a shared library. For example:

cob2 -o IGYMGXT -q32 IGYMSGXT.cbl -e IGYMSGXT

6. Set LD_LIBRARY_PATH to make the MSGEXIT module available to the compiler.

For example, if the shared object is in /u1/cobdev/exits, use this command:

export LD_LIBRARY_PATH=/u1/cobdev/exits:$LD_LIBRARY_PATH

7. Recompile program ERRMSG, but use compiler option EXIT(MSGEXIT(msgmod)), where msgmod is
the name of your MSGEXIT module.

8. Review the listing and check for:

• Updated message severities
• Suppressed messages (indicated by XX in place of the severity)
• Unsupported severity changes or unsupported message suppression (indicated by a severity-U

diagnostic message, and compiler termination with return code 16)

Related tasks   
“Generating a list of compiler
messages” on page 230 

Related references  
“Runtime environment
variables” on page 220    
“Severity codes for

588  IBM COBOL for Linux on x86 1.1: Programming Guide



compiler diagnostic messages” on page 230 
“Customizable
compiler-message severities” on page 589  
“Effect
of message customization on compilation return code” on page 590  
“Error handling
for exit modules” on page 594  

Customizable compiler-message severities
To customize compiler-message severities, you need to understand the possible severities of compiler
diagnostic messages, the levels or categories of FIPS messages, and the permitted customizations of
message severities.

The possible severity codes for compiler diagnostic messages are described in the related reference
about severity codes.

The eight categories of FIPS (FLAGSTD) messages are shown in the following table. The category of any
given FIPS message is passed as a numeric code to the MSGEXIT module. Those numeric codes are
shown in the second column.

Table 78. FIPS (FLAGSTD) message categories

FIPS level or category Numeric code Description

D 81 Debug module level 1

E 82 Extension (IBM)

H 83 High level

I 84 Intermediate level

N 85 Segmentation module level 1

O 86 Obsolete elements

Q 87 High-level and obsolete elements

S 88 Segmentation module level 2

FIPS messages have an implied severity of zero (severity I).

Permitted message-severity customizations:

You can change the severity of a compiler message in the following ways:

• Severity-I and severity-W compiler diagnostic messages, and FIPS messages, can be changed to have
any severity from I through S.

Assigning a severity to a FIPS message converts the FIPS message to a diagnostic message of the
assigned severity.

As examples, you can:

– Lower an optimizer warning to severity I.
– Disallow REDEFINING a smaller item with a larger item by raising the severity of message 1154.
– Disallow complex OCCURS DEPENDING ON by changing FIPS message 8235 from a category-E FIPS

message to a severity-S compiler diagnostic message.
• Severity-E messages can be raised to severity S, but not lowered to severity I or W, because an error

condition has occurred in the program.
• Severity-S and severity-U messages cannot be changed to have a different severity.

You can request suppression of compiler messages as follows:

Appendix F. EXIT compiler option  589



• I, W, and FIPS messages can be suppressed.
• E and S messages cannot be suppressed.

Related references   
“Severity codes for
compiler diagnostic messages” on page 230 
“FLAGSTD” on page 268 
“Effect
of message customization on compilation return code” on page 590  

Effect of message customization on compilation return code
If you use a MSGEXIT module, the final return code from the compilation of a program could be affected
as described below.

If you change the severity of a message, the return code from the compilation might also be changed.
For example, if a compilation produces one diagnostic message, and it is a severity-E message, the
compilation return code would normally be 8. But if the MSGEXIT module changes the severity of that
message to severity S, then the return code from compilation would be 12.

If you suppress a message, the return code from the compilation is no longer affected by the severity
of that message. For example, if a compilation produces one diagnostic message, and it is a severity-W
message, the compilation return code would normally be 4. But if the MSGEXIT module suppresses that
message, then the return code from compilation would be 0.

Related tasks   
“Customizing compiler-message severities” on page 588 

Related references   
“Severity codes for
compiler diagnostic messages” on page 230  

Example: MSGEXIT user exit
The following example shows a MSGEXIT user-exit module that changes message severities and
suppresses messages.

You can also find the complete source code for the example in the samples subdirectory of the COBOL
install directory (typically in /opt/ibm/cobol/1.1.0/samples/msgexit).

For helpful tips about using a message-exit module, see the comments within the code.

*****************************************************************
*  IGYMSGXT - Sample COBOL program for MSGEXIT                  *
*****************************************************************
*  Function:  This is a SAMPLE user exit for the MSGEXIT        *
*             suboption of the EXIT compiler option.  This exit *
*             can be used to customize the severity of or       *
*             suppress compiler diagnostic messages and FIPS    *
*             messages.  This example program includes several  *
*             sample customizations to show how customizations  *
*             are done.  Feel free to change the customizations *
*             as appropriate to meet your requirements.         *
*                                                               *
*---------------------------------------------------------------*
*  COMPILE NOTE: To prepare a compiler user exit in COBOL,      *
*                it should be a shared library module:          *
*   cob2 -o IGYMSGXT -q32 IGYMSGXT.cbl -e IGYMSGXT              *
*                                                               *
*  USAGE NOTE: The compiler needs to have access to IGYMSGXT at *
*              compile time, so set LD_LIBRARY_PATH accordingly:*
*                                                               *
*   EX:       export LD_LIBRARY_PATH=/u1/cobdev/exits:          *
*             $LD_LIBRARY_PATH                                  *
*                                                               *
*               (This assumes the shared object is in           *
*                 /u1/cobdev/exits )                            *
*                                                               *

590  IBM COBOL for Linux on x86 1.1: Programming Guide



*****************************************************************
*****************************************************************
 IDENTIFICATION DIVISION.                                        
 PROGRAM-ID.  IGYMSGXT.                                          
 DATA DIVISION.                                                  
                                                                 
   WORKING-STORAGE SECTION.                                      
                                                                 
*****************************************************************
*                                                               *
*   Local variables.                                            *
*                                                               *
*****************************************************************
                                                                 
    77 EXIT-TYPEN            PIC 9(4).                           
    77 EXIT-DEFAULT-SEV-FIPS PIC X.                              
                                                                 
*****************************************************************
*                                                               *
*   Definition of the User-Exit Parameter List, which is        *
*   passed from the COBOL compiler to the user-exit module      *
*                                                               *
*****************************************************************
                                                                 
   LINKAGE SECTION.                                              
    01 UXPARM.
       02 EXIT-TYPE        PIC 9(4)   COMP.
       02 EXIT-OPERATION   PIC 9(4)   COMP.
       02 EXIT-RETURNCODE  PIC 9(9)   COMP.
       02 EXIT-DATALENGTH  PIC 9(9)   COMP.
       02 EXIT-DATA        POINTER.
       02 EXIT-WORK-AREA.
          03 EXIT-WORK-AREA-PTR  OCCURS 4  POINTER.
       02 EXIT-TEXT-NAME   POINTER.
       02 EXIT-PARMS       POINTER.
       02 EXIT-LINFO       PIC X(8).
       02 EXIT-X-WORK-AREA PIC X(4) OCCURS 8.
       02 EXIT-MESSAGE-PARMS.
          03 EXIT-MESSAGE-NUM PIC 9(4)   COMP.
          03 EXIT-DEFAULT-SEV PIC 9(4)   COMP.
          03 EXIT-USER-SEV    PIC S9(4)  COMP.

    01 EXIT-STRINGS.
       02 EXIT-STRING OCCURS 6.
          03 EXIT-STR-LEN PIC 9(4)   COMP.
          03 EXIT-STR-TXT PIC X(64).
                                                                  
*****************************************************************
*                                                               *
*  Begin PROCEDURE DIVISION                                     *
*                                                               *
*  Invoke the section to handle the exit.                       *
*                                                               *
*****************************************************************
                                                                 
 Procedure Division Using UXPARM.

     Set Address of EXIT-STRINGS to EXIT-PARMS
                                                                 
     COMPUTE EXIT-RETURNCODE = 0                                 
                                                                 
     Evaluate 
TRUE                                                                                            
                    
*****************************************************************
* Handle a bad invocation of this exit by the compiler.         *
* This could happen if this routine was used for one of the     *
* other EXITs, such as INEXIT, PRTEXIT or LIBEXIT.              *
*****************************************************************
       When EXIT-TYPE Not = 6                                    
       Move EXIT-TYPE   to  EXIT-TYPEN                         
         Display '**** Invalid exit routine identifier'          
         Display '**** EXIT TYPE =  '  EXIT-TYPE                 
         Compute EXIT-RETURNCODE = 16                            
                                                                 
*****************************************************************
* Handle the OPEN call to this exit by the compiler             *
*        Display the exit string (labeled 'str5' in the syntax  *
*        diagram in the COBOL for Linux Programming Guide) from   *
*        the EXIT(MSGEXIT('str5',mod5)) option specification.   *
*        (Note that str5 is placed in element 6 of the array of *
*        user exit parameter strings.)                          *

Appendix F. EXIT compiler option  591



*****************************************************************
       When EXIT-OPERATION = 0                                   
*        Display 'Opening MSGEXIT'                               
*        If EXIT-STR-LEN(6) Not Zero Then                        
*          Display ' str5 len = ' EXIT-STR-LEN(6)             
*          Display ' str5 = ' EXIT-STR-TXT(6)(1:EXIT-STR-LEN(6))    
*        End-If                                                  
         Continue                                                
                                                                 
*****************************************************************
* Handle the CLOSE call to this exit by the compiler            *
*        NOTE: Unlike the z/OS MSGEXIT, you must not use        *
*             STOP RUN here.  On Linux, use GOBACK.               *
*****************************************************************
       When EXIT-OPERATION = 1                                   
*        Display 'Closing MSGEXIT'                               
         Goback                                                   
                                                                 
*****************************************************************
* Handle the customize message severity call to this exit       *
*        Display information about every customized severity.   *
*****************************************************************
       When EXIT-OPERATION = 5                                   
*        Display 'MSGEXIT called with MSGSEV'                    
         If EXIT-MESSAGE-NUM < 8000 Then                      
           Perform Error-Messages-Severity                      
         Else                                                   
           Perform FIPS-Messages-Severity                       
         End-If                                                  
                                                                 
*        If EXIT-RETURNCODE = 4 Then                             
*          Display '>>>> Customizing message ' EXIT-MESSAGE-NUM
*                  ' with new severity ' EXIT-USER-SEV '  <<<<'
*          If EXIT-MESSAGE-NUM > 8000 Then                       
*            Display 'FIPS sev =' EXIT-DEFAULT-SEV-FIPS '<<<<' 
*          End-If                                                
*        End-If                                                  
                                                                 
*****************************************************************
* Handle a bad invocation of this exit by the compiler          *
* The compiler should not invoke this exit with EXIT-TYPE = 6   *
* and an opcode other than 0, 1, or 5.  This should not happen  *
* and IBM service should be contacted if it does.               *
*****************************************************************
       When Other                                                
         Display '**** Invalid MSGEXIT routine operation '       
         Display '**** EXIT OPCODE =  '  EXIT-OPERATION          
         Compute EXIT-RETURNCODE = 16                            
                                                                 
     End-Evaluate                                                
                                                                 
     
Goback.                                                                                         
                                    
 
****************************************************************           
*    ERROR MESSAGE   PROCESSOR                                 *
****************************************************************
 Error-Messages-Severity.                                       
                                                                
*    Assume message severity will be customized...              
     COMPUTE EXIT-RETURNCODE = 4                                
                                                                
     Evaluate EXIT-MESSAGE-NUM                                   
                                                                
****************************************************************
*      Change severity of message 1154(W) to 12 ("S")           
*      This is the case of redefining a large item              
*      with a smaller item, IBM Req # MR0904063236              
****************************************************************
       When(1154)                                               
         COMPUTE EXIT-USER-SEV = 12                             
                                                                
****************************************************************
*      Message severity Not customized                          
****************************************************************
       When Other                                               
         COMPUTE EXIT-RETURNCODE = 0                            
                                                                 
     End-Evaluate                                                
     .                                                           
****************************************************************

592  IBM COBOL for Linux on x86 1.1: Programming Guide



*    FIPS MESSAGE   PROCESSOR                                  *
****************************************************************
 Fips-Messages-Severity.                                        
                                                                 
*    Assume message severity will be customized...               
     COMPUTE EXIT-RETURNCODE = 4                                
                                                                 
*    Convert numeric 'category' to character                     
     EVALUATE EXIT-DEFAULT-SEV                                   
       When 81                                                   
         MOVE 'D' To EXIT-DEFAULT-SEV-FIPS                       
       When 82                                                   
         MOVE 'E' To EXIT-DEFAULT-SEV-FIPS                       
       When 83                                                   
         MOVE 'H' To EXIT-DEFAULT-SEV-FIPS                       
       When 84                                                   
         MOVE 'I' To EXIT-DEFAULT-SEV-FIPS                       
       When 85                                                   
         MOVE 'N' To EXIT-DEFAULT-SEV-FIPS                       
       When 86                                                   
         MOVE 'O' To EXIT-DEFAULT-SEV-FIPS                       
       When 87                                                   
         MOVE 'Q' To EXIT-DEFAULT-SEV-FIPS                       
       When 88                                                   
         MOVE 'S' To EXIT-DEFAULT-SEV-FIPS                       
       When Other                                                
         Continue                                                
     End-Evaluate                                                
                                                                 
****************************************************************
*  Examples of using FIPS category to force coding              
*  restrictions.  These are not recommendations!          
****************************************************************
*      Change severity of all OBSOLETE item FIPS                
*       messages to 'S'                                         
**************************************************************** 
*    If EXIT-DEFAULT-SEV-FIPS = 'O' Then                        
*      DISPLAY ">>>> Default customizing FIPS category "        
*        EXIT-DEFAULT-SEV-FIPS " msg " EXIT-MESSAGE-NUM "<<<<"  
*      COMPUTE EXIT-USER-SEV = 12                               
*    End-If                                                     
                                                                
     Evaluate EXIT-MESSAGE-NUM                                  
**************************************************************** 
*      Change severity of message 8062(O) to 8 ("E")            
*        8062 = GO TO without proc name                         
**************************************************************** 
       When(8062)                                               
*        DISPLAY ">>>> Customizing message 8062 with 8 <<<<"    
*        DISPLAY 'FIPS sev =' EXIT-DEFAULT-SEV-FIPS '='         
         COMPUTE EXIT-USER-SEV = 8                              
                                                                
**************************************************************** 
*      Change severity of message 8193(E) to 0("I")             
*        8193 = GOBACK                                          
****************************************************************
       When(8193)                                               
*        DISPLAY ">>>> Customizing message 8193 with 0 <<<<"    
*        DISPLAY 'FIPS sev =' EXIT-DEFAULT-SEV-FIPS '='         
         COMPUTE EXIT-USER-SEV = 0                              
                                                                
****************************************************************
*      Change severity of message 8235(E) to 8 (Error)          
*      to disalllow Complex Occurs Depending On                 
*        8235 = Complex Occurs Depending On                     
****************************************************************
       When(8235)                                               
*        DISPLAY ">>>> Customizing message 8235 with 8 <<<<"    
*        DISPLAY 'FIPS sev =' EXIT-DEFAULT-SEV-FIPS '='         
         COMPUTE EXIT-USER-SEV = 08                             
                                                                
****************************************************************
*      Change severity of message 8270(O) to -1 (Suppress)      
*        8270 = SERVICE LABEL                                   
****************************************************************
       When(8270)                                               
*        DISPLAY ">>>> Customizing message 8270 with -1 <<<<"   
*        DISPLAY 'FIPS sev =' EXIT-DEFAULT-SEV-FIPS '='         
         COMPUTE EXIT-USER-SEV = -1                             
                                                                
****************************************************************
*      Message severity Not customized                          

Appendix F. EXIT compiler option  593



****************************************************************
       When Other                                               
*        For the default set 'O' to 'S' case...                 
*        If EXIT-USER-SEV = 12 Then                             
*          COMPUTE EXIT-RETURNCODE = 4                          
*        Else                                                   
           COMPUTE EXIT-RETURNCODE = 0                          
*        End-If                                                 
                                                                
     End-Evaluate                                               
     .                                                          
 END PROGRAM IGYMSGXT.                                           
                                           

Error handling for exit modules
The conditions described below can occur during processing of the user exits.

Exit load failure:

Message IGYSI5207-U is written to the operator if a LOAD request for any of the user exits fails:

An error occurred while attempting to load user exit exit-name.

Exit open failure:

Message IGYSI5208-U is written to the operator if an OPEN request for any of the user exits fails:

An error occurred while attempting to open user exit exit-name.

PRTEXIT PUT failure:

• Message IGYSI5203-U is written to the listing:

A PUT request to the PRTEXIT user exit failed with return code nn.

• Message IGYSI5217-U is written to the operator:

An error occurred in PRTEXIT user exit exit-name. Compiler terminated.

SYSIN GET failures:

The following messages might be written to the listing:

• IGYSI5204-U:

The record address was not set by the exit-name user exit.

• IGYSI5205-U:

A GET request from the INEXIT user exit failed with return code nn.

• IGYSI5206-U:

The record length was not set by the exit-name user exit.

MSGEXIT failures:

Customization failure: Message IGYPP5293-U is written to the listing if an unsupported severity change
or unsupported message suppression is attempted:

MSGEXIT user exit exit-name specified a message severity customization that is
not supported. The message number, default severity, and user-specified severity
were: mm, ds, us. Change MSGEXIT user exit exit-name to correct this error.

594  IBM COBOL for Linux on x86 1.1: Programming Guide



General failure: Message IGYPP5064-U is written to the listing if the MSGEXIT module sets the return
code to a nonzero value other than 4:

A call to the MSGEXIT user exit routine exit-name failed with return code nn.

In the MSGEXIT messages, the two characters PP indicate the phase of the compiler that issued the
message that resulted in a call to the MSGEXIT module.

Related tasks   
“Customizing compiler-message severities” on page 588 

Appendix F. EXIT compiler option  595



596  IBM COBOL for Linux on x86 1.1: Programming Guide



Appendix G. Runtime messages
Messages for COBOL for Linux contain a message prefix, message number, severity code, and descriptive
text.

The message prefix is always IWZ. The severity code is either I (information), W (warning), S (severe), or C
(critical). The message text provides a brief explanation of the condition.

IWZ2519S  The seconds value in a CEEISEC call was not recognized.

In the example message above:

• The message prefix is IWZ.
• The message number is 2519.
• The severity code is S.
• The message text is "The seconds value in a CEEISEC call was not recognized."

The date and time callable services messages also contain a symbolic feedback code, which represents
the first 8 bytes of a 12-byte condition token. You can think of the symbolic feedback code as the
nickname for a condition. The callable services messages contain a four-digit message number.

When running your application from the command line, you can capture any runtime messages by
redirecting stdout and stderr to a file. For example:

program-name program-arguments >combined-output-file 2>&1

The following example shows how to write the output to separate files:

program-name program-arguments >output-file 2>error-file 

Table 79. Runtime messages

Message number Message text

“IWZ006S” on page
604

The reference to table table-name by verb number verb-number on line line-
number addressed an area outside the region of the table.

“IWZ007S” on page
604

The reference to variable-length group group-name by verb number verb-
number on line line-number addressed an area outside the maximum defined
length of the group.

“IWZ012I” on page
605

Invalid run unit termination occurred while sort or merge is running.

“IWZ013S” on page
605

Sort or merge requested while sort or merge is running in a different thread.

“IWZ026W” on page
605

The SORT-RETURN special register was never referenced, but the current
content indicated the sort or merge operation in program program-name on
line number line-number was unsuccessful. The sort or merge return code
was return code.

“IWZ029S” on page
605

Argument-1 for function function-name in program program-name at line line-
number was less than zero.

“IWZ030S” on page
606

Argument-2 for function function-name in program program-name at line line-
number was not a positive integer.

“IWZ036W” on page
606

Truncation of high order digit positions occurred in program program-name on
line number line-number.

© Copyright IBM Corp. 2021, 2023 597



Table 79. Runtime messages (continued)

“IWZ037I” on page
606

The flow of control in program program-name proceeded beyond the last line
of the program. Control returned to the caller of the program program-name.

“IWZ038S” on page
606

A reference modification length value of reference-modification-value on line
line-number which was not equal to 1 was found in a reference to data item
data-item.

“IWZ039S” on page
607

An invalid overpunched sign was detected.

“IWZ040S” on page
607

An invalid separate sign was detected.

“IWZ048W” on page
607

A negative base was raised to a fractional power in an exponentiation
expression. The absolute value of the base was used.

“IWZ049W” on page
608

A zero base was raised to a zero power in an exponentiation expression. The
result was set to one.

“IWZ050S” on page
608

A zero base was raised to a negative power in an exponentiation expression.

“IWZ051S” on page
608

No significant digits remain in a fixed-point exponentiation operation in
program program-name due to excessive decimal positions specified in the
operands or receivers.

“IWZ053S” on page
608

An overflow occurred on conversion to floating point.

“IWZ054S” on page
608

A floating-point exception occurred.

“IWZ055W” on page
609

An underflow occurred on conversion to floating point. The result was set to
zero.

“IWZ058S” on page
609

Exponent overflow occurred.

“IWZ059W” on page
609

An exponent with more than nine digits was truncated.

“IWZ060W” on page
609

Truncation of high order digit positions occurred.

“IWZ061S” on page
609

Division by zero occurred.

“IWZ063S” on page
610

An invalid sign was detected in a numeric edited sending field in program-
name on line number line-number.

“IWZ064S” on page
610

A recursive call to active program program-name in compilation unit
compilation-unit was attempted.

“IWZ065I” on page
610

A CANCEL of active program program-name in compilation unit compilation-
unit was attempted.

“IWZ066S” on page
610

The length of external data record data-record did not match the existing
length of the record.

“IWZ071S” on page
611

ALL subscripted table reference to table table-name by verb number verb-
number on line line-number had an ALL subscript specified for an OCCURS
DEPENDING ON dimension, and the object was less than or equal to 0.

598  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 79. Runtime messages (continued)

“IWZ072S” on page
611

A reference modification start position value of reference-modification-value
on line line-number referenced an area outside the region of data item data-
item.

“IWZ073S” on page
611

A nonpositive reference modification length value of reference-modification-
value on line line-number was found in a reference to data item data-item.

“IWZ074S” on page
611

A reference modification start position value of reference-modification-value
and length value of length on line line-number caused reference to be made
beyond the rightmost character of data item data-item.

“IWZ075S” on page
612

Inconsistencies were found in EXTERNAL file file-name in program program-
name. The following file attributes did not match those of the established
external file: attribute-1 attribute-2 attribute-3 attribute-4 attribute-5
attribute-6 attribute-7.

“IWZ076W” on page
612

The number of characters in the INSPECT REPLACING CHARACTERS BY data-
name was not equal to one. The first character was used.

“IWZ077W” on page
612

The lengths of the INSPECT data items were not equal. The shorter length
was used.

“IWZ078S” on page
612

ALL subscripted table reference to table table-name by verb number verb-
number on line line-number will exceed the upper bound of the table.

“IWZ096C” on page
613

Message variants include:

• Dynamic call of program program-name failed. A load of module module-
name failed with an error code of error-code.

• Dynamic call of program program-name failed. A load of module module-
name failed with a return code of return-code.

• Dynamic call of program program-name failed. Insufficient resources.
• Dynamic call of program program-name failed. COBPATH not found in

environment.
• Dynamic call of program program-name failed. Entry entry-name not found.
• Dynamic call failed. The name of the target program does not contain any

valid characters.
• Dynamic call of program program-name failed. The load module load-

module could not be found in the directories identified in the COBPATH
environment variable.

“IWZ097S” on page
613

Argument-1 for function function-name contained no digits.

“IWZ100S” on page
613

Argument-1 for function function-name was less than or equal to -1.

“IWZ103S” on page
614

Argument-1 for function function-name was less than zero or greater than 99.

“IWZ104S” on page
614

Argument-1 for function function-name was less than zero or greater than
99999.

“IWZ105S” on page
614

Argument-1 for function function-name was less than zero or greater than
999999.

“IWZ151S” on page
614

Argument-1 for function function-name contained more than 18 digits.

Appendix G. Runtime messages  599



Table 79. Runtime messages (continued)

“IWZ152S” on page
614

Invalid character character was found in column column-number in
argument-1 for function function-name.

“IWZ155S” on page
614

Invalid character character was found in column column-number in
argument-2 for function function-name.

“IWZ156S” on page
615

Argument-1 for function function-name was less than zero or greater than 28.

“IWZ157S” on page
615

The length of Argument-1 for function function-name was not equal to 1.

“IWZ158S” on page
615

Argument-1 for function function-name was less than zero or greater than 29.

“IWZ159S” on page
615

Argument-1 for function function-name was less than 1 or greater than
3067671.

“IWZ160S” on page
615

Argument-1 for function function-name was less than 16010101 or greater
than 99991231.

“IWZ161S” on page
615

Argument-1 for function function-name was less than 1601001 or greater
than 9999365.

“IWZ162S” on page
616

Argument-1 for function function-name was less than 1 or greater than the
number of positions in the program collating sequence.

“IWZ163S” on page
616

Argument-1 for function function-name was less than zero.

“IWZ165S” on page
616

A reference modification start position value of start-position-value on line
line number referenced an area outside the region of the function result of
function-result.

“IWZ166S” on page
616

A nonpositive reference modification length value of length on line line-
number was found in a reference to the function result of function-result.

“IWZ167S” on page
617

A reference modification start position value of start-position and length
value of length on line line-number caused reference to be made beyond the
rightmost character of the function result of function-result.

“IWZ168W” on page
617

SYSPUNCH/SYSPCH will default to the system logical output device. The
corresponding environment variable has not been set.

“IWZ169S” on page
617

Unknown device type for DISPLAY statement.

“IWZ170S” on page
617

Illegal data type for DISPLAY operand.

“IWZ171I” on page
618

string-name is not a valid runtime option.

“IWZ172I” on page
618

The string string-name is not a valid suboption of the runtime option option-
name.

“IWZ173I” on page
618

The suboption string string-name of the runtime option option-name must be
number characters long. The default will be used.

“IWZ174I” on page
618

The suboption string string-name of the runtime option option-name contains
one or more invalid characters. The default will be used.

“IWZ175S” on page
618

There is no support for routine routine-name on this system.

600  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 79. Runtime messages (continued)

“IWZ176S” on page
618

Argument-1 for function function-name was greater than decimal-value.

“IWZ177S” on page
619

Argument-2 for function function-name was equal to decimal-value.

“IWZ178S” on page
619

Argument-1 for function function-name was less than or equal to decimal-
value.

“IWZ179S” on page
619

Argument-1 for function function-name was less than decimal-value.

“IWZ180S” on page
619

Argument-1 for function function-name was not an integer.

“IWZ181I” on page
619

An invalid character was found in the numeric string string of the runtime
option option-name. The default will be used.

“IWZ182I” on page
619

The number number of the runtime option option-name exceeded the range
of min-range to max-range. The default will be used.

“IWZ183S” on page
620

The function name in _IWZCOBOLInit did a return.

“IWZ200S” on page
620

Error detected during I/O operation for file file-name. File status is: file-status.

“IWZ200S” on page
620

STOP or ACCEPT failed with an I/O error, error-code. The run unit is
terminated.

“IWZ201C” on page
621

“IWZ203S” on page
621

The code page in effect is not a DBCS code page.

“IWZ204S” on page
621

An error occurred during conversion from ASCII DBCS to EBCDIC DBCS.

“IWZ221S” on page
622

ICU converter for the code page, codepage value, can not be opened. The
error code is error code value.

“IWZ222S” on page
622

Data conversion via ICU failed with error code error code value.

“IWZ223W” on page
622

Close of ICU converter failed with error code error code value.

“IWZ224S” on page
622

ICU collator for the locale value, locale value, can not be opened. The error
code is error code value.

“IWZ225S” on page
622

Unicode case mapping function using ICU failed with error code error code
value. The locale in effect is locale value.

“IWZ230W” on page
623

The conversion table for the current code page, ASCII codeset-id, to the
EBCDIC code page, EBCDIC codeset-id, is not available. The default ASCII to
EBCDIC conversion table will be used.

“IWZ230W” on page
623

The EBCDIC code page specified, EBCDIC codepage, is not consistent with the
locale locale, but will be used as requested.

“IWZ230W” on page
623

The EBCDIC code page specified, EBCDIC codepage, is not supported. The
default EBCDIC code page, EBCDIC codepage, will be used.

Appendix G. Runtime messages  601



Table 79. Runtime messages (continued)

“IWZ230S” on page
623

The EBCDIC conversion table cannot be opened.

“IWZ230S” on page
623

The EBCDIC conversion table cannot be built.

“IWZ230S” on page
624

The main program was compiled with both the -host flag and the
CHAR(NATIVE) option, which are not compatible.

“IWZ231S” on page
624

Query of current locale setting failed.

“IWZ232W” on page
624

Message variants include:

• An error occurred during the conversion of data item data-name to EBCDIC
in program program-name on line number decimal-value.

• An error occurred during the conversion of data item data-name to ASCII in
program program-name on line number decimal-value.

• An error occurred during the conversion to EBCDIC for data item data-name
in program program-name on line number decimal-value.

• An error occurred during the conversion to ASCII for data item data-name
in program program-name on line number decimal-value.

• An error occurred during the conversion from ASCII to EBCDIC in program
program-name on line number decimal-value.

• An error occurred during the conversion from EBCDIC to ASCII in program
program-name on line number decimal-value.

“IWZ240S” on page
625

The base year for program program-name was outside the valid range of 1900
through 1999. The sliding window value window-value resulted in a base year
of base-year.

“IWZ241S” on page
625

The current year was outside the 100-year window, year-start through year-
end, for program program-name.

“IWZ242S” on page
625

There was an invalid attempt to start an XML PARSE statement.

“IWZ243S” on page
625

There was an invalid attempt to end an XML PARSE statement.

“IWZ813S” on page
626

Insufficient storage was available to satisfy a get storage request.

“IWZ901S” on page
626

Message variants include:

• Program exits due to severe or critical error.
• Program exits: more than ERRCOUNT errors occurred.

“IWZ902S” on page
626

The system detected a Decimal-divide exception.

“IWZ903S” on page
626

The system detected a data exception.

“IWZ907S” on page
627

Message variants include:

• Insufficient storage.
• Insufficient storage. Cannot get number-bytes bytes of space for storage.

602  IBM COBOL for Linux on x86 1.1: Programming Guide



Table 79. Runtime messages (continued)

“IWZ993W” on page
627

Insufficient storage. Cannot find space for message message-number.

“IWZ994W” on page
627

Cannot find message message-number in message-catalog.

“IWZ995C” on page
627

Message variants include:

• System exception signal received while executing routine routine-name at
offset 0xoffset-value.

• System exception signal received while executing code at location 0xoffset-
value.

• System exception signal received. The location could not be determined.

“IWZ2502S” on page
628

The UTC/GMT was not available from the system.

“IWZ2503S” on page
628

The offset from UTC/GMT to local time was not available from the system.

“IWZ2505S” on page
628

The input_seconds value in a call to CEEDATM or CEESECI was not within the
supported range.

“IWZ2506S” on page
628

An era (<JJJJ>, <CCCC>, or <CCCCCCCC>) was used in a picture string passed
to CEEDATM, but the input number-of-seconds value was not within the
supported range. The era could not be determined.

“IWZ2507S” on page
629

Insufficient data was passed to CEEDAYS or CEESECS. The Lilian value was
not calculated.

“IWZ2508S” on page
629

The date value passed to CEEDAYS or CEESECS was invalid.

“IWZ2509S” on page
629

The era passed to CEEDAYS or CEESECS was not recognized.

“IWZ2510S” on page
629

The hours value in a call to CEEISEC or CEESECS was not recognized.

“IWZ2511S” on page
630

The day parameter passed in a CEEISEC call was invalid for year and month
specified.

“IWZ2512S” on page
630

The Lilian date value passed in a call to CEEDATE or CEEDYWK was not within
the supported range.

“IWZ2513S” on page
630

The input date passed in a CEEISEC, CEEDAYS, or CEESECS call was not
within the supported range.

“IWZ2514S” on page
630

The year value passed in a CEEISEC call was not within the supported range.

“IWZ2515S” on page
631

The milliseconds value in a CEEISEC call was not recognized.

“IWZ2516S” on page
631

The minutes value in a CEEISEC call was not recognized.

“IWZ2517S” on page
631

The month value in a CEEISEC call was not recognized.

“IWZ2518S” on page
631

An invalid picture string was specified in a call to a date/time service.

Appendix G. Runtime messages  603



Table 79. Runtime messages (continued)

“IWZ2519S” on page
632

The seconds value in a CEEISEC call was not recognized.

“IWZ2520S” on page
632

CEEDAYS detected nonnumeric data in a numeric field, or the date string did
not match the picture string.

“IWZ2521S” on page
632

The <JJJJ>, <CCCC>, or <CCCCCCCC> year-within-era value passed to
CEEDAYS or CEESECS was zero.

“IWZ2522S” on page
632

An era (<JJJJ>, <CCCC>, or <CCCCCCCC>) was used in a picture string passed
to CEEDATE, but the Lilian date value was not within the supported range. The
era could not be determined.

“IWZ2525S” on page
633

CEESECS detected nonnumeric data in a numeric field, or the time-stamp
string did not match the picture string.

“IWZ2526S” on page
633

The date string returned by CEEDATE was truncated.

“IWZ2527S” on page
633

The time-stamp string returned by CEEDATM was truncated.

“IWZ2531S” on page
633

The local time was not available from the system.

“IWZ2533S” on page
634

The value passed to CEESCEN was not between 0 and 100.

“IWZ2534W” on page
634

Insufficient field width was specified for a month or weekday name in a call to
CEEDATE or CEEDATM. Output set to blanks.

IWZ006S
The reference to table table-name by verb number verb-number on line line-number addressed an
area outside the region of the table.

Explanation: When the SSRANGE option is in effect, this message is issued to indicate that a fixed-length
table has been subscripted in a way that exceeds the defined size of the table, or, for variable-length
tables, the maximum size of the table.

The range check was performed on the composite of the subscripts and resulted in an address outside
the region of the table. For variable-length tables, the address is outside the region of the table defined
when all OCCURS DEPENDING ON objects are at their maximum values; the ODO object's current value is
not considered. The check was not performed on individual subscripts.

Programmer response: Ensure that the value of literal subscripts and the value of variable subscripts
as evaluated at run time do not exceed the subscripted dimensions for subscripted data in the failing
statement.

System action: The application was terminated.

IWZ007S

The reference to variable-length group group-name by verb number verb-number on line line-
number addressed an area outside the maximum defined length of the group.

Explanation: When the SSRANGE option is in effect, this message is issued to indicate that a variable-
length group generated by OCCURS DEPENDING ON has a length that is less than zero, or is greater than
the limits defined in the OCCURS DEPENDING ON clauses.

604  IBM COBOL for Linux on x86 1.1: Programming Guide



The range check was performed on the composite length of the group, and not on the individual OCCURS
DEPENDING ON objects.

Programmer response: Ensure that OCCURS DEPENDING ON objects as evaluated at run time do not
exceed the maximum number of occurrences of the dimension for tables within the referenced group
item.

System action: The application was terminated.

IWZ012I

Invalid run unit termination occurred while sort or merge is running.

Explanation: A sort or merge initiated by a COBOL program was in progress and one of the following was
attempted:

1. A STOP RUN was issued.
2. A GOBACK or an EXIT PROGRAM was issued within the input procedure or the output procedure

of the COBOL program that initiated the sort or merge. Note that the GOBACK and EXIT PROGRAM
statements are allowed in a program called by an input procedure or an output procedure.

Programmer response: Change the application so that it does not use one of the above methods to end
the sort or merge.

System action: The application was terminated.

IWZ013S

Sort or merge requested while sort or merge is running in a different thread.

Explanation: Running sort or merge in two or more threads at the same time is not supported.

Programmer response: Always run sort or merge in the same thread. Alternatively, include code before
each call to the sort or merge that determines if sort or merge is running in another thread. If sort or
merge is running in another thread, then wait for that thread to finish. If it isn't, then set a flag to indicate
sort or merge is running and call sort or merge.

System action: The thread is terminated.

IWZ026W

The SORT-RETURN special register was never referenced, but the current content indicated the sort
or merge operation in program program-name on line number line-number was unsuccessful. The
sort or merge return code was return code.

Explanation: The COBOL source does not contain any references to the SORT-RETURN register. The
compiler generates a test after each sort or merge verb. A nonzero return code has been passed back to
the program by Sort or Merge.

Programmer response: Determine why the Sort or Merge was unsuccessful and fix the problem. See
“Sort and merge error numbers” on page 161 for the list of possible return codes.

System action: No system action was taken.

IWZ029S

Argument-1 for function function-name in program program-name at line line-number was less than
zero.

Appendix G. Runtime messages  605



Explanation: An illegal value for argument-1 was used.

Programmer response: Ensure that argument-1 is greater than or equal to zero.

System action: The application was terminated.

IWZ030S

Argument-2 for function function-name in program program-name at line line-number was not a
positive integer.

Explanation: An illegal value for argument-1 was used.

Programmer response: Ensure that argument-2 is a positive integer.

System action: The application was terminated.

IWZ036W

Truncation of high order digit positions occurred in program program-name on line number line-
number.

Explanation: The generated code has truncated an intermediate result (that is, temporary storage used
during an arithmetic calculation) to 30 digits; some of the truncated digits were not 0.

Programmer response: See the Related concepts at the end of this section for a description of
intermediate results.

System action: No system action was taken.

IWZ037I

The flow of control in program program-name proceeded beyond the last line of the program.
Control returned to the caller of the program program-name.

Explanation: The program did not have a terminator (STOP, GOBACK, or EXIT), and control fell through
the last instruction.

Programmer response: Check the logic of the program. Sometimes this error occurs because of one of
the following logic errors:

• The last paragraph in the program was only supposed to receive control as the result of a PERFORM
statement, but due to a logic error it was branched to by a GO TO statement.

• The last paragraph in the program was executed as the result of a "fall-through" path, and there was no
statement at the end of the paragraph to end the program.

System action: No system action was taken.

IWZ038S

A reference modification length value of reference-modification-value on line line-number which
was not equal to 1 was found in a reference to data item data-item.

Explanation: The length value in a reference modification specification was not equal to 1. The length
value must be equal to 1.

Programmer response: Check the indicated line number in the program to ensure that any reference
modified length values are (or will resolve to) 1.

606  IBM COBOL for Linux on x86 1.1: Programming Guide



System action: The application was terminated.

IWZ039S

An invalid overpunched sign was detected.

Explanation: The value in the sign position was not valid.

Given X'sd', where s is the sign representation and d represents the digit, the valid sign representations for
external decimal (USAGE DISPLAY without the SIGN IS SEPARATE clause) are:

Positive: 0, 1, 2, 3, 8, 9, A, and B

Negative: 4, 5, 6, 7, C, D, E, and F

Signs generated internally are 3 for positive and unsigned, and 7 for negative.

Given X'ds', where d represents the digit and s is the sign representation, the valid sign representations for
internal decimal (USAGE PACKED-DECIMAL) COBOL data are:

Positive: A, C, E, and F

Negative: B and D

Signs generated internally are C for positive and unsigned, and D for negative.

Programmer response: This error might have occurred because of a REDEFINES clause involving the sign
position or a group move involving the sign position, or the position was never initialized. Check for the
above cases.

System action: The application was terminated.

IWZ040S

An invalid separate sign was detected.

Explanation: An operation was attempted on data defined with a separate sign. The value in the sign
position was not a plus (+) or a minus (-).

Programmer response: This error might have occurred because of a REDEFINES clause involving the sign
position or a group move involving the sign position, or the position was never initialized. Check for the
above cases.

System action: The application was terminated.

IWZ048W

A negative base was raised to a fractional power in an exponentiation expression. The absolute
value of the base was used.

Explanation: A negative number raised to a fractional power occurred in a library routine.

The value of a negative number raised to a fractional power is undefined in COBOL. If a SIZE ERROR
clause had appeared on the statement in question, the SIZE ERROR imperative would have been used.
However, no SIZE ERROR clause was present, so the absolute value of the base was used in the
exponentiation.

Programmer response: Ensure that the program variables in the failing statement have been set
correctly.

Appendix G. Runtime messages  607



System action: No system action was taken.

IWZ049W

A zero base was raised to a zero power in an exponentiation expression. The result was set to one.

Explanation: The value of zero raised to the power zero occurred in a library routine.

The value of zero raised to the power zero is undefined in COBOL. If a SIZE ERROR clause had appeared
on the statement in question, the SIZE ERROR imperative would have been used. However, no SIZE
ERROR clause was present, so the value returned was one.

Programmer response: Ensure that the program variables in the failing statement have been set
correctly.

System action: No system action was taken.

IWZ050S

A zero base was raised to a negative power in an exponentiation expression.

Explanation: The value of zero raised to a negative power occurred in a library routine.

The value of zero raised to a negative number is not defined. If a SIZE ERROR clause had appeared on
the statement in question, the SIZE ERROR imperative would have been used. However, no SIZE ERROR
clause was present.

Programmer response: Ensure that the program variables in the failing statement have been set
correctly.

System action: The application was terminated.

IWZ051S

No significant digits remain in a fixed-point exponentiation operation in program program-name
due to excessive decimal positions specified in the operands or receivers.

Explanation: A fixed-point calculation produced a result that had no significant digits because the
operands or receiver had too many decimal positions.

Programmer response: Modify the PICTURE clauses of the operands or the receiving numeric item as
needed to have additional integer positions and fewer decimal positions.

System action: The application was terminated.

IWZ053S

An overflow occurred on conversion to floating point.

Explanation: A number was generated in the program that is too large to be represented in floating point.

Programmer response: You need to modify the program appropriately to avoid an overflow.

System action: The application was terminated.

IWZ054S

A floating point exception occurred.

608  IBM COBOL for Linux on x86 1.1: Programming Guide



Explanation: A floating-point calculation has produced an illegal result. Floating-point calculations are
done using IEEE floating-point arithmetic, which can produce results called NaN (Not a Number). For
example, the result of 0 divided by 0 is NaN.

Programmer response: Modify the program to test the arguments to this operation so that NaN is not
produced.

System action: The application was terminated.

IWZ055W

An underflow occurred on conversion to floating point. The result was set to zero.

Explanation: On conversion to floating point, the negative exponent exceeded the limit of the hardware.
The floating-point value was set to zero.

Programmer response: No action is necessary, although you may want to modify the program to avoid an
underflow.

System action: No system action was taken.

IWZ058S

Exponent overflow occurred.

Explanation: Floating-point exponent overflow occurred in a library routine.

Programmer response: Ensure that the program variables in the failing statement have been set
correctly.

System action: The application was terminated.

IWZ059W

An exponent with more than nine digits was truncated.

Explanation: Exponents in fixed point exponentiations may not contain more than nine digits. The
exponent was truncated back to nine digits; some of the truncated digits were not 0.

Programmer response: No action is necessary, although you may want to adjust the exponent in the
failing statement.

System action: No system action was taken.

IWZ060W

Truncation of high-order digit positions occurred.

Explanation: Code in a library routine has truncated an intermediate result (that is, temporary storage
used during an arithmetic calculation) back to 30 digits; some of the truncated digits were not 0.

Programmer response: See the Related concepts at the end of this section for a description of
intermediate results.

System action: No system action was taken.

IWZ061S

Appendix G. Runtime messages  609



Division by zero occurred.

Explanation: Division by zero occurred in a library routine. Division by zero is not defined. If a SIZE
ERROR clause had appeared on the statement in question, the SIZE ERROR imperative would have been
used. However, no SIZE ERROR clause was present.

Programmer response: Ensure that the program variables in the failing statement have been set
correctly.

System action: The application was terminated.

IWZ063S

An invalid sign was detected in a numeric edited sending field in program-name on line number
line-number.

Explanation: An attempt has been made to move a signed numeric edited field to a signed numeric
or numeric edited receiving field in a MOVE statement. However, the sign position in the sending field
contained a character that was not a valid sign character for the corresponding PICTURE.

Programmer response: Ensure that the program variables in the failing statement have been set
correctly.

System action: The application was terminated.

IWZ064S

A recursive call to active program program-name in compilation unit compilation-unit was
attempted.

Explanation: COBOL does not allow reinvocation of an internal program which has begun execution, but
has not yet terminated. For example, if internal programs A and B are siblings of a containing program,
and A calls B and B calls A, this message will be issued.

Programmer response: Examine your program to eliminate calls to active internal programs.

System action: The application was terminated.

IWZ065I

A CANCEL of active program program-name in compilation unit compilation-unit was attempted.

Explanation: An attempt was made to cancel an active internal program. For example, if internal
programs A and B are siblings in a containing program and A calls B and B cancels A, this message
will be issued.

Programmer response: Examine your program to eliminate cancellation of active internal programs.

System action: The application was terminated.

IWZ066S

The length of external data record data-record in program program-name did not match the existing
length of the record.

Explanation: While processing External data records during program initialization, it was determined that
an External data record was previously defined in another program in the run-unit, and the length of the
record as specified in the current program was not the same as the previously defined length.

610  IBM COBOL for Linux on x86 1.1: Programming Guide



Programmer response: Examine the current file and ensure the External data records are specified
correctly.

System action: The application was terminated.

IWZ071S

ALL subscripted table reference to table table-name by verb number verb-number on line line-
number had an ALL subscript specified for an OCCURS DEPENDING ON dimension, and the object
was less than or equal to 0.

Explanation: When the SSRANGE option is in effect, this message is issued to indicate that there are 0
occurrences of dimension subscripted by ALL.

The check is performed against the current value of the OCCURS DEPENDING ON object.

Programmer response: Ensure that ODO objects of ALL-subscripted dimensions of any subscripted items
in the indicated statement are positive.

System action: The application was terminated.

IWZ072S

A reference modification start position value of reference-modification-value on line line-number
referenced an area outside the region of data item data-item.

Explanation: The value of the starting position in a reference modification specification was less than 1,
or was greater than the current length of the data item that was being reference modified. The starting
position value must be a positive integer less than or equal to the number of characters in the reference
modified data item.

Programmer response: Check the value of the starting position in the reference modification
specification.

System action: The application was terminated.

IWZ073S

A nonpositive reference modification length value of reference-modification-value on line line-
number was found in a reference to data item data-item.

Explanation: The length value in a reference modification specification was less than or equal to 0. The
length value must be a positive integer.

Programmer response: Check the indicated line number in the program to ensure that any reference
modified length values are (or will resolve to) positive integers.

System action: The application was terminated.

IWZ074S

A reference modification start position value of reference-modification-value and length value of
length on line line-number caused reference to be made beyond the rightmost character of data
item data-item.

Explanation: The starting position and length value in a reference modification specification combine to
address an area beyond the end of the reference modified data item. The sum of the starting position and

Appendix G. Runtime messages  611



length value minus one must be less than or equal to the number of characters in the reference modified
data item.

Programmer response: Check the indicated line number in the program to ensure that any reference
modified start and length values are set such that a reference is not made beyond the rightmost character
of the data item.

System action: The application was terminated.

IWZ075S
Inconsistencies were found in EXTERNAL file file-name in program program-name. The following
file attributes did not match those of the established external file: attribute-1 attribute-2 attribute-3
attribute-4 attribute-5 attribute-6 attribute-7.

Explanation: One or more attributes of an external file did not match between two programs that defined
it.

Programmer response: Correct the external file. For a summary of file attributes that must match
between definitions of the same external file, see the COBOL for Linux on x86 Language Reference.

System Action: The application was terminated.

IWZ076W

The number of characters in the INSPECT REPLACING CHARACTERS BY data-name was not equal
to one. The first character was used.

Explanation: A data item which appears in a CHARACTERS phrase within a REPLACING phrase in
an INSPECT statement must be defined as being one character in length. Because of a reference
modification specification for this data item, the resultant length value was not equal to one. The length
value is assumed to be one.

Programmer response: You may correct the reference modification specifications in the failing INSPECT
statement to ensure that the reference modification length is (or will resolve to) 1; programmer action is
not required.

System action: No system action was taken.

IWZ077W

The lengths of the INSPECT data items were not equal. The shorter length was used.

Explanation: The two data items which appear in a REPLACING or CONVERTING phrase in an INSPECT
statement must have equal lengths, except when the second such item is a figurative constant. Because
of the reference modification for one or both of these data items, the resultant length values were not
equal. The shorter length value is applied to both items, and execution proceeds.

Programmer response: You may adjust the operands of unequal length in the failing INSPECT statement;
programmer action is not required.

System action: No system action was taken.

IWZ078S

ALL subscripted table reference to table table-name by verb number verb-number on line line-
number will exceed the upper bound of the table.

612  IBM COBOL for Linux on x86 1.1: Programming Guide



Explanation: When the SSRANGE option is in effect, this message is issued to indicate that a
multidimensional table with ALL specified as one or more of the subscripts will result in a reference
beyond the upper limit of the table.

The range check was performed on the composite of the subscripts and the maximum occurrences for
the ALL subscripted dimensions. For variable-length tables the address is outside the region of the table
defined when all OCCURS DEPENDING ON objects are at their maximum values; the ODO object's current
value is not considered. The check was not performed on individual subscripts.

Programmer response: Ensure that OCCURS DEPENDING ON objects as evaluated at run time do not
exceed the maximum number of occurrences of the dimension for table items referenced in the failing
statement.

System action: The application was terminated.

IWZ096C

Message variants include:

• Dynamic call of program program-name failed. A load of module module-name failed with an error
code of error-code.

• Dynamic call of program program-name failed. A load of module module-name failed with a return
code of return-code.

• Dynamic call of program program-name failed. Insufficient resources.
• Dynamic call of program program-name failed. COBPATH not found in environment.
• Dynamic call of program program-name failed. Entry entry-name not found.
• Dynamic call failed. The name of the target program does not contain any valid characters.
• Dynamic call of program program-name failed. The load module load-module could not be found in

the directories identified in the COBPATH environment variable.

Explanation: A dynamic call failed due to one of the reasons listed in the message variants above. In the
above, the value of error-code is the errno set by load.

Programmer response: Check that COBPATH is defined. Check that the module exists. Check that the
name of the module to be loaded matches the name of the entry called. Check that the module to be
loaded is built correctly using the appropriate cob2 options.

System action: The application was terminated.

IWZ097S

Argument-1 for function function-name contained no digits.

Explanation: Argument-1 for the indicated function must contain at least 1 digit.

Programmer response: Adjust the number of digits in Argument-1 in the failing statement.

System action: The application was terminated.

IWZ100S

Argument-1 for function function was less than or equal to -1.

Explanation: An illegal value was used for Argument-1.

Programmer response: Ensure that argument-1 is greater than -1.

System action: The application was terminated.

Appendix G. Runtime messages  613



IWZ103S

Argument-1 for function function-name was less than zero or greater than 99.

Explanation: An illegal value was used for Argument-1.

Programmer response: Check that the function argument is in the valid range.

System action: The application was terminated.

IWZ104S

Argument-1 for function function-name was less than zero or greater than 99999.

Explanation: An illegal value was used for Argument-1.

Programmer response: Check that the function argument is in the valid range.

System action: The application was terminated.

IWZ105S

Argument-1 for function function-name was less than zero or greater than 999999.

Explanation: An illegal value was used for Argument-1.

Programmer response: Check that the function argument is in the valid range.

System action: The application was terminated.

IWZ151S

Argument-1 for function function-name contained more than 18 digits.

Explanation: The total number of digits in Argument-1 of the indicated function exceeded 18 digits.

Programmer response: Adjust the number of digits in Argument-1 in the failing statement.

System action: The application was terminated.

IWZ152S

Invalid character character was found in column column-number in argument-1 for function
function-name.

Explanation: A nondigit character other than a decimal point, comma, space or sign (+,-,CR,DB) was
found in argument-1 for NUMVAL/NUMVAL-C function.

Programmer response: Correct argument-1 for NUMVAL or NUMVAL-C in the indicated statement.

System action: The application was terminated.

IWZ155S

Invalid character character was found in column column-number in argument-2 for function
function-name.

Explanation: Illegal character was found in argument-2 for NUMVAL-C function.

614  IBM COBOL for Linux on x86 1.1: Programming Guide



Programmer response: Check that the function argument does follow the syntax rules.

System action: The application was terminated.

IWZ156S

Argument-1 for function function-name was less than zero or greater than 28.

Explanation: Input argument to function FACTORIAL is greater than 28 or less than 0.

Programmer response: Check that the function argument is in the valid range.

System action: The application was terminated.

IWZ157S

The length of Argument-1 for function function-name was not equal to 1.

Explanation: The length of input argument to ORD function is not 1.

Programmer response: Check that the function argument is only 1 byte long.

System action: The application was terminated.

IWZ158S

Argument-1 for function function-name was less than zero or greater than 29.

Explanation: Input argument to function FACTORIAL is greater than 29 or less than 0.

Programmer response: Check that the function argument is in the valid range.

System action: The application was terminated.

IWZ159S

Argument-1 for function function-name was less than 1 or greater than 3067671.

Explanation: The input argument to DATE-OF-INTEGER or DAY-OF-INTEGER function is less than 1 or
greater than 3067671.

Programmer response: Check that the function argument is in the valid range.

System action: The application was terminated.

IWZ160S

Argument-1 for function function-name was less than 16010101 or greater than 99991231.

Explanation: The input argument to function INTEGER-OF-DATE is less than 16010101 or greater than
99991231.

Programmer response: Check that the function argument is in the valid range.

System action: The application was terminated.

IWZ161S

Appendix G. Runtime messages  615



Argument-1 for function function-name was less than 1601001 or greater than 9999365.

Explanation: The input argument to function INTEGER-OF-DAY is less than 1601001 or greater than
9999365.

Programmer response: Check that the function argument is in the valid range.

System action: The application was terminated.

IWZ162S

Argument-1 for function function-name was less than 1 or greater than the number of positions in
the program collating sequence.

Explanation: The input argument to function CHAR is less than 1 or greater than the highest ordinal
position in the program collating sequence.

Programmer response: Check that the function argument is in the valid range.

System action: The application was terminated.

IWZ163S

Argument-1 for function function-name was less than zero.

Explanation: The input argument to function RANDOM is less than 0.

Programmer response: Correct the argument for function RANDOM in the failing statement.

System action: The application was terminated.

IWZ165S

A reference modification start position value of start-position-value on line line number referenced
an area outside the region of the function result of function-result.

Explanation: The value of the starting position in a reference modification specification was less than
1, or was greater than the current length of the function result that was being reference modified. The
starting position value must be a positive integer less than or equal to the number of characters in the
reference modified function result.

Programmer response: Check the value of the starting position in the reference modification
specification and the length of the actual function result.

System action: The application was terminated.

IWZ166S

A nonpositive reference modification length value of length on line line-number was found in a
reference to the function result of function-result.

Explanation: The length value in a reference modification specification for a function result was less than
or equal to 0. The length value must be a positive integer.

Programmer response: Check the length value and make appropriate correction.

System action: The application was terminated.

616  IBM COBOL for Linux on x86 1.1: Programming Guide



IWZ167S

A reference modification start position value of start-position and length value of length on line
line-number caused reference to be made beyond the rightmost character of the function result of
function-result.

Explanation: The starting position and length value in a reference modification specification combine to
address an area beyond the end of the reference modified function result. The sum of the starting position
and length value minus one must be less than or equal to the number of characters in the reference
modified function result.

Programmer response: Check the length of the reference modification specification against the actual
length of the function result and make appropriate corrections.

System action: The application was terminated.

IWZ168W

SYSPUNCH/SYSPCH will default to the system logical output device. The corresponding
environment variable has not been set.

Explanation: COBOL environment names (such as SYSPUNCH/SYSPCH) are used as the environment
variable names corresponding to the mnemonic names used on ACCEPT and DISPLAY statements.
Set them equal to files, not existing directory names. To set environment variables, use the export
command.

You can set environment variables either persistently or temporarily.

Programmer response: If you do not want SYSPUNCH/SYSPCH to default to the screen, set the
corresponding environment variable.

System action: No system action was taken.

IWZ169S

Unknown device type for DISPLAY statement.

Explanation: An unknown device type was specified in environment-name-1 or the environment name
associated with mnemonic-name-1 of the DISPLAY statement.

Programmer response: Specify a valid device type. For valid types, see the SPECIAL-NAMES paragraph.

System action: The application was terminated.

IWZ170S

Illegal data type for DISPLAY operand.

Explanation: An invalid data type was specified as the target of the DISPLAY statement.

Programmer response: Specify a valid data type. The following data types are not valid:

• Data items defined with USAGE IS FUNCTION-POINTER
• Data items defined with USAGE IS PROCEDURE-POINTER
• Data items or index names defined with USAGE IS INDEX

System action: The application was terminated.

Appendix G. Runtime messages  617



IWZ171I
string-name is not a valid runtime option.

Explanation: string-name is not a valid option.

Programmer response: CHECK, DEBUG, ERRCOUNT, FILESYS, TRAP, and UPSI are valid runtime options.

System action: string-name is ignored.

IWZ172I

The string string-name is not a valid suboption of the runtime option option-name.

Explanation: string-name was not in the set of recognized values.

Programmer response: Remove the invalid suboption string from the runtime option option-name.

System action: The invalid suboption is ignored.

IWZ173I

The suboption string string-name of the runtime option option-name must be number of characters
long. The default will be used.

Explanation: The number of characters for the suboption string string-name of runtime option option-
name is invalid.

Programmer response: If you do not want to accept the default, specify a valid character length.

System action: The default value will be used.

IWZ174I

The suboption string string-name of the runtime option option-name contains one or more invalid
characters. The default will be used.

Explanation: At least one invalid character was detected in the specified suboption.

Programmer response: If you do not want to accept the default, specify valid characters.

System action: The default value will be used.

IWZ175S

There is no support for routine routine-name on this system.

Explanation: routine-name is not supported.

Programmer response:

System action: The application was terminated.

IWZ176S

Argument-1 for function function-name was greater than decimal-value.

Explanation: An illegal value for argument-1 was used.

618  IBM COBOL for Linux on x86 1.1: Programming Guide



Programmer response: Ensure argument-1 is less than or equal to decimal-value.

System action: The application was terminated.

IWZ177S

Argument-2 for function function-name was equal to decimal-value.

Explanation: An illegal value for argument-2 was used.

Programmer response: Ensure argument-1 is not equal to decimal-value.

System action: The application was terminated.

IWZ178S

Argument-1 for function function-name was less than or equal to decimal-value.

Explanation: An illegal value for Argument-1 was used.

Programmer response: Ensure that Argument-1 is greater than decimal-value.

System action: The application was terminated.

IWZ179S

Argument-1 for function function-name was less than decimal-value.

Explanation: An illegal value for Argument-1 was used.

Programmer response: Ensure that Argument-1 is equal to or greater than decimal-value.

System action: The application was terminated.

IWZ180S

Argument-1 for function function-name was not an integer.

Explanation: An illegal value for Argument-1 was used.

Programmer response: Ensure that Argument-1 is an integer.

System action: The application was terminated.

IWZ181I

An invalid character was found in the numeric string string of the runtime option option-name. The
default will be used.

Explanation: string did not contain all decimal numeric characters.

Programmer response: If you do not want the default value, correct the runtime option's string to contain
all numeric characters.

System action: The default will be used.

IWZ182I

Appendix G. Runtime messages  619



The number number of the runtime option option-name exceeded the range of min-range to max-
range. The default will be used.

Explanation: number exceeded the range of min-range to max-range.

Programmer response: Correct the runtime option's string to be within the valid range.

System action: The default will be used.

IWZ183S

The function name in _iwzCOBOLInit did a return.

Explanation: The run unit termination exit routine returned to the function that invoked the routine (the
function specified in function_code).

Programmer response: Rewrite the function so that the run unit termination exit routine does a longjump
or exit instead of return to the function.

System action: The application was terminated.

IWZ200S

Error detected during I/O operation for file file-name. File status is: file-status.

Explanation: An error was detected during a file I/O operation. No file status was specified for the file and
no applicable error declarative is in effect for the file.

Programmer response: Correct the condition described in this message. You can specify the FILE
STATUS clause for the file if you want to detect the error and take appropriate actions within your source
program.

System action: The application was terminated.

IWZ200S

STOP or ACCEPT failed with an I/O error, error-code. The run unit is terminated.

Explanation: A STOP or ACCEPT statement failed.

Programmer response: Check that the STOP or ACCEPT refers to a legitimate file or terminal device.

System action: The application was terminated.

620  IBM COBOL for Linux on x86 1.1: Programming Guide



IWZ201C

Message variants include:
Access Intent List Error.
Concurrent Opens Exceeds Maximum.
Cursor Not Selecting a Record Position.
Data Stream Syntax Error.
Duplicate Key Different Index.
Duplicate Key Same Index.
Duplicate Record Number.
File Temporarily Not Available.
File system cannot be found.
File Space Not Available.
File Closed with Damage.
Invalid Key Definition.
Invalid Base File Name.
Key Update Not Allowed by Different Index.
Key Update Not Allowed by Same Index.
No Update Intent on Record.
Not Authorized to Use Access Method.
Not Authorized to Directory.
Not Authorized to Function.
Not authorized to File.
Parameter Value Not Supported.
Parameter Not Supported.
Record Number Out of Bounds.
Record Length Mismatch.
Resource Limits Reached in Target System.
Resource Limits Reached in Source System.

Address Error.
Command Check.
Duplicate File Name.
End of File Condition.
Existing Condition.
File Handle Not Found.
Field Length Error.
File Not Found.
File Damaged.
File is Full.
File In Use.
Function Not Supported.
Invalid Access Method.
Invalid Data Record.
Invalid Key Length.
Invalid File Name.
Invalid Request.
Invalid Flag.
Object Not Supported.
Record Not Available.
Record Not Found.
Record Inactive.
Record Damaged.
Record In Use.
Update Cursor Error.

Explanation: An error was detected during an I/O operation for an STL file. No file status was specified for
the file and no applicable error declarative is in effect for the file.

Programmer response: Correct the condition described in this message.

System action: The application was terminated.

IWZ203S
The code page in effect is not a DBCS code page.

Explanation: References to DBCS data were made with a non-DBCS code page in effect.

Programmer response: For DBCS data, specify a valid DBCS code page. Valid DBCS code pages are:

Country or region Code page

Japan IBM-932

Korea IBM-1363

People's Republic of China (Simplified) IBM-1386

Taiwan (Traditional)

Note: The code pages listed above might not be supported for a specific version or release of that
platform.

System Action: The application was terminated.

IWZ204S

An error occurred during conversion from ASCII DBCS to EBCDIC DBCS.

Explanation: A Kanji or DBCS class test failed due to an error detected during the ASCII character string
EBCDIC string conversion.

Appendix G. Runtime messages  621



Programmer response: Verify that the locale in effect is consistent with the ASCII character string being
tested. No action is likely to be required if the locale setting is correct. The class test is likely to indicate
the string to be non-Kanji or non-DBCS correctly.

System action: The application was terminated.

IWZ221S

The ICU converter for the code page, codepage value, can not be opened. The error code is error
code value.

Explanation: The ICU converter to convert between the code page and UTF-16 cannot be opened.

Programmer response: Verify that the code-page value identifies a primary or alias code-page name that
is supported by ICU conversion libraries (see International Components for Unicode: Converter Explorer).
If the code-page value is valid, contact your IBM representative.

System action: The application was terminated.

IWZ222S

Data conversion via ICU failed with error code error code value.

Explanation: The data conversion through ICU failed.

Programmer response: Contact your IBM representative.

System action: The application was terminated.

IWZ223W

Close of ICU converter failed with error code error code value.

Explanation: The close of an ICU converter failed.

Programmer response: Contact your IBM representative.

System action: No system action was taken.

IWZ224S

ICU collator for the locale value, locale value, can not be opened. The error code is error code value.

Explanation: The ICU collator for the locale cannot be opened.

Programmer response: Contact your IBM representative.

System action: The application was terminated.

IWZ225S

Unicode case mapping function using ICU failed with error code error code value. The locale in
effect is locale value.

Explanation: The ICU case mapping function failed.

Programmer response: Contact your IBM representative.

System action: The application was terminated.

622  IBM COBOL for Linux on x86 1.1: Programming Guide

http://demo.icu-project.org/icu-bin/convexp/


IWZ230W

The conversion table for the current code page, ASCII codeset-id, to the EBCDIC code page, EBCDIC
codeset-id, is not available. The default ASCII to EBCDIC conversion table will be used.

Explanation: The application has a module that was compiled with the CHAR(EBCDIC) compiler option.
At run time a translation table will be built to handle the conversion from the current ASCII code page
to an EBCDIC code page specified by the EBCDIC_CODEPAGE environment variable. This error occurred
because either a conversion table is not available for the specified code pages, or the specification of
the EBCDIC_CODE page is invalid. Execution will continue with a default conversion table based on ASCII
code page IBM-1252 or equivalent and EBCDIC code page IBM-037 or equivalent.

Programmer response: Verify that the EBCDIC_CODEPAGE environment variable has a valid value.

If EBCDIC_CODEPAGE is not set, the default value, IBM-037, will be used. This is the default code page
used by Enterprise COBOL for z/OS.

System action: No system action was taken.

IWZ230W

The EBCDIC code page specified, EBCDIC codepage, is not consistent with the locale locale, but will
be used as requested.

Explanation: The application has a module that was compiled with the CHAR(EBCDIC) compiler option.
This error occurred because the code page specified is not the same language as the current locale.

Programmer response: Verify that the EBCDIC_CODEPAGE environment variable is valid for this locale.

System action: No system action was taken.

IWZ230W

The EBCDIC code page specified, EBCDIC codepage, is not supported. The default EBCDIC code
page, EBCDIC codepage, will be used.

Explanation: The application has a module that was compiled with the CHAR(EBCDIC) compiler option.
This error occurred because the specification of the EBCDIC_CODEPAGE environment variable is invalid.
Execution will continue with the default host code page that corresponds to the current locale.

Programmer response: Verify that the EBCDIC_CODEPAGE environment variable has a valid value.

System action: No system action was taken.

IWZ230S

The EBCDIC conversion table cannot be opened.

Explanation: The current system installation does not include the translation table for the default ASCII
and EBCDIC code pages.

Programmer response: Reinstall the compiler and run time. If the problem still persists, call your IBM
representative.

System action: The application was terminated.

IWZ230S

Appendix G. Runtime messages  623



The EBCDIC conversion table cannot be built.

Explanation: The ASCII to EBCDIC conversion table has been opened, but the conversion failed.

Programmer response: Retry the execution from a new window.

System action: The application was terminated.

IWZ230S

The main program was compiled with both the -host flag and the CHAR(NATIVE) option, which are
not compatible.

Explanation: Compilation with both the -host flag and the CHAR(NATIVE) option is not supported.

Programmer response: Either remove the -host flag, or remove the CHAR(NATIVE) option. The -host
flag sets CHAR(EBCDIC).

System action: The application was terminated.

IWZ231S

Query of current locale setting failed.

Explanation: A query of the execution environment failed to identify a valid locale setting. The current
locale needs to be established to access appropriate message files and set the collating order. It is also
used by the date/time services and for EBCDIC character support.

Programmer response: Check the settings for the following environment variable:

LANG
This should be set to a locale that has been installed on your machine. Enter locale -a to get a list
of the valid values. The default value is en_US.

System action: The application was terminated.

IWZ232W

Message variants include:

• An error occurred during the conversion of data item data-name to EBCDIC in program program-
name on line number decimal-value.

• An error occurred during the conversion of data item data-name to ASCII in program program-
name on line number decimal-value.

• An error occurred during the conversion to EBCDIC for data item data-name in program program-
name on line number decimal-value.

• An error occurred during the conversion to ASCII for data item data-name in program program-
name on line number decimal-value.

• An error occurred during the conversion from ASCII to EBCDIC in program program-name on line
number decimal-value.

• An error occurred during the conversion from EBCDIC to ASCII in program program-name on line
number decimal-value.

Explanation: The data in an identifier could not be converted between ASCII and EBCDIC formats as
requested by the CHAR(EBCDIC) compiler option.

624  IBM COBOL for Linux on x86 1.1: Programming Guide



Programmer response: Check that the appropriate ASCII and EBCDIC locales are installed and selected.
Check that the data in the identifier is valid and can be represented in both ASCII and EBCDIC format.

System action: No system action was taken. The data remains in its unconverted form.

IWZ240S

The base year for program program-name was outside the valid range of 1900 through 1999. The
sliding window value window-value resulted in a base year of base-year.

Explanation: When the 100-year window was computed using the current year and the sliding window
value specified with the YEARWINDOW compiler option, the base year of the 100-year window was
outside the valid range of 1900 through 1999.

Programmer response: Examine the application design to determine if it will support a change to the
YEARWINDOW option value. If the application can run with a change to the YEARWINDOW option value,
then compile the program with an appropriate YEARWINDOW option value. If the application cannot run
with a change to the YEARWINDOW option value, then convert all date fields to expanded dates and
compile the program with NODATEPROC.

System action: The application was terminated.

IWZ241S

The current year was outside the 100-year window, year-start through year-end, for program
program-name.

Explanation: The current year was outside the 100-year fixed window specified by the YEARWINDOW
compiler option value.

For example, if a COBOL program is compiled with YEARWINDOW(1920), the 100-year window for the
program is 1920 through 2019. When the program is run in the year 2020, this error message would
occur since the current year is not within the 100-year window.

Programmer response: Examine the application design to determine if it will support a change to the
YEARWINDOW option value. If the application can run with a change to the YEARWINDOW option value,
then compile the program with an appropriate YEARWINDOW option value. If the application cannot run
with a change to the YEARWINDOW option value, then convert all date fields to expanded dates and
compile the program with NODATEPROC.

System action: The application was terminated.

IWZ242S

There was an invalid attempt to start an XML PARSE statement.

Explanation: An XML PARSE statement initiated by a COBOL program was already in progress when
another XML PARSE statement was attempted by the same COBOL program. Only one XML PARSE
statement can be active in a given invocation of a COBOL program.

Programmer response: Change the application so that it does not initiate another XML PARSE statement
from within the same COBOL program.

System action: The application is terminated.

IWZ243S

There was an invalid attempt to end an XML PARSE statement.

Appendix G. Runtime messages  625



Explanation: An XML PARSE statement initiated by a COBOL program was in progress and one of the
following actions was attempted:

• A GOBACK or an EXIT PROGRAM statement was issued within the COBOL program that initiated the
XML PARSE statement.

• A user handler associated with the program that initiated the XML PARSE statement moved the
condition handler resume cursor and resumed the application.

Programmer response: Change the application so that it does not use one of the above methods to end
the XML PARSE statement.

System action: The application is terminated.

IWZ813S

Insufficient storage was available to satisfy a get storage request.

Explanation: There was not enough free storage available to satisfy a get storage or reallocate request.
This message indicates that storage management could not obtain sufficient storage from the operating
system.

Programmer response: Ensure that you have sufficient storage available to run your application.

System action: No storage is allocated.

Symbolic feedback code: CEE0PD

IWZ901S

Message variants include:

• Program exits due to severe or critical error.
• Program exits: more than ERRCOUNT errors occurred.

Explanation: Every severe or critical message is followed by an IWZ901 message. An IWZ901 message
is also issued if you used the ERRCOUNT runtime option and the number of warning messages exceeds
ERRCOUNT.

Programmer response: See the severe or critical message, or increase ERRCOUNT.

System action: The application was terminated.

IWZ902S

The system detected a Decimal-divide exception.

Explanation: An attempt to divide a number by 0 was detected.

Programmer response: Modify the program. For example, add ON SIZE ERROR to the flagged statement.

System action: The application was terminated.

IWZ903S

The system detected a data exception.

Explanation: An operation on packed-decimal or zoned decimal data failed because the data contained
an invalid value.

626  IBM COBOL for Linux on x86 1.1: Programming Guide



Programmer response: Verify the data is valid packed-decimal or zoned decimal data.

System action: The application was terminated.

IWZ907S

Message variants include:

• Insufficient storage.
• Insufficient storage. Cannot get number-bytes bytes of space for storage.

Explanation: The runtime library requested virtual memory space and the operating system denied the
request.

Programmer response: Your program uses a large amount of virtual memory and it ran out of space. The
problem is usually not due to a particular statement, but is associated with the program as a whole. Look
at your use of OCCURS clauses and reduce the size of your tables.

System action: The application was terminated.

IWZ993W

Insufficient storage. Cannot find space for message message-number.

Explanation: The runtime library requested virtual memory space and the operating system denied the
request.

Programmer response: Your program uses a large amount of virtual memory and it ran out of space. The
problem is usually not due to a particular statement, but is associated with the program as a whole. Look
at your use of OCCURS clauses and reduce the size of your tables.

System action: No system action was taken.

IWZ994W

Cannot find message message-number in message-catalog.

Explanation: The runtime library cannot find either the message catalog or a particular message in the
message catalog.

Programmer response: Check that the COBOL library and messages were correctly installed and that
LANG and NLSPATH are specified correctly.

System action: No system action was taken.

IWZ995C

Message variants include:

• system exception signal received while executing routine routine-name at offset 0xoffset-value.
• system exception signal received while executing code at location 0xoffset-value.
• system exception signal received. The location could not be determined.

Explanation: The operating system has detected an illegal action, such as an attempt to store into a
protected area of memory or the operating system has detected that you pressed the interrupt key
(typically the Control-C key, but it can be reconfigured).

Appendix G. Runtime messages  627



Programmer response: If the signal was due to an illegal action, run the program under the debugger and
it will give you more precise information as to where the error occurred. An example of this type of error is
a pointer with an illegal value.

System action: The application was terminated.

IWZ2502S

The UTC/GMT was not available from the system.

Explanation: A call to CEEUTC or CEEGMT failed because the system clock was in an invalid state. The
current time could not be determined.

Programmer response: Notify systems support personnel that the system clock is in an invalid state.

System action: All output values are set to 0.

Symbolic feedback code: CEE2E6

IWZ2503S

The offset from UTC/GMT to local time was not available from the system.

Explanation: A call to CEEGMTO failed because either (1) the current operating system could not be
determined, or (2) the time zone field in the operating system control block appears to contain invalid
data.

Programmer response: Notify systems support personnel that the local time offset stored in the
operating system appears to contain invalid data.

System action: All output values are set to 0.

Symbolic feedback code: CEE2E7

IWZ2505S

The input_seconds value in a call to CEEDATM or CEESECI was not within the supported range.

Explanation: The input_seconds value passed in a call to CEEDATM or CEESECI was not a floating-point
number between 86,400.0 and 265,621,679,999.999 The input parameter should represent the number
of seconds elapsed since 00:00:00 on 14 October 1582, with 00:00:00.000 15 October 1582 being the
first supported date/time, and 23:59:59.999 31 December 9999 being the last supported date/time.

Programmer response: Verify that input parameter contains a floating-point value between 86,400.0 and
265,621,679,999.999.

System action: For CEEDATM, the output value is set to blanks. For CEESECI, all output parameters are
set to 0.

Symbolic feedback code: CEE2E9

IWZ2506S

An era (<JJJJ>, <CCCC>, or <CCCCCCCC>) was was used in a picture string passed to CEEDATM,
but the input number-of-seconds value was not within the supported range. The era could not be
determined.

Explanation: In a CEEDATM call, the picture string indicates that the input value is to be converted to an
era; however the input value that was specified lies outside the range of supported eras.

628  IBM COBOL for Linux on x86 1.1: Programming Guide



Programmer response: Verify that the input value contains a valid number-of-seconds value within the
range of supported eras.

System action: The output value is set to blanks.

IWZ2507S

Insufficient data was passed to CEEDAYS or CEESECS. The Lilian value was not calculated.

Explanation: The picture string passed in a CEEDAYS or CEESECS call did not contain enough information.
For example, it is an error to use the picture string 'MM/DD' (month and day only) in a call to CEEDAYS or
CEESECS, because the year value is missing. The minimum information required to calculate a Lilian value
is either (1) month, day and year, or (2) year and Julian day.

Programmer response: Verify that the picture string specified in a call to CEEDAYS or CEESECS specifies,
as a minimum, the location in the input string of either (1) the year, month, and day, or (2) the year and
Julian day.

System action: The output value is set to 0.

Symbolic feedback code: CEE2EB

IWZ2508S

The date value passed to CEEDAYS or CEESECS was invalid.

Explanation: In a CEEDAYS or CEESECS call, the value in the DD or DDD field is not valid for the given
year and/or month. For example, 'MM/DD/YY' with '02/29/90', or 'YYYY.DDD' with '1990.366' are invalid
because 1990 is not a leap year. This code may also be returned for any nonexistent date value such as
June 31st, January 0.

Programmer response: Verify that the format of the input data matches the picture string specification
and that input data contains a valid date.

System action: The output value is set to 0.

Symbolic feedback code: CEE2EC

IWZ2509S

The era passed to CEEDAYS or CEESECS was not recognized.

Explanation: The value in the <JJJJ>, <CCCC>, or <CCCCCCCC> field passed in a call to CEEDAYS or
CEESECS does not contain a supported era name.

Programmer response: Verify that the format of the input data matches the picture string specification
and that the spelling of the era name is correct. Note that the era name must be a proper DBCS string
where the '<' position must contain the first byte of the era name.

System action: The output value is set to 0.

IWZ2510S

The hours value in a call to CEEISEC or CEESECS was not recognized.

Explanation: (1) In a CEEISEC call, the hours parameter did not contain a number between 0 and 23, or
(2) in a CEESECS call, the value in the HH (hours) field does not contain a number between 0 and 23, or
the "AP" (a.m./p.m.) field is present and the HH field does not contain a number between 1 and 12.

Appendix G. Runtime messages  629



Programmer response: For CEEISEC, verify that the hours parameter contains an integer between 0 and
23. For CEESECS, verify that the format of the input data matches the picture string specification, and that
the hours field contains a value between 0 and 23, (or 1 and 12 if the "AP" field is used).

System action: The output value is set to 0.

Symbolic feedback code: CEE2EE

IWZ2511S

The day parameter passed in a CEEISEC call was invalid for year and month specified.

Explanation: The day parameter passed in a CEEISEC call did not contain a valid day number. The
combination of year, month, and day formed an invalid date value. Examples: year=1990, month=2,
day=29; or month=6, day=31; or day=0.

Programmer response: Verify that the day parameter contains an integer between 1 and 31, and that the
combination of year, month, and day represents a valid date.

System action: The output value is set to 0.

Symbolic feedback code: CEE2EF

IWZ2512S

The Lilian date value passed in a call to CEEDATE or CEEDYWK was not within the supported range.

Explanation: The Lilian day number passed in a call to CEEDATE or CEEDYWK was not a number between
1 and 3,074,324.

Programmer response: Verify that the input parameter contains an integer between 1 and 3,074,324.

System action: The output value is set to blanks.

Symbolic feedback code: CEE2EG

IWZ2513S

The input date passed in a CEEISEC, CEEDAYS, or CEESECS call was not within the supported
range.

Explanation: The input date passed in a CEEISEC, CEEDAYS, or CEESECS call was earlier than 15 October
1582, or later than 31 December 9999.

Programmer response: For CEEISEC, verify that the year, month, and day parameters form a date greater
than or equal to 15 October 1582. For CEEDAYS and CEESECS, verify that the format of the input date
matches the picture string specification, and that the input date is within the supported range.

System action: The output value is set to 0.

Symbolic feedback code: CEE2EH

IWZ2514S

The year value passed in a CEEISEC call was not within the supported range.

Explanation: The year parameter passed in a CEEISEC call did not contain a number between 1582 and
9999.

630  IBM COBOL for Linux on x86 1.1: Programming Guide



Programmer response: Verify that the year parameter contains valid data, and that the year parameter
includes the century, for example, specify year 1990, not year 90.

System action: The output value is set to 0.

Symbolic feedback code: CEE2EI

IWZ2515S

The milliseconds value in a CEEISEC call was not recognized.

Explanation: In a CEEISEC call, the milliseconds parameter (input_milliseconds) did not contain a
number between 0 and 999.

Programmer response: Verify that the milliseconds parameter contains an integer between 0 and 999.

System action: The output value is set to 0.

Symbolic feedback code: CEE2EJ

IWZ2516S

The minutes value in a CEEISEC call was not recognized.

Explanation: (1) In a CEEISEC call, the minutes parameter (input_minutes) did not contain a number
between 0 and 59, or (2) in a CEESECS call, the value in the MI (minutes) field did not contain a number
between 0 and 59.

Programmer response: For CEEISEC, verify that the minutes parameter contains an integer between 0
and 59. For CEESECS, verify that the format of the input data matches the picture string specification, and
that the minutes field contains a number between 0 and 59.

System action: The output value is set to 0.

Symbolic feedback code: CEE2EK

IWZ2517S

The month value in a CEEISEC call was not recognized.

Explanation: (1) In a CEEISEC call, the month parameter (input_month) did not contain a number
between 1 and 12, or (2) in a CEEDAYS or CEESECS call, the value in the MM field did not contain a
number between 1 and 12, or the value in the MMM, MMMM, etc. field did not contain a correctly spelled
month name or month abbreviation in the currently active National Language.

Programmer response: For CEEISEC, verify that the month parameter contains an integer between 1
and 12. For CEEDAYS and CEESECS, verify that the format of the input data matches the picture string
specification. For the MM field, verify that the input value is between 1 and 12. For spelled-out month
names (MMM, MMMM, etc.), verify that the spelling or abbreviation of the month name is correct in the
currently active National Language.

System action: The output value is set to 0.

Symbolic feedback code: CEE2EL

IWZ2518S

An invalid picture string was specified in a call to a date/time service.

Appendix G. Runtime messages  631



Explanation: The picture string supplied in a call to one of the date/time services was invalid. Only one
era character string can be specified.

Programmer response: Verify that the picture string contains valid data. If the picture string contains
more than one era descriptor, such as both <JJJJ> and <CCCC>, then change the picture string to use only
one era.

System action: The output value is set to 0.

Symbolic feedback code: CEE2EM

IWZ2519S

The seconds value in a CEEISEC call was not recognized.

Explanation: (1) In a CEEISEC call, the seconds parameter (input_seconds) did not contain a number
between 0 and 59, or (2) in a CEESECS call, the value in the SS (seconds) field did not contain a number
between 0 and 59.

Programmer response: For CEEISEC, verify that the seconds parameter contains an integer between 0
and 59. For CEESECS, verify that the format of the input data matches the picture string specification, and
that the seconds field contains a number between 0 and 59.

System action: The output value is set to 0.

Symbolic feedback code: CEE2EN

IWZ2520S

CEEDAYS detected nonnumeric data in a numeric field, or the date string did not match the picture
string.

Explanation: The input value passed in a CEEDAYS call did not appear to be in the format described by
the picture specification, for example, nonnumeric characters appear where only numeric characters are
expected.

Programmer response: Verify that the format of the input data matches the picture string specification
and that numeric fields contain only numeric data.

System action: The output value is set to 0.

Symbolic feedback code: CEE2EO

IWZ2521S

The <JJJJ>, <CCCC>, or <CCCCCCCC> year-within-era value passed to CEEDAYS or CEESECS was
zero.

Explanation: In a CEEDAYS or CEESECS call, if the YY or ZYY picture token is specified, and if the picture
string contains one of the era tokens such as <CCCC> or <JJJJ>, then the year value must be greater than
or equal to 1 and must be a valid year value for the era. In this context, the YY or ZYY field means year
within era.

Programmer response: Verify that the format of the input data matches the picture string specification
and that the input data is valid.

System action: The output value is set to 0.

IWZ2522S

632  IBM COBOL for Linux on x86 1.1: Programming Guide



An era (<JJJJ>, <CCCC>, or <CCCCCCCC>) was used in a picture string passed to CEEDATE, but the
Lilian date value was not within the supported range. The era could not be determined.

Explanation: In a CEEDATE call, the picture string indicates that the Lilian date is to be converted to an
era, but the Lilian date lies outside the range of supported eras.

Programmer response: Verify that the input value contains a valid Lilian day number within the range of
supported eras.

System action: The output value is set to blanks.

IWZ2525S

CEESECS detected nonnumeric data in a numeric field, or the time-stamp string did not match the
picture string.

Explanation: The input value passed in a CEESECS call did not appear to be in the format described by
the picture specification. For example, nonnumeric characters appear where only numeric characters are
expected, or the a.m./p.m. field (AP, A.P., etc.) did not contain the strings 'AM' or 'PM'.

Programmer response: Verify that the format of the input data matches the picture string specification
and that numeric fields contain only numeric data.

System action: The output value is set to 0.

Symbolic feedback code: CEE2ET

IWZ2526S

The date string returned by CEEDATE was truncated.

Explanation: In a CEEDATE call, the output string was not large enough to contain the formatted date
value.

Programmer response: Verify that the output string data item is large enough to contain the entire
formatted date. Ensure that the output parameter is at least as long as the picture string parameter.

System action: The output value is truncated to the length of the output parameter.

Symbolic feedback code: CEE2EU

IWZ2527S

The time-stamp string returned by CEEDATM was truncated.

Explanation: In a CEEDATM call, the output string was not large enough to contain the formatted time-
stamp value.

Programmer response: Verify that the output string data item is large enough to contain the entire
formatted time stamp. Ensure that the output parameter is at least as long as the picture string
parameter.

System action: The output value is truncated to the length of the output parameter.

Symbolic feedback code: CEE2EV

IWZ2531S

The local time was not available from the system.

Appendix G. Runtime messages  633



Explanation: A call to CEELOCT failed because the system clock was in an invalid state. The current time
cannot be determined.

Programmer response: Notify systems support personnel that the system clock is in an invalid state.

System action: All output values are set to 0.

Symbolic feedback code: CEE2F3

IWZ2533S

The value passed to CEESCEN was not between 0 and 100.

Explanation: The century_start value passed in a CEESCEN call was not between 0 and 100, inclusive.

Programmer response: Ensure that the input parameter is within range.

System action: No system action is taken; the 100-year window assumed for all two-digit years is
unchanged.

Symbolic feedback code: CEE2F5

IWZ2534W

Insufficient field width was specified for a month or weekday name in a call to CEEDATE or
CEEDATM. Output set to blanks.

Explanation: The CEEDATE or CEEDATM callable services issues this message whenever the picture
string contained MMM, MMMMMZ, WWW, Wwww, etc., requesting a spelled out month name or weekday
name, and the month name currently being formatted contained more characters than can fit in the
indicated field.

Programmer response: Increase the field width by specifying enough Ms or Ws to contain the longest
month or weekday name being formatted.

System action: The month name and weekday name fields that are of insufficient width are set to blanks.
The rest of the output string is unaffected. Processing continues.

Symbolic feedback code: CEE2F6

Related concepts  
Appendix C, “Intermediate results
and arithmetic precision,” on page 527 

Related tasks  
“Setting environment variables” on page 215 
“Generating a list of compiler
messages” on page 230  

634  IBM COBOL for Linux on x86 1.1: Programming Guide



Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

© Copyright IBM Corp. 2021, 2023 635



Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 1995, 2019.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, or
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM's Privacy Policy at http://www.ibm.com/privacy and IBM's Online Privacy Statement at http://
www.ibm.com/privacy/details in the section entitled "Cookies, Web Beacons and Other Technologies,"

636  Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details


and the "IBM Software Products and Software-as-a-Service Privacy Statement" at http://www.ibm.com/
software/info/product-privacy.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Intel™ is a registered trademark of Intel Corporation or its subsidiaries in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other product and service names might be trademarks of IBM or other companies.

Notices  637

http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml


638  IBM COBOL for Linux on x86 1.1: Programming Guide



Glossary

The terms in this glossary are defined in accordance with their meaning in COBOL. These terms might or
might not have the same meaning in other languages.

glossary.html

This glossary includes terms and definitions from the following publications:

• ANSI INCITS 23-1985, Programming languages - COBOL, as amended by ANSI INCITS 23a-1989,
Programming Languages - COBOL - Intrinsic Function Module for COBOL, and ANSI INCITS 23b-1993,
Programming Languages - Correction Amendment for COBOL

• ISO 1989:1985, Programming languages - COBOL, as amended by ISO/IEC 1989/AMD1:1992,
Programming languages - COBOL: Intrinsic function module

• ANSI X3.172-2002, American National Standard Dictionary for Information Systems
• INCITS/ISO/IEC 1989-2002, Information technology - Programming languages - COBOL
• INCITS/ISO/IEC 1989:2014, Information technology - Programming languages, their environments and

system software interfaces - Programming language COBOL

American National Standard definitions are preceded by an asterisk (*).

A

* abbreviated combined relation condition
The combined condition that results from the explicit omission of a common subject or a common
subject and common relational operator in a consecutive sequence of relation conditions.

abend
Abnormal termination of a program.

* access mode
The manner in which records are to be operated upon within a file.

* actual decimal point
The physical representation, using the decimal point characters period (.) or comma (,), of the decimal
point position in a data item.

actual document encoding
For an XML document, one of the following encoding categories that the XML parser determines by
examining the first few bytes of the document:

• ASCII
• EBCDIC
• UTF-8
• UTF-16, either big-endian or little-endian
• Other unsupported encoding
• No recognizable encoding

Linux native file system
Any of the local or network file systems that directly support encoded or binary stream files.

The Linux native file systems support line-sequential files directly, and are used as the file store for all
the other COBOL file types.

* alphabet-name
A user-defined word, in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION, that
assigns a name to a specific character set or collating sequence or both.

* alphabetic character
A letter or a space character.

© Copyright IBM Corp. 2021, 2023 639



alphabetic data item
A data item that is described with a PICTURE character string that contains only the symbol A. An
alphabetic data item has USAGE DISPLAY.

* alphanumeric character
Any character in the single-byte character set of the computer.

alphanumeric character position
See character position.

alphanumeric data item
A general reference to a data item that is described implicitly or explicitly as USAGE DISPLAY, and
that has category alphanumeric, alphanumeric-edited, or numeric-edited.

alphanumeric-edited data item
A data item that is described by a PICTURE character string that contains at least one instance of the
symbol A or X and at least one of the simple insertion symbols B, 0, or /. An alphanumeric-edited data
item has USAGE DISPLAY.

* alphanumeric function
A function whose value is composed of a string of one or more characters from the alphanumeric
character set of the computer.

alphanumeric group item
A group item that is defined without a GROUP-USAGE NATIONAL clause. For operations such as
INSPECT, STRING, and UNSTRING, an alphanumeric group item is processed as though all its content
were described as USAGE DISPLAY regardless of the actual content of the group. For operations
that require processing of the elementary items within a group, such as MOVE CORRESPONDING, ADD
CORRESPONDING, or INITIALIZE, an alphanumeric group item is processed using group semantics.

alphanumeric literal
A literal that has an opening delimiter from the following set: ', ", X', X", Z', or Z". The string of
characters can include any character in the character set of the computer.

* alternate record key
A key, other than the prime record key, whose contents identify a record within an indexed file.

ANSI (American National Standards Institute)
An organization that consists of producers, consumers, and general-interest groups and establishes
the procedures by which accredited organizations create and maintain voluntary industry standards in
the United States.

argument
(1) An identifier, a literal, an arithmetic expression, or a function-identifier that specifies a value to be
used in the evaluation of a function. (2) An operand of the USING phrase of a CALL statement, used
for passing values to a called program.

* arithmetic operation
The process caused by the execution of an arithmetic statement, or the evaluation of an arithmetic
expression, that results in a mathematically correct solution to the arguments presented.

* arithmetic operator
A single character, or a fixed two-character combination that belongs to the following set:

Character Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

640  IBM COBOL for Linux on x86 1.1: Programming Guide



* arithmetic statement
A statement that causes an arithmetic operation to be executed. The arithmetic statements are ADD,
COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT.

array
An aggregate that consists of data objects, each of which can be uniquely referenced by subscripting.
An array is roughly analogous to a COBOL table.

* ascending key
A key upon the values of which data is ordered, starting with the lowest value of the key up to the
highest value of the key, in accordance with the rules for comparing data items.

ASCII
American National Standard Code for Information Interchange. The standard code uses a coded
character set that is based on 7-bit coded characters (8 bits including parity check). The standard
is used for information interchange between data processing systems, data communication systems,
and associated equipment. The ASCII set consists of control characters and graphic characters.

IBM has defined an extension to ASCII (characters 128-255).

ASCII-based multibyte code page
A UTF-8, EUC, or ASCII DBCS code page. Each ASCII-based multibyte code page includes both single-
byte and multibyte characters. The encoding of the single-byte characters is the ASCII encoding.

ASCII DBCS
See double-byte ASCII.

assignment-name
A name that identifies the organization of a COBOL file and the name by which it is known to the
system.

* assumed decimal point
A decimal point position that does not involve the existence of an actual character in a data item. The
assumed decimal point has logical meaning but no physical representation.

AT END condition
A condition that is caused during the execution of a READ, RETURN, or SEARCH statement under
certain conditions:

• A READ statement runs on a sequentially accessed file when no next logical record exists in the file,
or when the number of significant digits in the relative record number is larger than the size of the
relative key data item, or when an optional input file is not available.

• A RETURN statement runs when no next logical record exists for the associated sort or merge file.
• A SEARCH statement runs when the search operation terminates without satisfying the condition
specified in any of the associated WHEN phrases.

B

basic character set
The basic set of characters used in writing words, character-strings, and separators of the language.
The basic character set is implemented in single-byte characters. The extended character set
includes DBCS, UTF-8, or EUC characters, which can be used in comments, literals, and user-defined
words.

Synonymous with COBOL character set in the 85 COBOL Standard.

big-endian
The default format that the mainframe and the Linux workstation use to store binary data and UTF-16
characters. In this format, the least significant byte of a binary data item is at the highest address and
the least significant byte of a UTF-16 character is at the highest address. Compare with little-endian.

binary item
A numeric data item that is represented in binary notation (on the base 2 numbering system). The
decimal equivalent consists of the decimal digits 0 through 9, plus an operational sign. The leftmost
bit of the item is the operational sign.

Glossary  641



binary search
A dichotomizing search in which, at each step of the search, the set of data elements is divided by
two; some appropriate action is taken in the case of an odd number.

* block
A physical unit of data that is normally composed of one or more logical records. For mass storage
files, a block can contain a portion of a logical record. The size of a block has no direct relationship
to the size of the file within which the block is contained or to the size of the logical records that are
either contained within the block or that overlap the block. Synonymous with physical record.

boolean condition
A boolean condition determines whether a boolean literal is true or false. A boolean condition can only
be used in a constant conditional expression.

boolean literal
Can be either B'1', indicating a true value, or B'0', indicating a false value. Boolean literals can only be
used in constant conditional expressions.

breakpoint
A place in a computer program, usually specified by an instruction, where external intervention or a
monitor program can interrupt the program as it runs.

buffer
A portion of storage that is used to hold input or output data temporarily.

built-in function
See intrinsic function.

byte
A string that consists of a certain number of bits, usually eight, treated as a unit, and representing a
character or a control function.

byte order mark (BOM)
A Unicode character that can be used at the start of UTF-16 or UTF-32 text to indicate the byte order
of subsequent text; the byte order can be either big-endian or little-endian.

bytecode
Machine-independent code that is generated by the Java compiler and executed by the Java
interpreter. (Oracle)

C

called program
A program that is the object of a CALL statement. At run time the called program and calling program
are combined to produce a run unit.

* calling program
A program that executes a CALL to another program.

case structure
A program-processing logic in which a series of conditions is tested in order to choose between a
number of resulting actions.

CCSID
See coded character set identifier.

century window
A 100-year interval within which any two-digit year is unique. Several types of century window are
available to COBOL programmers:

• For windowed date fields, you use the YEARWINDOW compiler option.
• For the windowing intrinsic functions DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and YEAR-TO-
YYYY, you specify the century window with argument-2.

* character
The basic indivisible unit of the language.

642  IBM COBOL for Linux on x86 1.1: Programming Guide



character encoding unit
A unit of data that corresponds to one code point in a coded character set. One or more character
encoding units are used to represent a character in a coded character set. Also known as encoding
unit.

For USAGE NATIONAL, a character encoding unit corresponds to one 2-byte code point of UTF-16.

For USAGE DISPLAY, a character encoding unit corresponds to a byte.

For USAGE DISPLAY-1, a character encoding unit corresponds to a 2-byte code point in the DBCS
character set.

character position
The amount of physical storage or presentation space required to hold or present one character. The
term applies to any class of character. For specific classes of characters, the following terms apply:

• Alphanumeric character position, for characters represented in USAGE DISPLAY
• DBCS character position, for DBCS characters represented in USAGE DISPLAY-1
• National character position, for characters represented in USAGE NATIONAL; synonymous with

character encoding unit for UTF-16

character set
A collection of elements that are used to represent textual information, but for which no coded
representation is assumed. See also coded character set.

character string
A sequence of contiguous characters that form a COBOL word, a literal, a PICTURE character string, or
a comment-entry. A character string must be delimited by separators.

checkpoint
A point at which information about the status of a job and the system can be recorded so that the job
step can be restarted later.

* class
The entity that defines common behavior and implementation for zero, one, or more objects. The
objects that share the same implementation are considered to be objects of the same class. Classes
can be defined hierarchically, allowing one class to inherit from another.

* class condition
The proposition (for which a truth value can be determined) that the content of an item is wholly
alphabetic, is wholly numeric, is wholly DBCS, is wholly Kanji, or consists exclusively of the characters
that are listed in the definition of a class-name.

* class-name (of data)
A user-defined word that is defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION; this word assigns a name to the proposition (for which a truth value can be defined)
that the content of a data item consists exclusively of the characters that are listed in the definition of
the class-name.

* clause
An ordered set of consecutive COBOL character strings whose purpose is to specify an attribute of an
entry.

COBOL character set
The set of characters used in writing COBOL syntax. The complete COBOL character set consists of
these characters:

Character Meaning

0,1, . . . ,9 Digit

A,B, . . . ,Z Uppercase letter

a,b, . . . ,z Lowercase letter

Space

Glossary  643



Character Meaning

+ Plus sign

- Minus sign (hyphen)

* Asterisk

/ Slant (forward slash)

= Equal sign

$ Currency sign

, Comma

; Semicolon

. Period (decimal point, full stop)

" Quotation mark

' Apostrophe

( Left parenthesis

) Right parenthesis

> Greater than

< Less than

: Colon

_ Underscore

* COBOL word
See word.

code page
An assignment of graphic characters and control function meanings to all code points. For example,
one code page could assign characters and meanings to 256 code points for 8-bit code, and another
code page could assign characters and meanings to 128 code points for 7-bit code. For example, one
of the IBM code pages for English on the workstation is IBM-1252 and on the host is IBM-1047.

code point
A unique bit pattern that is defined in a coded character set (code page). Graphic symbols and control
characters are assigned to code points.

coded character set
A set of unambiguous rules that establish a character set and the relationship between the characters
of the set and their coded representation. Examples of coded character sets are the character sets as
represented by ASCII or EBCDIC code pages or by the UTF-16 encoding scheme for Unicode.

coded character set identifier (CCSID)
An IBM-defined number in the range 1 to 65,535 that identifies a specific code page.

* collating sequence
The sequence in which the characters that are acceptable to a computer are ordered for purposes of
sorting, merging, comparing, and for processing indexed files sequentially.

* column
A byte position within a print line or within a reference format line. The columns are numbered from 1,
by 1, starting at the leftmost position of the line and extending to the rightmost position of the line. A
column holds one single-byte character.

* combined condition
A condition that is the result of connecting two or more conditions with the AND or the OR logical
operator. See also condition and negated combined condition.

644  IBM COBOL for Linux on x86 1.1: Programming Guide



* comment-entry
An entry in the IDENTIFICATION DIVISION that is used for documentation and has no effect on
execution.

comment line
A source program line represented by an asterisk (*) in the indicator area of the line or by an asterisk
followed by greater-than sign (*>) as the first character string in the program text area (Area A plus
Area B), and any characters from the character set of the computer that follow in Area A and Area B of
that line. A comment line serves only for documentation. A special form of comment line represented
by a slant (/) in the indicator area of the line and any characters from the character set of the
computer in Area A and Area B of that line causes page ejection before the comment is printed.

* common program
A program that, despite being directly contained within another program, can be called from any
program directly or indirectly contained in that other program.

compatible date field
The meaning of the term compatible, when applied to date fields, depends on the COBOL division in
which the usage occurs:

• DATA DIVISION: Two date fields are compatible if they have identical USAGE and meet at least one
of the following conditions:

– They have the same date format.
– Both are windowed date fields, where one consists only of a windowed year, DATE FORMAT YY.
– Both are expanded date fields, where one consists only of an expanded year, DATE FORMAT
YYYY.

– One has DATE FORMAT YYXXXX, and the other has YYXX.
– One has DATE FORMAT YYYYXXXX, and the other has YYYYXX.

A windowed date field can be subordinate to a data item that is an expanded date group. The two
date fields are compatible if the subordinate date field has USAGE DISPLAY, starts two bytes after
the start of the group expanded date field, and the two fields meet at least one of the following
conditions:

– The subordinate date field has a DATE FORMAT pattern with the same number of Xs as the DATE
FORMAT pattern of the group date field.

– The subordinate date field has DATE FORMAT YY.
– The group date field has DATE FORMAT YYYYXXXX and the subordinate date field has DATE
FORMAT YYXX.

• PROCEDURE DIVISION: Two date fields are compatible if they have the same date format except
for the year part, which can be windowed or expanded. For example, a windowed date field with
DATE FORMAT YYXXX is compatible with:

– Another windowed date field with DATE FORMAT YYXXX
– An expanded date field with DATE FORMAT YYYYXXX

* compile
(1) To translate a program expressed in a high-level language into a program expressed in an
intermediate language, assembly language, or a computer language. (2) To prepare a machine-
language program from a computer program written in another programming language by making
use of the overall logic structure of the program, or generating more than one computer instruction for
each symbolic statement, or both, as well as performing the function of an assembler.

compilation variable
A symbolic name for a particular literal value or the value of a compile-time arithmetic expression as
specified by the DEFINE directive or by the DEFINE compiler option.

* compile time
The time at which COBOL source code is translated, by a COBOL compiler, to a COBOL object program.

Glossary  645



compile-time arithmetic expression
A subset of arithmetic expressions that are specified in the DEFINE and EVALUATE directives or in
a constant conditional expression. The difference between compile-time arithmetic expressions and
regular arithmetic expressions is that in a compile-time arithmetic expression:

• The exponentiation operator shall not be specified.
• All operands shall be integer numeric literals or arithmetic expressions in which all operands are

integer numeric literals.
• The expression shall be specified in such a way that a division by zero does not occur.

compiler
A program that translates source code written in a higher-level language into machine-language
object code.

compiler-directing statement
A statement that causes the compiler to take a specific action during compilation. The standard
compiler-directing statements are COPY, REPLACE, and USE.

compiler directive
A directive that causes the compiler to take a specific action during compilation. COBOL for
Linux supports the CALLINTERFACE compiler directive, as well as Conditional compilation compiler
directives (DEFINE, EVALUATE, and IF).

* complex condition
A condition in which one or more logical operators act upon one or more conditions. See also
condition, negated simple condition, and negated combined condition.

complex ODO
Certain forms of the OCCURS DEPENDING ON clause:

• Variably located item or group: A data item described by an OCCURS clause with the DEPENDING ON
option is followed by a nonsubordinate data item or group. The group can be an alphanumeric group
or a national group.

• Variably located table: A data item described by an OCCURS clause with the DEPENDING ON option
is followed by a nonsubordinate data item described by an OCCURS clause.

• Table with variable-length elements: A data item described by an OCCURS clause contains a
subordinate data item described by an OCCURS clause with the DEPENDING ON option.

• Index name for a table with variable-length elements.
• Element of a table with variable-length elements.

component
(1) A functional grouping of related files. (2) In object-oriented programming, a reusable object
or program that performs a specific function and is designed to work with other components and
applications. JavaBeans is Oracle's architecture for creating components.

* computer-name
A system-name that identifies the computer where the program is to be compiled or run.

condition (exception)
Any alteration to the normal programmed flow of an application. Conditions can be detected by the
hardware or the operating system and result in an interrupt. They can also be detected by language-
specific generated code or language library code.

condition (expression)
A status of data at run time for which a truth value can be determined. Where used in this information
in or in reference to "condition" (condition-1, condition-2,. . .) of a general format, the term refers
to a conditional expression that consists of either a simple condition optionally parenthesized or a
combined condition (consisting of the syntactically correct combination of simple conditions, logical
operators, and parentheses) for which a truth value can be determined. See also simple condition,
complex condition, negated simple condition, combined condition, and negated combined condition.

646  IBM COBOL for Linux on x86 1.1: Programming Guide



* conditional expression
A simple condition or a complex condition specified in an EVALUATE, IF, PERFORM, or SEARCH
statement. See also simple condition and complex condition.

* conditional phrase
A phrase that specifies the action to be taken upon determination of the truth value of a condition that
results from the execution of a conditional statement.

* conditional statement
A statement that specifies that the truth value of a condition is to be determined and that the
subsequent action of the object program depends on this truth value.

* conditional variable
A data item one or more values of which has a condition-name assigned to it.

* condition-name
A user-defined word that assigns a name to a subset of values that a conditional variable can assume;
or a user-defined word assigned to a status of an implementor-defined switch or device.

* condition-name condition
The proposition (for which a truth value can be determined) that the value of a conditional variable is a
member of the set of values attributed to a condition-name associated with the conditional variable.

* CONFIGURATION SECTION
A section of the ENVIRONMENT DIVISION that describes overall specifications of source and object
programs.

CONSOLE
A COBOL environment-name associated with the operator console.

constant conditional expression
A subset of conditional expressions that may be used in IF directives or WHEN phrases of the
EVALUATE directives.

A constant conditional expression shall be one of the following items:

• A relation condition in which both operands are literals or arithmetic expressions that contain only
literal terms. The condition shall follow the rules for relation conditions, with the following additions:

– The operands shall be of the same category. An arithmetic expression is of the category numeric.
– If literals are specified and they are not numeric literals, the relational operator shall be “IS
EQUAL TO”, “IS NOT EQUAL TO”, “IS =”, “IS NOT =”, or “IS <>”.

See also relation condition.
• A defined condition. See also defined condition.
• A boolean condition. See also boolean condition.
• A complex condition formed by combining the above forms of simple conditions into complex

conditions by using AND, OR, and NOT. Abbreviated combined relation conditions shall not be
specified. See also complex condition.

contained program
A COBOL program that is nested within another COBOL program.

* contiguous items
Items that are described by consecutive entries in the DATA DIVISION, and that bear a definite
hierarchic relationship to each other.

copybook
A file or library member that contains a sequence of code that is included in the source program at
compile time using the COPY statement. The file can be created by the user, supplied by COBOL, or
supplied by another product. Synonymous with copy file.

* counter
A data item used for storing numbers or number representations in a manner that permits these
numbers to be increased or decreased by the value of another number, or to be changed or reset to
zero or to an arbitrary positive or negative value.

Glossary  647



cross-reference listing
The portion of the compiler listing that contains information on where files, fields, and indicators are
defined, referenced, and modified in a program.

currency-sign value
A character string that identifies the monetary units stored in a numeric-edited item. Typical examples
are $, USD, and EUR. A currency-sign value can be defined by either the CURRENCY compiler option
or the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.
If the CURRENCY SIGN clause is not specified and the NOCURRENCY compiler option is in effect, the
dollar sign ($) is used as the default currency-sign value. See also currency symbol.

currency symbol
A character used in a PICTURE clause to indicate the position of a currency sign value in a numeric-
edited item. A currency symbol can be defined by either the CURRENCY compiler option or the
CURRENCY SIGN clause in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION. If the
CURRENCY SIGN clause is not specified and the NOCURRENCY compiler option is in effect, the dollar
sign ($) is used as the default currency sign value and currency symbol. Multiple currency symbols
and currency sign values can be defined. See also currency sign value.

* current record
In file processing, the record that is available in the record area associated with a file.

* current volume pointer
A conceptual entity that points to the current volume of a sequential file.

D

* data clause
A clause, appearing in a data description entry in the DATA DIVISION of a COBOL program, that
provides information describing a particular attribute of a data item.

* data description entry
An entry in the DATA DIVISION of a COBOL program that is composed of a level-number followed by
a data-name, if required, and then followed by a set of data clauses, as required.

DATA DIVISION
The division of a COBOL program that describes the data to be processed by the program: the files
to be used and the records contained within them; internal WORKING-STORAGE records that will be
needed; data to be made available in more than one program in the COBOL run unit.

* data item
A unit of data (excluding literals) defined by a COBOL program or by the rules for function evaluation.

* data-name
A user-defined word that names a data item described in a data description entry. When used in the
general formats, data-name represents a word that must not be reference-modified, subscripted, or
qualified unless specifically permitted by the rules for the format.

date field
Any of the following items:

• A data item whose data description entry includes a DATE FORMAT clause.
• A value returned by one of the following intrinsic functions:

DATE-OF-INTEGER
DATE-TO-YYYYMMDD
DATEVAL
DAY-OF-INTEGER
DAY-TO-YYYYDDD
YEAR-TO-YYYY
YEARWINDOW 

• The conceptual data items DATE, DATE YYYYMMDD, DAY, and DAY YYYYDDD of the ACCEPT
statement.

648  IBM COBOL for Linux on x86 1.1: Programming Guide



• The result of certain arithmetic operations. For details, see Arithmetic with date fields (COBOL for
Linux on x86 Language Reference).

The term date field refers to both expanded date field and windowed date field. See also nondate.

date format
The date pattern of a date field, specified in either of the following ways:

• Explicitly, by the DATE FORMAT clause or DATEVAL intrinsic function argument-2
• Implicitly, by statements and intrinsic functions that return date fields. For details, see Date field

(COBOL for Linux on x86 Language Reference).

Db2 file system
The Db2 file system supports sequential, indexed, and relative files. It provides enhanced
interoperation with CICS, enabling batch COBOL programs to access CICS ESDS, KSDS, and RRDS
files that are stored in Db2.

DBCS
See double-byte character set (DBCS).

DBCS character
Any character defined in IBM's double-byte character set.

DBCS character position
See character position.

DBCS data item
A data item that is described by a PICTURE character string that contains at least one symbol G, or,
when the NSYMBOL(DBCS) compiler option is in effect, at least one symbol N. A DBCS data item has
USAGE DISPLAY-1.

* debugging line
Any line with a D in the indicator area of the line.

* debugging section
A section that contains a USE FOR DEBUGGING statement.

* declarative sentence
A compiler-directing sentence that consists of a single USE statement terminated by the separator
period.

* declaratives
A set of one or more special-purpose sections, written at the beginning of the PROCEDURE
DIVISION, the first of which is preceded by the key word DECLARATIVE and the last of which is
followed by the key words END DECLARATIVES. A declarative is composed of a section header,
followed by a USE compiler-directing sentence, followed by a set of zero, one, or more associated
paragraphs.

* de-edit
The logical removal of all editing characters from a numeric-edited data item in order to determine the
unedited numeric value of the item.

defined condition
A compile-time condition that tests whether a compilation variable is defined. Defined conditions are
specified in IF directives or WHEN phrases of the EVALUATE directives.

* delimited scope statement
Any statement that includes its explicit scope terminator.

* delimiter
A character or a sequence of contiguous characters that identify the end of a string of characters and
separate that string of characters from the following string of characters. A delimiter is not part of the
string of characters that it delimits.

* descending key
A key upon the values of which data is ordered starting with the highest value of key down to the
lowest value of key, in accordance with the rules for comparing data items.

Glossary  649



digit
Any of the numerals from 0 through 9. In COBOL, the term is not used to refer to any other symbol.

* digit position
The amount of physical storage required to store a single digit. This amount can vary depending on the
usage specified in the data description entry that defines the data item.

* direct access
The facility to obtain data from storage devices or to enter data into a storage device in such a way
that the process depends only on the location of that data and not on a reference to data previously
accessed.

display floating-point data item
A data item that is described implicitly or explicitly as USAGE DISPLAY and that has a PICTURE
character string that describes an external floating-point data item.

* division
A collection of zero, one, or more sections or paragraphs, called the division body, that are formed and
combined in accordance with a specific set of rules. Each division consists of the division header and
the related division body. There are four divisions in a COBOL program: Identification, Environment,
Data, and Procedure.

* division header
A combination of words followed by a separator period that indicates the beginning of a division. The
division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

do construct
In structured programming, a DO statement is used to group a number of statements in a procedure.
In COBOL, an inline PERFORM statement functions in the same way.

do-until
In structured programming, a do-until loop will be executed at least once, and until a given condition
is true. In COBOL, a TEST AFTER phrase used with the PERFORM statement functions in the same
way.

do-while
In structured programming, a do-while loop will be executed if, and while, a given condition is true. In
COBOL, a TEST BEFORE phrase used with the PERFORM statement functions in the same way.

document type declaration
An XML element that contains or points to markup declarations that provide a grammar for a class of
documents. This grammar is known as a document type definition, or DTD.

document type definition (DTD)
The grammar for a class of XML documents. See document type declaration.

double-byte ASCII
An IBM character set that includes DBCS and single-byte ASCII characters. (Also known as ASCII
DBCS.)

double-byte EBCDIC
An IBM character set that includes DBCS and single-byte EBCDIC characters. (Also known as EBCDIC
DBCS.)

double-byte character set (DBCS)
A set of characters in which each character is represented by 2 bytes. Languages such as Japanese,
Chinese, and Korean, which contain more symbols than can be represented by 256 code points,
require double-byte character sets. Because each character requires 2 bytes, entering, displaying,
and printing DBCS characters requires hardware and supporting software that are DBCS-capable.

650  IBM COBOL for Linux on x86 1.1: Programming Guide



DWARF
DWARF was developed by the UNIX International Programming Languages Special Interest Group
(SIG). It is designed to meet the symbolic, source-level debugging needs of different languages in a
unified fashion by supplying language-independent debugging information. A DWARF file contains
debugging data organized into different elements. For more information, see DWARF program
information in the DWARF/ELF Extensions Library Reference.

* dynamic access
An access mode in which specific logical records can be obtained from or placed into a mass storage
file in a nonsequential manner and obtained from a file in a sequential manner during the scope of the
same OPEN statement.

dynamic CALL
A CALL literal statement in a program that has been compiled with the DYNAM option, or a CALL
identifier statement in a program.

E

* EBCDIC (Extended Binary-Coded Decimal Interchange Code)
A coded character set based on 8-bit coded characters.

EBCDIC character
Any one of the symbols included in the EBCDIC (Extended Binary-Coded-Decimal Interchange Code)
set.

EBCDIC DBCS
See double-byte EBCDIC.

edited data item
A data item that has been modified by suppressing zeros or inserting editing characters or both.

* editing character
A single character or a fixed two-character combination belonging to the following set:

Character Meaning

Space

0 Zero

+ Plus

- Minus

CR Credit

DB Debit

Z Zero suppress

* Check protect

$ Currency sign

, Comma (decimal point)

. Period (decimal point)

/ Slant (forward slash)

element (text element)
One logical unit of a string of text, such as the description of a single data item or verb, preceded by a
unique code identifying the element type.

* elementary item
A data item that is described as not being further logically subdivided.

CICS SFS file system
See SFS file system.

Glossary  651

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcdd01/dwarfelfterminology.htm?sc=SSLTBW_latest
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcdd01/dwarfelfterminology.htm?sc=SSLTBW_latest


encoding unit
See character encoding unit.

* end of PROCEDURE DIVISION
The physical position of a COBOL source program after which no further procedures appear.

* end program marker
A combination of words, followed by a separator period, that indicates the end of a COBOL source
program. The end program marker is:

END PROGRAM program-name.

* entry
Any descriptive set of consecutive clauses terminated by a separator period and written in the
IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, or DATA DIVISION of a COBOL program.

* environment clause
A clause that appears as part of an ENVIRONMENT DIVISION entry.

ENVIRONMENT DIVISION
One of the four main component parts of a COBOL program. The ENVIRONMENT DIVISION describes
the computers where the source program is compiled and those where the object program is run. It
provides a linkage between the logical concept of files and their records, and the physical aspects of
the devices on which files are stored.

environment-name
A name, specified by IBM, that identifies system logical units, printer and card punch control
characters, report codes, program switches or all of these. When an environment-name is associated
with a mnemonic-name in the ENVIRONMENT DIVISION, the mnemonic-name can be substituted in
any format in which such substitution is valid.

environment variable
Any of a number of variables that define some aspect of the computing environment, and are
accessible to programs that operate in that environment. Environment variables can affect the
behavior of programs that are sensitive to the environment in which they operate.

execution time
See run time.

execution-time environment
See runtime environment.

expanded date field
A date field containing an expanded (four-digit) year. See also date field and expanded year.

expanded year
A date field that consists only of a four-digit year. Its value includes the century: for example, 1998.
Compare with windowed year.

* explicit scope terminator
A reserved word that terminates the scope of a particular PROCEDURE DIVISION statement.

exponent
A number that indicates the power to which another number (the base) is to be raised. Positive
exponents denote multiplication; negative exponents denote division; and fractional exponents
denote a root of a quantity. In COBOL, an exponential expression is indicated with the symbol **
followed by the exponent.

* expression
An arithmetic or conditional expression.

* extend mode
The state of a file after execution of an OPEN statement, with the EXTEND phrase specified for that file,
and before the execution of a CLOSE statement, without the REEL or UNIT phrase for that file.

Extensible Markup Language
See XML.

652  IBM COBOL for Linux on x86 1.1: Programming Guide



extensions
COBOL syntax and semantics supported by IBM compilers in addition to those described in the 85
COBOL Standard.

external code page
For ASCII or UTF-8 XML documents, the code page indicated by the current runtime locale. For
EBCDIC XML documents, either:

• The code page specified in the EBCDIC_CODEPAGE environment variable
• The default EBCDIC code page selected for the current runtime locale if the EBCDIC_CODEPAGE

environment variable is not set

* external data
The data that is described in a program as external data items and external file connectors.

* external data item
A data item that is described as part of an external record in one or more programs of a run unit and
that can be referenced from any program in which it is described.

* external data record
A logical record that is described in one or more programs of a run unit and whose constituent data
items can be referenced from any program in which they are described.

external decimal data item
See zoned decimal data item and national decimal data item.

* external file connector
A file connector that is accessible to one or more object programs in the run unit.

external floating-point data item
See display floating-point data item and national floating-point data item.

external program
The outermost program. A program that is not nested.

* external switch
A hardware or software device, defined and named by the implementor, which is used to indicate that
one of two alternate states exists.

F

* figurative constant
A compiler-generated value referenced through the use of certain reserved words.

* file
A collection of logical records.

* file attribute conflict condition
An unsuccessful attempt has been made to execute an input-output operation on a file and the file
attributes, as specified for that file in the program, do not match the fixed attributes for that file.

* file clause
A clause that appears as part of any of the following DATA DIVISION entries: file description entry
(FD entry) and sort-merge file description entry (SD entry).

* file connector
A storage area that contains information about a file and is used as the linkage between a file-name
and a physical file and between a file-name and its associated record area.

* file control entry
A SELECT clause and all its subordinate clauses that declare the relevant physical attributes of a file.

FILE-CONTROL paragraph
A paragraph in the ENVIRONMENT DIVISION in which the data files for a given source unit are
declared.

* file description entry
An entry in the FILE SECTION of the DATA DIVISION that is composed of the level indicator FD,
followed by a file-name, and then followed by a set of file clauses as required.

Glossary  653



* file-name
A user-defined word that names a file connector described in a file description entry or a sort-merge
file description entry within the FILE SECTION of the DATA DIVISION.

* file organization
The permanent logical file structure established at the time that a file is created.

file position indicator
A conceptual entity that contains the value of the current key within the key of reference for an
indexed file, or the record number of the current record for a sequential file, or the relative record
number of the current record for a relative file, or indicates that no next logical record exists, or that
an optional input file is not available, or that the AT END condition already exists, or that no valid next
record has been established.

* FILE SECTION
The section of the DATA DIVISION that contains file description entries and sort-merge file
description entries together with their associated record descriptions.

file system
The collection of files that conform to a specific set of data-record and file-description protocols, and
a set of programs that manage these files.

* fixed file attributes
Information about a file that is established when a file is created and that cannot subsequently
be changed during the existence of the file. These attributes include the organization of the file
(sequential, relative, or indexed), the prime record key, the alternate record keys, the code set, the
minimum and maximum record size, the record type (fixed or variable), the collating sequence of the
keys for indexed files, the blocking factor, the padding character, and the record delimiter.

* fixed-length record
A record associated with a file whose file description or sort-merge description entry requires that all
records contain the same number of bytes.

fixed-point item
A numeric data item defined with a PICTURE clause that specifies the location of an optional sign, the
number of digits it contains, and the location of an optional decimal point. The format can be either
binary, packed decimal, or external decimal.

floating comment indicators (*>)
A floating comment indicator indicates a comment line if it is the first character string in the program-
text area (Area A plus Area B), or indicates an inline comment if it is after one or more character
strings in the program-text area.

floating point
A format for representing numbers in which a real number is represented by a pair of distinct
numerals. In a floating-point representation, the real number is the product of the fixed-point part
(the first numeral) and a value obtained by raising the implicit floating-point base to a power denoted
by the exponent (the second numeral). For example, a floating-point representation of the number
0.0001234 is 0.1234 -3, where 0.1234 is the mantissa and -3 is the exponent.

floating-point data item
A numeric data item that contains a fraction and an exponent. Its value is obtained by multiplying the
fraction by the base of the numeric data item raised to the power that the exponent specifies.

* format
A specific arrangement of a set of data.

* function
A temporary data item whose value is determined at the time the function is referenced during the
execution of a statement.

* function-identifier
A syntactically correct combination of character strings and separators that references a function.
The data item represented by a function is uniquely identified by a function-name with its arguments,
if any. A function-identifier can include a reference-modifier. A function-identifier that references an
alphanumeric function can be specified anywhere in the general formats that an identifier can be

654  IBM COBOL for Linux on x86 1.1: Programming Guide



specified, subject to certain restrictions. A function-identifier that references an integer or numeric
function can be referenced anywhere in the general formats that an arithmetic expression can be
specified.

function-name
A word that names the mechanism whose invocation, along with required arguments, determines the
value of a function.

function-pointer data item
A data item in which a pointer to an entry point can be stored. A data item defined with the USAGE
IS FUNCTION-POINTER clause contains the address of a function entry point. Typically used to
communicate with C and Java programs.

G

garbage collection
The automatic freeing by the Java runtime system of the memory for objects that are no longer
referenced.

GDG
See generation data group (GDG).

GDS
See generation data set (GDS).

generation data group (GDG)
A collection of chronologically related files; each such file is called a generation data set (GDS) or
generation.

generation data set (GDS)
One of the files in a generation data group (GDG); each such file is chronologically related to the other
files in the group.

* global name
A name that is declared in only one program but that can be referenced from the program and from
any program contained within the program. Condition-names, data-names, file-names, record-names,
report-names, and some special registers can be global names.

group item
(1) A data item that is composed of subordinate data items. See alphanumeric group item and national
group item. (2) When not qualified explicitly or by context as a national group or an alphanumeric
group, the term refers to groups in general.

grouping separator
A character used to separate units of digits in numbers for ease of reading. The default is the
character comma.

H

header label
(1) A label that precedes the data records in a unit of recording media. (2) Synonym for beginning-of-
file label.

* high-order end
The leftmost character of a string of characters.

host alphanumeric data item
(Of XML documents) A category alphanumeric data item whose data description entry does not
contain the NATIVE phrase, and that was compiled with the CHAR(EBCDIC) option in effect. The
encoding for the data item is the EBCDIC code page in effect. This code page is determined from
the EBCDIC_CODEPAGE environment variable, if set, otherwise from the default code page associated
with the runtime locale.

I

IBM COBOL extension
COBOL syntax and semantics supported by IBM compilers in addition to those described in the 85
COBOL Standard.

Glossary  655



ICU
See International Components for Unicode (ICU).

IDENTIFICATION DIVISION
One of the four main component parts of a COBOL program. The IDENTIFICATION DIVISION
identifies the program, class. The IDENTIFICATION DIVISION can include the following
documentation: author name, installation, or date.

* identifier
A syntactically correct combination of character strings and separators that names a data item.
When referencing a data item that is not a function, an identifier consists of a data-name, together
with its qualifiers, subscripts, and reference-modifier, as required for uniqueness of reference. When
referencing a data item that is a function, a function-identifier is used.

* imperative statement
A statement that either begins with an imperative verb and specifies an unconditional action to be
taken or is a conditional statement that is delimited by its explicit scope terminator (delimited scope
statement). An imperative statement can consist of a sequence of imperative statements.

* implicit scope terminator
A separator period that terminates the scope of any preceding unterminated statement, or a phrase of
a statement that by its occurrence indicates the end of the scope of any statement contained within
the preceding phrase.

* index
A computer storage area or register, the content of which represents the identification of a particular
element in a table.

* index data item
A data item in which the values associated with an index-name can be stored in a form specified by
the implementor.

indexed data-name
An identifier that is composed of a data-name, followed by one or more index-names enclosed in
parentheses.

* indexed file
A file with indexed organization.

* indexed organization
The permanent logical file structure in which each record is identified by the value of one or more keys
within that record.

indexing
Synonymous with subscripting using index-names.

* index-name
A user-defined word that names an index associated with a specific table.

* initial program
A program that is placed into an initial state every time the program is called in a run unit.

* initial state
The state of a program when it is first called in a run unit.

inline
In a program, instructions that are executed sequentially, without branching to routines, subroutines,
or other programs.

* input file
A file that is opened in the input mode.

* input mode
The state of a file after execution of an OPEN statement, with the INPUT phrase specified, for that file
and before the execution of a CLOSE statement, without the REEL or UNIT phrase for that file.

* input-output file
A file that is opened in the I-O mode.

656  IBM COBOL for Linux on x86 1.1: Programming Guide



* INPUT-OUTPUT SECTION
The section of the ENVIRONMENT DIVISION that names the files and the external media required by
an object program and that provides information required for transmission and handling of data at run
time.

* input-output statement
A statement that causes files to be processed by performing operations on individual records or
on the file as a unit. The input-output statements are ACCEPT (with the identifier phrase), CLOSE,
DELETE, DISPLAY, OPEN, READ, REWRITE, SET (with the TO ON or TO OFF phrase), START, and
WRITE.

* input procedure
A set of statements, to which control is given during the execution of a SORT statement, for the
purpose of controlling the release of specified records to be sorted.

* integer
(1) A numeric literal that does not include any digit positions to the right of the decimal point. (2) A
numeric data item defined in the DATA DIVISION that does not include any digit positions to the
right of the decimal point. (3) A numeric function whose definition provides that all digits to the right
of the decimal point are zero in the returned value for any possible evaluation of the function.

integer function
A function whose category is numeric and whose definition does not include any digit positions to the
right of the decimal point.

interlanguage communication (ILC)
The ability of routines written in different programming languages to communicate. ILC support lets
you readily build applications from component routines written in a variety of languages.

intermediate result
An intermediate field that contains the results of a succession of arithmetic operations.

* internal data
The data that is described in a program and excludes all external data items and external file
connectors. Items described in the LINKAGE SECTION of a program are treated as internal data.

* internal data item
A data item that is described in one program in a run unit. An internal data item can have a global
name.

internal decimal data item
A data item that is described as USAGE PACKED-DECIMAL or USAGE COMP-3, and that has a
PICTURE character string that defines the item as numeric (a valid combination of symbols 9, S, P, or
V). Synonymous with packed-decimal data item.

* internal file connector
A file connector that is accessible to only one object program in the run unit.

internal floating-point data item
A data item that is described as USAGE COMP-1 or USAGE COMP-2. COMP-1 defines a single-
precision floating-point data item. COMP-2 defines a double-precision floating-point data item. There
is no PICTURE clause associated with an internal floating-point data item.

International Components for Unicode (ICU)
An open-source development project sponsored, supported, and used by IBM. ICU libraries provide
robust and full-featured Unicode services on a wide variety of platforms, including AIX and Linux.

* intrarecord data structure
The entire collection of groups and elementary data items from a logical record that a contiguous
subset of the data description entries defines. These data description entries include all entries
whose level-number is greater than the level-number of the first data description entry describing the
intra-record data structure.

intrinsic function
A predefined function, such as a commonly used arithmetic function, called by a built-in function
reference.

Glossary  657



* invalid key condition
A condition, at run time, caused when a specific value of the key associated with an indexed or relative
file is determined to be not valid.

* I-O-CONTROL
The name of an ENVIRONMENT DIVISION paragraph in which object program requirements for rerun
points, sharing of same areas by several data files, and multiple file storage on a single input-output
device are specified.

* I-O-CONTROL entry
An entry in the I-O-CONTROL paragraph of the ENVIRONMENT DIVISION; this entry contains
clauses that provide information required for the transmission and handling of data on named files
during the execution of a program.

* I-O mode
The state of a file after execution of an OPEN statement, with the I-O phrase specified, for that file
and before the execution of a CLOSE statement without the REEL or UNIT phase for that file.

* I-O status
A conceptual entity that contains the two-character value indicating the resulting status of an input-
output operation. This value is made available to the program through the use of the FILE STATUS
clause in the file control entry for the file.

iteration structure
A program processing logic in which a series of statements is repeated while a condition is true or
until a condition is true.

J

J2EE
See Java 2 Platform, Enterprise Edition (J2EE).

Java 2 Platform, Enterprise Edition (J2EE)
An environment for developing and deploying enterprise applications, defined by Oracle. The J2EE
platform consists of a set of services, application programming interfaces (APIs), and protocols that
provide the functionality for developing multitiered, Web-based applications. (Oracle)

Java Native Interface (JNI)
A programming interface that lets Java code that runs inside a Java virtual machine (JVM)
interoperate with applications and libraries written in other programming languages.

Java virtual machine (JVM)
A software implementation of a central processing unit that runs compiled Java programs.

JSON
JSON (JavaScript Object Notation) is a lightweight data-interchange format.

JVM
See Java virtual machine (JVM).

K

K
When referring to storage capacity, two to the tenth power; 1024 in decimal notation.

* key
A data item that identifies the location of a record, or a set of data items that serve to identify the
ordering of data.

* key of reference
The key, either prime or alternate, currently being used to access records within an indexed file.

* keyword
A context-sensitive word or a reserved word whose presence is required when the format in which the
word appears is used in a source unit.

kilobyte (KB)
One kilobyte equals 1024 bytes.

658  IBM COBOL for Linux on x86 1.1: Programming Guide



L

* language-name
A system-name that specifies a particular programming language.

last-used state
A state that a program is in if its internal values remain the same as when the program was exited (the
values are not reset to their initial values).

* letter
A character belonging to one of the following two sets:

1. Uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z
2. Lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

* level indicator
Two alphabetic characters that identify a specific type of file or a position in a hierarchy. The level
indicators in the DATA DIVISION are: CD, FD, and SD.

* level-number
A user-defined word (expressed as a two-digit number) that indicates the hierarchical position of
a data item or the special properties of a data description entry. Level-numbers in the range from
1 through 49 indicate the position of a data item in the hierarchical structure of a logical record.
Level-numbers in the range 1 through 9 can be written either as a single digit or as a zero followed by
a significant digit. Level-numbers 66, 77, and 88 identify special properties of a data description entry.

* library-name
A user-defined word that names a COBOL library that the compiler is to use for compiling a given
source program.

* library text
A sequence of text words, comment lines, the separator space, or the separator pseudo-text delimiter
in a COBOL library.

Lilian date
The number of days since the beginning of the Gregorian calendar. Day one is Friday, October 15,
1582. The Lilian date format is named in honor of Luigi Lilio, the creator of the Gregorian calendar.

* linage-counter
A special register whose value points to the current position within the page body.

link
(1) The combination of the link connection (the transmission medium) and two link stations, one
at each end of the link connection. A link can be shared among multiple links in a multipoint or
token-ring configuration. (2) To interconnect items of data or portions of one or more computer
programs; for example, linking object programs by a linkage-editor to produce a shared library.

LINKAGE SECTION
The section in the DATA DIVISION of the called program that describes data items available from the
calling program. Both the calling program and the called program can refer to these data items.

literal
A character string whose value is specified either by the ordered set of characters comprising the
string or by the use of a figurative constant.

little-endian
The default format that Intel processors use to store binary data and UTF-16 characters. In this
format, the most significant byte of a binary data item is at the highest address and the most
significant byte of a UTF-16 character is at the highest address. Compare with big-endian.

locale
A set of attributes for a program execution environment that indicates culturally sensitive
considerations, such as character code page, collating sequence, date and time format, monetary
value representation, numeric value representation, or language.

Glossary  659



* LOCAL-STORAGE SECTION
The section of the DATA DIVISION that defines storage that is allocated and freed on a per-
invocation basis, depending on the value assigned in the VALUE clauses.

* logical operator
One of the reserved words AND, OR, or NOT. In the formation of a condition, either AND, or OR, or both
can be used as logical connectives. NOT can be used for logical negation.

* logical record
The most inclusive data item. The level-number for a record is 01. A record can be either an
elementary item or a group of items. Synonymous with record.

* low-order end
The rightmost character of a string of characters.

LSQ file system
The LSQ file system supports only LINE SEQUENTIAL files.

M

main program
In a hierarchy of programs and subroutines, the first program that receives control when the programs
are run within a process.

makefile
A text file that contains a list of the files for your application. The make utility uses this file to update
the target files with the latest changes.

* mass storage
A storage medium in which data can be organized and maintained in both a sequential manner and a
nonsequential manner.

* mass storage device
A device that has a large storage capacity, such as a magnetic disk.

* mass storage file
A collection of records that is stored in a mass storage medium.

MBCS
See multibyte character set (MBCS).

* megabyte (MB)
One megabyte equals 1,048,576 bytes.

* merge file
A collection of records to be merged by a MERGE statement. The merge file is created and can be used
only by the merge function.

* mnemonic-name
A user-defined word that is associated in the ENVIRONMENT DIVISION with a specified
implementor-name.

module definition file
A file that describes the code segments within a load module.

multibyte character
Any character that is represented in 2 or more bytes in a multibyte character set. For example, a DBCS
character or any UTF-8 character that is represented in two or more bytes. UTF-16 characters are not
multibyte characters because UTF-16 is not a multibyte character set.

multibyte character set (MBCS)
A coded character set that is composed of characters represented in a varying number of bytes.
Examples are: EUC (Extended Unix Code), UTF-8, and character sets composed of a mixture of
single-byte and double-byte EBCDIC or ASCII characters.

multitasking
A mode of operation that provides for the concurrent, or interleaved, execution of two or more tasks.

660  IBM COBOL for Linux on x86 1.1: Programming Guide



multithreading
Concurrent operation of more than one path of execution within a computer. Synonymous with
multiprocessing.

N

name
A word (composed of not more than 30 characters) that defines a COBOL operand.

namespace
See XML namespace.

national character
(1) A UTF-16 character in a USAGE NATIONAL data item or national literal. (2) Any character
represented in UTF-16.

national character data
A general reference to data represented in UTF-16.

national character position
See character position.

national data
See national character data.

national data item
A data item of category national, national-edited, or numeric-edited of USAGE NATIONAL.

national decimal data item
An external decimal data item that is described implicitly or explicitly as USAGE NATIONAL and that
contains a valid combination of PICTURE symbols 9, S, P, and V.

national-edited data item
A data item that is described by a PICTURE character string that contains at least one instance of the
symbol N and at least one of the simple insertion symbols B, 0, or /. A national-edited data item has
USAGE NATIONAL.

national floating-point data item
An external floating-point data item that is described implicitly or explicitly as USAGE NATIONAL and
that has a PICTURE character string that describes a floating-point data item.

national group item
A group item that is explicitly or implicitly described with a GROUP-USAGE NATIONAL clause. A
national group item is processed as though it were defined as an elementary data item of category
national for operations such as INSPECT, STRING, and UNSTRING. This processing ensures correct
padding and truncation of national characters, as contrasted with defining USAGE NATIONAL data
items within an alphanumeric group item. For operations that require processing of the elementary
items within a group, such as MOVE CORRESPONDING, ADD CORRESPONDING, and INITIALIZE, a
national group is processed using group semantics.

native alphanumeric data item
(Of XML documents) A category alphanumeric data item that is described with the NATIVE phrase,
or that was compiled with the CHAR(NATIVE) option in effect. The encoding for the data item is the
ASCII or UTF-8 code page of the runtime locale in effect.

* native character set
The implementor-defined character set associated with the computer specified in the OBJECT-
COMPUTER paragraph.

* native collating sequence
The implementor-defined collating sequence associated with the computer specified in the OBJECT-
COMPUTER paragraph.

* negated combined condition
The NOT logical operator immediately followed by a parenthesized combined condition. See also
condition and combined condition.

Glossary  661



* negated simple condition
The NOT logical operator immediately followed by a simple condition. See also condition and simple
condition.

nested program
A program that is directly contained within another program.

* next executable sentence
The next sentence to which control will be transferred after execution of the current statement is
complete.

* next executable statement
The next statement to which control will be transferred after execution of the current statement is
complete.

* next record
The record that logically follows the current record of a file.

* noncontiguous items
Elementary data items in the WORKING-STORAGE SECTION and LINKAGE SECTION that bear no
hierarchic relationship to other data items.

nondate
Any of the following items:

• A data item whose date description entry does not include the DATE FORMAT clause
• A literal
• A date field that has been converted using the UNDATE function
• A reference-modified date field
• The result of certain arithmetic operations that can include date field operands; for example, the

difference between two compatible date fields

null
A figurative constant that is used to assign, to pointer data items, the value of an address that is not
valid. NULLS can be used wherever NULL can be used.

* numeric character
A character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric data item
(1) A data item whose description restricts its content to a value represented by characters chosen
from the digits 0 through 9. If signed, the item can also contain a +, -, or other representation of
an operational sign. (2) A data item of category numeric, internal floating-point, or external floating-
point. A numeric data item can have USAGE DISPLAY, NATIONAL, PACKED-DECIMAL, BINARY, COMP,
COMP-1, COMP-2, COMP-3, COMP-4, or COMP-5.

numeric-edited data item
A data item that contains numeric data in a form suitable for use in printed output. The data item can
consist of external decimal digits from 0 through 9, the decimal separator, commas, the currency sign,
sign control characters, and other editing characters. A numeric-edited item can be represented in
either USAGE DISPLAY or USAGE NATIONAL.

* numeric function
A function whose class and category are numeric but that for some possible evaluation does not
satisfy the requirements of integer functions.

* numeric literal
A literal composed of one or more numeric characters that can contain a decimal point or an algebraic
sign, or both. The decimal point must not be the rightmost character. The algebraic sign, if present,
must be the leftmost character.

O

object code
Output from a compiler or assembler that is itself executable machine code or is suitable for
processing to produce executable machine code.

662  IBM COBOL for Linux on x86 1.1: Programming Guide



* OBJECT-COMPUTER
The name of an ENVIRONMENT DIVISION paragraph in which the computer environment, where the
object program is run, is described.

* object computer entry
An entry in the OBJECT-COMPUTER paragraph of the ENVIRONMENT DIVISION; this entry contains
clauses that describe the computer environment in which the object program is to be executed.

* object of entry
A set of operands and reserved words, within a DATA DIVISION entry of a COBOL program, that
immediately follows the subject of the entry.

object program
A set or group of executable machine-language instructions and other material designed to interact
with data to provide problem solutions. In this context, an object program is generally the machine
language result of the operation of a COBOL compiler on a source program definition. Where there is
no danger of ambiguity, the word program can be used in place of object program.

* object time
The time at which an object program is executed. Synonymous with run time.

* obsolete element
A COBOL language element in the 85 COBOL Standard that was deleted from the 2002 COBOL
Standard.

ODBC
See Open Database Connectivity (ODBC).

ODO object
In the example below, X is the object of the OCCURS DEPENDING ON clause (ODO object).

WORKING-STORAGE SECTION.
01  TABLE-1.
    05  X                   PIC S9.
    05  Y OCCURS 3 TIMES
          DEPENDING ON X    PIC X.

The value of the ODO object determines how many of the ODO subject appear in the table.

ODO subject
In the example above, Y is the subject of the OCCURS DEPENDING ON clause (ODO subject). The
number of Y ODO subjects that appear in the table depends on the value of X.

Open Database Connectivity (ODBC)
A specification for an application programming interface (API) that provides access to data in a variety
of databases and file systems.

* open mode
The state of a file after execution of an OPEN statement for that file and before the execution of a
CLOSE statement without the REEL or UNIT phrase for that file. The particular open mode is specified
in the OPEN statement as either INPUT, OUTPUT, I-O, or EXTEND.

* operand
(1) The general definition of operand is "the component that is operated upon." (2) For the purposes
of this document, any lowercase word (or words) that appears in a statement or entry format can
be considered to be an operand and, as such, is an implied reference to the data indicated by the
operand.

operation
A service that can be requested of an object.

* operational sign
An algebraic sign that is associated with a numeric data item or a numeric literal, to indicate whether
its value is positive or negative.

optional file
A file that is declared as being not necessarily available each time the object program is run.

Glossary  663



* optional word
A reserved word that is included in a specific format only to improve the readability of the language.
Its presence is optional to the user when the format in which the word appears is used in a source
unit.

* output file
A file that is opened in either output mode or extend mode.

* output mode
The state of a file after execution of an OPEN statement, with the OUTPUT or EXTEND phrase specified,
for that file and before the execution of a CLOSE statement without the REEL or UNIT phrase for that
file.

* output procedure
A set of statements to which control is given during execution of a SORT statement after the sort
function is completed, or during execution of a MERGE statement after the merge function reaches a
point at which it can select the next record in merged order when requested.

overflow condition
A condition that occurs when a portion of the result of an operation exceeds the capacity of the
intended unit of storage.

P

packed-decimal data item
See internal decimal data item.

padding character
An alphanumeric or national character that is used to fill the unused character positions in a physical
record.

page
A vertical division of output data that represents a physical separation of the data. The separation is
based on internal logical requirements or external characteristics of the output medium or both.

* page body
That part of the logical page in which lines can be written or spaced or both.

* paragraph
In the PROCEDURE DIVISION, a paragraph-name followed by a separator period and by zero, one,
or more sentences. In the IDENTIFICATION DIVISION and ENVIRONMENT DIVISION, a paragraph
header followed by zero, one, or more entries.

* paragraph header
A reserved word, followed by the separator period, that indicates the beginning of a paragraph in the
IDENTIFICATION DIVISION and ENVIRONMENT DIVISION. The permissible paragraph headers in
the IDENTIFICATION DIVISION are:

PROGRAM-ID. (Program IDENTIFICATION 
   DIVISION)
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

The permissible paragraph headers in the ENVIRONMENT DIVISION are:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
REPOSITORY. (Program
   CONFIGURATION SECTION)
FILE-CONTROL.
I-O-CONTROL.

* paragraph-name
A user-defined word that identifies and begins a paragraph in the PROCEDURE DIVISION.

664  IBM COBOL for Linux on x86 1.1: Programming Guide



parameter
Data passed between a calling program and a called program.

* phrase
An ordered set of one or more consecutive COBOL character strings that form a portion of a COBOL
procedural statement or of a COBOL clause.

* physical record
See block.

pointer data item
A data item in which address values can be stored. Data items are explicitly defined as pointers with
the USAGE IS POINTER clause. ADDRESS OF special registers are implicitly defined as pointer data
items. Pointer data items can be compared for equality or moved to other pointer data items.

port
(1) To modify a computer program to enable it to run on a different platform. (2) In the Internet
suite of protocols, a specific logical connector between the Transmission Control Protocol (TCP) or the
User Datagram Protocol (UDP) and a higher-level protocol or application. A port is identified by a port
number.

portability
The ability to transfer an application program from one application platform to another with relatively
few changes to the source program.

* prime record key
A key whose contents uniquely identify a record within an indexed file.

* priority-number
A user-defined word that classifies sections in the PROCEDURE DIVISION for purposes of
segmentation. Segment numbers can contain only the characters 0 through 9. A segment number
can be expressed as either one or two digits.

* procedure
A paragraph or group of logically successive paragraphs, or a section or group of logically successive
sections, within the PROCEDURE DIVISION.

* procedure branching statement
A statement that causes the explicit transfer of control to a statement other than the next executable
statement in the sequence in which the statements are written in the source code. The procedure
branching statements are: ALTER, CALL, EXIT, EXIT PROGRAM, GO TO, MERGE (with the OUTPUT
PROCEDURE phrase), PERFORM and SORT (with the INPUT PROCEDURE or OUTPUT PROCEDURE
phrase), XML PARSE.

PROCEDURE DIVISION
The COBOL division that contains instructions for solving a problem.

procedure integration
One of the functions of the COBOL optimizer is to simplify calls to performed procedures or contained
programs.

PERFORM procedure integration is the process whereby a PERFORM statement is replaced by its
performed procedures. Contained program procedure integration is the process where a call to a
contained program is replaced by the program code.

* procedure-name
A user-defined word that is used to name a paragraph or section in the PROCEDURE DIVISION. It
consists of a paragraph-name (which can be qualified) or a section-name.

procedure pointer
A data item in which a pointer to an entry point can be stored. A data item defined with the USAGE IS
PROCEDURE-POINTER clause contains the address of a procedure entry point.

procedure-pointer data item
A data item in which a pointer to an entry point can be stored. A data item defined with the USAGE
IS PROCEDURE-POINTER clause contains the address of a procedure entry point.  Typically used to
communicate with COBOL programs.

Glossary  665



process
The course of events that occurs during the execution of all or part of a program. Multiple processes
can run concurrently, and programs that run within a process can share resources.

program
(1) A sequence of instructions suitable for processing by a computer. Processing may include the use
of a compiler to prepare the program for execution, as well as a runtime environment to execute it. (2)
A logical assembly of one or more interrelated modules. Multiple copies of the same program can be
run in different processes.

* program identification entry
In the PROGRAM-ID paragraph of the IDENTIFICATION DIVISION, an entry that contains clauses
that specify the program-name and assign selected program attributes to the program.

program-name
In the IDENTIFICATION DIVISION and the end program marker, a user-defined word or an
alphanumeric literal that identifies a COBOL source program.

project
The complete set of data and actions that are required to build a target, such as a dynamic link library
(DLL) or other executable (EXE).

* pseudo-text
A sequence of text words, comment lines, or the separator space in a source program or COBOL
library bounded by, but not including, pseudo-text delimiters.

* pseudo-text delimiter
Two contiguous equal sign characters (==) used to delimit pseudo-text.

* punctuation character
A character that belongs to the following set:

Character Meaning

, Comma

; Semicolon

: Colon

. Period (full stop)

" Quotation mark

( Left parenthesis

) Right parenthesis

Space

= Equal sign

Q

QSAM (Queued Sequential Access Method)
An extended version of the basic sequential access method (BSAM). When this method is used, a
queue is formed of input data blocks that are awaiting processing or of output data blocks that have
been processed and are awaiting transfer to auxiliary storage or to an output device.

QSAM file system
The QSAM (Queued Sequential Access Method) file system supports fixed, variable, and spanned
records, and it enables you to directly access a QSAM file that you transferred (using z/OS FTP) from
z/OS to AIX or Linux with the options binary and quote site rdw. A QSAM file supports all
COBOL data types in the record.

* qualified data-name
An identifier that is composed of a data-name followed by one or more sets of either of the
connectives OF and IN followed by a data-name qualifier.

666  IBM COBOL for Linux on x86 1.1: Programming Guide



* qualifier
(1) A data-name or a name associated with a level indicator that is used in a reference either together
with another data-name (which is the name of an item that is subordinate to the qualifier) or together
with a condition-name. (2) A section-name that is used in a reference together with a paragraph-name
specified in that section. (3) A library-name that is used in a reference together with a text-name
associated with that library.

R

* random access
An access mode in which the program-specified value of a key data item identifies the logical record
that is obtained from, deleted from, or placed into a relative or indexed file.

* record
See logical record.

* record area
A storage area allocated for the purpose of processing the record described in a record description
entry in the FILE SECTION of the DATA DIVISION. In the FILE SECTION, the current number of
character positions in the record area is determined by the explicit or implicit RECORD clause.

* record description
See record description entry.

* record description entry
The total set of data description entries associated with a particular record. Synonymous with record
description.

record key
A key whose contents identify a record within an indexed file.

record-key-name
A user-defined word that names a key associated with an indexed file.

* record-name
A user-defined word that names a record described in a record description entry in the DATA
DIVISION of a COBOL program.

* record number
The ordinal number of a record in the file whose organization is sequential.

recording mode
The format of the logical records in a file. Recording mode can be F (fixed length), V (variable length),
S (spanned), or U (undefined).

recursion
A program calling itself or being directly or indirectly called by one of its called programs.

recursively capable
A program is recursively capable (can be called recursively) if the RECURSIVE attribute is on the
PROGRAM-ID statement.

reel
A discrete portion of a storage medium, the dimensions of which are determined by each implementor
that contains part of a file, all of a file, or any number of files. Synonymous with unit and volume.

reentrant
The attribute of a program or routine that lets more than one user share a single copy of a load
module.

* reference format
A format that provides a standard method for describing COBOL source programs.

reference modification
A method of defining a new category alphanumeric, category DBCS, or category national data item
by specifying the leftmost character and length relative to the leftmost character position of a USAGE
DISPLAY, DISPLAY-1, or NATIONAL data item.

Glossary  667



* reference-modifier
A syntactically correct combination of character strings and separators that defines a unique data
item. It includes a delimiting left parenthesis separator, the leftmost character position, a colon
separator, optionally a length, and a delimiting right parenthesis separator.

* relation
See relational operator or relation condition.

* relation character
A character that belongs to the following set:

Character Meaning

> Greater than

< Less than

= Equal to

* relation condition
The proposition (for which a truth value can be determined) that the value of an arithmetic expression,
data item, alphanumeric literal, or index-name has a specific relationship to the value of another
arithmetic expression, data item, alphanumeric literal, or index name. See also relational operator.

* relational operator
A reserved word, a relation character, a group of consecutive reserved words, or a group of
consecutive reserved words and relation characters used in the construction of a relation condition.
The permissible operators and their meanings are:

Character Meaning

IS GREATER THAN Greater than

IS > Greater than

IS NOT GREATER THAN Not greater than

IS NOT > Not greater than

IS LESS THAN Less than

IS < Less than

IS NOT LESS THAN Not less than

IS NOT < Not less than

IS EQUAL TO Equal to

IS = Equal to

IS NOT EQUAL TO Not equal to

IS NOT = Not equal to

IS GREATER THAN OR EQUAL TO Greater than or equal to

IS >= Greater than or equal to

IS LESS THAN OR EQUAL TO Less than or equal to

IS <= Less than or equal to

* relative file
A file with relative organization.

668  IBM COBOL for Linux on x86 1.1: Programming Guide



* relative key
A key whose contents identify a logical record in a relative file.

* relative organization
The permanent logical file structure in which each record is uniquely identified by an integer value
greater than zero, which specifies the logical ordinal position of the record in the file.

* relative record number
The ordinal number of a record in a file whose organization is relative. This number is treated as a
numeric literal that is an integer.

* reserved word
A COBOL word that is specified in the list of words that can be used in a COBOL source program, but
that must not appear in the program as a user-defined word or system-name.

* resource
A facility or service, controlled by the operating system, that an executing program can use.

* resultant identifier
A user-defined data item that is to contain the result of an arithmetic operation.

routine
A set of statements in a COBOL program that causes the computer to perform an operation or series
of related operations.

* routine-name
A user-defined word that identifies a procedure written in a language other than COBOL.

RSD file system
The record sequential delimited file system is a workstation file system that supports sequential
files. An RSD file supports all COBOL data types in fixed or variable-length records, can be edited by
most file editors, and can be read by programs written in other languages. This system only supports
sequential files.

* run time
The time at which an object program is executed. Synonymous with object time.

runtime environment
The environment in which a COBOL program executes.

* run unit
A stand-alone object program, or several object programs, that interact by means of COBOL CALL
statements and function at run time as an entity.

S

SBCS
See single-byte character set (SBCS).

scope terminator
A COBOL reserved word that marks the end of certain PROCEDURE DIVISION statements.It can be
either explicit (END-ADD, for example) or implicit (separator period).

* section
A set of zero, one, or more paragraphs or entities, called a section body, the first of which is preceded
by a section header. Each section consists of the section header and the related section body.

* section header
A combination of words followed by a separator period that indicates the beginning of a section in
any of these divisions: ENVIRONMENT, DATA, or PROCEDURE. In the ENVIRONMENT DIVISION and
DATA DIVISION, a section header is composed of reserved words followed by a separator period.
The permissible section headers in the ENVIRONMENT DIVISION are:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

Glossary  669



The permissible section headers in the DATA DIVISION are:

FILE SECTION.
WORKING-STORAGE SECTION.
LOCAL-STORAGE SECTION.
LINKAGE SECTION.

In the PROCEDURE DIVISION, a section header is composed of a section-name, followed by the
reserved word SECTION, followed by a separator period.

* section-name
A user-defined word that names a section in the PROCEDURE DIVISION.

segmentation

Refers to the 85 COBOL Standard segmentation module. This feature has been obsoleted and
removed from subsequent COBOL Standard versions and is not supported in COBOL for Linux.

selection structure
A program processing logic in which one or another series of statements is executed, depending on
whether a condition is true or false.

* sentence
A sequence of one or more statements, the last of which is terminated by a separator period.

* separately compiled program
A program that, together with its contained programs, is compiled separately from all other programs.

* separator
A character or two contiguous characters used to delimit character strings.

* separator comma
A comma (,) followed by a space used to delimit character strings.

* separator period
A period (.) followed by a space used to delimit character strings.

* separator semicolon
A semicolon (;) followed by a space used to delimit character strings.

sequence structure
A program processing logic in which a series of statements is executed in sequential order.

* sequential access
An access mode in which logical records are obtained from or placed into a file in a consecutive
predecessor-to-successor logical record sequence determined by the order of records in the file.

* sequential file
A file with sequential organization.

* sequential organization
The permanent logical file structure in which a record is identified by a predecessor-successor
relationship established when the record is placed into the file.

serial search
A search in which the members of a set are consecutively examined, beginning with the first member
and ending with the last.

SFS file system
The CICS Structured File Server file system is a record-oriented file system that supports sequential,
relative, and key-indexed file access.

shared library
A library created by the linker that contains at least one subroutine that can be used by multiple
processes. Programs and subroutines are linked as usual, but the code common to different
subroutines is combined in one library file that can be loaded at run time and shared by many
programs. A key to identify the shared library file is in the header of each subroutine.

670  IBM COBOL for Linux on x86 1.1: Programming Guide



* sign condition
The proposition (for which a truth value can be determined) that the algebraic value of a data item or
an arithmetic expression is either less than, greater than, or equal to zero.

signature
The name of an operation and its parameters.

* simple condition
Any single condition chosen from this set:

• Relation condition
• Class condition
• Condition-name condition
• Switch-status condition
• Sign condition

See also condition and negated simple condition.

single-byte character set (SBCS)
A set of characters in which each character is represented by a single byte. See also ASCII and
EBCDIC (Extended Binary-Coded Decimal Interchange Code).

slack bytes (within records)
Bytes inserted by the compiler between data items to ensure correct alignment of some elementary
data items. Slack bytes contain no meaningful data. The SYNCHRONIZED clause instructs the
compiler to insert slack bytes when they are needed for proper alignment.

slack bytes (between records)
Bytes inserted by the programmer between blocked logical records of a file, to ensure correct
alignment of some elementary data items. In some cases, slack bytes between records improve
performance for records processed in a buffer.

* sort file
A collection of records to be sorted by a SORT statement. The sort file is created and can be used by
the sort function only.

* sort-merge file description entry
An entry in the FILE SECTION of the DATA DIVISION that is composed of the level indicator SD,
followed by a file-name, and then followed by a set of file clauses as required.

* SOURCE-COMPUTER
The name of an ENVIRONMENT DIVISION paragraph in which the computer environment, where the
source program is compiled, is described.

* source computer entry
An entry in the SOURCE-COMPUTER paragraph of the ENVIRONMENT DIVISION; this entry contains
clauses that describe the computer environment in which the source program is to be compiled.

* source item
An identifier designated by a SOURCE clause that provides the value of a printable item.

source program
Although a source program can be represented by other forms and symbols, in this document the
term always refers to a syntactically correct set of COBOL statements. A COBOL source program
commences with the IDENTIFICATION DIVISION or a COPY statement and terminates with the end
program marker, if specified, or with the absence of additional source program lines.

source unit
A unit of COBOL source code that can be separately compiled: a program. Also known as a
compilation unit.

special character
A character that belongs to the following set:

Glossary  671



Character Meaning

+ Plus sign

- Minus sign (hyphen)

* Asterisk

/ Slant (forward slash)

= Equal sign

$ Currency sign

, Comma

; Semicolon

. Period (decimal point, full stop)

" Quotation mark

' Apostrophe

( Left parenthesis

) Right parenthesis

> Greater than

< Less than

: Colon

_ Underscore

SPECIAL-NAMES
The name of an ENVIRONMENT DIVISION paragraph in which environment-names are related to
user-specified mnemonic-names.

* special names entry
An entry in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION; this entry provides
means for specifying the currency sign; choosing the decimal point; specifying symbolic characters;
relating implementor-names to user-specified mnemonic-names; relating alphabet-names to
character sets or collating sequences; and relating class-names to sets of characters.

* special registers
Certain compiler-generated storage areas whose primary use is to store information produced in
conjunction with the use of a specific COBOL feature.

* statement
A syntactically valid combination of words, literals, and separators, beginning with a verb, written in a
COBOL source program.

STL file system
The standard language file system is the native workstation file system for COBOL. This system
supports sequential, relative, and indexed files.

structured programming
A technique for organizing and coding a computer program in which the program comprises a
hierarchy of segments, each segment having a single entry point and a single exit point. Control
is passed downward through the structure without unconditional branches to higher levels of the
hierarchy.

* subject of entry
An operand or reserved word that appears immediately following the level indicator or the level-
number in a DATA DIVISION entry.

* subprogram
See called program.

672  IBM COBOL for Linux on x86 1.1: Programming Guide



* subscript
An occurrence number that is represented by either an integer, a data-name optionally followed by an
integer with the operator + or -, or an index-name optionally followed by an integer with the operator
+ or -, that identifies a particular element in a table. A subscript can be the word ALL when the
subscripted identifier is used as a function argument for a function allowing a variable number of
arguments.

* subscripted data-name
An identifier that is composed of a data-name followed by one or more subscripts enclosed in
parentheses.

substitution character
A character that is used in a conversion from a source code page to a target code page to represent a
character that is not defined in the target code page.

surrogate pair
In the UTF-16 format of Unicode, a pair of encoding units that together represents a single Unicode
graphic character. The first unit of the pair is called a high surrogate and the second a low surrogate.
The code value of a high surrogate is in the range X'D800' through X'DBFF'. The code value of a low
surrogate is in the range X'DC00' through X'DFFF'. Surrogate pairs provide for more characters than
the 65,536 characters that fit in the Unicode 16-bit coded character set.

switch-status condition
The proposition (for which a truth value can be determined) that an UPSI switch, capable of being set
to an on or off status, has been set to a specific status.

* symbolic-character
A user-defined word that specifies a user-defined figurative constant.

syntax
(1) The relationship among characters or groups of characters, independent of their meanings or
the manner of their interpretation and use. (2) The structure of expressions in a language. (3) The
rules governing the structure of a language. (4) The relationship among symbols. (5) The rules for the
construction of a statement.

SYSADATA
A file of additional compilation information that is produced if the ADATA compiler option is in effect.

SYSIN
The primary compiler input file or files.

SYSLIB
The secondary compiler input file or files, which are processed if the LIB compiler option is in effect.

SYSPRINT
The compiler listing file.

* system-name
A COBOL word that is used to communicate with the operating environment.

T

* table
A set of logically consecutive items of data that are defined in the DATA DIVISION by means of the
OCCURS clause.

* table element
A data item that belongs to the set of repeated items comprising a table.

* text-name
A user-defined word that identifies library text.

* text word
A character or a sequence of contiguous characters between margin A and margin R in a COBOL
library, source program, or pseudo-text that is any of the following characters:

Glossary  673



• A separator, except for space; a pseudo-text delimiter; and the opening and closing delimiters for
alphanumeric literals. The right parenthesis and left parenthesis characters, regardless of context
within the library, source program, or pseudo-text, are always considered text words.

• A literal including, in the case of alphanumeric literals, the opening quotation mark and the closing
quotation mark that bound the literal.

• Any other sequence of contiguous COBOL characters except comment lines and the word COPY
bounded by separators that are neither a separator nor a literal.

thread
A stream of computer instructions (initiated by an application within a process) that is in control of a
process.

token
In the COBOL editor, a unit of meaning in a program. A token can contain data, a language keyword, an
identifier, or other part of the language syntax.

top-down design
The design of a computer program using a hierarchic structure in which related functions are
performed at each level of the structure.

top-down development
See structured programming.

trailer-label
(1) A label that follows the data records on a unit of recording medium. (2) Synonym for end-of-file
label.

troubleshoot
To detect, locate, and eliminate problems in using computer software.

* truth value
The representation of the result of the evaluation of a condition in terms of one of two values: true or
false.

U

* unary operator
A plus (+) or a minus (-) sign that precedes a variable or a left parenthesis in an arithmetic expression
and that has the effect of multiplying the expression by +1 or -1, respectively.

Unicode
A universal character encoding standard that supports the interchange, processing, and display of text
that is written in any of the languages of the modern world. There are multiple encoding schemes to
represent Unicode, including UTF-8, UTF-16, and UTF-32. COBOL for Linux supports Unicode using
UTF-16 in little-endian format as the representation for the national data type.

Uniform Resource Identifier (URI)
A sequence of characters that uniquely names a resource; in COBOL for Linux, the identifier of a
namespace. URI syntax is defined by the document Uniform Resource Identifier (URI): Generic Syntax.

unit
A module of direct access, the dimensions of which are determined by IBM.

* unsuccessful execution
The attempted execution of a statement that does not result in the execution of all the operations
specified by that statement. The unsuccessful execution of a statement does not affect any data
referenced by that statement, but can affect status indicators.

UPSI switch
A program switch that performs the functions of a hardware switch. Eight are provided: UPSI-0
through UPSI-7.

URI
See Uniform Resource Identifier (URI).

* user-defined word
A COBOL word that must be supplied by the user to satisfy the format of a clause or statement.

674  IBM COBOL for Linux on x86 1.1: Programming Guide

http://www.rfc-editor.org/rfc/rfc3986.txt


V

* variable
A data item whose value can be changed by execution of the object program. A variable used in an
arithmetic expression must be a numeric elementary item.

variable-length item
A group item that contains a table described with the DEPENDING phrase of the OCCURS clause.

* variable-length record
A record associated with a file whose file description or sort-merge description entry permits records
to contain a varying number of character positions.

* variable-occurrence data item
A variable-occurrence data item is a table element that is repeated a variable number of times.
Such an item must contain an OCCURS DEPENDING ON clause in its data description entry or be
subordinate to such an item.

* variably located group
A group item following, and not subordinate to, a variable-length table in the same record. The group
item can be an alphanumeric group or a national group.

* variably located item
A data item following, and not subordinate to, a variable-length table in the same record.

* verb
A word that expresses an action to be taken by a COBOL compiler or object program.

volume
A module of external storage. For tape devices it is a reel; for direct-access devices it is a unit.

VSAM file system
A file system that supports COBOL sequential, relative, and indexed organizations.

VSAM
A generic term for the STL file system or SFS file system.

W

web service
A modular application that performs specific tasks and is accessible through open protocols like HTTP
and SOAP.

white space
Characters that introduce space into a document. They are:

• Space
• Horizontal tabulation
• Carriage return
• Line feed
• Next line

as named in the Unicode Standard.

windowed date field
A date field containing a windowed (two-digit) year. See also date field and windowed year.

windowed year
A date field that consists only of a two-digit year. This two-digit year can be interpreted using a
century window. For example, 10 could be interpreted as 2010. See also century window. Compare
with expanded year.

* word
A character string of not more than 30 characters that forms a user-defined word, a system-name, a
reserved word, or a function-name.

Glossary  675



* WORKING-STORAGE SECTION
The section of the DATA DIVISION that describes WORKING-STORAGE data items, composed either
of noncontiguous items or WORKING-STORAGE records or of both.

workstation
A generic term for computers, including personal computers, 3270 terminals, intelligent workstations,
and UNIX terminals. Often a workstation is connected to a mainframe or to a network.

wrapper
An object that provides an interface between object-oriented code and procedure-oriented code.
Using wrappers lets programs be reused and accessed by other systems.

X

x
The symbol in a PICTURE clause that can hold any character in the character set of the computer.

XML
Extensible Markup Language. A standard metalanguage for defining markup languages that was
derived from and is a subset of SGML. XML omits the more complex and less-used parts of SGML and
makes it much easier to write applications to handle document types, author and manage structured
information, and transmit and share structured information across diverse computing systems. The
use of XML does not require the robust applications and processing that is necessary for SGML. XML is
developed under the auspices of the World Wide Web Consortium (W3C).

XML data
Data that is organized into a hierarchical structure with XML elements. The data definitions are
defined in XML element type declarations.

XML declaration
XML text that specifies characteristics of the XML document such as the version of XML being used
and the encoding of the document.

XML document
A data object that is well formed as defined by the W3C XML specification.

XML namespace
A mechanism, defined by the W3C XML Namespace specifications, that limits the scope of a collection
of element names and attribute names. A uniquely chosen XML namespace ensures the unique
identity of an element name or attribute name across multiple XML documents or multiple contexts
within an XML document.

Y

year field expansion
Explicit expansion of date fields that contain two-digit years to contain four-digit years in files and
databases, and then use of these fields in expanded form in programs. This is the only method for
assuring reliable date processing for applications that have used two-digit years.

Z

zoned decimal data item
An external decimal data item that is described implicitly or explicitly as USAGE DISPLAY and that
contains a valid combination of PICTURE symbols 9, S, P, and V. The content of a zoned decimal data
item is represented in characters 0 through 9, optionally with a sign. If the PICTURE string specifies a
sign and the SIGN IS SEPARATE clause is specified, the sign is represented as characters + or -. If
SIGN IS SEPARATE is not specified, the sign is one hexadecimal digit that overlays the first 4 bits of
the sign position (leading or trailing).

#

77-level-description-entry
A data description entry that describes a noncontiguous data item that has level-number 77.

85 COBOL Standard
The COBOL language defined by the following standards:

676  IBM COBOL for Linux on x86 1.1: Programming Guide



• ANSI INCITS 23-1985, Programming languages - COBOL, as amended by ANSI INCITS 23a-1989,
Programming Languages - COBOL - Intrinsic Function Module for COBOL

• ISO 1989:1985, Programming languages - COBOL, as amended by ISO/IEC 1989/AMD1:1992,
Programming languages - COBOL: Intrinsic function module

2002 COBOL Standard
The COBOL language defined by the following standard:

• INCITS/ISO/IEC 1989-2002, Information technology - Programming languages - COBOL

2014 COBOL Standard
The COBOL language defined by the following standard:

• INCITS/ISO/IEC 1989:2014, Information technology - Programming languages, their environments
and system software interfaces - Programming language COBOL

Glossary  677



678  IBM COBOL for Linux on x86 1.1: Programming Guide



List of resources

COBOL for Linux publications

Installation Guide, GC28-3116-00

Language Reference, SC28-3117-00

Programming Guide, SC28-3118-00

Support

If you have a problem using COBOL for Linux, visit the IBM Support website, which provides up-to-date
support information.

Related publications
DB2 for Linux, UNIX, and Windows

You can find the following publications in the IBM Documentation:

• Command Reference
• Database Administration Concepts and Configuration Reference
• SQL reference for Db2 Version 11.1 for Linux, UNIX, and Windows

TXSeries for Multiplatforms

• IBM TXSeries for Multiplatforms documentation

IBM CICS TX

• IBM CICS TX documentation

Unicode and character representation

• Unicode, www.unicode.org/
• International Components for Unicode: Converter Explorer, http://demo.icu-project.org/icu-bin/convexp/
• Character Data Representation Architecture: Reference and Registry, http://www-01.ibm.com/software/

globalization/cdra/

XML

• Extensible Markup Language (XML), www.w3.org/XML/
• Namespaces in XML 1.0, www.w3.org/TR/xml-names/
• Namespaces in XML 1.1, www.w3.org/TR/xml-names11/
• XML specification, www.w3.org/TR/xml/

© Copyright IBM Corp. 2021, 2023 679

https://www.ibm.com/mysupport/s/topic/0TO0z0000006v5OGAQ/cobol?language=en_US&productId=01t0z000007g71VAAQ
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/
http://public.dhe.ibm.com/ps/products/db2/info/vr111/pdf/en_US/sqlbook.pdf
https://www.ibm.com/support/knowledgecenter/en/SSAL2T_9.1.0/com.ibm.cics.tx.doc/ic-homepage.html
https://www.ibm.com/support/knowledgecenter/SSNAQ8
http://www.unicode.org/
http://demo.icu-project.org/icu-bin/convexp/
http://www-01.ibm.com/software/globalization/cdra/
http://www-01.ibm.com/software/globalization/cdra/
http://www.w3.org/XML/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml-names11/
http://www.w3.org/TR/xml/


680  IBM COBOL for Linux on x86 1.1: Programming Guide



Index

Special Characters
_iwzGetCCSID: convert code-page ID to CCSID

example 211
syntax 211

_iwzGetLocaleCP: get locale and EBCDIC code-page values
example 211
syntax 210

-? cob2 option 233, 240
-# cob2 option 227, 233, 240
-c cob2 option 232, 241
-cmain cob2 option 233
-comprc_ok cob2 option 232, 242
-dll cob2 option 242
-Fxxx cob2 option 233, 242
-g cob2 option

for debugging 233, 243
-host cob2 option

effect on command-line arguments 457
effect on compiler options 232
for host data format 232

-I cob2 option
searching copybooks 232, 244

-main cob2 option
specifying main program 233, 245

-o cob2 option
specifying main program 233, 246

-q cob2 option 232
-q32 cob2 option

description 233, 240
-q64 cob2 option

description 240
-shared cob2 option 242
-v cob2 option 233, 246
! character, hexadecimal values 398
? cob2 option 233, 240
.adt file 251
.cbl file suffix 225
.cob file suffix 225
.lst file suffix 231
.profile file, setting environment variables in 215
.wlist file 270
[ character, hexadecimal values 398
] character, hexadecimal values 398
*CBL statement 293
*CONTROL statement 293
# character, hexadecimal values 398
| character, hexadecimal values 398

Numerics
64-bit mode

-q64 compiler option
description 240

ADDR compiler option 251
interlanguage communication 437
programming requirements 252

64-bit mode (continued)
restrictions

can't mix 64-bit and 32-bit COBOL programs 435
CICS 381
overview 252
SFS files 121

85 COBOL Standard
definition xix
options 250

A
abends, using ERRCOUNT runtime option to induce 300
ACCEPT statement

assigning input 30
environment variables used in 223
under CICS 382

accessibility
keyboard navigation 312

active locale 201
ADATA compiler option 251
adding alternate indexes 150
adding records to files

overview 142
randomly or dynamically 142
sequentially 142

ADDR compiler option 251
ADDRESS OF special register

size depends on ADDR 252
use in CALL statement 446

addresses
incrementing 450
NULL value 450
passing between programs 450
passing entry-point addresses 452

alignment depending on ADDR 252
ALL subscript

examples 80
processing table elements iteratively 79
table elements as function arguments 51

ALPHABET clause, establishing collating sequence with 6
alphabetic data

comparing to national 194
MOVE statement with 28

alphanumeric comparison 85
alphanumeric data

comparing
effect of collating sequence 208
effect of ZWB 290
to national 194

converting
to national with MOVE 186
to national with NATIONAL-OF 187

MOVE statement with 28
alphanumeric date fields, contracting 489
alphanumeric group item

a group without GROUP-USAGE NATIONAL 21

Index  681



alphanumeric group item (continued)
definition 20

alphanumeric literals
control characters within 22
description 21
with multibyte content 197

alphanumeric-edited data
initializing

example 25
using INITIALIZE 66

MOVE statement with 28
alternate collating sequence

choosing 159
example 7

alternate index
adding 150
reading duplicates 141

alternate index file
specifying data volume for 148
specifying file name for 116

alternate index, definition 123
ANNUITY intrinsic function 52
APOST compiler option 276
applications, porting

differences between platforms 425
language differences 425
mainframe to workstation

running mainframe applications on the workstation
425

using COPY to isolate platform-specific code 425
workstation to mainframe

file names 429
file suffixes 429
language features 429
nested programs 429

arguments
describing in calling program 447
passing between COBOL and C 442
passing between COBOL and C, example 441
passing BY VALUE 447
passing from COBOL to C, example 440
passing from COBOL to C++, example 442
specifying OMITTED 447
testing for OMITTED arguments 448
to main program 457

ARITH compiler option
description 253
performance considerations 501

arithmetic
calculation on dates

convert date to COBOL integer format (CEECBLDY)
538
convert date to Lilian format (CEEDAYS) 549
convert time stamp to number of seconds
(CEESECS) 566
get current Greenwich Mean Time (CEEGMT) 553

COMPUTE statement simpler to code 49
error handling 166
with intrinsic functions 50

arithmetic comparisons 54
arithmetic evaluation

conversions and precision 47
data format conversion 46
examples 53, 55

arithmetic evaluation (continued)
fixed-point contrasted with floating-point 53
intermediate results 527
performance tips 495
precedence 50, 529
precision 527

arithmetic expression
as reference modifier 101
description of 50
in nonarithmetic statement 535
in parentheses 50
with MLE 484

arithmetic operation
with MLE 483, 484

arrays
COBOL 33

ASCII
code pages supported in XML documents 396
converting to EBCDIC 106
multibyte portability 428
SBCS portability 426

assembler
programs

listing of 270, 500
assembler language programs

debugging 369
ASSIGN clause

assignment-name environment variable 220
identifying files to the operating system 8
precedence for determining file system 116

assigning values 23
assignment-name environment variable 220
assumed century window for nondates 481
AT END (end-of-file) phrase 168

B
base file, CICS SFS 116
base locator 362
BASIS statement 293
batch compilation 277
batch debugging, activating 300
Bibliography 679
big-endian

format for data representation 254, 270, 287
big-endian, converting to little-endian 178
BINARY compiler option 254
binary data item

general description 40
intermediate results 532
synonyms 38
using efficiently 40, 496

binary data, data representation 254
binary search

description 78
example 78

BLANK WHEN ZERO clause
coded for numeric data 180
example with numeric-edited data 37

branch, implicit 89
breakpoints

conditional 329
debugger engine

environment variables 319

682  IBM COBOL for Linux on x86 1.1: Programming Guide



breakpoints (continued)
debugger engine (continued)

firewall considerations 320
starting 319

disabling 328
enabling 328
optional parameters 329

BY CONTENT 445
BY REFERENCE 445
BY VALUE

description 445
restrictions 447
valid data types 447

byte order mark not generated 414
BYTE-LENGTH intrinsic function

using 106

C
C

functions called from COBOL, example 440
functions calling COBOL, example 441, 442

C/C++
and COBOL 437
communicating with COBOL

overview 437
restriction 437

data types, correspondence with COBOL 439
multiple calls to a COBOL program 438

C++
function called from COBOL, example 442

caching
client-side

environment variable for 222
insert caching 151
read caching 151

modules under CICS 384
CALL identifier

example dynamic call 436
call interface conventions

indicating with CALLINT 254
CALL statement

BY CONTENT 445
BY REFERENCE 445
BY VALUE

description 445
restrictions 447

CALL identifier 435
CALL literal 435
effect of CALLINT option 254
exception condition 172
for error handling 172
handling of program-name in 275
overflow condition 172
RETURNING 453
to invoke date and time services 507
USING 447
with DYNAM 264
with ON EXCEPTION 172
with ON OVERFLOW 16, 172

callable services
_iwzGetCCSID: convert code-page ID to CCSID 211
_iwzGetLocaleCP: get locale and EBCDIC code-page
values 210

callable services (continued)
CEECBLDY: convert date to COBOL integer format 538
CEEDATE: convert Lilian date to character format 542
CEEDATM: convert seconds to character time stamp 545
CEEDAYS: convert date to Lilian format 549
CEEDYWK: calculate day of week from Lilian date 551
CEEGMT: get current Greenwich Mean Time 553
CEEGMTO: get offset from Greenwich Mean Time 555
CEEISEC: convert integers to seconds 557
CEELOCT: get current local time 559
CEEQCEN: query the century window 561
CEESCEN: set the century window 562
CEESECI: convert seconds to integers 563
CEESECS: convert time stamp to number of seconds
566
CEEUTC: get Coordinated Universal Time 569
IGZEDT4: get current date with four-digit year 570

CALLINT compiler option
description 254

CALLINT statement
description 293

calls
between COBOL and C/C++ under CICS
384
dynamic 435
exception condition 172
LINKAGE SECTION 448
OMITTED arguments 447
overflow condition 172
passing arguments 447
passing data 445
receiving parameters 447
recursive 443
static 435
to date and time services 507

CANCEL statement
handling of program-name in 275

case structure, EVALUATE statement for 83
CBL statement

description 293
specifying compiler options 226

CCSID
conflict in XML documents 401
definition 178
in PARSE statement 391
of XML documents 396
of XML documents to be parsed 391

CEECBLDY: convert date to COBOL integer format
example 538
syntax 538

CEEDATE: convert Lilian date to character format
example 542
syntax 542
table of sample output 544

CEEDATM: convert seconds to character time stamp
CEESECI 563
example 546
syntax 545
table of sample output 547

CEEDAYS: convert date to Lilian format
example 550
syntax 549

CEEDYWK: calculate day of week from Lilian date
example 552

Index  683



CEEDYWK: calculate day of week from Lilian date (continued)
syntax 551

CEEGMT: get current Greenwich Mean Time
example 554
syntax 553

CEEGMTO: get offset from Greenwich Mean Time
example 556
syntax 555

CEEISEC: convert integers to seconds
example 558
syntax 557

CEELOCT: get current local time
example 560
syntax 559

CEEQCEN: query the century window
example 561
syntax 561

CEESCEN: set the century window
example 562
syntax 562

CEESECI: convert seconds to integers
example 565
syntax 563

CEESECS: convert time stamp to number of seconds
example 568
syntax 566

century window
assumed for nondates 481
CEECBLDY 540
CEEDAYS 550
CEEQCEN 561
CEESCEN 562
CEESECS 568
example of querying and changing 514
fixed 474
overview 513
sliding 474

chained-list processing
example 451
overview 450

changing
characters to numbers 105
file-name 8
title on source listing 4

CHAR compiler option
description 255
effect on XML document encodings 396
multibyte portability 428
SBCS portability 426

CHAR intrinsic function, example 107
character set, definition 178
character time stamp

converting Lilian seconds to (CEEDATM)
example 546

converting to COBOL integer format (CEECBLDY)
example 540

converting to Lilian seconds (CEESECS)
example 566

CHECK runtime option
performance considerations 501
reference modification 100

checking errors, flagging at run time 299
checking for valid data

conditional expressions 85

Chinese GB 18030 data
processing 195

CICS
accessing files from non-CICS applications 384
calls between COBOL and C/C++ 384
coding programs to run under

overview 380
commands and the PROCEDURE DIVISION 380
commands relevant to COBOL 379
compiler options 385
Db2 interoperation 119
debugging programs 386
developing COBOL programs for 379
DFHCOMMAREA parameter for dynamic calls 382
DFHEIBLK parameter for dynamic calls 382
dynamic calls

overview 382
performance 384
shared libraries 383

host data format not supported 381
integrated translator

advantages 385
overview 385

module caching 384
performance

module caching 384
overview 493

portability considerations 381
restrictions

Db2 files 381
DYNAM compiler option 264
overview 381
preinitialization 465
separate translator 385

runtime options 385
separate translator

restrictions 385
shared libraries 383
system date, getting 382
TRAP runtime option, effect of 302

CICS compiler option
description 257
enables integrated translator 385
multioption interaction 250
specifying suboptions 257

CICS SFS file system
accessing SFS files

example 149
overview 148

description 121
fully qualified file names 116
nonhierarchical 121
restrictions 121
system administration of 121

CICS SFS files
accessing

example 149
non-CICS 384
overview 148

adding alternate indexes 150
alternate index file name 116
base file name 116
COBOL coding example 149
creating alternate index files 148

684  IBM COBOL for Linux on x86 1.1: Programming Guide



CICS SFS files (continued)
creating SFS files

environment variables for 148
sfsadmin command for 149

determining available data volumes 148
error processing 166
file names 116
identifying

server 116
nontransactional access 121
organization 121
primary and secondary indexes 121
processing 117
restriction with GDGs 125
specifying data volume for 148

CICS SFS server
fully qualified name 116
specifying server name 148

CICS_CDS_ROOT environment variable
matching system file-name 116

CICS_SFS_DATA_VOLUME environment variable 221
CICS_SFS_INDEX_VOLUME environment variable 221
CICS_TK_SFS_SERVER environment variable

description 220
identifying SFS server 116

CICS_VSAM_AUTO_FLUSH environment variable 221
CICS_VSAM_CACHE environment variable 222
cicsddt utility 145
cicsmap command 379
cicstcl command 379, 385
cicsterm command 379
class

user-defined 8
class condition

testing
for DBCS 198
for Kanji 198
for numeric 48
overview 85

validating data 304
clustered files 121
cob2 command

command-line argument format 457
description 225
examples

compiling 226
linking 235

modifying configuration file 227
options

-# 227
-host 457
-q abbreviation for ADDR 252
description 232
modifying defaults 227

stanza used 228
cob2 stanza 228
cob2_j command

command-line argument format 457
options

-q abbreviation for ADDR 252
stanza used 227

cob2_j stanza 227
cob2_r command

stanza used 228

cob2_r stanza 228
cob2.cfg configuration file 227
COBCPYEXT environment variable 219
COBLSTDIR environment variable 219
COBOL

and C/C++ 437
called by C functions, example 441, 442
calling C functions, example 440
calling C++ function, example 442
data types, correspondence with C/C++
439

COBOL for Linux
runtime messages 597

COBOL terms 19
COBOPT environment variable 219
COBPATH environment variable

CICS dynamic calls 382
description 220

COBRTOPT environment variable 220
code

copy 505
optimized 500

code page
accessing 211
ASCII 202
conflict in XML documents 401
definition 178
EBCDIC 202
EUC 202
euro currency support 56
for alphabetic data item 202
for alphanumeric data item 202
for DBCS data item 202
for national data item 202
hexadecimal values of special characters 398
overriding 188
querying 211
specifying for alphanumeric XML document 398
system default 204
using characters from 202
UTF-8 202
valid 204

code point, definition 178
coded character set

definition 178
in XML documents 396

coding
condition tests 86
DATA DIVISION 9
decisions 81
efficiently 493
ENVIRONMENT DIVISION 5
errors, avoiding 493
EVALUATE statement 83
file input/output 122
for files

example 136
overview 136

for SFS files, example 149
IDENTIFICATION DIVISION 3
IF statement 81
input/output

example 136
overview 136

Index  685



coding (continued)
loops 88
PROCEDURE DIVISION 13
programs to run under CICS

overview 380
steps to follow 379
system date, getting 382

programs to run under Db2
overview 373

restrictions under CICS 381
simplifying 505
SQL statements

overview 375
tables 59
techniques 9, 493
test conditions 86

collating sequence
alphanumeric 208
alternate

choosing 159
example 7

ASCII 6
binary for national keys 159
binary for national sort or merge keys 209
COLLSEQ effect on alphanumeric and DBCS operands
258
controlling 207
DBCS 209
EBCDIC 6
HIGH-VALUE 6
intrinsic functions and 210
ISO 7-bit code 6
LOW-VALUE 6
MERGE 6, 159
national 209
NATIVE 6
NCOLLSEQ effect on national operands 273
nonnumeric comparisons 6
ordinal position of a character 107
portability considerations 427
SEARCH ALL 6
SORT 6, 159
specifying 6
STANDARD-1 6
STANDARD-2 6
symbolic characters in the 7

COLLATING SEQUENCE phrase
does not apply to national keys 159
effect on sort and merge keys 208
overrides PROGRAM COLLATING SEQUENCE clause 6,
159
portability considerations 427
use in SORT or MERGE 159

COLLSEQ compiler option
description 258
effect on alphanumeric collating sequence 207
effect on DBCS collating sequence 209
portability considerations 427

columns in tables 59
command prompt, defining environment variables 215
command-line arguments

example with -host option 459
example without -host option 458
using 457

comment lines 645
comments

sending xxi
COMMON attribute 4, 432
COMP (COMPUTATIONAL) 40
COMP-1 (COMPUTATIONAL-1)

format 41
performance tips 496

COMP-2 (COMPUTATIONAL-2)
format 41
performance tips 496

COMP-3 (COMPUTATIONAL-3) 41
COMP-4 (COMPUTATIONAL-4) 40
COMP-5 (COMPUTATIONAL-5) 40
comparing data items

alphanumeric
effect of collating sequence 208
effect of COLLSEQ 258

date fields 478
DBCS

effect of collating sequence 209
effect of COLLSEQ 258
literals 198
to alphanumeric groups 209
to national 209

national
effect of collating sequence 209
effect of NCOLLSEQ 193
overview 192
to alphabetic, alphanumeric, or DBCS 194
to alphanumeric groups 194
to numeric 193
two operands 193

zoned decimal and alphanumeric, effect of ZWB 290
compatibility

dates
in comparisons 478
in DATA DIVISION 478
in PROCEDURE DIVISION 478

compatibility between workstation and host 429
compatibility mode 35, 527
compilation

statistics 360
tailoring 228

COMPILE compiler option
description 259
use NOCOMPILE to find syntax errors 307

compile-time considerations
compiler-directed errors 231
compiling programs 232
compiling without linking 232, 241
display cob2 help 233, 240
display compile and link steps 233, 240
error messages

determining what severity level to produce 267
severity levels 230

executing compile and link steps after display 233, 246
using a nondefault configuration file 233, 242

Compiled language debugger
Debugger editor 321
Memory view

changing memory locations 338
editing memory locations 338
monitors 337

686  IBM COBOL for Linux on x86 1.1: Programming Guide



Compiled language debugger (continued)
Memory view (continued)

multiple Memory views 339
preferences 339
removing monitors 340
using 336

overview 321
compiler

calculation of intermediate results 528
date-related messages, analyzing 487
generating list of error messages 230
invoking 225
limits

DATA DIVISION 9
messages

choosing severity to be flagged 308
customizing 588
determining what severity level to produce 267
embedding in source listing 308
from exit modules 594
severity levels 230, 589

return code
depends on highest severity 230
effect of message customization 590
overview 230

compiler listings
getting 356
specifying output directory 219

compiler options
abbreviations 248
ADATA 251
ADDR 251
APOST 276
ARITH

description 253
performance considerations 501

BINARY 254
CALLINT 254
CHAR 255
CICS 257
COLLSEQ 258
COMPILE 259
conflicting 250
CURRENCY 260
DATEPROC 261
DATETIME 261
DEFINE 262
DIAGTRUNC 263
DYNAM 264, 501
EXIT 265
FLAG 267, 308
FLAGSTD 268
FLOAT 269
for CICS 385
for debugging

overview 306
TEST restriction 305
THREAD restriction 305

LINECOUNT 270
LIST 270, 356
LSTFILE 271
MAP 271, 311, 356
MDECK 272
NCOLLSEQ 273

compiler options (continued)
NOCOMPILE 307
NSYMBOL 273
NUMBER 274, 358
on compiler invocation 359
OPTIMIZE

description 274
performance considerations 500, 501

performance considerations 501
PGMNAME 275
precedence 250
QUOTE 276
SEPOBJ 277
SEQUENCE 278
SOSI 278
SOURCE 280, 356
SPACE 280
specifying

cob2 command 225
environment variable 219
in shell script 226
using COBOPT 219
using PROCESS (CBL) 226

specifying compiler options
command line 239

SPILL 280
SQL

coding suboptions 377
description 281

SRCFORMAT 282
SSRANGE

performance considerations 501
status 359
table of 248
TERMINAL 284
TEST

description 284
performance considerations 502

THREAD
debugging restriction 305
description 285

TRUNC
description 285
performance considerations 502

UTF16 287
VBREF 288, 356
WSCLEAR

overview 288
performance considerations 288

XREF 289, 310
YEARWINDOW 290
ZWB 290

compiler output 356
compiler-directing statements

description 293
overview 16

compiling
programs 224
setting options 224
tailoring the configuration file 228

completion code
merge 160
sort 160

complex OCCURS DEPENDING ON

Index  687



complex OCCURS DEPENDING ON (continued)
basic forms of 73
complex ODO item 73
variably located data item 74
variably located group 74

computation
arithmetic data items 496
constant data items 494
duplicate 495
of indexes 64
of subscripts 498

COMPUTATIONAL (COMP) 40
COMPUTATIONAL-1 (COMP-1)

format 41
performance tips 496

COMPUTATIONAL-2 (COMP-2)
format 41
performance tips 496

COMPUTATIONAL-3 (COMP-3)
date fields, potential problems 489
description 41

COMPUTATIONAL-4 (COMP-4) 40
COMPUTATIONAL-5 (COMP-5) 40
COMPUTE statement

assigning arithmetic results 30
simpler to code 49

computer, describing 5
concatenating data items (STRING) 93
concatenating files

differences from Enterprise COBOL 520
GDGs 134
overview 133

condition handling
date and time services and 508
effect of ERRCOUNT 300

condition testing 86
condition-name 480
conditional expression

EVALUATE statement 81
IF statement 81
PERFORM statement 90

conditional statement
overview 15
with NOT phrase 16

configuration file
default 227
modifying 227
stanzas 229
tailoring 228

CONFIGURATION SECTION 5
conflicting compiler options 250
constants

computations 494
data items 494
definition 22
figurative, definition 22

continuation
of program 166
syntax checking 259

CONTINUE statement 81
contracting alphanumeric dates 489
control

in nested programs 432
program flow 81

control (continued)
transfer 431

CONTROL statement 293
convert character format to Lilian date (CEEDAYS) 549
convert Lilian date to character format (CEEDATE) 542
converting data items

between code pages 106
between data formats 46
precision 47
reversing order of characters 105
to alphanumeric

with DISPLAY 31
with DISPLAY-OF 188

to Chinese GB 18030 from national 195
to integers with INTEGER, INTEGER-PART 102
to national

from Chinese GB 18030 195
from UTF-8 195
with ACCEPT 31
with MOVE 186
with NATIONAL-OF 187

to numbers with NUMVAL, NUMVAL-C 105
to uppercase or lowercase

with INSPECT 103
with intrinsic functions 104

to UTF-8 from national 195
with INSPECT 102
with intrinsic functions 104

converting files to expanded date form, example 477
CONVERTING phrase (INSPECT), example 103
coprocessor, Db2

overview 375
using SQL INCLUDE with 376

copy code, obtaining from user-supplied module 266
copy libraries

example 506
COPY name

file suffixes searched 219
COPY statement

description 295
example 506
nested 505, 586
search rules 295
using for portability 425

copybook cross-reference, description 310
copybooks

cross-reference 366
library-name environment variable 219
search rules 295
searching for 232, 244
specifying search paths with SYSLIB 219
using 505

COUNT IN phrase
UNSTRING 95
XML GENERATE 415

counting
characters (INSPECT) 102
generated XML characters 410

creating
alternate index files 148
SFS files

environment variables for 148
sfsadmin command for 149

variable-length tables 70

688  IBM COBOL for Linux on x86 1.1: Programming Guide



cross-reference
COPY/BASIS 366
COPY/BASIS statements 356
copybooks 356
data and procedure-names 310
embedded 356
list 289
program-name 366
special definition symbols 367
statement list 288
statements 356
text-names and file names 310

cultural conventions, definition 201
CURRENCY compiler option 260
currency signs

euro 56
hexadecimal literals 56
multiple-character 56
using 56

CURRENT-DATE intrinsic function
example 52
under CICS 382

customer support 679
customizing

setting environment variables 215

D
data

concatenating (STRING) 93
efficient execution 493
format conversion of 46
format, numeric types 38
grouping 449
incompatible 48
naming 10
numeric 35
passing 445
record size 10
splitting (UNSTRING) 95
validating 48

data and procedure-name cross-reference, description 310
data areas, dynamic 264
data definition 361
data definition attribute codes 361
data description entry 9
DATA DIVISION

coding 9
description 9
FD entry 9
FILE SECTION 9
GROUP-USAGE NATIONAL clause 60
limits 9
LINKAGE SECTION 9, 13
listing 356
LOCAL-STORAGE SECTION 9
mapping of items 271, 356
OCCURS clause 59
OCCURS DEPENDING ON (ODO) clause 70
REDEFINES clause 67
restrictions 9
USAGE clause at the group level 21
USAGE IS INDEX clause 64
USAGE NATIONAL clause at the group level 186

DATA DIVISION (continued)
WORKING-STORAGE SECTION 9

data item
alignment depends on ADDR 252
common, in subprogram linkage 447
concatenating (STRING) 93
converting characters (INSPECT) 102
converting characters to numbers 105
converting to uppercase or lowercase 104
converting with intrinsic functions 104
counting characters (INSPECT) 102
elementary, definition 20
evaluating with intrinsic functions 106
finding the smallest or largest item 107
group, definition 20
index, referring to table elements with 62
initializing, examples of 24
numeric 35
reference modification 99
referring to a substring 99
replacing characters (INSPECT) 102
reversing characters 105
splitting (UNSTRING) 95
unused 274
variably located 74

data manipulation
character data 93

DATA RECORDS clause 10
data representation

compiler option affecting 254, 287
portability 426

data types, correspondence between COBOL and C/C++ 439
data-name

cross-reference 364
in MAP listing 361

date and time
format

converting from character format to COBOL integer
format (CEECBLDY) 538
converting from character format to Lilian format
(CEEDAYS) 549
converting from integers to seconds (CEEISEC) 557
converting from Lilian format to character format
(CEEDATE) 542
converting from seconds to character time stamp
(CEEDATM) 545
converting from seconds to integers (CEESECI) 563
converting from time stamp to number of seconds
(CEESECS) 566

getting date and time (CEELOCT) 559
intrinsic functions 538
picture strings

examples 512
overview 510

services
CEECBLDY: convert date to COBOL integer format
538
CEEDATE: convert Lilian date to character format
542
CEEDATM: convert seconds to character time stamp
545
CEEDAYS: convert date to Lilian format 549
CEEDYWK: calculate day of week from Lilian date
551

Index  689



date and time (continued)
services (continued)

CEEGMT: get current Greenwich Mean Time 553
CEEGMTO: get offset from Greenwich Mean Time
555
CEEISEC: convert integers to seconds 557
CEELOCT: get current local time 559
CEEQCEN: query the century window 561
CEESCEN: set the century window 562
CEESECI: convert seconds to integers 563
CEESECS: convert time stamp to number of seconds
566
CEEUTC: get Coordinated Universal Time 569
condition feedback 509
condition handling 508
examples of using 508
feedback code 507
invoking with a CALL statement 507
list of 537
overview 537
performing calculations with 508
return code 507
RETURN-CODE special register 507

syntax 566
date arithmetic 484
date comparisons 478
date field expansion

advantages 473
description 476

date fields, potential problems with 489
DATE FORMAT clause

cannot use with national data 472
use for automatic date recognition 471

date information, formatting 216
date operations

finding date of compilation 110
intrinsic functions for 32

date processing with internal bridges, advantages 473
date windowing

advantages 473
example 475, 480
how to control 485
MLE approach 474
when not supported 479

DATE-COMPILED paragraph 3
DATE-OF-INTEGER intrinsic function 52
DATEPROC compiler option

analyzing warning-level messages 487
description 261

DATETIME compiler option 261
DATEVAL intrinsic function

example 487
using 486

day of week, calculating with CEEDYWK 551
Db2

bindfile name 378
coding considerations 373
coprocessor

overview 375
using SQL INCLUDE with 376

ignored options 377
options 377
package name 378
precompiler requires NODYNAM 373

Db2 (continued)
precompiler restrictions 375
SQL statements

coding 375
overview 373
return codes 376
SQL INCLUDE 376
using binary data in 376

stored procedures 378
Db2 file system

accessing Db2 files 145
CICS interoperation

requirements 119
creating Db2 files 145
description 118
nonhierarchical 119
restrictions 119
using

overview 145
with SQL statements 146

DB2 file system
system administration of 118

Db2 files
accessing 145
CICS interoperation

requirements 119
setting up 145

creating 145
error processing 166
identifying

overview 113
schema 115

processing 117
schema

default 115
specifying 115

using
overview 145
with SQL statements 146

db2 utility
db2 connect, example 145
db2 create, example 145
db2 describe, example 118
overview 118

DB2DBDFT environment variable 216, 377
DB2INCLUDE environment variable 376
DBCS comparison 85
DBCS data

comparing
effect of collating sequence 209
literals 198
to alphanumeric groups 209
to national 194, 209

converting
to national, overview 198

declaring 197
encoding and storage 192
literals

comparing 198
description 22
maximum length 197
using 197

MOVE statement with 28
testing for 198

690  IBM COBOL for Linux on x86 1.1: Programming Guide



debug daemon
client machine IP address 316

DEBUG runtime option 300
Debug view 321
debugger engine

environment variables 319
firewall considerations 320
starting 319

Debugger views 320
debugging

activating batch features 300
assembler 369
CICS programs 386
compiler options for

overview 306
TEST restriction 305
THREAD restriction 305

irmtdbgc command 369
overview 303
producing symbolic information 233, 243
runtime options for 305
using COBOL language features 303
with message offset information 368

Debugging compiled languages
Debugger editor 321
mapping memory

defining a mapping layout 342
editing mapped memory 347
editing memory layouts 347
expressions, variables, and registers 342
finding and expanding fields 348
grouping map layout fields 348
multiple memory maps 349
preferences 341
removing mapped memory 348
working with memory maps 340

Memory view
changing memory locations 338
editing memory locations 338
monitors 337
multiple Memory views 339
preferences 339
removing monitors 340
using 336

overview 321
debugging, language features

class test 304
debugging lines 305
debugging statements 305
declaratives 305
DISPLAY statements 303
file status keys 304
INITIALIZE statements 305
scope terminators 303
SET statements 305
WITH DEBUGGING MODE clause 305

declarative procedures
EXCEPTION/ERROR 168
USE FOR DEBUGGING 305

DEFINE compiler option 262
defining

files
example 136
overview 136

defining (continued)
SFS files, example 149

DELETE statement
compiler-directing 296

deleting records from files 143
delimited scope statement

description of 15
nested 17

depth in tables 61
DESC suboption of CALLINT compiler option 255
DESCRIPTOR suboption of CALLINT compiler option 255
DFHCOMMAREA parameter

use in CICS dynamic calls 382
DFHEIBLK parameter

use in CICS dynamic calls 382
diagnostics, program 360
DIAGTRUNC compiler option 263
differences from host COBOL 517
direct-access

direct indexing 64
directories

adding a path to 232, 244
for listing file 231

dirty read 151
DISPLAY (USAGE IS)

encoding and storage 192
external decimal 39
floating point 40

display device, sending messages to 284
display floating-point data (USAGE DISPLAY) 39
DISPLAY statement

displaying data values 31
environment variables used in 223
using in debugging 303

DISPLAY-1 (USAGE IS)
encoding and storage 192

DISPLAY-OF intrinsic function
example with Chinese data 196
example with Greek data 188
example with UTF-8 data 195
using 188
with XML documents 397

do loop 90
do-until 90
do-while 90
document encoding declaration 397
documentation of program 5
dumps, TRAP(OFF) side effect 302
duplicate computations, grouping 495
DYNAM compiler option

description 264
effect on CALL literal 435
performance considerations 501

dynamic calls
cannot use for Db2 APIs 373
CICS

overview 382
performance 384
shared libraries 383

example of CALL identifier 436
dynamic linking

definition 435
resolution of shared library references 462

dynamic loading, requirements for 220

Index  691



E
E-level error message 230, 308
EBCDIC

code pages supported in XML documents 396
converting to ASCII 106
multibyte portability 428
SBCS portability 426

EBCDIC_CODEPAGE environment variable
setting 221

efficiency of coding 493
EJECT statement 297
embedded cross-reference

description 356
example 367

embedded error messages 308
embedded MAP summary 311, 362
Encina SFS file system

performance 150
Encina SFS files

performance 150
encoding

conflicts in XML documents 401
controlling in generated XML output 414
description 192
language characters 178
of XML documents 396
of XML documents to be parsed 391
specifying for alphanumeric XML document 398

encoding declaration
preferable to omit 398
specifying 398

end-of-file (AT END phrase) 168
enhancing XML output

example of modifying data definitions 419
rationale and techniques 419

ENTER statement 297
entry point

alternate in ENTRY statement 453
definition 461
function-pointer data item 452
passing addresses of 452
procedure-pointer data item 452

ENTRY statement
for alternate entry points 453
handling of program-name in 275

environment differences, IBM Z and the workstation 428
ENVIRONMENT DIVISION

collating sequence coding 6
CONFIGURATION SECTION 5
description 5
INPUT-OUTPUT SECTION 5

environment variables
accessing 215
accessing files with 220
assignment-name 220
CICS_CDS_ROOT

matching system file-name 116
CICS_SFS_DATA_VOLUME 221
CICS_SFS_INDEX_VOLUME 221
CICS_TK_SFS_SERVER

description 220
identifying SFS server 116

CICS_VSAM_AUTO_FLUSH 221

environment variables (continued)
CICS_VSAM_CACHE 222
COBCPYEXT 219
COBLSTDIR 219
COBOPT 219
COBPATH

CICS dynamic calls 382
description 220

COBRTOPT 220
compiler 218
compiler and runtime 216
DB2DBDFT 216
definition 215
EBCDIC_CODEPAGE 221
example of setting and accessing 223
LANG 203, 216
LC_ALL 203, 216
LC_COLLATE 203, 216
LC_CTYPE 203, 216
LC_MESSAGES 203, 216
LC_TIME 203, 216
library-name 219, 295
NLSPATH 217
PATH

description 223
precedence of paths 215
runtime 220
setting

in .profile 215
in command shell 215
in program 215
locale 203
overview 215

SYSIN, SYSIPT, SYSOUT, SYSLIST, SYSLST, CONSOLE,
SYSPUNCH, SYSPCH 223
SYSLIB 219
text-name 219, 295
TMP 217
TZ 217

environment-name 5
environment, preinitializing

example 467
for C/C++ program 438
overview 465

ERRCOUNT runtime option 300
ERRMSG, for generating list of error messages 230
error

arithmetic 166
compiler options, conflicting 250
flagging at run time 299
handling 165
message table

example using indexing 69
example using subscripting 68

processing
XML GENERATE 414
XML PARSE 400

error messages
compiler

choosing severity to be flagged 308
correcting source 229
customizing 588
determining what severity level to produce 267
embedding in source listing 308

692  IBM COBOL for Linux on x86 1.1: Programming Guide



error messages (continued)
compiler (continued)

format 231
from exit modules 594
generating a list of 230
location in listing 231
severity levels 230, 589

compiler-directed 231
runtime

format 597
incomplete or abbreviated 237
list of 597

setting national language 216
EUC code page 202
euro currency sign 56
EVALUATE statement

case structure 83
coding 83
contrasted with nested IFs 84
example that tests several conditions 84
example with multiple WHEN phrases 84
example with THRU phrase 83
performance 83
structured programming 494
testing multiple values, example 87, 88
use to test multiple conditions 81

evaluating data item contents
class test

for numeric 48
overview 85

INSPECT statement 102
intrinsic functions 106

example
_iwzGetCCSID: convert code-page ID to CCSID 211
_iwzGetLocaleCP: get locale and EBCDIC code-page
values 211

examples
CEECBLDY: convert date to COBOL integer format 540
CEEDATE: convert Lilian date to character format 542
CEEDATM: convert seconds to character format 546
CEEDAYS: convert date to Lilian format 550
CEEDYWK: calculate day of week from Lilian date 552
CEEGMT: get current GMT 554
CEEGMTO: get offset from Greenwich Mean Time 556
CEEISEC: convert integers to seconds 558
CEELOCT: get current local time 560
CEEQCEN: query century window 561
CEESCEN: set century window 562
CEESECI: convert seconds to integers 565
CEESECS: convert time stamp to number of seconds
568
IGZEDT4: get current date with four-digit year 570

exception condition
CALL 172
XML GENERATE 415
XML PARSE 400

exception handling
with XML GENERATE 414
with XML PARSE 399

EXCEPTION XML event 400
EXCEPTION/ERROR declarative

description 168
file status key 169

exceptions, intercepting 302

EXIT compiler option
character string formats 267
description 265
INEXIT suboption 585
LIBEXIT suboption 586
MSGEXIT suboption 587
parameter list 584
PRTEXIT suboption 587
user-exit work area 583
user-exit work area extension 583
using 265

exit modules
error messages generated 594
loading and invoking 585
message severity customization 587
parameter list 584
when used in place of library-name 586
when used in place of SYSLIB 586
when used in place of SYSPRINT 587

EXIT PROGRAM statement
in main program 431
in subprogram 432

explicit scope terminator 16
exponentiation

evaluated in fixed-point arithmetic 530
evaluated in floating-point arithmetic 535
performance tips 497

export command
defining environment variables 215
precedence of paths 215

extended mode 35, 527
EXTERNAL clause

example for files 455
for data items 454
for sharing files 10, 454

external code page, definition 397
external data

sharing 454
external decimal data

national 39
zoned 39

external file 454
external floating-point data

display 39
national 40

F
factoring expressions 494
FD (file description) entry 10
feedback

sending xxi
feedback token

date and time services and 509
figurative constants

definition 22
HIGH-VALUE restriction
184
national-character 184

file access mode
dynamic 124
for indexed files 123
for line-sequential files 123
for sequential files 123

Index  693



file access mode (continued)
random 124
relative files 124
sequential 124
summary table of 122

file conversion
with millennium language extensions 476

file description (FD) entry 10
file organization

indexed 123
line-sequential 123
overview 122
QSAM 147
relative 124
sequential 123

file position indicator
overview 138
setting with START 141

FILE SECTION
DATA RECORDS clause 10
description 9
EXTERNAL clause 10
FD entry 10
GLOBAL clause 10
RECORD CONTAINS clause 10
record description 9
RECORD IS VARYING 10
RECORDING MODE clause 10
VALUE OF 10

FILE STATUS clause
example 172
file loading 141
using 168
with status code

differences from host 428
example 171
overview 170

file status code
differences from host 428
example 171
using 170

file status key
00 141
02 141
05 134
35 134
49 142
92 143
checking for I/O errors 168
checking for successful OPEN 168, 170
error handling 304
setting up 135
used with status code

differences from host 428
example 171
overview 170

file suffixes
for messages listing 231
passed to the compiler 225

FILE-CONTROL paragraph, example 5
file-system support

Db2 301
Encina SFS 301
FILESYS runtime option 300

file-system support (continued)
precedence for determining file system 116
QSAM 301
RSD 301
SdU 301
SFS (Encina) 301
STL 301
VSAM implies SFS or SdU 301

files
accessing using environment variables 220
adding records to 142
associating program files to external files 5
available 134
changing name 8
CICS SFS

accessing 384
identifying 113
using 148

clustered 121
COBOL coding

example 136
overview 136

comparison of file organizations 122
concatenating

differences from Enterprise COBOL 520
GDGs 134
overview 133

concepts and terminology 111, 112
Db2

identifying 113
using 145

deleting records from 143
describing 9
external 454
file position indicator

overview 138
setting with START 141

FILESYS runtime option, effect of 300
generation data groups (GDGs) 125
identifying

to the operating system 8
within your program 113

line-sequential 123
linker

library 236
LSQ 113
multiple, compiling 225
nonexistent 134
opening

optionally 134
overview 138
protecting against errors 134

optional 134
precedence for determining file system 116
processing

CICS SFS files 117
Db2 files 117
QSAM files 117
RSD files 117
SdU files 117
SFS (CICS) files 117
STL files 117

protecting against errors when opening 134
QSAM

694  IBM COBOL for Linux on x86 1.1: Programming Guide



files (continued)
QSAM (continued)

using 147
reading records from 140
replacing records in 142
RSD 113
SdU

identifying 113
SFS (CICS)

accessing 384
identifying 113
using 148

STL
identifying 114

TRAP runtime option, effect of 302
updating records in 143
usage explanation 8
VSA implies SFS or SdU 114

FILESYS runtime option
description 300

FIPS messages
categories 589
FLAGSTD compiler option 268

fixed century window 474
fixed-point arithmetic

comparisons 54
evaluation 53
example evaluations 55
exponentiation 530

fixed-point data
binary 40
conversions and precision 47
conversions between fixed- and floating-point 46
external decimal 39
intermediate results 529
packed-decimal 41
planning use of 495

FLAG compiler option
compiler output 309
description 267
using 308

Flag option 239
flags and switches 86
FLAGSTD compiler option 268
FLOAT compiler option 269
floating comment indicators (*>) 654
floating-point arithmetic

comparisons 54
evaluation 53
example evaluations 55
exponentiation 535

floating-point data
conversions and precision 47
conversions between fixed- and floating-point 46
external 39
intermediate results 534
internal

format 41
performance tips 496

performance considerations 427
planning use of 495
portability 427

full date field expansion, advantages 473
function-pointer data item

function-pointer data item (continued)
definition 452
passing parameters to callable services 452
size depends on ADDR 252

G
GB 18030 data

converting to or from national 195
processing 195

gdgmgr utility 125
GDGs (generation data groups)

catalog 129
concatenation 134
creating 127
differences from Enterprise COBOL 519
gdgmgr utility 125, 127
limit processing

example 133
overview 132

overview 125
restrictions 125
using 128

GDSs (generation data sets)
absolute names 130
insertion and wrapping 131
relative names 130

generating XML output
example 415
overview 409

generation data groups (GDGs)
catalog 129
concatenation 134
creating 127
differences from Enterprise COBOL 519
gdgmgr utility 125, 127
limit processing

example 133
overview 132

overview 125
restrictions 125
using 128

generation data sets (GDSs)
absolute names 130
insertion and wrapping 131
relative names 130

getenv() to access environment variables 215
GLOBAL clause for files 10, 13
global names 434
Glossary 639
GOBACK statement

in main program 431
in subprogram 432

Greenwich Mean Time (GMT)
getting offset to local time (CEEGMTO) 555
return Lilian date and Lilian seconds (CEEGMT) 553

Gregorian character string
returning local time as a (CEELOCT)

example 560
group item

cannot subordinate alphanumeric group within national
group 190
comparing to national data 194
definition 20

Index  695



group item (continued)
for defining tables 59
group move contrasted with elementary move 29, 190
initializing

using a VALUE clause 68
using INITIALIZE 27, 65

MOVE statement with 29
passing as an argument 449
treated as a group item

example with INITIALIZE 65
in INITIALIZE 28

variably located 74
group move contrasted with elementary move 29, 190
GROUP-USAGE NATIONAL clause

defining a national group 189
defining tables 60
example of declaring a national group 20
initializing a national group 27

grouping data to pass as an argument 449

H
header on listing 4
help files

setting national language 216
specifying path name 217

hexadecimal
portability 427

hexadecimal literals
as currency sign 56
national

description 22
using 180

I
I-level message 230, 308
IBM Z host data format

considerations 525
IDENTIFICATION DIVISION

coding 3
DATE-COMPILED paragraph 3
listing header example 4
PROGRAM-ID paragraph 3
required paragraphs 3
TITLE statement 4

IEEE
portability 427

IF statement
coding 81
nested 82
use EVALUATE instead for multiple conditions 81
with null branch 81

IGZEDT4: get current date with four-digit year 570
imperative statement, list 15
implicit scope terminator 16
incrementing addresses 450
index

assigning a value to 64
CICS SFS files 121
computation of element displacement, example 62
creating with OCCURS INDEXED BY clause 64
definition 62

index (continued)
incrementing or decrementing 64
initializing 64
key, detecting faulty 172
range checking 308
referencing other tables with 64

index data item
cannot use as subscript or index 64
creating with USAGE IS INDEX clause 64
size depends on ADDR 252

indexed file organization 123
indexed files

CICS SFS files 121
file access mode 123

indexing
computation of element displacement, example 62
definition 62
example 69
preferred to subscripting 497
tables 64

INITIAL clause
effect on main program 432
effect on nested programs 4
setting programs to initial state 4

INITIALIZE statement
examples 24
loading group values 27
loading national group values 27
loading table values 65
REPLACING phrase 65
using for debugging 305

initializing
a group item

using a VALUE clause 68
using INITIALIZE 27, 65

a national group item
using a VALUE clause 68
using INITIALIZE 27, 66

a structure using INITIALIZE 27
a table

all occurrences of an element 68
at the group level 68
each item individually 67
using INITIALIZE 65
using PERFORM VARYING 90

examples 24
runtime environment

overview 465
the runtime environment

example 467
variable-length group 72

inline PERFORM
example 89
overview 89

input
from files 111
overview 122

input procedure
coding 155
example 159
requires RELEASE or RELEASE FROM 156
restrictions 157

INPUT-OUTPUT SECTION 5
input/output

696  IBM COBOL for Linux on x86 1.1: Programming Guide



input/output (continued)
checking for errors 168
coding

example 136
overview 136

introduction 111
logic flow after error 166
processing errors

CICS SFS files 166
Db2 files 166
SdU files 166
SFS (CICS) files 166
STL files 166

input/output coding
AT END (end-of-file) phrase 168
checking for successful operation 168
checking status code

differences from host 428
example 171
overview 170

detecting faulty index key 172
error handling techniques 166
EXCEPTION/ERROR declaratives 168

insert cache 151
INSERT statement 297
INSPECT statement

avoid with UTF-8 data 399
examples 103
using 102

inspecting data (INSPECT) 102
INTEGER intrinsic function, example 102
INTEGER-OF-DATE intrinsic function 52
INTEGER-PART intrinsic function 102
integers

converting Lilian seconds to (CEESECI) 563
integrated CICS translator

advantages 385
overview 385

integrated translator 385
interlanguage communication

between COBOL and C/C+
+

overview 437
restriction 437

intermediate results 527
internal bridges

advantages 473
example 476
for date processing 475

internal floating-point data (COMP-1, COMP-2) 41
intrinsic functions

as reference modifiers 102
collating sequence, effect of 210
compatibility with CEELOCT 559
converting alphanumeric data items with 104
converting national data items with 104
date and time 538
DATEVAL

example 487
using 486

evaluating data items 106
example of

ANNUITY 52
CHAR 107

intrinsic functions (continued)
example of (continued)

CURRENT-DATE 52
DISPLAY-OF 188
INTEGER 102
INTEGER-OF-DATE 52
LENGTH 52, 108, 109
LOG 53
LOWER-CASE 104
MAX 52, 80, 107, 108
MEAN 53
MEDIAN 53, 80
MIN 102
NATIONAL-OF 188
NUMVAL 105
NUMVAL-C 52, 105
ORD 107
ORD-MAX 80, 107
PRESENT-VALUE 52
RANGE 53, 80
REM 53
REVERSE 105
SQRT 53
SUM 80
UPPER-CASE 104
WHEN-COMPILED 110

finding date of compilation 110
finding largest or smallest item 107
finding length of data items 109
intermediate results 532, 535
introduction to 32
nesting 33
numeric functions

examples of 50
integer, floating-point, mixed 50
nested 51
special registers as arguments 51
table elements as arguments 51
uses for 50

processing table elements 79
UNDATE

example 487
using 486

INVALID KEY phrase
description 172
example 172

INVOKE statement
with PROCEDURE DIVISION RETURNING 453

invoking
compiler and linker 225
date and time services 507

irmtdbgc command, example 369
iwzGetSortErrno, obtaining sort or merge error number with
161

J
Java

libraries
specified in cob2.cfg 227

JNI
libraries

specified in cob2.cfg 227
JNIEnvPtr special register

Index  697



JNIEnvPtr special register (continued)
size depends on ADDR 252

K
Kanji comparison 85
Kanji data, testing for 198
keys

for binary search 78
for merging

default 208
defining 158
overview 154

for sorting
default 208
defining 158
overview 153

permissible data types
in MERGE statement 159
in OCCURS clause 60
in SORT statement 159

to specify order of table elements 60
keyword 658

L
LABEL declarative

description 297
LANG environment variable 216
largest or smallest item, finding 107
last-used state

subprograms with EXIT PROGRAM or GOBACK 432
lazy write

enabling 152
environment variable for 221

LC_ALL environment variable 216
LC_COLLATE environment variable 216
LC_CTYPE environment variable 216
LC_MESSAGES environment variable 216
LC_TIME environment variable 216
LENGTH intrinsic function

compared with LENGTH OF special register 109
example 52, 109
result size depends on ADDR 252
using 106
variable-length results 108
with national data 109

length of data items, finding 109
LENGTH OF special register

passing 446
size depends on ADDR 252
using 109

level-88 item
conditional expressions 85
for windowed date fields 480
restriction 481
setting switches off, example 88
setting switches on, example 88
switches and flags 86
testing multiple values, example 87
testing single values, example 86

level-number 361
library file 236

library text
specifying path for 219

library-name
alternative if not specified 232, 244
specifying path for 295
specifying path for library text 219
when not used 586

Lilian date
calculate day of week from (CEEDYWK) 551
convert date to (CEEDAYS) 549
convert date to COBOL integer format (CEECBLDY) 538
convert output_seconds to (CEEISEC) 557
convert to character format (CEEDATE) 542
get current local date or time as a (CEELOCT) 559
get GMT as a (CEEGMT) 553
using as input to CEESECI 564

limits of the compiler
DATA DIVISION 9
user data 9

line number 360
line-sequential files

file access mode 123
organization 123

LINECOUNT compiler option 270
linkage conventions

compiler directive CALLINT for 293
compiler option CALLINT for 254

LINKAGE SECTION
coding 448
for describing parameters 447
with recursive calls 13
with the THREAD option 13

linkages, data 439
linked-list processing, example 451
linker

errors 237
file defaults 237
files

library 236
invoking 225, 234
resolution of references to shared libraries 462
search rules 236
specifying options 234

linking
examples 235
programs 234
static 461

LIST compiler option
description 270
getting output 356
use in debugging 368

List of resources 679
listening for debug engines

client machine IP address 316
listing output 356
listings

data and procedure-name cross-reference 310
embedded error messages 308
generating a short listing 357
line numbers, user-supplied 358
sorted cross-reference of program-names 366
sorted cross-reference of text-names 366
terms used in MAP output 363
text-name cross-reference 310

698  IBM COBOL for Linux on x86 1.1: Programming Guide



literals
alphanumeric

control characters within 22
description 21
with multibyte content 197

DBCS
description 22
maximum length 197
using 197

definition 21
hexadecimal

using 180
national

description 22
using 180

numeric 21
using 21

little-endian
format for data representation 254, 270, 287

little-endian, converting to big-endian 178
loading a table dynamically 65
local CICS transaction

debugging
CICS TX 349
TXSeries 349

local names 434
local time

getting (CEELOCT) 559
LOCAL-STORAGE SECTION

comparison with WORKING-
STORAGE

example 11
overview 11

locale
accessing 210
and messages 204
cultural conventions, definition 201
default 204
definition 201
effect of COLLSEQ compiler option 208
effect of PROGRAM COLLATING SEQUENCE 208
locale-based collating 207
querying 210
shown in listing 310, 360
specifying 216
supported values 204
value syntax 203

locating source 323
LOG intrinsic function 53
loops

coding 88
conditional 90
do 90
in a table 90
performed an explicit number of times 90

LOWER-CASE intrinsic function 104
lowercase, converting to 104
LSQ files

identifying 113
lst file suffix 231
LSTFILE compiler option 271

M
main entry point

specifying with cob2 233
main program

and subprograms 431
arguments to 457
specifying with cob2 233, 245

MAP compiler option
description 271
embedded MAP summary 356
example 361, 364
nested program map

example 364
symbols used in output 363
terms used in output 363
using 311, 356

Mapping memory while debugging
defining a mapping layout 342
editing mapped memory 347
editing memory layouts 347
expressions, variables, and registers 342
finding and expanding fields 348
grouping map layout fields 348
multiple memory maps 349
preferences 341
removing mapped memory 348
working with memory maps 340

mapping of DATA DIVISION items 356
mathematics

intrinsic functions 50, 53
MAX intrinsic function

example table calculation 80
example with functions 52
using 107

MDECK compiler option
description 272
multioption interaction 250

MEAN intrinsic function
example statistics calculation 53
example table calculation 80

MEDIAN intrinsic function
example statistics calculation 53
example table calculation 80

Memory mapping while debugging
defining a mapping layout 342
editing mapped memory 347
editing memory layouts 347
expressions, variables, and registers 342
finding and expanding fields 348
grouping map layout fields 348
multiple memory maps 349
preferences 341
removing mapped memory 348
working with memory maps 340

Memory view
adding monitors 336

merge
alternate collating sequence 159
completion code 160
criteria 158
description 153
determining success 160
diagnostic message 160

Index  699



merge (continued)
error number

list of possible values 161
obtaining with iwzGetSortErrno 161

files, describing 154
keys

default 208
defining 158
overview 154

process 153
terminating 164
work files

describing 154
TMP environment variable 217

MERGE statement
ASCENDING|DESCENDING KEY phrase 158
COLLATING SEQUENCE phrase 6, 159
description 158
GIVING phrase 158
overview 153
USING phrase 158

message catalogs
specifying path name 217

messages
compiler

choosing severity to be flagged 308
customizing 588
date-related 487
determining what severity level to produce 267
embedding in source listing 308
generating a list of 230
millennium language extensions 487
severity levels 230, 589

compiler-directed 231
from exit modules 594
national language support 204
offset information 368
runtime

effect of ERRCOUNT 300
format 597
incomplete or abbreviated 237
list of 597

sending to display device 284
setting national language 216
TRAP(OFF) side effect 302

millennium language extensions
assumed century window 481
compatible dates 478
concepts 472
date windowing 471
DATEPROC compiler option 261
nondates 482
objectives 473
principles 472
YEARWINDOW compiler option 290

MIN intrinsic function
example 102
using 107

MLE 472
mnemonic-name

SPECIAL-NAMES paragraph 5
module caching under CICS 384
Modules view 335
Monitors view

Monitors view (continued)
dereferencing variables and expressions 335
setting the representation of monitor contents 334

MOVE statement
assigning arithmetic results 30
converting to national data 186
CORRESPONDING 29
effect of ODO on lengths of sending and receiving items
71
group move contrasted with elementary move 29, 190
with elementary receiving items 28
with group receiving items 29
with national items 28

MSGEXIT suboption of EXIT option
effect on compilation return code 590
example user exit 590
message severity levels 589
processing of 587
syntax 266

multiple currency signs
example 56
using 56

multiple thread environment, running in 285
multithreading

effect on return code 444

N
N delimiter for national or DBCS literals 22
name declaration

searching for 435
naming

programs 3
NATIONAL (USAGE IS)

external decimal 39
floating point 40

national comparison 85
national data

cannot use with DATE FORMAT clause 472
comparing

effect of collating sequence 209
effect of NCOLLSEQ 193
overview 192
to alphabetic, alphanumeric, or DBCS 194
to alphanumeric groups 194
to numeric 193
two operands 193

concatenating (STRING) 93
converting

from alphanumeric or DBCS with NATIONAL-OF 187
from alphanumeric, DBCS, or integer with MOVE
186
overview 186
to alphanumeric with DISPLAY-OF 188
to numbers with NUMVAL, NUMVAL-C 105
to or from Chinese GB 18030 195
to or from Greek alphanumeric, example 188
to or from UTF-8 195
to uppercase or lowercase 104
with INSPECT 102

defining 179
encoding in XML documents 396
evaluating with intrinsic functions 106
external decimal 39

700  IBM COBOL for Linux on x86 1.1: Programming Guide



national data (continued)
external floating-point 40
figurative constants 184
finding the smallest or largest item 107
in conditional expressions 192, 193
in generated XML documents 409
in keys

in MERGE statement 159
in OCCURS clause 60
in SORT statement 159

initializing, example of 25
input with ACCEPT 31
inspecting (INSPECT) 102
LENGTH intrinsic function and 109
LENGTH OF special register 109
literals

using 180
MOVE statement with 28, 186
NSYMBOL compiler option if no USAGE clause 180
output with DISPLAY 31
reference modification of 99
reversing characters 105
specifying 179
splitting (UNSTRING) 96
VALUE clause with alphanumeric literal, example 108

national decimal data (USAGE NATIONAL)
defining 185
example 35
format 39
initializing, example of 26

national floating-point data (USAGE NATIONAL)
defining 185
definition 40

national group item
advantages over alphanumeric groups 185
can contain only national data 20, 190
contrasted with USAGE NATIONAL group 21
defining 189
example 20
for defining tables 60
in generated XML documents 409
initializing

using a VALUE clause 68
using INITIALIZE 27, 66

LENGTH intrinsic function and 109
MOVE statement with 29
overview 185
passing as an argument 449
treated as a group item

example with INITIALIZE 190
in INITIALIZE 28
in MOVE CORRESPONDING 29
summary 191

treated as an elementary item
example with MOVE 29
in most cases 20, 185

using
as an elementary item 190
overview 189

VALUE clause with alphanumeric literal, example 68
national language support

messages 204
national language support (NLS)

accessing locale and code-page values 210

national language support (NLS) (continued)
collating sequence 207
DBCS 196
locale 201
locale-based collating 207
processing data 177
setting the locale 201
specifying locale and code page 216

national literals
description 22
using 180

national-edited data
defining 180
editing symbols 180
initializing

example 25
using INITIALIZE 66

MOVE statement with 28
PICTURE clause 180

NATIONAL-OF intrinsic function
example with Chinese data 196
example with Greek data 188
example with UTF-8 data 195
using 187
with XML documents 397

native files 123
native format

-host option effect on command-line arguments 457
BINARY option 254
CHAR option 255
FLOAT option 269, 270
UTF16 option 287

NCOLLSEQ compiler option
description 273
effect on national collating sequence 207, 209
effect on national comparisons 193
effect on sort and merge keys 159

nested COPY statement 505, 586
nested delimited scope statements 17
nested IF statement

coding 82
CONTINUE statement 81
EVALUATE statement preferred 82
with null branches 81

nested intrinsic functions 51
nested program map

description 356
example 364

nested programs
calling 432
description 433
effect of INITIAL clause 4
guidelines 432
map 356, 364
scope of names 434
transfer of control 432

nesting level
program 360, 364
statement 360

NLSPATH environment variable 217
NOCOMPILE compiler option

use to find syntax errors 307
NODESC suboption of CALLINT compiler option 255
NODESCRIPTOR suboption of CALLINT compiler option 255

Index  701



nondates with MLE 482
NOSSRANGE compiler option

effect on checking errors 299
Notices 635
NSYMBOL compiler option

description 273
effect on N literals 22
for DBCS literals 180
for national data items 180
for national literals 180

null branch 81
null-terminated strings

example 98
handling 449
manipulating 98

NUMBER compiler option
description 274
for debugging 358

numeric class test
checking for valid data 48

numeric comparison 85
numeric data

binary
USAGE BINARY 40
USAGE COMPUTATIONAL (COMP) 40
USAGE COMPUTATIONAL-4 (COMP-4) 40
USAGE COMPUTATIONAL-5 (COMP-5) 40

can compare algebraic values regardless of USAGE 194
comparing to national 193
converting

between fixed- and floating-point 46
precision 47
to national with MOVE 186

defining 35
display floating-point (USAGE DISPLAY) 39
editing symbols 37
external decimal

USAGE DISPLAY 39
USAGE NATIONAL 39

external floating-point
USAGE DISPLAY 39
USAGE NATIONAL 40

internal floating-point
USAGE COMPUTATIONAL-1 (COMP-1) 41
USAGE COMPUTATIONAL-2 (COMP-2) 41

national decimal (USAGE NATIONAL) 39
national floating-point (USAGE NATIONAL) 40
packed-decimal

sign representation 47
USAGE COMPUTATIONAL-3 (COMP-3) 41
USAGE PACKED-DECIMAL 41

PICTURE clause 35, 37
storage formats 38
USAGE DISPLAY 35
USAGE NATIONAL 35
zoned decimal (USAGE DISPLAY)

format 39
sign representation 47

numeric intrinsic functions
example of

ANNUITY 52
CURRENT-DATE 52
INTEGER 102
INTEGER-OF-DATE 52

numeric intrinsic functions (continued)
example of (continued)

LENGTH 52, 108
LOG 53
MAX 52, 80, 107, 108
MEAN 53
MEDIAN 53, 80
MIN 102
NUMVAL 105
NUMVAL-C 52, 105
ORD 107
ORD-MAX 80
PRESENT-VALUE 52
RANGE 53, 80
REM 53
SQRT 53
SUM 80

integer, floating-point, mixed 50
nested 51
special registers as arguments 51
table elements as arguments 51
uses for 50

numeric literals, description 21
numeric-edited data

BLANK WHEN ZERO clause
coding with numeric data 180
example 37

defining 180
editing symbols 37
initializing

examples 26
using INITIALIZE 66

PICTURE clause 37
USAGE DISPLAY

displaying 37
initializing, example of 26

USAGE NATIONAL
displaying 37
initializing, example of 26

NUMVAL intrinsic function
description 105

NUMVAL-C intrinsic function
description 105
example 52

NX delimiter for national literals 22

O
object code

generating 259
object references

size depends on ADDR 252
OBJECT-COMPUTER paragraph 5
objectives of millennium language extensions 473
OCCURS clause

ASCENDING|DESCENDING KEY phrase
example 78
needed for binary search 78
specify order of table elements 60

cannot use in a level-01 item 59
defining tables 59
for defining table elements 59
INDEXED BY phrase for creating indexes 64
nested for creating multidimensional tables 60

702  IBM COBOL for Linux on x86 1.1: Programming Guide



OCCURS DEPENDING ON (ODO) clause
complex 73
for creating variable-length tables 70
initializing ODO elements 72
ODO object 70
ODO subject 70
optimization 497
simple 70

OCCURS INDEXED BY clause, creating indexes with 64
ODO object 70
ODO subject 70
OMITTED parameters 507
OMITTED phrase for omitting arguments 447
ON SIZE ERROR

with windowed date fields 484
OPEN statement

file availability 134
file status key 168

opening files
optionally 134
overview 138
protecting against errors 134
using environment variables 220

operational force
description 152
environment variable for 221
suppressing 152

optimization
avoid ALTER statement 494
BINARY data items 496
consistent data 496
constant computations 494
constant data items 494
duplicate computations 495
effect of compiler options on 500
effect on parameter passing 447
effect on performance 493
factor expressions 494
index computations 498
indexing 497
OCCURS DEPENDING ON 497
out-of-line PERFORM 494
packed-decimal data items 496
performance implications 497
structured programming 493
subscript computations 498
subscripting 497
table elements 497
top-down programming 494
unused data items 274

OPTIMIZE compiler option
description 274
effect on parameter passing 447
performance considerations 500, 501

optimizer
overview 500

options
85 COBOL Standard 250
specifying for linker 234

ORD intrinsic function, example 107
ORD-MAX intrinsic function

example table calculation 80
using 107

ORD-MIN intrinsic function 107

order of evaluation
arithmetic operators 50, 529
compiler options 250

out-of-line PERFORM 89
output

overview 122
to files 111

output procedure
coding 157
example 159
requires RETURN or RETURN INTO 157
restrictions 157

overflow condition
CALL 172
joining and splitting strings 165
UNSTRING 95

overview 311

P
packed-decimal data item

date fields, potential problems 489
description 41
sign representation 47
synonym 38
using efficiently 41, 496

paragraph
definition 14
grouping 91

parameters
describing in called program 447
in main program 457

parse data item, definition 391
parsing XML documents

description 391
overview 389
UTF-8 399
white space 397
XML declaration 397

passing data between programs
addresses 450
arguments in calling program 447
BY CONTENT 445
BY REFERENCE 445
BY VALUE

overview 445
restrictions 447

EXTERNAL data 454
OMITTED arguments 447
parameters in called program 447
RETURN-CODE special register 453

PATH environment variable
description 223

path name
for copybook search 232, 244, 295
library text 219
multiple, specifying 219, 295
precedence 215
specifying for catalogs and help files 217
specifying for executable programs 223

PERFORM statement
coding loops 88
for a table

example using indexing 69

Index  703



PERFORM statement (continued)
for a table (continued)

example using subscripting 68
for changing an index 64
inline 89
out-of-line 89
performed an explicit number of times 90
TEST AFTER 90
TEST BEFORE 90
THRU 91
TIMES 90
UNTIL 90
VARYING 90
VARYING WITH TEST AFTER 90
WITH TEST AFTER . . . UNTIL 90
WITH TEST BEFORE . . . UNTIL 90

performance
arithmetic evaluations 495
arithmetic expressions 496
CICS

dynamic calls 384
module caching 384
overview 493

coding for 493
coding tables 497
compiler option

ARITH 501
DYNAM 501
FLOAT 427
OPTIMIZE 500, 501
SSRANGE 501
TEST 502
TRUNC 285, 502
WSCLEAR 288

consistent data types 496
data usage 496
effect of compiler options on 500
exponentiations 497
module caching under CICS 384
OCCURS DEPENDING ON 497
optimizer

overview 500
order of WHEN phrases in EVALUATE 83
out-of-line PERFORM compared with inline 89
programming style 493
SFS (CICS) files

environment variable for 221
reducing frequency of saves 152

SFS files
client-side caching 151

table handling 498
table searching

binary compared with serial 76
improving serial search 77

tuning 493
variable subscript data format 63
worksheet 502

performing calculations
date and time services 508

period as scope terminator 16
PGMNAME compiler option 275
phrase, definition of 15
PICTURE clause

cannot use for internal floating point 36

PICTURE clause (continued)
determining symbol used 260
incompatible data 48
N for national data 179
national-edited data 180
numeric data 35
numeric-edited data 180
Z for zero suppression 37

picture strings
examples 512
overview 510

platform differences 428
pointer data item

description 33
incrementing addresses with 450
NULL value 450
passing addresses 450
processing chained lists 450
size depends on ADDR 252
used to process chained list 451

porting applications
CICS 381
differences between platforms 425
effect of separate sign 36
environment differences 428
file-status keys 428
language differences 425
mainframe to workstation

running mainframe applications on the workstation
425

multibyte 428
multitasking 429
overview 425
SBCS 426
using COPY to isolate platform-specific code 425
workstation to mainframe

compiler options 429
file names 429
file suffixes 429
language features 429
nested programs 429

precedence
arithmetic operators 50, 529
compiler options 250
file-system determination 116
paths within environment variables 215

preferences, setting 317
preinitializing the COBOL environment

example 467
for C/C++ program 438
initialization 465
overview 465
restriction under CICS 465
termination 466

preparing to debug 314
PRESENT-VALUE intrinsic function 52
procedure and data-name cross-reference, description 310
PROCEDURE DIVISION

description 13
in subprograms 449
RETURNING

to return a value 13
using 453

statements

704  IBM COBOL for Linux on x86 1.1: Programming Guide



PROCEDURE DIVISION (continued)
statements (continued)

compiler-directing 16
conditional 15
delimited scope 15
imperative 15

terminology 13
USING

BY VALUE 449
to receive parameters 13, 447

procedure-pointer data item
definition 452
passing parameters to callable services 452
SET statement and 453
size depends on ADDR 252
using 453

process
terminating 439

PROCESS (CBL) statement
conflicting options in 250
description 293
specifying compiler options 226

processing
chained lists

example 451
overview 450

tables
example using indexing 69
example using subscripting 68

producing XML output 409
product support 679
profile file, setting environment variables in 215
program

attribute codes 364
decisions

EVALUATE statement 81
IF statement 81
loops 90
PERFORM statement 90
switches and flags 86

diagnostics 360
limitations 493
main 431
nesting level 360
statistics 360
structure 3
subprogram 431

PROGRAM COLLATING SEQUENCE clause
COLLSEQ interaction 258
does not affect national or DBCS operands 6
effect on alphanumeric comparisons 208
establishing collating sequence 6
no effect on DBCS comparisons 209
no effect on national comparisons 209
overridden by COLLATING SEQUENCE phrase 6
overrides default collating sequence 159

PROGRAM-ID paragraph
coding 3
COMMON attribute 4
INITIAL clause 4

program-names
cross-reference 366
handling of case 275
specifying 3

programs, running 237
putenv() to set environment variables 215

Q
QSAM file system 119
QSAM files

identifying 113
processing 117
using

overview 147
QUOTE compiler option 276

R
railroad track diagrams, how to read xx
RANGE intrinsic function

example statistics calculation 53
example table calculation 80

RAW file system, see QSAM file system 119
RCFs

sending xxi
read cache 151
READ NEXT statement 141
READ PREVIOUS statement 141
READ statement

AT END phrase 168
overview 140

reader comments
sending xxi

reading records from files 140
record

description 9
format 122
TRAP runtime option, effect of 302

RECORD CONTAINS clause
FILE SECTION entry 10

RECORDING MODE clause 10
recursive calls

and the LINKAGE SECTION 13
coding 443
identifying 4

REDEFINES clause, making a record into a table using 67
reentrant code 517
reference modification

example 100
expression checking with SSRANGE 283
generated XML documents 410
intrinsic functions 99
national data 99
out-of-range values 100
tables 63, 99
UTF-8 documents 195

reference modifier
arithmetic expression as 101
intrinsic function as, example 102
variables as 100

registers, working with 335
relate items to system-names 5
relation condition 85
relative files

file access mode 124
organization 124

Index  705



RELEASE FROM statement
compared to RELEASE 156
example 156

RELEASE statement
compared to RELEASE FROM 156
with SORT 155, 156

REM intrinsic function 53
REPLACE statement

description 297
replacing

data items (INSPECT) 102
records in files 142

REPLACING phrase (INSPECT), example 103
REPOSITORY paragraph

coding 5
representation

data 48
sign 47

restrictions
CICS

overview 381
separate translator 385

Db2 files 119
Db2 precompiler 375
generation data groups (GDGs) 125
input/output procedures 157
SdU files 120, 125
SFS files 121, 125
subscripting 63

return code
compiler

depends on highest severity 230
effect of message customization 590
overview 230

feedback code from date and time services 507
files

differences from host 428
example 171
overview 170

from Db2 SQL statements 376
normal termination 444
RETURN-CODE special register 444, 453, 507
unrecoverable exception 444

RETURN statement
required in output procedure 157
with INTO phrase 157

RETURN-CODE special register
normal termination 444
passing data between programs 453
passing return codes between programs 444
sharing return codes between programs 453
unrecoverable exception 444
value after call to date and time service 507

RETURNING phrase
CALL statement 453
PROCEDURE DIVISION header 453

REVERSE intrinsic function 105
reversing characters 105
ROUNDED phrase 528
rows in tables 61
RSD file system 120
RSD files

identifying 113
processing 117

run time
arguments 457
changing file-name 8
differences between platforms 426
messages 597
performance 493

run unit
terminating 439

running programs 237
runtime environment, preinitializing

example 467
overview 465

runtime messages
format 597
incomplete or abbreviated 237
list of 597
setting national language 216

runtime options
CHECK 299
CHECK(OFF)

performance considerations 501
DEBUG 300, 305
ERRCOUNT 300
FILESYS 300
for CICS 385
overview 299
specifying 220
TRAP

description 302
ON SIZE ERROR 166

UPSI 302

S
S-level error message 230, 308
scope of names

global 434
local 434

scope terminator
aids in debugging 303
explicit 15, 16
implicit 16

scu (source conversion utility) 282
SD (sort description) entry, example 155
SdU file system

description 120
restrictions 120

SdU files
error processing 166
identifying 113
processing 117
restriction with GDGs 125

SEARCH ALL statement
binary search 78
example 78
for changing an index 64
table must be ordered 78

search rules for linker 236
SEARCH statement

example 77
for changing an index 64
nesting to search more than one level of a table 77
serial search 77

searching

706  IBM COBOL for Linux on x86 1.1: Programming Guide



searching (continued)
for name declarations 435
tables

binary search 78
overview 76
performance 76
serial search 77

section
declarative 17
definition 14
grouping 91

SELECT clause
vary input-output file 8

SELECT OPTIONAL clause 134
sentence, definition of 14
separate CICS translator

restrictions 385
separate sign

portability 36
printing 36
required for signed national decimal 36

SEPOBJ compiler option 277
SEQUENCE compiler option 278
sequence numbers 282
sequential files

file access mode 123
organization 123

sequential search
description 77
example 77

serial numbers 282
serial search

description 77
example 77

SET condition-name TO TRUE statement
example 89, 91
switches and flags 87

SET statement
for changing an index 64
for changing index data items 64
for procedure-pointer data items 453
for setting a condition, example 88
handling of program-name in 275
using for debugging 305

setting
index data items 64
indexes 64
linker options 234
switches and flags 87

SFS (CICS) file system
accessing SFS files

example 149
overview 148

description 121
fully qualified file names 116
nonhierarchical 121
restrictions 121
system administration of 121

SFS (CICS) files
accessing

example 149
non-CICS 384
overview 148

adding alternate indexes 150

SFS (CICS) files (continued)
alternate index file name 116
base file name 116
COBOL coding example 149
creating alternate index files 148
creating SFS files

environment variables for 148
sfsadmin command for 149

determining available data volumes 148
error processing 166
file names 116
identifying

server 116
nontransactional access 121
organization 121
primary and secondary indexes 121
processing 117
restriction with GDGs 125
specifying data volume for 148

SFS (CICS) server
fully qualified name 116
specifying server name 148

SFS (Encina) file system
performance 150

SFS (Encina) files
performance 150

sfsadmin command
adding alternate indexes 150
creating indexed files 149
description 121
determining available data volumes 148

shared libraries
advantages and disadvantages 461
building

example 462
CICS considerations 383
definition 461
overview 461
purpose 461
resolution of references 462
setting directory path 220
subprograms and outermost programs 461
using 461

sharing
data

between separately compiled programs 454
coding the LINKAGE SECTION 448
from another program 12
in recursive or multithreaded programs 13
in separately compiled programs 13
overview 445
parameter-passing mechanisms 445
PROCEDURE DIVISION header 449
RETURN-CODE special register 453
scope of names 434

files
scope of names 434
using EXTERNAL clause 10, 454
using GLOBAL clause 10

shell script, compiling using 226
short listing, example 358
sign condition

testing sign of numeric operand 85
using in date processing 483

Index  707



SIGN IS SEPARATE clause
portability 36
printing 36
required for signed national decimal data 36

sign representation 47
sliding century window 474
sort

alternate collating sequence 159
completion code 160
criteria 158
description 153
determining success 160
diagnostic message 160
error number

list of possible values 161
obtaining with iwzGetSortErrno 161

files, describing 154
input procedures

coding 155
example 159

keys
default 208
defining 158
overview 153

output procedures
coding 157
example 159

process 153
restrictions on input/output procedures
157
terminating 164
work files

describing 154
TMP environment variable 217

SORT statement
ASCENDING|DESCENDING KEY phrase 158
COLLATING SEQUENCE phrase 6, 159
description 158
GIVING phrase 158
overview 153
USING phrase 158

SORT-RETURN special register
determining sort or merge success 160
terminating sort or merge 164

sorting
tables

overview 79
SOSI compiler option

description 278
multibyte portability 428

SOURCE and NUMBER output, example 360
source code

line number 360, 361, 364
listing, description 356

SOURCE compiler option
description 280
getting output 356

source conversion utility (scu) 282
source location 323
SOURCE-COMPUTER paragraph 5
SPACE compiler option 280
special feature specification 5
special register

ADDRESS OF

special register (continued)
ADDRESS OF (continued)

size depends on ADDR 252
use in CALL statement 446

arguments in intrinsic functions 51
JNIEnvPtr

size depends on ADDR 252
LENGTH OF 109, 446
RETURN-CODE 444, 453
SORT-RETURN

determining sort or merge success 160
terminating sort or merge 164

using in XML parsing 392, 393
WHEN-COMPILED 110
XML-CODE 392, 393
XML-EVENT 392, 393
XML-NTEXT 392, 395
XML-TEXT 392, 395

SPECIAL-NAMES paragraph
coding 5

SPILL compiler option 280
splitting data items (UNSTRING) 95
SQL compiler option

coding 377
description 281
multioption interaction 250

SQL statements
coding

overview 375
overview 373
return codes 376
SQL INCLUDE 376
use for Db2 services 373
using binary data in 376

SQLCA
declare for programs that use SQL statements 375
return codes from Db2 376

SQRT intrinsic function 53
SRCFORMAT compiler option 282
SSRANGE compiler option

description 283
performance considerations 501
reference modification 100
turn off by using CHECK(OFF) runtime option 501
using 308

stack frames, collapsing 439
stanza

adding 228
attributes in configuration file 229
cob2 228
cob2_j 227
cob2_r 228
description 228

START statement 141
statement

compiler-directing 16
conditional 15
definition 14
delimited scope 15
explicit scope terminator 16
imperative 15
implicit scope terminator 16

statement cross-reference listing
description 356

708  IBM COBOL for Linux on x86 1.1: Programming Guide



statement nesting level 360
statements used in program 356
static linking

advantages 461
definition 435, 461
disadvantages 461

statistics intrinsic functions 53
status code, files

differences from host 428
example 171
overview 170

STDCALL interface convention
specified with CALLINT 254

STL file system
description 122

STL files
error processing 166
identifying 114
processing 117

STOP RUN statement
in main program 431
in subprogram 432

storage
allocation depends on ADDR 252
character data 192
for arguments 447
mapping 356

stored procedures
Db2 378

stride, table 498
STRING statement

example 94
overflow condition 165
using 93

strings
handling 93
null-terminated 449

structure, initializing using INITIALIZE 27
structured programming 494
subprogram

and main program 431
definition 445
description 431
linkage

common data items 447
PROCEDURE DIVISION in 449

subprograms
in a shared library 461
using 431

subscript
computations 498
definition 62
literal, example 62
range checking 308
variable, example 62

subscripting
definition 62
example 68
literal, example 62
reference modification 63
relative 63
restrictions 63
use data-name or literal 63
variable, example 62

substitution character 184
substrings

of table elements 99
reference modification of 99

SUM intrinsic function, example table calculation 80
support 679
switch-status condition 85
switches and flags

defining 86
description 86
resetting 87
setting switches off, example 88
setting switches on, example 88
testing multiple values, example 87
testing single values, example 86

SYMBOLIC CHARACTERS clause 7
symbolic constant 494
symbols used in MAP output 363
SYNCHRONIZED clause

alignment depends on ADDR 252
syntax diagrams, how to read xx
syntax errors

finding with NOCOMPILE compiler option 307
SYSADATA

output 251
SYSIN

supplying alternative modules 265
SYSIN, SYSIPT, SYSOUT, SYSLIST, SYSLST, CONSOLE,
SYSPUNCH, SYSPCH environment variables 223
SYSLIB

supplying alternative modules 265
when not used 586

SYSLIB environment variable 219
SYSPRINT

supplying alternative modules 265
when not used 587

system date
under CICS 382

SYSTEM interface convention
specified with CALLINT 254

SYSTEM suboption of CALLINT compiler option 254
system-name 5

T
table

assigning values to 66
columns 59
compare to array 33
defining with OCCURS clause 59
definition 59
depth 61
description 33
dynamically loading 65
efficient coding 497, 498
elements 59
identical element specifications 497
index, definition 62
initializing

all occurrences of an element 68
at the group level 68
each item individually 67
using INITIALIZE 65
using PERFORM VARYING 90

Index  709



table (continued)
loading values in 65
looping through 90
multidimensional 60
one-dimensional 59
processing with intrinsic functions 79
redefining a record as 67
reference modification 63
referencing substrings of elements 99
referencing with indexes, example 62
referencing with subscripts, example 62
referring to elements 62
rows 61
searching

binary 78
overview 76
performance 76
sequential 77
serial 77

sorting
overview 79

stride computation 498
subscript, definition 62
three-dimensional 61
two-dimensional 61
variable-length

creating 70
example of loading 72
initializing 72
preventing overlay in 75

TALLYING phrase (INSPECT), example 103
temporary work-file location

specifying with TMP 217
TERMINAL compiler option 284
terminal, sending messages to the 284
terminating XML parsing 402
terms used in MAP output 363
test

conditions 90
data 85
numeric operand 85
UPSI switch 85

TEST AFTER 90
TEST BEFORE 90
TEST compiler option

description 284
multioption interaction 250
performance considerations 502

text-name cross-reference, description 310
THREAD compiler option

and the LINKAGE SECTION 13
description 285

time information, formatting 216
time stamp

converting seconds to character time stamp (CEEDATM)
545
converting time stamp to seconds (CEESECS) 566

time-zone information
specifying with TZ 217

time, getting local (CEELOCT) 559
TITLE statement

controlling header on listing 4
TMP environment variable 217
top-down programming

top-down programming (continued)
constructs to avoid 494

Trademarks 637
transferring control

between COBOL programs 432
called program 431
calling program 431
main and subprograms 431
nested programs 433

transforming COBOL data to XML
example 415
overview 409

translating CICS into COBOL 379
TRAP runtime option

description 302
ON SIZE ERROR 166

TRUNC compiler option
description 285
performance considerations 502

tuning considerations, performance 500, 501
two-digit years

querying within 100-year range
(CEEQCEN)

example 561
setting within 100-year range

(CEESCEN)
example 562

TZ environment variable 217

U
U-level error message 230, 308
UNDATE intrinsic function

example 487
using 486

Unicode
description 178
encoding and storage 192
processing data 177

UNSTRING statement
example 96
overflow condition 165
using 95

UPPER-CASE intrinsic function 104
uppercase, converting to 104
UPSI runtime option 302
UPSI switches, setting 302
USAGE clause

at the group level 21
incompatible data 48
INDEX phrase, creating index data items with 64
NATIONAL phrase at the group level 186

USE FOR DEBUGGING declaratives
DEBUG runtime option 300
overview 305

USE statement 297
user-defined condition 85
user-exit work area 583
user-exit work area extension 583
USING phrase

PROCEDURE DIVISION header 449
UTF-16

definition 178
encoding for national data 178

710  IBM COBOL for Linux on x86 1.1: Programming Guide



UTF-8
avoid INSPECT 399
avoid moves that truncate 399
avoid reference modification with XML documents 195
converting to or from national 195
definition 178
encoding and storage 192
encoding for ASCII invariant characters 178
example of generating an XML document 411
parsing XML documents 399
processing data items 195
XML document encoding 396

UTF16 compiler option 287
UTF16 data representation 287

V
VALUE clause

alphanumeric literal with national data, example 108
alphanumeric literal with national group, example 68
assigning table values

at the group level 68
to each item individually 67
to each occurrence of an element 68

assigning to a variable-length group 72
cannot use for external floating point 40
initializing internal floating-point literals 36
large literals with COMP-5 41
large, with TRUNC(BIN) 286

VALUE IS NULL 450
VALUE OF clause 10
variable

as reference modifier 100
definition 19

variable-length records
OCCURS DEPENDING ON (ODO) clause 497

variable-length table
assigning values to 72
creating 70
example 71
example of loading 72
preventing overlay in 75

Variables view
dereferencing variables and expressions 335
setting the representation of monitor contents 334

variables, environment
accessing 215
assignment-name 220
CICS_CDS_ROOT

matching system file-name 116
CICS_SFS_DATA_VOLUME 221
CICS_SFS_INDEX_VOLUME 221
CICS_TK_SFS_SERVER 220
CICS_VSAM_AUTO_FLUSH 221
CICS_VSAM_CACHE 222
COBCPYEXT 219
COBLSTDIR 219
COBOPT 219
COBPATH

CICS dynamic calls 382
description 220

COBRTOPT 220
compiler 218
compiler and runtime 216

variables, environment (continued)
definition 215
EBCDIC_CODEPAGE 221
example of setting and accessing 223
LANG 216
LC_ALL 216
LC_COLLATE 216
LC_CTYPE 216
LC_MESSAGES 216
LC_TIME 216
library-name 219, 295
NLSPATH 217
PATH 223
precedence of paths 215
runtime 220
setting

in .profile 215
in command shell 215
in program 215
locale 203
overview 215

SYSIN, SYSIPT, SYSOUT, SYSLIST, SYSLST, CONSOLE,
SYSPUNCH, SYSPCH 223
SYSLIB 219
text-name 219, 295
TMP 217
TZ 217

variably located data item 74
variably located group 74
VBREF compiler option

description 288
output example 368
using 356

W
W-level message 230, 308
WHEN phrase

EVALUATE statement 83
SEARCH ALL statement 78
SEARCH statement 77

WHEN-COMPILED intrinsic function 110
WHEN-COMPILED special register 110
white space in XML documents 397
windowed date fields

contracting 489
WITH DEBUGGING MODE clause

for debugging lines 305
for debugging statements 305

WITH POINTER phrase
STRING 93
UNSTRING 95

wlist file 270
WORKING-STORAGE SECTION

comparison with LOCAL-
STORAGE

example 11
overview 11

initializing 288
workstation and workstation COBOL

differences from host 517
WSCLEAR compiler option

overview 288
performance considerations 288

Index  711



X
X delimiter for control characters in alphanumeric literals 22
XML declaration

generating 411
specifying encoding declaration 398
white space cannot precede 397

XML document
accessing 390
code pages supported 396
controlling the encoding of 414
document encoding declaration 397
EBCDIC special characters 398
encoding 396
enhancing

example of modifying data definitions 419
rationale and techniques 419

external code page 397
generating

example 415
overview 409

handling parsing exceptions 399
national language 396
parser 389
parsing

description 391
example 404
UTF-8 399

processing 389
specifying encoding if alphanumeric 398
UTF-8 encoding 396
white space 397
XML declaration 397

XML event
encoding conflicts 401
EXCEPTION 400
fatal errors 401
overview 393
processing 389, 392
processing procedure 391

XML exception codes
for generating 581
for parsing

handleable 571
not handleable 576

XML GENERATE statement
COUNT IN 415
NAME 412
NAMESPACE 411
NAMESPACE-PREFIX 411
NOT ON EXCEPTION 413
ON EXCEPTION 414
SUPPRESS 412
TYPE 413
WITH ATTRIBUTES 410
WITH ENCODING 414
XML-DECLARATION 411

XML generation
controlling type of XML data 413
counting generated characters 410
description 409
effect of CHAR(EBCDIC) 396
enhancing output

example of modifying data definitions 419

XML generation (continued)
enhancing output (continued)

rationale and techniques 419
example 415
generating attributes 410
generating elements 410
handling errors 414
ignored data items 410
naming attributes or elements 412
no byte order mark 414
overview 409
suppressing generation of specified attributes or
elements 412
using namespace prefixes 411
using namespaces 411

XML output
controlling the encoding of 414
enhancing

example of modifying data definitions 419
rationale and techniques 419

generating
example 415
overview 409

XML PARSE statement
NOT ON EXCEPTION 391
ON EXCEPTION 391
overview 389
using 391

XML parser
conformance 579
error handling 400
overview 389

XML parsing
control flow with processing procedure 393
description 391
effect of CHAR(EBCDIC) 396
fatal errors 401
handling encoding conflicts 401
handling exceptions 399
overview 389
special registers 392, 393
terminating 402

XML processing procedure
control flow with parser 393
error with EXIT PROGRAM or GOBACK 392
example

program for processing XML 404
handling encoding conflicts 402
handling parsing exceptions 399
restriction on XML PARSE 392
setting XML-CODE in 402
specifying 391
using special registers 392, 393
writing 392

XML-CODE special register
content 393
continuation after nonzero value 402
control flow between parser and processing procedure
393
description 392
exception codes for generating 581
exception codes for parsing

handleable 571
not handleable 576

712  IBM COBOL for Linux on x86 1.1: Programming Guide



XML-CODE special register (continued)
exception codes for parsing with XMLPARSE(COMPAT)

encoding conflicts 400
fatal errors 401
setting to -1 393, 402
subtracting 100,000 from 401
subtracting 200,000 from 401
terminating parsing 402
using in generating 413
using in parsing 389
with code-page conflicts 401
with encoding conflicts 401
with generating exceptions 414
with parsing exceptions 400

XML-EVENT special register
content 393, 403
description 392
using 389, 392
with parsing exceptions 400

XML-NTEXT special register
content 395
description 392
using 389
with parsing exceptions 401

XML-TEXT special register
content 395, 403
description 392
encoding 392
using 389
with parsing exceptions 401

XREF compiler option
description 289
finding copybook files 310
finding data- and procedure-names 310
getting output 356

XREF output
COPY/BASIS cross-references 366
data-name cross-references 364
program-name cross-references 366

Y
year field expansion 476
year windowing

advantages 473
how to control 485
MLE approach 474
when not supported 479

year-first date fields 478
year-last date fields 478
year-only date fields 478
YEARWINDOW compiler option

description 290

Z
zero comparison (See sign condition) 483
zero suppression

example of BLANK WHEN ZERO clause 37
PICTURE symbol Z 37

zoned decimal data (USAGE DISPLAY)
effect of ZWB on comparison to alphanumeric 290
example 35

zoned decimal data (USAGE DISPLAY) (continued)
format 39
sign representation 47

ZWB compiler option 290

Index  713



714  IBM COBOL for Linux on x86 1.1: Programming Guide





IBM®

Product Number: 5737-L11

SC28-3118-00


	Contents
	Tables
	Preface
	About this information
	How this information will help you
	Abbreviated terms
	How to read syntax diagrams
	How to use examples
	Related information

	How to send your comments
	Accessibility

	Part 1.  Coding your program
	Chapter 1.  Structuring your program
	Identifying a program
	Identifying a program as recursive
	Marking a program as callable by containing programs
	Setting a program to an initial state
	Changing the header of a source listing

	Describing the computing environment
	Example: FILE-CONTROL paragraph
	Specifying the collating sequence
	Example: specifying the collating sequence

	Defining symbolic characters
	Defining a user-defined class
	Identifying files to the operating system (ASSIGN)
	Varying the input or output file at run time
	Example: using different input files



	Describing the data
	Using data in input and output operations
	FILE SECTION entries

	Comparison of WORKING-STORAGE and LOCAL-STORAGE
	Example: storage sections

	Using data from another program
	Sharing data in separately compiled programs
	Sharing data in nested programs
	Sharing data in recursive programs


	Processing the data
	How logic is divided in the PROCEDURE DIVISION
	Imperative statements
	Conditional statements
	Compiler-directing statements
	Scope terminators

	Declaratives


	Chapter 2.  Using data
	Using variables, structures, literals, and constants
	Using variables
	Using data items and group items
	Using literals
	Using constants
	Using figurative constants

	Assigning values to data items
	Examples: initializing data items
	Initializing a structure (INITIALIZE)
	Assigning values to elementary data items (MOVE)
	Assigning values to group data items (MOVE)
	Assigning arithmetic results (MOVE or COMPUTE)
	Assigning input from a screen or file (ACCEPT)

	Displaying values on a screen or in a file (DISPLAY)
	Using intrinsic functions (built-in functions)
	Using tables (arrays) and pointers

	Chapter 3.  Working with numbers and arithmetic
	Defining numeric data
	Displaying numeric data
	Controlling how numeric data is stored
	Formats for numeric data
	External decimal (DISPLAY and NATIONAL) items
	External floating-point (DISPLAY and NATIONAL) items
	Binary (COMP) items
	Native binary (COMP-5) items
	Packed-decimal (COMP-3) items
	Internal floating-point (COMP-1 and COMP-2) items
	Examples: numeric data and internal representation

	Data format conversions
	Conversions and precision
	Conversions that lose precision
	Conversions that preserve precision
	Conversions that result in rounding


	Sign representation of zoned and packed-decimal data
	Checking for incompatible data (numeric class test)
	Performing arithmetic
	Using COMPUTE and other arithmetic statements
	Using arithmetic expressions
	Using numeric intrinsic functions
	Examples: numeric intrinsic functions
	General number handling
	Date and time
	Finance
	Mathematics
	Statistics


	Fixed-point contrasted with floating-point arithmetic
	Floating-point evaluations
	Fixed-point evaluations
	Arithmetic comparisons (relation conditions)
	Examples: fixed-point and floating-point evaluations

	Using currency signs
	Example: multiple currency signs


	Chapter 4.  Handling tables
	Defining a table (OCCURS)
	Nesting tables
	Example: subscripting
	Example: indexing

	Referring to an item in a table
	Subscripting
	Indexing

	Putting values into a table
	Loading a table dynamically
	Initializing a table (INITIALIZE)
	Assigning values when you define a table (VALUE)
	Initializing each table item individually
	Initializing a table at the group level
	Initializing all occurrences of a given table element

	Example: PERFORM and subscripting
	Example: PERFORM and indexing

	Creating variable-length tables (DEPENDING ON)
	Loading a variable-length table
	Assigning values to a variable-length table

	Complex OCCURS DEPENDING ON
	Example: complex ODO
	How length is calculated
	Setting values of ODO objects

	Effects of change in ODO object value
	Preventing index errors when changing ODO object value
	Preventing overlay when adding elements to a variable table


	Searching a table
	Doing a serial search (SEARCH)
	Example: serial search

	Doing a binary search (SEARCH ALL)
	Example: binary search


	Sorting a table
	Processing table items using intrinsic functions
	Example: processing tables using intrinsic functions


	Chapter 5.  Selecting and repeating program actions
	Selecting program actions
	Coding a choice of actions
	Using nested IF statements
	Using the EVALUATE statement
	Example: EVALUATE using THRU phrase
	Example: EVALUATE using multiple WHEN phrases
	Example: EVALUATE testing several conditions


	Coding conditional expressions
	Switches and flags
	Defining switches and flags
	Example: switches
	Example: flags
	Resetting switches and flags
	Example: set switch on
	Example: set switch off


	Repeating program actions
	Choosing inline or out-of-line PERFORM
	Example: inline PERFORM statement

	Coding a loop
	Looping through a table
	Executing multiple paragraphs or sections


	Chapter 6.  Handling strings
	Joining data items (STRING)
	Example: STRING statement
	STRING results


	Splitting data items (UNSTRING)
	Example: UNSTRING statement
	UNSTRING results


	Manipulating null-terminated strings
	Example: null-terminated strings

	Referring to substrings of data items
	Reference modifiers
	Example: arithmetic expressions as reference modifiers
	Example: intrinsic functions as reference modifiers

	Tallying and replacing data items (INSPECT)
	Examples: INSPECT statement

	Converting data items (intrinsic functions)
	Changing case (UPPER-CASE, LOWER-CASE)
	Transforming to reverse order (REVERSE)
	Converting to numbers (NUMVAL, NUMVAL-C)
	Converting from one code page to another

	Evaluating data items (intrinsic functions)
	Evaluating single characters for collating sequence
	Finding the largest or smallest data item
	Returning variable results with alphanumeric or national functions

	Finding the length of data items
	Finding the date of compilation


	Chapter 7.  Processing files
	File concepts and terminology
	File types
	Identifying files
	Identifying Db2 files
	Identifying SFS files
	Precedence of file-system determination

	File systems
	Db2 file system
	QSAM file system
	RSD file system
	SdU file system
	SFS file system
	STL file system

	Specifying a file organization and access mode
	File organization and access mode
	Sequential file organization
	Line-sequential file organization
	Indexed file organization
	Relative file organization
	Sequential access
	Random access
	Dynamic access


	Generation data groups
	Creating generation data groups
	Using generation data groups
	Name format of generation files
	Insertion and wrapping of generation files
	Limit processing of generation data groups
	Example: limit processing


	Concatenating files
	Opening optional files
	Setting up a field for file status
	Describing the structure of a file in detail
	Coding input and output statements for files
	Example: COBOL coding for files
	File position indicator
	Opening a file
	Valid COBOL statements for sequential files
	Valid COBOL statements for line-sequential files
	Valid COBOL statements for indexed and relative files

	Reading records from a file
	Statements used when writing records to a file
	Adding records to a file
	Replacing records in a file
	Deleting records from a file
	PROCEDURE DIVISION statements used to update files

	Using Db2 files
	Using Db2 files and SQL statements in the same program

	Using QSAM files
	Using SFS files
	Example: accessing SFS files
	COBOL file descriptions
	sfsadmin commands
	export commands

	Improving SFS performance
	Enabling client-side caching
	Reducing the frequency of saving changes



	Chapter 8.  Sorting and merging files
	Sort and merge process
	Describing the sort or merge file
	Describing the input to sorting or merging
	Example: describing sort and input files for SORT
	Coding the input procedure

	Describing the output from sorting or merging
	Coding the output procedure

	Restrictions on input and output procedures
	Requesting the sort or merge
	Setting sort or merge criteria
	Choosing alternate collating sequences
	Example: sorting with input and output procedures

	Determining whether the sort or merge was successful
	Sort and merge error numbers

	Stopping a sort or merge operation prematurely

	Chapter 9.  Handling errors
	Handling errors in joining and splitting strings
	Handling errors in arithmetic operations
	Example: checking for division by zero

	Handling errors in input and output operations
	Using the end-of-file condition (AT END)
	Coding ERROR declaratives
	Using file status keys
	Example: file status key

	Using file system status codes
	Example: checking file system status codes

	Coding INVALID KEY phrases
	Example: FILE STATUS and INVALID KEY


	Handling errors when calling programs


	Part 2.  Enabling programs for international environments
	Chapter 10.  Processing data in an international environment
	Unicode and the encoding of language characters
	Using national data (Unicode) in COBOL
	Defining national data items
	Using national literals
	COBOL statements and national data
	Intrinsic functions and national data
	Using national-character figurative constants
	Defining national numeric data items
	National groups
	Converting to or from national (Unicode) representation
	Converting alphanumeric, DBCS, and integer to national (MOVE)
	Converting alphanumeric or DBCS to national (NATIONAL-OF)
	Converting national to alphanumeric (DISPLAY-OF)
	Overriding the default code page
	Example: converting to and from national data

	Using national groups
	Using national groups as elementary items
	Using national groups as group items

	Storage of character data
	Comparing national (UTF-16) data
	Comparing two class national operands
	Comparing class national and class numeric operands
	Comparing national numeric and other numeric operands
	Comparing national and other character-string operands
	Comparing national data and alphanumeric-group operands


	Processing UTF-8 data using UTF-16 (national) data types
	Processing Chinese GB 18030 data
	Coding for use of DBCS support
	Defining DBCS data
	Using DBCS literals
	Comparing DBCS literals

	Testing for valid DBCS characters
	Processing alphanumeric data items that contain DBCS data


	Chapter 11.  Setting the locale
	The active locale
	Specifying the code page for character data
	Using environment variables to specify a locale
	Determination of the locale from system settings
	Types of messages for which translations are available

	Locales and code pages that are supported
	Controlling the collating sequence with a locale
	Controlling the alphanumeric collating sequence with a locale
	Controlling the DBCS collating sequence with a locale
	Controlling the national collating sequence with a locale
	Intrinsic functions that depend on collating sequence

	Accessing the active locale and code-page values
	Example: get and convert a code-page ID



	Part 3.  Compiling, linking, running, and debugging your program
	Chapter 12.  Compiling, linking, and running programs
	Setting environment variables
	Compiler and runtime environment variables
	TZ environment parameter variables

	Compiler environment variables
	Runtime environment variables
	Example: setting and accessing environment variables

	Compiling programs
	Compiling from the command line
	Examples: using cob2 for compiling

	Compiling using shell scripts
	Specifying compiler options in the PROCESS (CBL) statement
	Modifying the default compiler configuration
	Tailoring your compilation
	Stanzas in the configuration file


	Correcting errors in your source program
	Severity codes for compiler diagnostic messages
	Generating a list of compiler messages
	Messages and listings for compiler-detected errors
	Format of compiler diagnostic messages


	cob2 options
	Options that apply to compiling
	Options that apply to linking
	Options that apply to both compiling and linking

	Linking programs
	Passing options to the linker
	Examples: using cob2 for linking

	Linker input and output files
	Linker search rules
	Linker file-name defaults


	Correcting errors in linking
	Running programs

	Chapter 13.  Specifying compiler options on the command line
	Flag options
	-# (pound sign)
	-?, ?
	-q32, -q64
	-c
	-comprc_ok
	-dll | -dso | -shared
	-F
	-g
	-host
	-I
	-main
	-o
	-v

	-q options
	Compiler options
	Option settings for 85 COBOL Standard conformance
	Conflicting compiler options
	ADATA
	ADDR
	ARITH
	BINARY
	CALLINT
	CHAR
	CICS
	COLLSEQ
	COMPILE
	CURRENCY
	DATEPROC
	DATETIME
	DEFINE
	DIAGTRUNC
	DYNAM
	EXIT
	FLAG
	FLAGSTD
	FLOAT
	LINECOUNT
	LIST
	LSTFILE
	MAP
	MDECK
	NCOLLSEQ
	NSYMBOL
	NUMBER
	OPTIMIZE
	PGMNAME
	PGMNAME(UPPER)
	PGMNAME(MIXED)

	APOST/QUOTE
	SEPOBJ
	Batch compilation

	SEQUENCE
	SOSI
	SOURCE
	SPACE
	SPILL
	SQL
	SRCFORMAT
	SSRANGE
	TERMINAL
	TEST
	THREAD
	TRUNC
	TRUNC example 1
	TRUNC example 2

	UTF16
	VBREF
	WSCLEAR
	XREF
	YEARWINDOW
	ZWB


	Chapter 14.  Compiler-directing statements
	Chapter 15.  Runtime options
	CHECK
	DEBUG
	ERRCOUNT
	FILESYS
	TRAP
	UPSI

	Chapter 16.  Debugging
	Debugging with source language
	Tracing program logic
	Finding and handling input-output errors
	Validating data
	Moving, initializing or setting uninitialized data
	Generating information about procedures
	Example: USE FOR DEBUGGING


	Debugging using compiler options
	Finding coding errors
	Finding line sequence problems
	Checking for valid ranges
	Selecting the level of error to be diagnosed
	Example: embedded messages

	Finding program entity definitions and references
	Listing data items

	Debugging using IBM Debug for Linux on x86
	IBM Debug for Linux on x86 overview
	Installation
	Accessibility features
	Navigating the user interface using the keyboard

	Preparing to debug
	Listening for debug engines
	SSL support for the debug daemon
	Obtaining the IP address for the client machine from the debugger user interface

	Debug compiler options

	Setting debug preferences
	Animated Step Into preferences
	Debug Daemon preferences
	Debugger editor preferences
	Compiled Debug preferences
	Program profiles
	Engine response time


	Debugger engine for compiled languages
	Starting the debugger engine
	Environment variables for the debugger engine
	Firewall considerations

	Debugging your applications
	Compiled language debugger
	The Debugger Editor
	Using the Debug view
	Running, terminating, and detaching a program
	Stepping through a program

	Locating source
	Altering the source location list
	Changing the source file in the editor
	Locating the source file in the editor

	Switching between different debug views
	Switching to a different debug view
	Selecting a debug view as the default view

	Using breakpoints
	Setting breakpoints
	Set a line breakpoint
	Set an entry breakpoint
	Set an event breakpoint
	Set other breakpoint types

	Exporting and importing breakpoints
	Exporting breakpoints
	Importing breakpoints

	Enabling and disabling breakpoints
	Enabling and Disabling Breakpoints from the Breakpoints View
	Enabling and Disabling Breakpoints from the Editor
	Disabling all breakpoints

	Conditional breakpoints

	Inspecting variables
	Adding a variable, expression, or register to the Monitors view
	Additional actions

	Setting the representation of monitor contents
	Dereferencing variables and expressions

	Viewing the contents of a register
	View the contents of a register in the Registers view
	View the contents of a register you have already added to the Monitors view
	View the contents of a register you have already added to a memory monitor in the Memory view

	Using the Modules view
	Monitoring memory
	Add a new memory monitor from the Variables view, Monitors view, Registers view, or editor
	Add a new memory monitor for an expression from the Memory view
	Inspecting memory in the Memory view
	Viewing the contents of memory by using memory monitors
	Changing the contents of a memory location
	Memory view preferences
	Preferences: Reset Memory Monitor
	Preferences: Padded String
	Preferences: Select Codepages
	Table Renderings Preferences

	Working with multiple Memory views
	Removing memory monitors from the Memory view
	Mapping memory
	Working with mapped memory
	Setting memory map preferences
	Mapping memory for an expression, variable, or register
	Defining a mapping layout
	Editing memory layouts

	Editing mapped memory and field descriptions in the Memory view
	Removing mapped memory from the Memory view
	Grouping map layout fields
	Finding and expanding fields
	Adding multiple memory maps


	Debugging a local CICS transaction with TXSeries or CICS TX
	References
	Console view
	Registers view
	Variables view



	Getting listings
	Example: short listing
	Example: SOURCE and NUMBER output
	Example: MAP output
	Example: embedded map summary
	Terms and symbols used in MAP output
	Example: nested program map

	Example: XREF output: data-name cross-references
	Example: XREF output: program-name cross-references
	Example: XREF output: COPY/BASIS cross-references
	Example: XREF output: embedded cross-reference

	Example: VBREF compiler output

	Debugging with messages that have offset information
	Debugging assembler routines


	Part 4.  Targeting COBOL programs for certain environments
	Chapter 17.  Programming for a Db2 environment
	Ensuring that the PAM package is installed
	Db2 coprocessor
	Coding SQL statements
	Using SQL INCLUDE with the Db2 coprocessor
	Using binary items in SQL statements
	Determining the success of SQL statements

	Connecting to the database
	Compiling with the SQL option
	Separating Db2 suboptions
	Using package and bindfile-names

	Creating COBOL external stored procedures in Db2

	Chapter 18.  Developing COBOL programs for CICS
	Coding COBOL programs to run under CICS
	Getting the system date under CICS
	Making dynamic calls under CICS
	Making dynamic calls to shared libraries under CICS
	Tuning the performance of dynamic calls under CICS

	Accessing SFS data
	Calling between COBOL and C/C++ under CICS

	Compiling and running CICS programs
	Integrated CICS translator

	Debugging CICS programs


	Part 5.  Using XML and COBOL together
	Chapter 19.  Processing XML input
	XML parser in COBOL
	Accessing XML documents
	Parsing XML documents
	Writing procedures to process XML
	XML events
	XML-CODE
	XML-TEXT and XML-NTEXT

	Transforming XML text to COBOL data items

	The encoding of XML documents
	XML input document encoding
	Specifying the encoding
	EBCDIC code-page-sensitive characters in XML markup

	Parsing XML documents encoded in UTF-8

	Handling XML PARSE exceptions
	How the XML parser handles errors
	Handling encoding conflicts

	Terminating XML parsing
	XML PARSE examples
	Example: parsing a simple document
	Example: program for processing XML
	Output from parsing



	Chapter 20.  Producing XML output
	Generating XML output
	Controlling the encoding of generated XML output
	Handling XML GENERATE exceptions
	Example: generating XML
	Program XGFX
	Program Pretty
	Output from program XGFX

	Enhancing XML output
	Example: enhancing XML output



	Part 6.  Working with more complex applications
	Chapter 21.  Porting applications between platforms
	Getting IBM Enterprise COBOL for z/OS applications to compile
	Getting IBM Enterprise COBOL for z/OS applications to run: overview
	Fixing differences caused by data representations
	Handling differences in ASCII SBCS and EBCDIC SBCS characters
	Handling differences in IEEE and hexadecimal data
	Handling differences in ASCII multibyte and EBCDIC DBCS strings

	Fixing environment differences that affect portability
	Fixing differences caused by language elements

	Writing code to run with IBM Enterprise COBOL for z/OS

	Chapter 22.  Using subprograms
	Main programs, subprograms, and calls
	Ending and reentering main programs or subprograms
	Calling nested COBOL programs
	Nested programs
	Example: structure of nested programs
	Scope of names
	Local names
	Global names
	Searches for name declarations


	Calling nonnested COBOL programs
	CALL identifier and CALL literal
	Example: dynamic call using CALL identifier
	dl1.cbl
	dlla.cbl
	Procedure


	Calling between COBOL and C/C++ programs
	Initializing environments
	Passing data between COBOL and C/C++
	Collapsing stack frames and terminating run units or processes
	COBOL and C/C++ data types
	Example: COBOL program calling C functions
	Example: C programs that are called by and call COBOL
	Example: COBOL program called by a C program
	Example: results of compiling and running examples
	Example: COBOL program calling C++ function

	Making recursive calls
	Passing return codes

	Chapter 23.  Sharing data
	Passing data
	Describing arguments in the calling program
	Describing parameters in the called program
	Testing for OMITTED arguments

	Coding the LINKAGE SECTION
	Coding the PROCEDURE DIVISION for passing arguments
	Grouping data to be passed
	Handling null-terminated strings
	Using pointers to process a chained list
	Example: using pointers to process a chained list


	Using procedure and function pointers
	Passing return-code information
	Using the RETURN-CODE special register
	Using PROCEDURE DIVISION RETURNING . . .
	Specifying CALL . . . RETURNING

	Sharing data by using the EXTERNAL clause
	Sharing files between programs (external files)
	Example: using external files
	Input/output using external files


	Using command-line arguments
	Example: command-line arguments without -host option
	Example: command-line arguments with -host option


	Chapter 24.  Using shared libraries
	Static linking versus using shared libraries
	How the linker resolves references to shared libraries
	Example: creating a sample shared library
	Example 1: alpha.cbl
	Example 2: beta.cbl
	Example 3: gamma.cbl
	Procedure

	Example: creating a makefile for the sample shared library


	Chapter 25.  Preinitializing the COBOL runtime environment
	Initializing persistent COBOL environment
	Terminating preinitialized COBOL environment
	Example: preinitializing the COBOL environment

	Chapter 26.  Processing two-digit-year dates
	Millennium language extensions (MLE)
	Principles and objectives of these extensions

	Resolving date-related logic problems
	Using a century window
	Example: century window

	Using internal bridging
	Example: internal bridging

	Moving to full field expansion
	Example: converting files to expanded date form


	Using year-first, year-only, and year-last date fields
	Compatible dates
	Example: comparing year-first date fields
	Using other date formats
	Example: isolating the year

	Manipulating literals as dates
	Assumed century window
	Treatment of nondates
	Using sign conditions

	Performing arithmetic on date fields
	Allowing for overflow from windowed date fields
	Specifying the order of evaluation

	Controlling date processing explicitly
	Using DATEVAL
	Using UNDATE
	Example: DATEVAL
	Example: UNDATE

	Analyzing and avoiding date-related diagnostic messages
	Avoiding problems in processing dates
	Avoiding problems with packed-decimal fields
	Moving from expanded to windowed date fields



	Part 7.  Improving performance and productivity
	Chapter 27.  Tuning your program
	Using an optimal programming style
	Using structured programming
	Factoring expressions
	Using symbolic constants
	Grouping constant computations
	Grouping duplicate computations

	Choosing efficient data types
	Choosing efficient computational data items
	Using consistent data types
	Making arithmetic expressions efficient
	Making exponentiations efficient

	Handling tables efficiently
	Optimization of table references
	Optimization of constant and variable items
	Optimization of duplicate items
	Optimization of variable-length items
	Comparison of direct and relative indexing


	Optimizing your code
	Optimization

	Choosing compiler features to enhance performance
	Performance-related compiler options
	Evaluating performance


	Chapter 28.  Simplifying coding
	Eliminating repetitive coding
	Example: using the COPY statement

	Manipulating dates and times
	Getting feedback from date and time callable services
	Handling conditions from date and time callable services
	Example: manipulating dates
	Example: formatting dates for output
	Feedback token
	Picture character terms and strings
	Example: date-and-time picture strings
	Century window
	Example: querying and changing the century window


	Using the format 2 SORT statement to sort a table


	Appendix A.  Summary of differences from IBM Enterprise COBOL for z/OS
	Compiler options
	Data representation
	Binary data
	Zoned decimal data
	Packed-decimal data
	Display floating-point data
	National data
	EBCDIC and ASCII data
	Code-page determination for data conversion
	DBCS character strings

	Runtime environment variables
	File specification
	Interlanguage communication (ILC)
	Input and output
	Runtime options
	Source code line size
	Language elements

	Appendix B.  IBM Z host data format considerations
	CICS access
	Date and time callable services
	Floating-point overflow exceptions
	Db2
	Distributed Computing Environment applications
	File data
	SORT

	Appendix C.  Intermediate results and arithmetic precision
	Terminology used for intermediate results
	Example: calculation of intermediate results
	Fixed-point data and intermediate results
	Addition, subtraction, multiplication, and division
	Exponentiation
	Example: exponentiation in fixed-point arithmetic
	Truncated intermediate results
	Binary data and intermediate results

	Intrinsic functions evaluated in fixed-point arithmetic
	Integer functions
	Mixed functions

	Floating-point data and intermediate results
	Exponentiations evaluated in floating-point arithmetic
	Intrinsic functions evaluated in floating-point arithmetic

	Arithmetic expressions in nonarithmetic statements

	Appendix D.  Date and time callable services
	CEECBLDY: convert date to COBOL integer format
	CEEDATE: convert Lilian date to character format
	CEEDATM: convert seconds to character time stamp
	CEEDAYS: convert date to Lilian format
	CEEDYWK: calculate day of week from Lilian date
	CEEGMT: get current Greenwich Mean Time
	CEEGMTO: get offset from Greenwich Mean Time to local time
	CEEISEC: convert integers to seconds
	CEELOCT: get current local date or time
	CEEQCEN: query the century window
	CEESCEN: set the century window
	CEESECI: convert seconds to integers
	CEESECS: convert time stamp to seconds
	CEEUTC: get coordinated universal time
	IGZEDT4: get current date

	Appendix E.  XML reference material
	XML PARSE exceptions
	XML PARSE exceptions that allow continuation
	XML PARSE exceptions that do not allow continuation

	XML conformance
	XML GENERATE exceptions

	Appendix F.  EXIT compiler option
	User-exit work area and work area extension
	Parameter list for exit modules
	Processing of INEXIT
	Processing of LIBEXIT
	Processing of PRTEXIT
	Processing of MSGEXIT
	Customizing compiler-message severities
	Customizable compiler-message severities
	Effect of message customization on compilation return code

	Example: MSGEXIT user exit

	Error handling for exit modules

	Appendix G.  Runtime messages
	Notices
	Trademarks

	Glossary
	List of resources
	COBOL for Linux publications
	Related publications

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


