
Performance Tuning with
Enterprise COBOL

Mike Chase
mike.chase@ca.ibm.com

Compiler Optimization Developer
Lead Developer, IBM watsonx Code Assistant for Z
Code Optimization Advice

© 2025 IBM Corporation

Contents

2© 2025 IBM Corporation

• Introduction

• Migration Strategies

• Compiler Options

• Runtime/LE Options

• Coding Practices

3© 2025 IBM Corporation

Introduction

4© 2025 IBM Corporation

Goals of this presentation

Practical advice

This presentation focuses

on the most important

things you can do as a

COBOL developer to

improve the performance

of COBOL applications

and discusses the

advantages and

drawbacks of those

changes.

Your time is valuable. Time

you spend on performance

is time you can't spend on

something else. This

presentation will help you

get the best bang for your

buck.

Migration

This presentation focuses

on improving performance

for programs compiled with

Enterprise COBOL 6.

Much of the advice also

applies to earlier versions

of COBOL.

For details on migrating

from earlier versions of

COBOL, please see the

Enterprise COBOL 6

Migration Webinar.

Comparisons

Overall performance

comparisons use the

COBOL 6.5 GA on an IBM

z17 machine.

Comparisons for some

options use older

Enterprise COBOL 6 GAs

on older hardware.

Unless otherwise

specified, performance

comparisons are based on

IBM's internal benchmark

suite, and represent the

geometric mean of the

performance improvement.

Caveats

The ability of the compiler

to improve the

performance of a program

depends on many factors.

IBM cannot guarantee

performance

improvements on every

program.

This presentation aims to

be clear about the

conditions and limitations

of the performance

improvements it describes.

https://www.ibm.com/docs/SS6SG3_latest/migration-webinars.html
https://www.ibm.com/docs/SS6SG3_latest/migration-webinars.html

5© 2025 IBM Corporation

Introduction
A new approach to COBOL compilation

In the past ...

Computers were slow.

Memory was expensive and was measured in KB.

Compiler optimizations were constrained by space
and time.

Now ...

Computers are fast.

Memory is fast and is measured in GB.

Programs are compiled once and run many times.

6© 2025 IBM Corporation

Introduction
A new approach to COBOL compilation

Prior to Enterprise COBOL 5...

The compiler was designed to run quickly.

The compiler traded optimization quality for
compilation speed.

The compiler was an independent project, with no
connection to the rest of IBM's compiler technology.

Now ...

The compiler is designed to make compiled
programs run quickly.

The compiler trades compilation speed for
optimization quality.

The compiler shares code with IBM's enterprise-
grade compiler for Java.

Advancements

7© 2025 IBM Corporation

New optimizations

The new compiler

implements many new

optimizations, including

global optimizations

that look at the entire

program.

Hardware exploitation

The new compiler takes

full advantage of the

new instructions on the

latest IBM Z

mainframes.

1x

1.68x
1.99x

2.65x

3.25x
3.61x

4.10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Hardware IBM zEC12 IBM z13 IBM z13 IBM z14 IBM z15 IBM z16 IBM z17

Compiler COBOL 4.2 COBOL 5.2 COBOL 6.1 COBOL 6.2 COBOL 6.3 COBOL 6.4 COBOL 6.5

GA year* 2009 2015 2016 2017 2019 2022 2025

Performance
options**

OPT(FULL) ARCH(11) OPT(2) ARCH(11) OPT(2) ARCH(12) OPT(2) ARCH(13) OPT(2) ARCH(14) OPT(2) ARCH(15) OPT(2)

Average CPU usage
reduction vs

baseline

- 40% 50% 62% 69% 72% 76%

A
v
e
ra

g
e
 s

p
e
e
d
u
p
 v

s
 b

a
s
e
lin

e

History of Enterprise COBOL for z/OS Performance
for compute intensive and I/O bound COBOL applications

Disclaimer: The performance improvements are based on the geometric mean of IBM internal measurements on IBM z17 running a z/OS 3.1 LPAR with 1 CP and 80GB Central Storage, IBM z16 running a z/OS 2.4 LPAR with 1 CP and 80GB Central Storage,

IBM z15 running a z/OS 2.4 LPAR with 1 CP and 80GB Central Storage, IBM z14 running a z/OS 2.3 LPAR with 2 CP and 128GB Central Storage, IBM z13 running a z/OS 2.3 LPAR with 1 CP and 64GB Central Storage, IBM zEC12 running a z/OS 2.2 LPAR

with 2 CP and 64GB Central Storage. All benchmarks compiled with IBM Enterprise COBOL for z/OS 5/6 use the options STGOPT, AFP(NOVOLATILE), HGPR(NOPRESERVE), and LIST. All benchmarks compiled with IBM Enterprise COBOL for z/OS 4.2 use

the option LIB. Performance results for customer applications will vary, depending on the source code, the compiler options specified, and other factors.

4.10x speedup from hardware and compiler improvements

Enterprise COBOL 4.2 on zEC12 → Enterprise COBOL 6.5 on z17

based on internal benchmarks for compute intensive and I/O bound COBOL applications

* Compiler GA year. Compiler releases generally align with hardware releases.

** Recommended performance options for the respective hardware

1x

1.84x
2.35x

3.49x

4.48x
4.87x

5.58

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Hardware IBM zEC12 IBM z13 IBM z13 IBM z14 IBM z15 IBM z16 IBM z17

Compiler COBOL 4.2 COBOL 5.2 COBOL 6.1 COBOL 6.2 COBOL 6.3 COBOL 6.4 COBOL 6.5

GA year* 2009 2015 2016 2017 2019 2022 2025

Performance
options**

OPT(FULL) ARCH(11) OPT(2) ARCH(11) OPT(2) ARCH(12) OPT(2) ARCH(13) OPT(2) ARCH(14) OPT(2) ARCH(15) OPT(2)

Average CPU usage
reduction vs

baseline

- 46% 58% 71% 78% 79% 82%

A
v
e
ra

g
e
 s

p
e
e
d
u
p
 v

s
 b

a
s
e
lin

e

History of Enterprise COBOL for z/OS Performance
for decimal and floating point compute intensive COBOL applications

Disclaimer: The performance improvements are based on the geometric mean of IBM internal measurements on IBM z17 running a z/OS 3.1 LPAR with 1 CP and 80GB Central Storage, IBM z16 running a z/OS 2.4 LPAR with 1 CP and 80GB Central Storage,

IBM z15 running a z/OS 2.4 LPAR with 1 CP and 80GB Central Storage, IBM z14 running a z/OS 2.3 LPAR with 2 CP and 128GB Central Storage, IBM z13 running a z/OS 2.3 LPAR with 1 CP and 64GB Central Storage, IBM zEC12 running a z/OS 2.2 LPAR

with 2 CP and 64GB Central Storage. All benchmarks compiled with IBM Enterprise COBOL for z/OS 5/6 use the options STGOPT, AFP(NOVOLATILE), HGPR(NOPRESERVE), and LIST. All benchmarks compiled with IBM Enterprise COBOL for z/OS 4.2 use

the option LIB. Performance results for customer applications will vary, depending on the source code, the compiler options specified, and other factors.

5.58x speedup from hardware and compiler improvements

Enterprise COBOL 4.2 on zEC12 → Enterprise COBOL 6.5 on z17

based on internal benchmarks for decimal and floating point compute intensive COBOL applications

* Compiler GA year. Compiler releases generally align with hardware releases.

** Recommended performance options for the respective hardware

10© 2025 IBM Corporation

Migration strategies

11© 2025 IBM Corporation

Migration strategies

Two simple principles … 1. The more time you

spend doing

something, the

more you gain

from speeding it

up.

2. A compiler can

only speed up

code that it

compiles.

© 2025 IBM Corporation

Prioritizing Migration

The more time you

spend doing

something, the more

you gain from

speeding it up.

• A 25% speedup saves

twice as much time on

a program that takes

twice as long.

• Prioritize the hot spots

in your workload.

25%

25%

0

1

2

3

4

5

6

7

8

9

Before After Before After

Module 1 Module 2

T
im

e
CPU Saved

CPU Usage

© 2025 IBM Corporation

Prioritizing Migration

A compiler can only

speed up the code

that it compiles.

• The compiler does not

speed up file I/O.

• The compiler does not

speed up middleware:

Db2, CICS, etc…

• Modules that spend

more time executing

COBOL code will see the

largest benefit.

17%

33%

0

1

2

3

4

5

6

7

Before After Before After

Module 1 Module 2

T
im

e

COBOL

I/O

CICS

14© 2025 IBM Corporation

Migration Strategies
Tips and tricks

Start with batch

Batch programs often

spend more time in

COBOL code.

Transactional programs

are often just a thin layer

between other

components.

Profile!

The best way to find your

hotspots is by measuring

them.

IBM Application

Performance Analyzer for

z/OS is a good tool for this;

IBM and other vendors

offer other tools as well

More information is

available in a whitepaper:

COBOL Applications:

Techniques to Make Them

More Efficient

Be methodical

Take a baseline before you

start making changes, and

make sure to compare

apples to apples.

Small helper routines that

are called from many

different places are often

an easy place to make an

improvement.

Give us feedback!

We can't measure your

code.

Let us know what kind of

improvements you are

seeing.

If you are not seeing

improvements, and you

have profile data showing

that your COBOL code is a

performance hotspot, we

are very interested in

hearing from you.

https://www.ibm.com/support/pages/cobol-applications-techniques-make-them-efficient
https://www.ibm.com/support/pages/cobol-applications-techniques-make-them-efficient
https://www.ibm.com/support/pages/cobol-applications-techniques-make-them-efficient

1
5

Code Optimization Advice: Improve your COBOL code
performance with prioritized insights

Provides prioritized and actionable recommendations
Ranks performance issues based on impact, enabling
developers to focus on high-priority tasks for maximum
efficiency.

Provides performance insight
Conducts comprehensive analysis of COBOL modules
using both static and dynamic analysis, enabling quick
identification and resolution of performance issues.

Identifies performance issues in source
Access source files and copybooks at the exact line of
code to apply recommended fixes and enhancements

Key Values

Boost productivity by enabling quick identification and resolution of
performance issues

Reduce skill gap by allowing developers of all skill levels to
independently resolve performance issues

Quick resolution of performance issues in COBOL source

Shift-left strategy to proactively prevent performance problems
before they reach production

16© 2025 IBM Corporation

Migration Strategies
What if I don’t want to recompile/migrate to COBOL 6?

Use ABO

Automatic Binary

Optimizer optimizes

previously-compiled

COBOL programs without

the source code

Latest version is ABO 2.3,

which targets hardware up

to the IBM z17

ABO can help you see

performance gains faster

than recompiling

Which takes less effort?

ABO-optimized modules have

the same behavior, even

when programs use invalid

data

Less testing is needed than

when recompiling older

programs with COBOL 6

ABO requires no source code

changes and has very few

options; besides ARCH, the

existing compiler options are

left alone

When Should I Use ABO?

ABO is a faster, easier, alternative to recompiling with

COBOL 6 and will give comparable performance gains.

Programs optimized with ABO have comparable

performance to programs recompiled with COBOL 6,

using OPT(2) and the same ARCH option as ABO and

keeping all other compiler options the same as when the

program was previously compiled.

To get an extra performance boost, recompile with

COBOL 6 and follow the performance tuning advice in

this webinar

Performance results for customer applications will vary, depending on the source

code, the compiler options specified, and other factors. Find the full disclaimer here.

17© 2025 IBM Corporation

Compiler options:
Low hanging fruit

18© 2025 IBM Corporation

Compiler options
OPT

Best Performance

OPT(2)

OPT(0)

OPT(0) uses a minimal set

of optimizations.

OPT(0) is not

recommended for

performance-critical

applications.

OPT(0) guarantees that

instructions from separate

statements will not be

interspersed: each

statement is completely

finished before starting the

next statement.

OPT(1)

OPT(1) uses a subset of the

compiler's optimizations. It

omits some optimizations

and runs weaker versions of

others.

OPT(1) lies between the

compilation speed of

OPT(0) and the

performance of OPT(2).

OPT(2)

OPT(2) uses all of the

compiler's most powerful

optimizations.

OPT(2) is the best choice

for performance-critical

applications.

© 2025 IBM Corporation

Compiler options
OPT

Performance comparison

This comparison is across

IBM's internal suite of

benchmarks.

A program in our benchmark

suite was 84% faster with

OPT(1) over OPT(0) and an

additional 49% faster with

OPT(2) over OPT(1) (for a 92%

improvement with OPT(2) over

OPT(0)).

23.6%

61.4% 63.1%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

V4.2 OPT(FULL) V6.5 OPT(0) V6.5 OPT(1) V6.5 OPT(2)

T
im

e

20© 2025 IBM Corporation

Compiler options
ARCH

Best performance

As high as possible.

Select the ARCH level

corresponding to the

lowest level machine on

which your program must

run.

For example: a customer

using IBM z17 machines in

production and IBM z16

machines for disaster

recovery should use

ARCH(14), corresponding

to IBM z16.

Hardware exploitation

Every new release of IBM Z

mainframes adds new

instructions to the hardware.

ARCH limits the compiler’s

instruction choices to those

that exist on a target

machine.

By setting the correct ARCH

level, you take full

advantage of the

capabilities of your

mainframe.

Free lunch

Increasing the ARCH level

does not affect compilation

time.

Increasing the ARCH level

does not affect the ability

to debug your programs.

Caveat: exploitation of

decimal floating-point

instructions only occurs at

OPT(1) and above.

Biggest wins

ARCH(12): The addition of

the vector packed decimal

facility in IBM z14 provides

an additional boost to

decimal arithmetic.

ARCH(10): The new

decimal floating point

instructions introduced for

IBM zEC12 significantly

improve the performance

of decimal arithmetic.

© 2025 IBM Corporation

Compiler options
ARCH

Performance comparison

This comparison is across

IBM's internal suite of

benchmarks, compiled with

COBOL 6.5 at OPT(2), run on

an IBM z17. Comparison is

relative to ARCH(11).

An individual program in our

benchmark suite improved by

84% using ARCH(15)

compared to ARCH(11)

27.1%

27.9% 30.8%
35.5%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ARCH(11) ARCH(12) ARCH(13) ARCH(14) ARCH(15)

T
im

e

22© 2025 IBM Corporation

Compiler options
TUNE

Best performance

Select the TUNE level

corresponding to the

machine on which your

program run most often.

For example: a customer

using IBM z17 machines in

production and IBM z16

machines for disaster

recovery must use

ARCH(14), corresponding to

IBM z16, but should also use

TUNE(15), corresponding to

IBM z17, for best

performance in production.

Hardware exploitation

TUNE instructs the compiler to

make the best performance

choices on a target machine,

limited by the available

instructions.

By setting the correct TUNE level,

you take full advantage of the

capabilities of the mainframe

where your application runs most

often.

TUNE must always be at least as

high as ARCH.

With ARCH set to match older

hardware, the average gain of

matching TUNE to newer

production hardware is 1-2% over

matching TUNE to ARCH and the

older hardware

Free lunch

Increasing the TUNE level

does not affect compilation

time.

Increasing the TUNE level

does not affect the ability

to debug your programs.

Biggest wins

On IBM z14, the compiler

sometimes inserts stores from

vector packed registers to

temporary storage for

performance. This is only useful

on an IBM z14, and the extra

instructions hurt performance on

other hardware.

ARCH(12),TUNE(13) allows

applications to safely run on an

IBM z14 but get better

production, avoiding the stores to

temps, on an IBM z15 or z16.

A program in our benchmark

suite was 22% faster with

ARCH(12),TUNE(13) than

ARCH(12),TUNE(12) on an IBM

z15

23© 2025 IBM Corporation

Compiler options:
Some assembly required

24© 2025 IBM Corporation

Compiler options
INVDATA

Best performance

NOINVDATA

If necessary, test for bad

data with NUMCHECK.

What is bad data?

Not all arrangements of

bits are valid decimal

values. Consider the

number -123. There are

multiple ways to represent

it. The programmer selects

the representation of a

data item using the

PICTURE clause.

Each of these

representations has

constraints on what the

data can look like.

Zoned decimal

Ex: PIC S9(3)

F1 F2 D3
This number has three

digits. They must be

between 0 and 9.

It also has a sign code. It

must be between A and F.

In this case, D means the

number is negative.

It also has zone bits. These

must always be F.

Biggest wins

Ex: PIC S9(3) COMP-3

12 3D
This number also has

three digits and a sign

code. However, it does not

have any zone bits.

25© 2025 IBM Corporation

Compiler options
INVDATA

Why does it matter?

There are many ways to

generate code for a statement.

They all do the same thing for

valid data. They may behave

differently for invalid data.

The new compiler may make

different, faster choices than

the old compiler.

INVDATA and

INVDATA(FORCENUMCMP,N

OCLEANSIGN) restrict the

compiler's ability to make

those faster choices.

Example:

===================

01 GRP.

 02 VAR PIC 9(3).

MOVE LOW-VALUES TO GRP.

IF VAR = 0 THEN

...

===================

Because VAR is unsigned, it

should look like:

F0 F0 F0
If the zone bits and the sign

code are all guaranteed to be

F, then the compiler can

compare VAR to 0 directly.

Because we moved LOW-

VALUES to VAR, it looks like:

00 00 00
This is not bitwise-equal to 0.

The compiler must first convert

VAR to packed decimal and

set the sign code to F before

comparing

Best strategy

NOINVDATA will give the

best performance.

If your application has

problems with bad data,

use NUMCHECK to locate

and fix them.

Note: As we add new

optimizations to the

compiler, the performance

gap between NOINVDATA

and the other options will

only continue to grow.

26© 2025 IBM Corporation

Compiler options
NUMPROC

Best performance

NUMPROC(PFD)

If necessary, test with

NUMPROC(PFD) and

NUMCHECK(ZON,PAC)

What does it do?

COBOL defines preferred

sign codes for decimal

values:

• C for positive numbers.

• D for negative numbers.

• F for unsigned numbers.

Sign codes of A, B, and E are

valid, but non-preferred.

Arithmetic operations always

produce the preferred sign.

If NUMPROC(PFD) is

specified, the compiler can

assume that all data has the

preferred sign.

Why does it matter?

The compiler can generate

more efficient code.

For example, if C is the

only positive sign code,

values can be compared

using a bitwise

comparison.

If values might exist with a

sign code of A, a more

expensive comparison

must be used.

Across a suite of compute-

intensive benchmarks,

NUMPROC(PFD) is 7.5%

faster than NOPFD.

Best strategy

NUMPROC(PFD) should

only be used after verifying

that your data conforms to

the rules for preferred sign.

27© 2025 IBM Corporation

Compiler options
TRUNC

Best performance

TRUNC(STD) or

TRUNC(OPT)

If necessary, test with

TRUNC(OPT) and

NUMCHECK(BIN).

Data items coming from

Db2 or CICS may not

conform to a PIC clause;

use COMP-5 for those

data items.

What does it do?

TRUNC determines the

behaviour of BINARY data

items that exceed their

PICTURE clause.

TRUNC(STD): Truncate

according to the PICTURE

clause.

TRUNC(BIN): Truncate

according to the underlying

binary data type.

TRUNC(OPT): The

compiler can assume that

the PICTURE clause is

never exceeded.

Performance?

TRUNC(BIN) is the

slowest. Intermediate

results grow quickly and

may require larger data

types.

TRUNC(STD) requires a

fixup after each operation

that might exceed the

picture clause. These

fixups are heavily

optimized in the new

compiler.

TRUNC(OPT) combines

the benefits of both BIN

and STD, but the

programmer must avoid

truncation.

Best strategy

Avoid TRUNC(BIN).

TRUNC(STD) is often

good enough.

TRUNC(OPT) may be

faster in some cases, but

usually not enough to

matter.

© 2025 IBM Corporation

Compiler options
TRUNC

Performance

comparison

1.7%

8.2%

0.8

0.9

1.0

1.1

1.2

TRUNC(OPT) TRUNC(STD) TRUNC(BIN)

S
lo

w
d

o
w

n
 -

 R
e

la
ti
v
e

 t
o

 T
R

U
N

C
(O

P
T

)

29© 2025 IBM Corporation

Compiler options
STGOPT

Best performance

STGOPT

What does it do?

STGOPT allows the

compiler to eliminate

unreferenced data items in

WORKING-STORAGE and

LOCAL-STORAGE.

Prior to Enterprise COBOL

5, this was controlled using

OPT(STD) vs OPT(FULL).

Benefits

Memory consumption:

Copybooks often introduce

unreferenced data items

into programs. Using

STGOPT can reduce the

memory consumption of

your application.

Data locality: Moving

frequently used data items

closer together may make

it easier for the hardware

to have your data available

when the program needs

it, which can improve

performance.

Caveats

The reduction in memory

consumption from STGOPT

is more significant than the

reduction in CPU usage.

Do not use STGOPT for

programs containing

unreferenced eyecatchers.

Do not use STGOPT for

programs depending on

unreferenced data items to

lay out memory correctly.

The VOLATILE clause can

be used to prevent the

compiler from eliminating

specific data items.

30© 2025 IBM Corporation

Compiler options
AWO

Best performance

AWO

What does it do?

The APPLY WRITE-ONLY

clause optimizes buffer and

device space allocation for

QSAM files that have

standard sequential

organization, have variable-

length records, and are

blocked.

This allows the program to

combine more records

together into a single EXCP.

The AWO compiler option

adds an implicit APPLY

WRITE-ONLY clause for

every physical sequential,

variable-length, blocked file in

the program.

Benefits

In one example program,

AWO is 90% faster than

NOAWO and uses 98%

fewer EXCPs.

31© 2025 IBM Corporation

Compiler options
BLOCK0

Best performance

BLOCK0

What does it do?

BLOCK CONTAINS 0 can

be specified for QSAM

files.

This allows the operating

system to determine the

best size for the block.

The BLOCK0 compiler

option adds an implicit

BLOCK CONTAINS 0

clause for every QSAM file

in the program that does

not specify RECORDING

MODE U and does not

already have a BLOCK

CONTAINS clause.

Benefits

Using the best block size

can reduce the number of

physical I/O transfers,

resulting in fewer EXCPs.

In one example program,

BLOCK0 is 90% faster

than NOBLOCK0 and uses

98% fewer EXCPs.

32© 2025 IBM Corporation

Compiler options
FASTSRT

Best performance

FASTSRT

What does it do?

In SORT USING and

SORT GIVING statements,

FASTSRT allows the

DFSORT product to

perform I/O directly on the

input and output files,

instead of returning control

to COBOL after each

record is processed.

This eliminates significant

overhead.

Benefits

In an example program

that processes 100,000

records, FASTSRT is 45%

faster than NOFASTSRT,

and uses 4,000 fewer

EXCPs.

Caveats

You cannot use the

DFSORT options SORTIN

or SORTOUT if you use

FASTSRT. The FASTSRT

compiler option does not

apply to line-sequential

files you use as USING or

GIVING files.

If you specify file status

and use FASTSRT, file

status is ignored during the

sort.

33© 2025 IBM Corporation

Compiler options:
Options to avoid

34© 2025 IBM Corporation

Compiler options
SSRANGE

Best performance

NOSSRANGE

What does it do?

SSRANGE inserts code

that verifies that subscripts

and indexes are within the

proper range.

Performance

Across our benchmarks,

SSRANGE is 7% slower

than NOSSRANGE.

Best strategy

Use SSRANGE during

testing to find bugs. Fix the

bugs, then use

NOSSRANGE in

production.

35© 2025 IBM Corporation

Compiler options
NUMCHECK

Best performance

NONUMCHECK

Note: The z17 hardware

introduces instructions that

greatly reduce the impact

of NUMCHECK. Across

our benchmarks,

NUMCHECK was only

3.6% slower than

NONUMCHECK when

using OPT(2),ARCH(15)

and running on a z17.

But, check your minimum

ARCH level!

What does it do?

NUMCHECK inserts code

that verifies that numeric

data items used as

senders have valid data.

NUMCHECK(ZON) inserts

tests for DISPLAY items.

NUMCHECK(PAC) inserts

tests for COMP-3 items.

NUMCHECK(BIN) inserts

tests for BINARY items.

Performance

Across our benchmarks:

NUMCHECK(ZON) is 15%

slower than

NONUMCHECK.

NUMCHECK(PAC) is 10%

slower than

NONUMCHECK.

NUMCHECK(BIN) is 13%

slower than

NONUMCHECK.

Best strategy

Use NUMCHECK during

testing.

Do not use NUMCHECK in

production.

36© 2025 IBM Corporation

Compiler options
PARMCHECK

Best performance

NOPARMCHECK

What does it do?

PARMCHECK inserts a

buffer immediately

following WORKING-

STORAGE.

Before a CALL, a bit

pattern is written into the

buffer.

Following a CALL, the

buffer is checked to ensure

it is unchanged.

A change means the CALL

resulted in a write past the

end of the caller’s

WORKING-STORAGE

section.

Performance

A program repeatedly

calling another empty

program took 22% longer

with PARMCHECK than

with NOPARMCHECK.

Best strategy

Use IBM Developer for z

Systems Scanning

COBOL Programs for

Compatibility feature.

If you don’t have IDz, use

PARMCHECK during

testing.

Do not use PARMCHECK

in production.

37© 2025 IBM Corporation

Runtime / LE Options

38© 2025 IBM Corporation

Runtime / LE options
Storage management tuning

Best performance

HEAP

ANYHEAP

BELOWHEAP

STACK

LIBSTACK

RPTSTG

What is it?

Storage management is

designed to keep a block of

storage only as long as is

necessary.

If the last block of storage

allocated for a program does

not contain enough free

space to satisfy a storage

request by a library routine,

the library routine will issue a

GETMAIN and FREEMAIN

to acquire and release the

storage.

If that library routine is called

frequently, performance will

be degraded.

Best strategy

Use RPTSTG(ON) to

measure the storage

requirements of your

application.

Use the values reported by

RPTSTG as the size of the

initial blocks for the HEAP,

ANYHEAP, BELOWHEAP,

STACK, and LIBSTACK

options.

In a transactional

environment, the LE storage

tuning user exit allows you to

set storage values for your

main programs without

having to link-edit the values

into your load modules.

39© 2025 IBM Corporation

Runtime / LE options
First program not LE-conforming

The problem

If the first program in an

application is not LE-

conforming, the COBOL

environment must be

initialized and terminated

each time a main program

is invoked.

This can cause a

significant performance

degradation.

This is most likely if the

first program is written in

Assembler.

Best solutions

Rewrite the first program in

COBOL.

Replace the first program

with a COBOL stub

program that calls the first

program.

Alternatives

Use the CEEENTRY and

CEETERM macros in the first

program to make it an LE-

conforming program.

Call CEEPIPI from the first

program to initialize and

terminate the LE

environment.

Use the runtime option

RTEREUS to initialize the

runtime environment for

reusability.

Use LRR (library routine

retention).

Place library routines in the

LPA / ELPA.

Benefits

The overhead of calling an

empty COBOL program is

99% smaller if the COBOL

environment has already

been initialized.

40© 2025 IBM Corporation

Runtime / LE options
Options to avoid in production

Best performance

DEBUG

INTERRUPT

RPTSTG

STORAGE

TEST

Best strategy

These options add

overhead to the execution

of your program.

Use these options for

debugging and tuning

when necessary but avoid

them in production.

41© 2025 IBM Corporation

Coding practices

42© 2025 IBM Corporation

Coding practices
Data types

Using the best type

for your data items is

one of the easiest

ways to speed up the

computation in a

program.

Binary

BINARY, COMP-4, COMP-5,

INDEXED BY

Binary arithmetic is the native

language of the hardware.

Computations done in binary

are faster than any other

type.

Some operations require their

operands to be converted to

binary:

- Indexing/subscripting a

table

- Reference modification

- Object of ODO clause

Use binary data items

whenever possible. Prefer

COMP/COMP-4 to COMP-5.

Packed decimal

PACKED-DECIMAL,

COMP-3

Packed-decimal arithmetic

is like a second language.

The hardware knows how

to work with it, but it is

slower than binary

arithmetic.

Use packed decimal for

data items with decimal

points, or larger values

that do not fit in binary

items.

Zoned decimal

DISPLAY, NATIONAL,

numeric-edited,

unspecified

Zoned-decimal arithmetic

is like a foreign language.

The hardware has to

translate it to do anything.

Use zoned decimal for

data items that will be used

in DISPLAY statements.

© 2025 IBM Corporation

Coding practices
Zoned decimal

Avoid using zoned

decimal data items

for computation

whenever possible

Example

=============================

Working-Storage Section.

01 A PIC 9(8).

01 B PIC 9(8).

Procedure Division.

 Perform Varying A

 from 1 by 1

 until A = 10000000

 Add 1 to B

 End-Perform.

=============================

0.1%

2.0%

50.9%

50.7%

0.0

1.0

2.0

3.0

4.0

5.0

V4 V6

T
im

e

DISPLAY

COMP-3

BINARY

44© 2025 IBM Corporation

Coding practices
Packed decimal

Avoid using packed

decimal data items

with an even number

of digits

Packed decimal

Consider the following data

item:
01 EVEN-PACK PIC 9(4)

COMP-3

It is represented as:

01 23 4C
The upper half of the high-

order byte is unused and

must always be 0. Not only

does this waste space, but it

requires the compiler to

generate additional

instructions to set it to 0 after

EVEN-PACK is used as a

receiver.

Example

======================

01 A PIC 9(?) Value 0.

01 B PIC 9(?) Value 0.

Perform Varying A

 from 1 by 1

 until A = 100000

 Add 1 TO B

End-Perform.

======================

Performance

The example program is

16% faster, compiled with

ARCH(11), when A and B

are PIC 9(7) than when A

and B are PIC 9(6).

45© 2025 IBM Corporation

Coding practices
Binary

Where possible, use

COMP over COMP-5.

Use COMP-5 for

binary values set by

other products: IMS,

DB2, C, etc.

What is the difference?

COMP and COMP-5 differ

based on their handling of

truncation.

COMP data items obey their PIC

clause. If a value larger than the

PIC clause is moved into a

COMP item, it will undergo

decimal truncation.

COMP-5 data items are

truncated according to the size

of the underlying binary value:

Intermediate results

Because COMP-5 data

items can contain values

that exceed their PIC

clause, the compiler must

assume that intermediate

results of computations

using those items are

larger.

If an operation that involves

binary operands requires

intermediate results longer

than 18 digits, the compiler

must convert the operands

to packed decimal before

performing the operation.

This can be much slower. In

some cases, it requires calls

to library routines.

Performance

If operands do not exceed

9 digits, COMP-5 is

comparable to COMP.

If operands exceed 9

digits, computations

involving COMP data items

can be 99.5% faster than

the equivalent operations

using COMP-5.

9(1) to 9(4) 9(5) to 9(9) 9(10) to 9(18)

2 bytes 4 bytes 8 bytes

0 to

65,535

0 to 4,294,967,295 0 to

18,446,744,073,709,5

51,615

46© 2025 IBM Corporation

Coding practices
Occurs Depending On

Avoid creating

variably located data

items:

• Place ODO tables

at the end of level-

01 groups.

• Avoid nesting

ODO tables where

possible.

Variably located data

items

Some data items are not

always located at the same

location in working storage.

If a data item follows a

variable-length table in a level-

01 item, but is not subordinate

to it, then the address of that

data item depends on the size

of the variable-length table.

If a table contains variable-

length elements, the address

of an element in that table

depends on the length of the

elements.

Variably located data items

require address calculations

whenever they are accessed.

Example

===

01 FIELD-A.

 02 COUNTER-A PIC 99.

 02 TABLE-A.

 03 RECORD-A OCCURS 1 TO 5 TIMES

 DEPENDING ON COUNTER-A PIC X(3).

 02 EMPLOYEE-NUMBER PIC X(5).

01 FIELD-B.

 02 COUNTER-B PIC 99.

 02 TABLE-B-1 OCCURS 5 TIMES

 INDEXED BY IDX.

 03 TABLE-ITEM PIC 99.

 03 TABLE-B-2 OCCURS 1 TO 3 TIMES

 DEPENDING ON COUNTER-B.

 04 DATA-NUM PIC 99.

===

© 2025 IBM Corporation

Coding practices
Occurs depending on

Example

==

01 GROUP-1.

 02 SIZE-1 PIC 99 value 50.

 02 SIZE-2 PIC 99 value 50.

 02 SIZE-3 PIC 99 value 50.

 02 TABLE-1 PIC 99 OCCURS 1 TO 99 TIMES

 DEPENDING ON SIZE-1.

 02 TABLE-2 PIC 99 OCCURS 1 TO 99 TIMES

 DEPENDING ON SIZE-2.

 02 TABLE-3 PIC 99 OCCURS 1 TO 99 TIMES

 DEPENDING ON SIZE-3.

 02 A PIC 9(6) COMP-3.

 02 B PIC 9(6) COMP-3.

 02 C PIC 9(6) COMP-3.

[...]

PERFORM 100000000 TIMES

 ADD A TO B GIVING C

END-PERFORM

==

91.0%

79.1%
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

OPT(0) OPT(2)

T
im

e

ODO

No ODO

48© 2025 IBM Corporation

Coding practices
Calls

Static calls are faster

than dynamic calls.

However, dynamic

calls may still be best

for your program.

What is the difference?

If DYNAM is not specified, a

CALL to a literal will cause the

program with that name to be

bound into the same load

module as the calling program.

If DYNAM is specified, or if a

CALL is to a data item or

function pointer instead of a

literal, then the target of the call

will not be bound into the same

load module. Instead, the

target will be determined by the

COBOL runtime when the

program is executed.

The first dynamic call to a

program will be significantly

slower than subsequent calls.

Performance

When calling an empty

program, a static call is

74% faster than an

equivalent dynamic call.

Other considerations

If an application contains

programs that are not

called every time the

application runs, using

dynamic calls can avoid

ever loading the unused

programs into memory.

Dynamic calls are faster

than static calls in

applications that contain

both COBOL 4/earlier

programs and COBOL 5/6

programs. Static calls are

faster in pure COBOL

4/earlier or pure COBOL

5/6 programs.

49© 2025 IBM Corporation

Coding practices
RULES(NOLAXPERF)

Example

======================================

Working-Storage Section.

01 Bad-Loop PIC 9(4).

01 Bad-Arith-1 PIC 9(4).

01 Bad-Arith-2 PIC 9(4).

01 Small-Item PIC X(10).

01 Large-Item PIC X(1000).

Procedure Division.

 Perform varying Bad-Loop

 from 1 by 1 until Bad-Loop = 100

 Add Bad-Arith-1 to Bad-Arith-2

 Move Small-Item to Large-Item

 End-perform.

======================================

Opportunities

Loops:

Bad-Loop is a loop

counter. It should be

defined as COMP or

COMP-3.

Arithmetic:

Bad-Arith-1 and Bad-Arith-

2 are used in arithmetic.

They should be defined as

COMP or COMP-3.

Excess padding:

Moving a PIC X(10) to a

PIC X(1000) requires 990

bytes of padding to be

filled with spaces.

The compiler can

automatically identify

many opportunities

for code

improvement

© 2025 IBM Corporation 50

Resources

Need Help With COBOL Performance?

• IBM watsonx Code Assistant for Z Optimize can help you find the hotspots in your COBOL applications and

identify and prioritize performance tuning opportunities

• For additional information see the wca4z website, or click-through demo (click Optimize Mainframe Code

to get started)

• An Enterprise COBOL developer can answer specific questions you have about your COBOL Migration, as

well as COBOL performance questions or other questions about Enterprise COBOL.

• Contact an expert here

• Mainframe Application Modernization Services – COBOL Upgrade Service from IBM Consulting can help

you recompile applications previously compiled with older IBM COBOL compilers with Enterprise COBOL for

z/OS 6.4 or 6.5. Optimization of COBOL modules with Automatic Binary Optimizer for z/OS is also available.

• For additional information, see the IBM Consulting website.

© 2025 IBM Corporation 51

https://www.ibm.com/products/watsonx-code-assistant-z
https://www.ibm.com/resources/digital-innovation/demos/watsonx-code-assistant-for-z
https://www.ibm.com/docs/SS6SG3_latest/migration-webinars.html
https://www.ibm.com/community/z-and-cloud/leverage-ibm-expertise/

Thank you

52

Mike Chase

Compiler Optimization Developer

Lead Developer, IBM watsonx Code Assistant for Z Code

Optimization Advice

—

mike.chase@ca.ibm.com

ibm.com

© 2025 IBM Corporation

Performance Claims

IBM Enterprise COBOL for z/OS 6.5 (applies here and here)

The performance improvements are based on the geometric mean of IBM internal measurements on IBM z17 running a z/OS 3.1 LPAR with 1 CP and

80GB Central Storage, IBM z16 running a z/OS 2.4 LPAR with 1 CP and 80GB Central Storage, IBM z15 running a z/OS 2.4 LPAR with 1 CP and 80GB

Central Storage, IBM z14 running a z/OS 2.3 LPAR with 2 CP and 128GB Central Storage, IBM z13 running a z/OS 2.3 LPAR with 1 CP and 64GB Central

Storage, IBM zEC12 running a z/OS 2.2 LPAR with 2 CP and 64GB Central Storage. All benchmarks compiled with IBM Enterprise COBOL for z/OS 5/6

use the options STGOPT, AFP(NOVOLATILE), HGPR(NOPRESERVE), and LIST. All benchmarks compiled with IBM Enterprise COBOL for z/OS 4.2 use

the option LIB. Performance results for customer applications will vary, depending on the source code, the compiler options specified, and other factors.

IBM Automatic Binary Optimizer for z/OS 2.3 (applies here)

The performance improvements are based on the geometric mean of IBM internal measurements on IBM z17 running a z/OS 3.1 LPAR with 1 CP and

80GB Central Storage, and IBM zEC12 running a z/OS 2.3 LPAR with 1 CP and 80GB Central Storage. All benchmarks optimized with IBM Automatic

Binary Optimizer for z/OS 2.3 use the new ARCH(15) option and default settings for all other options. The input COBOL benchmarks modules optimized by

IBM Automatic Binary Optimizer for z/OS were all compiled by Enterprise COBOL 4.2. All benchmarks compiled with IBM Enterprise COBOL for z/OS 4.2

use the options OPT(STD), LIB. Performance results for customer applications will vary, depending on the source code, the compiler options specified, and

other factors.

© 2022 IBM Corporation 53

	Slide 1: Performance Tuning with Enterprise COBOL Mike Chase mike.chase@ca.ibm.com Compiler Optimization Developer Lead Developer, IBM watsonx Code Assistant for Z Code Optimization Advice
	Slide 2
	Slide 3: Introduction
	Slide 4: Goals of this presentation
	Slide 5: Introduction A new approach to COBOL compilation
	Slide 6: Introduction A new approach to COBOL compilation
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Migration strategies
	Slide 11: Migration strategies Two simple principles …
	Slide 12: Prioritizing Migration
	Slide 13: Prioritizing Migration
	Slide 14: Migration Strategies Tips and tricks
	Slide 15
	Slide 16: Migration Strategies What if I don’t want to recompile/migrate to COBOL 6?
	Slide 17: Compiler options: Low hanging fruit
	Slide 18: Compiler options OPT
	Slide 19: Compiler options OPT
	Slide 20: Compiler options ARCH
	Slide 21: Compiler options ARCH
	Slide 22: Compiler options TUNE
	Slide 23: Compiler options: Some assembly required
	Slide 24: Compiler options INVDATA
	Slide 25: Compiler options INVDATA
	Slide 26: Compiler options NUMPROC
	Slide 27: Compiler options TRUNC
	Slide 28: Compiler options TRUNC
	Slide 29: Compiler options STGOPT
	Slide 30: Compiler options AWO
	Slide 31: Compiler options BLOCK0
	Slide 32: Compiler options FASTSRT
	Slide 33: Compiler options: Options to avoid
	Slide 34: Compiler options SSRANGE
	Slide 35: Compiler options NUMCHECK
	Slide 36: Compiler options PARMCHECK
	Slide 37: Runtime / LE Options
	Slide 38: Runtime / LE options Storage management tuning
	Slide 39: Runtime / LE options First program not LE-conforming
	Slide 40: Runtime / LE options Options to avoid in production
	Slide 41: Coding practices
	Slide 42: Coding practices Data types
	Slide 43: Coding practices Zoned decimal
	Slide 44: Coding practices Packed decimal
	Slide 45: Coding practices Binary
	Slide 46: Coding practices Occurs Depending On
	Slide 47: Coding practices Occurs depending on
	Slide 48: Coding practices Calls
	Slide 49: Coding practices RULES(NOLAXPERF)
	Slide 50
	Slide 51: Need Help With COBOL Performance?
	Slide 52
	Slide 53: Performance Claims

