Performance Tuning with
Enterprise COBOL

Mike Chase

mike.chase@ca.ibm.com
Compiler Optimization Developer

Lead Developer, IBM watsonx Code Assistant for Z
Code Optimization Advice

© 2025 IBM Corporation

Contents

« Introduction

- Migration Strategies
« Compiler Options

« Runtime/LE Options

« Coding Practices

© 2025 IBM Corporation

Introduction
Nl g e A
EELNEE 1)\._.\\\, P&\R;\

0111010110000

LLELEL LI I R
© 2025 IBM Corporation

Goals of this presentation

Practical advice

This presentation focuses
on the most important
things you can do as a
COBOL developer to
improve the performance
of COBOL applications
and discusses the
advantages and
drawbacks of those
changes.

Your time is valuable. Time
you spend on performance
is time you can't spend on
something else. This
presentation will help you
get the best bang for your
buck.

© 2025 IBM Corporation

Migration

This presentation focuses
on improving performance
for programs compiled with
Enterprise COBOL 6.

Much of the advice also
applies to earlier versions
of COBOL.

For details on migrating
from earlier versions of
COBOL, please see the
Enterprise COBOL 6
Migration Webinar.

Comparisons

Overall performance
comparisons use the
COBOL 6.5 GA on an IBM
z17 machine.

Comparisons for some
options use older
Enterprise COBOL 6 GAs
on older hardware.

Unless otherwise
specified, performance
comparisons are based on
IBM's internal benchmark
suite, and represent the
geometric mean of the

performance improvement.

Caveats

The ability of the compiler
to improve the
performance of a program
depends on many factors.
IBM cannot guarantee
performance
Improvements on every
program.

This presentation aims to
be clear about the
conditions and limitations
of the performance
improvements it describes.

https://www.ibm.com/docs/SS6SG3_latest/migration-webinars.html
https://www.ibm.com/docs/SS6SG3_latest/migration-webinars.html

Introduction
A new approach to COBOL compilation

In the past ... Now ...
Computers were slow. Computers are fast.
Memory was expensive and was measured in KB. Memory is fast and is measured in GB.

Compiler optimizations were constrained by space
and time.

Programs are compiled once RElREIINuERVATINESS

© 2025 IBM Corporation

Introduction
A new approach to COBOL compilation

Prior to Enterprise COBOL 5...
The compiler was designed to run quickly.

The compiler traded optimization quality for
compilation speed.

The compiler was an independent project, with no

connection to the rest of IBM's compiler technology.

© 2025 IBM Corporation

Now ...

The compiler is designed to make compiled
programs run quickly.

The compiler trades compilation speed for
optimization quality.

The compiler shares code with IBM's enterprise-
grade compiler for Java.

Advancements

New optimizations

The new compiler
implements many new
optimizations, including
global optimizations
that look at the entire
program.

© 2025 IBM Corporation

Hardware exploitation

The new compiler takes
full advantage of the
new instructions on the
latest IBM Z
mainframes.

1x
Hardware IBM zEC12
Compiler COBOL 4.2
GA year* 2009
Performance OPT(FULL)

options**

Average CPU usage -
reduction vs
baseline

History of Enterprise COBOL for z/OS Performance
for compute intensive and I/O bound COBOL applications

4.10
3.61x
3.25x%
2.65x
1.99x
1.68x I
IBM z13 IBM z13 IBM z14 IBM z15 IBM z16 IBM z17
COBOL 5.2 COBOL 6.1 COBOL 6.2 COBOL 6.3 COBOL 6.4 COBOL 6.5
2015 2016 2017 2019 2022 2025

ARCH(11) OPT(2) ARCH(11) OPT(2) ARCH(12) OPT(2) ARCH(13) OPT(2) ARCH(14) OPT(2) ARCH(15) OPT(2)

40% 50% 62% 69% 72% 76%

4.50
4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00

Average speedup vs baseline

4.10x speedup from hardware and compiler improvements
Enterprise COBOL 4.2 on zEC12 — Enterprise COBOL 6.5 on z17

based on internal benchmarks for compute intensive and /O bound COBOL applications

* Compiler GA year. Compiler releases generally align with hardware releases.
** Recommended performance options for the respective hardware

Disclaimer: The performance improvements are based on the geometric mean of IBM internal measurements on IBM z17 running a z/OS 3.1 LPAR with 1 CP and 80GB Central Storage, IBM z16 running a z/OS 2.4 LPAR with 1 CP and 80GB Central Storage,

IBM z15 running a z/OS 2.4 LPAR with 1 CP and 80GB Central Storage, IBM z14 running a z/OS 2.3 LPAR with 2 CP and 128GB Central Storage, IBM z13 running a z/OS 2.3 LPAR with 1 CP and 64GB Central Storage, IBM zEC12 running a z/OS 2.2 LPAR

with 2 CP and 64GB Central Storage. All benchmarks compiled with IBM Enterprise COBOL for z/OS 5/6 use the options STGOPT, AFP(NOVOLATILE), HGPR(NOPRESERVE), and LIST. All benchmarks compiled with IBM Enterprise COBOL for z/OS 4.2 use

the option LIB. Performance results for customer applications will vary, depending on the source code, the compiler options specified, and other factors.

History of Enterprise COBOL for z/OS Performance
for decimal and floating point compute intensive COBOL applications

5.58 6.00
4.87x
4.48x 5.00
3.49x 4.00
2.35x 3.00
1.84x
2.00
1x
]
0.00
Hardware IBM zEC12 IBM z13 IBM z13 IBM z14 IBM z15 IBM z16 IBM z17
Compiler COBOL 4.2 COBOL 5.2 COBOL 6.1 COBOL 6.2 COBOL 6.3 COBOL 6.4 COBOL 6.5
GA year* 2009 2015 2016 2017 2019 2022 2025
Performance OPT(FULL) ARCH(11) OPT(2) ARCH(11) OPT(2) ARCH(12) OPT(2) ARCH(13) OPT(2) ARCH(14) OPT(2) ARCH(15) OPT(2)
options**
Average CPU usage - 46% 58% 71% 78% 79% 82%
reduction vs
baseline

Average speedup vs baseline

5.58x speedup from hardware and compiler improvements
Enterprise COBOL 4.2 on zEC12 — Enterprise COBOL 6.5 on z17
based on internal benchmarks for decimal and floating point compute intensive COBOL applications

* Compiler GA year. Compiler releases generally align with hardware releases.
** Recommended performance options for the respective hardware

Disclaimer: The performance improvements are based on the geometric mean of IBM internal measurements on IBM z17 running a z/OS 3.1 LPAR with 1 CP and 80GB Central Storage, IBM z16 running a z/OS 2.4 LPAR with 1 CP and 80GB Central Storage,
IBM z15 running a z/OS 2.4 LPAR with 1 CP and 80GB Central Storage, IBM z14 running a z/OS 2.3 LPAR with 2 CP and 128GB Central Storage, IBM z13 running a z/OS 2.3 LPAR with 1 CP and 64GB Central Storage, IBM zEC12 running a z/OS 2.2 LPAR
with 2 CP and 64GB Central Storage. All benchmarks compiled with IBM Enterprise COBOL for z/OS 5/6 use the options STGOPT, AFP(NOVOLATILE), HGPR(NOPRESERVE), and LIST. All benchmarks compiled with IBM Enterprise COBOL for z/OS 4.2 use
the option LIB. Performance results for customer applications will vary, depending on the source code, the compiler options specified, and other factors.

Migration strategies

© 2025 IBM Corporation

Migration strategies

Two simple principles ...

© 2025 IBM Corporation

The more time you
spend doing
something, the
more you gain
from speeding it
up.

A compiler can
only speed up
code that it
compiles.

11

Prioritizing Migration

The more time you
spend doing
something, the more
you gain from
speeding it up.

A 25% speedup saves
twice as much time on
a program that takes
twice as long.

« Prioritize the hot spots
in your workload.

© 2025 IBM Corporation

Time

9

N

w

N

[En

Before

Module 1

] I I

After

Before

Module 2

25%

After

m CPU Saved
m CPU Usage

Prioritizing Migration

A compiler can only
speed up the code
that it compiles.

« The compiler does not
speed up file 1/0.

« The compiler does not
speed up middleware:
Db2, CICS, etc...

« Modules that spend
more time executing

COBOL code will see the

largest benefit.

© 2025 IBM Corporation

7

17%
5
33%

4
£ = COBOL
= 3 ml/O

mCICS

2

1

0

Before After Before After

Module 1 Module 2

Migration Strategies

Tips and tricks

Start with batch

Batch programs often
spend more time in
COBOL code.

Transactional programs
are often just a thin layer
between other
components.

© 2025 IBM Corporation

Profile!

The best way to find your
hotspots is by measuring
them.

IBM Application
Performance Analyzer for
z/OS is a good tool for this;
IBM and other vendors
offer other tools as well

More information is
available in a whitepaper:
COBOL Applications:
Techniques to Make Them
More Efficient

Be methodical

Take a baseline before you
start making changes, and
make sure to compare
apples to apples.

Small helper routines that
are called from many
different places are often
an easy place to make an
improvement.

Give us feedback!

We can't measure your
code.

Let us know what kind of
Improvements you are
seeing.

If you are not seeing
improvements, and you
have profile data showing
that your COBOL code is a
performance hotspot, we
are very interested in
hearing from you.

14

https://www.ibm.com/support/pages/cobol-applications-techniques-make-them-efficient
https://www.ibm.com/support/pages/cobol-applications-techniques-make-them-efficient
https://www.ibm.com/support/pages/cobol-applications-techniques-make-them-efficient

Code Optimization Advice: Improve your COBOL code

performance with prioritized insights

| Provides performance insight
O Conducts comprehensive analysis of COBOL modules
! using both static and dynamic analysis, enabling quick
identification and resolution of performance issues.

o Identifies performance issues in source
coro Access source files and copybooks at the exact line of
code to apply recommended fixes and enhancements

Key Values

Boost productivity by enabling quick identification and resolution of

performance issues

Reduce skill gap by allowing developers of all skill levels to
independently resolve performance issues

Quick resolution of performance issues in COBOL source

Shift-left strategy to proactively prevent performance problems
before they reach production

Provides prioritized and actionable recommendations
Ranks performance issues based on impact, enabling
developers to focus on high-priority tasks for maximum
efficiency.

Migration Strategies
What if | don’t want to recompile/migrate to COBOL 67

Use ABO

Automatic Binary
Optimizer optimizes
previously-compiled
COBOL programs without
the source code

Latest version is ABO 2.3,
which targets hardware up
to the IBM z17

ABO can help you see
performance gains faster
than recompiling

© 2025 IBM Corporation

Which takes less effort?

ABO-optimized modules have
the same behavior, even
when programs use invalid
data

Less testing is needed than
when recompiling older
programs with COBOL 6

ABO requires no source code
changes and has very few
options; besides ARCH, the
existing compiler options are
left alone

When Should | Use ABO?

ABO is a faster, easier, alternative to recompiling with
COBOL 6 and will give comparable performance gains.

Programs optimized with ABO have comparable
performance to programs recompiled with COBOL 6,
using OPT(2) and the same ARCH option as ABO and
keeping all other compiler options the same as when the
program was previously compiled.

To get an extra performance boost, recompile with
COBOL 6 and follow the performance tuning advice in
this webinar

Performance results for customer applications will vary, depending on the source
code, the compiler options specified, and other factors. Find the full disclaimer here.

16

Compiler options:
Low hanging fruit

© 2025 IBM Corporation

Compiler options

OPT

Best Performance

OPT(2)

© 2025 IBM Corporation

OPT(0)

OPT(0) uses a minimal set
of optimizations.

OPT(0) is not
recommended for
performance-critical
applications.

OPT(0) guarantees that
instructions from separate
statements will not be
interspersed: each
statement is completely
finished before starting the
next statement.

OPT(1)

OPT(1) uses a subset of the
compiler's optimizations. It
omits some optimizations
and runs weaker versions of
others.

OPT(1) lies between the
compilation speed of
OPT(0) and the
performance of OPT(2).

OPT(2)

OPT(2) uses all of the
compiler's most powerful
optimizations.

OPT(2) is the best choice
for performance-critical
applications.

18

Compiler options

OPT 16
14
Performance comparison
1.2 23.6%
This comparison is across
IBM's internal suite of
benchmarks. 1.0
A program in our benchmark g 0.8
suite was 84% faster with = 61.4% .
OPT(1) over OPT(0) and an 63.1%
additional 49% faster with 0.6
OPT(2) over OPT(1) (for a 92%
improvement with OPT(2) over 0.4
OPT(0)).
0.2
0.0

V4.2 OPT(FULL) V6.50PT(0) V6.50PT(1) V6.5 OPT(2)

© 2025 IBM Corporation

Compiler options

ARCH

Best performance
As high as possible.

Select the ARCH level
corresponding to the
lowest level machine on
which your program must
run.

For example: a customer
using IBM z17 machines in
production and IBM z16
machines for disaster
recovery should use
ARCH(14), corresponding
to IBM z16.

© 2025 IBM Corporation

Hardware exploitation

Every new release of IBM Z
mainframes adds new
instructions to the hardware.

ARCH limits the compiler’s
instruction choices to those
that exist on a target
machine.

By setting the correct ARCH
level, you take full
advantage of the
capabilities of your
mainframe.

Free lunch

Increasing the ARCH level
does not affect compilation
time.

Increasing the ARCH level
does not affect the ability
to debug your programs.

Caveat: exploitation of
decimal floating-point
instructions only occurs at
OPT(1) and above.

Biggest wins

ARCH(12): The addition of
the vector packed decimal
facility in IBM z14 provides
an additional boost to
decimal arithmetic.

ARCH(10): The new
decimal floating point
instructions introduced for
IBM zEC12 significantly
improve the performance
of decimal arithmetic.

20

Compiler options
ARCH

Performance comparison

This comparison is across
IBM's internal suite of
benchmarks, compiled with
COBOL 6.5 at OPT(2), run on
an IBM z17. Comparison is
relative to ARCH(11).

An individual program in our
benchmark suite improved by
84% using ARCH(15)
compared to ARCH(11)

© 2025 IBM Corporation

Time

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

ARCH(11)

27.1%

27.9%

30.8%

35.5%

ARCH(12)

ARCH(13)

ARCH(14)

ARCH(15)

Compiler options

TUNE

Best performance

Select the TUNE level
corresponding to the
machine on which your
program run most often.

For example: a customer
using IBM z17 machines in
production and IBM z16
machines for disaster
recovery must use
ARCH(14), corresponding to
IBM z16, but should also use
TUNE(15), corresponding to
IBM z17, for best
performance in production.

© 2025 IBM Corporation

Hardware exploitation

TUNE instructs the compiler to
make the best performance
choices on a target machine,
limited by the available
instructions.

By setting the correct TUNE level,
you take full advantage of the
capabilities of the mainframe
where your application runs most
often.

TUNE must always be at least as
high as ARCH.

With ARCH set to match older
hardware, the average gain of
matching TUNE to newer
production hardware is 1-2% over
matching TUNE to ARCH and the
older hardware

Free lunch

Increasing the TUNE level
does not affect compilation
time.

Increasing the TUNE level
does not affect the ability
to debug your programs.

Biggest wins

On IBM z14, the compiler
sometimes inserts stores from
vector packed registers to
temporary storage for
performance. This is only useful
on an IBM z14, and the extra
instructions hurt performance on
other hardware.

ARCH(12),TUNE(13) allows
applications to safely run on an
IBM z14 but get better
production, avoiding the stores to
temps, on an IBM z15 or z16.

A program in our benchmark
suite was 22% faster with
ARCH(12),TUNE(13) than
ARCH(12),TUNE(12) on an IBM
z15

22

Compiler options:
Some assembly required

© 2025 IBM Corporation

Compiler options
INVDATA

Best performance What is bad data?

NOINVDATA Not all arrangements of
bits are valid decimal
values. Consider the
number -123. There are
multiple ways to represent
it. The programmer selects
the representation of a
data item using the

PICTURE clause.

If necessary, test for bad
data with NUMCHECK.

Each of these
representations has
constraints on what the
data can look like.

© 2025 IBM Corporation

Zoned decimal

Ex: PIC S9(3)

F1 F2 D3

This number has three
digits. They must be
between 0 and 9.

It also has a sign code. It

must be between A and F.

In this case, D means the
number is negative.

It also has zone bhits. These

must always be F.

Biggest wins

Ex: PIC S9(3) COMP-3

12 3D

This number also has
three digits and a sign
code. However, it does not
have any zone bits.

24

Compiler options

INVDATA

Why does it matter?

There are many ways to
generate code for a statement.

They all do the same thing for
valid data. They may behave
differently for invalid data.

The new compiler may make
different, faster choices than
the old compiler.

INVDATA and
INVDATA(FORCENUMCMP,N
OCLEANSIGN) restrict the
compiler's ability to make
those faster choices.

© 2025 IBM Corporation

Example:

01 GRP.
02 VAR PIC 9(3).

MOVE LOW-VALUES TO GRP.

IF VAR = 0 THEN

Because VAR is unsigned, it
should look like:

FO FO FO

If the zone bits and the sign
code are all guaranteed to be
F, then the compiler can
compare VAR to 0O directly.

Because we moved LOW-
VALUES to VAR, it looks like:

00 00 00

This is not bitwise-equal to O.
The compiler must first convert
VAR to packed decimal and
set the sign code to F before
comparing

Best strategy

NOINVDATA will give the
best performance.

If your application has
problems with bad data,
use NUMCHECK to locate
and fix them.

Note: As we add new
optimizations to the
compiler, the performance
gap between NOINVDATA
and the other options will
only continue to grow.

25

Compiler options
NUMPROC

Best performance What does it do?

NUMPROC(PFD) COBOL defines preferred
sign codes for decimal

If necessary, test with values:

NUMPROC(PFD) and . C for positive numbers.

NUMCHECK(ZON,PAC) - D for negative numbers.

- F for unsigned numbers.

Sign codes of A, B, and E are
valid, but non-preferred.

Arithmetic operations always
produce the preferred sign.

If NUMPROC(PFD) is

specified, the compiler can
assume that all data has the
preferred sign.

© 2025 IBM Corporation

Why does it matter?

The compiler can generate
more efficient code.

For example, if C is the
only positive sign code,
values can be compared
using a bitwise
comparison.

If values might exist with a
sign code of A, a more
expensive comparison
must be used.

Across a suite of compute-
intensive benchmarks,
NUMPROC(PFD) is 7.5%
faster than NOPFD.

Best strategy

NUMPROC(PFD) should

only be used after verifying
that your data conforms to
the rules for preferred sign.

26

Compiler options

TRUNC
Best performance What does it do? Performance? Best strategy
TRUNC(STD) or TRUNC determines the TRUNC(BIN) is the Avoid TRUNC(BIN).
TRUNC(OPT) behaviour of BINARY data slowest. Intermediate

items that exceed their results grow quickly and TRUNC(STD) is often
If necessary, test with PICTURE clause. may require larger data good enough.
TRUNC(OPT) and types.
NUMCHECK(BIN). TRUNC(STD): Truncate TRUNC(OPT) may be

_ . according to the PICTURE TRUNC(STD) requires a faster in some cases, but

Data items coming from clause. fixup after each operation usually not enough to
Db2 or CICS may not that might exceed the matter.
conform to a PIC clause; TRUNC(BIN): Truncate picture clause. These
use COMP-5 for those according to the underlying fixups are heavily
data items. binary data type. optimized in the new

TRUNC(OPT): The compiler.

compiler can assume that TRUNC(OPT) combines

the PICTURE clause is the benefits of both BIN

never exceeded. and STD, but the

programmer must avoid
© 2025 IBM Corporation truncation. 27

Compiler options

TRUNC

Performance
comparison

© 2025 IBM Corporation

1.2

o = =
© o =

Slowdown - Relative to TRUNC(OPT)

o
o¢)

TRUNC(OPT)

1.7%

TRUNC(STD)

8.2%

TRUNC(BIN)

Compiler options

STGOPT

Best performance

STGOPT

© 2025 IBM Corporation

What does it do?

STGOPT allows the
compiler to eliminate
unreferenced data items in
WORKING-STORAGE and
LOCAL-STORAGE.

Prior to Enterprise COBOL
5, this was controlled using
OPT(STD) vs OPT(FULL).

Benefits

Memory consumption:
Copybooks often introduce
unreferenced data items
into programs. Using
STGOPT can reduce the
memory consumption of
your application.

Data locality: Moving
frequently used data items
closer together may make
it easier for the hardware
to have your data available
when the program needs
it, which can improve
performance.

Caveats

The reduction in memory
consumption from STGOPT
is more significant than the
reduction in CPU usage.

Do not use STGOPT for
programs containing
unreferenced eyecatchers.

Do not use STGOPT for
programs depending on
unreferenced data items to
lay out memory correctly.

The VOLATILE clause can
be used to prevent the
compiler from eliminating
specific data items.

29

Compiler options

AWO

Best performance

AWO

© 2025 IBM Corporation

What does it do?

The APPLY WRITE-ONLY
clause optimizes buffer and
device space allocation for
QSAM files that have
standard sequential
organization, have variable-
length records, and are
blocked.

This allows the program to
combine more records

together into a single EXCP.

The AWO compiler option
adds an implicit APPLY
WRITE-ONLY clause for
every physical sequential,

variable-length, blocked file in

the program.

Benefits

In one example program,
AWO is 90% faster than
NOAWO and uses 98%
fewer EXCPs.

30

Compiler options

BLOCKO

Best performance

BLOCKO

© 2025 IBM Corporation

What does it do?

BLOCK CONTAINS 0 can
be specified for QSAM
files.

This allows the operating
system to determine the
best size for the block.

The BLOCKO compiler
option adds an implicit
BLOCK CONTAINS 0
clause for every QSAM file
in the program that does
not specify RECORDING
MODE U and does not
already have a BLOCK
CONTAINS clause.

Benefits

Using the best block size
can reduce the number of
physical I/O transfers,
resulting in fewer EXCPs.

In one example program,
BLOCKO is 90% faster
than NOBLOCKO and uses
98% fewer EXCPs.

Compiler options

FASTSRT

Best performance

FASTSRT

© 2025 IBM Corporation

What does it do?

In SORT USING and
SORT GIVING statements,
FASTSRT allows the
DFSORT product to
perform 1/O directly on the
input and output files,
instead of returning control
to COBOL after each
record is processed.

This eliminates significant
overhead.

Benefits

In an example program
that processes 100,000
records, FASTSRT is 45%
faster than NOFASTSRT,
and uses 4,000 fewer
EXCPs.

Caveats

You cannot use the
DFSORT options SORTIN
or SORTOUT if you use
FASTSRT. The FASTSRT
compiler option does not
apply to line-sequential
files you use as USING or
GIVING files.

If you specify file status
and use FASTSRT, file
status is ignored during the
sort.

32

Compiler options:
Options to avoid

© 2025 IBM Corporation

Compiler options

SSRANGE

Best performance

NOSSRANGE

© 2025 IBM Corporation

What does it do?

SSRANGE inserts code
that verifies that subscripts
and indexes are within the
proper range.

Performance

Across our benchmarks,
SSRANGE is 7% slower
than NOSSRANGE.

Best strategy

Use SSRANGE during
testing to find bugs. Fix the
bugs, then use
NOSSRANGE in
production.

34

Compiler options

NUMCHECK

Best performance

NONUMCHECK

Note: The z17 hardware
introduces instructions that
greatly reduce the impact
of NUMCHECK. Across
our benchmarks,
NUMCHECK was only
3.6% slower than
NONUMCHECK when
using OPT(2),ARCH(15)
and running on a z17.

But, check your minimum
ARCH level!

© 2025 IBM Corporation

What does it do?

NUMCHECK inserts code
that verifies that numeric
data items used as
senders have valid data.

NUMCHECK(ZON) inserts
tests for DISPLAY items.

NUMCHECK(PAC) inserts
tests for COMP-3 items.

NUMCHECK(BIN) inserts
tests for BINARY items.

Performance
Across our benchmarks:

NUMCHECK(ZON) is 15%
slower than
NONUMCHECK.

NUMCHECK(PAC) is 10%
slower than
NONUMCHECK.

NUMCHECK(BIN) is 13%
slower than
NONUMCHECK.

Best strategy

Use NUMCHECK during
testing.

Do not use NUMCHECK in
production.

35

Compiler options

PARMCHECK

Best performance

NOPARMCHECK

© 2025 IBM Corporation

What does it do?

PARMCHECK inserts a
buffer immediately
following WORKING-
STORAGE.

Before a CALL, a bit
pattern is written into the
buffer.

Following a CALL, the
buffer is checked to ensure
it is unchanged.

A change means the CALL
resulted in a write past the
end of the caller’s
WORKING-STORAGE
section.

Performance

A program repeatedly
calling another empty
program took 22% longer
with PARMCHECK than
with NOPARMCHECK.

Best strategy

Use IBM Developer for z
Systems Scanning
COBOL Programs for
Compatibility feature.

If you don’t have IDz, use
PARMCHECK during
testing.

Do not use PARMCHECK
in production.

36

7))
-
Q
Q
O
LL
-
~~
)
=
i’
-
-
ad

© 2025 IBM Corporation

Runtime / LE options
Storage management tuning

Best performance
HEAP

ANYHEAP
BELOWHEAP
STACK

LIBSTACK

RPTSTG

© 2025 IBM Corporation

What is it?

Storage management is
designed to keep a block of
storage only as long as is
necessary.

If the last block of storage
allocated for a program does
not contain enough free
space to satisfy a storage
request by a library routine,
the library routine will issue a
GETMAIN and FREEMAIN
to acquire and release the
storage.

If that library routine is called
frequently, performance will
be degraded.

Best strategy

Use RPTSTG(ON) to
measure the storage
requirements of your
application.

Use the values reported by
RPTSTG as the size of the
initial blocks for the HEAP,
ANYHEAP, BELOWHEAP,
STACK, and LIBSTACK
options.

In a transactional
environment, the LE storage
tuning user exit allows you to
set storage values for your
main programs without
having to link-edit the values
into your load modules.

38

Runtime / LE options
First program not LE-conforming

The problem

If the first program in an
application is not LE-
conforming, the COBOL
environment must be
initialized and terminated
each time a main program
is invoked.

This can cause a
significant performance
degradation.

This is most likely if the
first program is written in
Assembler.

© 2025 IBM Corporation

Best solutions

Rewrite the first program in
COBOL.

Replace the first program
with a COBOL stub
program that calls the first
program.

Alternatives

Use the CEEENTRY and
CEETERM macros in the first
program to make it an LE-
conforming program.

Call CEEPIPI from the first
program to initialize and
terminate the LE
environment.

Use the runtime option
RTEREUS to initialize the
runtime environment for
reusability.

Use LRR (library routine
retention).

Place library routines in the
LPA / ELPA.

Benefits

The overhead of calling an
empty COBOL program is
99% smaller if the COBOL
environment has already
been initialized.

39

Runtime / LE options
Options to avoid in production

Best performance Best strategy

DEBUG These options add
overhead to the execution

INTERRUPT of your program.

RPTSTG Use these options for

STORAGE debugging and tuning

when necessary but avoid
TEST them in production.

© 2025 IBM Corporation

40

Coding practices

© 2025 IBM Corporation

Coding practices

Data types

Using the best type
for your data items is
one of the easiest
ways to speed up the
computationin a
program.

© 2025 IBM Corporation

Binary

BINARY, COMP-4, COMP-5,
INDEXED BY

Binary arithmetic is the native
language of the hardware.
Computations done in binary
are faster than any other

type.

Some operations require their
operands to be converted to
binary:

- Indexing/subscripting a
table

- Reference modification

- Object of ODO clause

Use binary data items
whenever possible. Prefer
COMP/COMP-4 to COMP-5.

Packed decimal

PACKED-DECIMAL,
COMP-3

Packed-decimal arithmetic
is like a second language.
The hardware knows how
to work with it, but it is
slower than binary
arithmetic.

Use packed decimal for
data items with decimal
points, or larger values
that do not fit in binary
items.

Zoned decimal

DISPLAY, NATIONAL,
numeric-edited,
unspecified

Zoned-decimal arithmetic
is like a foreign language.
The hardware has to

translate it to do anything.

Use zoned decimal for
data items that will be used
in DISPLAY statements.

42

Coding practices

Zoned decimal

Avoid using zoned
decimal data items
for computation

whenever possible

© 2025 IBM Corporation

Example

Working-Storage Section.
01 A PIC 9(8).
01 B PIC 9(8).

Procedure Division.
Perform Varying A
from 1 by 1
until A = 10000000
Add 1 to B
End-Perform.

Time

5.0

4.0

3.0

2.0

1.0

0.0

0.1%

50.9%

u DISPLAY
1 COMP-3

u BINARY

2.0%

. .50.7%
]
V6

Coding practices

Packed decimal

Avoid using packed
decimal data items
with an even number
of digits

© 2025 IBM Corporation

Packed decimal

Consider the following data
item:

01 EVEN-PACK PIC 9(4)
COMP-3

Itis represented as:

01 23 4C

The upper half of the high-
order byte is unused and
must always be 0. Not only
does this waste space, but it
requires the compiler to
generate additional
instructions to set it to O after
EVEN-PACK is used as a
receiver.

Example

01 A PIC 9(?) Value O.
01 B PIC 9(?) Value O.

Perform Varying A
from 1 by 1
until A = 100000

Add 1 TO B

End-Perform.

Performance

The example program is
16% faster, compiled with
ARCH(11), when A and B
are PIC 9(7) than when A
and B are PIC 9(6).

44

Coding practices

Binary

Where possible, use
COMP over COMP-5.

Use COMP-5 for
binary values set by
other products: IMS,

What is the difference?

COMP and COMP-5 differ
based on their handling of
truncation.

COMP data items obey their PIC
clause. If a value larger than the

DB2, C, etc. PIC clause is moved into a
COMP item, it will undergo
decimal truncation.

COMP-5 data items are
truncated according to the size
of the underlying binary value:

9(1) to 9(4) 9(5) to 9(9) 9(10) to 9(18)

2 bytes 4 bytes 8 bytes

Oto 0 to 4,294,967,295 Oto

65,535 18,446,744,073,709,5

51,615

© 2025 IBM Corporation

Intermediate results Performance

Because COMP-5 data
items can contain values
that exceed their PIC
clause, the compiler must
assume that intermediate
results of computations
using those items are
larger.

If operands do not exceed
9 digits, COMP-5 is
comparable to COMP.

If operands exceed 9
digits, computations
involving COMP data items
can be 99.5% faster than
the equivalent operations

If an operation that involves :
using COMP-5.

binary operands requires
intermediate results longer
than 18 digits, the compiler
must convert the operands
to packed decimal before
performing the operation.

This can be much slower. In
some cases, it requires calls
to library routines.

45

Coding practices
Occurs Depending On

Avoid creating
variably located data
items:

« Place ODO tables
at the end of level-
01 groups.

« Avoid nesting
ODO tables where
possible.

© 2025 IBM Corporation

Variably located data
items

Some data items are not
always located at the same
location in working storage.

If a data item follows a
variable-length table in a level-
01 item, but is not subordinate
to it, then the address of that
data item depends on the size
of the variable-length table.

If a table contains variable-
length elements, the address
of an element in that table
depends on the length of the
elements.

Variably located data items
require address calculations
whenever they are accessed.

Example
01 FIELD-A.
02 COUNTER-A PIC 99.
02 TABLE-A.
03 RECORD-A OCCURS 1 TO 5 TIMES
DEPENDING ON COUNTER-A PIC X (3)
02 EMPLOYEE-NUMBER PIC X (5)
01 FIELD-B.
02 COUNTER-B PIC 99.
02 TABLE-B-1 OCCURS 5 TIMES
INDEXED BY IDX.
03 TABLE-ITEM PIC 99.
03 TABLE-B-2 OCCURS 1 TO 3 TIMES
DEPENDING ON COUNTER-B.
04 DATA-NUM PIC 99.

46

Coding practices
Occurs depending on

Example

01 GROUP-1.

02 SIZE-1 PIC 99 wvalue 50.

02 SIZE-2 PIC 99 wvalue 50.

02 SIZE-3 PIC 99 value 50.

02 TABLE-1 PIC 99 OCCURS 1 TO 99 TIMES
DEPENDING ON SIZE-1.

02 TABLE-2 PIC 99 OCCURS 1 TO 99 TIMES
DEPENDING ON SIZE-2.

02 TABLE-3 PIC 99 OCCURS 1 TO 99 TIMES
DEPENDING ON SIZE-3.

02 A PIC 9(6) COMP-3.

02 B PIC 9(6) COMP-3.

02 C PIC 9(6) COMP-3.

[...]

PERFORM 100000000 TIMES
ADD A TO B GIVING C

END-PERFORM

© 2025 IBM Corporation

Time

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

91.0%

OPT(0)

79.1%

OPT(2)

mODO
®E No ODO

Coding practices

Calls

Static calls are faster
than dynamic calls.

However, dynamic
calls may still be best
for your program.

© 2025 IBM Corporation

What is the difference?

If DYNAM is not specified, a
CALL to a literal will cause the
program with that name to be
bound into the same load
module as the calling program.

If DYNAM is specified, or if a
CALL is to a data item or
function pointer instead of a
literal, then the target of the call
will not be bound into the same
load module. Instead, the
target will be determined by the
COBOL runtime when the
program is executed.

The first dynamic call to a
program will be significantly
slower than subsequent calls.

Performance

When calling an empty
program, a static call is
74% faster than an
equivalent dynamic call.

Other considerations

If an application contains
programs that are not
called every time the
application runs, using
dynamic calls can avoid
ever loading the unused
programs into memory.

Dynamic calls are faster
than static calls in
applications that contain
both COBOL 4/earlier
programs and COBOL 5/6
programs. Static calls are
faster in pure COBOL
4/earlier or pure COBOL
5/6 programs.

48

Coding practices
RULES(NOLAXPERF)

The compiler can
automatically identify
many opportunities
for code
improvement

© 2025 IBM Corporation

Example

Working-Storage Section.
9(4).

01
01
01
01
01

Procedure Division.

Perform varying Bad-Loop

from 1 by 1 until Bad-Loop
Add Bad-Arith-1 to Bad-Arith-2
Move Small-Item to Large-Item

Bad-Loop
Bad-Arith-1
Bad-Arith-2
Small-Item
Large-Item

PIC
PIC
PIC
PIC
PIC

End-perform.

9

9
X
X

(
(
(
(

4)
4)
10) .

1000) .

Opportunities

Loops:

Bad-Loop is a loop
counter. It should be
defined as COMP or
COMP-3.

Arithmetic:

Bad-Arith-1 and Bad-Arith-
2 are used in arithmetic.
They should be defined as
COMP or COMP-3.

Excess padding:
Moving a PIC X(10) to a
PI1C X(1000) requires 990
bytes of padding to be
filled with spaces.

49

Resources

© 2025 I1BM Corporation

50

Need Help With COBOL Performance?

- IBM watsonx Code Assistant for Z Optimize can help you find the hotspots in your COBOL applications and
identify and prioritize performance tuning opportunities

« For additional information see the wca4z website, or click-through demo (click Optimize Mainframe Code
to get started)

« An Enterprise COBOL developer can answer specific questions you have about your COBOL Migration, as
well as COBOL performance questions or other questions about Enterprise COBOL.

» Contact an expert here

« Mainframe Application Modernization Services — COBOL Upgrade Service from IBM Consulting can help
you recompile applications previously compiled with older IBM COBOL compilers with Enterprise COBOL for
z/OS 6.4 or 6.5. Optimization of COBOL modules with Automatic Binary Optimizer for z/OS is also available.

* For additional information, see the IBM Consulting website.

© 2025 IBM Corporation 51

https://www.ibm.com/products/watsonx-code-assistant-z
https://www.ibm.com/resources/digital-innovation/demos/watsonx-code-assistant-for-z
https://www.ibm.com/docs/SS6SG3_latest/migration-webinars.html
https://www.ibm.com/community/z-and-cloud/leverage-ibm-expertise/

Thank you

Mike Chase

Compiler Optimization Developer

Lead Developer, IBM watsonx Code Assistant for Z Code
Optimization Advice

mike.chase@ca.ibm.com

ibm.com

© 2025 IBM Corporation

52

Performance Claims

IBM Enterprise COBOL for z/OS 6.5 (applies here and here)

The performance improvements are based on the geometric mean of IBM internal measurements on IBM z17 running a z/OS 3.1 LPAR with 1 CP and
80GB Central Storage, IBM z16 running a z/OS 2.4 LPAR with 1 CP and 80GB Central Storage, IBM z15 running a z/OS 2.4 LPAR with 1 CP and 80GB
Central Storage, IBM z14 running a z/OS 2.3 LPAR with 2 CP and 128GB Central Storage, IBM z13 running a z/OS 2.3 LPAR with 1 CP and 64GB Central
Storage, IBM zEC12 running a z/OS 2.2 LPAR with 2 CP and 64GB Central Storage. All benchmarks compiled with IBM Enterprise COBOL for z/OS 5/6
use the options STGOPT, AFP(NOVOLATILE), HGPR(NOPRESERVE), and LIST. All benchmarks compiled with IBM Enterprise COBOL for z/OS 4.2 use
the option LIB. Performance results for customer applications will vary, depending on the source code, the compiler options specified, and other factors.

IBM Automatic Binary Optimizer for z/OS 2.3 (applies here)

The performance improvements are based on the geometric mean of IBM internal measurements on IBM z17 running a z/OS 3.1 LPAR with 1 CP and
80GB Central Storage, and IBM zEC12 running a z/OS 2.3 LPAR with 1 CP and 80GB Central Storage. All benchmarks optimized with IBM Automatic
Binary Optimizer for z/OS 2.3 use the new ARCH(15) option and default settings for all other options. The input COBOL benchmarks modules optimized by
IBM Automatic Binary Optimizer for z/OS were all compiled by Enterprise COBOL 4.2. All benchmarks compiled with IBM Enterprise COBOL for z/OS 4.2
use the options OPT(STD), LIB. Performance results for customer applications will vary, depending on the source code, the compiler options specified, and
other factors.

© 2022 IBM Corporation 53

	Slide 1: Performance Tuning with Enterprise COBOL Mike Chase mike.chase@ca.ibm.com Compiler Optimization Developer Lead Developer, IBM watsonx Code Assistant for Z Code Optimization Advice
	Slide 2
	Slide 3: Introduction
	Slide 4: Goals of this presentation
	Slide 5: Introduction A new approach to COBOL compilation
	Slide 6: Introduction A new approach to COBOL compilation
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Migration strategies
	Slide 11: Migration strategies Two simple principles …
	Slide 12: Prioritizing Migration
	Slide 13: Prioritizing Migration
	Slide 14: Migration Strategies Tips and tricks
	Slide 15
	Slide 16: Migration Strategies What if I don’t want to recompile/migrate to COBOL 6?
	Slide 17: Compiler options: Low hanging fruit
	Slide 18: Compiler options OPT
	Slide 19: Compiler options OPT
	Slide 20: Compiler options ARCH
	Slide 21: Compiler options ARCH
	Slide 22: Compiler options TUNE
	Slide 23: Compiler options: Some assembly required
	Slide 24: Compiler options INVDATA
	Slide 25: Compiler options INVDATA
	Slide 26: Compiler options NUMPROC
	Slide 27: Compiler options TRUNC
	Slide 28: Compiler options TRUNC
	Slide 29: Compiler options STGOPT
	Slide 30: Compiler options AWO
	Slide 31: Compiler options BLOCK0
	Slide 32: Compiler options FASTSRT
	Slide 33: Compiler options: Options to avoid
	Slide 34: Compiler options SSRANGE
	Slide 35: Compiler options NUMCHECK
	Slide 36: Compiler options PARMCHECK
	Slide 37: Runtime / LE Options
	Slide 38: Runtime / LE options Storage management tuning
	Slide 39: Runtime / LE options First program not LE-conforming
	Slide 40: Runtime / LE options Options to avoid in production
	Slide 41: Coding practices
	Slide 42: Coding practices Data types
	Slide 43: Coding practices Zoned decimal
	Slide 44: Coding practices Packed decimal
	Slide 45: Coding practices Binary
	Slide 46: Coding practices Occurs Depending On
	Slide 47: Coding practices Occurs depending on
	Slide 48: Coding practices Calls
	Slide 49: Coding practices RULES(NOLAXPERF)
	Slide 50
	Slide 51: Need Help With COBOL Performance?
	Slide 52
	Slide 53: Performance Claims

